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ABSTRACT

MIXED EFFECTS MODELS FOR TIME SERIES GENE EXPRESSION DATA

Erkan, ibrahim
Ph.D., Statistics Department
Supervisor : Assist. Prof. Dr. Ozlem ilk

Co-Supervisor : Assoc. Prof. Dr. inci Batmaz

December 2011, 129 pages

The experimental factors such as the cell type and the treatment may have different impact
on expression levels of individual genes which are quantitative measurements from
microarrays. The measurements can be collected at a few unevenly spaced time points with
replicates. The aim of this study is to consider cell type, treatment and short time series
attributes and to infer about their effects on individual genes. A mixed effects model (LME)
was proposed to model the gene expression data and the performance of the model was
validated by a simulation study. Realistic data sets were generated preserving the structure
of the sample real life data studied by Nymark et al. (2007). Predictive performance of the
model was evaluated by performance measures, such as accuracy, sensitivity and
specificity, as well as compared to the competing method by Smyth (2004), namely Limma.
Both methods were also compared on real life data. Simulation results showed that the
predictive performance of LME is as high as 99%, and it produces False Discovery Rate (FDR)
as low as 0.4% whereas Limma has an FDR value of at least 32%. Moreover, LME has almost
99% predictive capability on the continuous time parameter where Limma has only about

67% and even it cannot handle continuous independent variables.

Keywords: Microarray Data, Unevenly Spaced Time Points, Subject-wise Testing
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ZAMAN SERISi GEN iFADE VERILERI iCIN KARMA ETKiLi MODELLER

Erkan, ibrahim
Doktora, istatistik B6limi
Tez Yéneticisi : Yrd. Dog. Dr. Ozlem ilk

Ortak Tez Yoneticisi : Dog. Dr. inci Batmaz

Aralik 2011, 129 sayfa

Hicre turt ve ilag gibi deneysel faktorler, genlerin mikrodizinlerden elde edilen nicel
Olciimleri olan bireysel ifade dizeylerini etkilemektedir. Yapilan o6lgimler esit aralikli
olmayan birka¢ zaman noktasinda ve tekrarli sekilde toplanabilir. Bu ¢alismanin amaci hiicre
turd, ilag etkisi ve kisa zaman serisi gibi unsurlari inceleyip, bunlarin genler {izerindeki
bireysel etkileri Uzerine ¢ikarsama yapmaktir. Gen ifade verisinin hiyerarsik yapisini
modellemek Ulzere karma etkili bir model (LME) 6nerilmis ve bir benzetim galismasiyla
modelin basarimi dogrulanmistir. Benzetim verileri, Nymark vd. (2007) tarafindan yapilan
calismada kullanilan gercek verinin yapisina uygun olarak tiretilmistir. Modelin tahmin edici
basarimi dogruluk, hassasiyet ve 6zglllik olcileri ile degerlendirilmis ve Smyth (2004)
tarafindan onerilen Limma isimli secenek yéntemle karsilastirilmistir. Ayrica her iki yontem
gercek veriler lzerinde de karsilastiriimistir. Benzetim sonuclari dnerilen modelin tahmin
edici basariminin %99 gibi ¢ok yiiksek bir diizeyde oldugunu, hatta Hatali Kesif Orani (FDR)
degerlerinin %0.4 kadar disik olup, ayni degerin Limma’da en az %32 kadar oldugunu
gostermistir. Dahasi, LME’nin siirekli bir bagimsiz degisken olan zaman parametresi
Uzerindeki tahmin edici basarimi %99 diizeyinde iken, Limma sadece %67 diizeyinde kalmis

olup strekli bagimsiz degiskenlerin kullanimina bile uygun degildir.

Anahtar Kelimeler: Mikrodizin Verileri, Esit Aralikli Olmayan Zaman Noktalari, Nesne

Bazinda Test
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CHAPTER 1

INTRODUCTION

The change in the nature in recent years with pollution all over the world has created many
direct and side effects to our health. Especially, cancer and similar diseases started to
threaten us more. As a result, the treatment of such diseases has become more important
and also elaborate because of increasing number of uncontrollable sources of variation. In

this context genetics has become one of the most popular research areas.

1.1 Microarrays

Scientists have invented microarrays to display protein activity at genes. It is a
breakthrough when scientists are able to see the change in gene activities under the
presence and absence of conditions of interest. This knowledge would help them very
much such as in finding a coherent certain treatment, inheritance of genetic diseases and
many more. For example, researchers may want to investigate the effect of asbestos on
breast cancer. Therefore, gene activities can be observed on both asbestos exposed cells
and non-exposed cells and the genes which change activity under different conditions can

be determined. Then, required actions can be taken accordingly.

1.2 Scope of the Study

This thesis includes the analysis of short course time series microarray gene expression
data. Short course time series data are observed in the course of time (where time points
may be unevenly spaced) when microarray experiments are used to study the behaviour of
genes and their expression levels are investigated. There can be more than one
observations per time point and the number of observations per time point may vary
through the series because of the nature of the experiment. Figure 1.1 illustrates the

structure of the data that is studied in this thesis.
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Figure 1.1 Structure of time series gene expression data with replicates

The analysis of such data has some challenges for researchers. The first challenge is that
gene expressions across time points may have a dependence structure which should not be
ignored during the analyses. The probe measure which represents the relative expression
level of an individual gene has more than one sampling points over time. Therefore, the
measurements obtained over time belong to the gene creating a dependent sequence of

measurements.

The second challenge is that the number of time points is very few (generally less than or
equal to eight) compared to classical time series data which usually have more than 50
observations for a convenient time series modeling. There are a number of reasons behind
this. The first and the foremost one is that the microarray chips are very expensive for both
an extensive use and many repetitions of the same experiment. The second reason is that
sometimes, depending on the structure and the donor of the experiment made, it is
impossible to repeat the experiment many times. For example, it is hard to make people
attend the experiment 50 times and provide blood cells, or in an experiment that you
investigate the behaviour of a poison, the rat can die and it becomes impossible to repeat
the experiment many times. Figure 1.2 skecthes a sample of size six from a single probe

measured over five time points that are Oh, 1h, 6h, 24h, 48h and 168h.



As the number of time points may vary, the number of replicates per time point may vary
as well. The less the number of replicates, the harder to fit models because estimation of
the variance components gets harder or impossible. Sometimes, the data is unbalanced

that cause another challenge for researchers.

The third challenge is unevenly spaced time points. Unevenly spaced time points indicate
that the amount of time between consecutive measurements is not the same across all
time points. The time elapsed after an observation may vary. In this case, monitoring the
process over time becomes very difficult also making it very hard to express the reason

behind the change in measurements. This is unusual in classical time series approach.

In addition to the challenges that were mentioned above, it is methodologically and
computationally very extensive and demanding that short time series microarray gene
expression data may contain replicates changing in number at every time point and
gene/probe set. For example, the sample in Figure 1.2 has 5 timepoints and it has 1
replicate only at 48h where other measurements are singletons at all other time points.
Moreover, there may be factors such as cell type as well as treatment, one or both of which
might have more than two levels. Time as a source of variation in microarray experiments is
a continuous independent variable rather than a qualitative factor most of the time.
Biologists are very keen on finding out whether a treatment has an acute or chronic effect

on the subject of interest.
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Figure 1.2 Sample observations from "238743_at" probe measured under A549 cell and exposure
group from Asbestos Dataset (Nymark et al., 2007)

Summing up the challenges and the complexities above, biologists want to infer about the
changes in gene expressions for individual genes. Qualitative factors are well handled by
means of t-tests, ANOVA, clustering, splines and linear modeling. However, the challenging
part here is to infer about the subject specific gene expression profile under the existence
of qualitative experimental conditions. A profile is the change in the gene expression level
across the time panel when the measurements are collected. Biologists would like to know
if there is any significant change in the short course of time as well as the long course of
time. A careful investigation of the literature indicates that the proposed methods are
insufficient to resolve this problem, and this study aims to propose a plausible model to

solve it.

The model in this dissertation on the other hand, first clusters the genes using a two-step
clustering scheme thus breaking the correlation structure and creating gene-sets and then
applies a linear mixed model to estimate effects of group, treatment and time points for

short time series datasets with or without replication.




1.3 Contributions

e Proposing the use of LME method at every other individual time interval of a short
time series microarray data, providing modeling and testing a short time series
profile and subjectwise testing.

e Comparing it with Limma, the competing and most widely used alternative method.
It was shown through a comprehensive simulation study that the proposed
methodology outperformed Limma in accuracy, specificity, positive predictive
value, negative predictive value, false discovery rate and F1 value performance
measures in overall results.

e Fitting the random effects together with the fixed effects produce more unbiased
results compared to when they are fit only as fixed effects. Existence of the random
effects compensates the shrinkage of the fixed effects towards to the mean value.
This also helps to avoid any over and under estimation of parameters that occur by
chance. This is where Limma method fell behind and produced false discoveries.

e Handling repeated measures and unbalanced data via LME for short time series
microarray data.

e Producing more appropriate results when the data of interest has hierarchical
levels with many factors such as cell type, treatment, short time series and the
clusters that contain the probe sets with similar expression profiles.

e Providing great flexibility whenever additional factors or terms such as covariates
or categorical factors are to be added to the LME model.

e Detecting acute and chronic effects of a treatment via modeling the short time
series microarray gene expression profiles.

e Handling the differing time lags by incorporating time as an independent variable
into the LME model as well as testing the time change effect.

e Increasing predictive capabilities and F1 value short time series microarray gene
expression profile analysis for both factors and independent variables such as
continuous time parameter.

e Proposing a two-stage clustering algorithm for detection of time series gene
expression profiles.

e Proposing a real like data simulation algorithm for short time series microarray
gene expression data with differing number of replicates per time point as well as

incorporating cell type, exposure and other required effects.



e Providing a computational framework for analyzing short time series microarray
gene expression data proposing a very comprehensive simulation and short time
series microarray gene expression data fitting algorithm along with an R code. For
the simulation part, the code first generates realistic gene expression profiles. The
profiles can be modified such as changing the number of cell types, treatment
groups and time points. The code then generates realistic initial set of data by
making use of a mixture normal distribution. The parameters of the initial data can
be adjusted as well. According to the profiles that are created the code can
simulate the short time series, replications in accordance with the structure of the
profile. Realistic noise and experimental factors are also incorporated to the
simulated data. For the real data fitting part, researchers who would like to utilize
the code should only rename the column names of their dataset and run the code.
On the overall, the code is very user friendly, easy to use and allows
customizations. The code is free to access and can be downloaded from

www.metu.edu.tr/~oilk/LME code.zip.

An overview of microarrays, the structure of the short time series microarray gene
expression data analyzed in this study, scope of the study and the contribuions to the
literature were included in this chapter. In the second chapter, a comprehensive review of
the literature will be presented. Alternative studies, previous work in this area and their
findings will be summarized. In the third chapter, methodology that is used will be
introduced step by step. The forth chapter will include all of the details of the simulation
study and the fifth chapter will provide findings, results, illustrative examples and remarks
on both simulated data and real life data. Conclusions and possible future studies will take
place in the sixth chapter. For ease of reading and understanding most of the figures and
tables on performance measures that were obtained in the simulation study are given in

appendix.


file:///C:/TEZ/TEZ%20-%20SON/Tez%20SON/www.metu.edu.tr/~oilk/LME_code.zip

CHAPTER 2

LITERATURE REVIEW

Analysis of microarray data is difficult because they come in large sizes and there are
variations result from different sources. These sources can be the measurement system,
the experimenter and environmental factors such as temperature, pressure, array reading,
image noise and translation errors. These cause increased measurement variation and bias.
Studying with time series microarray data is even more difficult because of the correlation

between sequential measurements and possible missing values.

Although there are challenges in analyzing short time series gene expression data, they are
frequently used. Ernst et al. (2005) provided a statistic about the number of time points of
the microarray datasets from Stanford Microarray Database (SMD). This study indicates
that more than 80% of all time series datasets contain less than or equal to eight time
points. Therefore, researchers working on microarray experiments are highly in need of
statistical techniques that help determining the patterns or modeling the behaviour of

genes in the short course of time.

An insightful investigation of the literature in the field of short time series microarray data
analysis direct us to mainly split them into two common approaches as model based and
non-model based methods. In the proceeding two sections of this chapter, representative
and frequently cited studies from both approaches are summarized. The methodology that
researchers used to analyse the microarray data also differed according to the main
interest such as grouping the genes that show similar behaviour under certain conditions or

differentially expressed gene or gene groups.



2.1 Non-model Based Methods

Recently, microarray studies are becoming more and more popular. In such studies, not
only the dimensions of the data sets are large but also the number of factors manipulating
the microarray measurements are large. Cell type, genes or gene groups, time effect, array
type and treatment type can be good examples as sources of variation to the microarray
measurements. Accordingly, the number of required inferences are also large. Therefore,
reducing the dimension is a plausible way for the simplification of the problem. For
example, k-means clustering method (Tavazoie et al., 1999), hierarchical clustering (Eisen et
al., 1998) and analysis of variance (Kerr et al., 2000) have been used in many researches.
Matsui et al. (2008) suggested that clustering microarray data is very useful in reducing
dimension as well as understanding co-regulated genes that behave similarly under
diseases or certain treatment. They also pointed that clustering genes and treating them as
a group improve the predictive variance. Their approach maked use of a logrank test that is
used for multivariate permutation procedure seeking for an optimum cut-off point for the
p-value to decide whether a cluster has differentially expressed genes or not while the test
does not sacrifice from false discovery rate. As a non-model based alternative, Watson
(2006) studied a clustering method that helped finding coexpressed gene sets and utilized
an R package for that. The software can identify groups of genes that are expressed
similarly. Their algorithm avoids parametric modeling or testing. Another nonparametric
approach was proposed by Shah & Corbeil (2011). They used tensor analysis in order to
transform data and without clustering the data explicitly they were able to identify groups
of differentially expressed genes in a short time-series data. The downsides of their
approach are that it cannot distinctly determine the source of differential expression such
as cell type, exposure or time, and the time interval where genes are differentially

expressed cannot be identified.

Complexity and duration of the computations during the microarray analyses are important
attributes for a microarray study. In opposition to the most methods Qin et al. (2008)
proposed a computationally less intensive clustering algorithm for detecting differentially
expressed genes from simple microarray experiments. They also performed comprehensive
simulation studies which showed that their method is substantially more powerful and also
more robust than well-known SAM and eBayes approaches. Another study which compares
its performance to SAM was done by Sinha & Markatou (2011). They developed a computer
software package, the main advantage of which is that it is capable of doing both
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significance analysis and clustering. It is user friendly as well. On the other hand, it does not
return any models and incapable of determining the effects of experimental factors such as

cell type and exposure.

Some clustering methods were developed for time series microarray data (Bar-Joseph et al.
(2002); Ramoni et al. (2002)). Bar-Joseph et al. (2002) based his approaches on statistical
models for clustering purposes. He proposed representing every set by a spline curve as a
solution to problems raising from missing values and unevenly spaced time points.
However, this approach requires long time series for convenient results. Androulakis et al.
(2007), on the other hand, discussed clustering methods for analyzing short time series
gene expression data. They also pointed out some challenges, opportunites and also the
quality of clustering methods. However, they did not mention any model based approach
or testing. Another study for achieving a similar goal is the difference-based clustering
algorithm that was given in Kim & Kim (2007). They claimed that their algorithm
outperforms the competing alternatives namely k-means, Self Organizing Maps (SOM) and
Short Time-series Expression Miner (STEM) methods in terms of clustering short time series
gene expression data with replicates. STEM application assumed replicates at each time
point but, the data structure studied in this thesis may not even have replicates per time

point.

Although clustering is very helpful tool in understanding the structure of the data,
determining similar gene behaviour, reducing the dimension lessening the number of the
parameters to be estimated, the method has still some downsides. Clustering methods
cannot test statistical significance and will probably detect clusters even if they don’t exist
(Xu et al., 2002). Moreover, Xu pointed out that clustering methods are sensitive to data
transformations and units of measure. In addition, Park et al. (2003) noted that clustering
methods cannot produce stable results as the number of genes increase. In an unpublished
work Kuenzel (2010) compared most of the clustering methods and pointed that clustering
make microarray data sensible. However, he concluded that there are so many clustering
methods which makes it hard to choose. Nevertheless, although clustering is usually
needed, it is clear that clustering as the only method to analyze the microarray data may

not be sufficient in all studies especially for short time series microarray data.



2.2 Model Based Methods

2.2.1 Hierarchical and Mixture Models

Two main approaches dominate the field of microarray analyses. First is hierarchical
models, which most of the time utilize Bayesian tools and mixture modeling. Some leading
examples can be given as Qiu et al. (2008) study which proposed bayesian hierarchical
model where the marginal distribution of different gene clusters is a three mixture of a
multivariate normal distribution. This way they made it possible to assign different marginal
means and variances for different gene clusters to detect the differentially expressed
genes. Likewise, Efron et al. (2001) proposed that the distribution of the gene profiles
represents a mixture distribution and hence there is no need for a multiple testing
correction. In the mixture distribution, one component represents the differentially
expressed and the other component represents the suppressed set of genes. Pan (2002),
He (2004), Do et al. (2005), McLachlan et al. (2006) and Broét et al. (2002) can be reviewed
for more detailed discussions on this approach. Another foregoing study on mixture
modeling is Najarian et al. (2004) study which suggested a nonparametric mixture model
method improving over the classical nonparametric mixture model method by increasing
the repeatability of the output obtaining similar results on different fits of the model as well
as reducing the sensitivity of the output on the parameters. In addition, Moser et al. (2004)
used a mixed model approach that clusters the gene expression X immunological status
interactions by a mixture of normal distributions for a short time series gene expression
data. Therefore, differentially expressed genes and others took place in different
components of the mixing model. The last study that worthed mentioning here as an
example for utilizing mixture distributions is Celeux et al. (2005) study which implemented
a mixture of mixed models in order to cluster gene expression profiles. Rather than testing
gene expression profile significancies over time, they focused more on model based
clustering of profiles trying to detect the number of components of mixing models. In terms
of classification of probe sets, mixture modeling can be a very plausible application such
that it may help assigning probe sets to different mixing components according to their

expression values.

In addition to the mixture modeling studies mentioned above, Bayesian hierarchical
modeling for assessing the the level of gene expression was applied by Broét et al. (2002).
In contrast with Efron et al. (2001), they especially stated that the representation of genes

with components of mixture distributions is a binary fashion and the level of expression
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should be incorporated. They also compared their results with classical t-test approach and
showed their improvement. They also stated downsides of the classical approaches
particularly when it comes to testing. The points mentioned in Broét et al. (2002) were
taken into careful consideration and some results on multiple testing corrected results
were also discussed in this study. They concluded that the data were eligible for further
analyses. RMA method was proposed as the preprocessing method. The work by Broét et

al. (2002) lacks the analysis of time series microarray data and specific time profiles.

2.2.2 Mixed Effects Models

The second approach that dominates the the field of microarray analyses is the mixed-
effects modeling. Wernisch et al. (2003) proposed a mixed-effects modeling approach
especially designed for taking the correlation structure among replicates. They used an
ANOVA based method and showed the advantages of the proposed model over the t-test
at gene level. Wolfinger et al. (2001) used mixed models approach to directly control over
the rate of true positives and claims an improvement on false negatives compared to the
existing methods. Unfortunately, they did not focus on short time series gene expression
profile analysis. They used genewise t-test approach and made use of Bonferroni multiple
testing correction which is outdated in favor of Benjamini-Hochberg multiple testing
approach. All the studies in this paragraph lacks modeling of short time series microarray

data and focus more on comparison studies with replicated microarray data.

There can be found many linear mixed-effects procedures in the literature, some of which
focus more on clustering. A technical report of this kind is prepared by Eng et al. (2008).
They propose a mixed effects model in order to cluster genes according to the relative
likelihood ratios for grouping parameters. Although they propose the model for time course
microarray data, their main point of interest is not the short course experiments. Besides,
they assume non-diagonal covariance matrices for grouped gene sets. On the other hand,
rather than gcRMA, they quantile normalize within group data and then assume normality.
Their performance criteria is misspecification performance rather than profile testing in
opposition to the method proposed in this dissertation. They treat the unknown
parameters as missing values and apply EM algorithm for estimation. They also test the
robustness of their proposal by testing against candidate models. Since, gcRMA technique
is applied to the raw data in this study and the distribution of each array is equalized,

robustness is not a big issue.
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Mixed-effects models are very flexible to use and can be used in a vast environment of
applications. An example as an alternative application in the gene expression pathway
analysis is Wang et al. (2008) study. They perform tests in order to detect differential gene
expression pathways. However, their null hypothesis is that differential expression between
two particular groups of genes does not differ significantly from the genes in the pathway
compared with the rest of the genes. In contrast with their hypothesis, the model proposed
in this thesis compares control groups to treatment groups, consecutive time points and
different cell lines with each other and tests whether they are differentially expressed in

consecutive time intervals.

