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ABSTRACT

ONTOLOGY BASED REUSE INFRASTRUCTURE FOR TRAJECTORY
SIMULATION

DURAK, Umut
Ph. D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Kemal IDER
Co-Supervisor: Assoc. Dr. Halit OGUZTUZUN
June 2007, 241 pages

In this research, we developed an ontology based reuse infrastructure for trajectory
simulation and investigated the use of ontologies and domain engineering practices
to develop a formalized methodology to make use of the experience and knowledge
leveraged from the past trajectory simulation projects. Trajectory simulation in this
context is a computational tool to calculate the flight path and other parameters of

munition such as its orientation or angular rates during its operation

In this thesis, engineering knowledge to simulate the trajectory of a munition is
captured in an ontology called Trajectory Simulation ONTology (TSONT).
Concepts of trajectory simulation and the relation among these concepts are
captured by using Web Ontology Language and presented as a domain model that is

available for reuse.

Using the formalized domain knowledge, reuse infrastructure specifications are
constructed to enable the reuse of software artifacts for two main programming
paradigms, which are object oriented programming and function oriented

programming. UML and application frameworks are used when constructing for
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object oriented paradigm. And data flow diagrams are used to formalize the design
of the function oriented simulations to compute the trajectory of munition. Object
oriented and function oriented platform independent designs are constructed to
specify the infrastructure using the knowledge captured in TSONT and made
available for reuse. With constructing two different designs for two different
paradigms by using the same domain model, evidence of knowledge reuse were

produced.

Three different case studies were carried out as infrastructure implementation. In
the first case study, an object oriented application framework was developed in
MATLAB for six degrees of freedom trajectory simulation using platform
independent object oriented design. This framework is reused to develop two
different simulations. Using the developed framework for two applications
produced evidence of code reuse. In the second case, a point mass trajectory
simulation framework is designed to be implemented in C# reusing the same
platform independent object oriented design. This case produced the evidence of
design reuse. In the last case study, a MATLAB Simulink Blockset is developed for
point mass unguided trajectory simulations and two different simulations are built
using the Blockset. By this case, we collected the evidence of code reuse also in

function oriented paradigm.

Keywords: Trajectory Simulation, Engineering Ontologies, Ontology Driven

Simulation, Simulation Reuse.
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YORUNGE BENZETIMI iCIN ONTOLOJi TEMELLI YENIDEN
KULLANIM ALTYAPISI

DURAK, Umut
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Kemal IDER
Ortak Tez Yoneticisi: Dog¢.Dr. Halit OGUZTUZUN
Haziran 2007, 241 sayfa

Bu calismada, yoriinge benzetimi i¢in ontoloji tabanli bir yeniden kullanim altyapisi
gelistirilmis, ontolojilerin ve alan miihendisligi yaklasimlarinin basar ile
tamamlanmis yoriinge benzetimi projelerinde elde edilen tecriibelerin aktarilmasi
icin gelistirilmis bir yontem i¢in kullanilmasi incelenmistir. Bu baglamda, yoriinge
benzetimi mithimmatin ugusu boyunca konumu, yonelimi ve agisal hizlar1 gibi ugus

parametrelerinin hesaplanmasi icin kullanilan bir ara¢ olarak tanimlanabilir.

Bu tez kapsaminda, bir mithimmatin ugus benzetiminin yapilabilmesi icin gerekli
olan miihendislik bilgisi kullanilarak TSONT isimli bir ontoloji gelistirilmistir. Ag
Ontoloji Dili (Web Ontology Language) kullanilarak yoriinge benzetimi kavramlari
ve bu kavramlar arasindaki iligkiler modellenerek, yeniden kullanilabilecek bir alan

modeli olarak kullaniciya sunulmustur.

Ontoloji bi¢ciminde resmilestirilmis alan bilgi birikimi kullanilarak, islev yonelimli
programlama veya nesne yonelimli programlama paradigmalart kullanilarak
hazirlanan yazilim iirlinlerinin yeniden kullanimina olanak saglayacak bir yeniden
kullanim altyapis1 tamimlanmistir. Nesne yonelimli programlama paradigmasi icin

gelistirilen yeniden kullanip altyapist icin UML ve uygulama c¢erceveleri
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pratiklerinden yararlanilirken, islev yonelimli programlama paradigmas: igin
olusturulan yeniden kullanim altyapis1 i¢in veri akis semalarindan yararlanilmistir.
Bu iki paradigmanin yeniden kullanim altyapilarini tanimlamak icin TSONT
kullanilarak platformdan bagimsiz yazilim tasarimlar1 gelistirilmis ve yeniden
kullanima sunulmustur. Aynmi alan bilgisi kullanarak iki farkli tasarim
gelistirilebilmesi, TSONT ta modellenen bilgi birikiminin yeniden kullanilabildigi

konusunda elimize kanitlar sunmustur.

Yeniden kullanim altyapisinin uygulamasi icin ii¢ farkli calisma yapilmistir. Tk
calismada, platformdan bagimsiz nesne yonelimli yazilim tasarimi temel alinarak
MATLAB ortaminda alt1 serbestlik dereceli yoriinge bezetimleri i¢in bir uygulama
cercevesi gelistirilmistir. Daha sonra da bu ¢erceve kullanilarak iki farkli benzetim
gelistirilmistir. Yeniden kullamim altyapisinin bir pargasi olarak gelistirilen bu
uygulama cercevesinin iki farkli benzetim gelistirmesinde kullanilmasi, altyapinin
kod yeniden kullanimini destekledigine dair bir kanit olarak degerlendirilmistir.
Ikinci calismada gene aynmi platformdan bagimsiz nesne yonelimli yazilim tasarimi
kullanilara bu sefer nokta kiitle yoriinge benzetimi i¢in ve farkli bir platformda, C#
dilinde gelistirilecek bir cerceve tasarlanmistir. Bu sayede de yeniden kullanim
altyapisinin tasarim yeniden kullanimini destekledigine dair kanitlara ulagilmistir.
Son ¢alismada islev yonelimli yazilim tasarimi kullanilarak giidiimsiiz nokta kiitle
yoriinge bezetimi i¢cin bir MATLAB Simulink Blockset’i gelistirilmistir. Daha sonra
da bu Blockset kullanilmak vasitasi ile iki farkli yoriinge benzetimi gelistirilmistir.
Bu sayede de gelistirilen yeniden kullanim altyapisinin, islev yoOnelimli
programlama paradigmasinda da kod yeniden kullanimimi destekledigi sonucuna

ulasilmustir.

Anahtar Kelimeler: Yoriinge Benzetimi, Miihendislik Ontolojileri, Ontoloji Tabanl

Benzetim, Simiilasyon Yeniden Kullanimu.
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CHAPTER 1

INTRODUCTION

1.1 Trajectory Simulation Domain: An Overview

In this chapter, first an overview of trajectory simulation domain is presented. Then
the motivation of this research is discussed before introducing the related literature.
Chapter concludes with the sections on scope of the research and the organization
of this thesis. One will also find the list of publications that presents the results of

this research at the end of this chapter.

1.1.1 What is Trajectory Simulation?

Computer simulation is defined as studying various models of real world systems
by numerical evaluation using software designed to imitate the systems operations.
Computerized models of real or proposed systems are constructed to conduct
numerical experiments to obtain a better understanding of the behavior of that
system for a given set of conditions [1]. System then can be defined as a
combination of elements or components interrelated to each other and to the whole
which act together to achieve a certain goal [2]. Model on the other hand is a
simplified representation of a system intended to enhance our ability to understand,

explain, change, preserve, predict and control the behavior of a system [3].

Trajectory simulation in this context is a computational tool to calculate the flight
path and other parameters of munition like its orientation or angular rates during its
operation. It is such a tool that implements models of various components of a
munition and their interfaces with each other and the environment. A time sequence
of the dynamic events describing the operation and the flight of a munition is the

result of any trajectory simulation run [4].



Trajectory simulation is based on mathematical model of munition, and
environment which consists of equations that describe physical laws and logical
sequences. The physical laws in the trajectory simulation govern the motion of
munition and the effects of its subsystems. Basically equations of motion determine
the acceleration, velocity and position resulting from forces and moments due to
gravity, thrust and aerodynamics. There may also be other equations existing to

simulate subsystems such as control system.

Zipfel [5] defines hierarchy of modeling and simulation in military simulation at
four different levels: engineering, engagement, mission and campaign. Engineering
level provides the tools for design tradeoff at the subsystem and system level to
support the design, test and performance evaluations. In engagement level,
simulations are for determining the effectiveness of the systems as they interact in
terms of reliability, survivability, vulnerability and lethality. Mission level
simulations are to investigate how operational goals are achieved by incorporating
large number of cooperative and diverse players to the simulation. Lastly campaign

level simulations engage decision makers in broad scale conflicts like war games.
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Figure 1 Hierarchy of Modeling and Simulation




Through out this hierarchy depicted above in Figure 1 from bottom to up, trajectory
simulations are used for variety of purposes in a variety of ways. While different
applications require different simulation approaches, the level of sophistication of
simulations varies greatly depending on the application. These levels of
sophistication range from simple point mass models to a very detailed six-seven

degree of freedom models.

1.1.2 Purpose of Trajectory Simulations

The objectives of a trajectory simulation are greatly determined by the objectives of
the intended user. Intended user aims at obtaining an understanding of various
aspects of the performance of the munition for any of many different purposes
encountered in analysis, development, procurement and operation of munition using
trajectory simulations [4]. The U.S. Department of Defense (DoD), as an example
defines its aim for using simulations as evaluating weapon system requirements and
course of action to reduce the time line and the cost of the complex weapon
systems; conducting training; and for realistic mission rehearsal [6]. The objectives

of trajectory simulations are summarized in this section referring MIL-HDBK-1211

[4].

For the procurement of new weapon systems or the improvements in the current
weapon systems, firstly the requirements are established. In order to establish the
requirements for new weapon systems or the improvements of the current ones,
analysis are carried out to determine the number of each kind of weapons that will
be needed in the national arsenal. These analyses are done using models that cover a
spectrum from one-to-one engagements between a weapon and a target to many-to-
many engagements between multitudes of weapons of different kinds against a
multitude of targets of different kinds. By the operation of these models, particulars
of the battle are made visible so that the factors that drive the outcome can be

analyzed. Some of these factors are the quantities and locations of fire units, target



search and detection system characteristics, weapon launch doctrines, fire unit
reaction times, number of munitions per unit fire, reload times, kill assessment
times, defended area coverage, munition fly out times, countermeasure capabilities,
and kill probabilities. All these efforts are for a better understanding of the

improvements needed in the existing systems and the requirements for new systems.

These analyses models, mostly named as war games, rely on munition trajectory
simulations for data on performance capabilities of various munitions under the
conditions and environments being analyzed. Again the level of detail of trajectory
simulation to be used to establish requirements varies depending on main interest
underlying the application of the simulation. For example, if the aim of the analysis
is to determine the defended area coverage, a simple trajectory simulation is
adequate; however, if the reaction of the missile seeker to specific countermeasures
is worked on, more detailed seeker simulations may be required. The Extended Air
Defense Simulation (EADSIM) of Teledyne Brown Engineering can be a good
example of this type. It is a many-on-many simulation of air, missile and space
warfare which is extensively used around the world in many agencies. Trajectory
simulations are carried out by its weapon model which is one of its physical models.

EADSIM physical models are given below in Figure 2 [7].
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Trajectory simulations are extensively used starting from conceptual design to flight
tests throughout the development of weapon systems. Designers make use of
trajectory simulations starting from optimizing the external configuration to the
testing of a subsystem design or to the forecasting of a flight test results. Defense
Industry Research and Development Institute of Scientific and Technological
Research Council of Turkey (TUBITAK-SAGE) Flight Mechanics Computer Aided
Design Software, (FMCAD) which is given in Figure 3, is one of the examples of
this type [8].
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Each new weapon system has unique characteristics that place different
requirements on simulations. Simulation capabilities also evolve within conjunction
with the development process of the system. The requirements for the simulation
realism through the lifecycle of the weapon system are not the same. During the
early development stage, for example in conceptual design, proof of concept and
source selection are dominant issues. In this phase relatively simple simulations are
mostly appropriate. During full-scale development, for example, when the system
performance under adverse combat conditions is analyzed, much more complex
simulated environments and ammunition response characteristics are needed.
Fleeman, on the other hand, in his book named ‘“Tactical Missile Design” advices
the reader to use one to four degrees of freedom trajectory simulations through
conceptual design and six degrees of freedom trajectory simulations in the

preliminary design phase of weapon system development projects [10].

Military training is another important area where trajectory simulations are used.
Warriors of every rank make use of modeling and simulation to challenge their
skills at the tactical, operational, or strategic level through the use of realistic
synthetic environments. It is usually hard and costly to conduct exercises to engage
warriors without risking the injury, environmental damage or equipment damage.
Simulations usually enable conducting trainings in any arena, using weapons that
would be unsafe on conventional live ranges [6]. Trajectory simulations as a part of
training simulator systems, enables realistic practice and better assessment of crew

performance.

Trajectory simulations for training simulators are developed for munitions that are
fully developed and where all performance data is available. Furthermore, in most
of the cases real time operation requirements apply to trajectory simulations. Due to
these two reasons, trajectory simulations are built focusing on representing the

overall weapon performance rather than a detailed representation of subsystems.

Fundamentally, all fire control problems are variations of the same basic situation:

launching munition from a weapon station to hit a selected target [11]. In an
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engagement scenario, the target or the weapon station or both may be moving. For
all cases, fire control is the science of offsetting the direction of weapon fire from
the line of sight of the target in order to hit the target. Fire control systems make use
of trajectory simulations to estimate the trajectory of the munition at the specific
conditions of fire. Trajectory simulations may be used to generate tables or curve
fits that are used by fire control systems or they may be an integral part of fire
control systems and work online. NATO Armaments Ballistic Kernel (NABK) can
be pronounced as the contemporary example of the use of trajectory simulation for
fire control [12]. NABK is used as a part of software’s for generating firing tables to
be used manually or in fire control systems as look up tables, as well as onboard fire
control systems [13,14]. ASELSAN BAIKS2000 Fire Control System is one of the
examples that use NABK.

As in the case of training, the simulation used in fire control simulate the trajectory
of munitions that are fully developed and all the performance characteristics are
well known. Fast calculation, on the other hand, is one of the very important
requirements for the trajectory simulations that are used for fire control. So, the
models used for the fire control are extremely optimized for minimization of the

computation time.

1.1.3 Essentials of Trajectory Simulation

Trajectory simulations consist of number of models and numerical methods. The
mathematical model of the motion of the munition constructs the base of any
trajectory simulation. Subsystem and environment models aim at computing the
effect of subsystem behavior and environment on the motion of the munition. These
models are solved by making use of number of numerical methods, like numerical
solvers or interpolation algorithms. This section introduces the essentials of

trajectory simulations by basically using [4].



Mathematical models that simulate the motion of the ammunition are based on
Newton’s and Euler’s laws. While Newton’s second law governs the translational
degrees of freedom, Euler’s law controls the attitude dynamics. Munition,
considered as a rigid body in space, is a dynamic system that experiences six
degrees of freedom [5]. Its motion in space is defined by six components of
velocity, three translational, three rotational. Three basic types of forces act on a
munition and are included on in almost all trajectory simulations; the forces of
gravity, propulsion and aerodynamics. In addition, the gyroscopic moments of
internal rotors are sometimes included in simulations. Due to different fidelity and
performance requirements, simplifications are made in trajectory simulations by
approximating or neglecting the degree of freedom. Some of common
simplifications are neglecting munition roll which results in a five degrees of
freedom model and approximating all three rotational degrees of freedom that
retains the three translational degrees of freedom, which is three degrees of freedom

models.

The environment interacts with ammunition in two basic ways. First, the flow of air
over the surface of the ammunition produces aerodynamic forces and moments.
Second, the ability of atmosphere or the sea to transmit electromagnetic, sonar etc.
signals impacts on the performance of the seeker. Trajectory simulations employ
tables or models of atmosphere to provide values of atmospheric properties at the

instantaneous altitude of the munition for each computational cycle.

Subsystem models incorporate subsystem behaviors to the munition motion. The
guidance models in trajectory simulation contain algorithms that model the
guidance functions; these include tracking the target and application of guidance
law. Propulsion models contain algorithms that model the burning of propellant in
terms of its effect on munitions flight by means of thrust force and inertial
properties. Weapon models incorporate the effects of weapon behavior with flights
initial conditions. Using fuze models, the characteristics of munitions fuze are

considered to terminate the trajectory.



The vectors used in trajectory simulations represent factors such as forces,
moments, accelerations, velocities and positions. For the direction of a vector to
have a meaning, it must be described relative to some frame of reference. A vector
is described by its three components on axes of a coordinate system. Number of
coordinate systems may be used in a trajectory simulation. Coordinate systems are
characterized by the position of their origins, their angular orientations, and their
motions relative to inertial space. Common coordinate systems used in trajectory
simulations are earth coordinate system, body coordinate system, wind coordinate
system, guidance coordinate system, tracker coordinate system and target

coordinate system.

Differential equations that are used to compute the trajectory of a munition mostly
do not have closed form solutions [15]. These equations in trajectory simulations
are solved by making use of a number of numerical methods. Many numerical
integration methods are available to solve differential equations [16]. Selection of
appropriate numerical method is basically affected by the accuracy and performance
requirements of specific simulation. McCoy [17] in his book on exterior ballistics
states that first and second order methods are optimum solutions of the point mass
models where as for higher degree of freedom models which require higher

computational accuracy, higher order methods are suggested.

1.2 Trajectory Simulation Reuse: Motivation

Trajectory simulations, as they are being developed for any purpose discussed
before, are subject to different sets of requirements. While accuracy and the
performance requirements affect the model to be used, the platform and

programming language requirements affects the way they are developed.

Results of a flight simulation software methods survey that was carried out by
NASA among the number of facilities that are developing flight simulations showed

us that, there is wide variety of practices used in flight simulation development [18].



It won’t be a mistake to extrapolate these results to trajectory simulation facilities.
Besides different practices among different facilities; single facility usually uses

number of different practices at the same time for different projects.

From our observations, it is a common practice in the industry that developments of
these simulations are carried out as isolated projects although they rely on the same
body of knowledge [19]. When the complexity of the modeled systems and
characteristics of the simulation domain is considered, the risk of failure in
trajectory simulation projects is considered to be high. Besides the risk of failure,
expenditure of intellectual labor to solve the similar problems of the same domain is
a waste. Another aspect is the quality of the products of each development. The
verification in trajectory simulation project requires great effort because the
verification of the mathematical models and developed software really demands

expert reviews and flight data which are expensive.

As other groups that develop trajectory simulations, Modeling and Simulation Team
of TUBITAK-SAGE suffers from the lack of any formal methodology and tools to

make use of past successful implementations of trajectory simulations.

Trajectory simulations are software systems. Then software reuse which actually
depends on a very simple idea, using the previously developed software assets in
developing new artifacts should also apply to trajectory simulation domain [20].
System development based on reusable software artifacts, in principle, should cost
less which, most of the times, means shorter schedules and contain fewer defects
because of the “tried and true” parts of which it is composed [21]. Applying
software reuse practice in trajectory simulation domain will then lead us to less

risky projects which results in high quality trajectory simulations.

The main motivation in this study is developing a reuse infrastructure that will
enable trajectory simulation developers to make use of the past successful trajectory
simulations in a structured way. Target reuse group of this study is the Modeling

and Simulation Team of TUBITAK-SAGE.
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1.3 Trajectory Simulation Reuse Studies in Literature

There have been number of efforts to make reuse work in the trajectory simulation
domain. In the early days of trajectory simulations, developed programs are tried to
be fit for multiple purposes. These general purpose trajectory simulations were
capable of simulating the flight of a wide range of munitions. These codes were
used by different end users rather than then being used as reusable assets in new
trajectory simulation projects. GTRAJ is one of the trajectory simulation examples
of this type. It is a general purpose trajectory simulation that supports point mass
and modified point mass trajectories. It is developed by Firing Tables and Ballistic

Branch of US ARDEC [22].

Besides, there are some studies in the literature for generic mathematical models to
be used in different trajectory simulations. These studies do not point a specific
implementation but introduce mathematical models to be used in variety of

implementations [23, 24, 25 and 26].

There are contemporary studies for developing reusable trajectory simulations.
These studies aim at developing reusable trajectory simulation software. NABK,

genSim, JSBSim and Aerospace Blockset are the major examples of this type.

NABK has been developed till mid 90’s as the shareable and reusable ballistic
kernel for fire control of cannon artillery, mortars and unguided rockets by various
NATO nations. It is implemented as an ADA9S5 class library which enables library
reuse of its operational processors. It supports point mass, modified point mass and

five degrees of freedom trajectories [12].

genSim is a generic six degrees of freedom simulation developed at Raytheon
Missile Systems. It is a library that includes all of the first level components
necessary to build missile simulations for everything from guided projectiles to long

range missiles. Program specific algorithm and hardware models can be attached
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plug-and-play to the genSim architecture. It also supports some interfaces to legacy

simulation code developed previously in FORTRAN or ADA [27].

JSBSim is an open source flight dynamics model in C++. It described as a batch
simulation application aimed at modeling flight dynamics and control of aircraft.
But the framework it provides is said to be handling modeling craft ranging from a
simple ball, to a missile, an aircraft, rocket, hybrid vehicle, a rotorcraft, and so on.
These crafts can feature different propulsion systems, ground reaction mechanisms,

aerodynamic characteristics, and control systems if there exists any [28].

The Aerospace Blockset enables its user to work on aerospace system design,
integration, and simulation by providing key aerospace subsystems and components
in the adaptable MATLAB Simulink block format. It has number of reusable blocks
from environmental models to equations of motion, from gain scheduling to
animation. Blockset supports it users by the core components to assemble a broad
range of large aerospace system simulations rapidly and efficiently. Trajectory

simulation is one of the application areas that Aerospace Blockset is used for [29].

1.4 Scope of the Research

In all trajectory reuse studies in literature, the aim has been either to develop a code
that can be reused by a number of projects or to develop a program that can be used
by users of different agendas. Due to the diverse requirements different trajectory
simulation projects that was discussed in the previous sections, there happens to be
no single trajectory simulation that will fit all the requirements of different users
who need a product which will facilitate one of engineering, engagement , mission
or campaign level modeling and simulation. Each study mentioned in the previous
section has its intended user group with a specific problem set and implementation
platform. As an example, while NABK has been a strong reuse candidate for fire
control systems development projects, Aerospace Blockset targets aerospace system

designers. While it is hard to use Aerospace Blockset for a distributed aircraft
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simulator projects, it won’t be a good choice to use NABK for a weapon system

design.

This research aims far more than code or library reuse that will inherently be
platform and problem family specific. An infrastructure that will enable knowledge,
design, code and library reuse is targeted. To develop a trajectory simulation,
domain knowledge is transformed to a software product by using the methods and
tools of software engineering. During this transformation it is aimed at enabling
reuse in different abstraction levels starting from domain knowledge through

platform independent design, platform specific design, and code.

In this research, we investigated the use of ontologies and domain engineering
practices to develop a formalized methodology to make use of experience and
knowledge leveraged from the past trajectory simulation projects. Formal
specification of trajectory simulation domain is developed as a domain model in the
form of ontology called Trajectory Simulation ONTology (TSONT) [30, 31]. This
ontology of trajectory simulation domain, TSONT, made domain knowledge
available for either automatic or manual transformation to a software design.
TSONT is then used to develop object oriented and function oriented platform
independent software designs. Other than domain knowledge that was made
available to reuse in the form of ontology, these designs are developed to be the
parts of reuse infrastructure. Every simulation built by transforming these designs is
regarded as indispensable parts of reuse infrastructure. An object oriented
framework for six degrees of freedom guided missile simulation is developed by
transforming the object oriented platform independent design. A guided surface to
surface rocket and a guided bomb simulation were built by framework completion
[19]. A point mass MATLAB Simulink Blockset was developed using the function
oriented platform independent design and number of simulations were built using
this Blockset to propose a methodology and a set of reuse artifacts for function

oriented paradigm.
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Collaborative research has been carried out on automatic transformation of domain
ontology to software specifications. In two different studies, two different
programming paradigms were targeted. For function oriented software
development, we succeeded automatic generation of MATLAB Simulink block
definitions from TSONT [32]. For object oriented paradigm, we have been able to
produce an abstract software design in the form of a UML class diagram from

TSONT using automatic means [33].

1.5 Organization of Thesis

The thesis comprises six chapters. In Chapter 1, a brief overview of the trajectory

simulation domain is presented with the scope and the motivation of this thesis.

In Chapter 2, ontology based reuse methodology developed is discussed. First, the
basics of software reuse are presented with some historical perspective. Then,
domain engineering is explained as the practice of software reuse. Ontology based
approach to domain engineering is given as the contemporary approach to domain
engineering. And the chapter is concluded with the section which discusses how the

ontology driven domain engineering is structured in this thesis.

In Chapter 3, ontology concept as a means of knowledge sharing is explained. After
presenting the definition of ontology in computer science, components of ontology
and the merits of ontologies are given. Applications of ontologies in general and in
engineering domain are discussed by referring the related literature. After
presenting the guidelines of building ontologies, we presented the way TSONT is
built. In the last section of this chapter, we explain the way we make benefit of
Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) effort of
National Aeronautics and Space Administration (NASA) for capturing the

mathematical models of the domain.
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In Chapter 4, TSONT is presented as the domain model of ontology based reuse
infrastructure that was developed in this research. After briefing the ontology, we
introduce the top level entities of the ontology followed by the hierarchies of the
domain captured in TSONT. Then the way we captured the domain entities of
trajectory simulation as OWL (Web Ontology Language) classes of TSONT is
presented. This chapter is concluded with the discussion about the individuals of

TSONT.

In Chapter 5, the specification and the implementation ontology based reuse
infrastructure is presented. This section is structured considering two programming
paradigms namely object oriented programming and function oriented
programming. Both the specification and the implementation of the reuse
infrastructure are discussed for these two different paradigms. Case studies are

presented.

In Chapter 6, the conclusions emerging from the present work are discussed. We
first discussed TSONT effort as one of the first attempts on formalizing the
mechanical engineering knowledge with the importance of ontologies in knowledge
sharing in engineering domain. Then we evaluated the ontology based trajectory
simulation reuse infrastructure. The advantages of this ontology based approach
over the past trajectory simulation reuse attempts are discussed. Finally, some

future work recommendations are made.
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CHAPTER 2

REUSE METHODOLOGY

In this chapter, ontology based reuse methodology developed is discussed. First, the
basics of software reuse are presented with some historical perspective. Then,
domain engineering is explained as the practice of software reuse. Ontology based
approach to domain engineering is given as the contemporary approach to domain
engineering. Eventually, chapter is concluded with a section that discusses how the

ontology driven domain engineering is structured in this thesis.

2.1 Software Reuse: Overview

Among many other definitions, software reuse is defined in Reuse Based Software
Engineering book of Mili et al. [34] as the process whereby an organization defines
a set of systematic operating procedures to specify, produce, classify, retrieve, and

adopt software artifacts for the purpose of using them in its development activities.

As explained by Arango [35], although the concept of software reusability can be
traced back to the beginning of computer programming, it is pronounced as a
software engineering problem at the 1969 NATO Conference [36]. Little progress
was reported until mid to late 1970’s, when some organizations put to a test the
promise of productivity through reusability. The Workshop on Reusability in
Programming, in 1983, was a milestone in the process. Early research focused on
methods and mechanisms to perform reuse, on representation of reusable

components, and on organization of repositories of components.

Three main motivations of software reuse are gains in productivity, quality and
development schedules [34]. By reusing existing assets, we save the manpower

required to develop them again. When an asset is developed for reuse, larger
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investment is allocated to its quality and the quality increases by the feed backs of a
larger user base. And lastly, using reusable assets not only results in a decrease in

manpower but also it shortens time to market.

In the past, reuse was understood as using generalized repositories of “components”
and “parts” which can be accessed by many kinds of applications. It took several
years of failures characterized by low levels of reuse to make it clear that this
approach could not succeed. Then, the domain concept is defined and the success of
reuse is related to the use of artifacts in the context of a domain. Domain is defined

as the area in which an organization does business [37].

As Mili et al. presented, in recent years, however, it was also recognized that the
mere creation of repositories of domain oriented assets was not enough to ensure
reuse success. For a domain, it is also necessary to design a generic architecture,
known as the domain architecture, of systems in that domain. With the
identification of domain architecture, it becomes possible to develop systematically
reusable assets that fit the architecture via a suitable interconnection mechanism.
Reusable assets can be listed as compiled libraries, source code, requirements

specifications, designs, test data, documentation, and software architectures [34].

2.2 Domain Engineering

Arango says that there exists a gap between the kinds and form of the knowledge
available about problem domains and the content and form of the items of
information that can be reused in software construction. Knowledge about the
problem domain is often implicit and informal. While reusable information is made
available to the software developer, it must be represented explicitly and formally.
The term reuse infrastructure refers to the information that is made available to the
software developer, together with auxiliary information needed to use and
manipulate it. The process of developing a reuse infrastructure from problem

domain is called domain engineering [35].
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Domain engineering is defined as a process for building reusable assets, which
includes activities for analyzing the domain, identifying common reusable assets,
and populating them in the repository [38]. It is presented as an activity of a
synthesis process that creates and supports a standardized application engineering
process and products in a business area [39]. In this context, application engineering
is the process that organizes and directs resources for producing and supporting a
system by applying the reuse paradigm. The process includes activities for

employing reusable assets from a repository.

It is stated that, domain engineering is carried out to addresses knowledge and asset
development, capture, and evolution for a family of systems. It is defined as the
process of identifying and recording commonalities and variables in a domain. It
aims to create reusable assets and new systems using that information. Domain
engineering activities create a "space" of solutions from which application
engineers will later draw point solutions. A domain, in this context, is an application
area containing systems that share design decisions. Domains can be classified
depending on functional capabilities, such as navigation or stores management, or

on cross functional areas; e.g., user interfaces, reliability, and security [40].

Arango and Prieto-Diaz explain domain engineering practice in [41] as follows.
They state that domain engineering is fundamentally composed of three activities:
domain analysis, infrastructure specification and infrastructure implementation.
Domain analysis is the identification, acquisition and evolution of reusable
information on a problem domain to be reused in software specification and
construction. The purpose of domain analysis is to construct the model of the

problem domain. Then domain model will then serve as:

¢ Unified resource of reference to solve ambiguities that may arise during the

analysis of the problems or implementation of reusable components

e Repository of shared knowledge for communication and orientation
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e Specification of reusable components to the application developer.

It is claimed that a domain model is not directly useful for operational reuse. There
exists a gap between the kinds and the forms of domain knowledge in a domain
model and the content and form of software assets that can be reused in software

construction. To bring this gap, a reuse infrastructure is built.

Infrastructure specification is then defined as the selection and organization of
reusable information in the model to fit the patterns of reuse in the environment of
reuser. As a result, an architecture for reusable information is specified. For
example, a library of programs, a database scheme. The infrastructure specification,
together with the semantics captured by the domain model, is input to the

infrastructure implementation step that actually produces and tests the components.

It is said that infrastructure implementation is the design and encoding of the pieces
resulting from the specification process using particular representations required by
the technology or reused: for example encoding the specified programs using

programming languages.

Among many research activities on domain engineering [42, 43], CAMP (Common
ADA Missile Packages) was the first and most famous one [44]. CAMP Project was
the first explicitly reported domain engineering experience. In this project eleven
tactical missile systems were analyzed, several common components were
identified, and grouped by their functionality. A set of general design templates was
derived in the form of Ada generics and later integrated in a design support system,
the Ada Missile Parts Engineering Expert (AMPEE). AMPEE aimed to support

component identification, component selection, and component construction [45].

There are several early efforts described in literature (see [46, 34] for a review) to
define domain engineering methods from 90’s, such as Feature-Oriented Domain
Engineering (FODA), Domain Analysis and Reuse Environment (DARE), Reuse
Library Process Model (RPLM), Organisation Domain Modeling (ODM) and
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Domain Specific Software Architecture (DSSA). Among these, we focused on
ontology based domain engineering approaches [47, 48, 49 and 50]. In this research
we defined a derivative of ontology driven domain engineering methodology which

we used to develop trajectory simulation reuse infrastructure [31, 32].

2.3 Ontology Based Domain Engineering

Neighbors defines the domain analysis as “the activity of identifying the objects and
operations of a class or similar systems in a particular problem domain” [51]. From
Webster, domain is “field or sphere of activity or influence” [52]. From the
software engineering point of view, domain is defined as the application area of the
field for which the software systems are developed [45]. Examples include traffic
management systems, management information systems or command and control
systems. Domains can be broad like manufacturing or narrow like arithmetic
operations. Domains on the other hand are limited by their boundaries which define
their scope. The borders of a domain define what objects, operation and relations

belong to the domain.

Diaz defines domain analysis as a process where information used in developing
software systems is identified, captured, structured, and organized for further reuse
[45]. More specifically, domain analysis is said to be dealing with the development
and evolution of an information infrastructure to support reuse. The inputs of this
process are a domain analysis methodology, custom-built for each specific domain.
And output of domain analysis is a domain model. Domain models range in level of
complexity and expressive power, from a simple domain taxonomy to functional

models to domain languages [41].

Diaz says that as the knowledge about the domain is collected during domain
analysis, the problem is representing this knowledge for ease of human
understanding and machine processability [45]. Ontology approach to knowledge

representation is utilized in this research to solve this problem.
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According to Uschold [53], “An ontology may take a variety of forms, but
necessarily it will include a vocabulary of terms, and some specification of their
meaning. This includes definitions and an indication of how concepts are inter-
related which collectively impose a structure on the domain and constrain the
possible interpretations of terms”. Thus, ontology consists of concepts and relations,
and their definitions, properties and constraints expressed as axioms. An ontology is

not only a hierarchy of terms, but a fully axiomatized theory about the domain [54].

In the domain engineering, it is said that ontologies can act both as a domain model
and a component in the repository [48]. Ontology based domain engineering is
interested in the use of an ontology as a domain model and how to derive

components from it.

The advantages of an ontology based approach to domain engineering are discussed
in detail by Falbo et al. in his paper “An Ontological Approach to Domain
Engineering” [47]. Briefly, ontology enables us to build a domain model
independent from the software technology and it gives a strong tool to capture the

domain conceptualization.

