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ABSTRACT

STOCHASTIC MODELING OF ELECTRICITY MARKETS

Talasli,Irem
Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

January 2012, 88 pages

Day-ahead spot electricity markets are the most transparent spot mahatsone can find
integrated supply and demand curves of the market players for eacimssttlperiod. Since
it is an indicator for the market players and regulators, in this thesis we rtioelspot elec-
tricity prices. Logarithmic daily average spot electricity prices are modeledsasnmation
of a deterministic function and multi-factor stochastic process. Randomnegsspdhprices
is assumed to be governed by three jump processes and a Brownian mogientwb of the
jump processes are mean reverting. While the Brownian motion capturesefgilar price
movements, the pure jump process models price shocks which have longffeats end
two Ornstein Uhlenbeck type jump processes witliedlent mean reversion speeds capturing
the price shocks thatfi@ct the price level for relatively shorter time periods. After remov-
ing the seasonality which is modeled as a deterministic function from pricevaiisegrs, an
iterative threshold function is used to filter the jumps. The threshold functiconstructed
on volatility estimation generated by a GARCH(1,1) model. Not only the jumps boitlas
mean reverting returns following the jumps are filtered. Both of the filtered jurnpegses
and residual Brownian components are estimated separately. The mogpliezido Aus-

trian, Italian, Spanish and Turkish electricity markets data and it is foundthieaiveekly
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forecasts, which are generated by the estimated parameters, turn ouwttile be capture the

characteristics of the observations.

After examining the future contracts written on electricity, we also suggestisidn tech-
nigue which is built on risk premium theory. With the help of this methodologyveéve

market players can decide on taking whether a long or a short positiandiwen contract.
After testing our technique, we conclude that the decision rule is promisingeaads more

empirical research.

Keywords: Electricity spot price, stochastic multi-factor model, jump prqocedRCH (1,1),

risk premium



Oz

ELEKTRIK PIYASALARININ STOKASTIK MODELLEMESI

Talasli,Irem
Doktora, Finansal Matematik@umi

Tez Yoneticisi : Dog. Dr. Azize Hayfavi

Ocak 2012, 88 sayfa

Gun oncesi elektrik piyasalari, piyasa oyuncularinin her uzlasimehine ait toplam arz
ve talep @rilerini iceren en siaf spot elektrik piyasasidir. Bu tezde hem piyasa oyunculari
hem de dizenleme kurumlari acisindaidgierge nitefji tasiyan @n oncesi elektrik fiyat-
lari modellenmektedir. Logaritmasi alinaiirdgik ortalama spot elektrik fiyatlari determin-
istik bir fonsiyon ve c¢ok fakirlu stokastik grecler ile modellenmistir. Spot fiyalardaki ras-
sallik iki tanesi ortalamayathen olmakiizerelic adet sigramaiseci ve bir Brown hareketi
tarafindan $netiimektedir. Brown hareketitmlik olagan fiyat hareketlerini yakalarken,
sicrama 8reclerinden ilki uzun dnemde etkili olan fiyat soklarinin, farkh ortalamay@ands
hizlarina sahip olan iki tane Ornstein Uhlenbeck tipi sicraimad ise fiyat seviyesizerinde
gorece daha kisdise etkili olan fiyat soklarinin aciklanmasinda kullaniimaktadir. Determin-
istik bir fonksiyon ile modellenen mevsimsellik etkisininzjenen fiyatlardan ayristirimasindan
sonra, iteratif esik fonksiyonu kullanilarak fiyatlardaki sicramalar fétnenektedir. $z konusu
esik fonksiyonunda GARCH(1,1) kullanilarak heasplanan oynaklik talemkullaniimaktadir.
Sadece si¢cramalar gié onlari takip eden ortalamayaddis getirileri de filtre yardimi ile
ayrilmaktadir. Filtrelenen sigramargcleri ve bu @recten geriye kalan Brown hareketine ait

parametreler ayri ayri hesaplanmaktadir. Model Avustutgdya, Ispanya ve Trkiye'deki

Vi



elektrik piyasa verilerine uygulanmis ve elde edilen parametereler kulldnyamlan haf-

talk fiyat tahminlerinin fiyat gzlemlerine yakinsagi gorulmustir.

Elektrik Uzerine yazilan vadelizlesmeler incelenerek, risk primi teorisine dayali liintgem
onerilmistir. Bu yontem piyasa oyuncularina, herhangi bir vadeli elektirkissmesinde kisa
ya da uzun pozisyon alinmasi @oltusunda bilgi vermektedir. Yapilan testler sonucunda
stz konusu ¥ntemin uygulabilir oldgu ancak daha fazla ampirik ¢calismayla desteklenmesi

gerektdi sonucuna variimistir.

Anahtar Kelimeler: Spot elektrik fiyati, stokastik fakimodelleri, sicramasecleri, GARCH
(1,2), risk primi
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CHAPTER 1

INTRODUCTION

In the past two decades, electricity industries in many countries which witiadlynde-
signed as vertically integrated national or state dominated monopolies haveXxyienc-
ing a deregulation process. Throughout this process, generatiosmission, distribution
and marketing activities have been seperated and opened to competiti@vevhiers pos-
sible and profitable. The rise in the number of market players together wittothpetition
and development of relatively more liberal electricity markets caused sjpatispo be de-
termined by supply and demand. This development increased the importaaceuoate
electricity price forecasting and therefore electricity price modeling. Asnancodity, elec-
tricity has diferent characteristics than other commodities as well as financial assdts due
its non-storability, its demand inelasticity and significant seasonality of its cgpison and
production. Electricity consumption is mainly influenced by industrial prodoctioisiness
activities and weather conditions, therefore electricity prices show inihg daeekly and
annual seasonal behaviour. Electricity prices are also mean revertngsses with high
volatility and sharp price spikes. Non-storability of electrical energy aswkssity of con-
tinuous supply and demand balance in the transmission mechanism causeeflzetion of
supply and demand shocks on electricity prices. As soon as these extedigons dis-
appeatr, their fects on price levels also fade away. Additional to bilateral electricity trade
contracts, whose conditions are predetermined, a significant amountufct trade takes
place in the spot markets. The spot electricity markets are completed with elgcedva-
tives trading taking place both in over the counter markets and derivaiivepges. Because
of the non-storability of electricity, it is not possible to use main stream demsvaluation
models based on no arbitrage theory. However, due to their high infoenadivtent about

market players’ expectations or hedging behaviour of the agentgatiegiaccurate modeling



of electricity derivatives is a necessity.

We model the daily series of equally weighted average of system marginakgdor each
day’s balancing intervals (hoyhalf an hour) formed in the day-ahead markets. Due to mean
reversion property of electricity prices, modeling with Ornstein Uhlenbep& processes are
very common in literature. The need for a better fit of model forecasts wiserghtions
leads to more complicated models with latent variables and multiple regimes. Howiéher
the increasing number of parameters, the estimation process also gets ctadpkttiering
techniques are one of the widely used methods in parameter estimation of therpoapges.

In our spot electricity price model, three jump processes without predetedijump size dis-
tributions and a Brownian motion are combined with a deterministic seasonality tehnite W
the Brownian motion captures the daily regular price movements, the pure jurgssrmod-

els the price shocks which have long terffeets and two Ornstein Uhlenbeck type processes
with different mean reversion speeds that capture the price shocks thahbeuesn dfects.
One of the mean reverting processes is assumed to model price shodkséhniaback in the
next observation (price spikes) and the other is assumed to model pridesghat take a few
days to fade away (semi-spikes). An iterative threshold derived by esitimated volatility
with GARCH(1,1) is used to filter the price jumps. We construct an algorithratép by step

parameter estimation of a multi-factor price model.

One of the main goals of this thesis is to propose spot and future contieehpodels which
can be used in recently established liberal Turkish electricity spot mar#leglactricity future
contracts that are traded in national derivatives exchange. Hovgiwee we do not prefer to
be restrained by the small sample size, we test our model with relatively moreemadtkets’
spot electricity data. We apply our spot price model to folfiedent countries; Austria, Italy,
Spain and Turkey all of which heavily depend on thermal sources fotriigy generation.
The hydro sources in these countries generally follow thermal sour¢ess of electricity
generation. In all of the four countries, a higher proportion of the gdad electricity is
consumed by the industry. Austria, Spain and Italy have mature marketsedm{Turkish
day-ahead spot electricity market which has been taken into full opeiat@acember 2009
and is still evolving through its final market design. For all of the examinathts, the

separation results are found to be in accordance with our initial expedation

In the analysis of the electricity futures pricing, we summarize three main agipes used



for electricity forward and future contracts modeling in the literature. Wenckpropose a
contract price model due to data shortage. Instead of proposing a fidntracts price model,
we dfer a decision technique where the given contract prices are used. \Fite¢hnique
which is built on the risk premium theory, derivative market players cardedaking whether
a long or a short position. After testing our technique, we conclude thatebision rule is

promising but needs more empirical research.

In this context, spot electricity price processes are discussed in detaldpt& 2. Our
multi-factor spot electricity price model is summarized in Chapter 3. Chaptevdeateto
the estimation of model parameters and Monte Carlo simulations. Chapter 5 iatéddic

electricity futures.



CHAPTER 2

SPOT ELECTRICITY MARKETS

Spot electricity, referring to electrical power produced for curremtscimption, is provided

by a transformation industry which can be split into three processes.

e Electricity is produced by generators, who burn fuels such as coakahatas or nu-
clear fuel in power plants or use the gravitational energy of water or thd ferce.

Generated energy is then injected into a high voltage network.

e Network operator (an independent system operator) is responsititeeforansmission
of electricity and protection of the global balance between electricity givenand
taken out of the transmission system in order to prevent a possible collapperates
a software system that allows the agents to exchange electricity on the Higbevo

network, which is the natural place for wholesale trading.

e Marketing companies and distributors get the electricity from the high voltetyeonk,
cascade it down to network distributions with lower voltage and sell it to indisir

residential consumers and handle the metering and billing.

A few decades ago, in most of the countries worldwide, electricity secterameertically
integrated industry, where generation transmission and distribution is doaesimgle en-
tity. In this setting, prices were determined by regulators to reflect the ¢agtreration,
transmission and distribution and these prices were used to change inraidistiic manner.
However, over the last twenty years, electricity markets in many countmesxgeriencing
a deregulation process, aiming to introduce competition in generation, sugpljies and
distribution. The first step in this deregulation process is unboundling thtias conducted

by the national monopolies. Unboundling the vertically integrated utilities meansfideg
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and separating the fiierent tasks attached to a single entity in the traditional organization.
Then these tasks are opened to competition wherever it is possible andhpeofiContrary

to generation and distribution, which are appropriate to adapt a competitiketséructure,
transmission is generally classified as a natural monopoly that should tsexbby a single
system operator. Managing the grid system requires continuously ketbgientire transmis-
sion system at equilibrium. Since itis easier to manage the whole system fingieacontrol

point, transmission has generally left out from the liberalization and prattiz processes.

The upsurge in the number of market players together with the competitionesetbgment
of relatively more liberal electricity markets caused electricity to become a comnvdabse
price is determined by supply and demand. In this market design, long-itateral con-
tracts between generators and wholesales (and retailers) dominate thef thesélectricity
trading. However, if approximately 80% of the trade takes place accotdinige prede-
termined conditions of these bilateral contracts, the remaining 20% takesiplde® spot
electricity markets. The spot electricity market refers to the electricity tradatgdkes place
in a day-ahead market, which is managed by the system operator. Forettidiral genera-
tion capacity that is not bounded by bilateral agreements or for their dgtrmieity demand,
market players send their bids to the system operator in terms of pricesantitigs for each
settlement period (generally settlement periods are hours or half hdurs llowing day.
The system operator collect these bids, ranks them by merit order feohadhkt expensive to
the next least expensive and so forth, then builds the supply and ddmatobns. Two of

the possible designs that the system operator can manage are given below

e Itis only the suppliers that make bids and the system operator is respdositbenput-
ing the expected demand for each settlement period of the following dayseatarg

this demand with the supply function provides the system marginal price.

e Itis both buyers and sellers who make bids to the pool and then the sys&atamhas
to build an analogous demand function, which is a quasivertical line sinctrieity
demand is fairly inelastic to price changes. The marginal price is again défindhe

intersection of the curves.

Contrary to bilateral contracts whose conditions are not publicly anmealjsystem clearing

prices published every day by the operator. The latter is assumed to bedargtcator
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for the spot electricity markets. On the other hand, the ultimate role of a spéetmar
to ensure that total generation meets total demand. Although most of they erseting is
scheduled in advance (from years to day ahead), some imbalancesdaidy occur in real
time because of various generation, load, and transmission factors.aBendéactors include
plant outages, generators not following their schedules accuratelyséhaf some generation
to provide ancillary services, and the intermittent nature of some generativoes (like
wind). Load factors include sudden changes in weather forecastimig eand intrahour load
changes. Transmission factors include local and regional congestischeduled flows, and
forced outages. All these factors, separetly and in combination, retipairgystem operator
to have access to generation output so that it can move up or down frawairtteinterval.
This real time balancing is provided by the reserve capacity mechanisne wizgket players
are obliged to hold a reserve capacity, which can be taken into operatidiew rainutes if

the system operator needs it.

2.1 Characteristics of Electricity as a Commodity

As a commodity, electricity hasfilerent characteristics than other commodities and financial
assets due to its non-storability, its demand inelasticity and significant sésefiact in

its consumption and production. Unlike the financial assets traded fortineas purposes,
electricity is traded in order to be consumed. This close link with the real ecpaod daily

life causes electricity price to exhibit aftérent behaviour than those of the financial assets.

As a secondary energy source, created by the conversion of thecoirgy resources, elec-
tricity is difficult and expensive to store or transmit betweedfedent regions. Therefore, the
spot price of the electricity is set by the short term supply demand equilibandchas already
stressed, this equilibrium should be maintained at all times for the safety acdritinuity
of the whole regional transmission system. Theoretical supply and dernares®f an hour,
in a day-ahead market is given in Figure 2.1. This figure is taken fromt#tiarl system
operator GME’s web site [46] and it shows the supply and demand coifvEath hour of
30 June 2011, which are constructed according to market players’ Inidsgure 2.2(a) the
hourly equilibrium prices for a random week are illustrated. And a longees of daily

prices, computed from the daily averages of hourly prices, are shotigume 2.2(b).
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Market Zone: MNORD; AUST; FRAN; MFTY; SLOV; SVIZ
Date: 30/05/2011 Hour: 12
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Figure 2.1: Demand and supply curves from Italian spot electricity market

These representative series can help us identify some of the outstarating$of spot prices

for electricity.
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(a) Hourly electricity prices in Turkish spot electriciflg) Daily electricity prices in Turkish spot electricity
market between 1-15 March 2010 market between 1 Dec 09 - 30 Sep 2010

Figure 2.2: Spot electricity prices

1. Seasonal BehaviorElectricity consumption is mainly influenced by economic cycles,
industrial production, business activities and weather conditions. fidnerelectricity
prices show intra daily, weekly and annual seasonal behaviour. érdarece with the
literature, we assume that seasonal behaviour is governed by a detgenimistion.

Since we will work with daily average prices, only weekly and yearly sealsy will
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be considered.

2. Mean Reversion:Contrary to stock prices which can be evolved freely in any direction,
electricity prices are known for their anti-persistent nature againstysapg demand
shocks. Electricity prices generally gravitate around the cost of ptimucAbnormal
market conditions may lead to price spreads in the short run, but in thedorsupply
will be adjusted and prices will return to the level dictated by the cost ofymtioh.
Moreover, one of the main factors determining electricity consumption is the tempe
ature which is also a mean reverting process. As a result, spot electriciggs phow

strong mean reverting behaviour.

3. High Volatility and Sharp Spikes: Non-storability of electrical energy and necessity
of continuous supply and demand balance in the transmission mechaniserdo®as
reflection of supply and demand shocks on electricity prices. As it cardm fsom
Figure 2.1 electricity demand is highly inelastic. The characteristic of the stk
can also contribute to the price volatility. For low levels of demand, generstgdy
electricity by using base load units with low marginal costs; as higher quantesied,
generation plants with high marginal costs enter into the system. Therefdrerhig
demand levels may lead to jumps in the prices observed. Moreover, in cagaanit
failure, high cost generation plants have to supply energy to the systemevidg when
the conditions causing the price shocks disappear, prices revertdotwkr long term

equilibrium levels.

2.2 The Motivation in Modeling Spot Electricity Prices

Market agents usually incorporate three instruments for electricity tradhmypool (spot
market operated by the system operator), bilateral contracts and ilaatidersecurities. In
the pool, agents submit bids, consisting of a set of quantities at certais foidbe following

day. And the system operator clears the market and announces tHecksstrimg prices for
the next day. These daily bids should include the price forecasts assvaibduction and
consumption plans of the agents. Successful forecasts of the followiyig jorice can help
producers develop revenue maximizing strategies, or maximization of corsurtildy as it

is also stated in Contreras et al. (2003) [30].
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Moreover, agents need medium term quantity and price projections in twrditermine
bilateral contract terms. With the help of reliable daily price forecasts ymerd or consumers
can price these bilateral contracts moficegently. Also for market players who want to be
hedged against the price volatility, expected future spot prices arategse valuation of

derivative instruments.

We will model the daily spot prices (equally weighted average of the howyjlibrium
prices of each day), instead of the hourly system balancing prices shgiof our approach
is the observation done by Meyer-Brandis et al. (2007) in [57], whiates that hourly half
hourly quoted electricity prices cannot be seen as a time series, since infrtfestlectricity
markets, the delivery prices for all 24 hours of a given day are prerténed by the system
operator simultaneously on the previous day (day-ahead prices). tAfsedetermination,
day-ahead market closes and a limited number of transactions take plaoentgnn real
time balancing market. Thus, there is no causality relationship betwgeredit hourly prices
on the same day, and hourly electricity data should rather be seen aseldapdaily series
than a single series of hourly prices. With this line of reasoning, Meyandls et al. (2007)

[57] suggest the following model for hourly electricity prices:

X = XPE(t,h) + €& (2.1)

where

Xth, h{e 1,..., 24} is the electricity price on dayand houth

X' is the common factor for daty

f(t, h) is a slowly varying intradaily pattern depending both on the toayd the houh

€' is a white noise process

In this setting, most of the variability observed in electricity price, as well amttesting
statistical features, e.g. mean reversion, are assumed to be containeaMiertige daily price

series.



