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ABSTRACT 

 

 

WAVE COMPONENT SAMPLING METHOD FOR HIGH PERFORMANCE PIPELINED 

CIRCUITS 

 

 

 

SEVER, Refik 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor      : Prof. Dr. Murat AŞKAR 

 

September 2011, 126 pages 

 

In all of the previous pipelining methods such as conventional pipelining, wave pipelining, 

and mesochronous pipelining, a data wave propagating on the combinational circuit is 

sampled whenever it arrives to a synchronization stage. In this study, a new wave-pipelining 

methodology named as Wave Component Sampling Method (WCSM), is proposed. In this 

method, only the component of a wave, whose maximum and minimum delay difference 

exceeds the tolerable value, is sampled, and the other components continue to propagate on 

the circuit. Therefore, the total number of registers required for synchronization decreases 

significantly. For demonstrating the effectiveness of the proposed WCSM, an 8x8 bit carry 

save adder (CSA) multiplier is implemented using 0.18µm CMOS technology. A generic 

transmission gate logic block with optimized output delay variation depending on the input 

pattern is designed and used in all of the sub blocks of the multiplier. Post layout simulation 

results show that, this multiplier can operate at a speed of 3GHz, using only 70 latches.  

Comparing with the mesochronous pipelining scheme, the number of the registers is 

decreased by 41% and the total power of the chip is also decreased by 9.5% without any 

performance loss. An ultra high speed full pipelined CSA multiplier with an operating 

frequency of 5GHz is also implemented with WCSM. The number of registers is decreased 

by 45%, and the power consumption of the circuit is decreased by 18.4% comparing with 

conventional or mesochronous pipelining methods. WCSM is also applied to different 

multiplier structures employing booth encoders, Wallace trees, and carry look-ahead adders. 

Comparing full pipelined 8x8 bit WCSM multiplier with the conventional pipelined 

multiplier, the number of registers in the implementation of booth encoder, Wallace tree, and 

carry look-ahead adder is decreased by 30%, 51%, and %62, respectively.  
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ÖZ 

 

 

YÜKSEK PERFORMANSLI BORU HATTI MİMARİLİ DEVRELER İÇİN DALGA 

ELEMANI ÖRNEKLEME METODU  

 

 

SEVER, Refik 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr.  Murat AŞKAR 

 

Eylül 2011, 126 sayfa 

 

 

Konvansiyonel boruhattı, dalga boruhattı ya da mesokron boru hattı gibi önceki boruhattı 

mimarilerinin tamamında, kombinezonal devrede ilerleyen bir veri dalgası, senkronizasyon 

bölümüne ulaştığı anda örneklenmektedir. Bu çalışmada, Dalga Elemanı Örnekleme Metodu 

(WCSM) olarak adlandırılan yeni bir dalga boruhattı metodu önerilmektedir. Bu metodda, 

yalnızca en az ve en çok gecikme farkı tahammül edilen sınıra ulaşan dalga elemanı 

örneklenmekte, diğer dalga elemanları devrede ilerlemeye devam etmektedir. Bundan dolayı, 

senkronizasyon için gereken flip-flop sayısı önemli oranda azalmaktadır. Önerilen metodun 

etkinliğini göstermek amacıyla, 8x8 bitlik çarpıcı bloğu elde saklama metoduyla ve 0.18µm 

CMOS teknolojisi kullanılarak gerçeklenmiştir. Genel bir transmisyon kapılı mantık bloğu, 

çıkışındaki gecikme farkları giriş very diziliminden  en az etkilenecek şekilde tasarlanmış ve 

çarpıcının değişik alt bloklarında kullanılmıştır. Serim sonrası simülasyonlar göstermiştir ki, 

bu çarpıcı 3GHz çalışma frekansında ve sadece 70 tane kayıt elemanı kullanarak 

çalışabilmektedir. Mesokron boruhattı mimarisine kıyasla, herhangi bir performans kaybı 

olmadan toplam kayıt elemanı sayısı %41 ve toplam güç tüketimi de %9.5 oranında 

azalmıştır.  5GHz çalışma frekansına sahip çok yüksek hızlı bir çarpıcı bloğu da WCSM 

metodu kullanılarak tasarlanmıştır. Konvansiyonel boruhattı ya da mesokron boru hattı 

metodlarına kıyasla, toplam kayıt elemanı sayıs %45 ve toplam güç tüketimi de %18.4 

oranında azalmıştır. WCSM metodu, booth kodlayıcı, Wallace ağacı ve elde öngörülü 

toplayıcı gibi farklı çarpıcı yapılarına da uygulanmıştır.  Boruhattı mimarisi her mantıksal 

işlemin sonunda bir kayıt elemanı olacak şekilde kullanıldığında, WCSM metodu 

konvalsiyonel boruhattı metoduna kıyasla booth kodlayıcıda %30, Wallace ağacında %51 ve 

elde öngörülü toplayıcıda %62 oranında kayıt elemanı tasarrufu sağlamaktadır.  
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Equation Chapter 1 Section 1 

 

CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

In today’s high performance digital systems, pipelining technique is widely used to increase 

the operating frequency of a logic circuit. In conventional pipelining technique, the 

combinational logic circuit is divided into several sub-stages. Between these sub-stages, 

synchronization registers are inserted. Since the computation time between the 

synchronization registers is decreased, the overall operating speed of the logic circuit 

increases. It is possible to increase the operating frequency of the logic up to N times by 

using N levels of equally separated pipeline stages. However, the clocking overheads such as 

clock skew and setup-hold time requirements of the registers generally limit the operating 

frequency improvements. Also, the clock distribution and the power consumption of the 

synchronization registers are the other major drawbacks of the conventional pipelining. 

 

Wave-pipelining [1] is another pipelining method in which the pipeline registers or latches 

are removed and the capacitances of the internal logic gates act as virtual storage elements. 

In wave-pipelining method, an input data vector is applied to the logic circuit, and before it 

arrives to the end of the logic circuit, another input data vector is sent. Therefore, multiple 

data vectors, which are also named as data waves, propagate on the circuit simultaneously. 

The important concept in wave-pipelining is that the circuit must be designed properly so 

that the cascading data waves do not collapse with each other. Therefore, the minimum and 

maximum delay variation of all the paths must be balanced in order to achieve wave-pipeline 

operation. 

 

Previous work on wave pipelining is summarized as follows: 

 

Wave pipelining method was first used in the design of the IBM System/360 Model 91 

floating point unit [2], where the operating frequency of the chip was 2 times the normal 

frequency. Then, Cotton [3] formalized the wave pipelining method, and named it as 
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“maximal rate clocking”. Ekroot [4] developed linear programs which automatically insert 

delay elements to equalize the propagating waves.  

 

Fishburn [5] investigated the performance improvements achieved by adjusting the path 

delays of the clock signal distributed to the flip-flops. He investigated the effects by both 

trying to minimize the clock period while avoiding clock hazards and maximizing the 

minimum safety margin for a given period.  

 

In [6], a 63 bit bipolar population counter is designed by using wave pipelining. The circuit 

was operated at a frequency which is 2.5 times the normal operating frequency; therefore 2 

or 3 waves propagate on the logic simultaneously. 

 

Sakallah et al [7] developed timing models for multiphase synchronous clocking. They 

proposed a special class of clock schedules named as coincident multiphase clocks, which 

provide lower bound on the optimal clock cycle time. 

 

Joy and Ciesielski [8] presented a methodology for minimizing the clock period for a given 

data path. They developed a linear program which minimizes the clock period by adjusting 

the clock delays to the input and output flip-flops for a logic block. Their method allows 

simultaneous signals to propagate in the logic without interference; therefore the clock 

period reduces significantly. 

 

Wong et al [9] presented algorithms for automatically equalizing delays in combinational 

logic circuits to achieve wave pipelining. Their algorithms insert minimal number of active 

delay elements for balancing the input-output path lengths. The algorithms not only 

minimize the number of delay elements, but also optimize the power under delay constraints. 

 

Gray et al [10] presented a method for high resolution sampling of a high speed data signal. 

Instead of using a high speed latch with a high speed clock signal, they used active delay 

elements to simultaneously propagate clock and data signals. Therefore, the resolution is 

controlled by the difference between clock and data signals. They implemented an integrated 

circuit, in which the delay is externally adjusted with a resolution of 25ps between 0 and 

250ps. 
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In a different study by Gray et al. [11], the timing constraints for single and multiple stage 

systems with arbitrary feedback were presented. It is demonstrated that feedback loops 

impose additional constraints on the minimal and maximal clock period.  A linear program 

was also used to optimize the minimum clock period. 

 

A 250-MHz adder in 2-µm CMOS technology is presented in [12]. 16-bit parallel adder was 

designed using wave pipelining concept, and it has a wave pipelining degree of 9. They 

developed a biased CMOS cross-coupled NAND gate in a custom layout, which has minimal 

input data dependency at the outputs.  

 

Ghosh and Nandy [13] designed a high performance wave pipelined 8x8 bit multiplier using 

CMOS. They used a single generic block in normal process complementary pass transistor 

logic (NPCPL) for equalizing the propagation paths in the design. The multiplier was 

implemented using 0.8µm CMOS technology. It operates at a speed of 400MHz, and 

dissipates a total power of 0.6W. 

 

In [14], a 16-Mb BiCMOS SRAM is designed using 0.4µm BiCMOS process. This SRAM, 

which has a total size of 512Kw*8b*4, includes a PLL self-timing generator and 

incorporates 2 stage wave pipeline operation.  

 

A 4-Mb synchronous wave pipeline SRAM was designed and fabricated by using 0.25µm 

CMOS technology in [15]. This multiplier operates at a speed of 300MHz, resulting in a 

bandwidth of 2.4GB/s. 

 

In [16], a wave pipelined SRAM of 16kb with dual sensing latch circuit was implemented 

using 0.25µm CMOS technology. This SRAM has an access time of 2.6ns at 2.5V supply 

voltage. 

 

In [17], wave pipelining concept is reviewed with special emphasis on CMOS. The effects of 

temperature, voltage and process parameters on CMOS wave-pipelining are explained. The 

conventional pipelining considers only the worst case timing constraints; however in wave 

pipelining both the worst case and the best case timing constraints depending on temperature 

must be handled. A dynamically adaptive clocking mechanism is proposed, which 

compensates the effects of environmental fluctuations and process parameter deviations. A 
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dynamically adaptive power supply is also proposed.  The dependency of output delay on 

input pattern in conventional CMOS design was analyzed in detail. A biased CMOS gate is 

also proposed for reducing the input dependency at the output. 

 

In [18], valid clocking frequencies of wave pipelining are investigated. They used a new 

representation named as timed boolean functions and derived analytical expressions for valid 

clocking intervals.  

 

Boemo et al [19] studied wave pipelining on FPGA’s. They showed that wave pipelining can 

be achieved by using automatic place and route, if the circuit has same number of Look-up-

tables (LUTs) in all paths. 

 

In [20], an excellent tutorial on wave pipelining is given. They explained the principles of 

wave pipelining in detail, including the timing constraints, circuit and timing models, 

internal node constrains etc. The sources of delay variations and the Computer Aided Design 

(CAD) tools developed for synthesis and placement-routing of wave pipelined circuits are 

also explained. 

 

In [21], hybrid wave pipelining method is proposed. In hybrid wave pipelining method, wave 

pipelined sub stages are composed to form pipeline stages. A bit plane associative router 

(BPAR) is designed with hybrid wave pipelining method using 0.5µm CMOS technology. 

 

Wave Pipeline Multiplexed (WPM) routing technique is proposed in [22] in which multiple 

signals are sent in a single wire interconnect within a clock period. They suggested that 

WPM routing technique can be applied to both inter-core and intra-core interconnects in any 

system-on- chip (SoC) or microprocessor design. The number of total routing channels can 

be reduced by 50% without any performance loss in the throughput. They analyzed the 

application of WPM routing technique to a design including 40 million transistors, and they 

showed that total number of metal layers is decreased by 20% with only 4% increase at the 

dynamic power without any loss in the throughput. 

 

A study in [23] showed that, the power dissipation in long global wires is significantly 

reduced by adding wave pipeline stages to global wires and by lowering the supply voltage 

of repeaters, without any performance loss. 
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In [24] a novel pipelining scheme named mesochronous pipelining is proposed. In this 

method, data and clock signals propagate together, and when the minimum and maximum 

delay difference of a path reaches the tolerable value, then the signals in this logic depth are 

all sampled. They implemented an 8x8 bit multiplier to compare their method with 

conventional pipelining scheme, and a speedup of 1.7 was achieved by using fewer pipeline 

stages and pipeline registers. 

 

In [25] a new pipeline method, named as MOUSETRAP, is proposed. This method uses 

simple latches and control structures with an efficient event driven protocol. They claim that 

this pipelining method has a performance comparable to that of wave pipelining with much 

less design complexity. 

 

In [26] a pipelining method named as surfing pipelines is proposed. This method is similar to 

the wave pipelining, however in this method timing events are propagated along the pipeline 

and events in the data path are matched with the timing events. Therefore, timing uncertainty 

is reduced.  

 

Voltage scaling, wire sizing, and repeater insertion are simultaneously applied in [27] for 

achieving high performance, low power, and low area on wave-pipelined interconnect 

circuits. They found that optimal supply voltage is twice the threshold voltage for low power 

applications. The throughput-per-energy-area in their method is 10% lower than that of low-

voltage differential signaling (LVDS).  

 

Schinkel et al [28] used wave pipelining in a network on chip design, and demonstrated that 

the link power is reduced by a factor of 3.3 and data rate is increased by 80%.  

 

In [29] a double data rate, wave-pipelined interconnect for asynchronous network on chips is 

proposed. They used interleaved lines, misaligned repeaters and clock gating for low power 

and high speed chip interconnects. 

 

In [30] a synchronizing logic gate, which has an almost constant gate delay, is proposed for 

wave pipelining. This logic gate is used as an intermediate latch for synchronizing data 
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paths. An 8x8 bit multiplier is designed using 90nm technology, and it has an operating 

speed of 3.57 GHz. 

 

All the conventional pipelining, wave-pipelining, hybrid pipelining and mesochronous 

pipelining methods have a common property: A data wave is sampled whenever it reaches to 

the synchronization stage, which is composed of flip-flops or latches for sampling the data 

waves. In fact, a data wave is composed of several signal components, and all of these 

components may have different maximum and minimum delay differences.  

 

In this thesis, a new wave-pipelining methodology, which is named as Wave Component 

Sampling Method (WCSM), is developed. This method permits individual sampling of the 

signal components of a wave. Only the component of a wave, whose minimum and 

maximum delay difference value exceeds the tolerable value, is sampled. The other 

components of the wave, whose minimum and maximum delay differences do not reach the 

tolerable value, continue to propagate on the combinational circuit without being sampled. 

Therefore, the number of synchronization registers is decreased significantly in this proposed 

method. The area and power consumption due to these synchronization registers, and the 

associated power of the clock distribution are also decreased.   

 

The organization of this dissertation is as follows:  

 

Chapter 2 describes the theoretical background of current pipelining methods. In Chapter 3, 

different multiplier structures including Wallace trees, booth encoders and carry look-ahead 

adders are overviewed.  

 

Chapter 4 describes the details of the proposed WCSM. The advantages and disadvantages 

of the proposed method compared with the other pipelining methods are also given.  

 

In Chapter 5, the application of WCSM to different multiplier structures are analyzed. Two 

8x8 bit carry save adder multipliers are implemented using mesochronous pipelining scheme 

and WCSM, for comparing the methods. WCSM is also applied to other multiplier structures 

including booth encoder, Wallace tree and carry look-ahead adder. The optimization of the 

sub blocks and the performance gain of WCSM are described in detail. 
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In Chapter 6 the thesis work is summarized, and concluding remarks are given. Some 

suggestions are made for future improvements and possible utilizations of the proposed wave 

component sampling method. 
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Equation Chapter 2 Section 1 
 

CHAPTER 2 

 

 

2 PIPELINING METHODS 

 

 

 

The following parameters are used to explain the timing constraints for obtaining the 

maximum operating frequency for different pipelining methodologies: 

 

DMIN: Minimum propagation time in the combinational circuit. 