2.4 Methodology Explained

In our approach to trajectory simulation development with reuse, we defined an
original domain engineering methodology. We focused on two basic programming
paradigms, namely object oriented programming and function oriented
programming. For both, we envisioned to make use of model driven technologies.
Trajectory Simulation ONTology (TSONT) is treated as the domain model. It is
being developed to be a reusable knowledge library on trajectory simulations. The
basic idea behind developing an ontology as the domain model of the trajectory
simulation domain is, first, to establish a common vocabulary that is agreed among

the people working on trajectory simulations. Another main consideration is to
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create a backbone for systematization of knowledge on how to build a trajectory

simulation [55].

In the last decade ontologies have been used for variety of engineering applications
[56, 57, 58, 59, 60, 61, and 62]. In this research, we aim to use the ontology as a
basis for constructing trajectory simulation applications. Potential benefits of this
approach include documentation, maintenance, reliability, knowledge reuse and

interoperability of the developed applications.

For object oriented programming, we turned to software frameworks to realize the
notion of infrastructure in our domain engineering practice. Johnson and Foote state
that a framework is a set of classes that embodies an abstract design for solutions to
a family of related problems, and supports reuse at a larger granularity than classes
[63]. As noted by Fayad, frameworks enhance modularity by encapsulating
implementation details behind their interfaces and these interfaces enhance the
reusability by defining generic components that can be reapplied to create new

applications [64]. They will be discussed in detail in proceeding sections.

We find it favorable to construct new simulations by framework completion,
provided, of course, a suitable framework is available. Otherwise one needs first to
develop a framework, and then complete it for the particular application. This
approach is expected to create a collection of related frameworks addressing

different platforms and problem families.

We firstly build a platform independent framework architecture, which can be
transformed to some platform and problem family specific framework architectures.
We propose to design the platform independent framework architecture on the
domain model, so that it is traceable to the domain knowledge represented in the
ontology. We use the ontology as a guide for the specification of static structure of
the framework, behavior model and definition of the interfaces of the framework.
The taxonomy of classes of TSONT is reflected in the inheritance hierarchy of the

abstract software design. Abstract behavior model is based on the dependency
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relations of the functions of TSONT, and finally the framework interfaces are
designed based on the function specifications of TSONT. This is a testimony to

knowledge reuse.

ONTOLOGY BASED TRAJECTORY SIMULATION REUSE INFRASTRUCTURE
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Figure 4 Domain Engineering Methodology

Together with the framework architecture that targets a specific platform and
problem family, this platform independent framework architecture is regarded as

the outcome of the infrastructure specification activity of domain engineering. The
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platform dependent and problem family specific frameworks are then the outcome
of infrastructure implementation. This is a testimony to design reuse. Domain

engineering methodology developed is depicted below in Figure 4.

As presented above in Figure 4, for function oriented programming, reuse
infrastructure specification is built again using the knowledge captured in TSONT.
Data flow diagrams are treated as the tools for abstract function oriented design. As
presented in the famous software engineering book of Sommerville, data flow
diagrams are concerned with designing a sequence of functional transformations
that convert system inputs into the required outputs. These diagrams illustrate how
data flows through a system and how the output is derived from the input through a

sequence of functional transformations [65].

Different from our object oriented scenario, we do not propose a single abstract
design that covers whole domain. Rather we propose a collection of data flow
diagrams for different problem sets, like, point mass data flow diagrams that we
will present in the following sections or a modified point mass projectile simulation
data flow diagrams. This collection of abstract designs will be the reuse assets for
the future projects. Platform specific design will be the refinement of these abstract
designs. Reuse infrastructure is implemented in the form of function libraries or
blocksets using the platform specific designs for specific trajectory simulation
applications. Applications are suggested to be developed using the function libraries

or reusable blocks developed as the infrastructure.

In this chapter, after introducing the literature on software reuse, domain
engineering and ontology based domain engineering, ontology based reuse
methodology developed is presented. Next chapter will introduce some background

on ontologies and knowledge sharing.
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CHAPTER 3

ONTOLOGIES AND KNOWLEDGE SHARING

In this chapter, ontology concept as a means of knowledge sharing is explained.
After briefing the definition of the ontology, components, merits and applications of
ontologies are explained. Engineering applications of ontologies are referred to
before discussing the principles that are taken into account when constructing
TSONT. In the last section, we explain way we make benefit of Dynamic
Aerospace Vehicle Exchange Markup Language (DAVE-ML) effort of National
Aeronautics and Space Administration (NASA) for capturing the mathematical

models of the domain.

3.1 What is Ontology?

The term ontology is borrowed from philosophy, where it has the meaning of a
systematic explanation of Existence. In the Artificial Intelligence field, first Neches
defined ontology as “An ontology defines the basic terms and relations comprising
the vocabulary of a topic area as well as the rules for combining terms and relations
to define extensions to the vocabulary” [66]. Later in 1993, Gruber’s definition
“Ontology is explicit specification of conceptualization” [68] became famous.
Struder and colleagues explained Gruber’s definition. They claimed that
conceptualization refers to an abstract model of some phenomenon in the world
which identifies the relevant concepts of that phenomenon and they explained the
word “explicit” as type of concepts used, and the constraints on their use are

explicitly defined [69].
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3.2 Components of Ontology

According to Gruber [70], knowledge in ontologies can be formalized using five

kinds of components: concepts, relations, functions, axioms and instances.

Concepts can be anything about which something is said, and therefore, can be a
description of a task, function, action, strategy etc. Taxonomies are widely used to
organize the ontological knowledge in domain using generalization/specialization
relationship through simple/multiple inheritance. Relationships represent a type of
interaction between the concepts of the domain and functions can be regarded as a
special kind of relation. Axioms on the other hand are used to model sentences that
are always true. They are added to ontology for several purposes, such as
constraining the information contained in the ontology, verifying its correctness or
deducting new information. Instances are the terms that are used to represent the

elements of the domain. They actually represent the elements of the concepts [71].

3.3 Merits of Ontologies

Mizoguchi in his paper “Ontological Engineering: Foundations of next generation

knowledge processing” [55] lists the merits of the ontology as follows:

1. A common vocabulary: Ontology creates a vocabulary agreed among the

people involved to describe of the target world.

2. Explication of what has been often left implicit: Knowledge bases are
usually built based on an implicit conceptualization possessed by the
builder. This implicitness is one of the main causes of preventing knowledge
sharing and reuse. So the explicit representation of assumptions and
conceptualization in an ontology is a contribution to knowledge reuse and

sharing.
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3. Systematization of knowledge: An ontology constructs a backbone for the
systematization of knowledge by providing a well established
vocabulary/concepts that people use to describe phenomena, theories and

target things under consideration.

4. Standardization: Ontology constructs a standardization of shared
terms/concepts that enables a communication among human and computer

agents.

5. Meta-model functionality: To construct an abstraction of the target in a
model, ontology provides us concepts and relations among them to be used
as building blocks of the model. This building blocks can be regarded as a

meta-model.

3.4 Applications of Ontologies

In “An Ontological Approach to Domain Engineering” paper [47], applications of
ontologies are classified in four main categories: Neutral authoring, ontology as

specification, common access to information and ontology-based search.

Falbo et al. in the same paper explain each application group as follows [47]: “An
ontology is developed in a single language and it is translated into different formats
and used in multiple target applications.” This enables neutral authoring. “An
ontology of a given domain is created and it provides a vocabulary for specifying
requirements for one or more target applications. In this case ontology can be
viewed as domain model. The ontology is used as a basis for specification and
development for domain applications, allowing knowledge reuse.” This can be
classified as the use of ontology as a specification. For common access to
information: “Ontology is used to enable multiple target applications (or human) to
have access to heterogeneous sources of information that are expressed using

diverse vocabulary or inaccessible format ”. Ontology-based search is explained as:
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“An ontology is used for searching an information repository for desired resources,

improving precision and reducing the overall amount of time spent searching.”

Here among the applications of ontologies, ontology as specification is the way that
this research is focused on. The basic idea behind ontology as specification is to
author an ontology which models the application domain, and provides a
vocabulary for specifying the requirement for one or more target applications. The
richer the ontology is in expressing the meaning, the less it has the potential for
ambiguity in creating requirements. The software is based on the ontology, which
thus plays an important role in the development of the software. The benefits of this

approach include documentation, maintenance, reliability and knowledge reuse.

3.5 Engineering Ontologies

In this research, a large scale engineering ontology was developed. The first efforts
on developing engineering ontologies were in 90’s. Ontologies in engineering
domain have been developed for various purposes including specifying engineering
information systems, integration of engineering applications, supporting

engineering design and forming a conceptual foundation for engineering ontologies.

The PhysSys was one of the first engineering ontologies. It is based upon system
dynamics theory that is practiced in engineering modeling, simulation and design.
The PhysSys was developed to formally define how design engineers or the end
users of Computer Aided Engineering (CAE) systems understand their domain and
to provide a foundation for the conceptual schema for data structuring in
engineering databases, libraries and other CAE information systems [56, 57]. The
ideas formalized in PhysSys provided a base for the development of a library of
reusable models for engineering and design. This library was developed in the
European Union ESPRIT-II program Open Library for Models of mEchatronic
Components (OLMECO). The aim of the OLMECO project was to develop a

modeling and simulation environment for industrial applications [58].
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The KACTUS project targeted at the development of methods and tools for the
reuse of knowledge about technical systems during their life-cycle. The project was
application-driven: systems were being developed in the domains of preliminary-

ship design, oil-production processes, and electrical networks [59].

Mihai Ciocoiu and his colleagues attacked the growing complexity of
manufacturing information and the increasing need to exchange this information
among various software applications like CAD, performance analysis,
manufacturability analysis, product data management system, process planner,
production management system, scheduler, and a simulation system. As a solution
to this problem, they made use of taxonomies or ontologies of manufacturing
concepts and terms, because ontologies provide a way to make explicit the
semantics (i.e., the meaning) for the concepts used, rather than relying just on the

syntax used to encode those concepts [60].

In MIT Artificial Intelligence Laboratory, a research was carried out aiming to
develop a large scale ontology for the mechanical engineering world to support a
wide range of tasks including analysis and design. Common patterns of behavior are
tried to be identified and labeled with the terms that mechanical engineers use to

talk about mechanical devices [61].

In one of the early efforts of ontology development for engineering domain, Gruber
and Olsen described an ontology namely EngMath for mathematical modeling in
engineering. This ontology builds a conceptualization on abstract algebra and
measurement theory. It includes scalar, vector, and tensor quantities, physical
dimensions, units of measure, functions of quantities, and dimensionless quantities.
EngMath is designed for knowledge sharing purposes. It was aimed to be used as a
communication language among cooperating engineering agents, and as a

foundation for other engineering ontologies [62].
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3.6 Ontology Development

Currently, ontology development is a craft rather than a science. It is still a research
area. Falbo et al. defines the ontology development process as set of activities
consisting purpose identification and requirements specification, evaluation and
documentation, integration existing ontologies, ontology capture, ontology

formalization as in Figure 5 [47].

Purpose Identification and
Reguirement Specification

Evaluation and |0|1l{+|1|g;\' (';Ip[u.,-:l Integrating Existing
Documentation # Chtologics

Omtology
Formalization

Formal Omtology

Figure 5 Ontology Development Process [47]

During purpose identification and requirements specification, the purpose of the

ontology and its intended use is identified.

Ontology capture is to capture the domain conceptualization. The relevant domain
entities (e.g. concepts, relations, properties) are identified and organized in this step.
Mostly a model represented in a graphical language is used to facilitate the

communication with the domain experts.

Ontology formalization aims to explicitly represent the conceptualization in a
formal language. This language is used to represent the elements that model the

existing domain entities in a precise and unambiguous way.
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It is common practice to integrate the developed ontology with existing ones to use
previously established conceptualization during ontology capture and/or

formalization.

Ontologies are checked whether the ontology satisfies the specification
requirements or not in the evaluation step. Ontologies are evaluated against the

ontology competence and some design quality criteria.

Purpose, requirements, textual description of conceptualization, and the formal
ontology must be documented, including. This activity is done in the documentation

step.

TSONT is being developed considering the guidelines Fablo defined. The purpose
of the TSONT was identified in the proposal of this research. Protégé is used as the
ontology development environment. It is a tool developed by Stanford University. It
enables a graphical environment to facilitate the communication with the domain
experts besides enabling an integrated formalization of the captured
conceptualization while constructing graphical representation of ontology [67].
TSONT is formalized using Web Ontology Language which will be presented in the
proceeding sections. We did not integrate TSONT with other ontologies but we
aligned TSONT using Suggested Upper Merged Ontology (SUMO) of IEEE in
order to enable painless integration with other mid level ontologies like TSONT.
This thesis is being regarded as the documentation of ontology developed. We do
not regard the ontology development process to be completed. TSONT is planned to
be continuously maintained and enhanced as the reuse infrastructure is used. With
the experience gained by new projects, it will become more mature and more

complete.
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3.7 Principles of Building Ontology

Ontologies are actually designed. One chooses how to represent something in an
ontology by making design decisions. Following guidelines defined by Gruber [68]

was taken into account when developing TSONT.

Clarity: To make TSONT effectively communicate the intended meaning of defined
terms, definitions are stated objectively and independent of social or computational

context.

Coherence: To make TSONT coherent, the definitions are checked against logical

consistency.

Extendibility: TSONT is designed to encourage the use of the shared vocabulary.
One can either expand TSONT or add individuals to define new terms for special

uses based on the existing vocabulary.

Minimal encoding bias: The conceptualization in TSONT is specified at the

knowledge level. We do not use any particular symbol-level encoding.

Minimal ontological commitment: TSONT has ontological commitment on
trajectory simulation developments that is sufficient to support trajectory simulation

development knowledge sharing activities.

3.8 How to Represent an Ontology?

Early attempts on representation systems resulted to several languages. Some
examples are Ontolingua, OKBC, OCML, Loom, and FLogic. Contemporary
studies in representation systems resulted to web languages like OIL, DAML,

DAMLA+OIL and OWL for building ontologies [71].
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Web Ontology Language (OWL) was developed to be the standardized and broadly
acceptable ontology language of the Semantic Web by World Wide Web
Consortium (W3C) Web Ontology Working Group [72, 73, 74]. Considering the
current support to this language in terms of tools and publications, OWL is selected

as the language to represent TSONT.

The requirements of OWL were well-defined syntax, well-defined semantics,
efficient reasoning support, sufficient expressive power and convenience of
expressions. The requirement of a well defined syntax is necessary condition for
machine processing of information. Formal semantics describes precisely the
meaning of knowledge. “Precisely” here means that the semantics is not subjective
and it is open to different interpretations by different people or machines.
Reasoning support on the other hand is necessary to check the consistency of the
ontology and knowledge. These requirements leaded W3C’s Web Ontology
Working Group to define a language as powerful as a combination of Resource
Description Framework (RDF) Schema with a full logic [75]. They then defined
OWL as three sub languages, each of which is geared towards fulfilling different of

these requirements:

OWL Full: The entire language is called OWL Full. It uses all the OWL languages

primitives.

OWL DL: For computational efficiency, OWL DL (short for: Description Logic) is
a sublanguage of OWL Full is defined. It restricts the way in which the constructors

from OWL and RDF can be used.

OWL Lite: With further restrictions, OWL DL is limited to a subset of the language
constructors. For example, OWL Lite excludes enumerated classes, disjointness
statements and arbitrary cardinality (among others). The advantage of this is a
language that, it is easier to grasp for users and easier to implement for tool

builders. The disadvantage is, as one would expect, its restricted expressivity.
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OWL is built on RDF and RDF Schema (RDFS) and uses RDF’s Extensible
Markup Language (XML) syntax. OWL documents are usually called OWL
Ontologies. They are also RDF documents.

An OWL ontology starts with a collection of assertion for housekeeping purposes.
The assertions are grouped under owl:Ontology element which contains comments,

version control and inclusions of other ontologies. For Example:

<owl:Ontology rdf:about="">
<rdfs:comment>An example OWL ontology</rdfs:comment>
<owl:priorVersion rdf:resource="http:/ /www.mydomain.org/spacecraft"/>
<owl:imports rdf:resource="http:/ /www.mydomain.org/aircraft"/>
<rdfs:label>Spacecraft Ontology</rdfs:label>

</owl:Ontology>

Classes are defined by using owl:Class element. For example we can define a

ramjet as:

<owl:Class rdf:ID="Ramjet">
<rdfs:subClassOf rdf:resource="#Thruster"/>

</owl:Class>

OWL has the definitions for disjoint classes and equivalent classes as
owl:disjointWith and owl:equivalanetClass. There are two predefined classes,
owl:Thing and owl:Nothing. Thing is the most general class. Nothing on the other

hand is the empty class.

OWL has two kinds of properties. Object properties relate objects to objects and
datatype properties relate the objects to datatype values. Rdfs:subClassOf is used to
define inheritance restriction. owl:allValuesFrom is used to specify the class of
possible values of the property specified by owl:onProperty. owl:hasValue states a
specific value that the property, specified by owl:onProperty must have. Cardinality
relations can be given using owl:cardinality, owl:minCardinality and

owl:maxCardinality. Some properties of the elements can be defined directly:
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e owl:TransitiveProperty defines a transitive property, such as “has better

sound than”.

e owl:SymmetricProperty defines a symmetric property, such as “has same

height as”.

® owl:FunctionalProperty defines a property that has at most one unique value

for each object, such as “weight”.

® owl:InverseFunctionalProperty defines a property for which two different

objects cannot have the same value

Boolean combinations e.g. union, intersection of classes can also be defined by
using owl. owl:oneOf element, on the other hand, is used for enumerations and is

used to define a class by listing all its elements.

Instances of classes are declared as in RDF. Unique names assumption is not
adopted by OWL. Thus, just because two instances have different name, does not

imply they are different individuals.

OWL does not allow derived data types, although XML Schema provides
mechanism for derived data types. OWL document just consists of data types that

are most frequent used ones like strings, integer, boolean, time and date.

When the layered structure of the language is considered, in OWL Full, one can use
all the language constructors as long as the result is legal RDF. When one needs to
use OWL DL, the constraints to be obeyed are as following; Any resource in OWL
DL is allowed to be either class, a datatype, a datatype property, an object property,
an individual, a data value or a part of built in vocabulary. All resources must be
partitioned, and this partitioning must be stated explicitly. Furthermore, no
cardinality restriction can be applied on transitive properties. And lastly anonymous
classes are only allowed in the domain and range of owl:equivalentClass and

owl:disJointWith and rdfs:subClassOf. Each OWL Lite ontology must be and OWL
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DL ontology. For OWL Lite, it must further obey the following constraints.
owl:OneOf, owl:disjointWith, owl:unionOf, owl:ComplementOf and owl:hasValue
are not allowed. Furthermore, cardinality statements can only be made on values 0
and 1. And lastly owl:equivalentClass statements cannot be made between

anonymous classes, but only between class identifiers.

One should decide upon the sub-language to use before starting working on an
ontology. There are simple rules of thumb when deciding upon a sub language,

formulated as follows by Horridge et al. [76].

e The choice between OWL-Lite and OWL-DL is better to be based upon

whether the simple constructs of OWL-Lite are sufficient or not.

e The choice between OWL-DL and OWL-Full is better to be based upon
whether to carry out automated reasoning on the ontology or to be able to

use highly expressive and powerful modeling facilities is important.

In this study, what we want to do is to capture as much knowledge from the domain
as possible to lead us to some software architecture. So we selected to use the most

expressive one, OWL-Full, in order not to be constrained by the language.

3.9 DAVE-ML

Trajectory simulation domain involves mathematical models that account for some
kind of behavior or some law. Capturing these models in a systematic way and
representing them as an integrated part of the ontology is an important concern. At
this juncture, the Dynamic Aerospace Vehicle Exchange Markup Language
(DAVE-ML) effort of National Aeronautics and Space Administration (NASA) for

the benefit of flight modeling and simulation community has been leveraged [77].

DAVE-ML is a proposed standard to interchange of aerospace dynamic models. It

is aimed to provide a programming language independent representation of
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aerodynamics, mass/inertia, propulsion and guidance, navigation and control laws
of a vehicle. DAVE-ML is XML-based. It uses MathML to describe mathematical
relations. MathML is an XML-based language for describing mathematics for
machine to machine communication. We take advantage of DAVE-ML to

incorporate mathematical models into our ontology TSONT.

DAVE-ML is being regarded as the way to document the mathematical model
implementations in TSONT. DAVE-ML’s intentions is defined as to allow a
programming language independent representation of the aerodynamic,
mass/inertia, propulsion, guidance navigation and control laws for trajectory

simulations [78].

k7uml version="1.0" standalone="no"7=
=I0DOCTYPE DAVETfUN: SYSTEM "DAVEfUR.. did"=
=l-- fRevision: 2.3 § -+

=DAVEUNC=
=fileHeader "Campute Flat Fire Aerodynamic Forces" =
=guthar "Umut DURAK! "TUBITAK-SAGE" b el
=fileCreationDate "24-10-2005"=

=description=
This daveml fuction defines the model to calculate the aerodynamic
farces for flat fire trajectory simulation.
=fdescription=
=l-- e
=l-- References -=
=l-- e
=reference "REFO1" "McCoy B
"Moadern Exterior Ballistics"
"ISEM 0-FE43-0720-7" "1 aga"=
=Irefarence=
=modificationRecord A=
=guthor "Umut DURARK! "TUBITAK-SAGE"
"udurakigs age tubitalk gov tri=
=description=
First Creation
=fdescription=
=imodificationRecord=
=ffileHeader=

Figure 6 An Example DAVE-ML File Header
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There is only one basic element in DAVE-ML. It is DAVEFunc. It is used to
describe static models such as aerodynamic and inertia/mass models. It is composed
of data tables and equations for a particular model. It has five components: a file
header, variable definitions, breakpoint definitions, table definition and a function
definition. File header is used to give a background and reference data for the

represented model. A file header example is given above in Figure 6.

Breakpoints define a list of monotonically increasing floating point values. Function
table definitions generally contain the data points for aerodynamic coefficients as a
function of one or more parameter like mach, angle of attack, control surface
deflections. Function definitions as given below in Figure 7; connect the data tables

to breakpoints to define how an output should vary with one or more input.

=function "CHO_FM'=
=independentvarPis UIACH" =
0.1,0.33,0.53, 0.71, 0.86, 1.00, 1.05,1.12,1.19, 1.27, 1.36, 1.46, 1.58, 1.71, 1.87, 2.04, 2.23, 2.46, 2.71, 3.00
=lindependentyarPts=
=dependentarPts e
-.3471,-.3563, - 3626, -.3620, - 4187, - BO75, - 6821, -.6427, -.5933, - 5504, - 5208, - 5010, -.4858, - 4809, - 4731, -.4812, -.4423, - 4114, -.3819, - 3508,
=ldependentvarPts=
=function=

Figure 7 An Example DAVE-ML Function Definition

Variables are used to capture inputs, calculations and outputs for a model. Variables
can be regarded as the signal routes in a block diagram or the parameters in the
computer program. They can be either inputs of the models, constants used in the
models, intermediate results or outputs of the models. MathML is used to represent
the mathematical relation of input variables and outputs. An example is presented

above in Figure 8.
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=variableDef "Two_Dimensional_Air_Speed_wit_Earth_Coordinate_System” "y "Imfst=
=fescription=
Two dimesional air speed wirt earth coodinate system in meterrsecond.
Itis awector {1 W20 in first and second axes respectively.
=fdescription=
=calculation=
=rmath "Rt w3 orgf 99 8mdathiv ath L=
=rmi=v=imi=
mo===/mo=
=rmi=u=imi=
=rma=Eminus,=imaos=
=rmi=swind=imi=
=fmath=
=fealculation=
=MvariahleDef=

Figure 8 An Example DAVE-ML Variable Definition

This chapter introduced the basic concepts of ontologies and knowledge sharing.
First the definition of ontology is given. Then the components, merit and
applications of ontologies are explained. Ontology development efforts in
engineering domain in the literature are reviewed. After presenting the basic
practices of ontology construction, DAVE-ML effort of NASA is presented. In the
next chapter, we will introduce Trajectory Simulation Ontology that was built as the

domain model of trajectory simulation reuse infrastructure.
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CHAPTER 4

TRAJECTORY SIMULATION ONTOLOGY

In this chapter, Trajectory Simulation ONTology (TSONT) is being presented.
After an overview, top level entities, the hierarchies, classes and individuals of

TSONT are discussed.

4.1 TSONT: An Overview

Trajectory Simulation Ontology, abbreviated as TSONT, is being developed as the
domain model of Trajectory Simulation Reuse Infrastructure. It is being developed
as a reusable knowledge library on trajectory simulations for trajectory simulation

developers.

As mentioned earlier, ontologies are designed. For each artifact, the goal of its
design is to conform to its requirements. The aim of developing TSONT as the
domain model of the Trajectory Simulation Reuse Infrastructure is first to establish
a common vocabulary that is agreed among people working on trajectory
simulations and to create a backbone for systematization of knowledge on how to
build a trajectory simulation. Considering these two requirements, TSONT design
tried to capture common vocabulary of trajectory simulation and to present the
entities and the relation among the entities in a trajectory simulation in a way to

drive the design and development of simulation software.

There can be many other ways to capture and systemize or formalize the knowledge
about trajectory simulation development. While there is no barrier for any team that
is developing trajectory simulation to use TSONT as a domain model, TSONT is
being developed for Modeling and Simulation Team of TUBITAK-SAGE. So,

although the literature about trajectory simulation development is widely used to
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construct TSONT, it is being peer reviewed by the target reuse group in order to
make it capture the shared vocabulary and the conceptualization of the people

participating in that group.

Once TSONT is presented in the proceeding sections, one will see that some of the
hierarchies are not complete and some knowledge about some classes is missing.
The current state tries to capture the shared vocabulary and experienced
conceptualization as related to ongoing projects rather than all available in the
literature. As TSONT will be used as the domain model of the reuse infrastructure,
it will be enhanced with the new experiences of the group. In this manner TSONT
can be regarded as the knowledge base that is serving the gained experience in a

formal way in order to be used in the future projects.

4.2 Top Level TSONT

Top level entities of TSONT are Trajectory Simulation Attribute, Trajectory
Simulation Class, Trajectory Simulation Function, Trajectory Simulation Object,
Trajectory Simulation Quantity, Trajectory Simulation Record and Trajectory

Simulation Sequence, as shown in Figure 9.

owl Thing
| Trajectory _Simulation_attribute
Trajectory _Simulation_Class

47

Trajectory _Simulation_Composte_Data
| Trajectory _Simulation_Record
| Trajectory _Simulation_Sequence
| Trajectory _Simulation_Function
Trajectory _Simulation_Object
> Trajectory _Simulation_Guartity

4

Figure 9 TSONT Top Level Entities
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These top level entities of TSONT agree with those of SUMO (Suggested Upper
Merged Ontology). By reusing SUMO, we promote interoperability with other
domain ontologies. SUMO is an upper level ontology proposed by the Standard
Upper Ontology Working Group, an IEEE-sanctioned working group of
collaborators from the fields of engineering, philosophy, and information science.
The SUMO provides definitions for general-purpose terms and acts as a foundation

for more specific domain ontologies [79].

Trajectory_Simulation_Attribute
Trajectory_Simulation_Class

| 3
-
> Trajectory_Simulation_Function
> Trajectory_Simulation_Okject
v Trajectory _Simulation_CGuantity
| 3 Scalar_Quantity
v “ectoral_Guantity
Acceleration_Vector
Angular_Acceleration_ector

Angular_elocty_\Vector

4 Y TYY

Force_“ector

| 2 Aerodynamic_Force

¥

Gravitational_Force
| 3 Thrust_Force
Moment_‘ector
Orientation_ectar

Pasition_"ector

yYvyYYy

| 3 Welocity_Wector
» Trajectory_Simulation_Record

> Trajectory_Simulation_Sequence

Figure 10 Excerpt from TSONT Top Level

Trajectory Simulation Attribute can be regarded as the subclass of SUMO Attribute.
It is defined as qualities in trajectory simulation domain which we cannot or prefer
not to reify into subclasses of an object. Similarly, Trajectory Simulation Class is
regarded as a subclass of SUMO Class and Trajectory Simulation Function as a

subclass of SUMO Function. Trajectory Simulation Object, again a subclass of
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SUMO Object, corresponds roughly to the class of ordinary physical objects in
Trajectory Simulation domain. Trajectory Simulation Quantity is defined as any
specification of how many or how much of something in Trajectory Simulation

domain; it is a subclass of SUMO Quantity.

Trajectory Simulation Record and Trajectory Simulation Sequence are Trajectory
Simulation Composite Data types that can be used for developing trajectory
simulation codes. Although these data types are well established in programming,
we refer to Vienna Development Method Specification Language (VDM-SL), an
ISO Standard modeling language, for the sake of definiteness [80].

Figure 10 presents an excerpt from TSONT to show how these top level entities are
inherited down to concepts of trajectory simulation domain. Trajectory Simulation
can be a Scalar Quantity or a Vectoral Quantity. Acceleration Vector, Angular
Acceleration Vector, Angular Velocity Vector, Force Vector, Moment Vector,
Orientation Vector, Position Vector and Velocity Vector are all types of Vectoral
Quantity. Further, Aerodynamic Force, Gravitational Force and Thrust Force are all

derived from the Force Vector.

4.3 TSONT Hierarchies

4.3.1 Trajectory Simulation Objects

Trajectory Simulation Objects are the physical entities whose behavior is simulated.
SUMO has a parallel definition for objects which corresponds objects roughly to the

class of ordinary objects such as normal physical objects.

Munition, munition subsystems and weapon are said to be trajectory simulation
objects. Munition is defined as a complete device charged with explosives,
propellants, pyrotechnics, initiating composition, or nuclear, biological, or chemical

material for use in military operations, including demolitions [81]. Munition
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subsystems are the parts of munition which affects its simulation, like guidance
system, propellant or autopilot. Weapon is defined as the launch platform of
munition. The hierarchy of Trajectory Simulation Object is given below in Figure

11.

v Trajectory _Simulation_Olbject

v Munition
> Ammunition
v EBomk

v Dumb_Bomb
> Chemical
Cluster_Bomb
Depth_Bomb
Flare
Fuel_Air_Explossive
General_Purpose
Incendiary
ine
Penetrator
| Guided_Bomb
> Missile
| Munition_Subsystem
| Weapon

Figure 11 Trajectory Simulation Object Hierarchy

The munition classification is carried out in this domain analysis effort in order to
scope the target group of system whose flight will be simulated by the trajectory
simulations that will be developed by using the reuse infrastructure. There is no best
classification or the correct classification for munitions. There can be number of
ways to classify. There is no “one” classification in the literature that classifies all

types of munition. Different classifications are unified in TSONT.

Three different sources are used to capture the taxonomy. The first one is AOP 29,
“NATO Indirect Fire Ammunition Interchangeability” [82]. It is used for the

classification of ammunitions, particularly the projectiles. The second one is DoD
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101, “An Introduction to Military” which is published through Federation of
American Scientists web site [83]. DoD 101 is used for the classification of bombs.
The last one is DoD 4120.14-L, dated May, 12th, 2004 [84]. The Appendix 2 of this
document is “Approved Mission Design Series Designators and Symbols for
Guided Missiles, Rockets, Probed, Boosters, and Satellites”. This section is used for
the classification of the missiles. These three classifications with their examples are

presented in APPENDIX A. Besides, TSONT is given in APPENDIX N.

4.3.2 Trajectory Simulation Classes

v Trajectory_Simulation_Class
» Coordinate_System
L J Maclel
v Aerodynamics_Model
> Point_Mass_Aerodynamics_Model
| Rigid_Body_Aerodynamics_Model

v

Atmosphere_Mocdel
Autopilot_Model
CAS_Model
Dynamics_Model
Earth_Mocdel
Gravity_Model
Guidance_Model

YYVYY

Launcher_Maodel
Propellant_Model
Sensor_Model
Termination_Mocel
Terrain_Model
» Thruster_Model
> Parameter
> Solver
Trajectory_Simulation
> Trajectory_Simulation_Phase

Figure 12 Trajectory Simulation Class Hierarchy

Trajectory Simulation Classes are subsets of the SUMO class. They are the abstract

entities of trajectory simulation domain which are used to compute a trajectory.

46



This abstraction does not rely on any literature rather tried to capture the agreed
conceptualization of trajectory simulation problem among the co-workers who will
use the trajectory reuse infrastructure. The top level classes are Coordinate System,
Model, Parameter, Solver, Trajectory Simulation and Trajectory Simulation Phase

as given above in Figure 12.

Trajectory Simulation is defined as a tool to compute the flight path and other
parameters of munition as it leaves the launcher and engages to a target based on
mathematical model of munition, its subsystems and environment which consist of

equations that describe physical laws and logical sequences [4].

Trajectory Simulation Phase is used to define some number of generic trajectory
phases. These phases are defined considering the set of models they require to
compute the trajectory throughout any instance of them. TSONT phase hierarch is

depicted below in Figure 13.

"\' Thrusted_Ph ase._ _-=:C|—55"-'3—~:_.In_Launc her_F'hase. =

il —— —
e o) ) P e
{ Trajectory_Simulation_Fhase =*2—— Fropelled_Fhase ) o —
o b .‘:'—---""--i-s:_-a e "'_::rhrusted_and_Guided_F'hase.'
i —

¢ Guided Phase T

Figure 13 Trajectory Simulation Phase Hierarchy

Phase captures the basic models, such as Aerodynamics Model or Dynamics Model.

Thrusted Phase, Guided Phase and Propelled Phase capture the related models.

Trajectory Simulation Phase stands for trajectory simulation phases which are
neither guided nor propelled or thrusted. Trajectory Simulation Phase has an
Aerodynamics Model (to compute aerodynamic forces and in some cases

moments), Dynamics Model (to compute accelerations), Earth Model, Atmosphere
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Model and Gravity Model. Propelled Phase stands for the trajectory simulation
phases for the munitions which are propelled from a gun by a charge. So this phase
has a propellant model in addition to the standard phase definition. Guided Phase
stands as a class for guided munition trajectory phases. It extends the standard phase
definition by adding Autopilot Model, CAS Model, Guidance Model and Sensor
Model to calculate any guided trajectory segments. Thrusted Phase is added to
represent the trajectory segments in which the thruster is working. It adds thruster
model to standard phase definition. In Launcher Phase is a kind of Thrusted Phase

where launcher model is used to consider the affects of launcher on trajectory.

Some phases have hybrid characteristics. In a trajectory phase both guidance and
thruster might be active. E.g. Air-to-air missile simulation. In this case, that phase is
derived both from guided phase and thrusted phase definitions so it has all the

characteristics of both.

Model refers to logical or mathematical models of the actors that affect the flight of
the munition. They encapsulate the approximations and assumptions, both structural
and quantitative, about the affects of these actors to trajectory [1]. Aerodynamics
Model, Atmosphere Model, Autopilot Model, CAS Model, Dynamics Model, Earth
Model, Gravity Model, Guidance Model, Launcher Model, Propellant Model,
Sensor Model, Termination Model, Terrain Model and the Thruster Model are the

ones currently captured by TSONT.