Another remarkable study on time course microarray data is given in Wang et al. (2009).
They proposed a mixed effects model in order to model the variability around the mean
gene expression profile. They are testing for the changes over a pathway and testing for the
null hypothesis that the average gene expression of a gene group is not differentially
expressed over time. They included independent random variables for array and differing
covariance effects between genes. The model used in their study seems to be similar to
that is used in this study however the application is different. Their method do not involve
clustering and unable to detect acute and chronic changes over time as well as testing for

the differential expression at a specific time interval.

2.2.3 Other Models and Methods

Alternative to the clustering based methods, model based microarray data analysis
methods depend their inferences on either statistical tests or statistical models. Recent
studies based on statistical tests and models has become more common. For example, Xu
et al. (2002) tried to model the gene expressions by regression models using variables such
as time, dose, cell/tissue type. Park et al. (2003) introduced a new statistical test procedure
based on repeated measures analysis of variance to identify differentially expressed genes
in time series experiments. Hong & Li (2006) calculated probabilities for each gene by
hierarchical models that use information from each gene, and proposed identifying genes
whose expressions change over time. However, this approach is also based on splines and
require long time series data. Hidden Markov Models (Schliep et al. (2003); Zeng & Garcia-
Frias (2006)) could not overcome the general restrictions of clustering methods although
these are model based clustering methods that are frequently used in time series analyses.

Not necessarily, model based methods may still include clustering schemes, however,
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clustering may be used as a preparatory tool or for simplification purposes as in this study.

Inferences though are based on statistical tests or model significancies.

As an example, Ng et al. (2006) focuses on random-effects model to cluster genes from a
time-series with or without replication. They studied an extension of normal mixture
models in order to model correlated and replicated measurements. They made use of linear
mixed-effects model for the mixture components to be able to incorporate the covariance
structure. They offered a general framework for clustering of genes with correlated
measurements with replicates that can also be time-course data. Ramoni et al. (2002) used
a model based clustering approach based on constant coefficient autoregressive curves.
Autoregressive curves require evenly spaced regular series, and this method unfortunately
is useless for unevenly spaced microarray data which is quite common in microarray
studies. On the other hand, Bar-Joseph et al. (2003) proposed spline estimation model for
estimating missing data in time series gene expression datasets. Their model accounted for
unevenly spaced time points as well. The spline method provided in their study
incorporated some spline coefficients for the gene sets in the same cluster as the cluster
covariates as well as subject-specific parameters. They were more focused on unobserved
time points. More recently, Furlotte et al. (2011) proposed using linear mixed models to
estimate confounding effects and also to measure pairwise correlation of genes. Their
proposal however does not directly related to the analysis of short time series data. Yet
another study focused on short microarray time-series data analysis using gene-specific
linear mixed models to test group effects together in experiments involving two color
microarrays is Passos et al. (2011). They modified the design matrix in order to be able to
handle two color property by the proposed mixed-effects model. Their aim is to make the
comparison of one or two color microarrays cost efficient. They used a linear mixed model
for analyzing time series gene expression data and tried to find out the effects of premises

on the cost of comparing different arrays.

Handling the unevenly spaced time points and proposing a more plausible model fitting
alternative, a quadratic regression modeling method was proposed by Liu et al. (2005) for
detecting differentially expressed genes in a short time series microarray data. Their work is
one of the rarest works that accounted for the time as a contiuous variable rather than
treating it as a factor measured in sequential equally spaced timepoints. They pointed out
that taking time as a continuous variable preserves actual time information. They

incorporated time effect as a second order term in the model, and fit the quadratic
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regression for every gene testing the significance of time at each step. The method is very
useful for detecting significant gene expression patterns over time and similar patterns,
however, unable to take into account the differing experimental conditions such as

different tissues and different treatments.

The common and straightforward approach while testing the significance from many genes
from a microarray is to conduct a standard t-test for every single gene or gene group. If the
null hypothesis is rejected in the favor of a significant change in the gene activity, the
researcher concludes that the gene is differentially expressed. As stated in Qiu et al. (2008),
one downside of this approach is that the test statistic requires a variance component and
accordingly a standard error estimate for the mean estimator on each gene. Especially, in
short time series microarray data the available sample size for each gene is very small for a
good variance estimation which is also the case in this study. Although there are some
approaches proposed for a stabilized variance estimation for the t-test (e.g. Significance
Analysis of Microarrays (SAM), proposed by Tusher et al. (2001)), multiple testing problem
occurs during testing many hypotheses which is a common problem also for all other
testing procedures. Multiple testing correction is used as a remedy for this problem and
helps controlling False Discovery Rate (FDR), but it also brings new problems aside (like

uncontrolled true positive rate).

Methodologies and studies on microarray analyses are growing rapidly and sometimes hard
to keep up. Tai & Speed (2005) summarized statistical analysis techniques of short time
series microarray data. They mentioned especially downsides of applying methods for
cross-sectional data to the longitudinal data and emphasized on the effect of
underestimating the subject specific variance. They compared classical F-test, moderated F-
statistic, B-splines and clustering. However, they did not present solid results. Although
their study did not go beyond a literature review, it is useful to look up for a collection of
methods. Mutarelli et al. (2007) also used a B-spline basis to model genewise expression
pattern and hence performed a classical F-test for a single gene. However, their approach

did not take time as a continuous variable but rather as a factor.

Other than the classical testing procedures as well as handling time series microarray data,
Sasik et al. (2002) described a model that first analyzes the time-course raw data. They
therefore, reduced the dimension of the data representing it by only vital components that

characterize the gene expression profiles. They then superficially clustered the components
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to visually analyze the differentially expressed profiles. They neither offered a parametric

model that accounts for treatment, array type, time effect nor for a single probe set.

Another point of view in the analyses of microarray gene expression data is to select a
convenient comparison procedure. He (2004) dicussed the advantages and downsides of
parametric and nonparametric test procedures for detecting differentially expressed genes
for especially comparing two groups (e.g. tissues) and proposed a weakly parametric model
namely a spline function approach to characterize the distributions of differentially and
non-differentially expressed genes. In another study published in the same year, Broét et al.
(2004) proposed a new strategy for comparing more than two groups based on a flexible
mixture model for the marginal distribution of a modified F-statistic. Their model utilizes a
combination of false positive and false negative discovery rates in order to select the

differentially expressed genes.

Some of the studies that have been mentioned so far have focused on cross-sectional data
where the methods used are not suitable for time series microarray analyses since they do
not account for the factors that change over time and do not deal with the correlation
between measurements (Xu et al., 2002). Nymark et al. (2007) provided a special algorithm
including canonical correlation and gene onthology analyses to differentiate the profiles of
short time series gene expressions from three different types of cell lines that were
exposed to Asbestos. They used permutation tests to identify differentially expressed genes
in short time series clusters. Using Nymark's reference Asbestos dataset in his studies,
Korpela (2006) studied the short time series microarray data in terms of data quality and
clustering. The study puts some insights on the reference dataset by exploring the
clustering algorithm and data quality control studies. Another study that put insight to
correlational analysis is He & Zeng (2006) which presented a new method namely trend
correlation for identifying functional linkages between genes. The method is a two-step
method for comparing gene expression profiles over time. Their method does not involve

short time series and the exampled series consisted of 17 timepoints.

Trend testing is another approach for detecting the change in gene expression profiles. In a
methodological study, Chen (2005) proposed C&G statistic in order to test the significance
of individual gene expression profiles. C&G statistic combined Bartlett's C-statistic given in
Bartlett (1966), that is used to test for the existence of trends, and fisher's G statistic given

in Fisher (1929), for testing the significance of harmonic series. The method was useful for
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testing the significance for genewise time series expression data. However, his method did

not account for unevenly spaced time points and different tissue cells.

The last but not the least method to identify differentially expressed genes is to fit a fixed
effects linear model independently for every subject in the data. One of the most cited
articles in the analyses of data from microarray experiments is Smyth (2004) which is the
reference paper for microarray gene expression data analyses package for R, namely the
Limma package. Smyth (2004) handled the problem as a multiple testing problem of many
genes. Every set of genes was treated as a single set of data and then a hybrid of classical
and bayesian approach was used and a linear model was fitted to the expression data for
each gene. Actually, prior distributions were defined in order to correct on the estimates of
the parameters that are called empirical Bayesian estimates. Therefore, moderated t-
statistics were obtained for every single gene. Empirical Bayesian approach empowers
Limma even when testing with small sample sizes. Although the model is computationally
straightforward compared to other methods, it is only possible to treat a timepoint as a
factor level with Limma. Limma cannot handle continuous covariates. Therefore, it loses
time information and suffers modeling the expression profile over time. Another major
disadvantage of Limma is that it cannot handle unbalanced designs. The number of
replicates has to be the same at all levels of the experiment for a gene. Mixed modeling

cannot be incorporated to Limma either.
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CHAPTER 3

METHODOLOGY

A multiple stage data processing and analysis were proposed and used throught this study.
The data used in all analyses were preprocessed after being scanned from a microarray
device. The processes applied and presented in sequence in this chapter are preprocessing,
especially normalization as part of it, filtering, clustering and model fitting. The applications
of the proposed methods were done on the real life dataset studied and referred by
Nymark et al. (2007) and will be named as "asbestos dataset" hereafter. The asbestos
dataset have 54,675 probe sets, measured from two cell types namely A549 and Beas2B.
Measurements on each cells have both control and exposure groups that were collected on

six time points.

3.1 Preprocessing

Although microarrays are very high technology devices, the process of reading gene
activities as an image from the device and changing this image to an appropriate dataset in
meaningful metrics for further analyses require some preparation steps. That is because,
the raw data is very likely to be perturbed by environmental effects, such as the noise on
the obtained image, biological noise due to organic activities and the noise that occurs
during experimenting for replicates. Besides, all organic cells may not be identical even if
they belong to the same structure. For a fair comparison, microarray data should be
corrected to reduce any possible noise effect. On the other hand, the data collected from
the device are not in the suitable domain and scale for further statistical analyses. All these
factors lead researchers to microarray data preprocessing. The common steps and

operations are given in fair detail as follows.
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3.1.1 Data Preparation

The data obtained at first stage from a microarray are the measures of the intensity of light.
Before a microarray experiment is conducted, it is set up. Setting up of a microarray
experiment can refer to both preparing physical conditions for the experiment and
statistical design of the experiment such as deciding on the number of replicates. The best
way of designing an experiment is attained by biologists and/or geneticists working
together with statisticians. A biologist describes the biological nature of the experiment

where the statistician describes the statistical nature.

Microarray experiments and accordingly the data collected from the experiment are mostly
studied for determining different sources of variation. The researcher can be interested in
comparing two donors, different animals or organisms of the same type. Likewise,
treatment of different drugs, or treatment of a single drug can be subject to interest. A
researcher may want to compare even completely different tissues. Therefore, the

experiment and the experimental conditions are set up in this direction.

Controllable sources of variation in these studies such as gender, age, duration of
treatment and many others are selected such that they will not create bias throughout the
study. However, unfortunately, the experiment and the data collected thereafter are also
affected by uncontrollable sources of variation from environmental variables such as the

measurement system and sampling errors due to technical or biological replication.

Although experimental conditions can be set up such that the resulting measurements are
evenly affected by the uncontrolled variation, most of the time it is very difficult to do this
in real life because of financial and experimental restrictions. Also the measurement
devices incorporate some noise to the system which is inevitable. All these effects are to be
reduced or eliminated in the microarray data preprocessing steps to obtain the realistic

dataset.

3.1.2 Normalization

Normalization enables the researchers compare two or more arrays from different
populations such as case and control, cell type 1 and cell type 2, within cell type and
between cell types. Normalization also reduces the effect of the variation from external
sources during the experimentation and collection of the data. Some examples for the

external variation are the chemical substances on the surface of the microarray, the way
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that the spots on the microarray are prepared, methods for labeling, hybridization
techniques, image analysis and isolation of the RNA (Bilban et al. (2002); Claverie (1999);
Schuchhardt et al. (2000); Lou et al. (2001); Tseng et al. (2001); Yue et al. (2001)).

Further processing is applied to the raw data. As a preprocessing procedure gcRMA
technique by Wu et al. (2004) has been used in this study. gcRMA is an array normalization

method which also does background noise correction.

Different normalization methods have different data processing capabilities. Studies so far
have shown that RMA is a very successful method in normalization (e.g. Bolstad et al.
(2003)). Irizarry et al. (2003) has shown that RMA method is better than other
normalization methods. As an extension to RMA method, gcRMA has produced very
accurate results without any loss of precision (lrizarry et al. (2006), page 793). A
comparative study for the normalization procedures are studied in Lim et al. (2007) and

Shedden et al. (2005).
Main advantages and common properties of gcRMA can be listed as follows:

e Corrects the background noise using the mismatched gene sequences.

e Equalizes the distribution of each array.

e Uses robust median polishing procedure.

e Makes use of quantile normalization.

e Proven to be better than competing alternatives such as RMA and MAS5 (see Wu et
al. (2004)).

e Returns expression values on log, scale.

The main difference and major improvement of gcRMA technique over the RMA is that it
uses a linear model to represent the summarized gene expression values. This is the major
improvement of gcRMA over RMA. Wu et al. (2004) proposes below statistical model for

background adjustment:

MM = Oypy + Nym + @S (3.2)

where

PM Perfect match (stands for probe pairs all of which have correct nucleotide

matchings)
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Opy  Optical noise for perfect match

Npy Non specific binding effect for perfect match

S A quantity proportional to RNA expression (the quantity of interest)

MM  Mismatch (stands for mismatching probe pairs)

Oyym  Optical noise for perfect match

Ny Non specific binding effect for mismatch

[0 A coefficient that lies between 0 and 1. The ¢ proportion of the mismatched probe

pairs is assumed to be true signal.

Hpm

#MM] and

O~LogN and log(Npy),log(Nyy) ~Bivariate Normal where ,u=[

var[log(Npy)] = var[log(Npy)] = 02 and there is also a constant correlation p between
probes. Means yy and ppy are smooth functions of the linear combinations of the
means of probes and their bases. Because non specific binding is expected not to affect the

optical noise, O and N are assumed to be independent.

Above parameters are estimated from the data and the problem then changed into the
prediction of S. Estimation is not a big deal since generally microarray datasets are large

enough for such a purpose.

Wu et al. (2004) makes two important assumptions about the above model such that
@ = 0 and O is an array dependent constant. Then they offer both frequentist (MLE) and
Bayesian alternatives for estimating the PM and MM parameters and finally they end up

with summarized gene expression levels by the use of the following model:

Ygij = Ogij + Ngij + Sgij (3.3)
= 091']' + EXp(‘llgij + Egij) + exp (Sg + 6gXi + agl-j + bi + ggij)

Yoij Probe intensity for the probe j in the probe set g on the array /.

€gij Non-specific binding error term which has a normal distribution. It accounts for the
noise of the same probe that behaves differently in different arrays.

Sg The baseline log expression level for probe set g.

agij  The effect of probe jin gene g on array i.

b; The array affect that requires normalization.

8y The coefficient of covariate X to be estimated. The emphasis of normalization

process is on this parameter.
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Above model requires elaborate computation for the parameter estimation for both MLE

and Bayesian methods.

Most of the microarray gene expression analysis studies indicate that majoriy of the genes
remain relatively less active during the experiments. Only a smaller portion of the genes
generally show changing expression values. Therefore, those less active, namely
underexpressed or supressed genes can be taken out of the analyses. In this study, all of
the genes process were included in the normalization, which is called global normalization,
but inactive genes were filtered by kOverA function (see section 3.3) afterwards just before

the statistical analyses (Bilban et al., 2002).

3.1.3 Quantile Normalization

gcRMA technique is similar to the RMA other than the gene expression summarization
procedure. It makes use of quantile normalization after summarization. Quantile
normalization is used to make the distribution of each array identical. It is called “quantile
normalization” because this method equalizes the quantiles of gene expression measures

from each array.

Assume that there are n arrays and p probe sets from each array. The method is applied as

follows:

1. Calculate kth quantiles for each array such as qir = (Qk1,9k2 > Qrn) for
k =1,2,..,n. Practically, order all arrays in ascending order of magnitude.
Therefore, ith order statistics are found for each array. Note the original ordering of
each array for later use in step 4.

2. Find the means of every ith order statistics across all arrays. Therefore, n means are
obtained from n arrays.

3. Substitute every ith order statistic from all arrays with the ith mean calculated in
step 2. Therefore, the ith order statistic of each array is equal to the ith mean.

4. Reorder each array to its original ordering.

Therefore, all quantiles of each array are equalized. One downside of this procedure is that
it may cause replicated gene expression values on the tails of the array distribution.
However, Wu et al., (2004) stated that this is not a problem since probeset values are

calculated by using more than one probe.
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An example of the distribution of a sample dataset before and after the normalization are
shown in below graphs. Box plots for randomly selected 10 arrays from Asbestos dataset is
given in Figure 3.1 indicate very heavy tailed skewed distribution for different arrays which
reduced the readability of the graph. Even the median and the left tail is impossible to see.
In order to increase the readability, graph was trimmed on the Y axis for better visualization
and given in Figure 3.2. The distributions of the arrays after normalization is sketched in

Figure 3.3 that indicates the distributions of arrays became almost identical.
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Figure 3.1 Boxplots of some arrays from Asbestos dataset before normalization
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Figure 3.2 Some arrays from Asbestos dataset before normalization (trimmed)
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Figure 3.3 Some arrays from Asbestos dataset after normalization
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3.2 What do the data look like?

When a microarray is scanned, the resulting image is saved as a raw DAT file. The raw

image file then is translated to numerical values and saved into a .CEL file which is done in

the quantification step. This process is basicly the reading of the pixel intensity values and

changing them into real numbers. However, a single pixel may not represent a single

feature such as a probe or a spot. Instead, more than one pixel or a group of pixels

represent a spot. The content of a CEL file can be seen in Figure 3.4.
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Figure 3.4 CELL file content

The real values of the pixel intensities start after the [INTENSITY] line. There are also some

summary information about the intensity data. This data belong to a single array or a single
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cell line. However, in a microarray experiment there can be more than one array or cell line.
As a result of this fact, datasets from each CEL files need to be combined as a microarray

data matrix and further processes are required.

3.3 kOverA Filtering

Statistical studies over gene expression data analysis show that statistical methods for
determining differentially expressed genes are more successful when we omit low
expressed genes. Low expressed genes are most of the time indicators of no activity.
kOverA function in R by Gentleman et al. (2009) removes genes that have expression values
lower than a specified gene expression level, which is the threshold. By incorporating a
condition number, it is optional to select the least number of arrays with expression values
higher than the threshold to decide whether or not to remove the gene. For example, if the
condition number is selected as 1 and the threshold as 5, kOverA would not remove any
gene that has gene expression level above 5 on at least 1 array. If the condition number
was chosen as 2, the function will require at least 2 measurements with expression levels
higher than 5 not to remove that gene. The threshold depends on the selection of the
analyst. In this study, the threshold value was selected as 3.5 throughout the gene
expression profile. Therefore, a gene is removed from the analyses if it has an expression

value below 3.5 at every point of measurement.

3.4 Clustering

Clustering is a way of splitting the data into groups according to a predefined criteria. As
there can be many number of different clustering criteria, there are also many different
data structures, e.g. longitudinal, cross-sectional, etc.. Clustering is one of the major
solutions to dimension reduction problem. This study required clustering in order to reduce
the dimension of the data for further statistical analyses. One other main reason is that
grouping the similar probesets help biological interpretation of the results. Scientists would
like to identify genes or groups of genes that show similar behaviour under similar

conditions.

The probe sets which are the subjects in our study were grouped together according to
both their gene expression levels and gene expression profiles. All of the measurements
from each probe set were treated as a vector of observations and were grouped in the

same cluster. Therefore, there is no chance that any two measurements from the same
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probe set belong to different clusters. Genes for which the expression levels over time are
close to each other have been grouped as a first step. Then, within these groups the gene
expression profiles over time are examined. Genes, whose expression profiles sketch a very
similar pattern over time are regrouped. Therefore, the grouping procedure is a two step

process.

There are two very well known data partitioning methods, namely supervised learning and
unsupervised learning. Supervised learning helps to assign objects to predefined groups,
also referred as classification, whereas unsupervised learning help to assign the groups to
the objects, also referred as clustering. Unsupervised learning bases the determination of

the groups on the data.

Genes (or probe sets as their representatives) that have similar gene expression profiles
over time are to be grouped for a better understanding and statistical purposes. However,
there is no predefined groups or group categories that we can place the probe sets into.
Therefore, grouping must be done due to the behaviour of the probe sets. This fact makes
the context of this study take place in the unsupervised learning part of above methods,

namely clustering.

Furthermore, clustering methods are also mainly grouped into two major categories such
as partitioning methods and hierarchical methods. Partitioning methods require the pre-
determination of the number of clusters. On the other hand, hierarchical methods require
the pre-determination of a clustering criterion and the number of clusters are the count of

the clusters satisfying that criterion (Dudoit & Gentleman, 2002).

