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ABSTRACT 

 

 

MIXED EFFECTS MODELS FOR TIME SERIES GENE EXPRESSION DATA 

 

Erkan, İbrahim 

  Ph.D., Statistics Department 

  Supervisor : Assist. Prof. Dr. Özlem İlk 

  Co-Supervisor : Assoc. Prof. Dr. İnci Batmaz  

  

December 2011, 129 pages 

The experimental factors such as the cell type and the treatment may have different impact 

on expression levels of individual genes which are quantitative measurements from 

microarrays. The measurements can be collected at a few unevenly spaced time points with 

replicates. The aim of this study is to consider cell type, treatment and short time series 

attributes and to infer about their effects on individual genes. A mixed effects model (LME) 

was proposed to model the gene expression data and the performance of the model was 

validated by a simulation study. Realistic data sets were generated preserving the structure 

of the sample real life data studied by Nymark et al. (2007). Predictive performance of the 

model was evaluated by performance measures, such as accuracy, sensitivity and 

specificity, as well as compared to the competing method by Smyth (2004), namely Limma. 

Both methods were also compared on real life data. Simulation results showed that the 

predictive performance of LME is as high as 99%, and it produces False Discovery Rate (FDR) 

as low as 0.4% whereas Limma has an FDR value of at least 32%. Moreover, LME has almost 

99% predictive capability on the continuous time parameter where Limma has only about 

67% and even it cannot handle continuous independent variables. 

Keywords: Microarray Data, Unevenly Spaced Time Points, Subject-wise Testing 
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ÖZ 

 

 

ZAMAN SERİSİ GEN İFADE VERİLERİ İÇİN KARMA ETKİLİ MODELLER 

 

Erkan, İbrahim 

  Doktora, İstatistik Bölümü 

  Tez Yöneticisi  : Yrd. Doç. Dr. Özlem İlk 

  Ortak Tez Yöneticisi : Doç. Dr. İnci Batmaz 

  

Aralık 2011, 129 sayfa 

Hücre türü ve ilaç gibi deneysel faktörler, genlerin mikrodizinlerden elde edilen nicel 

ölçümleri olan bireysel ifade düzeylerini etkilemektedir. Yapılan ölçümler eşit aralıklı 

olmayan birkaç zaman noktasında ve tekrarlı şekilde toplanabilir. Bu çalışmanın amacı hücre 

türü, ilaç etkisi ve kısa zaman serisi gibi unsurları inceleyip, bunların genler üzerindeki 

bireysel etkileri üzerine çıkarsama yapmaktır. Gen ifade verisinin hiyerarşik yapısını 

modellemek üzere karma etkili bir model (LME) önerilmiş ve bir benzetim çalışmasıyla 

modelin başarımı doğrulanmıştır. Benzetim verileri, Nymark vd. (2007) tarafından yapılan 

çalışmada kullanılan gerçek verinin yapısına uygun olarak türetilmiştir. Modelin tahmin edici 

başarımı doğruluk, hassasiyet ve özgüllük ölçüleri ile değerlendirilmiş ve Smyth (2004) 

tarafından önerilen Limma isimli seçenek yöntemle karşılaştırılmıştır. Ayrıca her iki yöntem 

gerçek veriler üzerinde de karşılaştırılmıştır. Benzetim sonuçları önerilen modelin tahmin 

edici başarımının %99 gibi çok yüksek bir düzeyde olduğunu, hatta Hatalı Keşif Oranı (FDR) 

değerlerinin %0.4 kadar düşük olup, aynı değerin Limma’da en az %32 kadar olduğunu 

göstermiştir. Dahası, LME’nin sürekli bir bağımsız değişken olan zaman parametresi 

üzerindeki tahmin edici başarımı %99 düzeyinde iken, Limma sadece %67 düzeyinde kalmış 

olup sürekli bağımsız değişkenlerin kullanımına bile uygun değildir. 

 

Anahtar Kelimeler: Mikrodizin Verileri, Eşit Aralıklı Olmayan Zaman Noktaları, Nesne 

Bazında Test
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CHAPTER 1 

 

 

1INTRODUCTION 

 

 

 

The change in the nature in recent years with pollution all over the world has created many 

direct and side effects to our health. Especially, cancer and similar diseases started to 

threaten us more. As a result, the treatment of such diseases has become more important 

and also elaborate because of increasing number of uncontrollable sources of variation. In 

this context genetics has become one of the most popular research areas.  

1.1 Microarrays 

Scientists have invented microarrays to display protein activity at genes. It is a 

breakthrough when scientists are able to see the change in gene activities under the 

presence and absence of conditions of interest. This knowledge would help them very 

much such as in finding a coherent certain treatment, inheritance of genetic diseases and 

many more. For example, researchers may want to investigate the effect of asbestos on 

breast cancer. Therefore, gene activities can be observed on both asbestos exposed cells 

and non-exposed cells and the genes which change activity under different conditions can 

be determined. Then, required actions can be taken accordingly.  

1.2 Scope of the Study 

This thesis includes the analysis of short course time series microarray gene expression 

data. Short course time series data are observed in the course of time (where time points 

may be unevenly spaced) when microarray experiments are used to study the behaviour of 

genes and their expression levels are investigated. There can be more than one 

observations per time point and the number of observations per time point may vary 

through the series because of the nature of the experiment. Figure 1.1 illustrates the 

structure of the data that is studied in this thesis. 
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Figure 1.1 Structure of time series gene expression data with replicates 

The analysis of such data has some challenges for researchers. The first challenge is that 

gene expressions across time points may have a dependence structure which should not be 

ignored during the analyses. The probe measure which represents the relative expression 

level of an individual gene has more than one sampling points over time. Therefore, the 

measurements obtained over time belong to the gene creating a dependent sequence of 

measurements. 

The second challenge is that the number of time points is very few (generally less than or 

equal to eight) compared to classical time series data which usually have more than 50 

observations for a convenient time series modeling. There are a number of reasons behind 

this. The first and the foremost one is that the microarray chips are very expensive for both 

an extensive use and many repetitions of the same experiment. The second reason is that 

sometimes, depending on the structure and the donor of the experiment made, it is 

impossible to repeat the experiment many times. For example, it is hard to make people 

attend the experiment 50 times and provide blood cells, or in an experiment that you 

investigate the behaviour of a poison, the rat can die and it becomes impossible to repeat 

the experiment many times. Figure 1.2 skecthes a sample of size six from a single probe 

measured over five time points that are 0h, 1h, 6h, 24h, 48h and 168h. 
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As the number of time points may vary, the number of replicates per time point may vary 

as well. The less the number of replicates, the harder to fit models because estimation of 

the variance components gets harder or impossible. Sometimes, the data is unbalanced 

that cause another challenge for researchers.  

The third challenge is unevenly spaced time points. Unevenly spaced time points indicate 

that the amount of time between consecutive measurements is not the same across all 

time points. The time elapsed after an observation may vary. In this case, monitoring the 

process over time becomes very difficult also making it very hard to express the reason 

behind the change in measurements. This is unusual in classical time series approach. 

In addition to the challenges that were mentioned above, it is methodologically and 

computationally very extensive and demanding that short time series microarray gene 

expression data may contain replicates changing in number at every time point and 

gene/probe set. For example, the sample in Figure 1.2 has 5 timepoints and it has 1 

replicate only at 48h where other measurements are singletons at all other time points. 

Moreover, there may be factors such as cell type as well as treatment, one or both of which 

might have more than two levels. Time as a source of variation in microarray experiments is 

a continuous independent variable rather than a qualitative factor most of the time. 

Biologists are very keen on finding out whether a treatment has an acute or chronic effect 

on the subject of interest. 
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Figure 1.2 Sample observations from "238743_at" probe measured under A549 cell and exposure 
group from Asbestos Dataset (Nymark et al., 2007) 

Summing up the challenges and the complexities above, biologists want to infer about the 

changes in gene expressions for individual genes. Qualitative factors are well handled by 

means of t-tests, ANOVA, clustering, splines and linear modeling. However, the challenging 

part here is to infer about the subject specific gene expression profile under the existence 

of qualitative experimental conditions. A profile is the change in the gene expression level 

across the time panel when the measurements are collected. Biologists would like to know 

if there is any significant change in the short course of time as well as the long course of 

time. A careful investigation of the literature indicates that the proposed methods are 

insufficient to resolve this problem, and this study aims to propose a plausible model to 

solve it. 

The model in this dissertation on the other hand, first clusters the genes using a two-step 

clustering scheme thus breaking the correlation structure and creating gene-sets and then 

applies a linear mixed model to estimate effects of group, treatment and time points for 

short time series datasets with or without replication.  
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1.3 Contributions 

 Proposing the use of LME method at every other individual time interval of a short 

time series microarray data, providing modeling and testing a short time series 

profile and subjectwise testing. 

 Comparing it with Limma, the competing and most widely used alternative method. 

It was shown through a comprehensive simulation study that the proposed 

methodology outperformed Limma in accuracy, specificity, positive predictive 

value, negative predictive value, false discovery rate and F1 value performance 

measures in overall results.  

 Fitting the random effects together with the fixed effects produce more unbiased 

results compared to when they are fit only as fixed effects. Existence of the random 

effects compensates the shrinkage of the fixed effects towards to the mean value. 

This also helps to avoid any over and under estimation of parameters that occur by 

chance. This is where Limma method fell behind and produced false discoveries.  

 Handling repeated measures and unbalanced data via LME for short time series 

microarray data. 

 Producing more appropriate results when the data of interest has hierarchical 

levels with many factors such as cell type, treatment, short time series and the 

clusters that contain the probe sets with similar expression profiles.  

 Providing great flexibility whenever additional factors or terms such as covariates 

or categorical factors are to be added to the LME model. 

 Detecting acute and chronic effects of a treatment via modeling the short time 

series microarray gene expression profiles. 

 Handling the differing time lags by incorporating time as an independent variable 

into the LME model as well as testing the time change effect. 

 Increasing predictive capabilities and F1 value short time series microarray gene 

expression profile analysis for both factors and independent variables such as 

continuous time parameter. 

 Proposing a two-stage clustering algorithm for detection of time series gene 

expression profiles. 

 Proposing a real like data simulation algorithm for short time series microarray 

gene expression data with differing number of replicates per time point as well as 

incorporating cell type, exposure and other required effects. 
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 Providing a computational framework for analyzing short time series microarray 

gene expression data proposing a very comprehensive simulation and short time 

series microarray gene expression data fitting algorithm along with an R code. For 

the simulation part, the code first generates realistic gene expression profiles. The 

profiles can be modified such as changing the number of cell types, treatment 

groups and time points. The code then generates realistic initial set of data by 

making use of a mixture normal distribution. The parameters of the initial data can 

be adjusted as well. According to the profiles that are created the code can 

simulate the short time series, replications in accordance with the structure of the 

profile. Realistic noise and experimental factors are also incorporated to the 

simulated data. For the real data fitting part, researchers who would like to utilize 

the code should only rename the column names of their dataset and run the code. 

On the overall, the code is very user friendly, easy to use and allows 

customizations. The code is free to access and can be downloaded from 

www.metu.edu.tr/~oilk/LME_code.zip. 

An overview of microarrays, the structure of the short time series microarray gene 

expression data analyzed in this study, scope of the study and the contribuions to the 

literature were included in this chapter. In the second chapter, a comprehensive review of 

the literature will be presented. Alternative studies, previous work in this area and their 

findings will be summarized. In the third chapter, methodology that is used will be 

introduced step by step. The forth chapter will include all of the details of the simulation 

study and the fifth chapter will provide findings, results, illustrative examples and remarks 

on both simulated data and real life data. Conclusions and possible future studies will take 

place in the sixth chapter. For ease of reading and understanding most of the figures and 

tables on performance measures that were obtained in the simulation study are given in 

appendix.  

file:///C:/TEZ/TEZ%20-%20SON/Tez%20SON/www.metu.edu.tr/~oilk/LME_code.zip
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CHAPTER 2 

 

 

2LITERATURE REVIEW 

 

 

 

Analysis of microarray data is difficult because they come in large sizes and there are 

variations result from different sources. These sources can be the measurement system, 

the experimenter and environmental factors such as temperature, pressure, array reading, 

image noise and translation errors. These cause increased measurement variation and bias. 

Studying with time series microarray data is even more difficult because of the correlation 

between sequential measurements and  possible missing values.  

Although there are challenges in analyzing short time series gene expression data, they are 

frequently used. Ernst et al. (2005) provided a statistic about the number of time points of 

the microarray datasets from Stanford Microarray Database (SMD). This study indicates 

that more than 80% of all time series datasets contain less than or equal to eight time 

points. Therefore, researchers working on microarray experiments are highly in need of 

statistical techniques that help determining the patterns or modeling the behaviour of 

genes in the short course of time. 

An insightful investigation of the literature in the field of short time series microarray data 

analysis direct us to mainly split them into two common approaches as model based and 

non-model based methods. In the proceeding two sections of this chapter, representative 

and frequently cited studies from both approaches are summarized. The methodology that 

researchers used to analyse the microarray data also differed according to the main 

interest such as grouping the genes that show similar behaviour under certain conditions or 

differentially expressed gene or gene groups. 
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2.1 Non-model Based Methods 

Recently, microarray studies are becoming more and more popular. In such studies, not 

only the  dimensions of the data sets are large but also the number of factors manipulating 

the microarray measurements are large. Cell type, genes or gene groups, time effect, array 

type and treatment type can be good examples as sources of variation to the microarray 

measurements. Accordingly, the number of required inferences are also large. Therefore, 

reducing the dimension is a plausible way for the simplification of the problem. For 

example, k-means clustering method (Tavazoie et al., 1999), hierarchical clustering (Eisen et 

al., 1998) and analysis of variance (Kerr et al., 2000) have been used in many researches. 

Matsui et al. (2008) suggested that clustering microarray data is very useful in reducing 

dimension as well as understanding co-regulated genes that behave similarly under 

diseases or certain treatment. They also pointed that clustering genes and treating them as 

a group improve the predictive variance. Their approach maked use of a logrank test that is 

used for multivariate permutation procedure seeking for an optimum cut-off point for the 

p-value to decide whether a cluster has differentially expressed genes or not while the test 

does not sacrifice from false discovery rate. As a non-model based alternative, Watson 

(2006) studied a clustering method that helped finding coexpressed gene sets and utilized 

an R package for that. The software can identify groups of genes that are expressed 

similarly. Their algorithm avoids parametric modeling or testing. Another nonparametric 

approach was proposed by Shah & Corbeil (2011). They used tensor analysis in order to 

transform data and without clustering the data explicitly they were able to identify groups 

of differentially expressed genes in a short time-series data. The downsides of their 

approach are that it cannot distinctly determine the source of differential expression such 

as cell type, exposure or time, and the time interval where genes are differentially 

expressed cannot be identified. 

Complexity and duration of the computations during the microarray analyses are important 

attributes for a microarray study. In opposition to the most methods Qin et al. (2008) 

proposed a computationally less intensive clustering algorithm for detecting differentially 

expressed genes from simple microarray experiments. They also performed comprehensive 

simulation studies which showed that their method is substantially more powerful and also 

more robust than well-known SAM and eBayes approaches. Another study which compares 

its performance to SAM was done by Sinha & Markatou (2011). They developed a computer 

software package, the main advantage of which is that it is capable of doing both 
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significance analysis and clustering. It is user friendly as well. On the other hand, it does not 

return any models and incapable of determining the effects of experimental factors such as 

cell type and exposure. 

Some clustering methods were developed for time series microarray data (Bar-Joseph et al. 

(2002); Ramoni et al. (2002)). Bar-Joseph et al. (2002) based his approaches on statistical 

models for clustering purposes. He proposed representing every set by a spline curve as a 

solution to problems raising from missing values and unevenly spaced time points. 

However, this approach requires long time series for convenient results. Androulakis et al. 

(2007), on the other hand, discussed clustering methods for analyzing short time series 

gene expression data. They also pointed out some challenges, opportunites and also the 

quality of clustering methods. However, they did not mention any model based approach 

or testing. Another study for achieving a similar goal is the difference-based clustering 

algorithm that was given in Kim & Kim (2007). They claimed that their algorithm 

outperforms the competing alternatives namely k-means, Self Organizing Maps (SOM) and 

Short Time-series Expression Miner (STEM) methods in terms of clustering short time series 

gene expression data with replicates. STEM application assumed replicates at each time 

point but, the data structure studied in this thesis may not even have replicates per time 

point. 

Although clustering is very helpful tool in understanding the structure of the data, 

determining similar gene behaviour, reducing the dimension lessening the number of the 

parameters to be estimated, the method has still some downsides. Clustering methods 

cannot test statistical significance and will probably detect clusters even if they don’t exist 

(Xu et al., 2002). Moreover, Xu pointed out that clustering methods are sensitive to data 

transformations and units of measure. In addition, Park et al. (2003) noted that clustering 

methods cannot produce stable results as the number of genes increase. In an unpublished 

work Kuenzel (2010) compared most of the clustering methods and pointed that clustering 

make microarray data sensible. However, he concluded that there are so many clustering 

methods which makes it hard to choose. Nevertheless, although clustering is usually 

needed, it is clear that clustering as the only method to analyze the microarray data may 

not be sufficient in all studies especially for short time series microarray data. 
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2.2 Model Based Methods 

2.2.1 Hierarchical and Mixture Models 

Two main approaches dominate the field of microarray analyses. First is hierarchical 

models, which most of the time utilize Bayesian tools and mixture modeling. Some leading 

examples can be given as Qiu et al. (2008) study which proposed bayesian hierarchical 

model where the marginal distribution of different gene clusters is a three mixture of a 

multivariate normal distribution. This way they made it possible to assign different marginal 

means and variances for different gene clusters to detect the differentially expressed 

genes. Likewise, Efron et al. (2001) proposed that the distribution of the gene profiles 

represents a mixture distribution and hence there is no need for a multiple testing 

correction. In the mixture distribution, one component represents the differentially 

expressed and the other component represents the suppressed set of genes. Pan (2002), 

He (2004), Do et al. (2005), McLachlan et al. (2006) and Broët et al. (2002) can be reviewed 

for more detailed discussions on this approach. Another foregoing study on mixture 

modeling is Najarian et al. (2004) study which suggested a nonparametric mixture model 

method improving over the classical nonparametric mixture model method by increasing 

the repeatability of the output obtaining similar results on different fits of the model as well 

as reducing the sensitivity of the output on the parameters. In addition, Moser et al. (2004) 

used a mixed model approach that clusters the gene expression X immunological status 

interactions by a mixture of normal distributions for a short time series gene expression 

data. Therefore, differentially expressed genes and others took place in different 

components of the mixing model. The last study that worthed mentioning here as an 

example for utilizing mixture distributions is Celeux et al. (2005) study which implemented 

a mixture of mixed models in order to cluster gene expression profiles. Rather than testing 

gene expression profile significancies over time, they focused more on model based 

clustering of profiles trying to detect the number of components of mixing models. In terms 

of classification of probe sets, mixture modeling can be a very plausible application such 

that it may help assigning probe sets to different mixing components according to their 

expression values.  

In addition to the mixture modeling studies mentioned above, Bayesian hierarchical 

modeling for assessing the the level of gene expression was applied by Broët et al. (2002). 

In contrast with Efron et al. (2001), they especially stated that the representation of genes 

with components of mixture distributions is a binary fashion and the level of expression 
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should be incorporated. They also compared their results with classical t-test approach and 

showed their improvement. They also stated downsides of the classical approaches 

particularly when it comes to testing. The points mentioned in Broët et al. (2002) were 

taken into careful consideration and some results on multiple testing corrected results 

were also discussed in this study. They concluded that the data were eligible for further 

analyses. RMA method was proposed as the preprocessing method. The work by Broët et 

al. (2002) lacks the analysis of time series microarray data and specific time profiles. 

2.2.2 Mixed Effects Models 

The second approach that dominates the the field of microarray analyses is the mixed-

effects modeling. Wernisch et al. (2003) proposed a mixed-effects modeling approach 

especially designed for taking the correlation structure among replicates. They used an 

ANOVA based method and showed the advantages of the proposed model over the t-test 

at gene level. Wolfinger et al. (2001) used mixed models approach to directly control over 

the rate of true positives and claims an improvement on false negatives compared to the 

existing methods. Unfortunately, they did not focus on short time series gene expression 

profile analysis. They used genewise t-test approach and made use of Bonferroni multiple 

testing correction which is outdated in favor of Benjamini-Hochberg multiple testing 

approach. All the studies in this paragraph lacks modeling of short time series microarray 

data and focus more on comparison studies with replicated microarray data. 

There can be found many linear mixed-effects procedures in the literature, some of which 

focus more on clustering. A technical report of this kind is prepared by Eng et al. (2008). 

