
 i

WAVE COMPONENT SAMPLING METHOD FOR HIGH PERFORMANCE PIPELINED

CIRCUITS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

REFİK SEVER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

ELECTRICAL AND ELECTRONICS ENG. DEPT., METU

SEPTEMBER 2011

ii

ii

Approval of the Thesis:

WAVE COMPONENT SAMPLING METHOD FOR HIGH PERFORMANCE

PIPELINED CIRCUITS

Submitted by REFİK SEVER in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Electronics Engineering by,

Prof. Dr. Canan ÖZGEN

Dean, Graduate School of Natural And Applied Sciences

Prof. Dr. İsmet ERKMEN

Head of Department, Electrical and Electronics Engineering

Prof. Dr. Murat AŞKAR

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih BİLGEN

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Murat AŞKAR

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Haluk KÜLAH

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Özgür AKTAŞ

Electrical and Electronics Engineering Dept., BILKENT

Assoc. Prof. Dr. Cüneyt BAZLAMAÇCI

Electrical and Electronics Engineering Dept., METU

Date: 23.09.2011

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

 Name, Last name: REFİK SEVER

Signature :

iv

ABSTRACT

WAVE COMPONENT SAMPLING METHOD FOR HIGH PERFORMANCE PIPELINED

CIRCUITS

SEVER, Refik

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Murat AŞKAR

September 2011, 126 pages

In all of the previous pipelining methods such as conventional pipelining, wave pipelining,

and mesochronous pipelining, a data wave propagating on the combinational circuit is

sampled whenever it arrives to a synchronization stage. In this study, a new wave-pipelining

methodology named as Wave Component Sampling Method (WCSM), is proposed. In this

method, only the component of a wave, whose maximum and minimum delay difference

exceeds the tolerable value, is sampled, and the other components continue to propagate on

the circuit. Therefore, the total number of registers required for synchronization decreases

significantly. For demonstrating the effectiveness of the proposed WCSM, an 8x8 bit carry

save adder (CSA) multiplier is implemented using 0.18µm CMOS technology. A generic

transmission gate logic block with optimized output delay variation depending on the input

pattern is designed and used in all of the sub blocks of the multiplier. Post layout simulation

results show that, this multiplier can operate at a speed of 3GHz, using only 70 latches.

Comparing with the mesochronous pipelining scheme, the number of the registers is

decreased by 41% and the total power of the chip is also decreased by 9.5% without any

performance loss. An ultra high speed full pipelined CSA multiplier with an operating

frequency of 5GHz is also implemented with WCSM. The number of registers is decreased

by 45%, and the power consumption of the circuit is decreased by 18.4% comparing with

conventional or mesochronous pipelining methods. WCSM is also applied to different

multiplier structures employing booth encoders, Wallace trees, and carry look-ahead adders.

Comparing full pipelined 8x8 bit WCSM multiplier with the conventional pipelined

multiplier, the number of registers in the implementation of booth encoder, Wallace tree, and

carry look-ahead adder is decreased by 30%, 51%, and %62, respectively.

v

Keywords: Wave-pipelining; high performance multiplier; very high speed integrated

circuits; pipeline processing; very large scale integrated circuits.

vi

ÖZ

YÜKSEK PERFORMANSLI BORU HATTI MİMARİLİ DEVRELER İÇİN DALGA

ELEMANI ÖRNEKLEME METODU

SEVER, Refik

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Murat AŞKAR

Eylül 2011, 126 sayfa

Konvansiyonel boruhattı, dalga boruhattı ya da mesokron boru hattı gibi önceki boruhattı

mimarilerinin tamamında, kombinezonal devrede ilerleyen bir veri dalgası, senkronizasyon

bölümüne ulaştığı anda örneklenmektedir. Bu çalışmada, Dalga Elemanı Örnekleme Metodu

(WCSM) olarak adlandırılan yeni bir dalga boruhattı metodu önerilmektedir. Bu metodda,

yalnızca en az ve en çok gecikme farkı tahammül edilen sınıra ulaşan dalga elemanı

örneklenmekte, diğer dalga elemanları devrede ilerlemeye devam etmektedir. Bundan dolayı,

senkronizasyon için gereken flip-flop sayısı önemli oranda azalmaktadır. Önerilen metodun

etkinliğini göstermek amacıyla, 8x8 bitlik çarpıcı bloğu elde saklama metoduyla ve 0.18µm

CMOS teknolojisi kullanılarak gerçeklenmiştir. Genel bir transmisyon kapılı mantık bloğu,

çıkışındaki gecikme farkları giriş very diziliminden en az etkilenecek şekilde tasarlanmış ve

çarpıcının değişik alt bloklarında kullanılmıştır. Serim sonrası simülasyonlar göstermiştir ki,

bu çarpıcı 3GHz çalışma frekansında ve sadece 70 tane kayıt elemanı kullanarak

çalışabilmektedir. Mesokron boruhattı mimarisine kıyasla, herhangi bir performans kaybı

olmadan toplam kayıt elemanı sayısı %41 ve toplam güç tüketimi de %9.5 oranında

azalmıştır. 5GHz çalışma frekansına sahip çok yüksek hızlı bir çarpıcı bloğu da WCSM

metodu kullanılarak tasarlanmıştır. Konvansiyonel boruhattı ya da mesokron boru hattı

metodlarına kıyasla, toplam kayıt elemanı sayıs %45 ve toplam güç tüketimi de %18.4

oranında azalmıştır. WCSM metodu, booth kodlayıcı, Wallace ağacı ve elde öngörülü

toplayıcı gibi farklı çarpıcı yapılarına da uygulanmıştır. Boruhattı mimarisi her mantıksal

işlemin sonunda bir kayıt elemanı olacak şekilde kullanıldığında, WCSM metodu

konvalsiyonel boruhattı metoduna kıyasla booth kodlayıcıda %30, Wallace ağacında %51 ve

elde öngörülü toplayıcıda %62 oranında kayıt elemanı tasarrufu sağlamaktadır.

vii

Anahtar Kelimeler: Dalga boruhattı metodu; yüksek performanslı çarpıcı; çok yüksek hızlı

entegre devreler; boruhattı işleme; çok büyük ölçekli entegre devreler.

viii

I would like to dedicate this work to my dear wife, Aslı, and my dear children, Ece and

Metehan.

ix

ACKNOWLEDGMENTS

I would like to express my deepest gratitude for my supervisor Prof. Dr. Murat AŞKAR for

his guidance, advice, supervision, and encouragements throughout the research.

I would also like to thank my supervising comittee members Assoc Prof. Dr. Haluk

KÜLAH and Assist. Prof. Dr. Özgür AKTAŞ for their valuable suggestions, comments and

guidance.

I also wish to express my gratitude for comittee members Prof. Dr. Semih BİLGEN, and

Assoc. Prof. Dr. Cüneyt BAZLAMAÇCI.

I also wish to thank TÜBİTAK-UZAY and Electrical and Electronics Department of

Akdeniz University for the facilities and environment provided to me throughout the

researchs.

