MERGING MULTI-VIEW FEATURE MODELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ELCIN ATILGAN AYDIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCES
IN
COMPUTER ENGINEERING

DECEMBER 2011

Approval of the thesis:
MERGING MULTI-VIEW FEATURE MODELS

submitted by ELGIN ATILGAN AYDIN in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oguztizin
Supervisor, Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali Hikmet Dogru
Co-Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Nihan Kesim Cicekli
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oguztizin
Computer Engineering Dept., METU

Prof. Dr. Ferda Nur Alpaslan
Computer Engineering Dept., METU

Dr. Cevat Sener
Computer Engineering Dept., METU

Dr. Ahmet Serkan Karatas
K&K Teknoloji Ltd. Sti.

Date: 27.12.2011

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare that,
as required by these rules and conduct, | have fully cited and referenced all material
and results that are not original to this work.

Name, Last name: ELCIN ATILGAN AYDIN

Signature:

ABSTRACT

MERGING MULTI-VIEW FEATURE MODELS

Atilgan Aydin, El¢in
M.Sc. Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Halit Oguztizin

Co-Supervisor: Assoc. Prof. Dr. Ali Hikmet Dogru

December 2011, 173 pages

Feature models are used for variability management in software product lines. Instead of
developing a single feature model, merging small models can be an effective solution to
obtain a unified view. Since each stakeholder views the product family from a different
perspective, conflicts may occur during merging. In this research, merging of feature models
arising from different viewpoints is considered. A normative procedure is proposed to merge
feature models by applying local rules. This procedure can merge feature models with cross-
tree relationships between sibling features. Application of the local rules is demonstrated

with examples.

Keywords: Feature Models, Multiple Views

0z

DEGIiSIK BAKIS AGILARINA SAHIP OZELLIK MODELLERININ BIRLESTIRILMESI

Atilgan Aydin, Elgin
Yuksek Lisans, Bilgisayar Muhendisligi Bolumu
Tez Ydneticisi: Dog. Dr. Halit Oguztizin

Ortak Tez Ydneticisi: Dog. Dr. Ali Hikmet Dogru

Aralik 2011, 173 sayfa

Ozellik modelleri, yazilm Uriin hatlarinda degiskenlik yénetimi igin kullanilmaktadir. Tek bir
Ozellik modeli gelistirmek yerine, butin bir gorinimu elde etmek icin kiglik modelleri
birlestirmek etkin bir ¢ézim olabilir. Her bir paydas Urin ailesini farkh bakis agisiyla gérdigu
icin, birlestirme esnasinda fikir ayriliklari olusabilir. Bu arastirmada, farkh bakis agilarindan
dogan 6zellik modellerinin birlestirimesi ele alinmistir. Ozellik modellerinin bélgesel kurallar
uygulanarak birlestirilebilmesi icin kurallar iceren bir prosedir onerilmistir. Bu proseduir,
kardes Ozellikleri arasinda capraz agagc iliskileri olan 6zellik modellerini birlestirebilmektedir.

Bolgesel kurallarin uygulanmasi érneklerle agiklanmistir.

Anahtar Kelimeler: Ozellik Modelleri, Degisik Bakis Acilari

To my dearest, most precious one and love of my life, Inan...

Vi

ACKNOWLEDGMENTS

Many people contributed to this thesis, and | would like to thank them all. | first want to
express my deep appreciation to my supervisor, Assoc. Prof. Dr. Halit Oduztizin for his

encouragement, guidance and support from the initial to the final level of this research.

Also, | would like to thank Assoc. Prof. Dr. Ali Hikmet Dogru for his idea, support and smiling
face all the time. Thanks are due to Ahmet Serkan Karatag and Alper Kili¢ for helpful

discussions.

In addition, I'm very grateful to my parents Fatma and Mustafa Atilgan for being there when |

need them.

And finally, | am heartily thankful to my darling, inan. Thanks for your understanding for the
many long weekends spent in my writing room and for having to split up the rock band to get
this thesis done. We can fire up the Xbox again.

Vii

TABLE OF CONTENTS

NS 3 I O USSP iv
@ Y4 v
ACKNOWLEDGMENTSciiiiitiii ettt ettt e e et e e e et e e e s nteeeeesnseeeeesnseeaeennseeeeeanneneens vii
TABLE OF CONTENTS ...ootiiie ettt et e ettt e e et e e e ettt e e e enee e e e enneeaeeannneeens viii
LIST OF TABLES.eoeieiitiiie ettt ettt e et e e e ettt e e e et e e e e ntteeeeanneeeeeanteeeeeanseeaeeannseeans X
LIST OF FIGURES.coiiiiiiiie ittt e e et e ettt e e ettt e e e s nte e e e annteeeeesnneeeeeanneeeeeannees XV
CHAPTERS
T INTRODUGCTION. ... tiiit sttt e ettt e e sttt e e et tee e e e sttt e e e e sstaeeeesnseeeeesnsaeeesensseeaesnnsseaeans 1
2 BACKGROUNDcoitiiiee ittt ettt e et e e e sttt e e e et e e e e ensseeeeansseeeeeansaeeaeanssaeaeanns 3
2.1 FEAUIE MOTEIS ... s 3
2.2 Related WOTK ...t e e e e e 5
3 MERGING BY CONFORMANCE.........ctiiiiiiiiiiiiiiee et e e 7
3.1 IntroduCtory EXAMPIE......cooviiii e 9
3.2 Case 1: Revising Mannion et al. RUIES.............ouuiiiiiiiiiece e 12
3.3 Case 2: Reproducing Mannion et al. RUIEScooviiiiiiiiiiiiieeecce e 20
3.4 Case 3: Difficult-t0-ReSOIVE VIBWScociiiiiiiiiiiiiiicieeeieee e 54
3.5 Case 4: NoN-ResoIVable VIEWS............coiiiiiiiiiiiiicee e 66
3.6 Case 5: Cross-tree Constraints Between Siblingscooviiiiiiiiiiiiiiii, 71
4 CONSTRUCTING RESOLUTION FM....oiiiiiiiiiiiiiee et 72
4.1 Rules for Constructing Resolution FIM ... 72
4.2 Constructing Resolution FMs for Mannion et al. Rulescccooooiiiiiiiiiiiiiiiieieeeeenn 73
4.3 For Difficult-10-ReSO0IVE VIEWScooiiiiiiiiiiii e 77
4.4 For Views Including Cross-tree Constraints Between Siblings..........cccoooeeiiiiiiiiiinnnn. 78
5 MERGING COMPLETE VIEWS ...ttt e et e e e 79
6 LOGICAL CHARACTERIZATION OF MANNION ET AL. RULES........ccccciiiiiiieeeieeeee 82

viii

6.1 Approach for Logical Characterizationeevviiiiiiiiiiiiiiiiiiiiieeeereereereeeeeeeeeereane. 82

7 CONCLUSION ..ottt ettt ettt e e e et et e e st eeeaerneee e 87
REFERENGES ... oot e e e e e e e e 88
APPENDICES

A EXAMPLES OF MERGING BY CONFORMANCE WITH CROSS-TREE CONSTRAINTS
BETWEEN SIBLINGSo 90

B EXAMPLES OF RESOLUTION FM CONSTRUCTION WITH CROSS-TREE
CONSTRAINTS BETWEEN SIBLINGS ... 147

C EXAMPLES OF MERGING COMPLETE VIEWS ... 151

LIST OF TABLES

TABLES

Table 1 - Feature Selection Map s X
Table 2 - Feature Selection Map fSY ...
Table 3 - The cases where fs X @ fs Y involves V'ccoiviiiiiiiiiiiiieneeees
Table 4-1S X @ FSY = FS X
Table 5-TS X @ FSY =S Y e
Table 6 - Truth Table for Showing ((p < i)A(p«<j))#(p<(iAj))
Table 7-Revised RUIESoiiiiiiiiei e,
Table 8 - Feature Selection Map s X
Table 9 - Feature Selection Map fSY ...
Table 10 - The cases where fs X @ fs Y involves ‘Icccooiiiiiiiiiiiiiiineenes
Table 11 - Feature Selection Map s X....ooooiiiiiiii
Table 12 - Feature Selection Map fSY ...
Table 13 - The cases where fs X @ fs Y involves ‘I’ccoooiiiiiiiiiiiiienennne,
Table 14 - Feature Selection Map s X....ooooiiiiiii
Table 15 - Feature Selection Map fSY ...
Table 16 - The cases where fs X @ fs Y involves ‘I’ccoooiviviiiiiiiiinnnnne,
Table 17 - Feature Selection Map 8 X......oovueiiiiiiiiiiiiiie e
Table 18 - Feature Selection Map fS Y......ovvvuiiiiiiiieiiee e
Table 19 - The cases where fs X ®@ fs Y involves ‘I’ ...
Table 20 -fS X @ FSY = 1SY oo
Table 21 - Feature Selection Map S X......oovvuiiiiiiiiiiiiiiie e
Table 22 - Feature Selection Map fS Y.....oovvveiiiiiiiiiecee e,
Table 23 - The cases where fs X ®@ fs Y involves ‘I’ ...
Table 24 - fS X @ FSY = 1SY oo
Table 25 - Feature Selection Map s X.......ouviiiiiiiiiiiiiiiie e,
Table 26 - Feature Selection Map fS Y......oovviiiiiiiiiieiee e
Table 27 - The cases where fs X ® fs Y involves ‘I’ ...
Table 28 - fS X @ FSY = 1SY oo
Table 29 - Feature Selection Map s X.......ovviiiiiiiiiiiiiiie e
Table 30 - Feature Selection Map 1S Y......oouueiiiiiiiiiiiiiee e,
Table 31 - The cases where fs X ® fs Y involves ‘I’ ...,
Table 32 -fS X Q@ FSY =1SY e
Table 33 - Feature Selection Map 1S X........uueeiiiiiiiiiiiiiie e
Table 34 - Feature Selection Map 1S Y......oouveiiiiiiiiiiiiiee e
Table 35 - The cases where fs X ® fs Y involves ‘I’ ...,
Table 36 - Feature Selection Map s X........uuceeiiiiiiiiiiiiiiie e
Table 37 - Feature Selection Map S Y......oouueeeiiiiiiiiiiiee e
Table 38 - The cases where fs X ® fs Y involves ‘I’ ...,
Table 39 - Feature Selection Map S X........uueeiiiiiiiiiiiiiiie e
Table 40 - Feature Selection Map fS Y......oouueeeiiiiiiiiiiiiee e
Table 41 - The cases where fs X ® fs Y involves ‘I’ ...,
Table 42 - Feature Selection Map S X........uueeiiiiiiiiiiiiiiee e

Table 43 - Feature Selection Map fs Y.......ccccee.....

Table 44 - The cases where fs X ® fs Y involves ‘I’

Table 45 - Feature Selection Map s X.......cccoeeeeeee.
Table 46 - Feature Selection Map fs Y.......cccoeeeeeee.

Table 47 - The cases where fs X ® fs 'Y involves ‘I’

Table 48 - Feature Selection Map fs X.......ccceeeeeee.
Table 49 - Feature Selection Map fs Y.......cccoeeeeeee.

Table 50 - The cases where fs X ® fs 'Y involves ‘I’

Table 51 -fSX @ fSY =1sY
Table 52 - Feature Selection Map fs X........ccceeeeeee.
Table 53 - Feature Selection Map fs Y........ccceeeeeee.

Table 54 - The cases where fs X ® fs 'Y involves ‘I’

Table 55-fS X @ fSY =1SY i
Table 56 - Feature Selection Map fs X........cccoeeeeee.
Table 57 - Feature Selection Map fs Y.......ccceeeeeee.

Table 58 - The cases where fs X ® fs 'Y involves ‘I’

Table 59 -fsSX Q@ fSY =1sY .
Table 60 - Feature Selection Map fs X........cccceeeee.e.
Table 61 - Feature Selection Map fs Y........cccceeee.e.

Table 62 - The cases where fs X ® fs 'Y involves ‘I’

Table 63 -fsX Q@ FSY=1SY i
Table 64 - Feature Selection Map fs X........cccceeeeeee.
Table 65 - Feature Selection Map fs Y....................

Table 66 - The cases where fs X ® fs Y involves ‘I’

Table 67 -fSX @ FfSY=1sSY
Table 68 - Feature Selection Map s X....................
Table 69 - Feature Selection Map fs Y....................
Table 70 -fSX @ FfSY oo
Table 71 - Feature Selection Map fs X....................
Table 72 - Feature Selection Map fs Y....................
Table 73 -fSX® FSY i
Table 74 - Feature Selection Map fs X....................
Table 75 - Feature Selection Map fs Y....................
Table 76 - fS X @ fSY oo
Table 77 -fsX Q@ fSY =1sSY
Table 78 - fsS X @ fSY =1s Xeorriiiiiiii
Table 79 - Feature Selection Map fs X....................
Table 80 - Feature Selection Map fs Y....................

Table 81 - The cases where fs X ® fs Y involves ‘I’

Table 82 - Feature Selection Map fs X....................
Table 83 - Feature Selection Map fs Y....................

Table 84 - The cases where fs X ® fs Y involves ‘I’

Table 85 - Feature Selection Map fs X....................
Table 86 - Feature Selection Map fs Y....................

Table 87 - The cases where fs X ® fs Y involves ‘I’

Table 88 - Feature Selection Map fs X....................
Table 89 - Feature Selection Map fs Y....................

Table 90 - The cases where fs X ® fs Y involves ‘I’

Xi

.. 38

Table 91 - Marking for childSetsg for rule 1(11).........oooriiiii e 73

Table 92 - Marking for childSetsg forrule 2..............oooiiiii 73
Table 93 - Marking for childSetsg for rule 3(11)..........oooo 74
Table 94 - Marking for childSetsg for rule 3(IV) ... 74
Table 95 - Marking for childSetsg for rule 3(V) ... 75
Table 96 - Marking for childSetsg for rule S(HI)..........oooo 75
Table 97 - Marking for childSetsg for rule S(IV) ... 76
Table 98 - Marking for childSetsg for rule S(VI) ... 76
Table 99 - Marking for childSetsg forrule S(VII) ... 76
Table 100 - Marking for childSetsg for rule S(VIII) ... 77
Table 101 - Marking for childSetsg for rule S(IX) ... 78
Table 102 - Weakest X’s for Mannion ef al. RUIES..........cccooiiiiiiiiiiiii e 84
Table 103 - Feature Selection Map 18 X. ..o 90
Table 104 - Feature Selection Map fS Y ..o 91
Table 105 - The case where fs X @ fS Y inVOIVES ‘I ..ooeeeeii i 91
Table 106 - Feature Selection Map 1S X. ..o 92
Table 107 - Feature Selection Map fS Y ... 92
Table 108 - The cases where fs X @ fS Y iNVOIVES I’eniiiiiiiiici e 92
Table 109 -FfS X ® FSY =S Y oo 93
Table 110 - Feature Selection Map S X....oo oo 94
Table 111 - Feature Selection Map fS Y ..o 94
Table 112 - The cases where fs X @ fS Y iNVOIVES I’eeiiiiiiiiii e 94
Table 113 -FfS X ® FSY =S Y oo 94
Table 114 - Feature Selection Map S X.....vuuuii i 95
Table 115 - Feature Selection Map S Y ..o 95
Table 116 - The cases where fs X @ fs Y involves I’ ... 96
Table 117 - fS X @ fSY =18 Y e 96
Table 118 - Feature Selection Map S X.....uuuuiiii i 97
Table 119 - Feature Selection Map fS Y ...covuiiii i 97
Table 120 - The cases where fs X @ fsYinvolves I’ ... 97
Table 121 - fS X @ fSY =18 Y oo 98
Table 122 - Feature Selection Map S X....oouuuiiii e 99
Table 123 - Feature Selection Map S Y ..o 99
Table 124 - The cases where fs X @ fsYinvolves I’ ... 99
Table 125 - fS X @ fSY =18 Y oo 99
Table 126 - Feature Selection Map S X....ooovuiiiii i 100
Table 127 - Feature SelectioNn Map S Y ..o 100
Table 128 - The cases where fs X @ fs Y involves I’ ... 101
Table 129 - fS X @ fSY =18 Yt 101
Table 130 - Feature Selection Map S X.....oouuuiiiiii e 102
Table 131 - Feature SelectioNn Map S Y ..o 102
Table 132 - The case where fs X @ fs Y involves ‘' ... 103
Table 133 - Feature Selection Map S X.....oouuuiiiiiiiiieeecce e 104
Table 134 - Feature SelectioNn Map S Yooeiiuiii e 104
Table 135 - The cases where fs X @ fs Y involves I’ ... 104
Table 136 - Feature Selection Map 7S X.....oouuuuiiiiiiiiieeecee e 105
Table 137 - Feature SelectioNn Map S Yooviiiiiii e 105
Table 138 - The case where fs X @ fs Y involves ‘' ... 105

Xii

Table 139 - Feature Selection Map 1S X.....ooooiiiiiiiiii 106

Table 140 - Feature Selection Map fS Y ... 106
Table 141 - The cases where fs X @ fS Y inVOIVES I’eeeiiii i 107
Table 142 - Feature Selection Map 18 X....ooo i 108
Table 143 - Feature Selection Map fS Y ... 108
Table 144 - The cases where fs X @ fS Y inVOIVES I’eeeeiii i 108
Table 145 - Feature Selection Map 1S X....ooo i 109
Table 146 - Feature Selection Map fS Y ..o 109
Table 147 - The cases where fs X @ fS Y inVOIVES I’eeeiiii i 110
Table 148 - Feature Selection Map 18 X...ooooiiiiiiii 111
Table 149 - Feature Selection Map fS Y ..o 111
Table 150 - The cases where fs X @ fS Y inVOIVES I’ ...oeeeiiii i 111
Table 151 - Feature Selection Map 18 X....ooo oo 112
Table 152 - Feature Selection Map fS Y ... 112
Table 153 - The cases where fs X @ fS Y inVOIVES I’eeeiiii i 113
Table 154 - fS X Q@ fSY S8 Y oo 113
Table 155 - Feature Selection Map S X...oooo i 114
Table 156 - Feature Selection Map fS Y ..o 114
Table 157 - The cases where fs X @ fS Y inVOIVES I’oveeiiiiiiiiicee e 115
Table 158 - Feature Selection Map S X...oooo oo 116
Table 159 - Feature Selection Map fS Y ..o 116
Table 160 - The cases where fs X @ fS Y inVOIVES I’ ...oeeeeiiiiiiiiieee e 116
Table 161 - fS X @ fSY =18 Y oo 116
Table 162 - Feature Selection Map S X....oouiuieiii i 117
Table 163 - Feature Selection Map S Y ...ocoviiiiii i 118
Table 164 - The cases where fs X @ fsYinvolves I’ ... 118
Table 165 - fS X @ fSY =18 Yt 118
Table 166 - Feature Selection Map S X....oovuuuiiii i 119
Table 167 - Feature Selection Map S Y ..o 119
Table 168 - The cases where fs X @ fs Y involves I’ ... 120
Table 169 - fS X @ fSY =18 Yt 120
Table 170 - Feature Selection Map S X.....oovuuuiiii e 121
Table 171 - Feature SelectioNn Map S Y ..o 121
Table 172 - The cases where fs X @ fs Y involves I’ ... 122
Table 173 - fS X @ fSY =18 Y oo 122
Table 174 - Feature Selection Map S X....ooouuiiiiii e 123
Table 175 - Feature SelectioNn Map S Y ..o 123
Table 176 - The cases where fs X @ fs Y involves I’ ..., 124
Table 177 - Feature Selection Map S X.....oouuuiiiiiiiieeecce e 125
Table 178 - Feature SelectioNn Map S Y ..o 125
Table 179 - The case where fs X @ fs Y involves ‘' ... 125
Table 180 - Feature Selection Map S X.....oouuuiiiiieieeeecee e 126
Table 181 - Feature SelectioNn Map S Yooviiuiii e 127
Table 182 - Feature Selection Map 7S X.....oouuuuiiiiiiiieecee e 128
Table 183 - Feature Selection Map S Yooviiiiii i 128
Table 184 - fS X @ 1S Y oo 128
Table 185 - fS X @ fSY =18 Yt 132
Table 186 - fS X @ fSY =18 Xu oo 132

Table 187 - Feature Selection Map s X......oooiiiiiiiiiii 133

Table 188 - Feature Selection Map fS Y ..., 133
Table 189 - fS X ® FS Y oo 134
Table 190 - fS X ® fSY =S Y e 137
Table 191 - fS X ® fSY =18 X 137
Table 192 - Feature Selection Map 1S X...oooo i 138
Table 193 - Feature Selection Map fS Y ... 139
Table 194 - fS X @ FS Y oo 139
Table 195 - fS X ® fSY =8 Y oo 143
Table 196 - fS X ® fSY =18 Xuo oo 143
Table 197 - Feature Selection Map 1S X. ..o 144
Table 198 - Feature Selection Map fS Y ..o 144
Table 199 - fS X ® FS Y oo 145
Table 200 -fS X Q@ fSY =S Y e 146
Table 201 - Marking for childSetsg for the 5" eXample............ccocovevoveveeeeeeeeeeeeeeee 147
Table 202 - Marking for childSetsg for the 7" example............ccocoovovoeeeeeeeeeeeeeeeeee 148
Table 203 - Marking for childSetsg for the 20™ example.............coovoveeoeeeeceeeeeeeeen 148
Table 204 - Marking for childSetsg for the 24™ example.............coovovoveeeeeceeeeeeeeens 148
Table 205 - Marking for childSetsg for the 25™ eXample.............cocovovoveeeeeceeeeeeeeen 149
Table 206 - Marking for childSetsg for the 26™ example.............cooooveeeeeceeeeeeeeeens 149
Table 207 - Marking for childSetsg for the 27™ example............ocoovovoeoeeeeceeeeeeeees 150
Table 208 - Feature Selection Map 1S X...oooo oo 152
Table 209 - Feature Selection Map S Y ...coeiiiiiiii e 152
Table 210 - Feature Selection Map S X....oouuiuiiiii e 153
Table 211 - Feature Selection Map S Y ..o 153
Table 212 - Feature Selection Map S X....oovuuuiiii i 154
Table 213 - Feature Selection Map S Y ..o 155
Table 214 - Feature Selection Map S X....ooviiiiiii i e e 155
Table 215 - Feature Selection Map S Y ..o 156
Table 216 - Feature Selection Map S X....ooouuuiiiii i 159
Table 217 - Feature Selection Map S Y ..o 159
Table 218 - Feature Selection Map S X....ooovuuiiiii i 160
Table 219 - Feature Selection Map S Y ..o 160
Table 220 - Feature Selection Map S X.....oovuiiiii i 162
Table 221 - Feature Selection Map S Y ..o 162
Table 222 - Feature Selection Map S X.....oouuuiiiiii e 164
Table 223 - Feature SelectioNn Map S Yooiiiiiii e 164
Table 224 - Feature Selection Map S X.....oouuuiiii i 167
Table 225 - Feature SelectioNn Map S Y ..o 167
Table 226 - Feature Selection Map S X.....oouuuiiiiiiiiiiecee e 168
Table 227 - Feature Selection Map S Y ..o 168
Table 228 - Feature Selection Map S X.....oouuuiiiiiiiiieeecee e 169
Table 229 - Feature Selection Map S Y ..o 169
Table 230 - Feature Selection Map S X.....oouuuuiiiiiiiieeecee e 170
Table 231 - Feature Selection Map S Yooeiiuiiii e 170

Xiv

LIST OF FIGURES

FIGURES

Figure 1 — Mandatory Relation......... ..o e 4
Figure 2 — Optional Relation......... ..o 4
Figure 3 — Alternative Relation......... ..o 4
Figure 4 — Or Relation. 4
Figure 5 — Not-available Relation................oi ittt eeeeeeeeeee 4
Figure 6 — Requires Relation......... ..o 4
Figure 7 — Excludes Relation......... ..o 4
Figure 8 — The lattice that is used to define combinationeeiiiiiiiiiiiiiiiiiiiiiiiiieees 8
Figure 9 — Marketing LOCal VIEW...........uiiiiiiiiiiiiiiiiiiieeeieteeee ettt eeeeeeeeeee 9
Figure 10 — Engineering LOCAl VIEWouiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenees 10
Figure 11 —Management LOCAl VIEW.............uuuiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenneees 12
Figure 12 — Local View A from rule T(I1).... .o 20
Figure 13 — Local View B from rule T(I1).......ooinini i, 20
Figure 14 — Resolution of Figure 12 and Figure 13oiiiiiiiiiiiiiiiiieiieieeiiieeeeeeeeeeeeeeeeeeees 21
Figure 15 —Local View Afrom rule 2. 22
Figure 16 —Local View Bfrom rule 2. 22
Figure 17 — Resolution of Figure 15 and Figure 16oooviiiiiiii i, 23
Figure 18 — Local View A from rule 3(1).......oueniniiii e, 23
Figure 19 — Local View B from rule 3(1).......coneiiii e, 23
Figure 20 — Resolution of Figure 18 and Figure 19 ..., 24
Figure 21 — Local View A from rule 3(I1).......ccorinirii e 24
Figure 22 — Local View B from rule 3(I1)........coeenieii e 24
Figure 23 — Resolution of Figure 21 and Figure 22oouuiiiieii e 26
Figure 24 — Local View Afrom rule 3(I11).........oiirii e 26
Figure 25 — Local View B from rule 3(I11).........cooimi e 26
Figure 26 — Resolution of Figure 24 and Figure 25 ..., 28
Figure 27 — Local View Afrom rule 3(IV).....c.oeinii e 28
Figure 28 — Local View B from rule 3(IV).......coeiirii e 28
Figure 29 — Resolution of Figure 27 and Figure 28oooiiiiiiiiiiiicicce e, 30
Figure 30 — Local View Afrom rule 3(V).....coniiriii e 30
Figure 31 — Local View B from rule 3(V)......ooiiiii e 30
Figure 32 — Resolution of Figure 30 and Figure 31uuiiiiiiiiiiiiiiiieiieiiieiieeeeeeeeeeeeeeeeeeee 32
Figure 33 — Local View A from rule 4(I1).......oeininii e .33
Figure 34 — Local View B from rule 4(I1)........cooninini e 33
Figure 35 — Resolution of Figure 33 and FIgure 34uuuiiiiiiiiiiiiieiiieieeieeeeeeeeeennenennnnee 34
Figure 36 — Local View Afrom rule 4(I1)........coniii e 34
Figure 37 — Local View B from rule 4(I11)........coniii e 34
Figure 38 — Resolution of Figure 36 and FIQure 37uuuiiiiiiiieieeieeiiiieeieeeeeeeeeennenennnene 35
Figure 39 — Local View A from rule 4(IV)......oeie e 35
Figure 40 — Local View B from rule 4(IV)......ooiii e 35
Figure 41 — Resolution of Figure 39 and FIgure 40uuuuiiiiieiiieiieiiiiiiieeeieeeeeenneeeeeneee 36
Figure 42 — Local View A from rule 4(V).....oouinii e 37

XV

Figure 43 — Local View B from rule 4(V)......cooeiniie e 37

Figure 44 — Resolution of Figure 42 and Figure 43 ... 38
Figure 45 — Local View A from rule 4(V1)..... oo, 38
Figure 46 — Local View B from rule 4(VI)..... ..o, 38
Figure 47 — Resolution of Figure 45 and FIgure 46ouuuiiiiiiiiiiiiiiiiiiiiiiieieereieneeeneeees 40
Figure 48 — Local View A from rule S(I1)........cooeieii e, 40
Figure 49 — Local View B from rule S(I1)........cooninii e, 40
Figure 50 — Resolution of Figure 48 and Figure 49ooiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeveeeeeeeaeeees 42
Figure 51 — Local View A from rule S(II)........oooi e 42
Figure 52 — Local View B from rule S(II)...... ..o, 42
Figure 53 — Resolution of Figure 51 and Figure 52oouiiiiiiiiiiiiiiiiiiiiiiiieieieeeveeeeeeeees 43
Figure 54 — Local View A from rule 5(IV)........oi i 44
Figure 55 — Local View B from rule 5(IV)........coooiii e 44
Figure 56 — Resolution of Figure 54 and Figure 55iiiiiiiiiiiiiiiiiiiiiiiiieeveeeeeeeeeeeeeeees 46
Figure 57 — Local View A from rule 5(V)......coiii i 46
Figure 58 — Local View B from rule 5(V)........oiiii 46
Figure 59 — Resolution of Figure 57 and Figure 58uuuiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeieeeeeeees 48
Figure 60 — Local View A from rule 5(VI)..... ..o 48
Figure 61 — Local View B from rule 5(VI)..... ..o 48
Figure 62 — Resolution of Figure 60 and Figure 61uuiiiiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeees 51
Figure 63 — Local View A from rule S(VII)..... ... 51
Figure 64 — Local View B from rule S5(VII)........ooiii e 51
Figure 65 — Resolution of Figure 63 and FIgure 64uuuiiiiiiiiiiiiiiiiiiiiieeeeeeeeneeeenenne 53
Figure 66 — Local View A from rule S(VIIl).......cooiii e, 54
Figure 67 — Local View B from rule S5(VIIl).......ccooii i, 54
Figure 68 — Resolution of Figure 66 and Figure 67c.uviiiiieiiiiiiiiciee et 57
Figure 69 — Local View A from rule 5(IX).......ooeiirii e 57
Figure 70 — Local View B from rule 5(IX).......coeiniiiiii e 57
Figure 71 — Resolution of Figure 69 and Figure 70couvviiii i 66
Figure 72 — Local View Afrom rule 1(1).......coniirii e, 67
Figure 73 —Local View B from rule 1(1).......c.oneiiii e, 67
Figure 74 — Local View Afrom rul€ 4(1).......c.ononiniii e, 68
Figure 75 — Local View B from rul@ 4(1).........cooeiiiriii e 68
Figure 76 — Local View Afrom rule 5(1)........coeiirii e 69
Figure 77 — Local View B from rule 5(1)........cooeiirii e 69
Figure 78 — Local View A from rule 5(X).......coeiriiii e 70
Figure 79 — Local View B from rule 5(X)........cooiiiiiii e 70
Figure 80 — Algorithm for merging complete VIEWS.............uuuviiiiiiiiiiiiiiiiiiiiiiieeeeiieeeeeeeeeeneeees 80
Figure 81 —Local VIEW A. ... 90
Figure 82 —Local VIEW B.. ... 90
Figure 83 — Resolution of Figure 81 and Figure 82uuviiiiiiiiiiiiiiiiiiiiiiieeieeeeneeeenneene 91
Figure 84 — Local VIEW A. ... 91
Figure 85 —Local VIEW B.. ... 91
Figure 86 — Resolution of Figure 84 and Figure 85uiiiiiiiiiiiiiieiiiiiieieeieeeeeeeeeeeeenneees 93
Figure 87 — Local VieW A ... 93
Figure 88 —Local VIEW B.......oo 93
Figure 89 — Resolution of Figure 87 and Figure 88uiiiiiiiiiiiiiiiiiiiiiiiieierieeeenenenenenes 95
Figure 90 — Local VieW A 95
Figure 91 —Local VIeW Bi. ... 95