They propose a mixed effects model in order to cluster genes according to the relative 

likelihood ratios for grouping parameters. Although they propose the model for time course 

microarray data, their main point of interest is not the short course experiments. Besides, 

they assume non-diagonal covariance matrices for grouped gene sets. On the other hand, 

rather than gcRMA, they quantile normalize within group data and then assume normality. 

Their performance criteria is misspecification performance rather than profile testing in 

opposition to the method proposed in this dissertation. They treat the unknown 

parameters as missing values and apply EM algorithm for estimation. They also test the 

robustness of their proposal by testing against candidate models. Since, gcRMA technique 

is applied to the raw data in this study and the distribution of each array is equalized, 

robustness is not a big issue. 
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Mixed-effects models are very flexible to use and can be used in a vast environment of 

applications. An example as an alternative application in the gene expression pathway 

analysis is Wang et al. (2008) study. They perform tests in order to detect differential gene 

expression pathways. However, their null hypothesis is that differential expression between 

two particular groups of genes does not differ significantly from the genes in the pathway 

compared with the rest of the genes. In contrast with their hypothesis, the model proposed 

in this thesis compares control groups to treatment groups, consecutive time points and 

different cell lines with each other and tests whether they are differentially expressed in 

consecutive time intervals. 

Another remarkable study on time course microarray data is given in Wang et al. (2009). 

They proposed a mixed effects model in order to model the variability around the mean 

gene expression profile. They are testing for the changes over a pathway and testing for the 

null hypothesis that the average gene expression of a gene group is not differentially 

expressed over time. They included independent random variables for array and differing 

covariance effects between genes. The model used in their study seems to be similar to 

that is used in this study however the application is different. Their method do not involve 

clustering and unable to detect acute and chronic changes over time as well as testing for 

the differential expression at a specific time interval. 

2.2.3 Other Models and Methods 

Alternative to the clustering based methods, model based microarray data analysis 

methods depend their inferences on either statistical tests or statistical models. Recent 

studies based on statistical tests and models has become more common. For example, Xu 

et al. (2002) tried to model the gene expressions by regression models using variables such 

as time, dose, cell/tissue type. Park et al. (2003) introduced a new statistical test procedure 

based on repeated measures analysis of variance to identify differentially expressed genes 

in time series experiments. Hong & Li (2006) calculated probabilities for each gene by 

hierarchical models that use information from each gene, and proposed identifying genes 

whose expressions change over time. However, this approach is also based on splines and 

require long time series data. Hidden Markov Models (Schliep et al. (2003);  Zeng & Garcia-

Frias (2006)) could not overcome the general restrictions of clustering methods although 

these are model based clustering methods that are frequently used in time series analyses. 

Not necessarily, model based methods may still include clustering schemes, however, 
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clustering may be used as a preparatory tool or for simplification purposes as in this study. 

Inferences though are based on statistical tests or model significancies. 

As an example, Ng et al. (2006) focuses on random-effects model to cluster genes from a 

time-series with or without replication. They studied an extension of normal mixture 

models in order to model correlated and replicated measurements. They made use of linear 

mixed-effects model for the mixture components to be able to incorporate the covariance 

structure. They offered a general framework for clustering of genes with correlated 

measurements with replicates that can also be time-course data. Ramoni et al. (2002) used 

a model based clustering approach based on constant coefficient autoregressive curves. 

Autoregressive curves require evenly spaced regular series, and this method unfortunately 

is useless for unevenly spaced microarray data which is quite common in microarray 

studies. On the other hand, Bar-Joseph et al. (2003) proposed spline estimation model for 

estimating missing data in time series gene expression datasets. Their model accounted for 

unevenly spaced time points as well. The spline method provided in their study 

incorporated some spline coefficients for the gene sets in the same cluster as the cluster 

covariates as well as subject-specific parameters. They were more focused on unobserved 

time points. More recently, Furlotte et al. (2011) proposed using linear mixed models to 

estimate confounding effects and also to measure pairwise correlation of genes. Their 

proposal however does not directly related to the analysis of short time series data. Yet 

another study focused on short microarray time-series data analysis using gene-specific 

linear mixed models to test group effects together in experiments involving two color 

microarrays is Passos et al. (2011). They modified the design matrix in order to be able to 

handle two color property by the proposed mixed-effects model. Their aim is to make the 

comparison of one or two color microarrays cost efficient. They used a linear mixed model 

for analyzing time series gene expression data and tried to find out the effects of premises 

on the cost of comparing different arrays. 

Handling the unevenly spaced time points and proposing a more plausible model fitting 

alternative, a quadratic regression modeling method was proposed by Liu et al. (2005) for 

detecting differentially expressed genes in a short time series microarray data. Their work is 

one of the rarest works that accounted for the time as a contiuous variable rather than 

treating it as a factor measured in sequential equally spaced timepoints. They pointed out 

that taking time as a continuous variable preserves actual time information. They 

incorporated time effect as a second order term in the model, and fit the quadratic 
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regression for every gene testing the significance of time at each step. The method is very 

useful for detecting significant gene expression patterns over time and similar patterns, 

however, unable to take into account the differing experimental conditions such as 

different tissues and different treatments. 

The common and straightforward approach while testing the significance from many genes 

from a microarray is to conduct a standard t-test for every single gene or gene group. If the 

null hypothesis is rejected in the favor of a significant change in the gene activity, the 

researcher concludes that the gene is differentially expressed. As stated in Qiu et al. (2008), 

one downside of this approach is that the test statistic requires a variance component and 

accordingly a standard error estimate for the mean estimator on each gene. Especially, in 

short time series microarray data the available sample size for each gene is very small for a 

good variance estimation which is also the case in this study. Although there are some 

approaches proposed for a stabilized variance estimation for the t-test (e.g. Significance 

Analysis of Microarrays (SAM), proposed by Tusher et al. (2001)), multiple testing problem 

occurs during testing many hypotheses which is a common problem also for all other 

testing procedures. Multiple testing correction is used as a remedy for this problem and 

helps controlling False Discovery Rate (FDR), but it also brings new problems aside (like 

uncontrolled true positive rate). 

Methodologies and studies on microarray analyses are growing rapidly and sometimes hard 

to keep up. Tai & Speed (2005) summarized statistical analysis techniques of short time 

series microarray data. They mentioned especially downsides of applying methods for 

cross-sectional data to the longitudinal data and emphasized on the effect of 

underestimating the subject specific variance. They compared classical F-test, moderated F-

statistic, B-splines and clustering. However, they did not present solid results. Although 

their study did not go beyond a literature review, it is useful to look up for a collection of 

methods. Mutarelli et al. (2007) also used a B-spline basis to model genewise expression 

pattern and hence performed a classical F-test for a single gene. However, their approach 

did not take time as a continuous variable but rather as a factor.  

Other than the classical testing procedures as well as handling time series microarray data, 

Sasik et al. (2002) described a model that first analyzes the time-course raw data. They 

therefore, reduced the dimension of the data representing it by only vital components that 

characterize the gene expression profiles. They then superficially clustered the components 
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to visually analyze the differentially expressed profiles. They neither offered a parametric 

model that accounts for treatment, array type, time effect nor for a single probe set. 

Another point of view in the analyses of microarray gene expression data is to select a 

convenient comparison procedure. He (2004) dicussed the advantages and downsides of 

parametric and nonparametric test procedures for detecting differentially expressed genes 

for especially comparing two groups (e.g. tissues) and proposed a weakly parametric model 

namely a spline function approach to characterize the distributions of differentially and 

non-differentially expressed genes. In another study published in the same year, Broët et al. 

(2004) proposed a new strategy for comparing more than two groups based on a flexible 

mixture model for the marginal distribution of a modified F-statistic. Their model utilizes a 

combination of false positive and false negative discovery rates in order to select the 

differentially expressed genes. 

Some of the studies that have been mentioned so far have focused on cross-sectional data 

where the methods used are not suitable for time series microarray analyses since they do 

not account for the factors that change over time and do not deal with the correlation 

between measurements (Xu et al., 2002). Nymark et al. (2007) provided a special algorithm 

including canonical correlation and gene onthology analyses to differentiate the profiles of 

short time series gene expressions from three different types of cell lines that were 

exposed to Asbestos. They used permutation tests to identify differentially expressed genes 

in short time series clusters. Using Nymark's reference Asbestos dataset in his studies, 

Korpela (2006) studied the short time series microarray data in terms of data quality and 

clustering. The study puts some insights on the reference dataset by exploring the 

clustering algorithm and data quality control studies. Another study that put insight to 

correlational analysis is He & Zeng (2006) which presented a new method namely trend 

correlation for identifying functional linkages between genes. The method is a two-step 

method for comparing gene expression profiles over time. Their method does not involve 

short time series and the exampled series consisted of 17 timepoints.  

Trend testing is another approach for detecting the change in gene expression profiles. In a 

methodological study, Chen (2005) proposed C&G statistic in order to test the significance 

of individual gene expression profiles. C&G statistic combined Bartlett's C-statistic given in 

Bartlett (1966), that is used to test for the existence of trends, and fisher's G statistic given 

in Fisher (1929), for testing the significance of harmonic series. The method was useful for 
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testing the significance for genewise time series expression data. However, his method did 

not account for unevenly spaced time points and different tissue cells. 

The last but not the least method to identify differentially expressed genes is to fit a fixed 

effects linear model independently for every subject in the data. One of the most cited 

articles in the analyses of data from microarray experiments is Smyth (2004) which is the 

reference paper for microarray gene expression data analyses package for R, namely the 

Limma package. Smyth (2004) handled the problem as a multiple testing problem of many 

genes. Every set of genes was treated as a single set of data and then a hybrid of classical 

and bayesian approach was used and a linear model was fitted to the expression data for 

each gene. Actually, prior distributions were defined in order to correct on the estimates of 

the parameters that are called empirical Bayesian estimates. Therefore, moderated t-

statistics were obtained for every single gene. Empirical Bayesian approach empowers 

Limma even when testing with small sample sizes. Although the model is computationally 

straightforward compared to other methods, it is only possible to treat a timepoint as a 

factor level with Limma. Limma cannot handle continuous covariates. Therefore, it loses 

time information and suffers modeling the expression profile over time. Another major 

disadvantage of Limma is that it cannot handle unbalanced designs. The number of 

replicates has to be the same at all levels of the experiment for a gene. Mixed modeling 

cannot be incorporated to Limma either. 
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CHAPTER 3 

 

 

3METHODOLOGY 

 

 

 

A multiple stage data processing and analysis were proposed and used throught this study. 

The data used in all analyses were preprocessed after being scanned from a microarray 

device. The processes applied and presented in sequence in this chapter are preprocessing, 

especially normalization as part of it, filtering, clustering and model fitting. The applications 

of the proposed methods were done on the real life dataset studied and referred by 

Nymark et al. (2007) and will be named as "asbestos dataset" hereafter. The asbestos 

dataset have 54,675 probe sets, measured from two cell types namely A549 and Beas2B. 

Measurements on each cells have both control and exposure groups that were collected on 

six time points.  

3.1 Preprocessing 

Although microarrays are very high technology devices, the process of reading gene 

activities as an image from the device and changing this image to an appropriate dataset in 

meaningful metrics for further analyses require some preparation steps. That is because, 

the raw data is very likely to be perturbed by environmental effects, such as the noise on 

the obtained image, biological noise due to organic activities and the noise that occurs 

during experimenting for replicates. Besides, all organic cells may not be identical even if 

they belong to the same structure. For a fair comparison, microarray data should be 

corrected to reduce any possible noise effect. On the other hand, the data collected from 

the device are not in the suitable domain and scale for further statistical analyses. All these 

factors lead researchers to microarray data preprocessing. The common steps and 

operations are given in fair detail as follows. 
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3.1.1 Data Preparation 

The data obtained at first stage from a microarray are the measures of the intensity of light. 

Before a microarray experiment is conducted, it is set up. Setting up of a microarray 

experiment can refer to both preparing physical conditions for the experiment and 

statistical design of the experiment such as deciding on the number of replicates. The best 

way of designing an experiment is attained by biologists and/or geneticists working 

together with statisticians. A biologist describes the biological nature of the experiment 

where the statistician describes the statistical nature. 

Microarray experiments and accordingly the data collected from the experiment are mostly 

studied for determining different sources of variation. The researcher can be interested in 

comparing two donors, different animals or organisms of the same type. Likewise, 

treatment of different drugs, or treatment of a single drug can be subject to interest. A 

researcher may want to compare even completely different tissues. Therefore, the 

experiment and the experimental conditions are set up in this direction.  

Controllable sources of variation in these studies such as gender, age, duration of 

treatment and many others are selected such that they will not create bias throughout the 

study. However, unfortunately, the experiment and the data collected thereafter are also 

affected by uncontrollable sources of variation from environmental variables such as the 

measurement system and sampling errors due to technical or biological replication.  

Although experimental conditions can be set up such that the resulting measurements are 

evenly affected by the uncontrolled variation, most of the time it is very difficult to do this 

in real life because of financial and experimental restrictions. Also the measurement 

devices incorporate some noise to the system which is inevitable. All these effects are to be 

reduced or eliminated in the microarray data preprocessing steps to obtain the realistic 

dataset.  

3.1.2 Normalization 

Normalization enables the researchers compare two or more arrays from different 

populations such as case and control, cell type 1 and cell type 2, within cell type and 

between cell types. Normalization also reduces the effect of the variation from external 

sources during the experimentation and collection of the data. Some examples for the 

external variation are the chemical substances on the surface of the microarray, the way 
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that the spots on the microarray are prepared, methods for labeling, hybridization 

techniques, image analysis and isolation of the RNA (Bilban et al. (2002); Claverie (1999); 

Schuchhardt et al. (2000); Lou et al. (2001); Tseng et al. (2001); Yue et al. (2001)). 

Further processing is applied to the raw data. As a preprocessing procedure gcRMA 

technique by Wu et al. (2004) has been used in this study. gcRMA is an array normalization 

method which also does background noise correction. 

Different normalization methods have different data processing capabilities. Studies so far 

have shown that RMA is a very successful method in normalization (e.g. Bolstad et al. 

(2003)). Irizarry et al. (2003) has shown that RMA method is better than other 

normalization methods. As an extension to RMA method, gcRMA has produced very 

accurate results without any loss of precision (Irizarry et al. (2006), page 793). A 

comparative study for the normalization procedures are studied in Lim et al. (2007) and 

Shedden et al. (2005). 

Main advantages and common properties of gcRMA can be listed as follows: 

 Corrects the background noise using the mismatched gene sequences. 

 Equalizes the distribution of each array. 

 Uses robust median polishing procedure. 

 Makes use of quantile normalization. 

 Proven to be better than competing alternatives such as RMA and MAS5 (see Wu et 

al. (2004)). 

 Returns expression values on      scale. 

The main difference and major improvement of gcRMA technique over the RMA is that it 

uses a linear model to represent the summarized gene expression values. This is the major 

improvement of gcRMA over RMA. Wu et al. (2004) proposes below statistical model for 

background adjustment: 

              (3.1)  

               (3.2)  

where 

   Perfect match (stands for probe pairs all of which have correct nucleotide 

 matchings) 
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     Optical noise for perfect match 

     Non specific binding effect for perfect match 

   A quantity proportional to RNA expression (the quantity of interest) 

    Mismatch (stands for mismatching probe pairs) 

     Optical noise for perfect match 

     Non specific binding effect for mismatch 

   A coefficient that lies between 0 and 1. The   proportion of the mismatched probe 

 pairs is assumed to be true signal.   

       and                                    where    
   
   

  and 

                               and there is also a constant correlation   between 

probes. Means      and     are smooth functions of the linear combinations of the 

means of probes and their bases. Because non specific binding is expected not to affect the 

optical noise, O and N are assumed to be independent. 

Above parameters are estimated from the data and the problem then changed into the 

prediction of S. Estimation is not a big deal since generally microarray datasets are large 

enough for such a purpose.  

Wu et al. (2004) makes two important assumptions about the above model such that 

    and O is an array dependent constant. Then they offer both frequentist (MLE) and 

Bayesian alternatives for estimating the PM and MM parameters and finally they end up 

with summarized gene expression levels by the use of the following model: 

 
                    

                                                
(3.3)  

     Probe intensity for the probe j in the probe set g on the array i.  

      Non-specific binding error term which has a normal distribution. It accounts for the 

 noise of the same probe that behaves differently in different arrays. 

   The baseline log expression level for probe set g. 

      The effect of probe j in gene g on array i. 

   The array affect that requires normalization. 

    The coefficient of covariate X to be estimated. The emphasis of normalization 

process is on this parameter. 
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Above model requires elaborate computation for the parameter estimation for both MLE 

and Bayesian methods. 

Most of the microarray gene expression analysis studies indicate that majoriy of the genes 

remain relatively less active during the experiments. Only a smaller portion of the genes 

generally show changing expression values. Therefore, those less active, namely 

underexpressed or supressed genes can be taken out of the analyses. In this study, all of 

the genes process were included in the normalization, which is called global normalization, 

but inactive genes were filtered by kOverA function (see section 3.3) afterwards just before 

the statistical analyses (Bilban et al., 2002). 

3.1.3 Quantile Normalization 

gcRMA technique is similar to the RMA other than the gene expression summarization 

procedure. It makes use of quantile normalization after summarization. Quantile 

normalization is used to make the distribution of each array identical. It is called “quantile 

normalization” because this method equalizes the quantiles of gene expression measures 

from each array. 

Assume that there are n arrays and p probe sets from each array. The method is applied as 

follows: 

1. Calculate kth quantiles for each array such as                    for 

         . Practically, order all arrays in ascending order of magnitude. 

Therefore, ith order statistics are found for each array. Note the original ordering of 

each array for later use in step 4. 

2. Find the means of every ith order statistics across all arrays. Therefore, n means are 

obtained from n arrays. 

3. Substitute every ith order statistic from all arrays with the ith mean calculated in 

step 2. Therefore, the ith order statistic of each array is equal to the ith mean. 

4. Reorder each array to its original ordering. 

Therefore, all quantiles of each array are equalized. One downside of this procedure is that 

it may cause replicated gene expression values on the tails of the array distribution. 

However, Wu et al., (2004) stated that this is not a problem since probeset values are 

calculated by using more than one probe. 
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An example of the distribution of a sample dataset before and after the normalization are 

shown in below graphs. Box plots for randomly selected 10 arrays from Asbestos dataset is 

given in Figure 3.1 indicate very heavy tailed skewed distribution for different arrays which 

reduced the readability of the graph. Even the median and the left tail is impossible to see. 

In order to increase the readability, graph was trimmed on the Y axis for better visualization 

and given in Figure 3.2. The distributions of the arrays after normalization is sketched in 

Figure 3.3 that indicates the distributions of arrays became almost identical. 

 

Figure 3.1 Boxplots of some arrays from Asbestos dataset before normalization 

 



 

23 

 

Figure 3.2 Some arrays from Asbestos dataset before normalization (trimmed) 

 

 

Figure 3.3 Some arrays from Asbestos dataset after normalization 
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3.2 What do the data look like? 

When a microarray is scanned, the resulting image is saved as a raw DAT file. The raw 

image file then is translated to numerical values and saved into a .CEL file which is done in 

the quantification step. This process is basicly the reading of the pixel intensity values and 

changing them into real numbers. However, a single pixel may not represent a single 

feature such as a probe or a spot. Instead, more than one pixel or a group of pixels 

represent a spot. The content of a CEL file can be seen in Figure 3.4. 

 

Figure 3.4 CELL file content 

The real values of the pixel intensities start after the [INTENSITY] line. There are also some 

summary information about the intensity data. This data belong to a single array or a single 
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cell line. However, in a microarray experiment there can be more than one array or cell line. 

As a result of this fact, datasets from each CEL files need to be combined as a microarray 

data matrix and further processes are required.  

3.3 kOverA Filtering 

Statistical studies over gene expression data analysis show that statistical methods for 

determining differentially expressed genes are more successful when we omit low 

expressed genes. Low expressed genes are most of the time indicators of no activity. 

kOverA function in R by Gentleman et al. (2009) removes genes that have expression values 

lower than a specified gene expression level, which is the threshold. By incorporating a 

condition number, it is optional to select the least number of arrays with expression values 

higher than the threshold to decide whether or not to remove the gene. For example, if the 

condition number is selected as 1 and the threshold as 5, kOverA would not remove any 

gene that has gene expression level above 5 on at least 1 array. If the condition number 

was chosen as 2, the function will require at least 2 measurements with expression levels 

higher than 5 not to remove that gene. The threshold depends on the selection of the 

analyst. In this study, the threshold value was selected as 3.5 throughout the gene 

expression profile. Therefore, a gene is removed from the analyses if it has an expression 

value below 3.5 at every point of measurement. 

