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ABSTRACT 

AN ASSESSMENT OF A TWO-ECHELON INVENTORY SYSTEM AGAINST 
ALTERNATIVE SYSTEMS  

Özpamukçu, Serkan 

M.Sc., Department of Industrial Engineering 

Supervisor: Asst. Prof. Dr. İ.Serdar Bakal 

Co-Supervisor: Asst. Prof. Dr. Z.Pelin Bayındır 

 

December 2011, 82 pages 

 

In this study, we focus on a real life problem that involves a single item which is 

used in military operations. The items in use fail according to a Poisson process 

and lead times are deterministic. Four alternative inventory control models are 

developed. Among these models, a two-echelon system consisting of a depot in 

the upper and several bases in the lower echelon is operated currently. This 

system is compared to a single-echelon system that consists of several bases. The 

comparison reveals the importance of the holding cost incurred for the items in-

transit between the depot and the base which is ignored in most of the studies in 

literature. Both the two and single-echelon models are also extended to have 

repair ability.  A continuous-review base-stock policy is used for all models. 

Exact models are formulated. The results are obtained under various lead time, 

unit costs and demand parameters. Results of four different settings are compared 

and the findings are reported.   

Keywords: Stochastic inventory control, single-echelon, multi-echelon, repair 

ability, exact model,   continuous review 

 



v 
 

ÖZ 

İKİ KADEMELİ ENVANTER SİSTEMİNİN ALTERNATİF SİSTEMLERE 
KARŞI DEĞERLENDİRİLMESİ  

Özpamukçu, Serkan 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Yrd.Doç.Dr. İ.Serdar Bakal 

Ortak Tez Yöneticisi: Yrd.Doç.Dr. Z.Pelin Bayındır 

 

Aralık 2011, 82 sayfa 

 

Bu çalışmada, askeri operasyonlarda kullanılan bir malzemeyle ilgilenen gerçek 

hayat kaynaklı envanter problemine odaklanılmıştır. Kullanılan malzemeler 

Poisson sürecine uygun sıklıkta bozulmaktadırlar ve ön zamanlar değişken 

değildir. Dört farklı envanter kontrol modeli geliştirilmiştir. Bu modeller arasında, 

üst kademede depo alt kademede ise bir çok üs bulunan, iki kademeli sistem 

güncel olarak işletilmektedir. Bu sistem bir çok üsten oluşan tek kademeli bir 

sistemle karşılaştırılmıştır. Karşılaştırma sonucu; pek çok çalışmada göz ardı 

edilen depo ile üs arasında taşınmakta olan malzeme için harcanan maliyetin 

önemi ortaya çıkmıştır. Ayrıca, hem iki hem de tek kademeli sistemler, tamir 

yeteneği kazanacak şekilde geliştirilmişlerdir. Tüm modeller için, sürekli takip 

edilen, baz stok seviyesini öngören bir poliçe kullanılmıştır. Kesin sonuç veren bir 

model formulize edilmiştir. Sonuçlar, değişik ön zaman, birim maliyetler ve talep 

değerleri için elde edilmiştir. Dört farklı envanter modeli sonuçları karşılaştırılmış 

ve tespitler raporlanmıştır. 

Anahtar Kelimeler: Rassal envanter kontrolü, tek kademe, çok kademe, tamir 
yeteneği, kesin model, sürekli takip 
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CHAPTER 1 

 

INTRODUCTION 

 

 

In this study, a real life inventory control problem of a single item, which is being 

used in the military operations, is considered. The item has a critical importance 

in the operations and it is supplied by a single domestic supplier. In the current 

system, there is a two-echelon inventory setting which consists of a single stock 

point, a central depot, in the upper echelon and several stock points, bases, in the 

lower echelon. The users are the military units which are very close to the 

operation sites. The demand originates from the item failures in the users, which 

are regarded as the end customers, and it is stochastic. User demand occurs first in 

the lower echelon, and then it is reflected to the upper echelon (See Figure 1).  

 

 

Figure 1-Two-echelon model 
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The depot replenishes the bases and orders from the outside supplier. The depot 

and the bases are connected via military ring services. The items are transported 

using these links incurring a holding cost for the items in-transit. Any unsatisfied 

demand is backordered at all stock points. The lead times are assumed to be 

deterministic. The goal is to operate the inventory control system at the minimum 

expected long run average cost. The stock levels, lead times, unit procurement, 

holding and backorder costs are the key drivers of this cost. For the rest of the 

study; the expected long run average cost is denoted by cost.  

 

The headquarters are aware that the current system has room for improvement. 

For instance, although the items require high technology to be produced; since the 

outside supplier is a domestic firm, the repair ability, which would enable some 

portion of the failed items be repaired, can be acquired in the system. This repair 

ability at the stock points would replace the procurement lead times with 

relatively shorter repair lead time. Moreover the repair costs for each item 

repaired is expected to be lower than the procurement costs.  

 

The current system is centralized due to the nature of the system and it is 

advantageous as the risk of backorder occurrences is reduced. This enables the 

headquarters to maintain an easy control on the system-wide inventory as the risks 

of the demand uncertainty are pooled. However, the ring services that are being 

used throughout the system are a bit risky, since the services have close proximity 

to the military operation sites, and the transportation lead times are long and the 

transportation process is very costly due to inventory holding cost of the items in-

transit which is ignored in most studies in the literature. This makes the 

headquarters analyze the option of not operating the depot to reduce the risks and 

costs involved in transportation and to avoid the transportation lead time.  
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Considering these possible changes, we consider four different alternative 

inventory systems. The first one is the actual model which consists of two-

echelons, including one depot in the upper and several bases in the lower one. In 

the two-echelon model with repair ability, only the depot is improved to have the 

repair ability. Another alternative considered by the headquarters is not to operate 

the depot, which corresponds to the single-echelon model with no repair ability. 

Finally, the bases in the single-echelon model are granted the repair ability which 

entails the analysis of single-echelon model with repair ability. The models 

considered in this study are presented in Table 1. 

 

Table 1- Models in the study 

Model Representation Explanation 

Two-echelon model TE model Current model that is operated. 

Two-echelon model with 

repair ability 
TR model 

Depot is granted with repair 

ability; the failed items can be 

repaired with probability ρ. 

Single-echelon model SE model 

Depot is closed and the bases 

replenish from the outside 

supplier themselves. 

Single-echelon model 

with repair ability 
SR model 

Depot is closed; the bases 

replenish from the outside 

supplier and they are also granted 

with repair ability. 

 

As the items are very critical for military operations, if the considered stock point 

is granted with repair ability, a technician would always be available for each 

failed item due to criticality. Therefore, ample capacity assumption would be 

valid for repair facilities in the models. The ample capacity assumption also holds 

for the outside supplier; that is, any order placed to the outside supplier will be 

received exactly in the procurement lead time. 
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The main goal of the study is to ensure the minimum cost. Therefore the basic 

research questions are stated as follows: 

i. What are the effects of operating a single-echelon system, instead 

of a two echelon system, on the performance of the inventory system? 

ii.  What are the effects of acquiring repair ability on the performance 

of both two and single-echelon models? 

iii. What are the effects of the changes in cost, demand and lead time 

parameters on the system performance? 

 

The study is organized as follows: In Chapter 2, literature survey on inventory 

control systems that are related to this study is presented and the problem is 

defined. In Chapter 3, the models are introduced and analyzed. Furthermore the 

algorithms that are used to optimize the models are introduced. In Chapter 4, we 

perform a detailed computational analysis and present our findings. Through the 

computational study the improvements of the models in consideration are assessed 

under different lead time, unit cost and demand settings. Finally, we conclude in 

Chapter 5 by summarizing the findings and providing future research directions. 
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CHAPTER 2 

 

LITERATURE REVIEW & PROBLEM DEFINITION 

 

 

In this study, we deal with four different inventory control systems, including both 

single and two-echelon systems with and without repair ability, and we restrict 

our attention to the related studies in the inventory management literature. 

 

2.1. Literature Review 

 

In Hadley and Whitin (1961), a single-echelon, multi-facility model for low 

demand items is developed, where, the demand follows a Poisson process and 

lead times are constant. Hadley and Whitin (1963) is the first to give the exact 

costs for a single echelon inventory system facing Poisson demand and constant 

lead times. Das (1977) optimizes a single-echelon base stock model in which 

customers are willing to wait for backorders for a fixed amount of time. It is stated 

that relaxation of the time limit does not necessarily reduce the costs. Smith 

(1977) obtains an approximate solution for a single echelon system that follows a 

base stock policy for a consumable item. The facilities may have emergency 

shipments and no backorders are allowed. In this model, how to evaluate and find 

optimal (S-1,S) policies for a system with zero replenishment costs and stochastic 

lead times is demonstrated. Schmidt and Moinzadeh (1991) consider a single 

facility that can have emergency shipments with a shorter lead time and higher 

costs than regular orders. In this paper both backorder and lost sale cases are 

considered. Schmidt and Nahmias (1985) deal with a model considering a single 

perishable item. The excess demand is lost. This model becomes similar to the 

model in Smith (1977) when the life time is assumed to be infinite. Moinzadeh 
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(1989) analyzes a model with Poisson demand and constant lead times. The 

excessive demand is either backordered or lost. This model is a generalization of 

Smith (1977) and Hadley and Whitin (1963) when lead times are assumed to be 

constant.  

 

Among the papers that consider single-echelon models; some of them have 

repairable items. Phelps (1962) considers the decision when to repair versus when 

to procure in a single facility system with multiple items. Schrady (1967) 

determines the optimal procurement and repair quantities by examining a single-

facility model, which allows item condemnation and has deterministic demands. 

In this model, repair process is considered as a separate model and repair orders 

are batched in two or more. Allen and D’Eposo (1967) consider a single facility 

model with (r,Q) policy. In this model the items are repairable and approximate 

steady state distributions are derived for stochastic demand and constant lead 

times. Simon (1968) derives the exact results for this model. 

 

There are few papers that consider the comparison of two and single-echelon 

models. Muckstadt and Thomas (1980) compare these two systems for a multi-

item situation where demands are Poisson and the lead times are stochastic. The 

lead times are represented with independent but not identically distributed random 

variables. They model the two-echelon model under budget constraint and a fill 

rate constraint is used for the single-echelon model. They conclude that the use of 

two-echelon model is a better alternative. Haussmann and Erkip (1994) consider a 

single-item inventory system with Poisson demand where the lead times are 

constant and all facilities follow (S-1,S) policy. It is a more relevant study to ours. 

It is stated that if all information about the system is available and reflected in the 

objective function, optimal results for two-echelon systems will always dominate 

the single-echelon systems; however, when managerial and organizational issues 

are considered, this may not be always true. The study explores the improvement 

of a two-echelon system against a single-echelon one. They obtain optimal results 
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subject to a fill rate constraint and stated that single-echelon model can be 3-5% 

sub-optimal against the two-echelon.  

Two-echelon models are the most common models that have been analyzed in the 

literature of inventory control. Axsater (1990) presents recursive procedures to 

determine exact costs and discusses the determination of optimal results for a two-

echelon system having a single item with independent Poisson demand and 

constant lead time. The item flow is very similar to that of our two-echelon 

models. Unsatisfied demands are backordered. The study does not provide any 

information on steady state distributions. Compared to approximation models like 

Sherbrooke (1968) and Graves (1985) have presented, the model in Axsater 

(1990) requires a longer time to obtain an optimal solution. Svoronos and Zipkin 

(1991) consider a system that has more than two-echelons, with a central depot 

that procures from an outside supplier which has an ample capacity. Differently 

than many other models in the literature, this model considers the transportation 

lead times between the hierarchical facilities. They obtain approximate results for 

expected inventory and backorder levels and shows that transportation time 

variances significantly affect the system performance.  