I would like to thank to my family for their great patience, sacrifice, and encouragements

throughout my studies.

x

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... v

ACKNOWLEDGMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF ABBREVIATIONS .. xii

LIST OF FIGURES .. xiii

LIST OF TABLES .. xiv

CHAPTERS

1 INTRODUCTION ... 1

2 PIPELINING METHODS ... 8

2.1 Conventional Pipelining... 8

2.2 Wave pipelining ... 11

2.2.1 Timing constraints ... 13

2.2.2 Sources of Delay Differences .. 14

2.2.3 Logic Restructuring ... 14

2.2.4 Delay Insertion ... 15

2.2.5 The advantages and disadvantages of wave-pipelining 16

2.3 Hybrid Wave Pipelining .. 16

2.4 Mesochronous Pipelining Scheme ... 17

3 MULTIPLIER STRUCTURES ... 18

3.1 Carry Save Adder (CSA) Multiplier .. 20

3.2 Wallace Trees .. 22

3.3 Booth Encoding ... 25

3.3.1 Booth 2 Algorithm ... 25

3.3.2 Booth 3 Algorithm ... 27

3.3.3 Redundant Booth Algorithm .. 28

3.4 Carry Propagate Addition .. 30

4 WAVE COMPONENT SAMPLING METHOD (WCSM) .. 35

4.1 Principles of Wave Component Sampling Method .. 36

4.2 Advantages and Disadvantages of Wave Component Sampling Method 42

xi

5 APPLICATION OF WCSM TO MULTIPLIER STRUCTURES................................. 44

5.1 Logic selection ... 44

5.2 Delay Balancing ... 53

5.3 Simultaneous generation of complementary outputs ... 55

5.4 Implementation of Multiplier Blocks ... 58

5.4.1 Half adder design ... 58

5.4.2 Full adder design .. 63

5.4.3 Partial Product Generation ... 66

5.4.4 Sampling of the signals .. 70

5.5 Implementation of 8x8 bit CSA multiplier .. 73

5.5.1 Schematic design ... 73

5.5.2 Operating Frequency .. 75

5.5.3 Layout Implementation of the multipliers ... 76

5.5.4 Simulations of multipliers .. 77

5.5.5 Performance comparison of the multipliers ... 80

5.6 A 5GHz WCSM-Multiplier ... 81

5.7 IMPLEMENTATION OF THE OTHER MULTIPLIER STRUCTURES 85

5.7.1 Booth encoder design ... 85

5.7.2 Wallace tree design .. 88

5.7.3 Carry Lookahead adder design .. 91

5.7.4 CLA Adder Design with 4-input logic gates ... 100

5.8 Delay analysis of logic blocks with 4 inputs .. 102

6 CONCLUSION .. 107

BIBLIOGRAHPY .. 110

APPENDIX A .. 113

HDL CODES OF MULTIPLIER BLOCKS .. 113

A.1 Verilog HDL code of top module (booth3_bias_wallace_CLA16) 113

A.2 Verilog-HDL code of KplusM .. 115

A.3 Verilog-HDL code of Kplus2M .. 116

A.4 Verilog-HDL code of Kplus3M .. 116

A.5 Verilog-HDL Code of Kplus4M ... 117

A.6 Verilog-HDL Code of Booth3Mux ... 117

A.7 Verilog-HDL code of wallace_booth3_bias_8x8 ... 119

xii

A.8 Verilog-HDL code of half adder ... 120

A.9 Verilog-HDL code of full adder .. 121

A.10 Verilog-HDL code of 16 bit Carry lookahead adder .. 121

A.11 Verilog-HDL code of 4-bit carry lookahead adder ... 122

A.12 Verilog-HDL code of full-adder in CLA adder .. 122

A.13 Verilog-HDL code of testbench .. 123

CURRICULUM VITAE .. 125

xiii

LIST OF ABBREVIATIONS

BPAR :Bit Plane Associative Router

CAD :Computer Aided Design

CLA :Carry Look-ahead Adder

C
2
MOS

CMOS

:Clocked CMOS

:Complimentary Metal-Oxide Semiconductor

CSA :Carry Save Adder

NPCPL :Normal Process Complementary Pass Transistor Logic

MOS :Metal-Oxide Semiconductor

MOSFET :Metal-Oxide Semiconductor Field-Effect Transistor

nMOS :n-Channel MOSFET

pMOS :p-Channel MOSFET

PLL :Phase Locked Loop

SAFF :Sense Amplifier Based Flip-Flop

SOC :System on Chip

UMC :United Microelectronics Company

VLSI :Very Large Scale Integrated Circuits

WCSM :Wave Component Sampling Method

WPM :Wave Pipeline Multiplexed

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Combinational logic circuit and input-output registers .. 9

Figure 2.2 Conventional pipelining scheme .. 9

Figure 2.3 Temporal/spatial diagram for conventional pipelining... 10

Figure 2.4 Propagating waves on the same combinational circuit. .. 12

Figure 2.5 Temporal/spatial diagram of wave-pipeline operation ... 12

Figure 2.6 Logic restructuring ... 15

Figure 2.7 A combinational logic circuit ... 15

Figure 2.8 A combination logic circuit with balanced paths ... 16

Figure 2.9 TS diagram of mesochronous pipelining .. 17

Figure 3.1 Partial product generation ... 19

Figure 3.2 Simple addition of partial products .. 19

Figure 3.3 CSA multiplier with vector merging adder .. 21

Figure 3.4 CSA Multiplier with half adder tree ... 22

Figure 3.5 Reduction of bits using half adder and full adder ... 23

Figure 3.6 Partial product reduction of 8x8 bit multiplier using Wallace tree [33] 24

Figure 3.7 Partial product reduction using (4,2) compressors [33].. 25

Figure 3.8 Modified Booth Algorithm (2 bit shift) [33] .. 26

Figure 3.9 Modified Booth Algorithm (3 bit shift) [33] .. 28

Figure 3.10 Partially redundant addition [33] .. 29

Figure 3.11 Negative multiple generation [33] .. 30

Figure 3.12 Carry look-ahead design of a 4-bit group ... 32

Figure 3.13 16 bit carry-look-ahead adder ... 33

Figure 4.1 Proposed wave component sampling method (WCSM) 36

Figure 4.2 Input-output delay of AND gate ... 36

Figure 4.3 An imaginary combinational circuit ... 37

Figure 4.4 Data transition regions after 1
st
 logic operation .. 38

Figure 4.5 Flip-flops inserted using mesochronous pipelining scheme 39

Figure 4.6 Flip-flops inserted using proposed WCSM .. 40

Figure 4.7 Flow chart of register insertion of WCSM ... 41

Figure 5.1 Schematic diagram of 2 input NAND gate ... 45

Figure 5.2 Schematic diagram of CMOS NAND2 with current limiting transistors 45

xv

Figure 5.3 Generic transmission gate logic .. 46

Figure 5.4 Transmission gate logic with 2 inverter cascades at the output 46

Figure 5.5 Block diagram of the simulation setup ... 47

Figure 5.6 Simulation of transmission gate logic block ... 48

Figure 5.7 Parametric sweep analysis of transistor sizes ... 49

Figure 5.8 Parametric sweep analysis of inverter ratio .. 49

Figure 5.9 Glitch generation between transitions .. 50

Figure 5.10 Graphical representation of output delay values .. 53

Figure 5.11 A positive pulse and its delayed version .. 54

Figure 5.12 Inverter cascade with different W/L ratios ... 54

Figure 5.13 Signals obtained with normal and tuned inverter cascades 55

Figure 5.14 Generation of complementary outputs by using separate logic 55

Figure 5.15 Simultaneous generation of complementary and normal output signals 57

Figure 5.16 Simulation of generating normal and complementary outputs simultaneously .. 58

