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ABSTRACT 

 

 

IMPLEMENTATION OF A LOW-COST SMART CAMERA APLLICATION ON 
A COTS SYSTEM  

 

 

Baykent, Hayri Kerem 
 

M.Sc., Department of Electrical and Electronics Engineering 
 

Supervisor: Prof. Dr. Gözde Bozdağı Akar 

 

December 2011, 153 pages 

 
The objective of this study is to implement a low-cost smart camera application on a 

Commercial off the Shelf system that is based on Texas Instrument’s DM3730 

System on Chip processor. Although there are different architectures for smart 

camera applications, ARM plus DSP based System on Chip architecture is selected 

for implementation because of its different core abilities. Beagleboard-XM platform 

that has an ARM plus DSP based System on Chip processor is chosen as 

Commercial off the Shelf platform. During this thesis, firstly to start-up the 

Commercial off the Shelf platform the design steps of porting an embedded Linux to 

ARM core of System on Chip processor is described. Then design steps that are 

necessary for implementation of smart camera applications on both ARM and DSP 

cores in parallel are given in detail. Furthermore, the real-time image processing 

performance of the Beagleboard-xM platform for the smart camera applications is 

evaluated with simple implementations.  
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Key words:  Low cost smart camera design, real time image processing, ARM and 

DSP  architectures, embedded system design, performance evaluation of 

Beagleboard-xM 
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ÖZ 

 

 

DÜŞÜK MALİYETLİ BİR AKILLI KAMERA UYGULAMASININ TİCARİ 
KULLANIMA HAZIR BİR SİSTEM ÜZERİNDE GERÇEKLENMESİ 

 

 
Baykent, Hayri Kerem 

 
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

 
Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 

 

Aralık 2011, 153 sayfa 

 

Bu çalışmanın amacı, Texas Instrument’ın DM3730 elektronik yonga üzerinde 

sistem işlemcisine dayalı ticari kullanıma hazır bir sistem üzerinde düşük maliyetli 

bir akıllı kamera uygulamasını gerçekleştirmektir. Akıllı kamera uygulamaları için 

çeşitli mimariler olmasına rağmen, uygulama için farklı çekirdek yetenekleri 

sebebiyle ARM artı DSP tabanlı elektronik yonga üzerinde sistem mimarisi 

seçilmiştir. ARM artı DSP tabanlı elektronik yonga üzerinde sistem işlemcisine sahip 

Beagleboard-XM platformu ticari kullanıma hazır platform olarak seçilmiştir. Bu tez 

boyunca, ilk olarak ticari kullanıma hazır platformu ayağa kaldırmak için elektronik 

yonga üzerinde sistem işlemcinin ARM çekirdeğine gömülü Linux işletim sistemi 

uyarlamasının tasarım basamakları tanımlanmıştır. Daha sonra akıllı kamera 

uygulamalarının ARM ve DSP çekirdekleri üzerinde paralel olarak gerçeklenmesi 

için gerekli  tasarım basamakları detaylı olarak verilmiştir. Ayrıca, akıllı kamera 

uygulamaları için Beagleboard-xM platformunun gerçek zamanlı görüntü işleme 

performansı basit uygulamalarla değerlendirilmiştir.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. Background 

 
During recent years, visual surveillance has become an important topic of research 

due to the increased need for both military and public safety sectors. The need for 

surveillance in large areas such as shopping centers and borders increase the number 

of surveillance cameras connected to the main video analyzer performing dedicated 

real time image processing algorithms to extract the valuable information. These 

increase the processing and storage load of main video analyzer and result with 

development of smart cameras. The aim of smart camera design is extracting the 

valuable information at camera site and sending only this information to decrease the 

bandwidth and cost of communication channels. However smart cameras power 

consumption, volume and cost should not be high like main video analyzers. 

Therefore these smart cameras must be developed on low cost, low power and low 

volume embedded platforms and real time visual surveillance applications developed 

and investigated for high processing power computers and platforms must be ported 

to these embedded platforms. Real time implementation of visual surveillance 

applications can be applied on different platforms and it is not tied to a specific 

hardware platform. However hardware platform must be capable of video capturing, 

video streaming and image processing operations in the limitations of computational 

performance, cost and power constraints. 
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Advances in embedded processors, bring news platforms with the low size, low 

weight, low power and low cost. This results in a great opportunity in developing 

real-time systems. Also rich peripheral environments and different architecture 

capabilities of System on Chip (SoC) platforms make easy the design of smart and 

complex systems such as smart cameras.  

  

1.2. Scope of Thesis 

 

This thesis work defines how to implement a smart camera application on a low-cost 

COTS system that is based on  TI ARM + DSP  SoC, DM3730 processor. We also 

present a summary of the advantages of ARM and DSP based SoC architectures 

together with a review on different architectures. In this thesis Beagleboard-XM 

platform is chosen as a COTS platform and its SoC architecture is investigated. The 

design steps of porting an embedded Linux to ARM core of SoC processor to start-

up the COTS platform is given in detail. The algorithm implementation steps on 

ARM + DSP cores of the Beagleboard-XM platform are described and the real-time 

image processing performances of the ARM and DSP cores for smart camera 

applications are evaluated.  

 

Beagleboard-XM platform is a commercial off the shelf platform without official 

software support to design a specific application on it. Therefore to design a specific 

application on the platform, the embedded system design procedures must be 

investigated and implemented on that platform. In this work, ARM core is used as 

operating system (OS) core to convert an analog detector to a smart camera with the 

advantages of an OS. OS provides integration of different sensors to the system by 

using their open source drivers. OS includes the network and external memory 

management operations that are also necessary for implementation of smart camera 

application. DSP core is used as image processing core and it provides enough 

processing power for necessary image processing applications.  In this thesis work 

Angstrom OS is implemented on ARM core and necessary drivers to implement a 

simple smart camera application are added to implement Angstrom OS. 

Communication structures and common RAM memory usage infrastructure of cores 

are investigated for parallel algorithm implementation. To make necessary input 
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output connections between algorithms and video capture and video display drivers, 

platform specific video capture and video display driver infrastructures are 

investigated. Design steps of the implementation an algorithm on ARM and DSP 

cores are investigated and described. A simple compile and run procedure is defined 

to evaluate the performance of algorithms on the target platform. Furthermore, a 

Running Gaussian average model background subtraction algorithm that needs high 

processing speed for real time operation was implemented on ARM processor, 

NEON coprocessor and DSP processor of DM3730 and processor performances of 

the platform were evaluated separately through experiments.  

 

1.3. Organization of Thesis 

 

Chapter 2 of this thesis gives a brief explanation of smart camera systems. First part 

of this chapter gives information about example platforms of smart cameras. Second 

part of this chapter describes the implementation architectures for smart cameras. 

The chapter ends with a summary of performance comparisons of smart camera 

implementation platforms.  

 

Chapter 3 introduces the hardware of chosen system for a low cost smart camera 

design. An overview about the chosen target board namely Beagleboard-xM is given 

and ARM and DSP core architectures of processor used in the selected hardware are 

described. Furthermore, important peripherals of selected hardware for the smart 

camera design are introduced.  

 

Chapter 4 introduces the embedded systems design steps of smart camera application 

on Beagleboard-XM platform. The embedded OS implementation procedures on the 

ARM and DSP core are described. Configuration of HOST and TARGET setup 

described. Necessary driver installation to make necessary input output connections 

between algorithms and video capture and video display drivers are introduced 

Interprocessor communication protocol is introduced used for parallel programming 

on ARM and DSP core. Algorithm development environments for the target board 

are introduced. The procedures to create a software development kit for 

Beagleboard-XM board by using DVSDK 4.01 are described in this chapter. This 
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chapter also defines how to add a DSP algorithm to a codec server and how you can 

implement an algorithm by using both ARM and DSP cores.  

 

Chapter 5 describes implemented algorithms on the cores and reports the analysis of 

the data collected. This chapter compares the performance of the Beagleboard-XM 

platform with 2.8 GHz Host PC and shows the contribution of DSP core and NEON 

co-processor on the performance of the system. Finally, chapter 6 concludes the 

thesis. 
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CHAPTER 2 

 

 

SMART CAMERAS 

 

 

 

Smart Cameras are devices consisting of image sensing device, an image processing 

module and a communication module. Image sensing device can be a single or 

multiple image sensors. Image processing module provides the application-specific 

information processing and communication module connects the smart camera to the 

external world (host or network) [19]. Smart cameras do not only capture the frames 

from the scene. They also make a sense of what is happening in the image and in 

some cases these cameras take the action defined by camera user. Smart cameras 

offer low power consumption and low physical size, compared to usual PCs. In 

addition to this, they provide the transmission over low-cost, low-bandwidth 

communication channels by allowing the extraction of valuable information at site. 

In the following sections we give a short introduction about the current state of smart 

camera platforms and implementation architectures.  

 

2.1. Smart Camera Platforms 
 
Recently the new technology Microcontrollers and SoC platforms reduce their power 

consumption and size while increasing their processing power.  A number of 

Microcontroller and SoC based vision systems have been developed especially 

dedicated to the task of image processing. The iOne from Ambarella is a smart 

camera based on Android embedded system [47]. This camera has a SoC with triple 

ARM cores and an advanced media DSP. The availability of the SoC processor 

provides the advanced HD camera and multimedia capabilities to that platform.    

Another commercially available vision platform is a BOA Vision System by 
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Teledynedalsa [48]. BOA combines a GPU, a DSP and a FPGA core on a one 

platform and uses the specific advantages of these architectures to design this 

advanced smart camera. An additional indication for the suitability of SoC concepts 

for smart camera design is the variety of developments of smart camera platforms 

reported in the literature. Table 2.1 shows the leading companies and research 

organizations on smart cameras. 

 

Table 2.1. Some Leading Companies and Research Organizations on Smart 

Cameras (Adapted from [19]) 

 
Organization/company  Project/Product   Country 

SCS ‐ Carnegie Mellon University  CMUCam Vision Sensors   USA 
WSNL ‐ Stanford University  Mesh Eye architecture   USA 
LASMEA ‐ Blaise Pascal University/CNRS  SeeMOS project   France 
Vision Components  VC series  Germany 
Smart Systems ‐ Ausrian Research 
Centers  Smart eye sensors  Austria 
Le2i ‐ Bourgogne University/CNRS  High‐speed smart camera  France 
Intellio  ILC series  Hungary 
Sony  XCI series  Japan 
National Instruments  NI 17 xx series and CVS  USA 
SICK IVP  IVC 2D and IVC 3D  Sweden 
Philips/NXP Research  WiCa wireless mote  Netherlands

NeuriCam 
VISoc Vision System‐on‐
Chip  Italy 

ITI ‐ Graz University of Technology  SmartCam project  Austria 
 

In section 2.3, we will give the details of some of the smart camera implementations. 

However, before this we will first concentrate on the architectures for smart cameras. 
 

2.2. Architectures for Smart Camera Implementation 
 
As already mentioned before, smart cameras are based on embedded system 

technology. The group of embedded systems is diverse and varies with respect to its 

level of flexibility between each category. Field Programmable Gate Arrays 

(FPGAs), Reduced Instruction Set Computers (RISCs), Digital Signal Processors 

(DSPs), and Application Specific Integrated Circuits (ASICs) are the main 

categories. On the other hand, two other groups having other special properties, 
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namely Microcontrollers and Graphics Processing Units (GPUs), share the same 

features as the embedded systems. Microcontrollers include the set of System-on-

Chip platforms (SoCs). Graphics Processing Units (GPUs) is a recently emerging 

area. A short characterization of each single domain is given hereafter, some notes on 

general selection criteria are explained in the following section. For a more elaborate 

introduction to processors and embedded computing, the book of Wolf [15] is a 

reference for the interested reader. Note that it is not possible to mention all types of 

methodologies, design issues, development groups and reference implementations 

here, thus we aim at giving a general overview and only focus on aspects relevant for 

our own work. 

2.2.1 Field Programmable Gate Array (FPGA) 
  

Field Programmable Gate Arrays are semiconductor devices which contain a huge 

number of logic elements and connections in-between. The elements are called logic 

blocks and can be programmed to perform a logic operation with limited complexity, 

from simple AND gates up to full multipliers or even complexer functions. The name 

field programmable denotes the possibility to program interconnections and logic 

blocks after manufacturing in the field. Many different types of FPGAs exist, which 

can be chosen according to design and security issues. FPGAs based on Static 

Random Access Memory (SRAM) are programmed at power-on and are booted from 

some external functionality. Erasable Programmable Read-Only Memory (EPROM) 

devices can be programmed multiple times but is usually programmed during 

manufacturing. The program can be erased by exposing the device to ultra-violet 

light, and can be re-programmed afterwards. Electrically Erasable Programmable 

Read-Only Memory (EEPROM) technology based FPGAs can be erased and re-

programmed electrically which makes the need for ultra-violet light exposure 

obsolete. 

 

Fuse and Anti-Fuse based FPGAs are working on opposite electrical principles. In 

the first case programming is done by breaking conductive connections and in the 

latter case connections are established if the applied current is exceeding a specified 

limit. The latter technology is much more common in the world of Integrated 
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Circuits (ICs); however, FPGAs based on both techniques can be programmed only 

once. 

The programs for FPGAs are usually written in a Hardware Description Language 

(HDL) such as ABEL, VHDL or Verilog. Given the description of the desired 

functionality a number of steps have to be taken to finally place the functionality on 

the device. To accelerate this process different development tools can be used such 

as SystemC. An important feature is the libraries of function blocks and macros that 

can be used to further accelerate the design of programs. The list of manufacturers of 

FPGAs contains companies like Altera, Atmel, Actel and Xilinx among others. 

FPGAs can be used to create complete devices such as DSPs or to perform 

computationally expensive tasks in hardware, such as Fast-Fourier-Transform (FFT) 

or video en- and decoding. However, FPGAs are also mostly used for prototyping 

ASICs, and as their capabilities and speed increase, nowadays complete SoC outlines 

can be fabricated on FPGA technology. 

2.2.2. Reduced Instruction Set Computer (RISC) 
 
The term RISC was introduced to differentiate from the Complex Instruction Set 

Computer (CISC) architectures. The RISC was introduced in the late 1970s based on 

several design principles to create a new architecture, originally to facilitate the use 

of optimized compilers for the generation of machine code. The instruction set 

should contain only simple instructions, being decodable by the CPU within one 

clock cycle. Furthermore, the use of register files and pipelining allows for execution 

at high frequencies, also factoring out slow memory accesses. For an early 

introduction and review of RISC processors, the reader is referred to the article of 

Patterson [16]. 

 

Main representatives of RISC processors nowadays are the ARM processor family 

[17], the MIPS architecture [18] and the PowerPCs. Manufacturers of RISC 

processors mainly include Freescale Semiconductors, IBM, AMCC and MIPS 

Technologies. 

2.2.3 Digital Signal Processor (DSP) 
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Another big and important group of embedded processors is formed by DSPs. 

Originally developed for one-dimensional signal processing tasks in the real-time 

computing domain for telecommunications; they are now more and more emerging 

into the image processing domain. To allow for fast itering and folding operations, 

one important feature of DSPs was an onboard multiplier, also providing a multiply-

accumulate (MAC) instruction. This is still a common feature on nowadays DSP 

architectures. Recent DSPs also often include specialized instructions for more 

evolved digital signal processing operations, such as Viterbi en-/decoding for 

example. Being related closely to general-purpose computing systems in respect of 

their programming flexibility, the newer series DSPs are featuring Very Long 

Instruction Word (VLIW) and Single-Instruction, Multiple-Data (SIMD) technology, 

which means that multiple functional units can be handled concurrently. Software for 

DSPs is usually written in a high-level language like C or C++ which makes 

development of applications relatively straight-forward and efficient. Optimization of 

programs is done during compilation which means that the developer is only able to 

in influence optimization at a moderate level. While DSPs have been developed 

working mainly in the fixed point domain for almost two decades, recently DSPs 

equipped with a Floating Point Unit (FPU) have become more attractive. However, 

fixed-point calculation is still the predominant domain, as more evolved DSP 

architectures clearly come at a considerably higher price due to the increased 

hardware complexity. Needless to say, that the inclusion of FPUs in DSPs also 

comes at considerably higher energy consumption and increased chip area. 

 

First prototypes of DSPs were proposed in the late 70s by Intel and AMI. Later the 

principles were refined and the result full-features DSPs were presented by AT&T 

and NEC in 1980. A big success was the introduction of the first DSPs from Texas 

Instruments which is still holding on. Today TI is the biggest manufacturer of DSPs 

beside other producers like Motorola and Analog Devices. The range of pricing for a 

DSP ranges from a few up to a few hundred dollars. Likewise the band of power 

consumption of DSPs ranges from 50mW up to 5W. The variety of DSPs is manifold 

and special type processors are available for almost each specific application, thus it 

is up to the developer make the right selection. Concerning a very popular group of 
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DSPs especially suitable for video processing, the TI TMS320C64x™ DSP series a 

block diagram of the basic processor design is depicted in Figure 2.1. 

 

 

 
Figure 2.1 TI TMS320C64x™ DSP series a block diagram (adapted from [49]) 

 

2.2.4. Application Specific Integrated Circuit (ASIC) 
 
A group of devices dedicated for high volume production are Application Specific 

Integrated Circuits. These devices only contain the components that are very specific 

and necessary for performing only one given task. Different design and 

manufacturing methodologies exist, ranging from full custom ASIC design to 

structured ASIC design. The major differences are in the usage of predefined macros, 

cell libraries and intellectual property (IP) cores. As in FPGA design these 

predefined modules can be used to speed up the development process trading against 

chip area and cost. While in custom ASIC development the granularity of 

development is to define the characteristics of metal layers in the semiconductor, in 

structured ASIC design a set of predefined characteristics and their semiconductor 

implementation are given in advance (which in turn reduces development time 

considerably). At the very high-end structured ASICs are also sometimes referred as 

SoCs if complete DSP cores and modules for interface functionality are included in 

the design. 

 



 

 
 11 

The major benefits of ASICs are their asymptotically decreasing cost when 

manufactured in high numbers, a little increase in speed over FPGAs and a decrease 

in power consumption to a minimum. However, the biggest problem with ASICs is 

their design and production cycle and the non-recurring engineering costs, which can 

easily exceed 1 million dollars. Furthermore the static layout causes big problems as 

a redesign due to bug fixing is a costly exercise. However, as development tools get 

better also ASIC design and development becomes easier. As an example mobile 

phones are a representative application for ASICs as the worldwide sale in high 

volumes and the well-defined task to perform easily balances the concerns in 

manufacturing and design. Producers of ASICs include Altera, Fujitsu, Infineon or 

NEC among others. 

 

2.2.5 System on Chip (SoC) 
 
Microcontrollers and System-on-Chip platforms form the biggest group of embedded 

systems nowadays, being part of almost any electronically device in our 

environment. Microcontrollers are some type of microprocessor, additionally 

including memory resources for program and data storage, timers and external, 

typically serial, interfaces. Microcontrollers emphasize the aspects of cost-

effectiveness, high integration, low power consumption and self-sufficiency. While 

microcontrollers are single physical packages aimed at performing small-sized tasks, 

the term System-on-Chip refers to the integration of an entire system - or all 

electronic circuits needed for performing a given application - into one single chip. 

Usually, System-on-Chip platforms are combinations of a core processor, a set of 

interfaces and a selection of external controllers in one physical package. Many SoCs 

consist of a General Purpose Processor (ARM), which can be a RISC processor like 

an ARM or a PowerPC, or can also be an x86-based processor like the Intel Celeron 

M. While the ARM is mainly included to perform operation system tasks, SoCs 

mostly contain one or more DSP units dedicated to the real signal processing tasks. 

These types of devices are also called Media Processors. 

 

In the last few years, media processors are becoming more and more important as 

they are integrated for active video processing or streaming in many devices of 
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everyday use. Target applications are present especially in mobile phones, PDAs, 

handheld video players, set-top boxes and in automotive engineering. In the context 

of image processing, these devices feature special properties and capabilities, such as 

video en- and decoding support in hardware and limited controlling mechanisms for 

external devices such as cameras. Though, on these special platforms only little 

image processing capabilities are usually available as they are tailored to meet a 

special application in a single or a set of appliances. However, the principles of SoCs 

make them also appealing to the designers of Smart Cameras as all necessary 

features are provided by a SoC solution. Peripherals for system integration, interfaces 

for connecting video sources and an extendable architecture to include more DSP 

units for even higher signal processing power make this set of devices a good choice 

as a base for building a video processing system. 

 

Several manufacturers of Microcontrollers and SoC platforms exist. The biggest ones 

are TI, Analog Devices and Intel as a vendor of the XScale driven devices. Further 

vendors are AMD which is producer of the Geode processor, Atmel, 

STMicroelectronics, Freescale and Cirrus Maverick among others. 

 

2.2.6. Summary 
 
The architectures described above, especially DSPs, FPGAs, ASICs and SoCs have 

their own field of application, their own roots and goals and obviously several 

benefits and disadvantages. 

 

The choice of which technology to use for a self-made prototypical setup is 

manifold, and most times, the final decision is based on a detailed planning process 

applying Hardware-Software Co-Design principles. General rules of thumb to select 

the right technology for a dedicated task were proposed in the work of Kisaficanin 

[40]. The main aspects considered here, are 

The available time for development (Time-To-Market), 

• the expected and required funds, 

• the targeted area of application, and 

• The expected and desired volume of production. 
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For a relatively small volume of less than 1.000 units per year general-purpose 

computers and FPGAs are a good choice considering their price and the reduced 

need for hardware dependent development. At the high end of production of more 

than 100.000 units per year, the usage of a tightly tailored ASIC is reasonable as the 

initial development costs and the need for special developing are notably high, but 

the deployment in high volumes justifies adequate investments. In the mid-range 

DSPs and media processors are good selections as they form a good trade-off 

between programming flexibility and the amount of necessary specific development. 

Most smart cameras are based on a combination of several of these devices 

manufactured in SoC technology because a smart camera implicitly needs 

peripherals and interface but also signal processing power delivered by DSPs. Figure 

2.2 shows a comparison of the most prominent smart camera implementation 

architectures and their properties. 

 

 

 

 
Figure 2.2 A Comparison of the most prominent smart camera implementation 

architectures and their properties (adapted from [19]) 
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2.3. Examples of Smart Cameras 
 

2.3.1 The CMUCam 
 
In 2002, The Carnegie Mellon University Camera was originally presented as a low 

cost embedded vision platform. It was commercially available right from the 

beginning for nearly $100. The first version proposed in 2002 by Rowe, Rosenberg 

and Nourbakhsh [3] was based on three chips mainly, an Omnivision OV6620 

CMOS camera sensor, an Ubicom SX28 microcontroller and a simple level shifter 

for serial communication.  

 

In 2005, the second generation of the platform was presented. One enhancement 

compared to the original version was the use of an Ubicom SX52 microcontroller 

still running at 75 MHz but now offering 262 bytes of SRAM [4]. The power 

consumption at runtime was about 850mW, while the price for the platform was 

about $199. 

 

The third and actual version of the system is available since the beginning of 2007 

for approximately $239 [2]. Now another microcontroller is used, namely a NXP 

LPC2106 which is a 32-bit 60 MHz ARM7TDMI processor with 64k bytes of RAM. 

Another big advantage is the use of a Multimedia Card (MMC) interface which can 

be used to read and write files and a CIF resolution color image sensor (352x288). 

The overall system consumes between 300 and 500 mW of power, depending on the 

operation mode.  

 

2.3.2 The WiCa 
 
The Wireless Camera was developed at NXP Semiconductors and is a smart camera 

platform featuring two connectors which can be used freely to capture from one 

single camera or to form a stereo camera setup [5, 6]. The cameras deliver images in 

VGA resolution of 640x480 pixels. The SIMD processor is a Philips Xetal IC3D 

device whose core is a linear array of 320 single RISC processors for low-level 

image processing tasks. The ATMEL 8051 microcontroller is dedicated to multiple 

tasks. It mainly controls the IC3D processor, communicates with the RISC processor 
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array and takes care of program flow and video synchronization. The dual-port RAM 

available on the platform provides a total of 128k bytes of memory, which is 

separated into two banks with a block of 64k bytes each. Several algorithms have 

been proposed for face detection or human gesture analysis where the main focus is 

to exploit algorithm level parallelism [5, 12]. 

 

2.3.3 The Cyclops 
 
In respect of large sensor networks and energy-aware smart sensors, Rahimi et al. 

proposed a highly power-efficient smart vision platform called Cyclops [7]. The 

camera module is a 352x288 resolution ADCM-1700 CMOS camera from Agilent 

Technology and can be configured to deliver 8-bit grayscale, 16-bit color or 24-bit 

color images. The microcontroller unit is a ATMEL ATmega128L running at 7.37 

MHz, which offers 4k bytes of internal SRAM memory and is extended to 64k bytes 

total memory on the external SRAM block. The processor is mainly used to time and 

coordinate external and internal events and interrupts. The Xilinx XC2C256 

CoolRunner CPLD serves as a frame grabber which can fulfill the high demands on 

fast data transfer and address generation. The platform is designed to work in larger 

sensor networks, thus it is highly power-aware and energy consumption is in the 

range of a few mW. 

 

2.3.4 The SmartCam 
 
The SmartCam is a low-power, high-performance embedded vision system. It 

consists of a set of individual components [8, 9]. The prototype is based on an Intel 

IXDP425 development board equipped with a 533 MHz XScale network processor, 

which makes several communication systems such as Ethernet, USB, RS232, 

WLAN, and GSM possible to be exploited. The board features 256M bytes of RAM 

and four PCI slots, an on-chip Ethernet connection and multiple serial ports amongst 

others. For the main processing task, each PCI slot can host an ATEME Network 

Video Development Kit (NVDK) board which consists of 264MB of memory and TI 

TMS320C6416 DSPs running at 1 GHz. The plausibility of the concept was 
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demonstrated on a vehicle detection and tracking application for tunnel safety [9, 13, 

and 14]. 

 

2.3.5 The MeshEyeTM 
 
The MeshEyeTM platform was proposed as a single node for larger distributed smart 

camera networks [11]. The main platform can host up to 8 low-resolution imagers, 

however, the prototype contains only two 30x30 pixel optical mouse sensors and one 

640x480 VGA resolution color sensor. The main processing core is an Atmel 

AT91SAM7S microcontroller which is a ARM7TDMI 32-bit RISC processor 

running at 55 MHz similar to the CMUCam3 platform the system contains a 

MMC/SD card interface allowing for easy memory expansion. Another important 

feature is the use of a TI CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF 

transceiver to connect the mote to other notes in a larger network.  

2.3.6 Summary 
 
The smart cameras described above, especially The CMUCam, The WiCa, The 

Cyclops, The SmartCam and The MeshEyeTM differ in hardware whereas their 

goals are similar. Table 2.2 shows a comparison of smart cameras. All of the smart 

camera implementation has a wireless node for network connection and they have 

powerful processing units that generally depend on 32-bit architecture that enables 

faster data processing. In some architecture a second processor is used for additional 

processing and control. Since most processors have small internal memories, 

additional external RAM and Flash memories are used for frame buffering and 

permanent data storage. Resolution of image sensors changes between one CIF and 

VGA. Some smart cameras use two image sensors to provide binocular vision. 

Wireless connection is achieved by an Ethernet or RF radio link based on IEEE 

802.15.4. Almost all of the smart cameras implementation has an image processing 

application to add a value to captured frames from image sensor.    