3.4 Clustering 

Clustering is a way of splitting the data into groups according to a predefined criteria. As 

there can be many number of different clustering criteria, there are also many different 

data structures, e.g. longitudinal, cross-sectional, etc.. Clustering is one of the major 

solutions to dimension reduction problem. This study required clustering in order to reduce 

the dimension of the data for further statistical analyses. One other main reason is that 

grouping the similar probesets help biological interpretation of the results. Scientists would 

like to identify genes or groups of genes that show similar behaviour under similar 

conditions.  

The probe sets which are the subjects in our study were grouped together according to 

both their gene expression levels and gene expression profiles. All of the measurements 

from each probe set were treated as a vector of observations and were grouped in the 

same cluster. Therefore, there is no chance that any two measurements from the same 
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probe set belong to different clusters. Genes for which the expression levels over time are 

close to each other have been grouped as a first step. Then, within these groups the gene 

expression profiles over time are examined. Genes, whose expression profiles sketch a very 

similar pattern over time are regrouped. Therefore, the grouping procedure is a two step 

process. 

There are two very well known data partitioning methods, namely supervised learning and 

unsupervised learning. Supervised learning helps to assign objects to predefined groups, 

also referred as classification, whereas unsupervised learning help to assign the groups to 

the objects, also referred as clustering. Unsupervised learning bases the determination of 

the groups on the data.  

Genes (or probe sets as their representatives) that have similar gene expression profiles 

over time are to be grouped for a better understanding and statistical purposes. However, 

there is no predefined groups or group categories that we can place the probe sets into. 

Therefore, grouping must be done due to the behaviour of the probe sets. This fact makes 

the context of this study take place in the unsupervised learning part of above methods, 

namely clustering.  

Furthermore, clustering methods are also mainly grouped into two major categories such 

as partitioning methods and hierarchical methods.  Partitioning methods require the pre-

determination of the number of clusters. On the other hand, hierarchical methods require 

the pre-determination of a clustering criterion and the number of clusters are the count of 

the clusters satisfying that criterion (Dudoit & Gentleman, 2002). 

3.4.1 K-means Clustering 

K-means clustering is used to cluster observations according to their magnitudes. At the 

end of a k-means cluster analysis a researcher should expect to obtain clusters, in each of 

which observations have relatively similar values. K-means clustering is an unsupervised 

learning method and therefore, it does not require the clusters predefined. However, it 

requires a prior knowledge, or at least, a prior idea about the number and centers of the 

clusters. Namely initial clusters must be defined in order to be able to obtain the final 

clusters. This is the main drawback of this method. On the other hand, final clusters 

obtained by k-means don’t have any hierarchy amongst them. K-means is a partitioning 

method in clustering. 
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k-means algorithm tries to minimize the sum of squared distances between a cluster center 

and the observations in that cluster. This is called minimizing the within cluster sum of 

squares. (Tou & Gonzalez, 1974) describe the k-means algorithm as follows: 

1. Choose k initial cluster centers (also called centroids) from the set   

                   . 

2. Distribute the sample              to the k clusters so as to minimize the within 

cluster sum of squares: 

      

 
         

 
 

   
     

 

   

 (3.4)  

Note that the clustering can also be applied to vectors instead of individual 

observations. In that case the sum of squares measure is simply the euclidean 

distance since the 2-norm is used.  

3. Recalculate the k cluster centroids. 

4. Repeat steps 2 and 3 until convergence. 

The k-means clustering algorith is a special case of the well known Expectation – 

Maximization (EM) algorithm. The step 2 above is the E step where step 3 is the M step. 

Assignment of observations to the clusters in step 2 at any iteration must satisfy the criteria 

                                     
          (3.5)  

and the new cluster centroids in the M step is calculated as 

  
     

 

    
   

 

   
     

 
(3.6)  

The number of final clusters is though is very controversial. It is one of the major problems 

of nonparametric estimation in statistics. The hist function in R which is based on the 

procedure given in Becker et al. (1988) and Venables & Ripley (2002) was used to estimate 

the number of k-means clusters. 
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Figure 3.5 Sample gene expression profiles from Asbestos dataset before k-means clustering 

The idea behind k-means clustering is to group genes that have similar expression profiles 

in terms of magnitude. An example of clustered version of Figure 3.5 is given in Figure 3.6 

where two of the k-means clusters are shown. The first graph in Figure 3.6 to the left 

contains measurements from cell type 1 and the second graph to the right contains 

measurements from cell type 2. The panels of each graph contains measurements from 

control and exposure groups respectively. The members of the first cluster are shown in 

circles and the members of the second cluster are shown in filled squares. Probes are 

enumarated and shown on the graph as data labels. According to the k-means clustering 

results probe sets 1, 5 and 6 were clustered in the second cluster and probe sets 2, 3 and 4 

were clustered in the first cluster. k-means clustering was applied in such an algorithm that 

all of the measurements of a single probe set were represented in the same k-means 

cluster regardless of the cell type, exposure, time point and replicates. 
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Figure 3.6 Sample gene expression profiles from Asbestos dataset after k-means clustering 

3.4.2 Hierarchical Clustering 

Hierarchical clustering is another clustering approach in unsupervised learning. Hierarchical 

clustering was applied to the k-means clustered data as the second stage of clustering in 

this study. Unlike the k-means clustering, the number of final clusters is not predefined. 

Instead, a criteria is defined for the similarity or the distance (dissimilarity) between the 

members of each cluster. Besides, a distance measure between cluster centroids, so called 

linkage method, is also used to distinguish and reflect the shape of the clusters. The more 

members satisfy the similarity criteria and join into a cluster, the less the number of 

clusters in general.  

There is a tree-like hierarchy between the clusters as a result of the fact that items 

satisfying a similarity criteria group into the same cluster. This hierarchical structure can be 

formed by either divisive methods, so called top-down methods, or agglomerative 

methods, so called bottom-up methods. Both methods are summarized below: 

3.4.2.1 Divisive (top-down) algorithm 

1. Select a similarity measure within clusters and between clusters (linkage method). 

Define a threshold (criteria for similarity) for within cluster similarity measure. 
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2. Start with a single cluster and assign all items into this cluster. 

3. Continue splitting clusters until every cluster satisfies the criteria in step 1. 

Sustaining and tracking the main structure of the data is an advantage for this method. On 

the other hand, considering all the possible divisions of the groups is a computational 

disadvantage. An illustration for divisive algorithm can be found in Figure 3.7. 

 

Figure 3.7 Illustration of divisive and agglomerative clustering 

3.4.2.2 Agglomerative (bottom-up) algorithm 

1. Select a similarity measure within clusters and between clusters (linkage method). 

Define a threshold (criteria for similarity) for within cluster similarity measure. 

2. Start with as many clusters as the number of items (such that every single item is a 

single cluster). 

3. Continue amalgamating clusters until every cluster satisfies the criteria in step 1. 

Dendrograms are graphs that are used to illustrate the hierarchical clusters. A sample 

dendrogram is given in Figure 3.8. Items that have smaller distance values are grouped in 

the same cluster (e.g. Probe_2 and Probe_27). The grouping depends on the cutoff value 

for the dendrogram tree. More detail on this will be given in section 3.8. 
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Figure 3.8 Dendrogram of clusters with Pearson correlation distance using Ward’s linkage 

3.4.2.3 Distance (Dissimilarity) Metrics For Vectors in a Cluster 

Distance is a measure of how far two items are. Items can be points or vectors. There is a 

very close relationship between the distance and similarity. As the distance between two 

items decrease, their similarity increase. If the distance between the ith and the jth items is 

    and the largest                           then the similarity can be defined as  

          
   

    
 . There can be found different measures for different purposes in the 

literature. Most commonly used ones are Manhattan (also known as City-Block Distance, L1 

Norm), Euclidean (also known as L2 Norm), Mahalanobis, Pearson correlation, Spearman 

rank correlation and Absolute or squared correlation. These distance metrics for two 

vectors                 and                  are defined as follows. 

Manhattan distance: 

          

 

   

 (3.7) 
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Euclidean distance:  

           
 

 

   

 (3.8) 

Mahalanobis distance:  

                  (3.9) 

 

where   is the variance-covariance matrix of X and Y.  

Spearman Rank Correlation distance;         where 

    
                    
   

           
 
         

  
   

 
(3.10) 

with centered sample moments and      and      being ranks. 

Absolute or squared correlation:  

            or          
  (3.11) 

Pearson correlation was used as the distance metric in this study because it is the most 

suitable method to distinguish between expression profiles over time. Ernst et al., (2005) 

suggested the use of correlation distance as it has certain advantages for clustering similar 

gene expression profiles. Moreover, Eisen et al., (1998) pointed the correlation coefficient 

as a very successful measure for clustering purposes. 

3.4.2.4 Pearson Correlation Distance  

Pearson correlation is a commonly used coefficient that measures the strength of the linear 

relationship between two variables. It is the standardized covariance between two 

variables. The correlation distance between two vectors                 and 

                is as follows: 
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          where      
               
 
   

         
        

  
   

 with centered sample moments. 

Please, note that the correlation can be estimated without centering the moments, i.e., by 

removing the sample mean terms from the equation. In this case, it is called uncentered 

correlation (also known as angular separation, cosine angle) distance.  

3.4.2.5 Distance Between Clusters 

As the items are grouped into the clusters according to their similarities, hierarchical 

algorithms must decide how to split or combine the clusters. This is done by measuring the 

cluster distance. 

3.4.2.6 Cluster centroid 

A cluster centroid is the center or the midpoint of a cluster. If there is more than one vector 

in a cluster, the cluster centroid is the mean of the means of those vectors. If there is 

another location measure like median for vector representations, then centroid can be 

calculated by using the median as well. Different applications are possible and an 

illustration of distance between clusters and cluster centroid is given in Figure 3.9. 

For a given cluster, the average of the distances between observations and the centroid is 

the average distance from the centroid. Likewise, the maximum of these distances is the 

maximum distance from the centroid. 

 

Figure 3.9 Illustration of distance between clusters and cluster centroids 
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3.4.2.7 Linkage methods  

A proper linkage method should be used in order to define how the distance between two 

clusters will be determined. Most widely used methods are Single, Average, Centroid, 

Complete, Median, McQuitty's and Ward's linkages. Ward's linkage was used in this study 

to link the clusters as it tends to minimize within cluster sum of squares.  

Ward’s distance between two vectors is defined as follows. 

           
 

   

                    
  

   

 

   

 (3.12) 

where    belong to the combined dataset. 

This way the method provides similar profiles grouped in the same cluster. The downside of 

this method is that it is very sensitive to the outliers. However, this downside is an 

advantage in this study as it is much preferable. Because, any perturbed measure can be an 

indication of supressed or overexpressed gene in the given time.  

3.5 Mixed Effects Models 

Longitudinal data occurs when repeated measurements are observed from the same 

subject over time. In other words, it is used to model and investigate the change of a 

feature which is measured repeatedly from subjects in the course of time. Especially in 

medical studies, the feature that is subject to measurement can be blood pressure, lung 

volume, cholesterol level, or serum glucose. Likewise in microarray experiments gene 

expression level is a characteristic that can be measured over time. Each subject can be 

measured repeatedly at successive times in experimental studies where levels of the 

factors are controlled by the experimenter. Even if some factors are controlled by the 

experimenter, there are many uncontrollable factors that affect the measurement 

variation. The resulting data structure cannot be easily modelled and inferred as there must 

be some assumptions and restrictions on the covariance matrix.  

In the mixed effects models, the distribution of the measurements from every subject is 

assumed to be identical with varying stochastic parameters. The distribution of the 

measurements constitutes a stage and the distribution of the parameters is another stage 

on the mixed effects analyses. Therefore, researchers must account for a multivariate 

distribution combining together repeated measures from individuals as well as the random 
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parameters. Laird & Ware, (1982) stated that the marginal distribution of the repeated 

measurements from subjects is multivariate normal with a special covariance matrix where 

the linear regression model is fitted for each subject that are conditional on subjects' 

individual parameters. EM algorithm or Bayesian methods are widely used to estimate such 

a model that combines random parameters as well as random regression coefficients. One 

main advantage of this approach is that it doesn’t require balanced designs. In other words, 

approach can also be used when the number of replications from each subjects are not 

necessarily the same. Laird & Ware, (1982) were influenced from the ideas of Harville, 

(1977) and they defined the statistical hierarchical model as in Equation (3.13). Hierarchical 

name describes the two stage of the estimation where the first stage is the estimation of 

the population parameters, individual effects and within-subject variation, and the second 

stage is the between subject variation. 

General form for the mixed model employed for this study is as follows: 

Let β denote a     vector of unknown population parameters and    be a known      

design matrix. Let    denote a     vector of unknown individual effects and    a known 

     design matrix. Usually,    is taken as a subset of    and the following model is 

proposed: 

Level 1: For each individual unit,   (individual units or namely subjects in applications of this 

study are the clusters containing probe sets that have similar gene expression profiles),   

                (3.13) 

where    is distributed as multivariate normal with mean vector   and       positive 

definite covariance matrix     . That is shown as           .    depends on   because it 

is    dimensional, however, the parameters in    do not depend on   (independent from 

subject) and    is taken as identity matrix in general. At this level β and    are considered 

fixed and    are assumed to be independent. A representation of this model was given by 

Lindstrom and Bates (1988) as: 

                      
     (3.14) 

where            represents each subject and C is the total number of subjects 

(clusters). 
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Level 2: The    are distributed as         , independently of each other and of the    

where     is a positive-definite covariance matrix. The population parameters, β are 

treated as fixed effects. Therefore, the marginal distributions of    are independent 

multivariate normal with mean     and covariance matrix               
   . The 

structure of the data in matrix form is as follows: 
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  ,       
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where    are the response vectors,    are the fixed effect design matrix,    are the fixed 

effect parameters,    are the random effect design matrix,    are the random effect 

parameters,    are the covariance matrices,   are the covariance matrix components for 

every ith subject. 

Therefore, the entire model can be written as                    where 

                and the marginal distribution of   is             , where   

                 . 

The computational part of the applications for fitting mixed effects model to the microarray 

gene expression data uses the structure above. The general framework of Lindstrom & 

Bates, (1988) and the model formulation that is described in Laird & Ware, (1982) are 

theoretical bases. The variance-covariance parametrizations are given in Pinheiro, (1996). 

These references belong to R nlme library which is the software package used throughout 

the calculations (Pinheiro et al., 2011). 

3.5.1 Estimation 

The computation and the estimation of the parameters in a linear mixed effects model is 

very intensive. The ordinary least squares estimates are not a plausible alternative as they 

are biased although they are very straightforward to handle. The normalization procedures 

before the gene expression analyses prepare a very applicable basis to the analyses. On the 

other hand, the hierarchical complexity and the number of parameters to estimate in the 

model can be described in terms of conditional likelihood functions.  
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Computational advances in solving such complex models allow us to handle high 

dimensional data. There are different methods to maximize the likelihood function. Every 

method has its own estimation procedure and standard errors of the estimates. The 

computational stages of solving a linear mixed effects model is generally split into three 

parts: estimation of the fixed effects (i.e. β), estimation of random effects (i.e.   ), and 

estimation of variance parameters (i.e.   ,   that are variance components or covariance 

terms). 

3.5.2 Estimation of the Fixed and Mixed Effects 

We can fit the mixed effects model by maximizing the likelihood function which is 

conditional on the data. In other words, the likelihood function provides the information on 

how likely the model parameters are given the data and it is defined by using the density 

function of the observations. 

In the classical approach where measurements are independent of each other, the 

likelihood function is simply the product of density functions of every individual 

observation. However, in a mixed model setting, measurements are not assumed to be 

independent of each other and hence the likelihood function cannot be the product of 

individual densities. The likelihood is the multivariate distribution of the measurements. It 

is the multivariate normal distribution of   incorporating all the variance parameters and 

the fixed effects. The variance parameters here cover all the parameters to be estimated in 

     and  . As the expected value of the random effects is   vector (recall that the    are 

distributed as         ), automatically the expected value reduces to    with covariance 

matrix                . The regular likelihood function based on the multivariate 

normal density function is then 

   
     

 
                  

                
 (3.15) 

and therefore, the log-likelihood can be written as 

         
 

 
         

 

 
                          (3.16) 

The above likelihood can be used for the estimation of the model parameters. Partial 

derivatives of the likelihood function yield the normal equations and hence the maximum 

likelihood (ML) estimators. However, one downside of this technique is that the variance 
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parameter estimates tend to have downward bias especially for small samples ((Lindstrom 

& Bates, 1988); (Brown & Prescott, 2006)). The bias is simply caused by the nature of the 

maximum likelihood method since it does not take into account the loss of degrees of 

freedom for the estimation of fixed effect coefficients (i.e.  ).  

In order to correct the downward bias, Restricted Maximum Likelihood (REML) (sometimes 

referred as Residual Maximum Likelihood Method) is proposed by Patterson & Thompson, 

(1971). The method simply eliminates the   parameter from the log-likelihood. As a result, 

the log-likelihood function is a function of variance component parameters. The likelihood 

function is obtained in terms of the residual terms, that are        , as it is used in the 

above likelihood equation. There is a slight difference between a regular likelihood 

approach and REML in the way the residuals are defined. Clearly, residual term for REML, 

       , does not contain the random effects regressor     and therefore, it is not 

           . Excluding the random coefficient term from the residual definition is not 

erroneous since the residuals contain all sources of the random variation. 

In linear regression, estimation space is orthogonal to the residuals and therefore, it can be 

shown that         and    are independent ((Diggle et al., 1994), Section 4.5). This 

provides us that the joint likelihood for   and the variance parameters,            , can 

be written as the product of the likelihoods based on         and    as follows: 

                              (3.17) 

thus rearranging the terms yields the likelihood function of the variance parameters,  , 

given the residuals as  

            
        

         
 (3.18) 

where we already have the numerator of the above ratio as in Equation (3.17). For the 

denominator, we need the ML estimate of the  . This is very straightforward since the log-

likelihood can be differentiated with respect to   and then equated to 0. 

               (3.19) 

and rearrangement of above equation gives the fixed effects estimate as: 
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       (3.20) 

and the variance of    is  

 

                
  
                         

  
 

                
  
                    

  
 

                
  

 

(3.21) 

The result assumes that   is known. However, it is almost impossible to know   and it 

should be estimated. When   is estimated, it causes a downward bias in        . An 

unbiased estimator for the variance of    was suggested by Liang & Zeger, (1986) by using 

the observed correlations between residuals which is known as the “empirical variance 

estimator”. 

 
                

  
                         

  
 

                
  
                    

 
             

  
 

(3.22) 

Although empirical variance estimator reduces the bias for small samples, Long & Ervin, 

(2000) stated that it causes a lack of modeled covariance by reflecting the observed 

covariance in the data. 

   has a multivariate normal distribution with mean   and variance         
  

. Hence 

the likelihood in the denominator of Equation (3.18) can be written as 

            
     

 
   

    
 
             

           
 (3.23) 

Dividing the numerator by the denominator in Equation (3.18) returns the restricted 

likelihood equation  

             
     

 
                    

                 
 (3.24) 
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and the restricted log-likelihood is obtained as 

                     
 

 
                   

  
                     

 (3.25) 

 

The restricted log-likelihood does not contain the parameters   and   as if they were 

integrated out. It is why this function can be called the marginal likelihood. 

The estimators for the random effects require the likelihood function of parameters     

and   which we can define as follows: 

                                    (3.26) 

where      ) and        are the variance components for     and   respectively. We can 

obtain the following likelihood function using the multvariate normal distributions for     

and  . 

            
     

 
 
                           

 
  

         
  
  

                
   

 
 

 (3.27) 

and the log-likelihood is obtained as 

                 
 

 
 
                                   

                       
  
 

    

 (3.28) 

Differentiation of above log-likelihood with respect to   and then setting it equal to zero 

provides the   . 

 
                       

  
 
  

                

                     

(3.29) 
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and the variance of    can be found as follows: 

                                                              (3.30) 

Equation (3.17) through Equation (3.30) were adopted from Brown & Prescott (2006). They 

also point that there is a shrinkage in the estimator compared to what it would be if it were 

fixed. Again in here,   is assumed to be known and needs to be estimated when it is 

unknown. Estimate of   has a slight downward bias since it is sample based. Bayesian 

approach can be used to get rid of the bias that is introduced by the nature of ML method. 

3.5.3 Estimation of the Variance Parameters 

The estimation of the variance parameters are not as straightforward as the fixed and 

random effect coefficients because the derivative of the log-likelihood function for the 

variance parameters is not linear. Therefore, the solution of the derivatives require 

numerical methods. The literature presents many solutions to the estimation of the 

variance components of the mixed models including Maximum Likelihood (ML) and 

Restricted Maximum Likelihood (REML) utilizing iterative numerical methods or 

Expectation-Maximization (EM) algorithm. The EM algorithm which is utilized in this thesis 

for estimating the variance components is given by Laird & Ware (1982). The algorithm is 

described as follows. 