3.4.1 K-means Clustering

K-means clustering is used to cluster observations according to their magnitudes. At the
end of a k-means cluster analysis a researcher should expect to obtain clusters, in each of
which observations have relatively similar values. K-means clustering is an unsupervised
learning method and therefore, it does not require the clusters predefined. However, it
requires a prior knowledge, or at least, a prior idea about the number and centers of the
clusters. Namely initial clusters must be defined in order to be able to obtain the final
clusters. This is the main drawback of this method. On the other hand, final clusters
obtained by k-means don’t have any hierarchy amongst them. K-means is a partitioning

method in clustering.
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k-means algorithm tries to minimize the sum of squared distances between a cluster center
and the observations in that cluster. This is called minimizing the within cluster sum of

squares. (Tou & Gonzalez, 1974) describe the k-means algorithm as follows:

1. Choose k initial cluster centers (also called centroids) from the set S =
51(1)!52(1)!"-;Sk(1)'
2. Distribute the sample x4, x5,..., x, to the k clusters so as to minimize the within

cluster sum of squares:

.k n
argmin 2
S .4)
i=1 j=1
XjES;
Note that the clustering can also be applied to vectors instead of individual

observations. In that case the sum of squares measure is simply the euclidean

distance since the 2-norm is used.

3. Recalculate the k cluster centroids.

4. Repeat steps 2 and 3 until convergence.

The k-means clustering algorith is a special case of the well known Expectation —
Maximization (EM) algorithm. The step 2 above is the E step where step 3 is the M step.

Assignment of observations to the clusters in step 2 at any iteration must satisfy the criteria

xj € S;if ||xj — ,ul-” < ||xj — || foralli*=1,2,..,k (3.5)

and the new cluster centroids in the M step is calculated as

next

1
S_ (3.6)

rn IIM3

The number of final clusters is though is very controversial. It is one of the major problems
of nonparametric estimation in statistics. The hist function in R which is based on the
procedure given in Becker et al. (1988) and Venables & Ripley (2002) was used to estimate

the number of k-means clusters.
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Figure 3.5 Sample gene expression profiles from Asbestos dataset before k-means clustering

The idea behind k-means clustering is to group genes that have similar expression profiles
in terms of magnitude. An example of clustered version of Figure 3.5 is given in Figure 3.6
where two of the k-means clusters are shown. The first graph in Figure 3.6 to the left
contains measurements from cell type 1 and the second graph to the right contains
measurements from cell type 2. The panels of each graph contains measurements from
control and exposure groups respectively. The members of the first cluster are shown in
circles and the members of the second cluster are shown in filled squares. Probes are
enumarated and shown on the graph as data labels. According to the k-means clustering
results probe sets 1, 5 and 6 were clustered in the second cluster and probe sets 2, 3 and 4
were clustered in the first cluster. k-means clustering was applied in such an algorithm that
all of the measurements of a single probe set were represented in the same k-means

cluster regardless of the cell type, exposure, time point and replicates.
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Figure 3.6 Sample gene expression profiles from Asbestos dataset after k-means clustering

3.4.2 Hierarchical Clustering

Hierarchical clustering is another clustering approach in unsupervised learning. Hierarchical
clustering was applied to the k-means clustered data as the second stage of clustering in
this study. Unlike the k-means clustering, the number of final clusters is not predefined.
Instead, a criteria is defined for the similarity or the distance (dissimilarity) between the
members of each cluster. Besides, a distance measure between cluster centroids, so called
linkage method, is also used to distinguish and reflect the shape of the clusters. The more
members satisfy the similarity criteria and join into a cluster, the less the number of

clusters in general.

There is a tree-like hierarchy between the clusters as a result of the fact that items
satisfying a similarity criteria group into the same cluster. This hierarchical structure can be
formed by either divisive methods, so called top-down methods, or agglomerative

methods, so called bottom-up methods. Both methods are summarized below:
3.4.2.1 Divisive (top-down) algorithm

1. Select a similarity measure within clusters and between clusters (linkage method).

Define a threshold (criteria for similarity) for within cluster similarity measure.
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2. Start with a single cluster and assign all items into this cluster.

3. Continue splitting clusters until every cluster satisfies the criteria in step 1.

Sustaining and tracking the main structure of the data is an advantage for this method. On
the other hand, considering all the possible divisions of the groups is a computational

disadvantage. An illustration for divisive algorithm can be found in Figure 3.7.

4 Iteml, ltem2, Item3, ...
Agglomerative \ Divisive
Iteml, [tem2 Item3, ...
Clustering / \ / Clustering
Iteml Item?2 Item3

Figure 3.7 lllustration of divisive and agglomerative clustering

3.4.2.2 Agglomerative (bottom-up) algorithm

1. Select a similarity measure within clusters and between clusters (linkage method).
Define a threshold (criteria for similarity) for within cluster similarity measure.

2. Start with as many clusters as the number of items (such that every single item is a
single cluster).

3. Continue amalgamating clusters until every cluster satisfies the criteria in step 1.

Dendrograms are graphs that are used to illustrate the hierarchical clusters. A sample
dendrogram is given in Figure 3.8. Items that have smaller distance values are grouped in
the same cluster (e.g. Probe_2 and Probe_27). The grouping depends on the cutoff value

for the dendrogram tree. More detail on this will be given in section 3.8.

30



Dendrogram
Ward Linkage; Correlation Coefficient Distance
1,41 4
o 0,94 |
£
o]
2
[a]
0,47 4 I
0,00 T T
A e
&€ 8 e e © e e e S <8

Figure 3.8 Dendrogram of clusters with Pearson correlation distance using Ward’s linkage

3.4.2.3 Distance (Dissimilarity) Metrics For Vectors in a Cluster

Distance is a measure of how far two items are. Items can be points or vectors. There is a
very close relationship between the distance and similarity. As the distance between two
items decrease, their similarity increase. If the distance between the ith and the jth items is

d;; and the largest d;j is dpqy for all (i,j) then the similarity can be defined as

s;j = 100(1 - ddl). There can be found different measures for different purposes in the
max

literature. Most commonly used ones are Manhattan (also known as City-Block Distance, L1
Norm), Euclidean (also known as L2 Norm), Mahalanobis, Pearson correlation, Spearman
rank correlation and Absolute or squared correlation. These distance metrics for two

vectors X = (x4, Xy, ..., xp ) and Y = (yy, Vs, ..., ¥, ) are defined as follows.

Manhattan distance:

n
d=>lx;— i 37)
i=1
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Euclidean distance:

d= (3.8)
Mahalanobis distance:
d=J/X-Y)TE"1(X-Y) (3.9)
where X is the variance-covariance matrix of X and Y.
Spearman Rank Correlation distance; d = 1 — ryy where
n f— f—
iy Yt (e = D)o —¥)
Xy — 2 5 (3.10)
n _ _
\/Zi=1(x(i) -%) (vo — )
with centered sample moments and x(;y and y(; being ranks.
Absolute or squared correlation:
d=1—|ryy| or d=1-1% (3.11)

Pearson correlation was used as the distance metric in this study because it is the most
suitable method to distinguish between expression profiles over time. Ernst et al., (2005)
suggested the use of correlation distance as it has certain advantages for clustering similar
gene expression profiles. Moreover, Eisen et al., (1998) pointed the correlation coefficient

as a very successful measure for clustering purposes.
3.4.2.4 Pearson Correlation Distance

Pearson correlation is a commonly used coefficient that measures the strength of the linear
relationship between two variables. It is the standardized covariance between two
variables. The correlation distance between two vectors X' = [xq,x5,..,X,] and

Y' = [y1, V2, .., Yu] is as follows:
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Yi (=D i=y) :
dyy =1 —1xy where Tyy = s Yy with centered sample moments.

\/z?ﬂ(xi—f)zcyi—w

Please, note that the correlation can be estimated without centering the moments, i.e., by
removing the sample mean terms from the equation. In this case, it is called uncentered

correlation (also known as angular separation, cosine angle) distance.

3.4.2.5 Distance Between Clusters

As the items are grouped into the clusters according to their similarities, hierarchical
algorithms must decide how to split or combine the clusters. This is done by measuring the

cluster distance.

3.4.2.6 Cluster centroid

A cluster centroid is the center or the midpoint of a cluster. If there is more than one vector
in a cluster, the cluster centroid is the mean of the means of those vectors. If there is
another location measure like median for vector representations, then centroid can be
calculated by using the median as well. Different applications are possible and an

illustration of distance between clusters and cluster centroid is given in Figure 3.9.

For a given cluster, the average of the distances between observations and the centroid is
the average distance from the centroid. Likewise, the maximum of these distances is the

maximum distance from the centroid.

AY

Cluster centroid

Cluster 1

Cluster 2

V¥ x

Figure 3.9 lllustration of distance between clusters and cluster centroids
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3.4.2.7 Linkage methods

A proper linkage method should be used in order to define how the distance between two
clusters will be determined. Most widely used methods are Single, Average, Centroid,
Complete, Median, McQuitty's and Ward's linkages. Ward's linkage was used in this study

to link the clusters as it tends to minimize within cluster sum of squares.

Ward’s distance between two vectors is defined as follows.

d= zn:(xi - %)%+ zn:()’i - )%= i(zi - z)? (3.12)
i=1 i=1 i=1

where z; belong to the combined dataset.

This way the method provides similar profiles grouped in the same cluster. The downside of
this method is that it is very sensitive to the outliers. However, this downside is an
advantage in this study as it is much preferable. Because, any perturbed measure can be an

indication of supressed or overexpressed gene in the given time.

3.5 Mixed Effects Models

Longitudinal data occurs when repeated measurements are observed from the same
subject over time. In other words, it is used to model and investigate the change of a
feature which is measured repeatedly from subjects in the course of time. Especially in
medical studies, the feature that is subject to measurement can be blood pressure, lung
volume, cholesterol level, or serum glucose. Likewise in microarray experiments gene
expression level is a characteristic that can be measured over time. Each subject can be
measured repeatedly at successive times in experimental studies where levels of the
factors are controlled by the experimenter. Even if some factors are controlled by the
experimenter, there are many uncontrollable factors that affect the measurement
variation. The resulting data structure cannot be easily modelled and inferred as there must

be some assumptions and restrictions on the covariance matrix.

In the mixed effects models, the distribution of the measurements from every subject is
assumed to be identical with varying stochastic parameters. The distribution of the
measurements constitutes a stage and the distribution of the parameters is another stage
on the mixed effects analyses. Therefore, researchers must account for a multivariate

distribution combining together repeated measures from individuals as well as the random
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parameters. Laird & Ware, (1982) stated that the marginal distribution of the repeated
measurements from subjects is multivariate normal with a special covariance matrix where
the linear regression model is fitted for each subject that are conditional on subjects’
individual parameters. EM algorithm or Bayesian methods are widely used to estimate such
a model that combines random parameters as well as random regression coefficients. One
main advantage of this approach is that it doesn’t require balanced designs. In other words,
approach can also be used when the number of replications from each subjects are not
necessarily the same. Laird & Ware, (1982) were influenced from the ideas of Harville,
(1977) and they defined the statistical hierarchical model as in Equation (3.13). Hierarchical
name describes the two stage of the estimation where the first stage is the estimation of
the population parameters, individual effects and within-subject variation, and the second

stage is the between subject variation.
General form for the mixed model employed for this study is as follows:

Let B denote a p X 1 vector of unknown population parameters and X; be a knownn; X p
design matrix. Let b; denote a k X 1 vector of unknown individual effects and Z; a known
n; X k design matrix. Usually, Z; is taken as a subset of X; and the following model is

proposed:

Level 1: For each individual unit, i (individual units or namely subjects in applications of this

study are the clusters containing probe sets that have similar gene expression profiles),

Yi =X,-B+Zib,-+e,-, (313)

where e; is distributed as multivariate normal with mean vector 0 and n; X n; positive
definite covariance matrix 62A;. That is shown as N(0,52A;). A; depends on i because it
is n; dimensional, however, the parameters in A; do not depend on i (independent from
subject) and A; is taken as identity matrix in general. At this level B and b; are considered
fixed and e; are assumed to be independent. A representation of this model was given by

Lindstrom and Bates (1988) as:

yilbi ~ N(Xlﬁ + Zibi ,O'ZAi) (314)

where i =1,2,...,C represents each subject and C is the total number of subjects

(clusters).
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Level 2: The b; are distributed as N(0,02D), independently of each other and of the e;
where 02D is a positive-definite covariance matrix. The population parameters, B are
treated as fixed effects. Therefore, the marginal distributions of y; are independent
multivariate normal with mean X;f and covariance matrix X; = az(Ai +Z,DZ7 ) The

structure of the data in matrix form is as follows:

-zl )X(1 gl 21 21 0 D 0
y= :Zr X = :Zr ﬁ: :2’ b= :2' zz[ ’ D = A
: : : : 0 X
[ Yc Xc ﬂp b ¢ 0 D
Zy; 0
Z=| -
0 Z

where y; are the response vectors, X; are the fixed effect design matrix, 8; are the fixed
effect parameters, Z; are the random effect design matrix, b; are the random effect
parameters, X; are the covariance matrices, D are the covariance matrix components for

every ith subject.

Therefore, the entire model can be written as y|b~ N(XB + Zb, 6?A) where
b~N(O,aZB) and the marginal distribution of y is y~N(XB,X) , where X =

o?(A+ ZBZT) = o?V.

The computational part of the applications for fitting mixed effects model to the microarray
gene expression data uses the structure above. The general framework of Lindstrom &
Bates, (1988) and the model formulation that is described in Laird & Ware, (1982) are
theoretical bases. The variance-covariance parametrizations are given in Pinheiro, (1996).
These references belong to R nlme library which is the software package used throughout

the calculations (Pinheiro et al., 2011).

3.5.1 Estimation

The computation and the estimation of the parameters in a linear mixed effects model is
very intensive. The ordinary least squares estimates are not a plausible alternative as they
are biased although they are very straightforward to handle. The normalization procedures
before the gene expression analyses prepare a very applicable basis to the analyses. On the
other hand, the hierarchical complexity and the number of parameters to estimate in the

model can be described in terms of conditional likelihood functions.
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Computational advances in solving such complex models allow us to handle high
dimensional data. There are different methods to maximize the likelihood function. Every
method has its own estimation procedure and standard errors of the estimates. The
computational stages of solving a linear mixed effects model is generally split into three
parts: estimation of the fixed effects (i.e. B), estimation of random effects (i.e. b;), and
estimation of variance parameters (i.e. A;, D that are variance components or covariance

terms).

3.5.2 Estimation of the Fixed and Mixed Effects

We can fit the mixed effects model by maximizing the likelihood function which is
conditional on the data. In other words, the likelihood function provides the information on
how likely the model parameters are given the data and it is defined by using the density

function of the observations.

In the classical approach where measurements are independent of each other, the
likelihood function is simply the product of density functions of every individual
observation. However, in a mixed model setting, measurements are not assumed to be
independent of each other and hence the likelihood function cannot be the product of
individual densities. The likelihood is the multivariate distribution of the measurements. It
is the multivariate normal distribution of y incorporating all the variance parameters and
the fixed effects. The variance parameters here cover all the parameters to be estimated in
D and A. As the expected value of the random effects is 0 vector (recall that the b; are
distributed as N(0, 2D)), automatically the expected value reduces to X8 with covariance
matrix X = 02(A+ZBZT). The regular likelihood function based on the multivariate

normal density function is then

exp [—%(y—Xﬁ)Tz'l(y—Xﬁ)] (3.15)
= (2m)(1/2n|z|1/2

and therefore, the log-likelihood can be written as

log(L) = ~5nlog(2m) ~ 5 log|z] + (y ~ XB)'E ™y — X)) (3.16)

The above likelihood can be used for the estimation of the model parameters. Partial
derivatives of the likelihood function yield the normal equations and hence the maximum

likelihood (ML) estimators. However, one downside of this technique is that the variance
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parameter estimates tend to have downward bias especially for small samples ((Lindstrom
& Bates, 1988); (Brown & Prescott, 2006)). The bias is simply caused by the nature of the
maximum likelihood method since it does not take into account the loss of degrees of

freedom for the estimation of fixed effect coefficients (i.e. ).

In order to correct the downward bias, Restricted Maximum Likelihood (REML) (sometimes
referred as Residual Maximum Likelihood Method) is proposed by Patterson & Thompson,
(1971). The method simply eliminates the B parameter from the log-likelihood. As a result,
the log-likelihood function is a function of variance component parameters. The likelihood
function is obtained in terms of the residual terms, that are (y — X), as it is used in the
above likelihood equation. There is a slight difference between a regular likelihood
approach and REML in the way the residuals are defined. Clearly, residual term for REML,
(y — XB), does not contain the random effects regressor Zb and therefore, it is not
(y — XB — Zb). Excluding the random coefficient term from the residual definition is not

erroneous since the residuals contain all sources of the random variation.

In linear regression, estimation space is orthogonal to the residuals and therefore, it can be
shown that (y — Xﬁ) and ﬁ are independent ((Diggle et al., 1994), Section 4.5). This
provides us that the joint likelihood for B and the variance parameters, 8 = {c?, A, D}, can

be written as the product of the likelihoods based on (y — XB) and B8 as follows:

L(6,B1y) = L(6]y - XB)L(BIB. 6) (3.17)

thus rearranging the terms yields the likelihood function of the variance parameters, 0,

given the residuals as

. L©,Bly)

L(6ly — XB) = LBIE.9) (3.18)

where we already have the numerator of the above ratio as in Equation (3.17). For the
denominator, we need the ML estimate of the B. This is very straightforward since the log-

likelihood can be differentiated with respect to # and then equated to 0.

X'z Y (y-XB)=0 (3.19)

and rearrangement of above equation gives the fixed effects estimate as:
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B= (XTZ_1X)_1XTZ‘1y (3.20)

and the variance of 8 is

var(B) = (XTZ71X) ' XTE L var(y) T 1X(XTz 1x) "

var(B) = (X"z1x) ' XTZ 1L z-1x(xTz-1x)™ (3.21)

var(B) = (XTz"1x) "
The result assumes that X is known. However, it is almost impossible to know X and it
should be estimated. When X is estimated, it causes a downward bias in var(ﬁ’). An
unbiased estimator for the variance of B was suggested by Liang & Zeger, (1986) by using

the observed correlations between residuals which is known as the “empirical variance

estimator”.

var(B) = (X71X) " X"2 cov(y) X (XTZ1X) " 52
3.22
var(B) = (XTE1X) X" (y - XB)(y - XB) TX(XTE1X)"
Although empirical variance estimator reduces the bias for small samples, Long & Ervin,

(2000) stated that it causes a lack of modeled covariance by reflecting the observed

covariance in the data.

_ -1
B has a multivariate normal distribution with mean B and variance (XT271X) . Hence

the likelihood in the denominator of Equation (3.18) can be written as

exp [—%(ﬁ —B) X"z X(B - B)| (3.23)
|XTE-1x]1/2

L(B|B. )

Dividing the numerator by the denominator in Equation (3.18) returns the restricted

likelihood equation

exp [_%(y_xﬁ)Tz—l(y—Xﬁ)] (3.24)
|XTZ_1X|1/2|Z|1/2

L(6]y — XB) x
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and the restricted log-likelihood is obtained as

log[L(6]y — XB)] = K —3 [log|Z] — log|X"E™2X| ™" + (¥ - XB)"E "' (y - XB)|

(3.25)

The restricted log-likelihood does not contain the parameters @ and f as if they were

integrated out. It is why this function can be called the marginal likelihood.

The estimators for the random effects require the likelihood function of parameters B8, b

and @ which we can define as follows:

L(B,b,8|y) = L(B,c2,A|0,b) L(c%, D|b) (3.26)

where (a2, A) and (02, D) are the variance components for y|b and b respectively. We can
obtain the following likelihood function using the multvariate normal distributions for y|b

and b.

exp |~ 5 (v — XB — Zb)' (M) (y ~ XB — Zb) — 5 b"(°D) ' b]
L(B,b,0ly) «

|o2A|1/2 |023|l/2

(3.27)
and the log-likelihood is obtained as
1[loglo®Al + (y — XB — Zb)" (o*A)"'(y — XB — Zb)
log[L(B,b,6 =—= - - +K
9ILB. b, 61y)] 2 +log|a®D| + b"(c?D) ‘b
(3.28)

Differentiation of above log-likelihood with respect to b and then setting it equal to zero

provides the b.

b= (ZT(UZA)_lz + (azﬁ)_l)_1 YACR VIR CED (i)
(3.29)
b=02DZ"E"1(y — XPB)
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and the variance of b can be found as follows:

var(b) = 0?DZ"L7'Zo?D — 0?DZ"E T X(X"L71X)"1X"2"1Zo?D (3.30)

Equation (3.17) through Equation (3.30) were adopted from Brown & Prescott (2006). They
also point that there is a shrinkage in the estimator compared to what it would be if it were
fixed. Again in here, ¥ is assumed to be known and needs to be estimated when it is
unknown. Estimate of X has a slight downward bias since it is sample based. Bayesian

approach can be used to get rid of the bias that is introduced by the nature of ML method.

3.5.3 Estimation of the Variance Parameters

The estimation of the variance parameters are not as straightforward as the fixed and
random effect coefficients because the derivative of the log-likelihood function for the
variance parameters is not linear. Therefore, the solution of the derivatives require
numerical methods. The literature presents many solutions to the estimation of the
variance components of the mixed models including Maximum Likelihood (ML) and
Restricted Maximum Likelihood (REML) utilizing iterative numerical methods or
Expectation-Maximization (EM) algorithm. The EM algorithm which is utilized in this thesis
for estimating the variance components is given by Laird & Ware (1982). The algorithm is

described as follows.

