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ABSTRACT 

 

 

 

EXTERNAL GEOMETRY AND FLIGHT PERFORMANCE OPTIMIZATION OF 

TURBOJET PROPELLED AIR TO GROUND MISSILES 

 

Dede, Emre 

M.Sc., Department of Aerospace Engineering 

Supervisor    : Prof. Dr. Ozan Tekinalp 

 

 

December 2011, 107 pages 

 

The primary goal for the conceptual design phase of a generic air-to-ground missile 

is to reach an optimal external configuration which satisfies the flight performance 

requirements such as flight range and time, launch mass, stability, control 

effectiveness as well as geometric constraints imposed by the designer. This activity 

is quite laborious and requires the examination and selection among huge numbers of 

design alternatives. 

 

This thesis is mainly focused on multi objective optimization techniques for an air-

to-ground missile design by using heuristics methods namely as Non Dominated 

Sorting Genetic Algorithm and Multiple Cooling Multi Objective Simulated 

Annealing Algorithm. Futhermore, a new hybrid algorithm is also introduced using 

Simulated Annealing cascaded with the Genetic Algorithm in which the optimized 

solutions are passed to the Genetic Algorithm as the intial population. A trade off 

study is conducted for the three optimization algorithm alternatives in terms of 

accuracy and quality metrics of the optimized Pareto fronts. 

 

Keywords: Conceptual Design, Flight Performance, Air-to-Ground Missile, 

Simulated Annealing, Genetic Algorithm, Multi Objective Optimization 
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ÖZ 

 

 

 

TURBOJET İTKİLİ HAVADAN KARAYA FÜZELER İÇİN DIŞ GEOMETRİ VE 

UÇUŞ PERFORMANS ENİYİLENMESİ 

 

Dede, Emre 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi    : Prof. Dr. Ozan Tekinalp 

 

 

Aralık 2011, 107 sayfa 

 

Kavramsal tasarım aşaması için temel amaç, genel bir havadan karaya füze için 

tasarımcı tarafından belirlenecek uçuş mesafesi ve süresi, toplam ağırlık, kararlılık, 

kontrol etkinliği gibi uçuş başarım kriterlerinin yanı sıra geometrik kısıtlara da uygun 

en ideal dış geometriyi oluşturabilmektir. Bu işlem  oldukça zahmetli  ve çok sayıda 

alternatif geometrinin değerlendirilmeye alınması ve incelenmesini gerektirmektedir.  

 

Bu tez çalışması ağırlıklı olarak, havadan-karaya bir füze için sezgisel tarama 

yöntemlerinden Hakim Olmayan Sıralamalı Genetik Algoritma ve Çoklu Soğutma-

Çok Amaçlı Tavlama Benzetimi Algoritması gibi çok amaçlı en iyileme teknikleri 

üzerinde durmuştur. Ayrıca yeni bir karma algoritma olarak Tavlama Benzetimi ile 

elde edilen en iyilenmiş geometrilerin başlangıç populasyonu olarak Genetik 

Algortimaya aktarılması yöntemi uygulanmıştır. Her üç en iyileme yöntemi de, en 

iyilenmiş Pareto eğrilerinin sonuçlarının doğruluğu ve kaliete metrikleri açısından 

kıyaslanmıştır. 

 

Anahtar Kelimeler: Kavramsal Tasarım, Uçuş Performansı, Havadan-Yere Füze, 

Tavlama Benzetimi, Genetik Algoritma, Çok Amaçlı En iyileme  
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

 Aim of the Thesis 1.1

 

In current aerospace applications, the conceptual design step calls for a critical part 

of the whole process. The reason behind this fact is that the designer should satisfy 

some several challenging requirements for maximum efficiency and performance at 

this stage. Design optimization then tries to find the maximum and minimum of 

design objectives which is a function of design variables. The design variables 

contribute to missile diameter, length, nose geometry, stabilizer size and geometry 

and the control surface size and geometry. As a result of this process, the optimum 

external geometry could be achieved and the optimum external geometry obtained is 

to be considered as initial baseline geometry for the further design processes of the 

whole missile system. 

 

In this thesis, a simulation based external geometry optimization tool for the 

conceptual design phase of an air-to-ground missile is developed. For this purpose, 

two heuristic optimization algorithm alternatives are examined: Simulated Annealing 

and Genetic Algorithm, since they are the most preferred techniques used for the 

multi-objective optimization in similar studies. In addition to this, a hybrid algorithm 

which is a synthesis of Simulated Annealing and Genetic Algorithm is employed and 

the results are examined in terms of computational time and solution accuracy.  

 
 Air-to-Ground Missiles 1.2

 

In this thesis, optimization of air-to-ground missiles is addressed. Some examples for 

air-to-ground missiles are illustrated in Table 1.1. 
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Table 1.1 Examples of Air-to-Ground Missiles 

 

Missile Name Missile Geometry 
Missile 

Length 

Missile 

Diameter 

Short range AGM-114  1.63 m 0.18 m 

Medium range AGM-88 
 

4.10 m 0.25 m 

Long range Storm Shadow 
 

5.10 m 0.48 m 

 

An air-to-ground missile (also, air-to-surface missile, AGM, ASM or ATGM) is a 

missile designed to be launched from a military aircraft (bombers, attack aircraft, 

fighter aircraft or other kinds) and strike ground targets on land, at sea, or both. The 

usage of some form of propulsion systems allow air to ground missile to achievelon 

range distances. Rocket motors and jet engines are the two most common propulsion 

systems for air-to-surface missiles [1].  

 

The standoff distance they provide is one of the major advantages of air-to-ground 

missiles over other weapons available for fighter aircraft to attack ground targets. 

Most air-to-ground missiles are fire-and-forget in order to take most advantage of the 

standoff distance. This property make them allow the launching platform to turn 

away after launch.  

 

Another point with the air-to-ground missiles is that they are numerous in use of 

concept that they are made to fly at a pre-defined flight trajectory in order not to be 

tracked and detected by the air defence systems of the enemy forces. Furthermore, 

the final impact conditions such as impact velocity and impact angle could be 

achieved with regards to missile trajectory planning for the successful destruction of 

the targets. 
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 Conceptual Design Phase of an Air-to-Ground Missile 1.3

 

The main goal of the conceptual design phase of a generic air-to-ground missile is to 

generate the baseline geometry for a given mission profile. As a result, the whole 

process is initiated with a general definition of the mission. An initial baseline 

missile is obtained based on the mission requirements to start the design cycle.  

 

Once the rough geometry is decided, the aerodynamics of the missile is ready to be 

predicted using simple methods without the benefit of the test data for the 

configuration. The aerodynamic output means the input set for the propulsion system 

to achieve the engine sizing to provide the necessary thrust and calculate the required 

fuel weight for the missile system. 

 

Next, the overall weight prediction of the missile is made for the available 

aerodynamic configuration and propulsion unit sizing. Following all these efforts, the 

candidate missile is tested whether it succeeds the desired flight performance metrics 

as a consequence of flight trajectory computations. The missile is redesigned 

iteratively until it satisfies the flight performance requirements such as range, time to 

target, stability, maneuverablity, controllability, etc. and geometric constraints due to 

launch planform integration. Eugene L. Fleeman, in his book “Tactical Missile 

Design” [1] states these main steps of the conceptual design of a generic missile in 

detail and summarizes the whole process as shown in the figure given below. 
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Figure 1.1 Missile Design Iteration [1] 

 

 Literature Survey 1.4

 

“Optimization is a favoured challenge in recent times in parallel with the increasing 

demands for the quick and effective solutions to much more complex problems 

especially in the field of engineering”. A detailed literature survey was carried out in 

order to get the main idea and to clarify the points about the optimization 

phenomena. Furthermore, it is noticed that several studies were conducted formerly 

for the conceptual design optimization problem of rockets and missiles since it is a 

crucial point of the whole design process as stated in the previous section. 

 

In recent years, the deterministic algorithms were mostly applied to the optimization 

problems such as Newton’s method, steepest descent or gradient-based which 

requires function derivatives or gradient information. The major problem with the 

gradient-based methods is that they are not applicable for problems with 

discontinuities in the design space since these discontinuities lead to derivatives that 

could not be defined in these regions. Since most engineering problems are modelled 
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with considerable nonlinearity, the gradient-based algorithms almost retain a local 

minimum. They are mostly applicable for the problems which are continuous and 

differentiable. In every cycle of the optimization loop, a direction and a step size is 

determined for the next candidate configuration in the design space. First and second 

derivatives of the objective function(s) are utilized for this process, hence the name 

“gradient-based methods” emerge for this kind of access. As a consequence, this 

requires that the function should be twice differentiable in the design space, which is 

not the case for a considerable amount of real-world problems. There is like hood 

chance that it converges to local minimums, so forth. 

 

On the other hand, heuristic methods, a higher level classification, are the ones that 

would be mainly focused on. Heuristic methods are used for hard problems where 

differentiation is not possible and enumeration and other exact methods such as 

mathematically programming are not computationally practical. Additionally, many 

current heuristics are population-based, which means that it can be aimed to generate 

several elements of the optimal set in a single run. Evolutionary Algorithms (EA) 

and Simulated Annealing (SA) are the most popular ones among these and there 

exists quite several applications of these approaches to the problem of multi-

objective optimization problems. 

 

Kirkpatrick was the first to propose the Simulated Annealing method [2]. He applied 

this algorithm to the famous travelling salesman problem in which the shortest path 

is to be found for a salesman who must visit N cities in turn. For these types of 

algorithms, the energy of the system is analogous to the objective function of the 

problem and the variables to be optimized are the atoms of the material which is 

being cooled according to an annealing schedule. 

 

Moreover, a kind of Simulated Annealing algorithm called Hide-Seek has been 

developed by Belisle et.al. It is shown in his study that Hide-Seek significantly 

outperforms in terms of search performance in the feasible domain. Lu and Kahn [3] 

applied Hide-Seek algorithm to solve the trajectory optimization of a high-
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performance aircraft [4]. They noticed the high performance of Hide-Seek Algorithm 

in their study compared to some other conventional non gradient algorithms. 

 

Utalay and Tekinalp [5] solved the trajectory optimization problem of a generic 

missile for the first time. In their work, Hide-Seek Algorithm is utilized to obtain a 

feasible trajectory of an air-to ground missile. The main objective was the maximum 

range flight path for given launch and impact conditions. Furthermore, Hide- Seek is 

also applied to design a minimum weight missile flying on an optimum trajectory 

where the impact conditions are the main constraints. For this case, the control 

parameters and missile engine design parameters like thrust and burnout time for a 

solid fuel rocket engine were also included. 

 

Later on Bingöl and Tekinalp [6] have contributed to this work in various ways. In 

their study, a new approach to the formulation of the missile trajectory optimization 

was proposed. Additionally, multi-disciplinary design optimization of air-to-ground 

missile was achieved which includes the disciplines of flight mechanics, propulsion 

unit, structural models and aerodynamics. Missile geometry parameters were 

optimized together with the angle of attack input values and range is maximized and 

terminal constraints were realized. The engine parameters for the minimum weight 

objective are also optimized. The objective value was evaluated as result of a two-

degree-of-freedom simulation for the two former studies. 

 

Following that, Karslı and Tekinalp [7] developed a new multi-objective Simulated 

Annealing Algorithm for continuous optimization problems in their study. A 

population of fitness functions is used with an adaptive cooling schedule. This gives 

way to the generation of an accurate Pareto front. 

 

Elliptic and ellipsoidal fitness functions are suitable for the generation on non-

convex fronts instead of well known linear fitness functions. Five test problems were 

solved using these kinds of fitness functions in order to demonstrate the effiency of 

the algorithm. Following that, the success of the algorithm is also shown by 
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comparing the quality metrics obtained with those found for a well-known 

evolutionary multi-objective algorithm. 

 

In a very recent work that was conducted by Öztürk [8], the Multiple Cooling 

Multiobjective Simulated Annealing (MC-MOSA) algorithm was applied to the 

missile design optimization problem. His tool  was integrated to an aerodynamic 

prediction tool with a two degree of freedom trim flight simulation which models the 

motion in horizontal and vertical axes to evaluate the success of each alternative 

geometry selected by random walk and output the Pareto-optimal solutions. Hence, 

the geometric variables of a generic missile was able to be optimized in the 

conceptual design phase. The tool was prepared in FORTRAN programming 

language using the following flowchart. 

 

 

 

Figure 1.2 Functional Flow of MC-MOSA Optimization Tool [8] 

 

Besides, the number of efforts that the Genetic Algorithm is applied to the missile 

optimization problems are a bit more than the Simulated Annealing choice.  

 

Previously, in 2002, in her thesis Ortaç [9] achieved the development of the 

methodology to obtain an optimum external configuration of an unguided missile 

that satisfies the defined mission requirements. The objectives of the optimization 

case were maximum range, minimum dispersion and maximum warhead 



 
 

8 

 

effectiveness. The range and dispersion functions were realized with the aid of six-

degree-of freedom simulations and Monte Carlo analysis depending on the external 

configuration parameters whereas the warhead effectiveness function was obtained 

by analytical means. Finally Conjugate Gradient, Quasi Newton and Genetic 

Algorithm techniques for the optimization alternatives were tried and the results of 

these alternatives were compared to each other. As a consequence of this effort, it 

was concluded that Genetic Algorithm (GA) has superior performance compared 

with gradient based methods in terms of accuracy and sensivity. 

 
The study of Tanıl [10] aimed to develop a software platform in MATLAB 

environment that makes the optimization of the external configuration of missiles. 

