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ABSTRACT

MASSIVE HIGHER DERIVATIVE GRAVITY THEORIES

Giillii, ibrahim
Ph. D., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

December 2011, 101 pages

In this thesis massive higher derivative gravity theories are analyzed in some detail. One-
particle scattering amplitude between two covariantly conserved sources mediated by a gravi-
ton exchange is found at tree-level in D dimensional (Anti)-de Sitter and flat spacetimes for
the most general quadratic curvature theory augmented with the Pauli-Fierz mass term. From
the amplitude expression, the Newtonian potential energies are calculated for various cases.
Also, from this amplitude and the propagator structure, a three dimensional unitary theory is
identified. In the second part of the thesis, the found three dimensional unitary theory is stud-
ied in more detail from a canonical point of view. The general higher order action is written
in terms of gauge-invariant functions both in flat and de Sitter backgrounds. The analysis is
extended by adding static sources, spinning masses and the gravitational Chern-Simons term
separately to the theory in the case of flat spacetime. For all cases the microscopic spectrum
and the masses are found. In the discussion of curved spacetime, the masses are found in
the relativistic and non-relativistic limits. In the Appendix, some useful calculations that are

frequently used in the bulk of the thesis are given.

Keywords: Higher derivative gravity, Massive spin-2 fields, Unitarity in gravity.

v



0z

KUTLELI YUKSEK TUREVLI KUTLECEKIM KURAMLARI

Giillii, ibrahim
Doktora, Fizik Bolimii

Tez Yoneticisi : Prof. Dr. Bayram Tekin

Aralik 2011, 101 sayfa

Bu tez ¢calismasinda, kiitleli yiiksek tiirevli kiitlecekim kuramlari ayrintili olarak analiz edildi.
Kovariant olarak korunan iki kaynak arasinda gergeklesen graviton degis-tokusu aracilifiyla
tek parcacikli sagilma genligi, D boyutlu (Anti)-de Sitter ve diiz uzay-zamanlarda, Pauli-Fierz
kiitle terimi eklenmis en genel ikinci dereceden egrilikli kiitlecekim kurami i¢in hesaplan-
mugtir. Bu genlik ifadesi kullanilarak, Newton potansiyel enerjisi bircok durum i¢in hesaplan-
mugtir. Ayrica, bu genlik ve yiiriitiicli yapisindan {i¢ boyutlu tiniter bir kuram bulunmustur.
Tezin ikinci boliimiinde, bulunan bu ii¢ boyutlu kuram, kanonik ag¢idan, ayrintili bir sekilde
incelenmistir. Genel yiiksek mertebeli eylem, hem diiz hem de de Sitter uzay-zamani i¢in ayar
doniigmleri altinda degismez fonksiyonlar cinsinden yazilmigtir. Bu analiz, kurama durgun
kaynaklar, spinli kiitleler ve kiitlecekimsel Chern-Simons terimleri eklenerek diiz uzay-zaman
durumunda genis-letildi. Biitiin durumlar i¢cin mikroskobik spektrum ve kiitleler bulundu.
Tartigmanin egri uzay-zaman kisminda kiitleler goreli ve goreli olmayan limitler i¢in bulundu.

Ek boliimiinde, tezin i¢inde sik¢a kullanilan bazi yararl hesaplar verilmistir.

Anahtar Kelimeler: Yiiksek tiirevli kiitlecekim, Kiitleli spin-2 alanlar, Kiitlecekimde iiniterlik.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

General Relativity (GR) [1] can be thought as a modification (albeit a major one) of Newto-

nian gravity. The history of gravity starts with Newton’s rLZ force law in 1687. The precise

form of this law is

G
F=-21" (1.1)
I

where G is the universal Newton’s constant and m; are the masses of the interacting particles.
The minus sign indicates that the force is attractive. The Celestial mechanics gave successful
verifications of this law. A well-known example of the success of Newton’s theory is the
prediction of a new planet. After the discovery of the orbit of Uranus there were attempts to
calculate this orbit theoretically. However, these attempts did not work exactly since there
were deviations between the calculated and observed orbits [2, 3]. Using Newton’s law (1.1)
the location of Neptune was predicted and just after this calculation it was observed exactly at
that location [2, 3]. Hence an “outer” mass was responsible for the perturbations of the orbit
of Uranus. Newton’s law, with the help of “dark matter” (Neptune in this case) worked well
for the case of Uranus. After this resolution, there were studies of all planets. When Mer-
cury was studied, another problem was found: The calculations of precession of Mercury’s
perihelion was in contradiction with the observed value. The calculations gave larger value
than the observed ones. The first attempt to solve this problem was again to invoke the “dark
matter” idea. It was thought that there must be a planet, Vulcan, in the solar system [3, 4].
However, this did not solve the problem since Vulcan was never found. The solution came

with modifying gravity: replacing Newtonian gravity with the Einsteinian one [3].



In GR the spacetime geometry is determined by the matter, energy, pressure etc. and the
dynamics of matter or light is determined by the geometry of spacetime. GR is constructed
with the idea of equivalence principle and the general coordinate invariance (and with the
added assumption that the equations are wave-type equations with second derivatives on the
basic fields). The Einstein equation is

1
Ry — Eg“VR = kT, 1.2)

where the left hand side is the geometry part and it is known as the Einstein tensor and the
right hand side is the matter part. In (1.2), R;, and R are the Ricci tensor and Ricci scalar,
respectively. These quantities can be thought as a measure of the curvature of spacetime.
They depend on the spacetime metric g, and its derivatives. The connection is taken to be
metric compatible (Vg = 0). In the right hand side, there is a coupling constant related to the
Newton’s constant which in four dimensions is k = 87G, and T, is the energy-momentum

tensor coming from the matter sector.

Einstein’s equation, right after was introduced, was immediately applied to solve the then
more-than fifty year old problem of Mercury’s orbit. After the Schwarzschild solution was
found, which is the unique static spherically symmetric time-independent solution to (1.2), the
perihelion precession of Mercury was calculated and the answer was found to be compatible
with the observed value [3, 5, 6, 7]. There were also other predictions that came out from GR
such as the bending of light passing by the sun and the gravitational redshift of light which
were also supported by observations. Inspite of these successful solutions and predictions
there are some observations that GR in its basic form as given in (1.2) cannot explain. The
data taken from supernova explosions [8, 9, 10] show that the universe has an accelerated

expansion. GR cannot explain this phenomenon in its pure form'.

If GR is taken as the correct theory, there must exist a dark energy component in the matter-
energy budget of the universe which can be represented as a constant term, the cosmological
constant, A. The density of the dark energy is estimated to be 75% of the total energy density

of the universe and numerically it reads

GeV
pa = 4x 107022 (1.3)
cm

which is very small compared to the vacuum energy density that comes from the energy

' T, is taken as the standard energy-momentum tensor of the matter.



density of the vacuum of quantum field theory (QFT);

pa ~ 1075 popr, (1.4)

[10, 11, 12]. This mismatch of the “experimental” and “theoretical” values of the energy
density of the vacuum is known as the cosmological constant problem. Therefore, it can be
thought that GR is not the full theory and it must be modified in the infrared (IR), namely
at ultra-large distances or ultra-weak interacting regimes, such that without a need of dark
energy the accelerating expansion of the universe happens. [Admittedly, this alone will not
solve the question of why QFT vacuum is almost empty.] One of the suitable candidates for
this modification is to give a tiny mass to the graviton in the theory, in such a way that massive

GR still passes the solar system tests.

From the perspective of QFT, at low energies, GR can be thought as a weakly interacting
massless spin-2 field. The story starts with the classification of particles with respect to their
spins and masses, as degrees of freedom [10, 13]. The representations of these degrees of free-
dom are fields. For spin-0 mode of massless particles the representations is a scalar field, and
for spin-1 it is a vector field. For spin-2 mode the symmetry is the general coordinate invari-
ance when the interactions are taken into account, and around flat and maximally symmetric
spaces, one has a massless helicity-2 particle. This points to GR [10, 14, 15, 16, 17, 18, 19, 20]

with the action
1
I=- f d*x\=gR, (1.5)
K

where g is the determinant of the spacetime metric and the rest are defined in section 1.5.2.

Therefore, it is also natural to combine the quantum theory with GR.

There are other motivations to try to modify GR and perhaps construct a quantum gravity
theory. The Schwarzschild solution of (1.2) is a black hole with a curvature singularity, to
explain or resolve this type of singularities a quantum gravity theory is needed. Also, to
understand the very early universe when both the quantum effects and gravitational effects
are dominant at the same time, a unification of gravity and quantum mechanics is necessary.
There are attempts to construct quantum gravity theories. String theory is one such candidate.
Higher curvature gravity theories also are candidates. With this motivation it is also possible to
add higher curvature terms to Einstein gravity (1.5). The higher curvature terms are negligible
at low energies, but they dominate at high energy domains. Another reason to introduce the

higher curvature terms is that the Einstein-Hilbert action (1.5) is not renormalizable. Higher



curvature terms make the theory renormalizable but ruin the unitarity, namely yields negative

norm states in the scattering matrix [21, 22].

To summarize the argument, we can say that GR needs modification at both the IR and ul-
traviolet (UV) regimes. Therefore, in this thesis Einstein gravity will be modified both by
adding mass and higher curvature terms. Hence we modify the theory at both the UV and IR

regimes.

The outline of the thesis is as follows: In the next sections of this chapter the massive gravity
and higher derivative gravity models are discussed separately. In the massive gravity model
mainly the Pauli-Fierz [23, 24] model is studied and also the nature of the van Dam-Veltman-
Zakharov [25, 26] discontinuity between the strictly massless theory and the arbitrarily small
mass theory is discussed. Then some specific three dimensional massive theories are studied.
After that, some technical details will be given about the relevant spacetimes, the cosmo-
logical constant and the higher dimensional gravity models. At the end of this Chapter the
higher derivative Pais-Uhlenbeck oscillators are briefly reviewed. In the second chapter the
general higher curvature massive gravity theory is analyzed. Its unitarity structure is studied
by computing the tree level scattering amplitude in generic D dimensions. Also, the New-
tonian potentials are calculated. The third chapter is devoted to the analysis of the three
dimensional unitary theory. These two chapters are based on the papers “Massive Higher
Derivative Gravity in D-dimensional Anti-de Sitter Spacetimes” [27] and “Canonical Struc-
ture of Higher Derivative Gravity in 3D ” [28] respectively. Then, the conclusion part comes.

Also, an appendix part is added so that some of the calculations can be followed easily.

1.2 Modifying Gravity

In this part the modification of the Einstein theory is discussed. By modifying gravity we
mean that we change the degrees of freedom of the theory in some way. First the mass term is
added to the theory which changes the degrees of freedom from two to five in 3+ 1 dimensions.
Also, adding higher derivative terms change the degrees of freedom. The massive gravity
theory is discussed first. Then the higher derivative gravity theory is considered. At the end

of this part, two 3-dimensional massive higher derivative gravity theories are introduced.

4



1.2.1 Modifying Gravity with Mass Terms:

There are two ways to give mass to a gravity theory. One is to add directly the mass to the
action. The other way is to introduce scalar fields. When these fields are evaluated at the
background the general covariance is broken and the graviton gets mass. Both ways end up in
the same class of theories. In this discussion we will follow the first way. The mass is added

to the Einstein-Hilbert theory in a Lorentz invariant way as follows
1
f d*x\=g [ -R- —mzh“" (v - nwh)] , (1.6)

which is known as the Pauli-Fierz (PF) action, the second part is the PF mass term [23, 24]
and m? is the mass parameter. We first consider this theory in a flat background. In (1.6) Ny 18
the flat spacetime metric and £, is the linear part of the metric perturbation, g,,, = 1., — Ay,
and h = m,,h" is trace of this metric perturbation. To see more explicitly how the added
PF part gives mass to the graviton, we should linearize the theory around the background
spacetime. From both (1.2) and (1.5), the linearized Einstein tensor can be written in the

absence of sources as

(07 8uhye + 07Oyl — O Iy — Budyh) %n,w (-0*h+ 8" hp) =0, (17

| =

L
gﬂy =
where 8 = §,0" and the linear parts of the Ricci tensor and Ricci scalar are

RE, = = (87 Ophye + 07Oyl — 07 hyy — 6#6Vh), RE = —3%h + 879 hoy. (1.8)

| =

If the metric perturbation is constrained to be transverse and traceless, that are 9", = 0 and
h =0, then (1.7) yields
& (hyuy = 1uvh) = 0, (1.9)

and for massive particles it is known that the Klein-Gordon equation must hold that is
(6 -m?) ¢ =0, (1.10)

for the mostly plus signature of the metric. To write (1.9) as a massive field equation, the PF

term must be added:
(6% = m?) (hyy = muh) = 0. (1.11)

Since this term cannot be obtained from the curvature terms, it is added to the action (1.5)
by brute force. Later on, it will be seen that modifying GR with higher curvature terms will

generate this mass term automatically when the coupling constants of the higher curvature



terms have a special combination. From the transverse and traceless conditions it can be
seen easily that the PF theory describes a massive spin-2 field. The metric perturbation is a
symmetric rank-2 tensor, so that it has ten independent degrees of freedom in 3+ 1 dimensions.
However, from the transversality condition there are four constraints which eliminate four
degrees of freedom leaving six. The tracelessness condition also eliminates one degree of
freedom and the theory has five degrees of freedom. We must also note that this mass term is
the unique ghost and tachyon-free Lorentz-invariant combination. When the sign is changed

in the middle of the PF mass term, then it produces tachyons in its propagator structure [10].

The massless limit of the PF theory must tend to Einstein gravity as the usual continuity
arguments in physics dictate. However, the m> — 0 limit does not give the results of the
m? = 0 theory. For two point sources the interaction potential, in the Newtonian limit of GR,

in four dimensions is

G
U= -2 (1.12)
r
However, the massive theory gives
4G
U= 22 (1.13)
3 r

where the Newtonian potential is greater than the usual one. This effect is known as the van
Dam-Veltman-Zakharov (vDVZ) discontinuity?® [25, 26]. The linearized PF theory is different
from the linearized GR in the massless limit. This discontinuity appears in flat backgrounds
[29, 30, 31]. However, in curved spacetime this discontinuity does not appear. From the
general amplitude equation (2.30) it can be seen more explicitly. There is a MTZ fraction by
which the flat spacetime limit and massless limit do not commute. Going to flat spacetime
limit first the vDVZ discontinuity appears in the massless limit, but taking the massless limit
first the discontinuity disappears in four dimensions [27, 30]. Hence, the introduction of a
cosmological constant to the theory solves this problem since the smallness of the mass can
be compared with another measurable quantity. [One could argue that discontinuity has been
mainly replaced by the non-commutativity of the limits, which is a valid objection.] From
the pole structure of the general amplitude equation (2.30), it can be seen that for de Sitter
spacetime (A > 0) a pole produces a tachyon and it is absent for anti-de Sitter (A < 0)

spacetime?.

2 Redefinition of the Newton’s constant does not solve the problem, since then the deflection of light changes
by 25%.

3 'We should also note that Vainshtein claimed that [32] the discontinuity disappears at the nonlinear level once
the finite Schwarzschild radius of one of the scattering particles is taken into account.
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Figure 1.1: The tree-level one-particle scattering amplitude between two background covari-
antly conserved sources mediated by a graviton exchange.

1.2.2 Modifying Gravity with Higher Curvature Terms:

To make GR perturbatively renormalizable, quadratic curvature terms aR> + BRRY +VR, 6
X RF9YP must be added to the Einstein-Hilbert action (1.5) [21]. But adding these terms makes
the theory nonunitary because of the non-decoupling ghost introduced by the middle term
BR, R [22]. When this term is excluded the unitarity of the theory is regained but the theory
becomes nonrenormalizable. To have a consistent quantum gravity, both of these properties

must be provided.

Before discussing further, the notion of unitarity must be explained. With unitarity, it is
meant that the theory must be both ghost and tachyon free. Ghost is a particle that has a
negative kinetic energy and tachyon is a particle that has negative mass-squared (in flat space).
In a more technical language the signs of the propagators must be correct that is (for the

(=, +, +, +) signature) the (scalar propagator)

D(p) ~ 1.14
(P oy (1.14)
where p is the four-momentum. In the canonical form, the Lagrangian should be
1 2
L= ¢ (.9)(0-m)y @), (1.15)

the kinetic term is the d’Alembertian operator and it must be positive. The mass-squared
must again be greater than zero. Note that only the tree-level unitarity is considered here. The

Feynman diagram of the tree-level scattering amplitude is shown in the figure .



1.2.3 Topologically Massive Gravity

In the discussion to follow, we will need a specific 3D theory that has been studied a lot in the
literature. This is the topologically massive gravity (TMG) theory introduced in [33, 34] with

the action

1 2
3 v
‘[dxw_[R—7f”T @Wﬁ+§wmﬁwﬂ. (1.16)
Here u is the coupling constant of the gravitational Chern-Simons term. The sign of u is not
fixed. €' is the three dimensional anti-symmetric tensor which is connected to the Levi-

%glf/l”". The pure Einstein-Hilbert action does not propagate any

Civita symbol as e = —
degrees of freedom in 3D. After the gravitational Chern-Simons term is introduced, TMG
propagates a single massive particle with helicity +2 or —2 (not both since the theory is not
parity-invariant). The action for this theory can be written in terms of the gauge-invariant

functions* (3.45) as

1 1 1
Iz-fﬁ%{{m+aﬁ+—am+5@} (1.17)
2 K J7i

Taking the variation with respect to the ¢ field one of the other fields can be eliminated. This

variation yields

11
6q: —¢+—0 =0, (1.18)
K p

from which ¢ = —ﬁo- follows. Putting this result back into (1.17) yields the action

e
[=- &Ex o0 - =2 |. (1.19)
%

K2

From (1.19) it can be seen that this theory propagates only a single massive degree of freedom
with mass m? = ’;—i Not to have a negative kinetic energy term, x must be chosen negative
which yields the “wrong-sign” Einstein-Hilbert term. In fact this model propagates a single
massive scalar spin-2 mode [33]. Since the spin of the particle depends on the sign of y, this

model is a parity violating theory, as noted above. The detailed discussion and calculations

for this model is given in Chapter 3.

* Note that the gauge-invariant functions will be discussed later in the third chapter.



1.2.4 New Massive Gravity and Critical Gravity

Another interesting higher derivative massive gravity theory is the recently introduced “New
Massive Gravity” [35, 36]. The action for this model is

I:—ldeX\/—_g{—R‘FLZ(sz—gR )} (1.20)
K m 8

where there is a relation between the coupling constants of the higher curvature terms as
8a + 38 = 0 and the mass reads in terms of the coupling constants as m?> = —é. For the
unitarity of the theory, x must be negative, and 8 > 0. This model also implies the wrong-sign

Einstein-Hilbert term.

This model is not a higher derivative theory at the linearized level. The canonical form of

(1.20) is (see more details in section 3.2)

I= fd3x {—% (¢D¢ + éqﬁz) + 153 (ama + éaz)}, (1.21)

where it can be seen that this model has two modes propagating with the same masses. There-
fore, this theory is parity invariant. Also, in this form the necessity of negative k can be seen

explicitly.

After this theory was introduced [35] a research activity started in massive 3D gravity theo-
ries. Especially in Anti-de Sitter (AdS) backgrounds some classical solutions and conserved
charges of this theory was given [27, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. The question
of how the theory gains mass was answered in [47, 48]. In this work Higgs mechanism of
the general quadratic theory in three dimensions was given by writing the theory in a Weyl
invariant form. Breaking the Weyl invariance in the background, graviton gains mass, scalar
field remains massless and the Weyl gauge field gains mass or can remain massless depending

on the parameters.

The four and higher dimensional extensions of this theory, called “the critical gravity”, was
also investigated in [49, 50, 51]. For these cases the special points are again set to zero
3a+ =0and 4a(D - 1)+ DB = 0 for four and the generic D dimensional cases respectively,
for which the massive scalar mode vanishes [27]. In the critical gravity, the mass of spin-2 is
set to zero and the energy of black holes become zero for the AdS vacuum. It is also found
that the energy of the massless spin-2 modes vanishes on-shell. There remains only spin-2

logarithmic modes with positive energy.



1.3 Constant Curvature Spacetimes

In our discussion we will need the maximally symmetric backgrounds which are the flat, Anti-
de Sitter (AdS) and de Sitter (dS) geometries. Maximally symmetric means that the curvature
of the spacetime is constant everywhere and in any direction. Therefore, if the curvature is
known in one point it is enough to know the curvature at every point. There are only three
maximally symmetric spacetimes that are Minkowski, which is flat so that the curvature is
zero everywhere, dS and AdS. These spacetimes are classified with respect to the curvature
scalar R, the dimensionality of spacetime and the signature of the metric. De Sitter space
is a (D — 1)-dimensional surface embedded into a D dimensional flat spacetime for which
the signature of the metric reads (—, +, +, ..., +). For the AdS spacetime the signature of the
embedding metric reads (—, +,+,...,—). For AdS spacetime there is no horizon but for dS
there is a horizon [52, 53, 54]. Examples of the maximally symmetric flat spaces are planes
with Euclidean signature (+, +, +) and its higher dimensional generalizations. Spheres (S b )
are dS or positively curved spacetimes, and hyperboloids (HD ) are negatively curved or AdS

spacetimes.

The Riemann tensor of a maximally symmetric D-dimensional spacetime is

R

R,u(rvp = m (gpvg(rp - g,ung'v) > (1.22)

where the curvature scalar R is constant and D is the dimensionality of the spacetime [7].