Aerodynamics Model incorporates the effects of aerodynamic flow over munition
body on its flight. This model is for computing the aerodynamics forces and
moments acting on the munition. The classification is presented belove in Figure
14. The first level taxonomy divides the model into two as Point Mass
Aerodynamics Model and Rigid Body Aerodynamics Model. Point Mass
Aerodynamics Models only deal with the force but the Rigid Body Models also
compute moments. Then the taxonomy is detailed to capture different aerodynamic

models for different dynamic representations of munitions which affect the number
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of forces and moments computed. The last level in the taxonomy captures the

reference frames that these forces and moments are computed.

< Thres_DOF_Asradynamics_Madal
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— __ F —ss LU (i miEY Uede]
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- o o = o=
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Figure 14 Aerodynamics Model Hierarchy

Atmosphere Model is assigned to provide the required meteorological conditions to
the models which require them in order to incorporate the effects of atmospheric

conditions to the munitions flight.

( METGM
is- 3 B
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Figure 15 Atmosphere Model Hierarchy

TSONT captures four different representations of atmospheric conditions for

trajectory simulations. These include Grided Met Message (METGM) [85],
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Computer Met Message (METCM) [86], Ballistic Met Message (METB3) [87] and
standard atmosphere (ICAQO) [88].

Although there are few different standard atmosphere definitions, the definition of
International Civil Aviation Organisation which is widely used, is captured in
TSONT. Grided Met Message is a pretty new concept. Technology development
and validation efforts are still in progress. It provides atmosphere state at points in
three dimensional space at a time. Below is a figure presenting use of METGM in a

trajectory simulation.

Figure 16 Grided Met Message in a Trajectory Simulation [89]

Ballistic met messages and computer met message are coded messages that report
the atmospheric conditions in selected layers starting at the surface and extending to
an altitude that will normally include the maximum ordinate of trajectory. Ballistic
met message used in manual computations in which the weather conditions existing
in one layer or zone are weighted against the conditions in lower layers and reported
as percentages of standard. Computer met message on the other hand reports actual
average wind direction, wind speed, air temperature, and pressure in each layer. The
computer met message is designed to be used by the computer system in the
computation of the equations of motion. An example of computer met message

from Field Manual 6-40, is given below in Figure 17 [90].
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. COMPUTER METMESSAGE
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Figure 17 Computer Met Message [90]

Autopilot Model stands for mathematical models that transform the guidance
commands to control commands. Autopilots are actually control systems, which
produce control action commands for the missile to track the commands coming
from the guidance subsystem. They work as a translator between the guidance
system and the control actuation system. There are a number of different autopilot
implementations in literature [91]. Autopilot itself, receives instructions from the
guidance subsystem about the strategy for how to steer the munition to intercept,
and it translates these instructions into appropriate control of the munition [92].
Autopilot Model class of TSONT captures the basic functionality of mentioned
above. As different autopilot models will be simulated by using TSONT, the
Autopilot Model taxonomy of TSONT will be enhanced.

Control Actuation System Model represents the behavior of control actuation
system of munition. It models how the commanded fin deflections are converted to
actual fin deflections. Currently on a second order system model is captured in

TSONT as given below in Figure 18 [92].
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Figure 18 CAS Model Hierarchy

Dynamics Model employ the equations of motion, which describe the relationships
between the forces and moments acting on the munition and the resulting motion
[4]. Dynamics Models uses forces and moments to compute the dynamic model’s

state derivatives, namely velocity and acceleration of the munition.
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Figure 19 A Portion of Dynamics Model Hierarchy

Dynamics Models can be classified into two, as Point Mass and Rigid Body
Dynamics Models in the first place considering the abstraction of the munition in
the space. Besides these two, In Launcher Model represents a specific type of
Dynamics Model where launcher constraints apply on the munition. Variable Mass
Dynamics Models on the other hand stands for the dynamics models that thrust

forces are also in consideration. The taxonomy is then detailed further considering
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the degrees of freedom and the reference frame. Figure 19 depicts a portion of

Dynamics Model Hierarchy.
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Figure 20 Earth Models [89]

Earth Model represents the model of the Earth on which the munition flies. This
effects how the altitude of the munition in its flight is computed as given above in
Figure 20 [23]. Two fundamental approaches are captured in TSONT. Those Earth
Models are Flat Earth Model and Round Earth Model. Earth Model Hierarchy is

presented below in Figure 21.

_ ( Flat_Earth_Wadel
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Figure 21 Earth Model Hierarchy

During the engagement process of a guided munition, number sensors measures one
or more parameters of the path of the missile relative to the target. The logical

process to determine the required flight path corrections based on the sensor
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measurements, is called a guidance law. The objective of a guidance law is to cause
the munition to come as close as possible to the target. Guidance laws usually can
be expressed in mathematical terms and are implemented through a combination of
electrical circuits and mechanical control functions [4]. Guidance Models model the
guidance laws of munitions which compute commanded accelerations using the
relative target and munition motion. Rather than all guidance methods in the
literature, TSONT captures the Guidance Models that have been experienced by
target reuse group. Those are Proportional Navigation Guidance Model, Polynomial

Guidance Model and Command Line of Sight Guidance Model.
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Figure 22 Guidance Model Hierarchy

Figure 22 presents the Guidance Model Hierarchy captured in TSONT. Proportional
navigation guidance law computes acceleration commands, perpendicular to the
munition and the target line of sight, which are proportional to line of sight rate and
closing velocity [15]. Command Line of Sight (CLOS) guidance attempts to keep
the missile within a guidance beam transmitted from the ground [4]. Polynomial
guidance on the other hand, is based on generating the necessary commands on
either the rates of the flight path angles or the normal acceleration components that
keep the missile on a polynomial trajectory. The polynomial definition of the

trajectory can be second or third order [92].

Launcher Model stands to represent the interactions of the munition and the

launcher such as tip off rates and friction [23, 92].

54



For the projectiles that are launched by using a propellant charge, the muzzle
velocity depends on factors like propellant type and propellant temperature.
Propellant Models computes the muzzle velocity using the propellant properties

[89].

In order to guide a munition for a successful intercept a target, it is vital to get the
correct information about the motion of the target and munition itself during the
flight. That information is provided by various sensors, such as inertial sensors,
seekers, radar altimeters and GPS [92, 94]. The Sensor Model of TSONT includes

the models of these sensors.

Termination Model is used to identify the end of either a phase or the whole
trajectory. This logical model uses the phase termination conditions or the fuze data

of the munition to determine the end of a trajectory phase or the trajectory itself.

Terrain Model represents the terrain the munition flies over. This model is

responsible to provide the height of the terrain from sea level.

Thruster_Model
L4 Solid_Rocket_Motor_Model
Solid_Rocket_Motor_Model_for _Point_Mass
v Solid_Rocket_Motor_Model_for _Rigid_Body
v Six_DOF_Rocket_Motor_Model
v Body_Fixed Six_DOF_Rocket_Motor_Mocdel
Center_Burning_Motor_Model
End_Burning_Maotor_Model
Airbreather _Mocdel
Liguid_Rocket_Motor _Moclel

Figure 23 Thruster Model Hierarchy

Above is the Thruster Model Hierarchy Several types of thrusters are used to propel
the munition. Thruster Models are responsible to compute the thrust force and

moment, and the mass of the thruster during the flight of the munition. Presently,
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solid propellant rocket motors, liquid propellant rocket motors and airbreathers are
captured in TSONT. Based on the experience gained in the previous trajectory

simulation projects, Solid Rocket Motors are further detailed in the hierarchy..

Solid Rocket Motor Models compute the thrust force depending on the design of the
propellant which results in a specific impulse and the instantaneous ambient
atmospheric pressure acting on an area equivalent to the exit area of the rocket
nozzle. Liquid Rocket Motor models are essentially the same as Solid Rocket Motor
Models unless the potential for throttle control is exploited in the design of the
liquid system. Airbreather Models compute performance as a function of throttle

control setting, Mach number, and ambient atmospheric properties [4].
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Figure 24 Solver Hierarchy

Above, Figure 24 depicts the solver hierarchy in TSONT. The differential equations
frequently encountered in trajectory simulations cannot be solved by classical
analytical methods. A large number of numerical integration methods have been
developed to solve these equations using computers. Numeric solvers are classified
as one-step and multi-step methods in TSONT. A one-step solver uses the value of
the dependent variable only at the current integration step to compute the value at

the succeeding step. A multi-step solver on the other hand uses values of the
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dependent variable at the current integration step and also at one or more preceding
steps. One-step difference equations are self-starting, and multi step processes
depend on a self-starting method to calculate the first few integration intervals.
Euler’s and the Runge-Kutta solvers are examples of one step solvers Milne’s and

the Adams solvers are examples of multi-step solvers [4].

Munition and its subsystems like motor, fuze or sensor, are represented by a set of
parameters in the trajectory simulations. Parameter classes refer to the group of
classes responsible to provide simulation parameters to the Model classes that

simulate the behavior.

Aerodynamics and Physicals are the parameters of the munition itself. Subsystem
parameters, Autopilot Data, CAS Data, Charge Data, Fuze Data, Guidance Data,
Sensor Data, Solid Rocket Motor Data and Weapon Data are also captured in
TSONT. This parameter class hierarchy is further detailed considering the set of
data provided.

Parameter
v Aerodynamics
v Poirt_Mass_Aerodynamics
Modified_Point_Mass_Aerodynamics
b Rigid_Body _Aerodynamics
Five_DOF_Aerodynamics
Six_DOF_Aerodynamics
Three_DOF_Pitch_~Aerodynamics
Three_DOF _Yaw _Aerodynamics
Autopilot_Data
| CAS Data
Charge_Data
Fuze_Data
> Guidance_Data
| Physicals
Sensor_Data
| Solid_Rocket_Motor_Data
| & Weapon Data

Figure 25 Parameter Hierarchy
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The hierarchy of Parameter classes is presented above in Figure 25.Aerodynamics
class for example is classified into Point Mass Aerodynamics and Rigid Body
Aerodynamics. Then Rigid Body Aerodynamics class is further classified to classes

like Five DOF Aerodynamics and Modified Point Mass Aerodynamics.

Vectors in three-dimensional space are widely used in trajectory simulation to
represent factors such as forces, accelerations, velocities, positions, moments,
angular accelerations, and angular rates. A vector has a meaning when it is
described relative to some frame of reference. Right-handed, orthogonal coordinate
systems are commonly used as frames of reference. A vector is described by its
three components on the axes of a coordinate system. A number of different
coordinate systems maybe used in a trajectory simulation. Coordinate systems are
characterized by the positions of their origins, their angular orientations, and their
motions relative to inertial space or relative to other specified systems. A vector can
then be described by its coordinates in any of the coordinate systems [4]. Number
coordinate systems are captured in TSONT, such as Body Coordinate System and
Earth Coordinate System. The Coordinate System hierarchy is depicted below in
Figure 26.
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Figure 26 Coordinate System Hierarchy
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4.3.3 Trajectory Simulation Functions

Trajectory _Simulation_Function
Check_Termination
Compute_Actual_Fin_Deflections
Compute_Aerodynamic_Forces
Compute_Aerodynamic_Moments

Compute_Aerodynamics

YYYYY

Compute_Atmosphere

Compute_Commanded_Accelerations

Compute_Commanded_Fin_Deflections

Compute_Friction_Force

| Compute_Gravitational_Force

| Compute_Location
Compute_Phase_Trajectory

| Compute_Thrust_Force

| Compute_Thrust_Mament
Compute_Trajectary

> Get_CAS_Data
Get_Charge_Data
Get_Guidance_Data
Get_MY

| Get_Physicals

| Get_Solid_Rocket_Motor_Data
Get_Solicd_Rocket_Motor_Mass_Flow
Get_Temination_Conditions

| Get_Weapon_Data
Initialize_Phase
Initialize _Simulation

| Integrate_Step

v

Transform_To
| Update_State_and_Derivatives

Figure 27 Trajectory Simulation Function Hierarchy

Trajectory Simulation Functions are a subset of SUMO function. Trajectory
Simulation Function hierarchy captures the functionalities served by classes
underneath the Trajectory Simulation Class hierarchy presented in the previous

section. The list of functions captured in TSONT is given above in Figure 27.

Forces and moments acting on the munition during its flight are computed by using

functions Compute Aerodynamics Force, Compute Aerodynamics Moment,
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Compute Friction Force, Compute Gravitational Force, Compute Thrust Force and
Compute Thrust Moment. Compute Aerodynamics Force, Compute Aerodynamics
Moment are served by Aerodynamics Model, Compute Friction Force is served by
Launcher Model, Compute Gravitational Force is served by Gravity Model and
Compute Thrust Force and Compute Thrust Moment are served by Thruster Model.
Some of these functions also have their own hierarchy. Compute Aerodynamic
Forces functions which use aerodynamic coefficients, atmosphere data, physical
properties of the munition and the dynamic model state to compute the aerodynamic
forces are further detailed to capture different types of implementations of these
functions as given below in Figure 28. They are classified depending on the degrees
of freedom of the dynamics model that will use this forces and the reference frame

in which the forces are defined.

Compute_Aerodynamic_Forces
v Compute_Point_Mass_»~Aerodynamic_Forces
Compute_Three_DOF_Aerodynamic_Forces
v Compute_Rigid_Body_Aerodynanic_Forces
v Compute_Five_DOF _Aerocdynamic_Forces
Compute_Five_DOF _Aerodynamic_Forces_in_Body_Fixed_Coordinate_System
Compute_Five_DOF_Aerodynamic_Forces_in_Earth_Fixed_Coordinate_System
v Compute_Six_DOF_Aerodynamic_Forces
Compute_Six_DOF _Aerodynamic_Forces_in_Body_Fixed_Coordinate_System
Compute_Six_DOF_Aerodynamic_Forces_in_Earth_Fixed_Coordinate_System

Figure 28 Compute Aerodynamic Forces Hierarchy

Compute Commanded Acceleration is the functionality provided by Guidance
Model. It computes the commanded acceleration of the munition using the guidance
law. Then Compute Commanded Fin Deflections functionality that is served by
Autopilot Model uses the commanded accelerations to compute the commanded fin
deflections. CAS Model serves Compute Actual Fin Deflections functionality. As

given below in Figure 29, TSONT has a sole function under this hierarchy for four
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canard systems. The aim of this function is to compute actual fin deflections using

commanded fin deflections.

".'30 mpute_Actual_Fin_Deflecti nns "'I—E"-a—-_ﬁm:n pute_Actual_Fin_Deflections for_Four_Canard_C nn.tr-_u:l'_'_.

Figure 29 Compute Actual Fin Deflections Hierarchy

Compute Atmosphere function is served by Atmosphere Model. It is used to
provide atmospheric properties at any instant of flight depending on the height.
These functions which are given below in Figure 30, are classified depending on the

format that they read the metrological definition.
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Figure 30 Compute Atmosphere Hierarchy

Check Termination function is served by Termination model. It computes the
termination status using State information and a Termination Record which defines

the termination conditions.
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Compute_Aerodynamics

kJ Compute_Aerodynamics_Point_Mass
Compute_Maodified_Point_Mass_Aerodynamics

k4 Compute_Aerodynamics_Rigid_Body
Compute_Five DOF_Aerodynamics
Compute_Six_ DOF_Aerodynamics
Compute_Three_DOF_Pitch_Aerodynamics
Compute_Three_DOF_Yaw _Aerodynamics

Figure 31 Compute Aerodynamics Hierarchy

There are number of functions in the hierarchy that are served by Parameter classes
to provide the simulation parameters. Compute Aerodynamics, Get Physicals, Get
Solid Rocket Motor Data are some of them. Compute Aerodynamics, as an
example, refers to the functionality provided by Aerodynamics class. It is
responsible for computing the aerodynamic coefficients using the flight conditions.

Its hierarchy is depicted above in Figure 31.

Initialize Phase and Initialize Simulation functions refers to the functionalities
served by Phase and Simulation classes to accomplish series of tasks to initialize a
trajectory simulation or a phase of a trajectory simulation like setting the initial
state. Likewise Compute Trajectory functionality of Trajectory Simulation class is
responsible to compute the whole trajectory and Compute Phase Trajectory
functionality of any Phase class is responsible to compute the trajectory of a

particular phase.

Below, Figure 32 is the hierarchy of Integrate Step functions captured in TSONT.
Those functions are provided by Solver classes to integrate the differential equation
to compute the state of the simulation in the next time step. These functions require
state derivatives to be computed by Update State and Derivative functions whose

hierarchy is given below in Figure 33.

62



[ \.-Integrate_step_Euler ]
- _
’ .Integrate_ste p_RKEI_f )

frdini— -Integrate_Step_HK‘fl'
-"iﬁ--l___ oo

TR e

™, “~iga -'.'.Integrate_Step_HKﬁ

":..Integrate_ste p_RKF..f )

e

§ :Integrate_step_RKGK.:'

Figure 32 Integrate Step Hierarchy

Update_State_and_Derivatives
v Update_CAS_MWodel_State_And_Derivatives
Update_Second_Crder_CAS_Model_State_and_Derivaties
v Update_Dynamics_Model_State_and_Derivatives
v Update_In_Launcher_Dynamics_Model_State_ancd_Derivatives
Update_Body_Fixed_In_Launcher_Dynamics_Model_State_and_Derivatives
b Update_Point_Mass_Dynamics_Model_State_and_Derivatives
v Update_Dynamics_Model_State_and_Derivatives_3D0F
Update_Dynamics_Model_State_and_Derivatives _3DOF_for_Thrusted
v Update_Rigic_Body_Dynamics_State_and_Derivatives
v Update_Six_DOF_Dynamics_Model_State_and_Derivatives
v Update_Body _Fixed_Six_DOF_Dynamics_Model_State_and_Derivatives
Update_Body_Fixed_In_Launcher_Dynamics_Model_State_and_Derivatives
Update_Body_Fixed_Six_DOF_Dynamics_Model_State_and_Derivatives_For_Thrusted
v Update_‘Variable_Mass_Dynamics_Model_State_and_Derivatives
v Update _Poirt_Mass_Thrusted_Dynamics_Model_State_and_Derivatives
Update_Dynamics_Model_State_and_Derivatives _3DOF _for_Thrusted
v Update_Rigid_Body_Thrusted_Dynamics_Model_State_and_Derivatives
Update_Body_Fixed_In_Launcher_Dynamics_Meodel_State_and_Derivatives
Update_Body _Fixed_Six_DOF_Dynamics_Mocel_State_and_Derivatives_For_Thrusted
v Update_Motor_State_and_Derivatives
Update_Center_Burning_Meotor_State_and_Derivatives
Update_End_Burning_Mator_State_and_Derivatives
v Update_Phase_State_and_Derivatives
Update_Guided_Phase_State_and_Derivatives
Update_Propelled_Phase_State_and_Derivatives
v Update_Thrusted_Phase_State_and_Derivatives
Update_In_Lancher_Phase_State_and_Derivatives

Figure 33 Update State and Derivatives Hierarchy
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4.3.4 Trajectory Simulation Quantities
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Figure 34 A Portion of Scalar Quantity Hierarchy
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OWL classes under the Trajectory Simulation Quantity construct a subset of SUMO

quantity. They are used to specify the quantities of trajectory simulation domain.

Trajectory Simulation Quantity is divided into two subsets, namely Scalar
Quantities and Vectoral Quantities. Scalar Quantities are then divided to subgroups
using the classification given in The International System of Units [95]. Some of
scalar quantities captured in TSONT are Density, Mass and Length. A portion of
Scalar Quantity hierarchy is depicted above in Figure 34.

Vectoral quantities in trajectory simulation domain are grouped as Acceleration
Vector, Angular Acceleration Vector, Velocity Vector, Angular Velocity Vector,
Force Vector, Moment Vector, Position Vector and Orientation Vector. Then these
groups are detailed to capture the quantities underneath them. The hierarchy of the

Force Vector is presented below in Figure 35, as an example.
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4.3.5 Trajectory Simulation Attributes

Trajectory Simulation Attributes are a subset of SUMO attribute. Attribute is
defined as qualities which we cannot or choose not to reify into subclasses of Object
in SUMO [79]. Trajectory Simulation Attribute defines a set of qualities of
Trajectory Simulation Classes and Trajectory Simulation Objects like the

termination status of a trajectory or the ellipsoid of a location.

4.3.6 Trajectory Simulation Composite Data

Composite types are types whose values are composed or structured from simpler
values [96]. They are used to group some data that forms a coherent construct. In
developing trajectory simulation software, composite data types are widely used.
TSONT tries to capture the composite data types that are used in the target reuse
community. Trajectory Simulation Record and Trajectory Simulation Sequence are
base Trajectory Simulation Composite Data types. Although these data types are
well established in programming, Vienna Development Method Specification
Language (VDM-SL), an ISO Standard modeling language, is referred for the sake
of definiteness [80].

VDM-SL defines record as a construct, similar to the record or struct in
programming languages that is used to model values made up of several
components [80]. A portion of Trajectory Simulation Record is depicted below in

Figure 36.

Sequence is defined as ordered collection of values in VDM-SL [80]. We present
Tuple hierarch captured in TSONT, as a part of Trajectory Simulation Sequence

hierarchy, below in Figure 37.
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4.4 TSONT Classes

After presenting the taxonomy of trajectory simulation concepts in the previous
section, this section will discuss how these concepts are defined in TSONT. The
relations among these concepts will also be given. This section will start with the
definition of a trajectory simulation, continue with classes, services, and conclude

with quantities and composite data. The relations of the concepts captured in

TSONT and the structure of them will be discussed in this sequence.
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Figure 38 Trajectory Simulation Class
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The structure of TSONT is devised to render concept to implementation mapping
amenable to reuse by trajectory simulation developers. Trajectory simulations,
which can be composed of multiple phases, are to be executed to calculate the
trajectories of munitions. One may need to initialize a trajectory simulation by
setting the initial conditions before running it. These facts are reflected in TSONT
as depicted in Figure 38. Trajectory Simulation is defined by hasMunition,
hasPhase, serveslnitializeSimulation and servesComputeTrajectory properties.

These properties formalize the definition of the trajectory simulation.
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Figure 39 Thrusted Phase

Trajectory simulation phases are defined as the segments of a munition flight whose
simulation can be performed by using a distinct set of models solved by a numeric
solver. For example, computing the trajectory during boost phase and after motor is

off, which is called free flight, requires a particular sets of models. Figure 39
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presents the definition of Thrusted Phase in TSONT. This definition specifies the
models that will be used to compute a segment of a trajectory where a type of a
thruster is producing thrust. It also says that, one may need to initialize a phase
before computing the phase trajectory. In addition, it states that each phase will
require some kind of a solver to compute the numerical solutions of differential
equations. The definitions of some of the other phases will be given in APPENDIX
B with some other TSONT class examples. For a complete TSONT, refer to
APPENDIX N.
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Figure 40 Update Thrusted Phase State and Derivatives

Update Thrusted Phase State and Derivatives is one of two functionalities that are

provided by a Thrusted Phase. It is a function that uses phase state and computes

70



state derivatives. This function uses number of functions from either parameter
classes or models that were listed above to compute the state derivatives. For
example it uses of one of Get Physicals function of Physicals classes to get the
physical properties of the munition like reference mass or it uses one of Update
Dynamics Models State and Derivatives function of Dynamics Model classes to get

the Dynamics Model State Derivatives.

TSONT captures these dependencies among the functions on trajectory simulation
domain by means of the dependsOn property acting on all functions. As an
example, the definition of Update Thrusted Phase State and Derivatives is presented

above in Figure 40.

Having discussed some functions and their dependencies, we will proceed with
presenting models. Among Trajectory Simulation Models, the Body Fixed Six DOF
Dynamics Model from Dynamics Model hierarchy will be discussed in detail to
present our approach to the development of TSONT. Four different properties act
on this class as restrictions. It should have a coordinate system, which is Body
Coordinate System as its name indicates. It should have states and state derivatives.
These states and state derivatives are parts of Phase State and State Derivatives
which depicts the instantaneous system behavior. Its state is called Body Fixed Six
DOF Dynamics Model State and its state derivatives are called Body Fixed Six
DOF Dynamics Model State Derivatives. And the last restriction that applies is its
service to the simulation. It means the way it is used in the execution of trajectory
simulation. Dynamics Models are used to compute systems dynamics state
derivatives by using the state. Then as the time passes numeric solver calculates the
next time step’s state by using these state derivatives. So, Body Fixed Six DOF
Dynamics Model updates body fixed six DOF dynamics model state and
derivatives. Figure 41 is the definition of Body Fixed Six DOF Dynamics Model in
TSONT.
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&) Body_Fixed_Six_DOF_Dynamics_Model (instance of owl:Class) B & |EI|5|
CLASS EDITOR =R T

For Class: e Body_Fixed_Six_DOF_Dynamics_Model  (instance of owl.Class)

rNarne rSHmeAs rDiffemntme' | DAnnotations Eﬁ Q- E
|Bodv_Fixed_Six_DOF_Dynamics_Model |Q Property Valug | Lang
rdfs:comment £
[ ]
Il Properties and Restrictions ﬁ ﬁ !: S ﬁ %

v [Il]hasCoordinateS\rstem (allvaluesFrom Body_Coordinate_System)
@ Body_Coordinate_System
v [I.]hasState (allValuesFrom Body _Fixed_Six_DOF_Dynamics_Model_State, alaluesFrom Dynamics_Mocel_State)
ﬂ Body_Fixed_Six_DOF_Dynamics_Model_State
Dynamics_Model_State [fram Dynamics_Model]
v [Il]hasStateDeri\rati\res (alaluesFrom Body_Fixed_Six_DOF_Dynamics_Model_State_Derivatives, allValuesFrom Dynamics_Model_State_Derivatives)
@ Body_Fixed_Six_DOF_Dynamics_Model_State_Derivatives
Dynamics_Model_State_Derivatives [fram Dynamics_Mocel]
A4 [Il]ser\resUpdateD\rnamicModeIStateandDeri\rati\res (allvaluesFrom Update_Body_Fixed_Six_DOF_Dynamics_Model_State_and_Derivatives, allValuesFrom
@ Update_Body_Fixed_Six_DOF_Dynamics_Model_State_and_Derivatives
Update_Rigid_Body_Dynamics_State_and_Derivatives [from Rigid_Body_Dynamics_Model]

(] [»
ElDeﬁning Classes ﬁ Q: % .. Disjoints ﬁ Q: ‘a ‘; Q
| [ |
i‘l & [} Logic “iew: - Properties Wiew

Figure 41 Body Fixed Six DOF Dynamics Model

If we look at the Body Fixed Six DOF Dynamics Model State, it is defined as a kind

of Trajectory Simulation Record composed of:
e Three dimensional translational velocity in body coordinate system
e Angular rates in body coordinate system
e Three dimensional position in earth coordinate system
e Euler angles

TSONT definition of Body Fixed Six DOF Dynamics Model State is presented

below in Figure 42.
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B Body_Fired_Six_DDF_Dynamics_Model_State (instance of owl:Class)

CLASS EDITOR
For Class: e Body_Fixed_Six_DOF_Dynamics_Moclel_State

rName r%%w [J Annotations |j tp [
|Bodly_Fixed_Six_DOF_Dynamics_Model_State | & Property Value | Lang

O

(instance of owl:.Class)

rdfs:comment

I Properties and Restrictions ﬁ ﬁ !: S ﬁ ‘

b J [I.] RecordElement  (multiple Trajectory_Simulation_Attribute U Trajectory _Simulation_Class L Trajectory_Sir
9 Translational_\elocity_in_Body_Coordinate_System
B Angular_Rates_in_Body_Coordinate_System

9 Three_Dimensional_Posttion

ED Euler_Angles

[»

@ @ & | @Poisions & @ &3 3 @
| [ |
() Logic Yiew @

4]

El Defining Classes

L

Figure 42 Body Fixed Six DOF Dynamics Model State

Angular_Rates_in_Body_Coordinate_System (instance of owkClass)

CLASS EDITOR e [F T
For Class: e Angular_Rates_in_Body_Ceoordinate_System  (instance of owl.Class)
3 5 e - = +

r”ﬂ"'e rm;rnm{m&] DAnnutatiuns |j QP .

|Angular_Hates_in_Body_Coordinate_S\rstem |Q Property Walue | Lang

rdfs:comment ES

[ |

Wl wm § @

I Properties and Restrictions
(allvaluesFrom Angular_Velocty _Column_atrix)

¥ [ hasColumnhatrix
Angular_Velocity _Column_Matrix
v [[l]hasCoordinateSystem (allValuesFrom Body_Coordinate_System)

@) Body_Coordinate_System

[frem Angular_Velocity _Vector]

= |Defining Classes

b B

& & ‘l ‘I..Disiuims & @ &2 o3 Ql

(] Logic View - Properties Wiew

Figure 43 Angular Rates in Body Coordinate System

73



These records are vectors and Vectoral Quantities also have a definition in TSONT.
For example Angular Rates in Body Coordinate System is defined in TSONT as

depicted above in Figure 43.

As other vectoral quantities, Angular Rates in Body Coordinate System is defined
with its coordinate system and its column matrix. Its coordinate system is Body
Coordinate System and its column matrix is called Angular Velocity Column

Matrix which has a definition in TSONT as given in Figure 44.

& Angular_¥elocity_Column_Matrix {instance of owl:Class})
CLASS EDITOR

For Class: e Angular_Velocity_Column_Matrix  (instance of owl: Class)

f Mame |/ SameAs r DifferentFrom D Annotations
|AnguIar_VeIocity_Cqumn_Matrix | (] Property
rdfs:comment L
[ ]
I Properties and Restrictions i: i !: L ﬁ. %

v [II] SequanceOf (alValuesFrom Angular_‘elocity, cardinality 3)
) Angular_Velocity

3 [from Tuple]'
Eneﬁning Classes ﬁ Q: % .. Disjoints @:} Q: &% "3. %
| ||l |
- ) Logic Wiewe @ Properties View

Figure 44 Angular Velocity Column Matrix

Angular Velocity Column Matrix is a type of Tuple. It is a sequence of a kind of

Scalar Quantity which is Angular Velocity.

Body Coordinate System is one of the four Coordinate Systems mentioned in
TSONT. As other coordinate systems, Body Coordinate System is also defined by

its orientation with respect to inertial reference frame of the trajectory simulation. It
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also serves a functionality to transform any vector defined in any coordinate system

to itself. Below is the representation of Body Coordinate System in TSONT.

® Body_roordinate_System (instance of owl:Class)

For Class: e Body_Ceordinate_System  (instance of owl:Class)

rName rSEmeAs |/Diff=r=r'rtFrurn | DAnnotations |j B’j’ qb
|Bodv_Coordinate_System |G Froperty Walue | Lang
rdfs:comment &

[ ]

I Properties and Restrictions i: i q: R ﬁ' %

v [Il] servesTransformTo  (alaluesFrom Transform_To_Body _Coordinate_System)
@ Transform_To_Body_Coordinate_System

[II] hasinertialReferanceFrameEulerAngles  (single)

EDeﬁning Classes ﬁ Q.‘-' % a9 Digjoints 0} Q: ? ‘l- %

&] & (o] Logic iew iC) Properties View

Figure 45 Body Coordinate System

If we have a look at Body Fixed Six DOF Dynamics Model State Derivatives which

is another property of Body Fixed Six DOF Dynamics Model, we will figure out

that it is composed of following items.

Three dimensional translational acceleration in body coordinate system,
Angular acceleration in body coordinate system,

Euler angle rates

Three dimensional translational velocity in earth coordinate system.

Dynamics Models are used to compute the dynamics of the munition at any time

during flight. The implementation of this expression in a continuous simulation

domain is to compute the state derivatives which will then used to compute the state
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of the next time step. So, dynamics model computes the angular and translational
accelerations using the instantaneous forces and moments. Then this acceleration is
integrated to compute the position and the orientation of the munition. Dynamics
Models serves a functionality called Update Dynamics Model State and Derivatives
to accomplish this task. As one will Body Fixed Six DOF Dynamics Model that we
keep on discussing serves Update Body Fixed Six DOF Dynamics Model State and

Derivatives functionality in this respect.

date_Body_Fixed_Six_DOF_Dynamics_Model_State_and_Derivatives (instance of owl:Class)

CL R
For Class: e Update_Body_Fixed_Six_DOF_Dynamics_Model_State_and_Derivatives  (instance of owl Class)

rName rSEmeAI rDifferentFrum DAnnotations |j @ Q}_,
|Update_Body_Fixed_Six_DOF_Dynalnics_Model_State_and_Deri\rati\res |U Property Walue | Lang
rdfs:comment &

[ ]

Wl mm &g

Hl Properties and Restrictions

v [-]Implementatinn (muttiple xsctanyURl)  (hasValue "Update_Body_Fixed_Six_DOF_Dynamic_Model_State_and_Derivatives daveml")
@ "Update Body_Fixed_Six_DOF_Dynamic_Model_State_and_Derivatives daveml"
v [Il] inAerodynamicForce  (allValuesFrom Body_Fixed_Aerodynamic_Force)
ﬁ Body_Fixed_Aerodynamic_Force
v [Il]inAerodynamicMoment {allValuesFrom Aerodynamic_Moment_in_Body _Coordinate_System)
&3 Aerodynamic_Moment_in_Body_Coordinate_System
¥ (M)inDynamicsModelState  (allValuesFrom Body_Fixed_Six_DOF_Dynamics_Modlel_State)
@ Body_Fixed_Six_DOF_Dynamics_Model_State
v [I.]inGrﬁ\f'rtationﬁchrce (&l aluesFrom Gravitational_Force_in_Body_Coordinate_System)
@ Gravitational_Force_in_Body_Coordinate_System
v [Il] inPhysicalsRecord  (allValuesFrom Six_DOF_Physicals_Record)
Six_DOF_Physicals_Record [from Updlate_Six_DOF_Dynamics_Model_State_and_Derivatives]
v [Il] outDynamicsModelStateDerivatives  (allValuesFrom Six_DOF_Dynamics_Model_State_Derivatives)
@ Six_DOF_Dynamics_Model_State_Derivatives
[Il] dependsOn  (muttiple Trajectory_Simulation_Function)

EDeﬁning Classes ﬁ % % ap Disjoints @, % ‘% & %
|| ]

ﬁ & ) Logic Wiew @) Properties View

Figure 46 Update Body Fixed 6 DOF Dynamics Model State and Derivatives

TSONT models all functions in the same manner. It captures the implementation
details, in other words the algorithms of the functions using Implementation
property. Implementation is a data type property which points to a universal
resource identifier to refer a DAVE-ML file. Then the restrictions starting with “in”

refer to the input parameters of the function and those starting with “out” refer to
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the outputs of the process carried out by this functionality. The dependsOn
restriction captures the dependencies among functions in trajectory simulation
domain. One will figure out that this schema also applies to Update Body Fixed
Dynamics Model State and Derivatives function whose definition is presented

above in Figure 46.