The closed form of the ML estimates of the components of   can be found based on the 

quadratic forms in     and   . Therefore we can easily obtain the following equations. 

       
 

 

   

     

 

   

       

 

   

  (3.31) 

and 

           
 

 

   

      (3.32) 

The    and the 
 

 
       components of    therefore are the sufficient statistics for   

where          .  
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The estimates of the sufficient statistics,    and   , can be calculated as follows: 

         
 

 

   

                

      
                          

 

   

 

(3.33) 

and 

           
 

 

   

           

       
                   

 

   

 

(3.34) 

where 

                                 (3.35) 

A preliminary estimate of   and thus   can be used to start the iterations between 

Equation (3.33) and Equation (3.34) which is defined as the “E” (Expectation) step and the 

iterations between Equation (3.31) and Equation (3.32) which is defined as the “M” 

(Maximization) step until convergence. At the time of convergence,    and    are also 

obtained. 

There are also various applications of generalized least squares estimation available. 

Bayesian alternatives to frequentist approach to the problem are also available. 

Brown & Prescott, (2006) described the implicit forms of the Newton-Raphson iterative 

solution as well as the iterative generalized least squares estimation that is based on the 

full residual likelihood. They also presented posterior densities of the parameters for 

Bayesian framework approach. The work by Laird & Ware, (1982) is extensively used for 

applications especially in software packages. They offered ML and REML methods for 

estimating the variance components when the covariance matrix is unknown. As the 

solutions for both methods are not explicit for variance components they described how 

EM algorithm was implemented. The computations throughout this study was done on R 

software platform and its nlme package that utilizes the procedures mainly in Laird & Ware, 

(1982), Lindstrom & Bates, (1988) and Dempster et al., (1981). Computational details of the 
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EM algorithm applied to the mixed models discussed will not be covered here as they are 

too complex and out of interest. One important additional point that should be made here 

is that ML estimates create a bias in the estimates of random effects because the method 

does not take the loss of degrees of freedom in estimating the fixed effects. Usage of REML 

is required to overcome this drawback. Especially for small sample sizes REML has less bias 

outperforming ML. 

3.6 The Reasons to Use Mixed Models 

In the context of this study, the complicated structure of the data requires a powerful and 

comprehensive model for a detailed statistical inference. Common regression models lack 

handling random coefficients together with fixed effects, subjectwise analysis, time trend 

fitting and many other requirements. Especially the need for taking the correlation 

between measurements or consecutive time points into consideration is one of the most 

compelling part of the analyses. Factors that affect the inference on the results are based 

highly on the data. Some common advantages that favors the implementation of the mixed 

models are very well summarized and itemized in Brown & Prescott, (2006) as follows:  

 Incorporating the covariance between measurements can be done with mixed 

models, and it improves the fitting appropriateness of the fixed effects estimates 

and standard errors.  

 Handling repeated measures, unbalanced data and missing values is available via 

mixed models. 

 If the data of interest has hierarchical levels with many factors such as cell type, 

treatment, short time series and the clusters that contain the probe sets with 

similar expression profiles in this study, mixed models produce more appropriate 

results. For example, cell type effects are allowed to vary randomly across 

treatment and control groups and across different time points. 

 Fitting the random effects together with the fixed effects produce more unbiased 

results compared to when they are fit only as fixed effects. Existence of the random 

effects compensates the shrinkage of the fixed effects towards to the mean value. 

This also helps to avoid any over and under estimation of parameter estimates that 

occur by chance. 

In addition to above, mixed models provide a great flexibility whenever additional factors 

or terms such as covariates or categorical factors are to be added to the model. They can 
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model data structure very well. Sometimes, because of the nature of the experiment, 

factors must be incorporated to the model as random factors which mixed models allow. 

As the whole data can be analyzed and common means can be calculated, subjectwise 

(subject-specific in some sources) inference is available. One fascinating feature of mixed 

models is that they can separately estimate the fixed and the random effect slopes of an 

individual's change over a longitudinal period as well as its group-level mean slope. 

Moreover, Baayen et al., (2008) summarized the advantages of the mixed effects modeling 

as follows: 

Mixed-effects can handle covariates successfully even if they do not fold all the time during 

the experiment. The longitudinal effects differ in some sense that sometimes the effect of a 

factor can show up for a short period of time in the warm up period of the experiment. 

Biologists call this effect acute effect of a treatment in medical studies. On the contrary, 

sometimes the effect of a factor becomes more significant in the course of time while the 

acute one lessens. That is namely the chronic effect and it is more durable. Mixed-effects 

models allow us to distinguish between these two. 

Especially clinical studies require careful investigation of the change in the response under 

certain experimental conditions. However, the change does not occur in the same time lag 

for every section of experimental period. Therefore, the classical signal-to-noise ratio 

approach is useless in the sense that it cannot take into account the change in time. A clear 

sketch of this situation is given in Figure 3.10 which consists of two panels. The one on top 

has unevenly spaced time points where the first time lag is 6 hours from 0 hour to 6 hour 

and the second time lag is 42 hours from 6 hour to 48 hours. The change in the gene 

expression level in the second interval is given as h. On the bottom panel of Figure 3.10 the 

sketched trend has evenly spaced time points and the change in the gene expression level 

in the second interval is the same as in the upper panel as h. Even if the change in the 

responses (h) for both graphs are the same, the time lags between consecutive 

measurements for both models are different. An insightful analysis has to take the 

continuous time effect into account that can be easily done by mixed models. A random 

slope parameter for time effect was used in this study to handle the change in gene 

expression level over unevenly spaced time points.  
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Figure 3.10 The same amount of change in the response in different time lags 

Nevertheless the total change in the same interval in the main response is the same for 

both cases, the slope of the trend is different because of the different lags. Therefore, the 

time effect must be directly incorporated to the model to be able to detect the time trend. 

Incorporation of the time parameter to the mixed model as a continuous covariate can 

handle the situation as desired. On the contrary, some methods like Limma as the 

competing alternative of LME can only handle qualitative factors and lacks incorporating 

the real time effect. In the bottom line, mixed effects models are useful for modeling 

unevenly spaced time trends. 

Mixed-effects models are able to handle many kinds of longitudinal effects 

straightforwardly into the statistical model and do not require prior averaging (Baayen et 

al., 2008). In addition, experimental conditions prior to the measurements can also be 

incorporated to the model and the analyses. Especially, qualitative properties of initial trials 

should be under statistical control (Baayen et al., 2008). 

3.7 Data Structure 

A representative structure of the data set that is subject to this study can be seen in Figure 

3.11. The notation, e.g.         
      will be introduced in the next section. 
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Figure 3.11 An example of the structure of short time series microarray data with replicates
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The structure of the data represented in Figure 3.11 shows that the first factor is the cell 

type. Given the cell type, a measurement can be exposed to the treatment or be the 

control group which is the second factor namely the exposure. Given the cell type and the 

exposure a measurement or its replicates can be taken over unevenly spaced continuous 

time points that is the third factor. At the bottom of the structure there are probe sets that 

are grouped into clusters and also referred as subjects in this study. 

3.8 The Model 

The model proposed in this study to detect differentially expressed short time series gene 

clusters over time is as in Equation (3.36) below.  

       
                                           

   

   

                      
          

 (3.36) 

where 

    
                            
                        

  

    
                
           

  

           represents each cluster where C is the total number of clusters. 

           stands for probe sets where there are N probe sets. 

            stands for replicates where there are    replicates in the tth 

timepoint. 

             stands for cell types where there are A cell types. 

     for control groups, and     for treatment groups. 

           stands for the model to be fitted to the data at consecutive couples 

of time points (e.g. m=1 for the model fitted to the data in the first time interval, 

m=2 for the model fitted to the data in the second time interval, and so on). 

Therefore, there are M time intervals. 

       stands for the order of the timepoint in a two-timepoint interval (e.g. k=2 

indicates 6h at 1h – 6h period). 
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       is the regressor variable (the timepoint value) for mth model and kth time 

(e.g.                    where timepoints are {0, 1, 6, 24, 48, 168} 

respectively). 

                  are the fixed effect coefficients that are same for all clusters. 

                      are random effect coefficients that is specific to each of C 

clusters and A treatments. 

        
           

      

             ,  e.g.        
                 

                 
      

 

        
                  are the random noises. 

 

The parameters in Equation (3.36) were estimated separately for each time interval for 

short time series as if the time series were consisted of only two time points. For example, 

if the short time series is consisted of 5 time points, the model is fitted for each of the 4 

time intervals separately.  

There are two main points on the response variable Y. First one is that it is in      scale in 

all the analyses throughout the study.      transformation is a common approach in 

preprocessing of microarray data for normalizing the expression values and also for 

equalizing their variances for modeling and testing purposes.  

The second point is that the change in the gene expression level for a specific gene or a 

probe set corresponds to a fold change, since it is measured in comparison to a reference 

group. Biologists also prefer to talk in terms of fold change during analyses. It is also more 

convenient for a better understanding. Let    and     be raw gene expression values of the 

same gene measured on two different states. The fold change from state 1 to state 2, 

namely     , can be written as      
  

  
. Hence, taking the log in base 2 returns the 

difference of the two as the fold change in log2 scale as in Equation (3.37). 

    
                

   
    

  
(3.37) 

This fact will be based upon during the simulations explained in the next chapter. 
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3.9 Replication 

Likewise almost all of the statistical analyses, replication is a very important aspect also for 

design and analysis of microarray experiments. Yang & Speed, (2003) describes the three 

types of replicates that are most common in microarray experiments. The first one is the 

biological replicate where mRNA samples for microarray are collected from different 

experimental units (e.g. multiple cell lines, multiple biopsies, multiple patients, etc). The 

purpose of the biological replicate is to control the biological variability.  The second one is 

the technical replicate where mRNA samples for microarray are collected from the same 

experimental unit but hybridized (and accordingly measured) on different microarrays. 

Technical replicate is done to control the technical variability within an experiment (e.g. 

array to array variation, reagent variation, dye incorporation, etc.). The third one is the 

within-array replicate where the same probes of an experimental unit are spotted and the 

same microarray are used for hybridization and analyses. 

Tai & Speed, (2005) stated that replication is useful for detecting the change in the genes 

that happen in a limited time. They also suggested the biological replicate as the most 

preferable replication type because it makes the inference more convenient for larger 

populations rather than that of the experimental unit. Although they recommended at least 

three biological replicates per time point, the circumstances that the experiment is 

designed may not allow to do so at every analysis. Tai & Speed, (2005) also indicated that 

when there are only technical replicates, the experimenter lacks of calculating the pure 

error. On the other hand, the biological replicates allow calculating the variation between 

replicates and incorporating it to the analyses. The analyses and the simulations in this 

study was based on the biological replication as in the asbestos study (Nymark et al., 2007). 
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CHAPTER 4 

 

 

4APPLICATION 

 

 

 

4.1 Simulation 

A simulation study has been applied considering the nature of the data structure. The 

model proposed in this study is to be applicable for any short time series microarray data. 

Moreover, the success of the proposed model should be comparable to previously 

proposed ones in the literature. Therefore, the simulations did not depend on any 

particular statistical model. Accordingly, a non-model based simulation study including as 

many sources of variation as possible on the data was performed.  

Nykter et al., (2006) stated that all microarray data simulation algorithms are based on a 

mathematical model and it is almost impossible to simulate an exact replica of a real life 

microarray data since the data are collected by the means of a measurement system. They 

also provided a very complicated data simulation algorithm having claimed to incorporate 

all the possible sources of variation to create a realistic data set. However they were unable 

to provide the explicit algorithm. The proposed algorithm is also far from being applicable. 

One important point that they make is that the “ground truth” for the start up as the initial 

data should be realistic. Then the resulting simulated data is much favorable for validation 

purposes. That is exactly what was done in this study as well. The asbestos data set were 

used as the ground truth at the first time point of the short time series. 

Wang et al. (2008) also used a non-model based simulation algorithm in their study where 

they used a mixed-effects model for analyzing pathways. They generated different 

scenarios where proportion of genes with treatment effect, the proportion of up-regulated 

and down-regulated genes among the genes with treatment effect varied. 
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There are three main sources of variation in the microarray data of interest in this study. 

Cell type, exposure and time are the main effects. Every cell type was measured for 

exposed and control groups. Both exposure and control groups are measured in time 

course (in several timepoints so as to form a short time series). At each time point, there 

are    replicates. Figure 3.11 stands for the layout of the structure of the data. The number 

of replicates at each time point, the number of cell lines and the number of time points for 

each cell type may vary in applications. These kinds of variations do not create any 

problems in our model.  

Clustering is a part of our study and it is applied during analyses and applied to the 

simulated data. Therefore, clusters were not simulated, instead they were calculated from 

the simulated data in complete accordance with the real life data application. 

Besides the three main effects in the model, different probe sets and random noise that is 

highly observed in real life experimentation were also incorporated to the simulations. The 

outline of the simulation study with steps followed are as follows: 

4.1.1 Generating the Initial Data 

Short time series microarray data require simulating initial data as the first time point to 

start the series. In general time series data is simulated by using an autoregressive 

coefficient, namely the correlation is multiplied with the current state of the data and a 

reasonable amount of noise is added on top. In a similar fashion, having switched to the log 

scale the use of fold change can introduce correlation in microarray data simulations. 

Fold changes due to the effects on the data was incorporated to the simulations. As 

explained in the previous chapter, fold change is the multiplicative amount of change in the 

original scaled data if there is a significant effect of the parameters. For example; a two fold 

change corrensponds to 100% increase or 50% decrease; three fold change means 200% 

increase or 66.7% decrease. It can be generalized as follows: 

2-fold change 

           
    

 
              

           
    

  
            

3-fold change 
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Representation of fold change effects to consecutive measurements in the original scale 

can be given as follows: 

                (4.1) 

  : The fold changing effect 

   : The value of the random variable X at state t 

      : The value of the random variable X at state t-1 

           : Random error, generally taken as          

Therefore, the amount of change in the data is d*100%. If d=1, then we have (1+1)=2 fold 

change which is equal to 100% change or in other words the expression level is doubled. 

However the above representation is not valid for the data in log2 scale. Therefore, the 

equation was modified as follows: 

   
      

      (4.2) 

The asbestos data set were used as the representative initial data and it was analyzed. The 

histogram on Figure 4.1 sketches the distribution of an array from Asbestos dataset. 

Although the selected array is A549 cell line under asbestos exposure at the first hour, all 

other arrays would have sketched the same distribution since their quantiles were 

normalized. 

 

Figure 4.1 The distribution of asbestos data (Cell type:A549, asbestos exposed, observed at 1 hour) 
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Actually, regardless of the environmental effects, significant differential expressions are 

likely to be observed in a cell. Genes are distinct parts of the DNA sequence and different 

genes are expressed to form different organic structures. As a result, although Gamma(3,2) 

seems to represent the above distribution, it is still not a reasonable alternative. A careful 

review of the distribution gives a clue about the modality. It is clear to state that there are 

more than one locations that data centralizes. This required that the complexity of the 

representing distribution must be increased. 

Expectation-Maximization (EM) algorithm helped to fit a mixture of normals to the data as 

follows. 

                                                          

 

   

 (4.3) 

where            is a normal density. R package has “mixtools” library and “normalmixEM” 

function to apply the EM algorithm. The fit that is obtained by resulting mixture is much 

more satisfying. The maximum likelihood estimates of the parameters from above mixture 

distribution are as follows: 

Table 4.1 MLE estimates of mixing proportions, location and scale parameters of Asbestos data 
measured under exposure at 1 hour 

Proportions Means 
Standard 

Deviations 

                           

               97          

                           

Resketching the fitted mixture of normal distributions with the parameters given in Table 

4.1 yields Figure 4.2: 
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Figure 4.2 Densities of estimated mixing normal distributions by EM algorithm 

4.1.2 Cell Type Effect 

The first main effect cell line or “cell type” has an effect on all observations regardless of 

exposure, time, replicate and probe set. As a matter of fact that time series data is needed 

and in a time series every other measurement is affected from a previous measurement 

sequentially. If cell effect is applied at every time interval it would cause a cumulative effect 

and create a bias in the mean cell effect. Therefore, in order to apply the cell effect once 

and not to let it cumulate through the time steps, the fold change for cell effect was added 

once to the initial data. The differential expression for the cell type factor is generated as 

the contrast between different cell types. As a rule of thumb in linear models, a qualitative 

factor is represented with the contrasts generated by its levels. For example, if there are 

two cell types in the experiment, they are represented with only one parameter, that is the 

effect of the second minus the first level, which is the reference level. 

The number of cell types may vary due to the concept of the experiment. Therefore, there 

may be a number of combinations for the contrasts that are possible to be observed in the 

real life data. Firstly, all possible orderings of cell significances were generated. That is    

possible orderings of significances where A is the number of cell types as stated in Equation 

(3.36). An example of possible orderings when there are two cell types is given in Table 4.2. 
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All possible combinations of cell type significances were ordered and were also ranked, 

namely the profile ranks to be used for sampling purposes in proceeding stages of the 

simulation. 

Table 4.2 Possible significance orderings for two cell types 

Profile Rank Cell Type 1 Cell Type 2 

1 -1 -1 

2 -1 0 

3 -1 1 

4 0 -1 

5 0 0 

6 0 1 

7 1 -1 

8 1 0 

9 1 1 

-1 : Cell type has a reducing effect on the gene expression level 

0 : Cell type has no effect on the gene expression level 

1 : Cell type has an increasing effect on the gene expression level 

Secondly, a contrast table was calculated for modeling purposes. The case given in Table 

4.2 can be represented by a single parameter in the model which is the contrast between 

cell type 2 and cell type 1 (                       ). Therefore, a contrast table was 

prepared as in Table 4.3. 

Table 4.3 Contrast table for two cell types 

Profile Rank Cell Type 1 Cell Type 2                

1 -1 -1 0 

2 -1 0 1 

3 -1 1 1 

4 0 -1 -1 

5 0 0 0 

6 0 1 1 

7 1 -1 -1 

8 1 0 -1 

9 1 1 0 
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In this table,                is the indicator function. As a result: 

-1 : Contrast parameter is significant, cell type 1 has larger effect 

0 : Contrast parameter is non-significant 

1 : Contrast parameter is significant, cell type 2 has larger effect 

Therefore, the system is able to handle whether a specific gene or a probe set is 

significantly affected by the type of the cell as well as the type of the effect such as which 

cell type has larger or smaller effect. 

The true cell type effects for every single probe set were randomly selected from the 

contrast table that were generated for every combination due to the number of cell types 

similar to Table 4.3. However, the proportion of the significant contrast parameters were 

selected around 10% where 90% of the probe sets simulated have a non-significant cell 

type parameter. Many real life data applications showed that on the average 10% of the 

genes are differentially expressed and the rest of the genes as the majority are supressed 

or not active. 

4.1.3 Exposure Effect 

Like the cell type, the exposure effect which means the effect of the treatment to observed 

expression levels must be applied once and before the time effect. Exposure can have an 

increasing effect, decreasing effect or an insignificant effect on the gene expression levels 

in constrast with control genes that are not exposed to the treatment.  

There assumed to be one exposure and one control group in this thesis. However, if 

required, additional exposure and control groups can be incorporated to the study like the 

number of cell types are two or more. The number of possible combinations for the 

contrasts that are possible to be observed in the real life data is 3 as follows. 

-1 : Exposure to the treatment has a reducing effect on the gene expression level 

0 : Exposure to the treatment has no significant effect on the gene expression level 

1 : Exposure to the treatment has an increasing effect on the gene expression level 

Therefore, the system is able to handle whether a specific gene or a probe set is 

significantly affected by exposure to the treatment as well as the type of the effect such as 

increasing, decreasing or not changing. The exposure parameter is a natural contrast 

parameter in contrast to the control group effect. 
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The true exposure effects for every single probe set were randomly generated. However, 

the proportion of the significant exposure parameters were selected around 10% where 

90% of the probe sets simulated have a non-significant exposure parameter. 

4.1.4 Time Effect 

Having generated the first set of measurements for first timepoint for all probe sets, the 

effect of the next timepoint can be considered and incorporated into the simulation. All the 

cell type effects were applied first and then all the exposure effects were applied and then 

finally the time effects were applied during the simulations. This is because of the 

convenience of creation of the simulated data. For example, both control and exposure 

groups in a cell must have the cell effect. Therefore, the cell effect was incorporated firstly. 

Accordingly, exposure effects and time effects were introduced to the data. 