 

Finding the right and meaningful hardware and configuration to implement a smart 

camera application on is a matter of ongoing research. However, one can summarize 

that, in general, smart cameras are platforms that consist of 
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Table 2.2. A Comparison of Smart Cameras 

 Proposal 
Year 

Processing 
Unit 

Running 
Speed Memory 

Image 
Sensor 

Resolution 
Algorithm Communication

T
he

 C
M

U
C

am
 

2002 Ubicom SX28 75 MHz 136 SRAM 143 * 80 

Simple color          
blob detection 
(143*80 pixel,         

fps = 16.7) 

IEEE 802.15.4 
compliant 

(Telos mote) 
2005 Ubicom SX52 75 MHz 262 SRAM 143 * 80 

Simple color blob 
detection and Color 
Statistic  Calculation 

(143*80 pixel,         
fps = 16.7) 

2007 NXPLPC2106 
ARM7 60 MHz 64k RAM 352 * 288 

Viola-Jones faces 
detection (60 * 60 

pixel, fps=1) 

T
he

 W
iC

a 

2006 

SIMD Philips 
Xetal IC3D 
and ATMEL 

8051  

55 MHz 2*64k 
RAM 640 * 480 - RF ZigBee 

T
he

 C
yc

lo
ps

 

  

XC2C256 
CoolRunner 
CPLD and 

ATmega128L 

7.37 MHz 

4k internal, 
64k 

external 
SRAM 

352*288 

Object Detection 
(128 * 128 pixel, 

fps=4) and 
Hand gesture 
Recognition 

 (128 * 128 pixel, 
fps=2)  

IEEE 802.15.4 
compliant 

(MICA2 Mote)

T
he

 
Sm

ar
tC

am
 

  

XScale 
Network 

Processor and 
TI 

TMS320C641
6 DSP 

533 MHz 
(XScale) 

and         1 
GHz 

(DSP) 

256 MB 
(XScale) 

and        
264 MB 
(DSP) 

640x480 
Vehicle Detection and 
Tracking Application 

for Tunnel safety 

Ethernet, 
Wireless 

GPS/GPRS 
Radio 

T
he

 
M

es
hE

ye
T

M
 

  
ATMEL 

AT91SAM7S 
ARM7 

55 MHz 

64 KB 
SRAM and 

256 KB 
Flash; 

external 
MMC/SD 

Flash 

640 * 480 
and         

30 * 30 

Object Detection and 
Tracking   RF ZigBee 

 

 

• one high resolution (generally VGA) or multiple high and low resolution 

image sensors , which are growing steadily in their resolution, 

• a 32-bit architecture microcontroller (generally ARM), which is performing 

low-level operation system tasks and  a high performance computational 

processor, which is a DSP in the majority of cases  

• extra RAM and Flash memory resources for frame buffering and permanent 

data storage 
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• Some type of communication module, which is mostly wired or wireless 

Ethernet. 

 

After a summary of smart cameras in the literature we can list the below performance 

parameters to evaluate a smart camera application.  

• Resolution of image sensor 

• Processing power for implementation of high level image processing 

algorithms 

• Low Power Consumption 

• Low-bandwidth Network connection for streaming video 

•  User friendly control interface through network 

• Low cost 

• High Flexibility 

  

A RISC architecture processor is the most appropriate processor to realize the Low-

bandwidth Network connection, user control interface over network and high 

processing power performance parameters of a smart camera. ARM core can be good 

choice for RISC architecture processor because of its low power and price. Also a 

SIMD processor is necessary for implementation of high level image processing 

algorithms on high resolution image sensor outputs. Because of flexibility option a 

DSP processor can be good solution for implementation of a right and meaningful 

smart camera application. Therefore selection of ARM + DSP SoC processor that has 

image capturing and displaying features can be a compact and effective solution to 

implement a low-cost smart camera application. 

 

2.4. Basic blocks of the implemented system 
 

Figure 2.3 shows the flow chart of the implementation steps of a low-cost smart 

camera application on an ARM + DSP Soc Platform which is performed in this 

thesis. As can be seen from the figure, the first steps are defining the features of 

smart camera application. In this work a VGA resolution, YUYV pixel format 

A4Tech USB camera is selected as input sensor. For displaying captured frames  
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Figure 2.3 The Implementation Steps of a Low-Cost Smart Camera Application on 
an ARM + DSP Soc Platform  
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ARGB pixel format DVI output is selected. For streaming video and controlling the 

camera, a wired or wireless network connection is desired. For implementation of 

these features ARM + DSP architecture is selected. After selection of architecture, a 

prototype board can be developed for implementation. However, developing a new 

platform and applying necessary drivers on designed platform requires a NRE and 

time for implementation. So some low-cost COTS systems can be used for 

implementation. In this work Beagleboard-XM platform is selected for 

implementation, because of its powerful ARM + DSP SoC processor, low price and 

networking, capturing and displaying capabilities. The core of this platform is a new 

technology processor that is used in some cell phone applications and its new 

generations are in the roadmap of TI. Therefore implementation of smart camera on 

this platform can also be ported to the new generation boards of TI. However, this 

board is a COTS system and it is not supported officially by TI DVSDK. Therefore, 

to start up the platform, we must review the hardware of platform and determine the 

necessary drivers for the implementation of smart camera application. And then we 

must find an open source embedded OS that support necessary drivers and port it to 

the ARM core of processor. After that step we must modify the DVSDK that is 

developed for OMAP3530 EVM board according to our platform. After the 

modification, we must develop an application that runs on both ARM and DSP cores 

by using modified DVSDK.  
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CHAPTER 3 

 

 

HARDWARE OF THE SELECTED PLATFORM 

 

 

 

In this thesis, to design a low cost smart camera with a sufficient processing power, 

DM3730 processor, which is a SoC processor with 1 GHz ARM® Cortex™-A8 and 

800 MHz TMS320C64x+™ DSP core, is selected from the digital media processor 

family of TI. To setup a low cost smart camera system with DM3730 processor the 

hardware of Beagleboard-xM platform is selected as the hardware of our system. 

 

In this chapter, very brief information is given about the hardware of the selected 

platform, namely the Beagleboard-xM board and its core processor DM3730 

architecture. This chapter describes the peripheral units on board and gives brief 

information about the architecture of the main cores and co-processors included in 

DM3730 processor. Development and implementation of algorithms that will be run 

on DM3730 target platform is so much related with the peripheral units of the board 

and the architecture of the processor. This chapter consists of two main sections of 

which the first one describes the Beagleboard-xM board, and the second one 

describes the DM3730 Architecture. 

 
3.1. Overview of the Beagleboard-xM Platform 

 
Beagleboard-xM is a single-board computer system based on TI’s DM3730 

processor. It is able to achieve laptop-like functionality thanks to its performance and 

to the expansion interfaces and peripherals available on the board. Although it has a 

high performance processing cores, it is at the same time a low-power and low-cost 

embedded computer system. The BeagleBoard-xM is not intended to be a 

development environment for a final product. It is designed as the basis for an 
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experimental and test platform [27]. The board consists of TI DM3730 processor, 

memory with 512MB of low-power DDR RAM, DVI-D and S-Video outputs, stereo 

audio inputs and outputs, high capacity SD card slot, JTAG input, digital camera 

input port, four-port USB hub and a 10/100 Ethernet port, while maintaining a tiny 

3.25" × 3.25" footprint. At the time of writing, the cost of a BeagleBoard-xM is US$ 

149. The Beagleboard used during this project was the version BeagleBoard-xM Rev 

B. Figure 3.1 shows the key features of this board.  

 

 

 

 
Figure 3.1 Key features of the Beagleboard-xM Board [53] 

 

 

 

The core of the BeagleBoard-xM Rev B is the DM3730 processor packaged in a 

Package-on-Package (POP). In the POP packaging techniques, the memory chips are 

mounted on top of the processor package. In the Micron POP there is 4 Gb MDDR 

SDRAM x32 (512MB @ 200MHz). This device is the only on-board memory 

available. Nevertheless, since Beagleboard-xM has standard interfaces for 

connecting external storage devices. Additionally, it is possible to extend the system 

memory by means of SD or MMC cards or by a USB flash or hard drive. However, 

accessing these external memories will be quite slow. TI’s TPS65950 chip is used for 
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power management. The TPS65950 is a Power Management Multi-Channel IC 

(PMIC) solution. In a single IC a multichannel power-management device and an 

audio coder/decoder are integrated. This chip is in charge of controlling the power 

for both peripherals and the DM3730 processor. A 14-pin JTAG interface is also 

provided to permit software debugging and programming of the on-chip FLASH 

memory (i.e., to install a system image or boot loader). Support for RS232 via 

UART3 is provided by a DB9 connector. Through this interface it is possible to 

access the Beagleboard-xM using a DB9 flat serial cable. 

 

3.2. DM3730 Processor 

 
DM3730 is a high-performance, digital media processor based on OMAP™ 3 

architecture provided by Texas Instruments for 2008.  This media processor is 

designed to provide video, image and graphics processing [28]. This processor is 

offered for streaming video, 2D/3D mobile gaming, video conferencing, high-

resolution still image, Video capture in 2.5G wireless terminals, 3G wireless 

terminals, and rich multimedia-featured handsets, and high-performance personal 

digital assistants (PDAs) [28]. Table 3.1 gives the distribution of the ARM core 

processors of TI according to application area. 

 

Table 3.1. TI’s ARM Core Processor Distribution 

  

  

General Purpose 
ARM Only 

General Purpose 
ARM+DSP 

Video Oriented ARM/ 
ARM+DSP 

Family Sitara (AM) Integra (C6L, C6A8) Davinci (DM) 

ARM926 
AM1705           
AM1707           
AM1806           
AM1808 

OMAP-L137      
OMAP-L138      

C6L13X 

DM355       DM365     
DM644X    DM6467 

Cortex A8 

OMAP3503        
OMAP3515   

AM3505        
AM3515        
AM3703        
AM3715        
AM3982        
AM3984 

C6A8187   C6A8168 
OMAP3525  

OMAP3530 DM3725  
DM3730 

 

In [28], general subsystems of the device are summarized as: 
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• Microprocessor unit (MPU) subsystem  

• IVA2.2 subsystem  

• SGX subsystem  

•Camera image signal processor (ISP)  

• Display subsystem  

• System Direct Memory Access (SDMA)  

• Interprocessor Communication (IPC) 

 

 In this thesis, most of the subsystems of the device are used to implement a smart 

camera application on DM3730 processor and to increase the performance of it. This 

processor is a double core processor, namely 1 GHz ARM Cortex™-A8 core with 

NEON™ SIMD coprocessor as the general purpose main processor unit of the 

system and 800 MHz advanced very-long-instruction-word (VLIW) – 

TMS320C64x+™ DSP core [28]. This processor is a low power IC that is 

manufactured by TI (Texas Instruments) especially for hand-held devices, gaming 

consoles, video and image processing, and communication devices. In figure 3.2, 

generalized block scheme of DM3730 processor is given [28]. As can be seen in 

figure 3.2 all of the subsystems connect to a common interconnect network by 32 bit 

or 64 bit read/write registers. This network enables the data transfer and 

communication between subsystems. There is a 32 KB Read Only Memory (ROM) 

of processor. This ROM programmed at factory to load the startup files of kernel that 

will be installed on ARM core of the processor from different peripherals like NAND 

memory, Multi Media Card (MMC), USB etc.  The processor has also a 64KB On-

Chip Static Random Access Memory (SRAM). This shared SRAM is used as cache 

memory by ARM core and by other subsystems of the processor. Use of SRAM 

instead of Dynamic Random Access Memory (DRAM) increases the platform’s 

read/write speed during its operation. Because SRAM stores a bit of data by using 

the state of a flip-flop while DRAM uses transistor-capacitor pairs for storage. Flip-

flops are generally faster and require less power than transistor capacitor pairs to 

store a bit of data. However production of flip-flops is more expensive.  
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Figure 3.2 Functional block diagram of DM3730 media processor of the 

Beagleboard-xM Board 
 

 

 

3.2.1 Microprocessor Unit (MPU) Subsystem  

The MPU subsystem integrates the following:  

• ARM® Cortex™-A8 core  

• ARM Version 7™ ISA: Standard ARM instruction set + Thumb®-2, 

Janelle® RCT Java accelerator, and media extensions  

• NEON™ SIMD coprocessor (VFP lite + media streaming instructions)  

• Cache memories  

o Level 1: 32KB instruction and 32KB data 4-way set associative cache, 

64 bytes/line  
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o Level 2: L2 cache and cache controller are embedded within the ARM 

Cortex-A8 CPU - 256KB, 8 ways associative, 64 bytes/line, parity 

and error-correction code (ECC) supported  

• Memory management unit (MMU) and translation look-aside buffers (TLBs)  

• Interrupt controller (MPU INTC) of 96 synchronous interrupt lines  

• Debug, trace, and emulation features: ICE-Crusher, ETM, ETB modules.  

 

ARM Cortex A8 

The Cortex-A8 processor is a microprocessor designed by ARM Holdings based on 

the ARMv7-A, a 32-bit Reduced Instruction Set Computer (RISC). Figure 3.3 shows 

the performance, functionality and capability distribution of the ARM CPU processor 

cores of TI.  

 

 

 

 
 Figure 3.3 The TI’s Linux supporting ARM CPU processor cores 
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The ARM9 (375-450Mhz) is the low cost and most widely used processor core in the 

market while the Cortex-A8 (600Mhz-1.5Ghz) is a low-power, high-performance 

single core microprocessor designed for portable devices having the following main 

features[29]: 

 

• frequency from 600 MHz up to 1.5 GHz; 

• Dhrystone performance is 2.0 DMIPS / MHz; Dhrystone refers to the performance 

as measured by means of the Dhrystone benchmark and DMIPS refers to Dhrystone 

Million Instruction Per Second. This benchmark was created in 1984 by Dr. 

Reinhold P. Weicker and it tests integer computation performance of a processor 

without any floating-point operations. It became popular since it is free of charge, 

while the most popular benchmarks belonging to the SPEC suite are quite expensive. 

However, it has several notable limitations as it does not consider many important 

factors such as the RISC nature of the processor, multitasking, memory hierarchy, 

and advanced processor designs (as found in superscalar and VLIW computers) 

• a superscalar processor with two different pipelines. The first pipeline is in charge 

of the execution of integer ARM instructions. The second pipeline is a NEON 

pipeline for the execution of advanced SIMD and Vector Floating Point (VFP) 

instruction set; 

• dynamic branch prediction with branch target address cache, global history buffer, 

and 8-entry return stack;  

• Memory Management Unit (MMU) and two 32 entries Translation Look-aside 

Buffers (TLBs) for data and instruction (respectively); 

• static and dynamic power management; 

• L1 instruction and data cache of 16KB or 32KB (configurable size). The L1 cache 

is integrated on-chip so that it can be accessed in a single clock cycle; 

• L2 cache up to 1 MB configurable size with parity and Error Correction Code 

(ECC) techniques implemented. The L2 cache is banked so that only the bank in 

question is activated for increased power saving.  

 

Three technologies implemented in the Cortex-A8 are noteworthy for our project. 

The first one is the Thumb-2 instruction set, an extension of the earlier Thumb 

instruction set. When the processor is in the Thumb instruction set state, it is able to 
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execute variable-length instructions. In this state the instruction length is not fixed at 

32 bits, but can be either 16 bits or 32 bits temporarily breaking the RISC model. The 

main advantage is to reduce the instruction code size. This aspect can be very 

important when dealing with embedded devices with a limited amount of main 

memory. The short instructions (16 bits) utilize implicit operands or limitations of 

the more general instruction set. In fact only a limited set of operations can be 

expressed through these 16 bits instructions. Thumb-2 is an enhancement of the 

Thumb technique as it introduces the possibility to interleave 16 bit instructions with 

32 bit instructions while still in the Thumb instruction set mode.  

 

The second technology is the Vector Floating Point (VFP) architecture. This consists 

of a coprocessor extension of the ARM architecture capable of executing floating 

point operation with half, single, and double precision. It is fully compliant with the 

IEEE 754 floating point format. 

 Third is the NEON technology [19], a 128 bit SIMD architecture extension. Thanks 

to this, the Cortex-A8 is able to execute advanced SIMD instructions. SIMD is a 

class of parallel execution that exploits parallel operations on data. NEON is 

considered short-vector architecture, this means that registers are considered as 

vectors of elements of the same type of data and the same operation is performed in 

parallel in different lanes. The data types available in this SIMD instruction set are 

signed and unsigned 8 bits, 16 bits, 32 bits, 64 bits and single precision floating 

point. This technology provides a significant acceleration in the performances of 

multimedia and signal processing algorithms such as video encode/decode, 2D/3D 

graphics, gaming, audio and speech processing, and image processing. The 

motivation for this is that in such applications it is very common that an operation is 

to be performed on an array of data, this is naturally highly parallel, hence it is well 

suited to a SIMD instruction set.  

3.2.2. IVA2.2 Subsystem  

The device includes the high-performance Texas Instruments image video and audio 

accelerator (IVA2.2), based on the TMS320DMC64X+ VLIW digital signal 

processor (DSP) core. The internal architecture is an assembly of the following 

components:  
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• High-performance TI DSP (TMS320DMC64X+) integrated in a 

megamodule, including local L1/L2 cache and memory controllers  

• L1 RAM and L2 RAM and ROM  

• Video hardware accelerator module, including local sequencer  

• Dedicated enhanced data memory access (EDMA) engine to 

download/upload data from/to memories and peripherals external to the 

subchip  

• Dedicated memory management unit (MMU) for accessing level 3 (L3) 

interconnect address space  

• Local interconnect network  

• Dedicated modules SYSC and WUGEN in charge of power management, 

clock generation, and connection to the power, reset, and clock manager 

(PRCM) module  

VLIW TMS320DMC64X+ DSP 

The TMS320C64x+ DSP is the latest and most widely used fixed point DSP from 

TI’s C6000 DSP family CPU. The TI’s other most widely used DSP for latest 

releases is C674 fixed and floating point DSP. Figure 3.4 shows the block diagram of 

C64x module. 

 

The TMS320C64x+ DSP is a VLIW architecture that executes up to eight 32-bit 

instructions per cycle ([31]). This is possible because in the CPU architecture 8 

functional units are present. These functional units are divided into:  

 

• 6 ALUs (single 32 bit, double 16 bit, or quad 8 bit arithmetic operations per clock 

cycle); 

• 2 multipliers (two 16x16 bit multiplies or four 8x8 bits multiplies per clock cycle). 
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Figure 3.4 C64x module block diagram 

 

 

 

This DSP processor includes sixty-four 32-bit general purpose registers. The 

TMS320C64x+ benefits from its VLIW architecture. The main advantage is due to 

the grouping of instructions. This reduces the number of instructions that are 

produced for a given amount of code (hence less memory is needed), thus the 

number of fetches from the instruction memory is reduced (resulting in less power 

consumption), and the execution time is reduced by exploiting the instruction VLIW 

architecture is a static way for exploiting the instruction level parallelism of a 

program. The compiler packs a group of instructions that can be executed in parallel 

into longer instructions at compile time. This means that when the CPU executes one 

VLIW, several single instructions are executed in parallel at each clock cycle. Due to 

the static nature of this technique, it is not possible to exploit optimally all of the 

potential instruction level parallelism. 

 

The C64x+ is a fixed-point DSP. This implies that floating point operations are not 

executed in hardware, but rather are emulated by software. Nevertheless software 

performance can be improved by using TI’s IQmath Library for C64x+ (details in 
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[41]). This library is a collection of highly optimized mathematical functions (written 

as C/C++ routines) aimed for porting floating-point algorithms to fixed-point code 

that can be executed by the C64x+ hardware. Another useful tool for improving 

performance of the software running on the DSP, is the TI C64x+ DSPLIB [42]. 

DSPLIB is a collection of highly optimized C-callable routines that are written in 

assembly code. Most of these routines are used for signal processing, especially in 

computationally expensive real-time applications. The functions in the DSPLIB are 

organized into seven different categories: 

 

• Adaptive filtering 

• Correlation 

• Fast Fourier Transform (FFT) 

• Filtering and convolution 

• Math 

• Matrix 

• Miscellaneous. 

3.2.3 Camera Image Signal Processor  

The camera Image Signal Processor is a key component for imaging and video 

applications such as video preview, video record, and still-image capture with or 

without digital zooming.  

The camera ISP provides the system interface and the processing capability to 

connect RAW image-sensor modules to the device.  

The camera ISP implements 12 bit parallel interface. Their purpose is to act as a 

physical connection between the outside pins for connecting external sensors and the 

internal receivers. By configuring the outside physical layer and feeding the 

receivers, the camera ISP supports up to two simultaneous pixel flows from external 

sensors. Only one of the data flow can use the Video processing hardware while the 

other must go to memory. It can support up to 150 MHz Pclk when operating in 8 bit 

mode and 75 MHz for 12 bit interface.  



 

 
 32 

3.2.4 Display Interface Subsystem  

The display interface subsystem provides the logic to display a video frame from the 

memory frame buffer (either SDRAM or SRAM) on a liquid-crystal display (LCD) 

panel or a TV set. The display subsystem integrates the following elements:  

• Display controller (DISPC) module  

• Remote frame buffer interface (RFBI) module  

• NTSC/PAL video encoder  

The display controller and the DSI protocol engine are connected to the L3 and L4 

interconnect; the RFBI and the TV out encoder modules are connected to the L4 

interconnect.  

3.2.5 2D/3D Graphics Accelerator (SGX)  

The 2D/3D graphics accelerator (SGX) subsystem accelerates 2-dimensional (2D) 

and 3-dimensional (3D) graphics applications. The SGX subsystem is based on the 

POWERVR® SGX core from Imagination Technologies. SGX is a new generation 

of programmable PowerVR graphic cores. Targeted applications include feature 

phones, PDA, and hand-held games.  

The SGX graphics accelerator efficiently processes a number of various multimedia 

data types concurrently:  

• Pixel data  

• Vertex data  

• Video data  

• General-purpose processing  

This is achieved using a multithreaded architecture using two levels of scheduling 

and data partitioning enabling zero overhead task switching.  

The SGX subsystem is connected by a 64-bit master and a 32-bit slave interface to 

the L3 interconnects.  
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3.2.6 System Direct Memory Access (SDMA)  

The System Direct Memory Access (SDMA), also called DMA4, performs high-

performance data transfers between memories and peripheral devices without 

microprocessor unit (MPU) or digital signal processor (DSP) support during transfer.  

3.2.7 Interprocessor Communication (IPC)  

Communication between the on-chip processors of the device uses a queued 

mailbox-interrupt mechanism.  The queued mailbox-interrupt mechanism allows the 

software to establish a communication channel between two processors through a set 

of registers and associated interrupt signals by sending and receiving messages 

(mailboxes).  

The mailbox module includes these features:  

• Two mailbox message queues for microprocessor unit (MPU) and imaging 

video and audio accelerator (IVA2.2) communications.  

• Flexible assignment of receiver and sender for each mailbox through interrupt 

configuration  

• 32-bit message width  

• Four-message FIFO depth for each message queue  

• Message reception and queue-not-full notification using interrupts  

• Support of 16-/32-bit addressing scheme  

• Power management support  

• Automatic idle mode for power savings  
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CHAPTER 4 

 

 

SOFTWARE OF SYSTEM 

 
 
 
A variety of operating systems can be executed on OMAP processors whereas there 

is only one choice for DSP core. However the OS ported to ARM core must support 

the necessary drivers to communicate with the DSP core. The ARM core is 

responsible from most of the platform functions including the control and 

coordination of the DSP. DSP is used for only real-time computation and I/O. It 

leaves the other tasks to the ARM core. The operating systems that can be executed 

by the ARM core are Linux®, Microsoft’s Windows, Symbian OS™, Mobile™, and 

Android™. In this thesis, the Linux Angström distribution is used as the ARM core 

OS and DSP/BIOS Real-Time OS is used for the DSP core. Figure 4.1 shows the 

distribution of OS implemented on ARM and DSP cores. 

 

 

 

 
Figure 4.1 OS implemented on ARM and DSP cores of processor 
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In this chapter, software of the system implemented on the ARM and DSP cores of 

the DM3730 processor is introduced. Setup and configuration of the necessary files 

that ARM core uses at start up are described. This chapter consists of three main 

sections. First section describes the OS that implemented on ARM core. In this 

section setup procedures of OS for ARM core are introduced. Second section 

describes the OS implemented on DSP core. In this section setup procedures of OS 

for DSP core are introduced. Third and last section describes the necessary drivers 

for smart camera application. 

 

4.1. Setup of OS for ARM Core 

 
Angström  is a Linux distribution intended for the embedded devices. It is claimed to 

be versatile and scalable. It can be installed on systems having at least 4 MB 

memory. The Angström distribution is based upon the union of the Open Embedded, 

OpenZaurus, and OpenSimpad projects. The OpenEmbedded Project is a framework 

to create Linux distribution for embedded systems. An important tool in the 

OpenEmbedded projects is bitbake . This is a tool used to build packages for the 

embedded distribution by means of cross-compiling. A cross-compiler produces 

executable code for a platform and a system that is different from the platform 

hosting the compiler. This technique is fundamental for building of software 

packages for those systems where compilation is not feasible due to limited system 

resources, processor speed, and ported compilers and OS. In this thesis Narcissus 

[12], online image builder for Angström distribution, is used  to create the system 

files of Angström OS compatible with ARM core of the Beagleboard-xM board. To 

implement an OS to ARM core we need three basic files and a kernel file system 

namely MLO, u-boot.bin, uImage files and  file system. The first three of them must 

be saved in an 80 MB fat16 or fat32 file system and the kernel file system must be 

saved in 1 GB or higher ext2 or ext3 file system according to size of file system of 

OS. These files can be saved on the internal NAND flash of the system. However, in 

this thesis we saved these files in an 8 GB SD card since Beagleboard-xM does not 

have a NAND flash on board. This situation decreases the start up speed of the 

system. Figure 4.2 shows  how to port the Angstrom Linux kernel to ARM core of 

board.  Beagleboard-xM board comes with a minimal Angström OS that do not have 



 

 
 36 

most of the necessary packages for video capturing and displaying, IPC, wireless 

Ethernet  and file sharing over internet. In this work, the original system files come 

with beagleboard-XM platform are replaced by the system files of Angström OS 

created by Narcissus online image builder tool to provide these necessary packages. 

In other words, MLO and u-boot.bin files that come with the board are used without 

any change.  

 

 

 

               
 
 
 

   
 

       
               
               
               
               
               
               
               
               
               
               

   
   

       
               
               
               
               
               
               
               
               
               
               
               

Figure 4.2 Porting Angstrom OS to ARM Core 
 

 

 

uImage file and kernel file system of OS are created by using the outputs of the 

Narcissus online image builder. Narcissus online image builder can create different 

Add V4L2 Driver to Kernel

Use MLO and u‐boot.bin 
Files Come with Board 

Build kernel for 
Beagleboard‐XM from 
Narcissus Image builder 

Partition SD Card 
80MB ‐ FAT 

SD Card Size ‐ 80MB  EXT2 

Copy MLO ,  u‐boot.bin 
and 

Uimage to 80MB FAT part 

Untar Filesystem to 
SD Card Size ‐ 80MB EXT2

Setup Target 
System for 

ARM+DSP Code 
Running 

Prepare boot.scr from 
boot.cmd for initial 
parameters of kernel

Setup Host System for 
ARM+DSP Code SDK 

OUTPUT uImage and 
filesystem 

Prepare boot.scr from 
boot.cmd for initial 
parameters of kernel 
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combinations of images for different platforms. So some basic settings must be done 

to get an image that includes necessary packages for Beagleboard-xM platform. 

Setting details of Narcissus image builder is given in Appendix B. MLO file is 

created from the x-loader.bin file and it is in the first sector of SD card. MLO is the 

first file booted by processor. ROM of the DM3730 processor is programmed at the 

factory to boot the MLO file. It is an initial program loader for embedded devices 

based on OMAP processor.  In this thesis, MLO is set up to load u-boot.bin file from 

SD card. u-boot.bin file is a board and processor specific file. It determines the 

settings of peripherals like serial port, Ethernet, video display, display format, RAM 

mapping for kernel etc and then it boots the user specified files with configured 

parameters. Therefore settings in the u-boot.bin file are so important to configure the 

board for desired conditions. A user guide to control the u-boot.bin file parameters is 

given in Appendix C. 