 

Nahmias (1981) state that there are two key components in the design of a multi-

echelon system with repairable items: Those are: (i) characterization of the service 

performance for a given stock level and (ii) searching systematically over possible 

stock levels and finding the best. In this study, we follow such a procedure to find 

the optimal base stock levels and policy parameters.  

 

Graves (1996) considers a two-echelon system with Poisson demand and 

stochastic lead times. He develops a new model with a new allocation scheme 

called virtual allocation that increases tractability for a two-echelon system with 

stochastic demand and deterministic lead times. It is stated in the study that 

having a depot benefit the system in two ways: One is the joint order effect, which 
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pools the risk of replenishment lead times and the other is the depot effect, which 

balances the inventory levels at the bases and pools risks over backorder 

occurrences. One of the findings in the study is that although both the depot and 

the bases should hold safety stock, most of it should be in the bases. Moinzadeh 

and Aggarwal (1997) consider a two-echelon model that has a consumable item 

with Poisson demand and deterministic lead times. In this study, although the 

unsatisfied demands are backordered; the depot can place emergency orders and 

uses information of remaining lead time of the inventories on order to determine 

whether to place an expensive but immediate emergency order or not. Axsater 

(2001) provides a different cost structure that would be used in decentralized 

control in two-echelon systems with a depot in the upper echelon and several 

bases in the lower echelon. In this cost structure the depot also pays a penalty for 

the backorder occurrences. 

 

There are many studies that consider two-echelon models with repair ability. 

Among them, METRIC can be regarded as a milestone study. Sherbrooke (1968) 

presents METRIC for a two-echelon model with repair ability. The system is a 

conservative one, i.e. all items are repaired and none procured, with compound 

Poisson demand and stochastic lead times. In this study, he derives the 

approximate net inventory distribution at each site. The objective of the study is to 

minimize the backorder levels at the bases subject to a limited budget. METRIC is 

a pioneering study for multi-echelon inventory systems; especially for the military 

applications. Simon (1971) considers a model whose environment is similar to 

METRIC except that lead times are assumed to be deterministic and demand is 

Poisson. He provides exact analysis to derive the distribution of the backorder 

levels in each facility in the system. Richards (1976) derives exact expressions for 

the inventory levels and depot backorder level in an environment similar to 

METRIC where demands are Poisson, lead times are stochastic and not all of the 

items are repairable, i.e. item condemnation is included. The results of this study 

are used by Graves (1985) and more accurate results with respect to METRIC are 

obtained via two parameter approximation. Graves (1985) considers a two-
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echelon system in which the depot acts like a central repair facility. The demands 

are Poisson but the conditional distribution of the outstanding orders is binomial 

due to first come first serve policy. In the study, exact and approximate methods 

are presented to determine steady state inventory level distributions at the bases 

and the depot. The use of binomial disaggregation for specifying the backorder 

levels in the bases in Graves (1985), encourages us to use the same method for 

specifying the backorder levels in the bases. This method is also used in the 

analysis of the two-echelon models in Axsater (2000).  

 

Axsater (1993) reviews and compares his previous model in Axsater (1990) with 

the model in Graves (1985) and METRIC. Instead of minimizing inventory 

subject to a service constraint; he considers finding the optimal base stock levels 

that minimize the holding and backorder costs. Recursive procedures are used to 

evaluate the cost function and to find the optimal base stock levels. 

 

Moinzadeh and Lee (1986) analyze a multi-echelon system that has a single 

repairable item and they develop a decision rule to select between the base stock, 

i.e. (S-1,S), and (r,Q) policies. It is stated that when the demand rate is high, (r,Q) 

policy is better; however, when the lead times are long and/or there are many 

bases in multi-echelon system, then (S-1,S) policy is better than the (r,Q) policy. 

Lee (1987) considers a two-echelon model with repairable items. The demands 

are Poisson and lead times are constant. The bases replenishes from the depot. 

Unsatisfied orders are backordered. In case of any stock out at the base, the base 

can place and emergency order to another base laterally. 

 

Wang et. al. (2000) compares the METRIC model and the model in Svoronos and 

Zipkin (1991) when the lead times are stochastic and represented by independent 

but not necessarily identically distributed random variables due to dependency of 

the lead times on the depot. As a result, he proves that shorter lead times results in 
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shorter delays and states that independent and identically distributed lead time 

assumption results in greater errors when demand levels are low. Regarding this 

result, we develop a model that allows non-identical lead times.  

 

Caglar et.al (2004) deal with a two-echelon inventory system with repairable 

items. In the model, the depot acts like a repair facility as in Graves (1985) and 

they develop a heuristic to get an approximate solution. The steady state 

distributions are similarly specified to our two-echelon model with repair ability. 

Although we deal with an exact model to obtain the optimal policy parameters, 

the algorithms that we develop in our study are similar to the ones used in Caglar 

et.al (2004). They first solve the single depot problem for a given base stock level 

of the depot, and obtain the optimal base stock level that give the minimum cost 

for each of the bases. This procedure is called H1. Then, according to results 

obtained, H1 is repeated for the newly given base stock level of the depot to 

obtain better cost values. The algorithm is iteratively computed until maximum 

iteration number is reached. In our study, we run a procedure similar to H1 and 

repeat it until an intuitively given upper-bound is reached; thus we obtain the 

optimal policy parameters. 

 

The papers that are most relevant to our study are presented in Table 2. 

 

2.2. Problem Definition 

 

The item that is considered in this study has a critical importance in military use 

and it is very expensive. There is a single domestic supplier. The demand 

originates from the item failures in the users, which are the military units. The 

military units are regarded as the end-customers. Currently, a two-echelon 

inventory system is operated to support the users. There is a depot in the upper 
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echelon and several bases in the lower echelon. User demand occurs at the bases. 

The bases replenish the items from the depot and the depot replenishes from the 

outside supplier. 

 

The items are transported via military ring services between the depot and the 

bases. Any unsatisfied demand is backordered at all stock points. The lead times 

are assumed to be deterministic. The performance measure of the system is long 

run average cost. In this study, to reduce the cost of the system, we consider 

several modifications on the current system. For instance, although the items 

require high technology, the repair ability, which would enable some portion of 

the failed items be repaired, can be acquired in the system since the outside 

supplier is a domestic firm. This repair ability at the stock points would replace 

the procurement lead times with relatively shorter repair lead time. Moreover the 

repair costs for each item repaired is presumably lower than the procurement 

costs. Therefore, the models with repair ability are worth analyzing. 

 

The advantage of having a two-echelon system is that it enables an easy and 

reliable control over system-wide inventory and reduces the risk of backorder 

occurrences as the risks of the demand uncertainty are pooled. However, the ring 

services being used throughout the system are very close to the operation sites, 

therefore there are noticeable risks for the items and that situation incurs high 

holding costs for the items in-transit. Moreover, there are many other items, which 

are not considered in this study, transported via these services; therefore the 

transportation lead times can be unexpectedly long. This makes the headquarters 

analyze the option of not operating the depot, along with the ring services, to 

reduce the risks involved in transportation. This options requires that each stock 

point in the lower echelon be responsible for its own inventory and procure items 

from the outside supplier on its own. When this option is considered, the 

transportation risks are entitled to the outside supplier. 
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Therefore, four different alternative inventory control models are built to be 

analyzed. The first one is the current system which consists of two-echelons, 

including one depot in the upper and several bases in the lower one. The first 

alternative is the two-echelon model with repair ability. In this model, the depot 

acquires the repair ability and this enables the depot repair some portion of the 

failed items.  

 

The other major modification that should be considered is cancelling the depot 

out, which would also cancel the use of ring services for the considered item. 

Therefore, single-echelon model is created. The stock points in this model do not 

have repair ability and they are entitled to control their own inventory individually 

which includes supplying the items from the outside supplier. In this model, the 

responsibility to deliver the items to the stock points is given to the outside 

supplier. Finally, to see the effect of repair ability acquisition in the bases for 

single-echelon model, single-echelon model with repair ability is considered.  

 

In each of these models the main goal is to ensure the minimum system wide cost 

through determining the optimal base stock levels for each stock point. Therefore 

the basic research questions that will be answered throughout the study can be 

stated as follows: 

i. What are the effects of operating a single-echelon system, instead 

of a two echelon system, on the performance of the inventory system? 

ii.  What are the effects of acquiring repair ability on the performance 

of both two and single-echelon models? 

iii. What are the effects of the changes in cost, demand and lead time 

parameters on the system performance? 
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CHAPTER 3 

 

MODELS 

 

 

As expressed in the previous chapters, four alternative inventory systems are 

considered throughout the study (recall Table 1 in Chapter 1). In both the TE and 

SE models, failed items are discarded; and a replenishment order is placed to the 

outside supplier by the depot in the TE model and by the bases individually in the 

SE model. However in  the TR and SR models, the depot and the bases have the 

ability to repair some of the failed items, respectively. In these models, the 

demand is satisfied either by repaired or procured items. Among these systems, 

TE model is in operation currently.  

 

In all models, a single item is considered and inventory is reviewed continuously. 

A continuous review base stock policy (S-1,S) is followed by all facilities; that is, 

the items are not batched for procurement or repair requests, but they individually 

create an order as soon as demand occurs. The demand originates from the item 

failures in the users, which are regarded as the end-customers. When an item fails, 

the user immediately returns the item to the base; thus user demand occurs at the 

bases and they are reflected to the depot in two-echelon systems. The demand 

across bases is independent of each other. Lateral shipments between the bases are 

not allowed and the unsatisfied demand at any stock point is backordered. The 

demand that base i faces is a pure Poisson process with rate λi. As all demands 

that occur at the bases are reflected to the depot in two-echelon systems, the 

demand process of the depot is the superposition of the demand processes of the 

bases; therefore the depot demand also follows a Poisson process. The outside 

supplier supplies the bases or the depot in the systems with a single or two-
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echelon structure, respectively. If the system has repair ability, there is a certain 

probability that a return is repairable. The inspection for detecting return’s 

reparability is performed by the bases. The inspection is assumed to require no 

lead time; therefore, in the SR model, each base immediately places an order to 

the outside supplier or starts the repair process after a demand occurrence. In  the 

TR model, if the item is repairable, it is sent to the depot by the bases to be 

repaired; and the depot immediately starts the repair process. Both the outside 

supplier and the repair facilities are assumed to have ample capacity; therefore no 

queues occur in replenishment or repair processes. 

 

There are three kinds of lead times: (i) the procurement lead time, which is the 

time required for a facility to procure an item from the outside supplier; (ii) the 

transportation lead time, which is the time required for items to be transported 

from the depot to the bases or vice versa (iii) the repair lead time which is the time 

required for an item to be repaired. The lead times of different bases are not 

necessarily identical and all lead times are assumed to be deterministic.  However, 

the time required for a base to replenish its stocks from the depot can turn out to 

be stochastic due to waiting time caused by the backorder occurrences at the 

depot. 

 

As the decision criterion, a long run average cost that includes the following is 

considered:  

 Inventory holding cost per unit per unit time 

 for physical stock at all stock points  

 for in-transit stock between the depot and the bases in two-echelon 

systems  

 for items in repair process for the systems where the repair ability 

exists  
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 Backorder cost at the bases, which is incurred  per unit per unit time 

 Procurement cost that is incurred for each item procured from outside 

supplier. 