2DA

For AdS or dS the curvature scalar is R = D

Here, A is the cosmological constant and
for A < 0 the spacetime becomes AdS, negatively curved spacetime, and for A > 0 it is dS,

positively curved spacetime. If A = 0 then the spacetime is flat.

The cosmological constant is related to the vacuum energy density in D = 4 as

A

Pvac = % (1.23)

Here p is the energy density of the vacuum which is proportional to the pressure of a perfect
fluid T, = (o + p) U, U, + pg,y. To see this proportionality the energy-momentum tensor in

the Einstein equation is divided into matter and vacuum pieces,

1
Ryy = 58uR = 87G (T3 + T,¢). (1.24)

where the vacuum energy-momentum tensor is 7,5 = —pyacguv- The vacuum energy-momentum
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tensor becomes a perfect if —py,c = pvac. The Einstein equation can be written with a cosmo-

logical constant term as

1
Ry — Egﬂ,,R + Aguy = 87GTy, . (1.25)

The relation between the vacuum energy density and the cosmological constant can be seen
from these equations [7]. The maximally symmetric solutions of this equation are dS and

AdS (and also Minkowski) spacetimes, for the pure vacuum case.

In the first part of the analysis the higher curvature massive gravity is studied in a D dimen-
sional (A)dS spacetime (AdSp). In this way the effects of higher dimensions can be seen.

Also, with this general approach a unitary theory may be found in D > 5.

1.4 Canonical Analysis

In this part some technical details of the canonical analysis are given. To put a Lagrangian
into the canonical form means to write it in terms of scalar fields that are in the form of
harmonic oscillator Lagrangians. The field equations of these Lagrangians are Klein-Gordon
equation. So that, KG equation can be seen as simple harmonic oscillators. From these
oscillators the particle spectrum can be studied. Also, for investigation of the unitarity of a
theory, this form is useful. Therefore, first the KG equation for free particle is reviewed. Then
the generalization to higher derivative of this equation known as Pais-Uhlenbeck oscillator is

discussed.

1.4.1 The Klein-Gordon Equation

The story starts from the quantization of the non-relativistic energy equation for a free particle.

The energy of a free particle is

E=—, (1.26)

where E is the energy and p is the momentum of the particle. To quantize this, the variables
are promoted to being operators by taking E — H = ihd,; and p — —ihV, where h is the

reduced Planck constant, and 6% =0,=00,V = % for one dimensional spaces. With these

> Here the derivative is 8, = (%, V) and the four momentum is P* = (E, p) = id* in the natural units.
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substitutions (1.26) turns to the well known Schrédinger equation

2
ihow (1.39) = ——V2y (1,9), (1.27)
2m

where i (¢, X) is a complex function. A relativistic version of this equation can be obtained by

upgrading the relativistic dispersion relation® [55]
E? = p2c2 +mc, (1.28)

to an operator equation
1 m2c?

where c¢ is the speed of light. Going to natural units ¢ = 1, A = 1 and defining the
d’Alembertian operator [J = 0,0, where the components of the partial derivative is 0# =

((90, —6) (in Minkowski background with the signature (-, +, +, +)) yields’

(O-m?)y (%) =0, (1.30)

which is the classical relativistic wave equation of a massive particle. Taking the Fourier
transform of ¢ (¢, X) = f Lx i Xy (¢, ) and putting it into (1.29), the equation of motion for
a harmonic oscillator is found with the frequency w, = /| pl? + m?, that is [56, 57]

(67 + w})y (1. p) = 0. (1.31)

In the field theoretical approach the same result can be found by taking the real spin-0 particle

Lagrangian density with mass m

L(t,x) = _% (a#(//aw + m*y?), (1.32)

where the field depends both on time and space ¢ = ¢ (¢, x). The Euler-Lagrange equations

% = gy c & 7 of (1.32) gives (1.30) [56, 57].

After getting some basic informations about the relativistic wave equation, the higher deriva-
tive terms can be added to the Lagrangian to generalize this discussion. The field equations

of the higher derivative Lagrangians are known as the Pais-Uhlenbeck oscillators [58].

6 If the equation is not squared the operators will be inside the square root E = +/p2c? + m2c* — ihdy =
V(=iliV)? ¢ + m?c¢*y. This form has some problems in evaluating the operators. Also, it is nonlocal.
7 Note that for the signature (+, —, —, —) the KG equation reads (D + mz) v =0.
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1.4.2 Pais-Uhlenbeck Oscillators

The Lagrangian density of the higher derivative real scalar field is [59]

N
]_[ O+ mz)} v (1.33)

i=1

For simplicity N is set to two, i. e. N = 2, and the examination is done in the nonrelativistic
limit, that is all the space derivatives are dropped. For these conditions the Lagrangian density
becomes

L= —% {q - (a)% + a)z)q + wzw%qz} (1.34)

where w; is used instead of m;. Also, note that the wi = w, case will be different from the
w1 # wy case, where the first case is the degenerate case and the Lagrangian density becomes
purely quadratic

1. 5 )2
£=—§{q+w gl (1.35)
The Euler-Lagrange equation for (1.34) is
d> (0L\ d (0L\ oL
—|=]-=|=|+—=0, 1.36
dﬂ(aq) dt(@é] dq (1.36)
which can be obtained by taking the variation of (1.34) with respect to the variable g = g (¢).
For n-th order variational problem (1.36) takes the form

nd' (0L
Z(—) o (a (m) 0 (1.37)

n=0
in the non-relativistic limit. This equation (1.37) can be obtained by taking the variation of

the general Lagrangian L = L (q, 4,q,...,q (”)) which is [60, 61]

N n
58 = f disq ( ) P (n>5q<"> , (1.38)
; nZ dt] g Z q
where Pq<n> is defined as
N d k—n—1 oL
Pyn= ) (—d—[) Pl (1.39)

k=n+1
The Hamiltonian for the generic case is written [60, 61] as

N_
H = Z Png™" - L. (1.40)
n=0
From (1.37) the equations of motion can be found for N = 2 as
4)

q +(w%+w§)é]+w%w%q=0, (L.41)
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where ¢ is the fourth time derivative of g. The Hamiltonian (1.40) and the momentum

(1.39) of the system for N = 2 reads

H = —% {é]'2 - 2q(3)q' - (a)% + w%) q’2 - w%w%qZ} , (1.42)

and
Pq(O) = (a)% + w%)q + q(3) and Pq(l) = —q, (1.43)
respectively. For the non-degenerate case w; # w; with the Pais-Uhlenbeck variables Q0 =

g+ -5 and Qr = g + - can be diagonalized as
2 1

0)4

4
(0% + w202) - m (02 +20?), (1.44)

1
2 (a)% — w%) 1

where the second term is a ghost term. However, for the degenerate case there can be a unitary

region for proper constants [59].

1.5 Conventions

In what follows we will use the following conventions:

1.5.1 Flat Spacetime:

The flat spacetime metric has the mostly positive signature diag (n,,v) = (-, +,+,+,...)1in
its diagonal components. Since the spacetime is flat, the curvature tensors and scalars are
zero R?,,, = R,y = R = 0. The partial derivative reads 6" = (8’, —ai) = (60, —6) and
0y = (=0, —0;) = (—60, —6) The d’Alembertian operator becomes [] = 9 = 0,04 =
—63 +812 = —8(2)+V2. The Greek indices run as u = 0, 1,2, ... that counts all the coordinates of

the spacetime. The Latin indices runas i = 1,2, 3, ... and they denote the spatial coordinates.

1.5.2 The Curved Spacetime:

The metric has the signature (—, +, +, +, ... ) and the Christoffel connection reads

1
r;(zrv = Ego—/l (aﬂg\//l +0y8ua — a/lg,uv) ) (1.45)
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and the commutation relation of the covariant derivatives are

[V V| V7 = R, 7 VA, (1.46)
where
R, =007, -0, I, + 1) -7 (1.47)

is Riemann tensor. The covariant derivative acts on the covariant and contravariant vectors as
Vuwy = uwy —Thwy, YV =8,V +T7, V4 (1.48)

The Ricci tensor and Ricci scalar are defined as
Ry =8 "Rouov R =g"Ryy, (1.49)

respectively. The d’Alembertian is [J = V¥V,,. The Greek and Latin indices have the same

meaning as in the flat spacetime case.
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CHAPTER 2

MASSIVE HIGHER DERIVATIVE GRAVITY IN
D-DIMENSIONAL ANTI-DE SITTER SPACETIMES

2.1 Introduction

In gravity there is no theory which is unitary and renormalizable at the same time. To get a

are added to

renormalizable theory in four dimensions, higher derivative terms, @R> + ,BRZV,

Einstein-Hilbert action [21]. In doing so one can gain renormalizability but loses unitary. The
coupling constant of the square of the Ricci tensor introduces a non-decoupling ghost term.
However, if we omit this term then we gain unitary yet lose renormalizability. If a theory is
non-unitary it shows itself as a repulsive force in the Newtonian limit between static sources.
Therefore the theory has a better UV behaviour because of this repulsive force. In field theory
this is what usually happens: To have a better behaved theory, ghosts are introduced during
the renormalization process but they decouple at the end if the theory is unitary. Therefore,

bartering unitarity with renormalizability can not be accepted.

In three dimensions there is a perturbatively renormalizable and tree-level unitary theory [35,
36] in flat background for a special choice of coupling constants of higher derivative terms that
is 8a+3p = 0 and for a reversed sign of Einstein-Hilbert term [62, 63, 64, 65] and this theory is
named as “New Massive Gravity” (NMG), that is a parity-preserving spin-2 theory. However,
we do not know that if this special ratio between o and § will survive renormalization at a
given loop level. Another interesting thing about this theory is that at the linearized level the
theory has a massive graviton with helicities +2 in its spectrum. Therefore, the theory has a
non-linear extension to the Pauli-Fierz (PF) mass term. For this reason this theory solves an

old problem of finding a non-linear extension of PF mass term. The equivalence of NMG and
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PF was shown in [35]!. The physical meaning of this equivalence must be well understood
since NMG theory is background diffeomorphism invariant not only at non-linear level but
also at the linear level. However, PF theory is invariant under Killing symmetries of the 2 + 1
dimensional Minkowski spacetime. To have a better understanding about these symmetries
a quite interesting approach was put forward in [65]: In the absence of the Einstein-Hilbert
term, the Weyl invariant form of the linearized NMG is written. Therefore, introducing the
Einstein-Hilbert term at the linearized level breaks this symmetry and produces the mass of
the graviton. As a result one can think that Einstein-Hilbert term provides the mass and the
higher derivative terms gives the kinetic energy. This perspective explains the sign change of
Einstein-Hilbert term. Looking back, this result is expected since pure Einstein gravity is non-
dynamical and does not give any propagation in three dimensions. It is like the mass term in
a scalar field theory at the linearized level. When a kinetic energy is introduced to the theory
then it plays a role in the dynamics. In the case of NMG the kinetic energy comes from the
higher derivative terms. Consequently, the mass of the graviton comes from Einstein-Hilbert
term by breaking Weyl invariance. This point may be important for constructing massive

gravity theories in other dimensions.

In this chapter, the most general quadratic curvature gravity theory will be considered in a D
dimensional (anti)-de Sitter background. We also augment this theory with a PF mass term.
We will study the propagator structure of this theory by finding its one-particle exchange
amplitude between two covariantly conserved sources. For this reason we first linearize the

action

1 2A¢ 2
I = f dPx \~g {;R - == aR® +BR,, +¥ (%, — 4R}, + RZ)}

2
+ dex \/—_g{—% (hiv - hz) + Lmatter} ) (2.1)
where Ay is the bare cosmological constant. « is related to the D-dimensional Newton’s con-
stant as k = 2Qp_»Gp where Qp_, is the D —2 dimensional solid angle. The other parameters
are the coupling constants a, 8, ¥ and M? is the mass parameter. In total we have a seven

parameter theory which is the most general quadratic model including the dimensions and

cosmological constants®. Because of these parameters the theory potentially has various in-

! Note that, beside this parity-preserving theory, there is also the parity violating Topologically Massive

Gravity (TMG) [33, 34].
2 In the absence of the source terms and at the linearized level, one can reduce the number of parameters in
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teresting limits and discontinuities. At this level, there are no constraints on the parameters.
They may be positive, negative or zero. After computing the tree-level amplitude we will
constrain the parameters not to have any ghosts or tachyons in the theory. Also, some terms
do not contribute to the equations of motion for some specific dimensions. For example, for
D = 4 the Gauss-Bonnet term becomes a surface term and for D = 3 it vanishes identically.
Therefore, in three dimensions all the information is carried by the Ricci tensor and the Rie-
mann tensor has no more information. In three dimensions the model can be extended by
adding the Chern-Simons term u (F(?F + %F3) to (2.1). But here we will stick to (2.1). In the
next chapter we study this case in detail’. The theory reduces to R* model with the PF term
for two dimensions. In this chapter we consider D > 3. The theory that we consider has

general covariance except for the PF mass term.

Various limits of the spin-2 model which is defined by the linearization of (2.1) have been
studied in the literature. Though, for some certain limits of the above action there may still
be some interesting new models. One of them is NMG which is the case for D = 3 and
in flat background without the PF mass term and 8a + 38 = 0. Apart from finding such
new models we will also explore discontinuities of the full seven parameter theory. The
discontinuities come out while the order of limits are changed when some of the parameters
approach zero. One such discontinuity is the so called van vDVZ discontinuity. The resolution
of this discontinuity comes from the introduction of the cosmological constant. Then taking
MTZ — 0 limit GR results are recovered at tree-level [29, 30, 31, 32, 69]*. However, the
discontinuity reappears when the quantum corrections are taken into account [70]. Up to now

the linear theory has been considered. Once, we consider the non-linear theory a ghost arises

in massive gravity and this effect is known as the Boulware-Deser instability [71].

The ingredients of this chapter is as follows: In the second section we will analyze the linear
equations of motion which is obtained around an AdS background. We also discuss certain
special limits. In the next section we calculate the one-particle scattering amplitude and the
following sections will be devoted to the discussions of some limits and discontinuities. At

the last section the conclusions and discussions will be given.

the action [66, 67], but here for the sake of generality we shall work with (2.1).

3 See [59, 68] for this case, without the higher curvature terms.

4 Another resolution of the discontinuity may follow even in flat space if the Schwarzschild radius of the
scattering objects is taken as a second mass scale in the theory [32].
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2.2 Linearized Equations

The field equations can be found by taking the variation of the action (2.1) with respect to the

metric. After variation we get the field equations as follows:

1 1 1
- (R,N ~ 5 8wR + Aogyy) +2aR (R,,,, - ZgWR) +Q2a +B) (gD = VuVy) R

1
+2y | RRyy = 2RugvpR™ + RugyeR, ™" = 2Ruo R, = 8y (R2

TAop

—4R2, + R?)

1 1 M?
+80) (RW ) g,“,R) +28 (R,mp - ZgWR(rp)R‘Tp + oo (huy = guh) = Ty (2.2)

Here 7, is energy-momentum tensor coming from the source terms, etc... . The background
metric g, namely the vacuum, is a non-singular solution to the field equations in the absence
of the matter terms. The vacuum is the (anti)-de Sitter space which is the maximally sym-
metric vacuum with the Riemann, Ricci tensors and Ricci scalar curvature given respectively

as

_ 2A

P 2A 2DA
HOYT (D = 1)(D = 2)

(guvgptf - g/w'gvp) P va = mguv, R = m (2.3)

We made all the contractions with respect to the background metric. If we put the background

metric (2.3) in the field equations (2.2), the effective cosmological constant A can be found in

terms of a, B, v, and Ay:
A—-Ag
2k

+ f(a,B,y)A* =0, (2.4)

- D-4 D-3)(D—4 . . .
where f(a,B,v) = (@D + ) ((D—Z))z + yE DA;E szg. This is a second order equation with respect

to A. Therefore it has two solutions which are

1
A= . |1+ V1+8kfAo], (2.5)

and for reality of the vacuum 8xAgf > —1. Hence the spacetime can be both dS or AdS.
One of these solutions vanishes in the absence of Ag. In this case the non-vanishing root
becomes A = —ﬁ. There are some exceptional points of this equation of motion for which
the effective cosmological constant becomes equal to the bare cosmological constant. In four
dimensions A = Ay since f(a, 3,y) becomes zero. Also, in three dimensions if we set 3o+ =

0 then we again have f(a@,8,y) = 0 and A = Ag. Moreover, if we sety = 0and aD + 5 = 0,
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which gives f(«,8,7y) = 0, the theory again has Ag = A. In three dimensions without setting

3a+B=0,wehave A, = L2 VIZ8Gasfig W and for A to be real 1 > 8« (3a + ) Ao.

The next step is to find the linear equation of motion of (2.2) around the constant curvature
background, g, = gy + hyy. By using (2.5) we eliminate the bare cosmological constant and

after linearization the equation of motion becomes [72]

_ - - 2A
T (h) = aGh, +Qa+p) (gWD “VuV+ 5 g,w) RE
_ 2A M?
+ B(Dgﬁv - mgﬂvRL) + 2_K (h/lv - gﬂvh) ’ (26)

Note that the PF term is already linear. Here we define a new constant in terms of the other

coupling constants as

_1,4AD AN AAD-3ND-4)
= @ P+ ~b-n-2

D-2 D-1 @7

T,y (h) is the energy-momentum tensor which contains all higher order terms and the source

L . . . . .
Tuv- Gy, 18 the linear cosmological Einstein tensor

1_
gllzv = Rﬁv - Eg/lVRL -

2A

mh’”' (2.8)
L
R/I;V and R” are the linearized Ricci tensor and the linearized scalar curvature R- = ( g“VR,lV) ,

respectively. They read

| - = - . - - = 2A
RL, = 5 (vavﬂhw + VoV hyy — Oy — Vﬂvvh), RE = -0h + V7 Vhy, — 55 29
To calculate the scattering amplitude we need the trace of (2.6), that is 7 = g, T"" and it

reads

2
(4a(D - 1)+ DB — (D - 2)(% + 4fA) RE - MT(D — 1)h = 2T. (2.10)

This equation is a wave equation, and for 4a(D — 1) + DB = 0 something special happens,
since the dynamical part of this equation vanishes. Actually, for D = 3 this choice will lead

us to the NMG. After computing the tree level scattering amplitude between two sources, and
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constraining the theory to have no ghosts or tachyons will give us this special point. Before
moving on we can still analyze some limits of the theory at the linearized level. For this
purpose we drop the sources. Since there are no sources we can not get the unitarity regions
but we can capture the ranges of the parameters in which tachyons drop out. The discussion

bifurcates whether M? is zero or not. First we will consider M? # 0.

2.2.1 Massive case:

We take the divergence and double divergence of (2.6) to find the constraints on the deviation
part of the metric, hy,,. Since, (2.6) is divergence free without the mass term, the constraints

come from the divergence of the mass term as

Vihy, — Vyh =0, VY by, — Oh = 0. (2.11)
Replacing the covariant derivatives that appear in the background Ricci scalar in (2.9) which
is
VP gy = |97, 9] by + V7V By,

= R gy + R b + V7V b,

2A A o
= by - 87 hoa + V7V h
(D—Z)g Ap (D—2)g ol ol
= V7Vsh,
and using the first equation in (2.11) lead to RF = —%h. For the flat space case we have

R™ = 0. This choice forces the field to be traceless (2.10), and from the first equation of (2.11)

it becomes transverse. The field A, has DD+ (g”)

independent components. The transverse-
traceless condition gives D+ 1 equations that eliminates D+ 1 of the independent components.
Thus we are left with the remaining (D + 1)(D — 2)/2 independent components. The linear
Einstein tensor becomes ;sz = Rﬁv = —0’h,,, where we have changed the places of the
covariant derivatives in (2.9). With these constraints the field equation for the remaining

independent components of the field becomes
1 M?
(ﬂ(94 + —82 - _)hyv = 0, (212)
K K
which is a quadratic equation that describes two massive excitations with masses

11
2

2 — 1+ 42 2.13
Me=5p T g VB (2.13)
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To have real masses M? > —ﬁ(, and at the saturation point the two masses become equal.
These masses become non-tachyonic when the parameters are chosen properly. If x and 8
have the same sign, one of the excitation becomes negative and produces a tachyon. If they
have opposite signs, the term inside the square root must be 0 < 4 | k8 | M? < 1. In this case

both excitations become non-tachyonic. However, this theory is not unitary as we will see.

For the generic A case the trace equation reads

1 M?
4a(D-1)+DI—-(D-2) (— + 4Af) + n(D -DD-2)|h=0. (2.14)
K K
In this equation we can see that 7 becomes a dynamical scalar field. The dynamical part can
be eliminated by setting 4a(D — 1) + DB = 0. After choosing this special point we still have
two options to satisfy (2.14). We may set 4 = 0 and the field becomes again transverse and

traceless, and the field equations read

_ 2A 1.\ M
D I — _D —_— h y = U, 21
(a+5 )((D—l)(D—z) 2 )+2K w =0 (215
and it has generically two excitations
2 2
=N a2 e} M (2.16)
T Db-1)D-2) 28 Db-1HD-2) 28 K

After computing the one-particle exchange amplitude we will again discuss this theory and
see that for special points, this theory will give us a ghost and tachyon free theory. The other

option to satisfy (2.14) is tuning the mass as

2.17)

P D-1 (D - 1)(D - 2)

V- 2Ak (1 AB(D—-4)
D-1

+4A7(D_ 3)(D—4)),

which is the partially massless point, vanishes for flat background and for curved background
a higher derivative gauge invariance appears [73]. Therefore, the field has one less degree of
freedom (DOF) compared to the massive one. Moreover, the mass is allowed to be negative in
AdS as long as it satisfies the Breitenlohner-Freedman type bound. In four dimensions higher
2A

derivative terms vanish and the mass only depends on the cosmological constant, M? = 3

In higher dimensions the partially massless theory depends on the higher derivative terms.