The significant changes in gene expression level from the first timepoint to the second was 

taken as interval effect. Basically, like the cell type and exposure effects, there are three 

possible effects or namely trends for this effect. The amount of gene expression may 

increase, decrease or not change during the time interval between consecutive timepoints 

(see Table 4.4). Therefore, as a first action, time trends or formally gene expression profiles 

need to be generated. If “T” is the number of timepoints, then, there are (T-1) intervals and 

       possible gene expression profiles. The time parameter stands as the continuous 

covariate in the model and it represents the slope of the fitted line in a particular time 

interval. Therefore, the slope can be as follows: 

-1 : Significantly negative (decreasing gene expression level by time) 

0 : Non-significantly zero (no change in the gene expression level by time) 

1 : Significantly positive (increasing gene expression level by time) 

An example of possible orderings is given in Table 4.4 in the case of 3 timepoints and 2 time 

intervals.  
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Table 4.4 Possible orderings of interval significances with 3 time points 

Timepoints:    
          
            

          
            

  
increase: +1 

 
increase: +1 

 
Effects: 

 
decrease: -1 

 
decrease: -1 

 

  
no change: 0 

 
no change: 0 

 

According to Table 4.4, all possible time profiles and corresponding profile ranks can be 

tabulated as Table 4.5. 

Table 4.5 All possible time (interval) significances and their profile ranks with 3 time points 

Profile 
Rank 

Interval 1 Interval 2 

1 -1 -1 

2 -1 0 

3 -1 1 

4 0 -1 

5 0 0 

6 0 1 

7 1 -1 

8 1 0 

9 1 1 

 

4.1.5 The Algorithm 

All possible gene expression profiles were created beforehand and a probabilistic sampling 

scheme was applied in order that the simulation system creates less significant changes in 

the gene expression levels over the time. 

The simulation algorithm in the concept of the cell type, exposure and time parameter 

effects as explained above is as follows: 

1) Define the number of cell types to generate ( ) (selected as 2 and 3). 

2) Define the number of probe sets to generate ( ) (selected as 500 or 1000 for ease 

of computation). 

3) Define the number of time points to generate (T) (selected as 2, 3 and 4). 
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4) Define the number of replicates per time point (   replicates in the tth timepoint. 

Although the number of replicates may differ and the model proposed in this study 

can easily handle this, for the ease of simulations the number of replicates per time 

point was selected constant. Another reason of selecting balanced design is that 

the competing alternative procedure Limma cannot handle unbalanced designs. 

Number of replicates were selected as 2 and 3). 

5) Define the maximum number of EM iterations (selected as 100). 

6) Define the convergence criteria for EM iterations (selected as the difference of 

consecutive estimates should be less than or equal to     ) 

7) Define the number of simulation runs for MCMC estimation purposes (selected as 

500 runs). 

8) Define the Type I error rate (α) (selected as 0.05, 0.10, 0.20 and 0.40). 

9) Define the fold change amount  

    : the amount of fold change when there is significant cell type effect 

    : the amount of fold change when there is significant exposure effect 

    : the amount of fold change when there is significant time (interval) effect 

Throughout all the simulations fold change effects for significant changes were 

selected as the same such as 1.5, 2 and 3 (              ). Any significantly 

decreasing change resulted as the multiplication of the fold change with -1 (e.g. 

     ). Any insignificant change resulted as a 0 fold change.  

10) Generate the contrast table of cell type parameter(s) including profile ranks and the 

true significances. 

11) Generate the contrast table of time parameter including profile ranks and the true 

significances on every interval. 

12) Sample the cell type parameter(s) significances for every single probe set by 

sampling a profile rank from the below discrete distribution given in (3.24). 

       

 
 
 

 
  

    

     
   

                    

           

      
    

     
   

                   

  (4.4) 

where   
    

 
  being the median profile rank standing for the non-significant 

profile; A is the number of cell types and Q is the profile rank when all possible 

profiles were ordered in ascending order of magnitude. Therefore, proportionally 

90% of the probe sets will have non-significant cell type effect. As an example, 
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Table 4.6 shows all the possible profile ranks along with the cell type contrasts in a 

2 cell type experiment and the selection probabilities calculated by using Equation 

(4.4) for each profile to be selected. 

Table 4.6 Profile ranks and their selection probabilities for two cell type case 

Profile 
Rank 

Cell Type 1 Cell Type 2                
Selection 

Probability 

1 -1 -1 0 0.005 

2 -1 0 1 0.010 

3 -1 1 1 0.015 

4 0 -1 -1 0.020 

5 0 0 0 0.900 

6 0 1 1 0.020 

7 1 -1 -1 0.015 

8 1 0 -1 0.010 

9 1 1 0 0.005 

13) Sample the exposure parameter significances for every single probe set by sampling 

from the below discrete distribution given in (4.5). 

        

                
            
            

  (4.5) 

where Z is the significance indicator. Therefore, proportionally 90% of the probe 

sets will have non-significant exposure effect. In other words, 90% of the probe sets 

that were exposed to the treatment will not be affected from the treatment. 

14) Sample the time parameter (interval) significances for every single probe set by 

sampling a profile rank from the below discrete distribution given in (4.6). 

       

 
 
 

 
  

    

     
   

                    

           

      
    

     
   

                       

  (4.6) 

where   
        

 
  being the median profile rank standing for the non-significant 

profile; T is the number of timepoints and Q is the profile rank when all possible 

profiles were ordered in ascending order of magnitude. Therefore, proportionally 

90% of the probe sets will have non-significant time effect. As an example, Table 

4.7 shows all the possible profile ranks along with the time (interval) significances in 
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a 3 time point experiment and the selection probabilities calculated by using 

Equation (4.26) for each profile to be selected. 

Table 4.7 Profile ranks and their selection probabilities for time (interval) significances 

Profile 
Rank 

Interval 1 Interval 2 
Selection 

Probability 

1 -1 -1 0.005 

2 -1 0 0.010 

3 -1 1 0.015 

4 0 -1 0.020 

5 0 0 0.900 

6 0 1 0.020 

7 1 -1 0.015 

8 1 0 0.010 

9 1 1 0.005 

Table 4.7 indicates that proportionally 2% of the probe sets will be assigned profile 

rank 4 and those will not have a significant time effect in the first interval where 

the same probe sets will be differentially down regulated in the second time 

interval. 

Through the steps 12, 13 and 14, the true significances for cell type, exposure and 

time parameters are generated. The data generation part starts on step 15. 

15) Generate the initial set of data from the distribution given by Equation (4.3) with 

parameters given on Table 4.1. 

16) Repeat step 15 as many replications as required. 

17) Generate data for all time points for the 1st probe set (p=1) incorporating 

significance effects according to the generated true significances whether the 

probe set is differentially expressed in the given interval: 

       
                 

                                               (3.7)  

where        
          is the initial response created in step 15 when k=1 (where 

       ).              and   =0.1.     ,      and      are indicator functions as 

follows: 
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Repeat this step until data is generated for all time points           with all 

replicates            . 

18) Repeat step 17 for all other probe sets        . 

 

4.1.6 Exemplary Simulation Study 

4.1.6.1 Example 1. 

A simulation study was performed with the parameters given below: 

 N = 500 (Total number of probe sets) 

 A = 2 (Number of different cell types) 

 n = 2 (number of replicates at each time point) 

               are the time points 

 Fold change is 2 

 The standard deviation of replicates per time point is 0.5 

 

Probe 459 was picked up randomly, true significance table is given in Table 4.8 and the 

simulated expression values for this probe set is given in Figure 4.3. 

 

Table 4.8 True significance profile for probe set 459 

Probes                Exposure Interval 1 Interval 2 Interval 3 

Probe_459 0 1 0 0 0 

According to Table 4.8, there is no significant difference between cell type 2 and cell type 1 

and there is no significant change by time over the intervals. Exposure has a significant 

increasing effect on the expression levels. Therefore, cell type and time parameter is not 

truly significant but exposure parameter is. 
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Figure 4.3 Simulated expression values for probe set 459 

According to Figure 4.3 which shows the simulated data for probe set 459, there are two 

replicates per time point. It is clear that the mean expression level does not change across 

the time points on all groups (e.g. cell type 1 and 2, control and exposure groups). On the 

other hand, the exposure groups (empty circles) have a significant increasing effect on the 

gene expression levels. Exposure group has an expression level average of approximately 6 

whereas control group has an average expression level around 4. There is a 2-fold change 

due to exposure effect. 

4.1.6.2 Example 2. 

A simulation study was performed with the parameters given below: 

 N = 500 (Total number of probe sets) 

 A = 2 (Number of different cell types) 

 n = 3 (number of replicates at each time point) 

            are the time points 

 Fold change is 2 

 The standard deviation of replicates per time point is 0.1 
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Probe 151 was picked up randomly, true significance table is given in Table 4.9 and the 

simulated expression values for this probe set is given in Figure 4.4. 

 

Table 4.9 True significance profile for probe set 151 

Probes                Exposure Interval 1 Interval 2 

Probe_151 -1 0 1 -1 

According to Table 4.9, the difference between cell type 2 and cell type 1 is significant and 

change by time over the intervals are also significant (e.g. significant increase in the gene 

expression level at first interval and significant decrease in the gene expression level at 

second interval). Exposure does not have a significant effect on the expression levels. 

Therefore, simulated significance profile indicates that cell type and time parameters are 

significant but exposure parameter is not. 

 

Figure 4.4 Simulated expression values for probe set 149 

According to Figure 4.4 which shows the simulated data for probe set 149, there are three 

replicates per time point. Even though the data points on the graph were jittered by 0.025 

over the y axis, there are still some overlapping points because the standard deviation for 

replicates was selected as 0.1. It is clear that the mean expression level increases during the 
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first time interval and decreases during the second time interval. On the other hand, it is 

clear that cell type 2 (empty circles) have significantly lower gene expression levels. 

Exposure on the other hand does not seem to have a significant effect on gene expression 

levels. 

4.2 Essentials of the Simulation Study 

Applications through the proposed methodology was realized in two stages as simulation 

study and real life data modeling. Simulations was performed for comparison and 

performance evaluation purposes. Real life data fitting was applied to both representative 

set of 520 probe sets from asbestos data which Nymark et al., (2007) used and to the full 

asbestos data which has 54,675 probe sets. The data firstly filtered by using qvalue and 

kOverA functions. K-means clustering was applied to the filtered data. Every single k-means 

cluster was then applied hierarchical clustering and similar gene expression profiles on each 

k-means cluster were detected. Finally, different hierarchical clusters on different k-means 

clusters formed the groups which are modeling units (subjects but not the experimental 

units). Proposed Linear Mixed Effects (LME) model was fit on every time interval 

independently for a short time series microarray data. Likewise, the competing alternative 

Limma was also fitted the same way in order to have a fair comparison. The simulation 

study was performed on TUBITAK ULAKBIM GRID Computer in Ankara where it took almost 

two weeks to finalize all the runs with massive data. Simulations were repeated 250 times 

for all combinations of below parameter settings: 

 Maximum number of iterations for the LME optimization algorithm was 100 

(default setting on nlme package is 50). 

 Maximum number of iterations for the nlm optimization step inside the LME 

optimization was 100 (default is 50). 

 Number of iterations for the EM algorithm used to refine the initial estimates of the 

random effects variance-covariance matrix was 1000 (Default is 25. Purposefully 

selected as very larger than the default number because the quality of initial 

estimates affect the success of convergence). 

 The tolerance value to decide convergence for iterations for both EM algorithm and 

LME optimization is 10-5. 

 The numbers of probe sets in simulated datasets were 500 and 1000. On the real 

life asbestos data there are 54675 probe sets.  
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 The numbers of cell types in simulated datasets were 2 and 3. 

 The numbers of time points were {1, 6, 24}, {1, 6, 24, 48} and {1, 6, 24, 48, 168} 

respectively. Therefore, the number of time intervals to fit the proposed model was 

2, 3 and 4 respectively. 

 The number of replicates per time point was selected as 2 and 3 respectively. 

 The fold change value that was used for generating simulated data was 1.5, 2 and 3 

respectively. 

 The p-value cut-off points for significance testing were 0.05, 0.1, 0.2, 0.3 and 0.4.   

Considering all the possible number of probe sets (2), number of cell types (2), number of 

time points (3), number of replicates (2) and number of fold change settings (3) for the 

simulations, all the possible combinations of these settings were 72. Therefore, simulations 

were run on 72 different settings. On every single simulation, performance measures for 

both LME and Limma methods were calculated based on the same simulated data. 

Moreover, the number of subject-wise test results were reported from both methods that 

match or do not match in terms of significance such as significant and non-significant. The 

performance measures on the simulations were calculated upon the values from Table 4.10 

as follows: 

Table 4.10 Ground  Truth vs. Model Results 

  
Ground Truth 

 

  
Positive Negative TOTAL 

Model 
result 

Positive 

 
True 
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(TP) 

 

False 
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P' 
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TOTAL P N 
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True Positive Rate (TPR): This measure is also known as the “sensitivity” and is equivalent 

with hit rate and recall. It is the proportion of positive test results when the ground truth 

are positive. It corresponds to the power of the test in hypothesis testing. It is better when 

it’s close to 1, and worse when close to 0. 

 TPR = TP / P = TP / (TP + FN) 

False Positive Rate (FPR): This measure is equivalent with fall-out. It is the proportion of 

positive test results when the ground truth are negative. It corresponds to the Type I error 

in hypothesis testing. It is expected to be less than or equal to the significance level. 

FPR = FP / N = FP / (FP + TN) 

Accuracy (ACC): Accuracy is the proportion of correctly classified test results. It is the sum 

of true positives and true negatives. It is better when it’s close to 1, and worse when close 

to 0. 

ACC = (TP + TN) / (P + N) 

Specificity (SPC): This measure is also known as the “True Negative Rate”. It measures the 

ability of the test to result as negative when the ground truth is negative. It is better when 

it’s close to 1, and worse when close to 0. 

SPC = TN / N = TN / (FP + TN) = 1 − FPR 

Positive Predictive Value (PPV): This measure is equivalent with precision. It is the 

proportion of correct positive test results among all positive test results. It gets closer to 1 

as the number of false positives lessen. Therefore, it is better when it’s close to 1, and 

worse when close to 0. It depends on the number of positives in the ground truth. 

PPV = TP / (TP + FP) = 1 – FDR 

Negative Predictive Value (NPV): It is the proportion of correct negative test results among 

all negative test results. It gets closer to 1 as the number of false negatives lessen. 

Therefore, it is better when it’s close to 1, and worse when close to 0. It depends on the 

number of negatives in the ground truth. 

NPV = TN / (TN + FN) 
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False Discovery Rate (FDR): It is controls the Type I error rate in a multiple hypothesis 

testing environment. It is the proportion of false positives among all positive test results. 

FDR = FP / (TP + FP) 

F1 score: F1 score is a measure of a test’s accuracy that considers both precision and recall. 

It is better when it’s close to 1, and worse when close to 0. 

    
                

                
  

       

       
 

4.3 Implementation of clustering methods 

In this study, a two step clustering procedure was proposed and applied to both simulated 

data and to asbestos data. All probe sets were first clustered by k-means algorithm. Next, 

each of the k-means clusters were clustered by hierarchical clustering. Therefore, two 

independent clustering schemes were obtained successively. The final clusters were 

obtained such that they contain the probe sets that have the same k-means and the 

hierarchical cluster number. Resulting clusters have similar gene expression levels and 

patterns over time. The procedure was formerly used by Chen et al. (2005). They concluded 

that applying divisive hierarchical clustering to the k-means performs very well for similar 

demands. In a noteworthy study by Möller-Levet et al. (2005) introduced a clustering 

procedure which focused on clustering unevenly spaced time series gene expression data. 

They defined a distance measure for short time-series, and developed a fuzzy short time-

series algorithm by utilizing the standard fuzzy c-means algorithm. The algorithm, however, 

computationally very complicated, intensive and hard to understand.  

The sensitivity of the two-step clustering algorithm used in this study can be adjusted by 

changing the cutting level of the tree produced in hierarchical clusters in the second step. 

The tree in Figure 4.5 can be cut at height 0.8 or 0.4 according to define the final number of 

clusters. The height represents the distance for that special figure. The higher the height is 

the less the number of final clusters. However, it is often not very easy to decide at what 

point to cut the tree and create final clusters. The cutree function of R stats package by 

Development Core Team (2010) uses y-axis as the distance instead of similarity. The cutree 

function can calculate the heights of the dendrogram but the applicator has to decide at 

what point to cut the tree. To select an optimal point to cut the tree, the heights were 

sorted in ascending order of magnitude and the 5th percentile point was selected as the 
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cutting point. The lower the percentile point, the less distance between probe sets in the 

cluster and the similar the gene expression profiles in the final clusters. However, lowering 

the cutoff point increases the number of clusters to analyze and affect the modeling part by 

changing the number of subjects. To decide which quantile to select as the cutoff point for 

the hierarchical clustering tree is a trade off between the number of clusters and the 

similarity of gene expression profiles inside the final clusters. An illustration of this is given 

in Figure 4.5 which is based on the representative set of 520 probe sets from asbestos data. 

If the tree was cut at 0.4, it would return 6 clusters. On the other hand, if the tree was cut 

at 0.8, it would return 4 clusters. 

 

Figure 4.5 Sample dendrogram illustrating cutoff points 

Grouping due to gene expression level over time was done with K-Means Clustering 

method (Macqueen, 1967). K-means algorithm can be utilized in R by kmeans command in 

stats package. We have selected the original method of founder, MacQueen’s algorithm, 

whereas Hartigan & Wong (1979), Lloyd (1982) and Forgy (1965) methods can also be 

applied. Each algorithm can be tested against each other in order to compare the resulting 

clusters, however it is not in the scope of this thesis. Clustering the data in regards with the 

means is one of the most important and hard-to-solve problems of statistics. Because of 
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the fact that distributional assumptions are very difficult to make, non-parametric and 

empirical methods can be used for such purposes. 

Grouping due to gene expression profiles over time was done with Hierarchical Clustering 

method. In this method, the similarity measure was selected as Pearson’s correlation 

coefficient and the linkage method to define the distance between two clusters was 

selected as Ward’s distance. A sample of 4 probe sets is given in Figure 4.6. A clustered 

version of Figure 4.6 is given in Figure 4.7. Solid lines stand for the measurements from 

hierarchical cluster 1 and dashed lines for hierarchical cluster 2. Both clusters have 2 probe 

sets. 

 

Figure 4.6 Sample probe sets from Asbestos dataset 
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Figure 4.7 Sample hierarchical clusters from Asbestos dataset (with probe sets lined) 

4.4 Essentials of the Asbestos Data 

The asbestos full dataset has 54,675 probe sets measured at time points as in Figure 4.8. On 

A549 cell type, there are 6 time points and at only 48h there is a second replicate for the 

exposure group. On Beas2B cell type, there are 5 time points and at only 24h there is a 

second replicate for the exposure group. There are no replicates measured for the control 

group. The resulting data matrix is of 54675x22 dimension. 

Cell types A549 
 

Beas2B 

Time points 0h 1h 6h 24h 48h 168h 
 

0h 1h 6h 24h 48h 

Control             
 

          

Exposed 
 

          
  

        

Replicate of exposed 
   

  
     

  
 

Figure 4.8 Structure of Asbestos Dataset 

The design matrix that was used after filtering and clustering was of dimension 19771x22. 

After applying the two-stage clustering algorithm to the asbestos data 19771 probe sets 

were represented by 18771 final clusters where probe sets with similar expression profiles 

are grouped in the same cluster. Among all clusters, 17903 clusters contained only one 

single probe set, and accordingly, there were 779 clusters with 2 probe sets, 64 clusters 
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with 3 probe sets, 15 clusters with 4 probe sets, 4 clusters with 5 probe sets, 5 clusters with 

6 probe sets and finally only 1 cluster contained 8 probe sets. As the clustering methods 

used in this study are iterative methods and this results differing number of final clusters. 

Nevertheless, the number of final clusters does not change remarkably from time to time. 

Some probe sets from k-means clusters 1 and 2 on cell type 1, control group at 0th 

timepoint are given in Table 4.11. 

Table 4.11 A part of LME design matrix 

Probe Set Expression 
Cell 

Type 
Exposure Time Clusters 

KM 
Clusters 

HC 
Clusters 

1553764_a_at 9.45053825 1 0 0 1 1 1 

1553979_at 9.027150307 1 0 0 2 1 2 

1554241_at 10.79145014 1 0 0 3 1 3 

1555758_a_at 11.07361497 1 0 0 4 1 4 

209714_s_at 10.72810803 1 0 0 4 1 4 

1555832_s_at 9.380775524 1 0 0 5 1 5 

1053_at 8.297427203 1 0 0 501 2 1 

203696_s_at 8.698420986 1 0 0 501 2 1 

1552257_a_at 8.305801219 1 0 0 502 2 2 

1552287_s_at 7.264148058 1 0 0 503 2 3 

1552347_at 6.759981143 1 0 0 504 2 4 

For a visual representation of clustering on real data, a representative set of 520 probe sets 

of the asbestos dataset which was also used in Nymark et al. (2007) was used. Four probe 

sets that are 209202_s_at, 218609_s_at, 230327_at and 236296_x_at were randomly 

selected and their expression values measured at 0h, 1h, 6h, 24h, 48h and 168h were 

sketched in Figure 4.9. Cell type and exposure were not indicated on the graph for the ease 

of understanding. 
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Figure 4.9 Expression values from randomly selected four probe sets 

The k-means clustering of the selected probe sets is given in Figure 4.10. The k-means 

clusters split the four probe sets into two groups according to their gene expression levels. 