DMAX: Maximum propagation time in the combinational circuit. 

TCLK: Minimum clock period. 

∆C:  Constructive clock skew. 

∆U:  Unconstructive clock skew. 

TS,TH: Setup-hold times of registers. 

DR:   Propagation delay of a register. 

 

2.1 Conventional Pipelining  

 

A combinational logic circuit with its input and output registers are shown in Figure 2.1. An 

input data is sent to the combinational circuit with the rising or falling edge of the clock. 

Before another data is applied, the combinational circuit must complete the logical operation. 

Considering the propagation delay of the input registers, the setup time requirement of the 

output registers, and the clock skew between the input and the output registers, the minimum 

clock period for that circuit is shown in Equation (1). 

 

TCLK  DMAX + DR + TS + ∆U        (1) 
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Figure 2.1 Combinational logic circuit and input-output registers 

 

Generally, DR, TS and ∆U cannot be decreased further; therefore the only way for decreasing 

the clock period is to decrease DMAX. In conventional pipelining method, pipeline registers or 

latches are inserted to increase the operating frequency by decreasing the maximum 

propagation time, DMAX. Figure 2.2 shows the N stage pipelined version of the same 

combinational circuit. If the pipeline registers are separated with equal propagation delays, 

then the propagation delay between consecutive pipeline registers becomes DMAX/N. In this 

case, the minimum clock frequency can be expressed by 

  

TCLK  DMAX/N + DR + TS + ∆U        (2) 
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Figure 2.2 Conventional pipelining scheme 

 

At every rising or falling edge of the clock signal, a new input data vector is applied to the 

circuit.  At the end of N
th
 clock cycle, the first input vector reaches to the output, therefore 

the latency between input and output is N. Assume that the data throughput is continuous, 

such that at every clock edge a different input vector is applied. After the initial latency of N 

clock cycles, a new output is obtained at every clock cycle. Therefore, the clocking 

overheads such as setup-hold times, clocking skew, and register propagation delay are 

ignored, then the data throughput increases up to N times.  

 

A temporal-spatial diagram shows the transition times of the signals at different locations of 

the combinational circuit. The “Y” axis represents the logic depth of the combinational 
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circuit, and the “X” axis represents time. Figure 2.3 shows the temporal/spatial diagram for 

conventional pipelining. The fastest signals arrive at the output after DMIN seconds, and the 

slowest signals arrive at the output after DMAX seconds. The shaded region, which is between 

DMIN and DMAX, is the transition region, where the combinational logic blocks change their 

state and the data is unstable. In the other regions, the combinational circuits are idle, 

keeping their states. In a conventional pipelined system, operating clock frequency is limited 

by the slowest path in the logic stages.  As it is seen from Figure 2.3, a new input data vector 

is accepted after all the combinational operations are calculated by the logic stages, i.e. a 

new data can only be launched after the slowest signal arrives at the output register. The 

setup time and clock uncertainty must also be handled.  

TimeTCLK
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Figure 2.3 Temporal/spatial diagram for conventional pipelining 

 

As it is seen from Figure 2.3, the combinational logic blocks are idle for the vast majority 

of time. Although the fast signals arrive early at the output, they must wait for the slowest 

signal for sampling.  

 

The disadvantages of conventional pipelining can be listed as: 

 

 Pipeline registers increase the area and power consumption of the circuit. 

 Clock distribution to the pipeline registers with minimal skew is a challenging task. 
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 The combinational logic blocks are idle for the vast majority of time, therefore logic 

utilization is small. 

 The slowest path determines the operating speed of the entire circuit.  

 

The advantages of the conventional pipelining: 

 The design complexity is lower than wave-pipelining. 

 Since only worst case timing is considered, it is less sensitive to temperature and 

process parameter variations. 

 

2.2 Wave pipelining 

 

In wave-pipelining method, the pipeline registers are removed from the circuit. The internal 

capacitances of the logic gates act as virtual storage elements, which store the states of the 

pipelining data. An input data wave is sent to the combinational circuit, and before it reaches 

to the output, another data wave is sent. Therefore, multiple data waves propagate on the 

logic circuit simultaneously. While propagating, those waves encounter with different 

delays. For proper operation, the fastest signal component of a data wave should not catch 

the slowest signal component of the preceding wave. Therefore, in wave-pipelining method, 

the minimum and maximum delays of the waves are tried to be made equal by slowing down 

the fast components.  

 

Figure 2.4 shows multiple waves propagating on the same combinational circuit. There are 5 

different data waves propagating on this circuit from left to right. The shaded regions 

between the waves are data transition regions in which the data is unstable. As seen in Figure 

4, the width of the transition region increases and the width of the stable wave decreases 

while propagating on the logic circuit. The waves must be sampled, before the width 

becomes too small, which creates setup and hold time violations. 
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Figure 2.4 Propagating waves on the same combinational circuit. 

 

Figure 2.5 shows the temporal/spatial diagram of the wave-pipelining operation. Similar to 

Figure 2.4, the shaded regions are transition regions and the width of those transition regions 

increases while propagating on the direction of logic depth. As it is seen from Figure 2.5, 

before a data wave reaches to the output register, another wave is launched. Therefore, 

multiple data waves propagate on the combinational logic circuit simultaneously. Analogues 

with the eye diagram of telecommunication theory, an adequate aperture is needed for proper 

sampling of the data waves at the output.  
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Figure 2.5 Temporal/spatial diagram of wave-pipeline operation 
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2.2.1 Timing constraints 

 

There are two constraints for sufficient aperture for proper sampling. The first constraint 

comes from setup time requirement of the sampling flip-flops: The slowest signal component 

of a data wave must arrive at least TS seconds before the sampling edge of the clock signal. 

The second constraint comes from the hold time requirement: The fastest signal component 

of the previously launched data wave arrives at time TCLK+DMIN+DR. This value must be 

larger than the hold time requirement of the flip-flops. Let TL be the latching time of the data 

waves at the output, where  

 

TL=N*TCLK + ∆C        (3) 

 

N represents the number of clock cycles passed during the propagation of a data wave from 

the input register to the output register. It also represents the degree of wave-pipelining, i.e. 

the number of data waves propagating on the combinational logic simultaneously. 

 

Equation (4) describes the lower bound on the latching time, which comes from the setup 

time requirement of the register: 

 

TL > DR + DMAX + TS + ∆U       (4)  

 

Equation (5) describes the upper bound on the latching time, which comes from the hold 

time requirement due to the fastest signal component of the succeeding wave. 

 

TL  < TCLK + DMIN + DR – (∆U + TH)      (5) 

 

Combining (4) and (5), the constraint on the operating frequency can be obtained as 

 

TCLK > (DMAX-DMIN) + TS + TH + 2∆U      (6) 

 

Equation (6) shows that the minimum clock period depends on DMAX-DMIN rather than 

DMAX. Therefore, to increase the operating frequency, DMIN and DMAX are tried to be 

balanced. 
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2.2.2 Sources of Delay Differences 

 

The major sources of delay differences can be given as: 

 

1. Data dependent delay variation 

A combinational logic gate has a propagation delay between its inputs and outputs. 

This delay is not constant; rather it depends on the input pattern. Consider a 2 input 

NAND gate designed with static CMOS logic. If one of its inputs is at logic-0 and 

the other one is at logic-1, then there will be one path for pulling up the output load. 

If both of the inputs are at logic-0, then there will be 2 paths for pull-up, which 

creates double driving strength. Therefore, the output delay is much lower. If a 

CMOS logic gate with 3 or more inputs is used, then the variation of the output 

delay becomes higher.  

 

2. Process dependent delay variation 

The delays of the gates are strictly dependent on the process parameters. The circuits 

produced at different manufacturing runs will have different delay values. 

Furthermore, the circuits produced at the same wafer will also have different delay 

values at the output. 

 

3. Temperature dependent delay variation 

The delays of the gates depend on the temperature. The wave-pipelined circuits must 

be properly designed to compensate for the delay variation due to temperature.  

 

4. Delay variation due to the supply noise 

The noise in the power supply will produce additional delay variation at the outputs 

of the logic gates. Also, the coupling capacitances between adjacent wires will 

produce delay variation. 

 

2.2.3 Logic Restructuring 

 

For equalizing the minimum and maximum delays in the logic circuit, it may be re-

structured. The main idea is to balance the logic so that all the signals encounter with the 

same number of logic gates while propagating. Figure 2.6 shows the logic restructuring 
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technique. Both of the circuits have same function. In the upper circuit, D input arrives to the 

output early. By restructuring the logic, all the paths are balanced, which can be seen in 

Figure 2.6. In some situations, logic restructuring increases the number of logic blocks 

required to obtain same logic operation.  
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Figure 2.6 Logic restructuring 

 

 

2.2.4 Delay Insertion 

 

After the logic restructuring, there can still be unbalanced paths. For balancing such paths, 

inverters or buffers are inserted to slow down the fast paths. Figure 2.7 shows a 

combinational logic and Figure 2.8 shows the delay buffer inserted for slowing down the fast 

path. 
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Figure 2.7 A combinational logic circuit 
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Figure 2.8 A combination logic circuit with balanced paths 

 

2.2.5 The advantages and disadvantages of wave-pipelining 

 

The advantages and disadvantages of wave-pipelining can be summarized as [17]: 

 

Advantages of wave-pipelining: 

 Very high clock rates can be obtained. 

 No partitioning in the combinational logic is performed; therefore unequal 

partitioning is not a problem. 

 Reduced clocking latency overhead. 

 Clock distribution problem is reduced because fewer registers are used. 

 Simultaneous switching noise is reduced. 

 Power consumption and silicon area due to flip-flops and clock buffers are 

reduced. 

 

Disadvantages of wave-pipelining: 

 Design complexity is increased due to delay balancing. 

 Power consumption and area increase because of delay balancing. 

 Debugging and testing are difficult. 

 Process parameters and environmental changes effect much more than 

conventional pipelining. 

 

2.3 Hybrid Wave Pipelining 

 

Hybrid wave pipelining is another pipelining method proposed in [21]. In this method, wave 

pipelined sub stages are composed to form pipeline stages. In wave-pipelining the clock 

cycle time is determined by the delay difference value at the output register.  However, in 

hybrid wave-pipelining combinational logic is partitioned into several stages, and the clock 
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cycle time is determined by the delay difference value of a stage with the largest delay 

variation. Therefore, the operating frequency of the logic circuit is increased. 

  

2.4 Mesochronous Pipelining Scheme 

 

Mesochronous pipelining scheme [24] is similar to the hybrid pipelining method. In 

mesochronous pipelining scheme, clock signal is delayed so that it propagates with the data. 

Delay elements, which give the same delay value with the corresponding combinational 

logic stage, are inserted in the clock signal path.  

 

The cascading registers form wave-pipeline regions, therefore multiple data waves propagate 

on the combinational logic circuit simultaneously. Figure 2.9 shows the temporal-spatial 

diagram of mesochronous pipeline operation for a three stage pipelined system. The second 

stage is assumed to have maximum delay variation, therefore the clock cycle time is 

determined by this stage. Equation (7) gives the requirement on minimum clock period for 

mesochronous pipelining scheme. 

 

DMAX(j) – DMIN(j) + TS + TH + 2∆U  < TCLK_m      (7) 
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Figure 2.9 TS diagram of mesochronous pipelining 

  



 

 

18 

 

Equation Chapter 2 Section 1 

 

CHAPTER 3 

 

 

3 MULTIPLIER STRUCTURES 

 

 

 

Let X and Y be two unsigned binary numbers, which are M and N bits wide. If we express X 

and Y in their binary representation with Xi, Yj Є {0,1}: 

 

M-1

i=0

Xi2
i

X=

N-1

j=0

Yj2
j

Y=

 

 

Then the multiplication of X and Y is defined as: 

M-1

i=0

Xi2
i

N-1

j=0

Yj2
j

Z=X*Y=

M-1

i=0

N-1

j=0

XiYj2
i+j

=

 

 

Multiplication operation is composed of generating partial products and addition of those 

partial products. Partial product generation is the AND operation of a multiplier bit with all 

the bits of the multiplicand, which can be seen in Figure 3.1.  
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Figure 3.1 Partial product generation  

 

Partial products and simple addition of those partial products for an 8x8 bit multiplier can be 

seen in Figure 3.2. In this figure there are 64 dots, which represent the 64 partial products 

generated by AND operation of the corresponding bits of the multiplicand and the multiplier. 

The partial products are shifted to the corresponding weight of the multiplicand bit for 

addition. 

 

Figure 3.2 Simple addition of partial products 

 

For inputs which are M and N bits wide (M≤N), the simplest multiplier can be composed of 

a single N bit adder with 2-inputs [31]. The partial products are generated and added at every 

clock cycle, so the multiplication operation is completed at M clock cycles. This multiplier is 

named as iterative multiplier. 

 

To increase the speed of the multiplier, partial products are generated and added in parallel. 

For this purpose, adder trees can be used. In adder tree structures, the output delay is log(N), 
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instead of N. In this architecture, the adders are carry propagate adders. The carry propagate 

addition operation is very time-consuming which increases the critical path delay of the 

circuit. To overcome this problem, Wallace trees are generally used in the literature. 

 

3.1 Carry Save Adder (CSA) Multiplier 

 

All the partial product bits must be added in the multiplication. Multiplication result does not 

change when the carry bits are sent diagonally to the next stages, instead of sending to the 

right. In the carry save multiplier structure, the carry outputs are sent diagonally to the next 

stage for addition. At the last stage, a vector merging adder is used to merge the carry and 

sum outputs. Figure 3.3 shows the block diagram of carry save multiplier with vector 

merging adder. As it is seen from the figure, the carry output of a full adder is fed back to the 

carry input of the neighboring full adder. In pipelined designs, the feedback paths must be 

avoided for increasing the throughput, therefore a half adder tree can be used instead of carry 

propagate addition. The blocks circulated with dashed line are replaced with a half adder 

tree, which is shown in Figure 3.4.   
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Figure 3.3 CSA multiplier with vector merging adder 



 

 

22 

 

H

H

H

H

H

H

H

F

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H
H

X<7:0>

Y<7:0>

M<15>

M<14>
M<13>

M<12>
M<11>

M<10>
M<9>

M<8>
M<7>

M<6>

M<5>

M<4>

M<3>

M<2>

M<1>

M<0>

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

 
Figure 3.4 CSA Multiplier with half adder tree 

 

3.2 Wallace Trees 

 

The carry propagate addition is the most time consuming operation in multiplication. In 

order to avoid using carry propagate addition, Wallace proposed a method [32]. In this 

method, by using an adder tree composed of full adders and half adders, any number of 

partial products can be decreased to 2 numbers without any carry propagate addition. In the 

last step, these 2 numbers are added using a fast carry propagate adder.  

 

Figure 3.5 shows the reduction of two and three partial product bits using a half adder and a 

full adder, respectively. The carry output is shifted to the left by one bit; therefore the weight 

of it is doubled. Figure 3.6 shows the complete partial product reduction of an 8x8 bit 

multiplier using a Wallace tree. It is seen that in the first stage, 16 full adders and 5 half 

adders are used. In the second stage, 10 full adders and 6 half adders are used. In the third 

stage 6 full adders and 6 half adders are used, while in the fourth stage 6 full adders and 5 
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half adders are used for reducing the partial products. As it is seen from the figure, no carry 

propagate addition is used and all the partial products are reduced to 2 numbers, which must 

be added using carry propagate addition. 