For the implementation details of Update Body Fixed Dynamics Model State and
Derivatives, TSONT refers to a DAVE-ML file. As an example, consider the
mathematical model in Update Body Fixed Dynamics Model State and Derivatives

for one of the translational accelerations in body coordinate system:

F
Uu=——gw+vr Eq. 1
m

While it should be noted that the full contents of the DAVE-ML file for Update
Body Fixed Dynamics Model State and Derivatives is given in APPENDIX C, in

this file the above equation is represented as:

<variableDef name="udot" varID="udot" units="m/s2">
<description> Body fixed tranlational acceleration in X </description>
<calculation>
<math xmlns="http:/ /www.w3.org/1998/Math/MathML'>
<apply>
<eq/>
<ci>udot</ci>
<apply>
<plus/>
<apply>
<times/>
<apply>
<plus/>
<ci>FAX</ci>
<ci>FGX</ci>
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</apply>
<apply>
<power/>
<ci>mass</ci>
<cn type='integer'>-1</cn>
</apply>
</apply>
<apply>
<times/>
<ci>r</ci>
<ci»v</ci>
</apply>
<apply>
<times/>
<cn type='integer'>-1</cn>
<apply>
<times/>
<ci>q</ci>
<ci>w</ci>
</apply>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>

</variableDef>

More DAVE-ML samples are given in APPENDIX N.

Parameters classes, as mentioned earlier, are used to supply the required properties
of the simulated system to the related models. The way the Parameter classes are

modeled and how they relate with Model classes will be presented over an example.
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Compute_Six_DOF_Aerodynamic_Forces_in_Body_Fixed_Coordinate_System (i

For Class: 9 Compute_Six_DOF_Aerodynamic_Forces_in_Body_Fixed_Coordinate_System  (instance of owl:Class)

rName rSEmeAs r[)ifferentFrum DAnnotaﬁo“s @ @ ﬁ
|Compute_Six_DOF_Aerodynamic_Forces_in_Elody_Fixed_|Q Property Value | Lang
=1 rdfs:comment This function is for computi..
rdfs:comment &

This function is for computing the body fixed asrodynamic
forces for & DOF trajectory simulations.|

M Properties and Restrictions ﬁ ﬁ q: ey ﬁ %
b 4 [-]Implementation (multiple xsckanyURI)  (has/alue "hitp:iphdCompute_Six_DOF_Aerodynamic_Forces_wrt_Body_Fixed _Coor]
@ "hitp: iphdiCompute_Six_DOF_Aerodynamic_Forces_wrt_Body_Fixed_Coordinate_System.davem!"
b 4 [Il] inAerodynamicsRecord  (allaluesFrom Six_DOF_Aerodynamics_Record)
Six_DOF_Aerodynamics_Record [from Compute_Six_DOF_Aerodynamic_Forces]

v [Il]inAtmosphereRecord (allValuesFrom Atmosphere_Record)
Atmosphere_Record [from Compute_Aerodynamic_Forces]
hd [Il]inDynamicsModeIState (allValuesFrom Body _Fixed_Six_DOF_Dynamics_Model_State, allValuesFrom Dynamics_Model_State)
@ Body_Fixed_Six_DOF_Dynamics_Model_State
Dynamics_Model_State [from Compute_Aerodynamic_Forces]
¥ [m]inPhysicalsRecord  (all\alugsFrom Six_DOF_Physicals_Record)
Six_DOF_Physicals_Record [from Compute_Six_DOF_Aerodynamic_Forces]
b4 [Il]outAerdynamicForce {allValuesFrom Body _Fixed_Aerodynamic_Force)
@ Body_Fixed_Aerodynamic_Force
[Il] dependsOn  (muttiple Trajectory_Simulation_Function)

q] | [»
EDeﬁning Classes @:’ Q}: % @D pisjoints @ % ‘& @ %
[ 1[I |
é_bl & g Logic Wi - Propetties iew

Figure 47 Compute Six DOF Aerodynamics Forces in Body Fixed Coordinate
System

Aerodynamics classes are responsible for computing the aerodynamic coefficients
which will be used then by Aerodynamics Models to compute the aerodynamic
forces and moments. Aerodynamics Force required above by Update Body Fixed
Dynamics Model State and Derivatives functionality is computed by Body Fixed
Six DOF Aerodynamics Model. It serves a functionality called Compute Six DOF
Aerodynamics in Fixed Coordinate System which requires Six DOF Aerodynamics
Record as an input. The definition of Compute Six DOF Aerodynamics Forces in
Body Fixed Coordinate System is given above in Figure 47. Six DOF
Aerodynamics Record is provided by Six DOF Aerodynamics which is a Parameter

class. Six DOF Aerodynamics serves a functionality called Compute Six DOF
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Aerodynamics. The definition of Compute Six DOF Aerodynamics is depicted

below in Figure 48.

8 compute_six_DOF_Aerodynamics (instance of owlClass) i ]
CLASS EDITOR Sa BT

For Class: e Compute_Six_DOF_Aerodynamics  (instance of owl Class)

(Name rSameAs rDifferemFrurn | DAnnotations |j Q, ﬁ
|Cnmpute_Six_DClF_Aerodvnamics |G Property | Value | Lang
rdfs:comment ES
[ |
Il Properties and Restrictions i; i % ek ﬁ %
v [[l] indctualControlSurfacebeflections  (alValuesFrom Actual_Control_Surface_Deflections)
Actual_Cortrol_Surface_Deflections [from Compute_Aerodynamics_Rigid_Body]

v [[I] inAtmosphereRecord  (allValuesFrom Atmosphere_Record)
Atmosphere_Record [from Compute_Aesrodynamics]
v [[I] inDynamicsModelState  (allValuesFrom Six_DOF_Dynamics_Model_State)
) Six_DOF_Dynamics_Model_State
v [[l] outAerodynamicsRecord  (allValuesFrom Six_DOF_Aerodynamics_Record)
ﬂ Six_DOF_Aerodynamics_Record
[[I] dependsOn  (multiple Trajectory_Simulation_Function)

(9] Implementation  (multiple xsdanyURD)

Eneﬁning Classes ﬁ Q: % ap Disjoints ﬁ ﬁ, ‘% ‘3 &
| |l |

ik‘l & o Logic View (- Propetties wiew

Figure 48 Compute Six DOF Aerodynamics

As the above figure represents, Six DOF Aerodynamics Record is the output of
Compute Six DOF Aerodynamics. It is Trajectory Simulation Composite Data.
Three different ways to represent aerodynamic coefficients for a six degrees of
freedom trajectory simulation are captured in TSONT as subclasses of Six DOF
Aerodynamics Record. Those representations are Ballistic, Ballistic Research Lab
(BRL) and National Advisory Committee for Aeronautics (NACA) representations

[17]. Each representation refers to a record definition in TSONT. The definition
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BRL Six DOF Aerodynamics Record is presented below in Figure 49 as an example

of three.

B BRL_Six_DOF_Aerodynamics_Record (instance of owl:Class) = |EI|5|
CLASS EDITOR = F T
For Class: e BRL_Six_DOF_Aerodynamics_Record  ({instance of owl: Class)

rName |/5nmeﬂns |/Di1’1’er=ntme | DAnnotalions |j QP E
|BHL_Six_DOF_Aerodvnamics_ﬁecord |Q Property Walue | Lang
rdfs:comment »

[ |

Asserted | Inferred | M Properti ' L ﬁ &

@’ ﬁb qﬁ % P M| RecordElement (multiple Trajectory_d

NECESSARY & SUFFICIENT

Asserted Conditions

£} 3 RecordElement COO
) 3 RecordElement CDAZ
) 3 RecordElement CDA4
) 3 RecordElement CLA
€} 3 RecordElement CLA3
) 3 RecordElement CLAS
) 3 RecordElement CMAGF
E) 3 RecordElement CPDF
£} 3 RecordElement CLP

) 3 RecordElement CLDEL
) 3 RecordElement CMA
) 3 RecordElement CMA3
E) 3 RecordElement CMAGH

I [»

‘]

€) 3 RecordElement CPDM @P pisjoints (L @ 2 2 G
NECESSARY

) six_DOF _Aerodynamics_Record

il"l & . Logic Wiew ) Properties YWiew

Figure 49 BRL Six DOF Aerodynamics Record

4.5 TSONT Individuals

The OWL classes of TSONT create a base on which each and every application that
is developed using this ontology based reuse infrastructure, is built on. The specific
requirements of each application are planned to be added to the ontology as

individuals. The domain structure and constraints modeled in TSONT define the
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relations among these individuals. As the ontology is used in new applications the
individuals that were created by the previous projects will also be available for
reuse. New domain structures and constraints will be able to be identified as new
applications are developed. This commitment adds the ontology constructive nature.

It will develop as it is used in the trajectory simulation projects.

Let us consider how TSONT is extended by individuals, as we define a new
simulation, and how it guides the development of a trajectory simulation. The
individuals of a guided rocket simulation, called Lynx, developed on MATLAB 6
DOF Trajectory Framework (MATSIX) will be presented as the case study.
MATSIX was developed based on the design that was obtained by transforming
TSONT classes. Then the Lynx Simulation was developed by framework
completion referring to the TSONT individuals. This implementation will be

discussed in detail in CHAPTER 5.

Lynx_Simulation (instance of Trajectory_Simulation) ) _|EI|1|
INDiVIDUAL EDITOR +—FT

For Individual ‘ Lynx_Simulation  (instance of Trajectory_Simulation)

rName rSameAS |/Differer11Frorn | [ Annotations |j @ﬁ Q: )
|Lyn><_SimuIation |U Property Walue | Lang
rofs comment Lynx Simulation iz a s,
rdfs:comment &

Lynx Simulation is a simulation that is buit on
MATSIX Trajectory Simulation Framewaork.

hasMunition "3 Q}: %- servesComputeTraj & Q: g

|Q Ly | |Q Compute_Lynx_Trajectory |
hasPhase ‘; ﬁ t- servesinitializeSimu & Q,- g
4 Lynx_Guided_Phase & Inttialize_Lynx_Simulation

4 Lynx_Free_Flight
4 Lynx_Launcher_Phase
4 Lynx_Boost_Phase

& w &

Figure 50 Lynx Simulation
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As we created a new simulation individual, TSONT asks to define the related
properties of the simulation. A simulation as depicted above in Figure 50, is defined

by its munition, trajectory, its phases and the functionalities provided.

We referred to individuals of Compute Trajectory and Initialize Simulation
functions that are created to specify Lynx in TSONT. Lynx, as an individual of a
MGR is set as the munition to be simulated. We defined four different phases for
Lynx Simulation. The phases of Lynx Simulation are specified as the individuals of
Phase, Guided Phase, Thrusted Phase and In Launcher Phase. If we consider Lynx
Free Flight Phases, it is an individual of Phase class. It will be discussed to present
how the phase individuals are constructed. To create a phase individual, TSONT
forces one to specify the models, services and characteristic properties of that phase.

Lynx Free Flight Phase is given in Figure 51.

Lynx_Free_Flight (instance of Trajectory_Simulation_Phase) = EI|5|
INDIVIDUAL EDITOR =R
For Individual 0 Lynx_Free_Flight (instance of Trajectory_Simulation_Phase)

Mame | SameAs | DifferentFrom ‘ [ Annotations j gg Q; £

|Lyﬂx7Free,F\ighl |U Property Walue ‘ Lang

relfs:commert Free flight phase ofLynx simulation

rdfs:comment p

|Free flight phase of Lynx simulation |
hasAerodynamicsModel & 1}.‘ % hasPhaseStateDerivatives ‘E ﬂ}.‘ g serveslpdatePhaseStateandDerivatives é Q} g
0 Lynx_Aerodynamics_Model 0 Lynx_Free_Flight_Phase_State_Derivatives 0 Update_Lynx_Free_Flight_Phase_State_and_Derivatives
hasDynamicsModel & 1}.‘ % hasPhaseTerminationRecord ‘E tt_‘ g hasAtmosphereModel é Q; g
4 Lynx_Free_Flight_Phase_Dynamic_Model 4 Lynx_Free_Flight_Phase_Termination_Record @ Lynx_Simulation_Atmosphere_Model
hasEarthModel & 1}.‘ % hasSolver ‘E tt_‘ g
4 Lynx_Simulation_Earth_Model 4 Lynx_Solver
hasGravityModel & ﬁ % servesComputePhaseTrajectory é ﬁ %- hasTerminationModel é Q; %.
& Lynx_Simulation_Gravity_Model @ Compute_Lynx_Free_Flight_Phase_Trajectory 4@ Lynx_Termination_Mode!
hasPhaseState & ﬁ % servesinitializePhase é ﬁ %.
& Lynx_Free_Flight_Phase_State @ Inttiglize_Lynx_Free_Flight_Phase
hasPhaseStateArray é ﬁ t.
‘ Lynx_Free_Flight_Phase_State_Array

s
b = @

Figure 51 Lynx Free Flight Phase
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As it can be followed from the below figure, individuals are defined for dynamics
model, aerodynamics model, earth model, gravity model, atmosphere model and
termination models. Lynx_Solver is defined as the individual of Runge Kutta 4
solver for the free flight phase of Lynx simulation. And lastly, two individuals are
defined for two functions of Lynx_Simulation which refers to the specific
implementations of these functions. One can use different algorithms to initialize a

trajectory simulation or to compute it.

Lynx Aerodynamics Model will be discussed in this paragraph to create an
understanding on how the individuals are used to link the specific trajectory
simulation to the TSONT OWL classes. Lynx Aerodynamics Model was defined as
an individual of a Body Fixed Six DOF Aerodynamics Model. As an individual, it
conforms to all of the constraints of that applies on Body Fixed Six DOF
Aerodynamics Model. As an ontology, TSONT, restricts its individuals to conform

to their OWL Classes.

Lynx_Aerodynamics_Model {instance of Body_Fixed Six_ Di
INDIViDUAL EDITOR

e Ay B R — S e
For Individual 4 Lynx_Aerodynamics SEIE':t type of new resource... X

[‘Name | SameAs | DifferentFrom | Body_Coordinate_System [

| Lynx_Aerodynamics_Model E

rdfs:comment

Aerodynamic Model for Lynx Simulatio

hasCoordinateSyste & ﬂ]: %.

servesComputeAer ‘? Q: g

| [
| JOK | | Cancel |

servesComputeAer ‘k Q: %

& B &

Figure 52 Lynx Aerodynamics Model
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If we look at Body Fixed Six DOF Aerodynamics Model, as depicted above in
Figure 52, TSONT specifies how it shall be implemented. When user tries to
specify which Coordinate System he wants to use when he computes aerodynamic
force and moment, TSONT guides him that the coordinate system he shall use is

Body Coordinate System.

As presented above, new simulation setups are defined by adding individuals for
different needs. As the ontology, TSONT, is used in new trajectory simulation
projects, the number of individuals will increase in number. And, the reuse of these
previously captured individuals to define new simulation setups will also be an
opportunity. This will enhance the evolution of TSONT as a trajectory simulation

knowledge library.

The major motivation of this research is to guide trajectory simulation development
efforts in all steps of trajectory simulation projects by providing formally defined
reusable artifacts. One of the major motivations of building an ontology in this
study was to provide a reusable domain model or trajectory simulation knowledge
library to guide the trajectory simulation developer to construct a clear picture of
domain concepts for a specific trajectory simulation project. TSONT, as presented
above, can guide the trajectory simulation developer on how to construct and relate
concepts in the trajectory simulation domain. This ability of TSONT seems to be

fulfilling its commitment.

In this chapter, TSONT is presented. After introducing the top level TSONT
entities, TSONT hierarchies, classes and individuals are introduced. It would be a
good to remember that TSONT is the domain model for the trajectory simulation
reuse infrastructure. Specifications of trajectory simulation reuse infrastructure for
both object oriented and function oriented paradigms are constructed upon this

domain model. Next chapter will introduce this infrastructure.
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CHAPTER 5

INFRASTRUCTURE SPECIFICATION AND IMPLEMENTATIONS

In this chapter, object oriented and function oriented reuse infrastructures are built
using the knowledge captured in TSONT, presented in the previous chapter. For
object oriented reuse infrastructure, first object oriented application frameworks are
introduced, and then platform independent trajectory simulation architecture is
discussed. Two different case studies are presented for object oriented paradigm.
Chapter is concluded with the function oriented reuse infrastructure and its case

study.

5.1 Object Oriented Infrastructure Specification and Implementations

5.1.1 Object Oriented Application Frameworks

A common definition of a framework is the reusable design of all or a part of a
software system that is accomplished by a set of abstract classes and a prescription
of the way their instances interact. It can be regarded as the skeleton of an
application that is to be developed in full by an application developer [63]. As a
contemporary object oriented reuse technique, different from the earlier techniques
based on class libraries, frameworks are targeted for particular application domains
such as user interfaces or real-time avionics [64]. The history of framework
literature goes back to 80’s. Johnson and Foote introduced many basic concepts of

application frameworks in their article published in 1988 [63].

Fayad and Schmidt list the benefits of object oriented application frameworks as
modularity, reusability, extensibility and inversion of control that they provide to
developers [64]. They explain these benefits as follows. Modularity is enhanced by

encapsulating volatile implementation details behind stable interfaces. This gives
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the strength of modularity to frameworks by increasing the quality of product by
localizing the impact of design and implementation changes which reduces the

effort required to understand and maintain the existing code.

Stable interfaces, furthermore, enable reusability by defining generic components
which can be reapplied to create new applications. Leveraging domain knowledge
of experienced developers avoids re-creating and revalidating common solutions to
reoccurring application requirements and software design challenges. This is the
core essence of framework reuse to enhance programmer productivity, and further

more quality, reliability and interoperability of software.

Extensibility is enabled in application frameworks by using hook methods. These
hook methods decouple the interfaces and the behaviors of the application domain

from variations required by a particular application.

Fayad and Schmidt [64] explain the basics as follows. Frameworks are
characterized by their run-time architectures, which is known as “inversion of
control”. Inversion of control works as the framework dispatches related
functionality during application processing steps to hook methods, which perform

application-specific processing on the events.

Application Code Application Code

2 4 7Y
calls

Class Library Class Framework

Figure 53 Control Inversion in Frameworks [97].

To summarize, a framework often consists of abstract classes, concrete classes, and

predefined interaction among the classes throughout the framework. Developers can
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then build the application on top of the framework and reduce the development
effort through reuse of code and designs provided in the framework. Below Figure
54 provides a high level overview on how an application framework relates to a

domain application.

Application

Business Business Business
Object Object Object

v
Business Business
Object Object

Business
Object

Application
Framework

Figure 54 High-level Overview of the Relationship between an Application and the
Application Framework [97].

Referring to Chen’s book [97], the differences between a framework and a class
library can be summarized as follows. A class library consists of a number of ready-
to-use components that developers can use to build an application. But, developers
must understand the relationships between various components and write process
flow code to wire the required components together in the application. On the other
hand, a framework encapsulates the control of such process flow by pre-wiring
many of its components so that developers do not have to write code to control how
the various components interact with each other. Figure 55 illustrates the difference

between a class library and a framework.
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Figure 55 Comparison between a Class Library and an Application Framework

[97].

Frameworks are extended using object oriented mechanisms either by inheriting
from framework base classes or overriding pre-defined hook methods using
patterns, such as the Template Method. The Template Method is presented in Figure
56.

Application Component : Framework Component

Framework Component (Extends Framework Component)
Method Method
1— { {
Template et il i Tttt |
Method i Bt le
} i }
i
Framework i 5
Business- Abstract { |Override——
Domain Method Component i |Method | [ ]
Expertise/ vs. Ll
Knowledge Application JOOKRKX Application-
} Specific
Ghripdoant [ Business
Abstract Override 7| Logic/
Methad Method Knowledge
ia R
0000
}

Figure 56 Template Method [97].

As stated by Aksit et al., although a large number of successful frameworks have
been developed during last several years, designing a high quality framework is still

an issue. Aksit proposes modeling domain knowledge as an essential step to
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develop a high quality framework [98]. But currently, there are no widely accepted

standards for designing, implementing, documenting and adapting frameworks.

Chen discusses the economics of framework development [97]. He argues that
developing an application framework is not an easy and inexpensive effort. In order
to develop a highly usable and extensible framework, you need first to find
individuals who are not only expert in the application domain, but also expert in
software design and development. It is important that those who are developing the
framework be competent in both domain knowledge and software development.
Without domain expertise, one cannot create the domain-specific framework layers
for developers. Without the technical expertise in software development, it will be
hard transfer the concept of the framework from theory to the concrete framework
code that developers can reuse and extend. How developers can benefit from the
services and architecture provided in the framework must be determined by the
framework designer. Chen says that some of the work involved in creating a
framework can be regarded as abstract and heavily relies on assumptions about how
developers will use the framework to build the application. So, it is said that it is
difficult to get everything right on the first try, since the designer can only guess at
how the final application will look and how it will be built to solve the domain
problem. So as a result, in most of the cases, it takes a series of iterations to get the
framework right for the applications that will be built on top of it. That makes
framework development very much an evolving task, and it demands continual

development and support efforts to ensure its relevance.

According to Robert and Johnson, a framework must embody a theory of the
domain, and is always the result of domain analysis, whether the domain analysis is
explicit and formal or implicit and informal [99]. Here in present research, we
emphasize the use of domain engineering practices to construct a reuse
infrastructure for trajectory simulation applications. We have an explicit and formal
domain model in a form of an ontology. Frameworks, as stated in the previous

paragraphs, have been standing as the most promising mechanism for enabling code
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and design reuse in last 20 years. So, we base our object oriented reuse scenario on

framework concepts.

For ontology based object oriented reuse scenario, as given below in Figure 57, a
Platform Independent Framework Architecture is proposed. It is an abstract design
that is constructed with the guidance of TSONT. It is proposed that abstract design
should not have any platform and problem set specific characteristics in order to

enable design reuse for a large variety of applications on many different platforms.

COBJECT ORIENTED REUSE SCEMNARIO
DOMAIN ANALYSIS INFRASTRUCTURE SPECIFICATION INFRASTRUCTURE APPLICATION
IMPLEMENTATION DEVELOFPMENT
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Figure 57 Object Oriented Reuse Scenario

As the second step of the infrastructure specification activity of domain
engineering, this platform independent framework architecture is proposed to be
refined to specific platform and problem set. Frameworks, as their nature (they are
implemented pieces of code) implies, are platform dependent. They either depend
on a programming language like ADA9S5, a platform like MATLAB or another
framework like .NET or EJB. Problem subsetting is also expected to figure in this

step of the activity.
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In our approach to trajectory simulation development with reuse, we find it
favorable to construct new simulations by framework completion, provided, of
course, a suitable framework is available. Otherwise one needs first to develop a
framework, and then complete it for the particular application. This approach is
expected to create a collection of related frameworks addressing different platforms
and problem families. So as the framework is first developed in a context of a
requirement set, it is obvious that it won’t cover the whole domain. For example, it
is expected to have body fixed 6 DOF framework with guidance and control models
implemented or another framework still 6 DOF but this time it is earth fixed and
without any guidance and control models. The former can be a result of requirement
of a guided missile development project while the latter can be a requirement of

base-bleed artillery projectile development project.

Here, in this research, as examples of object oriented frameworks, we worked on
two different frameworks. The first one is 6 DOF framework, namely MATSIX,
that was developed on MATLAB’s object oriented facilities. Two different
applications are built upon this framework. One is LYNX which is a surface to
surface rocket simulation and the second one is PUMA which is a guided bomb

simulation. There will be presented in the following sections.

The second framework is for point mass trajectory simulations. This one is not fully
developed. The focus while developing this case study was the use of code
generation facilities of computer aided software engineering tools in out reuse
oriented trajectory simulation development methodology. The static structure
captured in platform specific framework architecture is used to generate C# code for

this framework. This activity will again be presented in the following sections.

As new requirements arise more frameworks can be designed and developed
refining the platform independent framework architecture, and more applications

can be developed by framework completion.

92



5.1.2 Platform Independent Trajectory Simulation Framework Architecture

Before going further, the first topic to be discussed is how to specify the platform
independent trajectory simulation framework architecture. Typical definition of
software architecture is the structure of the components of a program/system, their
interrelationship, and the principals and the guidelines governing their design and

evolution over time [100].

Referring the definition of software architecture given in previous paragraph,
classes are regarded as the components of our object oriented framework. So the
structure of the components of our architecture is proposed to be presented by class

diagrams that are built depending on domain model which is ontology in our case.

Platform independent framework architecture, as the name implies, must be free of
any platform dependencies. It will be the base for the specific framework
architectures. So the below constraints apply to the class diagram that represents the
platform independent framework architecture. Class diagrams are presented to be in

a nature below:

Classes without

e export level (public, protected etc.)

® persistence

® representation details

Operations without

e their export control

e return types

e arguments
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Attributes without

e type definition

e export control

e initial value

® containment
Associations only

e generalization

® aggregation/composition

Software architecture, as given in the definition above should arrange the relations
of components of the program besides the static structure given as class diagrams.
The dynamic relations among the components for the framework are specified by

using the UML sequence diagrams.

As the dependency hierarchy is captured in ontology, this information is used to
build a top level sequence diagram that will lead the platform dependent developer

in designing and developing his simulation.

Sequence diagram is a kind of interaction diagram that lays out the time ordering of
messaging. Interaction diagrams in general show interaction, consisting of a set of
objects and their relationship, including messages that may be dispatched among

them [101].

Class diagrams and the sequence diagram in the present work have been developed
by using Enterprise Architect Computer Aided Software Engineering tool of Sparx
Systems Inc. [102]
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UML class diagrams are constructed in such a way that there is a general view
diagram which shows the relations among topmost classes in the generalization
hierarchy. With this top level diagram, there are packages for each generalization
hierarchy. Each package has another class diagram that shows the generalization
hierarchy of the classes in that package. The project view of infrastructure
specification is given below in Figure 58. The top level diagram is TS Class

Diagram and the packages are the ones with folder icons.
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Figure 58 Trajectory Simulation Framework Architecture Project View

This recently mentioned top level class diagram of infrastructure specification
which is given below in Figure 59, presents trajectory simulation developer which

top level classes will exist in his simulation framework.
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Figure 59 also shows the aggregation/composition and generalization associations
among these classes. Top level classes are presented in their related packages. In
that related package’s class diagram, it is presented with its full specification
(complete with operations and attributes) and the other classes in that package
inherit from it. The top level associations of classes are designed to be dispatched to
the child classes of each package at run time by making use of the polymorphism

capability of object oriented programming.

Two examples will be discussed here in this section to give the reader a clear idea
about infrastructure specification. These examples will be Physical Data class
hierarchy and Phase class hierarchy. Class diagrams of a couple of other packages

will be given in APPENDIX D. The whole project is given in APPENDIX N.
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Figure 60 Physical Data Package
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As given in Figure 60, Trajectory Simulation Parameters package has sub packages

for each data class hierarchy. Physical Data is one of them.

Each package has a class diagram in the name of the package. Physical Data

diagram which is given in Figure 61 is the class diagram for Physical Data package.

cd Physical_Data

Physical_Data

+ GetPhysicals() : Physicals_Record

Point_Mass_Physicals
Six_DOF_Physicals

+ GetPhysicals() : Physicals_Record
+ GetPhysicals() : Physicals_Record

Six_DOF_Physicals_for_Thrusted

+ GetPhysicals() : Physicals_Record

Figure 61 Physical Data Class Diagram

The idea presented in this diagram is that, presented schema will be the class
hierarch for the framework one will develop using this platform independent design.
For a framework that supports 6 DOF simulations, framework user, who actually is
the application engineer, will use Six DOF Physical or Six DOF Physicals for

Thrusted to inherit his own classes.
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In the second example we will discuss the conformance of this representation to the
form of platform independent framework architecture that was discussed at the
beginning of this section. The representation of Phase hierarchy in the infrastructure
specification is given below in Figure 62. Here in this diagram, there is no platform
dependent information. Like, classes do not have implementation details, operations
do not have specific parameters or export levels and attributes do not have any

export control.

cd Trajectory_Simulation_Phases /

Phase

Aerodynamics_Model: Aerodynamics_Model
Dynamic_Model: Dynamics_Model
Earth_Model: Earth_Model
Environment_Model: Atmosphere_Model
Gravity_Model: Gravity_Model
Initial_Condition: Phase_State
Phase_State: Phase_State
Phase_State_Derivatives: Phase_State
+ Propulsion_Model: Thruster_Model
Solver: Solver

+ Temination_Model: Termination_Model

L+ o+ o+

+

+ ComputePhaseTrajectory() : Trajectory
+ InitializePhase() : void
+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives
Thrusted_Phase
+ Thruster_Model: Thruster_Model
+ UpdatePhaseStateAndDerivatives() : Phase_State Derivatives
Guided_Phase
+ Autopilot_Model: Autopilot_Model In_Launcher_Thrusted_Phase
+ CAS_Model: CAS_Model
+ Guidance_Model: Guidance_Model + Launcher_Model: Launcher_Model
+ Sensor_Model: Sensor_Model
+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives
+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

Figure 62 Phase Class Diagram

These diagrams in infrastructure specification are for guiding the developer to an

abstraction schema that was captured in the ontology.

UML sequence diagram is added to platform independent framework architecture to
give the user an idea about how the objects interact to accomplish a trajectory

simulation. The whole sequence diagram is huge to be presented here in the body of
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the dissertation. A small portion of the sequence will be presented here and the

whole sequence diagram is given in APPENDIX N.

The below Figure 63 illustrates that user starts a simulation by calling the service
Compute Trajectory. This service starts a phase loop. For each phase, Compute
Trajectory first initializes a phase by calling its Initialize Phase service. Then it calls
Compute Phase Trajectory function to make phase compute its trajectory. Compute
Phase Trajectory has a trajectory loop. For each time step Compute Phase
Trajectory calls Integrate Step function of Solver. Solver integrates step by calling
Update Phase State and Derivatives function of the Phase. To update phase state
and derivatives, Phase first needs to access the data related to that state. It calls
Compute Aerodynamics function of Aerodynamics Data to get the aerodynamic
coefficients at that position and velocity of munition. This sequence then continues

until whole trajectory of munition is computed.

Trajestory_Simulation::Simulation Trajestory_Simulation_Phases:Phase|  [Trajectory_Simulation_Selvers:Solbve| |[Asrodynamics_Data:sAerodynamics_Data

st

ComputeTrajecton)

loop for eeach phase / InitializePhazer)

[phase in 1..number_of_pha:

- H
]
Trajectony:= ComputeFhaseTrajectan)
-

loop trajectory loop 7

o
[uhile done] Upd, . Time_Step.Phase_State_Derivatives.Phase_State)

ot |
[
Phase_State_Derivatives:= UpdateFh uatives()

ics_Record= 160

Figure 63 A Portion of Trajectory Simulation Sequence Diagram

Here in this section, one will figure out that the behavior of the simulation is
implemented in the framework. So, all the simulations that will be developed with

framework completion will have this behavior.
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In the platform independent framework architecture, we expect the package/class
names mostly match the class names in the ontology. The traceability of top level
packages/classes to OWL classes in TSONT is given below in Table 1. A more
comprehensive traceability table is presented at APPENDIX E. This will increase
the understanding of the model to a developer who is familiar with the ontology and

enhance the chance of tracing back to ontology.

Table 1 Class Diagram Packages — Ontology Traceability

Package Name Entity In TSONT

Coordinate System Coordinate System

Trajectory Simulation Trajectory Simulation

Trajectory Simulation Composite Data Trajectory Simulation Composite Data
Trajectory Simulation Models Model

Trajectory Simulation Parameters Parameter

Trajectory Simulation Phases Trajectory Simulation Phase
Trajectory Simulation Quantities Trajectory Simulation Quantity
Trajectory Simulation Solvers Trajectory Simulation Solver
Trajectory Simulation Systems Trajectory Simulation Object

5.1.3 6 DOF Trajectory Simulation Framework in MATLAB

5.1.3.1 MATSIX, An Introduction
MATSIX is a 6 DOF trajectory simulation which is developed by using MATLAB.

This effort aims to present an example on implementation of the platform
independent framework architecture that was presented in the previous section. So

rather than developing new models, efforts from different researches are leveraged.
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Mathematical models of this simulation framework are mostly based on the
research that was carried out by Tiryaki [92]. Beyond most of the models, launcher
dynamics is based on efforts of Mahmutyazicioglu, atmosphere tables are from
Public Domain Aeronautical Software web site and thrust model is based on

STANAG. 4355 [93, 103 and 23].

This simulation framework supports trajectory simulations with:

e Standard atmosphere models with no wind profile

e Constant gravitational acceleration

¢ In launcher and 6 DOF dynamics models for munitions with a rotational

symmetry

e (Cubic, parabolic and 2D proportional navigation guidance models

e A specific autopilot model from [92].

e (Canard control

e Round earth and flat earth

¢ Non rotating earth

e Solid rocket motors

e Launched from either a rocket launchers or an aircraft

While referring the related publications, implementations of significant models are

discussed below in Notes on MATSIX Implementation section.

5.1.3.2 MATLAB Object Oriented Facilities

MATLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where
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problems and solutions are expressed in familiar mathematical notation [104].
Object oriented programming among other approaches can be a way to develop
software in MATLAB. Short advocacy of object oriented development in
MATLAB product documentation says, when using well-designed classes, object-
oriented programming can significantly increase code reuse and make your

programs easier to maintain and extend.

Programming with classes and objects differs from ordinary structured
programming in some important ways. These differences are listed in MATLAB

product documentation [104] as follows:

Function and operator overloading. Existing MATLAB functions can be
overridden. One should call such a function with user-defined object as an
argument. Then MATLAB first checks to see if there is a method defined for the
object's class. If there is, MATLAB calls it, rather than the normal MATLAB

function.

Encapsulation of data and methods. One can not access object properties from the

command line. They are only accessible within class methods.

Inheritance. One can create class hierarchies in MATLAB. The child class inherits
data fields and methods from the parent. Single inheritance (A child class can
inherit from one parent) or multiple inheritance (A child class can inherit from
many parents) is supported. Using inheritance, sharing common parent functions

and enforcing common behavior among all child classes is possible.

Aggregation. An object can contain other objects. This is called aggregation, which

is also supported by MATLAB.