Figure 92 — Resolution of Figure 90 and Figure 91 ... 96

Figure 93 —Local VIEW A. 97
Figure 94 —Local VIEW B.. ... 97
Figure 95 — Resolution of Figure 93 and Figure 94ouiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeaeeees 98
Figure 96 —Local VIEW A.o 98
Figure 97 —Local VIEW B 98
Figure 98 — Resolution of Figure 96 and Figure 97euuiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeenes 100
Figure 99 —Local VIEW A. 100
Figure 100 — Local VIEW Bi........oi e 100
Figure 101 — Resolution of Figure 99 and Figure 100ouviiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeenns 102
Figure 102 — Local VIEW A. e 102
Figure 103 —Local VIEW Bi........oiii e 102
Figure 104 — Resolution of Figure 102 and Figure 103.............oueiiiiiiiiiiiiiieiiiiieieeeieeieieeeeees 103
Figure 105 — Local VIEW A. e 103
Figure 106 — Local VIEW Bi.........oiii e 103
Figure 107 — Resolution of Figure 105 and Figure 106...............eueiiiiiiiiiiiieiiiiiiiiiiiiiiiiieeeens 104
Figure 108 — Local VIEW A.o 105
Figure 109 —Local VIEW Bi........oiiii e 105
Figure 110 — Resolution of Figure 108 and Figure 109..............ouuiiiiiiiiiiiiiiiiiiiiiiiieieeiiieeeees 106
Figure 111 —Local VIEW A. e 106
Figure 112 —Local VIEW Bi........oii e 106
Figure 113 — Resolution of Figure 111 and Figure 112............ouiiiiiiiiiiiiiiieieieieeeeeeeeeieees 107
Figure 114 —Local VIEW A. e 107
Figure 115 —Local VIEW B... ..o e 107
Figure 116 — Resolution of Figure 114 and Figure 115...........oiiii i, 109
Figure 117 —LoCal VIEW A. ..o e e ae e 109
Figure 118 —Local VIEW B......oeiiii i e 109
Figure 119 — Resolution of Figure 117 and Figure 118............oviiiiiiiiiiccee e, 110
Figure 120 — LoCal VIEW A....eei e e e e ae e aas 110
Figure 121 —Local VIEW Bi.......oeii e, 110
Figure 122 — Resolution of Figure 120 and Figure 121...........oioiiiiiiiiiiicee e, 112
Figure 123 —LoCal VIEW A. ..o e e 112
Figure 124 —Local VIEW B......oniii e 112
Figure 125 — Resolution of Figure 123 and Figure 124..............ccooiiiiiiiiiiiiiiee e, 113
Figure 126 —LoCal VIEW A.....eiii e e 114
Figure 127 —Local VIEW B.......oeii e, 114
Figure 128 — Resolution of Figure 126 and Figure 127..............uuiiiiiiiiiiiiiiiiiiiiiiiieieeeinnenenes 115
Figure 129 — Local VIEW A.o e 115
Figure 130 —Local VIEW Bi........oiiii e 115
Figure 131 — Resolution of Figure 129 and Figure 130.............uuuuiiiiiiiiiiiiieeiiiiiiieeieieeneeeenns 117
Figure 132 —Local VIEW A.o e e 117
Figure 133 —Local VIEW Bi........onii e 117
Figure 134 — Resolution of Figure 132 and Figure 133...........ouviiiiiiiiiiiiiiiiiiieiieeieevveeiaeeeeees 118
Figure 135 —Local VIEW A. ... e 119
Figure 136 —Local VIeW B.........o e 119
Figure 137 — Resolution of Figure 135 and Figure 136...............uuviiiiiiiiiiiiiiiiiiiiiiiiieiieeeneens 120
Figure 138 — Local VIEW A. ... e 121
Figure 139 —Local VIeW B.......o e 121
Figure 140 — Resolution of Figure 138 and Figure 139.............uviiiiiiiiiiiiiiiiiieiiiiieeveeviivieeens 122

XVii

Figure 141 —Local VIEW A. e 123

Figure 142 —Local VIEW B........oi e 123
Figure 143 — Resolution of Figure 141 and Figure 142..............uiiiiiiiiiiiiiiiiiiiiiiieieiieeeiiieeens 124
Figure 144 — Local VIEW A. e 125
Figure 145 —Local VIEW B........oi e 125
Figure 146 — Resolution of Figure 144 and Figure 145...........oouiiiiiiiiiiiiiiiieeiiiiieieeeeeeiiiieeees 126
Figure 147 —Local VIEW A. e 126
Figure 148 —Local VIEW B........oi e 126
Figure 149 — Resolution of Figure 147 and Figure 148............oouiiiiiiiiiiiiiiiieiiiiieeieiieeiiiieeens 127
Figure 150 — Local VIEW A. e 127
Figure 151 —Local VIEW Bi........oii e 127
Figure 152 — Resolution of Figure 150 and Figure 151 ... 132
Figure 153 — Local VIEW A. e 133
Figure 154 —Local VIEW B........oiii e 133
Figure 155 — Resolution of Figure 153 and Figure 154.............oouiiiiiiiiiiiiiiiiiiiiiiieieeeeeivieees 138
Figure 156 — Local VIEW A.o 138
Figure 157 —Local VIEW Bi.........oii e 138
Figure 158 — Resolution of Figure 156 and Figure 157.............uiiiiiiiiiiiiiiiiiiiiiiiiiiiieiveiieeees 143
Figure 159 — Local VIEW A.o 144
Figure 160 — Local VIEW Bi.........oiiii e 144
Figure 161 — Resolution of Figure 159 and Figure 160................uuuiiiiiiiiiiiiiiiiiiiiiiiieieiiieenns 146
FIgUIE 162 — ViEW A e 151
Figure 163 — VieW B 151
Figure 164 — Level 0 Resolution of Figure 162 and Figure 163ccovieeiiiiieiieiiiiceeen, 153
Figure 165 — Level 1 Resolution of Figure 162 and Figure 163coiieiiiiiiiieeiieennn. 154
Figure 166 — Part of Level 2 Resolution of Figure 162 and Figure 163cccoevvvunnnnn... 155
Figure 167 — Part of Level 2 Resolution of Figure 162 and Figure 163cccovvvvvnnnnn... 156
Figure 168 — Level 2 Resolution of Figure 162 and Figure 163covvieiiiieieviiineenn. 157
FIQUre 189 — VW Ao e e e e 158
Figure 170 — VieW B 158
Figure 171 — Level 0 Resolution of Figure 169 and Figure 170ccovvvieeiiieiiiiiiiennnn. 159
Figure 172 — Part of Level 1 Resolution of Figure 169 and Figure 170cccoovvvnnnnn.... 161
Figure 173 — Level 1 Resolution of Figure 169 and Figure 170ccoviieiiieiiiiiiiiennnn. 161
Figure 174 — Level 2 Resolution of Figure 169 and Figure 170ccovvieiiieeiiiiiiiiennnn. 163
Figure 175 — Level 3 Resolution of Figure 169 and Figure 170ccovviieiiiieeiiiiiiennnn. 165
FIQUrE 176 — VW Ao e e e 166
Figure 177 — VieW B 166
Figure 178 — Level 0 Resolution of Figure 176 and Figure 177cevvevvevivieieveenennnnnnns 167
Figure 179 — Part of Level 1 Resolution of Figure 176 and Figure 177cccccvvvvvvvinnnnns 168
Figure 180 — Level 1 Resolution of Figure 176 and Figure 177cuvveveveveiiieviieennnnnnns 169
Figure 181 — Level 2 Resolution of Figure 176 and Figure 177cevveveveeeveivvienennnnnnns 171
Figure 182 — Level 3 Resolution of Figure 176 and Figure 177evvevievveviieeienennnnnnns 172

xviii

CHAPTER 1

INTRODUCTION

Main motivation behind Software Product Line (SPL) Engineering is to achieve high levels of
reusability by managing commonality and variability in product families [1]. SPL practice
suggests that feature modeling is an effective approach to manage commonality and
variability in an SPL [2]. Feature Models (FMs) support specifying, developing and managing

reusable assets [3].

Industrial experience suggests that FMs may encounter scalability problems. FMs with
thousands of features are common [4]. Scalability issue makes developing a single FM an
insurmountable task. Furthermore, such large FMs cannot be easily understood by
stakeholders. Adhering to the separation of concerns principle [5], rather than building one
big FM for the whole system, smaller FMs can be constructed by each stakeholder
separately and these models can be merged, when necessary, to obtain a unified view. This

approach holds promise to improve scalability and usability of FMs.

A viewpoint [5] addresses the concerns of some stakeholder. It reflects the stakeholder’'s
interest in the domain. A view that belongs to a specific viewpoint can be represented as an
FM. Merging of separate FMs which are produced by different stakeholders, can involve
disagreements that may or may not be resolved. For example, the situation where a feature
is “mandatory” in one view, but “optional” in another view, indicates a disagreement between

views.

There are other sources of disagreements between views, such as different names for
essentially the same feature or the same names for substantially different features. Such

issues are, however, beyond the scope of this thesis.

Consider the following example. Disagreements are likely to arise on which features must or
must not be included in a product between marketing and engineering departments in a
company. The engineering department can model a feature as mandatory due to design

constraints whereas the marketing department can model the same feature as optional due

to the pricing considerations. When merging these incompatible views, a conflict between
them is realized and a resolution is required.

One solution to this problem is asking departments to reach an agreement on a conflicting
feature. However, reaching an agreement needs time and effort. Besides, departments can
insist on their selections. Another solution is using a default merging procedure and

obtaining a resolution that hopefully satisfies both parties of the disagreement.

In this thesis, an approach from [4] is enhanced and a normative procedure for merging FMs
by local rules is proposed. Using the procedure, one can merge FMs with or without cross-
tree relationships between sibling features. Rules are presented with rationales behind them
while the merging procedure is being described step by step. Resolutions are also presented
and approach is demonstrated using examples. A summary of results from this work has
been presented in [6].

This thesis is organized as follows: Chapter 2 presents the background material about FMs,
views in a nutshell; discusses the results obtained and compares the results with related
literature. Chapter 3 describes a normative merging procedure with different examples and
cases. Chapter 4 gives the rules for constructing resolution FM with examples. Chapter 5
defines an algorithm to merge complete FMs. Chapter 6 characterizes the rules logically.

Finally, Chapter 7 presents some conclusions and future work.

CHAPTER 2

BACKGROUND

2.1 Feature Models

Often engineers and customers express the unique characteristics of products in terms of
features [7]. A feature is a distinctive characteristic of a product that reflects some
stakeholder’s concern about the domain [2].

FMs are extensively used in variability management in the context of SPL Engineering [8].
An FM consists of a hierarchically arranged set of features and relationships among them.
Feature Modeling allows stakeholders to describe commonalities and variabilities among
domain concepts within a family of products in terms of features [9]. FMs have proved to be
effective devices for identifying the characteristics of a product family in terms of
commonality and variability since they were introduced by Kang et al. in Feature-oriented
Domain Analysis (FODA) [10].

FMs include two types of relationships: decomposition relationships and cross-tree
relationships [3]. Decomposition relationships are between a parent feature and its children.
There are five types of decomposition relationships: Mandatory, Optional, Alternative, Or and
Not-available. Note that the not-available relation appears in [4] to account for those features
that are to be excluded in a particular view. Cross-tree relationships are used to specify
constraints between pairs of arbitrary features. Two types of cross-tree relationships are
considered: Requires and Excludes.

Relationships between a parent feature F, and its child features are given below. Assume

that the parent feature F;, is included in a product.

¢ Mandatory (Figure 1): Specifies that the child feature F; must be also included in the

product.

e Optional (Figure 2): Specifies that the child feature F; may or may not be included,

hence its presence in the product is optional.

e Alternative (Figure 3): Specifies that exactly one child feature from the group of

features { F;, F;} must be included.

o Or (Figure 4): Specifies that at least one child feature from the group { F;, F;} must be

included.

¢ Not-available (Figure 5): Specifies that the child feature { F; } must not be included.

Fp

l

Fi

Figure 1 — Mandatory Relation

Figure 3 — Alternative Relation

Fp

-

Figure 2 — Optional Relation

Figure 4 — Or Relation

Fp

|

Fi

Figure 5 — Not-available Relation

The requires relation shown in Figure 6 and the excludes relation shown in Figure 7

supplement the FM with dependency and mutual exclusion relationships, respectively [2].

Fi|| F
by

Figure 6 — Requires Relation

Fi||F
A

Figure 7 — Excludes Relation

A view that reflects a specific viewpoint of a stakeholder is represented as an FM.

Stakeholders may have their own FMs that reflect their points of view to the domain.

Merging process of separate FMs which are produced by different stakeholders often
encounters with conflicting views. For example, the fact that a feature is “mandatory” in one

view, but “optional” in another view indicates that there is a conflict between the views.

In [4], Mannion et al. propose some default conflict resolution rules to solve disagreements
between views. They claim that to solve disagreements, the rationale behind variability
should be understood. They use views to decrease complexity level, gain mapping of
stakeholders to the variability and derive products. Their conflict resolution rules provide a
mechanism for improving existing products, building new products easily and obtaining

trade-offs that often occur between pricing considerations and design constraints.

2.2 Related Work

Merging of FMs reflecting different views of the product family has recently attracted the

attention of many researchers.

Sagura et al. [12] provide a catalogue of merging rules using graph transformations. As they
stated, their approach needs a clear formal semantics. Equivalent FMs may lead to
nonequivalent resulting FMs. However, rules in this thesis have a formal semantic in terms of

the all products operation and in addition generate consistent results.

Acher et al. [9] define two operators for merging FMs: insert and merge. Merge operator can
be applied in two modes: union mode and intersection mode. Definitions of these modes and
the differences between modes decrease the applicability of the operations in a simple
manner. The algorithm presented by the authors cannot handle equal features effectively
due to lack of parent compatibility precondition. Moreover, this algorithm does not cover
cross-tree constraints. Furthermore, in some cases the resulting FM may represent products
that are not valid with respect to any of the source FMs.

Broek et al. [13] propose an approach that can merge FMs that include “requires” and
“excludes” constraints. However, in the first phase of the merging process, they replace the
FM with an equivalent FM which they call FM “normal”. Their resulting FM has at least all the
products of both constituent FMs, but it can have superfluous products compared with our
approach, as in [9]. Additionally, their approach seems complicated to implement, while the

procedure in this thesis can be implemented easily.

Niu et al. [14] proposed a method that can tolerate inconsistencies between FMs to be

merged. They model the resulting FM as consisting of different perspectives of stakeholders.

5

They do not intend to implement a single coherent model as a result of merging, instead they
delay inconsistency resolutions until the rationales which cause distinctive choices are better
understood. Their approach is opposite to the given approach in this thesis. Here, solving

disagreements as soon as they are detected is attempted.

Schobbens et al. [15] define an approach that involves three operations to merge FMs but do

not provide a rule to implement merging.

Clarke et al. [16] propose a method which checks whether two different views, which are
produced by different stakeholders, are compatible with each other. If they are so, they
provide a method to merge them. In real life, since each stakeholder views the domain from
their own perspective, conflicts on their FMs may arise. In this thesis, default rules for solving

disagreements are provided.

In [4] by Mannion et al., conflict resolution rules are introduced to integrate some views that
were inconsistent before, however, how resolutions are obtained is not explained. Only the
FMs to be merged and their resolution FMs are presented. Thus, rationales behind the rules
are not clear. Consequently, it may not be straight forward to extend the given rules to cover

all possible situations.

CHAPTER 3

MERGING BY CONFORMANCE

Every stakeholder has one or more viewpoints [5]. A view corresponding to a particular
viewpoint is represented as an FM. In other words, an FM embodies a view resulting from

the viewpoint of some stakeholder.

Since each stakeholder perceives the problem domain from their own point of view, conflicts
may occur. Composition by conformance aims to satisfy each stakeholder in the resulting
FM. In the scope of this thesis, merging by conformance will refer to the compositional

approach.

Merging will work by focusing on a single parent feature and a number of first level sibling
features at a time. Precondition of this procedure is root compatibility, i.e. the FMs to be

merged must have same root (parent) feature.

The partial FMs to be merged in a single step are called as Local View A and Local View B,
where A and B designate two stakeholders. FM resulting from the merging of views is called

as the resolution FM, and it is designated as R.

The merging procedure proceeds top to bottom along both input FMs. The full procedure is

covered in chapter 5.

Given a local view A with a parent feature p, the set of all the p’s child-sets is considered,
designated childSets,, obtained by deleting the parent feature p of A from each product
represented by A (treating A as a complete FM). Formally, childSetsa = { P -{p }: P €

allProductsa }.

A representation called feature selection map for a set of children is constructed on a set of

child features and symbolized as fs X or fs Y, where X € childSetsy and Y € childSetsg.

fs X and fs Y mark each child feature existing in A or B, respectively, with one of the

symbols: ‘+’, ‘-’ and /.

Let A and B be two local views to be merged, and let X € childSets, and let Y € childSetsg.
Rules for constructing fs X (with respect to the local views A and B) are as follows:

e All features that exist in X are marked as ‘+'.
e All child features that exist in local view A, but do not exist in X are marked as ‘-.

e All child features that exist in local view B, but do not exist in X are marked as /.

Note that these rules do not mark any feature with ‘I’; this may come up as a result of
combination (defined below).

The rules for constructing fs Y (with respect to local views A and B) are defined similarly.

The elements ', ‘+’, *~’ and ‘/’ form a lattice, depicted in figure.

N
o

Figure 8 — The lattice that is used to define combination

The 1 is the minimum, /" is the maximum element, and ‘+’ and ‘-’ are not comparable. The
combination of two selections, x and y, designated x ® v, is defined as the greatest lower

bound (glb) of the given symbols. For example, /@ -=-, + ® - =1, etc.

Note that these rules can be interpreted in terms of voting: A ‘+’ means a “yes” vote, a ‘-’
means a “no” vote, /" means “abstain” (or “don’t care”), and ‘!’ indicates a conflict situation

that cannot be resolved.

Combining two feature selection maps, fs X and fs Y, denoted fs X ® fs Y, is defined as the

feature-wise extension of the combination operation on symbols defined above.
Note the following properties of the ® operation:

o Itis commutative,i.e. s X® fsY =1fsY ® fs X for any child-sets X and Y.
e ltis idempotentive, i.e. fs X ® fs X = fs X for any child-set X.

e It is associative, i.e. let C be another local view to be merged and let Z € childSetsc
(fsX®1PY)®fsZ=1fsXQ® (fsY ® fs Z) for any child-sets X, Y and Z.

An operation called conform is constructed on fs X and fs Y representations and symbolized
as conformy and conformg. As a result of conform, and conformg operations, the childSetsg

is produced. Conform is essentially a filtering method that involves combination.

Once fs X @ fs'Y is obtained for each X and Y, conform, filters in the Y’s and conformg filters
in the X's that are in some sense “conforming”. More precisely, to apply conform, on
childSetsg, for each Y € childSetsg whether fs X @ fs Y = fs Y for some X € childSets, is
checked. If this is the case then Y is considered conforming to the local view A. Similarly, to
apply conformg on childSets,, for each X € childSets, whether fs X = fs Y ® fs X for some Y

€ childSetsg is checked. If this is the case then X is considered conforming to the local view
B.

The set of the child-sets of the resolution is constructed as follows:
childSetsg = conforma(childSetsg) U conformg(childSets,)

Note the following relationship:

childSetsa N childSetsg < childSetsg < childSets, U childSetsg

The results of conform operations make-up childSetsg. All of the ‘+’ marked features are
included in childSetsg and -’ marked features are discarded from childSetsg. Finally, this set
is used to build the FM R. Note that when childSetsgr is empty, no merging is possible by
default rules.

3.1 Introductory Example

An example from the home security system domain is presented. It is adapted from [1].

Figure 9 and Figure 10 represent local views of marketing and engineering departments,

respectively.
HomeSecurity
._.-" "-._I._.I
RoomSurveilance | | AdmittanceControl | | IntrusicnDetection

Figure 9 — Marketing Local View

HomeSecurity
o e
RoomSurveillance | | AdmittanceControl | | IntrusicnDetection

Figure 10 — Engineering Local View

As indicated in the Figure 9 and Figure 10 the marketing department models the Intrusion
Detection as an optional feature because of pricing considerations, but the engineering
department models the same feature as mandatory because of security constraints. When a
merger of these views is needed, a conflict between them is realized and a resolution is
required. Using merging by conformance, a resolution is obtained that hopefully satisfies

both parties of the disagreement.
First, childSetsy,r and childSetsg,g are defined.

The abbreviations rs, ac and id for Room Surveillance, Admittance Control and Intrusion

Detection are used, respectively.
childSetsyr = {{rs, ac, id },{rs, ac}}.
childSetsgng = {{ s, ac, id } }.

Second, fs X and fs Y representations are constructed as Table 1 and Table 2.

Table 1 - Feature Selection Map fs X

row number rs ac id
1 fs{rs, ac, id } + + +
2 fs{rs, ac} + + -

Table 2 - Feature Selection Map fs Y

row number rs ac id
1 fs{rs, ac, id } + + +

Next, combination for each fs X and fs Y is constructed. When there is a conflict on feature f,
result of combination is marked as ‘. Table 3 shows the conflict situation that cannot be
resolved by the default rules. In other words, Table 3 gives the result of combination where
fs X and fs'Y are not preserved.

10

Table 3 - The cases where fs X ® fs Y involves ‘I’

row number rs ac id
1 fs{rs, ac} + ¥ -
2 fs{rs, ac, id} + + +
3 fs{rs,ac}® fs{rs, ac, id } + + !

As mentioned above, to apply conformeg,g on childSetsy,r, for each X € childSetsy,, whether
fs X=1fsY ® fs X for some Y € childSetsg,g is checked. If this is the case then X is

considered conforming to the local view engineering.

When conformegyg is applied on childSetswyar, first whether fs { rs, ac, id} =fs{rs, ac, id} ® fs
{ rs, ac, id } is checked and { rs, ac, id } is considered conforming to the local view
engineering. Then, whether fs {rs, ac } = fs {rs, ac, id } @ fs { rs, ac } is checked and
presented fs { rs, ac } # fs {rs, ac, id } @ fs { rs, ac }. So, { rs, ac } is not considered

conforming to the local view engineering and shown in Table 3.

conforme,g operation picks the fs X's that are preserved in the resolution set. This fs X is on
the 3" row of Table 4.

Table4-fsX®fsY=fsX

row number rs ac id
1 fs{rs, ac,id } + + +
2 fs{rs, ac, id} + + +
3 fs{rs, ac, id} ® fs {rs, ac, id } + + +

Similarly, to apply conformy,, on childSetsgng, for each Y € childSetsgng whether fs X ® fs Y =
fs Y for some X € childSetsy,, is checked. If this is the case then Y is considered to the local

view marketing.

When conformy,, is applied on childSetsgng, first whether fs {rs, ac, id} ® fs {rs, ac, id } = fs

{rs, ac, id } is checked and { rs, ac, id } is considered conforming to the local view marketing.

conformy,,, operation picks the fs Y’s that are preserved in the resolution set. Table 5 shows

this fs Y which is on the 3™ row.

Table 5-fsX®fsY=fsY

row number rs ac id
1 fs{rs, ac,id} + + +
2 fs{rs, ac, id } + + +
3 fs{rs, ac,id}® fs{rs, ac, id } + + +

11

After constructing combinations, the situation in both tables fs X’s and fs Y’s are preserved
as noticed. Table 4 and Table 5 present the results of combinations where fs X's and fs Y’s

are preserved.
Performing the conform, and conformg operations, childSetsya, is obtained as following:
childSetsyan = {{rs, ac, id } }.

When the FM Management View is built by following rules given in chapter 4, the model
given in Figure 11 is obtained.

HomeSecurity
o e
RoomSurveilance | | AdmittanceControl | | IntrusicnDetection

Figure 11 — Management Local View

Rule number 2 in [4] produces the same result as obtained by given approach.

3.2 Case 1: Revising Mannion et al. Rules

Before illustrating merging by conformance using Mannion et al. Rules, some of the rules

given in Table 2 in [4] should be revised.

In [4], decomposition relationship or is denoted as multiple. In this thesis, or is used instead
of multiple as in [3]. Besides, in [4] propositional logic of viewpoints and resolutions are
misinterpreted in some cases. For example, to express the situation that “one set of children
have their selection constraint values set to mandatory”, they used a logical expression such
that (p<— (i Aj)) butitshouldbe ((p<i)A(p<«j))I[11]. In here, ‘p’ represents a
parent feature Fp; ‘', j’ represents first level sibling features of F,; F; and F; from Table 2
given in [4]. If and only if does not distribute over and. Therefore, these two expressions are

not logically equivalent to each other. It is proven below using the truth table.

Table 6 - Truth Table for Showing ((p < i)A(p<j))#(p< (iAj))

P i i peoi | pej iAN] [(peoi)A(pe]j) | pe(iA]))
0] o0 1 1 0 0 1
0 | 1 0 1 0 0 1

12

These logical expressions are corrected and given in the table below.

To correct rule number 1(I) and 1(ll) in [4], parent feature F, is included into the expressions.
In rule number 2, viewpoints and resolution are expressed using propositional logic instead
of literary language. In rule number 5(I1l), resolution is corrected according to the given rule
description. In addition, rule number 3(V), 5(1V), 5(V), 5(VIIl), 5(1X) and 5(X) are reproduced
according to the merging by conformance operation. Proofs of these rules are given in the
following section: Case 2: Reproducing Mannion et al. Rules. Furthermore, all misspelling

errors related to propositional logic and literary language are corrected.

The table consists of rules that are corrected in terms of misspelling and logical error.

13

Table 7 - Revised Rules

Rule

Viewpoint A

Viewpoint B

Resolution

1() When a feature in one
viewpoint has a selection
constraint value of not-available
but the same feature in another
viewpoint has a selection
constraint value of mandatory
then the complexity of the conflict
is too great to propose an
automatic solution and require
human intervention.

Fp > _'Fi

Too complex to
solve
automatically.

1(l) When a feature in one
viewpoint has a selection
constraint value of not-available
but the same feature in another
viewpoint has a selection
constraint value of optional then
the feature’'s selection constraint
value becomes not-available.

Fp g _'Fi

Fp > _'Fi

2 When a feature in one viewpoint
has a selection constraint value of
mandatory but the same feature in
another viewpoint has a selection
constraint value of optional then
the feature’s selection constraint
value becomes mandatory.

3(I) When the single child of a
parent feature in one viewpoint
has its selection constraint value
set to mandatory and the set of
children of the same parent
feature in another viewpoint have
their selection constraint values
set to alternative then the
selection constraint value of the
child that is the same become
mandatory but the selection
constraint values of the children
who are different become not-
available.

Fp‘_’(Fiea
Fi® Fy)

(FoeF)A(F,
o F)A(Fp e

“Fy)

3(Il) When the single child of a
parent feature in one viewpoint
has its selection constraint value
set to mandatory and the set of
children of the same parent
feature in another viewpoint have
their selection constraint values
set to or then the selection
constraint value of the child that is
the same become mandatory
butthe selection constraint values
of the children who are different
become optional.

Fo < (FVF
V Fy)

(Foo Fi)A(F;
- F)A(Fc—
Fo)

14

Table 7 (continued)

Rule

Viewpoint A

Viewpoint B

Resolution

3(lll) When the single child of a
parent feature in one viewpoint
has its selection constraint value
set to mandatory and the set of
children of the same parent
feature in another viewpoint have
their selection constraint values
set to optional then the selection
constraint value of the child that is
the same become mandatory but
the selection constraint values of
the children who are different
become optional.

(Fi—>Fp)A(
Fi—Fp) A
F« > Fp)

(Fo o Fi)A(F
—>Fp)/\(Fk—>
Fo)

3(IV) When the single child of a
parent feature in one viewpoint
has its selection constraint value
set to optional and the set of
children of the same parent
feature in another viewpoint have
their selection constraint values
set to alternative then the
selection constraint value of the
child that is the same become
alternative and the selection
constraint values of the children
who are different become
alternative.

FpH(Fi@ F]
® Fk)

Fk)

3(V) When the single child of a
parent feature in one viewpoint
has its selection constraint value
set to optional and the set of
children of the same parent
feature in another viewpoint have
their selection constraint values
set to or then the selection
constraint value of the child that is
the same become or and the
selection constraint values of the
children who are different become
or.

Fo < (FVF
V Fy)

Fo — (FiVFVFy
)

4(1) When the children of a parent
feature are the same in each
viewpoint but one set of children
have their selection constraint
values set to mandatory and the
other set of children have their
selection constraint values set to
alternative then the complexity of
the conflict is too great to propose
an automatic solution and require
human intervention.

(Foo Fi) A(
Fp<—>Fj)

Foor (F®F
)

Too complex to
solve
automatically.

15

Table 7 (continued)

Rule

Viewpoint A

Viewpoint B

Resolution

4(I1) When the children of a parent
feature are the same in each
viewpoint but one set of children
have their selection constraint
values set to mandatory and the
other set of children have their
selection constraint values set to
or then the children’s selection
constraint values become
mandatory.

(Fpeo Fi)A(
Fo— Fj)

Fo— (FVF
)

(FoeoF)A(Fp
<—>FJ-)

4(Il1) When the children of a
parent feature are the same in
each viewpoint but one set of
children have their selection
constraint values set to mandatory
and the other set of children have
their selection constraint values
set to optional then the children’s
selection constraint values
become mandatory.

(Fp o Fi)A(
Fo— Fj)

(Fi—Fp) A(
Fi— Fp)

(FpoFi)A(Fp

4(IV) When the children of a
parent feature are the same in
each viewpoint but one set of
children have their selection
constraint values set to alternative
and the other set of children have
their selection constraint values
set to or then the children’s
selection constraint values
become alternative.

Fo o (Fi®F;
)

Fo o (FiVF
)

Foo (F®F)

4(V) When the children of a
parent feature are the same in
each viewpoint but one set of
children have their selection
constraint values set to alternative
and the other set of children have
their selection constraint values
set to optional then the children’s
selection constraint values
become alternative.

Fo o (Fi®F;
)

(Fi—Fp) A(
Fi—Fp)

Foo (F®F)

4(VI) When the children of a
parent feature are the same in
each viewpoint but one set of
children have their selection
constraint values set to or and the
other set of children have their
selection constraint values set to
optional then the children’s
selection constraint values
become or.

Fo <> (FiVFj
)

(Fi—=Fp) A(
Fj—>Fp)

Fo = (FVF)

16

Table 7 (continued)

Rule Viewpoint A | Viewpoint B Resolution

5(1) When the children of a parent
feature in one viewpoint have their
selection constraint values set to
mandatory and the different but
overlapping set of children of the
same parent in another viewpoint | (Fp, < Fi)A(| Fp & (Fi® F;
have their selection constraint Fo = F)) @ Fy)
values set to alternative then the
complexity of the conflict is too
great to propose an automatic
solution and require human
intervention.