The closed form of the ML estimates of the components of @ can be found based on the

quadratic forms in b; and e;. Therefore we can easily obtain the following equations.

C Cc Cc
=Yy n=ulyn B3
i=1 i=1 i=1

and

Cc
D= C‘lzbibiT —t,/C (3.32)
i=1

The t; and the %k(k + 1) components of t, therefore are the sufficient statistics for 8

where k = Rank(D).
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The estimates of the sufficient statistics, t; and t,, can be calculated as follows:

C
t,=E ZeiTei |yi'ﬁ'§]
i=1
c (3.33)
= > (el e+ tr(var{eily, 5.6})]
i=1
and
Cc
b, =F|) bib! mﬁﬁ]
i=1
. (3.34)
= E[bibf + var{b;|y; B, 6}]
i=1
where
éi = E[ei|yi,ﬁ,§] =Y _XLB _ZiBi (335)

A preliminary estimate of 8 and thus B can be used to start the iterations between
Equation (3.33) and Equation (3.34) which is defined as the “E” (Expectation) step and the
iterations between Equation (3.31) and Equation (3.32) which is defined as the “M”

(Maximization) step until convergence. At the time of convergence, 8 and b are also

obtained.

There are also various applications of generalized least squares estimation available.

Bayesian alternatives to frequentist approach to the problem are also available.

Brown & Prescott, (2006) described the implicit forms of the Newton-Raphson iterative
solution as well as the iterative generalized least squares estimation that is based on the
full residual likelihood. They also presented posterior densities of the parameters for
Bayesian framework approach. The work by Laird & Ware, (1982) is extensively used for
applications especially in software packages. They offered ML and REML methods for
estimating the variance components when the covariance matrix is unknown. As the
solutions for both methods are not explicit for variance components they described how
EM algorithm was implemented. The computations throughout this study was done on R
software platform and its nime package that utilizes the procedures mainly in Laird & Ware,
(1982), Lindstrom & Bates, (1988) and Dempster et al., (1981). Computational details of the
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EM algorithm applied to the mixed models discussed will not be covered here as they are
too complex and out of interest. One important additional point that should be made here
is that ML estimates create a bias in the estimates of random effects because the method
does not take the loss of degrees of freedom in estimating the fixed effects. Usage of REML
is required to overcome this drawback. Especially for small sample sizes REML has less bias

outperforming ML.

3.6 The Reasons to Use Mixed Models

In the context of this study, the complicated structure of the data requires a powerful and
comprehensive model for a detailed statistical inference. Common regression models lack
handling random coefficients together with fixed effects, subjectwise analysis, time trend
fitting and many other requirements. Especially the need for taking the correlation
between measurements or consecutive time points into consideration is one of the most
compelling part of the analyses. Factors that affect the inference on the results are based
highly on the data. Some common advantages that favors the implementation of the mixed

models are very well summarized and itemized in Brown & Prescott, (2006) as follows:

e Incorporating the covariance between measurements can be done with mixed
models, and it improves the fitting appropriateness of the fixed effects estimates
and standard errors.

¢ Handling repeated measures, unbalanced data and missing values is available via
mixed models.

e If the data of interest has hierarchical levels with many factors such as cell type,
treatment, short time series and the clusters that contain the probe sets with
similar expression profiles in this study, mixed models produce more appropriate
results. For example, cell type effects are allowed to vary randomly across
treatment and control groups and across different time points.

e Fitting the random effects together with the fixed effects produce more unbiased
results compared to when they are fit only as fixed effects. Existence of the random
effects compensates the shrinkage of the fixed effects towards to the mean value.
This also helps to avoid any over and under estimation of parameter estimates that

occur by chance.

In addition to above, mixed models provide a great flexibility whenever additional factors

or terms such as covariates or categorical factors are to be added to the model. They can
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model data structure very well. Sometimes, because of the nature of the experiment,

factors must be incorporated to the model as random factors which mixed models allow.

As the whole data can be analyzed and common means can be calculated, subjectwise
(subject-specific in some sources) inference is available. One fascinating feature of mixed
models is that they can separately estimate the fixed and the random effect slopes of an

individual's change over a longitudinal period as well as its group-level mean slope.

Moreover, Baayen et al., (2008) summarized the advantages of the mixed effects modeling

as follows:

Mixed-effects can handle covariates successfully even if they do not fold all the time during
the experiment. The longitudinal effects differ in some sense that sometimes the effect of a
factor can show up for a short period of time in the warm up period of the experiment.
Biologists call this effect acute effect of a treatment in medical studies. On the contrary,
sometimes the effect of a factor becomes more significant in the course of time while the
acute one lessens. That is namely the chronic effect and it is more durable. Mixed-effects

models allow us to distinguish between these two.

Especially clinical studies require careful investigation of the change in the response under
certain experimental conditions. However, the change does not occur in the same time lag
for every section of experimental period. Therefore, the classical signal-to-noise ratio
approach is useless in the sense that it cannot take into account the change in time. A clear
sketch of this situation is given in Figure 3.10 which consists of two panels. The one on top
has unevenly spaced time points where the first time lag is 6 hours from 0 hour to 6 hour
and the second time lag is 42 hours from 6 hour to 48 hours. The change in the gene
expression level in the second interval is given as h. On the bottom panel of Figure 3.10 the
sketched trend has evenly spaced time points and the change in the gene expression level
in the second interval is the same as in the upper panel as h. Even if the change in the
responses (h) for both graphs are the same, the time lags between consecutive
measurements for both models are different. An insightful analysis has to take the
continuous time effect into account that can be easily done by mixed models. A random
slope parameter for time effect was used in this study to handle the change in gene

expression level over unevenly spaced time points.
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Figure 3.10 The same amount of change in the response in different time lags

Nevertheless the total change in the same interval in the main response is the same for
both cases, the slope of the trend is different because of the different lags. Therefore, the
time effect must be directly incorporated to the model to be able to detect the time trend.
Incorporation of the time parameter to the mixed model as a continuous covariate can
handle the situation as desired. On the contrary, some methods like Limma as the
competing alternative of LME can only handle qualitative factors and lacks incorporating
the real time effect. In the bottom line, mixed effects models are useful for modeling

unevenly spaced time trends.

Mixed-effects models are able to handle many kinds of longitudinal effects
straightforwardly into the statistical model and do not require prior averaging (Baayen et
al., 2008). In addition, experimental conditions prior to the measurements can also be
incorporated to the model and the analyses. Especially, qualitative properties of initial trials

should be under statistical control (Baayen et al., 2008).

3.7 Data Structure

A representative structure of the data set that is subject to this study can be seen in Figure

3.11. The notation, e.g. y,"1qs, Will be introduced in the next section.
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Figure 3.11 An example of the structure of short time series microarray data with replicates
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The structure of the data represented in Figure 3.11 shows that the first factor is the cell
type. Given the cell type, a measurement can be exposed to the treatment or be the
control group which is the second factor namely the exposure. Given the cell type and the
exposure a measurement or its replicates can be taken over unevenly spaced continuous
time points that is the third factor. At the bottom of the structure there are probe sets that

are grouped into clusters and also referred as subjects in this study.

3.8 The Model

The model proposed in this study to detect differentially expressed short time series gene

clusters over time is as in Equation (3.36) below.

A-1
Jtm (k) At (k
v = (B + bo) + (By + byl + Z(ﬁm + baai)la + (Bs + byt () + &5 im0
a=1
(3.36)
where

I = { 1if h=1(if treatment)}
=1 0otherwise (if control)

I, = {1 if cell lir.le a}
0 otherwise

e (i=1,2,..,C represents each cluster where C is the total number of clusters.

e p=12,..,N stands for probe sets where there are N probe sets.

e j=1,2,..,n, stands for replicates where there are n; replicates in the ¢
timepoint.

e a=1,2,..,A— 1stands for cell types where there are A cell types.

e h = 0 for control groups, and h = 1 for treatment groups.

e m=1,2,.., M stands for the model to be fitted to the data at consecutive couples
of time points (e.g. m=1 for the model fitted to the data in the first time interval,
m=2 for the model fitted to the data in the second time interval, and so on).
Therefore, there are M time intervals.

e k = 1,2 stands for the order of the timepoint in a two-timepoint interval (e.g. k=2

indicates 6h at 1h — 6h period).
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e t,,(k)isthe regressor variable (the timepoint value) for m™ model and k™ time
(e.g. t1(2) = 1,0r t3(1) = 6 where timepoints are {0, 1, 6, 24, 48, 168}
respectively).

o o, P1, P24 and B5 are the fixed effect coefficients that are same for all clusters.

e by, by, bygi and bs; are random effect coefficients that is specific to each of C

clusters and A treatments.

ahtn(2) _ yahtim+n)(1) 2,0,t3(2) _ 2,0,t4(1) _ y,2,0,24
* Yipi TV, » g Yy =Ygy T =Y
ot (k .
. g‘ilpjm( )~N(O, o%) are the random noises.

The parameters in Equation (3.36) were estimated separately for each time interval for
short time series as if the time series were consisted of only two time points. For example,
if the short time series is consisted of 5 time points, the model is fitted for each of the 4

time intervals separately.

There are two main points on the response variable Y. First one is that it is in log, scale in
all the analyses throughout the study. log, transformation is a common approach in
preprocessing of microarray data for normalizing the expression values and also for

equalizing their variances for modeling and testing purposes.

The second point is that the change in the gene expression level for a specific gene or a
probe set corresponds to a fold change, since it is measured in comparison to a reference
group. Biologists also prefer to talk in terms of fold change during analyses. It is also more
convenient for a better understanding. Let Y; and Y, be raw gene expression values of the

same gene measured on two different states. The fold change from state 1 to state 2,
. Y. . .
namely FC;,, can be written as FCy; = Y—Z Hence, taking the log in base 2 returns the
1

difference of the two as the fold change in log, scale as in Equation (3.37).

FCi; =log, Y, —log, ¥y

, , (3.37)
=L -N

This fact will be based upon during the simulations explained in the next chapter.
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3.9 Replication

Likewise almost all of the statistical analyses, replication is a very important aspect also for
design and analysis of microarray experiments. Yang & Speed, (2003) describes the three
types of replicates that are most common in microarray experiments. The first one is the
biological replicate where mRNA samples for microarray are collected from different
experimental units (e.g. multiple cell lines, multiple biopsies, multiple patients, etc). The
purpose of the biological replicate is to control the biological variability. The second one is
the technical replicate where mRNA samples for microarray are collected from the same
experimental unit but hybridized (and accordingly measured) on different microarrays.
Technical replicate is done to control the technical variability within an experiment (e.g.
array to array variation, reagent variation, dye incorporation, etc.). The third one is the
within-array replicate where the same probes of an experimental unit are spotted and the

same microarray are used for hybridization and analyses.

Tai & Speed, (2005) stated that replication is useful for detecting the change in the genes
that happen in a limited time. They also suggested the biological replicate as the most
preferable replication type because it makes the inference more convenient for larger
populations rather than that of the experimental unit. Although they recommended at least
three biological replicates per time point, the circumstances that the experiment is
designed may not allow to do so at every analysis. Tai & Speed, (2005) also indicated that
when there are only technical replicates, the experimenter lacks of calculating the pure
error. On the other hand, the biological replicates allow calculating the variation between
replicates and incorporating it to the analyses. The analyses and the simulations in this

study was based on the biological replication as in the asbestos study (Nymark et al., 2007).
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CHAPTER 4

APPLICATION

4.1 Simulation

A simulation study has been applied considering the nature of the data structure. The
model proposed in this study is to be applicable for any short time series microarray data.
Moreover, the success of the proposed model should be comparable to previously
proposed ones in the literature. Therefore, the simulations did not depend on any
particular statistical model. Accordingly, a non-model based simulation study including as

many sources of variation as possible on the data was performed.

Nykter et al., (2006) stated that all microarray data simulation algorithms are based on a
mathematical model and it is almost impossible to simulate an exact replica of a real life
microarray data since the data are collected by the means of a measurement system. They
also provided a very complicated data simulation algorithm having claimed to incorporate
all the possible sources of variation to create a realistic data set. However they were unable
to provide the explicit algorithm. The proposed algorithm is also far from being applicable.
One important point that they make is that the “ground truth” for the start up as the initial
data should be realistic. Then the resulting simulated data is much favorable for validation
purposes. That is exactly what was done in this study as well. The asbestos data set were

used as the ground truth at the first time point of the short time series.

Wang et al. (2008) also used a non-model based simulation algorithm in their study where
they used a mixed-effects model for analyzing pathways. They generated different
scenarios where proportion of genes with treatment effect, the proportion of up-regulated

and down-regulated genes among the genes with treatment effect varied.
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There are three main sources of variation in the microarray data of interest in this study.
Cell type, exposure and time are the main effects. Every cell type was measured for
exposed and control groups. Both exposure and control groups are measured in time
course (in several timepoints so as to form a short time series). At each time point, there
are n; replicates. Figure 3.11 stands for the layout of the structure of the data. The number
of replicates at each time point, the number of cell lines and the number of time points for
each cell type may vary in applications. These kinds of variations do not create any

problems in our model.

Clustering is a part of our study and it is applied during analyses and applied to the
simulated data. Therefore, clusters were not simulated, instead they were calculated from

the simulated data in complete accordance with the real life data application.

Besides the three main effects in the model, different probe sets and random noise that is
highly observed in real life experimentation were also incorporated to the simulations. The

outline of the simulation study with steps followed are as follows:

4.1.1 Generating the Initial Data

Short time series microarray data require simulating initial data as the first time point to
start the series. In general time series data is simulated by using an autoregressive
coefficient, namely the correlation is multiplied with the current state of the data and a
reasonable amount of noise is added on top. In a similar fashion, having switched to the log

scale the use of fold change can introduce correlation in microarray data simulations.

Fold changes due to the effects on the data was incorporated to the simulations. As
explained in the previous chapter, fold change is the multiplicative amount of change in the
original scaled data if there is a significant effect of the parameters. For example; a two fold
change corrensponds to 100% increase or 50% decrease; three fold change means 200%

increase or 66.7% decrease. It can be generalized as follows:

2-fold change 3-fold change
2xX—Xx 3x—Xx

x - 2x = (x)x100:100%T X - 3x = (x)x100=200%T
X—2Xx x—3x

2% > x = (2x)><100=50%l 3x > x = (3x)x100=66.7%l

51



Representation of fold change effects to consecutive measurements in the original scale

can be given as follows:
xp =1 +dx,_,+e (4.1)

d : The fold changing effect

Xt : The value of the random variable X at state t

Xt_1 :The value of the random variable X at state t-1

€ : Random error, generally taken as N (0, 52)

Therefore, the amount of change in the data is d*100%. If d=1, then we have (1+1)=2 fold
change which is equal to 100% change or in other words the expression level is doubled.
However the above representation is not valid for the data in log, scale. Therefore, the

equation was modified as follows:

xt=xi_,+d+e¢ (4.2)

The asbestos data set were used as the representative initial data and it was analyzed. The
histogram on Figure 4.1 sketches the distribution of an array from Asbestos dataset.
Although the selected array is A549 cell line under asbestos exposure at the first hour, all
other arrays would have sketched the same distribution since their quantiles were

normalized.

5000 4

4000 4

3000 4

Frequency

2000 A T

1000 +

0 T T T 1 -

1.95 3.90 5.85 7.80 9.75 11.70 13.65
Expression

Figure 4.1 The distribution of asbestos data (Cell type:A549, asbestos exposed, observed at 1 hour)
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Actually, regardless of the environmental effects, significant differential expressions are
likely to be observed in a cell. Genes are distinct parts of the DNA sequence and different
genes are expressed to form different organic structures. As a result, although Gamma(3,2)
seems to represent the above distribution, it is still not a reasonable alternative. A careful
review of the distribution gives a clue about the modality. It is clear to state that there are
more than one locations that data centralizes. This required that the complexity of the

representing distribution must be increased.

Expectation-Maximization (EM) algorithm helped to fit a mixture of normals to the data as

follows.

3
fCopi i, 00) = 2101' g u,0) for x,u;,0; €ER and o; >0 (4.3)

=1
where g(x; u;, g;) is a normal density. R package has “mixtools” library and “normalmixEm”
function to apply the EM algorithm. The fit that is obtained by resulting mixture is much
more satisfying. The maximum likelihood estimates of the parameters from above mixture
distribution are as follows:

Table 4.1 MLE estimates of mixing proportions, location and scale parameters of Asbestos data
measured under exposure at 1 hour

. Standard
Proportions Means L.

Deviations

p; = 0.34 =234 o, = 0.27

p, =0.27 py = 2.97 o, = 0.50

p; = 0.39 i; =728 03 = 2.44

Resketching the fitted mixture of normal distributions with the parameters given in Table

4.1 yields Figure 4.2:
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Figure 4.2 Densities of estimated mixing normal distributions by EM algorithm

4.1.2 Cell Type Effect

The first main effect cell line or “cell type” has an effect on all observations regardless of
exposure, time, replicate and probe set. As a matter of fact that time series data is needed
and in a time series every other measurement is affected from a previous measurement
sequentially. If cell effect is applied at every time interval it would cause a cumulative effect
and create a bias in the mean cell effect. Therefore, in order to apply the cell effect once
and not to let it cumulate through the time steps, the fold change for cell effect was added
once to the initial data. The differential expression for the cell type factor is generated as
the contrast between different cell types. As a rule of thumb in linear models, a qualitative
factor is represented with the contrasts generated by its levels. For example, if there are
two cell types in the experiment, they are represented with only one parameter, that is the

effect of the second minus the first level, which is the reference level.

The number of cell types may vary due to the concept of the experiment. Therefore, there
may be a number of combinations for the contrasts that are possible to be observed in the
real life data. Firstly, all possible orderings of cell significances were generated. That is 34
possible orderings of significances where A is the number of cell types as stated in Equation

(3.36). An example of possible orderings when there are two cell types is given in Table 4.2.
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All possible combinations of cell type significances were ordered and were also ranked,
namely the profile ranks to be used for sampling purposes in proceeding stages of the

simulation.

Table 4.2 Possible significance orderings for two cell types

Profile Rank | Cell Type 1 | Cell Type 2

1 -1 -1

2 -1

3 -1 1

4 0 -1

5 0 0

6 0 1

7 1 -1

8 1 0

9 1 1
-1 : Cell type has a reducing effect on the gene expression level
0 : Cell type has no effect on the gene expression level
1 : Cell type has an increasing effect on the gene expression level

Secondly, a contrast table was calculated for modeling purposes. The case given in Table
4.2 can be represented by a single parameter in the model which is the contrast between
cell type 2 and cell type 1 (e.g.Bceir = Bceuiz — Bceur)- Therefore, a contrast table was

prepared as in Table 4.3.

Table 4.3 Contrast table for two cell types

Profile Rank | Cell Type 1 | Cell Type 2 | I(ceui2—ceiln)

1 -1 -1 0
2 -1 0 1
3 -1 1 1
4 0 -1 -1
5 0

6 0 1 1
7 1 -1 -1
8 1 0 -1
9 1 1 0
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In this table, I(ceii2—cenrn) is the indicator function. As a result:

-1 : Contrast parameter is significant, cell type 1 has larger effect
0 : Contrast parameter is non-significant
1 : Contrast parameter is significant, cell type 2 has larger effect

Therefore, the system is able to handle whether a specific gene or a probe set is
significantly affected by the type of the cell as well as the type of the effect such as which

cell type has larger or smaller effect.

The true cell type effects for every single probe set were randomly selected from the
contrast table that were generated for every combination due to the number of cell types
similar to Table 4.3. However, the proportion of the significant contrast parameters were
selected around 10% where 90% of the probe sets simulated have a non-significant cell
type parameter. Many real life data applications showed that on the average 10% of the
genes are differentially expressed and the rest of the genes as the majority are supressed

or not active.

4.1.3 Exposure Effect

Like the cell type, the exposure effect which means the effect of the treatment to observed
expression levels must be applied once and before the time effect. Exposure can have an
increasing effect, decreasing effect or an insignificant effect on the gene expression levels

in constrast with control genes that are not exposed to the treatment.

There assumed to be one exposure and one control group in this thesis. However, if
required, additional exposure and control groups can be incorporated to the study like the
number of cell types are two or more. The number of possible combinations for the

contrasts that are possible to be observed in the real life data is 3 as follows.

-1 : Exposure to the treatment has a reducing effect on the gene expression level
0 : Exposure to the treatment has no significant effect on the gene expression level
1 : Exposure to the treatment has an increasing effect on the gene expression level

Therefore, the system is able to handle whether a specific gene or a probe set is
significantly affected by exposure to the treatment as well as the type of the effect such as
increasing, decreasing or not changing. The exposure parameter is a natural contrast

parameter in contrast to the control group effect.
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The true exposure effects for every single probe set were randomly generated. However,
the proportion of the significant exposure parameters were selected around 10% where

90% of the probe sets simulated have a non-significant exposure parameter.