Although these definition seems to be very similar to common definition of object
oriented there are some differences in the implementation of the methodology in
MATLAB. These differences are listed in MATLAB product documentation [104]

as follows:
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Method dispatching is not syntax based in MALAB. MATLAB uses the left-
most object to select the method to call, when the argument list contains

objects of equal precedence.

There is no equivalent to a destructor method in MATLAB. One should use

the clear function to remove an object from the workspace.

MATLAB data types are constructed at runtime rather than compile time.
To register an object as belonging to a class, one should call the class

function.

The inheritance relationship is established in the child class by creating the

parent object, and then calling the class function in MATLAB.

The child object contains a parent object in a property with the name of the

parent class in MATLAB.

There is no passing of variables by reference in MATLAB. One should pass
back the updated object and use an assignment statement to write methods

that update an object.

There is no equivalent to an abstract class in MATLAB.

There is no equivalent to the C++ scoping operator in MATLAB.

There is no virtual inheritance or virtual base classes in MATLAB.

There is no equivalent to C++ templates in MATLAB.

5.1.3.3 MATSIX Architecture

Framework architecture of MATSIX implementation is a part of infrastructure

implementation. This design is based on the abstract design that is presented in the

Platform Independent Framework Architecture. The platform specific constraints

are applied on this abstract design and a detailed design is constructed. Meanwhile
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this MATSIX Architecture is subset of Platform Independent Trajectory Simulation
Framework Architecture since it only concentrates on 6 DOF trajectory simulations

and specifically the models presented in the previous section.
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Figure 64 MATSIX Project View

The project view is very similar to the one in platform independent framework
architecture. There is again a top level class diagram and packages with distinct
class diagrams inside. Figure 64 gives the MATSIX project view. Here in this
section, only Aerodynamics Model and Trajectory Simulation Phases will be
introduced. Couple of other class diagrams will be given in APPENDIX F. The
whole MATSIX Project and implementation are given in APPENDIX N.
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aerodynamics_model

Coordinate_System: cs

+ aerodynamics_model() : aerodynamics_model

+ ComputeAerodynamicF ynamics_model, y
+ ComputeAerodynamicsMom

+ get() : void

+ set() : void

mics_record, physicals_record, atmosphere_record, dynamics_model_state) : aerodynamic_force
ynamics _model, aerodynamics_record, physicals_record, atmosphere_record, dynamics_model_state) : aerodynamics_moment

As depicted in Figure 65, there is only one Aerodynamics Model class in MATSIX
Architecture. This is due to the fact that the platform, this time MATLAB, does not

support abstract classes. So the hierarchy defined in abstract design hasn’t been

Figure 65 Aerodynamics Model of MATSIX Architecture

implemented, rather updated considering the constraints of the platform.

cd Trajectory_Simulation_Phases /

phase

thrusted_phase

aerodynamics_model: aerodynamics_model
atmosphere_model: atmosphere_model

Thruster_Model: rocket_motor_model

dynamics_model: dynamics_model
earth_model: earth_model

gravity_model: gravity_model

initialized: boolean

phase_state: phase_state
phase_state_derivatives: phase_state
phase_termination_record: termination_record
temination_model: Termination_Model

R

ComputePhaseTrajectory(phase, muntion) : Trajectory

R

get() : void

GetPhaseStateAsArray(thrusted_phase) : y
GetStateDerivativesAsArray(thrusted_phase) : dy

Initialize (thrusted_phase, Phase_State) : phase

set() : void

SetStateDerivativesfromArray(thrusted_phase, dy) : phase
SetStateFromArray(thrusted_phase, y) : phase

thrusted_phase() : thrusted_phase
UpdatePhaseStateAndDerivatives(Time, y, thrusted_phase, Munition) : dy

get() : void

GetPhaseStateAsArray(phase) : y
GetStateDerivativesAsArray(phase) : dy

Initialize(phase, phase_state) : phase

phase() : phase

set() : void

SetStateDerivativesfromAnay(phase, dy) : phase
SetStateFromArray(phase, y) : phase
UpdatePhaseStateAndDerivatives(time, y, phase, muntion) : dy

b

guided_phase

Autopilot_Model: autopilot_model
CAS_Model: CAS_Model
Guidance_Model: guidance_model
Sensor_Model: Sensor_Model

FoE b b+ o+ o+ o+

get() : void

GetPhaseStateAsArray(guided_phase) : y
GetStateDerivativesAsArray(guided_phase) : dy

guided_phase() : guided_phase

Initialize(phase, phase_state) : guided_phase

set() : void

SetStateDerivativesfromArray(guided_phase, dy) : guided_phase
SetStateFromArray(guided_phase, y) : phase
UpdatePhaseStateAndDerivatives(Time, y, guided_phase, Munition) : dy

i

in_launcher_thrusted_phase

- Launcher_Model: launcher_model

get() : void

GetPhaseStateAsArray(in_launcher_thrusted_phase) : y
GetStateDerivativesAsArray(in_launcher_thrusted_phase) : dy
Initialize(in_launcher_thrusted_phase, Phase_State) : phase

set() : void

SetStateDerivativesfromArray(in_launcher_thrusted_phase, dy) : phase
SetStateFromArray(in_launcher_thrusted_phase, y) : phase

o

Figure 66 Phases of MATSIX Architecture
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When the diagram given in Figure 66 is considered, one will figure out that the

classes involve implementation details like export levels, arguments and return

types.

All attributes are private. This is another MATLAB constraint. So all classes have

“get” and “set” functions to enable the class users manipulate the private attributes.

MATLAB requires all classes to have a constructer in the name of the class. As an
example, guided phase has a guided phase service that returns a guided phase

object.

There is no parameter passing by reference in MATLAB. As one of the
consequence of this, services that change the state of an object have objects as one

of its return value.

The design for MATSIX Architecture mentioned above was implemented. The

framework involves 48 classes, which amount to 3579 SLOC (source lines of code).

5.1.3.4 Notes on MATSIX Implementation

This section presents some of the significant model implementations in MATSIX
framework. Coordinate systems, dynamics model, aerodynamics model, guidance
models, autopilot model and thruster model are mentioned below. Rather than the
derivations of the equations, only the implemented results are given. Further details

about the models can be found in the related references.

5.1.3.4.1 Coordinate Systems

MATSIX uses two different right handed and orthogonal coordinate frames. The
first one is the earth fixed reference frame, 3 ,(X,Y,Z). Its origin is fixed to the
earth’s surface with its X axis pointing towards north, Y axis pointing towards east
and Z axis pointing towards down to the centre of the earth. Non-rotating earth

assumption is used. Hence the earth fixed reference frame is taken to be inertial.
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The second reference frame 3 ,(x,y,z) is the munition body frame. Its origin is at
the centre of gravity of the munition. Its x axis points from the centre of gravity to
the nose of the munition, y axis points towards the right of the munition looking

from rear, z axis points down, forming a right handed orthogonal coordinate system.

Vector quantities are represented as a column vector with a coordinate system. The

coordinate system transformations are carried out by using a transformation matrix.
7@ = Gabz® Eq. 2

Coordinate systems are defined by their Euler angles which are ', € and ¢ (yaw

angle, pitch angle and roll angle respectively) with respect to the inertial frame of
the simulation. 3-2-1 rotated frame based Euler transformation sequence are used
for rotational transformations. The transformation matrix from any (X) frame to the

inertial frame (I) is obtained as:

clcy  sPsOcy —cPsy  cPsOcy + sPsy
CIX =| cOsy  sPpsOsy +cocy  chpsOsy — spcy Eq.3
—s0 spcl cpco

where ‘c’ denotes the cosine and ‘s’ denotes the sine of the angle.

5.1.3.4.2 Dynamics Model

MATSIX dynamics model consists of equations of motion which relate the forces
and moments which are being applied to the munition to the translational and
rotational accelerations. Two different dynamics modeling is used in MATSIX. The
first one models the equations of motion of a munition in launcher and the second
one is the six degrees of freedom equations of motion of the munition in three

dimensional space.
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5.1.3.4.2.1 In Launcher Dynamics Model

The launcher is modeled as straight rail that reinforces no spin to the rocket.
Launcher constraints the motion of the munition by forcing its elevation and

azimuth during in launcher phase [93].

u= £ Eq. 4
m

v=0 Eq.5

w=0 Eq. 6

where;

F_F, +F +mg, Eq.7

and

p=0 Eq. 8

Gg=0 Eq.9

F=0 Eq. 10

Using the body to earth transformation matrix C*®, body frame translational

velocity components can be related to earth frame velocity components as follows:

X u
Y |=CEP|y Egq. 11
V4 w
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Here u,v,ware the translational velocity components in the munition body frame.
X,Y,Z are the coordinates of the centre of gravity of the munition in the earth

frame.

It is assumed that no angular rates can be introduced to the munition in launcher, so

the rotational kinematic equations implemented are as follows:

=0 Eg. 12
6=0 Eq. 13
¢=0 Eq. 14

5.1.3.4.2.2 Six DOF Dynamics Model

Six degrees of freedom equations of motion are implemented as follows;

F
Uu=—-—gw+vr Eq. 15

m

. _F,
v=—"—ur+ pw Eq. 16

m

F
W=—4uq— pv Eq. 17

m

where;
F_F _+F +mg, Eq. 18
F_F +F +mg, Eq. 19
F_F,+F,_+mg, Eq. 20
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and

p=LII, Eq. 21
g=M/I,+rp(,-1)/1 Eq. 22
F=N/I,+pq,-1)/I, Eq. 23
where;

L=L +L, Eq. 24
M=M,+M, Eq. 25
N=N,+N, Eq. 26

Here, note that /_ =1 due to rotational symmetry of the munition.

Body frame translational velocity components are related to earth frame velocity

components as follows:

X u
Y [=CEP|y Eq. 27
Z w

The rotational kinematics equations implemented are as follows:

y =(g.sin@+r.cos@)/cost Eq. 28
9=q.cos¢—r.sin¢ Eq. 29
¢ = p+(q.sing+r.cosg).tand Eq. 30

111



5.1.3.4.3 Aerodynamics Model

Aerodynamic model of MATSIX concentrates on the determination of aerodynamic
forces and moments acting on a munition which are produced by the relative motion
of the munition with respect to the air and depend on the orientation of the munition

with respect to the airflow.

The orientation angles are the angle of attack (&) and the sideslip angle ( £). These

angles are expressed as follows:

a=tan” (%) Eq. 31

S =sin" (%) Eq. 32

Figure 67 Munition Velocity Components - Side View

Figure 68 Munition Velocity Components - Top View
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The aerodynamic forces and moments acting on the munition are expressed in

column representation as:

Fax Cx

F,|=0,4|C, Eq. 33
L" az Cz

i a Cl

M, |=0,Ad|C, Eq. 34
_Na Cn

Q, 1is the free stream dynamic pressure. It is expressed as:

Q, :%sz Eq. 35

p is the air density.V is the velocity of the munition and implemented as following

regarding the no wind case:

V =Au +v: +w? Eq. 36

“A” is the reference area. It is the maximum cross sectional area of the munition.

“d”, on the other hand, is the diameter of the munition.
5.1.3.4.4 Aerodynamics Parameters

Aerodynamic coefficients are defined as; C_, axial force coefficient, Cy, side force
coefficient, C,, normal force coefficient, C,, rolling moment coefficient, C

m?

pitching moment coefficient and C, , yawing moment coefficient.

These coefficients are expressed as a function of angle of attack, sideslip angle,

control surface deflections (for guided munition), and Mach number. The effective

113



control surface deflections are said to be J,,0,,d, for the pitch, yaw and roll planes

respectively. Mach number is defined as:

M= Eq. 37
Vi

Where V is the total velocity of the munition and V, is the local speed of sound

Force and moment coefficients are implemented as following in MATSIX referring

the assumptions from Tiryaki’s work [92].

Force Coefficients:

C. =C,M) Eq. 38
d
Cc,=C, M)p+C, (M)d,+C, (M)rﬁ Eq. 39
C.=C_(M)a+C_(M)3,+C, Mg
‘ ! 2V Eq. 40
Moment Coefficients:
d
C,=C,(M)d6,+C,  M)p — Eq. 41
; ’ 2V
d
Cm:Cma(M)a+Cm5(M)5e+Cmq(M)qW Eq. 42
d
Cn:Cnﬁ(M),b’+Cn5(M)§r+Cnr(M)rW Eq. 43
Equalities due to rotational symmetry:
C,=Cy Eq. 44
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c,=-C,
Cmaf = _Cnﬂ
Cm5 = _Cn5
Cmq = Cnr

5.1.3.4.5 Atmosphere Model

Table 2 ICAO Standard Atmosphere Table

ITtiture Temperature |Pressure |Density |Speed of Sound
|km K N/sg.m kg/cu.m [m/s
2 301.2] 1.28E+05| 1.48E+00 347.9
0 288.1] 1.01E+05| 1.23E+00 340.3
2 275.2] 7.95E+04| 1.01E+00 332.5
4 262.2| 6.17E+04| 8.19E-01 324.6
6 249.2| 4.72E+04| 6.60E-01 316.5
8 236.2| 3.57E+04| 5.26E-01 308.1
10 223.3] 2.65E+04| 4.14E-01 299.5
12 216.6] 1.94E+04| 3.12E-01 295.1
14 216.6] 1.42E+04| 2.28E-01 295.1
16 216.6] 1.04E+04| 1.67E-01 295.1
18 216.6] 7.57E+03| 1.22E-01 295.1
20 216.6] 5.53E+03| 8.89E-02 295.1
22 218.6] 4.05E+03| 6.45E-02 296.4
24 220.6] 2.97E+03| 4.69E-02 297.7,
26 222.5] 2.19E+03| 3.43E-02 299.1
28 224.5] 1.62E+03| 2.51E-02 300.4
30 226.5| 1.20E+03| 1.84E-02 301.7
32 228.5| 8.89E+02| 1.36E-02 303
34 233.7] 6.63E+02| 9.89E-03 306.5
36 239.3] 4.99E+02| 7.26E-03 310.1
38 244.8] 3.77E+02| 5.37E-03 313.7
40 250.4] 2.87E+02| 4.00E-03 317.2
42 255.9] 2.20E+02| 3.00E-03 320.7,
44 261.4] 1.70E+02| 2.26E-03 324.1
46 266.9] 1.31E+02| 1.71E-03 327.5]
48 270.6] 1.02E+02| 1.32E-03 329.8
50 270.6] 7.98E+01| 1.03E-03 329.8
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Standard atmosphere model of MATSIX is implemented in this case study as a
simple table look up. The values represent the ICAO standard atmosphere. The
values listed above in Table 2 are obtained from the web site of Public Domain

Aeronautical Software (PDAS) [103].

5.1.3.4.6 Guidance Model

5.1.3.4.6.1 Cubic Guidance

Cubic Guidance Law is one of three guidance laws implemented in MATSIX. In
Cubic Guidance Law, flight path angle rate commands are computed in order to
keep the munition on a cubic trajectory [92]. This trajectory is regarded to be
tangent to the instantaneous munition velocity vector. It will have two end points,
munition’s centre of mass and the target point. One can use four conditions to
express a cubic polynomial. In addition to satisfying three of them given above, one
more condition can be defined on the cubic trajectory. This condition is taken to be

the impact angle of the munition.
The mathematical formulation of cubic guidance law is expressed as follows:

The trajectories for 0 < ¢ < x; —x is expressed below as:
yx+§)=AE+BE+CE+D, Eq. 50

2(x+8)=AE+BE+CE+D, Eq. 51

In order to find four unknowns which are the coefficients of the cubic polynomials,

we need four conditions on these equations. These conditions will be taken as:
e Starting point condition

e Starting slope condition
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e Hit point condition

e Hit slope condition

By using four conditions presented above, these coefficients are found to be;

D, =y
D, =z
C. =S,
Sy‘, =tan7),

Szf =—tany; /cosn;

~ (Syf +28 )(x; —x)+3y

(x; —x)°

B =

y

(Sz/, +28 )(x, —x)+3z

B, = 2
(x; —x)

Z

Desired rates are

o K

— 3
7 =2B Vcosycos' 7

ok

_ 3 2 3 30
Yy =-2B)Vcos ycos"n+2C_ BV cos” ycos” n7sin7n

where,
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n =arctan(S, ) Eq. 63

y =arctan(=S_ cos77) Eq. 64

5.1.3.4.6.2 Parabolic Guidance

Parabolic Guidance Law as the second guidance algorithm of MATSIX generates
the necessary commands on either the rates of the flight path angles or the normal
acceleration components that keep the munition on a parabolic trajectory [92]. This
trajectory is kept tangent to the munition’s current velocity vector and pass through

the munition’s centre of mass and the target point at all instants.

The trajectories for 0 < & < x; —x is expressed below as:
y(x+&=C, +BE-A L2 Eq. 65

2(x+&)=C,+B£{-AE7 2 Eq. 66

Instantaneous parabolic trajectories are described by these equations. Three
unknowns in these equations which are the coefficients of the second order

polynomials are solved by three conditions which are:
e Starting point condition
e Starting slope condition
e Hit point condition
By using three conditions presented above, these coefficients are found to be;
C =y Eq. 67

C =z Eq. 68
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B =tan7p Eq. 69

B =27 Eq. 70
cosn
2(y+tann(x, — x
g, < 20t —) i~
(xp —x)
A = 2(z—(tan ¥/ cos Z)(xf - X)) Eq. 72
(xf —X)

Desired rates are

17 =—A,V cos ycos’ Eq. 73
7 = (A, cosy+ A, sin ysinn)V (cos y cos n)’ Eq. 74
where,

n =arctan(S, ) Eq. 75
y =arctan(=S_ cos77) Eq. 76

5.1.3.4.6.3 Proportional Navigation in 2D

The last guidance law that we implemented in MATSIX is Proportional Navigation
in 2D. Proportional navigation guidance as one of the first guidance laws developed
for tactical missiles is popular by its simplicity, effectiveness and ease of

implementation [15].

Proportional navigation guidance law generates acceleration command which is
proportional to the line of sight rate and the closing velocity. Mathematically it can

be expressed as [92]:
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n =NAV Eq. 77

c c

where, N is a unitless effective navigation, A is the line of sight rate, V, is the

closing velocity and n, is the command acceleration.
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Figure 69 2-D Missile-Target Kinematics

Xos Yous Zms X3 Y5 Zys Vs Vs Vi Vi Vi, V.. as basic missile and target parameters,

AURIN ¥4

are presented in Figure 69.

;O =x )V, -V, )0, -3,V =V,

A Eqg. 78
(5 —x) +(3,-y,) 4

('xt - xm )(‘/rx _Vm) + (yt - ym )(‘/t) _me)
=— Eq. 79

Jo =37+, —y,)
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5.1.3.4.7 Autopilot Model

5.1.3.4.7.1 Pitch Autopilot

The aim of pitch autopilot model is to find the commanded fin deflections to
stabilize the longitudinal dynamics and keep =7, where 7 is the command rate

provided by the guidance law.

Pitch autopilot of MATSIX is implemented using equations work that follow [92]:

b, =-0,AC, (MassV,) Eq. 80
by =0,AC.5/(MassV,) Eq. 81
byu =0, AdC,o /1, Eq. 82
b,s =—0,AdC, /1, Eg. 83
Bs=b;sb,—b,b, Eq. 84
d,=uw,} Eq. 85
d, =(1+28uw? Eq. 86
d, =2+ o, Eq. 87
fo=b,,cosyglV Eq. 88

k, =(by§—Bq§/bq§+(bq§/Bq(s)*qu)/(d1 +bqa +(Bq5/bq5)*(by§—dz)—(bq§/Bq§)*do) Eq. 89
k= (dy ~ by —ky) b Eq. 90

ky = (dy +b,ky)/ B,s Eq. 91
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ky = ks —kok, Eq. 92

c;=dy/B,s Eq. 93
¢, =(d,~b,5¢;)/ B,s Eq. 94
¢, =c;—kye, Eq. 95
hy=ky!B,s Eq. 96
b =(=b,shy)! B,s Eq. 97
hy = hy = ko Eq. 98
5 =—kq+ei ~hf, Eq. 99
5.(5)=5, ()+5, (5) Eq. 100
5'9” +k058” =—k,q+c,7 —hf, Eq. 101

5.1.3.4.7.2 Yaw Autopilot

The aim of yaw autopilot model is to find the commanded fin deflections to
stabilize the yawing dynamics and keep 77=7", where 7" is the commanded

horizontal flight path angle rate by the guidance law. The following set of equations

are implemented in MATSIX to simulate the yaw autopilot [92].

b,;s =—0Q,AC, (MassV,) Eq. 102

b,s =—0,AC s (MassV,) Eq. 103
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by =-0,Ad.Cpyll,

bs=—0,.Ad.C,5/1,

B,s=b,sbys=b,pb,s

dO = auwn

d, = (1+280)@,

d, = Q¢+ ),

fe=b,co87glV

ky = (b”ﬂ —B;/b;+(bs/B,s )brp’)/(dl + brﬂ +(B,s /bni)(bnﬂ —dy)=(bs7B,5)d,)

k= (d, ~b,5—ky)/ b,

ky = (dy —b,zky)/ B, 5

k, = ky —kok,
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c;=d,/B,4

G = (dl _bré'c3)/Br5

]k
C =6—ky*¢

b=k /B,

by =(1-b,sh)/B,;

hy, = hy —kohy

5 =6 +65

’

S =—kr+en

S +k,5. =—kyr+e,n
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Eq.

Eq.

Eq.

Eq.

Eq.
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5.1.3.4.7.3 Roll Autopilot

The autopilot model is used to keep p =0 so that the lateral autopilots can work

properly. Implemented roll autopilot model of MATSIX is as follows [92]:

L, =Q,AC,(d/(2V,))/(MassV,) Eq. 124
L;=0Q,AdCy/1, Eq. 125
K,=Q&w, +L,)/L; Eq. 126
K,=w,’/L; Eq. 127
S, =—K,p—K,p Eq. 128

5.1.3.4.7.4 CAS Model

MATSIX supports the simulation of canard-controlled guided munition with four
control surfaces that are 90° apart from each other. A rear view of the munition with

the body frame axes on it is seen in Figure 70.
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Rear View

Figure 70 Positive Control Surface Deflection Convention

The positive deflections are as follows. For d, and ¢, right hand rotations about (-

y) and (+y) axis and for &, and &, right hand rotations about the (-z) and (+z) axes

of body frame respectively.

0, (elevator),d, (rudder)and o, (aileron) are the apparent control surface

deflections. These deflections are defined in terms of the control surface deflections

0,,90,,0,,0, as follows [92]:

5 =2 ;54 Eq. 129

5 = J ;53 Eq. 130

5a:61+52153+54 Eq. 131

Autopilot is modeled to send pitch, yaw, roll commands defined to the actuators.

They are separated into individual fin commands as follows:

5, =6,+6, Eq. 132
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5, =8,+6, Eq. 133

5, =6,-6, Eq. 134
5, =6,-6, Eq. 135

The values indicated above as the fin commands &, to the control actuation system

are converted into an actual surface deflection o . Here the response of the fin
actuator is modeled by a second order transfer function with natural frequency of

o, and damping & as follows:

cas

2

9,(s) _ D,
= > 2
é‘it‘ (S) S + 2§C“S a)n('ax S + a)n('ax

Eq. 136

Then the actual control surface deflections will be the outcomes of the following

differential equation.

6, +26 .0, 6,+w, 5 =w, 5 i=1,2,3,4 Eq. 137

as” " N, i

5.1.3.4.8 Thruster Model

Thrust model of MATSIX is responsible to compute the thrust force and thrust
moment acting on the rocket at any time of boost phase. Mass flow values are
supplied to the model for any instant of time and thrust force and thrust moment are

computed using the following equations [23, 93].

F; = ml.&p +(I)re/' - P)AEx[I Eq' 138
F_=F, cos§, Eq. 139
F, =—F,sind, sind, Eq. 140
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F_ =—F,sind, cosd, Eq. 141

L =0 Eq. 142
M,=-T,(-X,) Eq. 143
N, =T.(-X,) Eq. 144

where §,,6, are thrust misalignments.

During boost phase, inertia and the center of gravity of the munition change with
respect to time due to the burning or the propellant. Below model is used to
approximate the instantaneous center of gravity and the inertia [93].

(mfuelo - mfuel, )

Xeg, = Xeg, + (Xg =X ) Eq. 145

mﬁ‘ ely

(mfuelo - mfuel, )

IL=1,+U,~1,) Eq. 146

m.f uely

5.1.3.5 MATSIX Applications
5.1.3.5.1 LYNX - A Surface to Surface Guided Rocket Simulation

LYNX is a surface to surface guided rocket simulation. The operation concept of
the simulated system is designed as given below in Figure 71. The fictive rocket
system that was used for simulation is fired from a launcher. It has a solid rocket
motor so flies through a boost phase. After boost, guidance system does not start till
a predefined range in trajectory. This phase of the flight is called free flight. The
last phase is guided flight.
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Figure 71 LYNX Concept of Operation
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1 function psim = lynx_sirr‘ulatinn[]

2 Flynx_simmlation

3 % Definition of lynx simulation

4 - p2im.class name='lynx simulation':

5 - tgiwstrajectory sSimulationi):

6 — psim=class (psim, ' lynx simulation',taim);

=

] ¥zet the muntion to he simulated

9 - mwunition=lynxi():

10 = psim.trajectory simulation=set (psim.trajectory_simulation, 'munition', munition):
11 tdefine the phases of the simulation

12 = plp = lynx_ launcher phase():

13 = ptp = lynx boost_phase () :

14 - pffp= lynx_free flight phase():

15 - pgp = lynx_guided phasel);

16 roonstruct & phase array

17 = phase_array={plp, ptp, pffp, popl;

18 - pgim.trajectory _sSimulation=set (psim.trajectory Simulation, 'phase arrayv', phase_ arrav):
19

Z0 = traj=trajectoryi(]:

21 - pzim.trajectory_simulation=set (psim.trajectory_simulation, 'trajectory', traj);
ZZ

23

24

25

[ Iyrix_simulation Ln 1 co 25 |[ovR | 4

Figure 72 LYNX Simulation Class

This operational concept together with the data used to represent the rocket system

is used to develop the simulation by framework completion. LYNX has been
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implemented by adding 20 new classes, all derived from framework classes, with

1137 SLOC. The implementation is given in APPENDIX N.

The code that is given above in Figure 72 shows how the operation of the rocket
system is reflected to code while completing the framework. One just derives a new
simulation class from the base trajectory simulation class and defines the phases and
the sequence of phases. The computation of trajectory is implemented in the
Trajectory Simulation class beforehand. Once the application engineer inherits a
new simulation class from Trajectory Simulation, he owes all the trajectory
simulation mechanism. Below in Figure 73, code that simulates the flight of the
munition though all phases, is given. It is the Compute Trajectory service of

Trajectory Simulation class.

‘B Editor - D:\users\umutiwork'.current\academichphd'work'my_code\matlab_case_study 3 fran FSix| ! =100 x|
Fle Edit Text Cel Tools Debug Desktop Window Help \Ed\tor-D:\users\umut\work\currant\academic\phd\work\my_codelmatlab_casa_study_&_framework%atﬁkfﬁ
D HEH| aRo o |(3A7f|88 B8R R8s ] BOB =0
ak function trajectory = ComputeTrajectory(sim)
2 FComputeTrajectory
3 %  Uppermost function that computes the crajectory
4
5 - tzero=0;
&
i $Intialize the simulation
8 - sim=Initialize(sim);
9 - simulation_initial_ state=sim.initial_state;
10 %3fly the first phase
11 - sim.phase_array{l}=Initialize(sim.phase_srray{l}, simulation initial_ state, tzero):
12z = phase_trajectory=ComputePhaseTrajectory(sim.phase_array{1},sim.munition]:
13 - trajectory.phase_tajectoriesil)=phase_trajectory:
14 %¥if there are more phases, fly the rest
15 - size_of phases_array=size(sim.phase_array):
16 - number of_phases=size_of_phases_arrav(2):
17 - if nuwber of phases >=Z2
15 - for phase_index = Z:number_of_ phases
i = last_state=phase_trajectory.vy(:, lengthiphase_trajectory.vl):
o - tzero=phase trajectory.x(length(phase crajectory.x))?
el = rhase_initial_ state=last_state;
=3 = Sim.phase_array{phase_index}=Initialize(siwm.phase_sarray{phase_index}, phase_initial_state, tzero);
Ze) = rhase crajectory=ComputePhaseTrajeccory(Sim.phase array{phase index}, Sim.municion);
el B trajectory.phase_tajectories(phase_index) =phase_trajectory:
25 — end
Zf - end
4 | 2]

J Iyree_sitnulation.m* = || ComputeTrajectory.m* X| |

ComputeTrajectary Lhn 5 Col 9 |OVR 4

Figure 73 Compute Trajectory Service of Trajectory Simulation Class
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) @lynx_free flight_phase

) @lynx_fuze

) @lynx_fuze_data

) @lynx_guidance_system

) @lynx_guidance_systern_data
) @lynx_guided_phase

)@ lynx_launcher

) @lynx_launcher_data

) @lynx_launcher_phase

) @lynx_physicals

I @lynx_rocket_motar

) @lynx_rocket_motor_data fr

l._?@lym{_simulatinn _,lj
A
Figure 74 LYNX Classes

The list of the derived classes for LYNX simulation is given above in Figure 74.

There will be a section on how the framework is completed with these classes to

develop LYNX.

LYNX simulation uses simulation parameters that define the surface to surface
guided rocket system that it simulates. This data includes physicals like its mass and
reference area, its aerodynamic coefficients, its motor properties and so on. This

data used in LYNX Simulation is given in APPENDIX G.

Number of sample simulation runs was done with the developed code. Below is
presents the results of one of them with 711 mills elevation. More plots from the

sample runs of LYNX Simulation are given in APPENDIX H.
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Sample Trajectory from Lynx
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Figure 75 Plots from a Sample LYNX Simulation Run

5.1.3.5.2 PUMA - An Air to Ground Guided Bomb Simulation

PUMA is a guided bomb simulation. The concept bomb that was used for

simulation is released from a bomber aircraft. Its guidance system does not operate

for the first short period after release for a safe separation. Then guidance and

control system starts to navigate the bomb. A number different guidance laws are

used as the guidance algorithm. The operation concept of this system is designed as

given below in Figure 76.
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Figure 76 PUMA Concept of Operation

Like LYNX, PUMA was also developed by completing the MATLAB 6DOF
Trajectory Simulation Framework. PUMA has been implemented by adding 16 new
classes, all derived from framework classes, with 733 SLOC. The list of the derived
classes for PUMA simulation is given below in Figure 77. The implementation is

given in APPENDIX N.

«); Current Directory - D _ 1ol =|
Eile Edit ‘“iew Debug Des -
Current Direckor

EEEEEEIE

Al Files £
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D) @puma_asrodynamics

_ :data
|2 @purna_autopilot
1) E@puma_autopilot_data

| Epumna_cas

) iEpuma_cas_data

1) E@pumna_free_flight_phase

I E@puma_fuze

I iE@puma_fuze_data

I @puma_guidance_system

) @puma_guidance_system_data
I E@puma_guided_phase

I iE@puma_physicals

) @puma_simulation -
i of

4
Figure 77 PUMA Classes
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The data used in PUMA Simulation is given in APPENDIX I. Sample runs were
carried out using the developed system. Below is from the results of a sample for a
release from 1100m height with 250m/s True Air Speed. More plots from the
sample runs of PUMA Simulation are given in APPENDIX J.
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Figure 78 Plots from a Sample PUMA Simulation Run

5.1.3.6 Framework Completion Process

In this section, we will investigate how we complete the framework in detail. While

completing the framework, one basically follows the steps listed below;
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1. Derive you data classes from related base data classes and implement the
mechanism to read data. Below, Figure 79 is a part of LYNX Aerodynamics

class code. This class is derived form Aerodynamics class. Aerodynamic

coefficients are hard coded in LYNX simulation.

E Editor - D:\usersyumut'work’ current’, academic’,phdwork'\my_codematlab_case_study_3_frameworkily ;|g|5|
File Edit Text Cell Tools Debug Desktop Window Help k] ‘ A X
DEH iRBRo «|8/#5| 08 AR EHA swfe -] BOE =0

1 function lynx_aero = lynx_aerodynamics() -

2 % 1lynx_serodynamics

3 %  Lynx asrodynsmics class derived from base asrodynsmics :lass‘

4 - lynx_sero.class_name='lynx_serodynamics';

S - aerc=aerodynamics();

[3 4define the class

7 - lynx_sero=class(lynx_sero,'lynx_sesrodynamics',aerol;

g8

9 - deg= pi/150;

10

11 - HMachpoints=[0 .1 .33 .53 .71 .86 1.00 1.05 1.1z 1.19 1.27 1.36 1.46 1.56 ...

1z 1.71 1.587 2.04 2.23 2.46 2.71 3.00]:

13 - lynx_sero.aerodynamics=set (lynx_aero.aerodynamics, 'Machpoints' ,Hachpoints);

14

15 - Cddata=[0 -.3471 -.3563 -.3626 -.3620 -.4187 —.6075 -.6821 —.6427 -.5933 ...

16 -.5504 -.5208 -.5010 -.4558 -.4809 -.4731 —-.4812 -.4423 -.4114 -.3819 -.3508];
17 - lynx_sero.aerodynamics=set (lynx_aero.aerodynamics, 'Cddata', Cddata) ;

18 &
1| | »
J Iynx_simulation.m® x| ComputeTrajectory.m®  x | Iynx_seradynamics m* % | |

‘Iynx_aemdynamlns Ln 3 Col 64 |0VR’ v

Figure 79 LYNX Aerodynamics Class

2. Derive your munition sub system classes from related base classes and

implement the association of subsystem classes with their data classes.

‘B Editor - D:\users\umutiwork) current) academic! phdiworkimy_code'ma I =] 5]
File Edit Text Cel Tools Debug E)e _ktDD Window  Helo 5 5 a
D g | % ®’o o |x:or D'l,uservs'l,um\,w'l,cuntadlc\'l,k\,mycode'(mitlab_ca_study
1 function pc = lynx_casi) -
2 z1lynx cass i
3 % lynx cas class that is derived from base cas class
4 - pc.class_name='lynx_cas':
5 - c=casi);
6 - pe=sclassipo, 'lynx_cas',c);
7 - pe_dataslynx_cas datal);
8 - po.cassset(po.cas, 'cas data',pe_data);
a
10 fm
11 =
Iynx_cas Ln 7 col 25 [ovR g

Figure 80 LYNX CAS Class
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As an example LYNX CAS class code is presented in Figure 80. This class
1s derived form CAS class of the framework. As seen in line 7 LYNX CAS
class is associated with LYNX CAS data class.