The flight requirements for the optimal design were made to be input by the designer 

via a graphical user interface. The main improvement in Tanıl’s work compared with 

previous examples is that it dealt with guided air-to-air, air-to-ground and surface-to-

surface missile optimization with a three-degree-of freedom simulation based on 

Genetic Algorithm. By this way, it gave the opportunity of finding the optimal 

external geometry among a wide variety of alternatives in much more shorter time 

intervals which satisfies the pre-defined flight mission. It consists of a graphical user 

interface helping the user to define the mission requirements and some basic external 

geometry parameters like nose type, tail configuration and engine type. The 

aerodynamics of each geometry alternative was evaluated by using USAF Missile 

DATCOM aerodynamic data prediction tool. The main cycle of the work is 

illustrated as below. 
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Figure 1.3 Conceptual Design Tool Flowchart [10] 

 

In a later study Zeeshan, Yunfen, Rafique, Nisar and Kamran [11] proposed a 

conceptual design optimization strategy using Genetic Algorithm cascaded with 

Simulated Annealing for the design of a multistage ground based interceptor 

comprised of a three stage solid propulsion system. The optimized solution which is 

the result of Genetic Algorithm module is passed to Simulated Annealing module as 

the initial point. Furthermore, the upper and lower bounds for the Simulated 

Annealing module are updated according to the optimal solution obtained from the 

Genetic Algorithm module. For this effort, the design objective is to minimize the 

overall weight and maximize the flight performance of the interceptor under defined 

mission circumstances. The design of the interceptor includes weight, propulsion, 

aerodynamics and trajectory analysis. The flowchart of the overall strategy of the 

work is given as below. 
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Figure 1.4 Overall Design and Optimization Strategy [11] 

 

 Original Contributions 1.5

 

In this thesis , an air to surface turbojet propelled missile optimization problem is 

addressed. Proper models for optimization such as aerodynamic and flight simulation 

modules are developed.  

 

Single objective optimization is carried out with Hide-Seek Simulated Annealing, 

Genetic Algorithm and Simulated Annealing-Genetic Algorithm combination. The 

results are compared as a consequence of the test case of a redesign of an existing 

benchmark missile. For multi-objective optimization case, MC-MOSA, NSGA-II and 

combination of these two are compared and evaluated to reach the Pareto front. Their 

effectiveness is aimed to be justified for missile design optimization problem. 
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 Scope 1.6

 

 In Chapter 2, two degrees of freedom dynamic model of an air-to-ground missile is 

explained. The sub-models included are also described which are namely as 

equations of motion, aerodynamics, propulsion as well as mass and gravity model. 

Chapter 3 is allocated for some basic missile design considerations. It is detailed how 

the flight trajectory and external configuration shaping are made. In this chapter, 

flight performance considerations are discussed as well. In Chapter 4, the 

optimization approaches are explained. Thus, the air-to-ground missile optimization 

problem is formulated to maximize range and minimize launch weight for given 

launch conditions and mission requirements. The details of the single objective 

optimization algorithms (Hide-Seek Simulated Annealing and Genetic Algorithm) 

are described. Afterwards, the application of multi objective algorithms (MC-MOSA 

and NSGA-II) for such problems are mentioned. All these give way to the 

construction of a hybrid algorithm which is a combination of Simulated Annealing 

and Genetic Algorithm that blend the advantages and disadvantages of these two 

optimization approaches. In Chapter 5, case studies are enforced. A well known truss 

bar structural design problem is addressed for the purpose of the validation of the 

algortihms. Moreover, the missile design optimization problem is also carried out for 

both single and multi-objective optimization algorithms. In Chapter 6, the main 

conclusions of the work done and the recommendations for future work are given. 
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CHAPTER 2 
 

 

AIR TO GROUND MISSILE MODEL 
 

 

 

To reach an optimum geometry satisfying the given requirements at the end of the 

process could be accomplished by judging the performance of each alternative 

geometry correctly and rapidly. As stated in Section 1.4, either using analytical 

methods or simulation loops stand as the main alternatives. Considering the accuracy 

and the computational performance of each alternative, the usage of a simulation 

loop to evaluate fitness function value of single missile geometry is thought to be 

better for this work. By this way, some flight performance parameters like range, 

longitudinal stability and controllability may be evaluated. 

 

Once the method is decided, the next challenge at this set is what the degree of 

freedom (DOF) of the simulation model must be. This work is limited to the 

optimization of an air to ground missile in the conceptual design phase. Thus, two 

degrees of freedom trim flight model is sufficient since an autopilot design is not 

considered. At this stage of the design, it is aimed to obtain the optimal baseline 

missile geometry rather than a detailed one which is often necessary for the 

preliminary design stage at which much time is spent laboriously calculating the 

effects of various design parameters on the missile configuration. Therefore, the roll 

and yaw considerations of the missile are disregarded for the time being. 

 

The two degree of freedom model includes two translational motions that are the 

axial (range) and vertical (altitude) motions shown above in Figure 2.1 [12]. 
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Figure 2.1 Two Degrees of Freedom Model 

 

The two degrees of freedom model is comprised of submodels which are equations 

of motion, aerodynamics, propulsion and atmosphere models. In the preceding 

sections these submodels are presented in detail. 

 
 Equations of Motion Model 2.1

 

As stated above, only the vertical planar motion of the missile against gravity is 

considered. The missile is assumed to be instantaneously trimmed on a flat earth by 

deflecting the control tail fins to sustain the trim angle of attack at each flight phase. 

The equations of motion are defined in missile body axis system; the frame which is 

fixed to the missile and moves with it, having its origin at the centre of gravity (CG) 

as illustrated in Figure 2.2. It is denoted with the abbreviation “b” in the figure. 

 

The instantaneous position of the missile is defined relative to the earth fixed frame 

whose coordinate axes remain fixed with respect to the earth and its origin is located 

at the mass centre of the earth. It is denoted with the abbreviation “e” in Figure 2.2. 

The magnitude of the airspeed of the missile is represented with V whereas α and γ 

stand for angle of attack and path angle, respectively. 

 

CA 

CN 



 
 

14 

 

 

 

Figure 2.2 Body and Earth Axes 

 

The angular orientation of the missile in pitch plane is indicated as the angle θ which 

is the summation of the angle of attack and path angle. 

 

The related dynamic equations of motion are given as below. It is assumed that the 

applied forces act at the centre of gravity of the body in the x and z axis direction of 

the missile body axes. These applied forces are considered to be as the aerodynamic, 

gravitational and thrust forces [13]. 

 

u� 	� 	 ��
�	
	� 	gsin
θ�	                    (2.1) 

 

w� 	� 	 ��
�	
	
 	gsin
θ�                    (2.2) 

 

θ � α 
 γ                    (2.3) 

 

To evaluate the position of the missile with respect to the earth fixed frame, the 

velocities defined in body fixed frame (u is the axial velocity and w is the downward 

velocity) should be transformed into the earth fixed frame via the transformation 

Ze 

  Xe 

Zb 

Xb 

V 

α 
γ 



 
 

15 

 

angle θ. The angle of rotation is the only requirement for a rotation in two 

dimensions. 

 

Finally the desired positions are found as a result of the integration of velocities 

transformed into the earth fixed frame. The matrix equation is labelled as below. 

 

������� � � � cos � sin �
� sin � cos �� �

�
��                  (2.4) 

 

 Aerodynamic Model 2.2

 

The aerodynamic forces and moments acting on the missile are generated in this 

submodel. For two degrees of freedom model, the required aerodynamic coefficients 

are axial force coefficient CA and normal force coefficient CN. Additionally, the 

longitudinal stability term CMα is also evaluated at the same flight conditions.  

 

These tabular data are generated using Missile DATCOM 2008 executable program 

[14] as a function of angle of attack (α), Mach number and elevator deflection angle 

(CA (δe,α,M) ) for a given missile external geometry. All other needed aerodynamic 

data is attained as a consequence of the linear interpolation of the available data for 

the given flight conditions.  

 

Since the lateral effects are out of concept, the sideslip angle, β, is always set to 0 

and the force and moment coefficients are evaluated at this value. Considering the 

flight conditions frequently encountered for a generic air-to-ground missile, the 

domain of the angle of attack, Mach number and elevator deflection angles, at which 

the aerodynamic data would be generated, are decided as below. 

 

Angle of Attack = [-10 , -7 , -4 , -2, 0 , 2 , 4 , 6 , 8 ,10] 
 

Mach = [0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2] 
 
Elevator Deflection Angle = [0, 5] 
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The axial location of the center of gravitiy (���) is assumed to be set on the %50 of 

the total missile length and it does not change throughout the whole flight. An 

example input and output file for the Missile DATCOM is given in APPENDIX B 

part. 

 
The force coefficients to be used in the flight simulation loop are lift (CL) and drag 

coefficient (CD), however. Lift is the aerodynamic force perpendicular to the total 

velocity vector of the missile and drag is the one in the direction of the total velocity 

vector defined in the stability axis system of the missile which is aligned with the 

velocity vector in a reference condition of steady symmetric flight. Hence the lift and 

drag coefficients are able to be calculated using normal and axial force coefficients 

via a transformation from the body axis to the stability axis utilizing the angle of 

attack. The equations for the lift and drag force coefficients are obtained from the 

normal and axial force coefficients with the equations shown below [15]. 

 C� 	� C� cosα	– C� sinα                    (2.5) 

 C� 	� C� cos α	 � C� sin α                  (2.6) 

 

The lift and drag forces and the pitching moment are then calculated by using the 

model below.  

 L	 � 	 �� ρV�SC�                   (2.7) 

 D	 � 	 �� ρV�SC�                   (2.8) 

  M	 � 	 �� ρV�SdC                    (2.9) 

 

ρ is the air density, S is the reference area which is the cross sectional area of the 

missile and d is the reference length, the diameter of the missile in other words. 
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In addition to these coefficients, the elevator deflection (δe) dependency of the pitch 

moment coefficient should be calculated for the control effectiveness consideration. 

To do this, the slope of the change of pitch moment coefficient with respect to the 

elevator deflection angle is calculated as in the given equation below. 

 ��	
		 � ��@		��				#	��@		��
	��	#		��

.                (2.10) 

 

The aerodynamic data are evaluated at two elevator deflection angles, 0 ̊and 5 ̊. 

 

 Propulsion Model 2.3

 

It is usually aimed to implement the thrust model during the conceptual design phase 

of an air-to-ground missile. Thereby, the thrust profile and the engine size and 

dimensions to meet these requirements are able to be modelled as well as the mass 

fuel consumption calculation. 

 

Air-to-ground missiles can be designated with several propulsion system alternatives. 

The most common and existing examples for this item are mainly the solid fuel 

rocket motor and turbojet engine. The advantages and disadvantages of these systems 

are investigated by searching the literature and the existing air-to-ground missiles. 

Consequently, it is captured that in parallel with the developing technology, the 

usage of the turbojet engines in air-to-ground missiles is more common. Hence, the 

turbojet engine choice is thought to be more convenient for this thesis work due to 

this one and the facts listed below, additionally [16]. 

 

� The use of turbojet engines permits the production of missiles with long 

endurance, providing long ranges.  

 

� There is no need to carry an oxygen supply for a turbojet engine, whereas a 

solid-fuel rocket engine must haul both fuel and a source of oxygen. 

 



 
 

18 

 

� Many liquid-fuelled rockets have separate tanks of fuel and oxidizer, and 

solid-fuel rocket motors contain an oxidizer and fuel that have been carefully 

mixed together. In contrast, the oxygen used by a jet engine is drawn from the 

air. For this reason, a cruise missile powered by a turbojet engine can 

generate more energy from the same weight of propellant than can a rocket- 

powered missile.  

 

� The benefits of turbojet-powered cruise missiles over rocket-powered 

missiles are most evident in systems with ranges of 100 kilometers or more. 

 

� Missiles with turbojet engines are powered during their entire flight, 

providing the energy needed for maneuvers while the missile is attacking its 

targets. In contrast, rocket motors generally burn out after a relatively short 

time. Most rocket powered missiles rely on the energy generated during the 

first few seconds of powered flight. 

 

� Thrust is able to be controlled in every instant of flight providing long range 

precision and controlling the speed of missile.  

 

As a consequence of the implementation of the turbojet engine model, it generates 

the required thrust force for the missile at every phase of the flight trajectory. It is 

equal to the drag force acting on the missile at cruise phase to provide equilibrium 

flight condition whereas it is greater than the drag force this time to achieve the pull 

up maneuver at the climb phase, for instance. To do this, it is assumed that the angle 

of attack observed during the missile flight is not so great that it can be treated as 

negligible so that the thrust force and the velocity vector are considered to be in 

alignment. 

 

The user is made to input the desired cruise velocity that the missile should track. 

Therefore the cruise speed can be achieved by supplying the needed thrust force that 

could overcome the drag force at that phase and the maximization of the missile 



 
 

19 

 

speed could not be an optimization objective anymore for a turbojet powered air-to-

ground missile. 

 

Another point to be cleared with turbojet model is that the limits of the thrust force of 

the turbojet engine must be specified by the user as a precaution of a limit exceeding. 

The turbojet engine would generate the maximum available thrust if the required 

thrust is greater than the maximum thrust. On the other hand, the engine would fix 

the minimum idle thrust if the required thrust is lower than the minimum thrust 

value. 

 

Following the calculation of the thrust profile during the flight trajectory, the amount 

of fuel mass needed to fly the mission path is evaluated by using the equation given 

below [16]. 

 !	 � 	 ��� $�$� �
                 (2.11) 

 �� 	� 	 �
%����

"!#$                 (2.12) 

 

Here g stands for the gravitational acceleration and Isp for the specific impulse.  

 

Specific impulse is another user defined parameter during the conceptual design 

phase. The specific impulse envelope for the turbojet engine alternative across the 

Mach number ranges of subsonic and supersonic flight regimes are figured out in 

Figure 2.3 [1]. 
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Figure 2.3 Specific Impulse vs. Mach Number For Turbojet Engines [1] 

 

This approach gives the opportunity of finding the optimal missile geometry which 

achieves the maximum range with minimum mass and minimum amount of fuel. 