4.1.4 Time Effect

Having generated the first set of measurements for first timepoint for all probe sets, the
effect of the next timepoint can be considered and incorporated into the simulation. All the
cell type effects were applied first and then all the exposure effects were applied and then
finally the time effects were applied during the simulations. This is because of the
convenience of creation of the simulated data. For example, both control and exposure
groups in a cell must have the cell effect. Therefore, the cell effect was incorporated firstly.

Accordingly, exposure effects and time effects were introduced to the data.

The significant changes in gene expression level from the first timepoint to the second was
taken as interval effect. Basically, like the cell type and exposure effects, there are three
possible effects or namely trends for this effect. The amount of gene expression may
increase, decrease or not change during the time interval between consecutive timepoints
(see Table 4.4). Therefore, as a first action, time trends or formally gene expression profiles
need to be generated. If “T” is the number of timepoints, then, there are (T-1) intervals and
3(T-1 possible gene expression profiles. The time parameter stands as the continuous
covariate in the model and it represents the slope of the fitted line in a particular time

interval. Therefore, the slope can be as follows:

-1 : Significantly negative (decreasing gene expression level by time)
0 : Non-significantly zero (no change in the gene expression level by time)
1 : Significantly positive (increasing gene expression level by time)

An example of possible orderings is given in Table 4.4 in the case of 3 timepoints and 2 time

intervals.
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Table 4.4 Possible orderings of interval significances with 3 time points

Timepoints: tO Interval 1 t1 Interval 2 tZ
increase: +1 increase: +1
Effects: decrease: -1 decrease: -1
no change: 0 no change: 0

According to Table 4.4, all possible time profiles and corresponding profile ranks can be

tabulated as Table 4.5.

Table 4.5 All possible time (interval) significances and their profile ranks with 3 time points

PRr::::(e Interval 1 | Interval 2

1 -1 -1
2 -1

3 -1 1
4 0 -1
5 0 0
6 0 1
7 1 -1
8 1 0
9 1 1

4.1.5 The Algorithm

All possible gene expression profiles were created beforehand and a probabilistic sampling
scheme was applied in order that the simulation system creates less significant changes in

the gene expression levels over the time.

The simulation algorithm in the concept of the cell type, exposure and time parameter

effects as explained above is as follows:

1) Define the number of cell types to generate (A4) (selected as 2 and 3).
2) Define the number of probe sets to generate (N) (selected as 500 or 1000 for ease
of computation).

3) Define the number of time points to generate (T) (selected as 2, 3 and 4).
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4)

5)
6)

7)

8)
9)

Define the number of replicates per time point (n, replicates in the t" timepoint.
Although the number of replicates may differ and the model proposed in this study
can easily handle this, for the ease of simulations the number of replicates per time
point was selected constant. Another reason of selecting balanced design is that
the competing alternative procedure Limma cannot handle unbalanced designs.
Number of replicates were selected as 2 and 3).

Define the maximum number of EM iterations (selected as 100).

Define the convergence criteria for EM iterations (selected as the difference of
consecutive estimates should be less than or equal to 107>)

Define the number of simulation runs for MCMC estimation purposes (selected as
500 runs).

Define the Type | error rate (a) (selected as 0.05, 0.10, 0.20 and 0.40).

Define the fold change amount

ef fc: the amount of fold change when there is significant cell type effect

ef fr: the amount of fold change when there is significant exposure effect

ef fr: the amount of fold change when there is significant time (interval) effect
Throughout all the simulations fold change effects for significant changes were
selected as the same such as 1.5, 2 and 3 (ef f; = ef fz = ef fr). Any significantly
decreasing change resulted as the multiplication of the fold change with -1 (e.g.

—ef fr). Any insignificant change resulted as a 0 fold change.

10) Generate the contrast table of cell type parameter(s) including profile ranks and the

true significances.

11) Generate the contrast table of time parameter including profile ranks and the true

significances on every interval.

12) Sample the cell type parameter(s) significances for every single probe set by

sampling a profile rank from the below discrete distribution given in (3.24).

( 0.05
| qM—‘li for q=12,..,(M —1)
i=1
PQR=q = 09 forq=M (4.4)
0.05 4
k(ZM - Q)W for q=M +1),...,3
1=

A
where M = % being the median profile rank standing for the non-significant

profile; A is the number of cell types and Q is the profile rank when all possible
profiles were ordered in ascending order of magnitude. Therefore, proportionally

90% of the probe sets will have non-significant cell type effect. As an example,
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Table 4.6 shows all the possible profile ranks along with the cell type contrasts in a
2 cell type experiment and the selection probabilities calculated by using Equation

(4.4) for each profile to be selected.

Table 4.6 Profile ranks and their selection probabilities for two cell type case

PI;::II(e Cell Type 1 | Cell Type 2 | I ceti2—celrn) piillfaclt;i?iry
: - 1 0 0.005
: = S 2 0.010
2 - . 1 0.015
: : 1 2 0.020
- 0 0.900
= - . 1 0.020
° : ¥ 1 0.015
d : R} 0.010
: : . 0 0.005

13) Sample the exposure parameter significances for every single probe set by sampling

from the below discrete distribution given in (4.5).

0.10 forz=-1
P(Z=2z)={ 090forz=0 (4.5)
0.10 forz=1

where Z is the significance indicator. Therefore, proportionally 90% of the probe
sets will have non-significant exposure effect. In other words, 90% of the probe sets

that were exposed to the treatment will not be affected from the treatment.

14) Sample the time parameter (interval) significances for every single probe set by

sampling a profile rank from the below discrete distribution given in (4.6).

( 0.05
| qM—‘li for q=12,..,(M—-1)
i=1
PQ=q) = 09 forqg=M (4.6)

0.05 T-1)

k(ZM - Q)W for q=M +1),...,3
1=

30T~y

where M = being the median profile rank standing for the non-significant

profile; T is the number of timepoints and Q is the profile rank when all possible
profiles were ordered in ascending order of magnitude. Therefore, proportionally
90% of the probe sets will have non-significant time effect. As an example, Table

4.7 shows all the possible profile ranks along with the time (interval) significances in
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a 3 time point experiment and the selection probabilities calculated by using

Equation (4.26) for each profile to be selected.

Table 4.7 Profile ranks and their selection probabilities for time (interval) significances

Profile Interval 1 | Interval 2 Selection
Rank Probability
1 -1 -1 0.005
2 -1 0 0.010
3 -1 1 0.015
4 0 -1 0.020
5 0 0.900
6 0 1 0.020
7 1 -1 0.015
8 1 0.010
9 1 1 0.005

Table 4.7 indicates that proportionally 2% of the probe sets will be assigned profile
rank 4 and those will not have a significant time effect in the first interval where
the same probe sets will be differentially down regulated in the second time
interval.
Through the steps 12, 13 and 14, the true significances for cell type, exposure and
time parameters are generated. The data generation part starts on step 15.

15) Generate the initial set of data from the distribution given by Equation (4.3) with
parameters given on Table 4.1.

16) Repeat step 15 as many replications as required.

17) Generate data for all time points for the 1st probe set (p=1) incorporating

significance effects according to the generated true significances whether the

probe set is differentially expressed in the given interval:

At (K Mt (k=1
yiem =y @im®D Lo ff (1o p) + ef fellnp) + ef fr(mp) & (3.7)

a,h,t;;, (0)

where Vip,i

is the initial response created in step 15 when k=1 (where
k €{1,2}). e~N(0,0%) and 02=0.1. Iy, I, and Iy, are indicator functions as

follows:

—1if I(Cella—Celll) =-1
Inp =4 0if Icenny—cen,) =0 for cell type = a,probe set = p
1if I(Cella—Celll) =1
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—1if Itgxp-conty = —1
Iny =3 0if Igxp—conty =0 for exposure = h,probe set = p
1if Igxp—conty = 1

—1if Irpme = —1
Imp=1 0 l:f Itime = 0 pwhere interval = m,probe set = p
Lif Irpme =1

Repeat this step until data is generated for all time points k = 1,2, ..., K with all

replicates j = 1,2, ..., n;.

18) Repeat step 17 for all other probe setsp = 2, ..., N.

4.1.6 Exemplary Simulation Study

4.1.6.1 Example 1.
A simulation study was performed with the parameters given below:

e N =500 (Total number of probe sets)

e A =2 (Number of different cell types)

¢ n =2 (number of replicates at each time point)

o t€{l,6,24,48} are the time points

e Fold changeis 2

e The standard deviation of replicates per time point is 0.5

Probe 459 was picked up randomly, true significance table is given in Table 4.8 and the

simulated expression values for this probe set is given in Figure 4.3.

Table 4.8 True significance profile for probe set 459

Probes I celiz—celn) | Exposure | Interval 1 | Interval 2 | Interval 3
Probe_ 459 0 1 0 0 0

According to Table 4.8, there is no significant difference between cell type 2 and cell type 1
and there is no significant change by time over the intervals. Exposure has a significant
increasing effect on the expression levels. Therefore, cell type and time parameter is not

truly significant but exposure parameter is.
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Figure 4.3 Simulated expression values for probe set 459

According to Figure 4.3 which shows the simulated data for probe set 459, there are two
replicates per time point. It is clear that the mean expression level does not change across
the time points on all groups (e.g. cell type 1 and 2, control and exposure groups). On the
other hand, the exposure groups (empty circles) have a significant increasing effect on the
gene expression levels. Exposure group has an expression level average of approximately 6
whereas control group has an average expression level around 4. There is a 2-fold change

due to exposure effect.
4.1.6.2 Example 2.
A simulation study was performed with the parameters given below:

e N =500 (Total number of probe sets)

e A =2 (Number of different cell types)

e n =3 (number of replicates at each time point)

e t €{1,6,24}are the time points

e Fold changeis 2

e The standard deviation of replicates per time pointis 0.1
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Probe 151 was picked up randomly, true significance table is given in Table 4.9 and the

simulated expression values for this probe set is given in Figure 4.4.

Table 4.9 True significance profile for probe set 151

Probes I (cel12—cetin) | Exposure | Interval 1 | Interval 2
Probe 151 -1 0 1 -1

According to Table 4.9, the difference between cell type 2 and cell type 1 is significant and
change by time over the intervals are also significant (e.g. significant increase in the gene
expression level at first interval and significant decrease in the gene expression level at
second interval). Exposure does not have a significant effect on the expression levels.
Therefore, simulated significance profile indicates that cell type and time parameters are

significant but exposure parameter is not.
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Figure 4.4 Simulated expression values for probe set 149

According to Figure 4.4 which shows the simulated data for probe set 149, there are three
replicates per time point. Even though the data points on the graph were jittered by 0.025
over the y axis, there are still some overlapping points because the standard deviation for

replicates was selected as 0.1. It is clear that the mean expression level increases during the
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first time interval and decreases during the second time interval. On the other hand, it is
clear that cell type 2 (empty circles) have significantly lower gene expression levels.
Exposure on the other hand does not seem to have a significant effect on gene expression

levels.

4.2 Essentials of the Simulation Study

Applications through the proposed methodology was realized in two stages as simulation
study and real life data modeling. Simulations was performed for comparison and
performance evaluation purposes. Real life data fitting was applied to both representative
set of 520 probe sets from asbestos data which Nymark et al., (2007) used and to the full
asbestos data which has 54,675 probe sets. The data firstly filtered by using gvalue and
kOverA functions. K-means clustering was applied to the filtered data. Every single k-means
cluster was then applied hierarchical clustering and similar gene expression profiles on each
k-means cluster were detected. Finally, different hierarchical clusters on different k-means
clusters formed the groups which are modeling units (subjects but not the experimental
units). Proposed Linear Mixed Effects (LME) model was fit on every time interval
independently for a short time series microarray data. Likewise, the competing alternative
Limma was also fitted the same way in order to have a fair comparison. The simulation
study was performed on TUBITAK ULAKBIM GRID Computer in Ankara where it took almost
two weeks to finalize all the runs with massive data. Simulations were repeated 250 times

for all combinations of below parameter settings:

e Maximum number of iterations for the LME optimization algorithm was 100
(default setting on nlme package is 50).

e Maximum number of iterations for the nlm optimization step inside the LME
optimization was 100 (default is 50).

e Number of iterations for the EM algorithm used to refine the initial estimates of the
random effects variance-covariance matrix was 1000 (Default is 25. Purposefully
selected as very larger than the default number because the quality of initial
estimates affect the success of convergence).

e The tolerance value to decide convergence for iterations for both EM algorithm and
LME optimization is 107.

e The numbers of probe sets in simulated datasets were 500 and 1000. On the real

life asbestos data there are 54675 probe sets.
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e The numbers of cell types in simulated datasets were 2 and 3.

e The numbers of time points were {1, 6, 24}, {1, 6, 24, 48} and {1, 6, 24, 48, 168}

respectively. Therefore, the number of time intervals to fit the proposed model was

2, 3 and 4 respectively.

e The number of replicates per time point was selected as 2 and 3 respectively.

e The fold change value that was used for generating simulated data was 1.5, 2 and 3

respectively.

e The p-value cut-off points for significance testing were 0.05, 0.1, 0.2, 0.3 and 0.4.

Considering all the possible number of probe sets (2), number of cell types (2), number of

time points (3), number of replicates (2) and number of fold change settings (3) for the

simulations, all the possible combinations of these settings were 72. Therefore, simulations

were run on 72 different settings. On every single simulation, performance measures for

both LME and Limma methods were calculated based on the same simulated data.

Moreover, the number of subject-wise test results were reported from both methods that

match or do not match in terms of significance such as significant and non-significant. The

performance measures on the simulations were calculated upon the values from Table 4.10

as follows:

Table 4.10 Ground Truth vs. Model Results

Ground Truth
Positive | Negative | TOTAL
True False
Positive | Positive | Positive P!
TP FP
Model (TP) (FP)
result
“ False True
. Negative | Negative .
Negative (FN) (TN) N
TOTAL P N
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True Positive Rate (TPR): This measure is also known as the “sensitivity” and is equivalent
with hit rate and recall. It is the proportion of positive test results when the ground truth
are positive. It corresponds to the power of the test in hypothesis testing. It is better when

it’s close to 1, and worse when close to 0.
TPR=TP/P=TP /(TP + FN)

False Positive Rate (FPR): This measure is equivalent with fall-out. It is the proportion of
positive test results when the ground truth are negative. It corresponds to the Type | error

in hypothesis testing. It is expected to be less than or equal to the significance level.
FPR=FP/N=FP/(FP +TN)

Accuracy (ACC): Accuracy is the proportion of correctly classified test results. It is the sum
of true positives and true negatives. It is better when it’s close to 1, and worse when close

to 0.

ACC=(TP+TN)/(P+N)

Specificity (SPC): This measure is also known as the “True Negative Rate”. It measures the
ability of the test to result as negative when the ground truth is negative. It is better when

it’s close to 1, and worse when close to 0.
SPC=TN/N=TN/(FP +TN)=1-FPR

Positive Predictive Value (PPV): This measure is equivalent with precision. It is the
proportion of correct positive test results among all positive test results. It gets closer to 1
as the number of false positives lessen. Therefore, it is better when it’s close to 1, and

worse when close to 0. It depends on the number of positives in the ground truth.
PPV=TP/(TP+FP)=1-FDR

Negative Predictive Value (NPV): It is the proportion of correct negative test results among
all negative test results. It gets closer to 1 as the number of false negatives lessen.
Therefore, it is better when it’s close to 1, and worse when close to 0. It depends on the

number of negatives in the ground truth.

NPV = TN / (TN + FN)
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False Discovery Rate (FDR): It is controls the Type | error rate in a multiple hypothesis

testing environment. It is the proportion of false positives among all positive test results.
FDR=FP /(TP + FP)

F, score: F, score is a measure of a test’s accuracy that considers both precision and recall.

It is better when it’s close to 1, and worse when close to 0.

E =2 precision * recall ) PPV * TPR
L precision + recall ~ PPV + TPR

4.3 Implementation of clustering methods

In this study, a two step clustering procedure was proposed and applied to both simulated
data and to asbestos data. All probe sets were first clustered by k-means algorithm. Next,
each of the k-means clusters were clustered by hierarchical clustering. Therefore, two
independent clustering schemes were obtained successively. The final clusters were
obtained such that they contain the probe sets that have the same k-means and the
hierarchical cluster number. Resulting clusters have similar gene expression levels and
patterns over time. The procedure was formerly used by Chen et al. (2005). They concluded
that applying divisive hierarchical clustering to the k-means performs very well for similar
demands. In a noteworthy study by Moller-Levet et al. (2005) introduced a clustering
procedure which focused on clustering unevenly spaced time series gene expression data.
They defined a distance measure for short time-series, and developed a fuzzy short time-
series algorithm by utilizing the standard fuzzy c-means algorithm. The algorithm, however,

computationally very complicated, intensive and hard to understand.

The sensitivity of the two-step clustering algorithm used in this study can be adjusted by
changing the cutting level of the tree produced in hierarchical clusters in the second step.
The tree in Figure 4.5 can be cut at height 0.8 or 0.4 according to define the final number of
clusters. The height represents the distance for that special figure. The higher the height is
the less the number of final clusters. However, it is often not very easy to decide at what
point to cut the tree and create final clusters. The cutree function of R stats package by
Development Core Team (2010) uses y-axis as the distance instead of similarity. The cutree
function can calculate the heights of the dendrogram but the applicator has to decide at
what point to cut the tree. To select an optimal point to cut the tree, the heights were

sorted in ascending order of magnitude and the 5th percentile point was selected as the
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cutting point. The lower the percentile point, the less distance between probe sets in the
cluster and the similar the gene expression profiles in the final clusters. However, lowering
the cutoff point increases the number of clusters to analyze and affect the modeling part by
changing the number of subjects. To decide which quantile to select as the cutoff point for
the hierarchical clustering tree is a trade off between the number of clusters and the
similarity of gene expression profiles inside the final clusters. An illustration of this is given
in Figure 4.5 which is based on the representative set of 520 probe sets from asbestos data.
If the tree was cut at 0.4, it would return 6 clusters. On the other hand, if the tree was cut

at 0.8, it would return 4 clusters.
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Figure 4.5 Sample dendrogram illustrating cutoff points

Grouping due to gene expression level over time was done with K-Means Clustering
method (Macqueen, 1967). K-means algorithm can be utilized in R by kmeans command in
stats package. We have selected the original method of founder, MacQueen’s algorithm,
whereas Hartigan & Wong (1979), Lloyd (1982) and Forgy (1965) methods can also be
applied. Each algorithm can be tested against each other in order to compare the resulting
clusters, however it is not in the scope of this thesis. Clustering the data in regards with the

means is one of the most important and hard-to-solve problems of statistics. Because of
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the fact that distributional assumptions are very difficult to make, non-parametric and

empirical methods can be used for such purposes.

Grouping due to gene expression profiles over time was done with Hierarchical Clustering
method. In this method, the similarity measure was selected as Pearson’s correlation
coefficient and the linkage method to define the distance between two clusters was
selected as Ward’s distance. A sample of 4 probe sets is given in Figure 4.6. A clustered
version of Figure 4.6 is given in Figure 4.7. Solid lines stand for the measurements from

hierarchical cluster 1 and dashed lines for hierarchical cluster 2. Both clusters have 2 probe

sets.
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Figure 4.6 Sample probe sets from Asbestos dataset
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Figure 4.7 Sample hierarchical clusters from Asbestos dataset (with probe sets lined)

4.4 Essentials of the Asbestos Data

The asbestos full dataset has 54,675 probe sets measured at time points as in Figure 4.8. On
A549 cell type, there are 6 time points and at only 48h there is a second replicate for the
exposure group. On Beas2B cell type, there are 5 time points and at only 24h there is a
second replicate for the exposure group. There are no replicates measured for the control

group. The resulting data matrix is of 54675x22 dimension.

Cell types A549 Beas2B

Time points Oh lh  6h 24h 48h 168h Oh 1h 6h 24h 48h
Control

Exposed

Replicate of exposed

Figure 4.8 Structure of Asbestos Dataset

The design matrix that was used after filtering and clustering was of dimension 19771x22.
After applying the two-stage clustering algorithm to the asbestos data 19771 probe sets
were represented by 18771 final clusters where probe sets with similar expression profiles
are grouped in the same cluster. Among all clusters, 17903 clusters contained only one

single probe set, and accordingly, there were 779 clusters with 2 probe sets, 64 clusters
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with 3 probe sets, 15 clusters with 4 probe sets, 4 clusters with 5 probe sets, 5 clusters with
6 probe sets and finally only 1 cluster contained 8 probe sets. As the clustering methods
used in this study are iterative methods and this results differing number of final clusters.

Nevertheless, the number of final clusters does not change remarkably from time to time.

Some probe sets from k-means clusters 1 and 2 on cell type 1, control group at Oth

timepoint are given in Table 4.11.