Figure 5.17 Schematic diagram of half adder block .. 60

Figure 5.18 A simulation example of half adder ... 61

Figure 5.19 Graphical representation of the output delay values of half adder 62

Figure 5.20 Layout of the half adder block .. 62

Figure 5.21 Schematic diagram of full adder block ... 64

Figure 5.22 Graphical representation of output delay values of full adder 66

Figure 5.23 Layout diagram of the full adder block .. 66

Figure 5.24 Schematic diagram of AND gate .. 67

Figure 5.25 Block diagram of partial product generator .. 68

Figure 5.26 Simulation of partial product generator .. 69

Figure 5.27 Layout diagram of partial product generator .. 70

Figure 5.28 Schematic diagram of C
2
MOS latch ... 71

Figure 5.29 Simulations of internal signals of the latch .. 72

Figure 5.30 Propagating waves before sampling ... 72

Figure 5.31 Propagating waves after sampling .. 73

Figure 5.32 Block diagram of mesochronous multiplier ... 74

Figure 5.33 Block diagram of 8x8 bit multiplier using WCSM .. 75

Figure 5.34 Layout view of 8x8 bit multiplier using mesochronous pipelining 77

Figure 5.35 Propagating waves after first partial product generator 78

Figure 5.36 Propagating waves after the first half adder layer .. 78

Figure 5.37 Propagating waves after the first full adder layer ... 79

xvi

Figure 5.38 Propagating waves after the second full adder layer .. 79

Figure 5.39 Propagating waves after sampling .. 80

Figure 5.40 Full pipelined multiplier ... 82

Figure 5.41 Propagating waves before sampling ... 83

Figure 5.42 Design of Mux6x1 using generic transmission gate logic 86

Figure 5.43 Block diagram of 8xmux module ... 87

Figure 5.44 Top level block diagram of Booth Encoder module ... 88

Figure 5.45 Block diagram of wallace tree with modified Booth-2 algorithm 90

Figure 5.46 Schematic design of 4-bit carry look-ahead adder circuit 91

Figure 5.47 Carry generation logic .. 91

Figure 5.48 Modified carry generation circuit ... 92

Figure 5.49 Carry generation circuit of first stage with 5 levels of logic 92

Figure 5.50 Carry generation circuit of first stage with 4 levels of logic 93

Figure 5.51 16 bit adder with carry look-ahead logic .. 94

Figure 5.52 13 bit adder with carry look-ahead logic. ... 95

Figure 5.53 16 bit carry save adder tree. .. 96

Figure 5.54 Block diagram of 16-bit CLA adder with balanced paths 99

Figure 5.55 16-bit carry lookahead adder with 4-input logic gates 101

Figure 5.56 4-input AND gate with serial current limiting transistor 102

Figure 5.57 2-input CMOS AND gate ... 104

Figure 5.58 4-input CMOS And gate constructed with 2-input gates.................................. 105

xvii

LIST OF TABLES

TABLES

Table 3-1 Partial Product Selection of modified Booth-2 algorithm. 26

Table 3-2 Partial product selection table of Booth-3 algorithm. .. 27

Table 5-1 Parameters of transistors .. 48

Table 5-2 Optimized transistor parameters .. 51

Table 5-3 Output propagation times for all transitions of inputs ... 52

Table 5-4 Input combinations of generic trans. gate logic for NAND and AND gates 56

Table 5-5 Output propagation times of Q and NQ signals .. 57

Table 5-6 Truth table of half adder .. 58

Table 5-7 Output delay values of half adder for all input transitions 61

Table 5-8 The truth table of full adder ... 63

Table 5-9 Output delay values of full adder .. 65

Table 5-10 Transistor sizes of C
2
MOS latch. .. 71

Table 5-11 Comparison between mesochronous and WCSM multiplier............................... 81

Table 5-12 Comparison between 5GHz mesochronous and WCSM multipliers 84

Table 5-13 Comparison of the multipliers with random inputs ... 85

Table 5-14 Wallace tree construction of Modified Booth-2 with 3 levels 89

Table 5-15 Comparison of Wallace trees with mesochronous pipelining and WCSM 90

Table 5-16 Transistor count of 16-bit carry save adder implementation 96

Table 5-17 Transistor count of 16-bit carry lookahead adder implementation. 97

Table 5-18 Transistor count of 13-bit carry lookahead adder implementation. 97

Table 5-19 Overall comparison of the multipliers ... 100

Table 5-20 Delays of 4-input CMOS with a limiting pmos of W=900nm at the top 103

Table 5-21 CMOS_AND4_v1_delays with no limiting transistor at the top 103

Table 5-22 Delay values of CMOS_AND2_v1 ... 104

Table 5-23 Delay values of CMOS_AND4_v2 ... 105

Table 5-24 Comparison of CMOS_AND4_v1 and CMOS_AND4_v2. 106

1

Equation Chapter 1 Section 1

CHAPTER 1

1 INTRODUCTION

In today’s high performance digital systems, pipelining technique is widely used to increase

the operating frequency of a logic circuit. In conventional pipelining technique, the

combinational logic circuit is divided into several sub-stages. Between these sub-stages,

synchronization registers are inserted. Since the computation time between the

synchronization registers is decreased, the overall operating speed of the logic circuit

increases. It is possible to increase the operating frequency of the logic up to N times by

using N levels of equally separated pipeline stages. However, the clocking overheads such as

clock skew and setup-hold time requirements of the registers generally limit the operating

frequency improvements. Also, the clock distribution and the power consumption of the

synchronization registers are the other major drawbacks of the conventional pipelining.

Wave-pipelining [1] is another pipelining method in which the pipeline registers or latches

are removed and the capacitances of the internal logic gates act as virtual storage elements.

In wave-pipelining method, an input data vector is applied to the logic circuit, and before it

arrives to the end of the logic circuit, another input data vector is sent. Therefore, multiple

data vectors, which are also named as data waves, propagate on the circuit simultaneously.

The important concept in wave-pipelining is that the circuit must be designed properly so

that the cascading data waves do not collapse with each other. Therefore, the minimum and

maximum delay variation of all the paths must be balanced in order to achieve wave-pipeline

operation.

Previous work on wave pipelining is summarized as follows:

Wave pipelining method was first used in the design of the IBM System/360 Model 91

floating point unit [2], where the operating frequency of the chip was 2 times the normal

frequency. Then, Cotton [3] formalized the wave pipelining method, and named it as

2

“maximal rate clocking”. Ekroot [4] developed linear programs which automatically insert

delay elements to equalize the propagating waves.

Fishburn [5] investigated the performance improvements achieved by adjusting the path

delays of the clock signal distributed to the flip-flops. He investigated the effects by both

trying to minimize the clock period while avoiding clock hazards and maximizing the

minimum safety margin for a given period.

In [6], a 63 bit bipolar population counter is designed by using wave pipelining. The circuit

was operated at a frequency which is 2.5 times the normal operating frequency; therefore 2

or 3 waves propagate on the logic simultaneously.

Sakallah et al [7] developed timing models for multiphase synchronous clocking. They

proposed a special class of clock schedules named as coincident multiphase clocks, which

provide lower bound on the optimal clock cycle time.

Joy and Ciesielski [8] presented a methodology for minimizing the clock period for a given

data path. They developed a linear program which minimizes the clock period by adjusting

the clock delays to the input and output flip-flops for a logic block. Their method allows

simultaneous signals to propagate in the logic without interference; therefore the clock

period reduces significantly.

Wong et al [9] presented algorithms for automatically equalizing delays in combinational

logic circuits to achieve wave pipelining. Their algorithms insert minimal number of active

delay elements for balancing the input-output path lengths. The algorithms not only

minimize the number of delay elements, but also optimize the power under delay constraints.

Gray et al [10] presented a method for high resolution sampling of a high speed data signal.

Instead of using a high speed latch with a high speed clock signal, they used active delay

elements to simultaneously propagate clock and data signals. Therefore, the resolution is

controlled by the difference between clock and data signals. They implemented an integrated

circuit, in which the delay is externally adjusted with a resolution of 25ps between 0 and

250ps.

3

In a different study by Gray et al. [11], the timing constraints for single and multiple stage

systems with arbitrary feedback were presented. It is demonstrated that feedback loops

impose additional constraints on the minimal and maximal clock period. A linear program

was also used to optimize the minimum clock period.

A 250-MHz adder in 2-µm CMOS technology is presented in [12]. 16-bit parallel adder was

designed using wave pipelining concept, and it has a wave pipelining degree of 9. They

developed a biased CMOS cross-coupled NAND gate in a custom layout, which has minimal

input data dependency at the outputs.