 

 Atmosphere & Gravity Model 2.4

 

In order to calculate the speed of sound and the air density at each altitude of the 

flight, the 1976 Committee on Extension to the Standard Atmosphere (COESA) 

lower atmosphere model available at the library of MATLAB R2008b is 

implemented. The COESA Atmosphere Model includes the mathematical 

representation of the 1976 COESA United States standard lower atmospheric values 

for absolute temperature, pressure, density, and speed of sound for the geopotential 

altitude input. [17].  

 

Moreover, to include the effect of the altitude on the gravitational acceleration 1984 

World Geodetic System (WGS84) model again available at the library of MATLAB 

R2008b is used which implements the mathematical representation of the geocentric 

equipotential ellipsoid of the World Geodetic System (WGS84).  
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CHAPTER 3 
 

 

MISSILE DESIGN CONSIDERATIONS 
 

 

 

 Flight Trajectory Shaping 3.1

 

The possible flight trajectories for a generic turbojet propelled air-to-ground missile 

are considered to be composed of several flight sequences namely as glide, descent, 

cruise and climb flight phases.  

 

In general, to extend the flight range with available thrust force generated by the 

turbojet engine, the missile is forced to glide as much as possible without any fuel 

consumption. 

 

Two possible combinations for a flight trajectory that the missile should track can be 

classified as glide-descent-cruise-climb-descent sequence as shown in Figure 3.1 and 

glide-descent-cruise-descent sequence.  

 

The choice of the trajectory that the missile should track is left to the designer in this 

work. All these four distinct flight phases are expressed in detail in the upcoming 

sections. 
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Figure 3.1 Flight Trajectory (Glide-Descent-Cruise-Climb-Glide) 

 

3.1.1  Glide Phase 

 

Glide phase is the one during which the air-to-ground missile continue to lose 

altitude since the turbojet engine is not started and do not generate any thrust force 

and consumes no fuel. During the glide phase, it is aimed that the missile should 

reach the maximum range on the expense of minimum altitude loss without any 

thrust generation. The missile would experience this flight phase once at the 

beginning of its flight until the turbojet is activated. This motor activation time could 

differ according to the turbojet engine types used in missile designation and then it is 

come out to be the total time of gliding for the missile. The other glide phase case 

could occur at the end of the trajectory if the missile has run out of its fuel before 

hitting the target. The force diagram at the glide phase is shown as below. 

 

Ground 
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Figure 3.2 Glide Phase Force Diagram 

 

For a steady and unaccelerated descent, the equilibrium force equations are as below 

where γ is the equilibrium glide angle. 

 L � Wcos γ                    (3.1) 

 D � Wsin γ                    (3.2) 

 

 Then the gliding angle is simply found by dividing Equation (3.1) by Equation (3.2). 

 tanγ � �
� �&

                    (3.3) 

 

As seen above, the smallest gliding angle occurs at maximum lift-to-drag ratio 

condition. For this purpose, the missile is controlled to fly at the angle of attack 

which satisfies the maximum lift-to-drag ratio to fly to the maximum range as 

possible at the glide phase without any fuel consumption [15]. 

 
3.1.2 Descent Phase 

 

In this phase, the missile loses altitude as in the case of the glide phase. However, for 

this time, the turbojet engine is activated and generates thrust to attain a descent 
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constant velocity without acceleration. The climb or descent flight path angle that the 

missile should track is needed to be set by the user at the beginning of the design 

process.  

 

The force diagram for the descent phase is shown in Figure 3.3 below. 

 

 

 

Figure 3.3 Descent Phase Force Diagram 

 

The equations of motion for this phase are derived as below. 

 ) � * cos +                    (3.4) 

 ! � , cos - .* sin + . ) sin +                 (3.5) 

 
3.1.3 Cruise Phase 

 

In the cruise phase, the missile flies at equilibrium condition which is also called as 

trim condition. In trim condition, there exists force equilibrium both at vertical and 

horizontal motion axes which is illustrated as below for small trim angle of attack 

assumption. 
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Figure 3.4 Cruise Phase Force Diagram 

 ! � ,                     (3.6) 

 ) � *                     (3.7) 

 

To keep this equilibrium flight, as derived from the above equations the missile is 

assumed to be controlled to fly at trim angle of attack (alpha trim) and at the lift 

coefficient CLtrim. Moreover, at the cruise phase of the flight, the missile should fly at 

constant altitude and constant velocity on the purpose of minimum fuel consumption 

and maximum flight range. Due to all these reasons, cruise phase is the longest part 

of the whole missile trajectory . 

 

As discussed earlier in this thesis, due to the two-degrees-of freedom limitation of 

the simulation, no lateral motion and turn maneuvers are included in this study. 

 

3.1.4 Climb Phase 

 

First of all, the missile makes the pull-up maneuver till it reaches to the desired climb 

angle. This angle is given as input to the design optimization tool at the beginning of 

the process by the user. At the end of this maneuver, just after the missile achieved 

the climb angle, it holds on climbing at constant velocity in order to keep its search 

altitude which is also a pre-defined parameter just like the climb angle. 

W 

L 

D 

T 

V 

 

          αtrim 



 
 

26 

 

The body force diagram during the climb phase is shown as in Figure 3.5. 

 

 

 

Figure 3.5 Climb Phase Force Diagram 

 

The force equilibrium equations for climb phase are given below. 

 ) � * cos +                    (3.8) 

 ! � , cos - �* sin + � ) sin +                 (3.9) 

 

 External Configuration Shaping 3.2

 

The external geometry parameters are the main drivers that affect the missile flight 

performance such as range, stability, weight and controllability. Therefore, the main 

focus of this thesis is to find the optimum geometric parameters of the missile.  

 

The main design steps to be followed up at the conceptual design phase of an air-to- 

ground missile are discussed in detail in the following sections.  

 
3.2.1 Nose Types 

 

The nose type is such an important parameter that it has a major effect on the drag 

force acting on the missile. In the scope of this work, the nose length is one of the 
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geometric parameters to be optimized. The nose diameter is taken into account in 

such a way that it is equal to the body diameter at the end. The nose shape 

alternatives, which can be modelled in Missile DATCOM program, are Ogive, 

Conical, Power, Haack and Karman. The equations and definitions of these nose 

types are specified as below. The variable L defines the nose length and R defines 

the nose radius at the end of the nose. The other variables are x, which stands for the 

axial distance from the tip of the nose and y, for the radius at any point of the nose 

[18]. These variables are clearly illustrated in Figure 3.6. 

 

 

 

Figure 3.6 Nose Geometric Definitions [18] 

 

Ogive 

 

It is the most popular nose type used in missiles due to its ease in production and low 

drag profile characteristics. The nose length should be equal to or less than the ogive 

radius. The radius of the circle is called as the ogive radius and defined as in the 

equation below. 

 

� � �����

��
                  (3.10) 

 

The variables are shown in Figure 3.7. 
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Figure 3.7 Ogive Nose Geometric Definitions [18] 

 

Besides, the radius at any point on the whole missile length is formulized as; 

 / � 01� . 2)� . �3� � 4 . 1               (3.11) 

 

where LN is the nose length and x is the point on the missile axial direction. 

 
Power Series 

 

The power series type for nose geometry is simply defined as in the formula and the 

figure below in Missile DATCOM where the parameter n is an indicator of the nose 

roundedness. 

 

/ � 4 5 ���6�                  (3.12) 

 0 8 
 8 1                  (3.13) 
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Figure 3.8 Power Series Nose Geometric Definitions [18] 

 

Conical  

 

This is another nose type alternative that has a wide usage since this shape is often 

chosen for its ease of manufacture [19]. 

 

� � 	�

��
                  (3.14) 

 ∅ � tan#� 5'�6                  (3.15) 

 / � � tan∅                  (3.16) 

 

 

 

Figure 3.9 Conical Nose Geometric Definitions [18] 

 

The other nose type alternatives Haack and Von Karman are mathematically 

modelled as below. 
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Haack 

� � ��


�
 � � �
�����

�

 


�
sin ��!              (3.17) 

 

Von Karman 

� � ��


�
 � � �
�����

�
!                (3.18) 

 

� � "#$ cos  1 � �	

�
!                (3.19) 

 

3.2.2 Missile Body  

 

The missile cross section is assumed to be a cylindrical body in this work as usually 

done in the conceptual design phase of the missile due to software capabilities. The 

body length is aimed to be optimized as a consequence of the study. 

 

3.2.3 Wing/Tail Section Considerations 

 

Wing/tail design is a critical factor on the performance of the missiles since they 

provide the lifting force needed to stay in the air and make the missile to be 

controlled. First of all, the wing/tail section type is the parameter that has to be 

decided. For this one, there exists a lot of wing/tail section alternatives so that it is 

left to the user to select the wing/tail section either a NACA profile or a hexagonal 

one. 

 

Afterwards, the wing/tail planform geometry alternatives are considered. The figure 

given below indicates a comparison of a triangular (delta) planform, a trapezoidal 

planfrom with an aft swept leading edge, a trapezoidal planform with a forward 

swept leading edge angle and a rectangular surface planform. Figure 3.10 shows the 

tradeoffs for the surface planform geometry [1]. 
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Figure 3.10 Wing/Tail Surface Planform Alternatives [1] 

 

Considering the objectives as maximum range and high control effectiveness for the 

missile to be designed, the trapezoid planform geometry would satisfy the 

expectations at this step due to its superiority in terms of drag and controllability 

characteristics compared with other alternatives. The wing/tail geometric parameters 

to be optimized are illustrated as below. 

 

 

 

Figure 3.11 Trapezoidal Wing/Tail Geometry 
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Ct : Tip Chord (m) 

Cr: Root Chord (m) 

b : Span (m) 

Λ: Sweep Angle (°) 

 

3.2.4 Flight Control Alternatives 

 

Another leading factor on control effectiveness of the missile is the flight control 

selection (tail, canard or wing). The maneuvers to be done during the flight (i.e pitch, 

yaw and roll rotations) trajectory would be realized by deflecting these control 

surfaces. 

 

The wing controlled missiles are not preferable and has not been developed in recent 

years due to deficiencies such as large hinge moment needed and large induced roll 

[1]. Modern missiles use tail or canard control. By comparing with tail control 

choice, canard control is usually used for missiles which is required to have higher 

maneuverability such as air to air missiles. Therefore, the domain of the problem is 

reduced to a tail controlled missile. 

 

For tail control, the control surface design alternatives include the number of tails. 

Additionally the forward surfaces of a tail control missile have to be decided at the 

conceptual design phase. Investigating some current operational air-to-ground 

missiles, it is noticed that most tail control missiles have wings to realize the long 

endurance flight for hitting further targets. Considering all these aspects for a generic 

air-to-ground missile, the baseline configuration is fixed upon to consist of two 

wings and four tails to search a narrow design domain which is noticed to be the 

most preferred design alternative for an air-to-ground missile. The baseline 

configuration with two wings and four tails are to be used in this thesis is shown in 

Figure 3.12. 
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Figure 3.12 Two Wings and Four Tail Baseline Missile Configuration 

 

3.2.5 Roll Orientation 

 

Roll orientation affects the stability and control effectiveness of the missile. The 

symmetric roll orientation approaches are mainly plus (+) and cross(x) alternatives 

which are shown in Figure 3.13. 

 

 

 

Figure 3.13 Roll Orientation Alternatives [1] 
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Each has distinct advantages and disadvantages. Plus configuration has the simplest 

control mechanization. It usually has an advantage of lower drag. As stated formerly, 

only the motion in pitch axis is cared about this thesis. For pitch command, two 

surfaces provide normal force into the pitch direction. The positive control deflection 

direction for plus configuration to induce a positive rolling moment sketch is figured 

out in Figure 3.14 and the pitch control allocation formula is given in Equation 3.20 

 

 

 

Figure 3.14 Plus Configuration Positive Control Deflection Direction (Back View) 

 

 

&� � �����

�
                  (3.21) 

 

An alternative approach, the cross configuration during missile flight is somewhat 

more complex in its control mechanization. For pitch command, all four surfaces are 

deflected to provide normal force without side force. The cross configuration often 

has advantages or better fit for launch platform compability and higher aerodynamic 

efficiency that is to attain a high lift to drag ratio (L/D) [20] . The positive control 

deflection direction for cross configuration to induce a positive rolling moment 

moment sketch is figured out in Figure 3.14 and the pitch control allocation formula 

is given in Equation 3.22 
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Figure 3.15 Cross Configuration Positive Control Deflection Direction (Back View) 

 

&� � �����������

�
                 (3.23) 

 

 Flight Performance Considerations 3.3

 

Once the outlines for the air-to-ground missile external geometry are decided, the 

critical question rises up at the same time. What is the rule of thumb to judge the 

performance of the missile?  

 

From the point of view of the designer who tries to designate the optimal missile 

geometry at the very beginning of the design process, the missile is intended to reach 

its maximum flight range with a total launch mass as minimum as possible. 

However, while acquiring these criterion, the missile to be designed would be 

expected to be longitudinally stable and controllable in pitch axis enough to follow 

up the given trajectory in order to overcome external disturbances. Hence, to 

converge to a design that is sensible in terms of dynamics, propulsion and weight as 

well as satisfying the flight performance requirements listed above is the ultimate 

goal at the conceptual design stage of an air-to-ground missile. In the current study, 

all these criterion are able to be evaluated by means of the simulation module of the 

whole process. Next, the measures of merit for the candidate missile are discussed. 
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3.3.1 Static Stability 

 

Static stability in pitch axis is defined by the slope of the pitching moment 

coefficient (Cm) versus angle of attack (α). To ensure the static stability for the 

missile, the slope of the pitching moment coefficient versus angle of attack should be 

negative as shown in Figure 3.16 (∆Cm/∆α < 0). 