Too complex to
solve
automatically.

5(I1) When the children of a parent
feature in one viewpoint have their
selection constraint values set to
mandatory and the different but
overlapping set of children of the
same parent in another viewpoint
have their selection constraint | (Fo<— Fi)A(| Fp < (FiVF
values set to or then the selection Fo < Fj) V Fy)
constraint values of the children
who are the same become
mandatory but the selection
constraint values of the children
who are different become
optional.

(FpHFi)/\(FP
<—>F])/\§Fk—>Fp

5(Il1) When the children of a
parent feature in one viewpoint
have their selection constraint
values set to mandatory and the
different but overlapping set of
children of the same parent in
another viewpoint have their (Fy o Fi)A((FF=F)A(| (FoeFR)A(F
selection constraint values set to lg o II=-) FFoF)A(|« F)A(Fk—F,
optional then the selection P ! Fc = Fp))
constraint values of the children
who are the same become
mandatory but the selection
constraint values of the children
who are different become
optional.

17

Table 7 (continued)

Rule

Viewpoint A

Viewpoint B

Resolution

5(IV) When the children of a
parent feature in one viewpoint
have their selection constraint
values set to alternative and the
different but overlapping set of
children of the same parent in
another viewpoint have their
selection constraint values set to
orthen the selection constraint
values of the children who are the
same become alternative but the
selection constraint values of the
children who are different become
optional.

Fp<—>(F|®F]
)

Fo > (FiV Fj
V Fy)

(Foo (Fi®F))
A (Fi—Fp)

5(V) When the children of a
parent feature in one viewpoint
have their selection constraint
values set to alternative and the
different but overlapping set of
children of the same parent in
another viewpoint have their
selection constraint values set to
optional then the selection
constraint values of the children
who are the same become
alternative but the selection
constraint values of the children
who are different become
optional.

Fp<—>(F|®FJ
)

(Fi=>Fp)A(
Fi—Fp) A(
F« = Fp)

(Foo (Fi®F))
A (Fk—Fp)

5(VI) When the children of a
parent feature in one viewpoint
have their selection constraint
values set to multiple and the
different but overlapping set of
children of the same parent in
another viewpoint have their
selection constraint values set to
optional then the selection
constraint values of the children
who are the same become or but
the selection constraint values of
the children who are different
become optional.

Fo o (FVF
)

(Fi—>Fp) A(
Fi—Fp) A(
Fk— Fp)

(Foe (FVF))
/\(Fk_’Fp)

18

Table 7 (continued)

Rule

Viewpoint A

Viewpoint B

Resolution

5(VIl) When the children of a
parent feature in one viewpoint
have their selection constraint
values set to alternative and the
different but overlapping set of
children of the same parent in
another viewpoint have their
selection constraint values set to
alternative and there is only one
overlapping feature then the
selection constraint value of the
overlapping feature becomes
mandatory and the rest become
not-available.

Fp<—>(Fi® F]
@ Fy)

5(VIII) When the children of a
parent feature in one viewpoint
have their selection constraint
values set to alternative and the
different but overlapping set of
children of the same parent in
another viewpoint have their
selection constraint values set to
alternative and there is more than
one overlapping feature then the
selection constraint value of the
overlapping features become
alternative and the rest become
not-available.

Fp<—>(Fi® Fj
® Fk)

FpH(Fi@ F]
O Fn® Fy)

(Foo (Fi®F))
A (Fp e F) A(
Fo e Fn)A(Fp

« 7F,)

5(IX) When the children of a
parent feature in one viewpoint
have their selection constraint
values set to or and the different
but overlapping set of children of
the same parent in another
viewpoint have their selection
constraint values set to or then
the selection constraint value of
the overlapping features become
or, the rest become optional and
between non-overlapping features
from different viewpoints become
excludes.

Fo < (FVF
V Fy)

Fo < (FVF
VFnVFn)

(Fo (FVF))
A (Fk—=Fp) A(
Fm_)Fp)/\(Fn
— Fp) A (7 (FcA
Fm))A (7 (FcA
Fn))

19

Table 7 (continued)

Rule Viewpoint A | Viewpoint B Resolution
5(X) When the children of a
parent feature in one viewpoint
have their selection constraint
values set to mandatory and the

different but overlapping set of ' (Foe Fi)A(

children of the same parent in (FooF)A(Foo Fj)A(Too complex to
. ; . Foe F)A(solve

another viewpoint have their ‘l’: <—>JF) FoeoFn)A(automaticall

selection constraint values set to P K Fo < Fn) y

mandatory then the complexity of
the conflict is too great to propose
an automatic solution and require
human intervention.

3.3 Case 2: Reproducing Mannion et al. Rules

To illustrate given merging procedure, rules are going to be reproduced in the order given in
Table 7 - . Rules for “Difficult-to-Resolve Views” are going to be handled in the following

section. Here, these rules are skipped.
Regarding Rule 1(ll):

Figure 12 and Figure 13 represent the local views A and B, respectively. These are the

views from the rule number 1(ll).

Fp Fp
Fi Fi
Figure 12 — Local View A from rule 1(ll) Figure 13 — Local View B from rule 1(Il)

First, childSets, and childSetsg are determined.

The indices i, j, k etc. are used in the tables instead of F;, F;, Fy etc. for better readability.
childSetsa = {{ }}.

childSetsg ={{ },{i}}.

Second, fs X and fs Y representations are constructed as Table 8 and Table 9.

20

Table 8 - Feature Selection Map fs X

row number i
1 fs{ } -

Table 9 - Feature Selection Map fs' Y

row number i
1 fs{ } -
2 fs{i} +

Next, combination for each fs X and fs Y is constructed. Table 10 shows the conflict

situations that cannot be resolved.

Table 10 - The cases where fs X ® fs 'Y involves ‘!’

row number i
1 fs{ } -
2 fs{i} +
3 fs{ }®Ffs{i} !

To reduce clutter, hereafter, the tables that present the operation details for fs X @ fs Y do
not show the cases where X =Y since fs X ® fs X = fs X. Combining two feature selection
maps is a commutative operation, so when tables present fs X ® fs Y operation, they do not

present fs Y ® fs X operation for the same child-sets X and Y.

As mentioned above, the conformg operation picks the fs X’s that are preserved and the
conform, operation picks the fs Y’s that are preserved in the resolution set. From the results

of conform operations, childSetsg is constructed as follows: childSetsg = {{ }}.

When the FM R is built, the model given in Figure 14 is obtained.

Fp
Fi

Figure 14 — Resolution of Figure 12 and Figure 13

Regarding Rule 2:

Figure 15 and Figure 16 represent the local views A and B, respectively, from the rule

number 2.

21

e— I

Figure 15 — Local View A from rule 2 Figure 16 — Local View B from rule 2

First, childSets, and childSetsg are determined.
childSetsa = {{i}}.
childSetsg ={{ },{i}}.

Second, fs X and fs Y representations are constructed as Table 11 and Table 12.

Table 11 - Feature Selection Map fs X

row number i
1 fs{i} +

Table 12 - Feature Selection Map fs Y

row number i
1 fs{ } -
2 fs{i} +

Next, combination for each fs X and fs Y is constructed. Table 13 shows the conflict

situations that cannot be resolved.

Table 13 - The cases where fs X ® fs Y involves ‘I’

row number i
1 fs{i} +
2 fs{ } -
3 fs{i}®fs{ } !

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {|

1}

When the FM R is built, the model given in Figure 17 is obtained.

22

Ie— o

Figure 17 — Resolution of Figure 15 and Figure 16
Regarding Rule 3(l):

Figure 18 and Figure 19 represent the local views A and B, respectively, from the rule

number 3(1).
Fp Fp
I-\.
Fi Fil R Fx
Figure 18 — Local View A from rule 3(1) Figure 19 — Local View B from rule 3(1)

First, childSets, and childSetsg are determined.
childSetsy = {{i}}.
childSetsg = {{i},{j} {k}}

Second, fs X and fs Y representations are constructed as Table 14 and Table 15.

Table 14 - Feature Selection Map fs X

row number i j k
1 fs{i} + / /

Table 15 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{i} - + -
3 fs{k} - - +

Next, combination for each fs X and fs Y is constructed. Table 16 shows the conflict

situations that cannot be resolved.

23

Table 16 - The cases where fs X ® fs Y involves ‘I’

row number i j k
1 fs{i} + / /
2 fs {j} - + -
3 fs{i}®@fs{j} ! + -
4 fs{i} + / /
5 fs{k} - - +
6 fs{i}®fs{k} ! - +

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {|

1}

When the FM R is built, the model given in Figure 20 is obtained.

Fp
l 4
Fj

Fk

il

Figure 20 — Resolution of Figure 18 and Figure 19
Regarding Rule 3(ll):

Figure 21 and Figure 22 represent the local views A and B, respectively, from the rule

number 3(II).
Fp Fp
Fi F: Fi I;k
Figure 21 — Local View A from rule 3(ll) Figure 22 — Local View B from rule 3(Il)

First, childSets, and childSetsg are determined.
childSetsa = {{i}}.

childSetsg = {{i}, {j} {k} {i.j}. {i,k} {j k} {i,j,k}}.

Second, fs X and fs Y representations are constructed as Table 17 and Table 18.

24

Table 17 - Feature Selection Map fs X

row number i j k
1 fs{i} + / /

Table 18 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{j} - + -
3 fs{k} - - +
4 fs{i,j} + + -
5 fs{i, k} + - +
6 fs {j, k} - + +
7 fs {i,j, k} + + +

Next, combination for each fs X and fs Y is constructed. Table 19 shows the conflict

situations that cannot be resolved.

Table 19 - The cases where fs X ® fs 'Y involves ‘!’

row number
1 fs{i}
fs{i} -
fs{i}®fs{j} !
fs{i} +
fs{k} - -
fs{i}®fs{k} !
fs{i} +
fs{j, k} -
fs{i}®fs{j, k} !

+ | —

~ |+ | |~ [
1

©| | N| o] ;| K| w| N
[~ 4|+][]

+ |+~

Table 20 shows the fs Y’s that are preserved.

Table 20-fsX® fsY=fsY

row number
1 fs{i}
fs{i,j}
fs{i}®fs{i,j}="~fs{i,j}
fs{i}
fs{i, k}
fs{i}®@fs{i,k}="Fs{i, k}
fs{i}
fs{i,j, k}
fs{i}®fs{i,j,k}=Ffs{i,j, k}

~| + | + |~ [
1

|+ |+ |+ |+ + |
1

©| | N|o| ;| K| w| N
|+~ +]+~

+ |+ [~

25

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {i

LA {i k) {0), k)

When the FM R is built, the model given in Figure 23 is obtained.

Je

Figure 23 — Resolution of Figure 21 and Figure 22
Regarding Rule 3(lll):

Figure 24 and Figure 25 represent the local views A and B, respectively, from the rule

number 3(lII).
Fp Fp
| |
Fi g A [
Figure 24 — Local View A from rule 3(lIl) Figure 25 — Local View B from rule 3(lIl)

First, childSets, and childSetsg are determined.
childSets, = {{i}}.

childSetsg = {{ }L{i}, {i} {k}L{iikL{ik}{jk}{i,jk}}

Second, fs X and fs Y representations are constructed as Table 21 and Table 22.

Table 21 - Feature Selection Map fs X

row number i j k
1 fs{i} + / /

26

Table 22 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{j} - + -
4 fs{k} - - +
5 fs{i,j} + + -
6 fs{i, k} + - +
7 fs {j, k} - + +
8 fs{i,j, k} + + +

Next, combination for each fs X and fs Y is constructed. Table 23 shows the conflict

situations that cannot be resolved.

Table 23 - The cases where fs X ® fs Y involves ‘!’

row number

+ | -
~

fs {i}
fs{ } - - -
fs{i}®fs{ } ! -
fs{i} +
fs{ij} -
fs{i}®fs{j} ! -
fs {i} + /

fs {k} ; : +
fs{i}® fs{k} ! +
/

"

"

~ |+ |+ |~
1

fs{i} +
fs {j, k} ;
fs{i}®fs{j k} !

3| S| o] o N| o | A| w| N =

+ |+ [~

-
N

Table 24 shows the fs Y’s that are preserved.

Table 24 -fsX @ fsY=fsY

row number
1 fs{i}
fs{i,j}
fs{i}®fs{i,j}="~fs{i,j}
fs{i}
fs{i, k}
fs{i}®@fs{i,k}="Fs{i, k}
fs{i}
fs{i,j, k}
fs{i}®fs{i,j,k}=Ffs{i,j, k}

~ |+ | |~ [
1

|+ |+ ||+ |+]|
1

©| | N| o ;| K| w| N
[~ 4|+ |=]

+ |+ [~

27

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {i

LG {i k) {0) k)

When the FM R is built, the model given in Figure 26 is obtained.

Figure 26 — Resolution of Figure 24 and Figure 25
Regarding Rule 3(IV):

Figure 27 and Figure 28 represent the local views A and B, respectively, from the rule
number 3(IV).

Fp Fp
¥
.‘._4__.'\. 5
-][] [
Figure 27 — Local View A from rule 3(IV) Figure 28 — Local View B from rule 3(IV)

First, childSets, and childSetsg are determined.
childSetsa ={{ },{i}}.
childSetsg = { {i},{j}, {k}}

Second, fs X and fs Y representations are constructed as Table 25 and Table 26.

Table 25 - Feature Selection Map fs X

row number i j k
1 fs{ } - / /
2 fs{i} + / /

28

Table 26 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{j} - + -
3 fs{k} - - +

Next, combination for each fs X and fs Y is constructed. Table 27 shows the conflict

situations that cannot be resolved.

Table 27 - The cases where fs X ® fs Y involves ‘!’

row number i j k
1 fs{ } - / /
fs{i} + - -

fs{ }®fs{i} !
fs{i} +
fs {j} -

fs{i}®fs{j} !
fs{i} +
fs{k} -
fs{i}®fs{k} ! -

~|+ |+ [~
1

OO N || A|WIN

1
+ |+~

Table 28 shows the fs Y’s that are preserved.

Table 28-fsX®@ fsY=fsY

row number i j k
1 fs{ } - / /
2 fs{j} -+] -
3 fs{ }1®fs{j}=7rs{j} - + -
4 fs{ } - / /
5 fs{k} - - +
6 fs{ }®@fs{k}=Ffs{k} - - +

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {i

Lih{k}}

When the FM R is built, the model given in Figure 29 is obtained.

29

Fp
r'\\.
o]
v I ; .
Fi Fi Fk

Figure 29 — Resolution of Figure 27 and Figure 28
Regarding Rule 3(V):

Figure 30 and Figure 31 represent the local views A and B, respectively, from the rule
number 3(V).

Fp Fp
_ ra %
Fi Fi| | Fi||Fk
Figure 30 — Local View A from rule 3(V) Figure 31 — Local View B from rule 3(V)

First, childSets, and childSetsg are determined.
childSetsa = {{ },{i}}.

childSetsg = {{i}, {j} {k} {i,i} {i,k} {}. k}, {i,}, k}}.

Second, fs X and fs Y representations are constructed as Table 29 and Table 30.

Table 29 - Feature Selection Map fs X

row number i j k
1 fs{ } - / /
2 fs{i} + / /

Table 30 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{i} - + -
3 fs{k} - - +
4 fs{i,j} + + -
5 fs {i, k} + - +
6 fs{j, k} - + +
7 fs{i,j, k} + + +

30

Next, combination for each fs X and fs Y is constructed. Table 31 shows the conflict

situations that cannot be resolved.

Table 31 - The cases where fs X ® fs Y involves ‘!’

row number i j k
1 fs{ } - / /
2 fs{i} + - -
3 fs{ }®fs{i} ! - -
4 fs{ } - / /
5 fs{i,j} + + -
6 fs{ }®fs{i,j} ! + -
7 fs{ } - / /
8 fs{i, k} + +
9 fs{ }®fs{i k} ! - +
10 fs{ } - / /
11 fs{i,j, k} + + +
12 fs{ }®fs{ij k} ! + +
13 fs{i} + / /
14 fs{j} - + -
15 fs{i}®fs{j} ! + -
16 fs{i} + / /
17 fs{k} - - +
18 fs{i}®fs{k} ! - +
19 fs{i} + / /
20 fs{j, k} - + +
21 fs{i}®fs{j, k} ! + +

Table 32 shows the fs Y’s that are preserved.

31

Table 32-fsX®fsY=fsY

row number i j k
1 fs{ } - / /
2 fs {j} - + -
3 fs{ }@fs{j}="~s{j} - + -
4 fs{) - / /
5 fs{k} - - *
6 fs{ }®fs{k}=Ffs{k} - - +
7 fs{) - / /
8 fs{j, k} - * *
9 fs{ }®fs{jk}=fs{j k} - + +
10 fs {i} + / /
11 fs {i,j} + + -
12 fs{i}®@fs{i,j}=rfs{ij} - + -
13 fs {i} + / /
14 fs {i, k} + - +
15 fs{i}®fs{i,k}="Ffs{i k} + - +
16 fs{i} + / /
17 fs {i,j, k} + + A
18 fs{i}@fs{ijk}="fs{ij k} + + *

From the results of conform operations, childSetsg is constructed as follows: childSetsg = {{i

BBk kR LG (kL {1k})

When the FM R is built, the model given in Figure 32 is obtained.

R

Fi | |Fi||Fk

Figure 32 — Resolution of Figure 30 and Figure 31

Regarding Rule 4(ll):

Figure 33 and Figure 34 represent the local views A and B, respectively, from the rule

number 4(Il).

32

o @
Fi||F Fi|| A
Figure 33 — Local View A from rule 4(1l) Figure 34 — Local View B from rule 4(1l)

First, childSetsa and childSetsg are determined.
childSetsa = {{i,j}}.

Second, fs X and fs Y representations are constructed as Table 33 and Table 34.

Table 33 - Feature Selection Map fs X

row number i
1 fs{i, j} + +

(S—

Table 34 - Feature Selection Map fs Y

row number i j
1 fs{i} + -
2 fs{j} - +
3 fs{i,j} + +

Next, combination for each fs X and fs Y is constructed. Table 35 shows the conflict

situations that cannot be resolved.

Table 35 - The cases where fs X ® fs Y involves ‘I’

row number i j
1 fs{i,j} + +
2 fs{i} + -
3 fs{i,j}®@fs{i} + !
4 fs{i,j} + +
5 fs {j} - +
6 fs{i,j}®fs{j} ! +

From the results of conform operations, childSetsg is constructed as follows: childSetsg = {{

i j}}

33

When the FM R is built, the model given in Figure 35 is obtained.

Fp

e
e

Figure 35 — Resolution of Figure 33 and Figure 34
Regarding Rule 4(lll):

Figure 36 and Figure 37 represent the local views A and B, respectively, from the rule

number 4(lll).
Fp Fp
s & b
Fi| | F Fi||F
Figure 36 — Local View A from rule 4(lIl) Figure 37 — Local View B from rule 4(lll)

First, childSets, and childSetsg are determined.
childSetsa = {{i,j}}.

childSetsg ={{ }{i} {j}{i,j}}

Second, fs X and fs Y representations are constructed as Table 36 and Table 37.

Table 36 - Feature Selection Map fs X

row number i
1 fs{i,j} + +

(S—

Table 37 - Feature Selection Map fs Y

row number i j
1 fs{ } - -
2 fs{i} + -
3 fs{i} - +
4 fs {i,j} + +

34

Next, combination for each fs X and fs Y is constructed. Table 38 shows the conflict

situations that cannot be resolved.

Table 38 - The cases where fs X ® fs 'Y involves ‘!’

row number
1 fs{i,j}
fs{ } - -
fs{i,ji}®fs{ } ! !
fs{i,j} +
fs{i} +
fs{i,j}®fs{i} + !
fs{i,j} +
fs{i} -
fs{i,j}®fs{j} !

+ | -
4 [—

OO N[O O K| W|N

+ |+ |+

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {

When the FM R is built, the model given in Figure 38 is obtained.

Fp

e
e

Figure 38 — Resolution of Figure 36 and Figure 37
Regarding Rule 4(1V):

Figure 39 and Figure 40 represent the local views A and B, respectively, from the rule
number 4(1V).

Fp Fp
][5 e
Figure 39 — Local View A from rule 4(IV) Figure 40 — Local View B from rule 4(1V)

First, childSets, and childSetsg are determined.

childSetsp = {{i},{j}}.

35

childSetsg = {{i}, {j}, {i,j}}.

Second, fs X and fs Y representations are constructed as Table 39 and Table 40.

Table 39 - Feature Selection Map fs X

row number i j
1 fs{i} + -
2 fs{j} - |+

Table 40 - Feature Selection Map fs Y

row number i j
1 fs{i} + -
2 fs{i} - +
3 fs{i,j} + +

Next, combination for each fs X and fs Y is constructed. Table 41 shows the conflict

situations that cannot be resolved.

Table 41 - The cases where fs X ® fs 'Y involves ‘!’

row number i
1 fs{i} + -
fs{i} -

fs{i}®fs{j}
fs{i} +
fs{i,j} +

fs{i}®fs{i,j} +
fs{i} -
fs{i,j} +

fs{i}®fs{ij} !

(S—

-+

-+

OO N[O O K| WIN

+ |+ |+

From the results of conform operations, childSetsg is constructed as follows: childSetsg = {{

LAd)

When the FM R is built, the model given in Figure 41 is obtained.

Figure 41 — Resolution of Figure 39 and Figure 40

36

Regarding Rule 4(V):

Figure 42 and Figure 43 represent the local views A and B, respectively, from the rule
number 4(V).

Figure 42 — Local View A from rule 4(V) Figure 43 — Local View B from rule 4(V)

First, childSets, and childSetsg are determined.
childSetsa = {{i}, {j}}.

childSetsg ={{ }{i}L{j}{i.j}}

Second, fs X and fs Y representations are constructed as Table 42 and Table 43.

Table 42 - Feature Selection Map fs X

row number i j
1 fs{i} + -
2 fs{i} - [+

Table 43 - Feature Selection Map fs Y

row number i j
1 fs{ } - -
2 fs{i} + -
3 fs{j} - +
4 fs{i,j} +

Next, combination for each fs X and fs Y is constructed. Table 44 shows the conflict
situations that cannot be resolved.

37

Table 44 - The cases where fs X ® fs Y involves ‘I’

row number i J
1 fs{i} ¥ 3
2 fs{ } - -
3 fs{i}®fs{ } ! 3
4 fs{i} " -
5 fs{j} - +
6 fs{i}®fs{j} ! !
7 fs{i} "

8 fs (i} PR
9 fs{i}®fs{i,]} + !
10 fs{i} - ;
11 fs{ } - -
12 fs{j}®fs{ } - !
13 fs{i} - ¥
14 fs (i} n n
15 fs{i}®fs{i,j} ! ;

From the results of conform operations, childSetsg is constructed as follows: childSetsg = {{i

LA

When the FM R is built, the model given in Figure 44 is obtained.

Fp

Figure 44 — Resolution of Figure 42 and Figure 43
Regarding Rule 4(VI):

Figure 45 and Figure 46 represent the local views A and B, respectively, from the rule
number 4(VI).

Fp Fp

a1

Figure 45 — Local View A from rule 4(VI) Figure 46 — Local View B from rule 4(VI)

First, childSets, and childSetsg are determined.

38

childSetsy = {{i}, {j}, {i,j} }.

Ch”dsetSB ={{ }1{|}1 {J }1{|1J}}

Second, fs X and fs Y representations are constructed as Table 45 and Table 46.

Table 45 - Feature Selection Map fs X

row number i j
1 fs{i} + -
2 fs{i} - +
3 fs{i,j} + +
Table 46 - Feature Selection Map fs Y
row number i j
1 fs{ } - -
2 fs{i} + -
3 fs{j} - +
4 fs{i,j} + +

Next, combination for each fs X and fs Y is constructed. Table 47 shows the conflict

situations that cannot be resolved.

Table 47 - The cases where fs X ® fs Y involves ‘I’

row number i j
1 fs{i} + -
2 fs{ } - -
3 fs{i}®fs{ } ! -
4 fs{i} + -
5 fs{j} - +
6 fs{i}®Ffs{j} ! !
7 fs {i} +
8 fs{i,j} + +
9 fs{i}®fs{i,j} + !
10 fs{j} - +
11 fs{ } - -
12 fs{j}®fs{ } - !
13 fs{j} - +
14 fs {i,j} + +
15 fs{j}®fs{i,j} ! +
16 fs{i,j} + +
17 fs{ } ; -
18 fs{i,j}®fs{ } ! !

39

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {i

LA

When the FM R is built, the model given in Figure 47 is obtained.

Figure 47 — Resolution of Figure 45 and Figure 46
Regarding Rule 5(11):

Figure 48 and Figure 49 represent the local views A and B, respectively, from the rule

number 5(11).
" x
*
JIE 4
Figure 48 — Local View A from rule 5(Il) Figure 49 — Local View B from rule 5(Il)

First, childSets, and childSetsg are determined.
childSetsa = {{i,j}}.

childSetsg = {{i}, {j}, {i.j} {i.k} {j k} {i,j.k}}.

Second, fs X and fs Y representations are constructed as Table 48 and Table 49.

Table 48 - Feature Selection Map fs X

row number i j k
1 fs{i,j} + + /

40

Table 49 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{i} - + -
3 fs{i,j} + + -
4 fs{i, k} + - +
5 fs{j, k} - + +
6 fs{i,j, k} + + +

Next, combination for each fs X and fs Y is constructed.

situations that cannot be resolved.

Table 50 shows the conflict

Table 50 - The cases where fs X ® fs 'Y involves ‘!’

row number i j k

1 fs{i,j} + + /

2 fs{i} + - -

3 fs{i,j}®fs{i} + ! -

4 fs{i,j} + + /

5 fs{j} - + -

6 fs{i,j}®fs{j} ! + -

7 fs{i,j} + + /

8 fs {i, k} + - +

9 fs{i,j}®fs{i,k} + ! +

10 fs{i,j} + + /

11 fs{j, k} - + +

12 fs{i,j}®fs{j, k} ! + +

Table 51 shows the fs Y’s that are preserved.
Table 51 -fsX®fsY=fsY

row number i j k
1 fs{i,j} + + /
2 fs {i,j, k } r | o+ | +
3 fs{i,j}®fs{i,jk}="Ffs{i,j, k} + + +

From the results of conform operations, childSetsg is constructed as follows: childSetsg = {{

Lih {0k}

When the FM R is built, the model given in Figure 50 is obtained.

41

ul]
.,
J—
-

Figure 50 — Resolution of Figure 48 and Figure 49
Regarding Rule 5(111):

Figure 51 and Figure 52 represent the local views A and B, respectively, from the rule

number 5(l1I).
Fp Fp
e o C O RO
Fi||Fi Fi| | Fi||Fk
Figure 51 — Local View A from rule 5(1Il) Figure 52 — Local View B from rule 5(1ll)

First, childSets, and childSetsg are determined.
childSetsa = {{i,j}}.

childSetsg = {{ }, {i}, {i}{ij}{i.k} {j,k}{i,j.k}}.

Second, fs X and fs Y representations are constructed as Table 52 and Table 53.

Table 52 - Feature Selection Map fs X

row number i j k
1 fs{i,j} + + /

Table 53 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{i} - + -
4 fs{i,j} + + -
5 fs {i, k} + - +
6 fs{j, k} - + +
7 fs{i,j, k} + + +

42

Next, combination for each fs X and fs Y is constructed. Table 54 shows the conflict

situations that cannot be resolved.

Table 54 - The cases where fs X ® fs 'Y involves ‘!’

row number i j k

1 fs{i,j} + + /

2 fs{ } - - -

3 fs{i,j}®fs{ } ! ! -

4 fs{i,j} + + /

5 fs{i} + - -

6 fs{i,j}®fs{i} + ! -

7 fs{i,j} + + /

8 fs{j} - + -

9 fs{i,j}®fs{j} ! + -

10 fs{i,j} + + /

11 fs {i, k} + - +

12 fs{i,j}®fs{i, k} + ! +

13 fs{i,j} + + /

14 fs{j, k} - + +

15 fs{i,j}®fs{j, k} ! + +

Table 55 shows the fs Y’s that are preserved.
Table 55 -fsX @ fsY=fsY

row number i j k
1 fs{i,j} + + /
2 fs{i,j, k} + + +
3 fs{i,j}®fs{i,j,k}=Ffs{i,j, k} + + +

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {

bk}

When the FM R is built, the model given in Figure 53 is obtained.

ul]
.,
J—
-

Figure 53 — Resolution of Figure 51 and Figure 52

43

Regarding Rule 5(IV):

Figure 54 and Figure 55 represent the local views A and B, respectively, from the rule
number 5(1V).

Fp Fp
- i N
Fi||Fi Fi| [Fi||Fk
Figure 54 — Local View A from rule 5(1V) Figure 55 — Local View B from rule 5(1V)

First, childSets, and childSetsg are determined.
childSetsa = {{i}, {j}}.

childSetsg = {{i},{j}, {i,j} {i,k} {j. k}, {i,j.k}}.

Second, fs X and fs Y representations are constructed as Table 56 and Table 57.

Table 56 - Feature Selection Map fs X

row number i j k
1 fs{i} + - /
2 fs{j} - + /

Table 57 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{j} - + -
3 fs {i,j} + + -
4 fs{i, k} + - +
5 fs{j, k} - + +
6 fs{i,j, k} + + +

Next, combination for each fs X and fs Y is constructed. Table 58 shows the conflict

situations that cannot be resolved.

44

Table 58 - The cases where fs X ® fs Y involves ‘I’

row number i j k

1 fs{i} + - /

2 fs{j} - + -

3 fs{i}®@fs{j} ! ! -

4 fs{i} + - /

5 fs{i,j} + + -

6 fs{i}®fs{i,j} + ! -

7 fs{i} + - /

8 fs{j, k} - + +

9 fs{i}®fs{j, k} ! ! +

10 fs{i} + - /

11 fs{i,j, k} + + +

12 fs{i}®fs{i,j,k} + ! +

13 fs{j} - + /

14 fs{i,j} + + -

15 fs{j}®fs{i,j} ! + -

16 fs{j} - + /

17 fs {i, k} + - +

18 fs{j}®fs{i k} ! ! +

19 fs{j} - + /

20 fs{i,j, k} + + +

21 fs{j}®fs{i,j k} ! + +

Table 59 shows the fs Y’s that are preserved.
Table 59 -fsX @ fsY=fsY

row number i j k
1 fs{i} + - /
2 fs{i, k} + - +
3 fs{i}®fs{i,k}="Ffs{i, k} + - +
4 fs{j} - + /
5 fs{j k} - + +
6 fs{i}®fs{j k}="7fs{j k} - + +

From the results of conform operations, childSetsg is constructed as follows: childSetsg = {{|

LAk (U k)

When the FM R is built, the model given in Figure 56 is obtained.