Ghosh and Nandy [13] designed a high performance wave pipelined 8x8 bit multiplier using

CMOS. They used a single generic block in normal process complementary pass transistor

logic (NPCPL) for equalizing the propagation paths in the design. The multiplier was

implemented using 0.8µm CMOS technology. It operates at a speed of 400MHz, and

dissipates a total power of 0.6W.

In [14], a 16-Mb BiCMOS SRAM is designed using 0.4µm BiCMOS process. This SRAM,

which has a total size of 512Kw*8b*4, includes a PLL self-timing generator and

incorporates 2 stage wave pipeline operation.

A 4-Mb synchronous wave pipeline SRAM was designed and fabricated by using 0.25µm

CMOS technology in [15]. This multiplier operates at a speed of 300MHz, resulting in a

bandwidth of 2.4GB/s.

In [16], a wave pipelined SRAM of 16kb with dual sensing latch circuit was implemented

using 0.25µm CMOS technology. This SRAM has an access time of 2.6ns at 2.5V supply

voltage.

In [17], wave pipelining concept is reviewed with special emphasis on CMOS. The effects of

temperature, voltage and process parameters on CMOS wave-pipelining are explained. The

conventional pipelining considers only the worst case timing constraints; however in wave

pipelining both the worst case and the best case timing constraints depending on temperature

must be handled. A dynamically adaptive clocking mechanism is proposed, which

compensates the effects of environmental fluctuations and process parameter deviations. A

4

dynamically adaptive power supply is also proposed. The dependency of output delay on

input pattern in conventional CMOS design was analyzed in detail. A biased CMOS gate is

also proposed for reducing the input dependency at the output.

In [18], valid clocking frequencies of wave pipelining are investigated. They used a new

representation named as timed boolean functions and derived analytical expressions for valid

clocking intervals.

Boemo et al [19] studied wave pipelining on FPGA’s. They showed that wave pipelining can

be achieved by using automatic place and route, if the circuit has same number of Look-up-

tables (LUTs) in all paths.

In [20], an excellent tutorial on wave pipelining is given. They explained the principles of

wave pipelining in detail, including the timing constraints, circuit and timing models,

internal node constrains etc. The sources of delay variations and the Computer Aided Design

(CAD) tools developed for synthesis and placement-routing of wave pipelined circuits are

also explained.

In [21], hybrid wave pipelining method is proposed. In hybrid wave pipelining method, wave

pipelined sub stages are composed to form pipeline stages. A bit plane associative router

(BPAR) is designed with hybrid wave pipelining method using 0.5µm CMOS technology.

Wave Pipeline Multiplexed (WPM) routing technique is proposed in [22] in which multiple

signals are sent in a single wire interconnect within a clock period. They suggested that

WPM routing technique can be applied to both inter-core and intra-core interconnects in any

system-on- chip (SoC) or microprocessor design. The number of total routing channels can

be reduced by 50% without any performance loss in the throughput. They analyzed the

application of WPM routing technique to a design including 40 million transistors, and they

showed that total number of metal layers is decreased by 20% with only 4% increase at the

dynamic power without any loss in the throughput.

A study in [23] showed that, the power dissipation in long global wires is significantly

reduced by adding wave pipeline stages to global wires and by lowering the supply voltage

of repeaters, without any performance loss.

5

In [24] a novel pipelining scheme named mesochronous pipelining is proposed. In this

method, data and clock signals propagate together, and when the minimum and maximum

delay difference of a path reaches the tolerable value, then the signals in this logic depth are

all sampled. They implemented an 8x8 bit multiplier to compare their method with

conventional pipelining scheme, and a speedup of 1.7 was achieved by using fewer pipeline

stages and pipeline registers.

In [25] a new pipeline method, named as MOUSETRAP, is proposed. This method uses

simple latches and control structures with an efficient event driven protocol. They claim that

this pipelining method has a performance comparable to that of wave pipelining with much

less design complexity.

In [26] a pipelining method named as surfing pipelines is proposed. This method is similar to

the wave pipelining, however in this method timing events are propagated along the pipeline

and events in the data path are matched with the timing events. Therefore, timing uncertainty

is reduced.

Voltage scaling, wire sizing, and repeater insertion are simultaneously applied in [27] for

achieving high performance, low power, and low area on wave-pipelined interconnect

circuits. They found that optimal supply voltage is twice the threshold voltage for low power

applications. The throughput-per-energy-area in their method is 10% lower than that of low-

voltage differential signaling (LVDS).

Schinkel et al [28] used wave pipelining in a network on chip design, and demonstrated that

the link power is reduced by a factor of 3.3 and data rate is increased by 80%.

In [29] a double data rate, wave-pipelined interconnect for asynchronous network on chips is

proposed. They used interleaved lines, misaligned repeaters and clock gating for low power

and high speed chip interconnects.

In [30] a synchronizing logic gate, which has an almost constant gate delay, is proposed for

wave pipelining. This logic gate is used as an intermediate latch for synchronizing data

6

paths. An 8x8 bit multiplier is designed using 90nm technology, and it has an operating

speed of 3.57 GHz.

All the conventional pipelining, wave-pipelining, hybrid pipelining and mesochronous

pipelining methods have a common property: A data wave is sampled whenever it reaches to

the synchronization stage, which is composed of flip-flops or latches for sampling the data

waves. In fact, a data wave is composed of several signal components, and all of these

components may have different maximum and minimum delay differences.

In this thesis, a new wave-pipelining methodology, which is named as Wave Component

Sampling Method (WCSM), is developed. This method permits individual sampling of the

signal components of a wave. Only the component of a wave, whose minimum and

maximum delay difference value exceeds the tolerable value, is sampled. The other

components of the wave, whose minimum and maximum delay differences do not reach the

tolerable value, continue to propagate on the combinational circuit without being sampled.

Therefore, the number of synchronization registers is decreased significantly in this proposed

method. The area and power consumption due to these synchronization registers, and the

associated power of the clock distribution are also decreased.

The organization of this dissertation is as follows:

Chapter 2 describes the theoretical background of current pipelining methods. In Chapter 3,

different multiplier structures including Wallace trees, booth encoders and carry look-ahead

adders are overviewed.

Chapter 4 describes the details of the proposed WCSM. The advantages and disadvantages

of the proposed method compared with the other pipelining methods are also given.

In Chapter 5, the application of WCSM to different multiplier structures are analyzed. Two

8x8 bit carry save adder multipliers are implemented using mesochronous pipelining scheme

and WCSM, for comparing the methods. WCSM is also applied to other multiplier structures

including booth encoder, Wallace tree and carry look-ahead adder. The optimization of the

sub blocks and the performance gain of WCSM are described in detail.

7

In Chapter 6 the thesis work is summarized, and concluding remarks are given. Some

suggestions are made for future improvements and possible utilizations of the proposed wave

component sampling method.

8

Equation Chapter 2 Section 1

CHAPTER 2

2 PIPELINING METHODS

The following parameters are used to explain the timing constraints for obtaining the

maximum operating frequency for different pipelining methodologies:

DMIN: Minimum propagation time in the combinational circuit.

DMAX: Maximum propagation time in the combinational circuit.

TCLK: Minimum clock period.

∆C: Constructive clock skew.

∆U: Unconstructive clock skew.

TS,TH: Setup-hold times of registers.

DR: Propagation delay of a register.

2.1 Conventional Pipelining

A combinational logic circuit with its input and output registers are shown in Figure 2.1. An

input data is sent to the combinational circuit with the rising or falling edge of the clock.

Before another data is applied, the combinational circuit must complete the logical operation.

Considering the propagation delay of the input registers, the setup time requirement of the

output registers, and the clock skew between the input and the output registers, the minimum

clock period for that circuit is shown in Equation (1).