Table 4.11 A part of LME design matrix

Probe Set Expression T(;;::L Exposure | Time | Clusters Cltlj(s“tners Clul-slfers
1553764 _a_at| 9.45053825| 1 0 0 1 1 1
1553979_at |9.027150307| 1 0 0 2 1 2
1554241 at |10.79145014| 1 0 0 3 1 3
1555758_a_at|11.07361497| 1 0 0 4 1 4
209714 _s_at |10.72810803| 1 0 0 4 1 4
1555832_s_at | 9.380775524| 1 0 0 5 1 5
1053_at 8.297427203| 1 0 0 501 2 1
203696_s_at |8.698420986| 1 0 0 501 2 1
1552257 _a_at|8.305801219| 1 0 0 502 2 2
1552287 _s_at | 7.264148058| 1 0 0 503 2 3
1552347_at |6.759981143| 1 0 0 504 2 4

For a visual representation of clustering on real data, a representative set of 520 probe sets
of the asbestos dataset which was also used in Nymark et al. (2007) was used. Four probe
sets that are 209202 s at, 218609 s _at, 230327 _at and 236296 x_ at were randomly
selected and their expression values measured at Oh, 1h, 6h, 24h, 48h and 168h were
sketched in Figure 4.9. Cell type and exposure were not indicated on the graph for the ease

of understanding.
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Figure 4.9 Expression values from randomly selected four probe sets

The k-means clustering of the selected probe sets is given in Figure 4.10. The k-means
clusters split the four probe sets into two groups according to their gene expression levels.
The first k-means cluster is composed of observations around an expression value of 8 and
the second cluster is composed of observations around an expression value of 4.5. K-means
clustering clustered the data by only using expression levels. The second stage of the
clustering is to apply hierarchical clustering to every single k-means cluster. The resulting

clusters are shown in Figure 4.11.
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Figure 4.10 K-means clustering results of randomly selected four probe sets
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Figure 4.11 Hierarchical clustering within k-means clusters of randomly selected four probe sets
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For a better understanding of cluster profiles over time, the mean expression values at each

time point were connected and are given in Figure 4.12.
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Figure 4.12 Representation of gene expression profiles of four randomly selected probe sets

LME results indicate that exposure parameter is significant at 10% type-| error level and

time parameter is significant at 20% Type-l error level for cluster 23 (e.g. probe set

209202_s_at) over the second time interval. The p-values for the exposure and time

parameters are 0.073 and 0.126 respectively. The measured and the fitted data for cell

types 1 and 2 are given in Figure 4.13 and Figure 4.14.
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Figure 4.13 Measured and fitted data for cluster 23 with significant exposure and time parameters
(cell type 1)
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Figure 4.14 Measured and fitted data for cluster 23 with significant exposure and time parameters
(cell type I1)
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The normality assumption in the model given in Section 3.8 was also tested for the majority
of the genes accross ararys, control and exposure groups. Anderson-Darling (AD) normality
test was used to test for the normality. The results indicated that the normality assumption
is valid. There are two examples of normality tests for randomly selected genes, ACADVL

and HNRNPM, in Figure 4.15 and Figure 4.16 respectively.

9 10 11 12

A543; Control AS549; Exposure 99 A549: Control
AD 0.463

! L ap P-Value 0.157
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AD 0.155
P-Vzlue 0.803
Beas2B; Control

bt r 10 =
AD 0.575

P-Value 0.083
Beas2B; Exposure
AD 0.211
P-Value 0.704

ag Beas2B; Control Beas2B; Exposure

Percent

9 10 11 12
ACADVL order statistics

Panel variables: Cell; Cont-Exp

Figure 4.15 Probability plot and normality test for ACADVL gene

AD test, failed to reject the null hypothesis that the underlying distributions are normal for
A549 control group, A549 exposure group, Beas2B control group and Beas2B exposure
group. The p-values of AD test are 0.157, 0.803, 0.063 and 0.704 respectively. Likewise,
similar results were observed also for HNRNPM gene where p-values of Ad test were 0.144,

0.671, 0.073 and 0.318 respectively.
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Figure 4.16 Probability plot and normality test for HNRNPM gene
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CHAPTER 5

FINDINGS AND RESULTS

5.1 Simulation Results

Simulations were run for both ML and REML estimation methods for LME in comparison to
Limma. Expected values of performance rates TPR, FPR, ACC, SPC, PPV, NPV, FDR and F;
score were all calculated for LME and Limma. Besides, the number and proportion of probe
sets that were found significant or non-significant by both LME and Limma for cell type,

exposure and time parameters were reported.

Simulation results make a long table since there are many parameter settings. Therefore,
only representative tables and figures will be displayed in this chapter. Full list of tables can

be found in appendix.

5.1.1 Results Based on Cell Type Parameter

Results based on REML estimation in LME and Limma results were tabulated in Table 5.1,
Table 5.2 and Table 5.3 respectively. Both results were obtained by using the same
simulated datasets that contain 500 probe sets, parameter is cell type, number of cell types

is 2, number of replicates is 2, number of time points is 3.
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Table 5.1 Simulation results based on REML estimation for LME (foldchange=1.5)

£ 3 5 28 o o s S = 8
3 < & q;) w9 & a o o ©
= E = o L oo S:, L e E < >
2 s wewg ¥ ©w T T T ¢
2 e
Q_ —
0.05 LME 0.725 0.001 0.959 0.999 0.993 0.955 0.007 0.838
' Limma 0.999 0.075 0.935 0.925 0.683 1.000 0.317 0.811
0.10 LME 0.952 0.001 0.992 0.999 0.992 0.991 0.008 0.971
' Limma 0.999 0.121 0.896 0.879 0.572 1.000 0.428 0.727
0.20 LME 0.986 0.002 0.997 0.998 0.990 0.998 0.010 0.988
' Limma 0.999 0.205 0.823 0.795 0.439 1.000 0.561 0.610
0.30 LME 0.993 0.003 0.997 0.997 0.983 0.999 0.017 0.988
' Limma 0.999 0.285 0.754 0.715 0.361 1.000 0.639 0.530
0.40 LME 0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.988
' Limma 0.999 0.366 0.684 0.634 0.305 1.000 0.695 0.467
Table 5.2 Simulation results based on REML estimation for LME (foldchange=2)
3 5
2 e s 5 O T S S = S
g < o q;') a E Q o o o o ©
] ?J ':, o) w () s 23 e E v =
> =
Q_ —
0.05 LME 0.693 0.001 0.953 0.999 0.992 0.950 0.008 0.816
' Limma 0.999 0.075 0.935 0.925 0.687 1.000 0.313 0.814
0.10 LME 0.953 0.001 0.992 0.999 0.993 0.991 0.007 0.972
' Limma 0.999 0.123 0.894 0.877 0.573 1.000 0.427 0.728
0.20 LME 0.985 0.001 0.997 0.999 0.992 0.998 0.008 0.988
' Limma 0.999 0.207 0.822 0.793 0.443 1.000 0.557 0.614
0.30 LME 0.993 0.002 0.997 0.998 0.985 0.999 0.015 0.989
' Limma 0.999 0.284 0.756 0.716 0.366 1.000 0.634 0.536
0.40 LME 0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.989
' Limma 0.999 0.367 0.685 0.633 0.309 1.000 0.691 0.472
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Table 5.3 Simulation results based on REML estimation for LME (foldchange=3)

£ 3 5 28 o o s S = 8
3 < & q;) w9 & a o o ©
= E E o = () S:, L e E < >
5 = Wwe w8 T ®w w T T ¢
> >
i =
Q_ —
0.05 LME 0.697 0.000 0.954 1.000 0.996 0.951 0.004 0.820
' Limma 1.000 0.075 0.936 0.925 0.684 1.000 0.316 0.812
0.10 LME 0.962 0.001 0.994 0.999 0.996 0.993 0.004 0.979
' Limma 1.000 0.124 0.893 0.876 0.565 1.000 0.435 0.722
0.20 LME 0.990 0.001 0.998 0.999 0.995 0.998 0.005 0.993
' Limma 1.000 0.209 0.820 0.791 0.436 1.000 0.564 0.607
0.30 LME 0.994 0.001 0.998 0.999 0.991 0.999 0.009 0.993
' Limma 1.000 0.289 0.751 0.711 0.358 1.000 0.642 0.527
0.40 LME 0.999 0.002 0.998 0.998 0.986 1.000 0.014 0.993
' Limma 1.000 0.373 0.679 0.627 0.301 1.000 0.699 0.463

Limma performed better than LME only when TPR is the main concern. Limma produced

almost perfect TPR for the given parameter settings against very high TPR levels of LME.

The difference is only noticable at 0.05 p-value cutoff level. Limma tends to produce very

small p-values for cell type parameter leading to very high FDR. Its FDR turned out to be

very high. LME is concretely superior in FDR. Both LME and Limma did not produce differing

results in different time intervals since both models were fit independently in every

interval. In order to lessen the number of figures the results given in the following tables

were based only on interval 1. However, results showing all intervals as well as the TPR,

FPR, ACC, SPC, PPV, NPV and F1 value were sketched in the appendix.

81



Panel variable: p-value-cutoff

& §
~ ~ ‘. "~
ADD PR 223 553
PR W S R S T S W W S M
0.05 0.10 0.20 Probes
ee® s8¢ 000 000(ee® ege 000 000F LD g gy
L 0.9 O 1000
- 0.8
o o %e*
. o o 0.7
— o oo
g 2 0.6
L PRI L PRI L Ty B L -
0.30 0.40 A e PR o
St 1.0 - ")‘}'Eb \.’J.\?,‘° \.1.},3% \:).’@,@
w O1{ee® #oge 000 OO0 |®#®e® @@ 000 00O
» ] ~ )
0.9 1 49 @'P
w~
0.8 4
0.7 -
B
Folconange \3,9@ \'.—“%-a \’5,‘9,5'% RIS
Replicates » S ~ ]
Prox &
23 & .\59

Figure 5.1 Expected TPR of LME for cell type parameter

TPR performance of LME become 0.95 and get close to 1 when p-value cutoff was selected

0.10 and larger. TPR became almost 1 as the cutoff value of p-value was selected 0.20 or

higher as given in Figure 5.1. As the p-value cutoff was increased, the expected false

discovery rate increased very slightly as in Figure 5.2. Considering both figures, the

optimum value for the p-value cutoff for LME was found to be 0.20. However, even for 0.40

cutoff value, expected FDR was found to be around 0.015.
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Figure 5.2 Expected FDR of LME for cell type parameter

Almost all the expected TPR values given in Figure 5.3 are equal to 1. On the other hand,

FDR values are unacceptable and increase dramatically as the p-value cutoff were increased

(Figure 5.4). The most reasonable p-value cutoff selection for Limma was 0.05. One should

note that Limma results were corrected by Benjamini-Hochberg multiple testing procedure

and multiple testing corrections lose efficiency as the number of test items increase. Both

methods performed better for higher values of foldchange as expected.

83



&

& $
~ ] » ~
2 BB B3 ARY
0.05 0.10 0.20 Brobes
°o° 000 000 000 000 ooo - 1,00000 ° 500
T °.° i 05975 [© 1000
e . 0.9 L 0.59950
L ]
L 0.99925
= [ .
g g - 0.99500
030 040 T L T ] L ) | A ) -
255 258 5288 988
I 1.00000 o OO0 - oo NI AR AR
N oo N oo 8 o " "
0.55575 - . . ® & &
* o . ¥
L
059350 ®
055925 e .
0.55%00 Lr—————++——+
Focoenze | G0.8 B0$ (B85 S0P
Rapiicates » "~ ~ "~
Prodes &S
& &
Panel variable: p-value-cutoff
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Simulation results were also compared in terms of test results from both methods. The
category axis of the graph (x-axis) in Figure 5.5, Figure 5.6 and Figure 5.7 has definitions for
a side by side comparison such as “Both Not” which means both methods did not detect
any differential expression, “Both Sig” which means both methods found the probe sets as
differentially expressed, “Limma Sig” which means LME did not detect any differential
expression but Limma did and finally “LME Sig” which means LME detected differential
expression but Limma did not. Resulting proportions by fold change (1.5, 2 and 3) are given

in Figure 5.5, Figure 5.6 and Figure 5.7 respectively for cell type parameter.

Probes = 500; Parameter = Cell Type; Foldchange = 1.5
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Figure 5.5 Significance test results of probe sets (foldchange=1.5) for cell type parameter

According to the significance test results, in the test of cell type parameter, Limma
produced very high number of significant results that were not found to be significant by
LME. However, the vice versa did not happen. This may be due to the high number of FDR
of Limma. As expected, the number of significant detected probe sets increased as the p-

value cutoff value was increased. Change in the fold change did not differ the results

significantly.
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Probes = 500; Parameter = Cell Type; Foldchange = 2.0
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Figure 5.6 Significance test results of probe sets (foldchange=2.0) for cell type parameter
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Figure 5.7 Significance test results of probe sets (foldchange=3.0) for cell type parameter



5.1.2 Results Based on Exposure Parameter

TPR results for different probe numbers, replicates and p-value cutoff values can be seen in

Figure 5.8. LME tended to produce slightly better TPR results for exposure parameter as the

number of simulated probe sets were increased from 500 to 1000. At the 0.20 significance

level, almost all the TPR values were close to 1.
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Figure 5.8 Expected TPR of LME for exposure p

arameter

TPR values must be evaluated together with the FDR values where LME definitely

outperformed Limma. No matter what the significance level was, LME produced very low

FDR values as given in Figure 5.9.

Limma also performed well for TPR as given in Figure 5.10. However, the difference came in

with the FDR values of Limma. 30% to 70% of the probe sets were falsely discovered as

significant by Limma (Figure 5.11) which is very high compared to those of LME where FDR

values changed from 0.5% to 3%.
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Figure 5.9 Expected FDR of LME for exposure parameter
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Figure 5.10 Expected TPR of Limma for exposure parameter
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Figure 5.11 Expected FDR of Limma for exposure parameter

According to the significance test results, a similar result were observed in the test of cell
type parameter. Specifically, Limma produced very high number of significant results that
were not found to be significant by LME for the exposure parameter. As expected, the
number of significant detected probe sets increased as the p-value cutoff value was
increased. Change in the fold change did not differ the results significantly. Resulting
proportions by the number of replicates and fold change are given in Figure 5.12, Figure

5.13 and Figure 5.14 for exposure parameter.
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Probes = 500; Parameter = Exposure; Foldchange = 1.5
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Figure 5.12 Significance test results of probe sets (foldchange=1.5) for exposure parameter
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Figure 5.13 Significance test results of probe sets (foldchange=2.0) for exposure parameter




Probes = 500; Parameter = Exposure; Foldchange = 3.0
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Figure 5.14 Significance test results of probe sets (foldchange=3.0) for exposure parameter

5.1.3 Results Based on Time Parameter

TPR and FDR results on time parameter for LME and Limma for different probe numbers,
replicates and p-value cutoff values can be seen in Figure 5.15 through Figure 5.18. LME
also poduced superior results for time parameter in both TPR and FDR. Time parameter is
an independent explanatory variable in the model and as explained in Chapter 3 and
especially in Figure 3.10, time lag is accounted for in LME. On the other hand, the time
parameter can only be treated as factor by Limma for which drastical decreases in TPR
values of LME were observed. For the TPR values of the time parameter, Limma could not

go over 67.5% but still produced very high FDR values (Figure 5.17 and Figure 5.18).
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Figure 5.15 Expected TPR of LME for time parameter
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Figure 5.16 Expected FDR of LME for time parameter
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Figure 5.17 Expected TPR of Limma for time parameter
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Figure 5.18 Expected FDR of Limma for time parameter
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According to the significance test results from both methods, 10% to 15% of the probe sets
returned conflicting results. Time parameter was the only parameter for which some
proportion of probe sets was found to be differentially expressed only by LME but not by
Limma which can be clearly seen in Figure 5.19, Figure 5.20 and Figure 5.21 in increasing

order of fold change from 1.5 to 3.0. The results, however, did not differ by fold change.
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Figure 5.19 Significance test results of probe sets (foldchange=1.5) for time parameter
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Probes = 500; Parameter = Time; Foldchange = 2.0
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5.2 Results on Asbestos Dataset

The significance testing results for filtered and clustered asbestos dataset (19,771 probe
sets in 18,771 clusters) were done for cell type, exposure and time parameters on 5 time
intervals (e.g. Oh-1h, 1h-6h, 6h-24h, 24h-48h and 48h-168h). Although statistical analyses
were based on clusters, the final performance measurements and comparisons were held
on probe sets for a fair evaluation. The number of significant probes from filtered asbestos
dataset at 20% significance level are given in Figure 5.22 for both LME and Limma methods.
In accordance with the simulation results, the number of probe sets detected as significant
by Limma is obviously larger than those of LME. Simulation results support that the reason
for the large number of significantly detected probe sets and high TPR values is the false
discoveries by Limma. At this point, the results of Limma are definitely incomparable to
those of LME. For example, at the first time interval, LME detected 13% of the probes that
are differentially expressed in the Beas2B cell type in comparison to A549 cell type.
However, Limma detected 62% of the probes as differentially expressed in Beas2B in

comparison to A549. The results are similar in all other time intervals.
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Figure 5.22 Proportion of probe sets found to be differentially expressed by cell type in each time

interval
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Figure 5.23 shows the proportion of the probe sets among all the significant probes that are
significant in one or more time intervals. For example, among all the significant probe sets,
31% of the probes were found to be differentially expressed in only one interval by LME.
Likewise, 22% of the probes were found to be differentially expressed in two time intervals
by LME. On the other hand, 6% of the probe sets were detected as differentially expressed
in only 1 time interval among the all probe sets that were found to be differentially
expressed by Limma. This indicates that Limma tends to find more significantly expressed
profiles on more intervals. According to Limma results, 46% of the probe sets were

differentially expressed by cell type at all 5 intervals.
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Figure 5.23 Proportion of probe sets found to be differentially expressed by cell type in one or more
intervals

There was a very interesting result sketched in Figure 5.24 that Limma was unable to detect
any probe sets as differentially expressed by the exposure in contrast with the LME’s 18%,
7%, 17%, 3% and 3% significant probe set detection in subsequent time intervals. Even
though Limma produced much larger FDRs compared to those of LME, interestingly it failed

to detect any differential gene expression due to exposure.

Another interesting result from exposure effect that can be seen in Figure 5.25 is that 63%

of the differentially expressed probe sets that were detected by LME were significant only
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in one time interval, 32% were significant on two intervals. The exposure effect therefore,

seem to be acute and its effect does not seem to last very long. Only 3% of the probe sets

were differentially expressed on all intervals. There is always a doubt towards a false

discovery though.
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Figure 5.24 Proportion of probe sets found to be differentially expressed by exposure in each time

interval
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Figure 5.25 Proportion of probe sets found to be differentially expressed by exposure in one or more
intervals

Time effect on probe sets seemed to be prominent in later intervals as it can be seen in
Figure 5.26. The proportion of probe sets that were found to be differentially expressed by
both methods due to time effect increase by time except for the last time interval. Limma
again detected larger number of significant probe sets where majority is expected to be
false discoveries. LME was able to detect around 15% of probes as differentially expressed

especially in the last three intervals.

99



49
40
28
3
15
14 13
9 9
0 0.01

Method & .2 < @ ¢ @ A ¢ @
L ¥ & ¥ & L ¥ &

& £ S <& £

Interval N 1 % ™ A

Figure 5.26 Proportion of probe sets found to be differentially expressed by time in each time
interval

Among all the probe sets that were detected as differentially expressed by either methods,
about 60% of the probe sets were found to be differentially expressed at only one time
interval, about 30% at two intervals and about 10% at three intervals. At this point, LME
and Limma returned similar detection patterns in terms of dispersion through the intervals

which can be seen in Figure 5.27.
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Figure 5.27 Proportion of probe sets found to be differentially expressed by time in one or more
intervals

In order to compare the test results for cell type produced by both methods probe by probe
yielded proportions of differentially expressed probe sets as in Figure 5.28. The category
axis of the graph (x-axis) has definitions for a side by side comparison such as “Both Not”
which means both methods did not detect any differential expression, “Both Sig” which
means both methods found the probe sets as differentially expressed, “Limma Sig” which
means LME did not detect any differential expression but Limma did and finally “LME Sig”
which means LME detected differential expression but Limma did not. The graph is fair
enough to see that Limma produced more positive test results compared to that of LME
throughout all intervals. However, simulations in this study indicated that Limma tends to
produce remarkably more false discoveries. Around 13% to 16% of the probe sets in

different intervals were found to be differentially expressed by both methods.
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Figure 5.28 A probe by probe comparison of the test results for cell type effect

In order to illustrate some testing result from the LME model, some clusters and their
significance test results are also presented. For example, Cluster 5001 contains six genes
and for the first four time intervals there is no significant gene activity detected by LME
model, but the increase in the gene expression level in the fifth interval was found to be

significant. The cluster is sketched in Figure 5.29.

Another illustration as an example result by the LME model is Cluster 14283. According to
the LME test result for this cluster, there is a significant exposure effect in the second,
fourth and fifth time interval as well as there is a significant time effect in the second and
the third intervals. For a better visualization of the exposure and time effects, the cluster is

represented in two separate graphics as in Figure 5.31 and Figure 5.32 respectively in

addition to the graph in Figure 5.30.
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Figure 5.30 Gene expression profile of Cluster 14283
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Figure 5.31 Control and exposure groups expression levels across the time intervals from Cluster
14283
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Figure 5.32 Gene expression levels across the time points from Cluster 14283

104



CHAPTER 6

CONCLUSION

This thesis includes the analysis of short course time series microarray gene expression
data. Short course time series data are observed in the course of time (where time points
may be unevenly spaced) when microarray experiments are used to study the behaviour of
genes and their expression levels are investigated. There can be more than one
observations per time point and the number of observations per time point may vary

through the series because of the nature of the experiment.