2.2.2 Massless case:

Without the Pauli-Fierz mass term the theory becomes invariant under background diffeo-

morphisms 6¢hyy = V,é, + V,&,, since 6;GL, = 0 and 5;R" = 0. As we mentioned above
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the divergence and double divergence of (2.6) do not give any constraint on h,,. Therefore,
R™ becomes a dynamical variable for 7 = 0. If the coefficient in front of the d’ Alembertian
operator is fixed to zero than the dynamics of R” vanishes. The equation (2.10) is satisfied for
two conditions: R can be zero or the coefficient, % + 4Af, can be set to zero in which case
R™ need not vanish. The later one is not acceptable because the field equations leave a gauge

invariant object undetermined.

2.3 Tree-level Amplitude

To find the Newton potentials and to analyze the particle spectrum of (2.1), we are going to
find the tree-level scattering amplitude between two covariantly conserved sources which is

defined as
1
A= Z de AY; —gT;“, (x) lad (x) 5 (218)

by considering the full theory (2.6). In this equation 77, is one of the sources and /" is the
deviation which is produced by the unprimed source. The factor }‘ is put to get the correct
Newton’s constant. Since the field has independent components we need to decompose A" to
eliminate the unphysical parts of it. Therefore, the decomposition must be done in such a way

that the physical components of 4, will be determined by T#". The usual choice is to define
by = Bl + YV + ViV + guib, (2.19)

where hzyT is the transverse and traceless part of the deviation. V), is the vector part with a
symmetrization that is defined with a % factor and it is divergence free. ¢ and y are scalar
functions. With this definition (2.19), the amplitude equation becomes

A= % dPx =g (T}, /""" + T'y), (2.20)

where the terms in the middle of (2.19) vanish since we have covariantly conserved sources
and the total derivative vanishes at the boundary by use of Stoke’s theorem. In (2.20) the
tensorial quantities and ¢ must be written in terms of the trace of energy momentum tensor.

In order to get this we take the trace, divergence and double divergence of (2.19)

h = ¢ + Dy, Oh = ¢ + O¢ + Dy, (2.21)

(D-2)
where we used ?Vvﬂhﬂv = Oh. This condition comes from the nonzero mass term and it is

not a gauge condition. From these two equations we can write (¢ in terms of (. We hit the
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first equation with the [J operator and subtract it from the second one which gives us

iy L-DD-2) -
O¢p = ——M——— 2.22
¢ = A Ly, (2.22)
which can be put into the first equation in (2.21) yielding
(D-1)(D-2)
———— ~[I+D 22
h = ( A ) 2 (2.23)

This equation can be inserted into (2.10) so that ¢ can be written in terms of the trace of the
energy momentum tensor as follows

2 _ -1
w:{§+4Af_cAm—%<D—1)} (wm D) T, @
K 2K 2A

4(3:;)" + 1;) s 5. Now we will write hTT such that it is determined by the trace of

where ¢ =
the energy momentum tensor. First of all, we will find the transverse and traceless part of the

field equations by using the Lichnerowicz operator A(Lz)

acting on spin-2 symmetric tensors
2P hyy = ~Olyy = 2R oo h°7 + 2R (. (2.25)

Some properties of this operator (that we need) were collected in [30]

2 1 1 2 1
2PV = Vealv,, Ay = O+ A, VPR, = ADVER,,
2 0 0 1 0
M0t = g, V¢ =-0¢, vy, = aPvry, (2.26)

Using these properties we have

1 2A
LTT _ (2) T T
G = 550 M = (=5 2.27)

With this equation the transverse traceless part of the deviation can be written in terms of the

transverse traceless part of the energy momentum tensor as
_ 4N M?)T
h;f =2 {(ﬂl:l + a)(A(LZ) — m) + 7} T[VT. (228)

The only thing that is left is to decompose the energy momentum tensor so that we can connect
hZVT with the energy momentum tensor. To find this we first decompose the energy momentum
tensor as (2.19). Then we take the double divergence of this equation, keeping in mind that

we have covariantly conserved sources. Also taking the trace, one can find

Z 1 20z,
TIT =Ty = S 4 (9,0, + o
wopo1 " D—l(“ TDO-DD-2)
_ 2AD -
He— ) 7 2.2
X( +(D—1)(D—2)) (2.29)
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We are ready to compute the scattering amplitude by putting (2.24, 2.28, 2.29) into (2.20).
After doing manipulations by using (2.26) and suppressing the integral sign the amplitude

equation becomes

- 4A M?
4A = ZTI'W{(,BD+a)(Af)——)+T} T+

D-2
2

+ —D2 T{(ﬁD+a)(D+ )—ﬁ} T (2.30)
4A 4N M? 3 2AD -l

T D-2D-1? {wm+m®+ *"_} &MYD—bw—D} !
2 -1 -1
+ ;T'{l+41\f—cﬁ—£(D—l)} {E+2A—D}

D-2D-1" \«x 2kA (D-2)D-1)

From this main result we can consider various limits. Solving this integral for non zero
cosmological constant is highly nontrivial. However, the particle spectrum of the theory can
be considered by analyzing the pole structure of the amplitude. For the general case there are
four poles which read as

_ 2AD
T (D-hH(D-2)

- ! a 2AB a 2AB 4Aa M?
Doy = E{_( (D — 2)) \/( "= 2)) ﬁ((D—z)_T)}’ (2.31)

_ 1 M?
|:|4 E(K +4Af— 2[(_/\(D_ 1))

To have tachyon free theory these poles must be positive. By choosing the constants properly
such a theory can be found. However, this is not the only restriction on the parameters that
appear in the general quadratic theory. With these poles the residues can be found. These
residues must be negative in order not to have any ghost terms. This is the other restriction
that we use while finding a ghost and tachyon free model. However, in the most general form
the residues are cumbersome. Therefore, we will restrict the theory and compute the poles
and residues for some interesting limits. Also, we will compute the Newtonian potentials for

these limits.

2.4 Massive theory in flat spacetime:

Looking at (2.30), we can see that the massless limit and the flat space limit do not commute

2 . . L
because of the MT term. Therefore, if we want to get the usual Newtonian potentials in flat

25



space and without mass term, the flat space limit must be taken before the massless limit.
Otherwise, we encounter the well known vDVZ discontinuity. Let us first look at the limits
which produce the vDVZ discontinuity that means we first take the flat space limit A — 0

and go to massless limit M? — 0. With the flat space limit (2.30) becomes;

1, M) 2 1, M\
4A = 2T B + 0> — —} T+ —T'{Bo*+ -9 - —} T, (2.32)
H K K D-1 K K

here the Lichnerowicz operator goes to A(Lz) = —3* and this can be seen from (2.25). The
spectrum of (2.32) has two massive excitations which can be found by solving the second
order equation for 9 and the masses are the same as (2.13). Modifying (2.32) with the mass

terms give

T Y L A I
C pmE-md) M\ -md 02— m? D=1 \P-m; -m2] |
(2.33)

ForB < 0and g > 0, (2.33) produces a massive ghost. Therefore, 8 must be set to zero to avoid
ghost terms. The Newtonian potential energy (U) can be calculated by use of Green’s function
technique. For simplicity we take the sources as T’OO = m6(x—x1), Too = my8(x’ — x»), where
my and my are masses of the sources, and the other terms of the energy-momentum tensor are

taken to be zero. Moreover, we calculate these potentials in four and three dimensions. The

e’klrl -l
4nlri—rs|

Green’s function for modified Helmholtz equation V2 — k2 reads %KO (klri — rp|) and
[74] for two and three space dimensions, respectively. Then the potential energies read

| mm _ -
) _ |t Koan-r) = Ko(mr) D=3, 30

minmy 1 r,—m_r _ ,—myr —
3ﬁ(mi—m%)4nr[e e ] D=4,

where r = |x] — x| and mi are defined in (2.13). If we take the 8 — 0 limit to take care of the

ghost term, (2.34) becomes

—émlmzKo(Mr) D= 3,
U= (2.35)
—%—Gm;mze_M’ D =4.

The first equation of (2.35) is the Newtonian limit of massive gravity in three dimensions and
it gives attractive force when « is positive. For this case the M — 0 limit does not exist. As
x — 0, Ko(x) = —In(x/2) + yg, which gives the expected % force for small separation of
the sources. The second equation of (2.35) is the Newtonian limit of massive gravity in four

dimensions. Unlike the three dimensional case, M — 0 limit exists. However, the % term
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indicates the famous vDVZ discontinuity. G is the Newton constant and it is taken as 1¢-.
Therefore, in three dimensions massive gravity gives the correct Newtonian limit despite that

in four dimensions it does not give the expected limit.

2.5 Massless theory in flat spacetime:

In the above discussion we see that first taking the flat space limit and then going to massless
limit does not give us the expected Newtonian limit. In this section we first take the massless

limit and then go to the flat space limit. When we set M? = 0 and A — 0 in (2.30), we get

1., 2 1.,
4A — _2Tl 4 _ 2 T/JV T/ 4 _ 2 T
W{Ba +K8 } +(D—1) {/36 +K8
2 ’ 4 1 2 -
Unlike (2.32), (2.36) has three poles that are
» =0, 2 i, 2= (2.37)
1 2 B 37 ke

To make a full analysis we need the residues of these poles which read

2. 2k(3-D) 2/<(D 2) N 2K
Res@)="p=yy  Re@) =05 &) =-mHo-2

From the second pole we see that k8 < 0 for not having tachyon and form the residue of
this pole k < 0 not to have a ghost. For negative « the residue of the massless pole fixes the
dimension to three, since for D > 3 makes the residue positive in which case it produces a
massless ghost. The residue of the third pole becomes positive for negative «. To eliminate
this residue one has to set ¢ = 0. For these conditions the theory becomes unitary and has its
special name as New Massive Gravity (NMG). If we look to the Newtonian potential which

is written as

U= 8“ mymy (Ko(mgr) = Ko(mor)) D=3, (2.38)
where m§ = ,3 and m% = K(8(21+3ﬁ). For negative «, the second term gives a massive ghost

which decouples in the case of 8a + 35 = 0. In this case only the first term lives and gives an
attractive force. Also, if we choose the Pauli-Fierz mass term as M = mg, the NMG has the
same Newtonian limit as the usual massive gravity. For D > 3, a massive ghost comes out

and does not decouple unless 8 = 0. For example we can look at D = 4:

r

4 1
y = - gmm (1 - S ge—mﬂ), (2.39)
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where m?2 = m The term in the middle is the ghost term [21]. When we take 8 — 0 the
ghost term vanishes and taking m, — oo the last term drops out and we are left with the usual
Newtonian potential in which case the vDVZ discontinuity does not appear. Therefore, vDVZ
discontinuity does not appear in a curved background, since we can compare the smallness
of the mass of graviton with another scale that is the cosmological constant. We can also

generalize the Newtonian potentials to D dimensions. For this we need the general Green’s

function for the operators 62 and They are
1 1 -5 (D -3
G(x¥) = —57 5 [2”2%(—)]
(27T) r 2
and

G(x’ x’) — ( IM % [(%)4 KDT—3 (}’mlz)l ,

2n) 7 r 2 m;

respectively. I is the gamma function and K, is the modified Bessel function. We first write

the amplitude equation (2.36) as

D-2 1
24 = ((D)#é(x P 6(x )
(D2 —-4D + 3)Km1m2
ST DO-DD-2) o(x — Xl) 5(X X2)
Kmy my 1

Taking again static sources, we find the potential as
3-D
D-2 1 1 1)+
pe @D 1 (1)
D=1 on% 7 |\mg 2
N

Ky nyp 1 1 1\ 7 ,
(D - 1)(D 2) (27_[) % l(m_%) K% (rma)}

_4D+3 s (D
—( ’ )Kmlmz L] [2(2)r(—D 3)] (2.41)
D-1)(D-2) Qn) 7 rb=3

For any desired dimension this equation gives the Newtonian potential in flat spacetime and
without any mass term. For « > O the first term signals the ghost problem for all dimensions
and the last two terms give attractive forces. We can confirm [21] that in any dimension the

quadratic curvature gravity theory is not unitary except for the NMG point.

For curved backgrounds the calculation of the Newtonian potential is complicated because
of the Lichnerowicz operator. Nonetheless, we can say that in curved backgrounds there
will be an additional term to the Newtonian potentials. Apart from the term that contains

Lichnerowicz operator, other terms can be calculated as above.
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2.6 Conclusion and Discussion for Chapter-2

The tree level scattering amplitude of the general quadratic gravity theory with a Pauli-Fierz
mass term in D dimensions is found and various limits of this amplitude equation is studied.
For these limits the Newtonian potentials for three and four dimensions are calculated. First
the flat space limit is taken and then the massless limit. Looking at the potential energies it is
seen that the theory is not unitary. For taking care of the ghost term the 8 — 0 limit is taken.
In this limit the theory becomes unitary but the theory suffers from the vDVZ discontinuity in
four dimensions. Massive gravity gives the correct Newtonian potentials in three dimensions
since the M? — 0 limit does not exist. The second limit that is taken is the massless limit and
then the flat space limit. Analyzing the pole structure and the residues of the amplitude and
calculating the Newtonian potential energies it is seen that the theory is unitary for a special
condition for the coupling constants of the theory that is 8a + 38 = 0 in three dimensions.
Also, the coupling constant of Hilbert-Einstein term becomes negative. Apart from three
dimensions the general quadratic theory is non-unitary. To make the theory unitary again the
B — 0 limit is taken and for this case it becomes unitary. The usual Newtonian potential
is obtained in four dimensions by taking all coupling constants of higher derivative terms to

zero. Also, the Newtonian potentials for generic dimensions in flat space time are calculated.
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CHAPTER 3

CANONICAL STRUCTURE OF HIGHER DERIVATIVE
GRAVITY IN 3D

3.1 Introduction

In the previous chapter we saw that the general quadratic gravity theory has a special case
in three dimensions. This special case is 8 + 38 = 0 and « < 0 for the Lagrangian 'R +
aR? + ﬂRIZW and named as New Massive Gravity (NMG) [35, 36]. Also, the parity violating
extension of NMG is found [35, 36] by adding a gravitational Chern-Simons term to the
theory. These theories have massive ghost-free spin-2 particles in their free spectrum around
both flat and (anti)-de Sitter (A)dS. The most interesting property of NMG is that it gives a
non linear extension to the Pauli-Fierz mass term for spin-2 particles. It is the only known
example which provides this nonlinear extension. Thus, NMG is a suitable candidate to be a
perturbatively well defined quantum gravity theory in three dimensions if it is unitary beyond

tree level.

The theory is studied in many directions. Its ghost-freedom and tree level unitarity [17, 27, 35,
36, 62] and Newtonian limits [27] have been studied out. Furthermore, its classical solutions
and issues related to the classical solutions were studied [35, 36, 37, 38, 40, 41, 42]. Also, its

supergravity extension were given in [75].

In this chapter we study the canonical structure of the general quadratic curvature theory and
give an explicitly gauge invariant analysis of it in three dimensions. The analysis is done
for both flat and de Sitter (dS) spacetimes. In the flat space analysis the gravitational Chern-
Simons term is added to the theory. By writing the canonical form of the general quadratic

action we can easily see how NMG is singled out among all other higher curvature theories
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as a regular “harmonic oscillator” which can be thought as massive free field. These type
oscillators do not have the Ostragradskian instability which spoil every higher time derivative
theory [76]'. Except of NMG, at the linearized level, all the other quadratic theories are
ghost-ridden Pais-Uhlenbeck oscillators. Moreover, the discussion is extended by discussing
the Newtonian limits, weak fields, the scattering of particles with mass and spin at the tree

level.

The content of this chapter is as follows: In the first section the flat spacetime analysis is done
by writing the canonical structure for both quadratic curvature theory with and without the
gravitational Chern-Simons term. Also, the effects of static sources are analyzed in detail.
Moreover, the weak field solutions are obtained in circularly symmetric case. In the second
section the discussion is extended to curved spacetimes namely to de Sitter spacetime. Some

of the useful calculations are given in the Appendix.

3.2 Higher-derivative spin-2 in flat spacetime

We start the analysis with the flat space case since it is simpler than the curved space back-
ground which is discussed in the next section. Without any constraints on the parameters the

general action is

I= fd3x \/—_g(%R + aR? +ﬁRﬁV). (3.1
To get the desired spin-2 model the action must be expanded around flat background g, =
Nuv + hyy, where 1, is the usual flat spacetime metric with signature (-, +, +) and hy,, is the
spin-2 field which actually is a symmetric rank-2 tensor and without any constraints has not
only spin-2 component but also spin-1 and spin-0 components. In this section we do not
consider the gravitational Chern-Simons term. However, in the next section we add it to (3.1).
To get the action for A, we first linearize the field equations that comes from the variation
of (3.1) and then integrate the linear field equations. While integrating them, one must pay
attention to the overall sign factor since the signs will become important in the discussion of

unitarity. Up to boundary terms (3.1) becomes

1 1 v v v v
1=_§fd3xhw[;g’z +Qa+p) ("0 - 00" )R, + 0G| (3.2)

! It was claimed that adding interactions might yield stable higher-time derivative theories [77].
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Here, gfgv is the linearized Einstein tensor and R, is the linearized Ricci scalar which is defined
as Ry = (g,JVR“")L. The linearized Einstein and Ricci tensors, and linearized curvature scalar

are as follows
1
Gy =R —37"Ri,  Ri= 0a0ph™ — O,
1
R’z” = 3 (00N + 0,0"h — OWY — *d'h), h= nf‘vhﬂy, 3.3)

where [ is the D’ Alembertian operator that is [J = §,0" = —(9(2) + V2. Since the metric is
perturbed around flat background, we raise and lower the indices with the flat metric 7,,. To
analyze the canonical structure and explore the free fields /4, must be decomposed. This is

done as follows:

hij = (51'1' + 51'3]') ¢ — 00y + (fikékéj + 6jk3k5i) 3

ho; = —€;0;n + d;Np, hoo = N, (3.4)
where ¢, y, & 1, N, N are free functions of time and space (¢, ©) and d; = 9;/ V-v2.

After decomposing the spin-2 field, the components of the linearized Einstein tensor must be

written in terms of these free functions. Let us give some details of these calculations.
We first write the trace of the spin-2 field:

by = h = n"hoo + n'/hj. (3.5)
Putting (3.4) in (3.5) gives us

h=-N+hi=-N+¢+y,

where we have used ;0 = —1 and note that hﬁ = ¢ + x. The linear Einstein tensor has three

components that are G, él. and Q,L, Using (3.3) and summing the repeated indices these

L
00°

components can be written as
1, . . .
Gt = 5 (6'07hi; — i "),

gé‘i = (aja()hij + aj(')l-hoj = 5jajh0i - 606[[’lkk) >

N =

1
Gl =5 (000:h " + 000 = 360 hij — 04 hij + 0i0hy — 0:0,;h,})

1
= 50 (6°6°hoo +20°6" ho + 60" hye + 860 hoo — 69308 g + 8 hoo — 60,0 ha)
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After using (3.4) these components can be written in terms of gauge invariant objects as

follows
L= iy L= L (eudnor + 0
g()o = _5 ¢, gOi = _5 (Eik kO + i¢),
1 A A A A A A A
glL, = —5 [(61']' + 6,’3]') q-— 6,~8j¢ — (Eikakaj + Ejkakai) (j'] , (36)
where “"” means differentiation with respect to time ¢ and ¢, o, and ¢ are defined as

g = V>N —2V?N; + i, oc=&-V, (3.7)

which are gauge invariant under the transformation 6.4, = d,{, + 0,{, and the Laplacian

operator is V2 = 51‘2 = ;0" = 0,0; . Note that, ¢ is already a gauge invariant component of /.
Let us show this invariance of these objects: First we define the three vector as
& = (Ao €;0; + 9,K). (3.8)

and then we transform the components of the spin-2 fields. From the transformations of /Aqg

and hy; we get
"=n-A N, =N.+K+Ay, N =N+2A,. (3.9)

From the last component we get three more equations by multiplying h;j = h;j + 0;¢; + 0j&;

with 0,0, €;0; and ¢;; that are
X =x+2VPK, & =£-ViA, ¢ =0, (3.10)

respectively. From here we can see explicitly the gauge invariance of ¢. Using (3.9) and
(3.10), one can get (3.7). The linearized Ricci scalar can be written in terms of the gauge

invariant functions:

RE = — (0,00 — 30" hyyy

= dgh}' + 07 (hoo = h}') = 2000iho; + 0id);hij,
again using (3.4) the scalar curvature becomes
RE = ¢+ i — V2¢ + V2N — 2V2N;.
Putting the first equation of (3.7) finally we get
Ry =q—0Ué. (3.11)
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Although we have six free functions, the Bianchi identity a,,g{” = 0 reduces the number of
arbitrary functions to three. Therefore, there are two sets of functions that can be used which
are ¢, 0, g and ¢, o, R;. We can write the total action in terms of these gauge invariant free

functions. Let us start with the Einstein-Hilbert part of the action that is
1 3 v
IEH:—E( dxhw,g/z,

then doing the summation about the repeated indices and using (3.4), (3.6) and (3.7) we get

_ 1 3 v _ 1 3 2
IEH_—Z(fd G —ﬂfdx(¢q+o'). (3.12)

Here we can see that the pure Einstein theory does not have any propagating degrees of free-
dom since there is not a dynamical part which shows itself as a D’ Alembertian operator. With
the same route we can find the other two parts of the action. Instead of using this technique
one can also use the self-adjointness of the operators. In both ways one can write the quadratic

parts of the action in explicitly gauge invariant forms. They are

2 2
Dasg = - "‘2”3 f Bxhyy (10 - F9) Ry, = “;ﬁ f PR, (3.13)

I = —g f d*xh,, 06 = —g d*x (—2@@@*3 + %Ri) = § f dx (qO¢ + 00 .
(3.14)
In the first action we move all the derivatives on A, and that combination gives us again the
linearized Ricci scalar. In the second action I, first the derivatives are moved on the spin-2

field and then (3.3) is used. Finally using the Bianchi identity one can achieve (3.14). Adding

(3.12), (3.13) and (3.14) the total action comes out in gauge invariant combinations as

1¢q + Qa +B) (g - O¢)? + Bglg | + B fd3x (ama + iaz). (3.15)
K 2 KB

1
IzzdeX

From this equation, it can be seen immediately that o shows itself as a single massive scalar

2

field with mass g

= —é. Not to have negative mass k8 must be negative and not to have
ghost 8 must be positive for the o field. For these signs x must be chosen negative. For the
remaining part of the action the discussion bifurcates whether 2 + 8 = 0, or not. Let us

discuss these cases separately:
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321 2a+p#0case:

In this case the g field can be eliminated by taking the variation with respect to it. Doing so

gives
¢

1
T22a+p) (E +BD¢)+D¢’ (3.16)

and inserting the ¢ field into (3.15), the action for the ¢ field becomes

q:

L (s [BBat3p) . (etp 1,
o = 2fd x[4(2a+,8) ©é) +2K(2a+ﬂ)¢m¢ w2 Qatp)’ ] 17)

In this action there are some special limits. The first limit is the NMG limit 8« + 38 = 0.
For this limit the higher derivative term drops out and the ¢ field describes a single massive

degree of freedom

1 1
Inmcs = =5 f d*x (¢D¢ + W)z)’ (3.18)

which has the same mass as the o field. Since both degrees of freedom have the same masses
in the NMG limit, the theory is parity-invariant. Note that, not to have a ghost x must again
be negative. Also, NMG is not a higher derivative theory at the linearized level. The theory
does not have the Ostragradski instability which appears in theories that have higher order

derivatives.