 

 

 

Figure 3.16 Cm vs Alpha Curve [1] 

 

An increase in angle of attack (nose up) causes a negative incremental pitching 

moment (nose down), which then tends to decrease the angle of attack [13]. 

 

Tail control surfaces give the way that the missile could be restored to its trimmed 

flight at the desired angle of attack. This phenomena could be attained by taking the 

centre of pressure (CP) closer to the tail than centre of gravity (CG) as shown below. 
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Figure 3.17 CG and CP Locations for a Statically Stable Missile 

 

To sum up, to keep a negative slope of the pitching moment coefficient versus angle 

of attack curve is a strict constraint for the candidate missile at the current design 

stage.  

 

3.3.2 Control Effectiveness 

 

Control effectiveness is such a vital parameter that has to be considered early in 

conceptual design. Controllability can be defined as the effect of control surface 

deflections to the pitch, roll and yaw angles of the missile. In other words, it 

determines how much angle of attack is resulted by creating fin deflections. As stated 

earlier, pitch moment is the main concern in this thesis. Therefore, only the control 

effectiveness in pitch plane is the main interest for the time being.  

 

A rule of thumb for conceptual design of a tail controlled missile is that the change in 

angle of attack due to control deflection should be greater than unity to have 

adequate control margin [1]. 
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3.3.3 Flight Range 

 

The designed missile is expected to reach a flight range which is as maximum as it 

can. This is one of the objectives of the missile design optimization problem. For the 

evaluation of cruise flight performance, the Brequet range equation provides an 

estimate of the missile flight range during cruise flight as it is expressed in Equation 

3.24 as below [20]. 

 4 � 5��6 ;���<2=�(�3 ln 5 )	

)	#)

6               (3.25) 

 

The constant velocity, constant lift-to-drag ratio and constant specific impulse are the 

main assumptions made in the derivation of the Brequet range equation. Besides, WL 

stands for the launch weight while WF for the fuel weight. 

 

It is followed from the Brequet range equation that it is essential to fly at maximum 

lift-to-drag ratio to achieve the maximum flight range for the given missile 

configuration. Lift–to-drag ratio, which is an indicator of the aerodynamic efficiency, 

depends on the angle of attack. Angle of attack could vary in flight phases except 

from cruise phase. Due to the roughness in the estimation of the flight range utilizing 

the Brequet range equation, the range value is tried to be evaluated via two-degrees 

of freedom simulation. 

  

Finally, the speed of the missile and the thrust force realized can be controlled during 

the flight for a turbojet powered missile. Moreover, turbojet powered missiles are not 

desired for time-critical missions since the accuracy of the hit point of the target is 

the main priority. Owing to all these reasons, maximization of the cruise flight speed 

is not treated as an objective. Instead, cruise speed is tried to be adjusted in such a 

way that it is closer to the value defined by the designer. 
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3.3.4 Weight Prediction 

 

Less thrust power needed to fly, ease in portability, low production cost, low 

observability by the threats and intend for smaller size missile leads to a minimum 

weight missile design. Hence, weight minimization is one of the major objectives of 

the conceptual design optimization problem. 

 

It is necessary to develop an approach to estimate the missile launch weight which is 

considered to be the input for a new design in the conceptual design phase. Although 

there has been extensive work in the field of weight estimation equations for aircraft, 

there has been comparatively little work performed, at least in the open literature for 

missiles. John B. Nowell Jr., in his study named “Missile Total and Subsection 

Weight and Size Estimation Equations”, offers an empirical approach using 

statistical regression analysis of historical missile data in order to develop equations 

for the different physical properties of the missile and its subsections based on the 

rationale that since these parameters were justified during each previous missile’s 

own design process. Then the relations obtained using the data should be applicable 

to new designs [21]. His methodology is tried for several existing air-to-ground 

missiles and the obtained results and error bounds are in such a way that this 

approach is applicable for the solution of the missile weight prediction problem. 

 

For the weight prediction, empirical methods of statistical regression analysis are 

utilized to generate the equations relating the overall missile geometry and weight to 

design variables such as missile length weight, diameter, flight range and speed. The 

units are in feet, knots and nautical mile. 

 

The estimation for the total missile weight is needed. This is accomplished by using 

the equation below which is said to be valid for air-to-ground missies [21]. 

 *� � 118.52=BC�3
.+,                (3.26) 
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where the variable ‘VolM’ is the total volume of the missile and it can be calculated 

as treating the whole missile as a cylindrical body as follows where LM is the missile 

length and DM is the missile diameter.  

 

=BC� � -∙��∙���
,                  (3.27) 
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CHAPTER 4 
 

 

OPTIMIZATION MODULE 
 

 

 

After clarifying the conceptual design steps of an air-to-ground missile, the next step 

is to build the optimization algorithm which would make the process automized to 

reach the optimal solution(s) among many design alternatives.  

 

In this chapter, the missile design optimization problem is defined mathematically 

and the methodologies of the optimization techniques are expressed in detail.  

 
 Formulation of the Missile Design Optimization Problem 4.1

 
The aim of this study is to find the optimal external geometric parameters of the 

missile that accomplishes the given mission profile. For this purpose, the geometrical 

parameters of the missile that should be taken into account as variables of the 

optimization problem are taken as in Figure 4.1. 
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Figure 4.1 External Geometry Parameters 

 

The table given below lists what the variable names stand for. The entire dimensions are 

used in meters and degrees throughout the whole study. 

 

Table 4.1 External Geometry Variables 

 

BD BODY DIAMETER 

ML MISSILE LENGTH 

NL NOSE LENGTH 

WS WING SPAN 

WRC WING ROOT CHORD 

WTC WING TIP CHORD 

WSWP WING SWEEP ANGLE 

WLEAD WING LEADING EDGE 

TS TAIL SPAN 

TRC TAIL ROOT CHORD 

 

ML 

BD 

NL 
WS 

WRC 

WTC 

WSWP 

WLEAD 
TLEAD 

TTC 

TRC 

TS 

TSWP 



 
 

43 

 

Table 4.2 External Geometry Variables (continued) 

 

TTC TAIL TIP CHORD 

TSWP TAIL SWEEP ANGLE 

TLEAD TAIL LEADING EDGE 

 

In general, the term optimization can be defined as the process to find either one or 

more feasible solutions that meet the given objective(s) as well as the constraints. 

 

 Constraints of the Optimization Problem 4.2

 

The requirements and the demands from the customer side could differ from case to 

case. Hence, the limits, within which the optimal geometry is desired to stay, should 

be defined accordingly. This contributes to the contraction of the search domain for 

the optimization problem. A narrowed down domain decreases the computational 

time spent to reach to the optimized solution. 

 

The compability of the designed missile with the launch platform is a critical issue 

that must be coped with in the early steps of the design process. Especially improved 

subsystem packaging for diameter limited subsystems is a major factor for the 

determination of the diameter limits. Furthermore, the launch platform compability 

imposes a feasible bound on the missile length. The rule of thumb should be taken 

into consideration by the user while defining the intervals of interest for geometric 

parameters. Some other additional constraints are also imposed. These geometric 

constraints are listed below: 

 

i) Sum of the nose length, wing and tail root chords must be smaller or equal to 

total missile length 

 

NL + WRC + TRC =< ML 

 

ii)  Root chords must be greater or equal to tip chords 
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WRC >= WTC 

TRC > =TTC 

 

iii)  Axial location of wing leading edge must be greater than the tails’. 

 

WLEAD > TLEAD 

 

iv) Axial location of wing leading edge must be greater than nose length and 

smaller than the total body length 

 

BL > WLEAD > NL 

 

v) Axial location of tail leading edge must be greater than the sum of axial 

location of wing leading edge and wing root chord. 

 

 TLEAD >WLEAD + WRC 

 

vi) Wing span is greater than tail span  
 

 WS > TS 

 

On the other hand, the missile body finess ratio brings an additional constraint on 

missile diameter and length. Fineness ratio is used to describe the overall shape of a 

streamlined body. It is specifically identifed in [22] as “the ratio of the length of a 

body to its maximum width”. Shapes that are "short and fat" have a low fineness 

ratio, those that are "long and skinny" have high fineness ratios. This fact is basically 

a factor affecting the structural considerations of the missile such as body bending 

phenomena. High finess ratio leads to vulnerability to the buckling whereas low 

finess ratio gives rise to high drag forces encountered for the missile during its flight. 

Considering all these limitations, the typical range in missile body finess ratio is 

thought to be changed from 5 to about 25 [1]. 
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5 8 D)D, 8 25 

 

Performing the feasibility check for the geometric side, the candidates have to be 

inspected according to the performance constraints. The performance requirements 

for the optimal design is stability, control effectiveness and drag force directions as 

stated before. Implentation of all these geometry and performance constraints lead to 

a final desired missile design that satisfies all the necessary and user defined 

requirements 

 

 Single Objective Optimization  4.3

 

The missile design optimization is performed with single objective previously. The 

objectives are maximum flight range and minimum launch mass as stated before. 

 

First the flight range is maximized with specified constraints. In addition, initial 

launch mass is imposed as a constraint into the optimization problem such that the 

launch weight of the optimized missile is forced to be less than the given upper limit 

for the missile weight.  

 

Another trouble is that the units and the order of the magnitudes of each objective 

and constraints are not the same. To overcome this trouble, the normalization of each 

is performed by dividing them into the reference values. The normalization factors 

for range and mass are defined in reference of the existing air-to-ground missiles’ 

range and mass values, as 250 km for range and 500 kg for the launch weight [16]. 

 

Since the optimization problem is the minimization of the fitness function value, the 

sign of the range objective (since the range is to be maximized) is made negative in 

the fitness function.  
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The same procedure is followed for the mass objective. In that case, the missile 

initial mass is tried to be minimized while satisfying the given at least range 

constraint. 

 

After all these adjustments, the composite fitness functions to be minimized for 

single objective optimization problem is obtained as follows where the penalty 

coefficients for missile launch weight and flight range are taken as 
���� � 10/ and 
����
 � 10/, respectively. No additional penalization is imposed on design 

variables. 

 ������
2�̅3 	� 	 ��
���0�̅2��
���∗
�	
���� ���0
,��
��0�̅2#�����2	��
��∗

              (4.1) 

 

������2�̅3 	� 	 ��
��0�̅2��
��∗
�	
����
 ���4
,����
	#��
���0�̅25	��
���∗

              (4.2) 

 �̅ :           The design vector including the geometry parameters. ������
: Fitness function for range objective ������:   Fitness function for mass objective 	����
 :   Range value evaluated for the current design set �̅ [km] 	����
∗ : Range normalization factor [km] 	���� :    Initial launch mass value evaluated for the current design set �̅ [kg] 	����∗ :  Initial launch mass normalization factor [kg] 
����
 : Penalty coefficient for flight range  
���� :   Penalty coefficient for initial launch mass  ��
���: Lower bound for flight range [km] ����� : Upper bound for initial launch mass [kg] 

 

The single objective missile design optimization problem is carried out by using 

Hide and Seek Simulated Annealing, Genetic Algorithm and a hybrid Simulated 

Annealing-Genetic Algorithm. The details of the algorithms are described in the 
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upcoming sections and the results of the applications of these approaches to the 

missile design optimization problem are also given in the next chapter. 

 
4.3.1 Hide and Seek Simulated Annealing Algorithm 

 

“Simulated Annealing is commonly said to be the oldest among the metaheuristics 

and surely one of the first algorithms that had an explicit strategy to avoid local 

minima”. The origins of the algorithm are in statistical mechanics (Metropolis 

algorithm) and it was first presented as a search algorithm by Kirkpatrick in 1983 

based on ideas formulated in the early 1950’s (Metropolis et.al., 1953). “The 

fundamental idea is to allow moves resulting in solutions of worse quality than the 

current solution (uphill moves) in order to escape from local minima. The probability 

of doing such a move is decreased during the search” [24]. 

 

Simulated Annealing is a class of stochastic optimization algorithm for the following 

generalized optimization problem. 

 

Sx

xf

∈
)(min

                   
(4.3) 

 

where the feasible region S ⊂ Rn is a compact set, and ƒ is a continuous function 

defined on S. The problem is to find an x*∈S so that 
* *( ) ( )f f x f x= ≤  for all x ∈ 

S. The algorithm searches for a global optimum by simulating the physical 

phenomena of annealing which is “the physical process of heating up a solid and 

then cooling it down slowly until it crystallizes” [25].  

 

The theme of the annealing of the solids establish the fundamental for the Simulated 

Annealing algorithm. The atoms in the material have high energies, and have more 

freedom at high temperatures. If the temperature is decreased slowly, the minimum 

energy state is reached. If the liquid is cooled slowly, thermal mobility is lost. The 

atoms line themselves up and form a pure crystal, which is the state of minimum 

energy for this system. For slowly cooled systems, nature is able to find this 
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minimum energy state. In fact, if a liquid metal is cooled quickly or quenched, it 

does not reach this state but rather ends up in a polycrystalline state having higher 

energy. So the essence of the process is slow cooling, allowing ample time for 

redistribution of the atoms as they lose mobility. When the system has minimum 

energy, a perfect structure is obtained. Simulated Annealing simulates this physical 

annealing process ensuring that a low energy state will be attained. The structure of 

the algorithm is developed basically with this idea [26].  

 

The flowchart given in Figure 4.2, summarizes the general structure of Simulated 

Annealing algorithm. In this technique, there are two main issues: how to generate 

the next trial point, and how and when to cool. For this goal, Hide and Seek search 

algorithm is applied which is a random walk search to generate the next test point.  

 

This algorithm has a distinct feature of a continuous random walk process for 

generating a sequence of feasible points [27]. Convergence of the algorithm to the 

global optimum is rigorously proved. The user supplies the bounds on the design 

vector. Within the bounded design space, the feasible region is specified by criteria 

set up by the user. 