The analysis of such data has some challenges for researchers:

e Gene expressions across time points may have a dependence structure which
should not be ignored during the analyses.

e The probe measure which represents the relative expression level of an individual
gene may have more than one sampling points (replicates) over time. Therefore,
the measurements obtained over time belong to the gene creating a dependent
sequence of measurements.

e The number of time points is very few (generally less than or equal to 8) compared
to classical time series data which usually have more than 50 observations for a
convenient time series modeling. As the number of time points in the short time
series may vary, the number of replicates per time point may vary as well. The less
the number of replicates the harder to fit models because estimation of the
variance components gets harder or impossible. Sometimes, the data is unbalanced
that cause another challenge for researchers.

e Unevenly spaced time points indicate that the amount of time between
consecutive measurements is not the same across all time points. The time elapsed

after an observation may vary. This is unusual in classical time series approach.
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Short time series modelling is methodologically and computationally very extensive
and demanding. The data may contain changing number of replicates per time
point. Moreover, there may be factors such as cell type as well as treatment, one or
both of which might have more than two levels. Time as a source of variation in
microarray experiments is a continuous independent variable rather than a
qualitative factor most of the time. Biologists are very keen on finding out whether
a treatment has an acute or chronic effect on the subject of interest.

Subject-wise or gene-wise inference over the short time profile is required for
researchers which drastically increases the number of simultaneous hypothesis
tests.

As an alternative method, Limma, was found to be more appropriate for
experimental design models containin only qualitative factors rather than

continuous independent variables.

6.1 The contributions of this thesis to the literature

Proposing the use of LME method at every individual time interval of a short time
series microarray data provides modeling and testing a short time series profile and
subjectwise testing.

Comparing it with Limma the competing and most widely used alternative method,
namely Limma. It was shown through a comprehensive simulation study that
proposed methodology outperformed Limma in true positive rate, accuracy,
specificity, positive predictive value, negative predictive value, false discovery rate
and F1 value performance parameters in overall results.

Providing a detailed statistical inference for the complicated structure of the data
of interest which requires a powerful and comprehensive model to handle.
Providing subjectwise analysis, time trend fitting and many other requirements for
short time series microarray data.

Fitting the random effects together with the fixed effects produce more unbiased
results compared to when they are fit only as fixed effects. Existence of the random
effects compensates the shrinkage of the fixed effects towards to the mean value.
This also helps to avoid any over and under estimation of parameter estimates that
occur by chance. This is where Limma method fell behind and produced false

discoveries.
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Handling repeated measures, unbalanced data and missing values via LME for short
time series microarray data.

Producing more appropriate results when the data of interest has hierarchical
levels with many factors such as cell type, treatment, short time series and the
clusters that contain the probe sets with similar expression profiles.

Providing great flexibility whenever additional factors or terms such as covariates
or categorical factors are to be added to the LME model.

Detecting acute and chronic effects of a treatment via modeling the short time
series microarray gene expression profiles.

Handling the differing time lags by incorporating time as an independent variable
into the model by LME as well as testing the time change effect.

Increasing predictive capabilities and F1 value in short time series microarray gene
expression profile analysis for both factors and independent variables such as
continuous time parameter.

Proposing a two stage clustering algorithm for the detection of time series gene
expression profiles.

Proposing a real like data simulation algorithm for short time series microarray
gene expression data with differing number of replicates per time point as well as
incorporating cell type, exposure and other required effects.

Proposing a very comprehensive simulation and short time series microarray gene
expression data fitting R code. For the simulation part, the code first generates
realistic gene expression profiles. The profiles can be modified such as changing the
number of cell types, treatment groups and time points. The code then generates
realistic initial set of data by making use of a mixture normal distribution. The
parameters of the initial data can be adjusted as well. According to the profiles that
are created the code can simulate the short time series, replications in accordance
with the structure of the profile. Realistic noise and experimental factors are also
incorporated to the simulated data. For the real data fitting part, researchers who
would like to utilize the code should only rename the column names of their
dataset and run the code. On the overall, the code is very user friendly, easy to use
and allows customizations. The code is free to access and can be downloaded from

www.metu.edu.tr/~oilk/LME code.zip.
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According to the results and the findings of overall analyses, two stage clustering of the
microarray time series data and then the application of LME in each time interval of probe
sets are very plausible alternatives for subjectwise testing in short time series microarray
data. The methodology proposed in this study was also compared to the competing and
most widely used alternative method, namely Limma. It was shown through a
comprehensive simulation study that proposed methodology outperformed Limma in true
positive rate, accuracy, specificity, positive predictive value, negative predictive value, false
discovery rate and F1 value performance parameters in overall results. Besides, other
outperforming properties of the proposed methodology along with LME can be itemized as

follows:

e The complicated structure of the data of interest requires a powerful and
comprehensive model to handle for a detailed statistical inference. Common
regression models lack handling random coefficients together with fixed effects,
subjectwise analysis, time trend fitting and many other requirements.

e When the data of interest has hierarchical levels with many factors such as cell
type, treatment, short time series and the clusters that contain the probe sets with
similar expression profiles, LME produce more appropriate results.

e Fitting the random effects together with the fixed effects produce more unbiased
results compared to when they are fit only as fixed effects. Existence of the random
effects compensates the shrinkage of the fixed effects towards to the mean value.
This also helps to avoid any over and under estimation of parameter estimates that
occur by chance. This is where Limma method fell behind and produced false
discoveries.

e Differing time lags can be easily handled by incorporating time as an independent
variable into the model by LME.

e Predictive capabilities and F1 value of LME is superior for both factors and

independent variables such as continuous time parameter.

There are two drawbacks of the proposed methodology. The first one is the computational
complexity of the model and the second one is that sometimes the iterative estimation
procedure in LME may not converge. However, changing the optimization method or the
number of initial simulations for EM estimation helped almost all of the time. Limma, on

the other hand, is computationally much easier to handle.
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In addition to above remarks, it is worth mentioning that changing the parameters of the
clustering algorithm such as the number of k-means, the cutoff value in the hierarchical
clustering and the number of filtered genes may affect the performance of the model as

well as the convergence performance of the LME iterations.

6.2 Future Work

There are still so many problems to solve in the analysis of short time series gene

expression data. Foremost ones can be listed as follows:

e Gene expression profile clustering requires optimization such that the number of
profile groups is a very difficult to identify.

e Splitting gene expression profiles according to their expression levels requires
further research. A gene expression profile is a vector of random measurements
and may have very different expression levels at any time point.

e Creation of initial dataset and generating realistic simulation data is another study
to proceed. The short time series is based upon the initial data and it is very crucial
to the gene expression profiles over time. In this study EM algorithm was used to
model initial data column from a realistic dataset and short time series gene
expression profiles were generated from a discrete distribution. There is still so
much work to be done on this topic. Especially, incorporation of noise factors
requires a comprehensive study. In addition, existence of changing number of
replicates per time points makes the simulation of expression profiles more

difficult.
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A. TABLES OF PERFORMANCE MEASURES IN SIMULATIONS

APPENDIX

Table A.1 Expected performance measures of cell type parameter for 500 probe sets

8% 2 5 _c_8 o - - <= = g
8 gy £ ggEs 8 ¢ 2 gz 8B 3¢
$§2 2 & E8wg T & ¥ § ¥ ¢
€ 2 % 5
Z £
5 15 0.05 LME  0.725 0.001 0.959 0.999 0.993 0.955 0.007 0.838
Limma 0.999 0.075 0.935 0.925 0.683 1.000 0.317 0.811
5 15 0.10 LME  0.952 0.001 0.992 0.999 0.992 0.991 0.008 0.971
Limma 0.999 0.121 0.896 0.879 0.572 1.000 0.428 0.727
5 15 090 LME  0.986 0.002 0.997 0.998 0.990 0.998 0.010 0.988
Limma 0.999 0.205 0.823 0.795 0.439 1.000 0.561 0.610
5 15 030 LME  0.993 0.003 0.997 0.997 0.983 0.999 0.017 0.988
Limma 0.999 0.285 0.754 0.715 0.361 1.000 0.639 0.530
5 15 040 LME  0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.988
Limma 0.999 0.366 0.684 0.634 0.305 1.000 0.695 0.467
5 2 005 LME  0.693 0.001 0.953 0.999 0.992 0.950 0.008 0.816
Limma 0.999 0.075 0.935 0.925 0.687 1.000 0.313 0.814
5 2 010 LME  0.953 0.001 0.992 0.999 0.993 0.991 0.007 0.972
Limma 0.999 0.123 0.894 0.877 0.573 1.000 0.427 0.728
5 2 020 LME  0.985 0.001 0.997 0.999 0.992 0.998 0.008 0.988
Limma 0.999 0.207 0.822 0.793 0.443 1.000 0.557 0.614
5 2 030 LME  0.993 0.002 0.997 0.998 0.985 0.999 0.015 0.989
Limma 0.999 0.284 0.756 0.716 0.366 1.000 0.634 0.536
5 2 040 LME  0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.989
Limma 0.999 0.367 0.685 0.633 0.309 1.000 0.691 0.472
5 3 005 LME  0.697 0.000 0.954 1.000 0.996 0.951 0.004 0.820
Limma 1.000 0.075 0.936 0.925 0.684 1.000 0.316 0.812
5 3 0.10 LME  0.962 0.001 0.994 0.999 0.996 0.993 0.004 0.979
Limma 1.000 0.124 0.893 0.876 0.565 1.000 0.435 0.722
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Table A.1 Expected performance measures of cell type parameter for 500 probe sets (continued)

88 % o _ o % o
T s 7 2 E¥ES QY O oz B 2
$2 2 & E8&wg ¥ & ¥ § ¥ ¢
e 2 3 =
z 5
5 3 020 LME 0.990 0.001 0.998 0.999 0.995 0.998 0.005 0.993
Limma 1.000 0.209 0.820 0.791 0.436 1.000 0.564 0.607
5 3 030 LME 0.994 0.001 0.998 0.999 0.991 0.999 0.009 0.993
Limma 1.000 0.289 0.751 0.711 0.358 1.000 0.642 0.527
5 3 040 LME 0.999 0.002 0.998 0.998 0.986 1.000 0.014 0.993
Limma 1.000 0.373 0.679 0.627 0.301 1.000 0.699 0.463
3 15 0.05 LME 0.734 0.001 0.960 0.999 0.993 0.957 0.007 0.845
Limma 0.999 0.064 0.945 0.936 0.716 1.000 0.284 0.834
3 15 010 LME 0.955 0.001 0.992 0.999 0.993 0.992 0.007 0.974
Limma 0.999 0.106 0.909 0.894 0.602 1.000 0.398 0.751
3 15 0.20 LME 0.981 0.001 0.996 0.999 0.991 0.997 0.009 0.986
Limma 0.999 0.183 0.842 0.817 0.467 1.000 0.533 0.637
3 15 030 LME 0.992 0.003 0.996 0.997 0.981 0.999 0.019 0.986
Limma 0.999 0.256 0.779 0.744 0.384 1.000 0.616 0.555
3 15 040 LME 0.998 0.004 0.996 0.996 0.975 1.000 0.025 0.987
Limma 1.000 0.334 0.711 0.666 0.323 1.000 0.677 0.488
3 2 005 LME 0.707 0.001 0.955 0.999 0.994 0.952 0.006 0.827
Limma 1.000 0.066 0.943 0.934 0.713 1.000 0.287 0.832
3 2 010 LME 0.952 0.001 0.992 0.999 0.994 0.992 0.006 0.973
Limma 1.000 0.108 0.907 0.892 0.601 1.000 0.399 0.751
3 92 020 LME 0.983 0.001 0.997 0.999 0.993 0.997 0.007 0.988
Limma 1.000 0.185 0.841 0.815 0.468 1.000 0.532 0.637
3 92 030 LME 0.991 0.002 0.997 0.998 0.986 0.999 0.014 0.988
Limma 1.000 0.259 0.777 0.741 0.385 1.000 0.615 0.556
3 92 040 LME 0.998 0.003 0.997 0.997 0.979 1.000 0.021 0.988
Limma 1.000 0.336 0.711 0.664 0.325 1.000 0.675 0.491
3 3 005 LME 0.723 0.000 0.957 1.000 0.996 0.954 0.004 0.837
Limma 1.000 0.067 0.943 0.933 0.708 1.000 0.292 0.829
3 3 010 LME 0.960 0.001 0.993 0.999 0.996 0.993 0.004 0.978
Limma 1.000 0.108 0.907 0.892 0.600 1.000 0.400 0.750
3 3 020 LME 0.988 0.001 0.998 0.999 0.995 0.998 0.005 0.992
Limma 1.000 0.184 0.841 0.816 0.467 1.000 0.533 0.637
3 3 030 LME 0.994 0.001 0.998 0.999 0.990 0.999 0.010 0.992
Limma 1.000 0.262 0.774 0.738 0.381 1.000 0.619 0.552
3 3 040 LME 0.998 0.002 0.998 0.998 0.986 1.000 0.014 0.992
Limma 1.000 0.339 0.708 0.661 0.322 1.000 0.678 0.487
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Table A.2 Expected performance measures of cell type parameter for 1000 probe sets

Replicates
Foldchange
p-value-cutoff

Method

(Type | Error)

E(ACC)

E(SPC)

E(PPV)

E(NPV)

E(FDR)

Flvalue

N
-
n
o
o
a

LME
Limma

0.956
0.936

1.000
0.926

0.998
0.684

0.952
1.000

0.002
0.316

0.819
0.813

N
[any
(0]
o
-
o

LME
Limma

0.996
0.895

1.000
0.878

0.998
0.568

0.996
1.000

0.002
0.432

0.987
0.724

2 15 0.20

LME
Limma

0.999
0.823

1.000
0.795

0.998
0.437

0.999
1.000

0.002
0.563

0.997
0.608

2 15 0.30

LME
Limma

0.999
0.752

0.999
0.713

0.996
0.356

1.000
1.000

0.004
0.644

0.997
0.525

2 15 0.40

LME
Limma

0.999
0.681

0.999
0.630

0.994
0.300

1.000
1.000

0.006
0.700

0.997
0.462

2 2 0.05

LME
Limma

0.945
0.935

1.000
0.924

0.999
0.682

0.941
1.000

0.001
0.318

0.768
0.811

2 2 0.10

LME
Limma

0.995
0.893

1.000
0.876

0.999
0.567

0.995
1.000

0.001
0.433

0.984
0.724

2 2 0.20

LME
Limma

0.999
0.820

1.000
0.791

0.999
0.437

0.999
1.000

0.001
0.563

0.998
0.608

2 2 030

LME
Limma

0.999
0.751

1.000
0.711

0.998
0.360

1.000
1.000

0.002
0.640

0.998
0.529

2 2 040

LME
Limma

0.999
0.682

0.999
0.630

0.996
0.305

1.000
1.000

0.004
0.695

0.998
0.468

2 3 0.05

LME
Limma

0.942
0.937

1.000
0.927

1.000
0.691

0.937
1.000

0.000
0.309

0.748
0.817

2 3 0.10

LME
Limma

0.996
0.896

1.000
0.879

0.999
0.575

0.996
1.000

0.001
0.425

0.988
0.730

2 3 0.20

LME
Limma

1.000
0.823

1.000
0.794

0.999
0.442

1.000
1.000

0.001
0.558

0.998
0.613

2 3 030

LME
Limma

1.000
0.750

1.000
0.709

0.999
0.359

1.000
1.000

0.001
0.641

0.998
0.529

2 3 040

LME
Limma

1.000
0.680

1.000
0.628

0.997
0.304

1.000
1.000

0.003
0.696

0.998
0.467

3 1.5 0.05

LME
Limma

0.960
0.944

1.000
0.936

0.999
0.712

0.956
1.000

0.001
0.288

0.837
0.831

3 15 0.10

LME
Limma

0.996
0.910

1.000
0.896

0.999
0.604

0.996
1.000

0.001
0.396

0.988
0.753

3 15 0.20

LME
Limma

0.999
0.845

1.000
0.820

0.999
0.469

0.999
1.000

0.001
0.531

0.997
0.638
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Table A.2 Expected performance measures of cell type parameter for 1000 probe sets (continued)

88 % o _ o % o
T s 7 2 E¥ES QY O oz B 2
$2 2 & E8&wg ¥ & ¥ § ¥ ¢
e 2 3 =
z 5
3 15 030 LME 0.997 0.000 0.999 1.000 0.997 1.000 0.003 0.997
Limma 1.000 0.256 0.779 0.744 0.382 1.000 0.618 0.553
LME 1.000 0.001 0.999 0.999 0.995 1.000 0.005 0.997
3 15040 Limma 1.000 0.334 0.712 0.666 0.321 1.000 0.679 0.487
3 2 005 LME 0.666 0.000 0.952 1.000 0.999 0.948 0.001 0.799
Limma 1.000 0.065 0.944 0.935 0.713 1.000 0.287 0.832
LME 0.981 0.000 0.997 1.000 0.999 0.997 0.001 0.990
3 2 010 Limma 1.000 0.105 0.909 0.895 0.604 1.000 0.396 0.753
LME 0.995 0.000 0.999 1.000 0.999 0.999 0.001 0.997
32 020 Limma 1.000 0.182 0.843 0.818 0.469 1.000 0.531 0.638
LME 0.997 0.000 0.999 1.000 0.997 1.000 0.003 0.997
32 030 Limma 1.000 0.257 0.779 0.743 0.384 1.000 0.616 0.555
3 2 040 LME 1.000 0.001 0.999 0.999 0.994 1.000 0.006 0.997
Limma 1.000 0.335 0.711 0.665 0.323 1.000 0.677 0.489
LME 0.605 0.000 0.942 1.000 1.000 0.938 0.000 0.754
33 005 Limma 1.000 0.064 0.945 0.936 0.721 1.000 0.279 0.838
3 3 010 LME 0.976 0.000 0.996 1.000 1.000 0.996 0.000 0.988
Limma 1.000 0.105 0.909 0.895 0.610 1.000 0.390 0.758
3 3 0.0 LME 0.998 0.000 1.000 1.000 1.000 1.000 0.000 0.999
Limma 1.000 0.183 0.843 0.817 0.474 1.000 0.526 0.643
3 3 030 LME 0.999 0.000 1.000 1.000 0.999 1.000 0.001 0.999
Limma 1.000 0.259 0.778 0.741 0.388 1.000 0.612 0.559
3 3 040 LME 1.000 0.000 1.000 1.000 0.998 1.000 0.002 0.999
Limma 1.000 0.337 0.711 0.663 0.328 1.000 0.672 0.494
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Table A.3 Expected performance measures of exposure parameter for 500 probe sets

Replicates
Foldchange
p-value-cutoff

Method

E(FPR)
(Type | Error)

E(ACC)

E(SPC)

E(PPV)

E(NPV)

E(FDR)

Flvalue

N
-
n
o
o
a

LME
Limma

0.000
0.075

0.996
0.935

1.000
0.925

0.998
0.683

0.995
1.000

0.002
0.317

0.984
0.812

N
[any
(0]
o
-
o

LME
Limma

0.001
0.122

0.996
0.895

0.999
0.878

0.990
0.571

0.996
1.000

0.010
0.429

0.984
0.727

2 15 0.20

LME
Limma

0.994
1.000

0.004
0.206

0.996
0.822

0.996
0.794

0.975
0.439

0.999
1.000

0.025
0.561

0.984
0.611

2 15 0.30

LME
Limma

0.999
1.000

0.005
0.290

0.996
0.750

0.995
0.710

0.971
0.358

1.000
1.000

0.029
0.642

0.984
0.527

2 15 0.40

LME
Limma

0.999
1.000

0.005
0.371

0.996
0.680

0.995
0.629

0.970
0.303

1.000
1.000

0.030
0.697

0.984
0.465

2 2 0.05

LME
Limma

0.971
0.999

0.000
0.076

0.996
0.934

1.000
0.924

0.997
0.685

0.995
1.000

0.003
0.315

0.984
0.812

2 2 0.10

LME
Limma

0.979
0.999

0.001
0.124

0.996
0.893

0.999
0.876

0.990
0.571

0.997
1.000

0.010
0.429

0.985
0.727

2 2 0.20

LME
Limma

0.995
0.999

0.004
0.211

0.996
0.819

0.996
0.789

0.975
0.439

0.999
1.000

0.025
0.561

0.985
0.610

2 2 030

LME
Limma

0.999
0.999

0.005
0.289

0.996
0.752

0.995
0.711

0.971
0.363

1.000
1.000

0.029
0.637

0.985
0.533

2 2 040

LME
Limma

0.999
0.999

0.005
0.373

0.996
0.679

0.995
0.627

0.971
0.306

1.000
1.000

0.029
0.694

0.985
0.468

2 3 0.05

LME
Limma

0.982
0.999

0.000
0.076

0.997
0.935

1.000
0.924

0.997
0.686

0.997
1.000

0.003
0.314

0.990
0.814

2 3 0.10

LME
Limma

0.987
0.999

0.001
0.125

0.997
0.893

0.999
0.875

0.993
0.570

0.998
1.000

0.007
0.430

0.990
0.726

2 3 0.20

LME
Limma

0.996
0.999

0.002
0.209

0.997
0.821

0.998
0.791

0.984
0.441

0.999
1.000

0.016
0.559

0.990
0.612

2 3 030

LME
Limma

0.999
0.999

0.003
0.289

0.997
0.752

0.997
0.711

0.981
0.363

1.000
1.000

0.019
0.637

0.990
0.532

2 3 040

LME
Limma

0.999
0.999

0.003
0.369

0.997
0.682

0.997
0.631

0.981
0.308

1.000
1.000

0.019
0.692

0.990
0.470

3 1.5 0.05

LME
Limma

0.974
0.999

0.001
0.066

0.996
0.943

0.999
0.934

0.996
0.712

0.996
1.000

0.004
0.288

0.985
0.832

3 15 0.10

LME
Limma

0.981
0.999

0.002
0.107

0.996
0.908

0.998
0.893

0.990
0.604

0.997
1.000

0.010
0.396

0.985
0.753

3 15 0.20

LME
Limma

0.995
0.999

0.004
0.186

0.996
0.840

0.996
0.814

0.976
0.468

0.999
1.000

0.024
0.532

0.986
0.638
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Table A.3 Expected performance measures of exposure parameter for 500 probe sets (continued)