 

 Indeed u-boot.bin file is a minimal kernel with a console for the target board. After 

startup, setting of u-boot.bin file can be changed from the console by using serial 

port of the board. All of the changes for desired configuration can be saved to the 

NAND memory of device. If the platform does not have an internal NAND memory 

like Beagleboard-xM board then all of the settings must be done for each startup. To 

do this, a boot script that includes the desired configuration parameters must be 

written and saved as boot.cmd file. boot.scr file is created from boot.cmd file by 

using u-boot mkimage tool. This tool can be loaded Angstrom kernel by using opkg 

install mkimage command. A sample mkimage command to create a boot.scr file 

from boot.cmd file given below. 

 
mkimage -A arm -O Linux -T script -C none -a 0 -e 0 -n "Angstrom" -d 
./boot.cmd ./boot.scr 
 
u-boot.bin file firstly boots the boot.scr file if boot.scr file is included in the fat file 

system of SD card. A sample boot.cmd file is given in table 4.1.  As seen from table 

4.1 boot.scr file that is created from boot.cmd file boots the user specified file and in 

this thesis it is set as uImage file of the OS. uImage file is a compressed kernel file of 

the OS. uImage makes the necessary configurations on the platform for the rootfs file 

system created by Narcissus online image builder. It is a compressed image of the 
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file system of OS. The last step after porting the MLO, u-boot.bin, boot.scr and 

uImage files to 80MB FAT partition of SD card is porting the kernel file system to 

EXT2/3 partition of SD card. This procedure can be last a bit long according to size  

Table 4.1. Sample boot.cmd Files Commands 

 
  COMMAND AIM 

1 setenv bootdelay 1 Set start-up delay 

2 setenv loadaddr 0x82000000 Set loadaddr parameter to determine the 
loading start address of uImage kernel 

3 setenv dvimode 'hd720' Set dvimode parameter as 1280x720 
resolution 

4 setenv vram '12M' 
Set vram parameter to determine how 
much of the RAM memory will be used for 
display graphic buffers  

5 setenv mem 'mem=55M@0x80000000 
mem=384M@0x88000000' 

Set mem parameter to determine how 
much of the RAM memory will be used by 
OS. Unset memory shared by ARM and 
DSP for DSPLink and cmem part. 

6 setenv defaultdisplay 'dvi' Set defaultdisplay parameter as dvi output 

7 setenv loadbootscript 'fatload mmc 0 
${loadaddr} boot.scr' 

Set loadbootscript command to boot the 
boot.scr file  

8 setenv bootscript 'echo Running bootscript from 
mmc ...; source ${loadaddr}' Set bootscript command  

9 setenv loaduimage 'fatload mmc 0 ${loadaddr} 
uImage' 

Set loaduimage command to load the 
uImage file to the RAM memory  

10 setenv mmcroot '/dev/mmcblk0p2 rw' 
Set mmcroot parameter to open the rootfs 
file system in the second partition of SD 
card 

11 setenv mmcrootfstype 'ext3 rootwait' 
Set mmcrootfstype parameter to 
determine the rootfs file system partition 
type as ext3 

12 

setenv mmcargs 'setenv bootargs 
console=${console} vram=${vram} 
omapfb.mode=dvi:${dvimode} 
omapdss.def_disp=${defaultdisplay} 
root=${mmcroot} rootfstype=${mmcrootfstype} 
${mem}' 

Set mmcargs command with predefined 
parameters for mmcboot 

13 setenv mmcboot 'echo Booting from mmc ...; 
run mmcargs; bootm ${loadaddr}' 

Set mmcboot command to  boot uImage 
file from the RAM with user defined 
parameters. 

14 
setenv bootcmd 'if mmc init; then if run 
loadbootscript; then run bootscript; else if run 
loaduimage; then run mmcboot; fi;fi;' 

Set bootcmd command to boot from SD 
card. If boot.scr file included in SD card, 
system boots boot.scr file. If boot.scr file 
not included in SD card systems boot 
uImage file  

15 run loaduimage Execute the loaduimage command 
16 run mmcboot Execute the mmcboot command 
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of file system. After this last step SD card is ready to start up the Angstrom Linux 

OS on ARM core of DM3730 processor. Now we can put the SD card on 

Beagleboard-XM platform a power up it. After power up, the booting code in the 

ROM of the platform loads MLO file into boots the MLO file. MLO file boots the u-

boot.bin file. U-boot.bin file makes the peripheral configuration of platform and run 

the boot.scr script. Boot.scr script ports the user defined kernel parameters into 

uImage uncompressed kernel file and boot uImage file. At the last step of uImage 

boot procedure, the init process of file system loaded on the EXT2/3 part  starts. Init 

is responsible for starting system processes as defined in the /etc/inittab file. Init 

process starts the applications defined by user and kernel at start up. Also at 

shutdown procedure, init controls the sequence and processes for shutdown. The init 

process is never shut down. It is a user process and not a kernel system process 

although it does run as root.  Below table shows Angstrom init process levels. 

 

Table 4.2. Angstrom Init Process Levels 

 

Process ID Description 
RC0.d The Scheduler
RC1.d The init process
RC2.d Kflushd 
RC3.d Kupdate 
RC4.d Kpiod 
RC5.d Kswapd 
RC6.d Mdrecoveryd 

 

 

To initialize an application at start-up some configuration must be done in init.d and 

RCx.d files in the rootfs file system. At the end of these steps OS of ARM core 

works according to configuration done by user. The details of configuration 

procedures are given in system implementation chapter of thesis. 

 
4.2. Setup of OS for DSP Core 
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The Texas Instruments DSP/BIOS is a real-time multi-tasking kernel that was 

designed to run on DSP platforms, specifically the TMS320C6000, TMS320C5000, 

and TMS320C28x families. It does not require any license fee and it is available both 

standalone and integrated in the Code Composer Studio Integrated Development 

Environment (IDE) tool. DSP/BIOS offer many functions in order to support 

complex applications within the constraints and deadlines typical of real-time 

applications. It aims to achieve a minimal memory footprint by using configurable 

modules that can be excluded by the kernel if not used.  

 

DSP/BIOS offer fundamental Inter Processor Communication (IPC) mechanisms for 

synchronization and communication among threads. DSP/BIOS offer other two IPC 

mechanisms: mailboxes (MBX) and message queues (MSGQ). A mailbox is a 

synchronous way to exchange messages among tasks on the same processor (the 

DSP in our case). The exchange is synchronous implying that both the sender and the 

receiver must be ready to send/receive the message. In this sense, a mailbox is both 

synchronization and a communication tool. In DSP/BIOS RTOS, exchanged 

messages must be fixed-size. The programmer can set the fixed size of these 

messages taking into account the limited memory that is available. If mailboxes are 

expected to exchange messages among threads located on multiple cores, then a 

message queue transport module is needed. Such a module is not available in the 

kernel, but it is provided by the DSPLink. Message queues are used for asynchronous 

communications: the message is stored in a memory location and is retrieved by the 

receiver as soon as it is ready. There is no need for both actors to be ready for the 

communication. The message queue can handle variable-length messages between 

tasks. 

 

DSP/BIOS provide a set of services for interrupt management aimed to maximize 

flexibility, while reducing data memory requirements. For power management, 

DSP/BIOS focus on minimizing power consumption while still meeting performance 

constraints. To achieve this, a range of power management features is provided. 

Some of them are:  
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• idling the CPU when the idle cycle is running (i.e., suspending CPU operation 

when there is no computation to be done); 

• providing Application Programming Interfaces (APIs) for voltage and frequency 

scaling; 

• providing standby and hibernation APIs (to reduce power consumption for longer 

periods of time); 

• automatic idling of the inactive peripherals; and 

• coordination of complex systems power management by means of tracing and 

notify mechanisms. 

 

In this thesis, DVSDK 4.01 package infrastructure is used to load DSP/BIOS to the 

DSP core of processor.  Version of DSP/BIOS used in thesis project is 5.41 and it is 

compiled and linked for DSP core by using the make files inside DVSDK 4.01 

package. DVSDK 4.01 package is a development package with source codes written 

for subsystems of TI DM3730 SoC processor like DSP, SGX graphic accelerator, 

DMA, ARM and NEON subsystems. It is developed for DM3730 EVM board by TI 

engineers and it can be downloaded freely from TI website. DVSDK uses ARAGO 

OS and this OS does not include necessary driver packages to start up the 

Beagleboard-xM board. However, it is possible to create a working development 

package for Beagleboard-xM board by combining Angström OS created by using 

Narcissus, DVSDK 4.01 package files with some configuration file changes and 

some patches from open sources. The details of the procedures to create a working 

development package for Beagleboard-xM board are given in system implementation 

chapter of thesis. Figure 4.3 shows the porting the DSP/BIOS to DSP core. 

DSP/BIOS are compiled from the subfolders of DVSDK. Therefore first step to port 

the DSP/BIOS to DSP core is modifying the DVSDK according to Beagleboard-XM 

board. Modifying steps is described in part 4.4.3.1. DSP/BIOS is placed on  codec 

server and is loaded on DSP by ARM core. Therefore the second step is adding 

necessary drivers to Angstrom kernel to enable the communication of ARM core 

with DSP core over shared RAM memory. These drivers are Contiguous Memory 

Management (CMEM), Local Power Manager (LPM), System DMA (SDMA) and 

DSPLink drivers. Duty of these drivers is given in part 4.3.2. After adding necessary 

drivers to kernel the next step is compiling DSP server from C6ACCEL and 
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CODECS folder of DVSDK. This can be done by running “make c6accell” and 

“make codecs” commands on console under DVSDK folder. Both of these 

commands create a DSP server that ends with “.x64P”. This file includes all the files 

related with DSP like DSP/BIOS, DSP Applications, DSP EDMA driver etc. 

C6ACCEL includes the applications of MATHLIB, IMGLIB and DSPLIB libraries. 

However it does not include the source files of these libraries. A user DSP 

application can be added to these libraries and can be called from ARM core. Codecs 

include the C6ACCEL outputs and add these outputs TI’s encoders and decoders.  

 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

Figure 4.3 Porting DSP/BIOS to DSP Core 
 
 
 
 

The next step after compiling a DSP server is   installing CMEM driver to kernel 

with the parameters that are defined  in “.tcf” file of DSP server. A sample 

“server.tcf” file is given in Appendix H. This file describes to DSP core how to use 

shared ram memory. So ARM core must also partition the shared RAM according to 

these parameters by CMEM driver. Partitioning step is described in part 4.3.2. As a 

last step we can run an ARM + DSP application and the ARM core application loads 

the DSP server packages including also DSP/BIOS on DSP core.    

 
 

Add CMEM, DSPLINK, SDMA and 
LPM Drivers to Kernel on ARM 

C

Compile a DSP Server from C6ACCEL or  
CODECS folder of DVSDK
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Load CMEM Driver with Determined Parameters to
Arrange Shared Memory between ARM and DSP 

Run a DSP + ARM 
application 
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4.3. Integration of Necessary Drivers 

 

Angstrom OS implemented on the ARM core of processor is an embedded system 

with a basic package list. Some additional packages are also necessary to design a 

smart camera on this embedded system. Firstly, video capture and video display 

drivers must be added to OS to capture frames from USB webcam and to display the 

captured frames on DVI or svideo output of the board. Secondly the Interprocessor 

communication drivers must be added to OS to send the captured frames by ARM 

core to DSP core for image processing and send the processed frames back to ARM 

for displaying and streaming. Thirdly wired or wireless Ethernet drivers must be 

added to OS to stream the captured and processed frames through the internet.      

 

4.3.1 Video Capture and Video Display Drivers 
 
The first important driver to design a smart camera on an embedded system is video 

capture driver. There are different ways to capture frames from a camera by using 

Beagleboard-xM board. One of them is capturing frames from the digital YUV 

output of CMOS sensors by using camera input port of the board. This is a cost 

effective solution to design smart camera system. However, in this thesis a YUV 

pixel format USB webcam is used to design a simple smart camera and USB inputs 

of the board are used for camera input. To capture frames from USB webcam, Video 

for Linux Two (V4L2) drivers are used. V4L2 is a standard Linux video driver used 

in many Linux systems. It supports the video input and output ports of the OS. In this 

thesis project only video input drivers are used. Figure 4.2 shows the queue structure 

of V4L2 driver. Outgoing queue of the driver is used for input operations and 

incoming queue of driver is used for output operations. V4L2 driver capture frames 

from the devices connected to the video ports of the OS. These devices can be seen 

under the /dev file of file system. Captured frame buffers are saved under the V4L2 

driver memory in a queue and these buffers can be own by an application. In this 

thesis work OpenCv capture commands and DMA hardware of the DM3730 

processor are used to own captured frame buffers from the V4L2 frame buffer queue. 

To capture frames from V4L2 driver with DMA hardware some modifications are 
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made on the capture files that are present inside the DVSDK/DMAI/ti/sdo/packages 

folder. The details about these modifications are given in part 4.4.3.1.   

 

 

  

 
Figure 4.4 V4L2 Driver Queue Structure 

 

 

 

V4L2 driver packages are included in the package list of Angström distribution and 

these drivers can be installed from console of OS by using “opkg install” package 

installation commands of Angstrom. Furthermore, different webcam drivers not 

included in V4L2 driver libraries can be search in the package list of Angström 

distribution by using package search commands and can be installed to kernel by 

using package install commands . After successful installation of necessary drivers, 

frames from webcam can be captured from the /dev/video port of the OS. 

 

The second important driver to design a smart camera with an analog output on an 

embedded system is the video display driver. DM3730 processor supports two video 

display driver and one overlay driver. Display drivers are Video for Linux Two 

(V4L2) and OMAP Frame Buffer Device (OMAPFBdev) display drivers and overlay 

driver is OMAP Display Sub-System (OMAPDSS2) overlay driver. Figure 4.5 

shows the OMAP Display Sub-System. As can be seen from figure OMAPDSS2 

achieves the pipeline connections between display drivers and display devices and 

manage the overlay operations. Furthermore, V4L2 display drivers is used for video 
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streaming operations whereas OMAPFBdev drivers are used for graphic operations. 

However V4L2 display driver ,namely “omap_vout.ko” driver can not be installed 

to kernel taken from Narcissus image builder. Therefore OMAPFBdev video display 

driver and OMAPDSS2 overlay driver are used to display the captured and processed 

images at the outputs of the board. OMAPFBdev driver is a standard  

 

 

 

 
Figure 4.5 OMAP Display Sub-systems (OMAPDSS2) 

 

 

 

Linux video driver used in many Linux systems. It maps the frame buffer of a 

display device into user space. Frame buffers can be seen under the /dev file as 

/dev/fb/x. Memory usage and the number of frame buffers can be configured by 

setting u-boot parameters at start up. In this thesis work three frame buffers are used 

with 8MB, 4MB and 4MB sizes. The Beagleboard-xM platform has two different 

video outputs, namely DVI and svideo outputs. In this thesis DVI output of the 

camera is used. Mapping the display frame buffers to different overlays on DVI 
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output is achieved by using configuration files of OMAPDSS2 overlay driver. 

Overlays can be mapped to different display frame buffers of display drivers. Figure 

4.6 shows a sample OMAP (DSS) overlay implementation. In this example we have 

four overlays. Background is on the bottom level overlay and graphics are on the 

second level overlay. Third level overlay is mapped to video1 frame buffers and the 

top level overlay is mapped to video2 frame buffers. In this thesis kernel GNOME 

window manager buffers are mapped to fb0 frame buffer of OMAPFBdev driver and  

 

 

 

 
Figure 4.6 OMAP (DSS) Overlay Examples 

 

 

 

fb0 driver is mapped to overlay0 of OMAPDSS2 driver and overlay0 is mapped to 

display0 (DVI output) of the OMAPDSS2 driver. The captured and processed 

images buffers by the DMA hardware of  the DM3730 processor are mapped to fb1 

frame buffer of OMAPFBdev driver and fb1 driver is mapped to overlay1 of 

OMAPDSS2 driver and overlay1 is mapped to display0 (DVI output) of the 

OMAPDSS2 driver. By using OMAPDSS2 driver different overlays with different 

sizes and transparency can be used on display. This enables to user design very 

attractive display outputs. Also, a user interface to control the camera settings can be 

achieved easily by designing a transparent OSD on different overlays of the 

OMAPDSS driver. 
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4.3.2 Inter-processor Communication drivers 
 

The third important driver of the design step is Inter-processor Communication (IPC) 

drivers that enable the communication between ARM and DSP cores. IPC driver is 

the DSP/BIOS Link (DSPLink) driver. Beside the DSPLink driver, Contiguous 

Memory Management (CMEM), System DMA (SDMA), Local Power Manager 

(LPM) and Enhance DMA (EDMA) drivers are also necessary drivers for IPC 

mechanism.  

 

DSP/BIOS Link is fundamental software for the IPC between the ARM and the DSP 

[32, page 9]. Today many DSP-based applications use ARM to control one or a set of 

DSPs. The most common operations between the two cores are: 

 

• exchanging control and data information;  

• booting the DSP by ARM; and 

• control and coordination of algorithms and tasks running on the DSP by ARM. 

 

DSPLink is software designed to facilitate such interactions. It offers programmers a 

set of APIs that abstract the characteristics of the physical communication layer. The 

programmers’ attention can focus on the development of the application algorithms, 

rather than on the communication mechanisms. DSPLink is designed to work with 

DSP/BIOS OS on the DSP side, while no specific OS is required on the ARM side. 

Since the DSPLink package contains all the source code, it is possible to port it to a 

variety of operating systems (i.e., all of those supported by the ARM).  

 

On both sides, link drivers hide the physical link layer. On the ARM side, the 

processor manager exposes the DSPLink APIs to the client, while the OS adaptation 

layer makes the DSPLink components independent from the specifics of the OS. 

 

DSPLink offers the following services to the end-points clients [39, page 9]: 

• basic processor control (via the PROC module); 

• sharing and synchronization of a memory pool among the cores (POOL); 

• notification of user events (NOTIFY); 
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• mutually exclusive access to shared resources (MPCS); 

• linked list data streaming (MPLIST); 

• data transfer over channels (CHNL); 

• exchanging of messages (MSGQ); 

• circular buffer data streaming (RINGIO) and 

• zero-copy messaging. 

 

The list above represents the complete set of services offered by DSPLink. However, 

depending on the platform and OS used, the system may support only a subset of 

these services. The last entry in the list refers to the zero-copy transfer mode 

(ZCPY). Using this technique the data are exchanged among the cores by means of 

shared memory, avoiding any need to physically copy data to and from the respective 

memory spaces. In this way data transfer implies only the allocation of buffers in the 

shared memory region and addresses translation. The ZCPY system is composed of 

three sub-components: 

 

• Shared memory allocator: the data to be exchanged are stored in buffers allocated 

in the shared memory; 

 

• Address translator: the buffers allocated in the shared memory need to be accessed 

by any core as user-space buffers. Since the DSP sub-system does not have a MMU, 

this component must perform address translations from the DSP physical address 

space to ARM virtual space and vice versa. Furthermore, the translation from ARM 

user and kernel spaces are performed by this component; and 

 

• Shared Memory Inter Processor Signaling: this component is in charge of managing 

control structures and to inform the processors about changes in the shared buffers. 

 

DSPLink provides several advantages for programmers working with an embedded 

multicore system: 

• Portability: an application that uses DSPLink is easily portable to architecture with 

no or few changes since architectural low level details are hidden; 
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• Flexibility: applications are more flexible since programmers can use the most 

appropriate high or low level communication protocols depending on their 

necessities; 

 

• Scalability: only needed modules need to be compiled and included in the 

executable file, saving resources; and 

 

• Physical layer abstraction: the details of the physical link are hidden from the 

programmer, so that it is easier to focus on application development. 

 

The Contiguous Memory Management driver provides the ability for user-mode 

applications to allocate and free blocks of physically contiguous memory. This is 

done to manage multimedia data buffers which will be worked on by DSP 

multimedia algorithms. The reason DSP multimedia algorithms require physically 

contiguous memory is that DSP core not contain an MMU and DMA that is used for 

Linux-based algorithms don't access memory through an MMU. Linux is different 

from an RTOS like DSP/BIOS in that it manages all resources in the system for the 

application. The application requests access to a resource and Linux grants it 

depending on UNIX permissions and availability. This means that all the memory 

you give to Linux will be "owned" by Linux and is out of your direct control. 

Furthermore, you do not know where in physical memory this requested memory is 

allocated and whether it is physically contiguous or not (the MMU makes the 

memory look virtually contiguous to the process). This is normally a great feature, 

but it becomes a problem when you want to share a buffer between the ARM and the 

DSP. This because the DSP needs physically contiguous memory to work with. This 

is the reason why the CMEM kernel module was created, i.e. to provide physically 

contiguous buffers to be shared between the ARM and the DSP. This is also useful 

for buffers which are to be accessed using the DMA.  

The System DMA driver provides the ability for user-mode applications to request 

SDMA channels and operate on a channel using direct, memory-mapped access to 

the channel's DMA registers. It also provides "blocking" support for waiting for the 

completion of a transfer on a particular channel.  
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Enhanced DMA is incorporated on the Davinci family of C64+ devices. The EDMA 

driver provides the same operations for DSP core.  

In this thesis work Texas Instruments DSPLink, CMEM, SDMA and LPM drivers 

are compiled from the DVSDK 4.01 package and changed with Angström kernel 

module drivers. EDMA driver that is used by DSP/BIOS is included in codec server 

compiled from DVSDK 4.01 package.   

 

4.3.4 Ethernet Drivers 
   
The other important driver to design an IP output smart camera is wired or wireless 

Ethernet drivers. These drivers enable the system to stream the captured and 

processed frames through the internet and to file share between user and camera. 

Wired Ethernet driver on board is provided by Angstrom OS as a standard. For 

wireless Ethernet specification, a wireless USB Ethernet must be added to the system 

with a supplied driver. In this thesis work Belkin N150 USB Ethernet with 150Mps 

speed is used for wireless connection [50]. Below equation shows the necessary 

connection speed to stream a YUYV format VGA resolution image at 30 fps. 

 
Bytes per Pixel = 2 (YUYV format) 

Connection Speed = Bytes per Pixel x 8 x resolution x fps  

     = 140.6 Mbps 

 

Streaming data rate can be decreased by encoding. So connection data rates of Belkin 

N150 USB Ethernet (150Mbps) and USB 2.0 (400Mbps) will be sufficient for video 

streaming over USB wireless Ethernet.  Belkin N150 USB Ethernet driver is used 

from Ubuntu kernel and wireless connection is achieved with Ubuntu OS. However, 

its driver is not found in the open source package list of the Angström distribution. 

Therefore wireless Ethernet connection is not used in thesis work.  
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4.4 System Implementation 

 
As we explained before Beagleboard-XM platform has a SoC DM3730 processor 

that includes two cores, namely ARM and DSP and several hardware accelerators. In 

this thesis, the objective is using DSP core of the processor in parallel with ARM 

core for some image processing algorithms to see the contribution of DSP on system 

performance. The most effective way of that using DMA hardware accelerator of the 

processor for data transfers between ARM, DSP and shared RAM memory. In this 

part of thesis we explain how to develop and port algorithms onto Beagleboard-XM 

platform to use ARM and DSP cores separately and together with the aid of NEON 

co-processor and DMA hardware accelerator. In order to quantify the system’s 

performance and to be able to perform an empirical analysis, the development 

environment and test algorithms are explained in this part of thesis. The function of 

the test algorithms is to evaluate the video capturing, displaying and processing 

capabilities of board. Figure 4.7 shows the necessary setup for the implementation of 

test algorithms.  

  

 

 
Figure 4.7 Necessary Setup for Implementation of Test Algorithms 
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Up to know we have described the how to port the Angstrom OS to ARM core by 

partitioning SD card and installing necessary files on it. Furthermore, we have 

explained how to install the necessary drivers for implementation of a smart camera 

on Angstrom OS. Now we can start-up and use the Angstrom OS on beagleboard-

XM and we capture frames from USB webcam and display them on a LCD TV by 

using Angstrom kernel and added drivers. At that point we also need a mouse and 

keyboard to control the Angstrom OS. For ARM core applications it is possible to 

develop image processing algorithms on board by using a C compiler. However, in 

this work Eclipse SDK with added opencv libraries is used at the development stage 

of ARM core application. For development of DSP core application, DVSDK 4.01 is 

modified according to Beagleboard-XM and used for development of DMA and DSP 

based applications. A serial connection is made between Host PC and Beagleboard-

XM to control the Beagleboard-XM platform from HOST PC. This serial connection 

is also used to display and change the u-boot parameters of Beagleboard-XM 

platform at start up. Furthermore, a Network File System (NFS) is established 

between Host PC and Beagleboard-XM to share the outputs of the Eclipse and 

DVSDK software development environments with target board Beagleboard-XM.  

 

4.4.1. Configuration of Host PC and Target Board  
 

In this thesis work, to develop and compile the algorithms for experiments, VMware 

has been used for create a virtual machine. VM is created with 512 MB ram memory 

on 2.80 GHz Intel CPU. As DVSDK 4.01 setup needs the Ubuntu Release 10.04 OS, 

this release is used  as OS of virtual machine. Minicom serial communication 

application is used to communicate with target board by using the console of OS. 

Eclipse SDK was installed on host PC and CDT GNU Tool chain was added to 

Eclipse SDK as C++ development environment. And then GCC 4.4.3 package was 

installed host PC as a C/C++ compiler  and OpenCv library packages were also 

installed on host PC to use for video capture and video display operations in 

algorithms. Furthermore a modified DVSDK 4.01 software development package 

was installed on host PC to develop and compile the algorithms that will be run on 

both ARM and DSP cores of DM3730 processor. Finally necessary NFS packages 
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were installed on host PC to set the host PC as NFS server to share the outputs of  

SDK’s with target board.   

4.4.2 Serial Communication setup 
 

Serial communication is made by using a USB serial converter between serial 

communication port of Beagleboard-xM and USB port of host PC. Default serial 

communication port of Beagleboard-xM is set to ttyS0 port at 115200 baud rate. 

These parameters can be changed by adding desired parameters to 

console=${console} parameter of   boot.cmd file given in table 4.1. In host PC, 

minicom application is used for communication. Minicom package is installed from 

the open source packages of Ubuntu community. Serial communication port of host 

PC is set to 115200 baud rate, ttyUSB0 port by console commands of minicom.     

4.4.3 Configuration of Network File Sharing 
 

File sharing is a necessity to transport the developed algorithms to target board 

easily. A flash memory can also be used to transport the developed algorithm files 

from host PC to target board. However this will take a lot of time and flash memory 

will be plugged in and plugged out several times to host PC and target board. 

Network file sharing (NFS) packages can be installed from Ubuntu and Angstrom 

distributions open source community. The necessary packages for NFS are 

“Portmapper” and “Dropbear-Ssh server”. After installation of these packages, some 

configuration must be done on exportfs and fstab files under the /etc file. To set up 

host PC as server, exportfs file must be configured to share the files with target 

board. The IP number of the target board as client and location of the shared folders 

must be enter in exportfs file to make the necessary server configuration. To set up 

the target board as client, fstab file must be configured to mount the share files of 

host PC. The mount location of shared files and IP number of server must be enter in 

fstab file to make the necessary client configuration.  The sample and exportfs file 

given in Appendix E   
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4.4.3 Algorithm Development Setup 
 
 In this thesis project, Eclipse Galileo development environment is used to developed 

algorithms that will be evaluated on ARM core and NEON co-processor. A C++ 

compiler and OpenCv libraries are attached to the Eclipse development environment. 