The first k-means cluster is composed of observations around an expression value of 8 and 

the second cluster is composed of observations around an expression value of 4.5. K-means 

clustering clustered the data by only using expression levels. The second stage of the 

clustering is to apply hierarchical clustering to every single k-means cluster. The resulting 

clusters are shown in Figure 4.11. 
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Figure 4.10 K-means clustering results of randomly selected four probe sets 

 

 

Figure 4.11 Hierarchical clustering within k-means clusters of randomly selected four probe sets 
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For a better understanding of cluster profiles over time, the mean expression values at each 

time point were connected and are given in Figure 4.12. 

 

Figure 4.12 Representation of gene expression profiles of four randomly selected probe sets 

LME results indicate that exposure parameter is significant at 10% type-I error level and 

time parameter is significant at 20% Type-I error level for cluster 23 (e.g. probe set 

209202_s_at) over the second time interval. The p-values for the exposure and time 

parameters are 0.073 and 0.126 respectively. The measured and the fitted data for cell 

types 1 and 2 are given in Figure 4.13 and Figure 4.14. 
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Figure 4.13 Measured and fitted data for cluster 23 with significant exposure and time parameters 
(cell type I) 

 

 

Figure 4.14 Measured and fitted data for cluster 23 with significant exposure and time parameters 
(cell type II) 
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The normality assumption in the model given in Section 3.8 was also tested for the majority 

of the genes accross ararys, control and exposure groups. Anderson-Darling (AD) normality 

test was used to test for the normality. The results indicated that the normality assumption 

is valid. There are two examples of normality tests for randomly selected genes, ACADVL 

and HNRNPM, in Figure 4.15 and Figure 4.16 respectively. 

 

Figure 4.15 Probability plot and normality test for ACADVL gene 

AD test, failed to reject the null hypothesis that the underlying distributions are normal for 

A549 control group, A549 exposure group, Beas2B control group and Beas2B exposure 

group. The p-values of AD test are 0.157, 0.803, 0.063 and 0.704 respectively. Likewise, 

similar results were observed also for HNRNPM gene where p-values of Ad test were 0.144, 

0.671, 0.073 and 0.318 respectively. 
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Figure 4.16 Probability plot and normality test for HNRNPM gene 
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CHAPTER 5 

 

 

5FINDINGS AND RESULTS 

 

 

 

5.1 Simulation Results 

Simulations were run for both ML and REML estimation methods for LME in comparison to 

Limma. Expected values of performance rates TPR, FPR, ACC, SPC, PPV, NPV, FDR and F1 

score were all calculated for LME and Limma. Besides, the number and proportion of probe 

sets that were found significant or non-significant by both LME and Limma for cell type, 

exposure and time parameters were reported. 

Simulation results make a long table since there are many parameter settings. Therefore, 

only representative tables and figures will be displayed in this chapter. Full list of tables can 

be found in appendix.  

5.1.1 Results Based on Cell Type Parameter 

Results based on REML estimation in LME and Limma results were tabulated in Table 5.1, 

Table 5.2 and Table 5.3 respectively. Both results were obtained by using the same 

simulated datasets that contain 500 probe sets, parameter is cell type, number of cell types 

is 2, number of replicates is 2, number of time points is 3. 
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Table 5.1 Simulation results based on REML estimation for LME (foldchange=1.5) 
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0.05 
LME 0.725 0.001 0.959 0.999 0.993 0.955 0.007 0.838 

Limma 0.999 0.075 0.935 0.925 0.683 1.000 0.317 0.811 

0.10 
LME 0.952 0.001 0.992 0.999 0.992 0.991 0.008 0.971 

Limma 0.999 0.121 0.896 0.879 0.572 1.000 0.428 0.727 

0.20 
LME 0.986 0.002 0.997 0.998 0.990 0.998 0.010 0.988 

Limma 0.999 0.205 0.823 0.795 0.439 1.000 0.561 0.610 

0.30 
LME 0.993 0.003 0.997 0.997 0.983 0.999 0.017 0.988 

Limma 0.999 0.285 0.754 0.715 0.361 1.000 0.639 0.530 

0.40 
LME 0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.988 

Limma 0.999 0.366 0.684 0.634 0.305 1.000 0.695 0.467 

 

Table 5.2 Simulation results based on REML estimation for LME (foldchange=2) 
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0.05 
LME 0.693 0.001 0.953 0.999 0.992 0.950 0.008 0.816 

Limma 0.999 0.075 0.935 0.925 0.687 1.000 0.313 0.814 

0.10 
LME 0.953 0.001 0.992 0.999 0.993 0.991 0.007 0.972 

Limma 0.999 0.123 0.894 0.877 0.573 1.000 0.427 0.728 

0.20 
LME 0.985 0.001 0.997 0.999 0.992 0.998 0.008 0.988 

Limma 0.999 0.207 0.822 0.793 0.443 1.000 0.557 0.614 

0.30 
LME 0.993 0.002 0.997 0.998 0.985 0.999 0.015 0.989 

Limma 0.999 0.284 0.756 0.716 0.366 1.000 0.634 0.536 

0.40 
LME 0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.989 

Limma 0.999 0.367 0.685 0.633 0.309 1.000 0.691 0.472 
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Table 5.3 Simulation results based on REML estimation for LME (foldchange=3) 
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0.05 
LME 0.697 0.000 0.954 1.000 0.996 0.951 0.004 0.820 

Limma 1.000 0.075 0.936 0.925 0.684 1.000 0.316 0.812 

0.10 
LME 0.962 0.001 0.994 0.999 0.996 0.993 0.004 0.979 

Limma 1.000 0.124 0.893 0.876 0.565 1.000 0.435 0.722 

0.20 
LME 0.990 0.001 0.998 0.999 0.995 0.998 0.005 0.993 

Limma 1.000 0.209 0.820 0.791 0.436 1.000 0.564 0.607 

0.30 
LME 0.994 0.001 0.998 0.999 0.991 0.999 0.009 0.993 

Limma 1.000 0.289 0.751 0.711 0.358 1.000 0.642 0.527 

0.40 
LME 0.999 0.002 0.998 0.998 0.986 1.000 0.014 0.993 

Limma 1.000 0.373 0.679 0.627 0.301 1.000 0.699 0.463 

Limma performed better than LME only when TPR is the main concern. Limma produced 

almost perfect TPR for the given parameter settings against very high TPR levels of LME. 

The difference is only noticable at 0.05 p-value cutoff level. Limma tends to produce very 

small p-values for cell type parameter leading to very high FDR. Its FDR turned out to be 

very high. LME is concretely superior in FDR. Both LME and Limma did not produce differing 

results in different time intervals since both models were fit independently in every 

interval. In order to lessen the number of figures the results given in the following tables 

were based only on interval 1. However, results showing all intervals as well as the TPR, 

FPR, ACC, SPC, PPV, NPV and F1 value were sketched in the appendix.  
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Figure 5.1 Expected TPR of LME for cell type parameter 

TPR performance of LME become 0.95 and get close to 1 when p-value cutoff was selected 

0.10 and larger. TPR became almost 1 as the cutoff value of p-value was selected 0.20 or 

higher as given in Figure 5.1. As the p-value cutoff was increased, the expected false 

discovery rate increased very slightly as in Figure 5.2. Considering both figures, the 

optimum value for the p-value cutoff for LME was found to be 0.20. However, even for 0.40 

cutoff value, expected FDR was found to be around 0.015. 
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Figure 5.2 Expected FDR of LME for cell type parameter 

Almost all the expected TPR values given in Figure 5.3 are equal to 1. On the other hand, 

FDR values are unacceptable and increase dramatically as the p-value cutoff were increased 

(Figure 5.4). The most reasonable p-value cutoff selection for Limma was 0.05. One should 

note that Limma results were corrected by Benjamini-Hochberg multiple testing procedure 

and multiple testing corrections lose efficiency as the number of test items increase. Both 

methods performed better for higher values of foldchange as expected. 
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Figure 5.3 Expected TPR of Limma for cell type parameter 

 

 

Figure 5.4 Expected FDR of Limma for cell type parameter 
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Simulation results were also compared in terms of test results from both methods. The 

category axis of the graph (x-axis) in Figure 5.5, Figure 5.6 and Figure 5.7 has definitions for 

a side by side comparison such as “Both Not” which means both methods did not detect 

any differential expression, “Both Sig” which means both methods found the probe sets as 

differentially expressed, “Limma Sig” which means LME did not detect any differential 

expression but Limma did and finally  “LME Sig” which means LME detected differential 

expression but Limma did not. Resulting proportions by fold change (1.5, 2 and 3) are given 

in Figure 5.5, Figure 5.6 and Figure 5.7 respectively for cell type parameter. 

 

Figure 5.5 Significance test results of probe sets (foldchange=1.5) for cell type parameter 

According to the significance test results, in the test of cell type parameter, Limma 

produced very high number of significant results that were not found to be significant by 

LME. However, the vice versa did not happen. This may be due to the high number of FDR 

of Limma. As expected, the number of significant detected probe sets increased as the p-

value cutoff value was increased. Change in the fold change did not differ the results 

significantly. 
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Figure 5.6 Significance test results of probe sets (foldchange=2.0) for cell type parameter 

 

 

Figure 5.7 Significance test results of probe sets (foldchange=3.0) for cell type parameter 
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5.1.2 Results Based on Exposure Parameter 

TPR results for different probe numbers, replicates and p-value cutoff values can be seen in 

Figure 5.8. LME tended to produce slightly better TPR results for exposure parameter as the 

number of simulated probe sets were increased from 500 to 1000. At the 0.20 significance 

level, almost all the TPR values were close to 1.  

 

Figure 5.8 Expected TPR of LME for exposure parameter 

TPR values must be evaluated together with the FDR values where LME definitely 

outperformed Limma. No matter what the significance level was, LME produced very low 

FDR values as given in Figure 5.9. 

Limma also performed well for TPR as given in Figure 5.10. However, the difference came in 

with the FDR values of Limma. 30% to 70% of the probe sets were falsely discovered as 

significant by Limma (Figure 5.11) which is very high compared to those of LME where FDR 

values changed from 0.5% to 3%. 
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Figure 5.9 Expected FDR of LME for exposure parameter 

 

 

Figure 5.10 Expected TPR of Limma for exposure parameter 
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Figure 5.11 Expected FDR of Limma for exposure parameter 

According to the significance test results, a similar result were observed in the test of cell 

type parameter. Specifically, Limma produced very high number of significant results that 

were not found to be significant by LME for the exposure parameter. As expected, the 

number of significant detected probe sets increased as the p-value cutoff value was 

increased. Change in the fold change did not differ the results significantly. Resulting 

proportions by the number of replicates and fold change are given in Figure 5.12, Figure 

5.13 and Figure 5.14 for exposure parameter. 
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Figure 5.12 Significance test results of probe sets (foldchange=1.5) for exposure parameter 

 

 

Figure 5.13 Significance test results of probe sets (foldchange=2.0) for exposure parameter 
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Figure 5.14 Significance test results of probe sets (foldchange=3.0) for exposure parameter 

5.1.3 Results Based on Time Parameter 

TPR and FDR results on time parameter for LME and Limma for different probe numbers, 

replicates and p-value cutoff values can be seen in Figure 5.15 through Figure 5.18. LME 

also poduced superior results for time parameter in both TPR and FDR. Time parameter is 

an independent explanatory variable in the model and as explained in Chapter 3 and 

especially in Figure 3.10, time lag is accounted for in LME. On the other hand, the time 

parameter can only be treated as  factor by Limma for which drastical decreases in TPR 

values of LME were observed. For the TPR values of the time parameter, Limma could not 

go over 67.5% but still produced very high FDR values (Figure 5.17 and Figure 5.18). 
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Figure 5.15 Expected TPR of LME for time parameter 

 

 

Figure 5.16 Expected FDR of LME for time parameter 
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Figure 5.17 Expected TPR of Limma for time parameter 

 

 

Figure 5.18 Expected FDR of Limma for time parameter 
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According to the significance test results from both methods, 10% to 15% of the probe sets 

returned conflicting results. Time parameter was the only parameter for which some 

proportion of probe sets was found to be differentially expressed only by LME but not by 

Limma which can be clearly seen in Figure 5.19, Figure 5.20 and Figure 5.21 in increasing 

order of fold change from 1.5 to 3.0. The results, however, did not differ by fold change. 

 

Figure 5.19 Significance test results of probe sets (foldchange=1.5) for time parameter 

 



 

95 
 

 

Figure 5.20 Significance test results of probe sets (foldchange=2.0) for time parameter 

 

 

Figure 5.21 Significance test results of probe sets (foldchange=3.0) for time parameter 
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5.2 Results on Asbestos Dataset 

The significance testing results for filtered and clustered asbestos dataset (19,771 probe 

sets in 18,771 clusters) were done for cell type, exposure and time parameters on 5 time 

intervals (e.g. 0h-1h, 1h-6h, 6h-24h, 24h-48h and 48h-168h). Although statistical analyses 

were based on clusters, the final performance measurements and comparisons were held 

on probe sets for a fair evaluation. The number of significant probes from filtered asbestos 

dataset at 20% significance level are given in Figure 5.22 for both LME and Limma methods. 

In accordance with the simulation results, the number of probe sets detected as significant 

by Limma is obviously larger than those of LME. Simulation results support that the reason 

for the large number of significantly detected probe sets and high TPR values is the false 

discoveries by Limma. At this point, the results of Limma are definitely incomparable to 

those of LME. For example, at the first time interval, LME detected 13% of the probes that 

are differentially expressed in the Beas2B cell type in comparison to A549 cell type. 

However, Limma detected 62% of the probes as differentially expressed in Beas2B in 

comparison to A549. The results are similar in all other time intervals. 

 

Figure 5.22 Proportion of probe sets found to be differentially expressed by cell type in each time 
interval 
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Figure 5.23 shows the proportion of the probe sets among all the significant probes that are 

significant in one or more time intervals. For example, among all the significant probe sets, 

31% of the probes were found to be differentially expressed in only one interval by LME. 

Likewise, 22% of the probes were found to be differentially expressed in two time intervals 

by LME. On the other hand, 6% of the probe sets were detected as differentially expressed 

in only 1 time interval among the all probe sets that were found to be differentially 

expressed by Limma. This indicates that Limma tends to find more significantly expressed 

profiles on more intervals. According to Limma results, 46% of the probe sets were 

differentially expressed by cell type at all 5 intervals. 

 

Figure 5.23 Proportion of probe sets found to be differentially expressed by cell type in one or more 
intervals 

There was a very interesting result sketched in Figure 5.24 that Limma was unable to detect 

any probe sets as differentially expressed by the exposure in contrast with the LME’s 18%, 

7%, 17%, 3% and 3% significant probe set detection in subsequent time intervals. Even 

though Limma produced much larger FDRs compared to those of LME, interestingly it failed 

to detect any differential gene expression due to exposure. 

Another interesting result from exposure effect that can be seen in Figure 5.25 is that 63% 

of the differentially expressed probe sets that were detected by LME were significant only 
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in one time interval, 32% were significant on two intervals. The exposure effect therefore, 

seem to be acute and its effect does not seem to last very long. Only 3% of the probe sets 

were differentially expressed on all intervals. There is always a doubt towards a false 

discovery though. 

 

Figure 5.24 Proportion of probe sets found to be differentially expressed by exposure in each time 
interval 
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Figure 5.25 Proportion of probe sets found to be differentially expressed by exposure in one or more 
intervals 

Time effect on probe sets seemed to be prominent in later intervals as it can be seen in 

Figure 5.26. The proportion of probe sets that were found to be differentially expressed by 

both methods due to time effect increase by time except for the last time interval. Limma 

again detected larger number of significant probe sets where majority is expected to be 

false discoveries. LME was able to detect around 15% of probes as differentially expressed 

especially in the last three intervals. 
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Figure 5.26 Proportion of probe sets found to be differentially expressed by time in each time 
interval 

Among all the probe sets that were detected as differentially expressed by either methods, 

about 60% of the probe sets were found to be differentially expressed at only one time 

interval, about 30% at two intervals and about 10% at three intervals. At this point, LME 

and Limma returned similar detection patterns in terms of dispersion through the intervals 

which can be seen in Figure 5.27. 
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Figure 5.27 Proportion of probe sets found to be differentially expressed by time in one or more 
intervals 

In order to compare the test results for cell type produced by both methods probe by probe 

yielded proportions of differentially expressed probe sets as in Figure 5.28. The category 

axis of the graph (x-axis) has definitions for a side by side comparison such as “Both Not” 

which means both methods did not detect any differential expression, “Both Sig” which 

means both methods found the probe sets as differentially expressed, “Limma Sig” which 

means LME did not detect any differential expression but Limma did and finally  “LME Sig” 

which means LME detected differential expression but Limma did not. The graph is fair 

enough to see that Limma produced more positive test results compared to that of LME 

throughout all intervals. However, simulations in this study indicated that Limma tends to 

produce remarkably more false discoveries. Around 13% to 16% of the probe sets in 

different intervals were found to be differentially expressed by both methods. 
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Figure 5.28 A probe by probe comparison of the test results for cell type effect 

In order to illustrate some testing result from the LME model, some clusters and their 

significance test results are also presented. For example, Cluster 5001 contains six genes 

and for the first four time intervals there is no significant gene activity detected by LME 

model, but the increase in the gene expression level in the fifth interval was found to be 

significant. The cluster is sketched in Figure 5.29. 

Another illustration as an example result by the LME model is Cluster 14283. According to 

the LME test result for this cluster, there is a significant exposure effect in the second, 

fourth and fifth time interval as well as there is a significant time effect in the second and 

the third intervals. For a better visualization of the exposure and time effects, the cluster is 

represented in two separate graphics as in Figure 5.31 and Figure 5.32 respectively in 

addition to the graph in Figure 5.30. 
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Figure 5.29 Gene expression profile of Cluster 5001 

 

Figure 5.30 Gene expression profile of Cluster 14283 
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Figure 5.31 Control and exposure groups expression levels across the time intervals from Cluster 
14283 

 

Figure 5.32 Gene expression levels across the time points from Cluster 14283 
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CHAPTER 6 

 

 

6CONCLUSION 

 

 

 

This thesis includes the analysis of short course time series microarray gene expression 

data. Short course time series data are observed in the course of time (where time points 

may be unevenly spaced) when microarray experiments are used to study the behaviour of 

genes and their expression levels are investigated. There can be more than one 

observations per time point and the number of observations per time point may vary 

through the series because of the nature of the experiment.  

The analysis of such data has some challenges for researchers:  

 Gene expressions across time points may have a dependence structure which 

should not be ignored during the analyses.  

 The probe measure which represents the relative expression level of an individual 

gene may have more than one sampling points (replicates) over time. Therefore, 

the measurements obtained over time belong to the gene creating a dependent 

sequence of measurements. 

 The number of time points is very few (generally less than or equal to 8) compared 

to classical time series data which usually have more than 50 observations for a 

convenient time series modeling. As the number of time points in the short time 

series may vary, the number of replicates per time point may vary as well. The less 

the number of replicates the harder to fit models because estimation of the 

variance components gets harder or impossible. Sometimes, the data is unbalanced 

that cause another challenge for researchers.  

 Unevenly spaced time points indicate that the amount of time between 

consecutive measurements is not the same across all time points. The time elapsed 

after an observation may vary. This is unusual in classical time series approach. 
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 Short time series modelling is methodologically and computationally very extensive 

and demanding. The data may contain changing number of replicates per time 

point. Moreover, there may be factors such as cell type as well as treatment, one or 

both of which might have more than two levels. Time as a source of variation in 

microarray experiments is a continuous independent variable rather than a 

qualitative factor most of the time. Biologists are very keen on finding out whether 

a treatment has an acute or chronic effect on the subject of interest. 

 Subject-wise or gene-wise inference over the short time profile is required for 

researchers which drastically increases the number of simultaneous hypothesis 

tests. 

 As an alternative method, Limma, was found to be more appropriate for 

experimental design models containin only qualitative factors rather than 

continuous independent variables. 

6.1 The contributions of this thesis to the literature 

 Proposing the use of LME method at every individual time interval of a short time 

series microarray data provides modeling and testing a short time series profile and 

subjectwise testing. 