45

Figure 56 — Resolution of Figure 54 and Figure 55

Regarding Rule 5(V):

Figure 57 and Figure 58 represent the local views A and B, respectively, from the rule

number 5(V).

Figure 57 — Local View A from rule 5(V)

First, childSets, and childSetsg are determined.

childSetsa ={{i}, {j}}

Figure 58 — Local View B from rule 5(V)

childSetsg = {{}, {i}, {j} {k} {i.j} {i, k} {i, k} {i.j, k}}.

Second, fs X and fs Y representations are constructed as Table 60 and Table 61.

Table 60 - Feature Selection Map fs X

row number i j k
1 fs{i} + - /
2 fs{j} - + /

Table 61 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{i} - + -
4 fs{k} - - +
5 fs{i,j} + + -
6 fs{i,k} + - +
7 fs{j, k} - +
8 fs {i,j, k} + + +

46

Next, combination for each fs X and fs Y is constructed. Table 62 -

situations that cannot be resolved.

Table 62 - The cases where fs X ® fs 'Y involves ‘!’

shows the conflict

row number i j k
1 fs{i} + - /
2 fs{ } - - -
3 fs{i}®fs{ } ! - -
4 fs{i} + - /
5 fs {j} - + -
6 fs{i}®fs{j} ! ! -
7 fs{i} + - /
8 fs{k} - - +
9 fs{i}®fs{k} ! - +
10 fs{i} + - /
11 fs{i,j} + + -
12 fs{i}®fs{i,j} + ! -
13 fs{i} + - /
14 fs{j, k} - + +
15 fs{i}®fs{j, k} ! ! +
16 fs{i} + /
17 fs{i,j, k} + + +
18 fs{i}®fs{i,j k} + ! +
19 fs{j} - + /
20 fs{ } - -
21 fs{j}®@fs{ } - ! -
22 fs{j} - + /
23 fs{k} - - +
24 fs{j}®fs{k} - ! +
25 fs{j} - + /
26 fs{i,j} + + -
27 fs{j}®fs{i,j} ! + -
28 fs{j} - + /
29 fs{i, k} + - +
30 fs{j}®fs{i, k} ! ! +
31 fs{j} - + /
32 fs {i,j, k} + + +
33 fs{j}®fs{i,j, k} ! + +

Table 63 shows the fs Y’s that are preserved.

47

Table 63 -fsXQ®fsY=fsY

row number i j k
1 fs{i} + - /
2 fs {i, k} + - +
3 fs{i}®fs{i,k}="~fs{i, k} + - +
4 fs{i} - + /
5 fs {j, k} 3 |+
6 fs{i}®fs{j, k}="fs{j k} - + +

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {|

BAh kg {U k3)

When the FM R is built, the model given in Figure 59 is obtained.

Figure 59 — Resolution of Figure 57 and Figure 58
Regarding Rule 5(VI):

Figure 60 and Figure 61 represent the local views A and B, respectively, from the rule
number 5(VI).

Fp Fip
G A [F][F
Figure 60 — Local View A from rule 5(VI) Figure 61 — Local View B from rule 5(VI)

First, childSets, and childSetsg are determined.
childSetsa = {{i},{j} {i,j}}

childSetsg = {{ } {i} {j}h {k}h{i, i} {i,k} {j k}{i,j,k}}.

Second, fs X and fs Y representations are constructed as Table 64 and Table 65.

48

Table 64 - Feature Selection Map fs X

row number i j k
1 fs{i} + - /
2 fs{j} - + /
3 fs{i,j} + + /
Table 65 - Feature Selection Map fs Y
row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{j} - + -
4 fs{k} - - +
5 fs{i,j} + + -
6 fs{i, k} + - +
7 fs{j, k} - +
8 fs {i,j, k} + +

Next, combination for each fs X and fs Y is constructed. Table 66 shows the conflict

situations that cannot be resolved.

49

Table 66 - The cases where fs X ® fs Y involves ‘I’

row number i j k
1 fs{i} + - /
2 fs{ } - - -
3 fs{i}®fs{ } ! - -
4 fs{i} + - /
5 fs{j} - + -
6 fs{i}®@fs{j} ! ! -
7 fs{i} + - /
8 fs{k} - - +
9 fs{i}®fs{k} ! - +
10 fs{i} + - /
11 fs{i,j} + + -
12 fs{i}®fs{i,j} + ! -
13 fs{i} + - /
14 fs{j, k} - + +
15 fs{i}®fs{j, k} ! ! +
16 fs{i} + - /
17 fs{i,j, k} + + +
18 fs{i}®fs{i,j k} + ! +
19 fs{j} - + /
20 fs{ } - -
21 fs{j}®fs{ } - ! -
22 fs{j} - + /
23 fs{k} - - +
24 fs{j}®fs{k} - ! +
25 fs{j} - + /
26 fs{i,j} + + -
27 fs{j}®fs{i,j} ! + -
28 fs{j} - + /
29 fs{i, k} + - +
30 fs{j}®fs{i, k} ! ! +
31 fs{j} - + /
32 fs{i,j, k} + + +
33 fs{j}®fs{i,j, k} ! + +
34 fs{i,j} + + /
35 fs{ } - - -
36 fs{i,j}®Ffs{ } ! ! -
37 fs{i,j} + + /
38 fs{k} - - +
39 fs{i,j}®fs{k} ! ! +
40 fs{i,j} + + /
41 fs {i, k} + - +
42 fs{i,j}®fs{i, k} + ! +
43 fs{i,j} + + /
44 fs{j, k} - + +
45 fs{i,j}®fs{j, k} ! + +

50

Table 67 shows the fs Y’s that are preserved.

Table 67 -fsXQ®fsY=fsY

row number i j k
1 fs{i} + - /
2 fs {i, k} + - +
3 fs{i}®fs{i,k}=Ffs{i, k} + - +
4 fs {j} - + /
g fs i, k} 3 + ¥
6 fs{j}®fs{j, k}="Ffs{j k} - + +
7 fs{i,j} + + /
8 fs{i,j, k} + + +
9 fs{i,j}®fs{i,j,k}="Ffs{i, j k} + + +

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {|

LA {iky {d k) {ij, k)

When the FM R is built, the model given in Figure 62 is obtained.

Fp
F| [Fl | Pk
Figure 62 — Resolution of Figure 60 and Figure 61

Regarding Rule 5(VII):

Figure 63 and Figure 64 represent the local views A and B, respectively, from the rule
number 5(VII).

Fp Fp
T e
.‘._4__.»\ 5 "-.4__.-
ﬁ Fj I;k Fl Fm F.n
Figure 63 — Local View A from rule 5(VII) Figure 64 — Local View B from rule 5(VII)

First, childSets, and childSetsg are determined.

childSetsp, = {{i}, {j}, {k}}.

51

childSetsg = {{i},{m}, {n}}

Second, fs X and fs Y representations are constructed as Table 68 and Table 69.

Table 68 - Feature Selection Map fs X

row number i j k m n
1 fs{i} + - - / /
2 fs{j} - + - / /
3 fs{k} - - + / /
Table 69 - Feature Selection Map fs Y
row number i j k m n
1 fs{i} + / / - -
2 fs{m} - / / + -
3 fs{n} - / / - +

Next, combination for each fs X and fs Y is constructed. Table 70 presents the results of

combinations where fs X’s and fs Y’s are not preserved.

52

Table 70-fsX®fsY

row number i j k m n
1 fs{i} + - - / /
2 fs{m} - / / + -
3 fs{i}®fs{m} ! - - + -
4 fs{i} + - - / /
5 fs{n} - / / - +
6 fs{i}®fs{n} ! - - - +
7 fs{j} - + - / /
8 fs{i} + / / - -
9 fs{j}®fs{i} ! + - + -
10 fs{j} - + - / /
11 fs{m} - / / + -
12 fs{j}®@fs{m}=rfs{j,m} - + - + -
13 fs{j} - + / /
14 fs{n} - / / - +
15 fs{j}®fs{n}=~fs{jn} - + - - +
16 fs{k} - - + / /
17 fs{i} + / / - -
18 fs{k}®fs{i} ! - + - -
19 fs{k} - - + / /
20 fs{m} - / / + -
21 fs{k}®@fs{m}=Ffs{k,m} - - + + -
22 fs{k} - - + / /
23 fs{n} - / / - +
24 fs{k}®fs{n}=fs{k,n} - - + - +

On the 12" row of Table 70, result of fs {j} ® fs{m} operation is equal to fs {j, m } which is
not equal to fs {j } or fs { m }. Similar situations are presented on the 15", 21°' and 24" rows.

This means that on these rows, fs X’s and fs Y’s are not preserved.

From the results of conform operations, childSetsg is constructed as follows: childSetsg = {{|

1}

When the FM R is built, the model given in Figure 65 is obtained.

Figure 65 — Resolution of Figure 63 and Figure 64

53

From the childSetsg’s that are obtained at the end of the solutions, resolution FMs can be

constructed by following the rules given in chapter 4.

In [4], all default conflict resolution rules produces the same results as obtained by given

approach.

3.4 Case 3: Difficult-to-Resolve Views

As mentioned above, some default conflict resolution rules for multi-view FMs are proposed
by Mannion et al. in [4]. But they do not suggest a solution for some cases. They remark that
“the complexity of the conflict is too great to propose an automatic solution and require
human intervention” for cases in rule number 1(1), 4(1), 5(1), 5(VIIl) and 5(IX). With merging
by conformance, proposing reasonable resolutions to the rules number 5(VIII) and 5(IX) in

[4] is possible.
Regarding Rule 5(VIi):

Figure 66 and Figure 67 represent the local views A and B, respectively. These are the

views from the rule number 5(VIII).

Fip Fp
;,\ __,q._:_::::*-l-.-.
GG Fil[F Fm| | Fn
Figure 66 — Local View A from rule 5(VIII) Figure 67 — Local View B from rule 5(VIII)

At first, childSets, and childSetsg are determined.
childSetsa = {{i}, {j} {k}}.

childSetsg ={{i}, {j} {m} {n}}.

Second, fs X and fs Y representations are constructed as Table 71 and Table 72.

54

Table 71 - Feature Selection Map fs X

row number i j k m n
1 fs{i} + - - / /
2 fs{j} - + - / /
3 fs{k} - - + / /
Table 72 - Feature Selection Map fs Y
row number i j k m n
1 fs {i} + - / - -
2 fs{j} - + / - -
3 fs{m} - - / + -
4 fs{n} - - / - +

Then, combination for each fs X and fs Y is constructed. Table 73 presents the results of

combinations where fs X’s and fs Y’s are not preserved.

55

Table 73-fsX®fsY

row number i j k m n
1 fs{i} + - - / /
2 fs{j} - + / - -
3 fs{i}®fs{j} ! ! - - -
4 fs{i} + - - / /
5 fs{m} - - / + -
6 fs{i}®fs{m} ! - - + -
7 fs{i} + - - / /
8 fs{n} - - / - +
9 fs{i}®fs{n} ! - - - +
10 fs{j} - + - / /
11 fs{m} - - / + -
12 fs{j}®fs{m} - ! - + -
13 fs{j} - + / /
14 fs{n} - - / - +
15 fs{j}®fs{n} S T I R
16 fs{k} - - + / /
17 fs{i} + - / - -
18 fs{k}®fs{i} ! - + - -
19 fs{k} - - + / /
20 fs{j} - + / - i
21 fs{k}®fs{j} N e
22 fs{k} - - + / /
23 fs{m} - - / + -
24 fs{k}®fs{m}=fs{k,m} - - + + -
25 fs{k} - - + / /
26 fs{n} - - / - +
27 fs{k}®fs{n}=fs{k,n} - - + - +

On the 24™ row of Table 73, result of fs {k}® fs { m } operation is equal to fs { k, m } which
is not equal to fs { k } or fs { m }. Similarly, on the 27" row of Table 73, result of fs {k}®fs{
n } operation is equal to fs { k, n } which is not equal to fs { k } or fs { n }. This means that on

the 24™ and 27" rows of Table 73, fs X's and fs Y’s are not preserved.

After constructing combinations, conform, and conformg operations are performed and

childSetsg is obtained as follows:
childSetsg ={{i}, {j}}

When the FM R is built, the model given in Figure 68 is obtained.

56

Figure 68 — Resolution of Figure 66 and Figure 67
Regarding Rule 5(IX):

Figure 69 and Figure 70 represent the local views A and B, respectively, from the rule
number 5(1X).

Fp Fp
& *\ , ,’ o
Fi| |Fi||Fk Fi||Fi||Fm||Fn
Figure 69 — Local View A from rule 5(IX) Figure 70 — Local View B from rule 5(IX)

At first, childSets, and childSetsg are determined.
childSetsa ={{i}, {j L {k} {i,j}L {i,k} {j k} {i,j,k}}

childSetsg ={{i}, {i L, {mL{n}{iih{im}h{inh{im}{ink{mn}{ijm} {i]
n}{i,mn}{jmn}{ijmn}}

Then, fs X and fs Y representations are constructed as Table 74 and Table 75.

Table 74 - Feature Selection Map fs X

row number i j k m n
1 fs {i} + - - / /
2 fs{j} - + - / /
3 fs{k} - - + / /
4 fs{i,j} + + - / /
5 fs{i, k} + - + / /
6 fs{j, k} - + + / /
7 fs{i, j, k} + + / /

57

Table 75 - Feature Selection Map fs Y

row number i j k m n
1 fs{i} + - / - -
2 fs{i} NN
3 fs{m} - - / + -
4 fs{n} - - / - +
5 fs{i,j} + + / - -
6 fs{i,m} + - / + -
7 fs{i,n} + - / - +
8 fs{j,m} - + / + -
9 fs{j,n} - + / - +
10 fs{m,n} - - / + +
11 fs {i, jm} + + / + -
12 fs {i,j,n} + + / - +
13 fs{i,m,n} + - / + +
14 fs{j,m,n} - / + +
15 fs{i,jmn} + + / + +

Then, combination for each fs X and fs Y is constructed. Table 76 presents the results of

combinations where fs X’s and fs Y’s are not preserved.

Table 76 -fs X ® fs Y

row number i j k m
1 fs {i} + - - / /
2 fs{j} - + / - -
3 fs{i}®fs{j} ! ! - - -
4 fs {i} + - - / /
5 fs{m} - - / + -
6 fs{i}®fs{m} ! - - + -
7 fs {i} + - - / /
8 fs{n} - - / - +
9 fs{i}®fs{n} ! - - - +
10 fs {i} + - - / /
11 fs{i,j} + + / - -
12 fs{i}®fs{i,j} + ! - - -
13 fs {i} + - - / /
14 fs {j, m} - + / + -
15 fs{i}®fs{j, m} T
16 fs {i} + - - / /
17 fs{j,n} - + / - +
18 fs{i}®fs{j,n} ! ! - - +
19 fs {i} + - - / /
20 fs{m,n} - - / + +
21 fs{i}®fs{m,n} ! - - + +

58

Table 76 (continued)

row number i j m n
22 fs{i} + - / /
23 fs{i,j,m} + + + -
24 fs{i}®fs{i,jm} + ! + -
25 fs{i} + - / /
26 fs{i,j,n} + + - +
27 fs{i}®fs{i,j,n} + ! - +
28 fs{i} + - / /
29 fs{j,m,n} - + + +
30 fs{i}®fs{j,m,n} ! ! + +
31 fs{i} + - / /
32 fs{i,j,m,n} + + + +
33 fs{i}®fs{i,jmn} + ! + +
34 fs{j} - + / /
35 fs{m} - + -
36 fs{j}®@fs{m} - ! + -
37 fs{j} - + / /
38 fs{n} - - - +
39 fs{j}®fs{n} - ! - +
40 fs{j} - + / /
41 fs{i,j} + + - -
42 fs{j}®fs{i,j} ! + - -
43 fs{j} - + / /
44 fs{i,m} + - + -
45 fs{j}®fs{i,m} ! ! + -
46 fs{j} - + / /
47 fs{i,n} + - - +
48 fs{j}®fs{i,n} ! ! - +
49 fs{j} - + / /
50 fs{m,n} - - + +
51 fs{j}®fs{m,n} - ! + +
52 fs{j} - + / /
53 fs{i,j,m} + + + -
54 fs{j}®fs{i, j,m} ! + + -
55 fs{j} - + / /
56 fs{i,j,n} + + - ¥
57 fs{j}®fs{i,j,n} ! + - +
58 fs{j} - + / /
59 fs{i,m,n} + - + +
60 fs{j}®fs{i,m,n} ! ! + +
61 fs{j} - + / /
62 fs{i,j,m,n} + + + +
63 fs{j}®fs{i,j,mn} ! + + +
64 fs {k} - - / /

59

Table 76 (continued)

row number k m n
65 fs{i} / - -
66 fs{k}®fs{i} + - -
67 fs{k} + / /
68 fs{j} / - -
69 fs{k}®fs{j} + - -
70 fs{k} + / /
71 fs{m} / + -
72 fs{k}®fs{m}=fs{k, m} + + -
73 fs{k} + / /
74 fs{n} / - +
75 fs{k}®fs{n}=fs{k,n} + - +
76 fs{k} + / /
77 fs{i,j} / - -
78 fs{k}®fs{i,j} + - -
79 fs{k} + / /
80 fs{i,m} / + -
81 fs{k}®fs{i,m} + + -
82 fs{k} + / /
83 fs{i,n} / - +
84 fs{k}®fs{i,n} + - +
85 fs{k} + / /
86 fs{j,m} / + -
87 fs{k}®fs{j,m} + + -
88 fs{k} + / /
89 fs{j,n} / - +
90 fs{k}®fs{j,n} + - +
91 fs{k} + / /
92 fs{m,n} / + +
93 fs{k}®fs{rlr11,}n}=fs{k,m, + + +
94 fs{k} + / /
95 fs{i,j,m} / + -
96 fs{k}®fs{i,jm} + + -
97 fs{k} + / /
98 fs{i,j,n} / - +
99 fs{k}®fs{i,jn} + - +
100 fs{k} + / /
101 fs{i,m,n} / + +
102 fs{k}®fs{i,m,n} + + +
103 fs{k} + / /
104 fs{j,m,n} / + +
105 fs{k}®fs{j,mn} + + +
106 fs{k} + / /
107 fs{i,j,m,n} / + +

60

Table 76 (continued)

row number i j k m n
108 fs{k}®fs{i,jm,n} ! ! + + +
109 fs{i,j} + + - / /
110 fs{m} - - / + -
111 fs{i,j}®fs{m} ! ! ; T 3
112 fs{i,j} + + - / /
113 fs{n} - - / - +
114 fs{i,j}®fs{n} ! ! - - +
115 fs{i,j} + + - / /
116 fs {i,m} + - / + -
117 fs{i,j}®@fs{i,m} + ! - + -
118 fs{i,j} + + - / /
119 fs{i,n} + - / - +
120 fs{i,j}®@fs{i,n} + ! - - +
121 fs{i,j} + + - / /
122 fs{j,m} - + / + -
123 fs{i,j}®@fs{j,m} ! + - + -
124 fs{i,j} + + - / /
125 fs{j,n} - + / +
126 fs{i,j}®@fs{j,n} ! + - - +
127 fs{i,j} + + - / /
128 fs{m,n} - - / + +
129 fs{i,j}®fs{m,n} ! ! - + T
130 fs{i,j} + + - / /
131 fs{i,m,n} + - / + +
132 fs{i,j}®fs{i,m,n} + ! - + +
133 fs{i,j} + + - / /
134 fs{j,m,n} - + / + +
135 fs{i,j}®fs{j,m,n} ! + - + +
136 fs{i, k} + - + / /
137 fs{j} - + / - -
138 fs{i,k}®fs{j} ! ! + - -
139 fs{i, k} + - + / /
140 fs{m} - - / + -
141 fs{i,k}®fs{m} ! - + + -
142 fs{i, k} + - + / /
143 fs{n} - - / - +
144 fs{i,k}®fs{n} ! - + - +
145 fs{i, k} + - + / /
146 fs {i,j} + + / - -
147 fs{i,k}®fs{i,j} + ! + - -
148 fs{i, k} + - + / /
149 fs{i,m} + - / + -
150 fs{i,k}®fs§ni,}m}=fs{i,k, + i + +)

61

Table 76 (continued)

row number i j k m n
151 fs{i, k} + - + / /
152 fs{i,n} + - / - +
153 fs{i,k}®fs{i},n}=fs{i,k, + i + i .

n
154 fs{i, k} + - + / /
155 fs{j,m} - + / + -
156 fs{i,k}®fs{j,m} ! ! + + -
157 fs{i, k} + - + / /
158 fs{j,n} - + / - +
159 fs{i,k}®fs{j,n} ! ! + - +
160 fs{i, k} + - + / /
161 fs{m,n} - - / + +
162 fs{i,k}®fs{m,n} ! - + + +
163 fs{i, k} + - + / /
164 fs{i,j,m} + + / + -
165 fs{i,k}®fs{i,j,m} + ! + + -
166 fs{i, k} + - + / /
167 fs{i,j,n} + + / - +
168 fs{i,k}®fs{i,j,n} + ! + - +
169 fs{i, k} + - + / /
170 fs{i,m,n} + - / + +
171 fs{i,k}®fs{i,m,n}="fs{i, +) + + +
k, m,n}
172 fs{i, k} + - + / /
173 fs{j,m,n} - + / + +
174 fs{i,k}®fs{j,m,n} ! ! + + +
175 fs{i, k} + + / /
176 fs{i,j,m,n} + + / + +
177 fs{i,k}®fs{i,j,m,n} + ! + + +
178 fs{j, k} - + + / /
179 fs{i} + - / - -
180 fs{jk}®fs{i} ! ! + - -
181 fs{j, k} - + + / /
182 fs{m} - - / + -
183 fs{j,)k}®fs{m} - ! + + -
184 fs{j, k} - + + / /
185 fs{n} - - / - +
186 fs{j,k}®fs{n} - ! + - +
187 fs{j, k} - + + / /
188 fs {i,j} + + / - -
189 fs{jk}®fs{i,j} ! + + - -
190 fs{j, k} - + + / /
191 fs {i,m} + - / + -
192 fs{j,k}®fs{i,m} ! ! + + -

62

Table 76 (continued)

row number i j k m n
193 fs{j k} - + + / /
194 fs{i,n} + - / - +
195 fs{j, k}®fs{i,n} ! ! + - +
196 fs{j, k} - + + / /
197 fs{j,m} - + / + -
198 fs{j,k}®fsr{nj,}m}=fs{j,k, i + + +)
199 fs{j k} - + + / /
200 fs{j,n} - + / - +
201 fs{i,k}®fsr{li},n}=fs{i,k,] + + - +
202 fs{j k} - + + / /
203 fs{m,n} - - / + +
204 fs{j,;) k}®fs{m,n} - ! + + +
205 fs{j, k} - + + / /
206 fs{i,j,m} + + / + -
207 fs{j, k}®fs{i,j,m} ! + + + -
208 fs{j, k} - + + / /
209 fs{i,j,n} + + / - +
210 fs{j, k}®fs{i,j,n} ! + + - +
211 fs{j, k} - + + / /
212 fs{i,m,n} + - / + +
213 fs{j,k}®fs{i,m,n} ! ! + + +
214 fs{j, k} - + + / /
215 fs{j,m,n} - + / + +
216 fs{j,k}®fs{jmn}="Fs{j,) + + + +

k,m,n}
217 fs{j, k} + + / /
218 fs{i,j,m,n} + + / + +
219 fs{j,) k}®fs{i,jymn} ! + + + +
220 fs{i,j, k} + + + / /
221 fs{i} + - / - -
222 fs{i,jk}®fs{i} + ! + - -
223 fs{i,j, k} + + + / /
224 fs{j} - + / - -
225 fs{i,jk}®fs{j} ! + + - -
226 fs{i,j, k} + + + / /
227 fs{m} - - / + -
228 fs{i,jjk}®fs{m} ! ! + + -
229 fs{i,j, k} + + + / /
230 fs{n} - - / - +
231 fs{i,jk}®fs{n} ! ! + - +
232 fs{i,j, k} + + + / /
233 fs{i,m} + - / + -

63

Table 76 (continued)

row number i i K - -
234 fs{i,j, k}®fs {i,m} v |+ |+ | -
235 fs {i,j, k} + T " / ;
236 fs{i,n} + -] : "
237 fs {i,j, k}®fs{i,n} ¥ ! T : "
238 fs{i,j, k} + + + / /
239 fs{j,m} - + / + N
240 fs{i,jk}®fs{j,m}] + " " -
241 fs {i.j. k) v |+ [1 |
242 fs{in} S A I
243 fs{l,j,k}@fS{j,n} ! + + - +
244 fs {i.j. k) RN
245 fs{m,n} - - / ; +
246 fs{i,jk}®fs{m,n} ! ! + + +
247 fs (i, k) s e | v [7|
248 fs{i,j,m} + + / + 3
249 fS{i,j,k}.Qfs{i,j,m}=fs{ + + + + -
i,j,k, m}
250 fs {i,j, k} n + " ; ;
251 fs {i,j,n} + T / : .
252 fs{i,jk}y®fs{ijnt=fs{i, | | . . _ .
j kn}
253 fs{i,j, k} + T T / ;
254 fs{i,m,n} + - / + +
255 fs{i,jk}®fs{i,m,n} + I - + +
256 fs {i,j, k} F R e
257 fs{j,m n} S U A R
258 fs{i,jk}®fs{j,mn} I + + + "
259 fs {i.j. k) v+ |+ | 1 | 1
260 fs {i,j,m,n} + T / " "
261 fs{i,j,k}.QfS{i,j,m,n}=fs + + + N .
{i,j,k, m,n}

On the 72" row of Table 76, result of fs {k}® fs{m } operation is equal to fs { k, m } which
is not equal to fs { k } or fs { m }. Similar situations are presented on the 75", 93", 150",
153", 171, 198", 201, 216™, 249", 252™, and 261°' rows. This means that on these rows,

fs X’'s and fs Y’s are not preserved.

Table 77 shows the fs Y’s that are preserved.

64

Table 77 -fsX® fsY=fsY

row number i j m n
1 fs{i} + - / /
2 fs{i,m} + - + -
3 fs{i}®@fs{im}=Ffs{i,m} + - + -
4 fs{i} + - / /
5 fs{i,n} + - - +
6 fs{i}®fs{i,n}="fs{i,n} + - - +
7 fs{i} + - / /
8 fs{i,m,n} + - + +
9 fs{i}®fs{i,r:n},n}=fs{i,m, +) + +
10 fs{j} - + / /
11 fs{j,m} - + + -
12 fs{j}®fs{jm}=Ffs{jm} - + + -
13 fs{j} - + / /
14 fs{j,n} - + - +
15 fs{j}®fs{jn}="Ffs{jn} - + - +
16 fs{j} - + / /
17 fs {j, m, n} - + + +
18 fS{j}®fS{j,:'l},n}=fS{j, m, _ + + +
19 fs{i,j} + + / /
20 fs{i,jm} + + + -
21 fs{i,it®@fs{i,j,m}=fs{ij | , | . .|

m}
22 fs{i,j} + + / /
23 fs{i,jn} + + - +
24 fS{i,j}@fs{ni,}j,n}=f3{i,j, + + _ +
25 fs{i,j} + + / /
26 fs{i,j,m,n} + + ¥ ¥
27 fs{i!j}®fs.{i!jymyn}=fs{is + + + +
jym,n}

Table 78 shows the fs X’s that are preserved.

65

Table 78 -fs X ® fsY =fs X

row number i
1 fs{i, k} +
fs{i} + -
fs{i,k}®fs{i}=~fs{i k} +
fs{j, k} -
fs{i} -
fs{j, k}®@fs{j}="~s{j k} -
fs{i,j, k}
fs{i,j}
fs{i,j,k}®fs{i,j}="Ffs{i,j, k}

©|o| || o A w| N
+l+|+ |+ +]|+
+l~|+|+|~|+|+|~]|+|x
~~
~

+ |+ |+

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {|
FObih{L kL {imh{in} {j kL {hmh{jn}k{imn}{jmn} {ijk}{ijm
Bibhn}{ij,mn}}

When the FM R is built, the model given in Figure 71 is obtained.

Fp

mi|[F | [Fi|[Fm|[Fn
Figure 71 — Resolution of Figure 69 and Figure 70

From the childSetsg’s that are obtained at the end of the solutions, resolution FMs can be

constructed by following the rules given in chapter 4.

3.5 Case 4: Non-Resolvable Views

For cases in rule number 1(1), 4(1), 5(I) and 5(X), proposing an automatic default solution

seems not possible. To solve the complexity of conflict, human intervention is required.

They suggest a solution for case in rule number 5(X) in [4], but viewpoints and rule definition
are not compatible to each other. Their solution is invalid when rule definition is accepted as
correct. When rules are revised on section 3.2, case in rule number 5(X) is determined as

“difficult-to-resolve”.

66

Regarding Rule 1(l):

Figure 72 and Figure 73 represent the local views A and B, respectively. These are the

views from the rule number 1(I).

Fp
Fi

Figure 72 — Local View A from rule 1(I) Figure 73 — Local View B from rule 1(1)

J—

First, childSets, and childSetsg are determined.
childSetsp ={{ }}.
childSetsg = {{i}}.

Second, fs X and fs Y representations are constructed as Table 79 and Table 80.

Table 79 - Feature Selection Map fs X

row number i
1 fs{ } -

Table 80 - Feature Selection Map fs Y

row number
1 fs{i} +

Next, combination for each fs X and fs Y is constructed. Table 81 shows the conflict

situations that cannot be resolved.

Table 81 - The cases where fs X ® fs Y involves ‘I’

row number i
1 fs{ } -
2 fs{i} +
3 fs{ }®fs{i} !

67

The conformg operation picks the fs X’s that are preserved and the conform, operation picks
the fs Y’s that are preserved in the resolution set. There is no such fs X’s and fs Y’s. So,

solving the conflict with merging by conformance is not possible.
Regarding Rule 4(l):

Figure 74 and Figure 75 represent the local views A and B, respectively, from the rule

number 4(1).
Fp Fp
o @
Fi||Fi Fi||Fi
Figure 74 — Local View A from rule 4(1) Figure 75 — Local View B from rule 4(1)

First, childSetss and childSetsg are determined.
childSetsa = {{i,j}}.
childSetsg ={{i},{j}}.

Second, fs X and fs Y representations are constructed as Table 82 and Table 83.

Table 82 - Feature Selection Map fs X

row number i
1 fs{i,j} + +

(S—

Table 83 - Feature Selection Map fs Y

row number i j
1 fs{i} + -
2 fs{i} - |+

Next, combination for each fs X and fs Y is constructed. Table 84 shows the conflict

situations that cannot be resolved.