 

Hide-and-Seek is a powerful yet simple and easily implemented continuous 

Simulated Annealing for finding the maximum of a continuous function over a 

compact body. “The algorithm begins with any feasible interior point. In each 

iteration it generates a candidate successor point by generating a uniformly 

distributed point along a direction chosen at random from the current iteration point. 

The candidate point is then accepted as the next iteration point according to the 

Metropolis criterion. The sequence of iteration points converges in probability to a 

global optimum” [28].  
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Figure 4.2 Simulated Annealing Flowchart 
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The minimization algorithm is based on Boltzmann probability distribution; 

 F�BG2H3 � ��I 5. 6
786                  (4.4) 

 

which expresses the idea that a system in thermal equilibrium at temperature T has its 

energy probabilistically distributed among all different energy states E. Even at low 

temperature, there is a chance of a system being in a high energy state, so, for the 

system to get out of a local energy minimum in favour of finding a better, more 

global one. The quantity k, Boltzmann’s constant, is a constant of nature that relates 

temperature to energy. In other words, the system sometimes goes uphill as well as 

downhill; but the lower the temperature, the less likely is any significant uphill 

excursion. 

 

Metropolis, in 1953, incorporated these principles into numerical calculations. He 

asserted the probability of the change of energy state from energy E1 to energy E2 as 

below. 

 I � ��I 5. 6�#6�78 6                   (4.5) 

 

Notice that if E2<E1, this probability is greater than unity, in such cases the change is 

arbitrarily assigned a probability equal to unity. This general scheme of always 

taking a downhill step while sometimes taking an uphill step, has come to be known 

as the Metropolis criterion. To make use of Metropolis criterion, one must provide 

the following elements: 

 

1. A description of possible system configurations 

2. A generator of random changes in the configuration 

3. An objective function E whose minimization is the goal of the procedure 

4. A control parameter T and an annealing schedule which tells how it is 

lowered from high to low values. 
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In simulated annealing, the design vector x stands for the state of a system while the 

cost function, f stands for the energy of the system. Then, the Metropolis Criterion 

could be stated as follow. 

 

J8	 � �K
 L1, ������������� N                  (4.6) 

 

where x1 and x2 are two different design points.  

 

Hide-and-Seek proceeds roughly as follows. The starting point, x0, is generated 

randomly and a large initial temperature, T0, is selected. In the kth step, a direction,  

Φk , on the surface of the unit sphere in the search space is chosen from the uniform 

distribution. Following that, Λk from the uniform distribution is chosen such that

):( SxR kkk ∈Φλ+∈λ=Λ  and set as kkk xy Φλ+=+1  . Then, the next search 

point, xk+1, is determined by, 

 

�79�	 � O/79�		K		=7 	 ∈ 	 Q0, J82�7 , /79�3R�7						K		=7 	 ∈ 	 QJ82�7 , /79�3, 1RS                (4.7) 

 

where Vk is a random variable with uniform distribution on [0, 1] ; and T is the 

current temperature. It should be noted that from the above equation, even if ƒ(yk+1) 

represents a deterioration in the objective function [i.e.		2�73 T 	2/79�3], the 

probability of acceptance of yk+1 as the next iteration point is high if the temperature 

T is high [29]. T is updated (decreased) by the cooling schedule 

 

!	 � 2. :�∗#�0��2;<����0�2
                   (4.8) 

 

only when ƒ(xk) is smaller than all previous objective function values, where 0 < p < 

1 and χ 1
2
−p (n) is the 100(1-p) percentile point of the chi-square distribution with n 

degree of freedom [28]. This cooling schedule generates the next point that would 
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give an improvement in function value over current iteration point with probability at 

least p. Performance of the algorithm is insensitive to different choices of p. When 

*f  is not known, the authors of Hide-and-Seek have developed a heuristic estimator 

f̂  for *f  

 	U � 	� 	�	 ��	#	��
0�#�2��/�#�                   (4.9) 

 

where 1f  and 2f  are the current two smallest function values and the parameter p 

corresponds to the probability that the real maximum is larger than this estimator.  

 

4.3.2 Genetic Algorithm 

 

Genetic Algorithm is an important part of a new area of the applied research termed 

Evolutionary Algorithm. It is a search heuristic that is analogous with the process of 

natural evolution. In order to generate a a search behaviour which is much better than 

random, stochastic processes are used. As a result, this technique is now widely 

applied in science and engineering as adaptive algorithms for solving practical 

problems. 

 

John Holland  was the first who introduced  the Genetic Algorithm for the formal 

investigation of the mechanisms of natural adaptation [29], but the algorithms have 

been since modified to solve computational search problems. Modern Genetic 

Algorithms deviate greatly from the original form proposed by Holland, but their 

linage is clear. There is no single firm definition for a Genetic Algorithm, and the 

computational system is highly simplified compared to the actual situation in nature. 

Therefore, we must first define a few terms and show how they relate between 

modern Genetic Algorithms and more traditional evolutionary theory. 

 

In 1859, Darwin come out with the idea of "Survival of the fittest" which is well 

known theory in today’s world. In this theory, the "fitness" defines to the ability of 

the organism to survive and to reproduce in natural envirorment. On the other hand, 
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in genetic algorithms the "fitness" is the evaluated result of the "objective function". 

If an organism has a better "fitness" score compared to others, it is more likely to be 

selected for reproduction either through some mechanism of competition to mate, or 

as a result of the least fit organisms dying. In this way, genes which encode 

beneficial characteristics are propagated through subsequent generations of the 

population at the expense of genes which encode detrimental characteristics. To sum 

up, to find the best individual, who would be able to survive, is possible since the 

constant mutation and recombination of the chromosome in the population yield a 

better gene structure [30]. The discussions can become clear if the possible design of 

the system, as represented by a design vector X, is associated with an individual who 

is fighting to survive within a larger population. The term population contributes to a 

set of individuals. Each individual in the population is called chromosome. Each 

chromosome corresponds to a particular solution to the problem which usually 

consists of symbols. 

 

A chromosome is made up with genes which symbolizes the design variables which 

are the external geometry parameters for the current optimization problem. It is 

possible to work with the design vector directly or use some kind of mapping, real 

(real encoding) or binary (binary encoding). Earlier works in Genetic Algorithm used 

binary encoding. In this study, the geometric dimensions are represented by real 

number coding means that their real values are included in the optimization loop.  

 

In his book “Genetic Algorithms and Engineering Optimization”, Goldberg defines 

the procedure for Genetic Algorithm as follow. “The evolution usually starts from a 

population of randomly generated individuals and happens in generations. In each 

generation, the fitness of every individual in the population is evaluated, multiple 

individuals are stochastically selected from the current population (based on their 

fitness), and modified (recombined and possibly randomly mutated) to form a new 

population” [31]. The fitness function here, can be related to the objective function 

whose details were given in previous chapter. The new population is then used in the 

next iteration of the algorithm. If the maximum allowed number of generations are 
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produced or a satisfactory fitness level has been reached for the population, the 

algorithm usually terminates. 

The flowchart for the Genetic Algorithm can be stated as below. Now, in the 

preceding parts, the detailed explanations for the genetic operators are handled to get 

more familiar with the methodology.  



 
 

55 

 

 

 

Figure 4.3 Genetic Algorithm Flowchart 
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Population Initialization 

 

Generation of an initial population is a necessity to initiate the optimization 

algorithm. The critical issue to be paid attention is that the number of initial design 

vectors for starting generation which must be kept constant in successive 

generations. Traditionally, the population is generated randomly, covering the entire 

range of possible solutions (the search space).  

 

Selection 

 

Genetic Algorithm selection operators perform the equivalent role to the natural 

selection. At this stage of the Genetic Algorithm, individual genomes are chosen 

from a population for later proceeding (recombination or crossover). In other words, 

the selection process is to stochastically select from one generation to create the basis 

of the next generation. The requirement is that the fittest individuals have a greater 

chance of survival than weaker ones according to Darwin's evolution theory. 

 

There are numerous selection schemes described in the literature; "Roulette wheel" 

selection, tournament selection, random selection, stochastic sampling are the 

common examples. In this thesis, roulette wheel selection is utilized which is said to 

be fast and accurate in the light of former experiences. In this approach, parents are 

selected according to their fitness. The better the chromosomes are, the more chances 

to be selected they have. For the sake of simplicity, think of a roulette wheel where 

all chromosomes in the population are placed, each has its place bigger according to 

its fitness function, like on the following figure. They are ranked in ascending order. 
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Figure 4.4 Roulette-Wheel Selection [32] 

 

Then a marble is thrown there and selects the chromosome. Chromosome with bigger 

fitness will be selected more times due to having bigger portion in the whole roulette. 

The steps for this are identified as below [32].  

i. Sum: Calculate sum of all chromosome fitnesses in population - sum 

S.  

ii.  Select : Generate random number from interval (0,S) - r.  

iii.  Loop : Go through the population and sum fitnesses from 0 - sum s. 

When the sum s is greater then r, stop and select the current 

chromosome. 

What comes next is to generate a second generation population of solutions from 

those selected ones.  The types of operations are recognized for this goal. The first 

one is the crossover and the mutation is the succeeding. 

 

Crossover 

 

It is used to combine or mix two different individual in the population to generate 

new elitist individuals for the next generation. It is analogous to reproduction and 

biological crossover, upon which Genetic Algorithms are based. There exists several 

crossover options available in Global Optimization Toolbox of MATLAB R2008b. 

The most common alternatives among them are single-point, two-point and scattered 

crossover options.  
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In single-point crossover method a random integer n between 1 and number of 

variables is chosen. Afterwards, vector entries numbered less than or equal to n from 

the first parent and vector entries numbered greater than n from the second parent are 

selected for the purpose of combining them to form a child vector. For example, if p1 

and p2 are the parents like 

p1 = [a b c d e f g h] 

p2 = [1 2 3 4 5 6 7 8] 

and the crossover point is 3, the function returns the following child. 

child = [a b c 4 5 6 7 8] 

Whereas for the two point crossover method, two crossover points are selected, 

binary string from beginning of chromosome to the first crossover point is copied 

from one parent, the part from the first to the second crossover point is copied from 

the second parent and the rest is copied from the first parent. For example, if p1 and 

p2 are the parents as below. 

p1 = [a b c d e f g h] 

p2 = [1 2 3 4 5 6 7 8] 

and the crossover points are 3 and 6, the function returns the following child. 

child = [a b c 4 5 6 g h] 

 

Despite these alternatives, the scattered crossover is the one which is used in this 

work. The reason lies behind this choice is that “in single or double point crossover, 

genomes that are near each other tend to survive together, whereas genomes that are 

far apart tend to be separated. The technique used here eliminates that effect. Each 

gene has an equal chance of coming from either parents” [33].  

 

In this type of crossover, a random binary vector is created. So, the genes are 

selected from the first parent where the vector is a 1, and from the second one where 



 
 

59 

 

the vector is a 0, and combines the genes to form the first child, and vice versa to 

form the second one. For example, if p1 and p2 are the parents as below; 

p1 = [a b c d e f g h] 

p2 = [1 2 3 4 5 6 7 8] 

and the binary vector is [1 1 0 0 1 0 0 0], the function returns the following child: 

child1 = [a b 3 4 e 6 7 8] 

 

These new generated individuals are subjected to a feasibility check to determine 

whether they satisfy the given constraints while staying in the desired bounds. This 

phase goes on until that all the individuals are feasible. All these steps ultimately 

result in the next generation population of chromosomes that is different from the 

initial generation. 

 

Mutation 

 

It is a genetic operator used to maintain genetic diversity from one generation of a 

population of algorithm chromosomes to the next. It is analogous to biological 

mutation. Mutations enables the Genetic Algorithm to maintain diversity while also 

introducing some random search behaviour. Both by mutation and crossover, it is 

made possible to scan a quite wide search domain by preventing to get trapped at any 

local optima. The mutation operator provide that the population of chromosomes are 

not quite similar to each other. This gives the opportunity to the algorithm of 

avoiding local minima. 

 

Mutation is simply is carried out by adding a small number to the selected value as 

shown in the below example.  

(1.29  5.68  2.86  4.11  5.55) => (1.29  5.68  2.73  4.22 5.55) 

The mutation function is constructed based on the “mutationuniform.m” file of the 

Global Optimization Toolbox of MATLAB R2008b. Uniform mutation is a two-step 
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process. First, the algorithm selects a fraction of the vector entries of an individual 

for mutation, where each entry has a probability rate of being mutated. The default 

value of rate is 0.01. In the second step, the algorithm replaces each selected entry by 

a random number selected uniformly from the range for that entry. At this point, it is 

crucial to define the mutation rate. A very small mutation rate may lead to genetic 

drift which is non-ergodic in nature. On the other hand, a mutation rate that is too 

high may lead to premature convergence of the Genetic Algorithm and may lead to 

loss of good solutions unless there is elitist selection. There are theoretical but not yet 

practical upper and lower bounds for these parameters that can help guide selection 

[34]. Due to this sensivity for mutation rate, determination of this parameter is left to 

the user to input at the beginning of the process. Mutation operation for the current 

population is applied until the feasibility check for the design alternatives are 

supplied. 

 

4.3.3 Hybrid Algorithm – Simulated Annealing & Genetic Algorithm 

Combination 

 

As described in  previous chapters, two stochastic methods commonly used in tough 

optimization problems are Genetic Algorithm and Simulated Annealing. To cope 

with the conceptual design optimization problem of the air-to-ground missile, a more 

effective optimization algorithm is tried to be implemented unlike with the existing 

studies conducted for these kinds of problems. The algorithm generated in this thesis 

aims to harmonize the advantages and disadvantages of them to get better solutions 

in much more shorter durations. 