 Repair cost that is incurred for each item repaired in the systems with 

repair ability.   

 

The notation used in the thesis context is presented in Table 3: 

 

Table 3- Notation 

i Index for stock points 

I={0,1,…, N} 
Set of stock points, i=0 represents the depot in two-echelon 

systems. 

Si Base stock level of the stock point i   I 

Ci (Si) 
Expected long-run average cost at stock point i for a given Si > 

0 in the SE model. 

Ci
r
 (Si) 

Expected long-run average cost at stock point i for a given Si > 

0 in the SR model. 

Ci (Si , S0) 
Expected long-run average cost at base i   I-{0} for a given Si 

> 0 and S0 > 0 in the TE model. 

Ci 
r
(Si , S0) 

Expected long-run average cost at base i   I-{0} for a given Si 

> 0 and S0 > 0 in the TR model. 

{Di(t), t≥0} Poisson process governing demand at base i   I-{0}.  

{D0(t), t≥0} 
Poisson process governing demand at depot in two-echelon 

systems  

Di(t1,t2] Demand for base i in the interval (t1,t2].  

λi Demand rate for the base i.  

Li Procurement lead time for base i.  

Ri Repair lead time for base i.  
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Table 3- Notation (Continued) 

Ti Transportation lead time for base i   I-{0}.   

NIi(t) Net inventory for base i at time t. 

iNI  (t) 
Positive net inventory; stands for the inventory on hand for 

stock point i  I at time t. 

iNI  (t) 
Negative net inventory, stands for the outstanding backorders 

for stock point i  I at time t. 

IOi(t) Inventory on order of base i at time t.  

IPi(t) Inventory position of base i at time t. IPi(t) = NIi(t) + IOi(t).  

cp Unit procurement cost. 

cr Unit repair cost. 

hi Unit inventory holding cost for base i.  

ht Unit inventory holding cost for in-transit inventory.  

bi Unit backorder cost for base i. 

ρ 
Repair ratio. That is the probability that a failed item is repaired 

(for both TR and SR models). 

 

Note that Di(t1,t2] is Poisson with rate λi (t2-t1), since {Di(t), t≥0} is a Poisson 

process. Although the current system is the TE model; for the sake of simplicity, 

we start with the simpler single-echelon models. The rest of this chapter is 

organized as follows: In Section 3.1, the SE model is considered and analyzed. In 

this model, the depot is not operated anymore. In Section 3.2; the SR model, 

which is an extension of the model in Section 3.1, where the bases have partial 

repair ability, is considered. In Section 3.3, the analysis of the TE model is 

presented. Finally, in Section 3.4, the TR model, which is the extension of the 

actual model, where only the depot has partial repair ability is considered and 

analyzed.  
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3.1. Single Echelon Model 

 

The first model is the SE model with N-bases each of which independently 

replenishes from an outside supplier. The system can be illustrated as shown in 

Figure 2. Note that the (S-1,S) policy is a special case of the (r,Q) policy where 

r=S-1 and Q=S; therefore there are many examples of the SE model developed in 

this study. In Axsater (2000), models similar to ours can be found with given 

optimization methods. Moreover the derivations in this model is based on the 

expected average inventory levels; therefore they are similar to those in Das 

(1977), Smith (1977) except that they considered a limited waiting time for 

backorder occurrences and emergency order, respectively. 

 

 

Figure 2- Single-echelon model 

 

When a demand occurs at base i, if there are any items available, the base 

immediately meets the demand. In the case of a shortage, the base backorders the 

demand and incurs a unit backorder cost, bi, per unit time. As demand occurs, the 

base immediately places an order to the outside supplier and receives it in 

procurement lead time, Li, and incurs a unit procurement cost; cp. Base i incurs a 
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unit holding cost, hi, for inventory on-hand per unit time. Events triggered by a 

demand (failure) occurrence are illustrated in Figure 3. 

 

 

Figure 3- Events for single-echelon model with no repair ability 

 

Total cost of the system is the sum of the costs of individual bases, since bases 

operate independently. The average cost of base i, Ci(Si) consists of average 

holding, backordering and procurement costs over time. Therefore, the problem of 

finding the optimal order-up-to levels can be formulated as: 

Minimize  
1

( )
N

i i
i

C S
�
�   

s.t. � �0,1,2,...iS � , � �1,...,i N� �  

where; ( ) [ ] [ ]i i i i i i p iC S h E NI b E NI c �	 
� 	 	    (3.1) 

 

The objective function consists of holding, backorder and procurement costs of all 

bases. The terms [ ]iE NI 	  and [ ]iE NI 
 in (3.1) stand for the expected inventory on-

hand and expected backorders per unit time in the long-run, respectively. For 

deriving the long run average cost; we first need to observe the limiting behavior 

of the net inventory, iNI .  
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Recall that inventory position, IP(t), is, by definition, equal to the sum of net 

inventory, NI(t), and inventory on order, IO(t) at time t, i.e. IP(t) = NI(t) + IO(t). 

Since base stock policy, (S-1,S) is applied; the inventory position at time t, IP(t), 

of any stock point always equals to its base stock level. Besides, the inventory on 

order at time t, IO(t), is the orders that are placed but not received by time t. Let L 

denote the lead time of a stock point to replenish an item. The orders that are 

placed before t-L will be ready at the base by time t; whereas the orders placed in 

the interval of (t-L,t] are in-transit to the base. Therefore, the inventory on order, 

IO(t) is the orders placed in the interval of (t-L,t]; that is IO(t)=D(t)-D(t-L)=D(L). 

As all of the orders are triggered immediately after a demand occurrence, the 

inventory on order is equal to the demand during the lead time, which is Poisson 

with rate λL, i.e.,  (L)   Poisson (λL). Hence, the limiting distribution of IO(t) is 

also Poisson with rate λL. From now on, we let Di(Li) denote the limiting behavior 

of the inventory on order for base i, 

 

Noting that, IPi(t) = Si t , and IP(t) = NI(t) + IO(t); we have  

Si = NIi +Di(Li), which results in; 

NIi= Si –Di(Li). 

Then, we have,  

[ ]iE NI   = [( ( )) ]i i iE S D L   = 
0

( ) ( ( ) )
iS

i i i

j

S j P D L j


  ,  (3.2) 

[ ]iE NI   = [( ( ) ) ]i i iE D L S   =
1

( ) ( ( ) )
i

i i i

j S

j S P D L j


 

  ,  (3.3) 

where, 

 
( )

( )
!

i iL j

i i
i i

e L
P D L j

j

 

  . 

Therefore; using (3.2) and (3.3) in (3.1), the cost of a single base i becomes: 
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0 1

( ) ( ) ( ( ) ) ( ) ( ( ) )
i

i

S

i i i i i i i i i i p i

j j S

C S h S j P D L j b j S P D L j c 


  

        . 

As the bases are independent of each other, the problem is separable to N 

independent sub-problems, each of which corresponds to a single base problem. 

To ensure that a local optimal is the global optimal in a single base problem; it 

would be enough to show convexity of the objective cost function of a single 

base. As the cost function, Ci(Si), is not continuous; we use the difference 

functions to show the convexity of Ci(Si) with respect to the decision variable Si. 

 

The 1
st
 order difference function of Ci(Si) can be stated as follows: 

1

0 2

0

( 1 ) ( ( ) ) ( 1) ( ( ) )

( ) ( 1) ( )

( ) ( ( ) ) ( ) ( ( ) )

i

i

i

i

S

i i i i i i i i p i

j j S

i i i i i i S

i i i i i i i i p i

j j S

h S j P D L i b j S P D L j c

C S C S C S

h S j P D L j b j S P D L j c





 

  



 

 
        

     
 
       
 
 

 

 

 

1

0 0

2

( 1 ) ( ( ) ) ( ) ( ( ) )

( 1) ( ( ) ) ( ) ( ( ) )

i i

i i

S S

i i i i i i i

j j

i i i i i i i

j S j S

h S j P D L i S j P D L j

b j S P D L j j S P D L j



 

 

  

  
       

  
  

         
   

 

 

 

( 1) ( ( ) 0) ( ( ) 1) ... 1 ( ( ) ) 0 ( ( ) 1)

( ( ) 0) ( 1) ( ( ) 1) ... 0 ( ( ) )

1 ( ( ) 2) 2 ( ( ) 3) 3 ( ( ) 4) 4 ( ( ) 5) ...

1 (

i i i i i i i i i i i i

i

i i i i i i i i i

i i i i i i i i i i i i

i

i

S P D L S P D L P D L S P D L S
h

S P D L S P D L P D L S

P D L S P D L S P D L S P D L S
b

P D

          
 
        


           


 ( ) 1) 2 ( ( ) 2) 3 ( ( ) 3) 4 ( ( ) 4) ...i i i i i i i i i i iL S P D L S P D L S P D L S

 
 
 
  
  

              

 

1

0 1

( ( ) ) ( ( ) )
i

i

S

i i i i i i

j j S

h P D L j b P D L j
 

  

   
       
     

   . (3.4) 

 

Similarly; 
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( 1) ( 2) ( 1)i i i i i iC S C S C S      = 

2

0 2

( ( ) ) ( ( ) )
i

i

S

i i i i i i

j j S

h P D L j b P D L j
 

  

   
      

     
  . (3.5) 

 

Using (3.4) and (3.5), one can show that the 2
nd

 order difference function of Ci(Si)  

is: 
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       
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i i i i i iS L S L
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i i
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L e L e
h b
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         
     

     
>0 (3.6) 

Therefore, we can conclude that ( )i iC S is convex in Si≥0 and the optimal base 

stock level for base i, *

iS , can be found from the first order optimality condition as 

follows: 

*

iS = min{Si { 0,1,2,...} | ( )i iC S ≥ 0}      (3.7) 
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The optimal base stock levels are found by a local search procedure in which Si 

levels are successively increased until optimality condition given in (3.7) is 

satisfied. As the bases are independent of each other, the sum of the minimum 

costs for each base ensures the minimum system wide costs. 

 

3.2. Single Echelon Model with Repair Ability 

 

In this case, we again have a single-echelon system consisting of N independent 

bases; but this time, the bases have a limited ability to repair the returned items. 

The system is illustrated in Figure 4. In this model, the environment is very 

similar to the previous model, except the demand distribution due to repair ability. 

The demand distribution in this model is inspired by the Simon (1971). 

 

 

Figure 4- Single-echelon model with repair ability  

 

Each base incurs a holding cost, hi, for inventory on-hand. When a demand occurs 

at base i, if there are any available items, the base immediately meets the demand. 

The inspection, which is necessary to determine whether the failed item can be 

repaired or not, is performed in bases. With probability ρ, the item is repaired in 
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repair lead time, Ri, incurring a unit cost of repair, cr. Note that, items in repair 

incur inventory holding cost as well.  If the item is not repairable, then an order is 

placed to the outside supplier and the order is received in procurement lead time, 

Li, incurring a unit cost of procurement, cp. However, if there is no item available 

when the demand occurs, the base backorders it incurring a unit backorder cost, bi, 

per unit time. Events triggered by a demand (failure) occurrence are illustrated as 

in Figure 5. 