Another interesting limit is 4o + = 0. The middle term in (3.17) drops out and the action

(3.17) becomes

1 1
Iy =4 f d*x (K/s(m¢)2 - W)z)' (3.19)

This theory is tachyonic for k < 0 and gives a ghost term for « > 0, keeping in mind that

kB < 0.

Taking 8 = 0 also drops the higher derivative term. For this case the action reads

1 1
Iy =5 f d*x (¢D¢ - %fpz). (3.20)

In this case, to avoid ghost term « > 0 and not to have tachyon @ > 0, where the mass can be

2 L

defined as m TG

For the general coupling constants, the above action (3.17) is a higher derivative Pais-Uhlenbeck
oscillator. In order to decouple the fields we define new fields that are linear in terms of old

fields. By inspection the fields can be defined as follows

35



O O
p1 = ——f, ¢2 E¢——f, (3.21)
my msg

and with these definitions the uncoupled Lagrangian must be as follows
Kl‘ﬁl (D — m?) @1+ KQQDQ (D - mé) ©2.

Here K| and K, are unknowns. To find these unknown terms we put (3.21) into above La-
grangian and compare that result with (3.17). After getting the unknown factors the action

can be written in terms of simple oscillators and (3.17) becomes

1

[j=—
*” 64k + B

fd3x [(8a/ + 3,8)2 ¥l (D - m?) ¥ —,82902 (D - mg) (,02] s (3.22)
and the two fields ¢1, ¢, have masses m; and m, respectively. my is defined above and m; is

defined as

m2 = —1
ST kBa+3B)

Note that for the general case the only restriction on the coupling constants is 2a + 8 # 0. For
k < 0 the ¢ field gives ghost and for k > 0 the ¢, has negative kinetic energy. Also, not to

have negative mass term 8a + 38 must be positive for positive « and negative for negative «.

3.2.2 2a+B=0case:

In this case we can follow two routes: we either start from (3.15) or from (3.22). These two
actions give different results and as we have seen above in the second action this limit provides

a singular theory, while in the first action it does not.

2
We start with (3.22) and take € = 2@ + 8 — 0 limit. By this limit m, = % ~ m? (1 + %)
B

where in the last step we have taken the Taylor expansion around small €. Note that mé does

not depend on €. With the same limit we can write the decoupled fields in terms of € as

ZD—‘Z ~ @) + 25 and again ¢; does not depend on e. With these expansions,
mg(1+ B ) :Bmg

(3.22) gives us up to second order

w=¢-

Iy= I N {% [(O-m}) ¢]2 —4ep(0-mi)p+ O (62)} . (3.23)
8

~ 8ke
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This action is a degenerate Pais-Uhlenbeck oscillator which is known as ghost free for some

parameter ranges. However, if we start from (3.15) and set 2a + 8 = 0, we get

Iy = g fd3x (qD¢ - m§q¢). (3.24)

Taking variation with respect to g or ¢ gives us a massive wave equation. However, these
equations do not say anything about the ghost structure or tachyonic behaviour of the theory.
So that, we must again separate the fields by redefining the fields such that g = mi, (Y1 +¥2)
and ¢ = W — ¥,. With these definitions (3.24) turns into
mfs 3 242 2412

I1=—- f Ix [(¥10¥) - m2¥7) - (P09, - my¥3)|. (3.25)
From the above discussion we know that 5 must be positive not to have ghost term, but in this
case if it is taken positive, ¥, becomes a ghost excitation. As we discussed in the previous
chapter the Newtonian limit of this theory is interesting [27]. The Newtonian potential of this
theory becomes zero when two static sources are taken into account, since the ghost excitation

that is the repulsive component cancels the spin-2 part which is the attractive component. This

is the same situation that happens in the pure Einstein gravity.

3.2.3 Adding static and spinning sources

Up to now the analysis depended on theories without any interaction. However, when inter-
action enters into the picture it may change the particle spectrum of the theory. So that, we
turn our analysis to source dependent higher derivative gravity. First we add static sources to

our analysis and then we generalize this analysis by adding spinning masses in flat spacetime.
3.2.3.1 Static Sources:
The matter can be added to the theory by the usual gravity-matter coupling that is

1
Lsource = 5 dethvT'w' (3.26)

For the static source case we take 7% = o (2), 7% = 0, T = 0, and the above action becomes

1 1 1 . 1
Lsource = 5 fd3pr (f) = 5 fd3x (aq + 2N - ﬁ/\/)p(f)s (3.27)
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where we used g = V2N —2V?N; + ¥ = N = %q +2N; - % Y. After dropping the boundary
terms and taking the source terms static, that is p (¥) = 0, and using the symmetry property of

the Green’s function in the first term of (3.27), the source action becomes

1 1
Lsource = Efd%”]ﬁp-

We add this action to the general total action (3.15)

1=1 f P [1¢q +Qa+P)(q-08) +Bgo + g—p|+ B1,. (328)
2 K A\ 2

where I, is the action that is only constructed from the o field and is already in the simple
harmonic oscillator form. To eliminate the last term in the parenthesis of (3.28) we define new
fields so that we can decouple the fields easily. The last and the first terms can be combined
and redefined as a new field ¢ = ¢ + K%p and by inspection the ¢ field can be redefined as

g = q + kp. Putting these new fields into (3.28) and taking [J = —(9? + V2, we get the total

1
Izifd3x

action as

1
— (8~ kgp +07) + Qa +B) (G - D)’

+8 (éDtp — kpUp — kgp + K2p2 + O'DO')] . (3.29)

Let us concentrate on the NMG case, that is 8@ + 38 = 0. For this case 2a + 8 = g. Taking
variation with respect to g field, the following equation comes out

1B

~¢+ 5@ -De) + e —kp) = 0.

From this equation ¢ can be defined in terms of the other fields as

2
g =2xp—-Up—-—0. (3.30)
KB

Putting (3.30) into (3.29) the full action becomes

I= % f d’x [ﬁ (000 = mgo®) - % (¢ — m2e?) + @p| .- 3.31)

The last term in the action is the interaction part and it gives an attractive potential energy for
negative . In order to find the potential we take the variation of (3.31) with respect to ¢ field

that gives

2 2 1
;(D—méz,)gozp::» ;(D—mé)ga:gm_mgp. (3.32)

Putting the ¢ into the interaction part of (3.31) the potential energy reads
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K 5 1 K
U= 1 fd Xp1 = _m§p2 = gmlmzKO (mgr). (3.33)

From this equation it can be seen easily that for negative « the interaction part gives an at-
tractive potential energy, that means in NMG case adding static sources does not spoil the
unitarity structure or the tachyonic behaviour. In (3.33) the sources are defined as p; (¥) =
m16@ (£ = %), p2 (¥) = mydé® (X — %5), and K| is the modified Bessel function of the second

kind. This result also matches with the result that we found in the previous chapter [27].
3.2.3.2 Spinning masses:
For this case the energy-momentum tensor must be written as
R
T00=m5(2)(?—?]), T’O:Eje”ajé(z)(f’—?]), Tij:O’
where m is the mass and j is the spin of the point-like source. The general amplitude and

Newtonian potential was calculated for static sources at flat spacetime in D-dimensions in the

previous chapter [27]. They become

4A = f &’ x {—ZT;W

-1
(8a +3B) 0* — %az} T},

-1 -1
Bo* + 132] T + T |Bo* + 132] T
K K

i

and

kmymy 1

= 5 % [Ko (r mg) - Ko (r ma)]

in three dimensions. The only added part from the spin will come from the 7(; components

of the energy-momentum tensor. It will read as

1o\ JiJj2 1 1
_AT’ 4. —92 0 _ _ SQ) (2 _ 2 _ S2)(2_ 2
AT, (,88 + K@ ) TV = ,8m§ 0,07 (F— 1) Filalrr m§ 0,0 (F-1).
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The Newtonian potential of these operators was calculated in the previous chapter. Using that

result the potential energy reads

-1
—4T}, {,884+ 152} T = —ETZOH;ITiO
K ﬁ 0 (8 + ,B_K)
B 4 1 4 _, 1
= Bm 2T1032T10 B gTioaz_mgT"O
= L2 iy —r1) S %P - )
mg
.]1]2 lja 62( _rl) zéik6k52(?—72)-
pmg g 0% — my

Using €/€* = /% the spinning part of the amplitude becomes

I 1

—4Tj {:364 + —52} ° = Jl]za (7 = 1) 5 0:6° (7 = 72)
K pm; 0

L2 1) 0007~ 7).
mg myg

Using the Green’s function of these operators and taking the differentiations in front of the
functions and carrying the space integrations, we get

-1

1 . .
_4Tl'l() {ﬁ64 + —62} TlO - _ ]1]2 Vzlnlr _ r2|
K 271,8mg
JiJ2 =2
- V Ky |m,|y — F
27‘[,8}’}1 O( gl 1 2|)
Note that ﬁzlnl?l —| = =2767 (7 — ) and if we assume that the sources are in separate posi-

tions, that is 7; # 7, the first term in the above equation vanishes and the second term becomes
(62 - mﬁ) K() (mg|71 - ?2|) = 271'52 (?1 - 172) =0= ﬁzKo (mg|7_‘)1 - ?2|) = mf,Ko (mg|71 - ?2|)
and the amplitude takes the form
-1
1 0 _ _J12,
, 4 2 0 _ 5 o

_4Ti0 (,8(9 + ;6 ) T' 2B Ky (mg |r1 - I’2|) . (3.34)

With this spinning part, the total Newtonian potential energy,U = Amplitude/time, can be

written as

U= % (m1m2 + 4m§j1jz) Ko (mg |71 - ?2|) - érmlmzKo (ms ‘71 - 72|)- (3.35)

The signs of j; and j, are not fixed so that they can be both positive or negative. Therefore,
potential energy coming from this part could be both attractive or repulsive. In the NMG case

this situation does not change since for this case only the last term in (3.35) drops out.
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3.24 Weak field approximation

Up to this point we have found some results from the linearized theory. In this section we will

try to get some of the above results from the nonlinear theory (3.1). We start with the ansatz

2
i = [ (R dP + %dﬂ + e, (3.36)

and insert it to (3.1). Here f (r) and b (r) are functions and the action will be varied with
respect to these functions>. We will consider only the NMG theory. To find an approximate
solution the functions can be defined as follows: f(r) =1+ fr dra(r),b(r)=1+ fr drv(r).
Here, v (r) and a (r) are small functions. Putting the ansatz into (3.1) with the defined functions

we get

4
—v+2BV" +2Bad"” + rpa"”" =0, (3.37)
K

2
Brra’ + =rfa+2rBv —2Bv = 0, (3.38)
K

up to first order in v (r) and a (r). Here, ’ denotes differentiation with respect to r. From (3.37)
and (3.38), v(r) can be written in terms of a (r) as v(r) = a(r) + %a’ (r). To have an ordinary

differential equation we put v (r) into (3.38) and we get

d +rd —a (méz,r2 + 1) =0. (3.39)
By solving this equation we can find a (r) as a (r) = ci1; (mgr) + K (mgr), where c¢; and
¢ are constants. From this equation also v (r) can be determined using v (r) = a (r) + 5a (7).
From the above ansatz we know that ggg = —1 — f "dra (r). For g,, we first take the square of
b (r) and drop the second order term. Then we expand J% up to first order that is ﬁ ~1l-e
Combining these approximations we get g, =~ 1 + f "dr [2v(r) — a(r)]. We know that for
decaying fields that is for » — oo, a(r) — 0. Since /; diverges to infinity for decaying fields

c1 must vanish, and the metric components become
goo ~ —1+cKo(mgr), g~ 1+dKi (mgr). (3.40)

Here c and d are constants. When we compare these components with Schwarzschild solution
we see that the constants must be related to the mass of the sources. This is consistent with

our earlier result (3.33).

2 See the details of this Weyl trick in [78].
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3.2.5 Higher-derivative gravity plus a Chern-Simons term

In this part the above discussion will be extended by adding the gravitational Chern-Simons
term to the quadratic gravity theory in flat space. We will follow the same route; first we will
decompose the linear form of the action that comes from the gravitational Chern-Simons term.
Then the coupled field will be decomposed by taking the Fourier transform of the Lagrangian
and writing it in a matrix form and diagonalizing this matrix. The general quadratic action

with gravitational Chern-Simons term is [33, 34]

1

1 2
= f dx =g R+ aR® + BR2, ~ ZEWFP - (a#r"pv + grf’#ﬁrﬁ p)} (3.41)

where €2 = 1, and y is the Chern-Simons coupling with an arbitrary sign?.

The linearization of the gravitational Chern-Simons bit yields
1
fes =3 f P euupG I, + O (1),

First we write all the summations that is

1 3 1 3 ,8 L
ICS = _Zfd xeﬂaﬁg‘f’[)‘lhﬁv = _ﬂ fd XI]’DVEIW Qapaﬂhgv
1
=% f d*x & (-Ghdohjo + Glodihjo — Gydihoo — Gl dohix + G hix — G5 hok)
(3.42)

where €; = ;. Using (3.4) and (3.6) the terms that appear in the last line in the above

equation are

1 o 1
— €Ggid0hoj = 5 (-oVENL+$Vn),  €Gydio; = -5 V26V,

1 VLo
- 6Gg0ho0 = 50VN,  —€;Gdohi = 5 (g€ - ¢é + o - ).
1 . 1 .
€G 0 ik = 3 (0'V2¢ + §V2¢) , —6i;G i jhok = 5 (—qu'l - O'VZNL) , (3.43)

where we have taken out total derivatives in the needed steps and dropped the boundary terms.

With these equations the action of the gravitational Chern-Simons term takes the form

1
Ics = o f &Ex [0 (g +09)], (3.44)

3 Without the «, 8 terms, but with a Pauli-Fierz mass term, canonical analysis was carried out in [59, 68].
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where we have defined the g and o terms in the previous section. With these, action (3.41)

becomes

1

Izzdex [%(¢q+o’2)+(20/+,8)(q—D¢)2+,B(q[]¢+0'Do')+/%0'(q+D¢) ,

(3.45)
where all the fields are gauge invariant. For the general case, that is 2a + 8 # 0 and both
a # 0, B # 0, we eliminate the g field by taking the variation of (3.45) with respect to the ¢

field. From this equation of motion we get
1 1
0=-9¢+2Qa+p)(qg—-U¢)+p0¢+ —0, (3.46)
K H
and
1 1
g=@la+p0p - -¢p——0. (3.47)
kKU

Putting (3.47) in (3.45), the general action takes the following form

1, Ga+p)
Ho 2uCa+p)

da+p)
2(2a + ,8)¢D¢ -

oll¢

_L (s RIS SR P
= 2fdx{ﬁ[‘ﬂ“(w 4u2ﬁ<2a+ﬁ))”]+
| 1[ﬂk<8a+3ﬂ>

2ku Qa +ﬁ)‘7¢+ k| 4Qa+p)

2 2
o)+ watp)” ]}

(3.48)
For a proper analysis we must decouple the o and the ¢ fields. This decoupling procedure can
be done mathematically for generic @ and 5 but since we are interested in the NMG case we

take the 8a + 38 = 0 point. For this case the action reads

1
InmG-cs = 'g fd3x {[O’DO’ - (m§ + ,uZ_,BZ)O-Z

To decouple these fields we will follow a different route: First we take the Fourier transform

2 2
+ %(w +my (g0 - m§¢2)} .

of the fields and put the Lagrangian in a matrix form then we diagonalize this matrix.

Taking the Fourier transform of the Lagrangian and putting in the matrix form yields

—k2+m2+—212) e G

L :(~ ~) ( 8 pp Bu '

el e ms s m) || md
B 8

Using the eigenvalue equation det (11 — A) = 0 the eigenvalues of the A matrix can be found

8

where [ is 2 X 2 identity matrix, A is the above matrix and A is the eigenvalues of the A matrix.

Solving the eigenvalue equation for 4 we get
2+ 2(k2+m2)+L /l+(k2+m2)2+i =0
8 /12,32 8 ﬂ2 ﬂz
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with roots

1 1 1
Ay = —k*>—m? - + — o [m2 + . (3.49)
g 2#2132 IU,B 8 4#2132
Now, let’s find eigenvectors. For A.;
1 =1 2 1 g +
w5 T\t nap Bu up | |0 (3.50)
Ze Ll 2y L uE 0 ’ .
Bu 2B T up 8§ " 4qPp? 2
. ! 2172
uy 1 1 1
! =N. | 1 > 1 ,N¢:1+{2 + — m§+422]
us | s, = om Mt 32 upmg Mg up
(3.51)

where N. are the normalization factors. Then we construct a modal matrix from the compo-

nents of the eigenvectors such that

N, N_
P = 1 1 2 1 1 1 2 1 ’ (3.52)
Ny (Zuﬁmg T Mt 4u2ﬁ2) N- (Zﬂﬁmg Tm Y 4u2ﬁ2)

and since the eigenvectors are orthogonal to each other the inverse of the modal matrix is
equal to its transpose. With the inverse of this modal matrix we can define new fields such

that ¥ = P~'X, where X is the original field,

B 1 1 2, 1 o
v \fﬁr _ Ny Ny (Zﬂ[jmg + rr;g mi + 4ujﬁ2) [ O—N ] (3.53)
Y N_ N- (2ﬂﬁl71g B m_g Mty * 4#252) mg¢

Then, the diagonalized A matrix can be constructed as D = P~' AP which is just D =
A 0

0 A
the decoupled form becomes

Inmc-cs =§fd3x

‘, from which the transformed Lagrangian reads Lyr = ¥ DW. Then, the action in

1 1 1
.0, - {m§ — \|m2+ )\Pi

+ —_—
B B Arp?
1 1 1
WOV —|m+ s+ — 4 [md + —— (92 ], (3.54)
2utps B 4up

or in a more concrete form

INMG—CS = g f d*x (‘P+D‘P+ -mA Y2+ Y_OY_ — m%\P%), (3.55)
where the masses read
1 1 1

m> =m> + — . |m? (3.56)



and the fields are inverse Fourier transformed. The masses are same with those of [35, 36, 75].
Since masses of the helicity modes are different this theory is a parity violating theory. To
check the results of topologically massive gravity we take § — 0 limit. In this limit m,
diverges and drops out, therefore we are left with a single degree of freedom that has a mass
m- = —|u| /k [33, 34]. This result can be seen by Taylor expanding the square root part of
(3.56) up to third order.