OpenCv libraries are used for capturing and displaying operations of algorithms.  

The outputs of Eclipse SDK can not be used on target board directly because it uses 

an i486 architecture support C/C++ compiler and this compiler does not support 

ARM core of the DM3730 processor.  Therefore, the algorithms that are developed 

on host PC with Eclipse SDK must be recompiled with a cross compiler supporting 

ARM architecture. In this thesis instead of using a cross compiler, the C/C++ 

compiler of target board is used and developed sources files on host PC are 

recompiled on target board. To do this a GCC 4.4.3 C++ compiler and OpenCv 

library packages were also installed on target board to recompile sources files of 

Host PC on board. Figure 4.8 shows the implementation of an application on ARM 

core and table 4.3 gives the necessary components for implementation on ARM core. 

 

 

 

 
Figure 4.8 Implementation of an Application on ARM Core  

 

 

 

Also to make easier the compile procedure of algorithms for ARM core and NEON 

co-processor “Makefile” files  are created. Steps of compilation for algorithms in 

Eclipse are taken as reference to create a “Makefile” file. NEON co-processor is also 
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used for performance evaluation. The only thing must be done to use the NEON co-

processor in applications is adding the below NEON co-processor parameters to the 

compiler. 

 

Table 4.3. Necessary Components for Implementation on Arm Core 

 
Component Purpose in this application Location 

Eclipse Development Environment Host PC/VM/ 
Source Code Source code of Application code Host PC/VM/Eclipse 

GCC C compiler on target board and Host 
PC Angstrom Filesystem/../gcc 

Open Source 
Linux libraries 

Provides libraries such as cv, cvaux, 
cxcore, highgui, ml etc 

Angstrom Filesystem 
/usr/include/OpenCv etc 

V4L2 Driver Provides video capture drivers for the 
kernel Angstrom Filesystem/../v4l2 

Linux kernel 
Builder 

 
The Linux kernel with  device drivers 

 

 
Outputs of Narcissus Online Image 

 
 

 

• -march=armv7-a  

• -mtune=cortex-a8  

• -mfpu=neon -ftree-vectorize  

• -mfloat-abi=softfp 

 

A sample make file to compile the developed algorithms for ARM core or NEON co-

processor is given in Appendix C. Make file is a script that includes the compile 

steps of a project that have more than one c source file. C source files of a project 

must be compiled by the compiler of OS in true order according to dependencies to 

each other. Make file links the output files of the source files to each other after 

compiling all source files and create a working output file. Make command packages 

must be installed into the kernel to use make file script. In this work, make command 

packages are installed to Angström kernel and NFS file sharing protocol is used to 

run the make file script that is created and saved on host PC. By using this method 

ARM core C compiler and libraries are used to compile the source codes of the 

algorithms developed on host PC. This method also enables one to see compiler 

errors that depend on target platform library.  Make files commands are used by 

calling them from the console of OS. The second argument besides the make 
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command determines the which part is used in make file. For example “make neon” 

command given in Appendix C compiles the source code for NEON co-processor 

while “make arm” compiles the source code for only ARM core. Furthermore, using 

the source codes that are developed  under Eclipse environment for ARM core 

enables us to compare the performances of ARM core of target board and Intel core 

of Host PC for same applications.  

 

In this work, A modified DVSDK 4.01 software development environment is used to 

developed algorithms that will be evaluated on ARM core , DSP core and DMA 

hardware accelerator of DM3730 processor. The modification of DVSDK 4.01 is 

given in part 4.4.3.1.  The outputs of DVSDK can be used directly on target board 

because of cross C/C++ compiler and C6run DSP compiler included in the DVSDK 

package. Figure 4.9 shows the implementation of an application on ARM+ DSP core 

and table 4.4 gives necessary components for implementation on ARM + DSP core. 

 

 

 

 
Figure 4.9 Implementation of an Application on ARM + DSP Core  
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In this implementation the most important component is Davinci Multimedia 

Application Interface (DMAI). DMAI uses the Direct Memory Access (DMA) 

hardware accelerator of the DM3730 processor. DMAI includes the necessary source 

files to configure and manage the Linux device drivers. It is a very quick data bridge 

between shared RAM and DSP Codec Engine and Linux kernel drivers on ARM 

core. DMAI is a thin utility layer on top of the OS (Linux or DSP/BIOS) and the 

Codec Engine (CE) to assist in quickly writing portable applications on a ARM + 

DSP SoC platform. The benefits of using DMAI include: 

 

Table 4.4.  Necessary Components for Implementation on ARM + DSP Core 

Component  Purpose in this application   Location in the DVSDK 

Platform Support 
Package 

Provides device drivers for the kernel and 
documentation and examples to 

support them .
DVSDK/psp 

Codec Engine 
Cross platform framework for the 

Applications invoking multimedia codecs 
and other algorithms. 

codec_engine_xx_xx_xx_xx 

Framework 
Components 

Cross platform framework for Servicing 
resources to algorithms. framework_components_xx_xx_xx_xx 

LinuxUtils 

Linux specific utilities for Framework 
Components assisting with resource 
allocation of DMA channels (EDMA 

module), physically contiguous Memory 
(CMEM module) and allows the codecs to 

receive completion interrupts of various 
coprocessor resources (IRQ module) . 

linuxutils_xx_xx_xx_xx 

Davinci 
Multimedia 
Application 

Interface 

Multimedia application utility layer dmai_xx_xx_xx_xx 

Multimedia 
Codecs 

Compression and decompression of 
multimedia data codecs_<platform>_xx_xx_xx_xx 

RTSC (XDC) 
Tool used to configure Codec Engine, 

Framework Components and multimedia 
Codecs for your application. 

xdctools_xx_xx_xx_xx 

XDAIS 

TI Algorithm Interface Standard used for 
algorithm standardization which is used by 
various other components including Codec 

Engine 

xdais_x_xx_xx_xx 

DSPLINK GPP to DSP processor communication  
link for passing messages and data in dsplink_x_xx_xx_xx 

 
 

• DMAI enables the XDAIS Algorithm Standard compatibility of the 

implemented application for DMA resources. 
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• DMAI wraps the Linux device drivers in a user defined application, shielding 

you from the rapid progress of the Linux kernel, increasing your portability. 

DMAI does not wrap the OS or CE, but as the below picture shows the application 

can choose when to use DMAI and when to use the OS or Codec Engine directly:  

 

 

Figure 4.10 The Place of DMAI  

DMAI is a functional design, meaning that the modules often describe a certain 

operation (frame capture using Capture, frame display using Display, color 

conversion using Ccv etc.), but the module implementation may change between 

devices and operating systems depending on which peripheral device drivers and 

other local Application Programming Interfaces (APIs) are available. In other words, 

DMAI does not abstract the peripherals themselves, it abstracts the actual operations 

e.g. frame capturing. DMAI then implements a frame capture using the peripherals 

and resources at its disposal on a particular platform. DMAI is a collection of 

modules, and the application can pick and choose which modules to use. Since 

DMAI comes with source code, it can also be used as a reference on how to 

accomplish certain tasks using e.g. a certain device driver. The different DMAI 

modules communicate using a Buffer abstraction which carries not only the actual 

(video, speech, audio etc.) data but also meta data describing the Buffer which is 

used by the Codec Engine and Linux device drivers to perform operations on the 

data.  
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DMAI is used by the DVSDK demos and makes additional demo development 

quick. In this work edge detection demo infrastructure of DVSDK 4.01 is used as 

reference application code to develop algorithms on both ARM and DSP cores of 

processor. DMAI module of DVSDK 4.01 is designed according to Linux drivers of 

DM3730 EVM board peripherals. DM3730 EVM board uses CVBS, svideo and 

component video inputs to capture frames and USB webcam input is not supported 

by DMAI. Furthermore, kernel of DM3730 EVM  includes the V4L2 display drivers 

and can display YUV format frames on display.  Because of different capture driver 

properties of USB camera and different pixel format of OMAPFBdev display driver, 

DVSDK demos can not be run on Beagleboard-XM platform. To run these demo 

applications on Beagleboard-XM DMAI capture and display functions must 

configured according to drivers properties of USB webcam and pixel format of 

OMAP FBDEV display driver.  

 

4.4.3.1 Modification of DVSDK 4.01 for Beagleboard-XM 
 
 
DVSDK 4.01 package is a development environment with a lot of open sources 

codes. These open source codes are good examples to start to develop algorithms by 

using different coprocessors and subsystems of the DM3730 processor. However, 

DVSDK 4.01 package  officially supports only DM3730 EVM board and the 

configuration files of the development environment are set for the peripherals of the 

DM3730 EVM board. Therefore, these configuration files must be set according to 

Beagleboard-xM peripherals to use DVSDK 4.01 package together with 

Beagleboard-xM platform. After this setting, DVSDK sample examples can be used 

to develop specific algorithms that run on both ARM and DSP cores of the processor.  

The DVSDK 4.01 package contains many software components. Figure 4.11 shows 

the subfolders of the DVSDK 4.01 package. These folder includes the source files of 

software components. In this thesis the source files of necessary software 

components are investigated and configured according to Beagleboard-XM platform. 

The duty of necessary software components are given in table 4.4.  
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Figure 4.11 Subfolders of DVSDK 4.01  

 

 

 

Most of the software components of the DVSDK 4.01 is related with the structure of 

the DM3730 SoC processor and does not change so mush according to peripherals of 

platforms based on DM3730 processor. Here the most important and platform 

specific software component is DMAI software component. We will describe how to 

change this component in more detail in the following sections of this part.  

 

Figure 4.12 shows the localization of software components inside the DVSDK 4.01 

for an application implementation. Software components that are developed by Texas 

Instruments are shown as blue where some that are developed by the open source 

community are shown as grey. In this thesis all the software components except 3D 

openGL, Qt/embedded, GStreamer-ti-plugin and multimedia codecs (video, audio, 

speech and image) are used for ARM + DSP application implementation on 

Beagleboard-XM platform. However GStreamer-ti-plugin and multimedia codecs 

components can be used to improve the encoding decoding capabilities of 

implemented smart camera application on board. Qt/Embedded component can be 

used to design attractive and user friendly camera user interfaces.  
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Figure 4.12 Localization of Components Inside the DVSDK 4.01 for an Application 

Implementation 
User can connect these user interfaces over the network to control the parameters of 

smart camera or update the software of smart camera. 3D openGL accelerated 

libraries may be used to display the 3D view of objects that are monitored by stereo 

cameras connected to platform. 

     

Necessary files to learn about how to install and use the  DVSDK 4.01 is included in 

“docs” folder. Also each folder of software component includes a user manual about 

software components. “bin” folder includes the scripts to setup the serial and network 

connections between target and Host PC and to prepare the SD card with ARAGO 

OS of TI with the outputs of software component and necessary drivers. However 

using these scripts is not possible for Beagleboard-XM platform because of different 

configuration of it from DM3730 EVM. So configuration parameters of files must be 

modified according to Beagleboard-XM platform. Configuration parameters 

generally included in rules file of Makefile that compile the software components. 

Most of the configuration files of DVSDK 4.01 can be modified by some patch that 
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can be found in open source community. Appendix-F gives the steps to port DVSDK 

4.01 onto Beagleboard-xM rev B/C by using patches defined by sourceforge.net. By 

following these steps we can start to use the DVSDK 4.01 for Beagleboard-XM. 

However none of the multimedia application that require a camera input does not 

work again. Because Beagleboard-XM platform does not include a camera. In this 

thesis A4tech USB webcam is selected and added to Beagleboard-XM board as 

application specific device and this configuration change is not defined in 

modification patch. So this modification also must be done by us.    

 

To start up the multimedia applications on Beagleboard-XM platform we must 

struggle with the necessary files of DMAI component that control the V4L2 capture 

drivers and OMAPFBdev display drivers. It is possible to capture frames from V4L2 

drivers by using DMAI hardware of the DM3730 processor. However, to make the 

connections between V4L2 driver and DMAI  we must configure the some request 

parameters in capture and videobuf files. Figure 4.13, 4.14 and 4.15 shows the place 

of capture and videobuf files of DMAI.  

 

 

 

 
Figure 4.13 Files under of DMAI folder 
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Figure 4.14 Files under of DMAI/LINUX folder 

 

 

 

 
Figure 4.15 Files under of DMAI/LINUX/OMAP3530 folder 

 

 

 

Capture.h file is shown in figure 4.13 defines the functions related with capture 

drivers. So it does not change for our application because we do not need to define a 

new function. The files in figure 4.13  are general functions and do not depends on 

the peripherals of platform. So in this files there is no need a change for capture and 

display operation. These files include some special operations like frame copying 

,resizing, color space converting etc. Ccv.c files includes some the color space 

conversion operations. In our application we need to convert the YUYV pixel format 

captured frames to ARGB pixel format DVI display output frames. Because of 

absent color conversion from YUYV to ARGB we add a YUYV to ARGB color 

conversion function to Ccv.c file in figure 4.13 to achieve the color conversion in 

ARM core. 

 

Capture.c file is shown in figure 4.14 defines the capture input configurations of 

different platforms. In modified DVSDK 4.01 our platform is defined as 

OMAP3530. So default input and output parameters are modified according to USB 
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webcam used in this work.  Default modified capture parameters are given below. 

Here because of undefined USB input, COMPOSITE input is defined as input. 

Capture device is mapped to /dev/video0. Because of VGA resolution of camera 

video standard defined as VGA. Because of undefined YUYV color space, color 

space is defined as interlaced YUV format UYVY.  

 
const Capture_Attrs Capture_Attrs_OMAP3530_DEFAULT = { 

    3, 

    Capture_Input_COMPOSITE, 

    -1, 

    -1, 

    -1, 

    -1, 

    "/dev/video0", 

    FALSE, 

    VideoStd_VGA, 

    -1, 

    ColorSpace_UYVY, 

    NULL, 

    FALSE, 

}; 

 

Display.c file is shown in figure 4.14 defines the display video and OSD output 

configurations of different platforms. Default modified display parameters are given 

below. Here, display standard is defined as FBDEV and display output is defined as 

DVI. Display device is mapped to /dev/fb1 and OSD is mapped to /dev/fb1 frame 

buffers. Because of VGA resolution of camera, video standard of display defined as 

VGA. Therefore we see the camera output at full screen. Because of undefined 

ARGB color space, color space is defined as RGB565.  

 
const Display_Attrs Display_Attrs_O3530_VID_DEFAULT = { 

    1, 

    Display_Std_FBDEV, 

    VideoStd_VGA, 

    Display_Output_DVI, 

    "/dev/fb1", 

    0, 
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    ColorSpace_RGB565, 

    -1, 

    -1, 

    FALSE, 

    0, 

    0, 

    FALSE 

}; 

 

const Display_Attrs Display_Attrs_O3530_OSD_DEFAULT = { 

    1, 

    Display_Std_FBDEV, 

    VideoStd_VGA, 

    Display_Output_DVI, 

    "/dev/fb2", 

    0, 

    ColorSpace_RGB565, 

    -1, 

    -1, 

    FALSE, 

    0, 

    0, 

    FALSE 

}; 

 

_SysFs.c file is shown in figure 4.15 defines the configuration of OMAP Display 

Sub-system.  In the EVM platform DVI output is mapped to display2 output. 

However  In the Beagleboard-XM platform DVI output is mapped to display0. So in 

this file we convert the display2 parameters to display0 parameters. Furthermore 

from overlay configuration part we set the output of applications to overlay1. At that 

point we finished the modifications for display driver.  

 

The most important parameter modification for capture driver is made on capture.c 

and _VideoBuf.c files are shown in figure 4.15. There are necessary “Input Output 

Control Logic” (IOCTL) requests in that files. To configure the capture driver with 

DMAI this requests must be modified according to USB webcam. To define the 
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format of image data exchanged between driver and application, DMAI must 

configure V4L2 driver with  VIDIOC_S_FMT request. 

Int ioctl(fd, VIDIOC_S_FMT, &fmt) 
 
fd = File descriptor returned by open(). 
 
 
This ioctl is used to used to negotiate the format of data (typically image format) 

exchanged between driver and application. Here we must set the pixel data format of 

used camera as YUYV So before calling this ioctl we must set the fmt parameters as 

below. 

 

fmt.fmt.pix.pixelformat  = V4L2_PIX_FMT_YUYV; 
 
 
After this step we must disable the requests that are not supported by USB webcams. 

This request are VIDIOC_ENUMSTD, VIDIOC_QUERYSTD and 

VIDIOC_G_STD requests. VIDIOC_ENUMSTD request  enumerates supported 

video standards. VIDIOC_QUERYSTD request sense the video standard received by 

the current input. VIDIOC_G_STD request query or select the video standard of the 

current input. USB webcams return this request with an error. So we must disable 

these requests and set the video standard manually as given below. 

 
 

attrs->videoStd = VideoStd_VGA 

 

The next step is configuration of the capture buffer information.  There is two way of 

it. First one is allocating buffer from device memory map by using virtual addresses 

of device memory and the second way is using user allocated buffers. To define to 

memory buffers that will be used by application, DMAI must configure V4L2 driver 

with the VIDIOC_REQBUFS request.  

 

Int ioctl(int fd, int VIDIOC_REQBUFS, struct v4l2_requestbuffers *argp); 

fd = File descriptor returned by open(). 
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This ioctl is used to initiate memory mapped or user pointer I/O. Memory mapped 

buffers are located in device memory and must be allocated with this ioctl before 

they can be mapped into the application's address space. User buffers are allocated 

by applications themselves, and this ioctl is merely used to switch the driver into user 

pointer I/O mode. To allocate device buffers applications initialize three fields of a 

v4l2_requestbuffers structure. They set the type field to the respective stream or 

buffer type, the count field to the desired number of buffers, and memory must be set 

to V4L2_MEMORY_MMAP. When the ioctl is called with a pointer to this structure 

the driver attempts to allocate the requested number of buffers and stores the actual 

number allocated in the count field. It can be smaller than the number requested, 

even zero, when the driver runs out of free memory. A larger number is possible 

when the driver requires more buffers to function correctly. When memory mapping 

I/O is not supported the ioctl returns an EINVAL error code. Applications can call 

VIDIOC_REQBUFS again to change the number of buffers, however this cannot 

succeed when any buffers are still mapped. A count value of zero frees all buffers, 

after aborting or finishing any DMA in progress, an implicit 

VIDIOC_STREAMOFF.  To negotiate user pointer I/O, applications initialize only 

the type field and set memory to V4L2_MEMORY_USERPTR. When the ioctl is 

called with a pointer to this structure the driver prepares for user pointer I/O, when 

this I/O method is not supported the ioctl returns an EINVAL error code. 

 

In this thesis work the driver of the used USB webcam do not support the user 

pointer I/O. So  device memory map is used to get the data bytes of captured frames. 

3 capture buffer requested from driver and virtual addresses of these buffers are used 

by setting a pointer to the starting address of these buffers.  

 

After making necessary configuration of capture and display files of DMAI folder 

we can get the data of capture buffers and we can put the desired data inside the 

display buffers. And now to make a video loopback connection between capture and 

display buffers we must convert the capture pixel format  to display pixel format. In 
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this work, YUYV capture format and RGBA display format is used. Figure 4.16 is 

show the YUYV pixel format and figure 4.17 is show the RGBA pixel format 

 

 

 

 
 

Figure 4.16 YUYV Pixel Format 

 

 

YUYV pixel format is a subspace of YUV color space. YUV color space encodes a 

color image and result with a reduced bandwidth for chrominance components. This 

enables that transmission errors or compression artifacts are more efficiently masked 

by the human perception than using a "direct" RGB-representation. In YUYV format 

each two pixel is defined by four bytes. The first and third bytes (Y) are the Luma 

(the brightness) components of pixels. The second and fourth bytes (UV) are two 

chrominance (color) components of pixels. 

 

 

 

 
Figure 4.17 RGBA Pixel Format 
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RGBA is the abbreviation of Red Green Blue Alpha. It is a color space of RGB color 

model, with extra information alpha. The alpha channel is the opacity channel. Alpha  

pixel value determines the transparency of the display. For Alpha value “0”, it is 

fully transparent , whereas Alpha value “255” gives a fully opaque pixel.  

Below expressions shows the necessary mathematical equation to convert YUYV 

pixel format to RGBA pixel format. In the conversion process 4 bytes, 2 pixel data of 

YUYV pixel format (Y0 U Y1 V )  is read and converted to 8 bytes, 2pixel data of 

RGBA pixel format (A0 R0 G0 B0 A1 R1 G1 B1). Here Alpha values A0 and A1 are 

not depend on the input bytes and defined by user. Here Alpha value is selected as 

“255”  for a fully opaque pixel. 

[R0]      [0x2543          0             0x3313]      [ Y0 -  16 ]      

[G0] =  [0x2543    -0x0C8A   -0x1A04 ]    * [ U  - 128 ]       (1) 

[B0]  [0x2543     0x408D          0      ]     [ V  - 128 ]            

A0 = 0xFF                                                                                                     (2) 

[R1]      [0x2543          0             0x3313]     [ Y1 -  16 ]      

[G1] =  [0x2543    -0x0C8A   -0x1A04 ]    * [ U  - 128 ]       (3) 

[B1]  [0x2543      0x408D          0      ]     [ V  - 128 ]            

A1 = 0xFF                                                                                                       (4) 

After getting the YUYV pixel format captured data we must make the necessary 

conversion to display it in RGBA format. We can make the  conversion by using 

ARM core or DSP core of the DM3730 processor. However to use the DSP core of 

the system, captured data must be written on shared memory continuously, DSP 

CMEM driver must be loaded with correct parameters and conversion algorithm 

must be added codec server (cs.x64) file. These steps will be explained in part 5.4. 

ARM core can use the pointers of device driver directly to make the necessary 

conversion.  

After conversion we must arrange the display driver. For DM3730 processor there 

are two display driver  namely OMAPFBdev (omap_fb.ko) and V4L2 

(omap_vout.ko) display drivers. V4L2 driver is used generally for video streaming 
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whereas OMAPFBdev driver is used for graphics. For our application using V4L2 

driver is much more appropriate because of its streaming capability and supporting 

YUYV pixel format. By using this display driver it is possible to make a pipeline 

between video capture and display buffers without any conversion. However kernel 

compiled by Narcissus image builder do not have omap_vout.ko driver and it can not 

be added by using menuconfig command of kernel. Because Narcissus image builder 

does not produce the sources files of kernel at the output file system. So 

OMAPFBdev driver is used for display operations. Details of OMAPFBdev driver 

parameters is given in [56] . In our kernel we have three framebuffer (fb0, fb1, fb2) 

map to three separate overlays (overlay1 and overlay2 and overlay3). We have two 

output devices namely TV and DVI. At default configuration the fb0 framebuffer 

that is used by kernel GNOME window manager is mapped to overlay0 and overlay0 

is mapped DVI output of platform. So to see the output of our application on the DVI 

output over the GNOME window of  kernel we must use framebuffer fb1 or fb2 and 

we must map these framebuffers to overlay1 or overlay2. And then the selected 

overlay must be mapped to DVI output. In this thesis work we use fb1, overlay1 and 

DVI output of OMAPFBdev driver and we map these parameters to each other. The 

other important driver parameters must be set is the resolution of display. It is set to 

640x480 VGA format to map the captured frame all of the screen. All of the 

configuration of this parameters must be set from _SysFs.c  file as explained before. 

 Here the other important thing disabling the overlay1 while exit from application to 

return the GNOME window manager of kernel. Because if all of the overlays 

enabled with opaque transparency, overlay2 covers on the overlay1 and overlay1 

covers on the overlay0. 

4.4.3.2 Configuration of Shared RAM Memory 

The Beagleboard-XM is equipped with 512 megabytes of DDR2 memory. A user 

defined part of DDR2 memory is shared between the ARM and the DSP cores and 

both cores can access the shared part of the DDR2. The ARM however views this 

memory as virtual addresses through an MMU (Memory Management Unit) while 

the DSP uses the physical addresses directly. The virtual addresses is used by Linux 

to provide memory protection between processes, making sure a process only 
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accesses memory which it has access to. Since the DSP has no MMU it can not be 

restricted to certain memory addresses and it can over the ARM (Linux) side code 

and data. This issue result with a fatal error. To prevent this situation CMEM driver 

is used to arrange the shared memory used between ARM and DSP cores. By the 

help of this driver ARM and DSP cores work on physical address of shared memory. 

The physical memory addresses are the same for the ARM and the DSP on DM3730 

and range from 0x80000000 to 0x90000000.  

In this part of the thesis, after giving some background on various elements of shared 

memory, we discuss how to how to partition that memory. We partition the shared 

memory to six elements, namely Linux partition, Contiguous Memory Allocator, 

DDRALGHEAP, DDR, DSPLINKMEM and RESET_VECTOR.  

The Linux partition is used for various internal I/O buffers and application caching 

features, so the bigger this partition is, the better.  

CMEM partition is used to share buffers between ARM processes and the DSP. It 

takes a physical memory region you specify at CMEM driver load time and carves it 

up in to pools of contiguous buffers according to your specifications. The buffers are 

typically not cached on the ARM side whereas they are cached at the DSP side by 

the help of Codec Engine.  

The DDRALGHEAP partition contains the heap from which the active codecs 

allocate all their dynamic memory. This section can be quite large, especially if video 

codecs are used.  

The DDR partition contains DSP side code and static data for all the codecs plus the 

system (i.e. DSP/BIOS and Codec Engine). 

DSPLINKMEM partition is used by the DSPLink IPC software from TI. Codec 

Engine uses this software module for communicating between the ARM and the DSP 

as well as loading the DSP with code and controlling it.  

RESET_VECTOR partition contains the DSP reset vector, i.e. the vector table which 

the DSP side ISTP register is pointing to when the DSP is pulled out of reset by DSP 
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Link. The reset vector code moves the vector table else where by changing the ISTP, 

but this is where it is located at boot. This section needs to start at an even 1MB and 

needs to be 128 bytes in size.  

Sum of the size of these partitions gives the total RAM memory of the platform. In 

our case total memory is 512MB. 

To put it in an equation,  

512MB = Linux Memory + CMEM memory + DDRALGHEAP + DDR + DSPLINKMEM + 
RESET_VECTOR  

from which follows that  

Linux Memory = 512MB – (CMEM memory + DDRALGHEAP + DDR + DSPLINKMEM 
+ RESET_VECTOR) 
 

Linux memory partition allocate maximum memory to increase the performance of 

embedded OS on ARM core. So necessary minimum sizes for the other partitions 

must be calculated and set to get the optimum performance from system. In this 

thesis shared memory is not optimized for optimum system performance. However 

more detailed information can be found from [60] to optimize the shared memory.  

The physical memory addresses and sizes for shared memory partitions that are used 

in this work  is given in table 4.5. This partition table shows the first bank of 512MB 

memory the other banks is used by Linux memory. So Linux memory allocates 

438MB from 512MB total memory. The Linux memory partition is determined with 

the boot.scr parameters at start up. The CMEM partition size is determined while 

installing the CMEM driver into kernel. The other partitions are determined from 

server map files (*.tcf files) that is placed in sources files of DSP server. 

Configuration of server map files used for Running Average Gaussian algorithm is 

given Appendix H. This map file is placed under ../DVSDK/CODECS-

OMAP3530/PACKAGES/TI/SDO/SERVER/CS folder. 
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Table 4.5.  DM3730 Memory Map (128 MB Total Memory) 

Address Range  Size  Description  

0x80000000 - 0x836FFFFF 55 MB  Linux  

0x83700000 - 0x858FFFFF 34 MB  CMEM  

0x85900000 - 0x878FFFFF 32 MB  DDRALGHEAP  

0x87900000 - 0x87EFFFFF 6 MB  DDR2 (BIOS, Codecs, Applications) 

0x87F00000 - 0x87F00FFF 4 KB DSPLINK (RESET) 

0x87F01000 - 0x87FFFFFF  1 MB- 4KB DSPLINK  (MEM) 

 
The figure 4.18 shows the first bank 128MB RAM Memory Map of DM3730 used 

for Running Average Gaussian algorithm. 