88 % o _ o % o
T s 7 2 E¥ES QY O oz B 2
$2 2 & E8&wg ¥ & ¥ § ¥ ¢
e 2 3 =
z 5
3 15 030 LME 0.999 0.004 0.996 0.996 0.973 1.000 0.027 0.986
Limma 1.000 0.262 0.774 0.738 0.384 1.000 0.616 0.555
LME 0.999 0.005 0.996 0.995 0.973 1.000 0.027 0.986
3 15040 Limma 1.000 0.342 0.706 0.658 0.323 1.000 0.677 0.488
LME 0.975 0.000 0.996 1.000 0.997 0.996 0.003 0.986
32005 Limma 0.999 0.065 0.944 0.935 0.717 1.000 0.283 0.835
LME 0.981 0.001 0.996 0.999 0.991 0.997 0.009 0.986
3 2 010 Limma 0.999 0.106 0.909 0.894 0.606 1.000 0.394 0.755
3 2 020 LME 0.995 0.004 0.996 0.996 0.978 0.999 0.022 0.987
Limma 0.999 0.179 0.846 0.821 0.476 1.000 0.524 0.645
3 2 030 LME 0.999 0.004 0.996 0.996 0.975 1.000 0.025 0.987
Limma 0.999 0.253 0.783 0.747 0.392 1.000 0.608 0.563
3 2 040 LME 0.999 0.004 0.996 0.996 0.975 1.000 0.025 0.987
Limma 1.000 0.331 0.715 0.669 0.330 1.000 0.670 0.496
LME 0.985 0.000 0.998 1.000 0.998 0.998 0.002 0.991
33 005 Limma 1.000 0.067 0.942 0.933 0.707 1.000 0.293 0.828
3 3 010 LME 0.988 0.001 0.998 0.999 0.995 0.998 0.005 0.991
Limma 1.000 0.109 0.906 0.891 0.598 1.000 0.402 0.748
3 3 0.0 LME 0.997 0.002 0.998 0.998 0.986 0.999 0.014 0.992
Limma 1.000 0.187 0.839 0.813 0.464 1.000 0.536 0.634
3 3 030 LME 0.999 0.003 0.998 0.997 0.984 1.000 0.016 0.992
Limma 1.000 0.263 0.773 0.737 0.381 1.000 0.619 0.551
3 3 040 LME 0.999 0.003 0.998 0.997 0.984 1.000 0.016 0.992
Limma 1.000 0.343 0.704 0.657 0.320 1.000 0.680 0.484
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Table A.4 Expected performance measures of exposure parameter for 1000 probe sets

Replicates
Foldchange
p-value-cutoff

Method

E(FPR)
(Type | Error)

E(ACC)

E(SPC)

E(PPV)

E(NPV)

E(FDR)

Flvalue

N
[EEN
w
o
o
w

LME
Limma

0.000
0.074

0.999
0.936

1.000
0.926

1.000
0.685

0.999
1.000

0.000
0.315

0.996
0.813

N
[any
(9]
©
-
o

LME
Limma

0.000
0.122

0.999
0.894

1.000
0.878

0.997
0.569

0.999
1.000

0.003
0.431

0.996
0.725

2 15 0.20

LME
Limma

0.001
0.208

0.999
0.820

0.999
0.792

0.993
0.436

1.000
1.000

0.007
0.564

0.996
0.607

2 15 0.30

LME
Limma

0.001
0.288

0.999
0.752

0.999
0.712

0.992
0.359

1.000
1.000

0.008
0.641

0.996
0.528

2 15 0.40

LME
Limma

0.001
0.371

0.999
0.681

0.999
0.629

0.992
0.303

1.000
1.000

0.008
0.697

0.996
0.465

2 2 0.05

LME
Limma

0.994
1.000

0.000
0.074

0.999
0.936

1.000
0.926

0.999
0.690

0.999
1.000

0.001
0.310

0.997
0.816

2 2 0.10

LME
Limma

0.995
1.000

0.000
0.121

0.999
0.896

1.000
0.879

0.998
0.576

0.999
1.000

0.002
0.424

0.997
0.731

2 2 0.20

LME
Limma

0.999
1.000

0.001
0.208

0.999
0.821

0.999
0.792

0.994
0.442

1.000
1.000

0.006
0.558

0.997
0.613

2 2 030

LME
Limma

1.000
1.000

0.001
0.291

0.999
0.750

0.999
0.709

0.994
0.361

1.000
1.000

0.006
0.639

0.997
0.531

2 2 040

LME
Limma

1.000
1.000

0.001
0.376

0.999
0.677

0.999
0.624

0.994
0.304

1.000
1.000

0.006
0.696

0.997
0.466

2 3 0.05

LME
Limma

0.996
1.000

0.000
0.074

0.999
0.936

1.000
0.926

1.000
0.685

0.999
1.000

0.000
0.315

0.998
0.813

2 3 0.10

LME
Limma

0.997
1.000

0.000
0.122

0.999
0.895

1.000
0.878

0.999
0.571

1.000
1.000

0.001
0.429

0.998
0.727

2 3 0.20

LME
Limma

0.999
1.000

0.001
0.206

0.999
0.822

0.999
0.794

0.997
0.439

1.000
1.000

0.003
0.561

0.998
0.610

2 3 030

LME
Limma

1.000
1.000

0.001
0.287

0.999
0.752

0.999
0.713

0.996
0.360

1.000
1.000

0.004
0.640

0.998
0.529

2 3 040

LME
Limma

1.000
1.000

0.001
0.370

0.999
0.682

0.999
0.630

0.996
0.304

1.000
1.000

0.004
0.696

0.998
0.466

3 1.5 0.05

LME
Limma

0.992
1.000

0.000
0.064

0.999
0.945

1.000
0.936

1.000
0.716

0.999
1.000

0.000
0.284

0.996
0.834

3 15 0.10

LME
Limma

0.994
1.000

0.000
0.106

0.999
0.909

1.000
0.894

0.998
0.604

0.999
1.000

0.002
0.396

0.996
0.753

3 15 0.20

LME
Limma

0.999
1.000

0.001
0.183

0.999
0.843

0.999
0.817

0.993
0.470

1.000
1.000

0.007
0.530

0.996
0.639
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Table A.4 Expected performance measures of exposure parameter for 1000 probe sets (continued)

88 8 o o % o
g s 7 2 E¥ES QY Z oz B 2
$2 2 & E8&wg ¥ & ¥ § ¥ ¢
e 2 3 =
z 5
3 15 030 LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996
Limma 1.000 0.260 0.776 0.740 0.384 1.000 0.616 0.555
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996
3 15040 Limma 1.000 0.340 0.707 0.660 0.322 1.000 0.678 0.487
LME 0.992 0.000 0.999 1.000 1.000 0.999 0.000 0.996
32005 Limma 1.000 0.065 0.944 0.935 0.714 1.000 0.286 0.833
LME 0.994 0.000 0.999 1.000 0.998 0.999 0.002 0.996
3 2 010 Limma 1.000 0.107 0.908 0.893 0.602 1.000 0.398 0.752
LME 0.998 0.001 0.999 0.999 0.994 1.000 0.006 0.996
32 020 Limma 1.000 0.183 0.842 0.817 0.469 1.000 0.531 0.638
LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996
32 030 Limma 1.000 0.259 0.777 0.741 0.384 1.000 0.616 0.555
3 2 040 LME 1.000 0.001 0.999 0.999 0.992 1.000 0.008 0.996
Limma 1.000 0.338 0.709 0.662 0.324 1.000 0.676 0.489
LME 0.996 0.000 0.999 1.000 1.000 0.999 0.000 0.998
33 005 Limma 1.000 0.063 0.946 0.937 0.720 1.000 0.280 0.837
3 3 010 LME 0.996 0.000 0.999 1.000 0.999 0.999 0.001 0.998
Limma 1.000 0.105 0.910 0.895 0.607 1.000 0.393 0.755
3 3 0.0 LME 0.999 0.001 0.999 0.999 0.997 1.000 0.003 0.998
Limma 1.000 0.180 0.845 0.820 0.473 1.000 0.527 0.643
3 3 030 LME 1.000 0.001 0.999 0.999 0.996 1.000 0.004 0.998
Limma 1.000 0.255 0.780 0.745 0.388 1.000 0.612 0.559
3 3 040 LME 1.000 0.001 0.999 0.999 0.996 1.000 0.004 0.998
Limma 1.000 0.335 0.711 0.665 0.325 1.000 0.675 0.490
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Table A.5 Expected performance measures of time parameter for 500 probe sets

Replicates
Foldchange
p-value-cutoff

Method

E(FPR)
(Type | Error)

E(ACC)

E(SPC)

E(PPV)

E(NPV)

E(FDR)

Flvalue

N
[EEN
w
o
o
w

LME
Limma

0.001
0.061

0.997
0.916

0.999
0.939

0.989
0.505

0.998
0.968

0.011
0.495

0.982
0.575

N
[any
(9]
©
-
o

LME
Limma

0.002
0.061

0.997
0.916

0.998
0.939

0.975
0.505

0.999
0.968

0.025
0.495

0.983
0.575

2 15 0.20

LME
Limma

0.003
0.061

0.997
0.916

0.997
0.939

0.968
0.505

1.000
0.968

0.032
0.495

0.983
0.575

2 15 0.30

LME
Limma

0.003
0.061

0.997
0.916

0.997
0.939

0.967
0.505

1.000
0.968

0.033
0.495

0.983
0.575

2 15 0.40

LME
Limma

0.003
0.061

0.997
0.916

0.997
0.939

0.967
0.505

1.000
0.968

0.033
0.495

0.983
0.575

2 2 0.05

LME
Limma

0.001
0.062

0.997
0.917

0.999
0.938

0.985
0.487

0.998
0.970

0.015
0.513

0.982
0.564

2 2 0.10

LME
Limma

0.003
0.062

0.997
0.917

0.997
0.938

0.971
0.487

0.999
0.970

0.029
0.513

0.982
0.564

2 2 0.20

LME
Limma

0.003
0.062

0.997
0.917

0.997
0.938

0.966
0.487

1.000
0.970

0.034
0.513

0.982
0.564

2 2 030

LME
Limma

0.003
0.062

0.997
0.917

0.997
0.938

0.965
0.487

1.000
0.970

0.035
0.513

0.982
0.564

2 2 040

LME
Limma

0.003
0.062

0.997
0.917

0.997
0.938

0.965
0.487

1.000
0.970

0.035
0.513

0.982
0.564

2 3 0.05

LME
Limma

0.001
0.061

0.998
0.916

0.999
0.939

0.990
0.497

0.999
0.968

0.010
0.503

0.988
0.568

2 3 0.10

LME
Limma

0.002
0.061

0.998
0.916

0.998
0.939

0.981
0.497

0.999
0.968

0.019
0.503

0.988
0.568

2 3 0.20

LME
Limma

0.002
0.061

0.998
0.916

0.998
0.939

0.977
0.497

1.000
0.968

0.023
0.503

0.988
0.568

2 3 030

LME
Limma

0.002
0.061

0.998
0.916

0.998
0.939

0.976
0.497

1.000
0.968

0.024
0.503

0.988
0.568

2 3 040

LME
Limma

0.002
0.061

0.998
0.916

0.998
0.939

0.976
0.496

1.000
0.968

0.024
0.504

0.988
0.567

3 1.5 0.05

LME
Limma

0.001
0.062

0.996
0.915

0.999
0.938

0.985
0.493

0.997
0.969

0.015
0.507

0.977
0.566

3 15 0.10

LME
Limma

0.003
0.062

0.996
0.915

0.997
0.938

0.965
0.493

0.999
0.969

0.035
0.507

0.978
0.566

3 15 0.20

LME
Limma

0.004
0.062

0.996
0.915

0.996
0.938

0.959
0.493

1.000
0.969

0.041
0.507

0.978
0.566
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Table A.5 Expected performance measures of time parameter for 500 probe sets (continued)

88 % o _ o % o
T s 7 2 E¥ES QY O oz B 2
$2 2 & E8&wg ¥ & ¥ § ¥ ¢
e 2 3 =
z 5
3 15 030 LME 1.000 0.004 0.996 0.996 0.957 1.000 0.043 0.978
Limma 0.664 0.062 0.915 0.938 0.493 0.969 0.507 0.566
3 15 040 LME 1.000 0.004 0.996 0.996 0.956 1.000 0.044 0.977
Limma 0.664 0.062 0.915 0.938 0.493 0.969 0.507 0.566
LME 0.977 0.001 0.997 0.999 0.986 0.998 0.014 0.982
32005 Limma 0.669 0.059 0.918 0.941 0.508 0.969 0.492 0.577
LME 0.993 0.003 0.997 0.997 0.972 0.999 0.028 0.982
3 2 010 Limma 0.669 0.059 0.918 0.941 0.508 0.969 0.492 0.577
LME 0.999 0.003 0.997 0.997 0.966 1.000 0.034 0.982
32 020 Limma 0.669 0.059 0.918 0.941 0.508 0.969 0.492 0.577
3 2 030 LME 1.000 0.003 0.997 0.997 0.965 1.000 0.035 0.982
Limma 0.669 0.059 0.918 0.941 0.508 0.969 0.492 0.577
3 2 040 LME 1.000 0.003 0.997 0.997 0.965 1.000 0.035 0.982
Limma 0.669 0.060 0.918 0.940 0.508 0.969 0.492 0.577
LME 0.981 0.001 0.997 0.999 0.989 0.998 0.011 0.985
33 005 Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583
3 3 010 LME 0.995 0.002 0.997 0.998 0.976 0.999 0.024 0.986
Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583
3 3 0.0 LME 0.999 0.003 0.997 0.997 0.973 1.000 0.027 0.986
Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583
3 3 030 LME 1.000 0.003 0.997 0.997 0.972 1.000 0.028 0.986
Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583
3 3 040 LME 1.000 0.003 0.997 0.997 0.972 1.000 0.028 0.986
Limma 0.675 0.061 0.916 0.939 0.513 0.968 0.487 0.583
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Table A.6 Expected performance measures of time parameter for 1000 probe sets

Replicates
Foldchange
p-value-cutoff

Method

E(FPR)
(Type | Error)

E(ACC)

E(SPC)

E(PPV)

E(NPV)

E(FDR)

Flvalue

N
-
n
o
o
a

LME
Limma

0.000
0.061

0.999
0.918

1.000
0.939

0.997
0.495

0.999
0.970

0.003
0.505

0.995
0.570

N
[any
(0]
o
-
o

LME
Limma

0.001
0.061

0.999
0.918

0.999
0.939

0.992
0.495

1.000
0.970

0.008
0.505

0.995
0.570

2 15 0.20

LME
Limma

0.001
0.061

0.999
0.918

0.999
0.939

0.989
0.495

1.000
0.970

0.011
0.505

0.995
0.570

2 15 0.30

LME
Limma

0.001
0.061

0.999
0.918

0.999
0.939

0.989
0.495

1.000
0.970

0.011
0.505

0.994
0.570

2 15 0.40

LME
Limma

0.001
0.061

0.999
0.917

0.999
0.939

0.989
0.495

1.000
0.970

0.011
0.505

0.994
0.570

2 2 0.05

LME
Limma

0.000
0.061

0.999
0.916

1.000
0.939

0.998
0.502

0.999
0.969

0.002
0.498

0.995
0.574

2 2 0.10

LME
Limma

0.001
0.061

0.999
0.916

0.999
0.939

0.991
0.502

1.000
0.969

0.009
0.498

0.995
0.574

2 2 0.20

LME
Limma

0.001
0.061

0.999
0.916

0.999
0.939

0.990
0.502

1.000
0.969

0.010
0.498

0.995
0.573

2 2 030

LME
Limma

0.001
0.061

0.999
0.916

0.999
0.939

0.989
0.502

1.000
0.969

0.011
0.498

0.995
0.573

2 2 040

LME
Limma

0.001
0.061

0.999
0.916

0.999
0.939

0.989
0.502

1.000
0.969

0.011
0.498

0.995
0.573

2 3 0.05

LME
Limma

0.000
0.060

0.999
0.917

1.000
0.940

0.998
0.502

1.000
0.969

0.002
0.498

0.997
0.574

2 3 0.10

LME
Limma

0.000
0.060

0.999
0.917

1.000
0.940

0.995
0.502

1.000
0.969

0.005
0.498

0.997
0.574

2 3 0.20

LME
Limma

0.001
0.060

0.999
0.917

0.999
0.940

0.993
0.502

1.000
0.969

0.007
0.498

0.996
0.574

2 3 030

LME
Limma

0.001
0.060

0.999
0.917

0.999
0.940

0.993
0.502

1.000
0.969

0.007
0.498

0.996
0.574

2 3 040

LME
Limma

0.001
0.060

0.999
0.917

0.999
0.940

0.992
0.502

1.000
0.969

0.008
0.498

0.996
0.574

3 1.5 0.05

LME
Limma

0.000
0.061

0.999
0.916

1.000
0.939

0.997
0.502

0.999
0.968

0.003
0.498

0.993
0.573

3 15 0.10

LME
Limma

0.001
0.061

0.999
0.916

0.999
0.939

0.989
0.502

1.000
0.968

0.011
0.498

0.993
0.573

3 15 0.20

LME
Limma

0.001
0.061

0.999
0.916

0.999
0.939

0.987
0.502

1.000
0.968

0.013
0.498

0.993
0.572
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Table A.6 Expected performance measures of time parameter for 1000 probe sets (continued)

8 8 S o _ - _% _ o - _
553 2 E¥ES 8 % T OE B 3
§3 2 £ F&Eg ¥ & F & B &
e 2 3 =
z 5
3 15 030 LME 0.999 0.001 0.999 0.999 0.986 1.000 0.014 0.993
Limma 0.666 0.061 0.916 0.939 0.502 0.968 0.498 0.572
LME 1.000 0.001 0.999 0.999 0.985 1.000 0.015 0.993
3 15040 Limma 0.666 0.061 0.916 0.939 0.502 0.968 0.498 0.572
LME 0.990 0.000 0.999 1.000 0.996 0.999 0.004 0.993
32005 Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.578
LME 0.997 0.001 0.999 0.999 0.989 1.000 0.011 0.993
3 2 010 Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.578
LME 0.999 0.001 0.999 0.999 0.987 1.000 0.013 0.993
32 020 Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.577
LME 1.000 0.001 0.999 0.999 0.986 1.000 0.014 0.993
32 030 Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.577
3 2 040 LME 1.000 0.001 0.999 0.999 0.986 1.000 0.014 0.993
Limma 0.674 0.060 0.918 0.940 0.505 0.970 0.495 0.577
LME 0.994 0.000 0.999 1.000 0.997 0.999 0.003 0.996
33 005 Limma 0.667 0.061 0.916 0.939 0.498 0.969 0.502 0.570
3 3 010 LME 0.998 0.001 0.999 0.999 0.993 1.000 0.007 0.996
Limma 0.667 0.061 0.916 0.939 0.498 0.969 0.502 0.570
3 3 0.0 LME 0.999 0.001 0.999 0.999 0.992 1.000 0.008 0.995
Limma 0.667 0.061 0.916 0.939 0.498 0.969 0.502 0.570
3 3 030 LME 1.000 0.001 0.999 0.999 0.990 1.000 0.010 0.995
Limma 0.667 0.061 0.916 0.939 0.497 0.969 0.503 0.570
3 3 040 LME 1.000 0.001 0.999 0.999 0.990 1.000 0.010 0.995
Limma 0.667 0.061 0.916 0.939 0.497 0.969 0.503 0.570
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