 

Full adder is used as a compressor, which compresses 3 bits into 2 bits. Wallace trees using 

(3,2) compressors suffer from the irregularity in the routing [33]. There are more regular 

compressors, like (4,2) compressors, which compresses 4 bits into 2 bits. Figure 3.7 shows 

the partial product reduction using (4,2) compressors, in which the routing is much more 

simple than Wallace trees.  
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Figure 3.5 Reduction of bits using half adder and full adder  
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Figure 3.6 Partial product reduction of 8x8 bit multiplier using Wallace tree [33] 
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Figure 3.7 Partial product reduction using (4,2) compressors [33] 

 

3.3 Booth Encoding 

3.3.1 Booth 2 Algorithm 

 

Booth’s algorithm [34] is a well known algorithm which is used to decrease the number of 

partial products used in the multiplication. In this algorithm, the multiplier bits are grouped 

into pairs of two bits to select the partial products from the set of {0, M, 2M, 3M}, which are 

pre-calculated. The calculation of 2M is completed by only shifting the multiplier M by one 

bit to the left. However, the calculation of 3M requires a carry propagate addition of M and 

2M. Therefore, 3M is called as a hard multiple. In order to avoid this carry propagate 

addition, modified Booth algorithm, which selects partial products from the set of {0, M, 

2M, 4M+-M}, is used. In this algorithm, instead of 3M multiple, either 4M or –M is used, 

depending on the adjacent multiplier groups.  Table 3.1 shows the partial product selection 

table and Figure 3.8 shows the modified booth algorithm.  The multiplier bits are grouped 
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into pairs of 3 bits, and they are used to select multiplicands. Negative multiples can be 

obtained by using 2’s complement logic, so if the selected partial product is negative, then all 

the bits are negated and then a 1 (which is shown as S-bit) is added to complete the 2’s 

complement operation. As it is seen from the figure, the number of rows of partial products 

is decreased from 8 to 5. In general, n partial products are decreased to the biggest integer 

which is smaller than or equal to (n+2)/2.  

 

Table 3-1 Partial Product Selection of modified Booth-2 algorithm. 

Partial Product Selection Table 

Multiplier bits Selection S 

000 +0 0 

001 +M 0 

010 +M 0 

011 +2M 0 

100 -2M 1 

101 -M 1 

110 -M 1 

111 -0 1 
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Figure 3.8 Modified Booth Algorithm (2 bit shift) [33] 
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3.3.2 Booth 3 Algorithm 

 

The multiplier bits can be grouped with pairs larger than 3 bits, so the amount of shift 

operation between partial products can be greater than 2. In booth 3 algorithm, the partial 

products are selected from the set of {±0, ±M, ±2M, ±3M, ±4M}.  There is also a hard 

multiple of 3M in Booth-3 algorithm. Table 3.2 and Figure 3.9 show the partial product 

selection table of Booth-3 algorithm and the reduction of partial products, respectively. The 

number of rows of partial products is decreased from 8 to 3. 

 

Table 3-2 Partial product selection table of Booth-3 algorithm. 

Partial Product Selection Table 

Multiplier bits Selection S 

0000 +0 0 

0001 +M 0 

0010 +M 0 

0011 +2M 0 

0100 +2M 0 

0101 +3M 0 

0110 +3M 0 

0111 +4M 0 

1000 -4M 1 

1001 -3M 1 

1010 -3M 1 

1011 -2M 1 

1100 -2M 1 

1101 -M 1 

1110 -M 1 

1111 -0 1 
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Figure 3.9 Modified Booth Algorithm (3 bit shift) [33] 

 

Booth 4 and higher booth algorithms are also possible, but the partial product selection logic 

becomes too complicated. Also, hard multiples (5M and 7M) are difficult to obtain, so it is 

not feasible to use booth4 and higher. 

 

3.3.3 Redundant Booth Algorithm 

 

Hard multiple of 3M in the booth 3 algorithm requires carry propagate addition. In order to 

overcome this problem, fully redundant booth algorithm is used. In this algorithm, all the 

partial products are represented by their redundant form (i.e. Redundant form of 3M is 

M+2M). The number of the dots is doubled, because of this redundant representation. 

Therefore, fully redundant form is not feasible. 

 

Partially redundant booth algorithm is used to compute hard multiple of 3M, in which small 

length adders are used. Figure 3.10 shows the partially redundant addition of 16 bit M and 

2M, using small length adders of 4 bits. Carry propagate addition of 4 bits is performed in 

the small adders; however no carry signal propagates between these adders. Therefore, the 

length of the carry propagation is reduced and limited to 4. As it is seen from Figure 3.10, 

the number of dots is much smaller than the fully redundant representation.  

 

A problem with this partially redundant representation arises when negative partial products 

are required. As it is seen from Figure 3.11, large gaps of 0’s become large gaps of 1’s when 

negated. Also considering the addition of 1’s in the LSB’s of partially redundant represented 
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numbers, in the worst case (all partial products are negative) same hardware of fully 

redundant representation plus the hardware of small length adders are needed. Therefore, the 

problem is to obtain negative multiples from positive multiples, or vice versa. 
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Figure 3.10 Partially redundant addition [33] 
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Figure 3.11 Negative multiple generation [33] 

 

3.4 Carry Propagate Addition 

 

The final 2 numbers which are produced by Wallace trees must be added using carry 

propagate addition. In ripple carry addition, each full adder must wait until the previous 

carry output has been calculated in order to begin calculation of its carry output and sum. In 

order to speed up this carry propagate addition, carry look-ahead adders are widely used. In 

carry look-ahead adders, the carry outputs are generated before the sum outputs.  

 

Let A and B are two n-bit numbers, and S is the summation of A and B. In binary expanded 

form: 

n-1

k=0

ak2
k

A=

 

Let 

ab: Boolean AND operation of a and b 

a || b: Boolean OR operation of a and b 

a ^ b: Boolean EXOR operation of a and b 

a + b: Summation of a and b 
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The addition of A and B and the carry input c0 can be computed as: 

sk= ak ^ bk ^ ck  

ck+1= akbk || akck || bkck 

 k= 0,1,..,n-1 

The sum and carry outputs can be interpreted using auxiliary signals, gk (generate) and pk 

(propagate). If propagate signal pk is 1, then the incoming carry signal to that stage is 

propagated to the next stage.  Similarly, if generate signal gk is 1, then a carry signal is 

generated at that stage and it is sent to the next stage. For obtaining the propagate signal, the 

two equations shown below can be used. They both give the same result while generating 

carry out. 

gk = akbk 

pk = ak || bk 

    = ak ^ bk    

The carry signal can be interpreted using generate and propagate signals and the incoming 

carry signal, such that: 

ck+1 = gk || pkck  

Using these equations, a carry output can be calculated in terms of preceding generate and 

propagate signals and a carry signal at any bit position: 

ck+1 = gk || pkgk-1 || pkpk-1gk-2 || pkpk-1pk-2ck-2 

This leads to two new functions: 

g(j,k) = gj | | pjgj-1 | | pjpj-1gj-2 | | … | | pjpj-1…pk+1gk 

p(j,k) = pjpj-1…pk+1pk 

Let GG and PG be the group generate and group propagate signals of a 4-bit group 

respectively. 

GG = g(3,0) = g3 | | p3g2 | | p3p2g1 | | p3p2p1g0 

PG = p(3,0) = p3p2p1p0 

The carry output of a 4 bit carry look-ahead adder is expressed using group propagate and 

group generate signals: 
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c4=GG + PG*c0 

GG and PG signals are generated immediately without using carry inputs. When the carry 

input has come, then the 4 level shifted carry output is generated, therefore the carry 

propagation is completed with 2 clocks, instead of 4.  

 

Using 4 of these group signals, a super group can be composed. Figure 3.12 shows the carry 

look-ahead design of a 4-bit group and Figure 3.13 shows the super group signals of 16 bit 

addition. These super groups can also be combined to make larger groups.  
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Figure 3.12 Carry look-ahead design of a 4-bit group 
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Figure 3.13 16 bit carry-look-ahead adder 

 

 

For demonstrating the speed improvements using carry look-ahead adders, the timing details 

of an addition of two 16 bit numbers using 4 carry look-ahead adders of 4 bits and 1 carry 

look-ahead logic are investigated. 

 

Starting at time 0, 

 Individual pi and gi signals are calculated at time 1. (pi = ai || bi ; and gi = aibi) 

 Individual ci signals are calculated at time 3 for the first CLA.  (AND operation is 

completed at time 2 and then OR operation is completed at time 3 )  

c1=g0+p0c0 

c2=g1+p1g0+p1p0c0 

c3=g2+p2g1+p2p1g0+p2p1p0c0 

c4=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0 

 Group propagate signals (PG) are calculated at time 2. 

PG[1]=p3p2p1p0 

PG[2]=p7p6p5p4 

PG[3]=p11p10p9p8 

PG[4]=p15p14p13p12 
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 Group generate signals (GG) are calculated at time 3. 

GG[1]  = g3+p3g2+p3p2g1+p3p2p1g0 

GG[2]  = g7+p7g6+p7p6g5+p7p6p5g4 

GG[3]  = g11+p11g10+p11p10g9+p11p10p9g8 

GG[4]  = g15+p15g14+p15p14g13+p15p14p13g12 

 Look-ahead Carry Unit (LCU) generates the inputs required by Carry Look-ahead 

Adder Blocks at: 

Time 0 for the first CLA 

Time 5 for the second CLA (c4=GG[1] + PG[1]c0) 

Time 5 for the third CLA (c8=GG[2] + PG[2]GG[1]+PG[2]PG[1]c0) 

Time 5 for the fourth CLA (c12=GG[3] + PG[3]GG[2]+PG[3]PG[2]GG[1]+ 

PG[3]PG[2]PG[1]c0) 

 Calculation of Sum outputs are calculated at: 

Time 4 for the first CLA (si=ai^bi^ci and ci are calculated at time 3 for the first 

CLA) 

Time 8 for the second CLA (carry input is generated at time 5, and individual ci 

signals are generated at time 7 for the second CLA) 

Time 8 for the third CLA (carry input is generated at time 5, and individual ci 

signals are generated at time 7 for the third CLA) 

Time 8 for the fourth CLA (carry input is generated at time 5, and individual ci 

signals are generated at time 7 for the fourth CLA) 

 The carry output of the 16 bit adder (c16)is calculated at time 5 

(c16= GG[4] + PG[4]GG[3]+PG[4]PG[3]GG[2]+ PG[4]PG[3]PG[2]GG[1]+ 

PG[4]PG[3]PG[2]PG[1]c0) 

 The carry output of the entire adder is generated with a 5 gate-delay and the overall 

addition is completed with 8 gate delays. If carry look-ahead addition is not used and 

ripple carry addition is used, then the overall addition takes 31 gate delays. 
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CHAPTER 4 

 

 

4 WAVE COMPONENT SAMPLING METHOD (WCSM) 

 

 

 

A data wave propagating on the combinational logic circuit has many signal components. 

The combinational logic circuit is also composed of many sub stages of logic gates, which 

have different propagation delays. Therefore, all of the signal components experience 

different delays while propagating on the logic. The minimum and maximum delays of all 

the wave components may be different.  

 

In conventional pipelining, wave-pipelining and mesochronous pipelining schemes, all of the 

components of a propagating wave are sampled at the same time whenever they arrive to a 

synchronization stage. In the proposed WCSM, only the components of a wave, whose 

minimum and maximum delay differences reach to the tolerable value, are sampled. The 

other components of the wave are aligned with the sampled components by using delay 

elements. Figure 4.1 shows the basic operation principle of WCSM. FF and DL represent 

flip-flops and delay elements, respectively. As it is seen in Figure 4.1, only some of the 

signal components of propagating waves, whose delay difference values reach to the 

tolerable value, are sampled by using flip-flops. 
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Figure 4.1 Proposed wave component sampling method (WCSM) 

 

4.1 Principles of Wave Component Sampling Method 

 

Consider the 2 input AND gate in Figure 4.2. A0, B0 and C0 are the initial values, and A1, 

B1 and C1 are the final values of the inputs and the output, respectively. Assume that, both 

of the inputs change their state at the same time instant. Then, the output C changes its state 

with a propagation delay, which depends on the inputs. The propagation delay has a mean 

value of TP seconds and a variation of ∆TP seconds as shown in Figure 4.2. If one or both of 

the inputs have a transition variation of ∆Tin seconds, then the transition variation of the 

output becomes approximately ∆Tin+∆TP seconds. 
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Figure 4.2 Input-output delay of AND gate 
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For describing WCSM in detail, an imaginary combinational circuit is constructed as in 

Figure 4.3. In this circuit, 3 combinational logic blocks, which are named as F1, F2, and F3, 

are used. Assume that the mean values of the propagation delays of F1, F2 and F3 are all 

400ps and the transition variation of F1, F2 and F3 are 20ps, 40ps, and 80ps, respectively. 

Also, assume that the delay elements used in this combinational logic circuit do not have a 

transition variation at the output; i.e. they only give a time shift to the incoming signal. By 

using these delay elements, all the branches which enter to the same node are aligned with 

each other. 
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Figure 4.3 An imaginary combinational circuit 

 

 

As seen from Figure 4.3, 4 inputs are applied to the circuit. It is assumed that they are all 

applied at the same time instant, i.e. there is no delay difference between them at the 

beginning. In Figure 4.3, total propagation times are not shown, only the minimum and 

maximum delay differences are displayed. While propagating on the circuit, the components 

of the wave experience different delays. At the beginning, all of the components have a delay 

difference of 0ps. After first logic stage, 4 components of the wave have delay differences of 

0ps, 20ps, 40ps, and 80ps, respectively. After second logic stage, the delay differences 

become 0ps, 40ps, 80ps, and 160ps, respectively. Obviously, the delay differences are 
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increasing after each logic operation. After 4
th
 logic stage, maximum delay difference 

becomes 320ps.  

 

Figure 4.4 shows the data transition regions after the first logic stage. W1, W2, W3, and W4 

are the components of the wave, and W shows the total propagating wave. The shaded 

regions are the transition regions, and the white regions are the stable regions, in which no 

transition occurs. 
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Figure 4.4 Data transition regions after 1
st
 logic operation 

 

 

Total propagation time of this imaginary combinational logic circuit is 1600ps. Without 

pipelining, this logic circuit operates with a maximum operating frequency of 625MHz, 

ignoring the clocking overhead. 

 

If wave-pipelining is used, then Equation (5) dictates the operating frequency. If total 

clocking overhead (TS+TH+2∆U) is assumed to be 40ps, then TCLK > (DMAX-DMIN) + 40ps 
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holds. If the target operating frequency is assumed to be 5GHz (i.e. clock period of 200ps), 

then, (DMAX-DMIN) should be smaller than 160ps. This is the critical value (i.e. the tolerable 

value) of the minimum and maximum delay difference. If classical wave-pipelining or 

mesochronous pipelining schemes are used, then all of the components of the wave are 

needed to be sampled after second logic stage, because the delay difference value of the 4
th
 

path reaches to 160ps after 2
nd

 logic stage. Otherwise, the delay difference value of the 4th 

path reaches to 240ps after 3
rd

 logic stage, which exceeds the tolerable value of 160ps. 

Figure 4.5 shows the case in which mesochronous pipelining scheme is applied to this 

circuit.  
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Figure 4.5 Flip-flops inserted using mesochronous pipelining scheme 

 

As seen in Figure 4.3, only the 4
th
 branch reaches to the critical value of 160ps after 2

nd
 logic 

stage. Therefore, if WCSM is used, it is enough to sample only the 4
th
 component of the 

wave. Considering the 3
rd

 logic stage, sampling the 3
rd

 component after 2
nd

 logic stage is 

adequate. Otherwise, we will need to sample the 4
th
 component after 3

rd
 logic stage. Figure 

4.6 shows the logic circuit when WCSM is applied. Instead of 8 flip-flops used in 

mesochronous or wave-pipelining schemes, only 3 flip-flops are enough for proper 

operation. 
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Figure 4.6 Flip-flops inserted using proposed WCSM 

 

Figure 4.7 shows the register insertion algorithm of WCSM. TC is the critical value of the 

delay difference, where TC=TCLK-(TS+TH+2∆U). Here, (i,j) represents the location of a node, 

and ∆T(i,j) shows the width of the transition region at node(i,j). In calculating ∆T(i,j), the 

transition variation of the logic block at node(i,j) is added with the maximum transition 

variation of the inputs which enter to the logic block block at node(i,j). 
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Figure 4.7 Flow chart of register insertion of WCSM 
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4.2 Advantages and Disadvantages of Wave Component Sampling Method 

 

The advantages of the Wave Component Sampling Method can be listed as: 

 Number of synchronizing flip-flops or latches is decreased significantly. 