TCLK DMAX + DR + TS + ∆U (1)

9

R
e

g
is

te
r

Combinational Logic

R
e

g
is

te
r

In
p

u
ts

clock

O
u

tp
u

ts

Figure 2.1 Combinational logic circuit and input-output registers

Generally, DR, TS and ∆U cannot be decreased further; therefore the only way for decreasing

the clock period is to decrease DMAX. In conventional pipelining method, pipeline registers or

latches are inserted to increase the operating frequency by decreasing the maximum

propagation time, DMAX. Figure 2.2 shows the N stage pipelined version of the same

combinational circuit. If the pipeline registers are separated with equal propagation delays,

then the propagation delay between consecutive pipeline registers becomes DMAX/N. In this

case, the minimum clock frequency can be expressed by

TCLK DMAX/N + DR + TS + ∆U (2)

R
e

g
.
1 Logic

Stage

1 R
e

g
.
2 Logic

Stage

2 R
e

g
.
N Logic

Stage

NIn
p

u
ts

O
u

tp
u

ts

R
e

g
.N

+
1

clock

Figure 2.2 Conventional pipelining scheme

At every rising or falling edge of the clock signal, a new input data vector is applied to the

circuit. At the end of N
th
 clock cycle, the first input vector reaches to the output, therefore

the latency between input and output is N. Assume that the data throughput is continuous,

such that at every clock edge a different input vector is applied. After the initial latency of N

clock cycles, a new output is obtained at every clock cycle. Therefore, the clocking

overheads such as setup-hold times, clocking skew, and register propagation delay are

ignored, then the data throughput increases up to N times.

A temporal-spatial diagram shows the transition times of the signals at different locations of

the combinational circuit. The “Y” axis represents the logic depth of the combinational

10

circuit, and the “X” axis represents time. Figure 2.3 shows the temporal/spatial diagram for

conventional pipelining. The fastest signals arrive at the output after DMIN seconds, and the

slowest signals arrive at the output after DMAX seconds. The shaded region, which is between

DMIN and DMAX, is the transition region, where the combinational logic blocks change their

state and the data is unstable. In the other regions, the combinational circuits are idle,

keeping their states. In a conventional pipelined system, operating clock frequency is limited

by the slowest path in the logic stages. As it is seen from Figure 2.3, a new input data vector

is accepted after all the combinational operations are calculated by the logic stages, i.e. a

new data can only be launched after the slowest signal arrives at the output register. The

setup time and clock uncertainty must also be handled.

TimeTCLK

TS+∆CLK

DR

∆CLK

L
o

g
ic

 d
e

p
th

DMIN

DMAX

Figure 2.3 Temporal/spatial diagram for conventional pipelining

As it is seen from Figure 2.3, the combinational logic blocks are idle for the vast majority

of time. Although the fast signals arrive early at the output, they must wait for the slowest

signal for sampling.

The disadvantages of conventional pipelining can be listed as:

 Pipeline registers increase the area and power consumption of the circuit.

 Clock distribution to the pipeline registers with minimal skew is a challenging task.

11

 The combinational logic blocks are idle for the vast majority of time, therefore logic

utilization is small.

 The slowest path determines the operating speed of the entire circuit.

The advantages of the conventional pipelining:

 The design complexity is lower than wave-pipelining.

 Since only worst case timing is considered, it is less sensitive to temperature and

process parameter variations.

2.2 Wave pipelining

In wave-pipelining method, the pipeline registers are removed from the circuit. The internal

capacitances of the logic gates act as virtual storage elements, which store the states of the

pipelining data. An input data wave is sent to the combinational circuit, and before it reaches

to the output, another data wave is sent. Therefore, multiple data waves propagate on the

logic circuit simultaneously. While propagating, those waves encounter with different

delays. For proper operation, the fastest signal component of a data wave should not catch

the slowest signal component of the preceding wave. Therefore, in wave-pipelining method,

the minimum and maximum delays of the waves are tried to be made equal by slowing down

the fast components.

Figure 2.4 shows multiple waves propagating on the same combinational circuit. There are 5

different data waves propagating on this circuit from left to right. The shaded regions

between the waves are data transition regions in which the data is unstable. As seen in Figure

4, the width of the transition region increases and the width of the stable wave decreases

while propagating on the logic circuit. The waves must be sampled, before the width

becomes too small, which creates setup and hold time violations.

12

Stable data waves

∆C

R
e

g
is

te
r

R
e

g
is

te
r

W
a

v
e

 1

Unstable transition regions

In
p

u
ts

clock

W
a

v
e

 2

W
a

v
e

 3

W
a

v
e

 4

W
a

v
e

 5

O
u

tp
u

ts

Figure 2.4 Propagating waves on the same combinational circuit.

Figure 2.5 shows the temporal/spatial diagram of the wave-pipelining operation. Similar to

Figure 2.4, the shaded regions are transition regions and the width of those transition regions

increases while propagating on the direction of logic depth. As it is seen from Figure 2.5,

before a data wave reaches to the output register, another wave is launched. Therefore,

multiple data waves propagate on the combinational logic circuit simultaneously. Analogues

with the eye diagram of telecommunication theory, an adequate aperture is needed for proper

sampling of the data waves at the output.

Time
TCLK

2∆U

DMIN

DMAX

TS+TH+2∆U

∆C

TL

L
o

g
ic

 d
e

p
th

DR

Figure 2.5 Temporal/spatial diagram of wave-pipeline operation

13

2.2.1 Timing constraints

There are two constraints for sufficient aperture for proper sampling. The first constraint

comes from setup time requirement of the sampling flip-flops: The slowest signal component

of a data wave must arrive at least TS seconds before the sampling edge of the clock signal.

The second constraint comes from the hold time requirement: The fastest signal component

of the previously launched data wave arrives at time TCLK+DMIN+DR. This value must be

larger than the hold time requirement of the flip-flops. Let TL be the latching time of the data

waves at the output, where

TL=N*TCLK + ∆C (3)

N represents the number of clock cycles passed during the propagation of a data wave from

the input register to the output register. It also represents the degree of wave-pipelining, i.e.

the number of data waves propagating on the combinational logic simultaneously.

Equation (4) describes the lower bound on the latching time, which comes from the setup

time requirement of the register:

TL > DR + DMAX + TS + ∆U (4)

Equation (5) describes the upper bound on the latching time, which comes from the hold

time requirement due to the fastest signal component of the succeeding wave.

TL < TCLK + DMIN + DR – (∆U + TH) (5)

Combining (4) and (5), the constraint on the operating frequency can be obtained as

TCLK > (DMAX-DMIN) + TS + TH + 2∆U (6)

Equation (6) shows that the minimum clock period depends on DMAX-DMIN rather than

DMAX. Therefore, to increase the operating frequency, DMIN and DMAX are tried to be

balanced.

14

2.2.2 Sources of Delay Differences

The major sources of delay differences can be given as:

1. Data dependent delay variation

A combinational logic gate has a propagation delay between its inputs and outputs.

This delay is not constant; rather it depends on the input pattern. Consider a 2 input

NAND gate designed with static CMOS logic. If one of its inputs is at logic-0 and

the other one is at logic-1, then there will be one path for pulling up the output load.

If both of the inputs are at logic-0, then there will be 2 paths for pull-up, which

creates double driving strength. Therefore, the output delay is much lower. If a

CMOS logic gate with 3 or more inputs is used, then the variation of the output

delay becomes higher.

2. Process dependent delay variation

The delays of the gates are strictly dependent on the process parameters. The circuits

produced at different manufacturing runs will have different delay values.

Furthermore, the circuits produced at the same wafer will also have different delay

values at the output.

3. Temperature dependent delay variation

The delays of the gates depend on the temperature. The wave-pipelined circuits must

be properly designed to compensate for the delay variation due to temperature.

4. Delay variation due to the supply noise

The noise in the power supply will produce additional delay variation at the outputs

of the logic gates. Also, the coupling capacitances between adjacent wires will

produce delay variation.