3. Derive your munition class from the base munition class and implement the
association of munition with its data and its subsystems. Below LYNX class
is given as an example in Figure 81. Here as you see, all the sub systems and
the related data are associated with LYNX class that derived from munition

base class.

B Editor - D:\users',umut' work',current', academic’,phd' work,my_code'matlab_case stud =1ol =]
File Edit Text el Tools Debug Deskiop Window Help N | A X
DS H| 4Rdo |3 888 0E B8 s ] BDB &0
1 function lynx = lynx|()
4 L lynx
3 % lynx i= the rocket that will ke =simulated
4 % it iz derived from munition base olass)
5 - lynx.class name='lynx';
6 - mun=munitioni):
7 - lynx=class(lynx, ' lynx', muan);
=} Tzet aero
9 - lynx_serco=lynx serodynamics();
10 = lynx.munition=set(lynx.munition, 'aerodynamics', lynx_saero):
11 tset physicals
1Z - lynx_phy=lynx_physicals():
13 - lynx.munition=set{lyn:.munition, 'phy=icals', lynx phy) 2
14 zet fuze
15 - pfe=lynx_fuzel();
16 - lynx.munition=set(lynx.munition, 'fus=e', pf=):
17 rget guidance system
18 = pgs=lynx_guidance system();
19 - lynx.munition=set (lynx.munition, 'guidance systewm', pgs):?
20 $set thruster
21 - prm=lynx_rocket_motor () :
22 — lynx.munition=set(lynx.munition, 'thruster', prm):;
23 3=et autopilot
24 - pap=lynx_autopilot();
25 - lvnx.munition=set(lynx.mwunition, 'asutopilot', pap):
26
27 Zet cas
28 - po=slynx cas();
29 - lynx.munition=set(lynx.mwuanition, 'CL3', poi;
30
31 - pl=lynx_launcher();
32 - lynx.wunition=set(lynx.mwunition,'weapon', pl):

[Iyrie Ln 4  co 42 [0vR

Figure 81 LYNX Class
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4. Derive required phase classes from the base phase classes, implement the
initialization services of the derived phases and specify the models that will
be used during simulation and the phase termination conditions. LYNX
Launcher Phase class and its Initialize service are presented below in Figure
82 and Figure 83 as an example of this step. In the class definition related
models and phase termination conditions are associated with the class.

Initialize service on the other hand implements how the initial phase state is

set.

‘Bl Editor - D:busers',umut\work'.current’,academic), phdwork',my_code'matlab_case_study_3_fra ¥ 1ol =]
File Edt Text el Tools Debug Desktop ‘Window Help | | A X
D @05 MHf| AR BRE BB sk ] HOBE 20
1 function plp = lynx_launcher phase(] -
2 %#lynx_launcher phase T
3 % launcher phase of lynx simulation
4 - plp.class_name='lynx_launcher phase';
5 - iltph=in launcher thrusted phase();
6 - plp=eclass(plp, 'lynx_launcher phase',iltph);
7
8 - pam=aerodynamics_model();
S - plp.in launcher thrusted phase=set (plp.in launcher thrusted phase,'aserodynamics model', pam) ;
10
11 - pdw=in_lsuncher dynsmics_modeli):
12 - plp.in launcher thrusted phase=set (plp.in launcher thrusted phase, 'dynsmics model', pdm):
akz)
14 - pew=round earth modeli):
15 = plp.in launcher thrusted phase=set (plp.in launcher_ thrusted phase, 'earth model', pem):
16
17 - paw=icao_atmosphere model ()
18 = plp.in launcher thrusted phase=set (plp.in launcher thrusted phase,'atmosphere wodel', pam) ;
13
20 - pow=gravity model(]:
21 = plp.in_ launcher thrusted phase=setiplp.in_ launcher thrusted phase, 'gravity model', pom)
Zz
23 - ptrwstermination model();
24 - plp.in launcher thrusted phase=set(plp.in launcher thrusted phase, 'termination wodel', ptm);
25
26 - prom=rocket_motor_modeli);
27 - plp.in launcher thrusted phase=set(plp.in launcher thrusted phase, 'rocket motor model', prrao) ;
28
23 - plw=launcher model():;
30 - plp.in launcher chrusted phase=set(plp.in launcher thrusted phase,'launcher model',plm);
Sl
32 - phase_termination.term='time';
33 - phase_termination.value=0.1;
34 - plp.in launcher thrusted phase=set(plp.in launcher thrusted phase,'phase termination record'...
i ;phase_termination); e
KX LI
Iynx_launcher_phase Lh 3 Col 37 |OVR 7

Figure 82 LYNX Launcher Phase Class
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=10l =
File Edit Text Cell Tools Debug Desktop ‘Window Help ] | A X
DS E|fRBo | S#f 00 BRE DA swmf~-] BODESD
1 function ph = Initialize(ph, initial state, tzero)
Z #Initilize
| %  Initilized the launcher phase of lynx simulation
4
5 - phase_state.dynamics model state.x=initial state.position(l);
6 -~ phase state.dynamics model state.y=initial state.position(zZ);
7 - phase_state.dyhamics_model state.z=initial state.position(3):
g %Body fixed welocities
9 - phase_state.dynamics_model state.
10 - phase_state.dynamics_model state.
11 - phase_state.dynamics_model state.
12 %Body fixed angular rates
13 - phase state.dynamics model state.p=0;
14 - phase state.dynamics model state.g=0:
15 - phase_state.dynamics model state.r=0:
16 2Euler angles
17 - phase_state.dynamics_model state.psi=0:
18 - phase_state.dynamics model state.theta=initial state.elevation;
19 - phase_ state.dynamics model state.phi=initial state.azimuth;
20
z1 Fmotor model
22 = phase_state.motor_model state.fuel mass=initial state.fusl wass;
23
24 = ph.in_launcher thrusted_phase=set (ph.in launcher thrusted phase, 'phase state'...
25 ;phase_state, 'tzero', tzero','initialized', true);
J Iynx_launcher_phase.m* ><|| Initialize m* ><| |
Intialize Ln 3 Caol 52 |OVR Y

Figure 83 Initialize Service of LYNX Launcher Phase

natlab_case_study — | Dlil

File Edit Text Cell Tools Debug Deskkop Window Help » | A X
DS RBo (&8 f| 88|88 B 8| sk - BHDHS0
1 function psim = puma simulation() -
2 Spuma_similation i
3 %  puma similation class derived from trajectory Simulation class

4 - psSim.class_nawe='puma sSimulation';

5 - tEimctrajectory_sSimulation();

6 — psim=class(psim, 'puwa simulation', tsim);

7

8 - mwunition=pumai):

9 - psim.trajectory_simulation=set (psim.trajectory sSimulation, 'munition', munition):

10

11 - pffp= puwa free flight phase():

12 = pgp = puma_guided phase():

13 - phase_array={pffp, pop}:

14

15 - psim.trajectory sSimulation=setpsim.trajectory simulation, 'phase array', phase array):

15 —
17 - traj=trajectory();

15 - psSim.trajectory Simulation=set (psSim.trajectory sSimulation,'trajectory', trajl:

13 hd|

puma_simulstion [tn 3 co B8 [ovR

Figure 84 PUMA Simulation Class
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5. Finally, derive your simulation class from the base Trajectory Simulation
class and specifying the phases and their order. PUMA class is presented

above in Figure 84 as an example.

5.1.4 C# Point Mass Trajectory Simulation Framework

After presenting a full scale ontology based reuse infrastructure development and its
use by means of framework development and framework completion for MATLAB
platform, we would like to present another case for basically two reasons. First we
would like to exercise to design a framework for a different platform. Then we
would like to present the use of code generation capabilities of computer aided
software engineering tools with ontology based trajectory simulation reuse
infrastructure. We selected .NET platform of Microsoft. C# was chosen as the

language to develop this framework.

In this case study, we designed a platform specific framework architecture and
generated source code from this design specification. Full implementation of the
framework and framework completion for specific applications is planned to be
carried out by different developers from the target reuse group. This will be a step
towards institutionalization of the ontology based reuse infrastructure development

process in TUBITAK-SAGE.

Platform and the language will not be discussed in detail here but it will be good to
give a brief background. C# is said to be designed to provide a simple, safe,
modern, object-oriented, internet-centric, high performance language for .NET
development. It is a new language, but it is said to be drawing on the lessons
learned over the past three decades. C# influences from Java, C++, Visual Basic
(VB), and other languages. The .NET platform on the other hand is, in essence, a
new development framework that provides a fresh application programming
interface (API) to the services and APIs of classic Windows operating systems,

especially Windows 2000, while bringing together a number of cutting edge
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technologies that emerged from Microsoft during the late 1990s. Currently, the

.NET Framework consists of:
¢ Four official languages: C#, VB .NET, Managed C++, and JScript .NET

e The Common Language Runtime (CLR), an object-oriented platform for

Windows and web development that all these languages share

® A number of related class libraries, collectively known as the Framework

Class Library (FCL) [105].
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Figure 85 Trajectory Simulation Systems

Above is a design schema from platform specific framework architecture As we
have done in MATLAB framework architecture design, here we take the platform

independent framework architecture and subset it for point mass trajectory
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simulation supporting guided and thrusted munitions. Then we applied the platform
specific design constraints on that subset and generated a platform specific

framework architecture..

ntMassTrajectorySimulation - Microsoft ¥isual Studio 10 ﬂ

Elle Edit ‘ew PRefactor Project Build Debug Data  Tools  Test  wWindow  Community  Help

- S S % R -0 F-B| b Dy M | DEEmR B

ETY YT YY)
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/¢ Implementation of the Class In Launcher Thrusted Phase
/¢ Generated by Enterprise Architect

// Created on: 06-Kas-2006 20:33:35

SIS T T d i i i i i i F i i i f i i i idddddd i dddiiiiiiiiisd

&) cspm.cap
B 8 Framework
|l References
B [y Coordinate_Systems
ﬁi:] BodyCoordinateSystem.cs
ﬁi:] CoordinateSystem.cs
Eﬁ:] EarthCoordinatesystem.cs
[ Trajectory_Simulation
[ Trajectory_Simulation_Composite_
Elusing Framework.Trajectory Simulation Models.Launcher Model; B 5 Trajectary_Simulation_Models
Lus:mg Frawmework.Trajectory Simulation Composite Datar [ 1 Aerodynamics_Model
using Framework.Trajectory_Simulation Phases; [ Atmosphere_Model
Elnsmespsce Framework.Trajectory Simulation Phases | [ Autopilat_Mads!
B public class In_Launcher Thrusted Phase : Thrusted Phase { [ Dynarics_Madel

public Launcher Model Launcher Model: -
- - [ Guidance_Model
3 Launcher_Model

=] public In Launcher Thrusted Phase(){ =
— - — | £ Sensor_Model
3 Termination_Model
i ' o B Thruster Model
E [ Trajectory_Smulation_Parameters_|
E ~In_Launcher Thrusted Phase(]{ El- [ Trajectory_Simulation_Phases
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Figure 86 Sample Code Snapshot From IDE

Enterprise Architect of Sparx Systems is being used as the computer aided software
engineering tool for forward and reverse engineering during development of this
framework. Using this tool’s forward engineering capabilities, code generation

process was executed. About 2600 SLOC was produced automatically. Visual
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Studio Team System 1is being used as the IDE (Integrated Development
Environment). Above, an example code snapshot from this produced code is
presented in Figure 86. More sample diagrams from this platform specific
framework design and sample code snapshots will be provided in APPENDIX K.
Besides, APPENDIX N presents the model and code projects.

5.2 Function Oriented Infrastructure Specification and Implementation

5.2.1 Function Oriented Programming and Reuse

Function oriented programming as stated by Sommerville relies on decomposing
the system into a set of interacting functions with a centralized system state shared
by these functions. Function-oriented design has been used informally since the
programming has begun. Programs have been decomposed into subroutines which

were functional in nature [65].

One way to develop reuse infrastructure for function oriented paradigm is to
develop a function library in a structured language like Fortran or C. Numerical
Recipes is an example of such a function library. It is one of the most famous
function libraries in scientific computing society [106 and 107]. The other way is to
use MATLAB Simulink and develop a function oriented blocksets. We selected to
do this one since such an ontology based blockset reuse practice using MATLAB
Simulink is more likely to be used by target reuse group then a Fortran or C

function library approach.

As presented below in Figure 87, in a function oriented reuse scenario as in the
object oriented scenario, we still propose a platform independent abstract design as

the first step of the infrastructure specification activity of domain engineering.
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ONTOLOGY BASED TRAJECTORY SIMULATION REUSE INFRASTRUCTURE

DOMAIN ANALYSIS | | FUNCTION ORIENTED REUSE SCENARIO

INFRASTRUCTURE SPECIFICATION INFRASTRUCTURE APPLICATION
IMPLEMENTATION DEVELOPMENT
PANTHERA -
Point Mass PANTHERA - Point Mass | Tiger
Unguided . Ungided Trajectory . 9
Trajectory | | |  Simulation MATLAB
Simulation [ SIMULINK Blockset >‘ Jaguar
MATLAB
Platform SIMULINK
TSONT || Independent | Blockset Design

“| Functional Design
Collection

XXX FORTRAN e
2 FQRTRAN i | Trajectory Simulation XXX
Trajectory i

L—p| Simulation Function -4 Function Library | | | beeceeeeooeood
Library

Abstract Design Model Refinement Infrastructure Implementation Library Reuse

Figure 87 Function Oriented Reuse Scenario

Data flow diagrams are treated as the tools for abstract function oriented design. As
presented in the famous software engineering book of Sommerville, data flow
diagrams are concerned with designing a sequence of functional transformations
that convert system inputs into the required outputs. These diagrams illustrate how
data flows through a system and how the output is derived from the input through a

sequence of functional transformations [65].

Different from our object oriented scenario, we do not propose a single abstract
design that covers whole domain. Rather, we propose a collection of data flow
diagrams for different problem sets, like, point mass data flow diagrams that we
will present in the following sections or a modified point mass projectile simulation
data flow diagrams. This collection of abstract designs will be the reuse assets for

the future projects.

Platform specific design will be the refinement of these abstract designs. We, in our
case study, refined or transformed the data flow diagrams to the block diagrams of

MATLAB.
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5.2.2 Platform Independent Point Mass Unguided Trajectory Simulation
Abstract Software Design

The functions with their functionalities and their interfaces are captured in the
ontology. Besides, dependencies of these functions are also being captured in
TSONT. Here in this case study, we tried to show how ontology is helpful when the
software development paradigm changes from object oriented to function oriented.

We used function definitions in the ontology to draw our data flow diagrams.

Below, in Figure 88, data flow diagram of Compute Point Mass Phase Trajectory
service is given. Here in the data flow, the functions to be executed to compute the
point mass phase’s trajectory and the data flow among functions are captured in
abstract fashion. The whole set of data flow diagrams are attached at APPENDIX L
and APPENDIX N.
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gte and State Derivatives /\
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\@i:ﬂ//

Figure 88 Compute Point Mass Phase Trajectory Data Flow Diagram

Inital State State
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5.2.3 Design of PANTHERA

PANTHERA is a function oriented MATLAB Simulink blockset for point mass
unguided trajectory simulation. Models used in PANTHERA are kept as simple as
possible. The aim of this case study is to present the use of ontology based reuse

infrastructure in function oriented software development paradigm.

We, in this research used MATLAB Simulink in a function oriented fashion. Blocks
are used to represent the functions and their ports are used to represent function
interfaces. Blocksets are set of blocks. Blocks are the elements from which
MATLAB Simulink models are built. One can model virtually any dynamic system

by creating and interconnecting blocks in appropriate ways.

=1

File Edit Wiew Smulation Format Tools Help

D& sBR|es 4 2 nfion |vome =[RS e
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CP 0 Altitude gmy  Fus! flow ka/s) ns zioc P Fa)
7 fm
Aeradynamic Turbofan Engine System g (e 3]

Farces and Moments Mon-Standard Lay 210C

Ready [100% [ [ |odeds &

Figure 89 Some Blocks from Aerospace Blockset

Aerospace system modeling and simulation community is familiar with Aerospace
Blockset of Mathworks Inc. The way the Aerospace Blockset is constructed can be
named as actor-oriented approach [108]. It contains the basic actors in an aerospace
simulation as blocks and hides the functionality of the actors underneath block
interfaces. Above in Figure 89, some blocks from Aerospace Blockset are

presented.
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In our approach, we defined the blocks regarding the functionality they serve.
Platform Independent Point Mass Unguided Trajectory Simulation Abstract
Software Design that is presented in the previous section is used to structure the
blockset. It will be good to be reminded that the definitions of functions with their
interfaces and dependencies modeled in Platform Independent Point Mass
Unguided Trajectory Simulation Abstract Software Design are based on TSONT.
By structuring the MATLAB Simulink blocks of PANTHERA for representing
functions and their dependencies, this approach is classified as the function oriented

use of MATLAB Simulink. Subsystems of PANTHERA are presented below.
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Figure 90 Subsystem of PANTHERA
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Problem set is selected as simple as possible since the aim of this case is not to
develop a fully functional large and complex blockset but rather to show that
MATLAB Simulink Blocksets are opportunities to enable a function oriented reuse

scenario starting from TSONT.

Subsystems in the left most column of the blockset are data sources. Mid column
has the computation oriented subsystems and the right most column has the

aggregate subsystems that use left two columns to accomplish their task.

E!Lihrary: Panthera/ComputeTraje: - |E||i|

File Edit ‘Wiew Format Help
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Figure 91 Compute Trajectory Subsystem

Compute Trajectory Subsystem only has Compute Point Mass Trajectory block.
This block has only one output port which is trajectory as defined in data flow

diagrams.

When we look under the mask of Compute Point Mass Trajectory block, we will
see that Initialize Point Mass Simulation Service initializes the simulation by the
data it obtained from Get Point Mass Weapon Data and Get Point Mass Data
services. Check Trajectory Termination, on the other hand, checks the termination
condition on the state of the simulation computed by Compute Point Mass Phase

Trajectory block.
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Figure 92 Compute Point Mass Trajectory Block of PANTHERA

Compute Point Mass Phase Trajectory block has only two blocks. One computes
the phase state derivatives and the second one integrates the step. To compute the
state derivatives, Compute Point Mass Phase State and Derivatives block computes

forces and use forces to compute the accelerations.

E!Link: Panthera/.../ComputePointMassTrajectory/ ComputePointMassPhaseTrajectory - | Ellll

File Edit Yiew Format Help

Ded& sB2R|c 4|22 hEE

ite P ointhdazsPh
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Figure 93 Compute Point Mass Phase Trajectory Block
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Figure 94 Compute Phase Point Mass State and Derivatives Block

All the blocks used in the blockset are MATLAB Embedded Function Blocks. They
are implemented by developing functions in MATLAB Scripting language. These

functions conform to the interface requirements.

El Embedded MATLAB Editor - Block: Panthera/ComputeTrajectory/ComputePaintMassT =10l x|
File Edit Text Debug Tools Window Help nox
Nw | éta@o AT T S| r"m BREERE B /B =l
1 function dm3D = UpdatePointMassDynamicsModel3tateandberivatives |aeroForce,
Z % This block supports an embeddable subset of the MATLAE language.
3 % Zee the help menu for details.
b= ®Dot=dm3tate (4] ;!
5 - vhot=dm3tate (5]
g = zshot=dmw3tate (&) 2
7= xDDot=(aercForce(l) +gravForce (1) ) /phyRecordil) ;
El vDDhot=(aercForce(2) +gravForce (2) ) /phyRecordil) ;
9 - zDDot=[acroForce (3) +gravForce (3) ) /phyRecordil) ;
i0 - dwm3h=[xDlot; yhot; =Dot; =DDot; yhDot; =DDot]:;
1 | -]

| Ready (Locked (Library) [Ln 10 col 48 4

Figure 95 Update Point Mass Dynamic Model State and Derivatives Block
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As an example let us look at Update Point Mass Dynamic Model State and
Derivatives block. The implemented code in MATLAB m file is given above in
Figure 95. One can have a look the whole implementation which is given in

APPENDIX N.

5.2.4 Notes on PANTHERA Implementation

PANTHERA uses an earth fixed reference frame, 3:(X.Y,2) . Its origin is taken to
be fixed to the earth’s surface with its X axis pointing towards north, Y axis
pointing toward up and Z axis pointing towards east. Non-rotating and flat earth
assumptions are used. Hence the earth fixed reference frame is assumed to be

inertial.

Update Point Mass Dynamics Model State and Derivatives implements a point mass

dynamics model. Acceleration of the munition is computed as follows [4]:

YF

v="0 Eq. 147
m

where

YF=D+G Eq. 148

Only aerodynamics and gravitational forces are taken into account. Compute Point
Mass Aerodynamics Force computes a drag force. Drag force is computed using the

following equation.

D=0.5pV>C,Sii, Eq. 149
where
1%
i, =— Egq. 150
kv q
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The gravitational force is computed by Compute Point Mass Gravitational Force

block assuming constant gravitational acceleration as follows:

G=mg Eq. 151
where
0
g=|-9.81 Eq. 152
0

The initial state of the simulation is set by using Get Point Mass Weapon Data
block which provides initial position, elevation and the azimuth of fire and Get

Point Mass Charge Data that provides the muzzle velocity to the simulation.

Standard ICAO atmosphere is supported by this Blockset. ICAO atmosphere is
implemented by Compute ICAO Atmosphere block uses the values presented in

Table 2.

5.2.5 Sample Blockset Implementations

To show how one can use PANTHERA to develop a simulation, we will present
two examples. TIGER and JAGUAR. They both use the same data set but the way
they use the block set differs. The data used for these simulations will be given in

APPENDIX M. The implementations are given in APPENDIX N.

TIGER uses the top most block to develop the simulation. MATLAB Simulink

block diagram is given below.
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Figure 96 TIGER Block Diagram

JAGUAR on the other hand uses the low level function blocks to implement the
same simulation. Besides, some functionality in JAGUAR is developed by the
developer like Get Jaguar Weapon Data service. Figure 97 depicts the block
diagram of JAGUAR.
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Figure 97 JAGUAR Block Diagram
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The data set used for TIGER and JAGUAR is based on 8 lmm mortar. Below is a

range versus altitude graph from a sample run of TIGER for 800 mils elevation.

1200

Tiger Range vs. Altitude
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Figure 98 Range vs. Altitude for a Sample TIGER Run

This chapter presented trajectory simulation reuse infrastructure that was developed
for the object oriented and function oriented programming paradigms. Platform
independent reusable designs are discussed and the platform and problem family
specific designs and reusable codes are introduced as case studies. Sample
applications built upon these reusable codes are introduced. Next chapter will

consist of discussions on the results of this reseach.
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CHAPTER 6

CONCLUSION

In this research, we developed an ontology based reuse infrastructure for trajectory
simulations and investigated the use of ontologies and domain engineering practices
to develop a formalized methodology to make use of the experience and knowledge
leveraged from the past trajectory simulation projects. Trajectory simulation is
defined as a computational tool to calculate the flight path and other parameters of
munition like its orientation or angular rates during its operation. To develop a
trajectory simulation, one requires mechanical engineering, modeling and
simulation and software engineering body of knowledge. In this thesis, engineering
knowledge in the mentioned areas that is needed to simulate the trajectory of a
munition is captured in an ontology called TSONT. TSONT consists of the
concepts of trajectory simulation and the relation among these concepts. Then
TSONT is presented as a knowledge library that is available for reuse. It is the

domain model of the reuse infrastructure.

After formalizing the domain knowledge for reuse, we concentrated on building an
infrastructure to enable the reuse of software artifacts. Two main programming
practices were considered when developing an infrastructure. Object oriented
programming and function oriented programming. We used “platform independent
model” and “platform specific model” concepts to present the specification of the
reuse infrastructure. It enabled us to present a specification of trajectory simulation
in a platform independent fashion to enable reuse for different platforms like
MATLAB or Java and in a platform specific way to construct a detailed design for a
specific platform. We make use of UML and application frameworks when
constructing an object oriented infrastructure. First, a platform independent

framework architecture is constructed. Then, two different trajectory simulation

154



frameworks are designed using this abstract design. The same abstract design is
reused by two different platform specific designs. This is presented as evidence of
abstract design reuse enabled by the infrastructure. MATSIX, which is one of these
two frameworks, is developed. Then, two different trajectory simulations are
developed using framework completion which is a formal reuse practice of
application frameworks. This showed the code reuse -capabilities of the
infrastructure. With these two simulations, we presented all the way through from

knowledge reuse to code reuse in object oriented paradigm.

Data flow diagrams are used to formalize the design of the function oriented
simulations to compute the trajectory of munition. A platform independent design is
constructed for a point mass unguided trajectory simulation using TSONT. As we
used TSONT for both in object oriented framework design and function oriented
simulation design, we had a chance to speak out the evidence of cross paradigm
reuse of the knowledge captured in TSONT about how to develop trajectory
simulations. A MATLAB Simulink Blockset is developed using the design
presented in data flow diagrams. Point mass mortar simulations are developed using
this Blockset as case studies. With these mortar simulations, we again presented all
the way through from knowledge reuse to code reuse, this time in function oriented

paradigm.

In this research, we had the chance to show that ontologies can be a useful
instrument for knowledge sharing and reuse. While developing TSONT, we
experienced the construction of an ontology for a real-life industrial application. As
we started to use TSONT for specification of reuse infrastructure, we had a chance
to see the practical role of ontologies as mechanisms for knowledge sharing and

reuse.

One of the biggest challenges that we had to overcome as we developed TSONT for
a real-life industrial application was its scale. As TSONT get bigger and bigger, it
became harder to resolve the complex relations among the concepts of trajectory

simulation. We used an iterative approach to ontology development which enabled
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us to reconsider all the structure as we tried to capture new bunch of knowledge in
TSONT. The second challenge to be mentioned here was in determining the scope
and structuring TSONT. TSONT, as mentioned, is neither a complete nor has the
only correct structure to capture trajectory simulation domain knowledge. It is
scoped reflecting the experience of target reuse group. Rather than an effort to
capture all the available knowledge on trajectory simulation in literature, it is aimed
to formalize what is available among target reuse group. The knowledge is
structured in a way that the target reuse group abstracts the trajectory simulation
domain. Here another challenge arises. As the organization that uses the ontology
for knowledge sharing evolves, the shared vocabulary and shared conceptualization

also evolves, so ontology needs an active maintenance effort.

To develop an ontology that will enable an organization wide knowledge sharing
and reuse, it should be institutionalized and owned by all shareholders. During the
development of TSONT, we tried to construct this sense of ownership by using peer
review mechanism. As TSONT evolved during this research, peer reviews are
handled with the target reuse group to align the conceptualization in a collaborative

mannecr.

Ontology specifies the shared conceptualization in a formal way that enable human
and machine readability. As we practiced the role of ontologies as mechanisms for
knowledge sharing and reuse, we used and presented the human readability of the
TSONT. We reused ontology to construct two different abstract software designs to
developed trajectory simulations. This reuse processes were human in the loop type.
We read TSONT and reflected the concepts and the relations among these concepts
captured in the ontology to software design constructs like classes and associations
or functions and functional flows. Besides these case studies that are presented in
this thesis, we also experienced automated means of reuse of TSONT to construct
abstract software design. Two collaborative research efforts have been carried out
with M.Sc. students from Computer Engineering Department on model driven

engineering practices that will enable us to transform machine readable TSONT to a
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software design using model transformation. One concluded with the transformation
of TSONT to UML class diagram that represents an abstract object oriented design.
The second one concluded with transformations of TSONT to MATLAB Simulink
blocks. These two efforts gave us strong clues that show the promise on successful

use of model transformation practices with this ontology based approach.

While this research is not the first time that ontologies are used in mechanical
engineering, it is one of the small numbers of studies going on about using
ontologies for knowledge sharing and reuse in mechanical engineering. For its
specific focus, this research is a frontier in using ontology in the field of trajectory
simulation. Besides, in the field of modeling and simulation, this research is one of
the first studies that try to formalize the domain knowledge in a form of ontology
and make it available for developing simulations. These efforts are called ontology
driven simulation. The extensions of this research on combining ontology driven
simulation with model transformation practices are avant-garde. Their preliminary
results are exciting in a way they show new horizons on automatic transformation

of domain knowledge to executable simulations.

Ontology based reuse infrastructure for trajectory simulations is composed of a
domain model, an infrastructure definition and infrastructure implementations. This
definition with the methodology used is based on domain engineering practices. Use
of ontologies as domain model was first pronounced in early 2000’s. We based our
approach on this literature and developed TSONT as our domain model. We
contributed to this approach by selecting OWL as the ontology definition language.
This enabled us to extent the domain engineering practices with integrating them to
model driven engineering practices. It means, by using OWL, we had a chance to
make use of the results of efforts on Ontology Definition Metamodel (ODM) and
Model Driven Architecture (MDA) of Object Management Group (OMG). Using
Meta Object Facility (MOF), future efforts on matching UML Metamodel and
Ontology Definition Metamodel will be reflected to our ontology based reuse

infrastructure. Tools for automatic transformation of domain model to infrastructure
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definition and infrastructure implementations will be available. In this research, we
proposed two different levels of abstractions for infrastructure specification. It is
composed of a platform independent abstract design and a platform specific detailed
design. By this decision, we accomplished two different goals. First of all, we
produced an abstract software design apart from platform specific details so that it
can be reused for different trajectory simulations that will target different platforms.
And we matched the artifacts of reuse infrastructure with the levels of MDA that
will enable us to leverage the future enhancements on it. Domain model is matched
with Computation Independent Model (CIM) of MDA, platform independent
abstract design of infrastructure specification is matched to Platform Independent
Model (PIM) of MDA and platform specific detailed design is matched to Platform
Specific Model (PSM) of MDA.

Reuse attempts on trajectory simulations in literature have been focused on code
and mathematical model reuse. With this research, we proposed knowledge reuse
and design reuse and code reuse from the ontology based reuse infrastructure. This
creates a distinction for this research in trajectory simulation reuse literature.
Infrastructure, as it is, serves number of artifacts that can be reused for trajectory
simulations like TSONT, Platform Independent Framework Architecture, MATSIX
Framework Architecture and MATSIX Code. With these artifacts, we also proposed
a methodology to produce reusable artifacts in future projects. As target reuse group
gains experience with the future projects, this experience can be formalized by
enhancing TSONT. The enhancements in TSONT can be reflected to Platform
Independent Framework Architecture to enable design reuse. As new frameworks
developed for different projects targeting different platforms and problem sets,
infrastructure developed in this thesis can be expanded by adding new framework

architectures and framework implementations.

The scope of this thesis is bounded to focus on trajectory simulation reuse targeting
the future projects. There is another spot that can be focused during a future

research. That is the legacy trajectory simulations. Semantic matching of the
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concepts and designs implemented in those simulations to TSONT seems a
promising research objective. This semantic matching will enhance the
interoperability of different simulations that make use of TSONT and will also
strengthen and enhance TSONT by making it refer to legacy implementations and

make use of the knowledge which is transformed to a product in those projects.

Measuring reuse is as important as developing a reuse infrastructure.
Institutionalizing the reuse infrastructure developed in this thesis, making it used in
future projects is one of the challenges that will be handled in the post thesis period.
As it is used in number of projects, it will be possible to measure reuse. It will
enable us to validate the proof of the expected increase in productivity and decrease
of the risk of the projects that depend on reuse infrastructure that is built in this

thesis.

TSONT captures the domain knowledge about design and development of trajectory
simulations. Here, there is another hard question. How can we make use of TSONT
to write the requirements of a specific trajectory simulation project? Developing
methodologies and tools to transform the domain knowledge captured in TSONT to
software or simulation requirements is another spot that can be listed in the future

research agenda of this thesis.

The reuse infrastructure in this thesis as we mentioned before focused on two main
paradigms, namely object oriented programming and function oriented
programming. Developing infrastructures for emerging paradigms like aspect
oriented programming, actor oriented programming, agent based programming and

distributed simulation can be added to future research agenda as new challenges.

As TSONT is transformed to design and code manually, there is an arguable issue
about the traceability of the knowledge captured in ontology to the foregoing
artifacts. In this thesis, we prepared a table that tries to capture this traceability as
far as possible. But as the automatic transformation of domain knowledge to design

and code is being studied, new tool or methodologies can be developed to trace the
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flow of the knowledge from domain to code. This is another future research

challenge.

This reuse infrastructure that consists of reusable domain knowledge, designs and
code can be regarded as the foundations of a trajectory simulation software product
line. Evolving this infrastructure to a software product line for trajectory simulation

is another future research focuss.

Trajectory simulation is one of the computational fields of mechanical engineering.
It can be pronounced as an application of system dynamics. Mechanical engineering
has a number of other computation intensive application areas on which number of
software development is carried out. These fields include structural mechanics,
computation fluid dynamics, computer integrated manufacturing, computer aided
design and robotics. The methodology proposed in this thesis can be applied in
those fields to make reuse work. So, developing reuse infrastructures for other fields

of mechanical engineering can be proposed as a future research topic.

Besides enabling reuse in mechanical engineering software, ontologies may work as
a glue to enable different engineering software work together to accomplish a goal.
Ontologies that will be developed for different computer aided engineering tools
may enable to develop collaborative design environments and integrate the design
and manufacturing processes seamlessly. Interoperability using ontologies in the

field of mechanical engineering is another future research direction.

Formalizing mechanical engineering body of knowledge is not only helpful on
reuse and interoperability but can also be used for problem solving. Ontology based
problem solving methodologies for mechanical engineering problems seem to be an

interesting research direction.

In this thesis, we developed and used ontology in trajectory simulation problem of
mechanical engineering. There is still lot to do either for trajectory simulation

problem or other problems of the mechanical engineering by using ontologies.
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Besides all future research topics mentioned above, it is time to remember the quote
of J.R.R. Tolkien. “There is nothing like looking, if you want to find something.
You certainly usually find something, if you look, but it is not always quite the

something you were after.”
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Figure 100 TSONT Missile Classification
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The letters of the acronyms in the missile classification is as follows. The first letter

is the launch environment of the vehicle:

A - Air

B - Multiple

C - Coffin (non-hardened container)

F - Individual

G - Runway or Ground

H - Silo Stored

L - Silo Launched

M - Ground Launched, Mobile

P - Soft Pad

R - Surface Ship

S - Space

U - Underwater

Second letter is the purpose of the vehicle:

C - Transport

D - Decoy

E - Special Electronics, Communication

G - Surface Attack

I - Interception
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L - Launch Detection

M - Scientific Measurements, Calibration
N - Navigation

Q - Drone, UAV

S - Space Operations Support

T - Training

U - Underwater Attack

W - Weather (probes or satellites gathering and/or distributing meteorological data)
The last letter defines the type of vehicle:
B - Booster

M - Guided Missile, Drone, UAV

N - Probe (suborbital sounding rocket)

R - Rocket (unguided vehicle)

S - Satellite
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The acronyms presented above in the taxonomy are as follows.