3.3 Higher-derivative spin-2 in a de Sitter background

Up to now our analysis was based on the flat space time. Now, we will change the background
to a constant curvature background. Specifically we will study the canonical structure of

higher derivative gravity whose action is defined as

I= fd3x Ry [% (R - 2A¢) + aR? +/3R§V] , (3.57)

in an (anti)-de Sitter background. Here Ay is the bare cosmological constant. The linearization

of (3.57) yields

1 2 1
==L [P P oot + a0 -5+ 2| s - Lem)
(3.58)
where 1/£? is the cosmological constant and a = % + %a + é,%ﬁ. The cosmological constant
can be related to the coupling constants «, 8, k and the bare cosmological constant as clz =
m [1 + \/1 — 8xkAp B +B)] [27, 72, 79]. We will carry the analysis in a de Sitter (dS)

background since it is simpler than an anti-de Sitter (AdS) background. Nevertheless, from
these expressions one can find the results in AdS spacetime by taking £ — if transformation.
This transformation can be taken since the results that come in the dS background are analytic

in £*. For dS, we define the background metric &.v in the Poincaré form as

2
ds® = f—Z (—df* + dx* + dy?), (3.59)

by which all the raising and lowering operations and covariant derivatives will be made. The

perturbation can be defined as

* To keep the signature intact, one also needs to Wick rotate a space coordinate.
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52
Suv = t_277,uv + h,uv, (3.60)

where f—znw = g,y and 7y, is the flat spacetime metric. With this perturbation the linearized

forms of Einstein and Ricci tensors and scalar curvature can be written as

1 2
gﬁv = R/I;v - EgNVRL — ﬁhﬂ"’
L 1 o o af 2
Ry =5 (VIViuhyr + VIVl = Ohyy =V Vi), Ry = Vo Vh® — Oh - Zh (36D

. 2 .
where D’ Alembertian operator defined as L1 = V, V¥ = 2—277”VV/1V,,. The deviation part of the
metric A, can be decomposed into its “spatial” tensor &;;, vector ho; and “scalar” hoo parts as

follows

% .o N WU TU
hij =5 (61 + ViV,) ¢ = ViV iy + (849.9; + /0,91 ¢]
% ‘o R 5 @
=5 (6: + ViV,) = ViV jx + 7 CAAYE: gjkvkvi)g] : (3.62)
e e 2
hol = z_2 (—E,kaTI + 8,NL) l‘_2 ( 52 E,']Vﬂ] + 6,NL) .
52
hoo = t_zN’

where V; = V,/ —V,% and the covariant derivative is defined for the two-dimensional space
metric y;; = 5—226[ ;. The Latin indices are i = 1, 2 for space dimensions. Since the components
of the two dimensional metric has no space dependence and is flat, the covariant derivative
reduces to partial derivative, V; — 9;, and 3,~ = 0,/ —8?. &, 1s the Levi-Civita tensor which

is related to the corresponding tensor density as

52
Eik = Wfik = E,'k = t—zeik. (3.63)

The convention for € is €12 = 1 (the convention for Levi-Civita tensor density for the upper
indices is €!? = 1 naturally with the induced metric). Therefore, the final result of the above

decomposition becomes
2

hij = 2 [(6ij + 3131)¢ - 3[(%% + (Eikékgj + Ejkgkéi) -f] )
2 2
hOi = f—z (—Eijajn + (‘)I-NL) N h()() = f—zN (364)
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The raising and lowering operations for spatial indices are done with ¢6;;. Note that, the

specific choice of decomposition involves f—z coeflicients and these coefficients help us to

check the flat space limit, £ — oo, f — 1 at every step in our calculations.

At this stage we will find the gauge invariant combinations that will be constructed from the
six scalar functions. In flat space case ¢ is gauge invariant. However, for curved background
it is not gauge invariant anymore. The components of 4, transforms under the gauge trans-

formations 6,/h,, = V.., + V, (), as

At DN C 2,
5§¢ = 2@4’0, 54)( = 2? 5iK + ;{0 s 5§§ = 5—231 Z,
2. 2 2 2 2. 1
(5{77: ﬁ((*‘ ;5), 6§NL: {—2(K+£0+;K), 6§N:2€—2 (§0+;§0), (365)

where the components of /,, are defined as {,, = ({o, —€,0;{ + al-K). Looking at the linearized
Bianchi identity, V,G*" = 0, there should be at least three independent gauge invariant com-
binations which are constructed out of the six scalar fields and their derivatives. These combi-
nations can be found by inspections. However, looking at the independent components of the
gauge-invariant tensor Q’ZV the gauge-invariant combinations can be found easily. Following

this route four gauge-invariant functions can be found:

e, 2. 11(, . 2 e, 1
f=;[¢—;NL+;@(¢+X—?N)}, P=;(¢—;N),

=~ |

¢ S I 2 .
qz;[v2N+;g—2V2NL—;(N—zvaL+)g)+t—2N], o=-(é-V), (3.66)

and from the Bianchi identity we get a relation between these functions as
2 AV
tv f—p+? -p—q=0. (3.67)

We can find the components of the linearized Einstein tensor in terms of these gauge invariant

fields, that are

t t
Goo=-5;V'f.  Gli=5;@ip+ adio).
gzLJ =75 [(51'1' + aiéj) q - 31'511'? - (fikékéj + Ejkékéi) O"] . (3.68)
We can also write the linearized curvature scalar in terms of the gauge-invariant fields

A

RL:€—3

4
. ! :

(q—V2f+p)=€—3V2(f—p). (3.69)

In the second equality we used the Bianchi identity (3.67).
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Using the above relations (3.58) can be written in terms of the gauge-invariant functions. The

Einstein-Hilbert part of the action takes the following form:

a , a £? t
Ien =~ Px \"Z G = 5 fa’3x [z_szL + E(fV2f+p2 +0?)|. (3.70)

For the 2« + f part of the action, using the self-adjointness of the involved operators, 4, can
be replaced by some gauge-invariant combinations. Also, doing so makes the computations

simpler as in the flat space case. With this trick, the 2a + 8 part of the action becomes

QRa+p) — _ 2 _ 2a +p) —
boip = — 3 A fd3x =8hu (g”VD - VEVY + f—zg‘”)RL = > B dx \/—gR%.
3.71)

For the 8 part of the general action, we have
1= -2 [ @x yTan, (06" - Levr| = £ [ @x yZ|(@Oha) 6™ - Lir
,6'—_5 X =8Ny L_f_Zg L—_E X _g( uv) L_f_z L|-
First, writing Rf;v (3.61) such that the indices of covariant derivatives u and v stay at the left,

and then using the Bianchi identity, the following action can be found for the 8 part
=L [ @xyz(26h6" + L2+ Zhne”
ﬁ——z X —g—gle+§ L+ﬁﬂvl‘ .

If we had not used this method and computed h,,[1G," directly, to put the result into an
explicitly gauge-invariant form would have been more difficult and taken more time. Finally,
the general action can be written in terms of the gauge-invariant form by collecting all the

parts that are computed above as follows
1 (4 28\ [ 2
I = Efd x{(a+€—2)

t
t—2fRL+z(fV2f+p2+0'2)
3

t
B3 [()’2 + oV + 2+ pVip+ (V) (3.72)

AN
+ Qa+p) ,_3RL

R

+t_3RLV f— t_3RLp —pV f .

The above action gives (3.15) when the flat space limit is taken. Also, the fields that appear in
(3.72) are not independent. However, defining new field such that ¢ = V2f , and after using

the Bianchi identity (3.67), the above action (3.72) takes a rather simple form in which the o

field decouples
— 1 3 2B\t 2 r . 2 \2
I'= §fd X {(a+ﬁ)g(—fp¢+l7 )+(20’+ﬂ)£—3(g0—v p)
t3 - .. .
5 (07 =PV - @ — 1V p —1pg - sop)} + Iy, (3.73)
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where the o action is

1
Io-=§fd3x

In flat spacetime, cosmological Einstein theory does not have any propagating degrees of

3
,82—3 (d’2 + O'VZO') + (a + i—f) %0’2} . (3.74)

freedom for vanishing @ and 8 in D = 3. Just like the flat spacetime, without higher curvature
terms the total action does not have any propagating degrees of freedom. For non-vanishing
a and B, (3.73) has three degrees of freedom. From the decoupled field we can read the mass
if (3.74) is put in a correct canonical form. For a minimally coupled scalar field the correct
canonical form is

_ 1 3 252\ — 1 3 4 52 2 £3 252
I——Efdxx/—_g(aﬂ®6”d)+m®)——§fdx ;[—q> +(0i<I))]+t—3m(D :

(3.75)

. . . . 2 . .
To get the correct canonical dimension the o field is rescaled as o — f—za. After this rescaling,

(3.74) becomes

B t, . Gla 2
I, = —5 d3x [z (—0'2 + (VO')Z) - t_3 (E + E)O'Z] , (376)

and for the o field the mass reads

TsTTRTRT T g 2 kB pe

Unlike the flat space case, diagonalizing the ¢, p action is complicated for the general cou-

2 1 12 4 1 4 -
2 a @ — M. (3.77)

pling constants. Since we want to see the oscillators of this theory we can use other methods.
One of the methods is to Fourier transform the fields in the ¥ space and then computing the
zero-momentum limit, that is dropping the Laplacians in the action. The action does not
change the number of degrees of freedom by doing this manipulation, since, V (field) is
not the lowest order term anymore. Another method is to directly work on the equations of

motion. Both methods will be studied separately below.

3.3.1 Masses from the nonrelativistic limit

In this part we take the nonrelativistic limit of the general action (3.73) by dropping the V>
terms. Since the o part of the action is already in an oscillator form, it is not taken into
account. Then the action becomes

1
1= Efd3x

2B\ t 5 P, P
a+ 3|5 (<tpo+ 1) + Qa+p) 567+ (07 = ¢ = 106 - o).
(3.78)
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At this step we must decouple the ¢ and p fields. For this reason we rescale the ¢ field as
0 — %(,0. Also, we separate the constant 2a + 8 = g + w to see clearly the NMG limit.

With these (3.78) becomes

_ 1 3 2B\ 1 Br (., ¢ 2 .
’-2f‘” ("*?2)%(‘1’9"*1”)*173 I i £
L Bae3p P, 3¢
4 B3 ¢ +t_2 . 3.79)

However, this rescaling is not enough to separate the fields. Therefore, we define a new field

® = ¢ — 2p. With this definition the ¢ and ® fields decouple. The @ field action can be read

2
ﬂfcﬁ [{73@2 (/3 {72)@2] (3.80)

and gives the same mass as the o field (3.77). Therefore, the ® field becomes the spin-2

as

helicity partner of the o field. The action for the ¢ field reads
Iy = (8a+3ﬁ)fd3 [53 2 —(8ai3ﬁ)%(a—2j—f—2—f)soz], (3.81)
which is the spin-0 mode. To read the mass of this mode, we must put it into the canonical
form. For this reason we again rescale the ¢ field ¢ — f—zzgo. After this rescaling the mass can
be read as
m? = /<<8++3/3) - (835:3’;) (3.82)
For the NMG case this mode drops out and we are left with the mg and this result matches
with [35]. Note that in [35] the analysis was carried out by introducing auxiliary fields, and
these fields can be eliminated in such a way that the action gives spin-2 field with a Pauli-Fierz
mass. However, we reach the same results by using canonical analysis. For general coupling

constants, to make the same analysis as in [35] we must introduce two auxiliary fields and

rewrite the action (3.1) in terms of these fields:

1 L >y m2 m2 Y
= = V"8G (R~ "Gy = R+ 6% + 22 (/" fin = 7). (3:83)
where ¢ and f,, are auxiliary fields and the masses are m? = —K(8++3ﬁ) and m% = —é. Then

we linearize (3.83) around flat background, that is

2
K(8(l’+3ﬁ) 4B KB

Here we can see explicitly that for the NMG limit the ¢ field drops out and f,,, can be chosen

1
K-[:linearized = - (Ehﬂv + f“v) g,lI;V - ¢RL - (f'uyfﬂv f ) . (384)

as fuy = —hy,. However, for the generic case it is not clear how the fields ¢, f,, and hy,

decouples. One possible way is to rescale the Ay, field [80].
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In this section we have discussed the canonical structure of the generic action in the non-
relativistic limit. It would also be interesting to get the same results from the analysis of the
relativistic equations. The next section is devoted to the discussion of the relativistic equations

for the NMG limit.

3.3.2 Equations of motions in the NMG case

The action (3.73) for the 8a + 38 = 0 case becomes
_B 3 2! VLA PR
1= 3 d’x mgg(tpgo—p )+@(¢—V p)
P o
+5 (P =PV - @ — 1V —1pg - sop)} : (3.85)

where we dropped the o field. From this action one can claim that there are two degrees of

freedom, which is in conflict with our earlier results [35, 36]. However, if we look at the

. . _ 0L .
Hessian matrix H = dq; that is

32 -2t
g1 =5 : (3.86)
W\ 4

and compute its determinant, det H = 0, we see that there should be a constraint in this model.

Therefore the time derivatives of the fields cannot be separated in terms of the canonical

momenta
oL pe(. o, 2. oL pr .
My=—=—¢-Vp-—-p|, M,=—="—Qp-tp—¢).
$= B 453( p—7p P 253(‘0 ©—9)
Since the equations of motion are needed we take the variations of (3.85) with respect to ¢
and p fields which yield
6'm§t2 t32 V2p+ p) = —=a0 [ (0 - V2p) - 26| = 0 3.87
v: == (2 Vp+p) = 50| (¢ - Vp) - 2| =0, (3.87)
and
2
mat £ 4 2 1
6p: —(to-2p)— —= o —-Vp+=p+=¢|-=d | Cp-tp—p)|=0. (3.88
p: —(p=2p) 253(s0 PP tsO) =00 |F 2p— 15 - p)| (3.88)

To decouple the fields, we define ¢ = V?p with a hint that this choice makes R; = 0. With

this definition, the other equation becomes

¢ 1 o
;(—¢—;¢+V2<ﬁ)—t—3( g__)(p:o, (3.89)
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This equation is not in the canonical wave equation form in dS. We again rescale the field
¢ — @/t to have canonical wave equation and this rescaling yields

e . 1. &
- (—gp g+ Vztp) -~ t—3m§go =0,= (D —~ mg) ¢ =0, (3.90)

which is the same as the o field. From the relativistic equations, we again see that for NMG

limit the quadratic gravity theory is parity preserving theory in three dimensions.

3.4 Conclusions and Discussion for Chapter-3

In this chapter the canonical structure of the linearized quadratic gravity theories have been
studied. The analysis is done in an explicitly gauge-invariant way. Moreover, the analysis
is made both for flat and dS backgrounds in three dimensions. In flat background case, the
general quadratic action has been written in canonical wave equation form. After the fields are
decoupled they generate three harmonic oscillators. The coupling constants «, @, 8 are chosen
to have a ghost-free and non-tachyonic theory. When the coupling constants are fixed in this
way, the NMG theory is singled out as the unique unitary higher derivative massive gravity
(but not a higher-time derivative theory). Apart from this theory, all other higher derivative

gravity models are higher-derivative Pais-Uhlenbeck oscillators which have ghost modes.

The analysis is also extended by adding static sources and spinning masses to the theory. The
effects of the sources are described by computing the Newtonian potentials for both cases. In
addition, the weak field limit of the theory is computed at the nonlinear level by using the
circularly symmetric ansatz. Another extension that is done for the flat spacetime is adding
the gravitational Chern-Simons term to the general quadratic theory. With this addition the
NMG theory is investigated and in this limit it is found that the oscillators decouple with

different masses. Therefore, this model is parity violating theory as expected.

In dS spacetime case, the general action is written in terms of three gauge-invariant functions.
These functions are constructed from the derivatives of the components of metric perturbation.
The fields are decoupled by two different ways. The first way to decouple fields is to go to
the nonrelativistic limit by dropping out the two dimensional Laplacians in the action. The

second decoupling way is to get the field equations in the relativistic form.

These gauge-invariant actions that are constructed in this chapter may be useful when non-
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linearities and interactions are introduced to the theory. Apart from this usefulness there are
other interesting points about the theories that we discussed in this chapter. Tuned values of
the parameters give rise to uncommon phenomena, for instance partial masslessness or chiral

gravity, which especially arise in (anti)-de Sitter spacetimes. These matters are open to study.
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CHAPTER 4

CONCLUSION

In this dissertation, the most general quadratic curvature massive gravity theory is analyzed
to find a specific unitary theory. For this aim the one-particle scattering amplitude is calcu-
lated. Also, to understand the found unitary theory, that is NMG, the most quadratic curvature
theory is written in canonical form in three dimensions for both flat and constant curvature

spacetimes.

In the second chapter we have studied the D dimensional quadratic gravity theory augmented
with a Pauli-Fierz mass term. First the linear theory without sources is studied for both mas-
sive and massless limits. For the massive case, a wave equation is found with two massive
excitations in flat spacetime. In curved spacetime the trace of the metric perturbation becomes
a dynamical scalar field. When the dynamical part is dropped by fixing the coupling constants
one solution of this equation is the partially massless point which comes out only in curved
backgrounds. For the massless limit both the linearized Einstein tensor and the linearized
Ricci scalar are background diffeomorphism invariant. Also, the scalar curvature must be
zero in flat spacetime, but need not be zero in curved background when the dynamical part of

the equation is eliminated by fixing the constants.

After the analysis in the linearized level, we have moved on to compute the one-particle scat-
tering amplitude between two covariantly conserved sources. To find the exchange amplitude
the perturbation part must be expressed in terms of the energy-momentum tensor. However,
the components of the perturbation part of the metric are not independent. Hence, it is de-
composed into its parts to obtain the independent components. After computing the necessary
elements, the scattering amplitude is calculated. From this general amplitude equation, the

poles and residues can be calculated to have an idea about the particle spectrum of the most
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general theory. Moreover, the Newtonian potentials can be computed from this amplitude
equation. Nevertheless, the equations are very complicated for the most general case. The
calculations are done only for some interesting limits. First the massive theory is considered
in flat spacetime. For this case it is seen that the theory suffers from ghosts, and to get rid
of the ghost term the coupling constant of the square of Ricci tensor must be taken to zero.
Also, the Newtonian potentials are calculated for static point sources in four and three dimen-
sions. From the four dimensional Newtonian potential, the vDVZ discontinuity is obtained.
The massive gravity theory does not fit in with the pure Einstein theory. But in three dimen-
sions it works well with the pure Einstein theory for small separations of the sources since
the massless limit does not exist. The other interesting limit is the massless theory in flat
spacetime. In this case first mass is set to zero and then the flat spacetime limit is taken. For
this case the poles, corresponding residues and Newtonian potential energies are calculated.
When the theory is constrained to ghost and tachyon freedom, from the poles, residues and
Newtonian potentials, it is seen that the dimension must be set to three, the coupling constant
of the Einstein-Hilbert term must taken to be negative and there must be a relation between
the coupling constants of the higher curvature terms as 8a + 38 = 0. This theory is known as
NMBG. Therefore, this theory is obtained from a different perspective than that of [35, 36]. In
three dimensions the Newtonian potential energy again has the same potential energy as the
Einstein gravity at the NMG limit. The Newtonian potential energy in four dimensions has
a ghost term and to get rid of this term 8 — 0 limit must be taken. Also, for this limit the
general Newtonian potential energy is calculated for D dimensions. From this equation it can

be seen that for all dimensions there is a ghost term.

In the third chapter, the three dimensional quadratic curvature theory is studied in more detail.
To understand how the NMG theory is singled out among other three dimensional theories, the
most general action is written in canonical form in both flat and dS spacetimes. First the flat
spacetime case is studied. To get the canonical form, the metric perturbation is decomposed
in terms of six scalar functions. From these functions three gauge-invariant functions are
constructed by the help of Bianchi identity. The components of linearized Einstein tensor is
written in terms of these gauge-invariant combinations. With the help of these components
and the linearized Ricci scalar, the most general quadratic action is written in the canonical
form with these three gauge-invariant fields, one of which is automatically decoupled from

the others. The decoupling of the other two fields depends on whether 2a + 8 is zero or not.
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These two cases are discussed separately. When this constant is set to a generic value apart
from zero, one of the fields that has no dynamics in the action can be written in terms of the
other dynamical field. After this manipulation, a decoupled action is computed. This action
is analyzed for some special points and it is found that for NMG case, the higher-derivative
term disappears and we are left with a parity-invariant theory. Except for the NMG case, this
theory describes a ghost like excitation. When we set 2a + § = 0 at the action level and
define a new field, a decoupled action can be written which has a ghost excitation. Then the
discussion is extended by adding static sources and spinning masses to the action separately.
For the static case an interaction part comes to the theory. The Newtonian potential energy of
this interaction part becomes attractive for negative x. By adding spinning masses, the spin-
spin interaction part is also found. Unfortunately, this interaction can be repulsive or attractive
depending on the signs of the spins. Moreover, some of the found results are also obtained
from the nonlinear theory for the NMG limit. The last part for the flat spacetime discussion is
to add the gravitational Chern-Simons term to the general quadratic action. For this case the
masses of the excitations are found. Since, these masses are different, this is a parity-violating

theory. Also, for the topologically massive gravity limit, the expected result is found.

In the second part of the third chapter, the discussion is extended to curved backgrounds,
namely to dS backgrounds. In this part the calculations are repeated for this case and again
three gauge invariant functions are found. With the help of these functions the generic action
is written with one decoupled field and two coupled fields. For the decoupled field the mass is
computed, and for the coupled fields the mass is obtained from both the nonrelativistic limit

and the equations of motion.

In the Appendix A1-AS5, we give some details of the computation which can be helpful to

follow the discussion.
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APPENDIX A

GAUGE INVARIANCE OF THE GENERAL ACTION AND
EQUATIONS OF MOTION

A.1 Introduction

In this chapter some of the calculations are given to follow the bulk of the dissertation. Here
the gauge invariant action is calculated in dS spacetime. For this purpose, first the gauge
invariance of the metric perturbation is written, then from the components of the Einstein
tensor the gauge-invariant functions are defined. Then the action is written in terms of these
gauge-invariant functions. In this part all the raising and lowering operations are made by the

background metric and all covariant derivatives are defined with the background metric.
The metric is taken as
8uv = Zuv + My, (A.1)
where g,,, = f—jnw is the background metric and 7, is the flat spacetime metric. The pertur-
bation part of the metric h,,, is decomposed as
hij = (6,-j + éiéj) ¢ — 5,-(9% + (e,-kékéj + eﬂﬁkai) ¢,

hOi = (—Eijajl] + 6,-NL) y /10() = N. (Az)

Here ¢;; is the tensor density with the convention €, = 1.