 

 

 

 
Figure 4.18 DM3730 Memory Map (128 MB Total Memory) 
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4.4.3.3 Implementation of Smart Camera Applications on DSP Core   
 
Moving object detection, single and multiple object tracking, event recognition and 

face detection are the necessary and widely used algorithms in automated visual 

surveillance. Development of image processing algorithms for smart camera design 

generally focuses on the combination of these algorithms according to application 

area. Background/foreground detection algorithm is the most important and 

challenging part of all of these algorithms. Therefore implementation of a successful 

background/foreground detection algorithm on a smart camera platform is a 

necessity for the implementation of a variety of smart camera algorithms. In this 

thesis adaptive and non-adaptive background/foreground detection algorithms are 

used. As non-adaptive method, pixel difference and thresholding method is used. As 

adaptive method  Running Gaussian Average (RGA) and Gaussian Mixture Model 

(GMM) background/foreground detection algorithms are selected for 

implementation. 

Pixel difference and thresholding background/foreground detection algorithm is the 

simplest non-adaptive background/foreground detection method. It is very sensitive 

to selected threshold and it is not good at different challenging conditions like 

illumination changes and shadows in scene. In this method difference between 

current frame pixel and previous frame pixel is calculated and this difference is 

compared with a predefined threshold value. If difference is greater than threshold 

value, this pixel belongs to foreground. Otherwise it is belong to background. Figure 

4.19 shows the background foreground detection process based on pixel difference 

and thresholding method. 

 
 
 

 
Figure 4.19 Background Foreground Detection Based on Pixel difference and 

thresholding 
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Descriptions of the parameters shown in figure 4.19 are given below. 
 
· fi : A pixel in a current frame 

· fi-1 : A pixel in a previous frame 

· di : Absolute difference of pixels |fI - fI-1| 

· bi : Background/Foregroundmask – background = 0 and  foreground = 0xFF. 

· T : Threshold value. 

 

RGA background/foreground detection algorithm is the a moderate  adaptive 

background/foreground detection method. This method is based on a statistical 

background model and can adapt to dynamic light changing and environmental 

noise. In this method a pixel of video frame is model as a random variable that 

follows a Gaussian distribution that as determined by its mean and standard 

deviation. Mean and standard deviation of a pixel is calculated continuously from the 

frames of live video data. The pixels whose values are in the standard deviations of 

the corresponding Gaussian distribution belong to the background. Otherwise, they 

belong to the foreground. Figure 4.20 shows the background foreground detection 

process based on Running Average Gaussian. 

 

 

 

 

Figure 4.20 Background Foreground Detection Based on Running Average Gaussian 
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Descriptions of the parameters shown in figure 4.20 are given below. 

· fi  : A pixel in a current frame 

· μi  : Mean of a pixel-wise background Gaussian distribution 

· σi : Standard deviation of a pixel-wise background Gaussian distribution. 

· di : Absolute difference between fi and μi. 

· Ti : A pixel-wise threshold. 

· a : Learning rate of the background. 

· η : Threshold gain. 

 

GMM background/foreground detection algorithm is the most successful 

background/foreground detection algorithm because of its success on different 

challenging conditions like illumination changes and shadows in scene. However 

GMM algorithm is a complex algorithm that needs a lot of mathematical operations 

for each pixel on the scene. Because of this, DSP core of the processor is much more 

appropriate to implement this algorithm. However, implementation of complex 

algorithm on DSP core is not the scope of this thesis. So GMM algorithm is 

implemented on only the ARM core to see the performance of the algorithm. GMM 

background/foreground detection algorithm is a widely used approach for 

background modeling to detect moving objects as foreground objects from static 

cameras.  This background subtraction model is a parametric approach designed by 

Zivkovic and van der Heijden [2, 3]. In this approach, each pixel is compared with 

each Gaussian and is classified according to its corresponding Gaussian. A mixture 

of Gaussians for the base distribution for each pixel's color values are calculated and 

maintained. The mean and covariance of each pixel in the mixture is updated in 

every new frame to reflect the change of the pixel values. This model calculates the 

Mahalanobis distance of the pixels from the RGB value to the pixel's means  by 

using calculated mean and covariance of each pixel in the mixture. The pixels those 

Mahalanobis distance are larger than, for instance, three times of the standard 

deviation are considered as the foreground pixels. Mahalanobis distance is based on 

the correlations between pixel’s variables by which different pixels can be identified 

and analyzed. In other words Mahalanobis distance of the pixels  gauges the 

similarity of new frame’s pixels to older frame’s pixels. The details and mathematics 

of the algorithm can be found in [2, 3].  
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GMM background/foreground detection algorithm decreases the processing time for 

each frame while achieving good segmentation. However, this algorithm is still not 

fast enough for real time applications, especially when the algorithm has to deal with 

high-resolution video segments.  

 

In this thesis work the C6Accel package is used to create the DSP side algorithms 

that is compatible with xDAIS standards. By the help of C6Accel, implemented  

algorithms  can be invoked from the ARM side using simple API calls. C6Accel can 

be used in a plug and play like any other codec used for encoding and decoding 

audio and video streams. C6Accel is built in the codec engine compliant IUniversal 

framework and can be used on various DSP only and ARM + DSP devices. The 

purpose of C6Accel is to provide the ARM user with the compute power of the DSP 

on computational intense tasks like running Color Space Conversion, Filtering or 

Image/Signal Processing algorithm. The library of DSP kernels wrapped in C6Accel 

are optimized for performance on the DSP core and would allow the ARM user to 

use the DSP as an accelerator for their application. By using these routines, the ARM 

developer can develop a more compelling application by achieve execution speeds 

considerably faster than equivalent C code written on ARM. In addition, by 

providing ready-to-use DSP kernels, C6Accel can significantly shorten the ARM 

application development time. 

 

The benefits of using C6Accel include: 

• Ready to use kernels: Library of Optimized DSP kernels wrapped in a single 

package. Reduces learning curve and time to market. 

 

• Easy to interface: ARM side API library abstracts complexities while 

invoking DSP functionality from ARM application 

 

• Easy Portability: Fully compatible with most TI C6x devices 

 

• Efficient multiple call execution: Capability to chain kernel calls using single 

call to codec engineEasy  
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• Evaluation of DSP performance: DSP kernel Benchmarks (cycle and code 

size) provided in C6Accel aid in evaluating performance that can be 

leveraged from the DSP and make informed decisions while developing 

applications 

 

• Parallel processing: Asynchronous calling mode enables parallel processing 

on DSP and ARM  

 

• Simple Template to add functionality on DSP: SoC developers can explore 

maximum flexibility by using C6Accel algorithm as a template to add custom 

compute intense functionality on the DSP that can be accessed from the 

ARM. 

 
In this work implemented algorithm for DSP side is added to IMGLIB library of 

C6Accel. To add a DSP algorithm to the C6Accel infrastructure, a user defined ID 

for the function of algorithm and input output structure of function must be added the 

library and API call sources files placed inside the c6Accel folder. The steps to add 

the Running Average Gaussian function to C6Accel component is given below. 

More detailed information is given in [58]. 

 

Step 1 : Implement the desired Algorithm for DSP.  

  

Running Average Gaussian algorithm is implemented in that step. Three input buffer, 

one output buffer and an input image size parameter is used for algorithm. Equation 

for Running Average Gaussian algorithm is given below. 

 

M: Mean buffer 

V:  Variance buffer 

F:  Captured Frame buffer 

O: Output buffer 

Alfa : Adaptation rate 

THR: Threshold 

M(t) = Alfa * F  + (1-Alfa) * M(t-1)        (5) 
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V(t)  = sqrt ( Alfa * (F-M[t-1]) *  (F-M(t-1)) + (1-Alfa) * v(t-1) * v(t-1))          (6) 
 
THR = F-M(t) / v(t);         (7) 
 
IF THR < 2*v(t) then O = 0xFF       (8) 
 
ELSE O = 0x00         (9) 
         
 

Here we capture a YUYV pixel format and 640x480 pixel resolution image frames 

from camera. This means we have two bytes for each pixel. So the size of our input 

buffer is equal to: 

 

Input Buffer Size = 640 x 480 x 2 = 614400 bytes     (10) 

 

At the calculation of mean and variance only luma values of pixel is used. This 

means for each pixel we have one byte data. So the size of our mean and variance 

buffer is equal to: 

 

Mean Buffer Size = Variance Buffer Size = 640x480 = 307200 bytes  (11) 

 

Input image size parameter holds the data of  multiplication of resolution. 

 

Size of Input image Size parameter  = size of (640x480) = 15 bits is enough        (12) 

 

For each input pixel we produce an ARGB pixel format bytes for output display. 

This means we have four bytes for each pixel. So the size of our output buffer is 

equal to: 

  

Output Buffer Size = 640 x 480 x 4 = 1228800 bytes    (13) 

 

Therefore we need one 1228800 bytes , one 614400 bytes and two 307200 bytes 

buffers and one 15 bit integer for our algorithm implementation. These size will be 

used to determine the necessary size for CMEM partition and to determine the size of 

pools parameters that is at CMEM driver installation. The source code of algorithm 

is given in Appendix G as RGA_DSP.c. 
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Step 2 : Add algorithm ID to  C6Accel.h and iC6Accel_ti.h files. The place of files 

and definition of ID is given in Appendix G as C6Accel.h and iC6Accel_ti.h. 

 

Step 3 : Add the call API of algorithm library from ARM side to c6accelw.c file. An 

implementation for that step is given in Appendix G as c6accelw.c 

 

Step 4 : Add the call API of algorithm from codec engine side to 

C6accel_ti_imglibFunctionCall.c file. An implementation for that step is given in 

Appendix G as C6accel_ti_imglibFunctionCall.c 

 

Step 5: Configure the shared memory map from server.tcf file that is placed under 

../DVSDK/CODECS-OMAP3530/PACKAGES/TI/SDO/SERVER/CS folder 

 

Step 5: Configure the shared memory map from server.tcf file that is placed under 

../DVSDK/CODECS-OMAP3530/PACKAGES/TI/SDO/SERVER/CS folder 

 

Step 6: Compile the codec server from DVSDK folder with below make commands 

 

$../DVSDK/   make c6accel_clean codecs_clean 

 

$../DVSDK/   make c6accel codecs 

 

$../DVSDK/   make c6accel_install codecs_install 

 

Step 7: Get the *.x64P DSP codec server file from the codec install directory of 

compiler. Install directory of compiler is defined in Rules.make file under DVSDK 

folder. In this work codec install directory is set as below. 

 
# The installation directory of the SDK. 

DVSDK_INSTALL_DIR=/home/ti-dvsdk_dm3730-evm_4_01_00_09 
# Where the codecs are installed. 

CODEC_INSTALL_DIR=$(DVSDK_INSTALL_DIR)/codecs-omap3530_4_01_00_00 
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Step 8: Implement the desired Algorithm for ARM and call DSP function. 

 

Implementation of ARM side application is achieved by using the demo applications 

under the DVSDK.  

 

Step 9: Compile the arm application from DVSDK folder with below make 

commands 

 

$../DVSDK/   make demos_clean 

 

$../DVSDK/   make demos 

 

$../DVSDK/   make demos_install 

 

Here if  a new folder for a project is created under ../DVSDK/DVSDK-

DEMOS/OMAP3530 folder, the name of new application folder must be added make 

file under ../DVSDK/DVSDK-DEMOS 

 

Step 10: Get the executable output of ARM application from the demo install 

directory of compiler. Install directory of demo is defined in Rules.make file under 

DVSDK folder. In this work demo install directory is set as below. 

 
# Where the SDK demos are installed 

DEMO_INSTALL_DIR=$(DVSDK_INSTALL_DIR)/dvsdk-demos_4_00_00_21 

 

Step 11: Prepare a script file to install the DSPLink, LPM and CMEM drivers with 

determined pool sizes. 

 

Step 12: Copy the *.x64P DSP server, executable ARM application and driver 

installation script same place. Run the driver script and confirm that driver is load 

from console.  

 

Step 13: Run executable ARM application from console. 
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At that step ARM application run on ARM core and call DSP application from DSP 

server. Data sharing between these cores is achieved on the CMEM shared memory 

defined by CMEM driver installation parameters.  
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CHAPTER 5 

 

 

IMPLEMENTATION AND PERFORMANCE EVALUATION 

 
 
 
Our performance evaluation is done by using Beagleboard-XM platform and a host 

PC. To evaluate the  performance of the platform, a comparison is made with a host 

PC having a 2.80 GHz Intel core processor and 512 MB DDR2 memory. The 

specifications of the system components are listed in table 5.1.  

 
 

Table 5.1.  Specifications of components of the experiments environment 

 

  HOST PC Target Board 

OS 
Ubuntu                

Release 10.04          
(lucid) 

Angstrom           
Release 2011.03 

(Dureza) 
KERNEL 2.6.32 2.6.32 

MEMORY 512 MB               
DDR2 

404.6 MB          
LPDDR 

PROCESSOR 
INTEL(R) CORE(TM) 
2 DUO* CPU T9600 

2.80 GHz 

ARM Cortex-A8       
1 GHz 

DSP TMS320C64X+ 
800 MHz 

COMPILER 
gcc                   

version 4.4.3 
Target: i486-linux-gnu 

               g++   
 version 4.3.3-r23.1.6 
Target: arm-linux-gnu 

ARM SDK 

Eclipse SDK        
Version 3.5.2 

 CDT GNU Tool Chain   
6.0.0 

Use Outputs of Host 
SDK 

ARM+DSP 
SDK 

Modified            
DVSDK 4.01 

Use Outputs of Host 
SDK 
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In this chapter, we will focus on the performance of the DM3730 processor for video 

capture, video decode and image processing. We will measure the performance 

contributions of NEON co-processor, DMA hardware accelerator and DSP core on 

the applications that are run by ARM core .    

 

5.1 Video Loopback Process 

 
In this section we will evaluate the video loopback performance of DM3730 

processor. Video loopback can be thought as a simple camera model. In this model, a 

frame is captured from image sensor by the help of the video capture driver and 

captured frame is converted to a compatible format for display unit. Then format 

converted frames are sent to a display unit by using video display driver. The 

simplest implementation of this process is using the OpenCv libraries installed on 

embedded OS. By using these libraries we do not struggle with capture and display 

driver configurations. However, we can achieve this type of implementation only on 

ARM core or NEON co-processor to use OpenCv libraries in our application. Figure 

5.1 shows the implementation of video loopback process on ARM core 

 

 

 

 
 

Figure 5.1 Block Diagram of Video Loopback Process on ARM 
 
 
 
 
As can be seen from figure 5.1 OpenCv libraries capture frame data from video 

capture driver by using Memory Management Unit (MMU) of kernel and put this 

frame data to display driver with same structure. To implement this model on the 
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ARM core or NEON co-processor, we implement a code by using the OpenCv 

libraries. Details of the code are given in Appendix A-ii. 

 
This code is written on the host PC. Code is implemented as compatible both the host 

PC and target board environment. 640x480 resolution YUYV pixel format A4Tech 

USB webcam is used as image sensor. Rated fps of the USB webcam is 30 fps and 

its speed changes with illumination of environment.  

 

Video loopback process can be also implemented by using DMA hardware 

accelerator of DM3730 processor to speed up the process. Figure 5.2 shows the 

implementation of video loopback process with DMA hardware accelerator. 

However in this case we must struggle with capture and display driver configurations 

and we must convert the capture format to display format inside the application. In 

our work, frames are captured in YUYV pixel format from a USB webcam and they 

are displayed in ARGB pixel format on DVI output of platform.  Figure 5.2 shows 

the implementation of video loopback process with DMA.  

 

 

 

 
Figure 5.2 Block Diagram of Video Loopback Process with DMA 

 

 

 

As can be seen from figure a frame is captured from capture driver with DMA 

hardware accelerator in YUYV format and captured frame is sent to a color space 

conversion application. Then the ARGB output of color space conversion application 

is sent video display driver with DMA hardware accelerator. In this case color space 
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conversion application can be implemented on ARM core or DSP core of the 

DM3730 processor. The performances of these cores effect the processing time of 

color space conversion application and that affects overall performance of 

application. Here because of the large size of the image data that will be processed 

by color space conversion application, the SIMD architecture of DSP can be good 

solution to speed up the system performance. However, we must put the captured 

image data on the shared RAM memory to process it with DSP. Furthermore, DSP 

writes again the outputs of the processed image data on the shared RAM memory. 

This means captured YUYV pixel format frames must be put on shared RAM 

memory and processed ARGB pixel format frames must be read by display driver 

from shared RAM memory. The figure 5.3 shows the implementation of video 

loopback process on ARM + DSP cores.      

 

 

 

 
Figure 5.3 Block Diagram of Video Loopback Process on ARM + DSP 

 
 

 

Table 5.2 compare the performances of different implementations on Beagleboard-

XM platform for video loopback process. Furthermore, the performance of the host 

PC for video loopback application is also given as reference.  

 

As you see from table 5.2 host PC can capture the 640x480 resolutions frames at 

20.2 fps speed  by using %17 of its CPU and %3.6 of memory. However target board 

can process same resolutions frames at 11 fps speed  by using %73 of its CPU and 
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%7.7 of the memory with his ARM core. As can be seen from table using NEON co-

processor for video loopback process does not change the performance of overall 

system. On the other hand, using DMA hardware accelerator for process, increase the  

 

Table 5.2.  Performance of Beagleboard-XM  for Video Loopback Process 

 
Experiment 

Setup Host PC Beagleboard-XM Platform 
ARM NEON DMA + NEON DMA + DSP

Resolution 640x480 640x480 640x480 640x480 640x480 

CPU Load    
% 17 73 73 97 70 

Memory 
Usage % 3,6 7.7 7.7 0.6 0.6 

Processed FPS 20.2 11 11 22 10 

FPS/CPU 0.119 0.015 0.015 0.023 0.014 

 
 

system performance drastically. However, in that case CPU usage of system goes up 

to %97 and this is a undesired condition for operation of an embedded OS. Another  

interesting point is low memory usage  in DMA case. The reason for that DMA uses 

the shared memory and embedded operation systems do not calculate memory usage 

from shared memory.  As can be seen from table 5.2  DMA+DSP implementation 

does not increase the system performance according to DMA+NEON case. We will 

investigate that situation at the following sections. 

 

Here the ratio of processed frames per second to CPU usage is thought as processing 

capability of processor with  %1 CPU usage. This value is used to make a 

comparison between performances of the host PC and target board.  

 

This experiment shows that processing capability of host PC is on the average 7.9 

times of processing capability of ARM core of the target board although the CPU 

processor speed of host PC is 2,8 times of the ARM core processor speed of the 

target board. NEON co-processor does not affect the processing speed for video 

loopback operation. This situation shows that video loopback processing speed is not 
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related only with the CPU of the system. In this application the limit is memory 

reading and writing speed and it takes 91 msec capturing and displaying a frame for 

ARM case. In ARM case memory transfer operations and cpu usage operation of 

application is controlled by the embedded OS and this affects the performance of 

application. On the other hand using DMA hardware accelerator speeds up the 

memory transfer operations while it also increase the CPU usage of system. Using 

DMA increase overall system performance %50. In DMA+NEON case, capturing 

and displaying a frame takes 45 msec. 45 msec is almost the rated fps of USB 

camera. However, because of CPU usage this performance can not catch the 

performance of host PC. At that point using DSP processor beside the DMA 

hardware accelerator decreases the CPU usage of ARM processor. However, because 

of extra frame transfers operation between shared memory, ARM and DSP, fps value 

decreases  to 10 fps in DSP case.  Figure 5.4 shows the frame processing speed for 

different operations in DMA + DSP case. 

 

 

 

 
Figure 5.4 Speeds of Memory Transfer Operations and DPS Image Processing  

 

 

 

As can be seen from figure 5.4 memory transfer operation takes 84 msec totally 

whereas DSP processing speed 16 msec. So in overall system to process a frame we 

need 100 msec and this equals to 10 fps.  
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Memory transfer operations between device drivers and DSP may be speeded up by 

using some architectures in DSP. The DMA engine can be used on the GPP 

processor to speed up memory transfers. Instead, on the DSP side is provided an 

Enhanced Direct Memory Access (EDMA) Controller for data transfers between the 

L2 cache and the device peripherals. This unit may speed up data transfer when 

peripheral devices are directly connected to the DSP. The figure 5.5 shows the DSP 

core process in an Application. As can be seen from figure data can be cache to L2 

cache by DDR interface or may be cached EDMA. 

 

    
 

 Figure 5.5 Block Diagram of DSP core Process in an Application 
 

 

 

As a summary video loopback application by using DMAI hardware of DM3730 

speeds up the video loopback application and we can process the rated fps of USB 

webcam. However ARM CPU load goes to %97 and no processing power for other 

applications remains. Therefore at that point addition of the background and 

foreground image separation process to the algorithm will decrease the processed fps 

because of full load of CPU. We will see the effect of additional Running Gaussian 

Average background and foreground image separation algorithm on the speed of 
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process at part 5.3.  On the other hand using DSP besides the DMA do not increase 

the performance of overall system and fps of process decrease because of the extra 

memory transfer speed. Memory transfer speed from device drivers to DSP can be 

increased by optimizing memory path between DSP and device drivers. Also L2 

cache and Enhanced DMA of DSP core may be used the speed up data transfer 

between device drivers to DSP. 

5.2 Background/Foreground Detection Process  
 
In this section, we evaluate the image processing performance of Beagleboard-XM 

platform. In this thesis to evaluate the image processing capability of the platform, 

three different background/foreground detection algorithms namely pixel difference, 

RGA and GMM background/foreground detection algorithms are used during the 

experiments.  

 

Figure 5.6 shows the block diagram of the GMM background subtraction process 

implemented on ARM core of DM3730 processor. Details of the code are given in 

Appendix A-iv.  

 

 

 
Figure 5.6 Block Diagram of GMM Background/Foreground Detection Process 
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Table 5.3 shows that ARM core of the target board can capture, process and display 

the 640x480 resolution frames by using GMM background subtraction algorithm at a 

speed of 0.8 fps by using %95 of its CPU. This is a low rate to design a smart camera 

that has real time image processing capability. On the other side host PC can capture, 

process and display 640x480 resolution frames by using GMM background 

subtraction algorithm at 15 fps by using %80 of its CPU. Furthermore the 

comparison between processing capability of host PC and target board shows that 

GMM background subtraction algorithm works 22 times faster than target board. 

This is a very big performance difference when we look at the result of the former 

experiments. The most probable reason for that is the usage of ram memory more 

than one times to read and write data at different levels of GMM background 

subtraction algorithm according to former experiments and saturation of ARM core 

CPU usage.  Here we also compile the code to use the NEON co-processor of the 

ARM. The only thing to use neon co-processor is adding NEON parameters to gcc 

compiler. 

 

Table 5.3 shows that NEON co-processor of the target board can capture, process 

and display the 640x480 resolution frames by using GMM background subtraction 

algorithm at a speed of 1.2 fps by using %95 of its CPU. This result shows that 

NEON core speed up the process at a %50 rate. Furthermore the comparison between 

processing capability of host PC and target board shows that GMM background 

subtraction algorithm works 15 times speeder than target board when we use NEON 

co-processor. 

 

Table 5.3. Gaussian Mixture Model Background/Foreground Detection 

Experiment 
Setup Host PC Beagleboard-XM Platform 

ARM NEON 

Resolution 640x480 640x480 640x480 

CPU Load    % 85 95 95 
Memory Usage 

% 8,8 14.1 14.1 

Processed FPS 22.4 0.8 1.2 

FPS/CPU 0.26 0,008 0,013 
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a) 

 

 
 

 

b) 

 

 
 

 
Figure 5.7 GMM Background Subtraction Result of a) Host PC  b) Target Board  

 
 



 

 
 93 

Figure 5.7-a shows the results of the GMM background subtraction algorithms 

implemented on host PC. The upper two frames show the original background image 

and its foreground mask. The effects of changing light conditions in the environment 

can be seen from the foreground image that is belonging to the only background 

model. The lower two frames show the moving objects that is newly entering the 

scene and its foreground mask. Most of the moving pixels can be seen from the 

foreground image and this shows the success of background subtraction algorithm on 

host PC. Figure 5.9-b shows the results of the GMM background subtraction 

algorithms implemented on target board for. The upper two frames show the original 

background image and its foreground mask. The lower two frames show the moving 

objects that newly enter the scene and its foreground mask. If we compare the results 

of GMM background subtraction algorithm implemented on host PC and target 

board, we can see that target board foreground image that is belong to the only 

background model do not differ so much from the host PC foreground image. 

However, target board foreground image that belongs to the moving object differs so 

much from the host PC foreground image and most of the moving pixels can not be 

seen from the target board foreground image. Although most of the details of moving 

objects are lost in the target board implementation, this result can be sufficient to 

implement some simple moving object detection algorithms on the target board.  

Additionally we can extract from this experiment that an increase in the resolution of 

image result with a decrease in the number of processed images  while it result with 

an increase in the success of GMM background algorithm.    

 

In this work, to see the contribution of DSP core on image processing, Pixel 

difference and RGA background/foreground detection algorithms are implemented 

on DSP core. Figure 5.8 show the block diagram of RGA background/foreground 

detection algorithm. As can be seen from figure 5.8 processing time of DSP is 500 

msec and this is a very high value for real time image processing. There are two 

reasons for that situation. First reason is floating point operations included in 

algorithm and non-optimized structure of DSP code according to VLIW. Second 

reason is extra memory transfer operations for the new mean and variance 

operations. 
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Figure 5.8 Block Diagram of RGA Background/Foreground Detection Process 

 

 

 

In the RGA algorithm we are taking square root to calculate the variance and only 

this operation takes the 79 cycle of the DSP. Also floating operation on DSP 

decreases the performance of it. Here we also use the fastRTS_i library to calculate 

the floating point operations in DSP and this really increase the performance of 

algorithm. Processing time of DSP was 1750 msec without fastRTS_i library. 

 

Table 5.4 shows the performance of Beagleboard-XM platform for RGA 

Background/Foreground Detection algorithm. 

  

Table 5.4. Running Gaussian Average Model Background/Foreground Detection 

Experiment 
Setup 

Beagleboard-XM Platform 
DMA + NEON DMA + DSP 

Resolution 640x480 640x480 

CPU Load    
% 97 17 

Memory 
Usage % 0.6 0.6 

Processed FPS 3.3 1.9 

FPS/CPU 0.034 0.112 
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As can be seen from table 5.4 DMA + NEON case processing speed is faster than 

DMA + NEON case. There are two reason for that situation. First one is floating 

point operation capability of NEON co-processor and the second one extra memory 

transfers operations in DMA+ DSP case. 

 

Pixel difference background/foreground detection algorithm does not include 

floating point operations so we can apply this algorithm to see the only memory 

depended performance difference of DSP. The table 5.5 shows the performance of 

Beagleboard-XM platform for pixel difference Background/Foreground Detection 

algorithm.  