 

Before proceeding, it is investigated whether there exists some comparisons between 

Simulated Annealing and Genetic Algorithm in terms of accuracy and computational 

time or not in available literature.  

 

In Reference [35], there is a good discussion on how a meaningful empirical 

comparison should be done. Several algorithms are compared including Simulated 

Annealing and Genetic Algorithm, and carefully normalized the execution time given 
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to different algorithms. Their results indicate that given the same amount of time, 

Simulated Annealing consistently gave better solutions than Genetic Algorithm. 

 

Manikas and Cain [36] compare Simulated Annealing and Genetic Algorithm for a 

circuit partitioning problem. The statistical confidence of the results is very carefully 

analyzed when comparing approximately 20 trials with each algorithm. However, 

there is no mention of the execution time used. Still, they conclude that "the Genetic 

Algorithm was shown to produce solutions better than Simulated Annealing". 

 

Mann and Smith [37] compare Simulated Annealing and Genetic Algorithm for a 

traffic routing problem. The execution times are reported by them again. But the 

comparison mainly focuses on solution costs. The execution times of the Genetic 

Algorithm were from 10 to 24 times longer than those of the Simulated Annealing. 

They report that Genetic Algorithm gave slightly better solutions than Simulated 

Annealing, but they also note that the Simulated Annealing achieved its solutions 

much quicker. 

 

The requirement for the current phase is the empirical comparisons where one 

specific Simulated Annealing implementation is matched against one specific 

Genetic Algorithm implementation, and sweeping generalizations are made from the 

results. In reality, it seems that the two approaches are closer relatives than is 

commonly thought, and meaningful comparisons require careful consideration, both 

theoretical and empirical. The two approaches are quite distinctive using dissimilar 

terminology by means of the ways of formulation. 

 

Simulated Annealing is in relation with solutions, their costs, and neighbours and 

moves; while Genetic Algorithm deals with individuals (or chromosomes), their 

fitness, and selection, crossover and mutation. Basically, Simulated Annealing can be 

thought as Genetic Algorithm where the population size is only one. The current 

solution is the only individual in the population. Since there is only one individual, 

there is no crossover, but only mutation. 
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This is in fact the key difference between Simulated Annealing and Genetic 

Algorithm. While Simulated Annealing creates a new solution by modifying only 

one solution with a local move, Genetic Algorithm also creates solutions by 

combining two different solutions. Whether this actually makes the algorithm better 

or worse, is not straightforward, but depends on the problem and the representation. 

 

In general, Genetic Algorithm treats combinations of two existing solutions as being 

"near", making the assumption that such combinations (children) meaningfully share 

the properties of their parents, so that a child of two good solutions is more probably 

good than a random solution. 

 

Paying regard to all these inferences about Simulated Annealing and Genetic 

Algorithm comparison, it is concluded that Simulated Annealing is a "quick starter" 

which obtains good solutions in a short time, but is not able to improve on that given 

more time, while Genetic Algorithm is a "slow starter" that is able to improve the 

solution consistently when given more time. 

 

Therefore the optimization algorithm afforded in this thesis starts with a Simulated 

Annealing to obtain an initial population for the Genetic Algorithm module. By this 

way, Simulated Annealing module generates a feasible and optimum solution in a 

relatively shorter time. What is worthy of notice is that the population size should be 

specified at the beginning of the search algorithm and the Simulated Annealing 

module is to be run as many times as the population size to generate a set of 

solutions. Thus an initial population which is thought to be near global optimum 

would be created rapidly by utilizing the Simulated Annealing optimization module. 

It would be favourable that the Genetic Algorithm optimization module starts to 

search the optimum starting to evaluate from an initial feasible population which 

gives way to improve the solution to the current problem. 

 

The overall flowchart of the whole design optimization process including the hybrid 

algorithm is shown in Figure 4.5. 
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Figure 4.5 Conceptual Design Optimization Flowchart 

 

The initial baseline geometry to initiate the optimization process is generated using 

MATLAB function of random number generator (rand) which returns a 

pseudorandom, scalar value drawn from a uniform distribution on the unit interval. 

After the specification of the reasonable upper and lower bounds for the design 

variables, the span is turn out to be the difference between these bounds. The 

baseline external geometry is then generated like that the multiplication of the 

random number and the span is added to the lower bounds of the design variables. 

The equation is given as below.  

 

��������		�
���
���� � ������ � 	����
�	�����
 ∙ �� !!�� � �������           (4.10) 
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Geometric feasibility check is performed after the baseline geometry generation. The 

baseline geometry obtained is controlled whether it satisfies the geometric 

constraints given in Section 4.2 or not. The initialization process is repeated until 

these linear constraints are satisfied in case of a geometric infeasibility. That is, the 

baseline geometric parameters should be chosen according to that they are inside the 

interval of linear constraints. To start the optimization process with an initial point 

that lies in the pre-defined feasible region seems to be more effective since it leads to 

a decrease in the total iteration number and optimization time 

 

 Multi-Objective Optimization  4.4

 

If the number of objectives is more than one, the optimization is called multi 

objective optimization. Multi-objective optimization problems often exist in several 

fields including engineering design. In such cases it is essential to make trade-offs 

between two or more conflicting objectives. The main difference of multi-objective 

optimization from the single optimization is that there is no single optimum solution. 

There exists a number of solutions that are all optimal. As a result, it is required for a 

multi-objective optimization problem that a choice has to be made among the 

obtained optimal solutions applying the trade-off between the conflicting objectives. 

 

With this procedure, it is easy to realize that single objective optimization is a case of 

multi-objective optimization. In the case of single objective optimization with only 

one objective, firstly, algorithm would find only one solution means second stage is 

not required.  

 

On the other hand, the main goal for the multi-objective optimization algorithms is to 

find a set of feasible solutions which are non-dominated with respect to each other. 

The solutions of this non-dominated set are called as Pareto optimal solutions. In 

other words, �̅∗ is said to be Pareto optimal if no other feasible set exists that could 

decrease some criterion that would not lead to a simultaneous increase in at least one 

other criterion. As a consequence of this sequence one would obtain a set of solutions 

rather than a single solution. This set of solutions is named as Pareto optimal set [38].  
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A multi-objective optimization problem could be formulated as below with the usage 

of a number of objective functions that are either to be maximized or minimized. 

 DK
K�KV�																	�2�3,															� � 1,2, … .D 

 XYGZ�[$	$B									�=2�3 	\ 0,														Z � 1,2, … . F	 																																		]72�3 	� 0,													
 � 1,2, … . ^			 																																		�>� 8 �> 8 �>?,						K � 1,2, … . _			 
 

Here M is the number of fitness functions and N is the number of parameters to be 

optimized. The constraint sets include inequality constraints, equality constraints and 

variable bounds. 	�>� and �>? imposes the upper and lower bounds for the variables 

to be optimized while the �= and 	]7 contributes to the inequality and equality 

constraints, respectively. By doing so, a solution set x could be decided whether it is 

feasible or not by satisfying all these imposed constraints and bounds. 

 

In this thesis, two algorithms for multi-objective optimization are stuided: Non-

Dominated Sorting Genetic Algorithm (NSGA-II) and Multiple Cooling Multi 

Objective Simulated Annealing (MC-MOSA) 

 

4.4.1 Non Dominated Sorting Genetic Algorithm (NSGA-II) 

 

For the solution of the multi-objective optimization problem, an improved version of 

Non-Dominated Sorting Algorithm (NSGA) is utilized called NSGA-II. This 

outperforms the previous version in terms of the diversity of the set of solutions and 

the convergence to the true Pareto optimal set. The main advantage of the new 

approach is that there is no need to input any user defined parameter for the sake of 

maintenance of the diversity among the members of the population. 

 

The main loop is initiated with the creation of random parent population generation. 

As a first step, a ranking of the solution is performed according to the non-

domination level. Then the usual selection, recombination and mutation operators are 
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used to create an offspring population. The combination of the parents and offspring 

population is also sorted according to the non-domination. Solutions belonging to the 

best non-dominated set �� are of best solutions in the combined population and must 

be emphasized more than any other solution in the combined population. If the size 

of the set ��	 is smaller than the number of the population size, all individuals of �� 
and solutions from the subsequent non-dominated fronts in the order of ranking are 

combined to get the new population	F�9�. Thus, solutions from the set �� are chosen 

next, followed by the solutions from the set �/and then this procedure lasts till no 

more sets are able to be accommodated such that �@ is the last non-dominated set.  

 

The solutions of the last front �@ are sorted using the crowded-comparison operator -� in descending order to select the best solutions in the front in order to fill all the 

missing slots of the new population. To create a new population ̂ �9� from the 

current population F�9�, the selection, crossover and mutation operators are used. 

The main procedure for NSGA-II algorithm is illustrated in Figure 4.6. 

 

 

 

Figure 4.6 NSGA-II Procedure [40] 

 

Deb stated that the diversity among non-dominated solutions is introduced by using 

the crowding comparison procedure which is used in the tournament selection and 

during the population reduction phase. Since solutions compete with their crowding 

distance which is a measure of density of solutions in the neighbourhood [39]. No 

any other extra parameter is required such as sharing function ̀ �A��
 that is the case 

for NSGA. 
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4.4.2 Multiple Cooling Multi Objective Simulated Annealing (MC-MOSA) 

 

MC-MOSA algorithm which is developed to improve the efficiency of the Multi 

Objective Simulated Annealing (MOSA) is applied this thesis work [41]. 

 

The general approach is similar as in the case for Hide-Seek Simulated Annealing 

algorithm. The main difference is that a population of fitness functions is aimed to be 

minimized in parallel instead of one single fitness function. These fitness functions 

are structured by using different weight sets and a specific temperature Tj is assigned 

to each fitness function Fj as shown in below. 

 ��7	 �	∑ b7>	> 									
 � 1,2, ……4�
>B�               (4.11) 

 

where ∑ b> � 1														K � 1,2, …… . _�
>B�                (4.12) 

 

R is the number of fitness functions and N is the numbers of objectives. The steps 

followed for MC-MOSA algorithm are listed below. 

 

Step 0: 

Initialize random number generators. Generate the initial test point x0 in the interior 

of S and choose a high enough temperature of T0. Initialize the best and next best 

records of the fitness functions (�cC
�� � �c�
��C
�� � 0) 

 

Step 1: 

Search direction, θk, on the surface of a unit sphere with uniform distribution and 

step size λK, are assigned randomly. Setting next variables as /7 � �7 � d7e7  
 

Step 2: 

Generate =720 8 =7 8 13 from uniform distribution 
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Step 3: 

Evaluate the probability acceptance function  

 

F�	 � �K
 f1, ��� g��I L∆EF�"8�"
Nhi,               (4.13) 

 ∆�k�G �	�k�2�G3 	.	�k�2/G3,						�	 � 1,2, ……D,             (4.14) 

 

where �k� is a set of linear fitness functions. 

 

Step 4: 

Accept the trial point yH, with probability Pr 

 

xH9� 	� fyH	if	VH 	 ∈ 	 20, Pr3xH		otherwise i               (4.15) 

 

Step 5: 

If Pr = 1 (i.e., if there are any improving fitness functions, �k�2/G3, 2� �1,2, … .D3): 
• Archive the test point 2xH9� 	� 	 yH3, as well as values of the objectives, ;	>2/G3< , to be further processed to obtain the Pareto front. 

• Update the best and next best records, �k��
��C
�� �	�k�C
�� and �k�C
�� �	�k�2/G3 
• Update the related temperature according to the annealing schedule below, 

 !	 � 2t�k�2�G9�3 . �k�∗u	/		w��#�2#3             (4.16) 

 

where �k�∗ is the global minimum of mth fitness function, and 	w��#�2#3 is the 

100(1-p) percentile point of the chi-square distribution with d degrees of freedom. 

Since the global minimum is not known in advance, its estimate, �k
� is used instead 

as given below [41].  
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�k
� 	� 	�k�C
�� 	� EF�#��$9EF����$#��$

0�#�2�%/�#�                (4.17) 

 

The estimator may also be used with upper and lower bounds in the algorithm as: 

 

�k�∗ � x�k�@IJ
�,							K	, �k
� T �k�@IJ
��k����
� ,							K	, �k
� T �k����
��k
�								B$]��bK�� y              (4.18) 

 

Increment the loop counter and go to Step1 until permitted number of function 

evaluations reached these steps. 

 

In this work, linear fitness function type is utilized to generate the optimal Pareto 

front. These functions are constructed using weighted sums of objective functions 

whose aggregate weight should be equal to 1 for each fitness function. For the 

current problem, totally 9 FFs are generated for minimum mass and maximum range 

objectives using the weight sets given in Table 4.1 

 

Table 4.2 Weight Sets For Linear Fitness Function 

 

Weight Sets Weight 1 Weight 2 

1 0.1 0.9 

2 0.2 0.8 

3 0.3 0.7 

4 0.4 0.6 

5 0.5 0.5 

6 0.6 0.4 

7 0.7 0.3 

8 0.8 0.2 

9 0.9 0.1 
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The linear fitness functions illustrate the optimum points throughout the feasible 

region. In linear fitness function approach while searching the points near to the 

pareto front, these tangent lines are positioned according to the changes in the weight 

of objective functions basically. The linear fitness functions can be represented as in 

Figure 4.7. 