68

Table 84 - The cases where fs X ® fs Y involves ‘I’

row number i J
1 fs{i,j} + +
2 fs{i} + -
3 fs{i,j}®fs{i} + !
4 fs{i,j} + +
5 fs{j} - +
6 fs{i,j}®fs{j} ! +

There is no fs X’s and fs Y’s that are preserved in the resolution set. So, solving the conflict

with merging by conformance is not possible.
Regarding Rule 5(1):

Figure 76 and Figure 77 represent the local views A and B, respectively, from the rule

number 5(1).
Fp Fp
.'.l'. I N
! -._.I.. .‘..4_,.'\ 5
& 8 S ,
Fi||Fj Fi||Fi||Fk
Figure 76 — Local View A from rule 5(1) Figure 77 — Local View B from rule 5(1)

First, childSets, and childSetsg are determined.
childSetsa = {{i,j}}.
childSetsg = {{i},{j} {k}}

Second, fs X and fs Y representations are constructed as Table 85 and Table 86.

Table 85 - Feature Selection Map fs X

row number i
1 fs{i,j} + + /

(S,

Table 86 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{i} - + -
3 fs{k} - - +

69

Next, combination for each fs X and fs Y is constructed. Table 87 -

situations that cannot be resolved.

shows the conflict

Table 87 - The cases where fs X ® fs Y involves ‘!’

row number

1

fs{i,j}

4 [—
~

fs{i}

fs{i,j}®@fs{i}

fs {i,j}

|+ |+ |+
1
1

fs{j}

fs{i,j}®@fs{j}

fs{i,j}

OO N[O O K| W|N

fs{k}

|+ [~

fs{i,j}®@fs{k}

There is no fs X’s and fs Y’s that are preserved in the resolution set. So, solving the conflict

with merging by conformance is not possible.

Regarding Rule 5(X):

Figure 78 and Figure 79 represent the local views A and B, respectively, from the rule

number 5(X).

Fp
I-\.
2N
o o ®
Fi || Fi|| Fk

Figure 78 — Local View A from rule 5(X)

First, childSets, and childSetsg are determined.

childSetsa = {{i,j, k}}.

childSetsg = {{i,j,m,n}}.

ne

Figure 79 — Local View B from rule 5(X)

Second, fs X and fs Y representations are constructed as Table 88 and Table 89 - .

Table 88 - Feature Selection Map fs X

row number

1

fs{i,j, k}

70

Table 89 - Feature Selection Map fs Y

row number i k m n
1 fs{i,j,m,n} + + /

(S

+
+

Next, combination for each fs X and fs Y is constructed. Table 90 presents the results of

combinations where fs X’s and fs Y’s are not preserved.

Table 90 - The cases where fs X ® fs 'Y involves ‘!’

row number i j k m n

1 fs{i,j, k} + + + / /

2 fs{i,j,m,n} + + / + +

3 fs{i,pky@fs{iimny | | . | , | , | .
={i,j,k,m,n}

There is no fs X’s and fs Y’s that are preserved in the resolution set. So, solving the conflict
with merging by conformance is not possible.

3.6 Case 5: Cross-tree Constraints Between Siblings

Merging procedure also constructs resolutions for conflicts within views involving cross-tree

constraints between child features. Examples can be found in Appendix A.

71

CHAPTER 4

CONSTRUCTING RESOLUTION FM

In this chapter, a procedure to construct the (partial) resolution model from its child sets,

resulting from the merger of two local views is presented.

4.1 Rules for Constructing Resolution FM

First, a table with columns for the child features of the parent p, and rows for childSetsy is

constructed. Mark each entry of the table with a ‘1’ if the feature is in the childset, with a ‘0’

otherwise.

Second, the following rules are applied in the order given.

i)
i)
ii)

Vi)

A column with all 1's belongs to a mandatory feature.
A column with all 0’s belongs to a not-available feature.

If a column, say, for feature i, has both 1 and 0 with the same set of combinations
of the other rows, i is an optional feature. (If i is required by another feature in
local view A or B, say j requires i, rows including both i and j should be

disregarded when deciding the optionality of i.)

If two or more features are never all 1's on the same row, but exactly one of them

is 1 on each row, they must be in an alternative relation.

If two or more features (neither mandatory nor optional) are all 1's on the same

row they must be in an or relation.

If a non-mandatory feature, say j, has 1's on all the rows where another feature,
say i, is 1, they must be in a requires relation, that is, i requires j.

72

vii) If two features, say i and j, that are not both mandatory, and not in alternative
relation, are never both 1's on the same row, they must be in an excludes

relation.

Note that the “requires” and “excludes” relations between siblings are introduced only when

necessary.

4.2 Constructing Resolution FMs for Mannion et al. Rules

In the following examples, let use some of the child sets of R’s given in section “Case 2:

Reproducing Mannion et al. Rules”.

Regarding Rule 1(ll):

childSetsg is constructed above for the rule number 1(11) as follows:
childSetsg = {{ }}.

Steps of constructing a table are followed and the Table 91 given below is obtained.

Table 91 - Marking for childSetsg for rule 1(ll)

{} 0

If the given rules are applied, i is determined as not-available as indicated in the second rule

and as shown in Figure 14.

Regarding Rule 2:

Other childSetsg is constructed above for the rule number 2 as follows:
childSetsg = {{i } }.

Steps of constructing a table are followed and the Table 92 given below is obtained.

Table 92 - Marking for childSetsg for rule 2

{i} 1

73

If the given rules are applied, i is determined as mandatory as indicated in the first rule and

as shown in Figure 17.

Regarding Rule 3(ll):

Another childSetsg is constructed above for the rule number 3(IlI) as follows:
childSetsg = {{i}, {i, j}, {i, k }, {i, j, K} }.

Steps of constructing a table are followed and the Table 93 given below is obtained.

Table 93 - Marking for childSetsg for rule 3(11)

i j k
{i} 1 0 0
{i,j} 1 1 0
{i, k} 1 0 1
{i,j,k} 1 1 1

If the given rules above are applied, i is determined as mandatory as indicated in the first
rule, j and k are determined as optional as indicated in the third rule and they are as shown

in Figure 23.

Regarding Rule 3(1V):

Another childSetsg is constructed above for the rule number 3(1V) as follows:
childSetsg = {{i}, {j}, {k}}

Steps of constructing a table are followed and the Table 94 given below is obtained.

Table 94 - Marking for childSetsg for rule 3(1V)

il =l(=lF

OO =
OO =

s [[

S [|
P

If the given rules above are applied; i, j and k are determined as in an alternative relationship
as indicated in the fourth rule and as shown in Figure 29.

Regarding Rule 3(V):
Another childSetsg is constructed above for the rule number 3(V) as follows:

childSetsg = {{i}, {i}. {k}, {i. k} {i,j} {i, k} {i,j, k}}.

74

Steps of constructing a table are followed and the Table 95 given below is obtained.

Table 95 - Marking for childSetsg for rule 3(V)

i j k

{i} 1 0 0

{ij} 0 1 0

{k} 0 0 1

{j, k} 0 1 1
{i,j} 1 1 0
{i, k} 1 0 1
{i,j,k} 1 1 1

If the given rules above are applied, i, j and k are determined as in an or relationship as
indicated in the fifth rule and as shown in Figure 29.

Regarding Rule 5(111):
Another childSetsg is constructed above for the rule number 5(lll) as follows:
childSetsg = {{i,j}, {i,j, k} }.

Steps of constructing a table are followed and the Table 96 given below is obtained.

Table 96 - Marking for childSetsg for rule 5(111)

k
{i,j} 1 1 0
{i,j, k} 1 1 1

If the given rules above are applied, i and j are determined as mandatory as indicated in the
first rule, k is determined as optional as indicated in the third rule and they are as shown in
Figure 53.

Regarding Rule 5(1V):
Another childSetsg is constructed above for the rule number 5(1V) as follows:

childSetsg = {{i}, {j}, {i.k}, {j. k}}.

Steps of constructing a table are followed and the Table 97 given below is obtained.

75

Table 97 - Marking for childSetsg for rule 5(1V)

i j k
{i} 1 0 0
{i} 0 1 0
{i, k} 1 0 1
{i.k} 0 1 1

If the given rules above are applied, i and j are determined as in an alternative relationship
as indicated in the fourth rule, k is determined as optional as indicated in the third rule and

they are as shown in Figure 56.
Regarding Rule 5(VI):
Another childSetsg is constructed above for the rule number 5(VI) as follows:

childSetsg = {{i}, {j}, {i.j} {i. k} {j k} {i.j k}}.

Steps of constructing a table are followed and the Table 98 given below is obtained.

Table 98 - Marking for childSetsg for rule 5(VI)

i j K
(i} 1 0 0
{i} 0 1 0
{i,j} 1 1 0
{i, k} 1 0 1
{j, k} 0 1 1

{i,j, k} 1 1 1

If the given rules above are applied, i and j are determined as in an or relationship as
indicated in the fifth rule, k is determined as optional as indicated in the third rule and they

are as shown in Figure 62.

Regarding Rule 5(VII):

Another childSetsg is constructed above for the rule number 5(VIl) as follows:
childSetsg = {{i } }.

Steps of constructing a table are followed and the Table 99 given below is obtained.

Table 99 - Marking for childSetsg for rule 5(VII)

{i} 1 0 0

o
o

76

If the given rules above are applied, i is determined as mandatory as indicated in the first
rule and j, k, m and n are determined as not-available as indicated in the second rule and

they are as shown in Figure 65.

4.3 For Difficult-to-Resolve Views

In the following examples, let use some of the child sets of R’s given in section “Case 3:

Difficult-to-Resolve Views”.

Regarding Rule 5(VIi):

childSetsg is constructed above for the rule number 5(VIII) as follows:
childSetsg = {{i},{j}}.

Steps of constructing a table are followed and the Table 100 given below is obtained.

Table 100 - Marking for childSetsg for rule 5(VIII)

i j k m n
{i} 1 0 0 0 0
{i} 0 1 0 0 0

If the given rules above are applied, i and j are determined as in an alternative relationship
as indicated in the fourth rule and k, m and n are determined as not-available as indicated in

the second rule and they are as shown in Figure 68.
Regarding Rule 5(1X):
Other childSetsg is constructed above for the rule number 5(IX) as follows:

childSetsg = {{i}, {j} {i.jL{i, k}{i. m}{i,n} {jk} {l,m}{jn}{imn}{jmn}
{ig kb {Lg,m} {i,jn} {i,j,mn}}

Steps of constructing a table are followed and the Table 101 given below is obtained.

77

Table 101 - Marking for childSetsg for rule 5(1X)

i j k m n

{i} 1 0 0 0 0
{i} 0 1 0 0 0
{i,j} 1 1 0 0 0
{i, k} 1 0 1 0 0
{i,m} 1 0 0 1 0
{i,n} 1 0 0 0 1
{j, k} 0 1 1 0 0
{j,m} 0 1 0 1 0
{j,n} 0 1 0 0 1
{i,m,n} 1 0 0 1 1
{jmn} 0 1 0 1 1
{i,j,k} 1 1 1 0 0
{i,j,m} 1 1 0 1 0
{i,j,n} 1 1 0 0 1
{i,jm,n} 1 1 0 1 1

If the given rules above are applied, i and j are determined as in an or relationship as
indicated in the fifth rule and k, m and n are determined as optional as indicated in the third
rule, k and m are determined as in an excludes relationship and similarly k and n are
determined as in an excludes relationship as indicated in the seventh rule and they are as
shown in Figure 71.

4.4 For Views Including Cross-tree Constraints Between Siblings

The procedure also constructs resolutions for conflicts within views involving cross-tree
constraints between sibling features. Examples can be found in Appendix B.

78

CHAPTER 5

MERGING COMPLETE VIEWS

An algorithm is defined as shown in Figure 80 to merge complete parent-compatible FMs
based on merging by conformance. A top-down procedure is described that applies the local

view merge procedure at each parent. Examples can be found in Appendix C.

79

1mergeByConformance (viewA: FeatureModel, viewB: FeatureModel)
2/* output: R: FeatureModel */

3begin

4 level=0

5 while ((level <viewA.depth) and (level < viewB.depth)) do

6 featuresA = getFeatures(viewA, level)

7 featuresB = getFeatures(viewB, level)

8 featuresAtLevel = featuresA U featuresB

9 for each p € featuresAtLevel do

10 parentA = p

1 parentB = p

12 conformA = &

13 conformB = &

14/* obtain children at only one level below */

15 childSetsA = getChilds(viewA, parentA)

16 childSetsB = getChilds(viewB, parentB)

17 if (childSetsA = & and childSetsB = &) then

18/* carry child sets branch of parentA to view R */

19 moveToViewR(viewA, parentA, childSetsA)

20 end if

21 if (childSetsA = & and childSetsB != @) then

22/* carry child sets branch of parentB to view R */

23 moveToViewR(viewB, parentB, childSetsB)

24 end if

25 if (childSetsA !'= & and childSetsB != &) then

26 fsXSet = constructFsX(childSetsA)

27 fsYSet = contructFsY(childSetsB)

28 for each fsX € fsXSet do

29 search for fsY € fsYSet such that fsX @ fsY = fsX
30 if found

31/* add the child set corresponding to fs to conformB */

32 conformB = conformB U {selectedSet(fsX)}
33 end if

34 end for

35 for each fsY € fsYSet do

36 search for fsX € fsXSet such that fsX ® fsY = fsY
37 if found

38 /* add the child set corresponding to fs to conformA */
39 conformA = conformA U {selectedSet(fsY)}
40 end if

4 end for

42 childSetsR = conformA U conformB

43 constructModelR(childSetsR, level)

44 end if

45 end for

46 level++

47 end while

48end

Figure 80 — Algorithm for merging complete views

80

Complexity of the Algorithm:

Big O notation is going to be used to describe the complexity of an algorithm given in Figure
80. Big O characterizes the algorithms according to changes in input size. The worst-case

scenario is considered.

Assume viewA.depth > viewB.depth. Approximately, the complexity is viewA.depth *

featuresAtLevel.size * |fsXSef| * |fsYSet|. In here, “*” symbolizes the multiplication operation.

Let D be max (viewA.depth, viewB.depth). Let C be the maximum number of children at any
level (in view A or B). Let F be the total number of features (in view A or B). Thus, the
complexity of the algorithm is O(D * F * 2C).

81

CHAPTER 6

LOGICAL CHARACTERIZATION OF MANNION ET AL. RULES

On section 3.2, Mannion et al. rules are revised and updated. In this chapter, these updated
rules are characterized logically.

6.1 Approach for Logical Characterization

While those rules are expressed using propositional logic instead of literary language, just
using logical and (A) between local views may not be sufficient to obtain resolution.
Expressing merging procedure as “view A A view B” may not be a correct approach for some
rules.

Using the tautology givenin (1), a general logical expression for all rules can be obtained.
The abbreviations A, B and Rare used for expressing Local View A, Local View B and
Resolution of Local View A and Local View B logically, respectively.

AABAX o RAX (1)

X is an abbreviation of a logical expression. It is used to accomplish a tautology containing
A, Band R for all rules. Generally, it can be expressed as follows:

X—-AABAR (2)

The given X definition in (2) is the most powerful one but it should be expressed as weak as
possible for simplicity.

At first X should be simplified, then it should be expressed in Conjunctive Normal Form
(CNF) and lastly it should be weakened.

When X is in CNF, for the weakening process all the single clauses and conjunction of
clauses should be put instead of X'in (1), to find out if the clause(s) satisfies the tautology or
not. Similarly, when the clause satisfies the tautology, all the single literals and disjunction of
literals in the clause should be put instead of X in (1) to find out if the literal(s) satisfies the
tautology or not. When the literal satisfies the tautology, it should be used instead of X. The
weakest X should be found in this way.

82

Note that, the weakest X is the “true”. For all tautologies, “true” should be put instead of X to
find out if it satisfies the tautology or not.

There may be more than one weakest X’s that satisfy the tautology. In the following table
below, the entire weakest X’s for rules are given.

As an example, X for the rule number 5(1X) is going to be simplified, expressed in CNF and
weakened.

The following logical expression represents A:

Fo— (FiVFVF)

The following logical expression represents B:

Fo - (FiVFVF,VF,)

The following logical expression represents R:

(Foe (RVE))A(FK=F)A(Fa=F)A(Fa=Fo)A(T (FkAFn))A (D (FAFR))
Now, X can be defined as follows:

X (Fpo (FVEVF))A(Fp o (FVFVFRVF))AL(Fpo (FVF))A(Foo Fp) A
(Fn—=Fo)A(Fa = Fp) A7 (FkAFm))A (7 (FeAFq))]

X o (Fo— (FVFVF))A((FVFVF) > F)A(Fo— (FVFVFVFa))A((FVF
VFEaVFn) > F)A(Fo = (FVF))A((RVEF) > F)A(Fc= Fo) A(Fn = Fp) A (Fh—
Fo)A (T (FAFm))A (T (FeAFR))

X o ("FpVFVFVF) A (Fio Fo) A (Fi— Fo) A(Fem Fp) A (FF, VEV FV FnV Fo) A
Fi Fo) A (Fj= Fp) A (Fn F) A (Foms Fp) A (TFpVEV F) A (Fims By) A (Fj— Fy) A
(Fk > Fo) A(Fn = Fp) A(Fa = Fo) A (7 (FcAFm))A (7 (FcAFR))

Below, the expression is rewritten by simplifying same clauses.

X o (FoVFVFVF) A (Fio Fo) A (Fj— Fp) A (Fio Fo) A (FFo VEV FV Fr Vo) A (
Fn—= Fo) A(Fa—=Fo)A(F VEVF) A (7 (FAFm)) A (7 (FAFq))

When the absorption rule (a A (aV b)=a)is applied to the expression, it is expressed as
follows:

X (FVEVF)A(Fi—F) A(F—>F) A(Fc—= Fp) A(Fn— Fo) A(Fa— Fp) A (7 (
Fk/\Fm))/\(_'(Fk/\Fn))

When the expression is written in CNF, it is as follows:

X o (FVEVF)A(FVF)A(FVF) A (FVF) A(FnVE) A (7F VFy) A(
“FVoFm) A (7FV 2Fa)

After putting all the single clauses and conjunction of clauses instead of X in (1), the
expression ("FcV 7F,) A (7FcV —F,) is found out as the weakest X.

All the single literals and disjunction of literals in the expression (“F,V =F,) A (~FcV 7 F,)
is put instead of X'in (1), but neither literal nor “true” is satisfied the tautology.

83

In the following table below, given X’s are the weakest ones for Mannion et al. rules.

Table 102 - Weakest X’s for Mannion et al. Rules

Rule Number View A View B Resolution X
Too complex to
1(1) Fp « 7F Fp < Fi solve Not available.
automatically.
1(11) Fp o F; Fi—F, Fp « F, “F,V Fy
2 Fo < Fi Fi—Fp Fo o F;i True
aF | (FooF)A(F
3() FooFi | RN T | o) AR o iorp
_'Fk)
VE | (FoeF)A(F
3(1) Fp < Fi Fp‘—\’/(Fl:')V i Fo)A(Fk— “FV Fp
Fo)
(Fi=>F)A(| (FoeoF)A(F
3(111) FooF | FoF)A(| = Fo)A(F— True
p] P p
F« > Fp) Fo)
N Foe(F®F | Foe(F@F®
N Fo— (FiVF | Fp o (FiVFVF
3(V) Fi—Fp VE)) True
(F FIA(| Fyo (F@®F, Too complex to
4(1) ,g“’ II:-) P) e solve Not available.
Pl automatically.
4(Il (FobeF)A(| Fope(FVF | (FobeF)A(F, | "RV FV-aF,or
Fo o F)) < F) FiVFVF,
(Fp<—>Fi)/\((Fi—>Fp)/\((Fp‘_’Fi)/\(Fp
A Fop < Fj) Fi—Fp) < F) True

84

Table 102 (continued)

Rule Number View A View B Resolution X
av) | Ferer) | VI F o (ReF) True
av) | FeRef) | T F o (ReR) True
4V1) Fp— (FiVF) (F,':J_;Fl‘éz)/\ (Fp < (FiVF;) True

Too complex to
(1) (F,E < Fl':) ACTF, %(FF‘ S F, solve Not available.
p = Fi) ©) automatically.
— F; PN ; : (FPHFi)/\(Fp
5 () Fer TN Py VL F)a (R, True
o F (Fi=>F)A(| (FooFi)A(F,
5(111) (F; HF'F)_)/\(Fi—>F)A(| < F)A(F—F True
P Fi—Fp))
(FarEy | Foeo(FVE | (Foo(F@F))
5(1V) Fo— (Fi® F)) V Eo) A(Fe—F,) True
(Fi— Fp)/\(PN . .
5V) | Foo(F@R) | FoF)a(| (TelR@R) True
Fy — Fp) (F= p)
(Fi—>Fp) A(W (EVE
5VI) | Fpe (FVE) | F—F)a(| (Fpe(FVRD) True
Fk—Fp) (Fe=Fe)
(Fp ‘F—’)Fi)(/I\:(Fo
<« . /\ PEEN
F<—>(F,®F F<—>(F,® J P .
5(VIl) P i Fe “FO) A (Fp o i
® Fi) Fu®F) | SF YA (R o
—|Fn)

85

Table 102 (continued)

Rule Number View A View B Resolution X
F (Fi®F |F (FF®F (F(pls_)(File:a;:j))
p(Fi®F | Foo (F®F | A(Fyo 7Fi) A(Co
5(VIII) ®F) ®Fn®Fa) | Foo "Fr) A(F, iorj
« 7F,)
(Foe (FiVF))
A(Fc—Fp)A(
5(1X) Foeo(FVFV | Foe (FiVF | Fn—Fy)A(F, (FcV Fn) A(
Fy) VFaVF,) - F)A (7 (FcA “FVF,)
Fm)) A (7 (FeA
Fn))
(Fpo Fi)A((FFP:FE))/C((Too complex to
5(X) Foeo F)A(F Fp FJ A solve Not available.
- Fy) "FH ’“F))(automatically.
p<>Fn

86

CHAPTER 7

CONCLUSION

In this thesis, a normative procedure has been introduced for merging FMs reflecting
different viewpoints. Using this procedure, one can merge FMs with and without cross-tree
relationships between sibling features. The procedure may terminate by signaling unresolved

conflicts as well.

Rules have been presented with resolutions by describing the merging procedure step by
step. With examples, in particular, by reproducing Mannion et al. default resolution rules [4],
an approach has been verified. An obvious improvement of this approach is that the merging
of conflicting FMs is defined in a general way, rather than being illustrated case by case as in
[4].

The method is flexible in that domain-specific default resolution schemes can be devised by
adopting different lattices (or tables, in general) for combination than the one is used in the

present work.

The main limitation of the present work is that the merging procedure relies on local views
(one level of decomposition) at every step. Taking the whole FMs into consideration would
allow a much wider range of resolution strategies, and yield more flexible, albeit more

complicated, merging procedures. Future work will aim to relax this constraint of locality.

87

REFERENCES

[1] K. Paul, G. Bdckle, and F. van der Linden, “Software product line engineering,”
ISBN-13 978-3-540-24372-4, pp. 100, 2005.

[2] K. Lee, Kyo C. Kang, and J. Lee, “Concepts and guidelines of feature modeling for
product line software engineering,” Proc. 7th ICSR, 2002, pp. 62—77.

[3] D. Benavides, S. Segura, and A. Ruiz-Cortes, “Automated analysis of feature
models 20 years later: a literature review,” doi:10.1016/j.is2010.01.001, Information
Systems. Elsevier. 2010.

[4] M. Mannion, J. Savolainen, and T. Asikainen, “Viewpoint-oriented variability
modeling,” COMPSAC, 2009.

[5] B. Nuseibeh, J. Kramer, and A. Finkelstein, “Viewpoints meaningful relationships are
difficult,” ICSE, 2003.

[6] E. A. Aydin, H. Oguztizin, A. H. Dogru and A. S. Karatas, “Merging multi-view
feature models by local rules,” 9" International Conference on Software Engineering
Research, Management and Applications, 10-12 Aug. 2011, pp. 140-147.

[7] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product line engineering,”
IEEE Software, July/August 2002, pp. 58 -65.

[8] M. A. Babar, L. Chen, and F. Shull, “Managing variability in software product lines,”
IEEE Software, May/June 2010, pp. 89 -94.

[9] M. Acher, P. Collet, P. Lahire, and R. France, “Composing feature models,” Software
Language Engineering, 2010

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineering Institute, Carnegie
Mellon University (Report), November 1990.

[11] M. Mannion and J. Camara, “Theorem proving for product line model verification,” 5"
International Workshop on Software Product-Family Engineering, Springer, 2003, pp. 211-
224.

[12] S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad, “Automated merging of
feature models using graph transformations,” GTTSE, 2007.

88

[13] P. van den Broek, and J. Noppen, “Merging feature models,” 14th International
Software Product Line Conference, 14 September 2010.

[14] N. Niu, J. Savolainen, and Y. Yu, “Variability modeling for product line viewpoints
integration,” 34th Annual IEEE Computer Software and Applications Conference, 19-23 July
2010.

[15] P. Y. Schobbens, P. Heymans, J. C. Trigaux, and Y. Bontemps, “Generic semantics
of feature diagrams,” Computer Networks (2006), doi:10.1016/j.comnet.2006.08.008, special
issue on feature interactions in emerging application domains, page 38, 2006.

[16] D. Clarke, and J. Proenca, “Towards a theory of views for feature models,” FMSPLE,
2010.

89

APPENDIX A

EXAMPLES OF MERGING BY CONFORMANCE WITH CROSS-TREE CONSTRAINTS
BETWEEN SIBLINGS

An example includes a view with constraint. As shown in Figure 82, local view B consists of

requires relationship.

Fp
Fp T,
l .‘._4__.»\ .
4 £ B2
Fi
Figure 81 — Local View A Figure 82 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSets, = {{i}}.
childSetsg = {{i}, {k}}.

Second step is constructing fs X and fs Y representations.

Table 103 - Feature Selection Map fs X

row number i j
1 fs{i} + / /

90

Table 104 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{k} - - +

Third step is performing combination for each fs X and fs Y. Table 105 shows the conflict

situation that cannot be resolved.

Table 105 - The case where fs X ® fs Y involves ‘!’

row number i j k
1 fs{i} + / /
2 fs{k} - - +
3 fs{i}®fs{k} ! - +

Executing conform, and conformg operations, childSetsy is obtained as follows:
childSetsg = {{i } }.

When the FM R is built, the model given in Figure 83 is obtained.

Fp
l 4
Fj

Fk

il

Figure 83 — Resolution of Figure 81 and Figure 82

Following example includes a view with constraint. As shown in Figure 85, local view B
consists of requires relationship.

l Al [F][F
Fi
Figure 84 — Local View A Figure 85 — Local View B

91

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetss = {{i}}.

childSetsg = {{j}, {k}, {i.j} {i. k} {i,}, k}}.

Second step is constructing fs X and fs Y representations.

Table 106 - Feature Selection Map fs X

row number i j k
1 fs{i} + / /

Table 107 - Feature Selection Map fs Y

row number i j k
1 fs{j} - + -
2 fs{k} - - +
3 fs{i,j} + + -
4 fs{j, k} - + +
5 fs {i,j, k} + + +

Third step is performing combination for each fs X and fs Y. Table 108 shows the conflict

situations that cannot be resolved.

Table 108 - The cases where fs X ® fs Y involves ‘I’

row number
1 fs{i}
fs{i} -
fs{i}®fs{j} !
fs{i} +
fs{k} - -
fs{i})®fs{k} !
fs {i} +
fs{j, k} -
fs{i}®fs{j, k} !

+ | —

~| + | + | ~ [b=—
1

©| o| N|o| ;| K| w|N
|+~ +]+~

+]+ [~

Table 109 gives the result of combinations where fs Y’s are preserved.

92

Table 109-fsX®fsY=1fsY

row number i j k
1 fs{i} + / /
2 fs{i,j} + + -
3 fs{i}®fs{i,j}=Ffs{i,j} + + -
4 fs{i} + / /
5 fs{i,j, k} + + +
6 fs{i}®fs{i,jk}=Ffs{i,j, k} + + +

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{i,j}, {i,j, k}}.

When the FM R by is built, the model given in Figure 86 is obtained.

Fp
-1

Fk

e

Figure 86 — Resolution of Figure 84 and Figure 85

Following example includes a view with constraints. As shown in Figure 88, local view B

consists of requires and excludes relationships.

Fp
: 4
| =Gl
Fi
Figure 87 — Local View A Figure 88 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetss = {{i}}.
childSetsg = {{j }, {k}, {i,k}}.

Second step is constructing fs X and fs Y representations.

93

Table 110 - Feature Selection Map fs X

row number i j k
1 fs{i} + / /

Table 111 - Feature Selection Map fs Y

row number i j k
1 fs{j} - + -
2 fs{k} - - +
3 fs{i, k} + - +

Third step is performing combination for each fs X and fs Y. Table 112 shows the conflict

situations that cannot be resolved.

Table 112 - The cases where fs X ® fs'Y involves ‘I’

row number i j k
1 fs{i} + / /
2 fs{j} - + -
3 fs{i}®@fs{j} ! + -
4 fs{i} + / /
o fs{k} - - +
6 fs{i}®fs{k} ! - +

Table 113 gives the result of fs {i} ® fs {|i, k } where fs Y is preserved.

Table 113 -fsXQ®fsY=fsY

row number i j k
1 fs{i} + / /
2 fs {i, k} + - +
3 fs{i}®fs{i,k}="~fs{i, k} + - +

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{i, k } }.

When the FM R is built, the model given in Figure 89 is obtained.

94

ul]
",
T e
{/
[]

Figure 89 — Resolution of Figure 87 and Figure 88

Following example includes a view with constraint. As shown in Figure 91, local view B

consists of excludes relationship.

Fp
Fp AT
| SRR
Fi
Figure 90 — Local View A Figure 91 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsy = {{i}}.

childSetsg = {{ }, {i}, {i} {k} {i,k} {l.k}}.

Second step is constructing fs X and fs Y representations.

Table 114 - Feature Selection Map fs X

row number
1 fs{i} + / /

(S
=

Table 115 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{i} - + -
4 fs{k} - - +
5 fs {i, k} + - +
6 fs{j, k} - + +

95

Third step is performing combination for each fs X and fs Y. Table 116 shows the conflict

situations that cannot be resolved.

Table 116 - The cases where fs X ® fsY involves ‘I’

row number

+ | -
~ .
~

fs{i}
fo{ } N
fs{i}@fs{ } !
fs{i} +
fs{j} -
fs{i}®fs{j} !
fs{i} +
fs{k} -
fs{i}@fs{k} !
fs {i} +
fs{J, k} -
fs{i}®fs{j, k} !

~| + |+ |~
1

2| S| o| N|o| o] K| w N =

-~
N
+ |+~

Table 117 gives the result of fs{i} ® fs {|i, k } where fs Y is preserved.