179

CMI_APL

= 7
'SMK_HCE )

(“smKk_coL
AIERAE



Table 3 Acronyms of Ammunition Classification

Projectile Description
Type Subtype
HEA High Explosive Round
SMK HCE Hexa-Chlorethane
WPH White Phosphorus
TTC Titanium Terra Chloride
MSP Multi-Spectral
COL Colored
BSP Bi-Spectral
ILL [lumination Round
CBL APL Bomblet — Antipersonnel
ATK Bomblet — Antitank
DUP Bomblet - Dual Purpose
CMI ATK Mines — Antitank
APL Mines — Antipersonnel
AAT GAT Guided Antitank
SFA Sensor Fuzed
ECM Electronic Countermeasure
LEA Leaflet
TRN Training
OTH Other type of projectiles
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APPENDIX B

SAMPLE CLASS DEFINITIONS FROM TSONT

Guided_Phase (instance of owl:Class) ) _IElliI
CLASS EDITOR =T

For Class: e Guided_Phase  (instance of owl Class)

r”ﬂ”"e |/5'“"=“’ 'r[’i”f"""‘ﬁﬂ’“"] DAnnotatiu-ns |j Q; .

|Guided_Phase |Q Property Valug | Lang
rdfs:comment »
| |
ORI i=iied I Hl Properties ﬁ ﬁ ﬂ: L ﬁ *

hasAutopilotModel  (single Autopilot_[odel)
Asserted Conditions ﬁ ﬁ q, & L P (sing| pilot_Moclel

ECESSARTEEES UFEICIENT b [ hasCASModel (=single CAS_Model)
@ ¥ hasAutopilotModel Autopilot_Modlel b [ hasGuidanceModel  (single Guidance_Modg
& ¥ hasCASModel CAS_Model b [ hasSensorModel (single CAS _Model)
@ ¥ hasGuidanceModel Guidance_Madsl = b (M) hasAerodynamicsModsl  (single Lerodynar
) ¥ hasSensorhodel Sensor_Madel b (M| hasAtmosphereModel  (multiple &tmospher
ﬂ ¥ servesUpdatePhaseStateandDerivatives Update_Guided Phase . > [[.] hasDynamicshadel  (single Dynamics._Mad
© Trajectory_Simulation_Phase HECE AR p (W hasEarthModel  (single Earth_Mocel)
\NHERITED b (M| hasGravityModel  (single Gravity_Moclel)
¥ hasferodynamicsModel Aerodynamics_Maodel [from Traject. ]| C > [[I] hasPhaseState (single Phase State)
W has&tmosphereModel Atmosphere_Model [from Trajectory_..]| E b (M) hasPhaseStatedrray  (single Phase_State |
W hasDynamicsModel Dynamics_Model [_from T|'aiPTc:to|",-'._SimuI...] c > [[.] hasPhaseStateDerivatives  (single Phase 9
% hasEarthiModel Earth_Model  [from Trajectory_Simulation_Ph..]| E - K
W hasGravityModel Gravity_Model [from Trajectory _Simulation..]| £ r [[.] Gt CICL IR LT T Lt
¥ hasPhaseState Phase_State  [from Trajectory_Simulation_P..] Z b W hasSolver (single Solver)
¥ hasPhaseStateArray Phase_State_Array  [from Trajectory_..][ € | b (M| hasTerminationhodel  (muttiple Termination |
¥ hasPhaseStateDerivatives Phase_State_Derivatives E b (M) servesComputePhaseTrajectory  (single Crf
: :ES;:T:::_T:;T;_EHonRecm.d[ fT:ﬁf‘Ei:;ﬂ:mi:;ﬁ:{?;:dphaoe] 5 b M| servesinitislizePhase  (single Inttialize_Phas
v h::TerminationModel Ter|11ination_M;:>ieI [f);;:l T|'aiect07'y'_5:...] i D [ e it St eanpivatares: |
W servesComputePhaseTrajectory Compute_Phase_Trajectory [
¥ servesintiaizePhase Inttialize_Phase [from Trajectory_Simul..]| E |
q] [»
| @ pisjoints L] L ‘% 52 ‘|
[ |
i&l & ® Logic iewr () Properties Yiew

Figure 102 TSONT Guided Phase
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& pPropelled_Phase (instance of owl:Class) =101 x|
CLASS EDITOR ar = [F T

For Class: E Propelled_Phase  (instance of owl Class)

[ Name | SameAs | DifferertFrom | [ JAnnotatins E * B

|Propelled_Phase |Q Property \Value | Lang
rdfs:comment e
r.ﬂ«sser‘ced Ini BN Properties ol O & @
P [ hasPropelantMaocdel  (=ingls Propeliant_o
Asserted Conditions ﬁ ﬁ Ql ‘ i e P il
b (M| hasAerodynamicshodel [ single Aerodyn
E MECESSARY & SUFFICIENT :
a % hasPropellantModel Propeliart_Model > [[I]hasAtmosphereModel (muttiple Atmosphe
@ ¥ servesUpdatePhaseStateandDerivatives Update_Propelled Al |- b (M| hasDynamicsModel  (single Dynamics o
: HECESSARY b [M]hasEarthModel  (single Earth_Model)
© Trajectory_Simulation_Phase b (M hasGravityModel  (single Gravity_Model)
: : : l_NHERITED b [M|hasPhaseState (single Phase_State)
% hasfercdynamicsModel Aerodynamics_Model  [from Traj..]| E -
% hasAtmosphereModel Atmosphere_Model  [from Trajecto. ]| C > [[l]hasPhaseStateArray taingle phase Sty
% hasDynamicsModel Dynamics_Model  [from Trajectory_Si. ][ C b [ hasPhaseStateDerivatives  (sinale Phase
% hasEarthModel Earth_Model [from Trajectory_Simulation_..]| C > [[I]hasPhaseTerminationHecord (=ingle Phag
% hasGravityModel Gravity_Model [from Trajectory_Simulat. ][ C b [WhasSclver (single Solver)
% hasPhaseState Phage_State  [from Trajectory_Simulation..]| C [ [[I]hasTerminationModel {muttiple Terminatior
% hasPhaseStateArray Phase_State_Array [from Trajector. ]| E c —— cingie G
% hasPhaseStateDerivatives Phase_State_Derivatives E > [[I]serves omp erhase ra,|.e ory” ".S"-":"IE
% hasPhaseTerminationRecord Phase_Termination_Record E P (W] servesintializePhase  (single Initialize_Phy
% hasSolver Saolver [from Trajectory_Simulation_Phase]| E | 4 [[I]servesUpdateP‘haseStsteand[:leri\rati\res
% hasTerminationModel Termination_Model [from Trajectary.. ]| E
¥ zervesComputePhazeTrajectory Compute_Phase_Trajectory| C
% servesinitializePhase Initialize_Phase [from Trajectory_Si.]| E
4] [ 1»
@P bisiocints & @ on o3 G
& & (Y Logic Wiew ) Properties Yiew

Figure 103 TSONT Propelled Phase
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@ 1can (instance of owl:Class) ) 1Ol x|
CLASS EDITOR =R
For Class: e ICAD  (instance of owl:Class)

[ Name | Sameas | DiffersrtFrom | [ JAniniotatians [ L

[icac |G Property Value | Lang
=1 relfs:comment Provide the required me_.

radfs:comment £

Provide the required meteorological conditions to the
models using ICAD Standard Atmosphere. The ICAD
Standanrd Atmesphere is a hypothetical medel of
vertical distribution of atmospheric temperature,
pressure, and density that, by international agresment,
is taken to be representative of the atmosphere for
purposes of pressure altimeter calibrations, aircraft
performance calculations and aircraft design,

Assertecl

M Properti N LS (F &

& & [ WY b [ servesComputeAtmosphere  (single O

Asserted Conditions

HECESSARY & SUFFICIENT

@ ¥ servesCompute Atmosphere Compme_Atmosphere_IC.i = | 4 | l | ]
MECESSARY

=) Atmosphere_Model @P pisjoints ﬁ Q: 5@ % [

| |

& & - Logic Wiew i Froperties View

Figure 104 TSONT ICAO
@ METB3 (instance of owl:Class) _|E|I5|

CLASS EDITOR HESRERT
For Class: e METE3 (instance of owl:Class)

rNsme rvS""“‘“‘r Bl.ﬁ‘ﬂl‘l!mﬁ‘ﬂm| [) Annotations |j Q; .
[vETB3 |G Property Value [ Lang
=1 relfsicomment Provide the required met. .
rdfs:comment &

Provide the required meteorological conclttions to the
models using STANAG 4061 LAND Adoption of a
Standard Ballistic Meteorological Messageg.

Asserted

-Prl:lpertii> ] O (3 &

servesComputeAtmosphere  (single
Asserted Conditions ﬁ ﬁ Q: Q > i . e

NECESSARY & SUFFICIENT
@ ¥ servesComputeAtmosphere Compute_Atmosphere_METE3 E
MECESSARY
&) Atmosphere_Model

4] : | [»

@D oisioints U @, 62 3 @

[ |

&1 & O] Lagic view [ Properties Wiew

Figure 105 TSONT METB3
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anard_Second_Order_CAS_Model {instance of owl:Class) ) = |EI[1|
CLASS EDITOR
For Class: e Four_Canard_Second_Order_CAS_Model  (instance of owl:Class)

r”ﬂme rm’rﬂwm‘I [J Annotations Eﬁ +* B

| Four_Canard_Second_Order_CAS_Model | (¥ Froperty Value | Lang

rdfs:comment &
L |

I Properties and Restrictions ﬁ ﬁ W, ﬁ .

v [I.] servesComputeControlSurfaceDeflections  (allValuesFrom Compute _Actual_Fin_Deflections_for_Four_Canard_Cortral)
ﬂ Compute_Actual_Fin_Deflections_for_Four_Canard_Caontral
¥ [ servesUpdateCASModelStateandDerivatives  (allValuesFrom Update_Second_Crder_CAS Model_State_and_Derivaties)
Update_Second_Order_CAS_Model_State_and_Derivaties [from Secod_Order_CAS_Mocdel]

1] [ [»

Eneﬁning Classes ﬁ Q: . .' Disjoints ﬁ Q: ‘r;'} ‘3. .

| L] | [+
i&l & () Logic Yiswe @) Properties View
Figure 106 TSONT Four Canard Second Order CAS Model
Three_DOF_Dynamics_Model ({instance of owl:Class) ;Ll;l_lll
RN ATy

CLASS EDITOR
For Class: e Three_DOF_Dynamics_Medel  (instance of owlClass)

r”ﬂ’“e rm’ramm‘] D.ﬂ.nno‘taﬁuns Eﬁ Q: .

| Three_DOF_Dynamics_Model |G Property Walue | Lang

rdfs:comment S
[ |

Il Properties and Restrictions ib ﬁ E: 8 ﬁ .
v [[l] hasCoordinateSystem  (allValuesFrom Earth_Coordinate_System)
ﬂ Earth_Coordinate_System
v [[I]hasstate (allvaluesFrom Three_DOF_Dynamics_Model_State, allvaluesFrom Dynamics_Model_State)
ﬂ Three_DOF_Dynamics_Model_State
Dynamics_Model_State [from Dynamics_Modlel]
v [[I] hasStateDerivatives  (allValuesFrom Three_DOF_Dynamics_Model_State_Derivatives)
ﬂ Three_DOF_Dynamics_Model_State_Derivatives
v [[l] serveslpdateDynamicModelStateandDerivatives  (allValuesFrom Update_Dynamics_Model_State_and_Derivatives 30
ﬂ Update_Dynamics_Model_State_and_Derivatives_3DOF
Update_Dynamics_Model_State_and_Derivatives [from Dynamics_Model]

<] | [»
Eneﬁning Class ﬁ Q: . @R pisjoints ﬁ % ‘é? ‘3' ‘
|

| |1
& ﬁ () Logic “iew: . Properties View

Figure 107 TSONT Three DOF Dynamics Model
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i curved_Earth_Model (instance of owkClass) _|EI|5[
CLASS EDITOR R NERT)

For Class: e Curved_Earth_Model  (instance of owl.Class)

i . o o = s -
r“ﬁ"'e r'-"“ ‘“-"-"-rm ere Ig”w“j“] DAnllutations |j Q: . I
|curved_Earth_Model |G Property Valug | Lang
rdfs:comment £
[ |
Il Properties and Restrictions ﬁ ﬁ q: 8 ﬁ .
v [I.] servesComputePositioninEarthCoordinates  (alValuesFrom Compute_Earth_Fixed_Location_for_Curved_Earth)
ﬂ Compute_Earth_Fixed_Location_for_Curved_Earth

Elneﬁning Classes ﬁ QP . .. Digjoints ﬁ q; ‘% ‘; .
[ |
& & ] Logic Wiew - Properties Wiew

-

Figure 108 TSONT Curved Earth Model

| Constant_G_Body_ Fixed_Gravity_Model (instance of owl:Class) _|EI|-£|
CLASS EDITOR r= F T

For Class: E Constant_G_Body_Fixed_Gravity_Model  (instance of owl. Class)

r”ﬂ"‘e rm;rnm{ﬁmﬁ] DAnnutatiuns |j ﬁ: .

|Constant_G_Body_Fixed_Gravity_Model @ Property Value | Lang
rdfs:comment &
[ ]
Il Properties and Restrictions 'l O ﬁ &
v [I-] hasCoordinateSystem  (all/aluesFrom Body_Coordinate_System)

Bocy_Coordinate_System [fram Body_Fixed_Gravity _Moclel]

v [I-] servesComputeGravitationalForce  (allValuesFrom Compute_Body_Fixed_Constamt_G_Gravitational _Fore
ﬂ Compute_Body_Fixed_Constant_G_Gravitational _Force
Compute_Gravitational_Force [fram Gravity_Model]

<]

[ I
Eﬂeﬁning Classes ﬁ Q: . .. Disjoints ﬁ Q: ‘a ‘3 .
] [ L ]

& & ) Lagic Wiew . Properties Wiew

Figure 109 TSONT Constant G Body Fixed Gravity Model
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& cuidance_Model (instance of owl:Class) }
i [B

CLASS EDITOR
For Class: e Guidance_Model  (instance of owl:Class)

EcR Y

[ Mame | SameAs | DifferertFrom | [ ahnatutiars
| Guidance_ocel |G Property Value | Lang
rdfs:comment e
[ ]

I Properties and Restrictions ib i L ﬁ .
¥ [ servesComputeCommandedAccelerations  (allValuesFrom Compute_Commanded_Accelsrations)

ﬂ Compute_Commanded_Accelerations

G e ‘I I.. Disjoints & @, ¥R 62 Ql

8 Logjic: Wiew ] Froperties Wiew

E Defining Classes

& B

Figure 110 TSONT Guidance Model

& Termination_Maodel {instance of owl:Class) i
CLASS EDITOR RN T
For Class: e Termination_Model  (instance of owl.Class)
- o
[ Name | SameAs | DifferentFrom | [ Yarnoisions B 2
|Terminatior1_|’u'lodel |Q Property Value | Lang
rdfs:comment &
[ ]

-Propei}ﬁ L ﬁ‘
ﬁ’ ﬁb Q: . b [ servesCheckTermination (single CI

MECESSARY & SUFFICIENT

ﬂ ¥ servesCheckTermination Check_Termination E
NECESSARY

@ Model

( Asserted m\]

Asserted Conditions

[ I

1]

@B pisjoints & | TR
| |
- o Properties “iew

Figure 111 TSONT Termination Model
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Solid_Rocket_Motor_Model_for_Point_Mass ({instance of owl:Class})

CLASS EDITOR =N ERT;
For Class: B Solid_Rocket_Motor_Model_for_Poirnt_Mass  (instance of owl Class)
5 e - [a]
[‘Name | Sameas | DifferentFrom | [ Tt B o B
|Solid_ﬁocket_Motor_r-node|_for_Point_r-nass |Q Property Value | Lang
rdfs:comment &
| |
ol wmm T

Il Properties and Restrictions
v [[l] hasCoordinateSystem  (allValuesFrom Earth_Coordinate_System)
@ Earth_Coordinate_System
¥ M) servesComputeThrustForce
ﬂ Compute_Point_Mass_Thrust_Force
¥ [ servesUpdateMotor StateandDerivatives
Update_Motor_State_and_Derivatives

{alValuesFrom Compute_Point_Mass_Thrust_Force)

(alvaluesFrom Update_Meotor_State_and_Derivatives)
[from Solid_Rocket_Motor _Model]

Eneﬁning Classes ﬁ Q: . ae Disjoints ﬁ Q: ‘3 ‘3- .
| il IS

& = [ Logic View @ Properies View

Figure 112 TSONT Solid Rocket Motor Model for Point Mass

& Euler (instance of owkClass)
CLASS EDITOR

For Class: e Euler (instance of owl.Class)

f”ﬁme rmkr“mﬁ”fﬂ [ J Annotations Eﬁ Q}. [

| Q Froperty Walue | Lang

|E|..|Ier

rdfs:comment
[ ]

-Propeﬁﬁq;‘ ﬁ;.
ﬁ ﬁ q: [N b M) servesintegrateStep

MECESSARY & SUFFICIENT

r Asserted ﬁe@m]

Asserted Conditions

ﬂ ¥ servesintegrateStep Integrate_Step_Euler El
NECESSARY
(% One_step

|.. Digjoints ﬁ Q; ‘% ‘! .l

& *‘ - i) Properties “iew

Figure 113 TSONT Euler Solver
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B Launcher_Data ({instance of owl:Class)

CLASS EDITOR
For Class: B Launcher_Data

r Mame rmlﬁm]

(instance of owl:Class)

| Launcher_Data

rdfs:comment

D Annotations
Property

1

T

Asserted Conditions

Tdeea

-Propeﬁiq;‘ ﬁ‘

b M| servesGetweaponData  (single Ged

- NECESSARY & SUFFICIENT
@2 ¥ servesGetvWeaponData Get_Launcher_Data =)
- NECESSARY
&) Weapon_Data
4 s [ [»
@D visioints T @ 62 63 @
[ |
& * - Logic View 18 Properties Yiew

Figure 114 TSONT Launcher Data

&) Point_Mass_Physicals (instance of owl:Class)
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21 Point_Mass_Physicals_Record (instance of owl:Class)

CLASS EDITOR
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il Atmosphere_Record (instance of owl:Class)
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Three_DOF_Dynamics_Model_State_Derivatives (instance of owl:Class)

LASS EDITOR on o BT
For Class: e Three_DOF_Dynamics_Model_State_Derivatives  (instance of owl Class)
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& Yectoral_Quantity ({instance of owl:Class)
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CLASS EDITOR
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& Munition (instance of owl:Class)
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APPENDIX C

A DAVE-ML EXAMPLE

<?xml version="1.0" standalone="no"?>

<!DOCTYPE DAVEfunc SYSTEM "DAVEfunc.dtd">
<!-- SRevision: 2.3 $§ -->
<DAVEfunc>
<fileHeader name="Update Body Fixed Six DOF Dynamic Model State and Derivatives">
<author name="Umut DURAK" org="TUBITAK-SAGE" xns="@bjax"/>
<fileCreationDate date="24/10/2005"/>
<description> This daveml fuction defines the model to calculate state derivatives of
Six

DOF Body Fixed Dynamics Model </description>

<!-- —=>
<!-- References >
<!-- —=>
<reference refID="[MIL95]" author="N/A" title="MIL-HDBK 1211"

Kitlphanesi" date="1995"/>

<modificationRecord modID="A">

accession="TUBITAK-SAGE

<author name="Umut DURAK" org="TUBITAK-SAGE" email="udurak@sage.tubitak.gov.tr"/>

<description> First Creation </description>
</modificationRecord>

</fileHeader>

<l—= ->

<!—— Input variables >
<l—= ->

<l—= ->

<!-- Ballistic Record —-=>
<l—= ->

<variableDef name="Mass" varID="mass" units="kg" symbol="mass">

<description> Mass in kg </description>
</variableDef>

<variableDef name="Ix" varID="Ix" units="kgm2" symbol="Ix">

<description> Axial Moment of Inertia </description>
</variableDef>

<variableDef name="Iy" varID="Iy" units="kgm2" symbol="Ix">

<description> Transverse Moment of Inertia in Y axis </description>

</variableDef>

<variableDef name="Iz" varID="Iz" units="kgm2" symbol="Iz">

<description> Transverse Moment of Inertia in Z axis </description>

</variableDef>

<!-- ->

<!--State —>
<!-- ->

<variableDef name="phi" varID="phi" units="rad" symbol="phi">

<description> Roll atitude </description>
</variableDef>

<variableDef name="theta" varID="theta" units="rad" symbol="theta">

<description> Pitch atitude </description>
</variableDef>

<variableDef name="psi" varID="psi" units="rad" symbol="psi">

<description> Yaw atitude </description>

</variableDef>

<variableDef name="p" varID="p" units="rad/s" symbol="p">
<description> Roll rate </description>

</variableDef>

<variableDef name="g" varID="g" units="rad/s" symbol="g">
<description> Pitch rate </description>

</variableDef>

<variableDef name="r" varID="r" units="rad/s" symbol="r">
<description> Yaw Rate </description>

</variableDef>

<variableDef name="u" varID="u" units="m/s" symbol="u">
<description> Body Fixed Velocity in X </description>

</variableDef>

<variableDef name="v" varID="v" units="m/s" symbol="v">
<description> Body Fixed Velocity in Y </description>

</variableDef>

<variableDef name="w" varID="w" units="m/s" symbol="w">
<description> Body Fixed Velocity in Z </description>

</variableDef>
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<!—- —-—>

<!-- Forces and Moments —-=>

<!—- —-—>

<variableDef name="FAX" varID="FAX" units="N" symbol="FAX">
<description> Aerodynamic Force in X </description>

</variableDef>

<variableDef name="FAY" varID="FAY" units="N" symbol="FAY">
<description> Aerodynamic Force in Y </description>

</variableDef>

<variableDef name="FAZ" varID="FAZ" units="N" symbol="FAZ">
<description> Aerodynamic Force in Z </description>

</variableDef>

<variableDef name="FGX" varID="FGX" units="N" symbol="FGX">
<description> Gravitational Force in X </description>

</variableDef>

<variableDef name="FGY" varID="FGY" units="N" symbol="FGY">
<description> Gravitational Force in Y </description>

</variableDef>

<variableDef name="FGZ" varID="FGZ" units="N" symbol="FGZ">
<description> Gravitational Force in Z </description>

</variableDef>

<variableDef name="LA" varID="LA" units="Nm" symbol="LA">
<description> Aerodynamic Moment in X </description>

</variableDef>

<variableDef name="MA" varID="MA" units="Nm" symbol="MA">
<description> Aerodynamic Moment in Y </description>

</variableDef>

<variableDef name="NA" varID="NA" units="Nm" symbol="NA">
<description> Aerodynamic Moment in Z </description>

</variableDef>

<!-- -—>

<!-- Output variables ——>
<!-- -—>

<variableDef name="udot" varID="udot" units="m/s2">
<description> Body fixed tranlational acceleration in X </description>
<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>udot</ci>
<apply>
<plus/>
<apply>
<times/>
<apply>
<plus/>
<ci>FAX</ci>
<ci>FGX</ci>
</apply>
<apply>
<power/>
<ci>mass</ci>
<cn type='integer'>-1</cn>
</apply>
</apply>
<apply>
<times/>
<ci>r</ci>
<ci>v</ci>
</apply>
<apply>
<times/>
<cn type='integer'>-1</cn>
<apply>
<times/>
<ci>g</ci>
<ci>w</ci>
</apply>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>
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<variableDef name="vdot" varID="vdot" units="m/s2">
<description> Body fixed tranlational acceleration in Y </description>
<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>vdot</ci>
<apply>
<plus/>
<apply>
<times/>
<apply>
<plus/>
<ci>FAY</ci>
<ci>FGY</ci>
</apply>
<apply>
<power/>
<ci>mass</ci>
<cn type='integer'>-1</cn>
</apply>
</apply>
<apply>
<times/>
<cn type='integer'>-1</cn>
<apply>
<times/>
<ci>r</ci>
<ci>u</ci>
</apply>
</apply>
<apply>
<times/>
<ci>p</ci>
<ci>w</ci>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>

<variableDef name="wdot" varID="wdot" units="m/s2">
<description> Body fixed tranlational acceleration in Z </description>
<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>wdot</ci>
<apply>
<plus/>
<apply>
<times/>
<apply>
<plus/>
<ci>FAZ</ci>
<ci>FGZ</ci>
</apply>
<apply>
<power/>
<ci>mass</ci>
<cn type='integer'>-1</cn>
</apply>
</apply>
<apply>
<times/>
<ci>g</ci>
<ci>u</ci>
</apply>
<apply>
<times/>
<cn type='integer'>-1</cn>
<apply>
<times/>
<ci>p</ci>
<ci>v</ci>
</apply>
</apply>
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</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>

<variableDef name="pdot" varID="pdot" units="rad/s2">
<description> Body fixed angular acceleration in X </description>
<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>pdot</ci>
<apply>
<times/>
<apply>
<plus/>
<ci>LA</ci>
<apply>
<times/>
<cn type='integer'>-1</cn>
<apply>
<times/>
<apply>
<plus/>
<ci>Iz</ci>
<apply>
<times/>
<cn type='integer'>-1</cn>
<ci>Iy</ci>
</apply>
</apply>
<ci>g</ci>
<ci>r</ci>
</apply>
</apply>
</apply>
<apply>
<power/>
<ci>Ix</ci>
<cn type='integer'>-1</cn>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>
<variableDef name="gdot" varID="gdot" units="rad/s2">
<description> Body fixed angular acceleration in Y </description>
<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>gdot</ci>
<apply>
<times/>
<apply>
<plus/>
<ci>MA</ci>
<apply>
<times/>
<cn type='integer'>-1</cn>
<apply>
<times/>
<apply>
<plus/>
<ci>Ix</ci>
<apply>
<times/>
<cn type='integer'>-1</cn>
<ci>Iz</ci>
</apply>
</apply>
<ci>p</ci>
<ci>r</ci>
</apply>
</apply>
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</apply>

<apply>
<power/>
<ci>Iy</ci>
<cn type='integer'>-1</cn>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>

<variableDef name="rdot" varID="rdot" units="rad/s2">
<description> Body fixed angular acceleration in Z </description>
<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>rdot</ci>
<apply>
<times/>
<apply>
<plus/>
<ci>NA</ci>
<apply>
<times/>
<cn type='integer'>-1</cn>
<apply>
<times/>
<apply>
<plus/>
<ci>Iy</ci>
<apply>
<times/>
<cn type='integer'>-1</cn>
<ci>Ix</ci>
</apply>
</apply>
<ci>p</ci>
<ci>g</ci>
</apply>
</apply>
</apply>
<apply>
<power/>
<ci>Iz</ci>
<cn type='integer'>-1</cn>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>

<variableDef name="phidot" varID="phidot" units="rad/s">
<description> Rate of change of roll attitute </description>
<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>phidot</ci>
<apply>
<plus/>
<ci>p</ci>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>r</ci>
<apply>
<cos/>
<ci>phi</ci>
</apply>
</apply>
<apply>
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<times/>

<ci>g</ci>
<apply>
<sin/>
<ci>phi</ci>
</apply>
</apply>
</apply>
<apply>
<tan/>
<ci>theta</ci>
</apply>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>

<variableDef name="thetadot" varID="thetadot" units="rad/s">
<description> Rate of change of pitch attitute </description>

<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>thetadot</ci>
<apply>
<plus/>
<apply>
<times/>
<ci>g</ci>
<apply>
<cos/>
<ci>phi</ci>
</apply>
</apply>
<apply>
<times/>
<cn type='integer'>-1</cn>
<apply>
<times/>
<ci>r</ci>
<apply>
<sin/>
<ci>phi</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>

<variableDef name="psidot" varID="psidot" units="rad/s">
<description> Rate of change of yaw attitute </description>

<calculation>
<math xmlns='http://www.w3.0rg/1998/Math/MathML"'>
<apply>
<eq/>
<ci>psidot</ci>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>r</ci>
<apply>
<cos/>
<ci>phi</ci>
</apply>
</apply>
<apply>
<times/>
<ci>g</ci>
<apply>
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<sin/>

<ci>phi</ci>
</apply>
</apply>
</apply>
<apply>
<power/>
<apply>
<cos/>
<ci>theta</ci>
</apply>
<cn type='integer'>-1</cn>
</apply>
</apply>
</apply>
</math>
</calculation>
<isOutput/>
</variableDef>

</DAVEfunc>
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APPENDIX D

SAMPLE CLASS DIAGRAMS FROM PLATFORM INDEPENDENT

FRAMEWORK ARCHITECTURE

cd Coordinate_Systems

Coordinate_System

+ Inertial_Refererence_Frame_Euler_Angles:

+ TransfromTo(Vectoral_Quantity) : Vectoral_Quantity

N

Wind_Coordinate_System Weapon_Coordinate_Sytem Body_Coordinate_System

Earth_Coordinate_System

Figure 125 Platform Independent Coordinate System Classes

cd Aerodynamic

Aerodynamics_Model

+ Coordinate_System: Coordinate_System

+ ComputeAerodynamicForce(Dynamics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : Aerodynamic_Force

Pojnt_Mass_Aerodynamics_Model

+ ComputeAerodynamicForce(Dynamics_Model_State[ Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : Aerodynamic_Force

Six_DOF_Aerodynamics_Model

+ ComputeAerodynamicForce(Dynamics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : Aerodynamic_Force

+ ComputeAerodynamicsMoment(Dynamics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : Aerodynamics Moment

Body_Fixed_Six_DOF_Aerodynamics_Model

+ ComputeAerodynamicForce(Dynamics Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record)

+ ComputeAerodynamicsMoment(Dynanfics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : y S Moment

Aerodynamic_Force

[

Earth_Fixed_Six_DOF_Aerodynamics_Model

-
+

ComputeAerodynamicForce(Dynamics Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : Aerodynamic_Force
ComputeAerodynamicsMoment(Dynamics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : Aerodynamics_Moment

Figure 126 Some of Platform Independent Aerodynamics Model Classes
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cd Atmosphere_Model /

Atmosphere_Model

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

METB3
ICAO_Atmosphere
j + ComyputeAtmosphere(Position_Vector) : Atmosphere_Record
+ ComputeAtmosphere(Position_Vector): Atmosphere_Record
METGM METCM
+ ComputeAtmosphere (Position_Vector) : Atmosphere_Record + ComputeAtmosphere(Position_Vector) : Atmosphere_Record

Figure 127 Platform Independent Atmosphere Model Classes

Dynamics_Model

+ CoordinateSystem: Coordinate_System
Dynamics_Model_State: Dynamics_Model_State
+ Dynamics_Model_State_Derivatives: Dynamics_Model_State_Derivatives

+

UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives
D

In_| her_ ics_Modgl

+ UpdateDynamicsModelStateAndDerivatives(Mpss, Mofnent_Vector, Force| Vector[]) {Dynamics_Model_State_Derivatives

Earth_Fixed_Six_DOF_Dynamics_Model

+ UpdateDynamicsM AndDerivati ass, Moment_Vectof, Force_Vector[]) : Qynamics_Nodel_State_Derivatives

Body_Fixed_Six_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Earth_Fixed_Five_DOF_Dynamics_Mgdel

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vegctor[]) : Dynamics_Model_State_Derivatjves

Body_Fixed_Five_DOF_Dynamics_Model

tive

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector]]) : Dynamics_Model_State_Deriv

Three_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Dg¢rivatives

Modified_Point_Mass_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Figure 128 Platform Independent Dynamics Model Classes
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cd Earth_Model

Earth_Model

+ ComputePositionInEarthCoordinates(Position_Vector) : Position_Vector

Round_Earth

+ ComputePositioninEarthCoordinates(Position_Vector) : Position_Wector

Flat_Earth_Model

+ ComputePositionInEarthCoordinates(Position_Vector) : Position_Vector

Figure 129 Platform Independent Earth Model Classes

cd Gravity_Model

Gravity_Model

+ Coordinate_System: Coordinate_System

+ ComputeGravitationalForce(Mass, Position_Vector) : Gravitational _Force

Earth_Fixed_Constant_Gravity Model

+ ComputeGravitationalForce(Mass, Position_Vector) : Gravitat\inalfForce

\

Body_Fixed_Constant_Gravity_Model

+ ComputeGravitationalForce(Mass, Position_Vector) : Gravitational_Force

Figure 130 Platform Independent Gravity Model Classes
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cd Aerodynamics_Data

Aerodynamics_Data

+ GetAerodynamics() : Aerodynamics_Record

Vi

Six_DOF Aerodynar/s D%la

+ GetAerodynamics(Actual_Fin_Deflections, Dynam‘\csﬁModeLSta?Atmosp/erefRicord) : Aerodynamics_Record

/ /

Five_DOF_Aerodynamics_Da

+ GetAerodynamics(Actual_Fin_Deflections, Dynam'\cs_ModeI_State,/‘tmosphere_\ﬂecord) : Aerodynamics_Record

I

Point_Mass_Aerodynamics_Dat:

+ GetAerodynamics(Dynamics_Model_State, Atmosphere_Record) : Aerodynam\cs_Record

\

Modified_Point_Mass_Aerodynamics_Data

+ GetAerodynamics(Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

Figure 131 Platform Independent Aerodynamics Data Classes

cd Trajectory_Simulation_Solver /

Solver

+ IntegrateStep(UpdateStateAndDerivatives®, Time, Phase_State_Derivatives, Phase_State*) : Void

fﬁK

+ IntegrateStep(UpdateStateAndDey'éatives*, Time, Phase\StatefDerivatNasefState') : Void

/

\

/

\ RK4

+ IntegrateS)!p(UpdateStateAndDerivatives*, Ti%i, Phase_State_Derivatives, Phase_State*) : Void

/

\

RK5 \

+ IntegrateStep(UpdateStateAndDerivatives®, Time, PhasefStateXEerivatives, Phase_State*) : Void

\

Euler

+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

Figure 132 Platform Independent Solver Classes
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cd Trajectory_Simulation_Systems /

Autopilot

+

Autopilot_Data: Aerodynamics_Data

CAs

+ CAS_Data: CAS_Data

Munition_Subsystem

Fuze

o

Fuze_Data: Fuze Data

—/

Guidance_System

+ Guidance_Data: Guidance Data

Munition

+ Munition_Subsystem: Munition_Subsystem
+ Platform: Weapon

L—

L

Weapon

+ Weapon_Data: Weapon_Data

Propellant

Sensor

+ Sensor_Data: Sensor_Data

Charge

+ Charge_Data: Charge_Data

Rocket_Motor

+ Rocket_Motor_Data: Rocket Motor_Data

Figure 133 Platform Independent Munition Subsystem Classes
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APPENDIX E