 

 

 

Figure 4.7 Linear Fitness Function Representation [42],[43] 

 

4.4.3 Hybrid Algorithm (MC-MOSA + NSGA-II) 

 

As it has been done for single objective case in Section 4.3.3, MC-MOSA and 

NSGA-II algorithms are merged into a hybrid algorithm to improve the convergence 

of the feasible solutions to the real pareto front. MC-MOSA algorithm is used as the 

first step. The obtained non-dominated points are made to pass to the NSGA-II 

algorithm as initial population. If the number of non-dominated solutions are more 

than the population size, the best solutions as the number of the population size are 

taken as the individuals of the initial population of the NSGA-II algorithm. Whereas, 

if the number of non-dominated solutions are less than the population size, the 

remaining slots of the population are filled according to the formulation given in 

Equation (4.10). 
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CHAPTER 5 
 

 

CASE STUDIES 
 

 

 

 Test Problem-1 : Two Bar Truss Design 5.1

 

The multi-objective optimization algorithms were utilized for the two bar truss 

structural optimization problem given in reference [40]. The objectives for this case 

are to minimize the maximum stress on truss members as well as the material 

volume. The problem is illustrated as in the figure given below. 

 

 

 

Figure 5.1 Two Bar Truss Problem Schematic [40] 

 

Mathematically speaking, the problem is defined as below. 

 DK
K�KV�			�2�, /3 	� 	z�016 � /� �	z�01 � /�			,			2��$��K�C	|BCY��3 DK
K�KV�			�2�, /3 	� 	���2 �̀�, `K�3		,				2�$����3 
s.t  ���2 �̀� , `K�3 		8 	 10L 																										1 8 / 8 3 																										0 8 z�, z� 8 0.01�� 
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z� and z� are the cross sectional areas of the bars. The stress parameters are 

evaluated according to the given equations below. 

 

�̀� 	� �
M�N9��
�∙��

	                   (5.1) 

 

`K� 	� +
M�9��
�∙��

	                   (5.2) 

 

The problem was solved with MC-MOSA algorithm using five linear fitness 

functions with the given weight sets in Table 5.1. 

 

Table 5.1 Weight Sets For Linear Fitness Function of Test Case 1 

 

Weight Sets Weight 1 Weight 2 

1 0.9 0.1 

2 0.7 0.3 

3 0.5 0.5 

4 0.3 0.7 

5 0.1 0.9 

 

The obtained Pareto front after 1000 function evaluations are shown in Figure 5.2. 

The front contains 42 non-dominated points. The optimization lasted only a few 

seconds in the MATLAB R2008b environment. 
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Figure 5.2 Two Bar Truss Problem : MC-MOSA Results Using 5 Linear FFs After 

1000 FEN 

 

The same procedure is repeated using nine linear fitness functions in Table 4.2. As it 

may be observed from Figure 5.3, more non-dominated points (69) are found on the 

Pareto optimal front that is well spread on the whole domain. Figure 5.4 also shows 

the comparison of two fronts obtained with different number of linear fitness 

functions.  
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Figure 5.3 Two Bar Truss Problem : MC-MOSA Results Using 9 linear FFs After 

1000 FEN 

 

 

 

Figure 5.4 Two Bar Truss Problem : Comparison of MC-MOSA Using Different 

Weight Sets After 1000 FEN 
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A similar parametric study is also carried out for number of function evaluation to 

see its effect on Pareto front. For this purpose, the Pareto optimal fronts are obtained 

by using 9 linear fitness function with 1000, 10000 and 20000 function evaluation 

numbers. The number of points on the front increase with increasing number of 

function evaluations as expected. All obtained results are given in Table 5.2. 

 

Table 5.2 Comparison for Non-Dominated Points Number On The Pareto Front  

 

Number of Function 

Evaluations 

Number of Weight Sets 

5 9 

1000 42 69 

10000 169 181 

20000 208 224 

 

Increasing number of function evaluations has a more drastic effect on the non-

dominated points number compared with the number of fitness functions although it 

imposes an extra cost on the total computational time. 

 

The same problem is solved with NSGA-II algorithm for this time with the given 

parameter set and the obtained Pareto is given as below. The generation number is 

set as 10 which contributes to a total number of function evaluation 1000. 

 

Table 5.3 Parameter Sets For NSGA-II 

 

Population Size 100 

Crossover Rate 0.8 

Mutation Rate 0.02 
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Figure 5.5 Two Bar Truss Problem : NSGA-II Results After 1000 FEN 

 

The results are in accordance for two distinct algorithms whereas the spread of the 

solutions of MC-MOSA with 9 FFs is better than the NSGA-II algorithm. Moreover, 

the number of points on the front is also more than the ones for the NSGA-II 

algorithm. 
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Figure 5.6 Two Bar Truss Problem : MC-MOSA & NSGA-II Results Comparison 

After 1000 FEN 

 

The results of two algorithms are compared by the usage of some quality metrics for 

1000 function evaluations. These metrics asserts the quality of the obtained Pareto 

front. The metrics utilized for this purpose are Non-Dominated Points (NDP), 

Hyperarea Difference (HD), Accuracy (A), Overall Spread (OS) and Cluster (CL). 

The details of each are given in Appendix C. The resulting of the quality metrics for 

each algorithm are tabulated in the table below. 

 

Table 5.4 Comparison of Multi-Objective Optimization Algorithms for Two Bar 

Truss Design Problem 

 

 MC-MOSA NSGA-II 

NDP 69 53 

HD 0.1541 0.1525 

A 45.1 16.9 

OS 0.5323 0.4531 
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Table 5.4 Comparison of Multi-Objective Optimization Algorithms for Two Bar 

Truss Design Problem (continued) 

 
CL 1/50 1.3269 1.4722 

CL 1/150 1.0500 1.1042 

 

MC-MOSA algorithm is able to find more non-dominated points on the front than 

NSGA-II algorithm for this problem. Even though smaller HD value for NSGA-II 

algorithm claims for a better front, larger values for OS and A for MC-MOSA 

algorithm indicates a Pareto front that is spread well to the extreme ends well. MC-

MOSA occupies more cell with both step sizes 50 and 150 which is also another 

indication of a good spread front for MC-MOSA algorithm. 

 

 Test Problem-2 : Air-to-Ground Missile Conceptual Design Optimization 5.2

 
The aerodynamics, flight and the optimization modules constitute the overall 

conceptual design tool. The verification of the tool is realized by applying it for a 

new generation existing turbojet powered air-to-ground missile (i.e. Naval Strike 

Missile (NSM)) that has a pair of wings and four tails and it is controlled by 

deflecting tail control surfaces. The flight profile is assumed to be a glide-descent-

cruise-climb-dive sequence. The detailed technical specifications and external 

geometry parameters, mission requirements and constraints for the benchmark 

missile is obtained from the open sources available.  

 

The weight of the missile is a bit more than 400 kg and it has a range of at least 185 

km. “After being launched into the air by a solid rocket booster which is jettisoned 

upon burning out, the missile is propelled to its target in high subsonic speed by a 

turbojet sustainer engine leaving the 125 kg multi-purpose blast, fragmentation 

warhead to do its work” [44]. Furthermore it is aimed to achieve approximately 0.9 

Mach top speed. 
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Figure 5.7 Naval Strike Missile (NSM) [44] 

 
The Microturbo TRI-40 turbojet engine supplies the thrust force for the NSM 

missile. The maximum thrust value that the engine could generate is 2500-3500 

Newtons. It is 0.68 meters long and 0.28 meters in diameter. The diameter of the 

engine imposes a physical constraint on the diameter of the missile such that it 

should be greater than the engine diameter [45]. 

 

Some other inputs required for the tool like cruise and search altitudes, descent and 

climb angles, wing and tail airfoil types are not available in the internet. Thus, a set 

of values for these parameters are chosen and listed in Table 5.5. 

 

Table 5.5 Parameters selected for NSM 

 

Search Altitude (m) 1750 

Cruise Altitude (m) 300 

Descent Angle (°) -15 

Climb Angle (°) 15 

Wing Airfoil Section NACA-1-6-65-410 

Tail Airfoil Section HEX 

 

The missile length is given as 3.96 meters. Unfortunately, there is no other geometric 

dimension available. To specify other geometric variables, a sample picture of the 

missile found from the open sources is transferred into a computer aided drawing 

tool and its length is scaled with respect to the given real missile length. Such 

estimated parameters are summarized in Table 5.6. 
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Table 5.6 NSM Estimated Geometry Parameters In Meters 

 

Missile Length  3.96 

Wingspan (tip-to-tip) 0.835 

Wing Tip Chord 0.2 

Wing Root Chord 0.6 

Tail Span (tip-to-tip) 0.8 

Tail Tip Chord 0.15 

Tail Root Chord 0.38 

 
5.2.1 Single Objective Optimization  

 

The missile design optimization problem is solved for single objective, first. The 

objectives are decided to be as maximum range and minimum launch mass as stated 

earlier.  

 

For maximum range objective, an upper bound constraint is imposed on the initial 

launch mass such that the designed missile is desired to be weighed less than 450 kg. 

The problem is solved with Hide-Seek Simulated Annealing, Genetic Algorithm and 

the Hybrid Algorithm (Hide-Seek SA + GA). The maximum number of function 

evaluation is selected to be as 1000 for each algorithm and the population size is set 

to 100. The obtained results are given in Table 4.1 below and compared with the 

parameters belonging to NSM. 
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Table 5.7 External Configuration Parameters for Range Objective Case 

 

 

 

According to the obtained results, the hybrid algorithm is able to find the missile that 

could reach the maximum range with minimum launch mass. The external 

parameters are noticed to be in accordance with the existing benchmark missile. 

Furthermore, SA has achieved to find a better design than GA for this case (mass 

objective design problem) although it comes out be a heavier missile than the GA’s. 

 

Afterwards, the launch mass was tried to be optimized for a given at least flight 

range limit ( > 200 km) and the obtained results for each three single objective 

optimization algorithm including the comparison with NSM are tabulated in Table 

4.1. 

  

Ogive Ogive Ogive -

Cross Cross Cross Cross

0.32 0.30 0.30 -

0.29 0.54 0.63 -

0.45 0.78 0.67 0.84

0.23 0.55 0.51 0.6

0.17 0.13 0.18 0.2

0.18 0.19 0.34 0.4

0.43 0.23 0.44 0.38

0.40 0.12 0.23 0.15

4.45 3.58 2.47 -

4.75 4.40 3.73 -

2.59 2.32 2.08 -

7.85 28.33 26.78 -

11.25 30.43 31.25 -

LENGTH 5.19 4.63 4.16 3.95

424.4 380.7 362.6 410

42.4 38.1 36.3 -

246.0 232.0 250.9 over 185

0.75 0.75 0.75 high subsonic

960.4 849.0 976.1 -

NSM PARAMETERS
SA Optimization 

Results
GA Optimization 

Results

SA-GA 
Optimization 

Results

Tail Sweep (deg)

EXTERNAL 
CONFIGURATION 

PARAMETERS

Nose Type

Panel Config

Body Diameter (m)

Nose Length  (m)

Wing Span  (m)

Wing Root Chord  (m)

Win Tip Chord  (m)

Tail Span  (m)

Tail Root Chord  (m)

Tail Tip Chord  (m)

Wing Leading Edge Location From Nose

Tail Leading Edge Location From Nose

CG location from nose  (m)

Wing Sweep  (deg)

Missile (m)

MASS
Launch (kg)

Fuel (kg)

FLIGHT 
PERFORMANCE

Range (km)

Cruise Mach

Time of Flight (sec)
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Table 5.8 External Configuration Parameters for Mass Objective Case 

 

 

 

As seen in the table, the dimensions obtained from the design tool are quite close to 

the existing missile’s. When taken into consideration for the results of each objective 

with three distinct algorithms. The GA results are slightly better than the SA results. 

However the computational time for GA is approximately two hours which is two 

times longer than the computational time for SA. On the other hand, the hybrid 

algorithm brings a sensible improvement for the results of the objectives in each 

case. Another way of saying is that the hybrid algorithm achieves a better solution 

point in these two cases for single objective optimization problem. The hybrid 

algorithm uses the optimized results of the SA module as the initial population for 

domain search of GA module. Thus, it is able to find a better point than the others’ in 

the whole design space. The improvement in solution leads to a computational time 

cost due to the evaluation of the algorithm in sequence. 

 

The aerodynamic characteristics of the redesigned missile is graphically presented in 

the below figures (Figure 5.8 -Figure 5.11) including the Mach number and angle of 

attack variation of pitch stability term (Cmα) and pitch controllability term (Cmα/C�e), 

Ogive Ogive Ogive -

Cross Cross Cross Cross

0.30 0.32 0.31 -

0.26 0.27 0.25 -

1.19 0.76 0.79 0.84

0.27 0.31 0.55 0.6

0.17 0.17 0.15 0.2

0.24 0.41 0.31 0.4

0.11 0.19 0.38 0.38

0.10 0.12 0.15 0.15

2.37 2.45 2.01 -

4.50 3.10 2.85 -

2.30 1.64 1.51 -

4.55 10.10 26.77 -

0.36 9.14 13.33 -

LENGTH 4.60 3.28 3.03 3.95

356.1 287.4 282.5 410
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respectively to illustrate the stability and controllability metrics of the optimal design 

results of the hybrid algorithm for both mass and range objective cases. 

 

 

 

Figure 5.8. Cma vs. Mach vs. Alpha Surface for Mass Objective Case  

 

 

 

Figure 5.9 Cma/Cmde vs. Mach vs. Alpha for Mass Objective Case  
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Figure 5.10 Cma vs. Mach vs. Alpha Surface for Range Objective Case  

 

 

 

Figure 5.11 Cma/Cmde vs. Mach vs. Alpha Surface for Range Objective Case  
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All these obtained plots demonstrate that the missile geometries resulted from the 

hybrid algorithm for each range and mass single objective cases are said to be 

acceptable in terms of static stability (negative Cmα) and pitch controllability 

(Cmα/C�e < 1) throughout the whole Mach number and angle of attack regime. 

 

Additionally, the resultant dimensions for each designed geometry is visualized in 

three dimensional (3D) view via importing the “for022.dat”. file, which is the output 

of Missile DATCOM 2008 module, into a plotting program and presented in Figure 

5.12. 