 

 

Figure 5- Events for single-echelon model with repair ability 

 

Since the bases are independent, total cost of the system is total of the costs of 

each base. Therefore, the problem of finding the optimal order-up-to levels can be 

formulated as: 

Minimize  
1

( )
N

r
i i

i
C S

�
�   

s.t. � �0,1,2,...iS � , � �1,...,i N� �  

where; ( ) [ ] [ ] (1 )r
i i i i i i i i p i r iC S h E NI R b E NI c c�	 � 	 � 	
 �� 
� 
 
 
 � 
� �  (3.8) 

The objective function consists of holding costs of items in both stock and repair 

process; backorder, procurement and repair costs for all bases. Similar to the 

previous section, we need to observe the limiting behavior of the net inventory 

levels of the bases for deriving the total average cost. The net inventory at time t, 
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NI(t), is equal to the difference between the inventory position, IP(t) and the 

inventory on order, IO(t), i.e. NI(t) =IP(t)- IO(t). 

 

In this setting, it should be noted that the demand process, thus the inventory on 

order, IO(t) splits into two independent Poisson processes: failed items that are 

repairable arrive at base i according to a Poisson process with rate ρλi, and they 

are repaired in repair lead time, Ri; whereas non-repairable returns at base i are 

Poisson with rate (1-ρ)λi and as they are discarded, new ones are procured in 

procurement lead time, Li.  

 

The inventory on order for base i equals, IOi(t)=Di(t-Ri,t)+Di(t-Li,t), where Di(t-

Ri,t) denote the repair orders outstanding at time t and Di(t-L,t) denote the 

procurement orders outstanding at time t. 

 

Noting that, IPi(t) = Si t , and IP(t) = NI(t) + IO(t); we have  

Si = NIi + Di(Ri)+Di(Li) 

 

Let, 
i

rD  be the random variable denoting the inventory on-order in base i for this 

setting. Then [ ]
i

rE D = [ ( )]i iE D R  + [ ( )]i iE D L  for base i. The demand during lead 

time in steady state for repair and procurement processes, i.e. [ ( )]i iE D R and 

[ ( )]i iE D L are Poisson with rates ρλiRi and (1-ρ)λiLi, respectively. Both processes 

are independent and therefore, inventory on-order for the SR model is the 

superposition of these two Poisson processes. Therefore [ ]
i

rE D = λi[(1-ρ)Li+ρRi], 
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Using the analysis in Section 3.1; for the expected values of both the positive and 

negative net inventory levels, i.e. [ ]iE NI   and [ ]iE NI   in (3.8), respectively, we 

have; 

[ ] [ ]
i

r

i iE NI E IP D  = [ ]
i

r

iE S D . 

Therefore; both the positive and negative expected net inventory can be stated as: 

[ ]iE NI   = [( ) ]
i

r

iE S D   = 
0

( ) ( )
i

i

S
r

i

j

S j P D j


    (3.9), 

[ ]iE NI   = [( ) ]
i

r

iE D S   =
1

( ) ( )
i

i

r

i

j S

j S P D j


 

    (3.10),  

where 
 ( (1 ) )

( (1 ) )
( )

!

i i i

i

jR L

i i ir
e R L

P D j
j

       
 

  . 

Inserting (3.9) and (3.10) to (3.8); the cost of a single base, say base i, becomes: 

0 1

( ) ( ) ( ) ( ) ( ) (1 )
i

i i

i

S
r r r

i i i i i i i i p i r i

j j S

C S h S i P D j R b j S P D j c c     


  

   
                 

   

 

Each base operates independently of the other bases in the system; therefore we 

have N independent sub-problems, as we do in the SE model. Therefore, to ensure 

that a local optimal is the global optimal in a single base problem; it would be 

enough to show convexity of the cost function of a single base.  

The 1
st
 order difference function of ( )r

i iC S  can be calculated as: 

( ) ( 1) ( )r r r

i i i i i iC S C S C S      
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0 1

0 1

( 1 ) ( ) ( 1) ( ) (1 )
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i i

i

i

i i
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r r

i i i i i i p i r i

j j S
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r r

i i i i i i p i r i

j j S

h S i P D j R b j S P D j c c

h S i P D j R b j S P D j c c

     

     



  



  

   
             

    
 
    

                   

 

 
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2
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S S
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i i i
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
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  
       
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  

         
   

 

 
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 
         


           


       3) 4 ( 4) ...

i

r

i iS P D S

 
 
 
 
  

  
         

1

0 1

( ) ( )
i

i i

i

S
r r

i i

j j S

h P D j b P D j
 

  

   
       
     

   .  (3.11) 

Similarly; 

( 1) ( 2) ( 1)r r r

i i i i i iC S C S C S      =
2

0 2

( ) ( )
i

i i

i

s
r r

i i

j j s

h P D j b P D j
 

  

   
      

     
 

(3.12) . 

 

Using (3.11) and (3.12), one can calculate the 2
nd

 order difference as: 

[ ] [ ]
2

0 2
2

[ ] [ ]1

0 1

( [ ]) ( [ ])

! !

( ) ( 1) ( )

( [ ]) ( [ ])

! !

r r

i ii

i i

i

r r

i ij

i i

j

E D E Dr j r jS

i i

j j S
r r r

i i i i i i
E D E Dr j r jS

i i

j i S

E D e E D e
h b

j j

C S C S C S

E D e E D e
h b

j j

 
 

  

  

  

  
  
  
       
  
   
  
   

 

 
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[ ] [ ]2 1
( [ ]) ( [ ])

( 2)! ( 1)!

r r

i i i i

i i

E D E DS Sr r

i i

i i

E D e E D e
h b

S S

      
     
     

    

>0.  (3.13)

 

Therefore, we can conclude that the function ( )
i

r

iC S is convex in Si ≥ 0 and the 

optimal base stock level for base i, *

iS , can be found from the first order optimality 

condition as follows 

*

iS = min{Si { 0,1,2,...} | ( )
i

r

iC S ≥ 0}.     (3.14) 

 

The optimal base stock levels are found by local search by increasing Si values 

successively for each base until optimality condition given in (3.14) is satisfied. 

As bases are independent of each other, the sum of the minimum costs of each 

base ensures the minimum system wide costs. 

In the previous model, i.e. when there is no repair ability, a procurement order is 

given for each demand. However, when repair ability is acquired, some of the 

items will be replenished by repair process in a shorter lead time than it could be 

via procurement process. Therefore the risk of backorder occurrence would 

decrease when the repair orders are in consideration. Thus, one can see that the 

expected order up to levels, i.e. base stock levels, Si, in a model with repair ability 

is expected to be lower than the model without repair ability when the repair lead 
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time, R0 is lower than the procurement lead time, L0; and, similarly the unit repair 

cost, cp, is lower than the unit procurement cost, cp. 

 

3.3. Two Echelon Model 

 

In this section, the TE model, which consists of a central depot and N-bases is 

considered. The model is illustrated as in Figure 1 in Chapter 1.  

 

The environment considered in this model is similar to the one considered 

Moinzadeh and Aggarwal (1997). In Axsater (1990) and Axsater (2000), models 

very similar to our TE model are presented; however in these models the holding 

cost for the items in-transit is assumed to be negligible. 

 

The demand occurs in the bases due to item failures in the users. When a demand 

occurs, the base immediately meets the demand if there are any available items. If 

there are no items available, then the demand is backordered and unit backorder 

cost, bi, is incurred per unit time. As soon as a demand occurs at base i, it places 

an order to the depot. If there are any items available at the depot, demand of the 

base is immediately met and the item is transported to the base in transportation 

lead time, Ti. In-transit items in between the depot and the bases incur a unit 

holding cost, ht, per unit time by the depot which is ignored by most of the papers 

in literature like Muckstadt and Thomas (1980), Moinzadeh and Aggarwal (1997), 

and Caglar et.al. (2004).  

 

Since each demand occurrence creates an immediate order due to (S-1,S) policy, 

the demand faced by the depot is the superposition of the Poisson demand faced 

by the bases. Therefore the sum of the base demands forms the depot demand 
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which is also governed by a Poisson process with rate 0

1

N

i

i

 


 . The depot and 

bases incur a unit holding cost for inventory on-hand, h0 and hi for base i, 

respectively. In case of a shortage, the depot backorders the base demand. 

 

As soon as a demand from a base is received, regardless of the inventory level, the 

depot places an order to outside supplier and receives it in procurement lead time, 

L0, and incurs a unit procurement cost, cp. When the item arrives at the depot, if 

there is any outstanding order, it is immediately sent to base; otherwise the item is 

kept in stock. As Axsater (2000, p.168) states; there is no backorder cost for the 

depot. It is assumed that the costs incurred by the backorders at the depot is 

reflected to the backorder costs in the bases, as base backorders are caused by the 

delays at the depot due to backorder occurrences. Replenishment of the items in 

each system element is conducted according to first in first out policy. Events 

triggered by a demand occurrence at a base are illustrated as in Figure 6. 

 

 

Figure 6- Events for two-echelon model with no repair ability 

 

In this setting, we have procurement process at the depot and the transportation 

process for the items to reach from the depot to the base. The associated lead time 
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for the depot is the procurement lead time, L0; whereas the associated lead time 

for base i is the transportation lead time, Ti. Thus, the demand during lead time in 

steady state for procurement processes at the depot, 0 0( )D L , and transportation 

process for base i, ( )i iD T  are Poisson with rates λ0L0 and λiTi, respectively. 

 

Total cost of this setting is the sum of the costs at the depot and the bases. The 

cost of the depot, 0 0( )C S , consists of holding costs of the items in stock and items 

in-transit to the bases, and procurement cost. The cost of base i, Ci(S0,Si), consists 

of holding cost of the items in stock and backorder costs. Our goal is to minimize 

total cost by specifying the optimal base stock levels of the depot and the bases. 

The problem can be modeled as:  

Minimize 0 0 0
1

( ) ( , )
N

i i
i

C C S C S S
�

� ��    (3.15) 

s.t. � �0,1,2,...iS �  

0 0S � , � �0,1,...,i N	 �  

where;  

0 0 0 0 0
1

( ) [ ]
N

p t i i
i

C S h E NI c h T
 
�

�

� � � �   (3.16) 

and  

0( , ) [ ] [ ]i i i i i iC S S h E NI b E NI� �� � .   (3.17) 

We start the analysis of the model by determining the limiting behavior of 0NI  in 

(3.16), which stands for the net inventory at the depot. Similar to the analysis in 

Section 3.1, the positive net inventory for the depot becomes 

0[ ]E NI � = 0 0 0[ ( )]E S D L�  = 
0

0 0 0
0
( ) ( ( ) )

S

m
S m P D L m

�

� ��  (3.18) 
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where 
0 0

0 0
0 0

( )
( ( ) )

!

LmL e
P D L m

m

 

 
 

Plugging (3.18) to (3.16) the cost of the depot can be stated as 

0 00

0 0
0 0 0 0 0

0 1

( )
( ) ( )

!

LS m N

p t i i

m i

L e
C S h S m c h T

m


 



 

       (3.19). 

 

The cost at the depot, (3.19), is a function of depot’s own ordering policy. 

Therefore, it is only dependent on the base stock level of the depot; i.e., S0.  

 

We next consider the limiting behavior of net inventory at the base i, iNI . It 

should be noted that the analysis differs from the one in Section 3.1 since the 

replenishments of the bases are dependent also on the backorders at the depot. 