Only the paths whose delay difference value reach to the critical level 

are sampled, the other components continue propagating without being 

sampled. Therefore, the total number of flip-flops or latches is decreased 

significantly.   

 Power consumption due to the flip-flops or latches is decreased. 

Latches and flip-flops consume significant power, especially when a 

high performance latch or flip-flop is used at high operating frequency. 

The reduction in the total number of registers also reduces the power 

consumption due to these unnecessary registers. Delay elements, which 

are replaced with the registers for aligning the propagating waves, 

consume lower power than the registers, especially when the operating 

speed is high. Therefore, total power of the chip is reduced. 

 Clock distribution to the synchronizing flip-flops or latches becomes much 

easier. 

Clock distribution is a challenging task, especially in complicated 

circuits. The distribution of a global clock signal to all of the flip-flops 

or latches with minimal skew is a very big problem. In WCSM, clock 

distribution is much easier because of two reasons: First, a global clock 

signal is not used and instead of it several clock signals which drive a 

small number of registers are used. Controlling skew between a small 

number of registers is much easier, therefore, routing of the clock 

signals with minimal skew becomes easy. Second, the reduction in the 

number of registers also decreases the total number of clock paths to be 

routed.   

 Power consumption due to the clock buffers is reduced significantly. 

The power of the clocking network can be significant, which can be 

more than half of the total power of the entire chip. A lot of repeaters 

must be inserted for properly distributing the clock signal throughout the 

chip. In WCSM, the number of the registers is decreased and several 
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clock signals are used to drive small number of registers, therefore the 

power consumption due to the clock distribution is decreased. 

 High speed operation 

WCSM provides significant increase in the operating speed compared 

with the conventional or wave pipelining methods. The speed is also 

better than mesochronous pipelining method, because considering the 

layout, the reduction in the number of flip-flops and the clock signals 

makes placement and routing easier, which increases the operating 

speed of the chip.  

 

The disadvantages of WCSM can be listed as: 

 The design complexity is increased compared with conventional pipelining. 

In conventional pipelining, only the paths with worst case delay are 

considered. However, in WCSM, both the worst case and best case 

delay values of all the paths must be analyzed, which is similar to 

mesochronous or wave pipelining methods. 

 The operating frequency cannot be changed afterwards.  

In WCSM, unnecessary registers are replaced with active delay elements 

and the components of the waves which are sampled with registers are 

aligned with the components of the waves, which propagate without 

being sampled. Therefore, the operating frequency must be initially set 

and it cannot be changed afterwards. Otherwise, the change in the 

frequency corrupts the alignment of the propagating waves. 

 WCSM is more susceptible to temperature and process parameter variations. 

The absolute delay values of the active delay elements are strictly 

dependent on temperature and process variations. The registers are 

replaced with active delay elements; therefore the variation of the clock 

frequency and delay values of the delay elements with respect to 

temperature and process parameter changes must be handled carefully. 

Simulations using corner temperature and process parameters must be 

performed, and all the variations depending on temperature and process 

parameters must be analyzed.   
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CHAPTER 5 

 

 

5 APPLICATION OF WCSM TO MULTIPLIER STRUCTURES 

 

 

 

In order to demonstrate the effectiveness of the WCSM and compare it with the other 

pipelining methods, 8x8 bit multiplier is implemented using UMC-0.18µm CMOS 

technology. In [24], carry save adder multiplier structure was used to demonstrate the 

performance of the mesochronous pipelining scheme, therefore same structure is used for 

comparing WCSM with mesochronous pipelining method. For achieving high performance 

multipliers, several optimizations are performed in the implementation of the multiplier 

blocks. 

 

The application of WCSM to other multiplier structures including booth encoding, Wallace 

trees and carry look-ahead adders is also investigated. 8x8 bit multiplier using these 

structures is implemented and the performance comparison with the other pipelining 

methods is performed. 

 

5.1 Logic selection 

 

The logic gates used in WCSM must have small delay variation at the output. The rise time 

and fall time of the logic must also be small, in order to have high clock frequency. At the 

same time, the power consumption of the logic and the latency must also be small.  

 

Output delay of classical CMOS logic is strictly dependent on the input pattern. Figure 5.1 

shows a classical CMOS 2 input NAND gate. When both of the inputs are HIGH, then 

PMOS transistors are OFF and the NMOS transistors pull down the output to LOW. When 

one of the inputs are LOW and the other input is HIGH, then the pull down path is closed 

and one PMOS transistor pulls up the output to HIGH. When both of the inputs are HIGH, 

then there will be two pull-up paths, therefore the output delay becomes much smaller. In 
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classical CMOS gates with 3 or higher inputs, the delay variation at the output becomes 

much higher. In [17], CMOS gates with current limiting transistors are proposed. Figure 5.2 

shows a 2 input CMOS NAND gate with current limiting PMOS transistor at the top. Pull-up 

current is limited with PMOS transistor which is always ON, however in this case the rise 

time becomes longer, which is not suitable for very high speed operations. 
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Figure 5.1 Schematic diagram of 2 input NAND gate 
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Figure 5.2 Schematic diagram of CMOS NAND2 with current limiting transistors 

 

A symmetrical circuit structure is important to achieve small delay variation at the output. 

Figure 5.3 shows the schematic diagram of symmetrical transmission gate logic, which has 4 

inputs named as X, NX, Y, and Z, where NX is the complement of X input. The output 

function of this logic block is Q=~(X’Y+XZ). This generic block is suitable for WCSM and 

it is used to implement several logic operations in the various sub blocks of the multiplier. 
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Figure 5.3 Generic transmission gate logic 

 

After the transmission gates, an inverter is used to provide the required drive strength needed 

for driving the cascading stages. It is also possible to use a cascade of 2 inverters at the 

output for further improving the drive strength, which is shown in Figure 5.4. The sizes of 

the transistors of transmission gate logic must be optimized for high speed, and low power 

operation with minimal delay variation at the output. The ratio between the inverters must 

also be optimized. Rise and fall time of not only the output but also the internal signals must 

be low.  
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Figure 5.4 Transmission gate logic with 2 inverter cascades at the output 

 

The lengths of the transistors are used as minimum size, which is 180nm. The parameters to 

be optimized can be listed as: 

 

 The width of the PMOS transistors of transmission gates (Wp). 

 The width of the NMOS transistors of transmission gates (Wn). 

 The width of the PMOS transistor of the first inverter stage (Wp1). 

 The width of the NMOS transistor of the first inverter stage (Wn1). 

 Assuming that the transistor sizes of the second inverter are a constant times 

that of the first inverter, the ratio between these inverters. 
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These parameters are analyzed considering all of the possible transitions at the input. The 

inputs and the outputs of the logic are connected to the logic gates with the same structure; 

therefore a simulation setup shown in Figure 5.5 is used. Cadence Analog Design 

Environment is used and post-layout simulations are performed. 
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Figure 5.5 Block diagram of the simulation setup 

 

Figure 5.6 shows the simulation of this circuit, where the internal signals of transmission 

gate in the middle are displayed. In this figure, only a transition in “Y” input occurs. An 

input pulse with a period of 250ps is applied to the circuit. As it is seen from the figure, the 

width of the negative pulse is 243ps, and the rise time and fall time at the output of the 

transmission gates are 132ps and 86ps, respectively. Table 5.1 shows the parameters used in 

the simulation: 
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Figure 5.6 Simulation of transmission gate logic block 

 

Table 5-1 Parameters of transistors 

Parameter Value 

Wp 600n 

Wn 240n 

Wp1 600n 

Wn1 240n 

a 1.5 

 

For optimizing the parameter values, parametric sweep analysis is performed. Figure 5.7 

shows an example parametric analysis, in which “a” is kept as 1.5 and the sizes of the PMOS 

transistors are changed from 500n to 900n and the sizes of the NMOS transistors are changed 

from 180n to 350n. Every parameter takes 5 different values; therefore the total number of 

simulations is 5
4
=625. Figure 5.8 shows parametric sweep of the inverter ratio “a” between 

1.5 and 2.3.  
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Figure 5.7 Parametric sweep analysis of transistor sizes 

 

 

Figure 5.8 Parametric sweep analysis of inverter ratio 
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The average current drawn from 1.8V supply using 2 inverter cascades at the output is 

calculated as 59µA. When a single inverter is used, the average current becomes 19µA. The 

output delay variation and rise-fall time values are measured to be similar; therefore 

transmission gate logic with 1 inverter at the output is decided to be used in the multiplier 

design.  

 

The sizes of the transistors of the inverter must also be optimized. A weak inverter with 

small transistors will not be able to drive the succeeding logic gates. Then, glitches occur 

between the transitions. In Figure 5.9, a small glitch in signal C1 is shown. If the sizes of the 

transistors become too large, than the pass transistors won’t be able to drive the inverter. 

Therefore the rise-time and fall-time will be high. Table 5.2 shows the sizes of the transistors 

optimized with parametric analysis.  

 

 

Figure 5.9 Glitch generation between transitions 
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Table 5-2 Optimized transistor parameters 

Parameter Value 

Wp 450n 

Wn 350n 

Wp1 600n 

Wn1 280n 

 

Table 5.3 shows the output propagation times for all transitions in the input. Output delays 

change between 73ps and 100ps, giving an output delay variation of 27ps. Figure 5.10 shows 

graphical representation of output delay values. 
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Table 5-3 Output propagation times for all transitions of inputs 

Transition 

no 
ABCin_i ABCin_f 

Output 

Delay 

Transition 

no 
ABCin_i ABCin_f 

Output 

Delay 

1 000 001 NC 29 100 000 NC 

2 000 010 73ps 30 100 001 NC 

3 000 011 78ps 31 100 010 83ps 

4 000 100 NC 32 100 011 74ps 

5 000 101 88ps 33 100 101 76ps 

6 000 110 NC 34 100 110 NC 

7 000 111 83ps 35 100 111 78ps 

8 001 000 NC 36 101 000 85ps 

9 001 010 74ps 37 101 001 85ps 

10 001 011 78ps 38 101 010 NC 

11 001 100 NC 39 101 011 NC 

12 001 101 77ps 40 101 100 78ps 

13 001 110 NC 41 101 110 96ps 

14 001 111 75ps 42 101 111 NC 

15 010 000 76ps 43 110 000 NC 

16 010 001 96ps 44 110 001 NC 

17 010 011 NC 45 110 010 73ps 

18 010 100 77ps 46 110 011 79ps 

19 010 101 NC 47 110 100 NC 

20 010 110 83ps 48 110 101 75ps 

21 010 111 NC 49 110 111 76ps 

22 011 000 94ps 50 111 000 84ps 

23 011 001 74ps 51 111 001 100ps 

24 011 010 NC 52 111 010 NC 

25 011 100 85ps 53 111 011 NC 

26 011 101 NC 54 111 100 96ps 

27 011 110 92ps 55 111 101 NC 

28 011 111 NC 56 111 110 76ps 
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Figure 5.10 Graphical representation of output delay values 

 

5.2 Delay Balancing 

 

The delay differences between propagating waves must be minimized. A single inverter has 

a propagation delay of 32ps; therefore cascades of inverters are used for delay balancing 

between the propagating waves. Delay variation at the output of a single transmission gate 

logic is measured to be 27ps. When several transmission gates are cascades, the output delay 

variation increases further. Therefore delay adjustment with a resolution of 32ps is suitable. 

 

An inverter used as a delay element must have small and equal rise and fall times. 

Otherwise, the width of the incoming pulse decreases or increases at the output of the 

inverter. Then the propagating pulses may vanish when several inverters are cascaded for 

providing high delay values. Figure 5.11 shows the transitions of a signal before and after a 

cascade of 8 inverters. As it is seen from the figure, the shape of the pulse is not distorted 

while propagating. 
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Figure 5.11 A positive pulse and its delayed version 

 

When a delay resolution smaller than 32ps is needed, than inverter cascades with different 

W/L ratios are used, which is shown in Figure 5.12. The ratio of the sizes of the cascading 

inverters must be carefully designed, in order to obtain the required delay value without any 

distortion in the propagating signal. Figure 5.13 shows the signals obtained by using 4 

inverter cascades with normal inverters and tuned inverters. Delay between them is around 

10ps. 

 

A_dA
1.6µm 1.6µm0.8µm 0.8µm

0.56µm 0.56µm0.28µm 0.28µm

 

Figure 5.12 Inverter cascade with different W/L ratios 
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Figure 5.13 Signals obtained with normal and tuned inverter cascades 

 

5.3 Simultaneous generation of complementary outputs 

 

When the complementary and normal signals are generated from different logic blocks, then 

a delay difference between them occurs. Consider a 2 input AND gate designed with 

transmission gate logic blocks in Figure 5.14, which produce Q and NQ signals by using 

separate logic blocks. Table 5.4 shows the corresponding input combinations of transmission 

gates configured to implement AND gate and NAND gate. Table 5.5 shows the output 

propagation times of Q and NQ signals, which are taken from the output delay values of 

generic transmission gate logic in Table 5.3. As it is seen from the table, there is a maximum 

delay difference of 17ps between Q and NQ signals.  

 

A

A

NA

0

B

Q=~AB

A

A

NA

1

B’

Q=AB

 

Figure 5.14 Generation of complementary outputs by using separate logic 
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Table 5-4 Input combinations of generic trans. gate logic for NAND and AND gates 

ABC inputs of trans. gate 

implementing NAND 

Corresponding ABC inputs of trans. 

gate implementing AND 

000 011 

010 001 

100 111 

110 101 

 

Complementary and normal output signals are connected to succeeding logic blocks, 

including gates of the pass transistors.  Both of Q and NQ will be at the same state for 17ps, 

which means that two different signals drive the same net for 17ps. This creates a conflict on 

the net, and some glitches may occur.  

 

Simultaneous generation of complementary and normal signals with symmetrical transition 

is very important for decreasing the delay variation of propagating waves. For this purpose, 

the circuit shown in Figure 5.15 is designed. A transmission gate, which is always “ON” and 

has same delay with that of the inverter, is used to produce normal and complementary 

signals simultaneously. Since same logic is used to produce them, there will be no delay 

variation between Q and NQ due to input pattern. They always make symmetrical transition 

at the same time instant. Figure 5.16 shows the simulation of the complementary and normal 

output generation. 
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Table 5-5 Output propagation times of Q and NQ signals 

Output delay of transitions of NAND gate Output delay of corresponding transitions of 

AND gate 

000 – 010 73ps 011 – 001 74ps 

000 – 100 NC 011 – 111 NC 

000 – 110 NC 011 – 101 NC 

010 – 000 76ps 001 – 011 78ps 

010 – 100 77ps 001 – 111 75ps 

010 – 110 83ps 001 – 101 77ps 

100 – 000 NC 111 – 011 NC 

100 – 010 83ps 111 – 001 100ps 

100 – 110 NC 111 – 101 NC 

110 – 000 NC 101 – 011 NC 

110 – 010 73ps 101 – 001 85ps 

110 – 100 NC 101 – 111 NC 
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NQ
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Figure 5.15 Simultaneous generation of complementary and normal output signals 
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Figure 5.16 Simulation of generating normal and complementary outputs simultaneously 

 

There is another important advantage of using this structure for producing complementary 

and normal outputs: Since a separate logic is not used, an input signal is connected to only 

one logic gate, instead of two. This makes the drive strength required to drive the logic to be 

half of using separate logic, which decreases the area and power consumption significantly. 