 

  

 
 

Range Objective Mass Objective 

 

Figure 5.12 Single Objective Missile Design Optimization Results 

 

The geometry for maximum range objective is a long and slender body with a large 

nose finess ratio which results in a body exposed to less drag during its flight. The 

sketches on the left figures out a shorter missile. Moreover, the wing span is slightly 

longer than the range objective case in order to satisfy the at least range constraint.  
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5.2.2 Multi-Objective Optimization  

 

In this section, the two objective optimizations carried out using MC-MOSA and 

NSGA-II multi-objective optimization algorithms are presented. In addition to that, a 

hybrid algorithm, that sequentially uses MC-MOSA and NSGA-II combination, is 

also tested through the design optimization problem. The Pareto optimal fronts are 

obtained and compared. 

 

The results of the MC-MOSA algorithm for 9 linear FFs and 1000 function 

evaluation are given in Figure 5.13.  

 

 

 

Figure 5.13 MC-MOSA Missile Design Optimization Results 

 

As seen from the figure, although not too many points were generated on the front, 

the non-dominated points are noticed to be sparse and scattered which is thought to 

stem from the difficulty of the problem of optimization of two distinct conflicting 

objectives.  
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The same two objective missile design optimization problem is also solved using 

NSGA-II and hybrid algorithm and the results are presented in Figure 5.14 together 

with the results of MC-MOSA with the same number of function evaluations. A 

population size of 100 is used for 10 generations for NSGA-II algorithm. For the 

hybrid case, the initial population is obtained as a result of 500 function evaluation of 

MC-MOSA algorithm and then passed to the NSGA-II module for 10 generations 

with 50 individuals in the population which leads to a 1000 function evaluations in 

total. 

 

 

 

Figure 5.14 Missile Design Multi Objective Optimization Results After 1000 FEN 

 

For the current problem, the Pareto front of NSGA-II algorithm looks better when 

compared with the front of MC-MOSA algorithm since it was able to find better 

optimal points for present objectives. Approximately two times longer computational 

time than the one for MC-MOSA algorithm is the payoff for better front, though. The 

hybrid algorithm, carried out for an ultimate trial, indicated the capability of the 

algorithm of finding more non-dominated points on the front that is closer to the 

optimal than other algorithms.  
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Since 1000 function evaluations is small for such a nonlinear problem, it was also  

solved, this time allowing for 2000 function evaluations. The non-dominated 

solutions from each algorithm are plotted in Figure 5.15. 

 

 

 

Figure 5.15 Missile Design Multi Objective Optimization Results After 2000 FEN 

 

The results of the algorithms for both 1000 and 2000 function evaluations are 

compared by using the quality metrics defined in Appendix C and they are presented 

in Table 5.9. 
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Table 5.9 Comparison of Multi Objective Optimization Algorithms for Missile 

Design Optimization Problem 

 

 
MC-MOSA NSGA-II  

MC-MOSA -

NSGA-II  

1000 

FEN 

2000 

FEN. 

1000 

FEN 

2000 

FEN. 

1000 

FEN 

2000 

FEN. 

NDP 16 18 16 21 7 23 

HD 0.2096 0.1541 0.1433 0.1 0.1310 0.0957 

A 39.7 65.82 56.2 48.53 31.4 135.2 

OS 0.1777 0.1605 0.1381 0.3924 0.1673 0.2426 

CL 1/25 1.23 1.25 1.1429 1.2609 1.1500 1.2 

CL 1/100 1.14 1.25 1.043 1.1154 1.0952 1.0714 

 
 
It could be noticed that an increase in the number of function evaluations lead to an 

increase in the number of non-dominated points on the front as well as a smaller HD 

value which is an indication of a better Pareto front. The results also figure out that 

NSGA-II algorithm has performed better than MC-MOSA algorithm for design 

optimization problem for both 1000 and 2000 function evaluation number with 

smaller HD values whereas the front has not covered the whole region better than 

MC-MOSA algorithm due to a smaller OS value for 1000 function evaluation 

number. As the number of function evaluations are increased, the spread over the 

whole feasible region seemed to be better for NSGA-II algorithm. Also, NSGA-II 

occupied more cells with both step sizes 25 and 100.  

 

The results of the hybrid algorithm brings a noteworthy improvement in the Pareto 

front accuracy with less HD and larger A value, especially for 2000 function 

evaluation number which comes out to be the best front obtained in terms of 

optimality. More non-domniated points closer to the actual front are also obtained 

with the hybrid algorithm for 2000 function evaluations and it has also better values 

for the remaining metrics. Therefore, the fact that the hybrid algorithm has a better 
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solution performance than other algorithms for multi-objective optimization, could 

be drawn as a conclusion for this test problem. 
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CHAPTER 6 
 

 

CONCLUSION 
 

 

 

In this thesis work, several optimization techniques were utilized for the conceptual 

design optimization problem of a generic air-to-ground missile. To initiate the design 

cycle, a baseline missile external configuration was specified with two wings and 

four tails powered with a turbojet engine. The external geometry parameters were 

aimed to be optimized to satisfy the specified objectives and the feasible bounds 

desired to be stayed in are all left to the designer to be determined at the beginning of 

the optimization process. In addition to these, the geometric constraints for aircraft 

launch compability are also imposed. 

 

To decide on the optimal missile geometry that meets best with the user defined 

requirements, a simulation tool was developed with two degrees of freedom trim 

flight mechanics model. Its usage brought the advantage of the fast evaluation of the 

flight performance of the candidate missile. At each step of the iteration, the 

candidate missile was checked whether it satisfies the geometrical constraints as well 

as the upper and lower bounds for each external configuration parameter. The loop 

has been run interactively with Missile DATCOM aerodynamic prediction tool to 

generate the aerodynamic database for the external geometry. 

 

Since the conceptual design stage was the starting point for a whole missile design 

process, it was aimed to carry out two main objectives: maximum flight range with 

minimum launch mass. Hence, both single objective and multi-objective 

optimization approaches were conducted with different algorithm alternatives that 

gave way to carry out a comparative study between these solutions and algorithm 

alternatives. 
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Hide-Seek Simulated Annealing, a Genetic Algorithm and a hybrid algorithm, a 

combination of these two approaches, were utilized for single objective optimization 

problem. The optimization tool was practiced for an existing cruise missile in order 

to check whether the validation of the tool was satisfactory or not. The conceptual 

design optimization tool was executed for two cases, both maximum flight range and 

minimum launch mass objectives. The results showed that the results of the hybrid 

algorithm was considerably accurate in terms of solution optimality for both 

objective channel accordingly.  

 

The main deficiency for single objective optimization case was that it gave only a 

single solution in the whole design space that do not allow the user to make a trade 

off between conflicting objectives during the design process. Therefore, a multi-

objective design optimization was also enforced. The range maximization problem 

was converted into a minimization problem to prevent a sign confusion and 

normalized with respect to the reference values together with the mass channel.  

 

The multi-objective optimization missile design problem was solved with Multiple 

Cooling Multi Objective Simulated Annealing (MC-MOSA) and Non-Dominated 

Sorting Genetic (NSGA-II) Algorithms. Before proceeding, these algorithms were 

applied for a well known multi-objective optimization problem, truss bar design to 

test their solution accuracy in terms of quality metrics. The effects of algorithm 

parameters on solution accuracy were also investigated. 

 

First, the multi-objective optimization problem was solved with MC-MOSA 

algorithm using linear FFs and NSGA-II algorithms. It was seen that the Pareto 

obtained with NSGA-II algorithm was closer to the optimal front although it 

consisted of less non-dominated points on the front. As a final trial, as in the case for 

single objective optimization case, a hybrid algorithm was also used. The obtained 

Pareto fronts for each three attempt were compared with each other using quality 

metrics. Again, the results showed that the hybrid algorithm was able to find more 

points closer to the optimal Pareto when same number of function evaluation is 

permitted. 
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The obtained results prove that the conceptual design tool is capable of finding an 

optimal external missile configuration satisfying the user defined requirements and 

constraints in short durations even with single or multi objectives. This plays a vital 

role in the missile design processes since it reduces the effort and time to find out the 

optimum baseline geometry throughout a huge design domain.  

 

The capabilities of the current tool could be enhanced. Several recommendations for 

future improvements of the tool could be listed as below. 

 

� The design objectives could be increased. Minimizing the radar cross section 

(RCS), maximizing the hit accuracy and warhead effectiveness could also be 

taken into account as design objectives. 

� Better aerodynamic prediction tools other than Missile DATCOM could 

probably be used  in the future. Various cross sectional alternatives for 

missile bodies could be taken into account by this way. 

� The specifications for turbojet engine could be automized. The turbojet 

engine that provides the necessary requirements would be specified that suits 

geometrically with the designed missile. 

� The scope of the conceptual design optimization of an air to ground missile 

could be extended to cover other types of missiles like air-to-air and surface-

to-air missiles. 
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APPENDIX A 
 

 

USER INTERFACE FOR CONCEPTUAL DESIGN 
OPTIMIZATION TOOL 
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APPENDIX B  
 

 

MISSILE DATCOM INPUT & OUTPUT FILES 
 

 

 

B.1. Missile Datcom Input File 

 

The necessary inputs for the execution of the Missile DATCOM program is written 

into the file for005.dat as shown below. 

 

CASEID CASE1 

DIM M 

DERIV DEG 

$REFQ  

 XCG=2.63, 

 BLAYER=NATURAL, 

$END  

$AXIBOD  

 TNOSE=OGIVE, 

 POWER=1.0, 

 LNOSE=0.68, 

 BNOSE=0.01, 

 DNOSE=0.34, 

 LCENTR=4.57, 

 DCENTR=0.34, 

$END  

$FINSET1  

 SECTYP=NACA, 

 SSPAN=0.0,0.72, 

 CHORD=0.83,0.18, 

 XLE=2.96, 

 SWEEP=0.00, 

 STA=1.0, 

 NPANEL=2.0, 

 PHIF=90.0,270.0, 

$END  

NACA-1-6-65-410 
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$FINSET2  

 SECTYP=HEX, 

 SSPAN=0.0,0.11, 

 CHORD=0.18,0.12, 

 XLE=5.08, 

 SWEEP=0.00, 

 STA=1.0, 

 NPANEL=4.0, 

 PHIF=45.0,135.0,225.0,315.0, 

$END  

$FLTCON  

 NMACH=10.0, 

 NALPHA=10.0, 

 MACH=0.1,0.3,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2, 

 ALT=100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0, 

 ALPHA=-10.0,-7.0,-4.0,-2.0,0.0,2.0,4.0,6.0,8.0,10.0, 

$END  

$FLTCON  

 BETA=0.0, 

$END  

$DEFLCT  

 DELTA1=0.0,0.0,0.0,0.0, 

 DELTA2=0.0,0.0,0.0,0.0, 

$END  

DAMP  

SAVE  

NEXT CASE  

$DEFLCT  

 DELTA1=0.0,0.0,0.0,0.0, 

 DELTA2=-5.0,-5.0,5.0,5.0, 

$END  

DAMP  

SAVE  

NEXT CASE 
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B.2. Missile Datcom Output File 

 

As a consequence of the execution of the MD707.exe file for the determined external 

configuration and atmospheric flight conditions, the aerodynamic database is written 

to the for006.dat output file. A small part of this is shown below as example. 

 

 

 

 

Figure B.1 Missile Datcom Output File 
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APPENDIX C  
 

 

QUALITY METRICS 
 

 

 

The quality assessment of the frontier obtained as a result of multi-objective 

optimization is conducted using four metrics proposed in [41] and [46] which are 

namely as hyper-area difference (HD), overall Pareto spread (OS), accuracy of the 

observed Pareto frontier (AC) and the cluster (CL). 

 

The area below the Pareto frontier is called as the hyperarea difference. It is shown in 

Figure C.1. 

 

 

 

Figure C.1 Hyperarea Difference [46] 

 

Points A and B define the bounding box around the Pareto front and HD is normally 

calculated using normalized objectives. Generally speaking, it is clear that the 

smaller the HD metric means that the observed Pareto solution set is the better [46]. 
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Overall Pareto spread (OS) is the area of the maximum rectangle constructed using 

the two extremes of the Pareto front (p1 and p2) as shown in Figure C.2. Again a 

solution set with the largest OS value is generally an indication that a particular front 

has spread to the extreme ends of the Pareto front, and consequently, it is 

comparatively better than a front with a smaller value.  

 

 

 

Figure C.2 Overall Spread [46] 

 

Accuracy (A) is an indicator of the smoothness of the front. Areas of the small 

rectangles constructed from neighbouring solutions are summed up (Figure C.3) to 

obtain a total area and the inverse of this total area gives the value for this metric. If 

the solution set contains all the actual Pareto solutions (i.e., a continuous Pareto 

frontier), the total area would be zero, causing the A metric to be infinite. Thus, a 

solution set with a large A value is better than the one with a smaller A value. It is 

desirable to have the solutions spread uniformly along the front.  
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Figure C.3 Accuracy [46] 

 

Another quality metric is defined as the CLµ metric (clustering) that occurs when too 

many solutions are found at certain parts of the front, while other parts are empty. 

For this purpose normalized objectives are divided into square grids of size µ 

throughout the whole domain. Then, those rectangles occupied with a non-dominated 

solution are counted. The total number of non-dominated solutions in the set is 

divided to the number of occupied rectangles. Ideally, to have a good spread, each 

rectangle shall be occupied by a single solution giving a CLµ metric equal to one. 

For example, in Figure C.4, there are four solutions in the front, while only three 

grids are occupied (i.e., CLµ = 1.25). Similarly, of the two solution sets having 

almost equal number of solutions, the one with a smaller CLµ metric shall be 

preferred. 
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Figure C.4 Cluster [46] 

 