Recall that we have NIi(t) = IPi(t) - IOi(t), and IPi(t) = Si for all t. However, IOi (t) 

is not equal to the demand during the transportation lead time since the depot may 

not ship an item immediately when the base places an order. Hence, IOi (t), is the 

sum of the number of backordered items at the depot that belongs to base i at time 

t-Ti and the demand that occurred in the base in interval of (t-Ti, t]. Let’s define 

Bi(t-Ti) as the random variable that denotes the backorders at the depot at time t-Ti  

that belongs to base i; where 0

1

( ) ( )
N

i i i

i

B t T NI t T



   . Then, it is appropriate to 

state the inventory on order of base i as;  

IOi (t)= Bi(t-Ti)+ Di(t-Ti,t).  

Hence, the net inventory for base i becomes,  

NIi(t) = IPi (t)- Bi(t-Ti) - Di(Ti). 

Thus, the limiting behavior of the net inventory of base i can be observed as; 

 NIi =Si - Bi- Di(Ti). 
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To obtain the Bi(t-Ti) values, binomial disaggregation Graves (1985) is used. In 

binomial distribution, the new backorder occurrences at the depot are caused by 

base i with probability λi/λ0 due to Poisson demand, as the demands are filled 

according to first-in-first-out policy; hence, as it is suggested by Axsater (2000, 

p.164), the conditional distribution of the backorders at the bases is binomial, 

given the total number of backorders at the depot. Then, we have 

0

0 0

( ) ( ) 1

k a k

i i
i

a k

a
P B k P NI a

k

 

 








    
       

    
 ,   (3.20) for k > 0  

and  

1

( 0) 1 ( )i i

k

P B P B k




    . 

 

The probability mass function of negative net inventory at the depot can be 

expressed as; 

0 0 0

0 0
0 0 0 0 0

0

( )
( ) ( ) ( ( ) )

( )!

S a L
L e

P NI a P NI a P D L S a
S a

  
        


. (3.21) 

Hence, plugging (3.21) into (3.20), we have 

0 0 0

0 0

0 0 0

( )
( ) 1

( )!

k a k
S a L

i i
i

a k

aL e
P B k

kS a
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 


 



    
      

     
 .   (3.22) 

 

The expected on-hand inventory and backorder levels for the bases are 

0

[ ] ( )
iS

i i

j

E NI jP NI j



    (3.23), 

and  
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1

[ ] ( )i i

j

E NI jP NI j






    (3.24),  

respectively. 

 

In (3.23) and (3.24), ( )iP NI j denotes the probability mass function of the net 

inventory level at base i in the steady state. Recalling that net inventory level can 

be stated as NIi =Si - Bi - ( )i iD T , we condition on Bi to obtain ( )iP NI j :  

( )iP NI j = ( ( ) )i i i iP S B D T j   = ( ( ) )i i iP D T S j k   , and 

( ( ) )i i iP D T S j k   = 
0

( )
( )

( )!

i i ii S j k TS j

i i
i

k i

T e
P B k

S j k

   




 

 . (3.25) 

 

Plugging (3.22) in (3.25) we have 

( )iP NI j =
0 0 0

0 0

0 0 0 0

( ) ( )
1

( )! ( )!

i i ii
k a k
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      
  . (3.26) 

 

By plugging (3.26) to (3.23) and (3.24), the expected net inventory levels of the 

bases can be expressed as 
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and 
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respectively. 
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Finally, plugging (3.27) and (3.28) to (3.17) the cost of the base i can be 

expressed as 
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(3.29). 

 

We now describe how to obtain the optimal base stock levels for the depot and the 

bases in order to minimize the system-wide costs. We first check whether the cost 

function is convex or not. First, we show that the cost function (3.15) is convex in 

Si for a given value of S0 is shown. For this purpose, we define:  
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When (3.30) and (3.31) are plugged into (3.29), the cost of the base i becomes 
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To investigate convexity of (3.32), we need 1
st
 order difference function, which is 
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Then, the 2
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As
2iS kY  

, 
1iS kY  

and 
kX  are non-negative, and we have positive cost parameters; 

value of 2

0( , )i iC S S  is also non-negative and therefore 0( , )i iC S S
 
is convex with 

respect to Si ≥ 0, for a given S0 ≥ 0 value. 

 

However, Axsater (2000, p.267) states that the total cost, (3.15), is not necessarily 

convex with respect to order-up-to level of the depot. This is shown with a 

counter-example. In this counter-example, as we are searching whether the total 

cost function is convex in S0, for given values of Si’s; the parameters are set as 

given in Table 4: 

 

Table 4- Parameters for the TE model in the counter-example. 

Parameters 

Base Stocks (S)  S1 = 5 , S2 = 5 

Demand (λ) λ0 = 16, λ1= 8, λ2 = 8 

Lead Time (L) L0 = 2, L1 = 2, L2 = 2 

Costs h0 = 1, h1 = 1, h2 = 1, ht = 1, b1 = 5, b2 = 5, cp = 3 

 

In Figure 7. C0(S0)+ ΣCi(S0,Si) values for different S0 values are plotted. As it can 

be seen in the figure C0(S0)+ ΣCi(S0,Si) is not convex in S0 for given Si values. 

 

The plotted graph means that the local optimum is not necessarily the global 

optimum. In this model, among the costs components that form the cost, only 

holding and backorder costs are dependent on the base stock level of the depot, S0. 
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Figure 7- Counter example for convexity of “C0(S0) + ΣCi(S0,Si)" 

 

The procurement and in-transit inventory holding costs are related to demand 

solely. As the base stock level of depot, S0, increases, the probability of a 

backorder occurrence decreases and becomes zero for sufficiently large S0; this 

results in no backorder cost for the bases in the long run as the base stock level of 

the depot increases. However, as S0 increases, eventually the inventory on hand 

increases; therefore it is expected that as S0 increases, the holding cost components 

in total cost also increases. Regarding this, it can be said that as base stock 

infinitely increases the total cost also increases to infinity; therefore using that fact 

we can be sure that there is an upper-bound beyond which we can find a global 

optimum for S0. 

 

At this point, the problem is divided into two parts. One is the base problem 

which finds the optimal base stock levels for the bases, *

iS ; and the other deals 

with finding the optimal base stock level of the depot, *

0S . An iterative procedure 

is used to deliver the optimal results for the problem. This procedure involves in 

solving the base problem for a given value of S0. As the objective function is 

convex in Si > 0; the optimal base stock level for base i, *

iS , can again be found 

from the first order optimality condition, i.e., *

iS = min {Si{0,1,2,...}| 
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( )i iC S ≥0} for a given value of S0. This procedure is repeated for all S0 

{0,1,2,...} until an intuitively assigned upper-bound and the optimal order-up-to 

level of the depot, *

0S , which ensures the minimum objective cost function value, 

is found by evaluation of all order-up-to levels, S0, with a local search procedure. 

During the analysis, if the assigned upper-bound for S0 ever becomes binding, the 

upper-bound is extended to a larger value and the local search procedure is 

restarted. 

   

3.4. Two Echelon Model with Repair Ability 

 

The last case is a two-echelon system consisting of a depot and N independent 

bases, but this time the depot has a limited ability to repair the returned items. The 

system is illustrated as shown in Figure 8. The model is an extension of the model 

presented in Section 3.3 where the depot acquires the repair ability and becomes a 

central repair facility. The main difference between the two models is the demand 

distributions. The demand distribution used in this model is similar to that is used 

in Simon (1971). Furthermore, depot’s being the central repair facility is very 

similar to the papers like Graves (1985), Wang et.al.(2000) and Caglar et.al. 

(2004). 

 

In this case, the events and the cost incurrence are almost the same as the TE 

model. The difference is that some of the items are repairable with probability ρ. 

The inspection, which is necessary to determine whether a failed item can be 

repaired or not, is performed in the bases. If the item is repairable, then base i 

returns the failed item to the depot in transportation lead time, Ti; incurring a 

holding cost for items in-transit. The failed item is repaired at the depot in repair 

lead time, R0, incurring a unit cost of repair, cr. The items in repair also incur a 

holding cost of h0 at the depot. After the item is repaired, it is returned to the base 

that it belongs in transportation lead time Ti. This time the in-transit inventory 
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holding cost, ht, is incurred by the depot. Note that, the time required for 

satisfying a repair order from a base, is the sum of repair and transportation lead 

times, i.e. R0+Ti; whereas it is L0 for a procurement order. The events are 

illustrated in Figure 9. 

 

Figure 8- Two-echelon model with repair ability 

 

 

Figure 9- Events for two-echelon model with repair ability 
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The failed items can be repaired at the depot with probability ρ. The cost of the 

depot, 0 0( )rC S  consists of procurement cost, repair cost and holding costs of both 

the items in stock, repaired or being repaired and items in-transit; whereas the cost 

of a single base i, 0( , )r
i iC S S  consists of backorder costs and holding cost of the 

items both in stock and in-transit. Our goal is to minimize total cost by specifying 

the optimal policy for base stock levels of both the depot and the bases; therefore 

the problem can be modeled as: 

Minimize 0 0 0
1

( ) ( , )
N

r r
r i i

i
C C S C S S

�

� ��   (3.33) 

s.t. � �0,1,2,...iS �  

0 0S � , � �0,1,...,i N	 �  

Where; 

0 0 0 0 0 0 0 0
1 1

( ) [ ] (1 )
N N

r
p r t i i i

i i
C S h E NI c c h T h R
 � 
 � 
 �
�

� �

� � � � � �� �   (3.34) 

And 0( , ) [ ] [ ]r
i i i i i i t i iC S S h E NI b E NI h L�
� �� � �      (3.35) 

 

In the system, the depot demand is again the superposition of the base demands as 

it is in Section 3.3; therefore it is governed by a Poisson process with rate λ0. 

However, it can be stated that as some of the items can be repaired in the depot 

with probability ρ, the Poisson demand of the depot is split into two kinds of 

demands; that is, a demand that occurs at the depot is either a repair or a 

procurement demand which are also Poisson. The rate of the repair demand is ρλ0 

and the rate of the consumable demand is (1-ρ)λ0. 

 



43 

 

Let the inventory on order for the depot equals, IO0(t)=D0(t-R0,t)+D0(t-L0,t), 

where D0(t-R0,t) denote the repair orders outstanding at time t and D0(t-L0,t) 

denote the procurement orders outstanding at time t. 

 

Noting that, IP0(t) = S0 t , and IP0(t) = NI0(t) + IO0(t); we have  

S0 = E[NI0 ]+ E[D0(R0)+D0(L0)]. 

 

Let 
0

rD  be the random variable denoting the limiting behavior of the inventory on-

order in depot for this setting, then 0[ ]rE D = 0 0[ ( )]E D L + 0 0[ ( )]E D R . The expected 

demand during lead time at steady state for procurement process, 0 0[ ( )]E D L , and 

the repair process at the depot, 0 0[ ( )]E D R , is (1-ρ)λ0L0 and ρλ0(R0+Ti), 

respectively; Both procurement and repair in the depot are independent Poisson 

processes. Therefore, the inventory on-order for the depot is superposition of 

these two Poisson processes. Therefore; 

0[ ]rE D = λ0[(1-ρ)L0+ρ(R0+Ti)] for the depot. 

 

The net inventory level for the depot, 0[ ]E NI  , is derived regarding analysis in 

Section 3.1. 

0[ ]E NI   =
0

0 0

0

( ) ( )
S

r

m

S m P D m


   (3.36) 

where
0 0 0( ( ) (1 ) )
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Therefore, plugging (3.36) into (3.34), the cost of depot can be stated as: 
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Next, the limiting behavior of the net inventory level of base i is considered. The 

analysis is the same as in Section 3.3. Note that the only difference is the 

inventory on-order levels of the depot. The expected inventory on-order for depot 

in this setting is
0[ ]rE D = λ0[(1-ρ)L0+ρ(R0+Ti)]; whereas it is 0 0[ ( )]E D L = λ0L0 in 

the TE model. This difference has an effect only on the limiting behavior, as we 

condition the optimal base stock level of a base to the base stock level of the 

depot. Therefore, using the analysis in Section 3.3, the expected positive and 

negative net inventory levels of base i can be stated as: 
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(3.39), respectively. 