 

Table 5.5. Pixel Difference Model Background/Foreground Detection 

Experiment 
Setup 

Beagleboard-XM Platform 

DMA + DSP 

Resolution 640x480 

CPU Load    
% 64 

Memory 
Usage % 0.6 

Processed FPS 7.1 

FPS/CPU 0.112 

 

 

As can be seen from table 5.5, using pixel difference algorithm decreases the 

processing time on DSP. However, CPU time of system is increases and overall 

performance of the system does not change (FPS/CPU is 0.112 as in table 5.4). This 

shows the effect of memory transfer operations on ARM + DSP applications. In our 

ARM + DSP application, DSP can not access the captured frame data directly. ARM 

core copy the image data from capture driver the to shared RAM memory. This result 

with a CPU usage in ARM core.  
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5.3 Video Playback Process on ARM Core 
 
Smart camera application processes that must be implemented on platform can be 

more than one. These processes must be shared between ARM and DSP cores of 

system to design an efficient system. Because these cores can work asynchronous 

and they can run different processes at the same time. For example in an application, 

DSP core can process and encode the captured image in real time and ARM core can 

store them in a memory. At that time if the camera user wants to playback a video 

stream from memory, one of the cores of platform must decode encoded video 

streams at memory while the real time image processing duty of DSP continues. In 

that case this decoding process can be achieved by only ARM core.  This section is 

performed on only ARM core to show the ability of platform for playback operation 

that can be used in a smart camera design. In this thesis video playback describes the 

decoding and retrieving frames from a file  and displaying them on a display unit. 

Video playback can be used to play the recorded frames from an image sensor. 

Recording and playing important frames is one of the basic properties of smart 

camera design. Important frames are generally recorded by using encoders like 

MPEG2, MPEG4 and H.264. Now we will give brief information about MPEG and 

H.264 codec before describing the implemented video playback algorithm. 

 

5.2.1 MPEG 
 

MPEG is used as the abbreviation of the Moving Picture Experts Group that works 

on the development of the international standards for processing, compression, 

decompression and coded representation of moving pictures, audio and their 

combination [43].  Up to know this group have developed lots of MPEG standards 

namely MPEG1, MPEG2, MPEG4, MPEG7, MPEG21, MPEG-A, MPEG-B, 

MPEG-C, MPEG-D, MPEG-E, MPEG-M. However MPEG2 and MPEG4 standards 

have been most widely used MPEG standards among others. These media coding 

standards have been used for storage of video on CD and DVD and transportation of 

video over video satellite broadcast TV, HDTV [44].  

 

Among others, MPEG2 is the predominant media coding standard for digital video 

equipments in the market. Present, this media coding standard is mostly used in 
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digital video broadcasting. By the development of the high definition video standards 

in digital video television broadcasting, coding efficiency (bits per image for 

constant quality) of the digital video compression algorithms has become a 

challenging issue to broadcast high resolution digital video. This situation result with 

an improvement in media coding standards. MPEG4 media coding standard 

completed in 2000 and this standard added more flexibility and functionality to 

MPEG2 standard. However, it did not improve the efficiency of MPEG2 media 

coding standard significantly. MPEG4 standard provides many features of MPEG1, 

MPEG2 and other related standards and it is still a developing standard. Especially 

the most interactive feature of this standard is its enabling one to use video functions 

almost like a Web page. MPEG4 standard bundle different types of audio and video 

contents into a file and break large scale  files into sufficient small pieces to send 

over the network . 

 
5.2.2 H.264 

While MPEG team had been working on the MPEG4 standard, the International 

Telecommunications Union (ITU-T) started an independent Project to improve the 

compression performances of MPEG2 standard significantly. This standard 

committee designed a completely new media coding standard H.264 by using new 

ideas and innovative algorithms. The intention of the ITU-T committee was to 

provide good video quality at substantially lower bit rates than previous standards.  

Furthermore they wanted to use this standard for a wide variety of applications on a 

wide variety of networks and systems. At the end of the Project, H.264 Standard 

provided an advancement in picture quality and coding efficiency against MPEG4-2. 

The results show that that H.264  at least provides a 2X improvement over MPEG4.  

Indeed, both MPEG4-2 and H.264 standards are image transformation algorithms 

that are based on forward/backward block motion compensated prediction with 

entropy coded transform coefficients. However, the methods selected for image 

transformation and entropy coding are differ at MPEG4-2 and H.264. These 

differences are summarized in Table 5.6. Video playback experiment is implemented 

to measure the video decoding capability of the platform. MPEG2, MPEG4 and 

H.264 standard encoded video files are decoded during the experiments. 
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Table 5.6.  Comparison of H.264 Coding Algorithm to MPEG2/MPEG4 Algorithms 

(Adapted from [45]) 

Algorithm Characteristic MPEG2/MPEG4 H.264 
General Motion compensated 

predictive, residual 
transformed, entropy 

coded 

Same basic structure as 
MPEG 

Intra Prediction None Multi-direction, Multi-
pattern 

Coded Image Types I,B,P I,B,P, SP 
Transform 8x8 DCT 4x4 DCT-like Integer 

Transform 
Motion Estimation Blocks 16x16 16x16, 8x8, 8x4, 4x4 

Entropy Coding Multiple VLC Tables Arithmetic Coding and 
adaptive VLC Tables 

Frame Distance for 
Prediction 

+/- 1 Unlimited forward/backward

Fractional Motion 
Estimation 

1/2 Pixel (MPEG2) 

1/4 Pixel (MPEG4) 

1/4 Pixel 

Deblocking Filter None Dynamic edge filters 
 
 

Figure 5.9 shows the block diagram of video playback process implemented on the 

ARM core of processor. Details of the code are given in Appendix A-iii .  

 

 

 

 
Figure 5.9 Block Diagram of Video Playback Process 
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As can be seen in Figure 5.9 we retrieve the frames from video file by decoding the 

video files with a compatible decoder. Decoder algorithms are implemented by 

installing necessary MPEG and H.264 packages like Ffmpeg, mpeg2dec to OS of 

host PC and target board. OpenCv functions are used to call the decoding algorithms 

that are implemented on installed packages and retrieve frames from files. Finally 

retrieved frames send to a display unit by using video display drivers. Table 5.7 

shows the video playback performances of the host PC and target board for different 

resolution and different standard encoded video files. The result shows that 

processing capability of the host PC and target board does not change significantly 

for MPEG2 and MPEG4 standards. This is an expected result because of the similar 

compression efficiency of MPEG2 and MPEG4 standards. When we look at the 

processing capability for H.264 standard, we see a decrease in the number of 

processed pixel per second. This is also an expected result because a more complex 

algorithm is used in H.264 standard. However this complexity of H.264 algorithm 

provides an advance in compression efficiency while decreasing the processing 

power of the platform. To see the effect of input file resolution on the performance, 

two different resolution input file sets are used with 1280x720 and 720x480 

resolution. The result shows that when resolution of input files decreases, as 

expected the number of processed frames increases and CPU load of processor 

decreases. However, the result also shows that the processing capability of host PC 

decreases significantly by decreasing input file resolution while processing capability 

of target board is not affected so much from input frame resolution. This situation 

can be explained by the increase in the memory usage for high resolution input file. 

However this is not sufficient to explain the decrease in the processing capability of 

host PC  for low resolution images. The comparison of the processing capability of 

host PC with processing capability of target board shows that host PC video playback 

performance is about six times better than the target board for 1280x720 resolution 

input files and it is about four times  better than the target board for 720x480 

resolution images. This experiment shows that difference between performances of 

host PC and target board decrease for video playback application by decreasing 

resolution of input files. This experiment also shows that ARM core of the target 

board can playback a 720x480 resolution MPEG4 encoded video file at 10.2 fps by 

using % 29.6 of its CPU. 
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Up to now we have evaluated the performance of the algorithm developed by using 

the OpenCv, Ffmpeg and mpeg2dec libraries of the OS. And now we evaluate the 

video playback performance of the ARM core by using mplayer package of OS. 

Mplayer is an optimized video player developed for different OS. Figure 5.10 shows 

the block diagram of the video payback process implemented by using mplayer.    

 
 
 

 
Figure 5.10 Block Diagram of Video Playback Process with mplayer 

 
 

 

 

Table 5.10 shows the result of video playback experiment using mplayer. Mplayer 

normally plays the MPEG videos at 30 fps and it plays H.264 videos at 60 fps. 

However because of the processing power of the ARM core, mplayer of target board 

can not play H.264 videos at 60 fps while playing MPEG videos at 30 fps. From 

table 5.8 it can be seen that ARM core uses the %93 of its CPU to be able to 

playback the H.264 videos at 60 fps and its CPU is not sufficient to do that. 

Furthermore the comparison of the processing capabilities shows that host PC video 

playback performance is about four and half times better than target board for 

1280x720 resolution input files and it is about two and half times better than target 

board for 720x480 resolution images. These results are better than the former 

experiment. So we can say that implementation of algorithm also effects the 

performance difference  between host PC and target board besides the input file 

resolution. This experiment also shows that ARM core of the target board can 

playback a 720x480 resolution MPEG4 encoded video file at 30 fps  by using % 29.4 
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of its CPU and this is three times better than the result of video playback experiment 

using OpenCv libraries. 
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Table 5.7.  Video Playback  

Experiment Setup Host PC Target Board 

Source Video 
Specifications 

1280x720   
(H.264) 

1280x720 
(MPEG4) 

1280x720 
(MPEG2) 

720x480 
(H.264) 

720x480 
(MPEG4) 

720x480 
(MPEG2) 

1280x720   
(H.264) 

1280x720 
(MPEG4) 

1280x720 
(MPEG2) 

720x480 
(H.264) 

720x480 
(MPEG4) 

720x480 
(MPEG2) 

 CPU Load %  58,3 50,9 52,2 49,7 45,7 44,8 53,7 51,0 36,8 31,3 29,6 29,2 
Memory Usage % 6,1 5,1 4,4 3,8 3,6 3,4 6,3 5,1 4,2 3,7 3,2 2,9 
Processed FPS 32,2 38,8 43,1 53,0 57,3 58,1 4,6 6,5 5,3 8,2 10,2 10,0 

Resolution * 
(FPS/CPU)*100 

(Mpixel/s) 
48,6 66,9 72,7 35,1 41,3 42,7 7,6 11,2 12,7 8,6 11,3 11,3 

 
 

Table 5.8. Video Playback with mplayer 

Experiment Setup Host PC Target Board 

Source Video 
Specifications 

1280x720   
(H.264) 

1280x720 
(MPEG4) 

1280x720 
(MPEG2) 

720x480 
(H.264) 

720x480 
(MPEG4) 

720x480 
(MPEG2) 

1280x720   
(H.264) 

1280x720 
(MPEG4) 

1280x720 
(MPEG2) 

720x480 
(H.264) 

720x480 
(MPEG4) 

720x480 
(MPEG2) 

CPU Load % 42,9 17,9 13,6 22,4 11,0 11,9 93,2 79,3 60,8 92,4 29,4 25,1 
Memory Usage % 6,0 5,5 4,6 4,1 4,0 3,6 4,6 4,0 2,8 2,6 2,6 2,0 
Processed FPS 60 30 30 60 30 30 20 30 30 54 30 30 

Resolution*  
(FPS/CPU)*100 

(Mpixel/s) 
122,8 147,4 193,7 88,3 90,1 83,1 19.8 33,2 43,4 20.2 33,7 39,5 
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CHAPTER 6 

 

 

SUMMARY and CONCLUSIONS 

 
 
 
The aim of this thesis work is to implement a smart camera application on a COTS 

system. In this work, SoC architecture was selected for implementation because of its 

advantages. Beagleboard-XM platform that has a ARM + DSP SoC processor is 

chosen as COTS platform. During this thesis, the design steps of porting an 

embedded linux to ARM core of SoC processor to start-up the COTS platform and 

design steps of implementation an Algorithm that runs on both ARM + DSP cores in 

parallel are descried. Furthermore, with the experiments given in chapter 5, the real-

time image processing performance of the Beagleboard-xM platform for the smart 

camera applications is evaluated.  

For the overall system to work, first Beagleboard-xM board is started up by installing 

the necessary packages on the DM3730 processor and by making necessary 

configurations for a smart camera application. Arm core of the processor is started up 

by combining the files coming with the board with the output files of Narcissus 

image builder. DSP core of processor has started up by modifying TI DVSDK 4.01 

package and porting it to the embedded OS implemented on ARM core of processor. 

Interprocessor communication between cores is provided by using DSPLink and 

configuring the shared RAM memory  between ARM and DSP core. 

 

Then the  development environment is prepared. C/C++ compiler of target board OS 

is used to implement the developed algorithms on host PC’s  Eclipse platform. 

DVSDK 4.01 DSP compilers and example source files is used for the development 

and implementation of DSP core algorithms. DPS part of the application code is 

implemented by using the C6ACCEL component of DVSDK 4.01. Basic 
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applications of smart camera implementation are distributed over ARM and DSP 

cores of DM3730 processor. 

  

Eventually, the performance of the Beagleboard-XM board for smart camera 

applications has been evaluated. Firstly to see the performance of the ARM core of 

DM3730 processor, basic smart camera applications is implemented on only ARM 

core. Video loopback performance of the ARM core is founded as 11 fps by using 

%73 of its CPU for 640x480 resolution image sensor. Video playback performance 

of the ARM core is found as 10.2 fps by using % 29.6 of its CPU for 720x480 

resolution MPEG4 video file. This performance improved by using an optimized 

video player and performance of ARM core goes up 30 fps by using % 29.4 of its 

CPU for 720x480 resolution MPEG4 video file. This improvement shows that 

optimization of algorithms for ARM core enable at least three times better results.  

GMM background/foreground detection image processing capability of ARM core is 

measured as 0.8 fps by using %95 of its CPU for 640x480 resolution frames.  

 

Furthermore, performance effects of NEON co-processor, DMA hardware 

accelerator and DSP core evaluated during experiments. By the help of NEON co-

processor, image processing capability of ARM core increase at %50. DMA 

hardware accelerator increases the performance of memory transfer operations at 

%50. DSP core can not achieve an advantage for our application because the lack of 

direct access to capture and display drivers from DSP side.  The data of captured 

frames are transferred to shared memory from capture driver by ARM core because 

of unsupported user allocation of capture buffers. Therefore, DSP core waits for 

ARM core to copy the necessary data to shared memory. This decreases the 

performance of ARM + DSP Application. 

 

In this thesis, implementation steps to implement an embedded smart camera 

application on Beagleboard-XM platform are described in detailed. Beagleboard-XM 

is an inexpensive platform and can teach about open source embedded processing 

and DSP programming. Furthermore, its rich environment that includes ARM, 

NEON, DSP, OpenGL and QT can be used for implementation and evaluation of any 

algorithm. These capabilities of board can be used by hobbyists, academics, and 
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professionals who want to learn about Linux and DSP systems. 

 

6.1 Future work and recommendations 
 
The system performance can be improved in three directions. 

 

The first direction is implementing the video background/foreground detection 

algorithm on DSP core of system by using the benefits of the VLIW architecture and 

single-instruction, multiple data (SIMD) instructions. State of art implementation of 

video background/foreground detection algorithms on TMS320C64/64x+ DSP is 

given with an application report of Texas Instrument in [55].  

 

The second direction is to improve the performance of memory transfer operations 

by using user allocated buffers from device drivers and optimizing the data transfers 

with the help of L2 cache and Enhanced DMA architecture included in 

TMS320C64/64x+ DSP. An optimization process to decrease the time of data 

transfer is double buffering by splitting L2 cache two parts. This process is given 

with a TMS320C64x+ DSP Cache User’s Guide in [61]. In this work a USB webcam 

is used because of the defined system specifications for smart camera and to add 

system flexibility for different cameras. However, Camera Image Sensor Processor 

(ISP) module of platform can be used to add the system raw output CMOS sensor 

cameras. This module enables the user allocation for captured images. So captured 

images can be taken directly in cache memory of DSP.  

 

The third direction is to improve the performance of codes and reduce the 

development time by some useful libraries. In order to do that various royalty free 

software libraries that are provided by TI can be useful for future applications. Table 

6.1 shows these libraries and number of functions inside these libraries. 
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Table 6.1. Number of Algorithms in Different Libraries Supported by TI  

 
 

These libraries can be grouped into three categories to serve different needs [46]. 

 

• Building Block Libraries: The libraries in this category are provided in completely 

in source. They can be used to understand the optimization of C6x devices. These 

libraries include reference C implementations and test bench for kernel. DSPLIB and 

IMGLIB are two key libraries that are included in this category for DM3730 

processor. 

 

• Specialized Application/Accelerator Libraries: This category provides ready to use 

algorithms with increased performance up to 10 times. This category also includes 

libraries that allow the user to develop the algorithms without specialized 

information about peripherals and accelerators of platform. VLIB is a key library that 

is included this category for DM3730 processor. 

 

• Platform Libraries to Ease Development and Improve Quality: This category 

library provides floating point processing ability to the fixed point C6x devices. 

These libraries improve the accuracy and execution speed of algorithms. IQMath and 

fastRTS library are key libraries of these category for DM3730 processor. 
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During this project, all the experiments were executed on a BeagleBoard-xM 

Revision B. For future experiments to analyze the performance of TI’s 

TMS320C6A8167 and TMS320C6A8168 processors can be also interesting. These 

processors both contain an ARM Cortex-A8 processor with up to a 1.5 GHz working 

frequency with NEON technology. The DSP is TI’s TMS320C674x floating point 

VLIW DSP, fully compatible with the c64x+ DSP, used during this project. 
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APPENDIX A 
 
 

Experimental Codes Developed for ARM and DSP cores 
 
 
 

i. CFFT code developed for ARM and DSP cores 
 
CFFT.h 
 
#ifndef _CFFT_H_ 
#define _CFFT_H_ 
// Prevent C++ name mangling 
#ifdef __cplusplus 
extern "C" { 
#endif 
/*********************************************************** 
* Global Macro Declarations                                * 
***********************************************************/ 
 
#define MINPOW2 4 
 
#define MAXPOW2 15 
 
#define ITERATIONS 100 
 
#ifndef M_PI 
#define M_PI           3.14159265358979323846 
#endif 
 
#define pi_2 1.57079632679489661923F 
#endif 
#define abs2(v)  (v.r*v.r + v.i*v.i) 
#define angle(v) atan2f(v.i,v.r) 
#define cmult(c,a,b) c.r=a.r*b.r - a.i*b.i, \ 
                                 c.i=a.r*b.i + a.i*b.r 
#define csub(c,a,b)  c.r=a.r - b.r, \ 
                          c.i=a.i - b.i 
#define cadd(c,a,b)  c.r=a.r + b.r, \ 
                            c.i=a.i + b.i 
 
/*********************************************************** 
* Global Typedef Declarations                              * 
***********************************************************/ 
typedef struct { 
    float r; 
    float i; 
} complex; 
/*********************************************************** 
* Global Variable Declarations                             * 
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***********************************************************/ 
/*********************************************************** 
* Global Function Declarations                             * 
***********************************************************/ 
extern void fft_init(); 
extern void fft_end(); 
extern void fft_exec(int N, complex* in); 
/*********************************************************** 
* End file                                                 * 
***********************************************************/ 
#ifdef __cplusplus 
} 
#endif 
#endif //_CFFT_H_ 
CFFT.c 
 
/* Code originally taken from the following URL: 
     http://svn.arhuaco.org/svn/src/emqbit/tools/emqbit-bench/ 
*/ 
 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "cfft.h" 
#include "common.h" 
 
complex *tableW; 
int *bndx; 
int *ndx; 
 
void fft_init (int N) 
{ 
  int i, j; 
 
  tableW = malloc ((N / 2) * sizeof (complex)); 
  bndx = malloc (N * sizeof (int)); 
  ndx = malloc ((N / 2) * sizeof (int)); 
 
  ndx[0] = 0; 
  for (i = 1; i < N / 2; i = i * 2) 
  { 
    for (j = 0; j < i; j++) 
    { 
      ndx[j] *= 2; 
      ndx[j + i] = ndx[j] + 1; 
    } 
  } 
 
void fft_end () 
{ 
  free (ndx); 
  free (bndx); 
  free (tableW); 
} 
 
void fft_exec (int N, complex * in) 
{ 
  unsigned int n = N; 
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  unsigned int a, b, i, j, k, r, s; 
  complex w, p; 
 
  for (i = 1; i < N; i = i * 2) 
  { 
    n = n >> 1; 
    for (k = 0; k < i; k++) 
    { 
      w = tableW[k]; 
 
      r = 2 * n * k; 
      s = n * (1 + 2 * k); 
 
      for (j = 0; j < n; j++) 
      { 
        a = j + r; 
        b = j + s; 
        cmult (p, w, in[b]);      //6 flop 
        csub (in[b], in[a], p);   //2 flop 
        cadd (in[a], in[a], p);   //2 flop 
      } 
    } 
  } 
} 
 
Main.c 
 
/* Code originally taken from the following URL: 
     http://svn.arhuaco.org/svn/src/emqbit/tools/emqbit-bench/ 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
#include <time.h> 
#if defined(_TMS320C6X) 
#elif defined(__GNUC__) 
  #include <sys/time.h> 
#endif 
 
#include "cfft.h" 
#include "common.h" 
 
typedef unsigned long long timestamp_t; 
 
static timestamp_t get_timestamp () 
{ 
#if defined(_TMS320C6X) 
  // There is no gettimeofday in DSP RTS or DSP/BIOS 
  return (timestamp_t) clock(); 
#elif defined(__GNUC__) 
  struct timeval now; 
  gettimeofday (&now, NULL); 
  return  now.tv_usec + (timestamp_t)now.tv_sec * 1000000; 
#endif 
} 
 
static complex *new_complex_vector(int size); 
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int main () 
{ 
  int i; 
  int N, n; 
  int nTimes; 
  float secs; 
  timestamp_t t0, t1; 
 
  for (N = (1 << MINPOW2), n = 0; N < (1 << MAXPOW2); N = N << 1, n++) 
  { 
    complex *in = new_complex_vector(N); 
    complex *out = new_complex_vector(N); 
 
    fft_init (N); 
    // Copy input data and do one FFT 
    memcpy (out, in, (N) * sizeof (complex)); 
    fft_exec (N, out); 
 
    nTimes = ITERATIONS; 
 
    t0 = get_timestamp(); 
 
    for (i = 0; i < nTimes; i++) 
    { 
      memcpy (out, in, (N) * sizeof (complex)); 
      fft_exec (N, out); 
    } 
 
    t1 = get_timestamp(); 
 
    secs = (t1 - t0) / 1000000.0L; 
 
    free (in); 
    free (out); 
    fft_end (); 
 
    fprintf (stderr, "N=%d,nTimes=%d: %g s\n", N, nTimes, secs); 
  } 
   
  return 0; 
} 
 
static complex *new_complex_vector(int size) 
{ 
  int i; 
  
  complex *new; 
   
  new = (complex *) malloc(sizeof(complex) * size); 
 
  for(i = 0; i < size; ++i) 
  { 
    new[i].r = (float)rand()/(float)RAND_MAX - 0.5; 
    new[i].i = (float)rand()/(float)RAND_MAX - 0.5; 
  } 
 
  return new; 
} 
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ii. Video Loopback code developed for ARM core 
 

#include "cv.h" 
#include "highgui.h" 
#include <stdio.h> 
#include <time.h> 
#include <ctype.h> 
 
 // A Simple Camera Capture Framework 
 int main() { 
   IplImage* frame = NULL; 
   CvCapture* capture = NULL; 
   int fps=0; 
   int framenumber =0; 
   int times=0; 
   time_t old_time; 
   time_t current_time; 
 
   //capture = cvCaptureFromFile("/home/ArmWorkspace/workspace/out1.avi"); 
   capture = cvCaptureFromCAM(0); 
 
   if ( !capture ) { 
     fprintf( stderr, "ERROR: capture is NULL \n" ); 
     return -1; 
   } 
   // Create a window in which the captured images will be presented 
   cvNamedWindow( "mywindow", CV_WINDOW_AUTOSIZE ); 
   // Show the image captured from the camera in the window and repeat 
   old_time=time(NULL); 
   while ( 1 ) { 
     // Get one frame 
     frame = cvQueryFrame( capture ); 
 
     if ( !frame ) { 
       fprintf( stderr, "ERROR: frame is null...\n" ); 
       break; 
     } 
 
    framenumber++; 
    current_time=time(NULL); 
 times=current_time-old_time; 
 old_time=current_time; 
 
    if(times >= 1) 
    { 
       fps=framenumber; 
       fprintf(stderr,"FPS = %d Resolution = %dx%d \n",fps,frame->width,frame-
>height); 
       framenumber=0; 
    } 
 
     cvShowImage( "mywindow", frame ); 
     // Do not release the frame! 
     //If ESC key pressed, Key=0x10001B under OpenCV 0.9.7(linux version), 
     //remove higher bits using AND operator 
     if ( (cvWaitKey(10) & 255) == 27 ) break; 
   } 
   // Release the capture device housekeeping 
   cvReleaseCapture( &capture ); 
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   cvDestroyWindow( "mywindow" ); 
   return 0; 
 } 
 

iii. Video Playback code developed for ARM core 
 
#include "cv.h" 
#include "highgui.h" 
#include <stdio.h> 
#include <time.h> 
 
 // A Simple Camera Capture Framework 
 int main() { 
   IplImage* frame = NULL; 
   CvCapture* capture = NULL; 
   int fps=0; 
   int framenumber =0; 
   int times=0; 
   time_t old_time; 
   time_t current_time; 
 
   capture = cvCaptureFromAVI("/home/data/out2.avi"); 
   //capture = cvCaptureFromCAM( CV_CAP_ANY ); 
 
   if ( !capture ) { 
     fprintf( stderr, "ERROR: capture is NULL \n" ); 
     getchar(); 
     return -1; 
   } 
   // Create a window in which the captured images will be presented 
   cvNamedWindow( "mywindow", CV_WINDOW_AUTOSIZE ); 
   // Show the image captured from the camera in the window and repeat 
   old_time=time(NULL); 
   while ( 1 ) { 
     // Get one frame 
     frame = cvQueryFrame( capture ); 
 
     if ( !frame ) { 
       fprintf( stderr, "ERROR: frame is null...\n" ); 
       break; 
     } 
 
    framenumber++; 
    current_time=time(NULL); 
 times=current_time-old_time; 
 old_time=current_time; 
 
    if(times >= 1) 
    { 
       fps=framenumber; 
       fprintf(stderr,"FPS = %d Resolution = %dx%d \n",fps,frame->width,frame-
>height); 
       framenumber=0; 
    } 
 
     cvShowImage( "mywindow", frame ); 
     // Do not release the frame! 
     //If ESC key pressed, Key=0x10001B under OpenCV 0.9.7(linux version), 
     //remove higher bits using AND operator 
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     if ( (cvWaitKey(10) & 255) == 27 ) break; 
   } 
   // Release the capture device housekeeping 
   cvReleaseCapture( &capture ); 
   cvDestroyWindow( "mywindow" ); 
   return 0; 
 } 
 

iv. GMM Background Subraction code developed for ARM core  
 
 

// Include header files 
 
#include "cv.h" 
#include "cvaux.h" 
#include "highgui.h" 
#include <ctype.h> 
#include <stdio.h> 
#include <time.h> 
#include "CvPixelBackgroundGMM.h" 
 
int main() 
{ 
 
    /* Start capturing */ 
 
    CvCapture* capture = 0; 
    int fps=0; 
    int framenumber =0; 
    int times=0; 
    time_t old_time; 
    time_t current_time; 
 
    IplImage *frame = NULL, *frame_copy = NULL,*frame_morphological = NULL, *output = 
NULL; 
 
    // Some parameters for the algorithms 
 
    CvPixelBackgroundGMM* pGMM=0; 
 
    // Images to capture the frame from video or camera or from file 
 
   //capture = cvCaptureFromFile("/home/data/out2.avi"); 
   //capture = cvCaptureFromFile("/home/ArmWorkspace/workspace/out2.avi"); 
   //int cfps = ( int )cvGetCaptureProperty( capture, CV_CAP_PROP_FPS ); 
   capture = cvCaptureFromCAM(0); 
 
    if( !capture ) 
    { 
        fprintf(stderr,"Could not initialize...\n"); 
        return -1; 
    } 
 
    // Create a new named window with title: result 
    cvNamedWindow( "Original",1 ); 
    cvMoveWindow( "Original",0,100 ); 
    cvNamedWindow("Foreground",1); 
    cvMoveWindow( "Foreground",704,100 ); 
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    // Find if the capture is loaded successfully or not. 
    // If loaded succesfully, then: 
    if( capture ) 
    { 
        old_time=time(NULL); 
 
        frame = cvQueryFrame( capture );  // for video file 
 
     pGMM=cvCreatePixelBackgroundGMM(frame->width,frame->height);//reserve memory 
 
     // modify some parameters 
     pGMM->fAlphaT = 0.01f; 
 
        // Capture from the camera. 
        for(;;) 
        { 
            framenumber++; 
            current_time=time(NULL); 
         times=current_time-old_time; 
         old_time=current_time; 
 
            if(times >= 1) 
            { 
               fps=framenumber; 
               fprintf(stderr,"FPS = %d Resolution = %dx%d \n",fps,frame->width,frame-
>height); 
               framenumber=0; 
            } 
            // Capture the frame and load it in IplImage 
            frame = cvQueryFrame( capture ); 
 
            // If the frame does not exist, quit the loop 
            if( !frame ) 
                break; 
 
            // Allocate framecopy as the same size of the frame 
            if( !frame_copy ) 
                frame_copy = cvCreateImage( cvSize(frame->width,frame->height), IPL_DEPTH_8U, 
frame->nChannels ); 
            if( !output ) 
                output = cvCreateImage( cvSize(frame->width,frame->height), IPL_DEPTH_8U, 1 ); 
            // Check the origin of image. If top left, copy the image frame to frame_copy. 
            if( frame->origin == IPL_ORIGIN_TL ) 
                cvCopy( frame, frame_copy, 0 ); 
            // Else flip and copy the image 
            else 
                cvFlip( frame, frame_copy, 0 ); 
 
            cvUpdatePixelBackgroundGMM(pGMM,  (unsigned char *)frame_copy->imageData, 
(unsigned char *)output->imageData); 
            // Call the function to detect and draw the shadows 
         //   frame_morphological = cvCloneImage(output); 
         //   cvDilate(output, frame_morphological); 
         //   cvErode(frame_morphological, output); 
            cvShowImage( "Original", frame_copy ); 
            cvShowImage( "Foreground", output); 
            //system ("pause"); // MS-DOS pause command 
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            // Wait for a while before proceeding to the next frame 
            if( cvWaitKey( 10 ) >= 0 ) 
                break; 
        } 
 
        // Release the images, and capture memory 
        cvReleaseImage( &frame_copy ); 
        cvReleaseCapture( &capture ); 
        cvReleasePixelBackgroundGMM(&pGMM); 
 
    } 
 
 
    // Destroy the window previously created with filename: "result" 
    cvDestroyWindow("Original"); 
    cvDestroyWindow("Foreground"); 
 
    return 0; 
} 
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APPENDIX B 
 
 

I- Settings of Narcissus Online Image Builder for System Angstrom OS  
 
 

 

 
 

 

Narcissus online Image Builder setting consist of three main blocks namely Base 

Settings, User Environment Selection and Additional Package selection. 