2.2.3 Logic Restructuring

For equalizing the minimum and maximum delays in the logic circuit, it may be re-

structured. The main idea is to balance the logic so that all the signals encounter with the

same number of logic gates while propagating. Figure 2.6 shows the logic restructuring

15

technique. Both of the circuits have same function. In the upper circuit, D input arrives to the

output early. By restructuring the logic, all the paths are balanced, which can be seen in

Figure 2.6. In some situations, logic restructuring increases the number of logic blocks

required to obtain same logic operation.

A

B

C

D

A

C

D

B

Q

Q

Figure 2.6 Logic restructuring

2.2.4 Delay Insertion

After the logic restructuring, there can still be unbalanced paths. For balancing such paths,

inverters or buffers are inserted to slow down the fast paths. Figure 2.7 shows a

combinational logic and Figure 2.8 shows the delay buffer inserted for slowing down the fast

path.

A

B Q

C

Figure 2.7 A combinational logic circuit

16

A

B Q

C

Figure 2.8 A combination logic circuit with balanced paths

2.2.5 The advantages and disadvantages of wave-pipelining

The advantages and disadvantages of wave-pipelining can be summarized as [17]:

Advantages of wave-pipelining:

 Very high clock rates can be obtained.

 No partitioning in the combinational logic is performed; therefore unequal

partitioning is not a problem.

 Reduced clocking latency overhead.

 Clock distribution problem is reduced because fewer registers are used.

 Simultaneous switching noise is reduced.

 Power consumption and silicon area due to flip-flops and clock buffers are

reduced.

Disadvantages of wave-pipelining:

 Design complexity is increased due to delay balancing.

 Power consumption and area increase because of delay balancing.

 Debugging and testing are difficult.

 Process parameters and environmental changes effect much more than

conventional pipelining.

2.3 Hybrid Wave Pipelining

Hybrid wave pipelining is another pipelining method proposed in [21]. In this method, wave

pipelined sub stages are composed to form pipeline stages. In wave-pipelining the clock

cycle time is determined by the delay difference value at the output register. However, in

hybrid wave-pipelining combinational logic is partitioned into several stages, and the clock

17

cycle time is determined by the delay difference value of a stage with the largest delay

variation. Therefore, the operating frequency of the logic circuit is increased.

2.4 Mesochronous Pipelining Scheme

Mesochronous pipelining scheme [24] is similar to the hybrid pipelining method. In

mesochronous pipelining scheme, clock signal is delayed so that it propagates with the data.

Delay elements, which give the same delay value with the corresponding combinational

logic stage, are inserted in the clock signal path.

The cascading registers form wave-pipeline regions, therefore multiple data waves propagate

on the combinational logic circuit simultaneously. Figure 2.9 shows the temporal-spatial

diagram of mesochronous pipeline operation for a three stage pipelined system. The second

stage is assumed to have maximum delay variation, therefore the clock cycle time is

determined by this stage. Equation (7) gives the requirement on minimum clock period for

mesochronous pipelining scheme.

DMAX(j) – DMIN(j) + TS + TH + 2∆U < TCLK_m (7)

Time

∆S1L
o

g
ic

 d
e

p
th

S
ta

g
e

 1
S

ta
g

e
 2

S
ta

g
e

 3

∆S2

∆S3

DR

Figure 2.9 TS diagram of mesochronous pipelining

18

Equation Chapter 2 Section 1

CHAPTER 3

3 MULTIPLIER STRUCTURES

Let X and Y be two unsigned binary numbers, which are M and N bits wide. If we express X

and Y in their binary representation with Xi, Yj Є {0,1}:

M-1

i=0

Xi2
i

X=

N-1

j=0

Yj2
j

Y=

Then the multiplication of X and Y is defined as:

M-1

i=0

Xi2
i

N-1

j=0

Yj2
j

Z=X*Y=

M-1

i=0

N-1

j=0

XiYj2
i+j

=

Multiplication operation is composed of generating partial products and addition of those

partial products. Partial product generation is the AND operation of a multiplier bit with all

the bits of the multiplicand, which can be seen in Figure 3.1.

19

Figure 3.1 Partial product generation

Partial products and simple addition of those partial products for an 8x8 bit multiplier can be

seen in Figure 3.2. In this figure there are 64 dots, which represent the 64 partial products

generated by AND operation of the corresponding bits of the multiplicand and the multiplier.

The partial products are shifted to the corresponding weight of the multiplicand bit for

addition.

Figure 3.2 Simple addition of partial products

For inputs which are M and N bits wide (M≤N), the simplest multiplier can be composed of

a single N bit adder with 2-inputs [31]. The partial products are generated and added at every

clock cycle, so the multiplication operation is completed at M clock cycles. This multiplier is

named as iterative multiplier.

To increase the speed of the multiplier, partial products are generated and added in parallel.

For this purpose, adder trees can be used. In adder tree structures, the output delay is log(N),

X7 X6 X5 X4 X3 X2 X1 X0

Yi

PPi7 PPi6 PPi5 PPi4 PPi3 PPi2 PPi1 PPi0

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

Product

20

instead of N. In this architecture, the adders are carry propagate adders. The carry propagate

addition operation is very time-consuming which increases the critical path delay of the

circuit. To overcome this problem, Wallace trees are generally used in the literature.

3.1 Carry Save Adder (CSA) Multiplier

All the partial product bits must be added in the multiplication. Multiplication result does not

change when the carry bits are sent diagonally to the next stages, instead of sending to the

right. In the carry save multiplier structure, the carry outputs are sent diagonally to the next

stage for addition. At the last stage, a vector merging adder is used to merge the carry and

sum outputs. Figure 3.3 shows the block diagram of carry save multiplier with vector

merging adder. As it is seen from the figure, the carry output of a full adder is fed back to the

carry input of the neighboring full adder. In pipelined designs, the feedback paths must be

avoided for increasing the throughput, therefore a half adder tree can be used instead of carry

propagate addition. The blocks circulated with dashed line are replaced with a half adder

tree, which is shown in Figure 3.4.

21

H

H

H

H

H

H

H

F

H

F

F

F

F

F

F

X<7:0>

Y<7:0>

M<15>

M<14>

M<13>

M<12>

M<11>

M<10>

M<9>

M<8>
M<7>

M<6>

M<5>

M<4>

M<3>

M<2>

M<1>

M<0>

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

H

H

H

H

H

H

H
H

Figure 3.3 CSA multiplier with vector merging adder

22

H

H

H

H

H

H

H

F

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H
H

X<7:0>

Y<7:0>

M<15>

M<14>
M<13>

M<12>
M<11>

M<10>
M<9>

M<8>
M<7>

M<6>

M<5>

M<4>

M<3>

M<2>

M<1>

M<0>

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

Figure 3.4 CSA Multiplier with half adder tree

3.2 Wallace Trees

The carry propagate addition is the most time consuming operation in multiplication. In

order to avoid using carry propagate addition, Wallace proposed a method [32]. In this

method, by using an adder tree composed of full adders and half adders, any number of

partial products can be decreased to 2 numbers without any carry propagate addition. In the

last step, these 2 numbers are added using a fast carry propagate adder.

Figure 3.5 shows the reduction of two and three partial product bits using a half adder and a

full adder, respectively. The carry output is shifted to the left by one bit; therefore the weight

of it is doubled. Figure 3.6 shows the complete partial product reduction of an 8x8 bit

multiplier using a Wallace tree. It is seen that in the first stage, 16 full adders and 5 half

adders are used. In the second stage, 10 full adders and 6 half adders are used. In the third

stage 6 full adders and 6 half adders are used, while in the fourth stage 6 full adders and 5

23

half adders are used for reducing the partial products. As it is seen from the figure, no carry

propagate addition is used and all the partial products are reduced to 2 numbers, which must

be added using carry propagate addition.