 

Finally, plugging (3.38) and (3.39) into (3.35), the cost function of base i becomes 
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In the model, optimal base stock levels for both depot and the bases which ensure 

the minimum system wide costs are searched. The function must be convex to 

ensure that the local optimum is the global optimum. To show the convexity, 

difference functions are used as the cost functions are discrete. 

 

Here, as it is done in section 3.3. the convexity of the cost function is checked. 

First, the convexity in Si, for a given value of S0 is shown. For this purpose, we 

define:   
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When (4.41) and (4.42) are applied to (4.40), the total cost of the base becomes: 
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To investigate convexity of (3.43), we need 1
st
 order difference function, which is: 
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Then, the 2
nd

 order difference is: 
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As
2i

r

S kY  
, 

1i

r

S kY  
and r

kX  are non-negative, and we have positive cost parameters; 

value of 
2

0( , )r

i iC S S  is also non-negative and therefore 0( , )r

i iC S S is convex with 

respect to Si ≥ 0, for a given S0 ≥ 0 value. However, similar to the previous model, 

the total cost, (3.33), is not necessarily convex in S0. We show that with a counter-

example. In this counter-example, the parameters are set as given in Table 5: 

 

Table 5- Parameters for the TR model in the counter-example. 

Parameters 

Base Stocks (S)  S1 = 5 , S2 = 5 

Demand (λ) λ0 = 16, λ1= 8, λ2 = 8 

Lead Time (L) L0 = 1, L1 = 1, L2 = 1, R0 = 1 

Costs h0 = 1, h1 = 1, h2 = 1, ht = 1, b1 = 5, b2 = 5, cp = 3 

Repair ratio (ρ) ρ = 0.2 

 

In Figure 10 C0
r
(S0) + ΣCi

r
(S0,Si) values for different S0 values are plotted. As it 

can be seen in the figure C0
r
(S0) + ΣCi

r
(S0,Si) is not convex in S0 for given Si 

values. 

 

The plotted graph in Figure 10 means that the local optimum is not necessarily the 

global optimum. But we can still optimize the model. For optimizing the model, 

an upper-bound for base stock levels of the depot, S0, is intuitively set and the 

problem is divided into two parts as it is done in Section 3.3. One is the base 

problem which deals with finding the optimal base stock levels for the bases, *

iS ; 

and the other deals with finding the optimal base stock level of the depot, *

0S . An 

iterative procedure is used to deliver the optimal results for the problem. This 

procedure involves in solving N independent base problem for a given value of S0. 
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As the objective function is convex in Si > 0 i ; the optimal base stock level for 

base i, *

iS , can again be found from the first order optimality condition given in 

(3.7), for a given value of S0. This procedure is repeated for all S0 {0,1,2,...} 

until an intuitively assigned upper-bound. 

 

 

Figure 10- Counter example for convexity of “C0
r
(S0) + ΣCi

r
(S0,Si)" 

 

The optimal order-up-to level of the depot, *

0S , which ensures the minimum 

objective cost function value, is found by evaluation of all order-up-to levels, S0, 

with a local search procedure. During the analysis, if the assigned upper-bound for 

S0 ever becomes binding, the upper-bound is extended to a larger value and the 

local search procedure is restarted. 
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CHAPTER 4 

 

COMPUTATIONAL STUDY 

 

 

In this chapter, the computational study on the comparison of the alternative 

models and observations about the research questions are presented. As analyzed 

in Chapter 3; there are four alternative models to be considered. Among these four 

models the two-echelon model is the one that is being operated currently. Due to 

risks and costs in transportation process between the depot and the bases, the 

management considers shutting down the depot and operating the single-echelon 

model. In the base case parameter setting, the procurement lead time of a base in 

single-echelon model is assumed to be equal to the replenishment lead time of a 

base in the two-echelon model which is the sum of the procurement lead time of 

the depot, L0, and transportation lead time of base i, Ti. Regarding the 

transportation lead times and in-transit inventory holding costs, this assumption 

could result in the single-echelon model outperforming the two-echelon model. 

Recall that the first research question considers the effects of operating a SE 

model, instead of a TE model. Therefore in Section 4.1, the improvement of the 

system after such a change is considered. 

 

Moreover, the stock points may acquire the ability to repair the failed items. The 

procurement lead times in both two and single-echelon models will then be 

replaced by the repair lead time which is presumably shorter than the procurement 

lead times. Furthermore, the procurement cost will be replaced by the repair cost 

which is expected to be lower. As, the second research question is about the effect 

of the repair ability acquisition; the improvement caused by the repair ability in 

both TE and SE models are considered in Section 4.2. 
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The third research question seeks the effects of the changes in cost, demand and 

lead time parameters on the system performance in all of the models. This may be 

regarded as a sensitivity analysis for each of the models considered in this study. 

Therefore, the computational study is conducted for the models under various 

parameter settings and the findings are presented in both Sections 4.1 and 4.2. 

 

In the base case scenario, there are 3 bases and 1 depot in two-echelon models; 

and 3 bases in single-echelon models. The parameter values that are estimated in 

accordance with the real life case are presented in Table 6: 

 

Table 6- Parameters of the Base Case Scenario 

Parameters 

Demand (λ) λ0 = 9, λ1= 3, λ2 = 3, λ3 = 3 

Lead Time (L) L0 = 3; T1 = 1, T2 = 1, T3 = 1; Li = 4; R0 = 2; Ri = 2  

Costs (10.000$) cp = 4, hi = 0.02,  bi = 60, cr = 1 

Repair Ratio (ρ) ρ = 0.4 

 

The parameters are set in accordance with the actual data obtained from real life 

case. Cost parameters consist of holding, backorder, unit procurement and repair 

costs and they are assumed to be the same for all stock points in all models along 

with the demand parameters for the bases. The unit time is a week and the mean 

of the Poisson demand is 3 items per week. In the current system, procurement 

lead time of the depot is 3 weeks; whereas the transportation lead time between 

the depot and the bases is a week. For single-echelon systems, the procurement 

lead time is 4 weeks. The repair lead time is assumed to be 2 weeks for all stock 

points that have repair ability. 
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The holding costs, h0 for the depot and hi for base i, depend on the procurement 

cost, cp, via an interest rate. We assume that the holding cost per item per week in 

base i, hi, is 0.5% of the procurement cost. The in-transit inventory holding cost, 

ht, is assumed to be the same. The backorder cost per unit per week in base i, bi, is 

set to be 15 times of the procurement cost.  

 

Generally, it is assumed that the procurement lead time, L0, may change due to 

bureaucracy in the auction processes; whereas, distance is the key driver in 

transportation lead time, Ti, change. The change in repair lead time, R0, depends 

on the availability of the spare parts which are not considered in this thesis study. 

Demand, λ, may increase due to obsolescence or decrease by more careful use in 

the military units. The procurement cost, cp, depends on the prices and may 

change depending on the market. Similarly the repair cost, cr, is dependent on the 

spare parts; and therefore, the market. Holding costs, h0 and hi, changes according 

to the interest rates; whereas the holding cost for the items in-transit is mainly 

dependent on the safety and insurance expenses.  

 

The optimization algorithms presented in Chapter 3 are implemented in Microsoft 

Visual C# and the computational study is conducted on Intel(R) Core(TM)2 Duo 

CPU P7350 2GHz processor and 3 GB of RAMs computer. The input parameters 

and the logical structure are represented correctly and the code is checked and 

verified to cover every step in the algorithm. The program is the accurate 

representation of the real life case; as all the data are based on the real life case 

and a Chi-square goodness of fit test is conducted for the Poisson demand (See 

Appendix). Therefore, the model is valid.  
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4.1. Two-Echelon Model versus Single-Echelon Model 

 

As it is stated in Muckstadt and Thomas (1980) and Hausmann and Erkip (1994), 

a two-echelon model outperforms the single-echelon model, especially when it is 

provided that the demand distribution and total replenishment lead time are the 

same along with the cost parameters. One of the main factors on this fact is the 

risk pooling effect of the depot which is stated in Graves (1996) as the uncertainty 

in demand can be controlled by the depot centrally. But in our two-echelon model, 

a holding cost is incurred for each item being transported from the depot to the 

base; therefore the improvement of the TE model over the SE model could be 

hindered. In this section the effects of the changes in lead time, demand and cost 

parameters are analyzed and the parameters presented in Table 6 are used as the 

base case scenario, unless otherwise mentioned. Recall that two and single-

echelon models are referred to as TE and SE models, respectively, throughout the 

study for the sake of simplicity. 

 

The procurement cost, which constitutes over 95% of the total cost in most cases, 

is only dependent on total demand and it does not have any effect on optimization. 

As total demand is the same for both two and single-echelon models; the 

procurement cost is also the same under both cases. Therefore the procurement 

cost is excluded in the comparison of the performances of single and two-echelon 

models for a more effective assessment. 

 

We start our analysis by considering the effects of the lead time. We first focus on 

the effects of an increase in the total replenishment lead time. As replenishment 

lead time increases, it is expected that both models get worse in terms of cost. 

This is due to the increasing base stock levels as demand during lead time 

increases. The replenishment lead time is the procurement lead time for the SE 

model whereas it has two components for the TE model; procurement lead time of 
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the depot and transportation lead times of the bases. Therefore, it should be noted 

whether the increase in replenishment lead time is caused by the procurement or 

transportation lead time. Figure 11 and Figure 12 illustrate the effects of the 

increase in lead times on costs of the TE and SE models, respectively.  

 

 

Figure 11- Cost increase in lead time for TE model vs. L0+Ti 

 

 

 

Figure 12- Cost increase in lead time for SE model vs. Li 
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For both models, it can be said that if replenishment lead time increases the costs 

increase. This is due to increasing base stock levels and uncertainty in demand. As 

it can be seen in Figure 11 if the increase in replenishment lead time is caused by 

the transportation lead time, the effect is more dramatic because of the increasing 

in-transit inventory holding cost. To see this effect more clearly, optimal results of 

both TE and SE models are obtained and compared for different ht values. The 

improvement of the TE model over SE model is assessed and plotted in Figure 13 

for different ht values. The improvement is formulated as; 

1

*100SE TE

N

SE p i

i

Cost Cost

Cost c 




 
  (4.1), 

where; CostSE and CostTE denote the costs of SE and TE model, respectively. In 

the assessment of the improvement of TE model over SE model; the procurement 

cost is excluded in(4.1) since it is the same for both models under the same 

demand rates. 

 

 

Figure 13- Improvement of TE over SE model vs. Ti (L0=3, Li=L0+Ti) 

 

In Figure 13, the replenishment lead times for both single and two-echelon 

systems are increasing. In the TE model, the procurement lead time for the depot, 
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L0, is constant and set as 3 weeks. The increase in replenishment lead time is due 

to the transportation lead time, Ti. Although, expected costs of both models 

increase in lead times, the effect is more pronounced for TE model as Ti increase. 