2.3 Spot Electricity Models in Literature

In general, electricity price models can be grouped under three geapies. The first ap-
proach is based on econometric time series models. Apart from the basiegrassive (AR)
and autoregressive moving average (ARMA) specifications, a widgerahalternative mod-
els have been proposed. This long list of models includes: autoregréstggrated moving
average (ARIMA) and seasonal ARIMA models (Zhou et al. (2004))[8autoregressions
with heteroscedasticity (Garcia et al. (2005) [41]) or with heavy tailedr@W€2005) [77])

innovations, AR models with exogenous variables (ARX models), AR and ARRHels with

thresholds (Misiorek et al. (2006) [58]), regime switching regressigtisfundamental vari-

ables (Weron (2006) [78]) and mean reverting jumfiudiions (Knittel et al. (2005)[50]).

The second group of models consists of fundamenhtatward based models, the futures
prices and their relation with the spot electricity prices are the main focus efullg, and the
dynamics of the whole futures price curve is modeled by using Heathwldiarton (HIM)
framework. See for instance, [3], [17], [27], [51]. A generaladission of HIM-type models
in the context of power future is given in Benth et al. (2008) [10]. THeglicate a substantial
part of their analysis to the relation of spot, forward and swap pricerdigsa However, since
non-storability of the electricity causes the break up of no arbitrage condiBbwveen spot
and future markets, futures prices do not reveal any information givam& dynamics on a
daily timescale, but they can provide only a poor approximation to the complestiste of

spot market prices.

The classical starting point for the commodity price modeling is the SchwartZaoter
model [70] , which is an extension of geometric Brownian motion allowing formreser-

sion:

St = SoexpX), (2.2)
dX(t) = a(u - X(©)dt + odB(t), (2.3)

whereB; is a standard Brownian motiom,is the volatility of the process antlis the speed of
the process reverting to its long term mearMany electricity price models use this process

or its variants as building blocks. For instance, spot price models prdpodeaucia et al.
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(2002) [53] are given (2.4) and (2.5) by

St = h(t) + Xt, (24)
St = exph(t) + X), (2.5)

whereS; is the spot priceX; is an Ornstein-Uhlenbeck process di(t) is a deterministic
component, which is used to account for the seasoffietts. Weekly seasonality due to
higher weekday prices than weekend prices, and spot prices’ dylsébaviour throughout
the year are all included in spot price dynamics by the th(th Benth et al. (2008) [10]
defined (2.4) type models as arithmetic models and models with the form giverbjna&
geometric models in which logarithmic prices can be characterized by an @rhitenbeck

process.

Spot price models can be examined under two subgroups: single fadtorati-factor mod-

els. In a single factor model the spot price itself is a Markov process whaenmilti-factor
model the spot pric&; = g(X!, ..., X‘k) is a function of a multi-dimensional Markov process.
Hereg : R —» R* and since is not one-to-one, these models have both unknown and hid-
den components. Not only Lucia and Schwartz (2002) [53], but alste&at al. (2005) [26],
Barlow (2002) [4], Geman et al.(2005) [42] proposed single factoretsaodMany of these
models, unlike Lucia and Schwartz’s, take price spikes into account tath. &V additional
jump term included in an Ornstein-Uhlenbeck process, Cartea et al. )(P28]5 improved

their models to cover also the price spikes:

logSt = h(t) + Y, (2.6)

dY(t) = —aYidt + cdB + JdN,, 2.7)

whereB; is a Brownian motionh(t) is assumed to capture the seasonal patterns of the spot
price and the ternd;dN; enables the process to have discrete random spikes which are com-
bination of a Poisson proced$ and a jump size distributiod;. In (2.7) the procesdN

is approximated by a Bernoulli process with paramédérand J; is assumed to be lognor-
mally distributed. Cartea et al. (2005) [26] apply this one factor juntfusiion model spot
electricity markets in England and Wales. Unfortunately, unless the pricesda&s is not

long enough, few price spike observations lead fhddilties in estimation of the parameters.
Moreover, one factor models including a jump process are expected ¢écahaigh speed of

mean reversion. Otherwise, jumps can have permatikatie on the price levels.
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Barlow (2002) [4] introduced a nonlinear Ornstein-Uhlenbeck modespmt power prices.
In this model, the price is obtained by equalization of the demand level with andaistic
non-linear supply function to take price spikes into account. He used teesanfunction of
the Box-Cox transformation:

f.(%), if 1+ aX; > e,

eé/”, if +aX; < e,

dX% = —A(X — @)dt + o dB(t), (2.8)

wheref,(X) = (1 + ax)¥?, a # 0, eé/" is assumed to be the maximum price level taken as a

constant andy(x) = €~.

Whena = 0, an exponential Ornstein-Uhlenbeck process is retrieve8fofhe caser = 1
yields a regular Ornstein-Uhlenbeck process. The model is fitted to AlaadaCalifornia

markets using the maximum likelihood estimation.

Geman et al. (2006) [43] also proposed a mean reverting jump prockeses the long term
mean level is assumed to represents the marginal cost of electricity pragwetiich can be
a constant, a periodic function or a periodic function with a trend. Randovesraround the
average trend represent the temporary supply demand imbalances itvibeknd he model
assumes that the natural logarithm of electricity price is described by aastarditerential

equation of the form

dE(t) = [h(t) + O(u(t) — E(t7))] dt + cdW(t) + f(E(t7))dJ(t); (2.9)

whereh(t) is a deterministic seasonality functia®,is a positive parameter representing the
average variation of the price per unit of shift away from the trend, meaarsion level. The
process reverts back to a deterministic mean level rather than the stochesstjike valueo

is the volatility attached to the Brownian shocks. The last term in the equatiogseayis the
discontinuous part of the model featuring price spikes. ThHisceis characterized by three
guantities: occurrence, direction and size of jumps. The fundtiassumes:1 depending on

the level of the spot prices:

+1, ifE(t) < 7(t),

fE(t)) =
EO) {—L ifE(t) > 7(t).

Steps followed by the authors in the estimation of model (2.9) are summarized belo
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1. The first step is the detection of jumps in the raw market data. Authorsvelosihat
log returns tend to cluster close to either their average mean or to the labgesved
values. In other words, data suggest that either there is a jump, in wtgetvadation
due to the continuous part is negligible; or there is no jump and variations irrittee p
level are due to the continuous part of the process. It is concludedyhasing a
price change threshold@, main driver of the changes observed in price levels can be

identified.

2. An dfine function and two cosine functions with 12 and 6 month periods are used to

estimate the deterministic dynamics of the jump free price series:

u(t;a,B,v,€,6,0) = a+ Bt +yCoSE + 2rt) + 6 COS( + 4nt). (2.10)

The first term represents the fixed cost linked to the production of palvidée second
one drives the long run linear trend in the total production cost. The Ibedfect of

the third and the fourth terms is a periodic path displaying two maxima per year.

3. The third step is the determination of the jump intensity functiobet

d
2 ~1
1+ [sin[x(t — 7)/K]|

M0=( (2.11)

With this model, jump occurrence exhibits peaking levels at multiplésyefars begin-
ning at timer. The power allows us to adjust the dispersion of jumps around peaking

times and it is included among parameters to be estimated.
4. The probability distribution of the jump sizes is assumed to be a truncatedrvers

the exponential distribution with parameter

0 exp(ox)

= expti) (2.12)

p(X; 6, ) =
The model parameté&randy is estimated by using the log likelihood function.

5. The estimation of the constant Brownian volatility over observation dateSalaws;

=

o= (AE®))’, (2.13)
i=0
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— 2 : L
where(AE(ti)) represents the square of the continuous parts of observed logarithmic

price variations between consecutive days.

The last two models neither include the convenience yield as a factor, nsideos the val-
uation of the futures contracts (or any other kind of derivative). Thgls factor models are
quite tractable and their parameters are relatively easy to estimate. Hotheydnave a seri-
ous constraints: they cannot explain the relation between the spot anduhesfprices well
enough. Spot price models depending on more than one factor help tomgl¢ve relation

between spot and future commodity prices.

For instance, Brennan et al. (1985) [19] assumed that the spotgopgefollows a geomet-
ric Brownian motion and incorporated a convenience yield to their model tpaprtional

to the spot price:

dS; = uSdt + oSidz, (2.14)
C(S,t) = cS. (2.15)

The idea of a constant convenience yield holds only under restrictstergdions, since the
theory of storage is rooted in an inverse relationship between the coneenjeld and level
of inventories. Gibson et al. (1990) [44] took an important step to a maiéstie model
of economy by introducing a stochastic convenience yield rate. The sjpet$ of the
commodity is described by a geometrical Brownian motion and the convenierideates;
is described by an Ornstein-Uhlenbeck process with equilibrium teeeld the rate of mean

reversiork:

ds; = (/,l - 6t)Stdt + 01Sidz, (216)
dé; = k(a — 6)dt + 02d 2, (2.17)
dzdz = pdt. (2.18)

Significant contributions to this kind of models have been made by Schw&®z)170].
He reviewed one and two factor models and developed a three factor omatksl stochastic

convenience yield and interest rates. Inclusion of the interest rate addattor makes
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forward and futures pricesftierent:

dS; = (r; — 61)Sidt + 01S1dz, (2.19)
ds; = k(a — 6)dt + o2d 2, (2.20)
dri = a(m— ry)dt + o3dz, (2.21)
dzdz =p1dt, dzdz = podt, dzdz = padt. (2.22)

This model was originally developed for copper and oil market. Kalman filggraghm was

used to estimate the parameters in the models.

In [53], Lucia and Schwartz (2002) analyzed the Nordic power maaket model the spot

price as
St = h(t) + X + Yi, (223)
dX = —AXdt + oxdW, (2.24)
dY; = —pudt + oydWe, (2.25)
dWxdWy = pdt. (2.26)

The functionh(t) is deterministic, and it is intended to capture the predictable component
in the spot price, i.e, seasondtexts. This function distinguishes between weekdays and
includes a monthly seasonal component employing dummy variables. Thefidesmodel

is to have a non-stationary process for the long term equilibrium price Yesal short term
mean reverting componeit They estimated all the parameters simultaneously by nonlinear

least squares method.

The multi-factor models described so far do not capture one of the masiotbastic features
of the electricity prices, jumps or spikes. Several authors, such as e0@) [33] and

Villaplana (2004) [76] extend these models with botffugion and jumps. In the work of
Villaplana, power prices are modeled according to non-observable atibles that account

for the short term movements and long term trends in electricity prices:

InS; = h(t) + X + Y, (2.27)
A% = —kxXedt + oxdWi + JudN(L) + JgdN(q), (2.28)

dY; = —ky(u — Yo)dt + oydWh, (2.29)
dWadWb = pdt. (2.30)
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The jump components are characterized\gy,) andN(1q):, Poisson processes with intensi-
tiesA, andAq respectively and by random jumps of sidgendJq with a specified distribution

like Gaussian or exponential.

Deng (2000) [33] and Villaplana (2004) [76] set their modelsfiina jump difusion frame-

work which enabled them to use transformed results doffiBwet al. (2000) [37] to derive
tractable closed form solutions for a variety of contracts. Deng prabosge sophisticated
mean reverting jump €iusion models with deterministicstochastic volatility and regime
switching. This seems a good way of dealing with the dramatic changes in thecithec
prices. However, both of the authors concluded that the trajectoridsiged by their models

are fairly diferent from the ones observed in the market.

Cartea et al. (2005) [26] built a model for wholesale power prices eéfory two state vari-
ables (demand and capacity) and calculate the forward premyrand C; representing

demand and capacity:

Dy = fp(t) + X2, (2.31)

Ct = fe(t) + X, (2.32)

where fp, fc are deterministic functions and®, XC are independent Ornstein-Uhlenbeck

processes. They constructed the spot price process as

S; = Bexp)D; + vC:. (2.33)

Models discussed in Benth et al. (2008) [11] constitute the starting poithtiothesis. A

brief summary of their theoretical framework is given below.

e The spot markets of electricity quote prices on an hourly or half hourlisbasus, it
will not make sense to talk about spot price of electricity at any time t. On the othe
hand, if there exists an electricity futures market, electricity contracts (satttamding
to the hourly prices) are traded in a continuous market in the sense thatdine ean
buy or sell at any time as long as they find a counterpart in the market. Hzordeary
to most other commodity markets where there is a liquid trading in both spot amd futu

/ forwards, we face the situation of a discrete spot and a continuous timeguarket.
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e A continuous time stochastic proce3), represents the unobserved instantaneous spot
price of electricity at timet with delivery time [,t + dt). The processS(t) can be
regarded as the price market participants would pay if they could buyielcat time
t with infinitesimal delivery time. In the market, we observe the price of electricitty w
delivery over a specified hour. Following some simple calculations, autbacsied the
conclusion that:

Sd = S(t9), (2.34)

whereSid is the price of electricity for thih hour of dayd and§(tid) is the instantaneous
price at the beginning of thieh hour of dayd. Since we have the spot price at time
momentstid, we have the observations of an underlying continuous time spot price

process of electricity.

e Representing the logarithmic prices or the prices itself by a series of Ontgitddémbeck
processes allows us to modettdrent speeds of mean reversion and to incorporate a
mixture of jump and dtusional behavior of the prices. Price spikes can be modeled by
an Ornstein-Uhlenbeck process having a low frequency of big jumps asthriean re-
version, while more normal price variations are represented by a slovesr-regerting

process driven by a Brownian motion.

e Seasonality in jumps is captured by using an independent incrementpnoties jump

model.

Geometric models are formalized as:

INS(t) = InA(t) + Zm: Xi(t) + Y Yi(t), (2.35)
i=1 j=1
P
dX(0) = (u(t) - (X))t + ) oi()dBi(). (2.36)
k=1
dY;(t) = (65(1) - £;OY;O)dt + v (D10, (2:37)

where the deterministic seasonal price level is modeled by the fun&(@nwhich is as-
sumed to be continuouslyftirentiable. An additional drift term can be imposed by the jump
components, since they are not assumed to be martingales. For instanoegulrence of
price spikes should add an amount to the overall expected spot pricedaseaf the seasonal

function.
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Arithmetic models are given as

S(t) = AM) + Y X))+ > Yi(t). (2.38)
. -

i=1 j=

Independent increment processes are also assumed to be indép&hdearithmetic models
can lead to negative prices, although this kind of price movements can beretisthey are
rare events. A class of arithmetic models having zero probability of negatives can be
constructed by supposimg = 0 and the seasonality functiax{t) is a floor towards which the
processe¥;| revert. Moreover, it is assumed that the probability of negative jumps @ zer
Then, under the assumption thgt) is positive, the spot price model produces only positive
prices. Hence, there are negative and positive price fluctuationsgafisim a combination
of downward mean reversion and upward jumps. If the sum of the jumpglowéncrement
is stronger than total contribution by mean reversion, we observe amapdce increase. A

price decay is observed otherwise.

Authors provide closed form solutions for forwards and options owdots. This model cou-
pled with a good description of seasonality provides a precise charatieniof electricity
spot price behavior. Although the model seems to capture the stylized fahs gpot price
market such as mean reversion, seasonality and price spikes, there precise statistical
analysis about the quality of the model. However, they suggested the péiltiéclas a possi-
ble solution for estimation of the parameters in the model. As a result, parami@testes

for the model appears to be a significant challenge.

The need for a better fit of model forecasts with observations leads to coongplicated
models with hidden variables and multiple regimes. However, with an increasmger of
parameters, the estimation process also gets complicated. Filtering technigjoes af the
widely used methods in parameter estimation of the jump processes. Pirino2gtldl) [65]
used an iterative threshold filtering in identification of spikes in their unit@jiamp model
and use the seperated processes for parameter estimation. Their modpkisaneetric in the
sense that it is free from parametric model assumptions and flexible in ceptiue dynamics
of the data. The estimation is performed in two steps. In the first step, spketeatified by
means of an iterative filtering technique. Then, series of spikes areaiestimate a seasonal

jump intensity function.
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This work proposes a combination of Benth et al. (2008) [11] multi-factadetwand Pirino
et al. (2010) [65] threshold spike detection idea. In our model, three jugepses with-
out predetermined jump size distributions and a Brownian motion are combinec \dith
terministic seasonality term where two of the jump processes are mean revlitig the
Brownian motion captures the daily regular price movements, pure jump growetels price
shocks which have long terntfect, and further the two Ornstein-Uhlenbeck type processes
with different mean reversion speeds capture price shocks that have smoeffexts. One
of the mean reverting processes is assumed to model price shocks #rabesk in the next
observation (price spikes) and the other is assumed to model price shatiake a few days
to fade away (semi-spikes). An iterative threshold derived by using dstilwalatility with
GARCH(1,1) is used to filter the price jumps. Although in Mancini (2009) [84hreshold in
order to separate jumps form Brownian motion is proposed and in Manahi €010) [55]
GARCH(1,1) volatility estimation is suggested to be used in calculation of threshmhe of
the models investigated in these researches include as many factors asdelihen@. On
the other hand, instead of Pirino et al. (2010) [65] which use a ke d estimator for
threshold, we use GARCH(1,1).
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CHAPTER 3

THE SPOT PRICE MODEL

Given the filtered probability spac(F, {Ft}ijo, 1 - P) where the filtratior{F}icjo 1) satisfies
the usual conditions i.e., the filtratigk} is right continuous anég contains allP-null sets.
Moreover, W, is a standard Brownian motion an]éil), Jt(z) and Jt(?’) are finite activity pure
jump processes. A process is said to have finite activity if almost all pathedfrtitess
have only a finite number of jumps along finite time intervals. For the formal defindfo
the finite activity jump processes, see Appendix A.1. The simplest examplesiénthe
are Poisson and compound Poisson processésy measura( for i = 1,2,3 satisfies
Ot dX) = A0dtFO(dx), wherea® represents the expected number of jumps in the unit
time interval, F(dx) represents the jump size distribution. Following Benth et al. (2008)
[11], we assume that there exits a continuous electricity price proSeggverned by the

exponential price equation given in (3.1).

Sy = ettthy (3.1)

whereA; is the deterministic seasonality function ddglgoverns deseasonalized logarithmic
prices process. Although observing negative prices is possible irekgmaticity markets, we
rule out this possibility by using an exponential price model, since it is a raete There

will be three jump factors and aftlision term in the model. The dynamicskfis:

dP; = o dW + dJ® + dY; + dZ, (3.2)
dY; = —vYidt+ dJ?, (3.3)
dz, = —pzdt+dJ>, (3.4)

whereJt(l), Jt(z) anth(3) are compound Poisson processes with the corresponding jump inten-

sitieS/lgl), /lt(z) and/l§3), Nt(l), Nt(z) andNt(g) are the respective jump counting Poisson processes.
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We do not make any initial assumptions about the distribution of the jump pexes®w-
ever, it is assumed thaf, Jt(l), Jt(z) and Jt(3) are mutually independent Witﬂg) = 0 for

i = 1,2, 3 and stochastic volatility is a progressively measurable processes.