Full adder is used as a compressor, which compresses 3 bits into 2 bits. Wallace trees using

(3,2) compressors suffer from the irregularity in the routing [33]. There are more regular

compressors, like (4,2) compressors, which compresses 4 bits into 2 bits. Figure 3.7 shows

the partial product reduction using (4,2) compressors, in which the routing is much more

simple than Wallace trees.

F H

Carry Sum Carry Sum

Figure 3.5 Reduction of bits using half adder and full adder

24

HFFFFFFFFFFFH
HFFFFFH

H

HFFFFFFFFFHH
HHF

H

HHHFFFFFFHHH

HHFFFFHHHHH

Figure 3.6 Partial product reduction of 8x8 bit multiplier using Wallace tree [33]

25

00

0

0

00

0

0

000 0

0

000 0

Stage 1

Stage 2

Figure 3.7 Partial product reduction using (4,2) compressors [33]

3.3 Booth Encoding

3.3.1 Booth 2 Algorithm

Booth’s algorithm [34] is a well known algorithm which is used to decrease the number of

partial products used in the multiplication. In this algorithm, the multiplier bits are grouped

into pairs of two bits to select the partial products from the set of {0, M, 2M, 3M}, which are

pre-calculated. The calculation of 2M is completed by only shifting the multiplier M by one

bit to the left. However, the calculation of 3M requires a carry propagate addition of M and

2M. Therefore, 3M is called as a hard multiple. In order to avoid this carry propagate

addition, modified Booth algorithm, which selects partial products from the set of {0, M,

2M, 4M+-M}, is used. In this algorithm, instead of 3M multiple, either 4M or –M is used,

depending on the adjacent multiplier groups. Table 3.1 shows the partial product selection

table and Figure 3.8 shows the modified booth algorithm. The multiplier bits are grouped

26

into pairs of 3 bits, and they are used to select multiplicands. Negative multiples can be

obtained by using 2’s complement logic, so if the selected partial product is negative, then all

the bits are negated and then a 1 (which is shown as S-bit) is added to complete the 2’s

complement operation. As it is seen from the figure, the number of rows of partial products

is decreased from 8 to 5. In general, n partial products are decreased to the biggest integer

which is smaller than or equal to (n+2)/2.

Table 3-1 Partial Product Selection of modified Booth-2 algorithm.

Partial Product Selection Table

Multiplier bits Selection S

000 +0 0

001 +M 0

010 +M 0

011 +2M 0

100 -2M 1

101 -M 1

110 -M 1

111 -0 1

S!S S

1 !S S

1 !S S

!S S

S
+

0

LSB

MSB

Figure 3.8 Modified Booth Algorithm (2 bit shift) [33]

27

3.3.2 Booth 3 Algorithm

The multiplier bits can be grouped with pairs larger than 3 bits, so the amount of shift

operation between partial products can be greater than 2. In booth 3 algorithm, the partial

products are selected from the set of {±0, ±M, ±2M, ±3M, ±4M}. There is also a hard

multiple of 3M in Booth-3 algorithm. Table 3.2 and Figure 3.9 show the partial product

selection table of Booth-3 algorithm and the reduction of partial products, respectively. The

number of rows of partial products is decreased from 8 to 3.

Table 3-2 Partial product selection table of Booth-3 algorithm.

Partial Product Selection Table

Multiplier bits Selection S

0000 +0 0

0001 +M 0

0010 +M 0

0011 +2M 0

0100 +2M 0

0101 +3M 0

0110 +3M 0

0111 +4M 0

1000 -4M 1

1001 -3M 1

1010 -3M 1

1011 -2M 1

1100 -2M 1

1101 -M 1

1110 -M 1

1111 -0 1

28

Figure 3.9 Modified Booth Algorithm (3 bit shift) [33]

Booth 4 and higher booth algorithms are also possible, but the partial product selection logic

becomes too complicated. Also, hard multiples (5M and 7M) are difficult to obtain, so it is

not feasible to use booth4 and higher.

3.3.3 Redundant Booth Algorithm

Hard multiple of 3M in the booth 3 algorithm requires carry propagate addition. In order to

overcome this problem, fully redundant booth algorithm is used. In this algorithm, all the

partial products are represented by their redundant form (i.e. Redundant form of 3M is

M+2M). The number of the dots is doubled, because of this redundant representation.

Therefore, fully redundant form is not feasible.

Partially redundant booth algorithm is used to compute hard multiple of 3M, in which small

length adders are used. Figure 3.10 shows the partially redundant addition of 16 bit M and

2M, using small length adders of 4 bits. Carry propagate addition of 4 bits is performed in

the small adders; however no carry signal propagates between these adders. Therefore, the

length of the carry propagation is reduced and limited to 4. As it is seen from Figure 3.10,

the number of dots is much smaller than the fully redundant representation.

A problem with this partially redundant representation arises when negative partial products

are required. As it is seen from Figure 3.11, large gaps of 0’s become large gaps of 1’s when

negated. Also considering the addition of 1’s in the LSB’s of partially redundant represented

29

numbers, in the worst case (all partial products are negative) same hardware of fully

redundant representation plus the hardware of small length adders are needed. Therefore, the

problem is to obtain negative multiples from positive multiples, or vice versa.

0

0

4 Bit

Adder

4 4

4 Bit

Adder

4 4

4 Bit

Adder

4 4

4 Bit

Adder

4 4

4444

CCCC

2M

M

∑∑∑∑

CCCC

1

Figure 3.10 Partially redundant addition [33]

30

CCCC

CCCC

1

1 1 1 1 1 1 1 1 1 1

1

Negate

Figure 3.11 Negative multiple generation [33]

3.4 Carry Propagate Addition

The final 2 numbers which are produced by Wallace trees must be added using carry

propagate addition. In ripple carry addition, each full adder must wait until the previous

carry output has been calculated in order to begin calculation of its carry output and sum. In

order to speed up this carry propagate addition, carry look-ahead adders are widely used. In

carry look-ahead adders, the carry outputs are generated before the sum outputs.

Let A and B are two n-bit numbers, and S is the summation of A and B. In binary expanded

form:

n-1

k=0

ak2
k

A=

Let

ab: Boolean AND operation of a and b

a || b: Boolean OR operation of a and b

a ^ b: Boolean EXOR operation of a and b

a + b: Summation of a and b

31

The addition of A and B and the carry input c0 can be computed as:

sk= ak ^ bk ^ ck

ck+1= akbk || akck || bkck

 k= 0,1,..,n-1

The sum and carry outputs can be interpreted using auxiliary signals, gk (generate) and pk

(propagate). If propagate signal pk is 1, then the incoming carry signal to that stage is

propagated to the next stage. Similarly, if generate signal gk is 1, then a carry signal is

generated at that stage and it is sent to the next stage. For obtaining the propagate signal, the

two equations shown below can be used. They both give the same result while generating

carry out.

gk = akbk

pk = ak || bk

 = ak ^ bk

The carry signal can be interpreted using generate and propagate signals and the incoming

carry signal, such that:

ck+1 = gk || pkck

Using these equations, a carry output can be calculated in terms of preceding generate and

propagate signals and a carry signal at any bit position:

ck+1 = gk || pkgk-1 || pkpk-1gk-2 || pkpk-1pk-2ck-2

This leads to two new functions:

g(j,k) = gj | | pjgj-1 | | pjpj-1gj-2 | | … | | pjpj-1…pk+1gk

p(j,k) = pjpj-1…pk+1pk

Let GG and PG be the group generate and group propagate signals of a 4-bit group

respectively.

GG = g(3,0) = g3 | | p3g2 | | p3p2g1 | | p3p2p1g0

PG = p(3,0) = p3p2p1p0

The carry output of a 4 bit carry look-ahead adder is expressed using group propagate and

group generate signals:

32

c4=GG + PG*c0

GG and PG signals are generated immediately without using carry inputs. When the carry

input has come, then the 4 level shifted carry output is generated, therefore the carry

propagation is completed with 2 clocks, instead of 4.