1. Base Settings: 

Here selected setting for base setting will be given for creating the file system of 

Angstrom distrubition used in this thesis. 

 
1.1 Select the machine you want to build your rootfs image for: 

For this setting “beagleboard” is selected 
 
1.2 Choose your image name: 

For this setting “Beagleboard-xM-Angstrom” is selected 
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1.3 Choose the complexity of the options below : 

For this setting “advanced” is selected 
 
2. User Environment Selection: 

Here selected settings for user environment selection will be given for creating the 

file system of Angstrom distrubition used in this thesis. 

 
 

2.1 Console gives you a bare command line interface where you can install 

a GUI into later on. X11 will install an X-window environment and 

present you with a Desktop Environment option below. Opie is a qt/e 2.0 

based environment for PDA style devices: 

For this setting “X11” is selected 
 

2.2 X11 Desktop Environments: 

For this setting “GNOME” is selected 
 

3. Additional packages selection: 

Here selected settings for user environment selection will be given for creating the 

file system of Angstrom distrubition used in this thesis. 

 
 

3.1 Additional X11 packages: 

For this setting below packages are selected 
 GNOME gedit 
 GNOME MPlayer 
 Midori web browser 

 
3.2 Development packages: 

For this setting below packages are selected 
• Toolchain 
• Native (on-target) u-boot mkimage 
• Boost development headers and libraries 
• Beagleboard GSoC 2010 XBMC build dependencies 
• OpenCV headers and libs 

 
3.3 Additional console packages: 

For this setting below packages are selected 
• All kernel modules 
• Alsa utils 
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• Cpufrequtils 
• FFmpeg 
• Gstreamer 
• Gstreamer GLES Plugin 
• Htop 
• Memtester 
• MPlayer 
• OpenCV 

 
3.4 Network related packages: 

For this setting below packages are selected 
• Dropbear SSH server 
• Lighttpd 
• NetworkManager 
• Wireless-tools 
 

3.5 Java packages: 

For this setting no packages are selected 
 

3.6 Platform specific packages: 

For this setting below packages are selected 
• Bootloader Files (x-load/u-boot/scripts) 
• AM/OMAP benchmarks / system info 
• Matrix GUI for QT/embedded 
• Matrix GUI for QT/X11 
• Matrix TUI 
• OMAP Display Sub System (DSS) Documentation 
• FFmpeg based Media Player (omapfbplay) with Display Sub-

System Support 
• FFmpeg based Media Player (omapfbplay) with Distributed 

CodecEngine cupport 
• PowerVR SGX drivers for OMAP3 
• PowerVR SGX demos for framebuffer 
• PowerVR SGX demos for X11 
• TI texture streaming demo for X11 
• TI texture streaming demo for framebuffer 
• TI DSPLINK Example Applications 
• TI Codec Engine Example Applications 
• TI DMAI (Davinci/OMAP Multimedia Interface) 

Examples/Tests 
• Texas Instruments Gstreamer plugins 
• Julius demo for Texas Instruments 
• TI SYSLINK Example Applications 
• Original beagleboard demo 
• Beagleboard validation GNOME image 

 



 

 
 
 128 

 
 

APPENDIX C 
 
 

U-Boot User Guide 
 
 
 
 

Monitor Commands - Overview: 
============================ 
 
go - start application at address 'addr' 
run - run commands in an environment variable 
bootm - boot application image from memory 
bootp - boot image via network using BootP/TFTP protocol 
tftpboot- boot image via network using TFTP protocol 
        and env variables "ipaddr" and "serverip" 
        (and eventually "gatewayip") 
rarpboot- boot image via network using RARP/TFTP protocol 
diskboot- boot from IDE devicebootd   - boot default, i.e., run 'bootcmd' 
loads - load S-Record file over serial line 
loadb - load binary file over serial line (kermit mode) 
md - memory display 
mm - memory modify (auto-incrementing) 
nm - memory modify (constant address) 
mw - memory write (fill) 
cp - memory copy 
cmp - memory compare 
crc32 - checksum calculation 
i2c - I2C sub-system 
sspi - SPI utility commands 
base - print or set address offset 
printenv- print environment variables 
setenv - set environment variables 
saveenv - save environment variables to persistent storage 
protect - enable or disable FLASH write protection 
erase - erase FLASH memory 
flinfo - print FLASH memory information 
bdinfo - print Board Info structure 
iminfo - print header information for application image 
coninfo - print console devices and informations 
ide - IDE sub-system 
loop - infinite loop on address range 
loopw - infinite write loop on address range 
mtest - simple RAM test 
icache - enable or disable instruction cache 
dcache - enable or disable data cache 
reset - Perform RESET of the CPU 
echo - echo args to console 
version - print monitor version 
help - print online help 
? - alias for 'help' 
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Monitor Commands - Detailed Description: 
======================================== 
 
TODO. 
 
For now: just type "help <command>". 
 
 
Environment Variables: 
====================== 
 
U-Boot supports user configuration using Environment Variables which can be made persistent by 
saving to Flash memory. 
 
Environment Variables are set using "setenv", printed using "printenv", and saved to Flash using 
"saveenv". Using "setenv" without a value can be used to delete a variable from the environment. As 
long as you don't save the environment you are working with an in-memory copy. In case the Flash 
area containing the environment is erased by accident, a default environment is provided. 
 
Some configuration options can be set using Environment Variables: 
 
  baudrate - see CONFIG_BAUDRATE 
 
  bootdelay - see CONFIG_BOOTDELAY 
 
  bootcmd - see CONFIG_BOOTCOMMAND 
 
  bootargs - Boot arguments when booting an RTOS image 
 
  bootfile - Name of the image to load with TFTP 
 
  bootm_low - Memory range available for image processing in the bootm 
    command can be restricted. This variable is given as 
    a hexadecimal number and defines lowest address allowed 
    for use by the bootm command. See also "bootm_size" 
    environment variable. Address defined by "bootm_low" is 
    also the base of the initial memory mapping for the Linux 
    kernel -- see the description of CONFIG_SYS_BOOTMAPSZ. 
 
  bootm_size - Memory range available for image processing in the bootm 
    command can be restricted. This variable is given as 
    a hexadecimal number and defines the size of the region 
    allowed for use by the bootm command. See also "bootm_low" 
    environment variable. 
 
  updatefile - Location of the software update file on a TFTP server, used 
    by the automatic software update feature. Please refer to 
    documentation in doc/README.update for more details. 
 
  autoload - if set to "no" (any string beginning with 'n'), 
    "bootp" will just load perform a lookup of the 
    configuration from the BOOTP server, but not try to 
    load any image using TFTP 
 
  autostart - if set to "yes", an image loaded using the "bootp", 
    "rarpboot", "tftpboot" or "diskboot" commands will 
    be automatically started (by internally calling 
    "bootm") 
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    If set to "no", a standalone image passed to the 
    "bootm" command will be copied to the load address 
    (and eventually uncompressed), but NOT be started. 
    This can be used to load and uncompress arbitrary 
    data. 
 
  i2cfast - (PPC405GP|PPC405EP only) 
    if set to 'y' configures Linux I2C driver for fast 
    mode (400kHZ). This environment variable is used in 
    initialization code. So, for changes to be effective 
    it must be saved and board must be reset. 
 
  initrd_high - restrict positioning of initrd images: 
    If this variable is not set, initrd images will be 
    copied to the highest possible address in RAM; this 
    is usually what you want since it allows for 
    maximum initrd size. If for some reason you want to 
    make sure that the initrd image is loaded below the 
    CONFIG_SYS_BOOTMAPSZ limit, you can set this environment 
    variable to a value of "no" or "off" or "0". 
    Alternatively, you can set it to a maximum upper 
    address to use (U-Boot will still check that it 
    does not overwrite the U-Boot stack and data). 
 
    For instance, when you have a system with 16 MB 
    RAM, and want to reserve 4 MB from use by Linux, 
    you can do this by adding "mem=12M" to the value of 
    the "bootargs" variable. However, now you must make 
    sure that the initrd image is placed in the first 
    12 MB as well - this can be done with 
 
    setenv initrd_high 00c00000 
 
    If you set initrd_high to 0xFFFFFFFF, this is an 
    indication to U-Boot that all addresses are legal 
    for the Linux kernel, including addresses in flash 
    memory. In this case U-Boot will NOT COPY the 
    ramdisk at all. This may be useful to reduce the 
    boot time on your system, but requires that this 
    feature is supported by your Linux kernel. 
 
  ipaddr - IP address; needed for tftpboot command 
 
  loadaddr - Default load address for commands like "bootp", 
    "rarpboot", "tftpboot", "loadb" or "diskboot" 
 
  loads_echo - see CONFIG_LOADS_ECHO 
 
  serverip - TFTP server IP address; needed for tftpboot command 
 
  bootretry - see CONFIG_BOOT_RETRY_TIME 
 
  bootdelaykey- see CONFIG_AUTOBOOT_DELAY_STR 
 
  bootstopkey - see CONFIG_AUTOBOOT_STOP_STR 
 
  ethprime - When CONFIG_NET_MULTI is enabled controls which 
    interface is used first. 
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  ethact - When CONFIG_NET_MULTI is enabled controls which 
    interface is currently active. For example you 
    can do the following 
 
    => setenv ethact FEC ETHERNET 
    => ping 192.168.0.1 # traffic sent on FEC ETHERNET 
    => setenv ethact SCC ETHERNET 
    => ping 10.0.0.1 # traffic sent on SCC ETHERNET 
 
  ethrotate - When set to "no" U-Boot does not go through all 
    available network interfaces. 
    It just stays at the currently selected interface. 
 
   netretry - When set to "no" each network operation will 
    either succeed or fail without retrying. 
    When set to "once" the network operation will 
    fail when all the available network interfaces 
    are tried once without success. 
    Useful on scripts which control the retry operation 
    themselves. 
 
  npe_ucode - set load address for the NPE microcode 
 
  tftpsrcport - If this is set, the value is used for TFTP's 
    UDP source port. 
 
  tftpdstport - If this is set, the value is used for TFTP's UDP 
    destination port instead of the Well Know Port 69. 
 
   vlan  - When set to a value < 4095 the traffic over 
    Ethernet is encapsulated/received over 802.1q 
    VLAN tagged frames. 
 
The following environment variables may be used and automatically updated by the network boot 
commands ("bootp" and "rarpboot"), depending the information provided by your boot server: 
 
  bootfile - see above 
  dnsip  - IP address of your Domain Name Server 
  dnsip2 - IP address of your secondary Domain Name Server 
  gatewayip - IP address of the Gateway (Router) to use 
  hostname - Target hostname 
  ipaddr - see above 
  netmask - Subnet Mask 
  rootpath - Pathname of the root filesystem on the NFS server 
  serverip - see above 
 
 
There are two special Environment Variables: 
 
  serial# - contains hardware identification information such 
    as type string and/or serial number 
  ethaddr - Ethernet address 
 
These variables can be set only once (usually during manufacturing of the board). U-Boot refuses to 
delete or overwrite these variables once they have been set once. 
 
Further special Environment Variables: 
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  ver  - Contains the U-Boot version string as printed 
    with the "version" command. This variable is 
 
 
 
   
Image Formats: 
============== 
 
U-Boot is capable of booting (and performing other auxiliary operations on) images in two formats: 
 
New uImage format (FIT) 
----------------------- 
 
Flexible and powerful format based on Flattened Image Tree -- FIT (similar to Flattened Device Tree). 
It allows the use of images with multiple components (several kernels, ramdisks, etc.), with contents 
protected by SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory. 
 
 
Old uImage format 
----------------- 
 
Old image format is based on binary files which can be basically anything, preceded by a special 
header; see the definitions in include/image.h for details; basically, the header defines the following 
image properties: 
 
* Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,  4.4BSD, Linux, SVR4, 
Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, 
INTEGRITY;Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, LynxOS, 
INTEGRITY). 
 
* Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86, IA64, MIPS, NIOS, 
PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit; Currently supported: ARM, AVR32, Intel x86, 
MIPS, NIOS, PowerPC). 
 
* Compression Type (uncompressed, gzip, bzip2) 
 
* Load Address 
 
* Entry Point 
 
* Image Name 
 
* Image Timestamp 
 
The header is marked by a special Magic Number, and both the header and the data portions of the 
image are secured against corruption by CRC32 checksums. 
 
 
 
Linux Support: 
============== 
 
Although U-Boot should support any OS or standalone application easily, the main focus has always 
been on Linux during the design of U-Boot. 
 
U-Boot includes many features that so far have been part of some special "boot loader" code within 
the Linux kernel. Also, any "initrd" images to be used are no longer part of one big Linux image; 
instead, kernel and "initrd" are separate images. This implementation serves several purposes: 
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- the same features can be used for other OS or standalone applications (for instance: using 
compressed images to reduce the Flash memory footprint) 
 
- it becomes much easier to port new Linux kernel versions because lots of low-level, hardware 
dependent stuff are done by U-Boot 
 
- the same Linux kernel image can now be used with different "initrd" images; of course this also 
means that different kernel images can be run with the same "initrd". This makes testing easier (you 
don't have to build a new "zImage.initrd" Linux image when you just  change a file in your "initrd"). 
Also, a field-upgrade of the software is easier now. 
 
 
 
Boot Linux: 
----------- 
 
The "bootm" command is used to boot an application that is stored in memory (RAM or Flash). In 
case of a Linux kernel image, the contents of the "bootargs" environment variable is passed to the 
kernel as parameters. You can check and modify this variable using the "printenv" and "setenv" 
commands: 
 
 
=> printenv bootargs 
bootargs=root=/dev/ram 
 
=> setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC    nfsaddrs=10.0.0.99:10.0.0.2 
 
=> printenv bootargs 
bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2 
 
=> bootm 40020000 
## Booting Linux kernel at 40020000 ... 
  
 
If you want to boot a Linux kernel with initial RAM disk, you pass 
the memory addresses of both the kernel and the initrd image (PPBCOOT 
format!) to the "bootm" command: 
 
=> imi 40100000 40200000 
 
=> bootm 40100000 40200000 
  
 
More About U-Boot Image Types: 
------------------------------ 
 
U-Boot supports the following image types: 
 
   "Standalone Programs" are directly runnable in the environment provided by U-Boot; it is expected 
that (if they behave well) you can continue to work in U-Boot after return from the Standalone 
Program. 
 
   "OS Kernel Images" are usually images of some Embedded OS which will take over control 
completely. Usually these programs will install their own set of exception handlers, device drivers, set 
up the MMU, etc. - this means, that you cannot expect to re-enter U-Boot except by resetting the 
CPU. 
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   "RAMDisk Images" are more or less just data blocks, and their parameters (address, size) are passed 
to an OS kernel that is being started. 
 
   "Multi-File Images" contain several images, typically an OS (Linux) kernel image and one or more 
data images like RAMDisks. This construct is useful for instance when you want to boot over the 
network using BOOTP etc., where the boot server provides just a single image file, but you want to 
get for instance an OS kernel and a RAMDisk image. "Multi-File Images" start with a list of image 
sizes, each image size (in bytes) specified by an "uint32_t" in network byte order. This list is 
terminated by an "(uint32_t)0". Immediately after the terminating 0 follow the images, one by one, all 
aligned on "uint32_t" boundaries (size rounded up to a multiple of 4 bytes). 
 
   "Firmware Images" are binary images containing firmware (like U-Boot or FPGA images) which 
usually will be programmed to flash memory. 
 
   "Script files" are command sequences that will be executed by U-Boot's command interpreter; this 
feature is especially useful when you configure U-Boot to use a real shell (hush) as command 
interpreter. 
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APPENDIX D 
 
 

A simple Make file 
 
 
 

i. For ARM Core 
 

 
arm: 
 
 g++ -I/usr/include/opencv -O0 -g3 -Wall -c -fmessage-length=0 -MMD -MP -MF"main.d" -
MT"main.d" -o"main.o" "main.cpp" 
 
 g++ -I/usr/include/opencv -O0 -g3 -Wall -c -fmessage-length=0 -MMD -MP -
MF"CvPixelBackgroundGMM.d" -MT"CvPixelBackgroundGMM.d" -o CvPixelBackgroundGMM.o 
CvPixelBackgroundGMM.cpp  
  
 g++ -L/usr/local/lib -o"BGFG_MoG_arm"  ./main.o  ./CvPixelBackgroundGMM.o  `pkg-
config --cflags --libs opencv` 
 
neon: 
 g++ -I/usr/include/opencv -O0 -g3 -Wall -march=armv7-a -mtune=cortex-a8 -mfpu=neon -
ftree-vectorize -mfloat-abi=softfp -c -fmessage-length=0 -MMD -MP -MF"main.d" -MT"main.d" -
o"main.o" "main.cpp" 
 
 g++ -I/usr/include/opencv -O0 -g3 -Wall -march=armv7-a -mtune=cortex-a8 -mfpu=neon -
ftree-vectorize -mfloat-abi=softfp -c -fmessage-length=0 -MMD -MP -
MF"CvPixelBackgroundGMM.d" -MT"CvPixelBackgroundGMM.d" -o CvPixelBackgroundGMM.o 
CvPixelBackgroundGMM.cpp 
 
 g++ -L/usr/local/lib -g3 -Wall -march=armv7-a -mtune=cortex-a8 -mfpu=neon -ftree-
vectorize -mfloat-abi=softfp -o"BGFG_MoG_neon"  ./main.o  ./CvPixelBackgroundGMM.o  `pkg-
config --cflags --libs opencv` 
 
clean:  
 rm main.o 
 rm main.d 
 rm CvPixelBackgroundGMM.o 
 rm CvPixelBackgroundGMM.d 
 rm BGFG_MoG_arm 
 rm BGFG_MoG_neon 
 

ii. For ARM+DSP Core 
 
#   Copyright (C) 2010 Texas Instruments Incorporated                     
#     http://www.ti.com/    
                                                  
#   ---------------------------------------------------------------------------- 
#   Name of the ARM GCC cross compiler 
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#   ---------------------------------------------------------------------------- 
ARM_TOOLCHAIN_PREFIX  ?= arm-none-linux-gnueabi- 
ifdef ARM_TOOLCHAIN_PATH 
ARM_CC := $(ARM_TOOLCHAIN_PATH)/bin/$(ARM_TOOLCHAIN_PREFIX)gcc 
else 
ARM_CC := $(ARM_TOOLCHAIN_PREFIX)gcc 
endif 
 
# Pick up any ARM compiler and linker flags from the environment 
ARM_CFLAGS = $(CFLAGS) 
ARM_CFLAGS += -std=gnu99 \ 
-Wdeclaration-after-statement -Wall -Wno-trigraphs \ 
-fno-strict-aliasing -fno-common -fno-omit-frame-pointer \ 
-c -O3 
ARM_LDFLAGS = $(LDFLAGS) 
ARM_LDFLAGS+=-lm 
 
 
#   ---------------------------------------------------------------------------- 
#   Name of the DSP compiler 
#   TI C6RunApp Frontend (if path variable provided, use it, otherwise assume  
#   the tools are in the path) 
#   ---------------------------------------------------------------------------- 
C6RUN_TOOLCHAIN_PREFIX=c6runapp- 
ifdef C6RUN_TOOLCHAIN_PATH 
C6RUN_CC := $(C6RUN_TOOLCHAIN_PATH)/bin/$(C6RUN_TOOLCHAIN_PREFIX)cc 
else 
C6RUN_CC := $(C6RUN_TOOLCHAIN_PREFIX)cc 
endif 
 
C6RUN_CFLAGS = -c -O3 
C6RUN_LDFLAGS= 
 
 
#   ---------------------------------------------------------------------------- 
#   List of source files 
#   ---------------------------------------------------------------------------- 
SRCS := main_cfft.c main_bench.c cfft.c distance.c 
ARM_OBJS := $(SRCS:%.c=gpp/%.o) 
DSP_OBJS := $(SRCS:%.c=dsp/%.o) 
 
#   ---------------------------------------------------------------------------- 
#   Makefile targets 
#   ---------------------------------------------------------------------------- 
.PHONY : dsp gpp dsp_clean gpp_clean all clean 
 
all: dsp gpp 
clean: dsp_clean gpp_clean 
 
 
gpp: gpp/.created $(ARM_OBJS) 
 $(ARM_CC) $(ARM_LDFLAGS) -o bench_arm  gpp/main_bench.o gpp/distance.o  
 $(ARM_CC) $(ARM_LDFLAGS) -o cfft_arm gpp/main_cfft.o gpp/cfft.o 
 
gpp/%.o : %.c 
 $(ARM_CC) $(ARM_CFLAGS) $(CINCLUDES) -o $@ $< 
 
gpp/.created: 
 @mkdir -p gpp 
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 @touch gpp/.created 
   
gpp_clean: 
 @rm -Rf bench_arm cfft_arm 
 @rm -Rf gpp 
 
 
dsp: dsp/.created $(DSP_OBJS) 
 $(C6RUN_CC) $(C6RUN_LDFLAGS) -o bench_dsp dsp/main_bench.o dsp/distance.o  
 $(C6RUN_CC) $(C6RUN_LDFLAGS) -o cfft_dsp dsp/main_cfft.o dsp/cfft.o  
 
dsp/%.o : %.c 
 $(C6RUN_CC) $(C6RUN_CFLAGS) $(CINCLUDES) -o $@ $< 
 
dsp/.created: 
 @mkdir -p dsp 
 @touch dsp/.created 
 
dsp_clean: 
 @rm -Rf bench_dsp cfft_dsp 
 @rm -Rf dsp 
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APPENDIX E 
 
 

Sample NFS Files 
 
 

i. Sample Host PC EXPORTS file 
 
# /etc/exports: the access control list for filesystems which may be exported 
#  to NFS clients.  See exports(5). 
 
# Example for NFSv2 and NFSv3: 
# /srv/homes hostname1(rw,sync,no_subtree_check) hostname2(ro,sync,no_subtree_check) 
 
# Example for NFSv4: 
# /srv/nfs4        gss/krb5i(rw,sync,fsid=0,crossmnt,no_subtree_check) 
# /srv/nfs4/homes  gss/krb5i(rw,sync,no_subtree_check) 
 
#Share Below files with Beagleboard-XM and all NFS client (*means all client) 
 
/root/DVSDK1 *(rw,nohide,insecure,no_subtree_check,async,no_root_squash) 
/root/DVSDK2 *(rw,nohide,insecure,no_subtree_check,async,no_root_squash) 
/home/ArmWorkspace *(rw,nohide,insecure,no_subtree_check,async,no_root_squash) 
/root/install/targetfs *(rw,nohide,insecure,no_subtree_check,async,no_root_squash) 
 

ii. Sample Target Board  FSTAB file 
 
# stock fstab - you probably want to override this with a machine specific one   
rootfs               /                      auto       defaults               1  1  
proc                 /proc                proc       defaults               0  0  
devpts              /dev/pts            devpts    mode=0620,gid=5   0  0  
usbfs                /proc/bus/usb         usbfs      defaults               0  0  
tmpfs               /var/volatile         tmpfs      defaults               0  0  
tmpfs               /dev/shm              tmpfs      mode=0777             0  0  
tmpfs               /media/ram            tmpfs      defaults               0  0  
                                                                                 
# uncomment this if your device has a SD/MMC/Transflash slot                     
#/dev/mmcblk0p1       /media/card          auto       defaults,sync,noauto  0  0 
#Connect 192.168.2.5 Host PC files 
192.168.2.5:/root/DVSDK1 /mnt/DSP nfs rsize=8192,wsize=8192,timeo=14,intr        
192.168.2.5:/home/ArmWorkspace /mnt/ARM nfs 
rsize=8192,wsize=8192,timeo=14,intr  
#144.122.167.204:/home/ArmWorkspace /mnt/ARM nfs 
rsize=8192,wsize=8192,timeo=14r 
#144.122.167.204:/root/DVSDK1 /mnt/DSP nfs 
rsize=8192,wsize=8192,timeo=14,intr  
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APPENDIX F 

 

 

Steps to port DVSDK 4.01 onto Beagleboard-xM rev B/C. 
 