 

5.4 Implementation of Multiplier Blocks 

5.4.1 Half adder design 

 

Half adder block has 2 inputs, and produces Sum and Carry-out. Table 5.6 shows the truth 

table of half adder. 

 

Table 5-6 Truth table of half adder 

A B Sum Cout 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

 

Sum=A exor B = A’B + AB’ 

Cout=A & B. 
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Generic transmission gate logic performs logical function of 

Q=~(AC+A’B)=(A’+C’)*(A+B’). For obtaining “Sum” using the generic transmission gate 

logic, the inputs of Half adder are connected to the inputs of transmission gate as: 

 

X=B, NX=B’, Y=A’, Z=A 

 

Then, Sum output becomes: 

  

Sum=(B’+A’)(B+A)=BB’+B’A+A’B+A’A=A’B+AB’ 

 

For Cout, inputs of half adder are connected to the inputs of transmission gate logic as: 

 

X=A, NX=A’, Y=1, Z=B’ 

 

Then, Cout becomes: 

 

Cout=(A’+B)(A+0)=A’A+A’0+AB+B0=AB 

 

Each input of half adder is connected to 2 transmission gate logic blocks. For increasing the 

drive strength of the inputs, they are passed through buffers. Figure 5.17 shows the block 

diagram of the half adder including the input buffers. 
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Figure 5.17 Schematic diagram of half adder block 

 

Figure 5.18 shows an example simulation of half adder block. Table 5.7 shows the output 

propagation times for all input transitions. Figure 5.19 shows same values in a graphical 

representation. 
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Figure 5.18 A simulation example of half adder 

 

Table 5-7 Output delay values of half adder for all input transitions 

AB_initial AB_final Sum Cout 

00 01 194ps NC 

00 10 210ps NC 

00 11 NC 215ps 

01 00 209ps NC 

01 10 NC NC 

01 11 214ps 215ps 

10 00 212ps NC 

10 01 NC NC 

10 11 221ps 216ps 

11 00 NC 198ps 

11 01 215ps 215ps 

11 10 217ps 217ps 

 



 

 

62 

 

 

Figure 5.19 Graphical representation of the output delay values of half adder 

 

Figure 5.20 shows the layout of the half adder block. 

 

 

Figure 5.20 Layout of the half adder block 
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5.4.2 Full adder design 

 

Full adder has 3 inputs named as A, B, and Carry input (Cin). Table 5.8 shows the truth table 

of full adder. 

Table 5-8 The truth table of full adder 

A B Cin Sum Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

Sum=A xor B xor Cin = A’B’Cin+A’BCin’+AB’Cin’+ABCin 

Cout=AB+ACin+BCin+ABCin 

 

Sum and Cout are generated using two stages in full adder implementation. An intermediate 

signal “P” (propagate) is generated in the first stage, where  

P=A xor B=A’B+AB', therefore connection of inputs to generic transmission gate block is 

similar to the half adder: 

 

X=B, NX=B’, Y=A’, Z=A, 

P=~(AB+A’B’)=(A’+B’)(A+B)=A’B+AB’ 

 

P signal is used in the generation of both the Sum and Cout, where 

 

Sum=P xor Cin 

Cout=~(PCin’+P’B’). 

 

Fan out of P and NP signals are 2, however they are connected to the gates of the transistors. 

Driving the gate of a transmission gate is easier than driving source or gate. Therefore, 
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driving capacities of P and NP signals are enough for driving the gates of double 

transmission gate logic. Figure 5.21 shows the transistor level diagram of full adder. “Cin” 

and “NCin” inputs are delayed using a cascade of 5 inverters. "P" and “NP” signals are used 

with the delayed version of "carry" input and “B” input to produce the outputs “Sum” and 

“Cout”.  
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Figure 5.21 Schematic diagram of full adder block 

 

Table 5.9 shows the output delay values of full adder block.  The minimum delay is 340ps 

and the maximum delay is 402ps. Figure 5.22 shows the graphical representation of the 

output delay values. 
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Table 5-9 Output delay values of full adder 

Trans. 

no 

ABCin 

initial 

ABCin 

final 

Delay of 

Sum 

Delay of 

Cout 

Trans. 

no 

ABCin 

initial 

ABCin 

final 

Delay of 

Sum 

Delay of 

Cout 

1 000 001 366ps NC 29 100 000 390ps NC 

2 000 010 385ps NC 30 100 001 NC NC 

3 000 011 NC 380ps 31 100 010 NC NC 

4 000 100 378ps NC 32 100 011 349ps 364ps 

5 000 101 NC 357ps 33 100 101 353ps 367ps 

6 000 110 NC 353ps 34 100 110 376ps 370ps 

7 000 111 367ps 364ps 35 100 111 NC 387ps 

8 001 000 365ps NC 36 101 000 NC 374ps 

9 001 010 NC NC 37 101 001 376ps 390ps 

10 001 011 394ps 368ps 38 101 010 340ps 348ps 

11 001 100 NC NC 39 101 011 NC NC 

12 001 101 387ps 374ps 40 101 100 354ps 363ps 

13 001 110 364ps 363ps 41 101 110 NC NC 

14 001 111 NC 354ps 42 101 111 367ps NC 

15 010 000 387ps NC 43 110 000 NC 358ps 

16 010 001 NC NC 44 110 001 365ps 378ps 

17 010 011 353ps 367ps 45 110 010 376ps 391ps 

18 010 100 NC NC 46 110 011 NC NC 

19 010 101 354ps 366ps 47 110 100 372ps 378ps 

20 010 110 393ps 381ps 48 110 101 NC NC 

21 010 111 NC 367ps 49 110 111 366ps NC 

22 011 000 NC 378ps 50 111 000 363ps 374ps 

23 011 001 370ps 390ps 51 111 001 NC 357ps 

24 011 010 354ps 364ps 52 111 010 NC 402ps 

25 011 100 353ps 363ps 53 111 011 393ps NC 

26 011 101 NC NC 54 111 100 NC 401ps 

27 011 110 NC NC 55 111 101 389ps NC 

28 011 111 380ps NC 56 111 110 365ps NC 
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Figure 5.22 Graphical representation of output delay values of full adder 

 

Figure 5.23 shows the layout diagram of full adder.  

 

Figure 5.23 Layout diagram of the full adder block 

 

5.4.3 Partial Product Generation 

 

Partial products are generated by using AND operation of a single bit of the multiplier with 

all the bits of the multiplicand. AND gate is also designed by using generic transmission gate 

logic. The inputs of the AND block is connected to the inputs of transmission gate as:  

 

X=B; NX=B’; Y=1; Z=A’ 
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Schematic diagram of AND gate is shown in Figure 5.24. 
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Figure 5.24 Schematic diagram of AND gate 

 

The inputs of X, NX and Z comes from the outputs of inverters. For balancing the drive 

strengths of Y input with those inputs, Y input is not connected directly to VDD. Rather, it is 

connected by using an inverter, whose input is tied to GND. Since NMOS transistor is 

always OFF, it is omitted and only PMOS transistor is used. 

 

A partial product generator combines one bit of multiplier with all the bits of the 

multiplicand. In an 8x8 bit multiplier, a fan out of 8 is needed to produce partial products. 

For driving 8 inputs, the drive strength of the single bit of multiplier is increased by a buffer 

composed of a cascade of 3 inverters. Buffered signal is used to drive the gates of transistors 

in the transmission gate logic, since driving the gates require less drive capability than 

driving drain or source of the transistors. 

 

8 bits of the multiplicand are delayed by using cascades of 4 inverters for equalizing the 

delay differences. Figure 5.25 and Figure 5.26 show the block diagram and simulation of the 

partial product generator, respectively. Layout diagram of the partial product generator is 

shown in Figure 5.27. 
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Figure 5.25 Block diagram of partial product generator 
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(a) 

 

(b) 

Figure 5.26 Simulation of partial product generator 
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Figure 5.27 Layout diagram of partial product generator 

 

5.4.4 Sampling of the signals 

 

The width of the waves decreases while propagating through the logic, and they must be 

sampled before their aperture becomes too small which creates setup and hold time 

violations. Sampling resets the propagating waves, and they start propagating with equalized 

delays. It is important to use a register, which is capable of sampling narrow pulses.  

 

The setup time is the minimum amount of time the data signal should be held steady before 

the clock event so that the data are reliably sampled by the clock. Hold time is the minimum 

amount of time the data signal should be held steady after the clock event so that the data are 

reliably sampled. Setup and hold time must be small, in order to sample narrow pulses. 

There are many flip-flop and latch structures. Mesochronous multiplier in [24] uses Sense 

Amplifier Based Flip-Flop (SAFF). The setup and hold time of SAFF is 10ps and 130ps, 

respectively. The clock High time of the SAFF is 160ps, and considering a clock signal with 

50% duty cycle, the minimum clock period is 320ps. A margin of 30ps is used, so that 

operating frequency of SAFF becomes 2.86GHz. 
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In this implementation, C2MOS latches are used for sampling because of their high speed 

operation, which is seen in Figure 5.28. By using iterations and parametric analysis, the sizes 

of the transistors are optimized for sampling narrow pulses with minimal delay variation at 

the output. Table 5.10 shows the sizes of the transistors of the latch, which is capable of 

sampling a pulse with a width of 120ps. The setup time of the latch is 0. Latching occurs in 

the positive clock cycle; therefore the signals must be stable in this region. A clock signal 

with a frequency of 5GHz is used in the simulations of the C2MOS latch. Figure 5.29 shows 

the transitions of the internal signals of the latch. In Figure 5.30, several propagating waves 

with an aperture of 120ps and clock signal are shown before sampling. Figure 5.31 shows the 

same signals after sampling.  
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Figure 5.28 Schematic diagram of C
2
MOS latch 

 

Table 5-10 Transistor sizes of C
2
MOS latch. 

Wp1 1.6um 

Wp2 1.6um 

Wn1 480nm 

Wn2 480nm 
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Figure 5.29 Simulations of internal signals of the latch 

 

 

Figure 5.30 Propagating waves before sampling 
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Figure 5.31 Propagating waves after sampling 

 

Input to output delay of C2MOS depends slightly on the shape and position of the input. 

Therefore, a delay difference of 10ps occurs after sampling. 

 

5.5 Implementation of 8x8 bit CSA multiplier 

 

In order to demonstrate the effectiveness of WCSM and compare it with the mesochronous 

pipelining scheme, two 8x8-bit multipliers using both the mesochronous pipelining scheme 

and WCSM are implemented. First, the mesochronous multiplier using the same structure of 

the multiplier in [24] is implemented. Then WCSM is applied to this multiplier. Internal 

logic blocks described before are used in the multipliers.  

 

5.5.1 Schematic design 

 

Figure 5.32 shows the block diagram of the multiplier, where full-adders are shown with 

“F”, half adders are shown with “H”, and the registers are shown with “R”. 

  

Full adder has two levels of transmission gate logic, while half adder and partial product 

generator have one level of logic. Every logic level increases the delay difference between 

signals; therefore at most 6 levels of logic stages are used between registers, which is seen in 

Figure 5.32.  
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The first register stage is used at the input. The second register stage is used after a cascade 

of a partial product generator, a half adder, and 2 full adders, which takes 6 levels of logic 

stages. The third register stage is used after a cascade of 3 full adders.  The fourth register 

stage is used after a full adder plus a cascade of 3 half adders. The fifth register stage, which 

is also the output stage, is used after a cascade of 4 half adders plus an “OR” gate. 
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Figure 5.32 Block diagram of mesochronous multiplier  

 

As it is seen from Figure 5.32, there are some paths which do not contain 6 levels of logic 

operation. The paths in the upper triangular region are composed of only buffer cascades. 

Also, the paths in the partial product generation region are composed of an “AND” gate and 

buffer cascades. Therefore, the delay differences of those paths do not reach to critical delay 

difference value. When WCSM is applied to this multiplier, the latches which are circled 

with dashed lines are eliminated and they are replaced with delay elements. Figure 5.33 

shows 8x8 bit multiplier implemented using WCSM. 
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Figure 5.33 Block diagram of 8x8 bit multiplier using WCSM 

  

In mesochronous multiplier, 110 registers are used including input and output registers. 

However, in WCSM multiplier only 70 registers are used, without any performance loss in 

the operating frequency. The total number of the registers in the multiplier implemented with 

WCSM is 41% lower than the multiplier implemented with mesochronous pipelining 

method. The reduction of the registers also decreases the transistor sizes of the associated 

clock buffers, which significantly reduces the power consumption. 

 

5.5.2 Operating Frequency 

 

In the multiplier, at most 6 transmission gate logic cells are cascaded between two successive 

register stages. Each transmission gate logic has a delay difference of 25ps at the output, 

when the inputs are applied simultaneously. When they are cascaded, the delay differences 

of the logic cells are accumulated. Therefore, the total delay difference, which is also the 

width of the transition region, becomes 150ps after 6 logic levels. C2MOS latch samples the 

data at positive cycle of the clock signal; therefore the transition of the signals must occur at 

negative cycle. This condition limits the minimum width of the negative clock cycle to be 

equal to the width of the transition region, which is 150ps. If a clock signal with a duty cycle 
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of 50% is used, then the minimum clock period becomes 300ps. Considering the additional 

delay difference coming from the latch itself and to have some margin, it is proper to use a 

clock signal with a period of 330ps (an operating frequency of 3GHz).  

 

5.5.3 Layout Implementation of the multipliers 

 

The layouts of the multipliers are implemented using UMC 0.18um technology with 

Cadence design tools. All the logic blocks, clock buffers and the latches are drawn by using 

full custom design methodology. 1 poly and 3 metal layers are used in the design.  The 

placement and routing is performed carefully to minimize the delay difference between 

signals. 

  

The height of the standard logic cell is 15.8µm. Figure 5.34 shows the layout of the 

multiplier implemented using mesochronous pipelining method. The area of both of the 

multipliers is 0.175mm
2
. 
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Figure 5.34 Layout view of 8x8 bit multiplier using mesochronous pipelining 

 

5.5.4 Simulations of multipliers 

 

Random input pattern at a frequency of 3GHz is applied to the multipliers. Figure 5.35 

shows the propagating waves after the first partial product generation layer. The width of the 

propagating waves decreases to 260ps after partial product generation. Figure 5.36 shows the 

propagating waves after the first half adder layer. The width of the propagating waves 

become 235ps. Figure 5.37 and Figure 5.38 shows the propagating waves after the first full 

adder layer and the second full adder layer, respectively. The widths of the propagating 

waves become 185ps after first full adder layer and 130ps after second full adder layer. 
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Figure 5.39 shows the propagating waves at the output of the registers. The width of the 

propagating waves increases to 270ps after sampling.  

 

 

Figure 5.35 Propagating waves after first partial product generator 

 

 

Figure 5.36 Propagating waves after the first half adder layer 
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Figure 5.37 Propagating waves after the first full adder layer 

 

 

Figure 5.38 Propagating waves after the second full adder layer 
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Figure 5.39 Propagating waves after sampling 

 

5.5.5 Performance comparison of the multipliers 

 

The replacement of unnecessary latches with the delay elements does not affect the 

remaining circuit; therefore both of the multipliers have the same operating frequency of 3 

GHz.   