Therefore, stochastic proceBsis composed of a stochastic volatility Brownian motion, as-
sumed to capture regular daily movements of spot prices. A pure jump prﬂ{&ésepre-
senting structural changes that have long tefi@ats on electricity prices like privatization,
technological advances etc. the two non-Gaussian Ornstein-Uhlepbemsses with jump
processes]t(z) and Jt(3) have diferent dissipation rates for price shocks created by the jumps.
In this settingY;, spike process, represents any abrupt change in price level whigleised
quickly, like a price shock féecting the price levels only a couple of hours rather than the
whole day. On the other hangd,, semi-spike process, having a lower mean reversion period,
assumed to capture factor§excting price level in spot market longer than spike process, like
extreme weather conditions which can lieetive for a few days; or supply chain problems,

system failures that take a few days to resolve.

Solving (3.2) yields

t { {
P = f o dWs + f dI + Yoet + f e =9932 + zoe
0 0 0

t
+ f eAt=-9933, (3.5)
0

where we assumiy = Yy + Zo. If we express jump components by summation:

1) )
t N Ny

P = f redWe + Y AW + Yot + ) eI 4 Zpe
0 k=1 k=1

NE
+ Z e At-1)A, IO, (3.6)
k=1

wherefrs) is the random time of thieth jump of theith jump process. Her&J® := J(i)(T(ki))—
IO(; ) becomes the amount of theh jump of theith jump process. On the other hand,
AJt(i) = Jt(r:) - Jt(;)l The latter diference formula holds for all of the processes in (3.2), (3.3)
and (3.4). Moreover, for simplification, it is assumed that there can onbnbgump in each

observation interval.
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Returning back to the process3n
N N@

t
INS; = At + f osdWs + Z AdW + Yoe "t + Z e‘V(t‘T(kz))AkJ(z) + Zpe Pt
0 k=1 k=1

N
+ e HTIAID, (3.7)
k=1

It is well known that both Brownian motion and thé&\y processes are semimartingales.
Moreover according to Protter (2004) [66] (Chapter 5, Theoremti®)stochastic integral
processfot HsdXs is a semi-martingale i is a left continuous right limited églad) process
and X is a semi-martingale. Then assuming thatis a &glad process each of the terms
in P; are semi-martingales. Again referring to Protter (2004) [66](Chapt@h2prem 1);
the set of semi-martingales is a vector space for the given probability.spheesforeP; is
also a semi-martingale. In the following sections we discuss the modules oftimatasn

procedure and our spot price model.

3.1 Deterministic Part

It is assumed that logarithmic spot prices are sum of two independent cemiso a pre-
dictable deterministic componeni; and a stochastic componeRt As already discussed,
electricity prices, heavilyféected by weather conditions, exhibit a cyclical behavior through
the year. Not only the demand side but also the supply side may show akaanations,
like the hydro units heavily dependent on precipitation and snow melting. &etiié annual
seasonality, like it is shown in Figure 2.2 there is a significant day of the wféegt in the

spot prices, due to varying electricity demand.

Typically we do not observ8; continuous in time, but in the form of discrete observations.
Working with discrete observation series, total observation pdod] is divided intoN

equal intervals with length = T/N. Thus,S;, = Sppforn=1, ..., N.

Although our intention at the beginning was modeling the deterministic function as a
summation of a constant, a linear trend (aiming to capture the inflationary pgessuthe
electricity prices), and sinusoidal weekly and annual functions, bubbserved that weekly
sinusoidal cycles are inflicient in the elimination of weekly autocorrelation pattern, there-

fore we divide the procedure into two: inspired by Weron (2006) [18] Blayer et al. (2011)
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[56], with the procedure summarized below, persistent weekly autdaborein the logarith-

mic price series is eliminated.

Procedure for elimination of persistent weekly autocorrelation

1. Data is smoothed using a moving average filter:

1
m(t,) = 7(In St, s+ ... +InSt ).

2. Each days deviation from the corresponding moving average is daiduldhen for
each day of the week average of that days deviation is computed. Fardestathe

first day of your observation series is Monday the deviation is calculatéallaws:
k-1
1 .
w(monday = « Z[|n(8(7j+1)h) -m((7] + 1)h)],
j=0

which is the corresponding weekly seasonality term, wkésehe number of Mondays

in the observation set.

3. Summation of daily seasonalities is normalized to ensure that they add umtfozer

each week.

After subtracting the estimated dailffects from logarithmic price series, deients of an-
nual seasonality function with linear trengd + a1tn + a2 cos((2r(t, — a3))/365) are estimated,

wheren = 1, ..., N. Therefore, the deterministic seasonality function becomes:

At, = W(tp) + ao + a1ty + a2 COS( (3.8)

2r (th — a3)
365 )

3.2 Jump Detection with Threshold Method

From now on, we are assuming that deterministic seasonal part is renmaleeare working
with deseasonalized logarithmic price procBgsIn the related literature it is not possible to
find a common definition for a price spike. In a broader sense, it is widelyded that price
jumps are movements in the price level that surpass a threshold and priee aglcomposed
of price observations that exceeded threshold level for a shorthefrtone. The key variable

that should be found is the level of this threshold. The existing literatureigee some
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answers to this question like detecting jumps using boundaries implied by nastnddution
(Borovkova et al., 2004 [16]), filtering raw data usingfdrent deterministic thresholds and
selecting the threshold level which gives the best calibrated model in terappodaching
to the kurtosis of the original daily price variations (Geman, 2006 [43]}ing wavelet
techniques (Stevenson, 2001 [71]). Our filtering technique which iscbawinly on the

work of Mancini (2009) [54] is summarized below.

In a continuous time setting, considering the asymptotic theory, ficgntly small intervals,
jumps can be detected as the increments of the process which are numercddygto
come from a continuous variation. In order to test this statement, it is negéssketermine
how much a continuous process can move on a specified time interval or tonofeteéhe
distribution of the largest increments generated by continuous compditeetgrocess. The
stochastic continuous component in our price process is the stochastititydiownian
motion. The first step is to find an upper limit on these continuous movementsgirvasinds
how much a Brownian motion can move on a given time intehvaPaul Levy’s law for the

modulus of continuity of Brownian motion paths implies that

, [AW, |
lim sup ——— <1 almost surely(a.s.)

"=0ne(t..N)_ [ohlog i

When we adopt Theorem 1 of Mancini (2009) [54] to our stochasticgssP;, we get the

following result.

Theorem 3.2.1 Identification of the intervals where no jumps occurredConsider the sys-
tem given in (3.2), (3.3) and (3.4) where all the jump process®s J® and J3) are mutually
independent, finite activity jump processes such that forad {0, T], P(Z?zlANt(ni) # 0,
»2,43Y = 0= 0. Suppose also that

1. limsup,_,

< M(w) <o as,

2. The threshold level(h) is a deterministic function of lag h between the observations,

. . hlog #
such thatimp_,or(h) = 0 andlimp_o “m =0

Then for P— almost allw, there ish(w) > 0 such that for every k h(w) n=1,...,N:

lapy)2<rhy) (@) = s, AN§in>:0](w)- (3.9)

24



Proof: Like Mancini (2009) [54], the proof of the theorem is divided in two stefisstly, we
show that ’I{ZﬁzlANS.)=0](w) < I{(Aptn)zsr(h)}(w) a.s. for smallh. In the second step we prove

thatl{ (@) = lap, y2<r(hy} (@) @.s. for smallh.

Zi3=1 ANt(ri1):0}

Before starting; we prove that stochastic integﬁl%tb-sdws is a bounded process. Assuming
thator is a continuous procesﬁ,t osdWsis a time changed Brownian motion. Dambis (1965)
[32] and Dubins and Schwartz (1965) [36] showed that "any contigumartingale is a time
changed Brownian motion”. In 1978, Monroe [59] extended this res@trtmre general set-
ting that "any semi-martingale is a time changed Brownian motion”. More prediseig is a
Brownian motiorW with respect to the filtratiofF}.o such that for each> 0, w(to)[X](w)

is stopping time an&; = Wy, , whereX; is a local martingale. In particular, W is a Brow-
nian motion, andr is square integrable then we ét = fot osdWs. Since K]; = fot o2dswe

t . .
h dWs =4 W Consid
ave [, o-sdWs i onsidering

oids

1 O-SdWS’ ‘W Ot ods Wfotn'l oéds)
SUp ———< sup sup

ne(l.....N) ,2h|09% ne(d.....N) \/2 ftt 1 O‘%dS|09f 1 — ne(l,....N) 2h|og%
n— o1 0§

t 2 1
\/2 -ft‘n—l O'Sd Slog T o2ds

d
th-1 S

ne(l,...,N) /2Mh|09ﬁ

(3.10)

When we take the limit of the above processhas> 0 the first argument is smaller than or
equal to 1 due to modulus of continuity as the time index is the stochastic integesdnsf
h. Due to assumption 1 and monotonicity of the functidag(1/x) in the neighborhood of 0

second argument is also bounded and therefore (3.10) is bounted &

Now we may carry out the steps to prove the theorem:

1. For eachw, Jop = {n e{l,...Ny: 23 AN = O}. To show that for smalh,
I{zilANf”:O}(“’) < I{(Aptn)zsr(h)}(a)), it is suficient to prove that for smal,

supJovh(APtn)2 < r(h) holdsa.s.. On the setlpp, fori = 1,2, 3, we haveNt(ni) =NY

th-1"
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th Ntle "
APy, = f osdWs + Yoe'(1 - &M + Z e 1) (1 - @A JIP
k=1

tho1

An B,

3
N,

+Zoe (1M 4 Y @A - eMa®, (3.11)
k=1

Cn

The square oAPy, is summation of six arguments. Now we check each of these argu-

ments relative to the threshold functioftn) ash — 0O:

Sup(APy,)? < sup |Anl? + sup [By2 + sup [Caf? + sup(2/AnlIBnl).

theJon theJon thedon thedon thedon

+ SUP(2/AnlICnl) + sup(2By|Cql)

theJon theJon

ConsideringBy||Cp| we obtain that

o oe (21— @)+ p 0 e i1 - eM)ad?)
lim sup

h—0
— Jon Jhlogi

ZoeP(1— &) + 7 Efl)(tnfl) e Pt (1 - M)A I h log 1

Jhlogt r(h)

is equal to 0/B,|? and|C,|? follow the same line of reasoning and goes to Gias 0.
On the other hand we have already showed tha{tné%!ﬂAnv 1/2h|og% ash - 0Ois
bounded. Therefore SHD,, |A§|/ 2h|og% is also bounded. Thi\,||By| yields;

tn
N o dWe Yoent(1— e 4 p N et (1 - @MAJI@)]  2hlog
lim sup— X —

X
"~0%n [ohlog J2hlog 2 r(h)

(3.12)

We know that the first factor is bounded and the third factor goes to GonBdactor
also goes to 0 by L'Hospital rule. Therefore, cross tepaiB,| and|A,||C,| relative to
the threshold, go to zero in the limit. As a result, we conclude thatiflo, ash — 0

supy,, (APy,)? < r(h).
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2. Inorder to establish the second inequality, itis assumed that fes,ahy, = {n€ (1,...,N) :
>, AND # 0. Itis suficient to show that for small, inf 5, (APy,)? > r(h) a.s. to prove

that for every n I[ (w) > I{(Aptn)zsr(h)}(w) holds almost surely.

32, an{=0}
Working in the subsed; , in addition to the terms in the previous step there are also
jump terms Ay, I + €W Ay I@ + TN Ay, I). Consider
thatrng,) € (th-1.tn] ash — 0, 7ng,) — th andryg) — thog therefore discounting
terms for the mean reverting jump processes collapse tohl-as0. Moreover, with

the assumption that there can only be one jump on each time interval, we get

i i (B IO + TN Ay, IO
h—0 Jip r(h)
+e—,B(tn—TN(3)(tn))AN(3)(tn)J(3)|)2

0 = o, (3.13)

Since the jump processes we consider are finite processes, the nune@tixed

amount while the denominator goes to thas> 0. Let us look to the cross terms

lim inf (1AID (rnwg,y) + €W ANy IP
h—0Jin r(h)
+e—ﬂ(tn_TN(3)(tn))AN(3)(tn)J(3)|) |An| + |Bn| + ICnI
T0) O GORRGON

The summation in the brackets is bounded at the limit and the first term goes to 1 as

(3.14)

h — 0. As a result,

2
jim inf 8P _

h—0Jin r(h) (3.19)

this completes the proof.

3.3 Determining The Threshold

In Mancini et al. (2010) [55h*, a € (0, 1), is used as the deterministic, constant threshold

function. In their model for the interest rates Mancini and Reno statedtiedrem 3.2.1
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holds even if the threshold functiaith) varies with time according to
r«(h) = ¢ (h), (3.16)

wherer(h) satisfies the threshold conditions ands an a.s. bounded stochastic process which
is also bounded away from 0. Following Mancini and Reno; Pirino et 8lL{2[65] adapted

the following threshold in their discrete time electricity model, iterated on the ini&ger

L A P2
2= Lj#-101 K(D)Ai+jP I{AiHPZS@tZi;}l}

05 = Cy (3.17)

L ) KA L
Zj:—L,J:#—l,O,l (L) i+] {AijZSQ%:J;L}

where the parametey sets the number of the standard deviations after which an observation
is considered to be above the threshold. The value dftpetentially determines the number
of detected jumps, however it is denoted that since in the case of electriciy jpmps are

too large hence the choice of this value is mostly uninfluential.

Corsi et al. (2009) [31] state that, in applications, it is natural to scalsttbte function with
respect to local spot return variange= c2dy, whereot is an auxiliary estimator af; andc

is a positive constant.

We use the multiple of estimated stochastic volatility as a threshold function. Althbegh
proposed model for the electricity prices is in continuous time, since our pobiservations
are discrete, we will use a discrete GARCH(1,1) process for the stickatatility model-

ing. This is not an arbitrary choice: in Nelson (1992) [62], it is statedAREH type models

are remarkably robust to certain types of misspecification such that asatite process

is well approximated by a ffusion, broad classes of ARCH models provide consistent esti-
mates of the conditional variance. Nelson (1992) [62] especially sgdlsatin this context
the term’estimate’ corresponds to its use in the filtering literature rather than the statistics
literature, i.e., the GARCH(1,1) model with fixed parameters produces estiofaies true
variance vector at each time point in the same sense that a Kalman filter @soekiognate of
unobserved state variables in a linear system. Let us assume that thecejangps at time

t, then our instantaneous deseasonalized logarithmic price process i$ awbeterministic
mean reversion part of the previously observed jumps and initial valugoéssy; andZ;

described by plus a difusion component by standard Brownian moti&n
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dPt = d/.lt + O'td B[ (318)

Using a sequence of discrete time observations, with a fixed observatiovelrtiewe ap-
proach to continuous time stochastic volatility process with a GARCH procesgenh)nen,
be an i.i.d. sequence of standard normal random variables,, & > 0 andn, > 0 and let
(Pon, o-gh) be starting random variables independentgf)gen,. Then Pnn—Pn-1)h, Uﬁh)neNo
defined recursively by

Pnh = Pi-ph + Antn + W20 pnenn, (N € N, (3.19)

Equations above define a GARCH(1,1) process. Hega, = B, + C,, whereB, andCy,

are given in (3.11). Note thatPfn, Uﬁh)neNo is embedded into a continuous time process

(Pth, 2 )iz0 by defining

Pipi=Poh 0fpi=0f, nh<t<(n+1)h (3.21)

Nelson (1990) [61] gives the conditions fd?(, Ugh)tzo to converge weakly to some process
(Pt, 0d)t=0 ash — 0. Suppose that there are constants 0, 6 € R andn > 0 as well as the
starting random variable®§, o3) such that Pon, o3,) converges weakly tdR, o3) ash — 0,

P(oZ > 0) = 1. Suppose further that

lim h g, = &, lim h™(1 -6 —nn) =0, lim 2h gt = 2. (3.22)

hold, then Py, 02, )0 converges weakly as — 0 to the unique solutionR, o-2)-o of the

diffusion equation

dPt = d,ut + O'td\M, t>0, (323)
do? = (¢ - 6odD)dt + no2dB, t> 0, (3.24)
whereB; andW; are independent Brownian motions.

An example of possible choices satisfying the necessary limit conditions)(3FR2 ¢&h,

on = 1-n+h/2 - 6h andn, = nvh/2. Using these parameters if we rewrite the equation
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(3.20):

APy, — Anpin)?
o2 = th+n \/h/Zw + (L= nyh/2 - o . (3.25)

When we rewrite the recursive relation for the teriywe obtain

\/_
+ (1 -n+/h/2 - oh)eh+ V%(APM — An_aun)>+

o2y = Eh+ %(AHH — An-aun)? + (L= /2 - oh)(eh + V%(APM — Anotn)?.

+(L-nyh/2-6nad) ) (3.26)

Rearranging the above equation yields
O_ﬁh =¢éh(l+ (A -nyh/2+6h)+---+(1— U’/h/2+ Gh)i_z)

n-1
+ \/% D@ - b2+ 80Py - Ajun)? + (L -nyh2+ o) o (3.27)
=1

Now we define the iterative threshold function

rh(h) := h*c®(G1)%, (3.28)

wherel € N represents the number of iterationse R* anda € (%, 1). ¢ can be regarded
as a constant that determines after the number of standard deviation® anpriement is
classified as a jump. Mancini et al. (201 lomit the dependence of threshaldon h

in their implementation of a similar threshold estimator, since intervals betweenctiinse

observations of spot market prices are fixed.
G P =éh@+@-n"'Vh2+6'h)+-- + (L -75' Vh/2+6'h)"?)
| n-1
n | [ }\N-1-] 2
+ —— 1- h/2+6'h AP — Aup(t
@2( n' )" (AP — Aun(ta)
T apy, -aumppeart-2) + (1= ' vh/2+6'h)" (512 (3.29)
By using this filter, we replace the observations with stochastic residuadttigén the thresh-

old with the expected value of the Brownian motion, 0. Threshold functionfigstisvo

necessary asymptotic conditions:
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1. Ash — 0, it is obvious that' (h) goes to 0 for all € N.

hlog(1/h)
r'(h)

2. On the other hand, lim,g =O0foralll e Nif

h*éh(L+ (L -0 Vh/2=6n) + ... + (L -n V72— oh)"? + h*
+

hlog(1/h)
(AP, = Apn(tn)? + .. + ML= (1= 5 VA/2 = O0)2(APy, — Apan(tn))?
* hlog(1/h) *
h*(1 - nvh/2 - )" 1o2

hlog(1/h) (3.30)
ash — 0. above equation goes to0. Therefore it can be stated that the threshold function

satisfies the second limit assumption of Theorem 3.2.1.