 
i. Steps to install Toolchain and DVSDK Software  

 
a) Download CodeSourcery GCC toolchain from the link provided below  
 
https://sourcery.mentor.com/sgpp/lite/arm/portal/package4573/public/arm-none-linux-
gnueabi/arm-2009q1-203-arm-none-linux-gnueabi.bin  
 
b) Execute the installer with .bin on the host host $./arm-2009q1-203-arm-none-linux-
gnueabi.bin  
 
c) Download TMS320DM3730 DVSDK 4.01 Installer software from TI website link 
provided below,  
 
http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/zdvsdk/DVSDK_4_00/4_01_00_09/ind
ex_FDS.html 
 
d) After the download is complete, the first change the file permissions to executable 
 

host $chmod 755 dvsdk_dm365-evm_4_00_00_22_setuplinux  
 
e) Execute the installer on the host, follow the procedure on screen and complete the 
installation  

 
host $./dvsdk_dm365-evm_4_00_00_22_setuplinux  

 
ii. After installing DVSDK 4.01 download RevC-Source.tar file from our project 

and extract the files into psp folder of DVSDK from Sourceforge link provided 
below,  

 
a) For Rev-B  
 
https://sourceforge.net/projects/dvsdkbbxm/files/DVSDK-
4.01%20for%20BeagleBoard/DVSDK%20for%20BB%20xM-B/Source%20files/RevB-
Source.tar/download  
 
b) For Rev-C  
 
https://sourceforge.net/projects/dvsdkbbxm/files/DVSDK-
4.01%20for%20BeagleBoard/DVSDK%20for%20BB%20xM-C/Source%20files/RevC-
Source.tar/download  
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iii. Installed DVSDK-4.01 by default is for evm boards. In order to change it to for 

Beagleboard-xM we need to run the script.  
 

a) Copy the script to the DVSDK folder  
 

host $cd ${HOME}/ti-dvsdk_dm3730-evm_4_01_00_09  
 

host $./setup-dvsdk-4-01-beaglexm.sh  
 
Note:  

 
i) Comment out these 4 lines if you have direct internet connection  
 

# PROXYPORT="foo.com" 
# PROXYPORT="80"  
# export http_proxy="http://${PROXYHOST}:${PROXYPORT}"  

 
ii) If you have connected to a network then add the proxy connection in the script 
 
  

 
iv. After running the script, Build the DVSDK  

 
host $make clean  
host $make all  

 
v. Insert SD/MMC card to your host and run df -h, to check the device node  

 
host $df -h  
 
Filesystem   Size  Used  Avail  Use%   Mounted on  
/dev/sda2   61G  36G  23G  62%  /   
none    939M  284K  938M  1%  /dev  
none    943M  636K  942M  1%  /dev/shm  
none    943M  112K  943M  1%  /var/run  
none   943M  4.0K  943M  1%  /var/lock  
none    943M  0  943M  0%  /lib/init/rw  
/dev/sdb1   233G  105M  233G  1%  /media/New Volume  
 

vi. Write to MMC card, by executing this script present in bin folder of DVSDK  
 
host $sudo ./bin/mksdboot.sh --device /dev/sd? --sdk `pwd`  
Note: It takes around 30 mins to finish portioning and writing to memory card.  
 

vii. Unmount the memory card, insert the BB-xM and power up.  
 

viii. Login with user name : root. 
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APPENDIX G 
 
 
 

Adding the Running Gaussian Average Background/Foreground Detection DSP 
Application to Codec Server with C6ACCEL 

 

..\DVSDK_4_01_00_09\c6accel_1_01_00_02\dsp\alg\include 
 
C6Accel.h 
 
#define RGA_DSP_FXN_ID                       0x00000069 
 
iC6Accel_ti.h 
 
#define IMG_RGA_DSP_FXN_ID   0x01020069 
 
/* Function call : void IMG_RGA_DSP(const unsigned char *in_data, unsigned char 
*out_data, short cols, short rows)*/                       
typedef struct IMG_RGA_DSP_Params{ 
      unsigned int indata_InArrID1; 
      unsigned int outdata_OutArrID1; 
      unsigned int outdata_OutArrID2; 
      unsigned int outdata_OutArrID3;  
                                              int Col; 
                                              int Row; 
                                              }IMG_RGA_DSP_Params; 
 
..\DVSDK_4_01_00_09\c6accel_1_01_00_02\soc\packages\ti\c6accel 
 
iC6Accel_ti.h 
 
/* Function call : void IMG_RGA_DSP(const unsigned char *in_data, unsigned char 
*out_data, short cols, short rows)*/                       
typedef struct IMG_RGA_DSP_Params{ 
      unsigned int indata_InArrID1; 
      unsigned int outdata_OutArrID1; 
      unsigned int outdata_OutArrID2; 
      unsigned int outdata_OutArrID3;  
                                              int Col; 
                                              int Row; 
                                              }IMG_RGA_DSP_Params; 
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..\DVSDK_4_01_00_09\c6accel_1_01_00_02\soc\c6accelw 
 
c6accelw.c 
 
int C6ACCEL_IMG_RGA_DSP(C6accel_Handle hC6accel, const unsigned char 
*in_data, unsigned char *out_data, short cols, short rows) 
Arguments 
* hC6accel C6accel Handle 
* in_data[ ] Input image of size cols * rows. 
* out_data[ ] Output image of size cols * (rows-2). 
* cols Number of columns in the input image. Must be multiple of 2. 
* rows Number of rows in the input image. cols * (rows-2) must be 
multiple of 8. 
 
Return value:  API returns status of the function call. 
               ==1 Pass 
               <0  Fail 
 
Description This routine applies YUYV to ARGB convertion and Running 
Gaussian Average background detection algoritm to the input 
image and produces an output image which is 3/2 greater than the 
input image. 
 
*/ 
int C6accel_IMG_RGA_DSP 
(   C6accel_Handle hC6accel, 
    const unsigned char *restrict in,   /* Input image data   */ 
    unsigned char       *restrict meanData,  /* Output image data  
*/ 
    unsigned char       *restrict varData,  /* Output image data  */ 
    unsigned char       *restrict out,  /* Output image data  */ 
    short cols, short rows              /* Image dimensions   */ 
) 
{ 
    XDM1_BufDesc                inBufDesc; 
    XDM1_BufDesc                outBufDesc; 
    XDAS_Int32                  InArg_Buf_size; 
    IC6Accel_InArgs             *CInArgs; 
    UNIVERSAL_OutArgs           uniOutArgs; 
    int status; 
    /* Define pointer to function parameter structure */ 
    IMG_RGA_DSP_Params      *fp0; 
    XDAS_Int8 *pAlloc; 
 
    ACQUIRE_CODEC_ENGINE; 
 
    /* Allocate the InArgs structure as it varies in size 
    (Needs to be changed everytime we make a API call)*/ 
    InArg_Buf_size=  sizeof(Fxn_struct)+ 
                     sizeof(IMG_RGA_DSP_Params)+ 
                     sizeof(CInArgs->size)+ 
                     sizeof(CInArgs->Num_fxns); 
 
    /* Request contiguous heap memory allocation for the extended 
input structure */ 
    pAlloc = (XDAS_Int8 *)Memory_alloc(InArg_Buf_size, 
&wrapperMemParams); 
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    CInArgs= (IC6Accel_InArgs *)pAlloc; 
 
    /* Initialize .size fields for dummy input and output arguments 
*/ 
    uniOutArgs.size = sizeof(uniOutArgs); 
 
    /* Set up buffers to pass buffers in and out to alg  */ 
    inBufDesc.numBufs = 1; 
    outBufDesc.numBufs = 3; 
 
    /* Fill in input/output buffer descriptor parameters and manage 
ARM cache*/ 
    /* See wrapper_c6accel_i.h for more details of operation                 
*/ 
    CACHE_WB_INV_INPUT_BUFFERS_AND_SETUP_FOR_C6ACCEL(in,0,2*cols * 
rows*sizeof(char)); 
    CACHE_INV_OUTPUT_BUFFERS_AND_SETUP_FOR_C6ACCEL(meanData,0,cols * 
rows*sizeof(char)); 
    CACHE_INV_OUTPUT_BUFFERS_AND_SETUP_FOR_C6ACCEL(varData,1,cols * 
rows*sizeof(char)); 
    CACHE_INV_OUTPUT_BUFFERS_AND_SETUP_FOR_C6ACCEL(out,2,4*cols * 
rows*sizeof(char)); 
 
     /* Initialize the extended InArgs structure */ 
    CInArgs->Num_fxns=1; 
    CInArgs->size= InArg_Buf_size; 
 
    /* Set function Id and parameter pointers for first function 
call */ 
    CInArgs->fxn[0].FxnID= IMG_RGA_DSP_FXN_ID; 
    CInArgs->fxn[0].Param_ptr_offset=sizeof(CInArgs-
>size)+sizeof(CInArgs->Num_fxns)+sizeof(Fxn_struct); 
 
    /* Initialize pointers to function parameters */ 
    fp0 = (IMG_RGA_DSP_Params *)((XDAS_Int8*)CInArgs + CInArgs-
>fxn[0].Param_ptr_offset); 
 
    /* Fill in the fields in the parameter structure */ 
    fp0->indata_InArrID1= INBUF0; 
    fp0->outdata_OutArrID1= OUTBUF0; 
    fp0->outdata_OutArrID2= OUTBUF1; 
    fp0->outdata_OutArrID3= OUTBUF2; 
    fp0->Col= cols; 
    fp0->Row= rows; 
 
    /* Call the actual algorithm */ 
    if (hC6accel->callType == ASYNC) 
      { 
 
       /* Update async structure */  
       if (c6accelAsyncParams.asyncCallCount!=0){  
            status = UNIVERSAL_EFAIL; 
            printf("Async call failed as %d are still pending\n"); 
          } 
       else{ 
           /* Context Saving */ 
           c6accelAsyncParams.asyncCallCount++; 
           memcpy(&(c6accelAsyncParams.inBufs),&inBufDesc, sizeof 
(XDM1_BufDesc)); 
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           memcpy(&(c6accelAsyncParams.outBufs), 
&outBufDesc,sizeof(XDM1_BufDesc)); 
           memcpy(&(c6accelAsyncParams.inArgs), 
CInArgs,sizeof(UNIVERSAL_InArgs)); 
           
memcpy(&(c6accelAsyncParams.outArgs),&uniOutArgs,sizeof(UNIVERSAL_Ou
tArgs)); 
           c6accelAsyncParams.pBuf = pAlloc; 
           c6accelAsyncParams.pBufSize = InArg_Buf_size; 
           /* Asynchronous Call to the actual algorithm */ 
           status = UNIVERSAL_processAsync(hC6accel->hUni, 
&inBufDesc, &outBufDesc, NULL,(UNIVERSAL_InArgs *)CInArgs, 
&uniOutArgs); 
           } 
      } 
    else{ 
      /* Synchronous Call to the actual algorithm */ 
      status = UNIVERSAL_process(hC6accel->hUni, &inBufDesc, 
&outBufDesc, NULL,(UNIVERSAL_InArgs *)CInArgs, &uniOutArgs); 
 
      /* Free the InArgs structure */ 
      Memory_free(pAlloc, InArg_Buf_size, &wrapperMemParams); 
     } 
 
    RELEASE_CODEC_ENGINE; 
 
    return status; 
 
} 
/* 
 
 
..\DVSDK_4_01_00_09\c6accel_1_01_00_02\dsp\alg\src 
 
C6accel_ti_imglibFunctionCall.c 
 
case (RGA_DSP_FXN_ID):{ 
       /* Unmarshal Parameters */ 
       IMG_RGA_DSP_Params *C6ACCEL_TI_IMG_RGA_DSP_paramPtr; 
       C6ACCEL_TI_IMG_RGA_DSP_paramPtr= pFnArray; 
       /*Parameter check*/ 
       if (((C6ACCEL_TI_IMG_RGA_DSP_paramPtr->indata_InArrID1)>INBUF15)| 
          ((C6ACCEL_TI_IMG_RGA_DSP_paramPtr-
>outdata_OutArrID1)>OUTBUF15)| 
          ((C6ACCEL_TI_IMG_RGA_DSP_paramPtr-
>outdata_OutArrID2)>OUTBUF15)| 
          ((C6ACCEL_TI_IMG_RGA_DSP_paramPtr-
>outdata_OutArrID3)>OUTBUF15)| 
          ((C6ACCEL_TI_IMG_RGA_DSP_paramPtr->Col)%2 != 0)| 
          (((C6ACCEL_TI_IMG_RGA_DSP_paramPtr- >Col)* 

    (C6ACCEL_TI_IMG_RGA_DSP_paramPtr->Row))%8 !=0)){ 
                     return(IUNIVERSAL_EPARAMFAIL); 
          } 
 
       else 
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       /* Call underlying kernel */ 
       IMG_RGA_DSP((const unsigned char *)inBufs- 
>descs[C6ACCEL_TI_IMG_RGA_DSP_paramPtr->indata_InArrID1].buf, 
       (unsigned char *)outBufs->descs[C6ACCEL_TI_IMG_RGA_DSP_paramPtr-
>outdata_OutArrID1].buf, 
       (unsigned char *)outBufs->descs[C6ACCEL_TI_IMG_RGA_DSP_paramPtr-
>outdata_OutArrID2].buf, 
       (unsigned char *)outBufs->descs[C6ACCEL_TI_IMG_RGA_DSP_paramPtr-
>outdata_OutArrID3].buf, 
       C6ACCEL_TI_IMG_RGA_DSP_paramPtr->Col, 
       C6ACCEL_TI_IMG_RGA_DSP_paramPtr->Row); 
          } 
 
RGA_DSP.c 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include "fastrts_i.h" 
#include <xdc/std.h> 
 
void IMG_RGA_DSP 
( 
    const unsigned char *restrict in,   /* Input image data   */ 
    unsigned char       *restrict meanData,  /* Output image data  */ 
    unsigned char       *restrict varData,  /* Output image data  */ 
    unsigned char       *restrict out,  /* Output image data  */ 
    short cols, short rows  
) 
{ 
    Int32 i,numPixels;                      /* Loop counter                     */ 
    Int32 y0=0, y1=0;                 /* Individual Y components          */ 
    Int32 cb=0, cr=0;                 /* Color difference components      */ 
    Int32 y0t,y1t;                /* Temporary Y values               */ 
    Int32 rt, gt, bt;             /* Temporary RGB values             */ 
    Int32 r0, g0, b0;             /* Individual RGB components        */ 
    Int32 r1, g1, b1;             /* Individual RGB components        */ 
    Int32 r0t,g0t,b0t;            /* Truncated RGB components         */ 
    Int32 r1t,g1t,b1t;            /* Truncated RGB components         */ 
    Int32 r0s=0,g0s=0,b0s=0;            /* Saturated RGB components         */ 
    Int32 r1s=0,g1s=0,b1s=0;            /* Saturated RGB components         */ 
    Int16 luma = 0x2543;        /* Luma scaling coefficient.        */ 
    Int16 r_cr = 0x3313;        /* Cr's contribution to Red.        */ 
    Int16 g_cb = -0x0C8A;        /* Cb's contribution to Green.      */ 
    Int16 g_cr = -0x1A04;        /* Cr's contribution to Green.      */ 
    Int16 b_cb = 0x408D;        /* Cb's contribution to Blue.       */ 
    UInt32 calc2; 
    UInt16 THR,THR_calc;             /* unPacked 32 bit ARGB pixel data            */ 
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    double alfa,beta,calc1,calc3,calc4; 
    UInt8 v,m, THR_k,f; 
 //   Int8 *meanData,*varData; 
     
 
    /* -------------------------------------------------------------------- */ 
    /*  Iterate for numPixels/2 iters, since we process pixels in pairs.   */ 
    /* ----- 
     * --------------------------------------------------------------- */ 
    numPixels=cols*rows; 
    THR_k=2; 
    alfa= 0.0625; 
    beta= subsp_i(1,alfa); 
    i = numPixels >> 1; 
 
    while (i-->0) 
    { 
        /* ---------------------------------------------------------------- */ 
        /*  Read in YCbCr data from the separate data planes.               */ 
        /*                                                                  */ 
        /*  The Cb and Cr channels come in biased upwards by 128, so        */ 
        /*  subtract the bias here before performing the multiplies for     */ 
        /*  the color space conversion itself.  Also handle Y's upward      */ 
        /*  bias of 16 here.                                                */ 
        /* ---------------------------------------------------------------- */ 
 
        y0 = *in++; 
        cb = *in++; 
        y1 = *in++; 
        cr = *in++; 
         
        m=*meanData++; 
        v=*varData++; 
 
        f=y0; 
 
        calc1 = mpysp_i(alfa, f) + mpysp_i(beta, m); 
        calc2 =(f-m)*(f-m); 
        calc3 = mpysp_i(alfa, calc2); 
        calc4 = mpysp_i(beta, v); 
        calc4 = addsp_i(calc3, calc4); 
 
        v = spuint_i(sqrtsp_i(calc2)); 
        m = spuint_i(calc1); 
        *varData = (UInt8)v; 
        *meanData = (UInt8)m; 
         
        THR =THR_k*v; 
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        if(v<1) 
         goto cont1; 
 
        if(f < m) 
         THR_calc = ((m-f) / v); 
        else 
         THR_calc = ((f-m) / v); 
 
        if (THR_calc < THR) 
   y0=0; 
 
         
cont1: 
  m=*meanData++; 
  v=*varData++; 
         
        f=y1; 
 
        calc1 = mpysp_i(alfa, f) + mpysp_i(beta, m); 
        calc2 =(f-m)*(f-m); 
        calc3 = mpysp_i(alfa, calc2); 
        calc4 = mpysp_i(beta, v); 
        calc4 = addsp_i(calc3, calc4); 
 
        v = spuint_i(sqrtsp_i(calc2)); 
        m = spuint_i(calc1); 
        *varData = (UInt8)v; 
        *meanData = (UInt8)m; 
         
        THR =THR_k*v; 
 
        if(v<1) 
         goto cont1; 
 
        if(f < m) 
         THR_calc = ((m-f) / v); 
        else 
         THR_calc = ((f-m) / v); 
 
        if (THR_calc < THR) 
   y1=0; 
         
cont2: 
        y0-=16; 
        cb=0; 
        y1-=16; 
        cr=0; 
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        /* 
============================================================
==== */ 
        /*  Convert YCrCb data to RGB format using the following matrix:    */ 
        /*                                                                  */ 
        /*      [ coeff[0] 0.0000   coeff[1] ]   [ Y' -  16 ]     [ R']     */ 
        /*      [ coeff[0] coeff[2] coeff[3] ] * [ Cb - 128 ]  =  [ G']     */ 
        /*      [ coeff[0] coeff[4] 0.0000   ]   [ Cr - 128 ]     [ B']     */ 
        /*                                                                  */ 
        /*  We use signed Q13 coefficients for the coefficients to make     */ 
        /*  good use of our 16-bit multiplier.  Although a larger Q-point   */ 
        /*  may be used with unsigned coefficients, signed coefficients     */ 
        /*  add a bit of flexibility to the kernel without significant      */ 
        /*  loss of precision.                                              */ 
        /* 
============================================================
==== */ 
 
        /* ---------------------------------------------------------------- */ 
        /*  Calculate chroma channel's contribution to RGB.                 */ 
        /* ---------------------------------------------------------------- */ 
        rt  = r_cr * (Int16)cr; 
        gt  = g_cb * (Int16)cb + g_cr * (Int16)cr; 
        bt  = b_cb * (Int16)cb; 
 
        /* ---------------------------------------------------------------- */ 
        /*  Calculate intermediate luma values.  Include bias of 16 here.   */ 
        /* ---------------------------------------------------------------- */ 
        y0t = luma * (Int16)y0; 
        y1t = luma * (Int16)y1; 
 
        /* ---------------------------------------------------------------- */ 
        /*  Mix luma, chroma channels.                                      */ 
        /* ---------------------------------------------------------------- */ 
        r0  = y0t + rt; r1 = y1t + rt; 
        g0  = y0t + gt; g1 = y1t + gt; 
        b0  = y0t + bt; b1 = y1t + bt; 
 
        /* 
============================================================
==== */ 
        /*  At this point in the calculation, the RGB components are        */ 
        /*  nominally in the format below.  If the color is outside the     */ 
        /*  our RGB gamut, some of the sign bits may be non-zero,           */ 
        /*  triggering saturation.                                          */ 
        /*                                                                  */ 
        /*                  3     2 2        1 1                            */ 
        /*                  1     1 0        3 2         0                  */ 
        /*                 [ SIGN  | COLOR    | FRACTION ]                  */ 
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        /*                                                                  */ 
        /*  This gives us an 8-bit range for each of the R, G, and B        */ 
        /*  components.  (The transform matrix is designed to transform     */ 
        /*  8-bit Y/C values into 8-bit R,G,B values.)  To get our final    */ 
        /*  5:6:5 result, we "divide" our R, G and B components by 4, 8,    */ 
        /*  and 4, respectively, by reinterpreting the numbers in the       */ 
        /*  format below:                                                   */ 
        /*                                                                  */ 
        /*          Red,    3     2 2     1 1                               */ 
        /*          Blue    1     1 0     6 5            0                  */ 
        /*                 [ SIGN  | COLOR | FRACTION    ]                  */ 
        /*                                                                  */ 
        /*                  3     2 2      1 1                              */ 
        /*          Green   1     1 0      5 4           0                  */ 
        /*                 [ SIGN  | COLOR  | FRACTION   ]                  */ 
        /*                                                                  */ 
        /*  "Divide" is in quotation marks because this step requires no    */ 
        /*  actual work.  The code merely treats the numbers as having a    */ 
        /*  different Q-point.                                              */ 
        /* 
============================================================
==== */ 
 
        /* ---------------------------------------------------------------- */ 
        /*  Shift away the fractional portion, and then saturate to the     */ 
        /*  RGB 5:6:5 gamut.                                                */ 
        /* ---------------------------------------------------------------- */ 
        r0t = r0 >> 13; 
        g0t = g0 >> 13; 
        b0t = b0 >> 13; 
        r1t = r1 >> 13; 
        g1t = g1 >> 13; 
        b1t = b1 >> 13; 
 
        r0s = r0t < 0 ? 0 : r0t > 255 ? 255 : r0t; 
        g0s = g0t < 0 ? 0 : g0t > 255 ? 255 : g0t; 
        b0s = b0t < 0 ? 0 : b0t > 255 ? 255 : b0t; 
        r1s = r1t < 0 ? 0 : r1t > 255 ? 255 : r1t; 
        g1s = g1t < 0 ? 0 : g1t > 255 ? 255 : g1t; 
        b1s = b1t < 0 ? 0 : b1t > 255 ? 255 : b1t; 
 
        /* ---------------------------------------------------------------- */ 
        /*  Store resulting pixels to memory.                               */ 
        /* ---------------------------------------------------------------- */ 
 
        *out++=(unsigned char)b0s; 
        *out++=(unsigned char)g0s; 
        *out++=(unsigned char)r0s; 
        *out++=(unsigned char)0x00; 
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        *out++=(unsigned char)b1s; 
        *out++=(unsigned char)g1s; 
        *out++=(unsigned char)r1s; 
        *out++=(unsigned char)0x00; 
 
    } 
     
    return; 
} 
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APPENDIX H 
 
 
 

 Configuration of Server Map Files of RGA_DSP Application  
 

Memmap.tci File 
/* 
 *  ======== memmap.tci ======== 
 * 
 * Setup platform-specific memory map: 
 * 
 */ 
 
var mem_ext = [ 
 
{ 
    comment:    "DDRALGHEAP: off-chip memory for dynamic algmem 
allocation", 
    name:       "DDRALGHEAP", 
    base:       0x85900000, 
    len:        0x02000000, 
    space:      "code/data" 
}, 
{ 
    comment:    "DDR2: off-chip memory for application code and 
data", 
    name:       "DDR2", 
    base:       0x87900000, 
    len:        0x00600000, 
    space:      "code/data" 
}, 
{ 
    comment:    "DSPLINK: off-chip memory reserved for DSPLINK code 
and data", 
    name:       "DSPLINKMEM", 
    base:       0x87F01000, 
    len:        0x000FF000, 
    space:      "code/data" 
}, 
{ 
    comment:    "RESET_VECTOR: off-chip memory for the reset vector 
table", 
    name:       "RESET_VECTOR", 
    base:       0x87F00000, 
    len:        0x00001000, 
    space:      "code/data" 
}, 
 
{ 
    comment:    "L4CORE: L4-Core Interconnect Address Space", 
    name:       "L4CORE", 
    base:       0x48000000, 
    len:        0x01000000, 
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    space:      "data" 
}, 
{ 
    comment:    "L4PER: L4-Peripheral Interconnect Address Space", 
    name:       "L4PER", 
    base:       0x49000000, 
    len:        0x00100000, 
    space:      "data" 
}, 
]; 
 
 
Server.tcf File 
/* 
 *  ======== server.tcf ======== 
 */ 
 
var platform = environment["config.platform"]; 
print("platform   = " + platform); 
 
utils.importFile('./memmap.tci'); 
 
    var device_regs = { 
        l1PMode: "16k", 
        l1DMode: "80k", 
        l2Mode: "64k", 
        l1DHeapSize: 0 
    }; 
 
    var params = { 
        clockRate: 360, 
        catalogName: "ti.catalog.c6000", 
        deviceName: "3530", 
        regs: device_regs, 
        mem: mem_ext 
    }; 
 
/* Now customize the generic platform with parameters specified 
above. */ 
utils.loadPlatform("ti.platforms.generic", params); 
 
/* Enable heaps and tasks */ 
bios.enableMemoryHeaps(prog); 
bios.enableTskManager(prog); 
 
/* Create heaps in memory segments that are to have heap */ 
bios.DDR2.createHeap = true; 
bios.DDR2.heapSize   = 0x20000; // 128K 
 
bios.DDRALGHEAP.createHeap = true; 
bios.DDRALGHEAP.heapSize   = bios.DDRALGHEAP.len; 
 
/* L1DSRAM */ 
bios.L1DSRAM.createHeap       = true; 
bios.L1DSRAM.enableHeapLabel  = true; 
bios.L1DSRAM["heapLabel"]     = prog.extern("L1DHEAP"); 
bios.L1DSRAM.heapSize         = bios.L1DSRAM.len; 
 
/* Enable power management, whilst ensuring DSP CPU load reporting 
accuracy */ 



 

 
 
 153 

bios.PWRM.ENABLE = true; 
bios.PWRM.IDLECPU = true; 
bios.PWRM.LOADENABLE = true; 
bios.PWRM.USECLKPRD = true; 
bios.PWRM.NUMSLOTS = 10 + 1; 
bios.PWRM.CLKTICKSPERSLOT = 50; 
 
/* GBL */ 
bios.GBL.ENABLEALLTRC    = false; 
bios.GBL.PROCID          = 0; 
 
/* set MAR register to cache external memory 0x80000000-0x8FFFFFFF 
*/ 
bios.GBL.C64PLUSCONFIGURE   = true; 
bios.GBL.C64PLUSMAR128to159 = 0x0fffffff; 
 
/* MEM */ 
bios.MEM.STACKSIZE = 0x1000; 
 
/* Global Settings */ 
bios.MEM.ARGSSIZE = 256; 
 
/* Enable MSGQ and POOL Managers */ 
bios.MSGQ.ENABLEMSGQ = true; 
bios.POOL.ENABLEPOOL = true; 
 
/* Set all code and data sections to use DDR2 */ 
bios.setMemCodeSections(prog, bios.DDR2); 
bios.setMemDataNoHeapSections(prog, bios.DDR2); 
bios.setMemDataHeapSections(prog, bios.DDR2); 
 
/* MEM : Global */ 
bios.MEM.BIOSOBJSEG = bios.DDR2; 
bios.MEM.MALLOCSEG  = bios.DDR2; 
 
/* TSK : Global */ 
bios.TSK.STACKSEG = bios.DDR2; 
bios.TSK.STACKSIZE = 0x1000; 
bios.TSK.instance("TSK_idle").stackSize = 0x1000; 
 
/* Generate configuration files... */ 
if (config.hasReportedError == false) { 
    prog.gen(); 
} 
/* 
 *  @(#) ti.sdo.ce.wizards.genserver; 1, 0, 0,81; 9-20-2010 
16:43:30; /db/atree/library/trees/ce/ce-r09x/src/ xlibrary 
 
 */ 

 
 

 

 