The trace of the perturbation metric is

1 1
h= g'uyh,uv = ;U“Vh;w = ; (=hoo + hi;),
l,2
=—2(—N+¢+)(). (A.3)
a
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Some useful identities are as follows:

0iho; = 0; (—€ix0kn + O;iNL) = angL’

(91'8]']’[,']‘ = 8,~6j [((51'] + é,’éj) ¢ - éiéj/\/ + (fikékéj + fjkékéi) f] )

0; [(0; — 0:) ¢ + Oy — endké] = Oy, (A4)

hii = (0 + 31‘31‘) ¢ — 00y + (fikgkgi + Eikgkai)f =¢+x.

. . -~ . .
Later the six free functions are redefined as ¢ = f—zz,l/, to get simple form of the results. With

this redefinition, the metric (A.1) takes the form

{72
8uv = t_2 (77,uv + h,uv) . (A.5)

In this appendix only the calculations of the dS part is given but the flat spacetime part is

given at the needed steps by taking the limits £ — oo, £/t — 1.

A.2 The Gauge-Invariance of Metric Decomposition:

The gauge transformation is 6.h,, = V¢, + V,{,, where
G = (50, —€j0;¢ + aik) (A.6)

and ¢;; is the Levi-Civita tensor density with the convention €5 = 1. To calculate the gauge-
invariance of the metric components the connection coefficients are needed. For (A.1) the

coeflicients can be calculated by use of

1
rl(j'v ZE_#A (aO'gv/l + avg(r/l - a/lgva') > (A7)

where for notational simplicity we omit the bar sign on I';,, and in what follows we shall also

omit the bar on the covariant derivatives. There are only three non-trivial components of (A.7)

1 1 : 1
0 0
FOO = —;, F’J = _;6ij’ r:)] = —;61] (AS)

All other components of the connection coefficients are zero. For the full tensor the gauge

invariance can be written as
v
Wy = hyy = 0,y + 0y8 — 21,00, (A9)
after decomposing the covariant derivative.
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A.2.1 The hyy Component:

Let start with the &gy component. Using (A.9);
hyo = hoo = 28040 = 2Tpdo — 2T L
. 1
N —-N = 2(§0 + ;{0), (A.10)

where in the second line, (A.8) is used. Taking A, — f—jhﬂy

5(N 2 (go + (0) (A.11)

A.2.2 The hjy Component:

The hjy component can be transformed again using (A.9) as
Wy = hio = Bodi + Bido — 2T, = 2T0do
, , 2
—E[jaji] + 8,'NL + e,-j(’)_,-n - 8,'NL = 8() (—Gijajg + 8,-/<) + (91[() + ;5ij (—Ekjak{ + (’)_,-K)
, , .2 ) 2
—E,'jaj (T] - 7’]) + 8,‘ (NL — NL) = —61'6,']' § — ;g + (’)i K+ 40 + ;K y (A12)

where we have used (A.2) and (A.8) in the left and right hand sides of the second line, respec-

tively. Equating both sides with respect to their coefficients, we found
. 2
0;NL = (K + 4+ ;K), om = ({ - —{) (A.13)
and for the redefinition of the metric perturbation, (A.13) take the following form

2 2
osNp = ; (K+§o + 2K) o = ! ({— —{) (A.14)

A.2.3 The h;; Component:

From (A.9) the last term is can be written as

h;j - /’l,’j =aj§i + 8,-{j - 2F(])l{0 — 2Fkl§k

= (05 +

Q_a)

3 )¢ 3 31)(/ + (E,kaka + €jk6k(9 )f
( 3 d; )¢3 + 3,6]',\/ - (Gikékéj + ijékéi)f

2
=0, (—€xid + 0iK) + 0; (—€ixdid + k) + ~6ijdo. (A.15)
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where we have again used (A.2),(A.6) and (A.8). The (A.15) is multiplied with d; in order to

eliminate ¢ field. Note that 0 ]3,5 ;= —0; and 5,3,- = —1. Then
/ 2 2 2
Oix’ — €ik0kE" — Oix + €kOhé = —€ix 00k + 20,07k + ;31{0,
and equating both sides with respect to their coefficients, we get
, 2
0i (¢r = x) = 205k + — o,
1
Ocx = 2((9% + ;{0),
and

—€udi (&' = &) = — e 0L
60 =00
For the redefined metric, (A.17) and (A.18) becomes
t2 1
54’)( = 2? (a?K + ;{0) .
and

£,
66 = 5O

We can eliminate £ field by multiplying (A.15) with 6;; and using (A.17) we get
, 2
¢ —¢=—lo
t
and for the redefined metric perturbation (A.21) reads
2t
0cp = ﬁé“o-
For the flat spacetime case the non-gauge-invariant functions become

6((]5 =0, (5[§: = aié/, 6{/\/ = 26?,(’

5§NL =K+ 40, 54“7] = é, 5§N = 250.

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)

(A.22)

(A.23)

From (A.23) it can be seen that apart from ¢ function all other functions are not gauge-

invariant.

In this part we see that the functions are not gauge-invariant. Therefore, the next section is

devoted to find gauge invariant functions. For this purpose, we need to find the components
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of the linear Einstein tensor in terms of the free functions since it is known that linear Einstein

tensor must satisfy the Bianchi identity. Therefore, its components must be gauge invariant.

In the next section we first find the components of Ricci tensor and scalar in terms of these six
free functions. Then using these components, the components of the linear Einstein tensor are
written. Then we define the gauge invariant functions and also check their invariance. More-

over, we see that Bianchi identity give us a relation between these gauge invariant functions.

A.3 Gauge-Invariant Combinations:

The Bianchi identity gives a clue to finding these gauge invariant combinations, constructed
from the six free functions, since V,, g‘gv = 0. Therefore, the components of the linear Einstein
tensor must be composed of such combinations that are invariant under a gauge transforma-

tion. The components of the linear Einstein tensor are found one by one.

Before calculating the components of Einstein tensor the components of the linear Ricci tensor
and the Scalar curvature must be calculated.

A.3.1 Ricci Tensor:

The Ricci tensor is

RE, = = (V7 Vhyo + VI Vyhyuy = Oy = V, V). (A24)

| =

Extracting the covariant derivatives, the Ricci tensor becomes

RE, = = (V'Vuhyo + VIVl = Ohyy = Y, V,0),

1
= 5 (37Y Vuhyo + 87V Vihuo — 870V, Vohyy) = SV @),

NI'—‘NI'—‘NI'—‘NI'—‘

87V, (Vuhvo + Vihyo = Vohyy) - (a dyh — rﬂ ,Oah).

27V, | (Ouhve — Tiyhaor - I“fwhv ) + (0vhuor = Thyhag = Thohyn)

~ (O huy = T hay = Th )] - (a#avh —T},0.h). (A.25)
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and

RS, = % 87V [0uhver = 20p g + Oyl = Ohyy | = % (8u0yh = T4,04h).
_ % 37 {[00 (8uhucr) = T3 @ahye) = TS, (duhacr) = T (Guhva )|

+ 85 (0vher) = T2, (Baltuer) = Ty Bvha) = T2y (Ol )|
00 (Behr) = T2y (Balr) = T2 Brhar) = T, (Oorhya )|} (A.26)
=87 [0, (Tl hae) = To,Ta i = T8, Thhag = T8 Th ha|

1
= 5 (9uduh = T,01).
after collecting terms in parenthesis we obtain,

2R§v = g P {ap (auhm' + avh/w' - aO'h;zv) - ng (aahwr + avha(r - 60']7(11/)
= T3, (Ouhao + Oahye = Oohya) = Ty (Ouhve + Oyhya = D)
~2[8p (Tl hag) = T2, Th hae = T8 Caohag = Toy Tl o |} (A27)

— (8u0yh = T7,04h).

N 2 . o
Putting g7° = 2—277‘7'0 and summing o and p indices we get

2
Riy = =575 100 (ulvo + By = Bolys) =T, Balig + yhhat = Do)
- ng (aﬂhao + 80}1/10 - 80h/la) - 1—‘g() (a,uhva + avh,uoz - aahyv)

~2{d0 (T, ha0) = Tg, T, hao = T, Lkuhao = Tl aa |}

= "
+ ﬁ {ai (aﬂh"i + 8"hﬂi - aihﬂl’) - rl‘# (Oahyi + Ovhai — Oihgy) (A.28)

=T (Opuhai + Oahi = Oihya) = T (Juhve + Oyhyue — Dy
=2(0; (Th ) = T4 Th hai = TET A i = 3T h ||

iu av vt pa

- % (8u0vh = T7,0.4h).
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With the help of (A.8), (A.28) becomes

2 2
Ri=~37 {ao (8yhv0 + Dyhyo = Bohyy) + - (BP0 + Dyhyo — Do)

1
+ — (aﬂhyo + avhﬂo - (90h,lv)
t
1
) [ao (Tivhao) + — (2L hao + rjvhm)]}
12 "
Y {‘91‘ (Buhvi + Byhyi = Biyy) = T, Bahyi + yhai = Dihay) (A.29)

2
= T3, (Ouhai + ahyi — Oihya) + - (8yhv0 + Dyhyo — Bohyy)

weav Iy e

2
-2 [8, (rﬁvh,u) -T¢ F/l h/u -T¢ F/l ]’l/u + ;rﬁvh,lo]}
1
= 5 (0 = T}, 02h).

finally, we end up with
L r
Ri=~37 {ao (BP0 + Byhyuo = Bohyy) = i (Ouhyi + Oyhyi — Biyy)

+ = (Buhvo + Byhuo — Bohyy) + T8, Bahyi + Oyhai — Biay)

~ | =

+ F?V (aﬂhm' + c’)ahﬂ,- - c’)ih#a)
1
-2 [ao (T hao) = 0 (T, i) + ;rﬁvhﬁo + T gy + T hﬁ]} (A.30)

iy av v pa

- % (8uyh = T,0.h).

With this result the components of the Ricci tensor can be calculated.

A.3.1.1 The R}, Component:

Using (A.30), Réo component becomes
2

L
Foo = =372

{00 (Dohoo + dohoo — Aohoo) — i (Dohoi + dohoi — dihoo)

+ % (dohoo + dohoo — Aohoo)

+ I (Oohoi + Oohai — 0ihao) + Ty (Oohai + uhoi — dihoe) (A.31)
) [ao (Taoha0) = 0 (Toghai) + %Féohm + TOTA by + T4T0 m}}

- % (B0d0h — Tgydah).
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rearranging and doing some cancellations yield

2
t 1
RSO = _ﬁ {aghoo - 2808,‘]’[0,’ + (9l~2h()0 + 760]100 + 2F% (8ah0i + aohm - (9[]1&0)

1
-2 [ao (Tdohao0) — 8 (Tiohai) + —Tiohao + 2F§6F§0h4i]} (A.32)
1 2
-5 (3080h — Tgodah) .
Summing the repeated indices and using (A.8) gives

2 t
Roo = =57 (33100 = 2009ihoi + 9 hoo) = =5 (3hoo = 2dohis = 205h0)

2

1 1
—hji — = 0000 + =0y | h. A.33
7 2(00+t 0) (A.33)

Putting (A.2) in (A.33) yields,

RL = _5 (N 207N, + al?N) (3N —2¢ - 2% — 207Ny)
2

=N+9+x)|

(¢+)()——(3030+ a)[;

- -i (N + 32N - 252N, ) - Lz (3 - 26 - 2 = 202N,) + (¢ +x)
2 56
" ( 262 (

and after the cancellations the final answer of Réo component becomes

N-¢-i)+-—(N-¢- X)+ (N-¢-x, (A.34)

2
Rb, = N = 202N, +§+ %) + == (2N = 3¢ — 3¢ + 202N, ) + SN (A39)

2[2 ( 202
Also, taking the /¢ — 1 and £ — oo limits the flat spacetime case of this component can be
got

1 . a
RL, = -5 (07N — 207N + ¢ + %) (A.36)

A.3.1.2  The R}, Component:

From (A.30) jo term can be written as

2
Réj = —2t—£2 {30 (80/1]'() + (9jh()0 - a()h()j) - (‘),- (60hj,' + 8jh()i - (‘),-hoj)

Nlb—

(80]’1 0 + 0 h()() - 60h01)
% (Bahiji + 0 jhai = Gihaj) + T (ohai + dahoi = dihoa) (A37)
-2 [60 (Fé]]’l,{o) ( h,u) + Fth/lO + 1—~oz F/l h,{,‘ + F?jrgah/y]}

- % (300, = T3,0.4h).
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rearranging and doing some cancellations we get
L r 2 1
ROj = 262 (‘)08 h()() é‘oé)ih,-j - ajaihOi + 61’ h()j + ;8jh()()

+ F% (aahﬁ + 8jhm~ - 6iha]~) + FZ (aohm' + 8aho,~ - 8,~h0[,)
1 @ «
-2 [60 (ngl’l,lo) (9 (Fojh,u) + FO]h/lo + F F/l ]’l/h‘ + Fijl“éah,u}}
1
=) (300, — T3,04h). (A.38)

Again, using (A.8) in (A.38) gives us
2

L _
ROJ 2 52

{803 hoo 60(9ih,‘j - (91'81'}10,‘ + 61.2hoj
1 1 1
+ —8]'}1()() - = ((‘),-hﬁ + (‘)jh,-i - 8,‘h,‘j) - = (50}10]' + a()h()j - 8]'}1()())

1 1
—2[——80hjo+ ]’lj()+ (9hﬂ—

1
th + hoj + hoj}}
1
-5 (aoajh + ;ajh), (A.39)

doing cancellations and summing the same terms yields

RE, = 252 (aoa thoo — 0odihij — 0:ho; + 7hoj) - P (25 ihoo — 20;hij — 9 hi)
L2 1
+ ohoj - (ao + )a . (A.40)

Putting (A.2) in (A.40) bring forth
2
R(Ijj = —t— (6JN — (9])( + €jiaié — 8j8?NL — Ejkakaizi] + 618,2NL)
2
(28 N =20y + 2€;:0i& — 0;¢ — 9,x) + % — (~€idm + 9;NL) (A.41)
—0;i(=N+¢+x)|.

T
1,1
_E(a‘”?) 2

Rearranging and opening the parenthesis in the last line in (A.41) gives us

2
R, = —# [0, (V= %) + € (€ - )] - 2—22 [0, N = 3¢ - 9) + 2¢;0:¢]
2

522( €jidm + O;NL) + 2526 (N=) =)+ =50;(3N =3y - 3¢), (A.42)

252

and the overall result comes out as

2
R(L)j = _Zt_fz [a](b + Ejkak (f - 81277)] + 2_22 [aj (N —-2¢) - 2Ejiaif]
+ 522 (—Ej,‘aii] + 8jNL) . (A.43)

The flat spacetime limit, t/{ — 1 and £ — oo, of this expression is

Rg; = ‘% |06+ €xdi (€ - 07m)] (A.44)
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A.3.1.3 The R?k Component:

The last term is RJL.k and it can be written from (A.30) as

2
RE = —2t—€2 {80 ((’) ko + Okhjo — Ooh jk) -0 ((9 ihii + Ochji — aihjk)

% (k0 + Dchjo — dohji)
+ T, (Bahii + Okhai = Oihar) + T (8jhai + Oahji — Oihja) (A.45)
-2 [ao (T4 o) — 0 (rjkhm) + r o + TETA g + TGT ahm}}
- % (0j0¢h — T 0.h),

and using (A.8) yields

2

L _
R = 252

(250(9 o — 2ajaihki - a%hjk + aizhjk)

Y2 (2‘9 ko = 300h i + 21 jkohoo — 21 jkaih()i) (A.46)

2 1 1
+ ﬁhjk - 5 (aj(‘)kh + ;T]jkaoh) .

Putting (A.2) in (A.46) gives us
RL — r o1 —2¢00 (5 1 . [on 2
ik =\ "o |\ % | T2emOn\ o)+ Ok | 2NL = N+ =N,
5 3 4 n A o L =
&+ a0+ 5 (676 + 8;0) & — 80 + (endidic + €udid;) €]
+ [5jk‘9?¢ - (6 1010k — €010 j) g]

+%5jk[2(N—6fNL)+(—N+q’5+)'()+%(—N+¢+X)

} , (A47)

where (eﬂ(?l(')k — €,0,0 j)§ should be eliminated due to the fact that j and k are symmetric.

Then the final form for RJL.k becomes

1 1 . 2
R?k = (_2_52) {6] [_ZEklal (TI + _77) + ak (2NL - N + ;NL):|
(52 + 28y + )[ i+ 0;0k) ¢ — 000y + (€0i0i + €udi0;) €] (A48)

2

+0 107 + (5];([ ( 62NL) (N+<Z>+)‘()+%(—N+¢+X)
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The flat spacetime result of this component is

1 1 . 2
Rf-‘k = (_E) {61 |:—2€k161 (T] + ;77) + ak (2NL - N+ ;NL):|
, 3. 4 A 2 A 2 . .
- 60 + ;(90 + = [(5jk + aj(')k) ¢ — ajak)( + (Eﬂalak + E]dalaj) f]
2

2
+6jka?¢+%6jk|: (N—@?NL)+(—N+¢+)'()+ %(—N+¢+X)

} , (A49)

where the /£ — 1 and £ — oo limits are used.

In order to calculate the components of Einstein tensor the Ricci scalar is also needed. The

next section is devoted to the calculation of Ricci scalar.

A.3.2 Ricci Scalar

Now, let us work on the Ry, term: It is defined as

Ry = V,V, " —Oh - 2Ah,

o £, 2
= 5_4 n VpVO'hyv - 5_277# Vyvvh - g_Zh’ (A.50)

where in the second line the upper indices are lowered. In (A.50) there are two terms that

must be written in terms of the free functions. These are
V. Vyh = 8,8,h —T\,0,h, (A51)
and

VoVolyy = 8y (Vohu) = Ty (Val) = T8 (Vohay) = T2, (Vohya)
= 0p (Oohyy = T2y = T ) = Ty (Bahyy = Thyhay — Taha) (A.52)

=T, (Ochay = Thohay = Thhan) = T2, (Oohya = Thhae = Thohyn).
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After the application of contractions, using (A.8) and doing some simple manipulations these

terms become

r 2
" VuVoh = = (8u0yh = T4,0,h),

r 1 v
=z (80801 = T3y02h) = (8:0if - Th,ah)]
2 1
= 5—2 [80(90h - aia,’h + ; (aoh - 280}1)] ,
= 2 {aodoh — di6ih — Laon
- 62 000 Y1 t 0 D)
1 ¢
=7 (0p0oh — 0;0;h) — E@Oh, (A.53)
and
4 4

t t
"1 VoVl = 7 |80 (dohoo = Tighao = Toghon) = T (whoo = Taghao = Tghoa)

L3 (90200 = T hao = Tighaa) = To (ohoa = Tighaa — Toyhon)]

- g |90 (9ihoi = Tighai = Thhoa) — T (Gahoi — Thohai = o)
Ly (9thai = Thyhai = Tphan) = T (9ihoa — Tiyhaa = Tihon)|
—%M@m—%m—%m%w@mr%mrmma
~T% (Bohao ~ Tihao =~ Tighaa) = T (Johia — Tihaa = Tighia)|
+ g |0 (0,i = Thhaj = Thhia) = T8 (Sahij = Thiaj = T2 hia)

L% (9jhaj = T4, = Thihan) = T8 (0hia — Thhia — Thhia)| . (A.54)

Summing the repeated indices in (A.54) and again using (A.8) yields
4 3

t t
VaVoh = o (8080hoo — 2000;hoi + 0:0 i) + 77 @ohoo = B (A.55)

Putting (A.53) and (A.55) into (A.50) and using A = 1/62 gives us

p 3
R = 7 (690(90h00 = 2000:ho; + 0;0 jhij) A (Dohoo — 50%‘)]
= t 2
+ [—2 (6060 - (3,‘(9,') - {)—260 - 5—2 h. (A56)
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Putting (A.2) in (A.50) yields

By = [ (2020 2) + 5 (-6 )
|5 ot - 13 - S0 - ;—2] [2—2 (-N+o+1)].
“o - ) g,
= 5—4(N—2<9iNL+<9i)()+£—4(N—¢—X)
+ g(aoao—aia,-ngaw%f—;ao—%f —2722](—1\7+¢+X),
= (gaoao + ;—iao)zv + (gaf - ;—3430) X - gza,?NL - Z,—iﬁmﬁ
+ {t)—j(aoao - 9;0;) + %360 - 2722] (=N+¢+x),
= (gaiai - 272360 + %Z)N + (2—183 + 27[4360 - 27[42) - 2—1261.21\74
| 5 ot - 01+ 200 - 27’42] . (AST)
and finally the scalar curvature read
R, = %(5?N+)’(’—28,-2NL+$—81.2¢)+ %(—NWW)— 2722(—N+¢+x)- (A.58)
In the flat spacetime limit (A.58) becomes
R = 0N+ = 207N. + (95 — 95) ¢, (A.59)

which is the flat spacetime result for the scalar curvature.

With the results that we found in the above calculations, (A.35), (A.43), (A.48) and (A.58),
we are ready to find the components of the Einstein tensor in terms of the free functions of

metric perturbation.