Table 117 -fsX® fsY =fsY

row number i j k
1 fs{i} + / /
2 fs{i, k} + - +
3 fs{i}®fs{i,k}="~fs{i, k} + - +

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{i}, {i, k}}

When the FM R is built, the model given in Figure 92 is obtained.

Fp
/l\
- L)

Fk

il]

Figure 92 — Resolution of Figure 90 and Figure 91

Following example includes a view with constraints. As shown in Figure 94, local view B

consists of requires and excludes relationships.

96

Fp AT
| e
Fi
Figure 93 — Local View A Figure 94 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa = {{i}}.

childSetsg = {{ },{i}, {k} {i.,j} {i.k}}.

Second step is constructing fs X and fs Y representations.

Table 118 - Feature Selection Map fs X

row number i j k
1 fs{i} + / /

Table 119 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{k} - - +
4 fs{i,j} + + -
5 fs{i, k} + - +

Third step is performing combination for each fs X and fs Y. Table 120 shows the conflict

situations that cannot be resolved.

Table 120 - The cases where fs X ® fs Y involves ‘I’

row number i j k
1 fs{i} + / /
2 fs{ } - - -
3 fs{i}®fs{ } ! - -
4 fs{i} + / /
5 fs {k} - - +
6 fs{i}®fs{k} ! - +

97

Table 121 gives the result of combinations where fs Y’s are preserved.

Table 121 -fsXQ® fsY=fsY

row number i j k
1 fs{i} + / /
2 fs{i,j} + + -
3 fs{i}®fs{i,j}=Ffs{i,j} + + -
4 fs{i} + / /
5 fs{i, k} + - +
6 fs{i}®fs{i,k}="~fs{i, k} + - +

Executing conform, and conformg operations, childSetsg is obtained as follows:

When the FM R is built, the model given in Figure 95 is obtained.

Figure 95 — Resolution of Figure 93 and Figure 94

Following example includes a view with constraint. As shown in Figure 97, local view B

consists of requires relationship.

F
Fp |p:
.‘._4__.4\ 5
0 Fi||F||Fk
Figure 96 — Local View A Figure 97 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.

childSetsa ={{ },{i}}.

98

childSetsg = { {j}, {k}}.

Second step is constructing fs X and fs Y representations.

Table 122 - Feature Selection Map fs X

row number i j k
1 fs{ } - / /
2 fs{i} + / /

Table 123 - Feature Selection Map fs Y

row number i j k
1 fs{j} - + -
2 fs{k} - - +

Third step is performing combination for each fs X and fs Y. Table 124 shows the conflict

situations that cannot be resolved.

Table 124 - The cases where fs X ® fs'Y involves ‘I’

row number
1 fs{i}
fs{i} -
fs{i}®fs{j} !
fs{i} +
fs{k} - -
fs{i}®fs{k} ! -

+ | —

~ | F | + |~ |-
1

oo Al w|N
+ |+~

Table 125 gives the result of combinations where fs Y’s are preserved.

Table 125-fsX @ fsY =fsY

row number i
1 fs{ })
fs{j} -

fs{ }®fs{j}=~fs{j} -
fs{ } -

fs{k} -

fs{ }®@fs{k}=Ffs{k} - -

~ |+ | + |~ [
1

ol Alw|N
1
+ |+~

Executing conform, and conformg operations, childSetsg is obtained as follows:

childSetsg ={{j }, {k}}.

99

When the FM R is built, the model given in Figure 98 is obtained.

Fp
T
&

[\
o
Fj| | Fk

T o

Figure 98 — Resolution of Figure 96 and Figure 97

Following example includes a view with constraints. As shown in Figure 100, local view B

consists of requires and excludes relationships.

Fp
Fp Aﬁk
i h
) Fi| |Fi||Fk
2
Figure 99 — Local View A Figure 100 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{ },{i}}.
childSetsg = {{j}, {k}, {i, k}}.

Second step is constructing fs X and fs Y representations.

Table 126 - Feature Selection Map fs X

row number i j k
1 fs{ } - / /
2 fs{i} + / /

Table 127 - Feature Selection Map fs Y

row number i j k
1 fs{i} - + -
2 fs{k} - - +
3 fs {i, k} + - +

100

Third step is performing combination for each fs X and fs Y. Table 128 shows the conflict

situations that cannot be resolved.

Table 128 - The cases where fs X ® fsY involves ‘I’

row number i J
1 fs{) : /
fs {i, k}

fs{ }®fs{i, k}
fs{i}
fs{i}

fs{i}®fs{j}
fs{i}
fs (K} - -

fs{i}®fs{k} ! 3

+ =+
1
~|+|+|~|=

+ =]

O | N[O A|WIN

+]+~

Table 129 gives the result of combinations where fs Y’s are preserved.

Table 129-fsX® fsY =1fsY

row number i
1 fs{ } -
fs{i} -
fs{ }®@fs{j}=1fs{j} -
fs{ } -
fs{k} -
fs{ }®@fs{k}=Ffs{k} - -
fs{i}
fs{i, k}
fs{i}@fs{i,k}="~fs{i, k}

~ | F | + |~ |-
1

©| | N| o ;| K| w| N
[~ +]|+|=]

+ |+ |+
1

Executing conform, and conformg operations, childSetsy is obtained as follows:
childSetsg = {{j}, {k}, {i, k} }

When the FM R is built, the model given in Figure 101 is obtained.

101

Fp

e l__.'\ 5

Fi l-_j Fk
Figure 101 — Resolution of Figure 99 and Figure 100

Following example includes a view with constraint. As shown in Figure 103, local view B

consists of requires relationship.

" A

o & Fi | | Fj
Fi||F
Figure 102 — Local View A Figure 103 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa = {{i,j}}.
childSetsg = {{i}, {i,j}}.

Second step is constructing fs X and fs Y representations.

Table 130 - Feature Selection Map fs X

row number i
1 fs{i,j} + +

(S—

Table 131 - Feature Selection Map fs Y

row number i j
1 fs{i} + -
2 fs{i,j} + +

Third step is performing combination for each fs X and fs Y. Table 132 shows the conflict

situation that cannot be resolved.

102

Table 132 - The case where fs X ® fs Y involves ‘I’

row number i j
1 fs{i,j} + +
2 fs{i} + -
3 fs{i,j}®fs{i} + !

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{i,j}}.

When the FM R is built, the model given in Figure 104 is obtained.

Fp

e
Je

Figure 104 — Resolution of Figure 102 and Figure 103

Following example includes a view with constraint. As shown in Figure 106, local view B

consists of requires relationship.

Fp FF
T A5
Fi||Fl
Figure 105 — Local View A Figure 106 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa = {{i,j }}.

childSetsg = {{ } {j}{i,j}}.

Second step is constructing s X and fs Y representations.

103

Table 133 - Feature Selection Map fs X

row number i
1 fs{i,j} + +

(o—

Table 134 - Feature Selection Map fs 'Y

row number i j
1 fs{ } - -
2 fs{i} - +
3 fs{i,j} + +

Third step is performing combination for each fs X and fs Y. Table 135 shows the conflict
situations that cannot be resolved.

Table 135 - The cases where fs X ® fs'Y involves ‘I’

row number i j
1 fs{i,j} + +
2 fs{ } - -
3 fs{i,ji}®fs{ } ! !
4 fs{i,j} + +
5 fs{j} - +
6 fs{i,j}®fs{j} ! +

Executing conform, and conformg operations, childSetsy is obtained as follows:
childSetsg = {{i,j}}.

When the FM R is built, the model given in Figure 107 is obtained.

e
ae

Figure 107 — Resolution of Figure 105 and Figure 106

Following example includes views with constraints. As shown in Figure 108 and Figure 109,
views consist of requires and excludes relationships.

104

Figure 108 — Local View A Figure 109 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of
views.

childSetsy ={{j}}.
childSetsg ={{i}, {j}}.

Second step is constructing fs X and fs Y representations.

Table 136 - Feature Selection Map fs X

row number i
1 fs{j} - +

(S—

Table 137 - Feature Selection Map fs Y

row number i j
1 fs{i} + -
2 fs{j} - +

Third step is performing combination for each fs X and fs Y. Table 138 shows the conflict

situation that cannot be resolved.

Table 138 - The case where fs X ® fs Y involves ‘!’

row number i j
1 fs{j} - +
2 fs {i} + -
3 fs{j}®fs{i} ! !

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{j } }.

When the FM R is built, the model given in Figure 110 is obtained.

105

Fp

-
Je

Figure 110 — Resolution of Figure 108 and Figure 109

Following example includes views with constraints. As shown in Figure 111 and Figure 112,
views consist of requires and excludes relationships.

Fp Fp

Figure 111 — Local View A Figure 112 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of
views.

childSets, ={{j}}.

childSetsg = {{ },{i}.{i}}

Second step is constructing fs X and fs Y representations.

Table 139 - Feature Selection Map fs X

row number i
1 fs{j} - +

(S—

Table 140 - Feature Selection Map fs Y

row number i j
1 fs{ } - -
2 fs{i} + -
3 fs{i} - +

Third step is performing combination for each fs X and fs Y. Table 141 shows the conflict
situations that cannot be resolved.

106

Table 141 - The cases where fs X ® fs Y involves ‘I’

row number i j
1 fs {i} - +
2 fs{ } - -
3 fs{i}®@fs{ } - !
4 fs{i} - +
5 fs{i} + -
6 fs{j}®@fs{i} ! !

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{j}}.

When the FM R is built, the model given in Figure 113 is obtained.

Fp

b
Je

Figure 113 — Resolution of Figure 111 and Figure 112

Following example includes views with constraints. As shown in Figure 114 and Figure 115,

views consist of requires and excludes relationships.

Fp Fp
Fi| | F Fi|| Fj
Figure 114 — Local View A Figure 115 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetspa = {{i}, {j}}

childSetsg = {{ }, {j} {i.j}}.

Second step is constructing fs X and fs Y representations.

107

Table 142 - Feature Selection Map fs X

row number i j
1 fs{i} + -
2 fs{j} - |+

Table 143 - Feature Selection Map fs Y

row number i j
1 fs{ } - -
2 fs{i} - +
3 fs{i,j} + +

Third step is performing combination for each fs X and fs Y. Table 144 shows the conflict

situations that cannot be resolved.

Table 144 - The cases where fs X ® fs'Y involves ‘I’

row number i j
1 fs{i} + }
2 fs{ } - -
3 fs{i}®fs{ } ! -
4 fs{i} + -
5 fs{j} - +
6 fs{i}®fs{j} ! !
7 fs{i} +
8 fs{i,j} + +
9 fs{i}®fs{i,j} + !
10 fs{j} - +
11 fs{ } - -
12 fs{j}®fs{ } - !
13 fs{j} - +
14 fs {i,i} v |+
15 fs{j}®fs{ij} ! +

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{j } }.

When the FM R is built, the model given in Figure 116 is obtained.

108

Fp

b
Je

Figure 116 — Resolution of Figure 114 and Figure 115

Following example includes views with constraints. As shown in Figure 117 and Figure 118

views consist of requires relationships.

Fp Fp
dll: Al
Figure 117 — Local View A Figure 118 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{j}, {i,j}}
childSetsg ={{ }{i}{i,j}}

Second step is constructing fs X and fs Y representations.

Table 145 - Feature Selection Map fs X

row number i j
1 fs{j} - +
2 fs{i,j} + +

Table 146 - Feature Selection Map fs Y

row number i j
1 fs{ } - -
2 fs{i} + -
3 fs{i,j} + +

Third step is performing combination for each fs X and fs Y. Table 147 shows the conflict

situations that cannot be resolved.

109

Table 147 - The cases where fs X ® fs Y involves ‘I’

row number i j
1 fs {i} - +
2 fs{ } - -
3 fs{i}®fs{ } - !
4 fs {j} - +
5 fs{i} + -
6 fs{j}®fs{i} ! !
7 fs {j} +
8 fs{i,j} + +
9 fs{j}®fs{ij} ! +
10 fs{i,j} + +
11 fs{ } - -
12 fs{i,j}®fs{ } ! !
13 fs{i,j} + +
14 fs{i} + -
15 fs{i,j}®Ffs{i} + !

Executing conform, and conformg operations, childSetsy is obtained as follows:

childSetsg = {{i,j}}.

When the FM R is built, the model given in Figure 119 is obtained.

e
T8

Figure 119 — Resolution of Figure 117 and Figure 118

Following example includes a view with constraints. As shown in Figure 121, local view B

consists of requires and excludes relationships.

e
T

Figure 120 — Local View A

110

Fp
i s
Fi| | Fi|| Fk

Figure 121 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa = { {i,j}}.

childSetsg = {{i}, {j}. {i,j} {i,k}}.

Second step is constructing fs X and fs Y representations.

Table 148 - Feature Selection Map fs X

row number i
1 fs{i,j} + + /

(S
b

Table 149 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{j} - + -
3 fs{i,j} + + -
4 fs{i, k} + - +

Third step is performing combination for each fs X and fs Y. Table 150 shows the conflict

situations that cannot be resolved.

Table 150 - The cases where fs X ® fs Y involves ‘I’

row number
1 fs{i,j}
fs{i}
fs{i,j}®fs{i}
fs{i,j}
fs{j}
fs{i,j}®fs{j} !
fs {i,j}
fs {i, k}
fs{i,j}®fs{i, k}

+ [t
~

|+ [+ |+ [
1
1

O[O N[O | K| W|N

+ |+ |+
—
+ |+ [~

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{i,j}}.

When the FM R by is built, the model given in Figure 122 is obtained.

111

ul]

.,
J—
o

P

Figure 122 — Resolution of Figure 120 and Figure 121

Following example includes a view with constraint. As shown in Figure 124, local view B
consists of requires relationship.

Fp
- /TN
d G| 5] [F
Fi| R
Figure 123 — Local View A Figure 124 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa = {{i,j}}.

childSetsg = {{ }, {j} {k} {i.j} {i. k} {i,j,k}}.

Second step is constructing fs X and fs Y representations.

Table 151 - Feature Selection Map fs X

row number
1 fs{i, j} + + /

(S
=

Table 152 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} - + -
3 fs{k} - - +
4 fs{i,j} + + -
5 fs{j, k} - + +
6 fs {i,j, k} + + +

112

Third step is performing combination for each fs X and fs Y. Table 153 shows the conflict

situations that cannot be resolved.

Table 153 - The cases where fs X ® fsY involves ‘I’

row number i j k

1 fs{i,j} + + /

2 fs{ } - - -

3 fs{i,j}®fs{ } ! ! -

4 fs{i,j} + + /

9 fs{j} - + -

6 fs{i,j}®fs{j} ! + -

7 fs{i,j} + + /

8 fs{k} - - +

9 fs{i,j}®fs{k} ! ! +

10 fs{i,j} + + /

11 fs{j, k} - + +

12 fs{i,j}®Ffs{j, k} ! + +

Table 154 gives the result of fs {i,] } ® fs {i, j, k } where fs Y is preserved.
Table 154 - fs X @ fsY =1sY

row number i j k
1 fs{i,j} + + /
2 fs{i,j, k} + + +
3 fs{i,j}®fs{i,j,k}="Ffs{i, j, k} + + +

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{i,j}, {i,j, k}}.

When the FM R is built, the model given in Figure 125 is obtained.

il]
",
Ti—
o

Figure 125 — Resolution of Figure 123 and Figure 124

Following example includes a view with constraints. As shown in Figure 127, local view B

consists of requires and excludes relationships.

113

F.F P
T e =0
d » Fi| |Fi||Fk
Fi| A
Figure 126 — Local View A Figure 127 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa = { {i,j}}.

childSetsg = {{ }, {i}, {k} {i.j} {i.k}}.

Second step is constructing fs X and fs Y representations.

Table 155 - Feature Selection Map fs X

row number i j k
1 fs{i,j} + + /

Table 156 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{k} - - +
4 fs{i,j} + + -
5 fs{j, k} - + +

Third step is performing combination for each fs X and fs Y. Table 157 shows the conflict

situations that cannot be resolved.

114

Table 157 - The cases where fs X ® fs Y involves ‘I’

row number

+ | -
4 [t
~

fs{i,j}
fs{ } - - -
fs{i,j}®fs{ }
fs{i,j}
fs{i}
fs{i,j}®fs{i}
fs{i,j}
fs{k} - -
fs{i,j}®fs{k} ! !
fs{i,j} + +
fs{j, k} - +
fs{i,j}®fs{j k} ! +

+ |+ [+]+

LS| olx|N|o|aj A wNv =

[~ 4]+~

-
N

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{i,j}}.

When the FM R is built, the model given in Figure 128 is obtained.

Fp
lx
Fi

Fk

e

Figure 128 — Resolution of Figure 126 and Figure 127

Following example includes views with constraints. As shown in Figure 129 and Figure 130,

views consist of requires and excludes relationships.

Fp Fp
G al (7] [Fe
Figure 129 — Local View A Figure 130 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.

childSetsa = {{j}}.

115

Ch|ldsetSB={{|}1{k}1{|1 k}i{Jv k}}

Second step is constructing fs X and fs Y representations.

Table 158 - Feature Selection Map fs X

(S
-

row number i
1 fs{j} - + /

Table 159 - Feature Selection Map fs 'Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{k} - - +
4 fs {i, k} + - +
5 fs{j, k} - + +

Third step is performing combination for each fs X and fs Y. Table 160 shows the conflict

situations that cannot be resolved.

Table 160 - The cases where fs X ® fs Y involves ‘I’

row number i
fs{i} :
fs{ } - -1 -

fs{j}®fs{ } - ! -
fs{i} - [+ [
fs{i} + - -

fs{j}®fs{i} ! [-
fs{j} - + /
fs{k} - - +
fs{j}®fs{k} - ! +
/

+

+

+ [t
~

fs{i} - +
fs {i, k } + -
fs{j}®fs{i, k} ! !

3| S| o] o N| o | K| | N =

-
N

Table 161 gives the result of fs {j } ® fs {j, k } where fs Y is preserved.

Table 161 -fsXQ® fsY=fsY

row number i
1 fs{j} -
2 fs{j, k} -
3 fs{j}®fs{j,k}=~fs{j, k} -

+ |+ [~|=

+ |+ |+ =

116

Executing conform, and conformg operations, childSetsg is obtained as follows:
childSetsg = {{j, k } }.

When the FM R is built, the model given in Figure 131 is obtained.

Fp
I-\.
71N
LaR SES |
Fi||Fi||Fk

Figure 131 — Resolution of Figure 129 and Figure 130

Following example includes views with constraints. As shown in Figure 132 and Figure 133,

views consist of requires and excludes relationships.

Fp
: 4
Al [F|[Fe
Fi| | Fi
Figure 132 — Local View A Figure 133 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSets, = {{i}}.

childSetsg = {{i}, {j}, {i,j} {i,k}}

Second step is constructing fs X and fs Y representations.

Table 162 - Feature Selection Map fs X

row number i j
1 fs{i} + - /

117

Table 163 - Feature Selection Map fs Y

row number i j k
1 fs{i} + - -
2 fs{j} - + -
3 fs{i,j} + + -
4 fs {i, k} + - +

Third step is performing combination for each fs X and fs Y. Table 164 shows the conflict

situations that cannot be resolved.

Table 164 - The cases where fs X ® fs'Y involves ‘I’

row number i j
1 fs{i} + ; /
2 fs{i} - + -
3 fs{i}®fs{j} ! ! -
] fs{i} + /
5 fs{i,j} + + -
6 fs{i}®fs{i,j} + ! -

Table 165 gives the result of fs{i} ® fs {|i, k } where fs Y is preserved.

Table 165-fsX® fsY =fsY

row number i j k
1 fs{i} + - /
2 fs {i, k} + - +
3 fs{i}®fs{i,k}="~fs{i, k} + - +

Executing conform, and conformg operations, childSetsy is obtained as follows:
childSetsg = {{i}, {i, k}}.

When the FM R is built, the model given in Figure 134 is obtained.

Fp
/l\
- {7

Fk

ul]

Figure 134 — Resolution of Figure 132 and Figure 133

118

Following example includes views with constraints. As shown in Figure 135 and Figure 136,

views consist of requires relationships.

Fp s
.'I". / \
== Fi| |Fi||Fk
Figure 135 — Local View A Figure 136 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{j}}.

childSetsg = {{ }, {j} {k} {i. k} {i,j.k}}.

Second step is constructing fs X and fs Y representations.

Table 166 - Feature Selection Map fs X

row number i
1 fs{j} - + /

(S
=

Table 167 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{j} - + -
3 fs{k} - - +
4 fs{j, k} - + +
5 fs{i,j, k} + + +

Third step is performing combination for each fs X and fs Y. Table 168 shows the conflict

situations that cannot be resolved.

119

Table 168 - The cases where fs X ® fs Y involves ‘I’

row number i
1 fs{j} -
fs{ } - -] -

fs{j}®fs{ } - !
fs{i} -
fs{k} -

fs{j}®fs{k} -
fs{i} -
fs {i,j, k} +
fs{j}®fs{i, j k} !

4 [t
~

+

©o|o|N| oo A w| N
=]+ |+ [~

+|+|+[=|

Table 169 gives the result of fs {j} ® fs {, k } where fs Y is preserved.

Table 169 -fsX @ fsY=fsY

row number i
1 fs{j} -
2 fs{j, k} -
3 fs{j}®fs{j k}="~fs{j k} -

+ |+ | ~|>

+ |+ |+ =

Executing conform, and conformg operations, childSetsy is obtained as follows:
childSetsg = {{j }, {j, k} }.

When the FM R is built, the model given in Figure 137 is obtained.

Tl o
s
Je— 7

Figure 137 — Resolution of Figure 135 and Figure 136

Following example includes views with constraints. As shown in Figure 138 and Figure 139,

views consist of requires and excludes relationships.

120

Fp Fp
A g0
".I { + it i}
S Fi| |Fi||Fk
Fi|| A
Figure 138 — Local View A Figure 139 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetspa = {{i}, {j}}.

childSetsg ={{ },{i}, {k} {j k}}

Second step is constructing fs X and fs Y representations.

Table 170 - Feature Selection Map fs X

row number i j k
1 fs{i} + - /
2 fs{j} - + /

Table 171 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{k} - - +
4 fs {j, k} - + +

Third step is performing combination for each fs X and fs Y. Table 172 shows the conflict

situations that cannot be resolved.

121

Table 172 - The cases where fs X ® fs Y involves ‘I’

row number i j k

1 fs{i} + - /

2 fs{ } - - -

3 fs{i}®@fs{ } ! - -

4 fs{i} + - /

5 fs{k} - - +

6 fs{i}®fs{k} ! - +

7 fs{i} + /

8 fs{j, k} - + +

9 fs{i}®fs{j, k} ! ! +

10 fs{j} - + /

11 fs{ } - - -

12 fs{j}®fs{ } - ! -

13 fs{j} - + /

14 fs{i} + - -

15 fs{j}®fs{i} ! ! -

16 fs{j} - + /

17 fs{k} - - +

18 fs{j}®fs{k} - ! +

Table 173 gives the result of fs {j} ® fs {j, k } where fs Y is preserved.
Table 173 -fsX®fsY=1fsY

row number i j k
1 fs{j} - + /
2 fs{j, k} - + +
3 fs{j}®fs{j,k}=~fs{j, k} - + +

Executing conform, and conformg operations, childSetsy is obtained as follows:

childSetsg = {{i}, {j, k}}.

When the FM R is built, the model given in Figure 140 is obtained.

Fp
& }{_L -

Fk || Fi| | Fj

Figure 140 — Resolution of Figure 138 and Figure 139

122

Following example includes views with constraints. As shown in Figure 141 and Figure 142,

views consist of requires and excludes relationships.

Fp Fp
A a8
Al [F Fi| | F|| Fk
Figure 141 — Local View A Figure 142 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{j},{i,j}}

childSetsg = {{ },{i}, {k} {i,j} {i.k}}.

Second step is constructing fs X and fs Y representations.

Table 174 - Feature Selection Map fs X

row number i j k
1 fs{j} - + /
2 fs {i,j} + + /

Table 175 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{k} - - +
4 fs{i,j} + + -
5 fs {i, k} + - +

Third step is performing combination for each fs X and fs Y. Table 176 shows the conflict

situations that cannot be resolved.

123

Table 176 - The cases where fs X ® fs Y involves ‘I’

row number i j k
1 fs{j} - + /
2 fs{ } - - -
3 fs{i}®fs{ } - ! -
4 fs{j} - + /
5 fs{i} + - -
6 fs{j}®fs{i} ! ! -
7 fs{j} - + /
8 fs{k} - - +
9 fs{j}®fs{k} - ! +
10 fs{j} - + /
11 fs{i,j} + + -
12 fs{j}®fs{ij} ! + -
13 fs{j} - + /
14 fs {i, k} + - +
15 fs{j}®fs{i, k} ! ! +
16 fs{i,j} + + /
17 fs{ } - - -
18 fs{i,j}®fs{ } ! ! -
19 fs{i,j} + + /
20 fs{i} + - -
21 fs{i,j}®fs{i} + ! -
22 fs{i,j} + + /
23 fs{k} - - +
24 fs{i,j}®fs{k} ! ! +
25 fs{i,j} + + /
26 fs {i, k} + - +
27 fs{i,j}®fs{i, k} + ! +

Executing conform, and conformg operations, childSetsy is obtained as follows:
childSetsg = {{i,j}}.

When the FM R is built, the model given in Figure 143 is obtained.

ul]

.,
J—
o

P

Figure 143 — Resolution of Figure 141 and Figure 142

124

Following example includes views with constraints. As shown in Figure 144 and Figure 145,

views consist of requires and excludes relationships.

Fp
F
s %
.-/-._l_.-"\. 1
5, . ! \\

i I .

Fi| Fl|Fe Fi||Fm || Frn
Figure 144 — Local View A Figure 145 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{i},{k}}
childSetsg = {{i}}.

Second step is constructing fs X and fs Y representations.

Table 177 - Feature Selection Map fs X

row number i j k m n
1 fs {i} + - - / /
2 fs{k} - - + / /

Table 178 - Feature Selection Map fs Y

row number i j k m n
1 fs {i} + / / - -

Third step is performing combination for each fs X and fs Y. Table 179 shows the conflict

situation that cannot be resolved.

Table 179 - The case where fs X ® fs Y involves ‘!’

row number i j k m n
1 fs{k} - - + / /
2 fs{i} + / / - -
3 fs{k}®fs{i} ! - + - -

Executing conform, and conformg operations, childSetsg is obtained as follows:

125

childSetsg = { {i}}.

When the FM R is built, the model given in Figure 146 is obtained.

]
.-}'U

0
T s
-
1
=
E]
=
=

Figure 146 — Resolution of Figure 144 and Figure 145

Following example includes views with constraints. As shown in Figure 147 and Figure 148,

views consist of requires relationships.

Fp Ff'
i | " . i - .". Y
Fi||Fi||Fk Fi||Fj||Fm||Fn
Figure 147 — Local View A Figure 148 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{i}, {j}}
childSetsg ={{i}, {j}}.

Second step is constructing fs X and fs Y representations.

Table 180 - Feature Selection Map fs X

row number i j k m
1 fs{i} + - - / /
2 fs{j} - + - / /

126

Table 181 - Feature Selection Map fs Y

row number i j k m n
1 fs{i} + - / - -
2 fs{i} - + / - -

Third step is performing combination for each fs X and fs Y. Executing conform, and

conformg operations, childSetsg is obtained as follows:
childSetsg ={{i}, {j}}

When the FM R is built, the model given in Figure 149 is obtained.

Figure 149 — Resolution of Figure 147 and Figure 148

Following example includes views with constraints. As shown in Figure 150 and Figure 151,

views consist of requires and excludes relationships.

Fp Fp
" *\ " { -
F||Ff||Fk F||F||Fm||Fn
Figure 150 — Local View A Figure 151 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{j}, {k} {i,j} {i, k}L{i,j, k}}

childSetsg = {{i}, {jL{m}h{nh{im}{ink{im}{jnk{mn}{imn} {jmn}
}.

Second step is constructing fs X and fs Y representations.

127

Table 182 - Feature Selection Map fs X

row number

1

fs{i}

+

fs{k}

fs{i,j}

fs{i. k}

2
3
4
5

fs{i,j, k}

+ |+ |+

~|~|~|~|~|3

~|~|~|~|~|>3

Table 183 - Feature Selection Map fs 'Y

row number

fs{i}

fs{i}

fs{m}

fs{n}

fs{i,m}

fs{i,n}

fs{j,m}

fs{j,n}

fs{m,n}

fs{i,m,n}

LS|l o| N|o|a| A w N~

fs{j,m,n}

s N N N Y Y N N N L N b

+ |+ +

+ |+ + |+

Third step is performing combination for each fs X and fs Y. Table 184 presents the results

of combinations where fs X’s and fs Y’s are not preserved.