 Comparing it with Limma the competing and most widely used alternative method, 

namely Limma. It was shown through a comprehensive simulation study that 

proposed methodology outperformed Limma in true positive rate, accuracy, 

specificity, positive predictive value, negative predictive value, false discovery rate 

and F1 value performance parameters in overall results.  

 Providing a detailed statistical inference for the complicated structure of the data 

of interest which requires a powerful and comprehensive model to handle. 

 Providing subjectwise analysis, time trend fitting and many other requirements for 

short time series microarray data. 

 Fitting the random effects together with the fixed effects produce more unbiased 

results compared to when they are fit only as fixed effects. Existence of the random 

effects compensates the shrinkage of the fixed effects towards to the mean value. 

This also helps to avoid any over and under estimation of parameter estimates that 

occur by chance. This is where Limma method fell behind and produced false 

discoveries.  
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 Handling repeated measures, unbalanced data and missing values via LME for short 

time series microarray data. 

 Producing more appropriate results when the data of interest has hierarchical 

levels with many factors such as cell type, treatment, short time series and the 

clusters that contain the probe sets with similar expression profiles.  

 Providing great flexibility whenever additional factors or terms such as covariates 

or categorical factors are to be added to the LME model. 

 Detecting acute and chronic effects of a treatment via modeling the short time 

series microarray gene expression profiles. 

 Handling the differing time lags by incorporating time as an independent variable 

into the model by LME as well as testing the time change effect. 

 Increasing predictive capabilities and F1 value in short time series microarray gene 

expression profile analysis for both factors and independent variables such as 

continuous time parameter. 

 Proposing a two stage clustering algorithm for the detection of time series gene 

expression profiles. 

 Proposing a real like data simulation algorithm for short time series microarray 

gene expression data with differing number of replicates per time point as well as 

incorporating cell type, exposure and other required effects. 

 Proposing a very comprehensive simulation and short time series microarray gene 

expression data fitting R code. For the simulation part, the code first generates 

realistic gene expression profiles. The profiles can be modified such as changing the 

number of cell types, treatment groups and time points. The code then generates 

realistic initial set of data by making use of a mixture normal distribution. The 

parameters of the initial data can be adjusted as well. According to the profiles that 

are created the code can simulate the short time series, replications in accordance 

with the structure of the profile. Realistic noise and experimental factors are also 

incorporated to the simulated data. For the real data fitting part, researchers who 

would like to utilize the code should only rename the column names of their 

dataset and run the code. On the overall, the code is very user friendly, easy to use 

and allows customizations. The code is free to access and can be downloaded from 

www.metu.edu.tr/~oilk/LME_code.zip. 

file:///C:/TEZ/TEZ%20-%20SON/Tez%20SON/www.metu.edu.tr/~oilk/LME_code.zip
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According to the results and the findings of overall analyses, two stage clustering of the 

microarray time series data and then the application of LME in each time interval of probe 

sets are very plausible alternatives for subjectwise testing in short time series microarray 

data. The methodology proposed in this study was also compared to the competing and 

most widely used alternative method, namely Limma. It was shown through a 

comprehensive simulation study that proposed methodology outperformed Limma in true 

positive rate, accuracy, specificity, positive predictive value, negative predictive value, false 

discovery rate and F1 value performance parameters in overall results. Besides, other 

outperforming properties of the proposed methodology along with LME can be itemized as 

follows: 

 The complicated structure of the data of interest requires a powerful and 

comprehensive model to handle for a detailed statistical inference. Common 

regression models lack handling random coefficients together with fixed effects, 

subjectwise analysis, time trend fitting and many other requirements. 

 When the data of interest has hierarchical levels with many factors such as cell 

type, treatment, short time series and the clusters that contain the probe sets with 

similar expression profiles, LME produce more appropriate results.  

 Fitting the random effects together with the fixed effects produce more unbiased 

results compared to when they are fit only as fixed effects. Existence of the random 

effects compensates the shrinkage of the fixed effects towards to the mean value. 

This also helps to avoid any over and under estimation of parameter estimates that 

occur by chance. This is where Limma method fell behind and produced false 

discoveries.  

 Differing time lags can be easily handled by incorporating time as an independent 

variable into the model by LME. 

 Predictive capabilities and F1 value of LME is superior for both factors and 

independent variables such as continuous time parameter. 

There are two drawbacks of the proposed methodology. The first one is the computational 

complexity of the model and the second one is that sometimes the iterative estimation 

procedure in LME may not converge. However, changing the optimization method or the 

number of initial simulations for EM estimation helped almost all of the time. Limma, on 

the other hand, is computationally much easier to handle. 
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In addition to above remarks, it is worth mentioning that changing the parameters of the 

clustering algorithm such as the number of k-means, the cutoff value in the hierarchical 

clustering and the number of filtered genes may affect the performance of the model as 

well as the convergence performance of the LME iterations. 

6.2 Future Work 

There are still so many problems to solve in the analysis of short time series gene 

expression data. Foremost ones can be listed as follows: 

 Gene expression profile clustering requires optimization such that the number of 

profile groups is a very difficult to identify.  

 Splitting gene expression profiles according to their expression levels requires 

further research. A gene expression profile is a vector of random measurements 

and may have very different expression levels at any time point. 

 Creation of initial dataset and generating realistic simulation data is another study 

to proceed. The short time series is based upon the initial data and it is very crucial 

to the gene expression profiles over time. In this study EM algorithm was used to 

model initial data column from a realistic dataset and short time series gene 

expression profiles were generated from a discrete distribution. There is still so 

much work to be done on this topic. Especially, incorporation of noise factors 

requires a comprehensive study. In addition, existence of changing number of 

replicates per time points makes the simulation of expression profiles more 

difficult. 
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APPENDIX 

 

 

A. TABLES OF PERFORMANCE MEASURES IN SIMULATIONS 

 

 

 

Table A.1 Expected performance measures of cell type parameter for 500 probe sets 
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2 1.5 0.05 
LME 0.725 0.001 0.959 0.999 0.993 0.955 0.007 0.838 

Limma 0.999 0.075 0.935 0.925 0.683 1.000 0.317 0.811 

2 1.5 0.10 
LME 0.952 0.001 0.992 0.999 0.992 0.991 0.008 0.971 

Limma 0.999 0.121 0.896 0.879 0.572 1.000 0.428 0.727 

2 1.5 0.20 
LME 0.986 0.002 0.997 0.998 0.990 0.998 0.010 0.988 

Limma 0.999 0.205 0.823 0.795 0.439 1.000 0.561 0.610 

2 1.5 0.30 
LME 0.993 0.003 0.997 0.997 0.983 0.999 0.017 0.988 

Limma 0.999 0.285 0.754 0.715 0.361 1.000 0.639 0.530 

2 1.5 0.40 
LME 0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.988 

Limma 0.999 0.366 0.684 0.634 0.305 1.000 0.695 0.467 

2 2 0.05 
LME 0.693 0.001 0.953 0.999 0.992 0.950 0.008 0.816 

Limma 0.999 0.075 0.935 0.925 0.687 1.000 0.313 0.814 

2 2 0.10 
LME 0.953 0.001 0.992 0.999 0.993 0.991 0.007 0.972 

Limma 0.999 0.123 0.894 0.877 0.573 1.000 0.427 0.728 

2 2 0.20 
LME 0.985 0.001 0.997 0.999 0.992 0.998 0.008 0.988 

Limma 0.999 0.207 0.822 0.793 0.443 1.000 0.557 0.614 

2 2 0.30 
LME 0.993 0.002 0.997 0.998 0.985 0.999 0.015 0.989 

Limma 0.999 0.284 0.756 0.716 0.366 1.000 0.634 0.536 

2 2 0.40 
LME 0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.989 

Limma 0.999 0.367 0.685 0.633 0.309 1.000 0.691 0.472 

2 3 0.05 
LME 0.697 0.000 0.954 1.000 0.996 0.951 0.004 0.820 

Limma 1.000 0.075 0.936 0.925 0.684 1.000 0.316 0.812 

2 3 0.10 
LME 0.962 0.001 0.994 0.999 0.996 0.993 0.004 0.979 

Limma 1.000 0.124 0.893 0.876 0.565 1.000 0.435 0.722 
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Table A.1 Expected performance measures of cell type parameter for 500 probe sets (continued) 
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2 3 0.20 
LME 0.990 0.001 0.998 0.999 0.995 0.998 0.005 0.993 

Limma 1.000 0.209 0.820 0.791 0.436 1.000 0.564 0.607 

2 3 0.30 
LME 0.994 0.001 0.998 0.999 0.991 0.999 0.009 0.993 

Limma 1.000 0.289 0.751 0.711 0.358 1.000 0.642 0.527 

2 3 0.40 
LME 0.999 0.002 0.998 0.998 0.986 1.000 0.014 0.993 

Limma 1.000 0.373 0.679 0.627 0.301 1.000 0.699 0.463 

3 1.5 0.05 
LME 0.734 0.001 0.960 0.999 0.993 0.957 0.007 0.845 

Limma 0.999 0.064 0.945 0.936 0.716 1.000 0.284 0.834 

3 1.5 0.10 
LME 0.955 0.001 0.992 0.999 0.993 0.992 0.007 0.974 

Limma 0.999 0.106 0.909 0.894 0.602 1.000 0.398 0.751 

3 1.5 0.20 
LME 0.981 0.001 0.996 0.999 0.991 0.997 0.009 0.986 

Limma 0.999 0.183 0.842 0.817 0.467 1.000 0.533 0.637 

3 1.5 0.30 
LME 0.992 0.003 0.996 0.997 0.981 0.999 0.019 0.986 

Limma 0.999 0.256 0.779 0.744 0.384 1.000 0.616 0.555 

3 1.5 0.40 
LME 0.998 0.004 0.996 0.996 0.975 1.000 0.025 0.987 

Limma 1.000 0.334 0.711 0.666 0.323 1.000 0.677 0.488 

3 2 0.05 
LME 0.707 0.001 0.955 0.999 0.994 0.952 0.006 0.827 

Limma 1.000 0.066 0.943 0.934 0.713 1.000 0.287 0.832 

3 2 0.10 
LME 0.952 0.001 0.992 0.999 0.994 0.992 0.006 0.973 

Limma 1.000 0.108 0.907 0.892 0.601 1.000 0.399 0.751 

3 2 0.20 
LME 0.983 0.001 0.997 0.999 0.993 0.997 0.007 0.988 

Limma 1.000 0.185 0.841 0.815 0.468 1.000 0.532 0.637 

3 2 0.30 
LME 0.991 0.002 0.997 0.998 0.986 0.999 0.014 0.988 

Limma 1.000 0.259 0.777 0.741 0.385 1.000 0.615 0.556 

3 2 0.40 
LME 0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.988 

Limma 1.000 0.336 0.711 0.664 0.325 1.000 0.675 0.491 

3 3 0.05 
LME 0.723 0.000 0.957 1.000 0.996 0.954 0.004 0.837 

Limma 1.000 0.067 0.943 0.933 0.708 1.000 0.292 0.829 

3 3 0.10 
LME 0.960 0.001 0.993 0.999 0.996 0.993 0.004 0.978 

Limma 1.000 0.108 0.907 0.892 0.600 1.000 0.400 0.750 

3 3 0.20 
LME 0.988 0.001 0.998 0.999 0.995 0.998 0.005 0.992 

Limma 1.000 0.184 0.841 0.816 0.467 1.000 0.533 0.637 

3 3 0.30 
LME 0.994 0.001 0.998 0.999 0.990 0.999 0.010 0.992 

Limma 1.000 0.262 0.774 0.738 0.381 1.000 0.619 0.552 

3 3 0.40 
LME 0.998 0.002 0.998 0.998 0.986 1.000 0.014 0.992 

Limma 1.000 0.339 0.708 0.661 0.322 1.000 0.678 0.487 
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Table A.2 Expected performance measures of cell type parameter for 1000 probe sets 
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2 1.5 0.05 
LME 0.695 0.000 0.956 1.000 0.998 0.952 0.002 0.819 

Limma 1.000 0.074 0.936 0.926 0.684 1.000 0.316 0.813 

2 1.5 0.10 
LME 0.976 0.000 0.996 1.000 0.998 0.996 0.002 0.987 

Limma 1.000 0.122 0.895 0.878 0.568 1.000 0.432 0.724 

2 1.5 0.20 
LME 0.996 0.000 0.999 1.000 0.998 0.999 0.002 0.997 

Limma 1.000 0.205 0.823 0.795 0.437 1.000 0.563 0.608 

2 1.5 0.30 
LME 0.998 0.001 0.999 0.999 0.996 1.000 0.004 0.997 

Limma 1.000 0.287 0.752 0.713 0.356 1.000 0.644 0.525 

2 1.5 0.40 
LME 1.000 0.001 0.999 0.999 0.994 1.000 0.006 0.997 

Limma 1.000 0.370 0.681 0.630 0.300 1.000 0.700 0.462 

2 2 0.05 
LME 0.624 0.000 0.945 1.000 0.999 0.941 0.001 0.768 

Limma 1.000 0.076 0.935 0.924 0.682 1.000 0.318 0.811 

2 2 0.10 
LME 0.969 0.000 0.995 1.000 0.999 0.995 0.001 0.984 

Limma 1.000 0.124 0.893 0.876 0.567 1.000 0.433 0.724 

2 2 0.20 
LME 0.996 0.000 0.999 1.000 0.999 0.999 0.001 0.998 

Limma 1.000 0.209 0.820 0.791 0.437 1.000 0.563 0.608 

2 2 0.30 
LME 0.998 0.000 0.999 1.000 0.998 1.000 0.002 0.998 

Limma 1.000 0.289 0.751 0.711 0.360 1.000 0.640 0.529 

2 2 0.40 
LME 1.000 0.001 0.999 0.999 0.996 1.000 0.004 0.998 

Limma 1.000 0.370 0.682 0.630 0.305 1.000 0.695 0.468 

2 3 0.05 
LME 0.598 0.000 0.942 1.000 1.000 0.937 0.000 0.748 

Limma 1.000 0.073 0.937 0.927 0.691 1.000 0.309 0.817 

2 3 0.10 
LME 0.976 0.000 0.996 1.000 0.999 0.996 0.001 0.988 

Limma 1.000 0.121 0.896 0.879 0.575 1.000 0.425 0.730 

2 3 0.20 
LME 0.997 0.000 1.000 1.000 0.999 1.000 0.001 0.998 

Limma 1.000 0.206 0.823 0.794 0.442 1.000 0.558 0.613 

2 3 0.30 
LME 0.998 0.000 1.000 1.000 0.999 1.000 0.001 0.998 

Limma 1.000 0.291 0.750 0.709 0.359 1.000 0.641 0.529 

2 3 0.40 
LME 1.000 0.000 1.000 1.000 0.997 1.000 0.003 0.998 

Limma 1.000 0.372 0.680 0.628 0.304 1.000 0.696 0.467 

3 1.5 0.05 
LME 0.720 0.000 0.960 1.000 0.999 0.956 0.001 0.837 

Limma 1.000 0.064 0.944 0.936 0.712 1.000 0.288 0.831 

3 1.5 0.10 
LME 0.977 0.000 0.996 1.000 0.999 0.996 0.001 0.988 

Limma 1.000 0.104 0.910 0.896 0.604 1.000 0.396 0.753 

3 1.5 0.20 
LME 0.995 0.000 0.999 1.000 0.999 0.999 0.001 0.997 

Limma 1.000 0.180 0.845 0.820 0.469 1.000 0.531 0.638 
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Table A.2 Expected performance measures of cell type parameter for 1000 probe sets (continued) 
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3 1.5 0.30 
LME 0.997 0.000 0.999 1.000 0.997 1.000 0.003 0.997 

Limma 1.000 0.256 0.779 0.744 0.382 1.000 0.618 0.553 

3 1.5 0.40 
LME 1.000 0.001 0.999 0.999 0.995 1.000 0.005 0.997 

Limma 1.000 0.334 0.712 0.666 0.321 1.000 0.679 0.487 

3 2 0.05 
LME 0.666 0.000 0.952 1.000 0.999 0.948 0.001 0.799 

Limma 1.000 0.065 0.944 0.935 0.713 1.000 0.287 0.832 

3 2 0.10 
LME 0.981 0.000 0.997 1.000 0.999 0.997 0.001 0.990 

Limma 1.000 0.105 0.909 0.895 0.604 1.000 0.396 0.753 

3 2 0.20 
LME 0.995 0.000 0.999 1.000 0.999 0.999 0.001 0.997 

Limma 1.000 0.182 0.843 0.818 0.469 1.000 0.531 0.638 

3 2 0.30 
LME 0.997 0.000 0.999 1.000 0.997 1.000 0.003 0.997 

Limma 1.000 0.257 0.779 0.743 0.384 1.000 0.616 0.555 

3 2 0.40 
LME 1.000 0.001 0.999 0.999 0.994 1.000 0.006 0.997 

Limma 1.000 0.335 0.711 0.665 0.323 1.000 0.677 0.489 

3 3 0.05 
LME 0.605 0.000 0.942 1.000 1.000 0.938 0.000 0.754 

Limma 1.000 0.064 0.945 0.936 0.721 1.000 0.279 0.838 

3 3 0.10 
LME 0.976 0.000 0.996 1.000 1.000 0.996 0.000 0.988 

Limma 1.000 0.105 0.909 0.895 0.610 1.000 0.390 0.758 

3 3 0.20 
LME 0.998 0.000 1.000 1.000 1.000 1.000 0.000 0.999 

Limma 1.000 0.183 0.843 0.817 0.474 1.000 0.526 0.643 

3 3 0.30 
LME 0.999 0.000 1.000 1.000 0.999 1.000 0.001 0.999 

Limma 1.000 0.259 0.778 0.741 0.388 1.000 0.612 0.559 

3 3 0.40 
LME 1.000 0.000 1.000 1.000 0.998 1.000 0.002 0.999 

Limma 1.000 0.337 0.711 0.663 0.328 1.000 0.672 0.494 
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Table A.3 Expected performance measures of exposure parameter for 500 probe sets 
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2 1.5 0.05 
LME 0.970 0.000 0.996 1.000 0.998 0.995 0.002 0.984 

Limma 0.999 0.075 0.935 0.925 0.683 1.000 0.317 0.812 

2 1.5 0.10 
LME 0.979 0.001 0.996 0.999 0.990 0.996 0.010 0.984 

Limma 0.999 0.122 0.895 0.878 0.571 1.000 0.429 0.727 

2 1.5 0.20 
LME 0.994 0.004 0.996 0.996 0.975 0.999 0.025 0.984 

Limma 1.000 0.206 0.822 0.794 0.439 1.000 0.561 0.611 

2 1.5 0.30 
LME 0.999 0.005 0.996 0.995 0.971 1.000 0.029 0.984 

Limma 1.000 0.290 0.750 0.710 0.358 1.000 0.642 0.527 

2 1.5 0.40 
LME 0.999 0.005 0.996 0.995 0.970 1.000 0.030 0.984 

Limma 1.000 0.371 0.680 0.629 0.303 1.000 0.697 0.465 

2 2 0.05 
LME 0.971 0.000 0.996 1.000 0.997 0.995 0.003 0.984 

Limma 0.999 0.076 0.934 0.924 0.685 1.000 0.315 0.812 

2 2 0.10 
LME 0.979 0.001 0.996 0.999 0.990 0.997 0.010 0.985 

Limma 0.999 0.124 0.893 0.876 0.571 1.000 0.429 0.727 

2 2 0.20 
LME 0.995 0.004 0.996 0.996 0.975 0.999 0.025 0.985 

Limma 0.999 0.211 0.819 0.789 0.439 1.000 0.561 0.610 

2 2 0.30 
LME 0.999 0.005 0.996 0.995 0.971 1.000 0.029 0.985 

Limma 0.999 0.289 0.752 0.711 0.363 1.000 0.637 0.533 

2 2 0.40 
LME 0.999 0.005 0.996 0.995 0.971 1.000 0.029 0.985 

Limma 0.999 0.373 0.679 0.627 0.306 1.000 0.694 0.468 

2 3 0.05 
LME 0.982 0.000 0.997 1.000 0.997 0.997 0.003 0.990 

Limma 0.999 0.076 0.935 0.924 0.686 1.000 0.314 0.814 

2 3 0.10 
LME 0.987 0.001 0.997 0.999 0.993 0.998 0.007 0.990 

Limma 0.999 0.125 0.893 0.875 0.570 1.000 0.430 0.726 

2 3 0.20 
LME 0.996 0.002 0.997 0.998 0.984 0.999 0.016 0.990 

Limma 0.999 0.209 0.821 0.791 0.441 1.000 0.559 0.612 

2 3 0.30 
LME 0.999 0.003 0.997 0.997 0.981 1.000 0.019 0.990 

Limma 0.999 0.289 0.752 0.711 0.363 1.000 0.637 0.532 

2 3 0.40 
LME 0.999 0.003 0.997 0.997 0.981 1.000 0.019 0.990 

Limma 0.999 0.369 0.682 0.631 0.308 1.000 0.692 0.470 

3 1.5 0.05 
LME 0.974 0.001 0.996 0.999 0.996 0.996 0.004 0.985 

Limma 0.999 0.066 0.943 0.934 0.712 1.000 0.288 0.832 

3 1.5 0.10 
LME 0.981 0.002 0.996 0.998 0.990 0.997 0.010 0.985 

Limma 0.999 0.107 0.908 0.893 0.604 1.000 0.396 0.753 

3 1.5 0.20 
LME 0.995 0.004 0.996 0.996 0.976 0.999 0.024 0.986 

Limma 0.999 0.186 0.840 0.814 0.468 1.000 0.532 0.638 
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Table A.3 Expected performance measures of exposure parameter for 500 probe sets (continued) 
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3 1.5 0.30 
LME 0.999 0.004 0.996 0.996 0.973 1.000 0.027 0.986 