A.3.3 The Einstein Tensor

The linear Einstein tensor is defined as follows

1
gszv = Rﬁv - EgvaL - ZAhuv- (A60)

The components of the Einstein tensor is investigated term by term.
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A.33.1 The G5, Term:

The 00-component of linear Einstein tensor,géo, can be written by using (A.35), (A.58) and
(A.2) as follows,

1
Goo = Rby - 5800RL = 2Ahop,
2
t t . . 2 2
= [ e S (OIN =20} N, + § + ) + 8 (2N -3¢ — 3¢ +207NL) + ﬁN] -5

162 12 2 2 2
_Et_znoo{€4[aN+X 207N, + (05 - 97) ¢

28, . .\ 272
+ o (N +o+i) - 5—4(—N+¢+X)},
2 o t . .
T (07N = 207N + ¢ + i) + 8 (2N -3¢ -3y + 261.2NL)}

+{2t—;2 [07N + ¢ = 207N, + (05 — 67) o] + fiz(—N+gb+)g)—€i2(—N+¢+X)},
(A.61)
and doing cancellations and summations we get
Gk, = 252 8¢ — TR (¢ + - 262NL) (—N +d+x). (A.62)
To simplify (A.62), the metric perturbation functions are redefined as ¢ — %q& and the time
derivative transforms as¢ — 2 qb +7 ¢) With these redefinitions the 00-component of the

Einstein tensor becomes

1 t 52 . 52 2SN 1
Gl = 2,2 _ﬁ( 3¢’ t2¢ 3X+—2)(—2—2(9,-NL)——2(—N+¢+X)
= 182 ¢ ! ! aZN (N+¢+ )
=—50i¢ ¢ Xt SX L X
1 1. 1 1
~¢p—|=d+—x - SN|+-0N,
%0 (2t¢ 2 2 )+ t
2
=—— 62¢ + - (¢ +y - ?N) - ;a,?NL]. (A.63)
From the last line of (A.63) a gauge invariant function can be defined:
t 1 (. 2 2
=- — ¢y — —-N|--N A.64
f t[¢+tV2(¢+X t ) t L], (A.64)
then
L I o2
=-—V-f. A.65
Goo = =5,V (A.65)

Also, for flat spacetime this term becomes

1
G, = —§V2¢, (A.66)
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where f = ¢ for the flat spacetime background.

A.3.3.2 The géj Term:

The 0 j-component of linear Einstein tensor,géj = Réj —2Ahy;, can be written by using (A.43)

and (A.2) as follows,

2
G5, = {_# |06 + €jxoi (€ - a7n)| + 2—;2 |0, (N - 2¢) - 2€;:0:¢| + %ho]} - {%hw,
2
=~ (01 + e (€= 07n) | + 55 [0,V — 200 - 2¢5008]. (A.67)

Again doing the same redefinitions, ¢ — f—jrp and ¢ — —2f—32¢ + f—jq&, (A.67) becomes

1 2 . 2 ; 1
géj = ) [aj (—;Qﬁ + ¢) + €jx0k (—;f +&— (9127]) + 5 [6J~ (N —2¢) - 26jiai§]
1 . ; 1
= =5 |09 + €ndn (&- o) - ~9 jN]. (A.68)

From (A.68) two gauge-invariant combinations can be defined as

c(. 1 l /.
pE;(¢_;N), o= (i), (A69)

With these definitions, (A.69), the 0 j-component of the linear Einstein tensor reads

t
G5 =—5; |0;p + ejdi]|. (A.70)

For the flat spacetime this component yields
. 1. .
Gt =5 06 + endie|. (A.71)
with the flat spacetime version of the gauge-invariant functions, that are

p=¢. o=(é-dMn). (A.72)

A.3.3.3 The gﬁk Term:

The jk-component of linear Einstein tensor,g? , can be written by putting (A.48), (A.58) and

(A.2) into the following equation

162 2

G = RS - 5 7 0iRL = Z3hie, (A.73)
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that yields

? 1 . 2
QJL'k = (——252) {5]' |:—2Ek131 (T] + ;T]) + ak (ZNL - N+ ;NL)}
) 3 4 A A A ~ A
- 80 + ;(90 + t_2 [(5jk + 5j(9k) ¢ — 5./5/{,\/ + (e,,alak + eklazaj) f]

+6J-k(9i2¢+ %6,-;( [Z(N—G?NL)+(—N+¢B+)'()+ %(—N+¢+X)

} (A.74)

1 Poroe o ao s 20, . . N 2
_Edjk{g—z[aiN+X—28iNL+(aO—ai)¢]+ﬁ(—N+¢+X)—ﬁ(—N+¢+X)}
—;Zhjk,

and with some cancellations it takes the following form

t2

1 . 2
gfk = (—2—52) {aj [—2ek,81 (77 + ;)7) + Ok (ZNL - N+ ;NL)]
3 A A A A A A A A
- (ag + ;ao) |80k = 8,0 + (€3didi + €did;) g]}
1

1 ) . r. 3t
- 30 {5_2 (67N + - 207N) - = (N +207N.) + = X} . (A.75)

After redefining all the functions as ¢ — f—jgb for which the first second derivatives are ¢ —

_2t_¢;2¢ + f—;d;, and ¢ — iifqb - %Zd) + f—zzqﬁ respectively, (A.75) becomes
3 1 . 2 .
—2ij = Zéklajal ?77 -n|+ ajak —?NL + 2NL - N
~ ~ 1 . .. ~ ~ 1 . . ~ oA ~ oA 1 . ..
+ aj(‘)k ;(b - ¢ - 6j8k ;,\( -X|+ (Ejlalak + e,da,aj) ;f - f (A.76)
1 : 2 2 1.
+ 0k (afN - R 207N + ;G?NL + 5N - ;N).
Since the j and k indices are symmetric, the first term can be manipulated such that
1 1
26100, (;77 - 77) = (fklajal + 6j15k51) (777 - 77)
P A a1
= — (Eklajal + Eﬂakal) (;51277 - 8,277) (A.77)

where in the second line the unit derivatives are introduced. After this manipulation (A.76)

becomes
L 9.5 39 1 2 2. 1. ..
_ZijZ—(leajal+€ﬂakal) 761.77—31,,7_;5_'_5
A A 1. . 2 1.
oo 2N A78
]k( f¢+¢+t2 t ) ( )

A 1 . 2 2 1.
+ (5jk + ajak) (alzN - ;)( +/'\}— 261-2NL + ;(912NL + l‘_zN — ;N),
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where the terms z%&ﬁ ;N and %3@ jN are added and subtracted. The second parenthesis in the
first term is ¢ and the second term is p. The last term can be defined as

2

¢ 1 ) 1.
q=- (afN - X+ - 20°N + 755NL + 3N - ;N), (A.79)

which is also gauge-invariant function. Finally, the jk-component of the linear Einstein tensor

becomes
! A A AAY . AA - A A
g]k = ——[ {— (E]daja] + Eﬂakal) g — 6j8kp + (5jk + 8j8k) q} . (A.80)
The flat spacetime version of this component is
1 AA AA . ACA A A
g]k = —= { (Eklajal + Eﬂakal)O’ — ajak(ﬁ + (6jk + 6jak) q} s (A.81)

where the function g reads

1 .
= 9’N - X+ - 20°N. (A.82)

A.3.4 Gauge-Invariance of the Defined Functions

The functions can be checked whether they are gauge-invariant or not. Let us start with,
£, . 5
60 =~ (6.8 = V25.1). (A.83)

and using (A.11, A.14, A.19, A.20, A.22) and their derivatives (A.83) becomes

¢ (2t

2 r
(5(0' = —(€2V Z;

.2t
LVt g—zvzg) -0, (A84)

£

2 V-

where we have used ;¢ = 5—5855 + ;,-Za?; Again using (A.11, A.14, A.19, A.20, A.22) the p

function reads
sep=lop-2Li-21s (A.85)
P = ¢ 207 <o) .
(2 2t . t, 1
orp=-\—= —l0—2—=0 — 2= =0, A.86
P =7 (524’0 + 52{0 52{0 524’0) (A.86)

where we have again used the derivative of fields, 5;¢ = [%go + %{0. The other two functions

can be handled in the same way.

4 1 2 2
5§f = 6(¢ + ((5((]5 + 5(){ - —5§N) - ;5(NL} (A87)
1 2t t (o P, 1. 1 tf. 1
7 §f =2 [ %+ pt 45—2 (V K+ ;{0) + 25—2 (V k+—do - t—zfo) —4{)—2 ((0 + ;50)]
2t 2t 2
52 —{o - 7 (K + o+ tK) 0, (A.88)

77



where we have used 6. = 4{,% (Bik + %{0) + 22—22 (6?/& + %{'0 - t%{o). The g function is

t 1. . . 2 2 1. .
7004 = V265N — —O0k + 6ot - 2026;Ny, + -vzagNL + 30N = —8N (A.89)
t 212 4 2t |
7904 = —V ((0 + Co) (V K+ §o) - = (VzK +—do - ,_250)
4 1 4t
+ E(VZK-G- t§0)+ {)—2(V2K+ o - {0)
S | 20 (5. 1. 1., 1., 2
+E(V K+7§0—t—2§0)+€—2(v K+;§0—t—2§0—t—2§0+t—3§0
4t | 2\ 2 (. . 2. 2
—EV (K+§0+;K)—?V (K+§0+;K—I—ZK)
2 2
+ =V K+{0+;K + {o+ -4
4 (. 1 2t (.. 1. 1
-— ~o|-= ~lo—=0lo] =0. A.90
7 ((o + t(o) 7 (50 + 20 t2§o) (A.90)

Therefore, these functions are indeed invariant under gauge transformations.

A.3.5 Ricci Scalar in Terms of Gauge Invariant functions

The Ricci scalar can also be written in terms of the gauge-invariant functions. We first write
(A.58) with the modified functions, ¢ — f—zqﬁ. With these functions the Ricci scalar takes the

form

2
t . . 2 4 2. 6 2 ) (A91)

R= a$N+;g—2a§NL+¢—a§¢—;x+;v2NL—7¢+t—2N—;N .

Using the definitions of the gauge-invariant functions, (A.64), (A.69) and (A.79), the Ricci
scalar can be written as

3
L(a-v2f+p). (A.92)

RL=£3

For the flat spacetime case

R, =q-V’¢+4, (A.93)
and using [J = —dy + V? the Ricci scalar becomes

Ry = g - 0o (A.94)
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A.3.6 The Bianchi Identity

The Bianchi identity can also be written in terms of the gauge-invariant functions. First the

identity is decomposed into its components by doing the summation in the repeated indices:

ViGh, =3 VoGh, =0 (A.95)
=" (0-G5, - TL, G5 -ThG5).
= gOO' (aa'g(%v - Iﬂ(/}'Og/le - rg'vg/€0)
+ gio— (ao_gll{, - Fc/}'igfllv - F(/Jl'vgfllt) ’
r L 10 oL 10 oL 1k oL
0= Nz (80g0v - TG0, —T'0,G0 — rngkO)
2
" Gij L _10pnL 10 oL 1k oL
+ 5_25” (ajgiv -TI0,G0, - 1,,G0; — rjvgki) . (A.96)
There is two equations depending on the v index. For v = 0, (A.96) yields

r* L 0 AL 0 AL k AL
0= 2 (aogoo —T00G00 = TooGoo — 1ﬂoogko)

2 L 10 L 0 L 1Tk oL
+ 5_25” (ajgio -G — TG0 = Fjogki)’ (A.97)
and using (A.8),

2

t 2

0= vz (GOQSO + ;géo)
1 2 1
* (aigg + ;géo + ;gﬁ)

2 1
0= -1 (1 - 6% - 11 (298

Using the gauge-invariant form of the components of the Einstein tensor and their derivatives,

that are
Glo =~V = 06l =~V f = 5,91, (A.99)
G = —2—; [0ip + €xdho] = Gl = —2—2,8,.219 = —2L£V2p, (A.100)
and

gﬁ = —2—;5,7 {— (6,‘[(%(9] + 6]]3,‘31)0' — éjé,p + (6]',‘ + 3]'51') q}

.
= -5 (p+ ). (A.101)
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With these equations, (A.99), (A.100) and (A.101), the Bianchi identity yields

[ T t o t o I .
0—( SV %Vf+2€Vp+2€(p+q)),

=(-V2f =tV f +1VPp+ p+q).
and finally
1.
rvz(;f+f—p)—p—q=0.

Also, v can be taken as v = n. For this choice (A.96) reads

2
t L _10 oL 0oL koL
0= —5—2 (aogon - FOOgOn - 1—‘OngOO - Fongko)

2 i 0 0 k
+ f_zéu (51'951 - Fjigén - angéi - angéi)’
1 1
0=~ (o068, + 165, + 16%4)
2 1
+ (algﬁ, + G+ ;Qén),
1
0= (a6, - 165 - 06%).
Again using (A.100) and the derivative of (A.80), that is
L ! . .
0:G;, = ~57 (—€u010" + dpp)

(A.104) yields

t

0="-% 20

1
0=-0;p— €x0ro + ; [3ip + E,'kakO'] — €100 + 0y p,
1

0 = -2640i0 + 7 [0,p + €u0ra],

and
o1 1
0= u0r| 20 + 70’ + ;Bnp.

Using (A.103), (A.92) becomes

A

RL:€—3

4
(4= V27 +5) = 5V (F - p).

1 t A A
[anp + Enkak(j_] + [anp + Enkako—] + ﬁ (_Enlaiald— + anp) s

(A.102)

(A.103)

(A.104)

(A.105)

(A.106)

(A.107)

(A.108)

Up to now, we write the components of linearized Ricci tensor and linear Einstein tensor in

terms of gauge invariant functions. Moreover, the linear Ricci scalar is also written in a gauge

invariant form. Now we can write (3.58) in terms of gauge invariant functions by using these

identities. The next section is devoted to find a gauge invariant action.
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A.4 Metric Decomposition and Gauge-Invariant Form Of The Higher Deriva-

tive Action

Linearized action is

1
1==5 | dx\Ehs |aG}” + 2a +B) (3”0 - V'V + 2A8") R + (DG, - AZ"RL)|
(A.109)

where background metric is

€2

62
|-d +d? +dy?| = g = - (A.110)

2—_
ds-t2

Note that the term in the parenthesis is the field equations of the quadratic curvature theory.

The constant « in front of g’gv is [27]

+ 12Aa + 2AB. (A.111)

a=

L

Linearized form of Einstein and Ricci tensors, and Ricci scalar are given in (A.60, A.24, A.50)

with the definition OJ = V, V¥ = £V, V,.

A.4.1 The Einstein-Hilbert Part

Let us work on the Einstein-Hilbert part first:

a 3 = v a 3 e W, oV L
Ig = ) Px \eho G, = ) d xt_35_4'7p " oo Gy
a t
= _E fd3x an,una'v pO'g/I;v' (Allz)

Writing Einstein-Hilbert part in terms of tensor components yields

a

Ig = >

t
f dx (hooGy - 2h0iG; + hijGL). (A.113)

Let us calculate term by term this action:

A4.1.1 Decomposition of hoogéo term

Let’s start with the first term, that is hoogéo where
L L L
Goo = Roo — EgOORL —2Ahy. (A.114)
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Using (A.62) and (A.2), (A.115) becomes

£, to. . 5 1
570 —E(¢+X—2(9iNL)—€—2(—N+¢+X). (A.115)

For the flat spacetime case (A.115) becomes

hooGhy = N [

1
hooGlyy = —§N8?¢. (A.116)

A4.1.2 Decomposition of 5 jgéj term

Let us move to second term in Einstein-Hilbert action which is —2hg jgéj. Using (A.67) and

(A.2) hy J-Qéj becomes

2
hojgéj = (—Zhoj {—;7 [ajtﬁ + ijak (f — 61277)] + 2—22 [31‘ (N — 2¢) — ZEJ‘kakf]}) ,

r o1 . 5
= 5—2 (h()j {aj [¢ - ; (N-2¢)| + Ejkak |:(§ - 61277) + 7§ })’

2
- ;_2 {— (0,05) [<i> - ;(N - 2¢)| - (€jkdiho)) [(5 - &) + %g } (A.117)

where the integral sign is suppressed and at the last line the boundary terms dropped. Also

note that,
dhoj = O3NL, (A.118)
and

€jkOkhoj = €Ok (_fjiaiﬂ +0 jNL) = —€i€jk0k0in + €x0k0;NL,

= —040k0m = —0™n. (A.119)
Then (A.117) yields,

2 . 2
(~200,66;) = {6?77 [(f - 0fn) + 3¢

.1
- N, [qﬁ - - (V- 2¢)}} ,
2, : 1
-5 {(é ~3n)dfn— ¢ (F3NL) + — [2605n + (N~ 29) (6§NL)]} . (A120)
Int#/¢ — 1 and £ — oo limits (A.120) becomes
—2h0;G§; = (& = 0fn) 67n — & (95NL). (A.121)
which is the result for the flat spacetime case.
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A.4.1.3 Decomposition of & jkgfk term

Using (A.75) and the first equation in (A.2), i ,-kgfk takes the following form
niGh = [~V o | 2eud (i + L) + a0 [2a 2
G = 572 | \ ki | ~2€adi |+ —n) + O Np =N+ =N

2,3 A A A A A A A A
—hjk (90 + ;80 [5j6k¢ - 8j(9k,\/ + (Gjlalak + €k1(918j) f]

1 2, . - to. ) 3t
_zhjk(sjk{f—z(aiNJrX—zaiNL)—5—2(N+2a,.NL)+ X[ (A.122)

Note that 9;hjx = Oy — €q0i€ and 0 jxhjx = ¢ + x and again the integral sign is suppressed.
Taking the space derivative in front of the metric perturbation in the first term with dropping

the boundary terms the equation becomes
2

hjkgfk = (—@

1 : 2

){— (Ox — €0is) [—26k131 (77 + ;77) + Ok (ZNL -N+ ;NL)]

3 A A oA A A A A
—hjk (33 + ;80) [ajakgb - 5jak)( + (eﬂal(‘)k + Eklalaj) f]}
1 2, B .- t . ) 3r .
—5@0+0i5 (67N + v — 207N) - = (N +207N.) + X[ (A.123)
The multiplication of the metric perturbation with the middle term is

[((Sjk + ékéj) ¢ — 3]{3])( + (Eknénéj + Ejnénék) .f] X

[3j3k¢(i) - 3j5k)((i) + (Ejlélgk + Ekléléj) f(i)] = —ng(i) +)()((i) + Zf.f(i), (A.124)

where @) denotes time derivative and i = 1,2. Putting this equation with suitable derivative

signs and doing the cancellations (A.123) turns to be

2
hiGh = ( t—) {(—20070,, + 26077 + OIN + i + x§ — 26E)

202
+% (2607 - 66& — 207N — N — YN + 3¢5 + 3)((;'5)} . (A.125)
In the flat spacetime limit (A.125) becomes
huGY = —% (2007 N, + 26077 + 9OTN + ¢ + x§ — 288,
= 9N, — £070 ~ 399N — 39% — 51+ €€ (A.126)

and with integration by parts on time differentiations (A.126) yields

. , . 1
hiGji = 09Ny +E00n + £ = b = S9N, (A.127)
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A4.1.4 Decomposed form of Einstein-Hilbert Action

To get the final form of Einstein-Hilbert term, all the found results (A.115), (A.120), (A.125)
are put in (A.113) to get

[—ﬁaf —@(w)« 262NL) (—N+¢+X)

ST
_g f {( ~ 02) 620 - ¢ (9%NL) + [253?77+(N—2¢)(5?NL)]}
2]

3
(——3) {(~2007 N, + 26070 + OIN + g + x§ — 26E) (A.128)

= (2608 - 66 ~ 200N, ~ ON — N + 30 + 3;«73)} :

To see the terms that may cancel or sum after integration by parts operation, (A.128) is written

in the following form

3
I = —g fd3x (_#) {q&/\? + X + 200N + 237Ny, — 2037 Ny,
+ [2 (62n)" — 2662 + 2652 - 255]

+% (3¢ + 3¢ + 200°N, — 2607 - 6££) (A.129)

+% [N (¢+x%) - N @ +x) - 4NN, |

2
+t—2N(—N+¢+X) .