TSONT TO MATSIX CODE TRACEABILITY

Table 4 TSONT to MATSIX Code Traceability

Platform Independent
TSONT Framework Architecture MATSIX Architecture |Code
Coordinate System Coordinate System cs @cs
Body_Coordinate_System |Body Coordinate System bcs @bcs
Earth_Coordinate_System |Earth Coordinate System ecs @ecs

'Wind_Coordinate_System

'Wind Coordinate System

'Weapon_Coordinate_Syste
m

'Weapon Coordinate System

Trajectory_Simulation

Trajectory Simulation

trajectory_simulation

@trajectory_simulation

Trajectory_Simulation_Co
mposite_Data

Trajectory Simulation Composite
Data

Model

Trajectory_Simulation_Models

Aerodynamics_Model

Aerodynamics_Model

Body_Fixed_Five_DOF_A
erodynamics_Model

Body_Fixed_Five_ DOF_Aerodyn
amics_Model

Body_Fixed_Six_DOF_Ae
rodynamics_Model

Body_Fixed_Six_DOF_Aerodyna
mics_Model

aerodynamics_model

@aerodynamics_model

Earth_Fixed_Six_DOF_Ae
rodynamics_Model

Earth_Fixed_Six_DOF_Aerodyna
mics_Model

Earth_Fixed_Five DOF_A
erodynamics_Model

Earth_Fixed_Five_ DOF_Aerodyn
amics_Model

Five_DOF_Aerodynamics_
Model

Five_DOF_Aerodynamics_Model

Modified_Point_Mass_Aer
lodynamics_Model

Modified_Point_Mass_Aerodyna
mics_Model

Point_Mass_Aerodynamics
_Model

Point_Mass_Aerodynamics_Mod
el

Six_DOF_Aerodynamics_
Model

Six_DOF_Aerodynamics_Model

Three_ DOF_Aerodynamics
_Model

Three_ DOF_Aerodynamics_Mod
el

Atmosphere_Model

Atmosphere_Model

atmosphere_model

@atmosphere_model

ICAO ICAO_Atmosphere icao_atmosphere_model @icao_atmosphere_model
METB3 METB3
METCM METCM
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Platform Independent

TSONT Framework Architecture MATSIX Architecture |Code

METGM METGM

Autopilot_Model Autopilot_Model autopilot_model @autopilot_model
CAS_Model CAS_Model

Four_Canard_Second_Orde|
r_CAS_Model

Second_Order_CAS_Model

cas_model

@cas_model

Dynamics_Model

Dynamics_Model

Body_Fixed_Five_DOF_D
ynamics_Model

Body_Fixed_Five_DOF_Dynami
cs_Model

Body_Fixed_Six_DOF_Dy
namics_Model

Body_Fixed_Six_DOF_Dynamics
_Model

dynamics_model

@dynamics_model

Earth_Fixed_Five_ DOF_D
ynamics_Model

Earth_Fixed_Five_DOF_Dynami
cs_Model

Earth_Fixed_Six_DOF_Dy
namics_Model

Earth_Fixed_Six_DOF_Dynamics
_Model

In_Launcher_Dynamics_M
odel

In_Launcher_Dynamics_Model

in_launcher_dynamics_model

@in_launcher_dynamics_mod
el

Modified_Point_Mass_Dyn
amics_Model

Modified_Point_Mass_Dynamics
_Model

Three_DOF_Dynamics_M
odel

Three_DOF_Dynamics_Model

Earth_Model

Earth_Model

Flat_Earth_Model

Flat_Earth_Model

earth_model

@earth_model

Curved_Earth_Model

Round_Earth

round_earth_model

@round_earth_model

Gravity_Model

Gravity_Model

Constant_G_Body_Fixed_
Gravity_Model

Body_Fixed_Constant_Gravity_
Model

Constant_G_Earth_Fixed_
Gravity_Model

Earth_Fixed_Constant_Gravity_
Model

gravity_model

@gravity_model

Guidance_Model

Guidance_Model

guidance_model

@guidance_model

Cubic_Guidance_Model

Cubic_Guidance_Model

cubic_guidance_model

@cubic_guidance_model

PN_Guidance_Model

PN_Guidance_Model

pn_guidance_model

@pn_guidance_model

Parabolic_Guidance_Model|

Parabolic_Guidance_Model

parabolic_guidance_model

@parabolic_guidance_model

Launcher_Model

Launcher_Model

Simple_Launcher_Model

launcher_model

@launcher_model

Sensor_Model

Sensor_Model

Termination_Model

Termination_Model

termination_model

@termination_model

Thruster_Model

Thruster_Model

Body_Fixed_Six_DOF_Ro
cket_Motor_Model

Body_Fixed_Six_DOF_Solid_Ro
cket_Motor_Model

Center_Burning_Solid_Rocket M
otor_Model

rocket_motor_model

@rocket_motor_model

Earth_Fixed_Six_DOF_Solid_Ro

cket_Motor_Model

@six_dof_rocket_motor_mode
1
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Platform Independent

TSONT Framework Architecture [MATSIX Architecture |Code
End_Burning_Solid_Rocket_Mot
or_Model

Solid_Rocket_Motor_Mod [Point_Mass_Solid_Rocket_Motor

el_for_Point_Mass _Model

Parameter Trajectory Simulation Parameters

Aerodynamics Aerodynamics_Data

Five_DOF_Aerodynamics [Five_DOF_Aerodynamics_Data

Modified_Point_Mass_Aer [Modified_Point_Mass_Aerodyna

lodynamics mics_Data

Point_Mass_Aerodynamics [Point_Mass_Aerodynamics_Data

Six_DOF_Aerodynamics |Six_DOF_Aerodynamics_Data |aerodynamics @aerodynamics

Autopilot_Data

Autopilot_Data

autopilot_data

@autopilot_data

CAS_Data

CAS_Data

Second_Order_CAS_Data

Second_Order_CAS_Data

cas_data

@cas_data

Charge_Data

Charge_Data

Fuze_Data

Fuze_Data

Guidance_Data

Guidance_Data

|_guidance_data

@guidance_system_data

Physical_Data

Physical_Data

Point_Mass_Physicals

Point_Mass_Physicals

Six_DOF_Physicals

Six_DOF_Physicals

physicals

@physicals

Six_DOF_Physicals_for_Thrusted

physicals_for_thrusted

@physicals_for_thrusted

Propellant_Data

Solid_Rocket_Motor_Data

Rocket_Motor_Data

Point_Mass_Solid_Rocket_
Motor_Data

Point_Mass_Rocket_Motor_Data

Rigid_Body_Solid_Rocket
_Motor_Data

Rigid_Body_Rocket_Motor_Data

rocket_motor_data

@rocket_motor_data

Sensor_Data

Sensor_Data

'Weapon_Data

'Weapon_Data

weapon_data

@weapon_data

Laucher_Data

Laucher_Data

launcher_data

@launcher_data

Trajectory_Simulation_Pha
se

Trajectory Simulation Phases

Phase

Phase

phase

@phase

Guided_Phase

Guided_Phase

guided_phase

@guided_phase

In_Launcher_Phase

In_Launcher_Thrusted_Phase

in_launcher_thrusted_phase

@in_launcher_thrusted_phase

Thrusted_Phase

Thrusted_Phase

thrusted_phase

@thrusted_phase

Trajectory Simulation
Quantity

Trajectory Simulation Quantities

Trajectory Simulation
Solver

Trajectory Simulation Solvers
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Platform Independent

TSONT Framework Architecture MATSIX Architecture |Code
Euler Euler

Third_Order_RK RK3

Fourth_Order_RK RK4

Fifth_Order_RK RK5

Trajectory Simulation

Object Trajectory Simulation Systems

Autopilot Autopilot autopilot @autopilot
CAS CAS cas @cas
Charge Charge

Fuze Fuze fuze @fuze

Guidance_System

Guidance_System

|_guida.nce_system

@guidance_system

Munition

Munition

muntion

@munition

Munition_Subsystem

Munition_Subsystem

Propellant Propellant

Rocket_Motor Rocket_Motor rocket_motor @rocket_motor

Sensor Sensor

'Weapon 'Weapon 'weapon @weapon
aircraft @aircraft_data
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APPENDIX F

SAMPLE CLASS DIAGRAMS FROM MATSIX ARCHITECTURE

cd Trajectory_Simulation /

trajectory_simulation

munition: muntion
phase_array: phasel[]
trajectory: Trajectory

ComputeTrajectory(trajectory_simulation) : trajectory
get() : void

Initialize(trajectory_simulation) : trajectory_simulation
set() : void

trajectory_simulation() : trajectory_simulation

+ + + + +

Figure 134 MATSIX Trajectory Simulation

cd Coordinate_Systems /

cs

+ Inertial_Refererence_Frame_Euler_Angles:

+ cs():cs
SetEulerAngles(cs, EulerAngles) : void
+ TransfromTo(vectoral_quantity, cs) : vectoral_quantity

/

bcs ecs

4y

+ bes() : bes + ecs():ecs

Figure 135 MATSIX Coordinate System Classes
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cd Aerodynamics_Model ~

aerodynamics_model

Coordinate_System: cs

aerodynamics_model() : aerodynamics_model

ComputeAerodynamicForce(aerodynamics_model, aerodynamics_record, physicals record, atmosphere_record, dynamics_model_state) : aerodynamic_force
ComputeAerodynamicsMoment(aerodynamics_model, aerodynamics record, physicals_record, atmosphere_record, dynamics_model_state) : aerodynamics_moment
get() : void

set() : void

o+

Figure 136 MATSIX Aerodynamics Model

cd Atmosphere_Model /

atmosphere_model

- density_array: density[]

- height_array: height[]

- pressure_array: pressure[]

- speed_of_sound_array: speed_of_sound]]
- temperature_array: temperature[]
wind_array: wind([]

+ atmosphere_model() : atmosphere_model

+ ComputeAtmosphere(atmosphere_model, position_vector) : atmosphere_record
+ get() : void

+ set() : void

icao_atmosphere_model

+ icao_atmosphere() : icao_atmosphere_model

Figure 137 MATSIX Atmosphere Model

cd CAS_Model ~

cas_model

+ CAS_Model_State: cas_model_state
CAS_Model_State_Derivatives: cas_model_state_derivatives

e

cas_model() : cas_model

ComputeControlSurfaceDeflections(cas_model) : actual_fin_deflections

get() : void

set() : void

UpdateCASModelStateandDerivatives(cas_model, commanded_fin_deflections, cas_record) : cas_model_state_derivatives

+ o+ + + o+

Figure 138 MATSIX CAS Model
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cd Earth_Model

earth_model

+ ComputePositionInEarthCoordinates(position_vector) : position_vector
+ eath_model() : earth_model

i

round_earth_model

+ ComputePositionInEarthCoordinates(position_vector) : position_vector
+ round_earth_model() : round_earth_model

Figure 139 TSONT Earth Model

cd Launcher_Model /

launcher_model

+ ComputeFrictionForce(launcher_model, gravitational_force, weapon_record) : friction_force
+ get() : void

+ launcher_model() : launcher_model

+ set() : void

Figure 140 MATSIX Launcher Model

cd Thruster_Model

rocket_motor_model

cs: cs
state: rocket _motor_state
state_derivatives: rocket_motor_state derivatives

+ 4+ + + + o+

ComputeThrustForce(rocket_motor_model, rocket_motor_record, mass, pressure) : thrust_force
ComputeThrustMoment(rocket_motor_model, thrust_force, physicals_record) : thrust_moment
get() : void

rocket_motor_model() : rocket_motor_model

set() : void

UpdateMotorStateandDerivatives(rocket_motor_model, mass) : void

Figure 141 MATSIX Rocket Motor Model
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cd Aerodynamics_Data

aerodynamics

- cddata:

- cldeldata:

- clpdata:

- cmadata:

- cmddata:

- cmgqdata:

- czadata:

- czddata:

- czqdata:

- machpoints:

+ aerodynamics() : aerodynamics

+ get(aerodynamics, variant) : variant

+ GetAerodynamics(aerodynamics, actual_fin_deflections, dynamics_model_state, atmosphere_record, physicals_record) : aerodynamics_record

+ GetAutopilotAerodynamics(aerodynamics, actual_fin_deflections, dynamics_model_state, atmosphere_model, physicals_record) : autopilot_aero_record
+ set(aerodynamics, variant) : aerodynamics

Figure 142 MATSIX Aerodynamics

cd TrajectoryﬁSimuIationfSystems/

autopilot
- ap_data: autopilot_data muntion
+ autopilot() : autopilot - aerodynamics: aerodynamics

4

get() : void - autopilot: autopilot
+ set() : void - fuze: fuze
- guidance_system: guidance_system

- physicals: physicals
- thruster: thruster

cas + weapon: weapon
- CAS_Data: cas_data + get() : void
+ munition() : munition
+ cas():cas + set() : void
+ get() : void
+ set() : void

weapon
fuze + weapon_data: weapon_data

- F Data: f

uze_Data: fuze_data > @)l
+ fuze(): fuze & elpseld
+ get() : void
+ set() : void

rocket_motor
guidance_system - rocket_motor_data: rocket_motor_data

- guidance_system_data: guidance_data + get() : void

+ set() : void

+ get() : void
guidance_system() : guidance_system
+ set() : void

+

Figure 143 MATSIX Trajectory Simulation Systems
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APPENDIX G

LYNX DATA

Table 5 LYNX Data

PHYSICALS

Diameter 0.227 m
Length 2.7m
Reference Mass 135.1 kg
Reference CG 1.7m

Reference Inertia

Matrix

[1.1600; 0 125 0; 0 0 125] kgm?2

Initial CG

1.97 m

Initial Inertia Matrix

[1.6500;01650;00 165] kgm2

AERODYNAMICS

Mach Points [0.1.33.53.71.861.001.051.121.191.27 1.36 1.46
1.58 1.71 1.87 2.04 2.23 2.46 2.71 3.00]

Cd, [0-.3471 -.3563 -.3626 -.3620 -.4187 -.6075 -.6821 -
6427 -.5933 -.5504 -.5208 -.5010 -.4859 -.4809 -.4731 -
4812 -.4423 -.4114 -.3819 -.3508]

Cz, [0-.2684 -.2731 -.2792 -.2852 -.2993 -.3378 -.3402 -
3368 -.3338 -.3196 -.3110 -.2964 -.2674 -.2506 -.2361 -
2218 -.2062 -.1914 -.1776 -.1639]

Czs [0.04710 .04826 .04966 .05160 .05647 .06867 .06111

05658 .05286 .05045 .04882 .04528 .04482 .04250
.04062 .03865 .03586 .03325 .03077 .02808]
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Cm, [0 -.2501 -.2462 -.2425 -.2268 -.1908 -.09181 -.2532 -
3466 -.4242 -.3229 -.3217 -.3555 -.2542 -.2178 -.1743 -
1366 -.1065 -.08035 -.05590 -.03951]

Cmy [0 -.2830 -.2933 -.3064 -.3206 -.3537 -.4417 -.4402 -
4299 -.4193 -.3981 -.3715 -.3224 -.2670 -.2314 -.2045 -
1819 -.1596 -.1406 -.1241 -.1074]

Cmg [027.30 29.98 33.68 39.51 30.80 27.09 27.63 26.75
25.30 17.24 16.82 16.20 14.29 13.46 12.67 12.26 11.53
10.50 9.806 9.202]

Clp [0.02245 .02261 .02256 .02311 .02529 .02585 .01605
01136 .007408 .007540 .009875 .01189 .01540 .01822
02086 .02286 .02316 .02316 .02288 .02215]

Cly [0.01194 .01203 .01201 .01232 .01352 .01384 .007377
004822 .002651 .002744 .004050 .005188 .007141
008722 .01018 .01127 .01144 .01144 .01129 .01089]

AUTOPILOT DATA

Pitch and Yaw Autopilot

Wn 10

Ksi 0.707

Mu 1

Roll Autopilot

Wn 12

Ksi 0.7

LAUNCHER DATA

Friction Coefficient 0

Launcher Length 3

ROCKET MOTOR DATA
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Specific Impulse 2100 Ns/kg
Exit Area 0.03m2
Reference Pressure 101325.018Pa

Reference Fuel Mass

108.14595 kg

Mass Flow Data
Time(s) vs

Mass Flow (kg/s)

[0 0;

0.049 30.295908145179933;
0.099 29.502196193265007;
0.149 28.785543654157355;
0.199 28.330893118594435;
0.249 27.953301995838792;
0.299 27.614240579486783;
0.349 27.271326192494413;
0.399 26.970794482546044;
0.449 26.516143946983124;
0.499 26.215612237034755;
0.549 25.83802111427911;
0.599 25.572166140094012;
0.649 25.421900285119825;
0.699 25.15604531093473;
0.749 25.08283886876782;
0.799 25.005779455960546;
0.849 24.85551360098636;
0.899 24.778454188179087;
0.949 24.6281883332049;

0.999 24.589658626801263;
1.049 24.55498189103799;
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1.099 24.40086306542344;
1.149 24.289126916852894;
1.199 24.212067504045617;
1.249 24.061801649071434;
1.299 24.250597210449257,
1.349 23.950065500500884;
1.399 23.950065500500884;
1.449 23.87300608769361;
1.499 23.87300608769361;
1.549 23.834476381289974;
1.599 23.7612699391230064;
1.649 23.684210526315788;
1.699 23.684210526315788;
1.749 23.684210526315788;
1.799 23.64568081991215;
1.849 23.64568081991215;
1.899 23.495414964937968;
1.949 23.456885258534328;
1.999 23.41835555213069;
2.049 23.26808969715651;
2.099 22.967557987208135;
2.149 22.9290282808045;

2.199 22.817292132233952;
2.249 22.663173306619402;
2.299 22.47437774524158;
2.349 22.362641596671033;
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2.399 22.362641596671033;
2.449 22.51290745164522;
2.499 22.51290745164522;
2.549 22.135316328889573;
2.599 21.00254296062264;
2.649 19.037527934037143;
2.699 16.317330661940357;
2.749 13.18486553132465;
2.799 10.726670262772597,
2.849 8.800184942590738;
2.899 7.405409570779071;
2.949 6.157047083301225;
2.999 5.324805424982661;
3.049 4.457887030900824;
3.099 3.702704785389535;
3.149 3.059258688448794;
3.199 2.454342297911609;

3.249 1.92648532018186;

3.299 1.471834784618941;
3.349 1.059566926100023;
3.399 0.678122832704015;
3.449 0.339061416352007;
3.499 0.077059412807274;
3.52  05]
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APPENDIX H

LYNX SAMPLE RUNS

Table 6 1* LYNX Sample Run Parameters

Elevation 40 Deg.
Azimuth 0 Deg.
Guidance Start Range 8000 m
Target Range 25000 m
Vertical Angle of Fall 45 Deg.
Horizontal Angle of Fall 0 Deg.

5000

Lynx Trajectory

4500

4000

3500
—. 3000
£

2500

Altitude [

2000

1800 |

1000

500

1 15 2
Range (m)

Figure 144 1* LYNX Sample Run Trajectory Plot
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Elevator Angle vs Time
'05 T T T T T T T

]
o)

Elevatar Angle (deg.]
~J
m

-3
-35
-4
-4.5
an 40 50 g0 70 aa a0 100
Tirme ()

Figure 1451% LYNX Sample Run Elevator Angle vs. Time Plot

Angle of Attack vs. Time
E T T T T T T

o 158
= i m i

Angle of Attack (ded)
(1)
(8]

3
245
2
15
"] 1 1 1 1 1 1 1
30 40 a0 B0 70 a0 a0 100
Tirme

Figure 146 1" LYNX Sample Run Elevator Angle of Attack vs. Time Plot
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Table 7 2" LYNX Sample Run Parameters

Elevation 55 Deg.
Azimuth 0 Deg.
Guidance Start Range 8000 m
Target Range 25000 m
Vertical Angle of Fall 45 Deg.
Horizontal Angle of Fall 0 Deg.

Lynx Trajectory
5000 . .

4500 -
4000
3500
—. 3000 -

2500

Altitude {m

2000

1500

1000

S00

D Il 1 1 1
a 0.5 1 1.5 2 25

Range (m) w0t

Figure 147 2" LYNX Sample Run Trajectory Plot
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Elevator Angle vs. Time
EI T T T T T T T

Elevator Angle (deg.)

_? | 1 1 1 | | 1
40 50 G0 70 50 a0 100 110

Tirme (s)

Figure 148 2" LYNX Sample Run Elevator Angle vs. Time Plot

Angle of Attack ve. Time

1
40 50 g0 70 a0 a0 100 110
Tirne (3]

Figure 149 2" LYNX Sample Run Elevator Angle of Attack vs. Time Plot
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APPENDIX I

PUMA DATA
Table 8 PUMA Data
PHYSICALS
Diameter 0.227 m
Length 2.7m
Reference Mass 135.1 kg
Reference CG 1.7m

Reference Inertia

[1.1600; 0125 0; 0 0 125] kgm?2

Matrix

AERODYNAMICS

Mach Points [0.1.33.53.71.861.001.051.121.19 1.27 1.36 1.46
1.58 1.71 1.87 2.04 2.23 2.46 2.71 3.00]

Cd, [0 -.3471 -.3563 -.3626 -.3620 -.4187 -.6075 -.6821 -
6427 -.5933 -.5504 -.5208 -.5010 -.4859 -.4809 -.4731 -
4812 -.4423 -.4114 -.3819 -.3508]

Cz, [0 -.2684 -.2731 -.2792 -.2852 -.2993 -.3378 -.3402 -
.3368 -.3338 -.3196 -.3110 -.2964 -.2674 -.2506 -.2361 -
2218 -.2062 -.1914 -.1776 -.1639]

Cz, [0.04710 .04826 .04966 .05160 .05647 .06867 .06111
05658 .05286 .05045 .04882 .04528 .04482 .04250
.04062 .03865 .03586 .03325 .03077 .02808]

Cm [0 -.2501 -.2462 -.2425 -.2268 -.1908 -.09181 -.2532 -

3466 -.4242 -.3229 -.3217 -.3555 -.2542 -.2178 -.1743 -
1366 -.1065 -.08035 -.05590 -.03951]

223




Cmy [0 -.2830 -.2933 -.3064 -.3206 -.3537 -.4417 -.4402 -
4299 -.4193 -.3981 -.3715 -.3224 -.2670 -.2314 -.2045 -
1819 -.1596 -.1406 -.1241 -.1074]

Cmg [027.3029.98 33.68 39.51 30.80 27.09 27.63 26.75
25.3017.24 16.82 16.20 14.29 13.46 12.67 12.26 11.53
10.50 9.806 9.202]

Clp [0.02245 .02261 .02256 .02311 .02529 .02585 .01605
.01136 .007408 .007540 .009875 .01189 .01540 .01822
.02086 .02286 .02316 .02316 .02288 .02215]

Cly [0.01194 .01203 .01201 .01232 .01352 .01384 .007377
.004822 .002651 .002744 .004050 .005188 .007141
.008722 .01018 .01127 .01144 .01144 .01129 .01089]

AUTOPILOT DATA

Pitch and Yaw Autopilot

Wn 10

Ksi 0.707

Mu 1

Roll Autopilot

Wn 12

Ksi 0.7
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APPENDIX J

PUMA SAMPLE RUNS

Table 9 1* PUMA Sample Run Parameters

Altitude 11000 m
Velocity 250 m/s.
Guidance Start Range 200 m
Target Range 20000 m
Range vs. Altitdude
12000 : . :
10000 + i
8000 - .
E
< 6000 - _
2
4000 - .
2000 - :

Range {m) w10t

Figure 150 1* PUMA Sample Run Trajectory Plot
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Elevator Angle vs. Time

0 T T T T T T T

Elevatar Angle (deq.)

_‘._1 5 1 1 1 1 1 1 1
10 20 3a 40 a0 60 70 g0

Tirne (s)

Figure 151 1* PUMA Sample Run Elevator Angle vs. Time Plot

Angle of Attack vs. Time
7 T T T T T T T

[N} = (8]

Angle of Attack (deg.)
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10 20 30 40 a0 B0 70 g0

Time ()

Figure 152 1" PUMA Sample Run Angle of Attack vs. Time
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Table 10 2™ PUMA Sample Run Parameters

Altitude 11000 m
Velocity 250 m/s.
Guidance Start Range 200 m

Target Range 10000 m

Range vs. Altitude

12000

10000 - 1

2000 - 7

G000 - A

Altitude ()

4000 - =

2000 - 1

D 1 1 1 1 1 1 1 1 1
a 1000 2000 3000 4000 S000 B000 7000 8000 S000 10000
Range (m)

Figure 153 2" PUMA Sample Run Trajectory Plot
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Elevator Angle vs. Time

Elevator Angle (deg.)

_D5 1 1 1 1 1 1
] 10 14 20 25 a0 35 40 45 50

Figure 154 2" PUMA Sample Run Elevator Angle vs. Time Plot

Angle of Attack vs. Time

Angle of Attack (deg.)

§ 10 15 20 25 30 35 40 45 50
Time ()

Figure 155 2" PUMA Sample Run Angle of Attack vs. Time Plot
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APPENDIX K

SAMPLE DIAGRAMS AND CODE FORM C# POINT MASS
TRAJECTORY SIMULATION FRAMEWORK

cd Trajectory_Simulation_Phases /

Phase

Aerodynamics_Model: AerodynamicsModel
Dynamic_Model: DynamicsModel
Earth_Model: EarthModel
Environment_Model: AtmosphereModel
Gravity_Model: Gravity_Model
Initial_Condition: PhaseState
Phase_State: PhaseState
Phase_State_Derivatives: PhaseState
Propulsion_Model: Thruster_Model
Solver: Solver

Temination_Model: TerminationModel

+ o+ttt o+ o+ o+ o+

computePhaseTrajectory() : Trajectory

Dispose() : void

initializePhase(PhaseState) : void

Phase()

~Phase()

updatePhaseStateAndDerivatives(PhaseState) : PhaseStateDerivatives

o+ o+ o+

+

Guided_Phase

Thrusted_Phase Autopilot_Model: AutopilotModel

CAS_Model: CAS_Model
Guidance_Model: GuidanceModel
Sensor_Model: Sensor_Model

+ Thruster_Model: ThrusterModel

+ o+ o+ o+

+ Dispose() : void
+ Thrusted_Phase() - =
- ~Thrusted_Phase() Dispose() : void

+ updatePhaseStateAndDerivatives() : PhaseStateDerivatives + Guided_Phase()
- ~Guided_Phase()

+ updatePhaseStateAndDerivatives(PhaseState) : PhaseStateDerivatives

+

In_Launcher_Thrusted_Phase

+ Launcher_Model: Launcher_Model

+ Dispose() : void

+ In_Launcher_Thrusted_Phase()

- ~In_Launcher_Thrusted_Phase()

+ updatePhaseStateAndDerivatives(Phase State) : PhaseStateDerivatives

Figure 156 Phase Hierarchy of C# Point Mass Trajectory Simulation Framework
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cd Aerodynamics_Model

AerodynamicsModel
# Coordinate_System: CoordinateSystem
+ AerodynamicsModel()
- ~AerodynamicsModel()
+ Aerod) icForce(D i del. 2 tecord, Physi tecord, A icsRecord) : Aerod) ic_Force
+ Dispose() : void

1

PointMassAerodynamicsModel

+

computeAerodynamicForce(DynamicsModelState, AtmosphereRecord, PhysicalsRecord, AerodynamicsRecord) : Aerodynamic_Force
Dispose() : void

PointMassAerodynamicsModel()

~PointMassAerodynamicsModel()

o+

Figure 157 Aerodynamics Model Hierarchy of C# Point Mass Trajectory

Simulation Framework

#9 PointMassTrajectorySimulation - Microsoft ¥isual Studio = | Ellll
File Edit ‘“ew Ot Refactor Project Build Debug Data  Tools  Test  Window  Communicy  Help
vﬁuﬁ'&qﬁlﬁihﬂvn)vv:::!}i}Debug - Any CPU -:L',x_ig '_'
{3 % =2 |UPBEBRRRL
¥ _~TubeRecord.cs | WeaponRecord.cs | Start Page | > X |5
é' I\"’[gFramework.Tra]ectory_Slmulatlon_Comp05|te_Data.TubeFj I @ Azimuth j E_n
é' AEEEEEETEETFE i F i i T i i f it i i i ii i i i i o §:
i] /¢ TubeRecord.cs %"
ps} /4 Implementation of the Class TubeRecord o
o /#{ Generated by Ent,erplrise Architect 2
=1
T /4 Created on: 06-Kas-2006 20:33:40
= S O o o o o o o S R o o S o e e
using Frawework.Trajectory Simulation Composite Data;
E namespace Frawework.Trajectory Simulation Composite Data {
f—] public class TubeRecord : WeaponRecord {
public double Azimuth:
public double Elevation;

=] public TubeRecord(){

- i

= ~TubeRecord () {

o i

= public override woid Dispose(){

r ¥

- v/ fend TubeRecord

Li//end namespace Trajectory Simulation Composite Data o

. | 3

Ready Ln4 Col24 Chz4 ms

Figure 158 Automatically Generated Tube Record Code of C# Point Mass

Trajectory Simulation Framework
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APPENDIX L

DATA FLOW DIAGRAMS

Trajectory

Trajectory

Figure 159 Top Level Data Flow Diagram for Function Oriented Point Mass

Trajectory Simulation Abstract Design

Weapon Data

Get Weapon Weapon Data
Data

Initialize Point
Charge Data \

Mass
Get Point Mass!

Simulation Initial State

Compute Point
Mass Phase
Trajectory

Simulation

Trajectory

Charge Data

Charge Data

Figure 160 Compute Point Mass Trajectory Data Flow Diagram
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IFliEED Statgtte and State Derivatives /\
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Derivatives State

Trajectory
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Figure 161 Compute Point Mass Phase Trajectory Data Flow Diagram
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Figure 162 Phase State and Derivatives Data Flow Diagram
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APPENDIX M

TIGER AND JAGUAR DATA

Table 11 TIGER and JAGUAR Data

PHYSICALS

Reference Area 0.00515 m2

Reference Mass 4.7 kg

AERODYNAMICS

Mach Points [00.70.850.870.90.930.95 1 1.09]

Cd, [0-0.119 -0.12 -0.122 -0.126 -0.148 -0.182 -0.3 -0.5]
CHARGE DATA

Muzzle Velocity 220m/s
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APPENDIX N

COMPLETE REUSE INFRASTUCTURE

APPENDIX N is appended to this dissertation in an optical media. Content supplied

in the optical media is as follows:

01. TSONT

Trajectory Simulation Ontology is given in this folder. There are three sub folders

as follows:

01. TSONT\01.1 TSONT Protege OWL

This folder contains a Protégé project for TSONT and TSONT in OWL format.

01. TSONT\01.2 TSONT HTML

This folder contains OWLDoc of TSONT. It is a set of browsable web pages that

represent the ontology. One should start browsing from index. html.

01. TSONT\01.3 Sample DAVE-ML

This folder contains a set of sample DAVE-ML files.

02. Platform Independent Framework Architecture

This folder contains the platform independent trajectory simulation framework

architecture. There are two sub folders as follows:

02. Platform Independent Framework Architecture\02.1 Platform Independent

Framework Architecture EA
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This folder contains platform independent trajectory simulation framework

architecture as Sparx Systems Enterprise Architect 6.0 project.

02. Platform Independent Framework Architecture\02.2 Platform Independent
Framework Architecture HTML

This folder contains platform independent trajectory simulation framework
architecture as a set of browsable web pages. One should start browsing from

index.htm.
03. MATSIX Architecture

This folder contains the platform MATSIX architecture. There are two sub folders

as follows:
03. MATSIX Architecture\03.1 MATSIX Architecture EA

This folder contains MATSIX architecture as Sparx Systems Enterprise Architect

6.0 project.
03. MATSIX Architecture\03.2 MATSIX Architecture HTML

This folder contains MATSIX architecture as a set of browsable web pages. One

should start browsing from index.htm.
04. MATSIX Code

This folder contains implementation of MATSIX. We would like to remind you that
this framework is implemented by using MATLAB 7.1.

05. LYNX Code

This folder contains the implementation of LYNX simulation. It is one of the

trajectory simulations built upon MATSIX using framework completion approach
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so should be interpreted with MATSIX. Folder also contains a sample tester script

tester.m that runs LYNX for a sample case and plots a trajectory.
06. PUMA Code

This folder contains the implementation of PUMA simulation. It is one of the
trajectory simulations built upon MATSIX using framework completion approach
so should be interpreted with MATSIX. Folder also contains a sample tester script

tester.m that runs PUMA for a sample case and plots a trajectory.
07. C Sharp Example

This folder contains the C# point mass trajectory framework case study. There are

two sub folders as follows:
07. C Sharp Example\07.1 C Sharp Example Model

This folder contains the C# point mass trajectory framework architecture. There are

two sub folders as follows:

07. C Sharp Example\07.1 C Sharp Example Mode\07.1.1 C Sharp Example
Model EA

This folder contains C# point mass trajectory framework architecture as Sparx

Systems Enterprise Architect 6.0 project.

07. C Sharp Example\07.1 C Sharp Example Mode\07.1.2 C Sharp Example
Model HTML

This folder contains C# point mass trajectory framework architecture as a set of

browsable web pages. One should start browsing from index. htm.

07. C Sharp Example\07.2 C Sharp Example Code
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This folder contains the C# point mass trajectory framework code in a Microsoft

Visual Studio 2005 project.

08. PANTHERA Abstract Design

This folder contains the abstract software design for PANTHERA. There are two

sub folders as follows:

08. PANTHERA Abstract Design\08.1 PANTHERA Abstract Design Visio

This folder contains the abstract software design for PANTHERA as Microsoft
Visio 2003 document.

08. PANTHERA Abstract Design\08.2 PANTHERA Abstract Design HTML

This folder contains the abstract software design for PANTHERA as a set of

browsable web pages. One should start browsing from index.htm

09. PANTHERA

This folder contains implementation of PANTHERA. We would like to remind you
that this framework is implemented by using MATLAB 7.1 Simulink.

10. TIGER

This folder contains implementation of TIGER. We would like to remind you that

this framework is implemented by using MATLAB 7.1 Simulink.

11. JAGUAR

This folder contains implementation of JAGUAR. We would like to remind you
that this framework is implemented by using MATLAB 7.1 Simulink.
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