3.4 Decomposition of the Stochastic Processes

After determining the structural form of the threshold function, the nextist&® construct an
algorithm to separate jumps from continuous part. Since the price obsassatid threshold
function are discrete time processes, the algorithm will be defined on @isuservations.
Moreover this algorithm must both detect the jumps and determine the type of juoess
(whether the jump is a pure jump, spike or semi-spike). Volatility of tikugion part, jump
processes’ frequency, jump size distributions and mean reversionifites estimated using

the results of this separation.

First of all, definitions which are necessary for this separation progéksbe given. The
following framework is taken from the continuous time autoregression (Q#Bgesses of

Brockwell et al. (2007) [22].

Definition 3.4.1 A CAR(1) processiydriven by the Lévy proce{sst(z),t > 0}, with parameter

v € R is defined to be a strictly stationary solution of the stochastfer@intial equation

dY; = —vYdt+ dJ®. (3.31)
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SinceJt(z) has bounded variation on compact intervals and proteissMarkov due to inde-

pendent incrementévy process, we have for alk s> 0 that:

t
Y = €Yo + f e (9g3). (3.32)
S

The necessary and féigient conditions for the stationarity of the procegsare given in
[21] and [22]. According to these papers, procesgeand Z;, given in (3.5), are strictly
stationary solutions of (3.3) and (3.4) if and onlyifandg are greater than 0, ary and
Zy have distributions(;” e™“dJ(u), [~ e#'dJ®)(u) respectively, given that, andZ, are
independent o{Jt(z),t > 0, {Jt(?’),t > 0} respectively anE((IP)?) < o, E(IP)?) < w.
According to this statement, given thgtandZ; are stationary processes, we conclude that

andg are greater than 0.

Discrete analogous of spike procé¥sn, n = 0,..N} is represented as the autoregressive pro-

cess (AR(1) process) as follows

Yoh = ¢Yn-upn + AIP, (3.33)

whereg = e, Sincev > 0, ¢ € (0,1). From (3.33), we can derive,

AYin = (¢ = 1)¥uopn + AID. (3.34)

The steps followed in parameter estimation are listed below. Also applications® gteps

are discussed in the following chapter.

1. Initialization: Using deseasonalized logarithmic price returns we estimate parameters

of GARCH(1,1) process.

2. Detection and Separation of Jump Processes:or the given observation series, it is
assumed that the initial values of proces¥eandZ; are 0, i.e..Yop = 0 andZp = 0.
With the estimated GARCH volatility we compute the threshold value. Since jumps are
assumed to be rare events and mean reversion of both spike and senpirepi®s are
high, when thenth squared return is higher than threshold level, whole realy is

attributed to a jump. Due to fast mean reversion of the jump processes, th&ativenu
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effect of previous jumps are assumed to be contained in the boundaries foyrasishg

Brownian motion. With a simple calculation foe 1,2, 3;

APy, = AJD,
Aptml = (p(l) - 1)Aptn + Avvtml’
(3.35)

APy = (0")°(0" - DAPy, + AW,
wherep() is the corresponding mean reversion rate which is @fbr

(a) We take the return higher than the threshold as a jump and replace it with the

expected value of the Brownian component, namely 0.

(b) We form the boundary conditions in order to test whether this jump corogs f
a mean reverting process or not. For instance, if there is a positive&ﬂfﬁpfor
i = {1,2, 3} atnth time interval , and if we assume tha? € (0, 1), fori = {1, 2},

boundary condition for the first successive return is defined as
-1x A P- Cé’i+1 < Ai+1P < Cé'i+1. (3.36)

where c is a positive constant. If this condition is satisfied we save this diatia po
replace with 0 and recalculate the estimated standard deviatiom#dn$t return.

Implied interval for the mean reversion rate is then calculated as

AP; . —CO AP: . +CO
( L S Y el ”+1+1) (3.37)

APy, APy,
Using this interval and (3.36), corresponding boundary conditionsdoh return

is derived.

(c) We examine six returns following each jump point, since most of the jumps are
found to fade away completely until the sixth time interval following the jump.
Successive steps satisfying the boundary conditions are replaced avitihthen
the next return is tested. If the return fails to satisfy the boundary congljtion
algorithm stops and returns to the first step. At every iteration, meansiemer
components for all jumps are retested and reassigned due to changitilifyola
estimates. Separated returns are assumed to be the summation of jumps, mean

reversion contributions of former jumps and Brownian increments.
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3. Classification of Jump Processekhe iteration procedure stops when GARCH filter
detects no more jumps. Then, in order to estimate mean reversion rates Wi class

collected jump points as pure jumps, spikes and semi-spikes as follows:

e If a jump point is not followed by mean reverting steps, it is classified as @ pur
jump.

o If the points separated as mean reversion components jointly satisfiks=for
n,...,n+6; | Z|j<:n APtJ.|| — Coks1 < |Ak1P|, these points are classified as a re-
alization of spike process. Then the others are classified as semi-sBik#ss
separation, we take jumps with successive observations all of which estan-

dard deviations neighborhood as spikes.

At end of this step, there will be four separate vectors: one vectorrefjpmps includ-
ing price steps classified as pure jumps and zeros for the other entréegector for
spike process composed of jumps and successive mean reverting @idrperos; one
vector of semi-spike process observations and one vector of the fitettgds in which
jumps and mean reverting observations are replaced with zeros while athiesare

equal to returns of deseasonalized price series.

4. Estimation of Mean Reversion RatesSince we do not have full spike and semi-spike
processes, in order to estimate the mean reversion rates, artificial presease created
by summing seperated jumps and following mean reverting returns and leariog) z

unchanged. For illustration we take the spike prodéssssuming thatye);,) = ta:

PY , =P = AP = Ayey)d@

TN@)(tn)

the1

the1
PY ::APtn + AI:’tn-;-l = ¢P7Y'N(2)(tn) + L O—SdWS

the2 TN(Z)(tn)

thi2
Py, =APy + APy + APy, = ¢°Pf =+ f osdWs (3.38)
the1

E(PY Py

the1

— E(PY)E(PY
CO”(PZ @ ’PZ 2 s) = ) Lt
MBI N JVar(PY)yVar(P'tn.1)
¢ \Var(P)
Var(Py )
By OV (3.39)
Nt TN@(tn) T2 /V ar( PYtn+2) .
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In (3.39), conditional probability of observing another jump in the meanrtienggpart
is taken to be 0. In addition, thefect of previous jumps are assumed to be indistin-
guishable from the Brownian component. Correlationfiicient estimator, in case of

missing observations proposed by Takeuchi (1995) is

Zr’:lz_ll IDYtn PYtn+|
YN an+ (P2 SN ) (PYt)2

wherea(n) = 1 if the nth observation exists, and 0 otherwise. Using (3.40), correlation

Corr(l) = : (3.40)

of price jumps starting from the first to the sixth successive generategspaie esti-
mated and putting sample variances in (3.39 calculated. After determining mean
reversion rates, we refine price process by subtracting each jumpsevesasion &ect

from the rest of the series.

. Determination and Estimation of Jump Size Distributions: Separated jump obser-
vations in all three jump processes are settled at the tail of the empirical disinibu
with a gap around 0. In theory, each tail can be modeled separately. vidQvgance
jumps are rare events, with threefdrent jump processes, it isfiicult to find sufi-
cient amount of observations to fit 6 tail distributions. Therefore, abseRiue of the
jump point observations are used in specification of the jump size distribufAonsng

the long list of jump distributions, the highlighted ones in literature are expomhentia
normal, lognormal and inverse Gaussian. Except normal distributionf dilealistri-
butions have positive support. Like Ane et al. (2010), we also add dsimibution to

this list and its cumulative distribution function is

Fo)=1- (1 N (X;T“) -, (3.41)

wherea andé are positive shape paramete#ss positive scale parameter anc Ris

the location parameter. By taking the absolute value of negative jumps, itusads

that both tails are of the same distribution. Empirical weight of each sign anibng a
jumps is taken as the probability of jumps direction. For each of three jumpgsese

we estimate the jump distributions. Anderson Darling, Kolmogorov-Smirnov daid C
square statistics are used in determination of the jump size distribution. The jump
frequencies are also approximated by the ratio of the number of jump alise of

each process to the total number of observations.
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6. Estimation of Continuous Process’ Volatility: The last term is the stochastic volatility
of Brownian motion. Although stochastic volatility models, or GARCH type models
can be fitted to the volatility of the filtered price series acquired from Stepldtihity

is taken constant, not to over parametrize the model.
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CHAPTER 4

ESTIMATION OF SPOT ELECTRICITY PRICE PROCESS
AND FORECATING SPOT ELECTRICITY PRICES

Parameter estimation of the multi-factor spot electricity price model developee jprekiious
chapter will now be carried out in this chapter. Moreover, by using ttimated parameters
day ahead price forecasts are generated and the evaluation of the ismmouale. For this
procedure we use four daily average spot price series from Austtiian, Spanish and
Turkish markets. First three countries have relatively mature spot elgcmarkets, while
liberal Turkish spot electricity market was founded in August 2006 akehténto operation
in December 2009. Austrian market data is taken from EXAA (Energy &xghl Austria),
Austrian energy and environmental exchange founded on 8 JuneadGstarted spot market
trading in electric power on 21 March 2002. Italian market data is collectaa @ME, Italian
Power Exchange has been functioning since April 2004. Spanish dateis from OMEL'’s
daily market. For the listed markets equally weighted average of 24 houriljbeium prices
constitute the daily observations. Lengths of the observation series @8e(f88m March
2002 to July 2011) for Austria, 2617 (form April 2004 to May 2011) faly, 4139 (from
January 2000 to April 2011) for Spain and 577 (from December 200891yc2011) for Turkey.
In jump process modeling the importance of a long observation series isafjgraecepted.
Since jumps are assumed to be rare events, probability of acquiring enaodser of jump
observations for parameter estimation increases with the length of the geriegant market
like Turkey may not provide enough data for estimation of our parametersineemodel.
Therefore in order to test the applicability and the validity of our model wenas@nly the

series in Turkey but also other three series shown in Figure 4.1.
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Figure 4.1: Daily average price series

4.1 Model Estimation

Firstly, the weekly pattern in logarithmic prices is extracted according to theeguse de-
scribed in Section 3.1. For all of the price series excluding Turkey, it seied that this
procedure achieves minor recovery in the weekly autocorrelation. I@ing that the main
problem is due to the chancing magnitude of the weekly cycles through timeprexamate
weekly pattern for each year separately, which helps us overcome didyweeitocorrelation
problem. Due to the relative shortness of the Turkish data, we concluderntbaveekly pat-
tern is sdficient to reflect the overall weekly seasonality. Weekly pattern estimatdthfpr
is given below. In Figure 4.2 we can see the convergence betweendregawdaily prices
through time. This fact may be explained by developing technology smoothatyigtion

and consumption. After subtracting the weekly cycles, deterministic aneaabsality and
trend function is fitted to the residual, using robust nonlinear fitting algorithmfitha built

in function in optimization toolbox of MATLAB.
Contrary to some of the similar researches, eliminating jump points before fittiagmais-
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Figure 4.2: Estimated weekly cycle for Italian electricity market

tic function to avoid bias in estimated parameters, we conclude that resulissaioy robust
non linear fitting which uses iteratively reweighted least squares with adisgueighting
function are as good as the former method. fGoents of the deterministic function is given
in Table 4.1 and Table 4.2. For Turkey, the fiiment of the trend parameteq has a minus
sign, contrary to an expected positive tinfieet on prices. Since the day-ahead spot electric-
ity market started full functioning recently in Turkey, this negative trend tmaygaused by
falling prices due to increasindfiiency and rising competition with increasing number of
players in the market or falling input prices and demand because of thal §lwdncial crisis

affecting the world since 2007.

Applying the threshold function on the residual returns, we acquire the poimts and con-
secutive mean reverting returns following the jumps. The parameteB.28 is taken as 2.5
for Austria, 2.5 for Italy, 2.6 for Spain and 2.3 for Turkey and h is assiitode 1. According
to this filtration the number of jumps are given in Table 4.3. By dividing the nurobjegimps

to the total number of observations, the jump intensities are calculated artigegn Table

4.4.

Using Takeschi formula in (3.40), correlation éd&ents for 6 lags are computed. Then using
(3.39) mean reversion rates of the filtered spike and semi-spike precagseomputed. See
Table 4.5.

Given these autocorrelation déieients, approximated andg values for Austrian, Italian,

Spanish and Turkish price series are equal to 2.03, 2.41, 1.61,1v&BugEs), 0.40, 0.40,
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Mon. Tues. Wed. Thurs. Fri. Sat.  Sun.
Austria
2002 0.112 0.18 0.8 0.14 011 -0.19 -0.53
2003 0.14 0.21 020 0.15 0.08 -0.23 -0.54
2004 0.08 0.16 0.13 0.10 0.07 -0.15 -0.39
2005 0.09 0.13 0.14 0.10 0.05 -0.16 -0.34
2006 0.09 0.16 0.17 0.15 0.08 -0.18 -0.47
2007 0.112 0.18 0.16 0.16 0.07 -0.21 -0.47
2008 0.07 0.14 013 0.10 0.07 -0.14 -0.38
2009 0.04 0.12 0.2 0.10 0.05 -0.10 -0.32
2010 0.06 0.112 0.07 0.07 0.04 -0.09 -0.26
2011 0.07 0.09 0.08 005 0.03 -0.11 -0.21
Italy
2004 0.07 0.14 0.13 0.180 0.15 -0.17 -0.52
2005 0.05 0.12 0.3 011 011 -0.16 -0.35
2006 0.04 0.08 010 0.10 0.07 -0.12 -0.27
2007 0.04 0.09 0.08 0.07 0.07 -0.09 -0.26
2008 0.07 0.07 0.07 0.05 0.02 -0.04 -0.16
2009 0.02 0.02 0.05 0.03 002 -0.02 -0.11
2010 0.01 0.02 002 003 001 o0.01 -0.08
2011 0.01 002 001 001 001 o0.01 -0.08
Spain
2000 0.05 0.08 010 0.09 0.11 -0.12 -0.32
2001 0.07 005 0.08 0.09 0.03 -0.06 -0.25
2002 0.07 0.08 0.06 010 0.08 -0.12 -0.27
2003 0.08 0.06 0.06 0.08 0.09 -0.08 -0.29
2004 0.04 0.04 0.06 0.050 0.05 -0.05 -0.19
2005 0.04 0.05 008 010 0.03 -0.08 -0.22
2006 0.04 005 0.04 005 0.02 -0.05 -0.15
2007 0.04 0.04 002 0.03 0.02 -0.03 -0.11
2008 0.02 0.02 0.01 0.003 0.003 -0.01 -0.04
2009 0.02 0.01 001 001 0.02 -0.01 -0.05
2010 0.04 0.04 0.04 004 -0.010 -0.06 -0.10
2011 0.03 0.03 0.01 -0.001 -0.03 0.01 -0.05
Turkey 0.02 0.07 0.07 0.06 0.04 -0.04 -0.21
Table 4.1: Day of the week parameters
A, = W(tp) + ao + a1ty + a2 COS%
@0 1 @ a3
Austria  3.26 0.0002 -0.089 -50.1
Italy 4.08 0.0001 0.046 -212.9
Spain 3.37 0.0001 -0.079 -745
Turkey 4.86 -0.0004 -0.17 254.62

Table 4.2: Deterministic function parameters
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Figure 4.3: Decomposition of deterministic and stochastic components

Pure Jumps Spike Jumps Semi-spike Jumps

Austria 38 100 62
Italy 17 98 39
Spain 31 87 53
Turkey 13 23 12

Table 4.3: Number of jumps filtered by the iterative GARCH(1,1) volatility thrébhgh)

0.92, 0.43 g values) respectively. Finding the mean reversion rates for the spikeeanid
spike process, whole series is refined by subtracting the lagfgatseof the previous jumps
from the following observations. And it is observed that this refinemameaminor changes

in the jump sizes as expected. Since spike and semi-spike processeghavedn reversion
rates and jumps are rare enoudffieet of the price jumps almost fades away till the occurrence

of the next jump.

After determination of the jump sizes, nognormal, inverse Gaussian, gampanexial,
Levy and Burr distributions are fitted to the absolute jump sizes for each girteesses.

Then, by dividing the number of observed positive jumps to the total nunfgemps, the
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Figure 4.4: Separated jumps and mean reverting returns
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Pure Jumps Spike Jumps Semi-spike Jumps

Austria 0.011 0.030 0.018
Italy 0.007 0.038 0.015
Spain 0.008 0.021 0.013
Turkey 0.023 0.039 0.021

Table 4.4: Jump intensitiemumber of filtered jumpotal number of returns

Austria Italy Spain Turkey
Spike process  0.10 0.09 0.20 0.17
Semi-spike process  0.67 0.67 0.40 0.65
Table 4.5: Discrete time mean reversion rates

probability of observing a positive jump is derived. For each countryssemae that all of the
jumps are coming from the same type of distribution, but only parameters ofstndation
and probability of the jump direction filers. Such a choice is made in order to decrease the

complexity of the estimation and forecasting procedure.

In Table 4.6 estimated parameter values for lognormal and Burr distributiloics it best to

the jumps are given where the lognormal distribution is
F(x) = cD(ln(X— ) —u)
a

and the Burr distribution is

FO)=1- (1 ; (%)Q)_k .