 

The number of the latches is reduced by 41%, which decreases the power consumption due 

to the latches. Since the number of latches is decreased, the transistor sizes of the clock 

buffers driving the latches are reduced in accordance with the reduction of the latches. This 

significantly reduces the power consumption due to the clock buffers. The delay elements 

replaced with the latches consume additional power; however it is lower than the power 

consumed by the latches. Table 5.11 shows the comparison between the multiplier with 

mesochronous pipelining scheme and the multiplier with WCSM. Total power of the 

multiplier is decreased by 9.5%. 
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Table 5-11 Comparison between mesochronous and WCSM multiplier 

 Mesochronous 

multiplier 

WCSM 

multiplier 

Number of registers 110 70 

Power of half adders 6.43mW 6.29mW 

Power of full adders 20.63mW 20.94mW 

Power of partial 

product generators 

15.95mW 15.72mW 

Power of clock 

buffers and latches 

25.29mW 14.83mW 

Power of delay 

elements 

25.87mW 27.42mW 

Total power 94.17mW 85.20mW 

Percentage of power 

of clocking circuits  

21.5% 17.4% 

Reduction in total 

power 

- 9.5% 

 

5.6 A 5GHz WCSM-Multiplier 

 

The power consumption of registers and clock buffers increases when the number of pipeline 

stages is increased. For demonstrating the effectiveness of WCSM in fully pipelined 

structures, an ultra high speed multiplier is designed using carry save structure. Figure 5.40 

shows the block diagram of the full pipelined multiplier. After all logic operations, the 

propagating waves are sampled. Therefore, there are totally 17 clock signals, which all have 

a frequency of 5GHz but different phases, in the multiplier. Since each clock signal drives at 

most 16 gates, the sizes of the clock buffers are much smaller than that of a single clock 

buffer. 
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Figure 5.40 Full pipelined multiplier 

 

When WCSM is applied to this circuit all the unnecessary registers, which are used after 

delay elements, are omitted. The signals of these paths are aligned with the sampled signals 

by using cascades of inverters, which decreases the total number of latches by 45% 

compared with the mesochronous pipelined multiplier. The sizes of the corresponding clock 

buffers are also decreased. 

 

For comparing 5GHz WCSM multiplier with the mesochronous pipelined multiplier, both of 

the circuits are implemented using UMC 0.18um CMOS technology. Full custom design 

methodology with Cadence design tools is used in the design of all the logic blocks and 

latches. Post layout simulations are performed using Analog Design Environment of 

Cadence. Figure 5.41 shows the propagating waves at a frequency of 5 GHz before 

sampling. 
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Figure 5.41 Propagating waves before sampling 
 

Maximum power consumptions of the multipliers are measured by alternatively applying 

00x00 and FFxFF to the inputs, in which maximum number of transitions occurs in the 

multiplier circuit. Table 5.12 shows the maximum power comparison of the proposed 

multiplier with the mesochonous pipelined multiplier. The total power consumption of 

mesochronous pipelined multiplier is 113.5mA, and 65mA of it comes from clock buffers 

and latches. In WCSM multiplier, the power consumption is slightly increased due to delay 

elements. However, the power consumption of clock buffers and latches decreases 

significantly, therefore the total power consumption is decreased by 13.7% without any 

performance loss in the operating speed of the circuit. 
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Table 5-12 Comparison between 5GHz mesochronous and WCSM multipliers 

 Wave-pipelined 

multiplier 

Proposed multiplier 

Half adders 6.12mW 6.59mW 

Full adders 13.14mW 13.90mW 

Partial product 

generators 

19.44mW 27.18mW 

Clock buffers and 

latches 

117.0mW 69.12mW 

Delay elements 48.60mW 59.70mW 

Total power 204.3mW 176.5mW 

Power percentage of 

clocking circuits  

57.2% 39.2% 

  

For measuring the average power with random inputs, same random input pattern is applied 

to both multipliers. Table 5.13 shows the comparison of the power consumption with random 

inputs. The rate of the transitions is lower when random input pattern is used; therefore the 

power of logic elements and latches decreases. However, the power of clock buffers remains 

almost the same, therefore the percentage of total power of clocking circuits in the multiplier 

is increased to 62.5%, and in WCSM multiplier it is only 42.1%. Overall power of the 

WCSM multiplier is also 18.4% lower than that of the mesochronous-pipelined multiplier. 
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Table 5-13 Comparison of the multipliers with random inputs 

 Wave-pipelined 

multiplier 

Proposed 

multiplier 

Half adders 3.92mW 3.85mW 

Full adders 9.09mW 9.02mW 

Partial product 

generators 

12.80mW 18.85mW 

Clock buffers and 

latches 

100.85mW 55.44mW 

Delay elements 34.79mW 44.42mW 

Total power 161.45mW 131.58mW 

Power percentage 

of clocking circuits  

62.4% 42.1% 

 

5.7 IMPLEMENTATION OF THE OTHER MULTIPLIER STRUCTURES 

5.7.1 Booth encoder design 

 

Modified Booth-2 algorithm is implemented using UMC-0.18µm CMOS technology. Figure 

5.42 shows the block diagram of the mux_6x1 logic which selects inputs from the set of {0, 

+M, +2M, -2M, -M, 1}. Both the normal and complementary outputs are generated. Figure 

5.43 shows the MUX module containing 8 mux_6x1 logic blocks. Figure 5.44 shows the top 

level schematic of the booth-2 module. There are 5 MUX modules, each of them containing 

8 internal MUX modules. There are also 16 buffers which drive the inputs of the MUX’es. 4 

of the MUX modules select one of 5 inputs, and the last MUX selects one of 2 inputs, which 

is either 0 or M. 
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Figure 5.42 Design of Mux6x1 using generic transmission gate logic 
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Figure 5.43 Block diagram of 8xmux module 
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Figure 5.44 Top level block diagram of Booth Encoder module 

 

When mesochronous pipelining or conventional pipelining method is used, then there will be 

10 latches in mux_6x1 block including latches of S1_d and S2_d2 signals. There are 8x5=40 

mux_6x1 block in the booth-2 module, therefore total number of latches is 400. If WCSM is 

applied, then there is no need to sample S1 and S2 signals, and 7 latches are enough in 

mux_6x1 module. This decreases total number of latches by 30%, which is 280. 

 

5.7.2 Wallace tree design 

 

Table 5.14 shows the constructed Wallace tree, in which 3 levels of logic is used. In this 

table, following abbreviation is used: 

 

X: Partial product bit 

H: Half adder (X+X) 

H’: Modified half adder (X+X+1) 

F: Full adder (X+X+X) 

G: Gates (X+1) 

D: Direct transfer. 
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Table 5-14 Wallace tree construction of Modified Booth-2 with 3 levels 

0 0 0 0 !S0 S0 S0 X X X X X X X X X 

0 0 0 1 !S1 X X X X X X X X X  S0 

0 1 !S2 X X X X X X X X X  S1   

!S3 X X X X X X X X X  S2     

X X X X X X X X  S3       

H H’ F F,D F,H F,H F,H F,H F,D F,H F F,D H F D H 

X X X 1 X X X X X X X X X X X X 

X X X X X X X X X X X X X  X  

   X X X X X X X  X     

   X X X X  X        

H H H F,D F,D F,D F,D F F,D F H F H D H D 

X X X 1 X X X X X X X X X X X X 

X X X X X X X X X X X X  X   

   X X X X  X        

H H H H’ F F F H F H H H D H D D 

X X X X X X X X X X X X X X X X 

X X X X X X X X X X X  X    

 

Figure 5.45 shows the block diagram of the Wallace tree implementation. Full adder blocks 

have 2 stages, and half adder blocks have 1 stage. If conventional pipelining or 

mesochronous pipelining with latches after all logic stages are used in Wallace tree, then 

every half adder and delay element must be sampled two times, for equalizing the path with 

the full adder. In this case, there will be 239 latches in the conventional pipelined 

implementation. If WCSM is applied, the total number of latches becomes 117, which 

constitutes a reduction of 51%. The comparison between conventional or mesochronous 

pipelining and WCSM in terms of number of registers is shown in Table 5.15. 
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Figure 5.45 Block diagram of wallace tree with modified Booth-2 algorithm 

 

Table 5-15 Comparison of Wallace trees with mesochronous pipelining and WCSM 

 Conventional or mesochronous 

pipelining methods 

Wave Component 

Sampling Method 

Latches used in half adders 24x2x2=96 24x2x1=48 

Latches used in full adders 23x5=115 23x3=69 

Latches used in delay elements 14x2=28 - 

Total number of latches 239 117 

Reduction in latches - 51% 
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5.7.3 Carry Lookahead adder design 

 

4 bit carry look-ahead adder circuit is designed using transmission gate logic with two 

inputs. Figure 5.46 shows the first carry look-ahead adder circuit design. It can be seen from 

the figure that, the generation of the group propagate (PG) and group generate (GG) signals 

are completed in 3 and 5 levels of logic stages, respectively. The generation of carry output 

(C4) is completed in 6 levels of logic stages, which is quite high.  
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Figure 5.46 Schematic design of 4-bit carry look-ahead adder circuit 

 

The carry signal is produced using the formula Ck+1=PkCk+Gk. The logic circuit of this 

carry generation formula using 2 input logic gates can be seen in Figure 5.47. It can be seen 

from the figure that the carry output is generated 2 logic stages after the arrival of the carry 

input. In order to speed up this operation, carry generation formula is modified to be 

compatible with the transmission gate logic, such that:  

 

Ck+1=PkCk+Gk(Ck+!Ck)=Ck(Pk+Gk)+!CkGk 
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A12

B12
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Figure 5.47 Carry generation logic 
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Figure 5.48 shows the modified carry generation using this formula, from which it can be 

seen that the carry is generated using only one level of logic.  
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Figure 5.48 Modified carry generation circuit 

 

Figure 5.49 shows the carry generation at the first stage of 4 bits. Since there is no incoming 

carry signal in the first stage, no need to produce group propagate or group generate signals. 

Therefore, all the logic related to GG and PG is omitted. Also there is no need to produce P0 

signal. Therefore, the carry signal is produced using 5 levels of logic in the first stage.  
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Figure 5.49 Carry generation circuit of first stage with 5 levels of logic 

 

In the generation of P signal, both “EXOR” and OR operations can be used. “EXOR” 

operation is preferred, because “A XOR B” is needed while obtaining Sum output. However, 

when OR gate is used in the generation of P1, then P1+G1=A1+B1+A1B1=A1+B1=P1. 

Therefore, OR gate which produces P1+G1 can be neglected for decreasing the latency of 

carry generation of the first stage by 1. The carry output at the first stage can be completed 

using 4 levels of logic instead of 5, which is shown in Figure 5.50. 
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Figure 5.50 Carry generation circuit of first stage with 4 levels of logic 

 

Figure 5.51 shows the carry generation of 16 bit adder circuit. In the first group of 4 bits, no 

carry look-ahead logic is used, while in the 2nd and the 3rd groups, carry outputs are 

generated 1 logic level after the arrival of the incoming carry signal. 

 

In the design of 8x8 bit multiplier, the constructed Wallace tree produces 2 outputs of 13 bits 

and 16 bits, respectively. Therefore, 13 bit carry look-ahead adder is suitable for this 

particular application. Figure 5.52 shows the block diagram of 13 bit carry look-ahead adder, 

where carry look-ahead logic is only used in the 2nd group of 4 bits. 
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Figure 5.51 16 bit adder with carry look-ahead logic 
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Figure 5.52 13 bit adder with carry look-ahead logic. 

 

For comparing the areas of the carry look-ahead adder and the carry save adder, 16 bit carry 

save adder tree is designed using Half adder blocks. Figure 5.53 shows the schematic design 

of the 16 bit carry save adder tree. It can be seen from the figure that, the addition takes 16 

levels of logic stage, where each stage is composed of Half adders. 
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Figure 5.53 16 bit carry save adder tree. 

 

Table 5.16, 5.17 and 5.18 show the number of sub blocks and total number of transistors 

used in the 16-bit carry save adder, 16 bit carry look-ahead adder and 13 bit carry look-ahead 

adder, respectively. Comparing Table 5.16 with Table 5.17, it can be seen that carry look-

ahead adder implementation utilizes 35% less transistors than the 16 bit carry save adder 

implementation. 

 

Table 5-16 Transistor count of 16-bit carry save adder implementation 

Block name Number of 

instantiation 

Number of 

trans. gate logic 

in block 

Total number 

of trans. gate 

logic  

Number of 

transistors 

used 

HA 136 4 524 3144 

Delay 120 1 120 720 

Latch 80 3 240 1440 

Total number of  transistors without latches 3864 
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Table 5-17 Transistor count of 16-bit carry lookahead adder implementation. 

Block name Number of 

instantiation 

Number of pass 

logic in block 

Total number 

of pass logic  

Number of 

transistors 

used 

PG 15 4 60 360 

XOR 16 2 32 192 

AND2 14 2 28 168 

OR2 19 2 38 228 

MUX 14 2 28 168 

Delay 230 1 230 1380 

Total number of  transistors 2496 

 

Table 5-18 Transistor count of 13-bit carry lookahead adder implementation. 

Block name Number of 

instantiation 

Number of 

trans. gate logic 

in block 

Total number 

of trans. gate 

logic  

Number of 

transistors 

used 

PG 12 4 48 288 

XOR 13 2 26 156 

AND2 7 2 14 84 

OR2 15 2 30 180 

MUX 11 2 22 132 

Delay 180 1 180 1080 

Total number of  transistors 1920 

 

Block diagram of 16-bit CLA adder with WCSM is shown in Figure 5.54. The delays of all 

the paths in the direction of propagation are balanced by using active delay elements. For 

simplicity, not all of the delay elements are shown in the figure. Rather, following 

abbreviation is used: “i_dj” means “i” signal is delayed by “j” stages, i.e. “P_d3” means P 

signal is delayed by 3 stages.  

 

Summation is completed in 11 stages. Only 1 logic level is used in every stage. For having 

an ultra high speed adder, latches are inserted between every stage. Therefore, there are 11 

register regions and 11 clock signals. 
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If mesochronous pipelining method or conventional pipelining methods are used, then the 

total number of registers in 16-bit CLA design becomes 251. When WCSM is applied, a 

register is only used after a logical operation occurs. Therefore, all the registers, which are 

used after a delay element, are omitted and replaced by delay elements. In this case, total 

number of latches becomes 96, which is 62% lower than the conventional or mesochronous 

pipelining methods.     
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Figure 5.54 Block diagram of 16-bit CLA adder with balanced paths 

 

Table 5.19 shows the comparison of the multipliers implemented using booth encoder, 

Wallace tree, and carry look-ahead adder blocks with conventional pipelining and WCSM, 

respectively. As it is seen from the table, total number of registers is decreased by 45%, 

when WCSM is used. 



 

 

100 

 

Table 5-19 Overall comparison of the multipliers 

 Conventional or 

mesochronous pipelining 

methods 

Wave Component Sampling 

Method 

Latches used in booth 

encoder 

400 280 

Latches used in Wallace tree 239 117 

Latches used in carry look-

ahead logic 

251 96 

Total number of latches 890 493 

Percentage of reduction in 

number of latches 

- 45% 

 

 

5.7.4 CLA Adder Design with 4-input logic gates 

 

Carry look-ahead adders are used to reduce the total latency of the outputs. However, when 

using 2-input logic gates, group propagate and group generate signals cannot be produced 

fast enough, which decreases the efficiency of carry look-ahead logic. Therefore, 16 bit carry 

look-ahead adder using 4 input logic blocks is implemented, which is shown in Figure 5.55. 

As it is seen from the figure, first carry output (C4) is produced with a latency of 3 logic 

levels. At the same time instant, GG1 & GG2 (group generate 1-2) signals are produced, 

therefore C8 and C12 are obtained with a latency of 4. Therefore, overall summation is 

completed with a latency of 5. The reduction of latency brings a lot of reduction in the 

number of delay elements in wave-pipelining. Therefore, the delay characteristics of 4-input 

logic elements are analyzed. 
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Figure 5.55 16-bit carry lookahead adder with 4-input logic gates 
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5.8 Delay analysis of logic blocks with 4 inputs 

 

Delay difference value of Classical CMOS logic is much higher than that of the pass 

transistor logic. One of the main reasons is that the number of pull-up or pull-down paths 

depends on the input data pattern. Considering CMOS Nand gate with 2 inputs, if both of the 

inputs are LOW, then there will be two pull-up paths. For limiting the current, [17] proposed 

to use a serial transistor at the top. Figure 5.56 shows a 4 input CMOS AND gate with a 

serial current limiting pull up transistor at the top. 