It can be seen in Figure 13 that as the transportation lead time increases the 

improvement of the TE model over the SE model deteriorates, which means the 

cost is increasing more rapidly in transportation lead time for TE. Moreover; as 

long as holding cost is incurred for items in-transit; the single echelon model 

outperforms the two-echelon model after some specific increase in Ti. For 

example; in the base case, if Ti increases more than 6%, the SE model outperforms 

the TE model When ht is 0.01, an 86% increase in transportation lead time is 

necessary for TE model to be outperformed by SE model (See Figure 13). 

However, in these assessments, ht is assumed to be decreasing while holding cost 

rates, hi, for each base i, remain constant. If hi for each base i also changes in 

accordance with ht; then the % improvement curves shift upwards for decreasing 

hi (See Figure 14). This is also an effect of in-transit holding cost. 

 

 

Figure 14- Improvement of TE over SE model vs. Ti (L0=3, Li=L0+Ti)  

 

As procurement lead time, L0, gets smaller; i.e, set as 2 weeks or a week, while Ti 

& Li increase; the % improvement curves presented in Figure 14 shift downwards. 

In such a case, the effects of inventory holding cost for the items in-transit in the 
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two echelon system become more pronounced and the single-echelon model 

becomes more attractive. If inventory holding cost is not incurred for in-transit 

inventory, the two-echelon model would outperform the single-echelon model, no 

matter how large the procurement or in-transit inventory holding cost rates are, 

due to risk pooling effects of the depot. 

  

 

Figure 15- Improvement of TE over SE model vs. L0 (Ti=1,Li=L0+Ti) 

 

In Figure 15 the replenishment lead times are increasing for both SE and TE 

models. For the TE model, L0 is increasing whereas transportation lead time for 

base i, Ti, is constant and set as 1 week. Although, the expected costs are 

increasing for both models, the increase in expected cost of TE model is less than 

the increase in SE model. This is because of the increasing joint order and depot 

effects presented by Graves (1996) as L0 increases. In Figure 15, it is observed 

that as L0 increases the improvement of TE model over SE model also increases. 

But, if L0 decreases almost 10%, the SE model becomes more attractive against 

TE model for the base case. However, if holding cost rates for items in-transit, ht, 

decreases; this effect neutralizes (see Figure 15).  

Up to this point, the expected costs of TE and SE models and the improvements of 

TE model over SE model are compared as the lead time changes. It has been 
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observed that the improvement of TE over SE model is more sensitive to Ti 

change. Moreover, if the increase in replenishment lead time is due to L0 increase; 

although, the expected cost values increase for both models, the improvement of 

TE model over SE model also increases. In all these comparisons and 

assessments, the replenishment lead times of TE and SE models are consistent; 

i.e, the same through the analysis. Hence, the individual effects of the changes in 

lead times are not considered. Therefore, in this part of the analysis, the effects of 

the lead times changes; such as, change in L0 and Ti are considered, individually. 

 

If the procurement lead time of the depot, L0, increases while all of the other 

parameters remains as they are in the base case; the optimal system wide base 

stock levels and the expected cost increases as expected (See Figure 16). As, the 

procurement cost does not change in L0, it is excluded from the cost in Figure 16, 

to see the effect more clearly. 

  

 

Figure 16- Cost and base-stock levels vs. L0 (Ti=1) 

 

Furthermore, as L0 increases while all other parameters constant, the improvement 

of the two-echelon model over single-echelon one decreases. In the base case, 
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after a 6% or more increase in L0 the TE model is outperformed by the SE model. 

However, as ht decreases, more than 6 % increase in L0 is necessary for TE model 

to lose its attractiveness to SE model. For example; when ht is assumed to be 0.01, 

the TE model loses attractiveness against SE model after a 70% increase in L0. 

The graph that reflects the effect of procurement lead time increase can be seen in 

Figure 17. 

 

 

Figure 17- Improvement of TE over SE model vs. L0 (Ti=1, Li=4) 

 

If transportation lead time for base i, Ti, increases while all other parameters 

remain constant; the effects are more apparent, although they are very similar with 

the effects of L0 increase. The effect of Ti increase is more noticeable than the 

effect of L0 increase due to holding cost incurred for in-transit inventory. For the 

base case, a 5% increase in transportation lead time results in, SE model 

outperforming the TE model. However the increase in Ti, that is necessary for TE 

model to be outperformed by SE model increases to 50% when ht=0.01. The 

related graph is plotted in Figure 18. 
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Figure 18- Improvement of TE over SE model vs. Ti (L0=3, Li=4) 

 

 If demand increases, the costs increase for both models. The main factor in this is 

the procurement costs. However, for increasing demand, holding costs both for 

inventory in-stock and in-transit also increases. The increase in expected cost is 

more pronounced for the TE model and that is expected. As demand increases, the 

items in-transit also increases and this incurs extra holding cost for those items. In 

Figure 19, %improvement curves are plotted in demand for various lead time 

settings. It is observed in the graph that, as demand increases in the base case, SE 

model becomes more attractive than the TE model. For increasing L0, the 

%improvement curve shifts upwards; however if Ti increases, the %improvement 

curve shifts downwards as expressed in the previous cases. It can also be observed 

in Figure 19 that the worst % improvement of TE model over SE model is 

observed when the share of the Ti in replenishment lead time is the most. This is 

mainly due to in-transit inventory holding cost. When Figure 19 is compared to 

Figure 20, the undeniable effect of the ht can be observed.  

 

To see the effects of the in-transit inventory holding cost, TE and SE models are 

considered where no holding cost is incurred for items in-transit (see Figure 20). 
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Figure 19- Improvement of TE over SE model vs. λ (ht=0.02) 

 

Although the expected cost values increase in demand; it is observed that if no in-

transit inventory cost is incurred, then the improvement of TE over SE model 

increases for most of the cases due to increasing risk pooling effects of the depot. 

  

 

Figure 20- Improvement of TE over SE model vs. λ (ht=0) 

 

As holding cost rate, hi, increases; the expected cost values increase due to 

increasing holding costs for items in-stock; although the system wide optimal base 



61 

 

stock levels decreases in the base case scenario (See Figure 21). If ht increases in 

accordance with hi, then the increase in expected cost becomes a bit more 

significant. However, although the holding costs increase as holding cost rates, hi, 

increase in the TE model; the improvement of TE over SE model seems not to be 

affected much by hi change when no holding cost is incurred for items in-transit, 

i.e. ht=0 (See Figure 22). This indifference to hi change may be due to high 

backorder cost rate, bi.  

 

 

Figure 21- Cost and total base stock level vs. hi 

 

Figure 22- Improvement of TE over SE model vs. Ti (L0=3, Li=L0+Ti, ht=0)  
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Due to criticality of the items in military use; lack of a single item would result in 

fatal problems; therefore, bi is assumed to be very high according to hi. Therefore, 

the computations are conducted with lower bi values such as, 5 and 0.4. It is 

observed that as backorder cost rate decreases, the system tends to hold fewer 

items in stock and the system wide optimal base stock level decrease; 

dependently, the holding costs decrease (See Figure 23). 

 

 

Figure 23- Cost and total base stock level vs. bi 

 

The system wide cost decreases as bi decreases, and the in-transit inventory 

holding cost increases relatively. Therefore, for significantly decreasing bi, the 

improvement of the two-echelon model also decreases (See Figure 24). It can be 

observed that the improvement of TE model over SE model gets better as L0 

increases. This is mainly caused by the increasing risk pooling effects of the depot 

in lead time. Furthermore, it can also be observed in Figure 24 that as Ti increases, 

the improvement of TE model deteriorates significantly for decreasing bi. That is 

because of relatively increasing holding costs of the items in-transit.  
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Figure 24- Improvement of TE over SE model vs. bi (ht=0,02)  

 

However, if no holding cost is incurred for the items in-transit; i.e, ht=0, the 

improvement of the TE model over SE shows no significant patterns as bi changes 

(See Figure 25); although the expected costs are increasing in bi. When, Figure 24 

and 25 are compared, the importance and the effect of the in-transit inventory 

holding cost can easily be noticed. 

 

   

Figure 25- Improvement of TE over SE model vs. bi (ht=0) 
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Besides the changes in parameter settings, the environment of the problem can 

also differ. In this part of the study, the case where TE model has 4 bases instead 

of 3 bases is considered. The parameter setting for the system with 4 bases is 

presented in Table-7.  

Table 7- Parameters of the Base Case Scenario with 4 Bases 

Parameters 

Demand (λ) λ0 = 9, λ1= 2.25, λ2 = 2.25, λ3 = 2.25, λ4 = 2.25 

Lead Time (L) L0 = 3; Ti = 1; Li = 3,5; R0 = 2; Ri = 2  

Costs (10.000$) cp = 4, hi = 0.02,  bi = 60, cr = 1 

 

When an additional base is being operated in the base case, the expected optimal 

costs increases along with the system wide base stock levels (Figure 26). 

Although, system wide demand is not changed; demand faced by each base is 

decreased. Hence, the optimal base stock levels per base decrease. However, a 

new base can be regarded as a risk factor for potential backorder occurrences in 

the system. Therefore, the system wide optimal base stock levels increase with the 

new setting. As the items in stock increases, the holding cost incurred for the 

items in stock also increases and eventually, the system with 4 bases incurs higher 

expected cost than the current system (See Figure 26). 

 

Figure 26- Cost and total base stock level vs. L0 and Ti 
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When, the improvements of the TE models with 4 bases and 3 bases over the SE 

models are compared, it is observed that the TE model with 4 bases is more 

tolerant to Ti increase compared to the current model (See Figure 27). This may be 

due to increasing base stock levels; regarding that, the holding cost incurred for 

items in stock increases in base stock levels and the increase in holding cost 

relatively decreases the in-transit inventory holding cost which reduces the 

negative effects of the holding cost incurred for items in-transit. 

 

 

Figure 27- Improvement of TE over SE models vs Ti (3 Bases vs. 4 Bases) 

 

It is observed in Figure 28 that the TE model with 4 bases presents better 

improvement against the SE models not only in Ti, but also in L0. This is mainly 

due to increasing the risk pooling effects of the depot in L0.  

 

With 4 bases instead of 3 bases in the lower echelon, a TE model is more robust 

against being outperformed by a SE model due to change in parameters.  Because, 

although the expected holding and backorder costs increase as an additional base 

is operated; the increase in costs of TE model is less than the increase in SE. This 

is mainly due to more noticeable risk pooling effects of the depot in TE model 

with 4 bases. 
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Figure 28- Improvement of TE over SE models vs L0 (3 Bases vs. 4 Bases  

 

4.2. Models with No Repair Ability versus Models with Repair Ability 

 

The second research question requires the comparison between the systems with 

and without repair ability. In the two-echelon model the repair ability is acquired 

only by the depot whereas it is acquired by all bases in the single-echelon model. 

After the repair ability is acquired, there are two types of orders: One is 

procurement orders and the other is repair orders. Before starting the analysis, 

note that the repair ability acquisition creates two main changes in the model. One 

of them is the new cost parameters such as repair cost, repair holding cost for 

items in repair and extra in-transit inventory holding costs for items being sent to 

the depot for repair. The other change is in the lead times as for each repair order 

the procurement lead time is replaced by a presumably lower repair lead time.  