Limma 1.000 0.262 0.774 0.738 0.384 1.000 0.616 0.555 

3 1.5 0.40 
LME 0.999 0.005 0.996 0.995 0.973 1.000 0.027 0.986 

Limma 1.000 0.342 0.706 0.658 0.323 1.000 0.677 0.488 

3 2 0.05 
LME 0.975 0.000 0.996 1.000 0.997 0.996 0.003 0.986 

Limma 0.999 0.065 0.944 0.935 0.717 1.000 0.283 0.835 

3 2 0.10 
LME 0.981 0.001 0.996 0.999 0.991 0.997 0.009 0.986 

Limma 0.999 0.106 0.909 0.894 0.606 1.000 0.394 0.755 

3 2 0.20 
LME 0.995 0.004 0.996 0.996 0.978 0.999 0.022 0.987 

Limma 0.999 0.179 0.846 0.821 0.476 1.000 0.524 0.645 

3 2 0.30 
LME 0.999 0.004 0.996 0.996 0.975 1.000 0.025 0.987 

Limma 0.999 0.253 0.783 0.747 0.392 1.000 0.608 0.563 

3 2 0.40 
LME 0.999 0.004 0.996 0.996 0.975 1.000 0.025 0.987 

Limma 1.000 0.331 0.715 0.669 0.330 1.000 0.670 0.496 

3 3 0.05 
LME 0.985 0.000 0.998 1.000 0.998 0.998 0.002 0.991 

Limma 1.000 0.067 0.942 0.933 0.707 1.000 0.293 0.828 

3 3 0.10 
LME 0.988 0.001 0.998 0.999 0.995 0.998 0.005 0.991 

Limma 1.000 0.109 0.906 0.891 0.598 1.000 0.402 0.748 

3 3 0.20 
LME 0.997 0.002 0.998 0.998 0.986 0.999 0.014 0.992 

Limma 1.000 0.187 0.839 0.813 0.464 1.000 0.536 0.634 

3 3 0.30 
LME 0.999 0.003 0.998 0.997 0.984 1.000 0.016 0.992 

Limma 1.000 0.263 0.773 0.737 0.381 1.000 0.619 0.551 

3 3 0.40 
LME 0.999 0.003 0.998 0.997 0.984 1.000 0.016 0.992 

Limma 1.000 0.343 0.704 0.657 0.320 1.000 0.680 0.484 
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Table A.4 Expected performance measures of exposure parameter for 1000 probe sets 
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2 1.5 0.05 
LME 0.992 0.000 0.999 1.000 1.000 0.999 0.000 0.996 

Limma 1.000 0.074 0.936 0.926 0.685 1.000 0.315 0.813 

2 1.5 0.10 
LME 0.995 0.000 0.999 1.000 0.997 0.999 0.003 0.996 

Limma 1.000 0.122 0.894 0.878 0.569 1.000 0.431 0.725 

2 1.5 0.20 
LME 0.999 0.001 0.999 0.999 0.993 1.000 0.007 0.996 

Limma 1.000 0.208 0.820 0.792 0.436 1.000 0.564 0.607 

2 1.5 0.30 
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996 

Limma 1.000 0.288 0.752 0.712 0.359 1.000 0.641 0.528 

2 1.5 0.40 
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996 

Limma 1.000 0.371 0.681 0.629 0.303 1.000 0.697 0.465 

2 2 0.05 
LME 0.994 0.000 0.999 1.000 0.999 0.999 0.001 0.997 

Limma 1.000 0.074 0.936 0.926 0.690 1.000 0.310 0.816 

2 2 0.10 
LME 0.995 0.000 0.999 1.000 0.998 0.999 0.002 0.997 

Limma 1.000 0.121 0.896 0.879 0.576 1.000 0.424 0.731 

2 2 0.20 
LME 0.999 0.001 0.999 0.999 0.994 1.000 0.006 0.997 

Limma 1.000 0.208 0.821 0.792 0.442 1.000 0.558 0.613 

2 2 0.30 
LME 1.000 0.001 0.999 0.999 0.994 1.000 0.006 0.997 

Limma 1.000 0.291 0.750 0.709 0.361 1.000 0.639 0.531 

2 2 0.40 
LME 1.000 0.001 0.999 0.999 0.994 1.000 0.006 0.997 

Limma 1.000 0.376 0.677 0.624 0.304 1.000 0.696 0.466 

2 3 0.05 
LME 0.996 0.000 0.999 1.000 1.000 0.999 0.000 0.998 

Limma 1.000 0.074 0.936 0.926 0.685 1.000 0.315 0.813 

2 3 0.10 
LME 0.997 0.000 0.999 1.000 0.999 1.000 0.001 0.998 

Limma 1.000 0.122 0.895 0.878 0.571 1.000 0.429 0.727 

2 3 0.20 
LME 0.999 0.001 0.999 0.999 0.997 1.000 0.003 0.998 

Limma 1.000 0.206 0.822 0.794 0.439 1.000 0.561 0.610 

2 3 0.30 
LME 1.000 0.001 0.999 0.999 0.996 1.000 0.004 0.998 

Limma 1.000 0.287 0.752 0.713 0.360 1.000 0.640 0.529 

2 3 0.40 
LME 1.000 0.001 0.999 0.999 0.996 1.000 0.004 0.998 

Limma 1.000 0.370 0.682 0.630 0.304 1.000 0.696 0.466 

3 1.5 0.05 
LME 0.992 0.000 0.999 1.000 1.000 0.999 0.000 0.996 

Limma 1.000 0.064 0.945 0.936 0.716 1.000 0.284 0.834 

3 1.5 0.10 
LME 0.994 0.000 0.999 1.000 0.998 0.999 0.002 0.996 

Limma 1.000 0.106 0.909 0.894 0.604 1.000 0.396 0.753 

3 1.5 0.20 
LME 0.999 0.001 0.999 0.999 0.993 1.000 0.007 0.996 

Limma 1.000 0.183 0.843 0.817 0.470 1.000 0.530 0.639 
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Table A.4 Expected performance measures of exposure parameter for 1000 probe sets (continued) 
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3 1.5 0.30 
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996 

Limma 1.000 0.260 0.776 0.740 0.384 1.000 0.616 0.555 

3 1.5 0.40 
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996 

Limma 1.000 0.340 0.707 0.660 0.322 1.000 0.678 0.487 

3 2 0.05 
LME 0.992 0.000 0.999 1.000 1.000 0.999 0.000 0.996 

Limma 1.000 0.065 0.944 0.935 0.714 1.000 0.286 0.833 

3 2 0.10 
LME 0.994 0.000 0.999 1.000 0.998 0.999 0.002 0.996 

Limma 1.000 0.107 0.908 0.893 0.602 1.000 0.398 0.752 

3 2 0.20 
LME 0.998 0.001 0.999 0.999 0.994 1.000 0.006 0.996 

Limma 1.000 0.183 0.842 0.817 0.469 1.000 0.531 0.638 

3 2 0.30 
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996 

Limma 1.000 0.259 0.777 0.741 0.384 1.000 0.616 0.555 

3 2 0.40 
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996 

Limma 1.000 0.338 0.709 0.662 0.324 1.000 0.676 0.489 

3 3 0.05 
LME 0.996 0.000 0.999 1.000 1.000 0.999 0.000 0.998 

Limma 1.000 0.063 0.946 0.937 0.720 1.000 0.280 0.837 

3 3 0.10 
LME 0.996 0.000 0.999 1.000 0.999 0.999 0.001 0.998 

Limma 1.000 0.105 0.910 0.895 0.607 1.000 0.393 0.755 

3 3 0.20 
LME 0.999 0.001 0.999 0.999 0.997 1.000 0.003 0.998 

Limma 1.000 0.180 0.845 0.820 0.473 1.000 0.527 0.643 

3 3 0.30 
LME 1.000 0.001 0.999 0.999 0.996 1.000 0.004 0.998 

Limma 1.000 0.255 0.780 0.745 0.388 1.000 0.612 0.559 

3 3 0.40 
LME 1.000 0.001 0.999 0.999 0.996 1.000 0.004 0.998 

Limma 1.000 0.335 0.711 0.665 0.325 1.000 0.675 0.490 
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Table A.5 Expected performance measures of time parameter for 500 probe sets 
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2 1.5 0.05 
LME 0.976 0.001 0.997 0.999 0.989 0.998 0.011 0.982 

Limma 0.668 0.061 0.916 0.939 0.505 0.968 0.495 0.575 

2 1.5 0.10 
LME 0.991 0.002 0.997 0.998 0.975 0.999 0.025 0.983 

Limma 0.668 0.061 0.916 0.939 0.505 0.968 0.495 0.575 

2 1.5 0.20 
LME 0.998 0.003 0.997 0.997 0.968 1.000 0.032 0.983 

Limma 0.668 0.061 0.916 0.939 0.505 0.968 0.495 0.575 

2 1.5 0.30 
LME 0.999 0.003 0.997 0.997 0.967 1.000 0.033 0.983 

Limma 0.668 0.061 0.916 0.939 0.505 0.968 0.495 0.575 

2 1.5 0.40 
LME 0.999 0.003 0.997 0.997 0.967 1.000 0.033 0.983 

Limma 0.668 0.061 0.916 0.939 0.505 0.968 0.495 0.575 

2 2 0.05 
LME 0.978 0.001 0.997 0.999 0.985 0.998 0.015 0.982 

Limma 0.670 0.062 0.917 0.938 0.487 0.970 0.513 0.564 

2 2 0.10 
LME 0.993 0.003 0.997 0.997 0.971 0.999 0.029 0.982 

Limma 0.670 0.062 0.917 0.938 0.487 0.970 0.513 0.564 

2 2 0.20 
LME 0.999 0.003 0.997 0.997 0.966 1.000 0.034 0.982 

Limma 0.670 0.062 0.917 0.938 0.487 0.970 0.513 0.564 

2 2 0.30 
LME 0.999 0.003 0.997 0.997 0.965 1.000 0.035 0.982 

Limma 0.670 0.062 0.917 0.938 0.487 0.970 0.513 0.564 

2 2 0.40 
LME 0.999 0.003 0.997 0.997 0.965 1.000 0.035 0.982 

Limma 0.670 0.062 0.917 0.938 0.487 0.970 0.513 0.564 

2 3 0.05 
LME 0.986 0.001 0.998 0.999 0.990 0.999 0.010 0.988 

Limma 0.662 0.061 0.916 0.939 0.497 0.968 0.503 0.568 

2 3 0.10 
LME 0.995 0.002 0.998 0.998 0.981 0.999 0.019 0.988 

Limma 0.662 0.061 0.916 0.939 0.497 0.968 0.503 0.568 

2 3 0.20 
LME 0.999 0.002 0.998 0.998 0.977 1.000 0.023 0.988 

Limma 0.662 0.061 0.916 0.939 0.497 0.968 0.503 0.568 

2 3 0.30 
LME 1.000 0.002 0.998 0.998 0.976 1.000 0.024 0.988 

Limma 0.663 0.061 0.916 0.939 0.497 0.968 0.503 0.568 

2 3 0.40 
LME 1.000 0.002 0.998 0.998 0.976 1.000 0.024 0.988 

Limma 0.663 0.061 0.916 0.939 0.496 0.968 0.504 0.567 

3 1.5 0.05 
LME 0.970 0.001 0.996 0.999 0.985 0.997 0.015 0.977 

Limma 0.664 0.062 0.915 0.938 0.493 0.969 0.507 0.566 

3 1.5 0.10 
LME 0.991 0.003 0.996 0.997 0.965 0.999 0.035 0.978 

Limma 0.664 0.062 0.915 0.938 0.493 0.969 0.507 0.566 

3 1.5 0.20 
LME 0.998 0.004 0.996 0.996 0.959 1.000 0.041 0.978 

Limma 0.664 0.062 0.915 0.938 0.493 0.969 0.507 0.566 



 

126 
 

Table A.5 Expected performance measures of time parameter for 500 probe sets (continued) 
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3 1.5 0.30 
LME 1.000 0.004 0.996 0.996 0.957 1.000 0.043 0.978 

Limma 0.664 0.062 0.915 0.938 0.493 0.969 0.507 0.566 

3 1.5 0.40 
LME 1.000 0.004 0.996 0.996 0.956 1.000 0.044 0.977 

Limma 0.664 0.062 0.915 0.938 0.493 0.969 0.507 0.566 

3 2 0.05 
LME 0.977 0.001 0.997 0.999 0.986 0.998 0.014 0.982 

Limma 0.669 0.059 0.918 0.941 0.508 0.969 0.492 0.577 

3 2 0.10 
LME 0.993 0.003 0.997 0.997 0.972 0.999 0.028 0.982 

Limma 0.669 0.059 0.918 0.941 0.508 0.969 0.492 0.577 

3 2 0.20 
LME 0.999 0.003 0.997 0.997 0.966 1.000 0.034 0.982 

Limma 0.669 0.059 0.918 0.941 0.508 0.969 0.492 0.577 

3 2 0.30 
LME 1.000 0.003 0.997 0.997 0.965 1.000 0.035 0.982 

Limma 0.669 0.059 0.918 0.941 0.508 0.969 0.492 0.577 

3 2 0.40 
LME 1.000 0.003 0.997 0.997 0.965 1.000 0.035 0.982 

Limma 0.669 0.060 0.918 0.940 0.508 0.969 0.492 0.577 

3 3 0.05 
LME 0.981 0.001 0.997 0.999 0.989 0.998 0.011 0.985 

Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583 

3 3 0.10 
LME 0.995 0.002 0.997 0.998 0.976 0.999 0.024 0.986 

Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583 

3 3 0.20 
LME 0.999 0.003 0.997 0.997 0.973 1.000 0.027 0.986 

Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583 

3 3 0.30 
LME 1.000 0.003 0.997 0.997 0.972 1.000 0.028 0.986 

Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583 

3 3 0.40 
LME 1.000 0.003 0.997 0.997 0.972 1.000 0.028 0.986 

Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583 
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Table A.6 Expected performance measures of time parameter for 1000 probe sets 
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2 1.5 0.05 
LME 0.992 0.000 0.999 1.000 0.997 0.999 0.003 0.995 

Limma 0.672 0.061 0.918 0.939 0.495 0.970 0.505 0.570 

2 1.5 0.10 
LME 0.998 0.001 0.999 0.999 0.992 1.000 0.008 0.995 

Limma 0.672 0.061 0.918 0.939 0.495 0.970 0.505 0.570 

2 1.5 0.20 
LME 1.000 0.001 0.999 0.999 0.989 1.000 0.011 0.995 

Limma 0.672 0.061 0.918 0.939 0.495 0.970 0.505 0.570 

2 1.5 0.30 
LME 1.000 0.001 0.999 0.999 0.989 1.000 0.011 0.994 

Limma 0.672 0.061 0.918 0.939 0.495 0.970 0.505 0.570 

2 1.5 0.40 
LME 1.000 0.001 0.999 0.999 0.989 1.000 0.011 0.994 

Limma 0.672 0.061 0.917 0.939 0.495 0.970 0.505 0.570 

2 2 0.05 
LME 0.992 0.000 0.999 1.000 0.998 0.999 0.002 0.995 

Limma 0.668 0.061 0.916 0.939 0.502 0.969 0.498 0.574 

2 2 0.10 
LME 0.998 0.001 0.999 0.999 0.991 1.000 0.009 0.995 

Limma 0.668 0.061 0.916 0.939 0.502 0.969 0.498 0.574 

2 2 0.20 
LME 1.000 0.001 0.999 0.999 0.990 1.000 0.010 0.995 

Limma 0.668 0.061 0.916 0.939 0.502 0.969 0.498 0.573 

2 2 0.30 
LME 1.000 0.001 0.999 0.999 0.989 1.000 0.011 0.995 

Limma 0.668 0.061 0.916 0.939 0.502 0.969 0.498 0.573 

2 2 0.40 
LME 1.000 0.001 0.999 0.999 0.989 1.000 0.011 0.995 

Limma 0.668 0.061 0.916 0.939 0.502 0.969 0.498 0.573 

2 3 0.05 
LME 0.995 0.000 0.999 1.000 0.998 1.000 0.002 0.997 

Limma 0.670 0.060 0.917 0.940 0.502 0.969 0.498 0.574 

2 3 0.10 
LME 0.998 0.000 0.999 1.000 0.995 1.000 0.005 0.997 

Limma 0.670 0.060 0.917 0.940 0.502 0.969 0.498 0.574 

2 3 0.20 
LME 1.000 0.001 0.999 0.999 0.993 1.000 0.007 0.996 

Limma 0.670 0.060 0.917 0.940 0.502 0.969 0.498 0.574 

2 3 0.30 
LME 1.000 0.001 0.999 0.999 0.993 1.000 0.007 0.996 

Limma 0.670 0.060 0.917 0.940 0.502 0.969 0.498 0.574 

2 3 0.40 
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996 

Limma 0.670 0.060 0.917 0.940 0.502 0.969 0.498 0.574 

3 1.5 0.05 
LME 0.989 0.000 0.999 1.000 0.997 0.999 0.003 0.993 

Limma 0.666 0.061 0.916 0.939 0.502 0.968 0.498 0.573 

3 1.5 0.10 
LME 0.997 0.001 0.999 0.999 0.989 1.000 0.011 0.993 

Limma 0.666 0.061 0.916 0.939 0.502 0.968 0.498 0.573 

3 1.5 0.20 
LME 0.999 0.001 0.999 0.999 0.987 1.000 0.013 0.993 

Limma 0.666 0.061 0.916 0.939 0.502 0.968 0.498 0.572 
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Table A.6 Expected performance measures of time parameter for 1000 probe sets (continued) 
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3 1.5 0.30 
LME 0.999 0.001 0.999 0.999 0.986 1.000 0.014 0.993 

Limma 0.666 0.061 0.916 0.939 0.502 0.968 0.498 0.572 

3 1.5 0.40 
LME 1.000 0.001 0.999 0.999 0.985 1.000 0.015 0.993 

Limma 0.666 0.061 0.916 0.939 0.502 0.968 0.498 0.572 

3 2 0.05 
LME 0.990 0.000 0.999 1.000 0.996 0.999 0.004 0.993 

Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.578 

3 2 0.10 
LME 0.997 0.001 0.999 0.999 0.989 1.000 0.011 0.993 

Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.578 

3 2 0.20 
LME 0.999 0.001 0.999 0.999 0.987 1.000 0.013 0.993 

Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.577 

3 2 0.30 
LME 1.000 0.001 0.999 0.999 0.986 1.000 0.014 0.993 

Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.577 

3 2 0.40 
LME 1.000 0.001 0.999 0.999 0.986 1.000 0.014 0.993 

Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.577 

3 3 0.05 
LME 0.994 0.000 0.999 1.000 0.997 0.999 0.003 0.996 

Limma 0.667 0.061 0.916 0.939 0.498 0.969 0.502 0.570 

3 3 0.10 
LME 0.998 0.001 0.999 0.999 0.993 1.000 0.007 0.996 

Limma 0.667 0.061 0.916 0.939 0.498 0.969 0.502 0.570 

3 3 0.20 
LME 0.999 0.001 0.999 0.999 0.992 1.000 0.008 0.995 

Limma 0.667 0.061 0.916 0.939 0.498 0.969 0.502 0.570 

3 3 0.30 
LME 1.000 0.001 0.999 0.999 0.990 1.000 0.010 0.995 

Limma 0.667 0.061 0.916 0.939 0.497 0.969 0.503 0.570 

3 3 0.40 
LME 1.000 0.001 0.999 0.999 0.990 1.000 0.010 0.995 

Limma 0.667 0.061 0.916 0.939 0.497 0.969 0.503 0.570 
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