  

A B

A

B

Q

gnd

C D

C

D

 

Figure 5.56 4-input AND gate with serial current limiting transistor 

 

The fastest transition at the output occurs when all of the inputs switch from HIGH to LOW, 

which causes all of the pmos transistors to join pull-up current. The delay time at the output 

becomes 92ps in this case. The slowest transition occurs when all the inputs are HIGH and 

the last input (connected to the nmos transistor closest to ground) switches to LOW, i.e. 

ABCD input pattern is 1111 and switches to 1110. In that case, output delay time is 173ps. If 

the input pattern is 1111 and switches to 0111, then the delay time at the output becomes 

116ps. Therefore, the place of the switching transistor at the serial pull-down path is another 

main reason of the delay difference at the output. Table 5.20 shows the delay values of the 4 

input AND gate depending on the input patterns of concern. It can be seen that, delay 

difference value is 81ps. Table 5.21 shows the output delay values when there is no limiting 

transistor at the top. In that case, the delay difference value becomes 84ps, and the slowest 

path becomes pull-down path, rather than one transistor pull-up of the previous one. 
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Table 5-20 Delays of 4-input CMOS with a limiting pmos of W=900nm at the top 

ABCD1 ABCD2 Delay 

0000 1111 139ps 

1111 0000 92ps 

0111 1111 107ps 

1111 0111 116ps 

1110 1111 143ps 

1111 1110 173ps 

Delay difference value  81ps 

 

Table 5-21 CMOS_AND4_v1_delays with no limiting transistor at the top 

ABCD1 ABCD2 Delay 

0000 1111 131ps 

1111 0000 51ps 

0111 1111 107ps 

1111 0111 89ps 

1110 1111 135ps 

1111 1110 121ps 

Delay difference value  84ps 

 

It is possible to use a small pmos limiting transistor at the top, but in that case the rise time 

will be very high, which is not a recommended case in high speed wave-pipelined design. 

A 2 input AND gate is also designed which can be seen in Figure 5.57. The output delay 

values of this circuit can be seen in Table 5.22, and the delay difference value at the output 

becomes 27ps. 
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Figure 5.57 2-input CMOS AND gate 

 

Table 5-22 Delay values of CMOS_AND2_v1 

AB1 AB2 Delay 

00 11 103ps 

11 00 87ps 

01 11 92ps 

11 01 97ps 

11 10 114ps 

10 11 98ps 

Delay difference value  27ps 

 

Using 2 input AND gates, another 4 input AND gate is designed, which can be seen in 

Figure 5.58. Table 5.23 shows the output delay values where the delay difference value is 

58ps. Comparison with the CMOS_AND4_v1 gate is given in Table 5.24. Although the 

delay difference value decreases from 81ps to 58ps, the number of transistors is increased 

from 11 to 21 and the latency is also increased from 173ps to 234ps. Therefore, the choice 

will be a design trade-off.  
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Figure 5.58 4-input CMOS And gate constructed with 2-input gates 

 

Table 5-23 Delay values of CMOS_AND4_v2 

AB1 AB2 Delay 

0111 1111 234ps 

1111 0111 198ps 

0000 1111 209ps 

1111 0000 176ps 

Delay difference value  58ps 

 



 

 

106 

 

Table 5-24 Comparison of CMOS_AND4_v1 and CMOS_AND4_v2. 

 CMOS_AND4_v1 CMOS_AND4_v2 

Number of trans. 11 21 

Output Latency 176ps 234ps 

Delay difference at the 

output 

81ps 58ps 
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CHAPTER 6 

 

 

6 CONCLUSION 

 

 

 

In this thesis a novel wave-pipelining methodology named as Wave Component Sampling 

Method (WCSM) is developed and discussed. In all of the previous pipelining methods such 

as conventional pipelining, wave pipelining, and mesochronous pipelining, all of the 

components of propagating waves are sampled whenever they arrive to a synchronization 

stage. However, WCSM allows partial sampling of the signal components of the propagating 

waves. Only the components, whose minimum and maximum delay differences reach to the 

tolerable value, are sampled and the other signal components are delayed using active delay 

elements. Therefore, this methodology promises significant reduction in the number of the 

sampling flip-flops or latches.  

 

To demonstrate the effectiveness of this method and to compare it with the mesochronous 

pipelining methodology, two 8x8 bit multipliers are implemented using mesochronous 

pipelining scheme and WCSM, respectively. Several optimizations are performed in the 

design of sub blocks for achieving high performance multipliers with low power 

consumption.  

 

Minimizing the delay differences between propagating waves is very important for having 

high speed multiplication with a small number of pipeline stage. Therefore, a generic 

transmission gate logic block, which has minimum delay variation at the output depending 

on the input pattern, is designed. This transmission gate logic block has three inputs and 

performs the output function of Q=~(X*Z+NX*Y). The minimum and maximum delay 

variation of this generic logic block is kept within 27ps.      

 

In the implementation of multiplier, both the normal and complementary signals are 

required. When the normal and complementary signals are generated using different logic 

blocks, a delay difference between them occurs. And when they are connected to the gates of 
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the transistors of cascading transmission gate logic blocks, the asymmetry between the 

transitions of normal and complementary signals creates conflict on the succeeding output. 

Therefore, simultaneous generation of normal and complementary signals is important. A 

method for generating normal and complementary signals simultaneously with symmetric 

transitions is proposed. Instead of using separate logic blocks, both the normal and the 

complementary outputs are generated using same transmission gate logic. Another 

transmission gate, which is always “ON” and has same delay value with that of the inverter, 

is used to obtain both of the normal and the complementary signals. The reduction in the 

number of logic blocks also reduces the drive strength required at the output of the preceding 

logic block. 

 

Half adder and full adder blocks are designed using generic transmission gate logic blocks. 

Half adder has single stage, where full adder has two stages of logic operation. The delay 

variation at the output of half adder and full adder blocks are 27ps, and 62ps, respectively. 

 

In the multiplier, fan out is kept as at most two for having high speed operation. However, in 

the generation of partial products, a fan out of 8 is needed. For driving 8 inputs, the drive 

strength of the single bit of multiplier is increased by a buffer composed of a cascade of 3 

inverters with increasing transistor sizes. Buffered signals are used to drive the gates of 

transistors in the transmission gate logic, since driving the gates requires less drive capability 

than driving drain or source of the transistors. 

 

While propagating, the width of the waves decreases. They must be sampled before their 

aperture becomes too small which creates setup and hold time violations. C2MOS latch is 

designed and used to sample narrow waves with a minimum aperture of 120ps. Latches are 

operational at a frequency of 5GHz. 

 

8x8-bit carry save adder (CSA) multipliers are implemented with mesochronous pipelining 

scheme and WCSM. For comparing the methods adequately, same structure of [24] is used, 

in which a layer of register is used after 3 layers of full adders. Full custom design 

methodology with Cadence design tools is used and UMC-0.18µm CMOS technology is 

employed in the implementation. The operating frequency of both of the multipliers is 3GHz. 

The number of the latches is decreased by 41% when WCSM is employed. The reduction in 

the number of latches also decreases the power consumption of the associated clocking 
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network. Post layout simulations show that total power of the chip is also decreased by 9.5%, 

without any performance loss.  

 

For investigating the benefits of WCSM in higher level pipelined circuits, two CSA 

multiplier using mesochronous pipelining method and WCSM are implemented with a fully 

pipelined structured. A register layer is used after all of the logic layers. In this case, the 

operating frequency of the multipliers is increased to 5GHz, which is the fastest multiplier 

using 0.18µm CMOS technology. In the multiplier employing WCSM, the number of the 

registers is decreased by 45%. The power of the multiplier is also decreased by 18.4%. This 

demonstrates that, benefits of WCSM increase when the number of pipeline stages and 

operating frequency of the circuit increase. 

 

WCSM is also applied to the other multiplier structures for observing its effects with 

different circuit structures. Booth encoder, Wallace tree and carry look-ahead blocks for 8x8 

bit multiplication are designed with full pipelined structures, and then WCSM is applied to 

them. In the design of booth encoder, the number of registers decreases from 400 to 280, 

which constitutes a reduction of 30%. In the design of Wallace tree, the number of registers 

is decreased from 239 to 117, with a reduction of %51. The number of the registers is also 

decreased from 251 to 96 in the implementation of 16 bit carry look-ahead adder, 

constituting a reduction of 62%. The overall reduction in the implementation of 8x8 bit 

multiplier employing booth encoder, Wallace tree and carry look-ahead adder is from 890 to 

493, which constitues a reduction of 45%. 

 

WCSM is a novel pipelining methodology which provides a significant reduction in the 

number of registers, without a performance loss. For future research, the application of 

WCSM to different pipelined circuits could be investigated. Crypto processes, filter 

applications, multiplier and accumulators (MAC), memory structures, communications 

algorithms like Viterbi decoders etc are good candidates for the application of WCSM.  

 

Besides the benefits of WCSM, its design complexity is high. Computer Aided Design 

(CAD) tools could be developed for automatically implementing circuits using WCSM.     
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APPENDIX A  

 

 

HDL CODES OF MULTIPLIER BLOCKS 

 

 

 

A.1 Verilog HDL code of top module (booth3_bias_wallace_CLA16) 

 

module booth3_bias_wallace_CLA16( 

    input [7:0] a,//multiplicand 

    input [7:0] b,//multiplier 

  output [15:0] c, 

    output [15:0] sum_wallace, 

  output [15:0] sum_cla, 

  output cla_overflow 

  ); 

 

 

wire [3:0] sel0, sel1; 

wire [2:0] sel2; 

wire [10:0] K_M,K_2M,K_3M,K_4M; 

wire [10:0] mux0_out,mux1_out,mux2_out; 

 

wire [15:0] pp0,pp1,pp2,pp0_y,pp0_s,pp1_y,pp1_s,pp2_y; 

wire s0,s1; 

 

wire [15:0] comp; 

 

wire [15:0] sum1,sum2,sum; 

 

//wire [15:0] sum_wallace; 

wire [15:0] sum_cla_compsuz; 

 

KplusM 

KplusM( 

.M(a[7:0]), 

.K_M(K_M[10:0]) 

); 

 

Kplus2M 
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Kplus2M( 

.M(a[7:0]), 

.K_2M(K_2M[10:0]) 

); 

 

Kplus3M 

Kplus3M( 

.M(a[7:0]), 

.K_3M(K_3M[10:0]) 

); 

 

Kplus4M 

Kplus4M( 

.M(a[7:0]), 

.K_4M(K_4M[10:0]) 

); 

 

booth3_mux 

mux0( 

.sel(sel0[3:0]), 

.mux_in_0(K_M[10:0]),   //K+M     //ilk bit y0 

.mux_in_1(K_2M[10:0]),   //K+2M     //ilk bit y0 

.mux_in_2(K_3M[10:0]),   //K+3M     //ilk bit y0 

.mux_in_3(K_4M[10:0]),   //K+4M     //ilk bit y0 

.mux_out(mux0_out[10:0]) 

    ), 

 

mux1( 

.sel(sel1[3:0]), 

.mux_in_0(K_M[10:0]),   //K+M     //ilk bit y0 

.mux_in_1(K_2M[10:0]),   //K+2M     //ilk bit y0 

.mux_in_2(K_3M[10:0]),   //K+3M     //ilk bit y0 

.mux_in_3(K_4M[10:0]),   //K+4M     //ilk bit y0 

.mux_out(mux1_out[10:0]) 

    ) 

; 

 

booth3_mux_sondaki 

mux2( 

.sel(sel2[2:0]), //sonuncu muxta select 3 bit 

.mux_in_0(K_M[10:0]),   //K+M     //ilk bit y0 

.mux_in_1(K_2M[10:0]),   //K+2M     //ilk bit y0 

.mux_in_2(K_3M[10:0]),   //K+3M     //ilk bit y0 

.mux_in_3(K_4M[10:0]),   //K+4M     //ilk bit y0 

.mux_out(mux2_out[10:0]) 

    ); 
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wallace_booth3_bias_8x8 wallace(  

.pp0(pp0),.pp1(pp1),.pp2(pp2),.pp0_y(pp0_y),.pp1_y(pp1_y),.pp2_y(pp2_y),.pp0_s(pp0_s),.pp1_s(pp1_s),.sum1(sum1),.sum2(

sum2),.sum(sum)); 

 

 

CLA_16 CLA(.A(sum1[15:0]),.B(sum2[15:0]),.Cin(1'd0),.PP(),.PG(),.Sum(sum_cla_compsuz[15:0]),.Cout(cla_overflow)); 

 

assign sum_cla[15:0]=sum_cla_compsuz[15:0]+comp[15:0]; 

assign sum_wallace[15:0]=sum[15:0]+comp[15:0]; 

 

assign sel0[3:0]={b[2:0],1'd0}; 

assign sel1[3:0]=b[5:2]; 

assign sel2[2:0]=b[7:5];//sonuncu selectin basi 0 

assign s0=b[2];  

assign s1=b[5]; 

 

 

assign pp0[15:0]={2'd0,!s0,s0,s0,s0,mux0_out[9:0]}; 

assign pp1[15:0]={2'b11,!s1,mux1_out[9:0],3'd0}; 

assign pp2[15:0]={mux2_out[9:0],6'd0};//sonuncu farkli 

 

assign pp0_y[15:0]={9'd0,mux0_out[10],6'd0}; //muxlarin 10.bitleri y 

assign pp1_y[15:0]={6'd0,mux1_out[10],9'd0}; //muxlarin 10.bitleri y 

 

assign pp0_s[15:0]={15'd0,s0}; 

assign pp1_s[15:0]={12'd0,s1,3'd0}; 

 

//ek 

assign pp2_y[15:0]={3'd0,mux2_out[10],12'd0}; //muxlarin 10.bitleri y 

assign comp[15:0]=16'hF6E0; 

//assign c[15:0]=pp0[15:0]+pp1[15:0]+pp2[15:0]+pp0_y[15:0]+pp0_s[15:0]+pp1_y[15:0]+pp1_s[15:0]+comp[15:0]; 

assign 

c[15:0]=pp0[15:0]+pp1[15:0]+pp2[15:0]+pp0_y[15:0]+pp0_s[15:0]+pp1_y[15:0]+pp1_s[15:0]+pp2_y[15:0]+comp[15:0]; 

endmodule 

 

 

A.2 Verilog-HDL code of KplusM 

 

module KplusM( 

    input [7:0] M, 

    output [10:0] K_M //10.bit y0 

  //output y0 

    ); 

assign K_M[10]=M[5]; 

assign K_M[9:0]={2'd0,M[7:6],!M[5],M[4:0]}; 
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A.3 Verilog-HDL code of Kplus2M 

 

module Kplus2M( 

    input [7:0] M, 

    output [10:0] K_2M //10.bit y0 

  //output y0 

    ); 

//assign y0=M[4]; 

assign K_2M[10:0]={M[4],1'd0,M[7:5],!M[4],M[3:0],1'd0}; 

 

A.4 Verilog-HDL code of Kplus3M 

 

module booth3_mux( 

    input [3:0] sel, 

    input [10:0] mux_in_0,//K+M     //ilk bit y0 

    input [10:0] mux_in_1,//K+2M  //ilk bit y0 

    input [10:0] mux_in_2,//K+3M  //ilk bit y0 

    input [10:0] mux_in_3,//K+4M  //ilk bit y0 

   

    output reg [10:0] mux_out   //ilk bit y0 cikisi 

    ); 

always @(sel or mux_in_0 or mux_in_1 or mux_in_2 or mux_in_3) 

case (sel) 