 

In the analysis of the effects of repair ability acquisition, the two and single-

echelon models are considered separately. Recall that the TE model with repair 

ability is represented as, TR; whereas the SE model with repair ability is referred 

to as SR for the sake of simplicity and convenience. First, the computational 

results related to TR are presented. 
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Two Echelon Models 

 

When the systems with repair ability are considered, the key factor in the models 

with repair ability is the ratio of repairable items in total demand; i.e. repair ratio, 

ρ. It is observed in Figure 29 that the % improvement of TR model over TE model 

increases in ρ. This is because the procurement cost, cp and lead time, L0 are 

exchanged by presumably lower repair costs, cr and lead times, R0, for each repair 

order. The % improvement is formulated as; 

*100TE TR

TE

Cost Cost

Cost


  (4.2), 

where; CostTE and CostTR denote the costs of TE and TR model, respectively. In 

the assessment of the improvement of TR model over TE model; the procurement 

costs cannot be excluded in (4.2) because they are not the same for both models 

anymore. 

 

 

Figure 29- Improvement of TR over TE model vs. ρ  

 

Although, the improvement of the system with repair ability over the system with 

no repair ability increases as repair ratio increases, the % improvements seem to 
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be indifferent both for L0 and Ti. However, with a closer look in the base case, it 

can be seen that there is an increase in the % improvement in L0, and a decrease  

in the % improvement in Ti (See Figure 30 and 31, respectively). 

 

 

Figure 30- Improvement of TR over TE vs. L0 

 

 

Figure 31- Improvement of TR over TE vs. Ti  

 

The increase in the % improvement in L0 is a result of both the decreasing effect 

of in-transit inventory holding cost and relative decrease in repair lead time as 

procurement lead time increases. However, the decrease in the % improvement in 

Ti is caused by increasing effect of the holding costs for items in-transit which is 
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additionally incurred for the items sent from base to depot to be repaired. It can be 

seen in both graphs in Figure 30 and 31 that the %improvements are changing 

very slightly. This is not surprising; because, on the contrary to the previous 

section, the procurement cost cannot be excluded in this analysis. 

 

It is previously expressed that for increasing Ti, SE model can become a better 

alternative instead of TE. However In Figure 32, it is observed that for increasing 

Ti, TR model outperforms both models even with a repair ratio of 20%; i.e, ρ=0.2. 

  

 

Figure 32- Cost for TR, SE and TE model vs. Li and L0+Li (L0=3, ρ=0.2) 

 

Besides the repair ratio, ρ, the effect of the repair lead time, R0, change is also 

considered. It can be seen in Figure 33 that the % improvement decreases in R0; 

because it takes longer time for an item to be repaired and this increases the 

holding cost for item repaired or being repaired. In L0, % improvement curves 

shift up very slightly; that is because, for increasing L0, R0 decreases relatively.  

However, as Ti increases, the % improvement curves noticably shift downwards. 

The reason is that as Ti increases, the holding costs incurred for items in transit 

increases, when it is recalled that this cost is incurred both for items being sent 

from depot to base and for items that are sent  from base to depot for repair. 
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Figure 33- Improvement of TR over TE model vs. R0 

 

Although the % improvement decreases in R0, the TR model is more attractive 

than the TE model and the increase in R0 does not affect the preference of the TR 

model against TE model. In Figure 34, the % improvements seems indifferent in 

R0 increase. However, the repairable model is extremely sensitive to an increase in  

cr. 

,  

Figure 34- Improvement of TR over TE model vs. cr (cp=4) 
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If the repair cost per item, cr increases while procurement cost per item, cp remains 

constant the % improvement of the TR model over the TE model significantly 

decreases and when cr = cp; TR model is outperformed by the TE model.  

 

Single-Echelon Models 

 

Similar to the comparison of TE and TR models, when repair ratio increases, the 

% improvement of SR model over SE model, increases significantly. In Figure 35, 

the % improvement curves in Li shift upwards as ρ increases. The % improvement 

is formulated as; 

*100SE SR

SE

Cost Cost

Cost


  (4.3), 

where; CostSE and CostSR denote the costs of SE and SR model, respectively. In 

the assessment of the improvement of SR model over SE model; the procurement 

cost cannot be excluded in (4.3) because they are not the same for both models 

anymore.. 

 

 

Figure 35- Improvement of SR over SE model vs. Li  
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Although the % improvement seems to be steady in Li, with a closer look in the 

base case parameters, it can be seen in Figure 36 that it decreases as lead time 

increases. This is expected, because; as Li increases, Ri decreases relatively which 

reduces the difference in the expected costs of SR and SE model. Therefore the 

improvement of the system with repair ability is hindered. 

 

 

Figure 36- Improvement of SR over SE model vs. Li (ρ=0.2) 

 

 

Figure 37- Improvement of SR over SE model vs. Ri 
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As repair lead time, Ri, increases; the decrease in % improvement of SR over SE 

shifts downwards. as it is seen in Figure 37. This is also expected as it is in two-

echelon case; becasuse shorter repair lead times than the procurement lead time is 

one of the main advantages of the repair ability acquisition.  

 

As Ri increases and becomes closer to Li, the advantage of SR model decreases. 

However, due to lower repair cost per item, cr, than the procurement cost per item, 

cp; the SR system remains the better alternative against the SE model. But, as cr 

increases and get close to cp; the SR model loses advantage against the SE model. 

In Figure 38, when cr=cp, the SE model becomes the better alternative against the 

SR model no matter what Ri 

 

 

Figure 38- Improvement of SR over SE model vs. Ri  
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CHAPTER 5 

 

CONCLUSION & FUTURE WORK 

 

 

In this study, we deal with a real life problem that is encountered in the inventory 

control system being operated in military. A single item, which has a critical 

importance in military use, is considered. Currently, a two-echelon system, which 

consists of a depot in the upper and several bases in the lower echelon, is 

operated. The demand is stochastic and Poisson; and the lead times are assumed to 

be constant. Three alternative exact models are developed and presented along 

with the current system in Chapter 3. One of the alternative models considered is 

a single-echelon model that has several bases but a depot. The other alternatives 

are two and single-echelon models with repair ability. All of the models are 

optimized. The optimal results are compared and the models are experimented 

with parameter changes such as lead times, demand and cost rates in Chapter 4. 

The focus is on determining the conditions under which the current two-echelon 

model. The analyses are conducted accordingly and the findings are reported. The 

main contribution of the study is that two-echelon models are benchmarked with 

single-echelon models in an environment where the in-transit inventory holding 

cost cannot be ignored. Moreover, the importance of the repair ability for 

inventory systems is assessed. 

  

Throughout the analysis, it is observed that in all of the models the system wide 

optimal base stock levels increase along with the total cost; as the lead time, 

backorder cost rate or demand increase. 
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In two-echelon models, the most critical observation is that as long as a holding 

cost is incurred for the items in-transit; the two-echelon models could lose its 

preference over the single-echelon model; especially when transportation lead 

time increase or procurement lead time decreases.  

 

Although the increase in cost rates increases the costs for both models, they do not 

affect the improvement of the two-echelon models over single-echelon models. 

However, as long as the holding cost is incurred for items in-transit the changes in 

other cost rates become significant. For example, when backorder cost rate 

decreases or holding cost rate for items in stock increases, the improvement of the 

two-echelon model over the single-echelon model deteriorates. Furthermore, 

increasing demand effects the two-echelon model negatively as long as holding 

cost is incurred for items in-transit although the contrary is valid when there is no 

holding cost for the items in-transit. 

 

It is observed that if the holding cost rate for items in-transit increases, while the 

holding cost rate for items in-stock remains the same; the performance of the two-

echelon model deteriorates against the single-echelon model. But if the holding 

cost rate for items in-stock changes in accordance with the holding cost rate for 

items in-transit, the effect of the holding cost rate for items in-transit vanishes. 

 

If four bases are operated instead of three bases, the expected long run average 

cost increases in both models. Moreover; the improvement of the two-echelon 

model over the single-echelon model increases and the two-echelon model 

becomes more robust against being outperformed by the single-echelon models 

due to changes in parameters. 
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In both two and single-echelon models, the acquisition of repair ability is 

preferable as long as unit repair cost is lower than unit procurement cost and 

repair lead time is lower than the procurement lead time. However, if repair cost is 

lower than the unit procurement cost, then the effect of the changes in other 

parameters on the improvement of the repairable models over no-repair models is 

very slight. Therefore unit repair cost’s being lower than the unit procurement 

cost would be more than enough for repairable model to be preferable. 

 

As future research direction, the bases can be allowed to ship laterally among 

themselves as Lee (1987) presented and finally the depot could be allowed to 

place emergency orders like in Moinzadeh and Schmidt (1991) and Moinzadeh 

and Aggarwal (1997). Besides, stochastic lead times can be allowed in all of the 

models. 
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APPENDIX A 

GOODNESS OF FIT TEST FOR DEMAND 

 

 

In this thesis study, a real life inventory control problem of a single item is 

considered. Demand is originated from the item failures in the bases and it is 

assumed to be Poisson. To ensure that this assumption is valid; a goodness of fit 

test is conducted on the data obtained from the current system. We use the chi-

square, χ
2
, distribution for testing the goodness of fit of the data to Poisson 

distribution. The unit time in study context is a week, therefore to obtain the 

demand data, we classify the demand occurred in the current system weekly. The 

demand data of a base in the past 3 years (156 weeks) is checked and presented in 

Table 7. Among 156 weeks there are 39 weeks in which 3 items are demanded. 

 

Table 8- Demand Data of the Current Model 

Demand/ 

Week (k) 

Frequency 

observed (fo) 

Demand/ 

Week (k) 
Frequency 

observed (fo) 

0 11 5 12 

1 25 6 7 

2 36 7 1 

3 39 8 2 

4 23   

 

To determine whether the observed data fits to Poisson distribution or not, we first 

hypothesized the data as follows: 
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 H0 : The demand follows a Poisson distribution 

 H1 : The demand does not follow a Poisson distribution 

To test the hypothesis, we need the theoretical frequency. Since we, assumed that 

the demand is Poisson with mean 3 items/week, we test the hypothesis with λ=3. 

Recall that the Poisson probability mass function of Poisson distribution is: 

 
( )

!

je
P D j

j

 

    (1), 

 where, D is a random variable denoting the demand. In Table 8, the theoretical 

frequency is calculated using (1); whereas, theoretical frequency is the product of 

probability of distribution and total number of weeks observed, which is 156. 

 

Table 9- Actual and Theoretical Frequencies 

Demand/ 

Week (k) 

Frequency 

observed (fo) 

Probability of 

Distribution (λ=3) 

Theoretical 

Frequency (ft) 

0 11 0.0497 7.7667 

1 25 0.1493 23.3003 

2 36 0.2240 34.9505 

3 39 0.2240 34.9505 

4 23 0.1680 26.2129 

5 12 0.1000 15.7277 

6 7 0.0504 7.8638 

7 1 0.0216 3.3702 

8 2 0.0081 1.2638 
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In the computation of chi-square test to validate the Poisson assumption, equation 

in (2) is used. 

2 0
1

t
k p

k t

f f

f
  


   (2), 

where k–p–1 denotes the degrees of freedom and p denotes number of the 

parameters estimated from the data. Since the only parameter denoting both mean 

and the variance in Poisson distribution is λ and it is not estimated using the 

sample data, p=0. Therefore, the degrees of freedom are: 

k – p – 1  = 9 – 0 – 1 = 8. 

 

Using the standart table of chi-square distribution, with 0.05 level of significance, 

the critical value of χ
2
 for 8 degrees of freedom is 15.51. Therefore, the decision 

criteria will be;  

Reject H0 if χ
2
 > 15.51; otherwise do not reject H0. 

Using the data in Table 8 and (2); for the current model, χ
2
 =  4.3763 < 15.51. 

Thus, we fail to reject H0 and cannot conclude that the demand does not fit a 

Poisson distribution.  

 