After finding the best fitting distributions to the jumps, we are left with the filteradep
series, assumed to represent the Brownian motion part of the pricesprosetocorrelation
functions and the quantile plot of these filtered price returns are depickéglire 4.5 and 4.6.
Original series is also presented in order to see the results of our precédthough some of
the series like Austria suggest usage of stochastic volatility models in ortierinorease the
parametrization, volatility is assumed to be constant. Therefore estimatedrstdeditions
for the filtered return series are 0.10 for Austria, 0.087 for Italy, 0.1Sfmain and 0.09 for
Turkey.
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Dist P1 P2 P3 prob(AJ > 0)

Austria Lognormal o u vy
PJ 1.17 -1.84 0.19 0.47
SP 0.67 -1.71 0.14 0.29
SS 1.00 -2.07 0.18 0.52
Italy Burr k a B
PJ 0.61 4.09 0.22 0.53
SP 0.52 4.63 0.22 0.41
SS 0.45 6.02 0.20 0.59
Spain Burr k a B
PJ 0.52 3.85 0.27 0.39
SP 0.84 421 0.25 0.24
SS 0.36 5.36 0.20 0.42
Turkey Burr k a B
PJ 0.35 7.18 0.18 0.31
SP 0.58 7.75 0.18 0.35
SS 029 7.59 0.22 0.67

Table 4.6: Jump distributions
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Figure 4.5: Autocorrelation functions of the original return series andlitbeed returns after
the jump series are extracted
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Figure 4.6: QQ-plots of the original return series and the filtered returns

4.2 Forecasting

For each of the price series, using the estimated model parameters giverpieious sec-
tion, daily average spot prices are forecasted for the following dagiecBsts are based on
the paths created by Monte Carlo simulation. Forecast periods are 9fod@ysstria (from
July 11 to October 9), 119 days for Italy (from May 29 to September Z9,days for Spain
(from April 26 to September 26) and 91 days for Turkey (from July 1dépt&mber 29). The
forecasts are made weekly using the available data and model param@@f@0 paths are
generated for the following seven days. Mean value of the generatgdalaes are taken as
forecasted price of the corresponding day. Then the realized pricedbweek is added to
the observation series and the whole procedure is repeated begirormthé jump detection
step. By using the newly created jump series, forecasts for the followiel e generated.
Original price series starting from January 1st, 2011 to the end of tkedsting period and
zoomed the realizations and forecasted prices in the correspondinggoperiod are given

in Figure 4.7 and Figure 4.8.
In order to check forecast accuracy, daily analougus of linear Neeekly Error (MWE)
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Figure 4.7: Observed and forecasted price series starting from 2011
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given in [78] for hourly data is computed for each week:

1 & |Sd
MWE=3), 5,

=S4

7

whereS; is the mean observed price for the given week. MWE values for each arek

their mean value are given in Figure 4.9.
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Figure 4.9: MWE of each week in the forecast period and their average

According to MWE'’s of each week and their corresponding mean levedanibe concluded

that estimated model shows the best performance for the Spanish dattatirefurkey and

Austria follow in order.
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CHAPTER 5

ELECTRICITY FUTURES MARKETS

In deregulated electricity markets, it is generally observed that increasimgetition in retail
electricity markets results in greater price volatility as the industry encouragdset driven
prices by moving away from administratively determined, cost-based ratesrecourages
market-driven prices. Price volatility introduces new risks for genesatmonsumers, and
marketers. In a competitive environment, some generators will sell theirrpoypetentially
volatile spot markets and will be at risk if spot prices are ffisient to cover generation costs.
Consumers will face greater seasonal, daily, and hourly price variahilityfar commercial
businesses, this uncertainty could make it mofeatilt to assess their long-term financial po-
sition. Finally, power marketers sell electricity to both wholesale and retaduoers, often
at fixed prices. Marketers who buy on the spot market will face the riskttie spot market

price can substantially exceed fixed prices specified in contracts.

Electricity futures and other derivatives can help each of these maakitipants to man-
age, or hedge, price risks in a competitive electricity market. Futures ctaee legally

binding and negotiable contracts that call for the future delivery of a caditynoln most

cases, physical delivery does not take place, and the futures cioistdosed by buying or
selling a futures contract on or near the delivery date, or by designotiteacts are subject to
financial settlement. While the futures contracts are traded in organizbdreges, forwards
and various types of options are traded over the counter (OTC). Bhexchange to introduce
electricity futures was the Scandinavian power exchange Nordpootewenthly, quarterly

and annual futures contracts are traded. Besides the New York Miedaxchange, London
International Petroleum Exchange, UK Power Exchange, EuropearrFExchange, Pow-

ernext, APX UK are all well known exchanges where electricity futuresttaded. Most of
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the national deregulated spot electricity markets around the world are dechplégh deriva-

tive exchanges where trading of standardized electricity contracts dgrtakia place.

On the other hand, a large variety of electricity derivatives are tradech@mmarket par-
ticipants in the OTC markets, including forward contracts, swaps, plain vamtians and
exotic options like spark spread options, swing options, swaptions anal $o this chapter,
only the standardized futures contracts will be discussed. A detailedsdisouof other in-
struments can be found in [33]. The main reason of concentration onttiregumarkets is to
gain an insight about the monthly electricity futures contracts which have toeged since
September 2011 in the Turkish Derivatives Exchange (TurkDEX) .edeer, it is widely ac-
cepted that futures being traded on organized exchanges reflebies higrket consensus and
transparency than other OTC traded products. In addition, credit mgkreonitoring costs
constitute a lower part of the futures prices than the other products siclcargyes implement

strict margin requirements to ensure financial performance of all tradirigep.

A typical futures contract is a standardized, transferable and oblgatartract to buy or
sell a specified quantity of the underlying asset at a particular future jpdiime (maturity)
for a specified price contracted today (futures price). The seller afdh&act is also obliged
to sell the underlying asset, in our case the electricity. The maturity, qualitgaauctity of
the underlying asset are all standardized. The only negotiable adpibet contract is the
fixed price paid for the underlying asset at maturity; the futures priceerellare no initial
costs of entering a futures contract. Due to changing market conditi@hprane expecta-
tions, the value of a particular futures contract, however, does chamgdime. The value
of each futures contract is marked to market according to the calculaté@twalue for that
trading day. This means that financial positions are valued based onrtieatdair market
price. Differences between previous day’s value and the current market peisetded im-
mediately and the gajloss of a position is add@dithdrawn from the margin account of the
position holder. Since the risk for both parties is unlimited theoretically, exggsmnse these

margin accounts to guarantee that the contract obligations would be fulfilled.

Different from other future contracts, electricity futures have a deliveriog instead of a
fixed delivery time. Generally contracts with weekly, monthly, quarterly amtual delivery

periods are traded. The regulations, number of traded contracts mgtraad delivery peri-
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ods varies across the countries. For instance, in Turkey only the montggyldeed contracts
are traded at the moment. The reference price for TurkDEX base loctd @ty futures con-
tracts are the average of the day-ahead hourly prices of the condiagadelivery month.
Contract size is equal to the number of hours in the contract month times 0,04 M¥Aé
guoted futures price is the price of 1 MWh. Contracts for the current meomdtthe following
three months are traded simultaneously. Contracts are traded until thedasg ay of the
delivery month. Daily settlement price is the weighted average price of alidcdions per-

formed within the last 10 minutes before the closing of the trading session.

There is a growing literature on pricing of electricity derivatives. In theowang section,
future contract pricing models proposed in literature will be examined. Mexysince al-
most all of these models need a long stream of observations for pararsgteateon, in
Section 5.2 an alternative methodology which can be used in an infanatiezimarket like
Turkey’s is discussed. Although most of the models described in this ¢taptaapplicable
for the market in Turkey due to the lack of historical data, they are disdussdetail since
the development and calibration of such a stochastic model will be one afrtheirf research

topics.

5.1 Stochastic Futures Pricing Models in Literature

Parallel to the increasing importance of derivative contracts in the powdertsaresearches
aiming to model these contracts have also been increasing. Howeverthsnelectricity is
not a tradable asset in the classical sense due to its non-storability, meddlsmuinancial
markets need some modifications. In the literature, electricity futures pricegganodeling
has been done by following either the spot price approach or the futtisapproach. In
the spot price approach, firstly electricity spot price process is aetymaodeled and then
by using additional conditions which are related to spot and futures pfideises price pro-
cess is derived. In the futures price approach, instead of modelingoh@rice and deriving
futures prices, the futures prices are directly modeled. This approdudised on Heath-
Jarrow-Merton (HIJM) framework which is developed for fixed incomeket. Moreover,
there exists two types of applications for the HIM framework in electricity &styoricing.

The first approach initially models the futures contracts with fixed delivad/taen corre-
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sponding dynamics for futures, delivering electricity during a periodlareved. The second
approach is directly modeling the futures price with a delivery period (Feuramary of
HJIM framework Appendix A.2). These three approaches (spot ppipeoach, futures price
approach based on fixed delivery contracts, futures price agptzsed on futures contracts

with delivery periods) and related literature are summarized in the followibgseations.

In this context, as a result of a general literature review, widely accdpstdres of the fu-
ture contract prices are listed below. Any futures contract model isceegh¢o contain below

mentioned features:

e Future contracts show lower price volatility than the spot asset. Short teamges
or price shocks have lessfect on the futures prices, since futures prices depend on
the average spot price observed during the delivery period and rhtis epot price

shocks are not persistent as it is shown in the previous chapter.

e Length of the delivery periodféects the futures price volatility. The longer the delivery

period, the lower the futures price volatility.

e Time left to delivery is also proved to béfective on the futures price volatility. This
effect is known as the Samuelsoffieet, as the maturity approaches volatility observed

in the futures price also rises.

e Futures prices are also found to exhibit a seasonal pattern like thel spimitoity prices.
For instance, if the spot electricity prices are higher in the winter monthgelitton-

tracts with winter delivery are also expected to have higher prices.

5.1.1 Spot price approach

Main stream spot electricity price models used in the literature have alreadydizEussed in
the previous chapter. In this context, Lucia et al. (2002) calibrate theiand two factor spot
price models to derivative contracts. Pilipovic (1998) uses a two factiredpctricity model,
which leads to a complicated closed form expression for fixed delivétyds. Benth et al.
(2008b) calculate the fixed delivery forward contract prices by usieg multi-factor expo-

nential spot electricity price models. However, as itis stated in Benth ett19€) all of these
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models exhibit market incompleteness due to jump processes in the modeisraatiidime-
sional Brownian motions driving the spot price dynamics. Moreover, trestorability of
the underlying commodity rules out the possibility to hedge the derivativesaoynty the
underlying. In this context any probability meas@equivalent to the objective probability
measureP is risk neutral and due to the absence of perfect hedge, market pris& bas to

be estimated.

For a given spot price which is represented with semimartin§alend constant risk free
interest rate, under the risk neutral probability meas@ealiscounted expected pajof the

futures contact must be equal to its price today. Since it is costless to eggerdbntracts
e TYEq(St - f(t. T)IF) =0, (5.1)

wheref(t, T) is the price of futures contracted started on teyth delivery on dayT,t < T.
Assuming thaSt € L(Q), the space of integrable random variables with respe€ émd
f(-, T) is an adapted process

f(t, T) = Eq(STIF). (5.2)

With the same line of reasoning and the assumption that the settlement takesopitice-c

ously on the delivery period, for the futures contract with deliveryquefT,, T»], we obtain

T2
Eo ( f e (s, - F(t, T1,T2))du|Ft) =0, (5.3)
T
T2 re—"u
F(t, T]_,Tz) = EQ (v[rl msuduuzt) . (54)

Using the Fubini theorem, we get

re—ru

T2
F(t’ Tl’ TZ) = f_;l e 1 —

If the settlement takes place at the end of the delivery peTigd,

F(t, Ty, T2) = leTz T, f T f(t, u)du. (5.6)
As it is said at the beginning, determination of the risk free probability measuhe cru-
cial step in futures contract pricing, using the spot price approachinBtance in Benth et
al. (2008a) the Esscher transform is used in order to restrict the possibof equivalent
martingale measures. However, in most cases it is not possible to find yti@salution

for F(t, T1, T) processes. In general, multi-factor spot electricity models aiming a detailed
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description of the spot prices lead to complicated future price dynamicsrésu#, not only
the calibration of the pricing measure on the market data becomes a veryngivadléask
in the electricity markets, but also the flexibility of the spot models are rardficsnt to

generate future curves that are consistent with the observed curves.

5.1.2 Instantaneous delivery models

In fixed income markets, instead of modeling the prices, the forward ragegiractly mod-
eled using the HIM approach. In analogy to HIM approach for the fdriméerest rates,
many authors have proposed a HIM type model for electricity forwarduaarce curves. For
instance, Koekebakker et al. (2005), construct a financial maretenthe uncertainty is de-
scribed by & dimensional Brownian motionA, ..., Wk), which is defined on the probability
space Q, F, Q) with the filtrationF satisfying the usual conditions. The probability measure
Q represents the equivalent martingale measure and risk free ratkich is assumed to be
constant. Assuming that the futures market is represented by a contifotiongs price func-
tion f(t, T), where the futures price processes are martingales @dgrconstruction. Two

types of models are proposed in Koekebakker et al. (2005);

e Futures price process which is independent of the futures price [&heldynamics are

given by

K
di(t,T) = ) of(t, TYAW(), (5.7)
i=1
where N, ..., W) are independent Brownian motions amiﬂ(t, T) are time dependent
deterministic volatility functions. The solution of the (5.7) and the distribution of the

futures prices are

K t
=107+ f (s TYAW(S), (5.8)
i=1 Y0
K t
f(t,T) - N[f(O,T), > f (a'iA(S,T))zds). (5.9)
i=1 Y0

e Futures price process which is proportional to the futures price leVak dynamics of
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the futures price are given by

ZK" oB(t, T)dW(t), (5.10)

i=1

df(t,T)
ft,T)

the solution of (5.10) and the distribution of the futures prices are

F(t.T) = £(0,T)ex -Ei f t(o-B(s,T))st+ZK: f B TS| 6.11)
R p2i:10I i:10I ) .

In f(t, T) - N(f(O,T) - }ZKlft(fT-B(S, T))zdSZK:f (cP(sT)’dy  (5.12)
’ , 2 i=1 V0 | i=1 Y0 o

Since the HIM framework does not imply a specific model for the spot elggtddaces
and the volatility functions used in the above equations are flexible enougitdeavariety

of future price dynamics can be constructed from the above models. $tanage, one factor
spot electricity price model proposed by Luica et al. (2002) is consigtiémthe futures price
model in (5.8) takingr\(t, T) = oe (T~ whereo andx are positive constants. Bjerksund et
al. (2000) propose two fierent models for fixed delivery futures price modeling. Their one
factor model has the volatility functiomB(t, T) = 45 + C, Wherea, b andc are positive
constants. For both of the Lucia et al. (2002) and Bjerksund et al Oj2@@atility functions

decrease with maturity and approach to OTas» c. Moreover Bjerksund et al. (2000)

propose a three factor model with volatilitie$(t, T) = 55, o5(t,T) = Tfﬁib)% and
o-ZB(t,T) = ¢ where all parameters are assumed to be positive. In their paper authoes a
that the one factor model is adequate for contingent claim pricing, while fiactor model
has better performance in risk management. TR@nT;, T») being today’s contract price
with delivery period T1, T2] wheret < T1 < To, and assuming that the contract price is paid

as a constant cash flow during the delivery period; the price of thisadrifr given as

T2
F(t, Ty, To) = f w(r, u)F(t, u)du, (5.13)

T

where
e—r(u—t)
W(r,U) =~ (5.14)
[ e"u-Odu
1

Although by using (5.13) and (5.14), dynamics of the actually traded fsitae be captured,
as Benth et al. (2008b) argue that with this method, the implied dynamics of tinegsu

contract price with delivery period, T»] can become very complicated. In their referenced
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paper, dynamics are examined by using the fixed time delivery futuresacoftiowing the

stochastic dterential equation presented in (5.15):

df(t, T) = o(t, T) F(t, T)dW(L). (5.15)

Then the implied dynamics for the futures contract with delivery periqdT?>] is given as;

dF(t, T2, T2) = Z(t, Ty, T2)dW(), (5.16)

where the volatility dynamics of the futures contract with delivery periodT2] is

T2
ST T = [0 Ta T udy (5.17)
T1
and
e(—rt)
W(t, T, Tp) i= ——— (5.18)
[ e-rudu
T1
for the given constant risk free interest ratéAfter integration by parts we see
Tz U
2(t,T1,T2) = o(t, T2)F(t, T1, T2) — f So0(t,u) | W(r, Tq, T2)f(t, 7)drdu. (5.19)
T1 T1

In (5.19)62 denotes partial dierentiation with respect to the second variable of the respective

function. Sincen(r, T1, T2)/W(r, T1, U) is independent of,

Ty 2
0T T) =TI T T - [ oot R 2R Tgde (6.20)
T, W(, T1, U)
Then using (5.16) and (5.20) yield
T ~
AF(LTLTY) = ot T)FE TL TAW - [ 6po(tu) W12 T2 £ 1 vdudwt),
T W(t, T, U)

(5.21)

In Benth et al. (2008b) it is shown that when the volatility functieris not a function of
the expiration date of the contract, i.80(t,u) = 0, F(t, T1, T2) has lognormal dynamics.

However, it is emphasized that in realistic models the volatility depends strondhedime
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of delivery of the contract. Moreover, if we start with a model for futamntracts with
fixed delivery, we need to estimate the parameters using the market trades dantracts
with delivery over a period. Due to the possibility of ending with complicatedadyins for
the futures price process, it may not always be possible to integ(at€;, T») in order to

estimate the model parameters.

Alternatively, instead of fitting the parameters of the observed futures praces$ (-, T1, T2),
f(-, T) prices can be extracted from the observed futures contract pfibescan be done by
using the smoothing technique proposed by Benth et al. (2007b). Tlesthetbreticalf (-, T)
processes constructed under the risk neutral probalgiliaye transformed according to the

objective probability measur@ and the parameters are estimated.