 4'd0://K+0 

  begin 

  mux_out[10]<=0;//y0 

  mux_out[9:6]<=4'd0; 

  mux_out[5]<=1; 

  mux_out[4:0]<=5'd0; 

  end 

 4'd1://K+M 

  mux_out[10:0]<=mux_in_0[10:0];//y0 

 4'd2://K+M 

  mux_out[10:0]<=mux_in_0[10:0];//y0 

 4'd3://K+2M 

  mux_out[10:0]<=mux_in_1[10:0]; 

 4'd4://K+2M 

  mux_out[10:0]<=mux_in_1[10:0]; 

 4'd5://K+3M 

  mux_out[10:0]<=mux_in_2[10:0]; 

 4'd6://K+3M 

  mux_out[10:0]<=mux_in_2[10:0]; 

 4'd7://K+4M 

  mux_out[10:0]<=mux_in_3[10:0];   

 4'd8://K-4M 
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  mux_out[10:0]<=~mux_in_3[10:0]; 

 4'd9://K-3M 

  mux_out[10:0]<=~mux_in_2[10:0]; 

 4'd10://K-3M 

  mux_out[10:0]<=~mux_in_2[10:0]; 

 4'd11://K-2M 

  mux_out[10:0]<=~mux_in_1[10:0]; 

 4'd12://K-2M 

  mux_out[10:0]<=~mux_in_1[10:0]; 

 4'd13://K-M 

  mux_out[10:0]<=~mux_in_0[10:0]; 

 4'd14://K-M 

  mux_out[10:0]<=~mux_in_0[10:0]; 

 4'd15: 

  begin 

  mux_out[10]<=1;//y0 

  mux_out[9:6]<=4'hF; 

  mux_out[5]<=0; 

  mux_out[4:0]<=5'h1F; 

  end 

 default 

  begin 

  end 

endcase 

endmodule 

 

 

A.5 Verilog-HDL Code of Kplus4M 

 

module Kplus4M( 

    input [7:0] M, 

    output [10:0] K_4M //10.bit y0 

  //output y0 

    ); 

 

//assign y0=M[3]; 

assign K_4M[10:0]={M[3],M[7:4],!M[3],M[2:0],2'd0}; 

 

 

endmodule 

 

 

A.6 Verilog-HDL Code of Booth3Mux 

 

module booth3_mux( 
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    input [3:0] sel, 

    input [10:0] mux_in_0,//K+M     //ilk bit y0 

    input [10:0] mux_in_1,//K+2M  //ilk bit y0 

    input [10:0] mux_in_2,//K+3M  //ilk bit y0 

    input [10:0] mux_in_3,//K+4M  //ilk bit y0 

   

    output reg [10:0] mux_out   //ilk bit y0 cikisi 

    ); 

 

 

always @(sel or mux_in_0 or mux_in_1 or mux_in_2 or mux_in_3) 

case (sel) 

 4'd0://K+0 

  begin 

  mux_out[10]<=0;//y0 

  mux_out[9:6]<=4'd0; 

  mux_out[5]<=1; 

  mux_out[4:0]<=5'd0; 

  end 

 4'd1://K+M 

  mux_out[10:0]<=mux_in_0[10:0];//y0 

 4'd2://K+M 

  mux_out[10:0]<=mux_in_0[10:0];//y0 

 4'd3://K+2M 

  mux_out[10:0]<=mux_in_1[10:0]; 

 4'd4://K+2M 

  mux_out[10:0]<=mux_in_1[10:0]; 

 4'd5://K+3M 

  mux_out[10:0]<=mux_in_2[10:0]; 

 4'd6://K+3M 

  mux_out[10:0]<=mux_in_2[10:0]; 

 4'd7://K+4M 

  mux_out[10:0]<=mux_in_3[10:0];   

 4'd8://K-4M 

  mux_out[10:0]<=~mux_in_3[10:0]; 

 4'd9://K-3M 

  mux_out[10:0]<=~mux_in_2[10:0]; 

 4'd10://K-3M 

  mux_out[10:0]<=~mux_in_2[10:0]; 

 4'd11://K-2M 

  mux_out[10:0]<=~mux_in_1[10:0]; 

 4'd12://K-2M 

  mux_out[10:0]<=~mux_in_1[10:0]; 

 4'd13://K-M 

  mux_out[10:0]<=~mux_in_0[10:0]; 

 4'd14://K-M 
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  mux_out[10:0]<=~mux_in_0[10:0]; 

 4'd15: 

  begin 

  mux_out[10]<=1;//y0 

  mux_out[9:6]<=4'hF; 

  mux_out[5]<=0; 

  mux_out[4:0]<=5'h1F; 

  end 

 default 

  begin 

  end 

endcase 

  

endmodule 

 

A.7 Verilog-HDL code of wallace_booth3_bias_8x8 

 

module wallace_booth3_bias_8x8( 

    input [15:0] pp0, 

    input [15:0] pp1, 

    input [15:0] pp2, 

    input [15:0] pp0_y, 

    input [15:0] pp1_y, 

    input [15:0] pp2_y, 

    input [15:0] pp0_s, 

    input [15:0] pp1_s, 

    output [15:0] sum1, 

    output [15:0] sum2, 

    output [15:0] sum 

    ); 

 

wire [15:0] S1,C1,S2,C2; 

 

 

//Level 1 

half_adder u11(.A(pp0[0]),.B(pp0_s[0]),.S(S1[0]),.C_out(C1[0])); 

assign S1[1]=pp0[1]; assign C1[1]=1'd0;//dogrudan u12 

half_adder u13(.A(pp0[2]),.B(pp1_s[2]),.S(S1[2]),.C_out(C1[2])); 

full_adder u14(.A(pp0[3]),.B(pp1[3]),.C_in(pp1_s[3]),.S(S1[3]),.C_out(C1[3])); 

full_adder u15(.A(pp0[4]),.B(pp1[4]),.C_in(pp1_s[4]),.S(S1[4]),.C_out(C1[4])); 

half_adder u16(.A(pp0[5]),.B(pp1[5]),.S(S1[5]),.C_out(C1[5])); 

full_adder u17(.A(pp0[6]),.B(pp1[6]),.C_in(pp2[6]),.S(S1[6]),.C_out(C1[6])); 

full_adder u18(.A(pp0[7]),.B(pp1[7]),.C_in(pp2[7]),.S(S1[7]),.C_out(C1[7])); 

full_adder u19(.A(pp0[8]),.B(pp1[8]),.C_in(pp2[8]),.S(S1[8]),.C_out(C1[8])); 

full_adder u110(.A(pp0[9]),.B(pp1[9]),.C_in(pp2[9]),.S(S1[9]),.C_out(C1[9])); 
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full_adder u111(.A(pp0[10]),.B(pp1[10]),.C_in(pp2[10]),.S(S1[10]),.C_out(C1[10])); 

full_adder u112(.A(pp0[11]),.B(pp1[11]),.C_in(pp2[11]),.S(S1[11]),.C_out(C1[11])); 

full_adder u113(.A(pp0[12]),.B(pp1[12]),.C_in(pp2[12]),.S(S1[12]),.C_out(C1[12])); 

full_adder u114(.A(pp0[13]),.B(pp1[13]),.C_in(pp2[13]),.S(S1[13]),.C_out(C1[13])); 

half_adder/*m*/ u115(.A(1'd1),.B(pp2[14]),.S(S1[14]),.C_out(C1[14])); 

half_adder/*m*/ u116(.A(1'd1),.B(pp2[15]),.S(S1[15]),.C_out(C1[15])); 

 

//Level 2 

assign S2[0]=S1[0]; assign C2[0]=1'd0;//dogrudan u21 

half_adder u22(.A(C1[0]),.B(S1[1]),.S(S2[1]),.C_out(C2[1])); 

assign S2[2]=S1[2]; assign C2[2]=1'd0;//dogrudan u23 

half_adder u24(.A(C1[2]),.B(S1[3]),.S(S2[3]),.C_out(C2[3])); 

half_adder u25(.A(C1[3]),.B(S1[4]),.S(S2[4]),.C_out(C2[4])); 

half_adder u26(.A(C1[4]),.B(S1[5]),.S(S2[5]),.C_out(C2[5])); 

full_adder u27(.A(C1[5]),.B(S1[6]),.C_in(pp0_y[6]),.S(S2[6]),.C_out(C2[6])); 

half_adder u28(.A(C1[6]),.B(S1[7]),.S(S2[7]),.C_out(C2[7])); 

half_adder u29(.A(C1[7]),.B(S1[8]),.S(S2[8]),.C_out(C2[8])); 

full_adder u210(.A(C1[8]),.B(S1[9]),.C_in(pp1_y[9]),.S(S2[9]),.C_out(C2[9])); 

half_adder u211(.A(C1[9]),.B(S1[10]),.S(S2[10]),.C_out(C2[10])); 

half_adder u212(.A(C1[10]),.B(S1[11]),.S(S2[11]),.C_out(C2[11])); 

full_adder u213(.A(C1[11]),.B(S1[12]),.C_in(pp2_y[12]),.S(S2[12]),.C_out(C2[12])); 

half_adder u214(.A(C1[12]),.B(S1[13]),.S(S2[13]),.C_out(C2[13])); 

half_adder u215(.A(C1[13]),.B(S1[14]),.S(S2[14]),.C_out(C2[14])); 

half_adder u216(.A(C1[14]),.B(S1[15]),.S(S2[15]),.C_out(C2[15])); 

 

 

assign sum1[15:0]=S2[15:0]; 

assign sum2[15:0]={C2[14:0],1'd0}; 

 

assign sum=sum1+sum2; //Carry propagate adder 

endmodule 

 

A.8 Verilog-HDL code of half adder 

 

module half_adder( 

    input A, 

    input B, 

    output S, 

    output C_out 

    ); 

 

 

 

assign S=A ^ B; 

assign C_out= A && B; 
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endmodule 

 

 

A.9 Verilog-HDL code of full adder 

 

module full_adder( 

    input A, 

    input B, 

    input C_in, 

    output S, 

    output C_out 

    ); 

 

 

assign S=A ^ B ^ C_in; 

assign C_out= (A&B) | (A&C_in) | (B&C_in); 

 

 

endmodule 

 

 

A.10 Verilog-HDL code of 16 bit Carry lookahead adder 

 

module CLA_16( 

    input [15:0] A, 

    input [15:0] B, 

    input Cin, 

    output PP, 

    output PG, 

    output [15:0] Sum, 

  output Cout 

    ); 

wire [3:0] P,G,C; 

CLA_4bit 

u1(.A(A[3:0]),.B(B[3:0]),.Cin(C[0]),.Sum(Sum[3:0]),.PP(P[0]),.PG(G[0])), 

u2(.A(A[7:4]),.B(B[7:4]),.Cin(C[1]),.Sum(Sum[7:4]),.PP(P[1]),.PG(G[1])), 

u3(.A(A[11:8]),.B(B[11:8]),.Cin(C[2]),.Sum(Sum[11:8]),.PP(P[2]),.PG(G[2])), 

u4(.A(A[15:12]),.B(B[15:12]),.Cin(C[3]),.Sum(Sum[15:12]),.PP(P[3]),.PG(G[3])); 

 

assign C[0]=Cin; 

assign C[1]=G[0] | (P[0] & C[0]); 

assign C[2]=G[1] | (P[1] & G[0]) | (P[1] & P[0] & C[0]); 

assign C[3]=G[2] | (P[2] & G[1]) | (P[2] & P[1] & G[0]) | (P[2] & P[1] & P[0] & C[0]); 
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assign Cout=G[3] | (P[3] & G[2]) | (P[3] & P[2] & G[1]) | (P[3] & P[2] & P[1] & G[0]) | (P[3] & P[2] & P[1] & P[0] & C[0]); 

 

assign PP=P[3] & P[2] & P[1] & P[0]; 

assign PG=G[3] | (G[2] & P[3]) | (G[1] & P[3] & P[2]) | (G[0] & P[3] & P[2] & P[1]); 

endmodule 

 

A.11 Verilog-HDL code of 4-bit carry lookahead adder 

 

module CLA_4bit( 

    input [3:0] A, 

    input [3:0] B, 

    input Cin, 

    output PP, 

    output PG, 

    output [3:0] Sum, 

    output Cout 

    ); 

 

wire [3:0] P,G,C; 

 

full_adder_CLA 

u1(.A(A[0]),.B(B[0]),.Cin(C[0]),.Sum(Sum[0]),.P(P[0]),.G(G[0])), 

u2(.A(A[1]),.B(B[1]),.Cin(C[1]),.Sum(Sum[1]),.P(P[1]),.G(G[1])), 

u3(.A(A[2]),.B(B[2]),.Cin(C[2]),.Sum(Sum[2]),.P(P[2]),.G(G[2])), 

u4(.A(A[3]),.B(B[3]),.Cin(C[3]),.Sum(Sum[3]),.P(P[3]),.G(G[3])); 

 

assign C[0]=Cin; 

assign C[1]=G[0] | (P[0] & C[0]); 

assign C[2]=G[1] | (P[1] & G[0]) | (P[1] & P[0] & C[0]); 

assign C[3]=G[2] | (P[2] & G[1]) | (P[2] & P[1] & G[0]) | (P[2] & P[1] & P[0] & C[0]); 

assign Cout=G[3] | (P[3] & G[2]) | (P[3] & P[2] & G[1]) | (P[3] & P[2] & P[1] & G[0]) | (P[3] & P[2] & P[1] & P[0] & C[0]); 

 

assign PP=P[3] & P[2] & P[1] & P[0]; 

assign PG=G[3] | (G[2] & P[3]) | (G[1] & P[3] & P[2]) | (G[0] & P[3] & P[2] & P[1]); 

 

 

endmodule 

 

A.12 Verilog-HDL code of full-adder in CLA adder 

 

module full_adder_CLA( 

    input A, 

    input B, 

    input Cin, 

    output Sum, 
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    output P, 

    output G 

    ); 

 

assign P=A^B; 

assign G=A&B; 

assign Sum=A^B^Cin; 

endmodule 

 

A.13 Verilog-HDL code of testbench 

 

module tb_booth3_bias_wallace_cla16; 

 

 // Inputs 

 reg [7:0] a; 

 reg [7:0] b; 

  

 // Outputs 

 wire [15:0] c,sum_wallace,sum_cla; 

 wire cla_overflow; 

 reg [15:0] a_b; 

 // Instantiate the Unit Under Test (UUT) 

 booth3_bias_wallace_CLA16 uut ( 

  .a(a),  

  .b(b),  

  .c(c), 

  .sum_wallace(sum_wallace), 

  .sum_cla(sum_cla), 

  .cla_overflow(cla_overflow) 

 ); 

 

always @(a or b) 

a_b[15:0]=a[7:0]*b[7:0]; 

 

reg clk; 

initial  

begin clk=0; 

#1; 

forever 

begin 

clk=!clk; 

#2; 

end 

end 
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reg hata; 

initial hata=0; 

reg hata_wallace; 

initial hata_wallace=0; 

reg hata_cla; 

initial hata_cla=0; 

 

always @(posedge clk) 

if (a_b[15:0]!=c[15:0])  

 hata<=1; 

else 

 hata<=0; 

 

always @(posedge clk) 

if (a_b[15:0]!=sum_wallace[15:0])  

 hata_wallace<=1; 

else 

 hata_wallace<=0; 

 

always @(posedge clk) 

if (a_b[15:0]!=sum_cla[15:0])  

 hata_cla<=1; 

else 

 hata_cla<=0; 

 

initial begin 

  // Initialize Inputs 

  a = 0; 

  b = 0; 

 

  // Wait 100 ns for global reset to finish 

  #100; 

   

forever 

begin 

a=$random; 

b=$random; 

#10;  

  // Add stimulus here 

 end 

 

end 

 

endmodule 
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