After doing integration by parts in the terms y¢ and N (¢ + x), (A.129) becomes

_ a 3 t3 . . 6 6 2
IE——Ede(—@){¢X+¢(X+;X+t—2X +2¢(91N

— 209Ny — ?w%NL — 200N,

; ; 6 0 6.
2(9Fn) — 260 - 260k — 200 + 28 + ;ff]

+% (3@‘( — 3y — ?qu + 200Ny, — 26070 — 655) (A.130)

- N(¢+/\%)+N(¢'§+X)+%N(¢+X)—4N65NL]

2
+z_2N(_N+¢+X) ,
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and the final form of (A.130) in terms of metric perturbation functions is

3
Ip = —g f dx (—2—3) {@e + 07 (N = 2NL) + (=ain + 5)2

+% (3¢% + N (6 + ) - 2NOINL — 2607 N, — 4607n)
L (NN X>)}, (A.131)

~

which is not gauge invariant yet. In flat spacetime limit (A.131) yields

a

IE2

f &x [aﬁ)‘(‘ + 902 (N = 2N, ) + (<320 + 5)2] . (A.132)

A.4.1.5 The Gauge-Invariant form of the Einstein-Hilbert term:

From (A.131) the gauge-invariant form of the Einstein-Hilbert action can be written. For this

aim, first the functions are redefined as ¢ — f—§¢. With this redefinition (A.131) becomes

Ip = —g fd% (—g) {@z +¢0; (N - 2NL) + (=05n + g’)z

[

- (~¢x + N (§ + x) - 2NOIN + 2057 Ny )
1 » 4, 4.
SN+ & - =€€;, A.133
SN+ ¢ t-ff} (A.133)
and doing integration by parts in the last term

4 4 8 4 |
—t—2§§ =0 (—t—z_ff) - t—3§§ + t—sz, = &€= ;ff, (A.134)

where we have dropped the boundary term in the last equality. Then the Einstein-Hilbert

-

- ti; |-6x + N (¢ + ) — 2NOINL + 200N, (A.135)

action becomes

i + 997 (N = 2N,) + (=02 + 5‘)2 _ %Nz]

where the integral sign and the overall coefficients are suppressed. Using (A.69) and adding

and subtracting the terms 2¢N, ¢?, I%NZ yields

Io = ¢ ﬁ( 24 2)+ v+ 62(N—2N)—2N2
e=\=7)|glo+p X + $0; L)
L o) N F]. A
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Again doing integration by parts with respect to time in the following terms terms f,%(ﬁ,

%(]&VZNL and adding the term ¢V ¢ freely, since it is a boundary term, to the action yields

g t2 2 2 . . 2 . 2 2 2 .
Iy = (_;)[5—2 (c*+p )—¢X+N6i¢>+2¢(')iNL—t—2N — 19V

- tﬁ; [2N¢ + Né + Ny - 2NOIN, - ¢7]. (A.137)

With reordering the terms (A.137) can be written as follows

A Y L 2 1. ,
=(-2)|= ) [ -= ~$p+V
Ig ( t)[€2(o- +p) t¢(t)( tV Np z2N+t¢+ 0]

¢ 1 2 2 1.
—Z|N|=y-2V?N, - SN+ -¢ + V20|, A.138
t[ (tX T VNL= SN+ -+ ¢)} ( )

and putting (A.64) in (A.138) we obtain

A ﬁ(a% 2)—£¢V2f+51vv2f (A.139)
ES\TT) |2 P ¢ ' '
Finally, using (A.69) we get
IE:—f( 2+p2)—ﬁpV2f (A.140)
¢ ¢ ' '

We can also do some manipulations to write (A.140) in terms of the Ricci Scalar. When we
look at the gauge-invariant Bianchi identity, we see that the term ¢ f V2 f+ f V2 f must be added
to the action (A.140). Since this term is boundary term it can be added freely. Therefore, the

action becomes
I :(—é)[(ol+p2)—th2p+th2f+fV2f], (A.141)

and using Bianchi identity (A.141) becomes

Ir = (—%) [(o? +p?) + f g+ p)]. (A.142)

Then, we add and subtract f V> f in (A.142) and using (A.92) we get

_ |t 2, 2 2 i
IE——|:E(O' + P2+ fV f)+t—2fRL , (A.143)
and in the formal form we have
=22+ 2+ F V2 £ R A.144
E=3 E(0'+p+f f)+t2fL. (A.144)

The flat spacetime limit of this action is
1 .
Ip = Z(f[0'2+¢2+¢V2¢+¢(q—D¢)], (A.145)
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where the flat space version of the gauge-invariant form of the Ricci scalar (A.94) and a = %

are used. Then

1E=2—1Kf[02—¢¢+¢vz¢+¢q—¢m¢]
:%{f[az+¢(—ag+vz)¢+¢q—¢m¢]

= %{ f (% + ¢q). (A.146)

where in the first line integration by parts is done and in the second line the definition of
the D’ Alembertian [] = —(’)(2) + V2 is used. Also, at the flat spacetime limit the coefficient a

becomes %, after taking A = 0 in (A.111).

A.4.2 The 2a + B Part of The Higher Derivative Action

The 2a + B of the action is

Qa

+
hasp = — P f d*x \Jgh,, (30 - V*V” + 2A8" )Ry, (A.147)

2

and doing integration by parts and dropping the boundary terms the action becomes

Qa

I2a+/3 = -

2+ P f d*x \[gR (Dh — VAV By + 2Ah), (A.148)

where the term in the parenthesis is —Ry. Therefore, the action becomes,

D = (2“2+ﬂ) f dx \ZR2, (A.149)

since Ry is already gauge-invariant this part of the action is also gauge-invariant. The flat

spacetime version of this action is

2
A “2”3) f SR, (A.150)

where v/-g = é,—: = 1 is taken.
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A.4.3 The S Part of the Higher Derivative Action

Now, let us move to the 8 term of (A.109);
Iy = _/; d*x \ehy (0G] - AZ"RL).

_ _/; f & x G |(Oh) 6 - ARRy |,

(A.151)

where in the second line the D’ Alembertian is moved in front of the metric perturbation and

the boundary terms were dropped. Observe that, the definition of Rﬁv , (A.24), involves LAy,

therefore it can be written in terms of Qﬁy. From (A.24)
Ohyy = =2RS, + V7 Vyhye + V7V, e =V, Vo0,
and changing the order of the covariant derivatives yield

Ohyy = =2RS, + V7 Vyhye + V7V, e =V, V,h

+ 6Ahy, — 2Ag,uh,
where we have used
VI Vuhye = [V, V| o + Y,V By

= R e + R 1 by + V V7 s

= 3Ahyy — gy A + VY hys,

and in the second line we have put the following identities

Ripor = A(gﬂygp(, - g,wgvp), Ru = 2AZ,, R=6A.

Then,

Ohyy = _2R£V + 6Ahy, — 208 h + YV, Vo hyo + V, Vo hyy =V, V1

= =2G, — ZuRL + 2Ahyy — 28, Ah

+V,Vhye + YV hyy =V, b,

(A.152)

(A.153)

(A.154)

(A.155)

(A.156)

where in the second line we have used (A.60). Then the first term in (A.151) becomes,

(Oh) G = —265,G) - 8@} Re + 2Ah Gy — 283G h

+ GV by + GV by — GV, .
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The last three terms in (A.157) becomes boundary term and drops out by the use of Bianchi

identity, V,G;" = 0. Also, note that
8@ = 8w (R‘L” - %"“’RL — QAR
= ZuwRY’ ;RL ~2Ah, (A.158)
and using

R; = (g’uVR“V)L = _#VR/SV - h#VR#V

= Ry, — W (208,)

= @R}, — 2Ah, (A.159)
ZRL, = Ry +2Ah, (A.160)
(A.158) becomes
]
Gy =—3RL. (A.161)
Putting (A.161) in (A.157) yields
1
(Oh) 61" = 261,67 + SRy + 2N GY + ARRL. (A.162)

The total action for the § part of (A.109) becomes
=t (& Ve |-26L.6" L2y 2 e A.163
B="5 X g_gﬂVL"'E Lt phhwly | (A.163)

where A = [2 is used. The gauge-invariant form of the last term is known since it is the

same as Einstein-Hilbert part. The middle term is already gauge-invariant. To have a total

gauge-invariant action the first term must be written in that form.

A4.3.1 The Gauge-Invariant form of G/, G;":

Decomposing,chPx \/§( ﬁvg’g) gives us
B f &Px \3GLG" = B f &l goo ) -2(6L) + (gLJ)Z] (A.164)
From (A.65, A.70, A.80), we have

2 2 >
(Qéo)z = 4% (sz )2’ (géj)z = —4% (PVZP + rTVch), (Q?k)z = 4% [2(3'2 +q+ pz],
(A.165)
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and using (A.165) in the action (A.164) we get,

I 2 P
V_ggﬁyglzv = @ (V2f> + ﬁ (szp + 0'V20')
3
+ o207+ 2+ 7). (A-166)

where \/-g = f—; and note that we lowered the upper indices by using the background metric.

A.4.3.2 The Gauge-Invariant Form of the /3 Action:

Adding (A.166), square of (A.92) and (A.144) the action (A.163) becomes

Is = éfd3x£ l(sz)2 VP p 4oV 0t i 4P — (g VP4 )

2 32 2 2 2

B 3.2 (12, 2 2 e

+5 | dx Z(cr + PP+ fV f)+t—2fRL
P
:§fd3x£—3 |pV2p + oV + 67 = qp + gV f + pV° ]

3.2 (12, 2 2 e
+2 | #Px= Z(cr +p +fo)+t—2fRL. (A.167)
In this action there is five gauge-invariant functions. By using the gauge-invariant form of
R; the number of functions can be reduced to four. Here, it is preferred to eliminate the ¢
variable by using R; = %(q -V2f+ p) =qg= %RL +V2f - p,

B s | 2 2 o (O 20
Iﬁzz dx€—3pr+0'V0'+a'—t—3RL+Vf—pp

53
+(t—3RL+V2f—p)V2f+pV2f]
B 3.2ty o o 2 i
+5 | dxg Z(a +p +fo)+t—2fRL.
B r L 0 . a0 2
=2 d3x€—3 pV2p+ oVio + 67 - PR —pVf+ PP t—3RLv2f+ (V*/)

+Z d3x£(£(0'2+P2+fV2f)+ﬁfRL) (A.168)
¢ 2 ' '

This action is the final result for the 8 part of the total action. Now everything is ready to write

(A.109) in terms of the gauge-invariant functions.
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Before going on, the flat spacetime limit of (A.168) can be written as
p=? f P [§76 + 0V + 62— R, - 509 + §F + RV + (V)|
L [@x]|-070 1 V000 - ba-00) - 656+ + - D0 Vo4 (V)|
:/gfdsx [-6(72 = R) g+ o (V2 - &) o + g (-2 + V¥) ¢
—0¢ (=35 + V?) ¢ + V2o (=35 + V) ¢
= § f dx [Op (-03 + V?) ¢ + o0o + g0 - (09)?]. (A.169)

where in the second line we have done integration by parts and used (A.94), in the third line
some suitable combinations have done and in the last line the definition of the D’ Alembertian

operator ,[ 1 = —8(2) +V?, have been used. Finally, for the flat spacetime limit (A.168) becomes
Ig = 153 f dx [o0o + g0¢]. (A.170)
A.44 The Total Gauge-Invariant Action

Summing (A.144), (A.149) and (A.168) the total action can be written as
1 2,
Izifd3x(a+£)

1[5 7
+§fdx€—3,8

This result is the gauge-invariant action for the general quadratic curvature theory in three

t e e
z(02+p2+fV2f)+t—2fRL +(2a+ﬂ)t—3Ri

2 £ 03
o +0Vio + p* + pVip + (V2f) —t—3pRL+t—3RLV2f—pV2f .

(A.171)

dimensions. This action can also be simplified by defining ¢ = V?f and using (A.92). For

the first term

t 2 t .
Z(cr2+pZ+fV2f)+ SR = E[0'2+p2+fV2f+f(q—V2f+p)]
t
= E[O'Z+p2+f(q+p)], (A.172)
using the Bianchi identity (A.103)

2 .
%(0'2+p2+fV2f)+t—2fRL = é[0'2+p2+th2f—th2p+fV2f], (A.173)
and observe that & fV2f = 9o (7 fV2f) = L fV2f = 5 fV2f = 2 fV2f - L fV2f =

% fV2f = —% f V2f after dropping the boundary term. Then (A.173) becomes

t £2 t
Z(0'2+p2+fV2f)+t—2fRL=E[0'2+p2—tg0p]. (A.174)
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The second term of (A.171) can be written as

6, P V2 ) s
ki = 5_3(90_ p) (A.175)
where it has been used Ry = E,—in ( f- p) which comes from using Bianchi identity (A.103)
in the gauge-invariant form of Ricci scalar. The last term of (A.171) can be written without
taking care of the o field by using (A.108),

3 3 t3

£l 2 0 L : o
7 [pz +pVip+ (VF) = SR+ SRV - szf} = 5 [PV p-pg+ (p+ @) V|

I ) 2
= 5 |pPp - b+ R (- ) V4 (V)|
3
_ ;_3 [pv2p — pg— V2V S - (sz)z] , (A.176)

. . . . . pL, - 273 ) 2
where in the last line the integration by parts is used for the term zV=fV=f = —55 (V f) .
Again using the Bianchi identity (A.103) gp = tV?(f - p) p + p(V>f) - p%. Then, (A.176)
can be written as

3 |PV2p = 1592 F = 15V - p (V1) 4 p = V2V - (V2F) | =

3
a 2 2 2 2 2
5—3[[)V p—tpp—tpVip — po + p° —toVip —¢ ] =
t3 .. . .
APV —the = pe+ PP - 19V p - ), (A.177)

where in the last line the integration by parts is used for é,—i pV2p = —2723 pV?p. The final form

of (A.171) becomes with (A.173), (A.175) and (A.177)

5
I=%faﬁx(a+i—f)[%(pz—tpgo)]—i-%fd3x(2a'+,8)2—3(gb—vzp)2

1 £
+ 3 fd3x€—3 [—szp —tpg — po + p* — 1oV p — 902] + Iy, (A.178)

where we have defined

3
I, = % fd3x [,3;—3 (0"2 + O'VZO') + (a + i—/j) 50'2} . (A.179)

In the flat spacetime limit, (A.178) becomes by summing (A.146), (A.150) and (A.170)

1

1
I = 3 fd3x [;¢q + Qa +B) (g — Op)? +ﬁqD¢}

+§fd3x [O'D0'+ éo-z]. (A.180)
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A.5 Gauge Invariance of The Field Equations

The field equations of the action can also be written in terms gauge-invariant functions. In the
field equation only the Dgfw is unknown in terms of the gauge-invariant functions. Therefore
in this part only this term is written in terms of gauge invariant functions. First the covariant

derivatives are extracted

DgL Zg(rpvpvo_ L

uv v
= g(rpvp (avgﬁy - F;Jl',ugﬁv - Fﬁ'vgﬁﬂ) ’
r L 4 oL _ 4 oL L 1 ol _ A oL
= ﬁ']‘rp {ap (80' v = rowg/lv - r(rvgu/l) - r,go— (aa uv = rayg/lv - ravgp/l)
_r,gy (aa'chw - rg’ag/le - F(/lrvgé/l) - F,gv ((90- ,LLta - rg’ygfla - Fg'agﬁxl» >
l,2

= 51 {(9,04Gh - G0, ~ T5,0,6%, ~ 6L, T 9,6%)

— (re, 0465, - 12, T2,6%, - 15,465

- (re,0-65, - T8, 0L, G5, -T2, LGk )

~ (28,0065, - T35, 08,65, - To s Gk, (A.181)

2 . o . . .
where we have used g,, = f—znap in the third line. Doing the summations in the repeated

indices (A.181) becomes
06y, = Q—inf’f’ (000G = (G595 5+ GadoT'5)
—(T2,0,G%, + T4,0,G5, + T2,00Gh, + T2,05Gh, + T2,0,GL, )
5y (T,G5 + TanGla) + (T ThaGh, + Tl 0,6

r 74 oL A ~L
+ (r;)vrowg dot rgvrng /J/l)} ’

t2
= 2 (=05 + 37) G, — (-G1,000, + GO, - G100, + 6,013
- FéﬂaoQIj,, + Fiﬁ,gljy - r(/)lvaog,{le + rl{lvaigﬁ/l - rgoaagﬁv + rga@gﬁv)

(
(
+
(
(

I5.00G5, + T,0iG4, = 15,0060 + T1,0iG)

av % s

gy + %) (Th,Gh, + TLGE) (A.182)

a 74 oL a A oL a 74 nL a 1A oL
+ FO/JFOQQ/IV + Fipriag/lv - FOuFO\/ga/l + Fiyrivgoz/l)

+ _ngré,ugfia +I5 T gi(x - rgvrgag

i LATILGE))

ua v i
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and using Christoffel connections (A.8), (A.182) yields

2 1
06t = 2 {(—ag + a,?) Gk, - [2gf;yao (7) +GhOT;, + gﬁla,-rﬁv]
33 L o1t 0,65 + 21 6,GF 1 i00GE Za L
- ; Ogﬂy-’_ [/J lg/{y+ v lgﬂ/]_;nll Ogllv _; Ogﬂv

2 4
+t—2gﬁv + (—t—zgﬁv + rglrglgﬁy + r;;rglgjﬂ + 2r;rfygg ﬂ)} ) (A.183)

Doing the essential cancellations (A.183) becomes

12 3
06k, = 7 {(—ag - ;ao + af) G, - (ggva,-rf;l + gl’;ﬂa,'rfv)
—(2r} 0,65, +2rkoG6L))

+00 08 Gh, + TUrL Gl + 20 A Gl | (A.184)

i el /7%

Again doing summations in the repeated indices and dropping the derivatives of the Christoffel

connections, §;,I%, = 0, (A.184) yields

2
L _ ! > 3 2\ AL 0 4 L i o AL 0 4 L i o AL
064, = 5 {(—ao = 00+ al.) Gy —2(15.0:G6, + T},0:65, + 13,061, + T,0.65)
1 0 ~L 1 L 1 0 ~L 1 L
_;Fiygiv - ;F;,ugOv - ;Fivg/,ti - ;Fi'vg,uo
+200 T0.Ghy + 200 17 GE + 2r{/’l )Gl + 2r{/’l righl. (A.185)

By using (A.185) we can calculate the components term by term.

A.5.1 The OG5, Term

Setting £ = v = 0 in (A.185) and using (A.8) we have

1 3 : .
OG0, = 7 {(_6(2) - ;‘90 + 812) Goo — 2 (F?oaigéo + [0l + Ty0iGoo + F{O(?,-ng)
Lo 1 o Lo 1 o
_;riogio - ;Fiogoo - ;Fiogm - ;riogoo (A.186)

010 AL 0 J L J 10 AL J ok AL
+2T3 0G0 + 2Ll 105 it 2T MG ot 2T MG jk} )
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and after simple manipulations (A.186) becomes
L _ P 3 2\ AL J a0l 1oL
UG = 7 -5 - ;30 +07 |Goo — 2 (Fioaigjo + Fioaing)
25 J Tk
—;riogoo + 2001 g
2
t 3 2
) {( 05 - ‘30 + 32) Goo — (_;‘ﬁaiQ/L'o)
i 2 k
+5 (5 G + 0 stGh
2

3 2
-5 {( P - — + az) Gk + a iGh + 3 ggo + t—zgﬁ}. (A.187)

Putting (A.65) and its derivatives, the derivative of (A.70) and the trace of (A.80), which are

1 I o, I,
G = =5V f = 5;V°]- aégéo = V2 - V.

2¢ 2¢ ¢ 20
Gl =-Lvp gh--L
4iGio = ~5; VP Gi =55 S+, (A.188)

into (A.187) yields

OG0 = ;;3( Vif+ VZf+ V2f+ sz Vzvzf)
+2t_;3(_i:vz ! 2f——(p+q))
—;;( Vi + V- sz—VZVZf)
’ zt_;(_i:VZPJr V- %(Pﬂz)),
—Zt;( Vi + V2 - sz—Vzvzf)
+zt;( jvzp__[(pﬂl) sz])7 (A.189)

and from Bianchi identity (A.103) the last term is f—;RL and the final result becomes

£ . 5,
L _ Y (v27, 2v2/_ v2v2
DQOO—2€3(Vf+tVf VVf)
3 3
r (4 2t
- —-V? —R A.190
Yz ( Vot Vif+ L) ( )
For the flat spacetime case (A.190) yields

1, .
06k, = 3 (V2f - v2v2F) (A.191)

95



A.5.2 The (G}, Term

Let us continue with Dg,fo component. Inserting u = k and v = 0, the equation (A.185)
becomes,

1 3 ;
06 = 7 {(_6(2) - ;‘90 + 512) Gio 2 (F?kaigéo + F{Oaigéj)

_%F?kgﬁ) - %Fiogéo + Zr?krﬁ)géj} )
= ;_z {(_ag - %ao + a%) Gh + %(akggo +0iGy;) + %ggk}. (A.192)
Using (A.70) and its derivatives, which are
006y =~ Ok + €aDn) = = Oy + €an)
2¢ 2L

1 t
9Gr, = —4 O + €n0n0) = 52 (Oh + €nOn) (A.193)
the derivative of (A.80), that is
t
8,6 = =57 Ok + n), (A.194)

and (A.8) into (A.192) yields

2 1 t
f—zmgﬁo = O+ a0 + 2 Ok + )
31 3t .
+ ;2_5 (akp + Eknana-) + ;2_5 (5kp + 6knan0-)

! 2 2
5 (0k07 p + €07 r) (A.195)

2 t 2 ! . 3
+ ; (—2—€5kV f - 2_€ (akp + Ek”ano—))
_ Ei(a + €,0,07)

22¢ P SnOn )

and

3
t L3 2 2
OGr = =0k (P + b Vip - 2P ;sz)

203
+ %e,man (& + %d— - Vo - ;20') (A.196)
The flat spacetime version of (A.196) is
06k, = %ak (5-V2p) + %e,man (6 - V20). (A.197)
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A.5.3 The JGE, Term

The last component can be calculated in the same way. The indices are renamed in (A.185)

as u = m and v = n. After using (A.8)

£? ) 3 2 z

1 1 2
+ t—zgﬁm + t—zgﬁm - ;%Qéo. (A.198)

After calculating the derivatives and doing suitable cancellations the final answer comes out

as

A A eoe 5'_ 1' 2. 4 2 2 2
—ﬁman(p+;p+t—2p—v p—;V p—t—ZV f)

— (€mkOBn + EntOxOm) (0' + ng + tlzd' - V3 - %VZO') : (A.199)
In the flat spacetime limit (A.199) becomes
200G%, = (6mn + Omdn) (4 = V2q) = O (P - V?p)
~ (€mkOkBn + EnOxOn) (7° - V20r) (A.200)
With (A.190), (A.196), (A.199) and the results that are computed for wa and Ry are enough

to write the gauge-invariant form of the equations of motion.
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