5.1.3 Direct modeling of the observed future contracts

Since the instantaneous delivery future contracts are not actually tratheglelectricity mar-
kets, in order to avoid additional data formation problem mentioned in the presidisection
and model complications that may arise, Benth et al. (2008b) propos¢ mhioeleling of the
future contracts with the delivery periodiq, T2], which are the contracts traded in organized
exchanges. In this context, authors adapted the HIM framework andpkeify arbitrage
free dynamics for the proce$q:, T1, T2), which are valid for all delivery periods within a
predetermined time horizon. However, the authors concluded that thissgwaid to achieve
while preserving the flexibility of the models which can be easily adapted to optioimg
and risk management models. Moreover, it is shown that a lognormal marde(-f T4, T»)
dynamics cannot satisfy the no arbitrage condition and also has a volatiltggsaepend-
ing on the delivery period of the contract at the same time. The solution to thiepn is
given as modeling not all of the available contracts simultaneously but modeérguilding
blocks of the futures market. This means modeling the contracts that camdetbmposed
into other traded contracts. For instance, if 1 year contract and 12 maooiracts for each
month of the following year are traded in the market simultaneo&glyT1, T2) process only
models the monthly contracts and ignores the yearly contract. In this frafesvmgnormal
one factor future price dynamics under the equivalent risk neutral rgatirmeasure) is

given by

dF(t, T1, T2) = Z(t, T1, T2)F(t, T1, T2)dW(t), (5.22)
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whereX(t, T1, T2) is a continuously dierentiable and positive function representing the volatil-
ity and W(t) is a Wiener process under the risk neutral measure. Whersgusred that the
settlement of the contract takes place at the matiiktymarket futures volatility(t, T, T>)

can be associated to the instantenous delivery futures volatflityl) as follows:

X(t,T1,To) =

f " o(t, u)du. (5.23)

T2-T1 Uy

Considering the (5.23), Benth et al. (2008b) examine dierént volatility functions, which
are suggested and used in the commodity market researches. And thiegitgstrformances

in modeling futures price process(-, T1, T2). First of the examined volatility function be-
longs to the Schwartz’s (1997) one factor oil price modeft,u) = ae ™Y where a,b

> 0. By the (5.23) corresponding volatility is found &&,T1,T2) = a¢(T1, T2), where
d(T1,To) = % The basic constant volatility model appeardit 0. While
the Schwartz model reflects only the maturiffjeet and ignores the seasonality, the instante-
nous delivery futures volatility-(t, u) = a(t)e®U- picks up also the seasonalitffect with

the terma(t), wherea(t) = a + Z]]:]_(dj sin(2rjt) — fj cos(Zrjt)). In this model t is given in
years,d; and f; are real constants aralb > 0. ThenX(t, T1, T2) = a¢(T1, T2). The fourth
instantenous volatility isr(t, u) = a((1 — c)e™™Y + ¢), wherea,b > 0 and 0< ¢ < 1.
The associated volatility foF(t, T1, T2) is Z(t,T1,T2) = a((1 — ¢)¢(T1, T2) + ¢), where
#(T1,To) = % again. When this model is combined with seasonal spot volatility,
o(t, u) = a(t)((1-c)e Y 4 ¢) then futures volatility i€(t, T1, T2) = a(t)((1-c)¢(T1, T2)+C),
wherea,b > 0, 0 < ¢ < 1dj and fj are constants. The last model3¢t, T1, To) =

a(t) + cp(T1, To) with o(t,u) = ce®tW 4 a(t), wherea(t) modeling the seasonality as it
is given before. According to this model the spot price volatilityt(t)) is a(t) + c and long-

run volatility (u — o) is governed by the seasonality teaft). Authors note that with these

properties, last model has a clear separation of maturity and seafiects.e

It is assumed that under the physical probability meaBydynamics of financial electricity

contracts traded at exchanges can be described as
dF(t, Ty, T2) = AO(t, T, T2)F(t, T, T2)dt + O(t, Ty, T2)F (L, Ty, T2)dW(), (5.24)

whereB(t) is a Brownian motion undel, A represents the market price of risk (which is
assumed to be constant) and the functidh T4, T,) is deterministic. Then the logarithmic

returns of the futures contracat({, T1, T»)) is equal to;
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F(t + At, T]_, Tz)

t+AL
15
FCToTo) )= ft (10(s, T1,T2) — 59 (s T1,To))ds

In(

t+At
ft O(s, T1, T2)dB(S). (5.25)

Therefore logarithmic returngt, T1, T2) are normally distributed with meam(t, T1, T2) =
[ (0(s T1. T2) - 102(s T1. T2))dsand variance(t, T T2) = i ©2(s T1, T2)ds Then

the return of the ith contract is
r(t, T1, T2) = m(t Ty, T2) + V(5 T, To)e (1), (5.26)

wheree(t) ~N(0,1). In Benth et al. (2008b) parameters are estimated using log-likelihood
functions and it is concluded that maturitffext is very significant and modeling thiffect

with a simple exponential function is inficient. Estimation results also verify the existence
of seasonal volatility, and an additive specification is able capture the matndtyeasonality

effects in the volatility.

5.2 Risk Premium Approach

Direct modeling of futures price processes approach, discussed jmahi@us section, uses
future contracts price observations for the parameter estimation. Hquvireviurkish elec-
tricity markets, due to the lack of historical futures market price data, we t@abuild our
own methodology on the spot electricity prices. In Subsection 5.1.1, we aemtdeling

the electricity futures price process by using the spot price processeasddentification of
risk neutral probability measui®. Researchers usually connect the risk neutral probability
to the concept of market price of risk. The market price of risk is tifiedince between the
drift in the original probability measurE and the drift in the risk neutral measugein the
stochastic dterential equation governing the spot price dynamics and it is assumecdetct refl

how investors are compensated for bearing risk by holding the asset.

Another important and widely referred quantity relating futures and dggdespot prices is
the market risk premiunx(t, (T, — T1)). This premium is defined as thefidirence of the
electricity futures pricd-(t, T1, T2) and the conditional expectation of the average day-ahead
price of electricity during the future delivery periodl4| T»], with respect to the objective

probability measur®. It is assumed to depend on time to maturity and length of the delivery
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period:

T2
F(t,T1,T2) = Ep [ ! f SuduF¢| + #(t, (T2 — Tq)). (5.27)

To—Ti Jr,

According to the Keynesian theory, market risk premium depends on themeserence of
the hedgers and speculators. Therefore, the future curves etlsarthe market reflect not
only the forecasts of the commodity spot price in the future but also the dotriedging
tendency in the market. Assuming that the main motivation for the agents to eimgtige
future contracts is risk diversification, producers, who have madstautial investments,
have incentive to reduce variability in their profits by trading these instrumeitsilarly,
consumers (can be either intermediaries or use electricity in their productiocess) also

have incentive to hedge their positions in the market and to diversify theatnarike risk.

The hedging and risk diversification preferences of producergansiumers generally cover
different time horizons. For instance, while a producer is exposed to mar&ettainty for
a longer period of time, determined by the remaining life of its assets, a con$iasdo
make decisions for shorter periods. In other words, gains in terms oflinisksification for
consumers and producers vary across time. Theielces in the hedging preferences and
imbalances between buyers and sellers of the future contracts are dgsurneate the mar-
ket risk premium. In Benth et al. (2006) it is stated that the further out askes|a@onsumers
will have less incentives to buy future contracts where producergedieshedge does not di-
minish as quickly as consumers’. Situations whefte(T,—T1) > O (positive market risk pre-
mium) are associated with higher consumer demand to cover their positionsrtdtarcers.
Conversely, when the producers’ desire to hedge outweighs consum{er(T, — T1)) < O

(negative market risk premium).

After calibration of the spot electricity model, according to (5.27), risk premiaust be
added in order to price the derivative instrument. In estimation of the rigkipre, ex-ante
and ex-post estimation methods are used in the literature. Ex-ante or ekgsktpremium
method uses the original definition of the risk premium given in (5.27). In thibodelogy
the choice of an appropriate spot price model is essential for the tlenied a consistent risk
premium. Claiming that by using ex-ante method it iidult to reach consistent and robust
results, some of the researchers propose an ex-post approaetex-post risk premium is
given as

T2

F(t, Tl, Tz) = Sudu + 7:2'(1:, (T2 - T]_)). (528)

T
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In this approach, instead of the expected average day ahead precagethge of the observed
market prices through the delivery perioth[T»] are used. Moreover, subtractilﬁng2 Sydu

from both sides of (5.27) gives

Ty 1 Ty Ty
F(t,T1,To) - Sydu=Ep [ f Sudu|Ft] - f Sudu+ z(t, (T2 — T1)),
T To—-T1 Jm, T
(5.29)
To
F(t, T]_, Tz) - Sudu = ﬂ(t, (Tz - T]_)) + &. (530)
T1

Therefore, under the assumption that market participants form thetefstiebased on rational
expectations the ex-post risk premium equals the ex-ante risk premium plose term
with a mean equals to 0. By subtracting average realized spot prices doerdglivery
periods from historically observed futures prices and assuming thadrteagbectations are
unbiased in the long run, risk premiums are studied empirically. This appieagbplied
by Wilkens et al. (2007) who examine futures prices on the German EEXemailkhey
find positive but highly volatile risk premiums for futures contracts with times to ritgtup
to six months. In the Nordic electricity markets, Botterud et al. (2002) idena§itiye risk
premiums for futures contracts with a time to maturity up to one year. On the otheinany
researchers have modeled the extracted risk premium series. Bessemebadd (2002) study
the electricity forwards and concluded that the forward risk premium iathegy related to
the variance and positively related to the skewness of expected electpicityrices. Douglas
et al. (2008) relate observed risk premiums to indirect storability by shotiaghigher
natural gas inventory levels reduce the forward risk premium in the PJManhaspecially

during extremely warm and cold periods.

As it is already mentioned, for now it is not possible to discover the apjattepdynamics
governing neither for the futures price nor for the related risk premiumuiki$h electricity
futures market. Although it is possible to determine the necessary buildingshiaithout
calibration and testing the significance of the theoretical factors, applicabiléyy model

will be limited. However, we can still propose an elementary approach, ierdoddecide
whether or not to bygell a given futures contact as long as we have a sound model for the
spot electricity model by using (5.27). For a given future contract'sspFét, T1, T»), first of

all the expected average spot price for period 2], Ep [ﬁ TT12 SudulFt] is found using

a Monte Carlo simulation. Future contract prices higher than the expeaeabavspot price

(F(t, T, T2) > Ep [ﬁ frle Sudu|Ft]), offers a positive risk premium and can be used by the
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Figure 5.1: TURDEX-December 2011 contract

producers or any investor who wants to take a short position on thes@acisn Contrarily,
whenF(t, T1,T2) < Ep [TZTlTl frle Sudu|Ft], future contract has a negative risk premium and
is appropriate for taking a long position. As a result, 0 risk premium apesaesnatural

boundary for a risk neutral investor.

In order to test our simple approach, we will use the only contract thdtdexstraded in TUR-
DEX since 26 September 2011. This contract is a base load contract Witbrdehrough
December 2011. It is obvious that only one contract is néii@ent to reach robust conclu-
sions. However, considering that this illiquid and thin market conditions wiiticoe for a
while, we can still see whether our approach leads to positive fiar aot. Development of
the daily settlement price and number of transactions for December 20& ldaascontract

is shown in Figure 5.1.

Starting with the first trading day of the futures contract (26 Septembdr) 2fat every Mon-
day from 26 September to 26 December we form monthly average expgctedlsctricity
price for December, by using our model given in chapter 3 (5000 MoatibGimulations).
Taking the future contract price at that day as given, we calculate tk@msnium for the
contract as equal t& (-, T1, T2) — Ep[TzflTl Tle SuduF.]. Theoretically if this premium is
different than zero, either long or short position holders are expectedni@ gesitive risk

premium. Therefore, if the mean value of the simulated risk premium is higherztéran
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we conclude that taking a short position can yield a positive return. Ifitkepremium is
negative, we conclude that taking a long position is appropriate. And mpute the revenue
of holding the suggested position in the futures contact, due to the daily markketmiirst
of all, simulated risk premium distributions for four days of each month arengin Figure

5.2.
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Figure 5.2: Spot electricity prices

From the risk premiums in the Figure 5.2, except 26 December, our ngiveagh leads us to
long positions. The dates, direction of the estimated risk premium and thestedg®esitions

are given in Table 5.1).

Lastly as of January 1st, 2012, calculated daily pég of the suggested positions for the
given dates which are shown in Figure 5.3. Considering each Decermbiact is written

on 744 MWh electricity, 11 out of 13 positions taken according to our aggrended the
contract with a positive payb It is far out of reach to conclude that, suggested elemen-
tary approach is an alternative for the market agents. However, asvagimg method, we

continue to analyze and test this method.
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Date Risk Premium Sign  Suggested Position

26 September - long
3 October - long
10 October - long
17 October + short
24 October - long
31 October - long

14 November - long

21 November - long

28 November - long

5 December - long

12 December + short

19 December + short

26 December + short

Table 5.1: Suggested future contract position according to the risk premium
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CHAPTER 6

CONCLUSION AND OUTLOOK

In the past two decades, electricity industries in many countries which wigadlyrdesigned
as vertically integrated national or state dominated monopolies have beernecagp® a
deregulation process. The increase in the number of market playethdpogeth the com-
petition and development of relatively more liberal electricity markets causetfieity to
become a commodity whose price is determined by supply and demand. Day-sphat
electricity markets, are the most transparent spot markets where onadamdégrated sup-
ply and demand curves of the market players for each settlement periedmddfel spot
electricity prices, since it is an indicator for the market players and regslatmgarithmic
daily average spot electricity prices are modeled as a summation of a deterniumstion
and multi-factor stochastic process. Randomness in the spot pricesriseakgube governed

by pure jumps and mean reverting jump processes additional to a Browniammotio

In order to estimate the model parameters, following Mancini's (2009) [pgt@ach, jump
processes are seperated by using a parametric threshold function ig/lticlposed of a
multiple of stochastic volatility estimate generated by GARCH(1,1) model. Although the
idea of using a threshold function for the separation of jumps is not origisalg a GARCH
type threshold in electricity price modeling is uncommon. By including two meantieger
processes instead of one, we can separate price jumps likgotive only for one day which
are mostly due to hourly jumps in any given day from the jumps tfiatathe price level for
more than a day. One of the main goals of this thesis is to propose spot areldaniract
price models which can be used in recently established liberal Turkishieityctpot market
and electricity future contracts that are traded in the national derivakeegange. However,
since we do not prefer to be restrained by the small sample size, we testoola with

relatively more mature markets’ spot electricity data. For all of the examinedtiGes, the
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separation results are found to be in accordance with our initial expedalibe occurrence
of pure jumps and semi-spikes are less than price spikes as expectgdanpedre rare events
as it is confirmed by their low jump intensity estimations. Burr distribution is alsoddan
be good at capturing the distributional properties of the electricity price jumpgles the
widely excepted jump distributions. Moreover, the week ahead foreeafgirmance of the
model shows that GARCH threshold multi-factor jump model can also be al adfunative

for the market practitioners.

In the derivatives front, although we summarize three main approackésfaiselectricity
forward and future contracts modeling in the literature, we cannot peopaontract price
model due to data shoratge. Instead of proposing a future contractsnpoidel, we fer a
decision technique where the given contract prices are used. With thisdee which is built
on the risk premium theory, derivative market players can decide whigtlha&ke a long or a
short position. After testing our technique, we conclude that the decislerig promising

but needs more empirical research.

By taking this thesis as a starting point in electricity market modeling, furtheareb can
develop hourly spot electricity model and use this model in pricing futuré&racinvaluation
by defining a new risk measure which can be applied to electricity portfolimaeourly
day-ahead prices are more likely to be 2&atient series than a single hourly price series,

panal data techniques are assumed to be employed.
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APPENDIX A

Preliminaries

A.1 Definitions

Definition A.1.1 A cadlag, adapted, real valued stochastic process(L)o<t<t With Lo = 0

a.s. is called a Levy process if the following conditions are satisfied:

1. L has independent increments, i.q.;-LLs is independent of Fforany0 < s<t<T.

2. L has stationary increments, i.e., for abg s<t < T the distribution of L, s— L; does

not depend on t.

3. L is stochastically continuous, i.e., forevérx t < T ande > O, limg_; P(]L; — Lg >

€)=0.

A Lévy processX; which has a characteristic triplet,(A, v) and therefore a characteristic

function

Eleux] = exp(ivu - %UZA + I :(éux -1- iuI|X|§1)v(dx)) (A.1)

is a finite activity jump process if(R) < oo, i.e., almost all paths oX; have finite number of

jumps on every compact interval.

A.2 Heath Jarrow Merton Framework for the Stochastic Modeling of Interest

Rate Dynamics

Related concepts are listed below
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e The short rater(t), is the annualized interest rate at which an entity can borrow money

for an infinitesimally short period of time from time .

¢ Instantaneous forward raté(t, T) is the annualized interest rate, contractet] atver

the infinitesimal small intervall|, T + At).

e A zero-coupon bond with maturity dateis a contract that guarantees 1 unit of payment

on the date T. The price at timief a zero-coupon bond with maturily is denoted by

P(t, T).
Then
f(t,T):= _dlogPt.T) T), (A.2)
dt
r(t) = f(t.1), (A.3)
and
-
P(t,T) = exp(— f f(t,s)d s). (A.4)
t
In the HIM framework, it is assumed that under the equivalent martingalsume@
df(t,T) = a(t, T)dt + o(t, T)dW(t), (A.5)

f(0,T) = f*(0,T),

whereW is a d-dimensional Brownian motion und®r « represents the drift of the forward
rates,o represents the volatility of the forward rates ahé (0, T) is the observed initial

forward curve.

Since the forward rate dynamics are modeled directly under the martingalemrm@agprices

are arbitrage free. Then market satisfies the following equations:
T
PO.T) - exp(— [ e s)ds), (A6)
0

P(O,T) = EQ [exp(— fo ! r(s)d )} , (A.7)

if the HIM drift condition holds.

HJM drift condition: Assume that the family of forward rates is given by Eq. (A.5) and that
the induced bond market is arbitrage free. Then there exidtdimensional vector process

A(t) = [21(1), ..., A4(t)] with the property that for alll > 0 and for allt < T, we have

67



.
at,T) = o(t, T) f o'(t, 9ds— o (t, T)A(), (A.8)
t

where ’ denotes transpose.

Schematically, the use of the HIM model can now be written as follows:

1. Specification of the volatilities (t, T)
2. The drift parameters of the forward rates are then uniquely deterrhinEd. (A.8).

3. Integrate the forward rate dynamics to get the forward rates as

t

fL,T) = F*(tT) + fo ta(s,T)ds+ fo o(s T)AW(S). (A.9)

A.3 Risk Premium

Lets assume that) is a 4 dimesional vector of real valued constass; = (6, 8, 6@, §3))

50 ~ t R ~ 1_ { - )
Z°(t) = exp(f0 6dB(u) 2[0 6°du (A.10)
and for £1,2,3
t . .
Z0(t) = exp( f 6dJI0 () - 0t s, -ié)), (A.11)
0

whereg() is the corresponding log-moment generating function.

Lets define an equivalent probability meas@ such thatz’(t) is the density process of
the Radon-Nikodym derivativd@’/dP. Then with respect to probability measu@® the

processes

BY(t) = B(t) — 6t (A.12)

are Brownian motions. And the characteristic functiod®ffor i = 1,2, 3, is

o1 Hjud® _ ' bz _ ' juz _ 4 iz,
E[ eV IF] = exp@ufo Ldz(eg 1)I(du,dz)+f0 fR(e' 1 - iuzlg<1)€’ I(dz,(du)) |
A.13

Therefore, according to the definition of the forward risk premium,
R(t,7) := EY[S()IF] - E[S(@)IF4. (A.14)
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R(t,7) = A(t) (Ot ,6) - O(t, 7,0)) exp(% ft 2(Wdu) exp ft o (U)dB(U))

exp( f TdJ(l)(u)) expe'Y(t)) expe?'Z(t)), (A.15)
t
where .
InO(t, 7, 6) = Z o0, 7,90 4 §) — 6Ot 7, 0) + f o(u)bdy, (A.16)
i=1 t

df(i) representing the corresponding discount factor, 0 fed, v fori = 2 andg for i = 3.
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APPENDIX B

Matlab Codes

In this appendix, Matlab codes used for jump detection and separation opjurogsses from
Brownian motion observations and classification of jumps are given. These procedures
are original contributions of this research. Therefore leaving commaseyl seasonality
function fitting or Monte Carlo simulation procedures to the reader only thesp process

detection and classification codes are given here.