Table 184 -fs X ® fs Y

row number j k m n
1 fs{j} + / /
2 fs{i} - - -
3 fs{j}®fs{i} ! - -
4 fs{j} + / /
5 fs{m} - + -
6 fs{j}®fs{m} ! + -
7 fs{j} + / /
8 fs{n} - - +
9 fs{j}®fs{n} ! - +
10 fs{j} + / /
11 fs {i,m} - + -
12 fs{j}®fs{i,m} ! + -
13 fs{j} + / /
14 fs{i,n} - - +
15 fs{j}®fs{i,n} ! - +
16 fs{j} + / /

Table 184 (continued)

row number i j k m n
17 fs{m,n} - - / + +
18 fs{j}®fs{m,n} - ! - + +
19 fs{j} - + - / /
20 fs{i,m,n} + - / + +
21 fs{j}®fs{i,m,n} ! ! - + +
22 fs{k} - - + / /
23 fs{i} + - / - -
24 fs{k}®fs{i} ! - + - -
25 fs{k} - - + / /
26 fs{j} - + / - -
27 fs{k}®fs{j} - ! + - -
28 fs{k} - - + / /
29 fs{m} - - / + -
30 fs{k}®fs{m}=1fs{Kk,)) + +)

m }
31 fs{k} - - + / /
32 fs{n} - - / - +
33 fs{k}®fs{}n}=fs{k,n)) +) +
34 fs{k} - - + / /
35 fs{i,m} + - / + -
36 fs{k}®fs{i,m} ! - + + -
37 fs{k} - - + / /
38 fs{i,n} + - / - +
39 fs{k}®fs{i,n} ! - + - +
40 fs{k} - - + / /
41 fs{j,m} - + / + -
42 fs{k}®fs{jm} - ! + + -
43 fs{k} - - + / /
44 fs{j,n} - + / - +
45 fs{k}®fs{j,n} - ! + - +
46 fs{k} - - + / /
47 fs{m,n} - - / + +
48 fs{k}®fs{m,n}="fs{)) + + +
k,m,n}
49 fs{k} - - + / /
50 fs{i,m,n} + - / + +
51 fs{k}®fs{i,m,n} ! - + + +
52 fs{k} - - + / /
53 fs{j,m,n} - + / + +
54 fs{k}®fs{j,m,n} - ! + + +
55 fs{i,j} + + - / /
56 fs{i} + - / - -
57 fs{i,j}®fs{i} + ! - - -
58 fs{i,j} + + - / /
59 fs{j} - + / - -
60 fs{i,j}®fs{j} ! + - - -
61 fs{i,j} + + - / /
62 fs{m} - - / + -

129

Table 184 (continued)

row number . .

i j k m n
63 fs{i,j}®@Ffs{m} ! ! - + -
64 fs{i,j} + + - / /
65 fs{n} - - / - +
66 fs{i,j}®@fs{n} ! ! - - +
67 fs{i,j} + + - / /
68 fs{i,m} + - / + -
69 fs{i,j}®fs{i,m} + ! - + -
70 fs{i,j} + + - / /
71 fs{i,n} + - / - +
72 fs{i,j}®Ffs{i,n} + ! - - +
73 fs{i,j} + + - / /
74 fs{j,m} - + / + -
75 fs{i,j}®fs{jm} ! + - + -
76 fs{i,j} + + - / /
77 fs{j,n} - + / - +
78 fs{i,j}®fs{jn} ! + - - +
79 fs{i,j} + + - / /
80 fs{m,n} - - / + +
81 fs{i,j}®@fs{m,n} ! ! - + +
82 fs{i,j} + + - / /
83 fs{i,m,n} + - + +
84 fs{i,j}®@fs{i,m,n} + ! - + +
85 fs{i,j} + + - / /
86 fs{j,m,n} - + / + +
87 fs{i,j}®fs{j,mn} ! + - + +
88 fs{j, k} - + + / /
89 fs{i} + - / - -
90 fs{j,k}®fs{i} ! ! + - -
91 fs{j, k} - + + / /
92 fs{m} - - / + -
93 fs{j k}®fs{m} - ! + + -
94 fs{j, k} - + + / /
95 fs{n} - - / - +
96 fs{j,k}®fs{n} ! + + - -
97 fs{j, k} - + + / /
98 fs{i,m} + - / + -
99 fs{j,;) k}®fs{i,m} ! ! + + -
100 fs{j, k} - + + / /
101 fs{i,n} + - / - +
102 fs{j,) k}®fs{i,n} ! ! + - +
103 fs{j, k} - + + / /
104 fs{j,m} - + / + -
105 fs{j,k}@fs{j,m}=fs{) + + +)

j, k,m}
106 fs{j, k} - + + / /
107 fs{j,n} - + / - +
08 | BUKY®s{ny=RG | . | . | . | .
k,n}

109 fs{j, k} - + + / /
110 fs{m,n} - - / + +

130

Table 184 (continued)

row number . .

i j k m n
111 fs{j,;) k}®fs{m,n} - ! + + +
112 fs{j, k} - + + / /
113 fs{i,m,n} + - / + +
114 fs{j, k}®fs{i,m,n} ! ! + + +
115 fs{j, k} - + + / /
116 fs{j,m,n} - + / + +
117 fs{j,k}@fs{j,m,n}=fs) + + + +

{irk,m,n}

118 fs{i,j, k} + + + / /
119 fs{i} + - / - -
120 fs{i,jk}®fs{i} + ! + - -
121 fs{i,j, k} + + + /
122 fs{j} - + / - -
123 fs{i,jk}®@fs{j} ! + + - -
124 fs{i, j, k} + + + / /
125 fs{m} - - / + -
126 fs{i,jk}®@Ffs{m} ! ! + + -
127 fs{i,j, k} + + + / /
128 fs{n} - - / - +
129 fs{i,jk}®@Ffs{n} ! ! + - +
130 fs {i,j, k} + + + / /
131 fs{i,m} + - / + -
132 fs{i,jjk}®Ffs{i,m} + ! + + -
133 fs{i, j, k} + + + / /
134 fs{i,n} + - / - +
135 fs{i,jjk}®fs{i,n} + ! + - +
136 fs{i, j, k} + + + / /
137 fs{j,m} - + / + -
138 fs{i,jjk}®Ffs{j,m} ! + + + -
139 fs{i, j, k} + + + / /
140 fs{j,n} - + / - +
141 fs{i,jjk}®Ffs{j,n} ! + + - +
142 fs{i, j, k} + + + / /
143 fs{m,n} - - / + +
144 fs{i,jk}®Ffs{m,n} ! ! + + +
145 fs{i, j, k} + + + / /
146 fs{i,m,n} + - / + +
147 fs{i,j,k}®fs{i,m,n} + ! + + +
148 fs{i, j, k} + + + / /
149 fs{j,m,n} - + / + +
150 fs{i,j,k}®fs{j,m,n} ! + + + +

On the 30" row of Table 184, result of fs { k } ® fs { m } operation is equal to s { k, m } which
is not equal to fs { k } or fs { m }. Similar situations are presented on the 33", 48", 105",

108" and 117" rows. This means that on these rows, fs X’s and fs Y’s are not preserved.

Table 185 gives the result of combinations where fs Y’s are preserved.

131

Table 185-fsX® fsY=1fsY

row number i
1 fs{j} :
fs{j,m} -
fs{i}®@fs{jm}=rFfs{jm} | -
fs{i} -

fs{j,n} -
fs{i}®fs{jn}=~fs{jn} -
fs{i} -
fs{j,m,n} -

fs{j}®fs{j,mn}="rfs{j,
m, n}

~
\++\3
1

~
1

e o e S A R
1

© | O N[O O A|WIN

1
+
1
+
+

Table 186 gives the result of fs {j, k} ® fs {j } where fs X is preserved.

Table 186 -fs X ® fsY =fs X

row number i
1 fs{j, k} -
2 fs{j} -
3 fs{j, k}®fs{j}=~fs{j k} | -

+ |+ |+ =

+ |~ +|x
-
-

From the results of conform operations, childSetsg is constructed as follows: childSetsg = {{]

i kbh{hmE{in}{jmn}}

When the FM R is built, the model given in Figure 152 is obtained.

Figure 152 — Resolution of Figure 150 and Figure 151

Following example includes views with constraints. As shown in Figure 153 and Figure 154,

views consist of requires relationships.

132

Fp Fp

&
Fi| |Fj||Fk Fi||Fj||Fm||Fn

Figure 153 — Local View A Figure 154 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{i}, {j} {i,j} {i, k} {i,j, k}}

childSetsg = {{i}, {jL {m}h{ijL{im}{jm}h{mn} {ijm}{imn}{jmn}{i
j,mn}}

Second step is constructing fs X and fs Y representations.

Table 187 - Feature Selection Map fs X

row number i j k m n
1 fs {i} + - - / /
2 fs{j} - + - / /
3 fs{i,j} + + - / /
4 fs{j, k} - + + / /
5 fs {i,j, k} + + + / /
Table 188 - Feature Selection Map fs Y
row number i j k m n
1 fs {i} + - / - -
2 fs{j} - + / - -
3 fs{m} - - / + -
4 fs{i,j} + + / - -
5 fs{i,m} + - / + -
6 fs{j, m} - + / + -
7 fs{m,n} - - / + +
8 fs{i, j, m} + + / + -
9 fs{i,m,n} + - / + +
10 fs{j,mn} - + / + +
11 fs{i,j,m,n} + + / + +

Third step is performing combination for each fs X and fs Y. Table 189 presents the results

of combinations where fs X's and fs Y’s are not preserved.

133

Table 189-fsX® fsY

row number i j m n
1 fs{i} + - / /
2 fs{j} - + - -
3 fs{i}®fs{j} ! ! - -
4 fs{i} + - / /
5 fs{m} - - + -
6 fs{i}®fs{m} ! - + -
7 fs{i} + - / /
8 fs{i,j} + + - -
9 fs{i}®fs{i,j} + ! - -
10 fs{i} + - / /
11 fs{j,m} - + + -
12 fs{i}®fs{j,m} ! ! + -
13 fs{i} + - / /
14 fs{m,n} - - + +
15 fs{i}®fs{m,n} ! - + +
16 fs {i} + - / /
17 fs{i,j,m} + + +
18 fs{i}®fs{i,j,m} + ! + -
19 fs{i} + - / /
20 fs{j,m,n} - + + +
21 fs{i}®fs{j,m,n} ! ! + +
22 fs{i} + / /
23 fs{i,j,m,n} + + + +
24 fs{i}®fs{i,j,mn} + ! + +
25 fs{j} - + / /
26 fs{m} - - + -
27 fs{j}®fs{m} - ! + -
28 fs{j} - + / /
29 fs{i,j} + + - -
30 fs{j}®fs{i,j} ! + - -
31 fs{j} - + / /
32 fs{i,m} + - + -
33 fs{j}®fs{i,m} ! ! + -
34 fs{j} - + / /
35 fs{m,n} - - + +
36 fs{j}®fs{m,n} - ! + +
37 fs{j} - + / /
38 fs {i,j,m} + + + -
39 fs{j}®fs{i,j,m} ! + + -
40 fs{j} - + / /
41 fs{i,m,n} + - + +
42 fs{j}®fs{i,m,n} ! ! + +
43 fs{j} - + / /
44 fs{i,j,m,n} + + + +
45 fs{j}®fs{i,j,m,n} ! + + +

134

Table 189 (continued)

row number i j k m n
46 fs{i,j} + + - / /
47 fs{m} - - / + -
48 fs{i,j}®fs{m} ! ! - + -
49 fs{i,j} + + - / /
50 fs{i,m} + - / + -
51 fs{i,j}®@fs{i,m} + ! - + -
52 fs{i,j} + + - / /
53 fs{j,m} - + / + -
54 fs{i,j}®@fs{j,m} ! + - + -
55 fs{i,j} + + - / /
56 fs{m,n} - - / + +
57 fs{i,j}®fs{m,n} ! ! - + +
58 fs{i,j} + + - / /
59 fs{i,m,n} + - / + +
60 fs{i,j}®@Ffs{i,m,n} + ! - + +
61 fs{i,j} + + - / /
62 fs{j,m,n} - + / + +
63 fs{i,j}®fs{j,mn} ! + - + +
64 fs{j, k} - + + / /
65 fs{i} + - / - -
66 fs{j,k}®fs{i} ! ! + - -
67 fs{j k} - + + / /
68 fs{m} - - / + -
69 fs{jk}®fs{m} - ! + + -
70 fs{j, k} - + + / /
71 fs{i,j} + + / - -
72 fs{jk}®fs{i,j} ! + + - -
73 fs{j k} - + + / /
74 fs{i,m} + - / + -
75 fs{j,k}®fs{i,m} ! ! + + -
76 fs{j, k} - + + / /
77 fs{j,m} - + / + -
78 fs{j,k}®fsr{nj,}m}=fs{j,k, i + + +)
79 fs{j, k} - + + / /
80 fs{m,n} - - / + +
81 fs{jk}®fs{m,n} - ! + + +
82 fs{j, k} - + + / /
83 fs{i,j,m} + + / + -
84 fs{jk}®fs{i,j,m} ! + + + -
85 fs{j, k} - + + / /
86 fs{i,m,n} + - / + +
87 fs{j,k}®fs{i,m,n} ! ! + + +
88 fs{j, k} - + + / /

135

Table 189 (continued)

row number

I J k m n
89 fs{j,m,n} N P A R
90 fs{i, k}®fs{jmn}=Ffs{j | _

k,m,n}
91 fs {j k3 S U R A I
92 fs{i,j,m,n} + + / n +
93 fs{j,k}®fs{i,j,m,n} ! T T " "
94 fs {i,j, k} |+ |+ | ;
95 fs {i} +)]) .
96 fs{i,j,k}®fs{i} + ! n) -
97 fs {i,j, k} + T "] ;
98 fs{j} N S N I R
%9 fs{i,j k}®Fs{j} T T - -
100 fS{i,j,k} + + + / /
101 fs{m} ; 3] " -
102 fs{i.j K}®fs{m} |+ |+ | -
103 fS{i,j,k} + + + / /
104 fs{i,m} T 3 / " -
105 fs{i,j, k}®fs{i,m} + ! + ¥ .
106 fS{i,j,k} + + + / /
107 fs{jm} R I S B
108 fs{i,j,k}®fs{j, m} ! " " " -
109 fs {i.j. k) v |+ |+ | T | 1
110 fs{m,n} - - / T +
111 fs{i,j, kK}®fs{m,n} ! ! v |+ | =
112 fs (i, k3 RN
113 fs {i,j, m) s« 7 [+ | -
114 fs{l,j,k}®f8{l,j,m}=fs{ R R . .]
i, j, kK, m}
115 fs {i,j, k } + T " ; ;
116 fs{i,m,n} + :] T T
117 fs{i,jk}®fs{i,m,n} + I - + n
118 fs {i.j. k} [+ [+ | 7 ;
119 fs{j,m n} R P B U
120 fs{i,, kK}®fs{j,m, n} ! " " " "
121 fs {i,j, k } P A e
122 fs{i,j,m,n} + + / n +
123 fs{i,, k}®fs{ijmn}=fs|
{i,j, k, myn}

On the 78" row of Table 189, result of s {j, k } ® fs { j, m } operation is equal to fs {j, k, m }
which is not equal to fs {j, k } or fs {j, m }. Similar situations are presented on the 90", 114"

and 123" rows. This means that on these rows, fs X’s and fs Y’s are not preserved.

136

Table 190 gives the result of combinations where fs Y’s are preserved.

Table 190-fsX® fsY=1sY

row number i j k m n
1 fs{i} + - - / /

2 fs {i,m} + - / + -

3 fs{i}®@fs{im}=Ffs{i,m} + - - + -

4 fs{i} + - - / /

5 fs{i,m,n} + - / + +

6 fs{i}®fs{i,r:n},n}=fs{i,m, +)) + +

7 fs{j} - + - / /

8 fS{Jam} B + / + -

9 fs{j}®fs{jm}=Ffs{jm} - + - + -
10 fs{j} - + - / /
11 fs{j,m,n} - + / + +
12 fs{i}®fs{i,r:n},n}=fs{i,m,] + - + +
13 fs{i,j} + + - / /
14 fs{i,j,m} + + / + -
15 fS{i,j}®fS{i,j,m}=f3{i,j, + + _ + _

m}
16 fs{i,j} + + - / /
17 fs{i,j,m,n} + + / + +
18 s{i.iy@fs{ihmny=fs{ | | | _ [, |,
i,j, m,n}
Table 191 gives the result of combinations where fs X’s are preserved.
Table 191 -fsX® fsY =fs X
row number i j k m

1 fs{j, k} - + + / /

2 fs{j} RN

3 fs{i, k}®@fs{j}="~s{j k} i I T -

4 fs{i,j, k} + + + / /

5 fs{i,j} + + / - -

6 fs{i,j,k}®fs{i,j}="Ffs{i, j, k} + + + - -

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {i

ORI {mE {Gm} {j kL (i), m} {ij k) {i,m,n} {j,m,n} {i,jmn}}

When the FM R is built, the model given in Figure 155 is obtained.

137

Figure 155 — Resolution of Figure 153 and Figure 154

Following example includes views with constraints. As shown in Figure 156 and Figure 157,

views consist of requires and excludes relationships.

Fp Fp
/ . J.'....-.-".:... _.I.. '\--\.‘ ‘.\-
Fi| | Fj||Fk Fi||F||Fm||Fn
Figure 156 — Local View A Figure 157 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa = {{j}, {k} {i,k} {i, k}, {i,j,k}}
childSetsg ={{i}, {jLh{m}{n}{i,jh{im}{ink{im}t{ink{iim}{ijn}}

Second step is constructing fs X and fs Y representations.

Table 192 - Feature Selection Map fs X

row number i j k m n
1 fs{j} - + - / /
2 fs{k} - - + / /
3 fs{i, k} + - + / /
4 fs{j, k} - + + / /
5 fs {i,j, k} + + + / /

138

Table 193 - Feature Selection Map fs Y

row number i j k m n
1 fs{i} + - / - -
2 fs{j} - + / - -
3 fs{m} - - / + -
4 fs{n} - - / - +
5 fs{i,j} + + / - -
6 fs{i,m} + - / + -
7 fs{i,n} + - / - i
8 fs{j, m} - + / + -
9 fs{j,n} - + / - +
10 fs{i,j,m} + + / + -
11 fs{i,j,n} + + / - +

Third step is performing combination for each fs X and fs Y. Table 194 presents the results
of combinations where fs X’'s and fs Y’s are not preserved.

Table 194 -fsX® fsY

row number i j k m n
1 fs{j} - + - / /
2 fs{i} + - / - -
3 fs{j}®fs{i} ! ! - - -
4 fs{j} - + - / /
5 fs{m} - - / + -
6 fs{j}®fs{m} - ! - + -
7 fs{j} - + - / /
8 fs{n} - - / - +
9 fs{j}®fs{n} - ! - - +
10 fs{j} - + - / /
11 fs{i,j} + + / - -
12 fs{j}®fs{i,j} ! + - - -
13 fs{j} - + - / /
14 fs{i,m} + - / + -
15 fs{j}®fs{i,m} ! ! - + -
16 fs{j} - + - / /
17 fs{i,n} + - / - +
18 fs{j}®fs{i,n} ! ! - - ¥
19 fs{j} - + - / /
20 fs{i,j,m} + + / + -
21 fs{j}®fs{i,j,m} ! + - + -
22 fs{j} - + - / /
23 fs{i,j,n} + + / - +
24 fs{j}®fs{i,j,n} ! + - - +
25 fs{k} - - + / /

139

Table 194 (continued)

row number i K m n
26 fs{i} + / - -
27 fs{k}®fs{i} ! + - -
28 fs{k} - + / /
29 fs{j} - / - -
30 fs{k}®fs{j} - + - -
31 fs{k} - + / /
32 fs{m} - / + -
33 fs{k}®fs{m}=fs{k, m} - + + -
34 fs{k} - + / /
35 fs{n} - / - +
36 fs{k}®fs{n}=fs{k,n} - + - +
37 fs{k} - + / /
38 fs{i,j} + / - -
39 fs{k}®fs{i,j} ! + - -
40 fs{k} - + / /
41 fs{i,m} + / + -
42 fs{k}®fs{i,m} ! + + -
43 fs{k} - + / /
44 fs{i,n} + / - +
45 fs{k}®fs{i,n} ! + - +
46 fs{k} - + / /
47 fs{j,m} - / + -
48 fs{k}®fs{j,m} - + + -
49 fs{k} - + / /
50 fs{jn} - / - +
51 fs{k}®fs{j,n} - + - +
52 fs{k} - + / /
53 fs{i,j,m} + / + -
54 fs{k}®fs{i,jm} ! + + -
55 fs{k} - + / /
56 fs{i,j,n} + / - +
57 fs{k}®fs{i,j,n} ! + - +
58 fs{i, k} + + / /
59 fs{j} - / - -
60 fs{i,k}®fs{j} ! + - -
61 fs{i, k} + + / /
62 fs{m} - / + -
63 fs{i,k}®fs{m} ! + + -
64 fs{i, k} + + / /
65 fs{n} - / - +
66 fs{i,k}®fs{n} ! + - +
67 fs{l,k} + + / /
68 fs {i,j} + / - -

140

Table 194 (continued)

row number . .

i j k m n
69 fs{i,k}®fs{i,j} + ! + - -
70 fs{i, k} + - + / /
71 fs{i,m} + - / + -
79 fs{i,k}®fs{i,m}="fs{ik, +) + +)

m }

73 fs{i, k} + - + / /
74 fs{i,n} + - / - +
75 fs{i,k}@fs{i},n}=fs{i,k,n +) +) +
76 fs{i, k} + - + / /
77 fs{j,m} - + / + -
78 fs{i,k}®fs{j,m} ! ! + + -
79 fs{i, k} + - + / /
80 fs{j,n} - + / +
81 fs{i,k}®fs{j,n} ! ! + - +
82 fs{i, k} + - + / /
83 fs{i,j,m} + + / + -
84 fs{i,k}®fs{i,j,m} + ! + + -
85 fs{i, k} + + / /
86 fs{i,j,n} + + / - +
87 fs{i,k}®fs{i,j,n} + ! + - +
88 fs{j, k} - + + / /
89 fs{i} + - / - -
90 fs{j,k}®fs{i} ! ! + - -
91 fs{j, k} - + + / /
92 fs{m} - - / + -
93 fs{j,k}®fs{m} - ! + + -
94 fs{j, k} - + + / /
95 fs{n} - - / - +
96 fs{jk}®fs{n} - ! + - +
97 fs{j, k} - + + / /
98 fs{i,j} + + / - -
99 fs{j,k}®fs{i,j} ! + + - -
100 fs{j, k} - + + / /
101 fs{i,m} + - / + -
102 fs{j,;) k}®fs{i,m} ! ! + + -
103 fs{j, k} - + + / /
104 fs{i,n} + - / - +
105 fs{jk}®fs{i,n} ! ! + - +
106 fs{j, k} - + + / /
107 fs{j,m} - + / + -
108 fs{j,k}®fs§nj,}m}=fs{j, Kk, i + + +)
109 fs{j, k} - + + / /

141

Table 194 (continued)

row number i j k m n
110 fs{j,n} - + / - +
111 fs{j,k}®fs{j},n}=fs{j,k,n i . + i N
112 fs{j, k} - + + / /
113 fs{i,j,m} + + / n .
114 fs{j, k}®fs{i,j,m} ! + + + -
115 fs{j, k} - + + / /
116 fs{i,j,n} + + / - +
117 fs{j, k}®fs{i,j,n} ! + + - +
118 fs{i,j, k} + + + / /
119 fs{i} + - / - -
120 fs{i,jk}®fs{i} + ! + - -
121 fs{i,j, k} + + + / /
122 fs{j} - + / - -
123 fs{i,jk}®fs{j} ! + + - -
124 fs{i,j, k} + + + / /
125 fs{m} - - / + -
126 fs{i,jk}®@Ffs{m} ! ! + + -
127 fs{i,j, k} + + + / /
128 fs{n} - - / +
129 fs{i,jjk}®fs{n} ! ! + - +
130 fs{i,j,k} + + + / /
131 fs{i,m} + - / + -
132 fs{i,jjk}®fFfs{i,m} + ! + + -
133 fs{i,j,k} + + + / /
134 fs{i,n} + - / - +
135 fs{i,jjk}®fs{i,n} + ! + - +
136 fs{i,j,k} + + + / /
137 fs{j,m} - + / + -
138 fs{i,jk}®fs{j,m} ! + + + -
139 fs{i,j,k} + + + / /
140 fs{j,n} - + / - +
141 fs{i,jk}®fs{j,n} ! + + - +
142 fs{i,j, k} + + + / /
143 fs{i,j,m} + + / + -
144 fs{i,j,k}Qfs{i,j,m}=fs{i, + + + + i

j k,m}
145 fs{i,j, k} + + + / /
146 fs{i,j,n} + + / - +
147 fs{i,j,k}Qfs{i,j,n}=fs{i, + + + i .
j kyn}

On the 33" row of Table 194, result of fs { k } ® fs { m } operation is equal to fs { k, m } which
is not equal to fs { k } or fs { m }. Similar situations are presented on the 36", 72", 75", 108",

142

111", 144" and 147" rows. This means that on these rows, fs X’s and fs Y’s are not

preserved.

Table 195 gives the result of combinations where fs Y’s are preserved.

Table 195-fsX® fsY=fsY

row number i j m n

1 fs{j} - + / /

2 fs{j,m} - + + -

3 fs{j}®fs{jm}=Ffs{j,m} - + + -

4 fs{j} - + / /

5 fs{j.n} -+ R —

6 fs{j}®fs{j,n}=~fs{jn} - + - +
Table 196 gives the result of combinations where fs X’s are preserved.

Table 196 - fs X ® fsY =fs X

row number i j k m n

1 fs{i, k} + - + / /

2 fs{i} + - / - -

3 fs{i,k}®fs{i}="~fs{i, k} + - + - -

4 fs{j, k} - + + / /

5 fs{j} -+ | - -

6 fs{j, k}®fs{j}="~Ffs{j, k} - + + - -

7 fs{i,j, k} + + + / /

8 fs{i,j} + + / - -

9 fs{i,jjk}®fs{i,jy=~Ffs{i,jk} + + + - -

From the results of conform operations, childSetsg is constructed as follows

BALkL{,mE{jn} {J k} {i,), k}}.

When the FM R is built, the model given in Figure 158 is obtained.

143

Figure 158 — Resolution of Figure 156 and Figure 157

 childSetsg = { {]

Following example includes views with constraints. As shown in Figure 159 and Figure 160,

views consist of requires and excludes relationships.

Fp Fp
/- S _-'"-"'-" .-":-; .II'. b ‘."'.
Fi| |Fi||Fk Fi||FI||Fm||Fn
Figure 159 — Local View A Figure 160 — Local View B

First step in merging by conformance is determining the sets of sets of sibling features of

views.
childSetsa ={{i}, {k}, {i,j}, {j, k}}
childSetsg ={{m},{n}, {i,m},{i,j,m}}.

Second step is constructing fs X and fs Y representations.

Table 197 - Feature Selection Map fs X

row number i j k
1 fs {i} + - -
2 fs{k} - - +
3 fs{i,j} + + -
4 fs{j, k} - + +

—~|~|~[~|3
~|~|~|~|>3

Table 198 - Feature Selection Map fs Y

row number i j
1 fs{m} - -
2 fs{n} - -
3 fs{i,m} + -
4 fs{i,jm} + +

~| |~
1
+

Third step is performing combination for each fs X and fs Y. Table 199 presents the results
of combinations where fs X's and fs Y’s are not preserved.

144

Table 199-fsX® fsY

row number i j k m n
1 fs{i} + - - / /
2 fs{m} - - / + -
3 fs{i}®@fs{m} ! - - + -
4 fs{i} + - - / /
5 fs{n} - - / - +
6 fs{i}®fs{n} ! - - - +
7 fs{i} + - - / /
8 fs{i,j,m} + + / + -
9 fs{i}®fs{i,j,m} + ! - + -
10 fs{k} - - + / /
11 fs{m} - / + -
12 fs{k}®fs{m}=Ffs{k,m} - - + + -
13 fs{k} - - + / /
14 fs{n} - - / - +
15 fs{k}®fs{n}=fs{k,n} - - + - +
16 fs{k} - - + / /
17 fs{i,m} + - / + -
18 fs{k}®fs{i,m} ! - + + -
19 fs{k} - - + / /
20 fs{i,j,m} + + / + -
21 fs{k}®fs{i,jm} ! ! + + -
22 fs{i,j} + + - / /
23 fs{m} - - / + -
24 fs{i,j}®fs{m} ! ! - + -
25 fs{i,j} + + - / /
26 fs{n} - - / - +
27 fs{i,j}®Ffs{n} ! ! - - +
28 fs{i,j} + + - / /
29 fs{i,m} + - / + -
30 fs{i,j}®fs{i,m} + ! - + -
31 fs{j k} - + + / /
32 fs{m} - / + -
33 fs{jk}®fs{m} - ! + + -
34 fs{j, k} - + + / /
35 fs{n} - - / - +
36 fs{j,k}®fs{n} - ! + - +
37 fs{j, k} - + + / /
38 fs {i, m} + - / + -
39 fs{j,k}®fs{i,m} ! ! + + -
40 fs{j, k} - + + / /
41 fs{i,jym} + + / + -
42 fs{j,k}®fs{i,j,m} ! + + + -

145

On the 12" row of Table 199, result of fs { k } ® fs { m } operation is equal to s { k, m } which
is not equal to fs { k } or fs { m }. Similar situation is presented on the 15" row. This means

that on these rows, fs X’s and fs Y’s are not preserved.

Table 200 gives the result of combinations where fs Y’s are preserved.

Table200-fsX®fsY=fsY

row number i j k m n
1 fs{i} + - - / /
2 fs{i,m} + - / + -
3 fs{i}®fs{iim}=~fs{i,m} + - - + -
4 fs{i,j} + + - / /
5 fs{i,j,m} + + / + -
6 fs{i,j}®@fs{i,jm}="fs{i, R R] R i
j,m}

From the results of conform operations, childSetsg is constructed as follows: childSetsg = { {
i,m} {i,j,m}}

When the FM R is built, the model given in Figure 161 is obtained.

Fp

7
& i A & &
Fi j|| Fk || Fm || Fn

Figure 161 — Resolution of Figure 159 and Figure 160

From the childSetsg’s that are obtained at the end of the solutions, resolution FMs can be
constructed by following the rules given in chapter 4.

146

APPENDIX B

EXAMPLES OF RESOLUTION FM CONSTRUCTION WITH CROSS-TREE
CONSTRAINTS BETWEEN SIBLINGS

In the following examples, let use some of the child sets of R’s given in Appendix A.
childSetsg is constructed above for the 5" example as follows:

Steps of constructing a table are followed and the Table 201 given below is obtained.

Table 201 - Marking for childSetsr for the 5 example

i j k
{i} 1 0 0
{i,j} 1 1 0
{i, k} 1 0 1

If the given rules above are applied, i is determined as mandatory as indicated in the first
rule, j and k are determined as optional as indicated in the third rule, j and k are determined
as in an excludes relationship as indicated in the seventh rule and they are as shown in
Figure 95.

Other childSetsg is constructed above for the Ak example as follows:
childSetsg = {{j}, {k}, {i, k}}

Steps of constructing a table are followed and the Table 202 given below is obtained.

147

Table 202 - Marking for childSetsg for the 7" example

i j k
{i} 0 1 0
{k} 0 0 1
{i, k} 1 0 1

If the given rules above are applied, i is determined as optional as indicated in the third rule, j
and k are determined as in an alternative relationship as indicated in the fourth rule, i and k
are determined as in a requires relationship (i requires k) as indicated in the sixth rule and

they are as shown in Figure 101.
Another childSetsg is constructed above for the 20" example as follows:
childSetsg = {{i}, {j, k}}

Steps of constructing a table are followed and the Table 203 given below is obtained.

Table 203 - Marking for childSets for the 20" example

i j k
0
1

—_
o

{i}
{i, k}

—_

If the given rules above are applied, i and j are determined as in an alternative relationship
and similarly i and k are determined as in an alternative relationship as indicated in the fourth

rule and they are as shown in Figure 140.

Another childSetsg is constructed above for the 24" example as follows:

childSetsr = {{j}, {j kL. {i.m} {j.,n} {j,m n}}

Steps of constructing a table are followed and the Table 204 given below is obtained.

Table 204 - Marking for childSetsg for the 24" example

i j k m n

{i} 0 1 0 0 0
{j, k} 0 1 1 0 0
{j,m} 0 1 0 1 0
{j,n} 0 1 0 0 1
{jmn} 0 1 0 1 1

If the given rules above are applied, i is determined as not-available as indicated in the
second rule, j is determined as mandatory as indicated in the first rule, k, m and n are

determined as optional as indicated in the third rule, k and m are determined as in an

148

excludes relationship and similarly k and n are determined as in an excludes relationship as

indicated in the seventh rule and they are as shown in Figure 152.
Another childSetsg is constructed above for the 25™ example as follows:

childSetsg = {{i}, {j L {iLjL {im}{im}{j k} {i,jm}{ijk} {imn} {jmn} {i
j,m,n}}

Steps of constructing a table are followed and the Table 205 given below is obtained.