First of all as it is alraedy stated deterministic seasonality function is fitted taitlogec price
series. Then residual series is separated to its stochastic componeastseddration proce-
dure starts with iterative filterin of mean reverting jump processes. Camegm matlab

codes used in this filterin is as follows.

function [Jumpsmr, Jumps, Filteredretf, Volf, GARCHR]mpfilter1(difRes,cons)
%diffRes: first diterence of deseasonalized logarithmic prices

%cons: mutiplier of estimated stochastic volatility, generally in the neighborhb®d o
Filteredretzeros(length(diRes),601);

Filteredret(;,1¥diffRes;

Vol=zeros(length(diRes),600);

Retfiltered-zeros(length(dfRes),600);

for k=1:600

Jumps(:,k) Retfiltered(:,k) Vol(:,k) GARCHP(:,k)

=jump(Filteredret(:,k),cons);

Jumpsmr(:,1:K) Filteredret(:+K) Vol(:,k)
=jumpsmeanrev(Jumps(:,1:k),congRies,\Vol(:,k),Retffiltered(:,k), GARCHP(:,k));
if Filteredret(:,kr1)-Filteredret(;,ky=zeros(length(Filteredret(:,k)),1);
FilteredretEFilteredret(:,k-1);
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Volf =\ol(;,k);

GARCHP=GARCHP(;,k);

break

end

end

%%%%% %% %% % %% %% % %% %% % %% %% %% % % %% % %% %% %% %% % %% %% %
function [Jumps, Retfiltered, Vol, GARCHEump(diffRes,cons)
Codf

=garchfit(difRes);

Retfiltered-diffRes;
Jumps:zeros(length(diRes),1);

c=Codf.K;

a=Codf.ARCH;

b=Codt.GARCH,;

Vol=zeros(length(diRes),1);
Vol(1)=c+a*(mean(difRes)¥ + b = (std(di f fRe9)?;
fori = 2 : lengti{dif fRe9

Vol(i) = c + a* (Retfilteredi — 1))? + b= Vol(i — 1);
if (dif fRegi))? >= cong = Vol(i);

Retfilteredi) = O;

Jumpsi) = dif fRegi);

break

end

end
Codf

= garchfit(Retfiltered;

cf = CoeffK;

af = CoeffARCH

bf = Coef {GARCH

GARCHP= [cf,af,bf]’;

%%%%%%% %% %% %% %% % %% %% %% %% % %% % %% % %% % %% % %% % %% % %%
functiofJumpsmyrFilteredretf, Vol] = jumpsmeanre(Jumpsfconsdif fResVol,
Filteredretf, GARCHB
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X = siz§Jumps};
row = x(1);

col = x(2);

cf = GARCHR1);

af = GARCHR?2);

bf = GARCHR3);
alljumps= sun{Jumpsf2);
Jumpsfl = zerogrow, col);
rankl = zerogrow, 1);
forj=1:col
fori=1:row
ifJumps{i,j) =0
rankl(i) = j;

break

end

end

end

nr = 0;

rank2 = zerogrow, 1);
fori =1:row,
ifalljumpgi) =0;
nr=nr+1;

rank2(i) = nr;

end

end

fori=1:row

ifalljumpgi) =0;

Jumpstl(;, rank2(i)) = Jumpsf{:, rankl());
end

end

Jumpsmr= zerogrow, col);
forj=1:col

fori=1:row-7;
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ifJumpsftL(i, j) = Osum(Jumpsmfi,:)) == 0;

Jumpsmfi, j) = dif fRegi);

ifmin(—dif fRegi)—cons:sqrt(Vol(i+1)), —cons:sqrt(Vol(i+1))) < dif fRegi+1)dif fRegi+
1) < max—dif fRegi) + consx sqrt(Vol(i + 1)), cons= sqrt(Vol(i + 1)));

Jumpsm( + 1, j) = dif fRegi + 1);

Filteredretf(i + 1) = O;

Vol(i + 2) = cf + af = (Filteredretf(i + 1))? + bf = Vol(i + 1);

ifdif fRegi) > Osun(dif fRegi : i + 1)) < 0+ consx sqrt(\Vol(i + 2))

break

elseifdif fRe@) < Osun{dif fRegi : i + 1)) > 0 — cons= sqrt(Vol(i + 2))

break

elseif

min([((dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) — consx
sgrt(Vol(i + 1)))/dif fRegi)) + 1) = dif fRegi), ((dif fRegi + 1) + cons« sqrt(Vol(i + 1)))/
dif fRegi))=(((dif fRegi+1)+conssqri(Vol(i+1)))/dif fRegi))+1)«dif fRegi), ((dif fRes
(i + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) + cons= sqrt(\Vol(i +
1)))/dif fRegi)) + 1) = dif fRegi), (dif fRegi + 1) + cons« sqri(Vol(i + 1)))/dif fRegi)) =
(((dif fRegi+1)—constsqrt(Vol(i + 1)))/dif fRegi))+1)«dif fRegi)]) —cons: sqri(Vol(i +
2)) < dif fRegi+2)dif fRegi+2) < max[((dif fRegi+1)—-cons:sqrt(Vol(i+1)))/dif fRegi))
(((dif fRegi + 1) — cons« sqrt(Vol(i + 1)))/dif fRegi)) + 1) «dif fRegi), (dif fRegi + 1)+
constsqrt(\Vol(i +1)))/dif fRegi)) = (((dif fRegi + 1)+ cons:sqrt(\Vol(i + 1)))/dif fRegi)) +
1)« dif fRegi), ((dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = ((dif fRegi + 1) +
cons: sqri(\Vol(i + 1)))/dif fRegi)) + 1) « dif fRegi), ((dif fRegi + 1) + cons« sqrt(Vol(i +
1)))/dif fRegi))(((dif fRegi+1)—cons:sqgri(Vol(i +1)))/dif fRegi))+1)«dif fRegi)]) +
conss sqrt(Vol(i + 2));

Jumpsm(i + 2, j) = dif fRegi + 2);

Filteredretf(i + 2) = O;

Vol(i + 3) = cf + af = (Filteredretf(i + 2))? + bf = Vol(i + 2);

ifdif fRegi) > Osun(dif fRegi : i + 2)) < 0+ cons= sqrt(\Vol(i + 3))

break

elseifdif fRe@) < Osun(dif fRegi : i + 2)) > 0— consx sqrt(\Vol(i + 3))

break

elseif
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min([((dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) — consx
sqri(Vol(i + 1)))/dif fRegi)) + 1)? = dif fRegi), (dif fRegi + 1) + consx sqrt(Vol(i + 1)))/
dif fRegi))«(((dif fRegi+1)+conssqrt(Vol(i+1)))/dif fRegi))+1)?«dif fRegi), ((dif fRes
(i + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) + cons= sqrt(\Vol(i +
1)))/dif fRegi)) + 1)? = dif fRegi), ((dif fRegi + 1) + cons+ sqri(Vol(i + 1)))/dif fRegi)) *
(((dif fRegi+1)—cons:sqri(Vol(i+1)))/dif fRegi))+1)?«dif fResi)]) —cons:sqrt(Vol(i +
3)) < dif fRegi+3)dif fRegi+3) < max[((dif fRegi+1)—-cons:sqrt(Vol(i+1)))/dif fRegi))
(((dif fRegi + 1) — const sqrti(Vol(i + 1)))/dif fRegi)) + 1)* « dif fRegi), (dif fRegi + 1)+
cons:sqri(Vol(i + 1)))/dif fRegi)) = (((di f fRegi + 1)+ cons:sqrt(Vol(i + 1)))/dif fRegi)) +
1)?« dif fRegi), (dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1)+
conss sqri(Vol(i + 1)))/dif fRegi)) + 1)? = dif fRegi), ((dif fRegi + 1) + cons« sqrt(Vol(i +
1)))/dif fRegi)) = (((dif fRegi+1)—cons:sqri(Vol(i+1)))/dif fRegi))+1)?«dif fRegi)]) +
conss: sqri(Vol(i + 3));

Jumpsm(i + 3, j) = dif fRegi + 3);

Filteredretf(i + 3) = 0;

Vol(i + 4) = cf + af = (Filteredretf(i + 3))? + bf * Vol(i + 3);

ifdif fRegi) > Osun(dif fRegi : i + 3)) < 0+ consx sqrt(\Vol(i + 4))

break

elseifdif fRe@) < Osun(dif fRegi : i + 3)) > 0— consx sqrt(\Vol(i + 4))

break

elseif

min([((dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) — consx
sqri(Vol(i + 1)))/dif fRegi)) + 1)® = dif fRegi), (dif fRegi + 1) + consx sqrt(Vol(i + 1)))/
dif fRegi))+(((dif fRegi+1)+conssqri(Vol(i+1)))/dif fRegi))+1)%dif fRegi), ((dif fRes
(i + 1) — consx sqri(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) + cons= sqrt(\Vol(i +
1)))/dif fRegi)) + 1)° « dif fRegi), ((dif fRegi + 1) + cons« sqrt(Vol(i + 1)))/dif fRegi)) *
(((dif fRegi+1)—cons:sqri(Vol(i+1)))/dif fRegi))+1)%«dif fResi)]) —cons:sqrt(Vol(i +
4)) < dif fRegi+4)...dif fRegi+4) < max[((dif fRegi+1)-conssqri(Vol(i+1)))/dif fRegi))
(((dif fRegi + 1) — conss sqri(Vol(i + 1)))/dif fRegi)) + 1)*« dif fRegi), (dif fRegi + 1)+
constsqrt(\Vol(i +1)))/dif fRegi)) = (((dif fRegi + 1)+ cons:sqrt(Vol(i + 1)))/dif fRegi)) +
1)3« dif fRegi), (dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1)+
conss sqri(Vol(i + 1)))/dif fRegi)) + 1)% = dif fRegi), (dif fResi + 1) + cons« sqrt(Vol(i +
1)))/dif fRegi)) = (((dif fRegi+1)—cons: sqri(Vol(i+1)))/dif fRegi))+1)>«dif fRei)]) +
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conss sqri(Vol(i + 4));

Jumpsm(i + 4, j) = dif fRegi + 4);

Filteredretf(i + 4) = O;

Vol(i + 5) = cf + af = (Filteredretf(i + 4))? + bf = Vol(i + 4);

ifdif fRegi) > Osun(dif fRegi : i + 4)) < 0+ consx sqrt(\Vol(i + 5))

break

elseifdif fRe@) < Osun(dif fRegi : i + 4)) > 0 — cons= sqrt(Vol(i + 5))

break

elseif

min([((dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) — consx
sqrt(Vol(i + 1)))/dif fRegi)) + 1)* « dif fRegi), ((dif fRegi + 1) + consx sqrt(Vol(i + 1)))/
dif fRegi))+(((dif fRegi+1)+conssqri(Vol(i+1)))/dif fRegi))+1)*dif fRegi), (dif fRes
(i + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) + cons= sqrt(\Vol(i +
1)))/dif fRegi)) + 1)* = dif fRegi), ((dif fRegi + 1) + cons+ sqri(Vol(i + 1)))/dif fRegi)) *
(((dif fRegi+1)—cons:sqri(Vol(i+1)))/dif fRegi))+1)*«dif fResi)]) —cons:sqrt(Vol(i +
5)) < dif fRegi+5)...di f fRegi+5) < max[((dif fRegi+1)-conssqri(Vol(i+1)))/dif fRegi))
(((dif fRegi + 1) — const sqrti(Vol(i + 1)))/dif fRegi)) + 1)* « dif fRegi), (dif fResi + 1)+
constsqrt(\Vol(i +1)))/dif fRegi)) = (((dif fRegi + 1)+ cons: sqrt(\Vol(i + 1)))/dif fRegi)) +
1)*« dif fRegi), (dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1)+
conss sqri(Vol(i + 1)))/dif fRegi)) + 1)* = dif fRegi), (dif fResi + 1) + cons« sqrt(Vol(i +
1)))/dif fRegi)) = (((dif fRegi+1)—cons: sqri(Vol(i+1)))/dif fRegi))+1)*«dif fRei)]) +
conss sqrt(Vol(i + 5));

Jumpsm(i + 5, j) = dif fRegi + 5);

Filteredretf(i + 5) = 0;

Vol(i + 6) = cf + af = (Filteredretf(i + 5))? + bf = Vol(i + 5);

ifdif fRegi) > Osun(dif fRegi : i + 5)) < 0+ consx sqrt(\Vol(i + 6))

break

elseifdif fRe@) < Osun{dif fRegi : i + 5)) > 0— consx sqrt(\Vol(i + 6))

break

elseif

min([((dif fRegi + 1) — cons= sqrtVol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) — consx
sqri(Vol(i + 1)))/dif fRegi)) + 1)° = dif fRegi), (dif fRegi + 1) + consx sqrt(Vol(i + 1)))/
dif fRegi))*(((dif fRegi+1)+conssqri(Vol(i+1)))/dif fRegi))+1)°«dif fRegi), (dif fRes
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(i + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1) + cons= sqrt(\Vol(i +
1)))/dif fRegi)) + 1)° = dif fRegi), ((dif fRegi + 1) + cons+ sqri(Vol(i + 1)))/dif fRegi)) *
(((dif fRegi+1)—cons:sqri(Vol(i+1)))/dif fRegi))+1)°«dif fResi)]) —cons:sqrt(Vol(i +
6)) < dif fRegi+6)...dif fRegi+6) < max[((dif fRegi+1)—conssqri(Vol(i+1)))/dif fRegi))
(((dif fRegi + 1) — const sqrt(Vol(i + 1)))/dif fRegi)) + 1)° « dif fRegi), (dif fRegi + 1)+
constsqrt(Vol(i +1)))/dif fRegi)) = (((dif fRegi+1)+cons:sqrt(Vol(i+1)))/dif fRegi)) +
1)°« dif fRegi), (dif fRegi + 1) — consx sqrt(Vol(i + 1)))/dif fRegi)) = (((dif fRegi + 1)+
conss sqri(Vol(i + 1)))/dif fRegi)) + 1)° = dif fRegi), ((dif fRegi + 1) + cons« sqrt(Vol(i +
1)))/dif fRegi)) = (((dif fRegi+1)—cons: sqri(Vol(i+1)))/dif fRegi))+1)°+dif fRei)]) +
conss sqri(Vol(i + 6));

Jumpsm(i + 6, j) = dif fRegi + 6);

Filteredretf(i + 6) = O;

Vol(i + 7) = cf + af = (Filteredretf(i + 6))? + bf * Vol(i + 6);

break

else

break

end

else

break

end

else

break

end

else

break

end

else

break

end

else

break

end

end
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end

fori=2:row-7

if Jumpsm(, j) = 0Jumpsm(i — 1, j) == 0;
ifabqdif fRegi)) < abqsun{Jumpsm(i : i + 6, j)))
Jumpsm(i + 6, j) = 0;

Filteredretf(i + 6) = dif fRegi + 6);

ifabqdif fRegi)) < abgsumJumpsm(i : i + 5, j)))
Jumpsm(i + 5, j) = 0;

Filteredretf(i + 5) = dif fRegi + 5);

ifabqdif fRegi)) < abgsum(Jumpsm(i : i + 4, j)))
Jumpsm( + 4, j) = 0;

Filteredretf(i + 4) = dif fRegi + 4);

ifabqdif fRegi)) < abgsum(Jumpsm(i : i + 3, j)))
Jumpsm(i + 3, j) = 0;

Filteredretf(i + 3) = dif fRegi + 3);

ifabqdif fRegi)) < abgsum{Jumpsm(i : i + 2, )))
Jumpsm(i + 2, j) = 0;

Filteredretf(i + 2) = dif fRegi + 2);

ifabqdif fRegi)) < abgsum{Jumpsm(i : i + 1, j)))
Jumpsm( + 1, j) = 0;

Filteredretf(i + 1) = dif fRegi + 1);

end

end

end

end

end

end

end

end

fori=2:row-7

if Jumpsme(, j) = 0Jumpsmgi — 1, j) == 0;
if0.06« abqdif fRegi)) > abgsun{Jumpsmfi + 1 :i + 6, j)))
Jumpsm(i + 1, j) = 0;
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Filteredretf(i + 1) = dif fRegi + 1);

Jumpsm(i + 2, j) = 0;

Filteredretf(i + 2) = dif fRegi + 2);

Jumpsm( + 3, j) = 0;

Filteredretf(i + 3) = dif fRegi + 3);

Jumpsm(i + 4, j) = 0;

Filteredretf(i + 4) = dif fRegi + 4);

Jumpsm(i + 5, j) = 0;

Filteredretf(i + 5) = dif fRegi + 5);

Jumpsm( + 6, j) = 0;

Filteredretf(i + 6) = dif fRegi + 6);

end

end

end

Vol(i + 2) = cf + af = (Filteredretf(i + 1))* + bf = Vol(i + 1);
Vol(i + 3) = cf + af = (Filteredretf(i + 2))? + bf « Vol(i + 2);
Vol(i + 4) = cf + af = (Filteredretf(i + 3))? + bf = Vol(i + 3);
Vol(i + 5) = cf + af = (Filteredretf(i + 4))? + bf = Vol(i + 4);
Vol(i + 6) = cf + af = (Filteredretf(i + 5))? + bf = Vol(i + 5);
Vol(i + 7) = cf + af = (Filteredretf(i + 6))? + bf * Vol(i + 6);
end

Filteredretf = dif fRes— sun{Jumpsmyr2);

%%%%% %% %% % %% %% %% % %% % %% %% %% % % %% %% % % %% % %% % %% %% %

Classification of the detected jump points

function [pj,sp,ss, noj, sp0, ssffimpclass(dfRes, Jumpsmr, Vol,cons)
%pj: vector of pure jump points

%sp: vector of detected spike processes

%ss: vector of detected semi spike processes

%noj: number of jumps

%sp0: only the spike jump points

%ss0: only the semi-spike jump points

x=size(Jumpsmr);

78



row=x(1);

col=x(2);

pj=zeros(row,1);

sp=zeros(row,1);

ss=zeros(row,1);

spC=zeros(row,1);

ssQ=zeros(row,1);

noj=zeros(1,5);

for j=1:col

for i=2:row

if Jumpsmr(i,j)=0 Jumpsmr1,j)==0 Jumpsmr(i-1,5=0;
pj(i)=diffRes(i);

break

elseif Jumpsmr(i,jx0 Jumpsmr(1,j) =0 sign(Jumpsmr(i,j3=-sign(Jumpsmr@1,j)) sign(Jumpsmr(i-
1.j))==0;

if abs(Jumpsmir(i,j))-cons*sqrt(VoKil))j=abs(Jumpsmril,)));
if Jumpsmr(#-2,j)==0

sp(i)=diffRes(i);

spO(i=diftRes(i);

sp(i+1)=diffRes(i1);

break

elseif sign(Jumpsmr(i,jp=-sign(Jumpsmr¢2,j)) Jumpsmr@2,j) =0 abs(sum(JumpsmrL,j)))-
cons*sqrt(Vol(i+2))j=abs(Jumpsmr{2,)));

if Jumpsmr(#3,j)==0

sp(i)=diffRes(i);

spO(i=diftRes(i);

sp(H+1)=diffRes(i+1);

sp(H+2)=diffRes(i+2);

break

elseif sign(Jumpsmr(i,jg=-sign(Jumpsmr¢3,j)) Jumpsmr@3,j) =0 abs(sum(JumpsmrER,j)))-
cons*sqrt(Vol(i+3))j=abs(Jumpsmr{i3,)));

if Jumpsmr(i-4,))==0

sp(i)=diffRes(i);
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spO(i)=diffRes(i);

sp(H+1)=diffRes(i+1);

sp(i+2)=diffRes(i+2);

sp(i+3)=diffRes(i3);

break

elseif sign(Jumpsmr(i,jp=-sign(Jumpsmr{4,j)) Jumpsmr4,j) =0
abs(sum(Jumpsmr(¥B,j)))-cons*sqrt(Vol(4))j=abs(Jumpsmr{i4.}));
if Jumpsmr(#5,j)==0

sp(i)=diffRes(i);

spO(i=diftRes(i);

sp(H+1)=diffRes(i+1);

sp(i+2)=diffRes(i+2);

sp(i+3)=diffRes(i3);

sp(H+4)=diffRes(i+4);

break

elseif sign(Jumpsmr(i,jp=-sign(Jumpsmr5s,j)) Jumpsmr@s,j) =0 abs(sum(Jumpsmr@#,))))-
cons*sqrt(Vol(i-5))j=abs(Jumpsmris,j));

if Jumpsmr(#6,j)==0

sp(i)=diffRes(i);

spO(ixdiffRes(i);

sp(H+1)=diffRes(i+1);

sp(i+2)=diffRes(i+2);

sp(i+3)=diffRes(i+3);

sp(i+4)=diffRes(i+4);

sp(i+5)=diffRes(i+5);

break

elseif sign(Jumpsmr(i,jg=-sign(Jumpsmr¢6,j)) Jumpsmr@6,j) =0 abs(sum(Jumpsmrb,j)))-
cons*sqrt(\Vol(i+6))j=abs(Jumpsmr{i6,)));

sp(i=diffRes(i);

spO(ix=diffRes(i);

sp(i+1)=diffRes(i+1);

sp(i+2)=diffRes(i2);

sp(i+3)=diffRes(i3);
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sp(H4)=diffRes(i+4);
sp(i+5)=diffRes(i5);
sp(i+6)=diffRes(i+6);
break

end

end

end

end

end

end

end

end

end
ss=sum(Jumpsmr,2)-pj-sp;
for i=1:row

if ss(i) =0 ss(i-1x=0
ssO(iediffRes(i);
end

end

fori=1:row

if pj(i) =0
noj(1)=noj(1x1;

end

end

for i=1:row

if spO(i) =0
noj(2)=noj(2+1;

end

end

for i=1:row

if ssO(i) =0
noj(3)=noj(341;

end



end

for i=1:row

if sp(i) =0
noj(4)=noj(4+1;
end

end

for i=1:row

if ss(i) =0
noj(5)=noj(5H1;
end

end

82



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Ane, T., Ureche-Rangau, L., Gambet, J.B., Bouverot, J., 2008. Robdiier detection
for Asia- Pacific stock index returns. Journal of International Firenastitutions
Money 18, 326-343.

Ane, T., Métais, C., 2010. Jump distribution characteristics: evidence from Europea
stock markets. International Journal of Business and Economics®, 1-2

Audet, N., Heiskanen, P., Keppo, J., Vehvilainen, 1.,2004. Modeliagtecity forward
price dynamics in Nordic market. Modeling Prices in Competitive Electricity Matke
chapter 12, Wiley.

Barlow, M.T., 2002. A difusion model for electricity prices. Mathematical Finance 12,
287-298.

Bagdadioglu, N., Odyakmaz, N., 2008. Turkish electricity reform. Utiliedicy xxXx,
1-9. d0i:10.101f[.jup.2008.02.001.

Benth, F.E., Cartea, A., Kiesel, R., 2006. Pricing forward contracfmimer markets
by the certainty equivalence principle: explaining the sign of the markepresium.
httpy/ssrn.confabstract941117.

Benth, F.E., Salt@-Benth, J., 2005. Stochastic temperature modeling and weather
derivatives. Applied Mathematical Finance 12, 53-85.

Benth, F.E., Kallsen, J., Meyer-Brandis, T., 2007a. A non-Gauos$kanstein-
Uhlenbeck process for electricity spot price modeling and derivatisiemp. Applied
Mathematical Finance 14(2), 153-169.

Benth, F.E., Koekebakker, S., Ollmar, F., 2007b. Extracting and agpsmooth for-
ward curves from average-based commodity contracts with seasoizdiora Journal
of Derivatives, Fall 15(1), 52-66.

Benth, F.E., Salt@-Benth, J., Koekebakker, S., 2008a. Stochastic Modeling of Elec-
tricity and Related Markets. World Scientific, Singapore.

Benth, F.E., Koekebakker, S., 2008b. Stochastic modeling of fialaglectricity con-
tracts. Energy Economics 30, 1116-1157.

Benth, F.E., Sgarra, C., 2009a. The risk premium and Esschesfdramin power
markets. Working paper, htissrn.confabstract1507627.

Benth, F.E., Salt@-Benth, J., 2009b. Dynamic pricing of wind futures. Energy Eco-
nomics 31, 16-24.

Bjerksund, P., Rasmussen, H., Stensland, G., 2000. Valuationigihchanagement
in the Nordic electricity market. Working paper, Institute of Finance and lgament
Science, Norwegian School of Economics and Business Administration.

83



[15] Bessembinder, H., Lemmon, M.L., 2002. Equilibrium pricing and optimdghgy in
electricity forward markets. Journal of Finance, 57(3), 13471382.

[16] Borovkova, S., Permana, F., 2004. Modeling electricity prices byptiiential jump
diffusion. Proceedings of the Stochastic Finance 2004 ConferencenlBbdugal.

[17] Borovkova, S., Geman, H., 2006. Analysis and modeling of electridiiyrés prices.
Studies in Nonlinear Dynamics Econometrics, 10 (3), article 6.

[18] Botterud, A., Bhattacharyya, A.K., llic M.D., 2002. Futures and gpimes- an analysis
of the Scandinavian electricity market. Proceedings of the 34th Annu#hXanerican
Power Symposium.

[19] Brennan, M. J., Schwartz, E. S., 1985. Evaluating natural resanvestments. Journal
of Business, 58(2), 135-157.

[20] Brockwell, P.J., 2001. &vy-driven CARMA processes. Ann. Inst. Statist. Math. 53(1),
113-124.

[21] Brockwell, P.J., Davis, R.A., 2007. Continuous-time Gaussian autssmn. Statis-
tica Sinica 17, 63-80.

[22] Brockwell, P.J., Davis, R.A., Yang, Y., 2007. Estimation for non-riegd_évy-driven
Ornstein-Uhlenbeck processes. Journal of Applied Probability 44-98B.

[23] Bunn, D.W., Karakatsani, N., 2003. Forecasting electricity pricesdion Business
School, London.

[24] Burger, M., Klar, B., Miller, A., Schindimayr, G., 2004. A spot market model for
pricing derivatives in electricity markets. Quantitative Finance 4, 109-122

[25] Camadan, E., Erten, I.E., 2010. An evaluation of the transitionaliSlur&lectricity
balancing and settlement market: lessons for the future. Renewable atainShble
Energy Reviews 15, 1325-1334.

[26] Cartea, A., Figueroa, M.G., 2005. Pricing in electricity markets: a mexrting jump
diffusion model with seasonality. Applied Mathematical Finance 12, 313-335.

[27] Clewlow, L., Strickland, C., 2000. Energy Derivatives: Pricingl &isk Management.
Lacima Publications.

[28] Cont, R., Mancini, C., 2007. Nonparametric tests for analyzing thedfineture of
price fluctuations. Financial Engineering Report No 2007-13, Ceatdtihancial En-
gineering, Columbia University.

[29] Cont, R., Tankov, P., 2004. Financial Modeling with Jump ProcesSeésapman
Hall/CRC, Florida.

[30] Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J., 2003/AR1odels to predict
next-day electricity prices. Power Systems, IEEE Transactions on), 1&(B4-1020.

[31] Corsi, F., Pirino, D., Reno, R., 2009. Threshold bipower variatiot e impact of
jumps on volatility forecasting. Laboratory of Economics and ManagemdaijL
Papers Series 20, Sant’Anna School of Advanced Studies, Pisa.

84



[32] Dambis, K.E., 1965. On the decomposition of continuous martingalesryloéProb-
ability and Its Application 10, 410-410.

[33] Deng, S., 2000. Stochastic Models of Energy Commodity Prices ard Applica-
tions: Mean-reversion with Jumps and Spikes. University of Californiergninsti-
tute.

[34] Doornik, J.A., Ooms, M., 2005. Outlier Detection in GARCH Models. Tiglea In-
stitute Discussion Paper, Tl 2005-092

[35] Douglas, S., Popova, J., 2008. Storage and the electricity forpramium. Energy
Economics, 30(4), 17121727.

[36] Dubins, L., Schwarz, G., 1965. On continuous martingales. Pditgeof the National
Academy of Sciences USA 53,913-916.

[37] Duftie, D., Pan, J., Singleton, K., 2000. Transform analysis and assetgficiaffine
jump-diffusions. Econometrica, 68(6), 13431376.

[38] Erlwein, C., Benth, F.E., Mamon, R., 2010. HMM filtering and paramegtimation
of an electricity spot price model. Energy Economics 32, 1034-1043.

[39] Escribano, A., Pena, J.1., Villaplana, P., 2002. Modeling electricigegr International
evidence. Working paper, Universidad Carlos Il de Madrid.

[40] Frikha, N., Lemaire, V., 2009. Joint Modeling of Gas and Electriciticés. hal-
00421289.

[41] Garcia, R.C., Contreras, J., van Akkeren, M., Garcia, J.B.C., 2A@5ARCH fore-
casting model to predict day-ahead electricity prices. IEEE Transaati®ower Sys-
tems, 20(2), 867-874.

[42] Geman, H., 2005. Commodities and Commaodity Derivatives. Wiley-Finaludea Wi-
ley and Sons, Chichester.

[43] Geman, H., Roncoroni, A., 2006. Understanding the fine strucfigtectricity prices.
Journal of Business 79(3), 1225-1261.

[44] Gibson, R., Schwartz, E.S., 1990. Stochastic convenience yielthanaticing of oll
contingent claims. The Journal of Finance, 45(3), 959-976.

[45] Glasserman, P., 2002. Monte Carlo Methods in Financial Enginee3jrgnger, New
York.

[46] GME official web site, httg/www.mercatoelettrico.oy&r/Default.aspx.

[47] Hamada, M., 2004. Fair pricing of energy derivatives: A comipagastudy. Proceed-
ing: World Energy Congress, Sdney, Australia.

[48] Hambly, B., Howison S., Kluge, T., 2009. Modeling spikes and pricinigng options
in electricity markets. Quantitative Finance 9, 937949.

[49] Karacor, Z., Givenek, B., 2010. Enerji Piyasasi Reformlarinin Elektrik Enerjisi
Piyasasina Etkisi. netim ve Ekonomi 17(1), 147-166. Y

85



[50] Knittel, C.R., Roberts, M.R., 2005. An emprical examination of restrectetectricity
prices. Energy Economics, 27(5), 791-817.

[51] Koekebakker, S., Ollmar, F., 2005. Forward curve dynamics in theelid electricity
market. Managerial Finance 31(6), 74-95.

[52] Kluge, T. Pricing swing options and other electricity derivativeD etesis, University
of Oxford; 2006.

[53] Lucia, J.J., Schwartz, E.S., 2002. Electricity prices and powevaterés: Evidence
from the Nordic Power Exchange. Review of Derivatives Reseafth 5-50.

[54] Mancini, C., 2009. Non-parametric threshold estimation for models witbhsktic
diffusion codicient and jumps. Scandinavian Journal of Statistics 36, 270-296.

[55] Mancini, C., Reno, R., 2010. Threshold estimation of Markov models jwitips and
interest rate modeling. Journal of Econometrics, doi:10.4pd6onom.2010.03.019.

[56] Mayer, K., Schmid, T., Weber, F., 2011. Modeling electricity spotgsicCombining
mean reversion, spikes and stochastic volatility. Working paper, Tedtenisciversitat
Munchen.

[57] Meyer-Brandis, T., Tankov, P., 2007. Multi factor jumg¥dsion models of electricity
prices. Working paper, UniversgitParis VII, France.

[58] Misiorek, A., Trueck, S., Weron, R., 2006. Point and intervaét@sting of spot elec-
tricity prices: Linear vs. non-linear time series models. Studies in Nonlineaaics
Econometrics 10(3), article 2.

[59] Monroe, ., 1978. Processes that can be imbedded in Brownianmgtimals of Prob-
ability, 6(1), 42-56.

[60] Morters, P., Peres, Y., 2010. Brownian Motion. Cambridge UsitePress, Cam-
bridge.

[61] Nelson, D.B., 1990. ARCH models adidision approximations. Journal of Economet-
rics 45, 7-39.

[62] Nelson, D.B., 1992. Filtering and forecasting with misspecified ARCHetsd Jour-
nal of Econometrics 52, 61-90.

[63] Nelson, D.B., Foster, D.P., 1994. Asymptotic filtering theory for unata Arch mod-
els. Econometrica 62(1), 1-41.

[64] Pilipovic, D., 1998. Energy Risk: Valuing and Managing Energy ilzives. Mc
Graw-Hill, New York.

[65] Pirino, D., Reno, R., 2010. Electricity prices: A nonparametric apgnolnternational
Journal of Theoretical and Applied Finance 13(2), 285-299.

[66] Protter, P.E., 2004. Stochastic Integration anffddéntial Equations. Springer-Verlag
Berlin, Heidelberg.

[67] Ralph, D., 2006. Complementarity models and the architecture of ensagyets. In-
ternational Symposium on Mathematical Programming (ISMP), 19th, 30 JuRug4
2006, Rio de Janeiro, Brazil.

86



[68] Reno, R., 2006. Nonparametric estimation of stochastic volatility modetmdsaic
Letters 90(3), 390-395.

[69] Revuz, D., Yor, M. 1991. Continuous Martingales and Browniani®do Springer-
Verlag Berlin, Heidelberg.

[70] Schwartz, E.S., 1997. The stochastic behaviour of commodity prilcgsications for
valuation and hedging. Journal of Finance LII(3), 923-973.

[71] Stevenson, M., 2001. Filtering and forecasting spot electricity pricehe increas-
ingly deregulated Australian electricity market. QFRC Research Paperrd@risity
of Technology, Sydney.

[72] Takeuchi, K., 1995. A comment on Recent Development of Econoraia Bnalysisat
the 63rd Annual Meeting of Japan Statistical Society.

[73] Tashpulatov, S.N., 2011. Estimating the volatility of electricity prices: Tdseof the
England and Wales wholesale electricity market. Working paper CERGEEBI39.

[74] Vazquez, M., Bardun, J., Batlle, C., 2006. Electricity forward and volatility curves
computation based on Monte Carlo simulation. Proceeding: 9th Internationdc
ence on Probabilistic Methods Applied to Power Systems KTH, Stockholm,Swed

[75] Verhoeven, P., McAleer, M., 2000. Modelling outliers and extremseolmtions for
ARMA-GARCH processes. Econometric Society World Congress 200@ribated
Papers, no:1922.

[76] Villaplana, P., 2004. A two-state variables model for electricity pricggsentation:
Third World Congress of the Bachelier Finance Society, Chicago.

[77] Weron, R., 2005. Heavy tails and electricity prices. The Deutschnel8sbank’s 2005
Annual Fall Conference, Eltville.

[78] Weron, R., 2006. Modeling and Forecasting Electricity Loads aik®rA Statistical
Approach. Wiley, Chichester.

[79] Wilkens, S., Wimschulte, J., 2007. The pricing of electricity futuresdevce from the
European energy exchange. Journal of Futures Markets, Z8#44,10.

[80] Zhou, M., Yan, Z., Ni, Y., Li, 2004. An ARIMA aproach to forecaggirelectricity
price with accuracy improvement by predicted errors. Proceedinge dEBE Power
Engineering Society General Meeting, 233-238.

87



VITA

PERSONAL INFORMATION

Surname, Name: Talasli,irem
Nationality: Turkish (TC)
Date and Place of Birth: 15 August 1981, Ankara

email; irem.talasli@gmail.com

EDUCATION

Ph.D. Department of Financial Mathematics, 2012, January
Institute of Applied Mathematics
Middle East Technical University, Ankara
Supervisor: Assoc. Prof. Dr. Azize Hayfavi

Thesis Title: Stochastic Modeling of Electricity Markets

M.Sc. Department of Financial Mathematics, 2005, July
Institute of Applied Mathematics
Middle East Technical University, Ankara
Supervisor: Prof. Dr. Hayri Brezliajlu

Thesis Title: Coherent Risk Measures

B.Sc. Department of Economics, 2003, June

Middle East Technical University, Ankara

WORK EXPERIENCE TRAINING

July 2006-PresentCentral Bank of the Republic of Turkey, Markets Division, Ankara
Feb - April 2006 PricewaterhouseCoopers, Financial Risk Dégtgnbul - Intern
Aug 2004Istanbul Stock Exchange, Research Ddptanbul - Intern

88