Table 205 - Marking for childSets for the 25" example

i j k m n

{i} 1 0 0 0 0
{i} 0 1 0 0 0
{i,j} 1 1 0 0 0
{i,m} 1 0 0 1 0
{j,m} 0 1 0 1 0
{j, k} 0 1 1 0 0
{i,j,m} 1 1 0 1 0
{i,j,k} 1 1 1 0 0
{i,m,n} 1 0 0 1 1
{j,mn} 0 1 0 1 1
{i,jm,n} 1 1 0 1 1

If the given rules above are applied, k, m and n are determined as optional as indicated in
the third rule, i, and j are determined as in an or relationship as indicated in the fifth rule, k
and j are determined as in a requires relationship (k requires j) and similarly n and m are
determined as in a requires relationship (n requires m) as indicated in the sixth rule, k and m
are determined as in an excludes relationship and similarly k and n are determined as in an

excludes relationship as indicated in the seventh rule and they are as shown in Figure 155.

Another childSetsg is constructed above for the 26" example as follows:

childSetsr = {{j}, {i, kL, {i,m} {j.n} {. k} {i.], k}}.

Steps of constructing a table are followed and the Table 206 given below is obtained.

Table 206 - Marking for childSetsg for the 26" example

i j k m n

{i} 0 1 0 0 0

{i, k} 1 0 1 0 0
{j,m} 0 1 0 1 0
{j,n} 0 1 0 0 1
{j, k} 0 1 1 0 0
{i,j,k} 1 1 1 0 0

149

If the given rules above are applied, k, m and n are determined as optional as indicated in
the third rule, i and j are determined as in an or relationship as indicated in the fifth rule, i and
k are determined as in a requires relationship (i requires k) as indicated in the sixth rule, k
and m are determined as in an excludes relationship, k and n are determined as in an
excludes relationship and similarly m and n are determined as in an excludes relationship as

indicated in the seventh rule and they are as shown in Figure 158.
Another childSetsg is constructed above for the 27" example as follows:
childSetsg = {{i,m}, {i,j,m}}.

Steps of constructing a table are followed and the Table 207 given below is obtained.

Table 207 - Marking for childSetsg for the 27" example

i j k m n
{i,m} 1 0 0 1 0
{i,jm} 1 1 0 1 0

If the given rules above are applied, i and m are determined as mandatory as indicated in the
first rule, k and n are determined as not-available as indicated in the second rule, j is

determined as optional as indicated in the third rule and they are as shown in Figure 161.

150

APPENDIX C

EXAMPLES OF MERGING COMPLETE VIEWS

Following examples are given to verify the algorithm and explain the steps of it by executing.

Figure 162 and Figure 163 represent view A and B, respectively.

Fp
'l
o
F||F Fp
- '.I - _/’l '
* =
Fm Fru Fo Fi J || Fk
l‘ A %, a._ ‘ '_,.-"'"
L L e L - N
Fw||Fr||Ft||Fw||Fy||Fx||F=z Fm Fn || Fo
¥ /.""' _l\\ i}
F Fw || Fr||Fu||Fv
Figure 162 — View A Figure 163 — View B

Assume that these FMs are passed to mergeByConformance method as viewA and viewB
parameters.

At the beginning of the execution, value of level is assigned to 0. As shown in the figures
above, viewA.depth is equal to 4 and viewB.depth is equal to 3. So, the condition of while is
conformed and execution of algorithm passes to line 6. getFeatures function returns a set of
features of the given FM at the given level. At level 0 of viewA and viewB, there is a feature
p. featuresA, featuresB and featuresAtLevel are equal to { p } after the execution of lines 6, 7
and 8. When the execution of for loop is started, parentA and parentB is assigned to p and

conformA and conformB is assigned to @. getChilds function returns the child sets at only

151

one level below of the given feature of the given FM. After the execution of lines 15 and 16,
childSetsA is equal to {{i,j } } and childSetsBisequalto{{ },{i}, {i}, {k} {i,j}, {i,k} {
j, k}, {i, j, k}}. Since both of them are not equal to @, execution of algorithm passes to line
26. constructFsX function returns the given table below:

Table 208 - Feature Selection Map fs X

row number i
1 fs{i,j} + + /

(-
x

constructFsY function returns the given table below:

Table 209 - Feature Selection Map fs Y

row number i j k
1 fs{ } - - -
2 fs{i} + - -
3 fs{j} - + -
4 fs{k} - - +
5 fs{i,j} + + -
6 fs{i, k} + - +
7 fs{j, k} - + +
8 fs {i, j, k} + + +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. For loop between lines 28 and 34, performs fs X @ fs Y
operation for each fs X € fsXSet and searches for fs Y € fsYSet such that s X ® fs Y = fs X.
conformB includes the child sets corresponding to these fs X results. After the execution of
loop, conformB is equal to { { i, j } }. Similarly, for loop between lines 35 and 41, performs fs
X ® fs Y operation for each fs Y € fsYSet and searches for fs X € fsXSet such that fs X ® fs
Y = fs Y. conformA includes the child sets corresponding to these fs Y results. After the
execution of loop, conformA is equal to {{i,]}, {i, j, k}}. childSetsR is equal to {{i,j}, {i,],
k } } after the execution of line 42. constructModelR builds the FM R from the given set of
child sets at the given level by following rules given in chapter 4. The model given in Figure
164 is obtained, after the execution of line 43.

152

Fp
=12

Fk

il]

Figure 164 — Level 0 Resolution of Figure 162 and Figure 163

Value of level is increased by one and assigned to 1 at line 46 and execution of algorithm is
returned to the line 5 again. The condition of while is conformed and execution of algorithm
passes to line 6. At level 1 of viewA there are i and j features and at level 1 of viewB there
are i, j and k features. featuresA is equal to { i, j }, featuresB is equal to { i, j, k } and
featuresAtLevel is equal to { i, j, k } after the execution of lines 6, 7 and 8. When the
execution of for loop is started, parentA and parentB is assigned to i and conformA and
conformB is assigned to &. After the execution of lines 15 and 16, childSetsA and childSetsB
are equal to &. Since both of them are equal to &, execution of algorithm omits the entire if

blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to j and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
isequalto{{m, 0}, {m, n,0}}and childSetsBis equalto{{m},{n},{o},{m,n},{m, 0
},{n, 0}, {m, n, o0}}. Since both of them are not equal to &, execution of algorithm passes

to line 26. constructFsX function returns the given table below:

Table 210 - Feature Selection Map fs X

row number m n o
1 fs{m, o0} + - +
2 fs{m,n,o0} + + +

constructFsY function returns the given table below:

Table 211 - Feature Selection Map fs Y

row number m n o
1 fs{m} + - -
2 fs{n} - + -
3 fs{o} - - +
4 fs{m,n} + + -
5 fs{m,o0} + - +
6 fs{n,o} - + +
7 fs{m,n,o0} + +

153

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to {{m, o
}, {m, n, 0} }. After the execution of second loop, conformA is equal to {{m, 0}, {m, n,0}}.
childSetsRis equal to{{m, 0}, {m, n, 0} } after the execution of line 42. The model given in

Figure 165 is obtained, after the execution of line 43.

Fp
f
AN
&
Fi||Fj|| Fk
T
& O 8
Fm || Fn || Fo

Figure 165 — Level 1 Resolution of Figure 162 and Figure 163

Execution of algorithm returns to line 9 again. When the execution of for loop is started
again, parentA and parentB is assigned to k and conformA and conformB is assigned to &.
After the execution of lines 15 and 16, childSetsA and childSetsB are equal to &. Since both
of them are equal to &, execution of algorithm omits the entire if blocks. Due to there is not
any other feature in the featuresAtLevel, execution passes to line 46 and value of level is
increased by one and assigned to 2. Then, execution of algorithm is returned to the line 5
again. The condition of while is conformed and execution of algorithm passes to line 6. At
level 2 of viewA and viewB there are m, n and o features. featuresA, featuresB and
featuresAtLevel are equal to { m, n, o } after the execution of lines 6, 7 and 8. When the
execution of for loop is started, parentA and parentB is assigned to m and conformA and
conformB is assigned to &. After the execution of lines 15 and 16, childSetsA is equal to { {
w,t} {r,t}, {w,r t}}and childSetsBis equal to { {w }, {r}, {u}}. Since both of them are
not equal to @, execution of algorithm passes to line 26. constructFsX function returns the

given table below:

Table 212 - Feature Selection Map fs X

row number w r t u
1 fs{w,t} + - + /
2 fs{r, t} - + + /
3 fs{w,r,t} + + + /

constructFsY function returns the given table below:

154

Table 213 - Feature Selection Map fs Y

row number w r t u
1 fs{w} + - / -
2 fs{r} - + / -
3 fs{u} - - / +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs

Y table which are given above. After the execution of first loop, conformB is equal to { {w, t },

{r, t}}. After the execution of second loop, conformA is equal to &. childSetsR is equal to { {

w, t}, {r, t}} after the execution of line 42.

the execution of line 43.

The model given in Figure 166 is obtained, after

Figure 166 — Part of Level 2 Resolution of Figure 162 and Figure 163

Execution of algorithm returns to line 9 again. When the execution of for loop is started

again, parentA and parentB is assigned to

n and conformA and conformB is assigned to Q.

After the execution of lines 15 and 16, childSetsA is equal to { { v }, { y } } and childSetsB is

equal to{{ }, {v}} Since both of them are not equal to &, execution of algorithm passes to

line 26. constructFsX function returns the given table below:

Table 214 - Feature Selection Map fs X

row number \' y
1 fs{v} + -
2 fs{y} - +

constructFsY function returns the given table below:

155

Table 215 - Feature Selection Map fs Y

row number v y
1 fs{ } - /
2 fs{v} + /

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to {{ Vv }, {
y } }. After the execution of second loop, conformA is equal to {{ v } }. childSetsR is equal to {
{v}, {y}} after the execution of line 42. The model given in Figure 167 is obtained, after the
execution of line 43.

Figure 167 — Part of Level 2 Resolution of Figure 162 and Figure 163

Execution of algorithm returns to line 9 again. When the execution of for loop is started
again, parentA and parentB is assigned to o and conformA and conformB is assigned to &.
After the execution of lines 15 and 16, childSetsA is equal to { {x }, {z}, {x,z} } and
childSetsB is equal to &. Since childSetsB is equal to &, execution of algorithm passes to
line 19. moveToViewR function carries the given child sets branch of the given parent of the

given view to the view R. The model given in Figure 168 is obtained, after the execution of
line 19.

156

e
A Te— 7

Figure 168 — Level 2 Resolution of Figure 162 and Figure 163

Due to there is not any other feature in the featuresAtLevel, execution passes to line 46 and
value of level is increased by one and assigned to 3. Then execution of algorithm is returned
to the line 5 again. The condition of while is conformed and execution of algorithm passes to
line 6. At level 3 of viewA there are w, r, t, v, ¥, X and z features and at level 3 of viewB there
are w, r, u and v features. featuresAis equalto { w, r, t, v, vy, x, z }, featuresB is equal to { w,
r, u, v } and featuresAtLevel is equal to {w, r, t, u, v, X, y, z } after the execution of lines 6, 7
and 8. When the execution of for loop is started, parentA and parentB is assigned to w and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to r and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to t and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to u and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

157

When the execution of for loop is started again, parentA and parentB is assigned to v and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to &, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to x and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
is equal to {{ }, {1} } and childSetsB is equal to &. Since childSetsB is equal to @,
execution of algorithm passes to line 19. The given child sets branch is already carried to the
view R, so moveToViewR function does not carry it and execution returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to y and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to z and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

Due to there is not any other feature in the featuresAtLevel, execution passes to line 46 and
value of level is increased by one and assigned to 4. Then, execution of algorithm is returned
to the line 5 again. The condition of while is not conformed this time and execution of
algorithm passes to line 47, then 48 and it ends. As a result, FM R is as shown in Figure
168.

For other example, Figure 169 and Figure 170 represent view A and B, respectively.

Fp Fp
Fi Fj Flk Fi||Fj|| Fk
» | A
"} I “u [] :) ¥ " ‘
Fl||Fm||Fn||Fo||Fr||Fg||Fu]|Fvw Fo Fs || Ft
T-. ‘
. _I) s | ' l
Fw || Fx || Fy Fw || Fx||Fy||Fa
Fz Fz
Figure 169 — View A Figure 170 — View B

158

Assume that these FMs are passed to mergeByConformance method as viewA and viewB

parameters.

At the beginning of the execution, value of level is assigned to 0. As shown in the figures
above, viewA.depth and viewB.depth are equal to 4. So, the condition of while is conformed
and execution of algorithm passes to line 6. At level 0 of viewA and viewB, there is a feature
p. featuresA, featuresB and featuresAtLevel are equal to { p } after the execution of lines 6, 7
and 8. When the execution of for loop is started, parentA and parentB is assigned to p and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
isequalto {{k}, {i,k}, {j, k},{ij, k}}and childSetsBis equal to {{j}, {k}, {]j, k}}. Since
both of them are not equal to &, execution of algorithm passes to line 26. constructFsX

function returns the given table below:

Table 216 - Feature Selection Map fs X

row number i j k
1 fs{k} - - +
2 fs{i, k} + - +
3 fs{j, k} - + +
4 fs{i,j, k} + + +
constructFsY function returns the given table below:
Table 217 - Feature Selection Map fs Y
row number i j k
1 fs{j} - + -
2 fs{k} - - +
3 fs{j, k} - + +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to {{ k }, {
j, k '} }. After the execution of second loop, conformA is equal to { { k}, {], k } }. childSetsR is
equal to { { k }, {], k } } after the execution of line 42. The model given in Figure 171 is

obtained, after the execution of line 43.

Figure 171 — Level 0 Resolution of Figure 169 and Figure 170

159

Value of level is increased by one and assigned to 1 at line 46 and execution of algorithm is
returned to the line 5 again. The condition of while is conformed and execution of algorithm
passes to line 6. At level 1 of viewA and viewB there are i, j and k features. featuresA,
featuresB and featuresAtLevel are equal to { i, j, k } after the execution of lines 6, 7 and 8.
When the execution of for loop is started, parentA and parentB is assigned to i and conformA
and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA is equal to
{{mL{n}, {m,n}, {I,m}, {l,n}, {I,m, n}}and childSetsB is equal to @. Since childSetsB
is equal to @, execution of algorithm passes to line 19. moveToViewR function does not
carry the given child sets branch because branch’s parent feature i is a not-available feature

on the FM R as shown in Figure 171. Execution of algorithm returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to j and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
isequalto{{o},{o,r},{0,q},{o,r,q}}and childSetsBis equal to{{o, t}, {s,t}}. Since
both of them are not equal to @, execution of algorithm passes to line 26. constructFsX

function returns the given table below:

Table 218 - Feature Selection Map fs X

row number o r q s t
1 fs{o} + - - / /
2 fs{o,r} + + - / /
3 fs{o,q} + - + / /
4 fs{o,r,q} + + +
constructFsY function returns the given table below:
Table 219 - Feature Selection Map fs Y
row number o r q s t
1 fs{o,t} + / / - +
2 fs{s, t} - / / + +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to &. After
the execution of second loop, conformA is equal to {{ o, t } }. childSetsR is equal to { {0, 1} }
after the execution of line 42. The model given in Figure 172Error! Reference source not

found. is obtained, after the execution of line 43.

160

Figure 172 — Part of Level 1 Resolution of Figure 169 and Figure 170

Execution of algorithm returns to line 9. When the execution of for loop is started again,
parentA and parentB is assigned to k and conformA and conformB is assigned to &. After
the execution of lines 15 and 16, childSetsA is equal to {{u}, {v }, {u, v }}and childSetsB
is equal to &. Since childSetsB is equal to &, execution of algorithm passes to line 19. The

model given in Figure 173 is obtained, after the execution of line 19.

Fp
Fi||Fj Fk
Fo||Fr||Fg||F=e||[Ft||Fu|| Fw

Figure 173 — Level 1 Resolution of Figure 169 and Figure 170

Execution of algorithm returns to line 9. Due to there is not any other feature in the
featuresAtLevel, execution passes to line 46 and value of level is increased by one and
assigned to 2. Then, execution of algorithm is returned to the line 5 again. The condition of
while is conformed and execution of algorithm passes to line 6. At level 2 of viewA there are
I, m,n, o, 1, q, uand v features and at level 2 of viewB there are o, s and t features.
featuresA is equal to { I, m, n, o, r, q, u, v }, featuresB is equal to { o, s, t } and
featuresAtLevel is equal to { I, m, n, o, 1, s, t, q, u, v } after the execution of lines 6, 7 and 8.
When the execution of for loop is started, parentA and parentB is assigned to | and conformA
and conformB is assigned to J. After the execution of lines 15 and 16, childSetsA and
childSetsB are equal to &. Since both of them are equal to &, execution of algorithm omits

the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to m and

conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA

161

and childSetsB are equal to &. Since both of them are equal to &, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to n and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to o and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
isequalto {{w}, {x}, {w, vy}, {x,y}}and childSetsBis equal to {{x},{y} {x, ¥y}, {w, x},
{w,y}, {w, x,y}} Since both of them are not equal to &, execution of algorithm passes to
line 26. constructFsX function returns the given table below:

Table 220 - Feature Selection Map fs X

row number w X y
1 fs{w} + - -
2 fs{x} - + -
3 fs{w,y} + - +
4 fs{x,y} - + +

constructFsY function returns the given table below:

Table 221 - Feature Selection Map fs Y

row number w X y
1 fs{x} - + -
2 fs{y} - - +
3 fs{x,y} - + +
4 fs{w, x} + + -
5 fs{w,y} + - +
6 fs{w,x,y} + + +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to { { x }, {
w, vy}, {x,y}}. After the execution of second loop, conformA isequal to {{x}, {x, vy}, {w, y
} }. childSetsR is equal to { { x }, { x, ¥y }, { w, y } } after the execution of line 42. The model

given in Figure 174 is obtained, after the execution of line 43.

162

Fi| A Fk

Figure 174 — Level 2 Resolution of Figure 169 and Figure 170

Execution of algorithm returns to line 9. When the execution of for loop is started again,
parentA and parentB is assigned to r and conformA and conformB is assigned to @. After the
execution of lines 15 and 16, childSetsA and childSetsB are equal to &. Since both of them

are equal to &, execution of algorithm omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to s and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
is equal to @ and childSetsB is equal to { { a } }. Since childSetsA is equal to @, execution of
algorithm passes to line 23. moveToViewR function does not carry the given child sets
branch because branch’s parent feature s is a not-available feature on the FM R as shown in

Figure 174. Execution of algorithm returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to t and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to q and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to u and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to v and

conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA

163

and childSetsB are equal to &. Since both of them are equal to &, execution of algorithm

omits the entire if blocks and returns to line 9.

Due to there is not any other feature in the featuresAtLevel, execution passes to line 46 and
value of level is increased by one and assigned to 3. Then, execution of algorithm is returned
to the line 5 again. The condition of while is conformed and execution of algorithm passes to
line 6. At level 3 of viewA there are w, x and y features and at level 3 of viewB there are a, w,
x and y features. featuresA is equal to { w, X, y }, featuresB is equal to { a, w, X, y } and
featuresAtLevel is equal to { w, X, y, a } after the execution of lines 6, 7 and 8. When the
execution of for loop is started, parentA and parentB is assigned to w and conformA and
conformB is assigned to @. After the execution of lines 15 and 16, childSetsA is equal to { { z
} } and childSetsB is equal to { { }, {z}}. Since both of them are not equal to &, execution

of algorithm passes to line 26. constructFsX function returns the given table below:

Table 222 - Feature Selection Map fs X

row number z
1 fs{z} +

constructFsY function returns the given table below:

Table 223 - Feature Selection Map fs Y

row number z
1 fs{ } -
2 fs{z} +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to {{z } }.
After the execution of second loop, conformA is equal to {{z } }. childSetsR is equal to {{z }
} after the execution of line 42. The model given in Figure 175 is obtained, after the
execution of line 43.

164

Fi||F) Fk
Fo||Fr||Fg||Fs||Ft||Fu||Fw
) | .
Fw || Fx || Fy
Fz

Figure 175 — Level 3 Resolution of Figure 169 and Figure 170

Execution of algorithm returns to line 9. When the execution of for loop is started again,
parentA and parentB is assigned to x and conformA and conformB is assigned to &. After
the execution of lines 15 and 16, childSetsA and childSetsB are equal to @. Since both of

them are equal to &, execution of algorithm omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to y and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to a and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

Due to there is not any other feature in the featuresAtLevel, execution passes to line 46 and
value of level is increased by one and assigned to 4. Then, execution of algorithm is returned
to the line 5 again. The condition of while is conformed and execution of algorithm passes to
line 6. At level 4 of viewA and viewB there is a feature z. featuresA, featuresB and
featuresAtLevel are equal to { z } after the execution of lines 6, 7 and 8. When the execution
of for loop is started, parentA and parentB is assigned to z and conformA and conformB is
assigned to . After the execution of lines 15 and 16, childSetsA and childSetsB are equal to
@. Since both of them are equal to &, execution of algorithm omits the entire if blocks and

returns to line 9.

165

Due to there is not any other feature in the featuresAtLevel, execution passes to line 46 and
value of Jevel is increased by one and assigned to 5. Then, execution of algorithm is returned
to the line 5 again. The condition of while is not conformed this time and execution of
algorithm passes to line 47, then 48 and it ends. As a result, FM R is as shown in Figure
175.

For another example, Figure 176 and Figure 177 represent the local views A and B,

respectively.

Fp

Py

Fk
s X _-'/ L\ Fp

Fm||Fn||Fo||Fa||Fr e T

k

2 NN

Figure 176 — View A Figure 177 — View B

Assume that these FMs are passed to mergeByConformance method as viewA and viewB

parameters.

At the beginning of the execution, value of level is assigned to 0. As shown in the figures
above, viewA.depth is equal to 5 and viewB.depth is equal to 3. So, the condition of while is
conformed and execution of algorithm passes to line 6. At level 0 of viewA and viewB, there
is a feature p. featuresA, featuresB and featuresAtLevel are equal to { p } after the execution
of lines 6, 7 and 8. When the execution of for loop is started, parentA and parentB is
assigned to p and conformA and conformB is assigned to &. After the execution of lines 15
and 16, childSetsA is equal to {{j }, {i, k}, {j, k} } and childSetsB is equal to {{j }, { k}, {1},
{i,ji} {i, k}, {i,1}}. Since both of them are not equal to &, execution of algorithm passes to
line 26. constructFsX function returns the given table below:

166

Table 224 - Feature Selection Map fs X

row number i j k I
1 fs{j} - + - /
2 fs{i, k} + - + /
3 fs{j, k} - + + /
constructFsY function returns the given table below:
Table 225 - Feature Selection Map fs 'Y
row number i j k |
1 fs{j} - + - -
2 fs{k} - - + -
3 fs {1} - - - +
4 fs{i,j} + + - -
5 fs{i, k} + - + -
6 fs {i, 1} + - - +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to { {j }, {1,
k } }. After the execution of second loop, conformA is equal to {{j }, {i, k} }. childSetsR is
equal to { {j }, {i, k } } after the execution of line 42. The model given in Figure 178 is
obtained, after the execution of line 43.

Fp

P T
AN T

Fi. F Fk A

Figure 178 — Level 0 Resolution of Figure 176 and Figure 177

Value of level is increased by one and assigned to 1 at line 46 and execution of algorithm is
returned to the line 5 again. The condition of while is conformed and execution of algorithm
passes to line 6. At level 1 of viewA there are i, j and k features and at level 1 of viewB there
are i, j, k and | features. featuresA is equal to { i, j, k }, featuresB is equal to { i, j, k, | } and
featuresAtLevel is equal to { i, j, k, | } after the execution of lines 6, 7 and 8. When the
execution of for loop is started, parentA and parentB is assigned to i and conformA and
conformB is assigned to &. After the execution of lines 15 and 16, childSetsA and childSetsB
are equal to &. Since both of them are equal to &, execution of algorithm omits the entire if

blocks and returns to line 9.

167

When the execution of for loop is started again, parentA and parentB is assigned to j and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
isequal to {{m }}and childSetsBisequalto{{m },{n}, {s},{m,n},{m,s}, {n,s} {m,
n, s } }. Since both of them are not equal to @, execution of algorithm passes to line 26.
constructFsX function returns the given table below:

Table 226 - Feature Selection Map fs X

row number m n
1 fs{m}

+
1
~

constructFsY function returns the given table below:

Table 227 - Feature Selection Map fs Y

row number m n s
1 fs{m} + - -
2 fs{n} - + -
3 fs{s} - - +
4 fs{m,n} + + -
5 fs{m,s} + - ¥
6 fs{n,s} - + +
7 fs{m,n,s} + + +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to {{m } }.
After the execution of second loop, conformA is equal to {{ m }, { m, s } }. childSetsR is equal
to{{m}, {m, s }} after the execution of line 42. The model given in Figure 179 is obtained,
after the execution of line 43.

Figure 179 — Part of Level 1 Resolution of Figure 176 and Figure 177

168

Execution of algorithm returns to line 9. When the execution of for loop is started again,
parentA and parentB is assigned to k and conformA and conformB is assigned to &. After
the execution of lines 15 and 16, childSetsA is equal to {{p, r}, {0, p, r} } and childSetsB is
equalto{{o,p}, {p, r}} Since both of them are not equal to &, execution of algorithm
passes to line 26. constructFsX function returns the given table below:

Table 228 - Feature Selection Map fs X

row number o p r t
1 fs{p,r} - + +
2 fs{p,r,0} + + + /

constructFsY function returns the given table below:

Table 229 - Feature Selection Map fs Y

row number o p r t
1 fs{o,p} + + - -
2 fs{p,r} - + + -

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to { { p, r }
}. After the execution of second loop, conformA is equal to { { p, r } }. childSetsR is equal to {
{ p, r} } after the execution of line 42. The model given in Figure 180 is obtained, after the

execution of line 43.

Figure 180 — Level 1 Resolution of Figure 176 and Figure 177

Execution of algorithm returns to line 9. When the execution of for loop is started again,
parentA and parentB is assigned to | and conformA and conformB is assigned to @. After the
execution of lines 15 and 16, childSetsA is equal to @ and childSetsB is equal to { { u } }.
Since childSetsA is equal to &, execution of algorithm passes to line 23. moveToViewR

function does not carry the given child sets branch because branch’s parent feature | is a

169

not-available feature on the FM R as shown in Figure 180. Execution of algorithm returns to

line 9.

Due to there is not any other feature in the featuresAtLevel, execution passes to line 46 and
value of level is increased by one and assigned to 2. Then, execution of algorithm is returned
to the line 5 again. The condition of while is conformed and execution of algorithm passes to
line 6. At level 2 of viewA there are m, n, o, p and r features and at level 2 of viewB there are
m, n, o, p, I, S, t and u features. featuresA is equal to { m, n, o, p, r }, featuresB is equal to {
m, n, o, p, r, s, t, u}and featuresAtLevel is equal to { m, n, 0, p, I, s, t, u } after the execution
of lines 6, 7 and 8. When the execution of for loop is started, parentA and parentB is
assigned to m and conformA and conformB is assigned to &. After the execution of lines 15
and 16, childSetsA isequalto {{y},{z}, {y, z}}and childSetsBis equalto{{ },{v}{y}
{z},{v,y}, {v, z}} Since both of them are not equal to @, execution of algorithm passes to
line 26. constructFsX function returns the given table below:

Table 230 - Feature Selection Map fs X

row number \ y z
1 fs{y} - + -
2 fs{z} - - +
3 fs{y,z} - + +

constructFsY function returns the given table below:

Table 231 - Feature Selection Map fs Y

row number \' y z
1 fs{ } - - -
2 fs{v} + - -
3 fs{y} - + -
4 fs{z} - - +
5 fs{v,y} + + -
6 fs{v,z} + - +

After the execution of lines 26 and 27, fsXSet is equal to fs X table and fsYSet is equal to fs
Y table which are given above. After the execution of first loop, conformB is equal to {{y }, {
z } }. After the execution of second loop, conformA is equal to {{y }, { z } }. childSetsR is
equal to { {y }, { z} } after the execution of line 42. The model given in Figure 181 is

obtained, after the execution of line 43.

170

Figure 181 — Level 2 Resolution of Figure 176 and Figure 177

Execution of algorithm returns to line 9. When the execution of for loop is started again,
parentA and parentB is assigned to n and conformA and conformB is assigned to J. After
the execution of lines 15 and 16, childSetsA and childSetsB are equal to @. Since both of

them are equal to @, execution of algorithm omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to o and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to p and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to r and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to s and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to t and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to @, execution of algorithm

omits the entire if blocks and returns to line 9.

171

When the execution of for loop is started again, parentA and parentB is assigned to u and
conformA and conformB is assigned to @. After the execution of lines 15 and 16, childSetsA
and childSetsB are equal to &. Since both of them are equal to &, execution of algorithm

omits the entire if blocks and returns to line 9.

Due to there is not any other feature in the featuresAtLevel, execution passes to line 46 and
value of level is increased by one and assigned to 3. Then, execution of algorithm is returned
to the line 5 again. The condition of while is conformed and execution of algorithm passes to
line 6. At level 3 of viewA and viewB there are v, y and z features. featuresA, featuresB and
featuresAtLevel are equal to { v, y, z } after the execution of lines 6, 7 and 8. When the
execution of for loop is started, parentA and parentB is assigned to v and conformA and
conformB is assigned to &. After the execution of lines 15 and 16, childSetsA and childSetsB
are equal to &. Since both of them are equal to &, execution of algorithm omits the entire if
blocks and returns to line 9.

When the execution of for loop is started again, parentA and parentB is assigned to y and
conformA and conformB is assigned to &. After the execution of lines 15 and 16, childSetsA
is equal to { { }, { x}} and childSetsB is equal to &. Since childSetsB is equal to O,
execution of algorithm passes to line 19. The model given in Figure 182 is obtained, after the

execution of line 19.

Fy || F&

Figure 182 — Level 3 Resolution of Figure 176 and Figure 177

Execution of algorithm returns to line 9. When the execution of for loop is started again,

parentA and parentB is assigned to z and conformA and conformB is assigned to @. After

172

the execution of lines 15 and 16, childSetsA and childSetsB are equal to &. Since both of

them are equal to &, execution of algorithm omits the entire if blocks and returns to line 9.

Due to there is not any other feature in the featuresAtLevel, execution passes to line 46 and
value of level is increased by one and assigned to 4. Then, execution of algorithm is returned
to the line 5 again. The condition of while is not conformed this time and execution of
algorithm passes to line 47, then 48 and it ends. As a result, FM R is as shown in Figure
182.

173