Using 4 of these group signals, a super group can be composed. Figure 3.12 shows the carry

look-ahead design of a 4-bit group and Figure 3.13 shows the super group signals of 16 bit

addition. These super groups can also be combined to make larger groups.

A B Cin

S P G

Full Adder

A[3] B[3]

A B Cin

S P G

Full Adder

A[2] B[2]

A B Cin

S P G

Full Adder

A[1] B[1]

A B Cin

S P G

Full Adder

A[0] B[0]

C3 C2 C1 C0

Carry Look-ahead Logic Cin
Cin

Cout

PG

GG

S[3] S[2] S[1] S[0]

Cout

PG

GG

Figure 3.12 Carry look-ahead design of a 4-bit group

33

A B Cin

S P G

CLA-4bit

A
[1

5
:1

2
]

A B Cin

S P G

CLA-4bit

A B Cin

S P G

CLA-4bit

A B Cin

S P G

CLA-4bit

C3 C2 C1 C0

Carry Look-ahead Logic Cin
Cin

Cout

PG

GG

S[15:12] S[11:8] S[7:4] S[3:0]

Cout

PG

GG

B
[1

5
:1

2
]

A
[1

1
:8

]

B
[1

1
:8

]

A
[7

:4
]

B
[7

:4
]

A
[3

:0
]

B
[3

:0
]

Figure 3.13 16 bit carry-look-ahead adder

For demonstrating the speed improvements using carry look-ahead adders, the timing details

of an addition of two 16 bit numbers using 4 carry look-ahead adders of 4 bits and 1 carry

look-ahead logic are investigated.

Starting at time 0,

 Individual pi and gi signals are calculated at time 1. (pi = ai || bi ; and gi = aibi)

 Individual ci signals are calculated at time 3 for the first CLA. (AND operation is

completed at time 2 and then OR operation is completed at time 3)

c1=g0+p0c0

c2=g1+p1g0+p1p0c0

c3=g2+p2g1+p2p1g0+p2p1p0c0

c4=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0

 Group propagate signals (PG) are calculated at time 2.

PG[1]=p3p2p1p0

PG[2]=p7p6p5p4

PG[3]=p11p10p9p8

PG[4]=p15p14p13p12

34

 Group generate signals (GG) are calculated at time 3.

GG[1] = g3+p3g2+p3p2g1+p3p2p1g0

GG[2] = g7+p7g6+p7p6g5+p7p6p5g4

GG[3] = g11+p11g10+p11p10g9+p11p10p9g8

GG[4] = g15+p15g14+p15p14g13+p15p14p13g12

 Look-ahead Carry Unit (LCU) generates the inputs required by Carry Look-ahead

Adder Blocks at:

Time 0 for the first CLA

Time 5 for the second CLA (c4=GG[1] + PG[1]c0)

Time 5 for the third CLA (c8=GG[2] + PG[2]GG[1]+PG[2]PG[1]c0)

Time 5 for the fourth CLA (c12=GG[3] + PG[3]GG[2]+PG[3]PG[2]GG[1]+

PG[3]PG[2]PG[1]c0)

 Calculation of Sum outputs are calculated at:

Time 4 for the first CLA (si=ai^bi^ci and ci are calculated at time 3 for the first

CLA)

Time 8 for the second CLA (carry input is generated at time 5, and individual ci

signals are generated at time 7 for the second CLA)

Time 8 for the third CLA (carry input is generated at time 5, and individual ci

signals are generated at time 7 for the third CLA)

Time 8 for the fourth CLA (carry input is generated at time 5, and individual ci

signals are generated at time 7 for the fourth CLA)

 The carry output of the 16 bit adder (c16)is calculated at time 5

(c16= GG[4] + PG[4]GG[3]+PG[4]PG[3]GG[2]+ PG[4]PG[3]PG[2]GG[1]+

PG[4]PG[3]PG[2]PG[1]c0)

 The carry output of the entire adder is generated with a 5 gate-delay and the overall

addition is completed with 8 gate delays. If carry look-ahead addition is not used and

ripple carry addition is used, then the overall addition takes 31 gate delays.

35

CHAPTER 4

4 WAVE COMPONENT SAMPLING METHOD (WCSM)

A data wave propagating on the combinational logic circuit has many signal components.

The combinational logic circuit is also composed of many sub stages of logic gates, which

have different propagation delays. Therefore, all of the signal components experience

different delays while propagating on the logic. The minimum and maximum delays of all

the wave components may be different.

In conventional pipelining, wave-pipelining and mesochronous pipelining schemes, all of the

components of a propagating wave are sampled at the same time whenever they arrive to a

synchronization stage. In the proposed WCSM, only the components of a wave, whose

minimum and maximum delay differences reach to the tolerable value, are sampled. The

other components of the wave are aligned with the sampled components by using delay

elements. Figure 4.1 shows the basic operation principle of WCSM. FF and DL represent

flip-flops and delay elements, respectively. As it is seen in Figure 4.1, only some of the

signal components of propagating waves, whose delay difference values reach to the

tolerable value, are sampled by using flip-flops.

36

Logic

Stage

1

FF

In
p

u
ts

O
u

tp
u

tsFF

FF

FF

clk1

FF

FF

DL

DL Logic

Stage

2

FF

DL

DL

DL

Logic

Stage

3

Logic

Stage

N

FF

FF

FF

FF

DL DL DLclk2 clk3 DL clkN+1

Figure 4.1 Proposed wave component sampling method (WCSM)

4.1 Principles of Wave Component Sampling Method

Consider the 2 input AND gate in Figure 4.2. A0, B0 and C0 are the initial values, and A1,

B1 and C1 are the final values of the inputs and the output, respectively. Assume that, both

of the inputs change their state at the same time instant. Then, the output C changes its state

with a propagation delay, which depends on the inputs. The propagation delay has a mean

value of TP seconds and a variation of ∆TP seconds as shown in Figure 4.2. If one or both of

the inputs have a transition variation of ∆Tin seconds, then the transition variation of the

output becomes approximately ∆Tin+∆TP seconds.

A

B
C

A0,B0

C0

TP

∆TP

A1,B1

C1

Figure 4.2 Input-output delay of AND gate

37

For describing WCSM in detail, an imaginary combinational circuit is constructed as in

Figure 4.3. In this circuit, 3 combinational logic blocks, which are named as F1, F2, and F3,

are used. Assume that the mean values of the propagation delays of F1, F2 and F3 are all

400ps and the transition variation of F1, F2 and F3 are 20ps, 40ps, and 80ps, respectively.

Also, assume that the delay elements used in this combinational logic circuit do not have a

transition variation at the output; i.e. they only give a time shift to the incoming signal. By

using these delay elements, all the branches which enter to the same node are aligned with

each other.

B

C

D

0 psA DL DL DL DL

1.F1

2.F2

3.F3 6.F3 9.F3

4.F1 7.F1 10.F1

5.F2 8.F2 11.F2

12.F3

0 ps

0 ps

0 ps

0 ps

20 ps

40 ps

80 ps

0 ps

40 ps

80 ps

160 ps

0 ps

60 ps

120 ps

240 ps 320 ps

160 ps

80 ps

0 ps

Figure 4.3 An imaginary combinational circuit

As seen from Figure 4.3, 4 inputs are applied to the circuit. It is assumed that they are all

applied at the same time instant, i.e. there is no delay difference between them at the

beginning. In Figure 4.3, total propagation times are not shown, only the minimum and

maximum delay differences are displayed. While propagating on the circuit, the components

of the wave experience different delays. At the beginning, all of the components have a delay

difference of 0ps. After first logic stage, 4 components of the wave have delay differences of

0ps, 20ps, 40ps, and 80ps, respectively. After second logic stage, the delay differences

become 0ps, 40ps, 80ps, and 160ps, respectively. Obviously, the delay differences are

38

increasing after each logic operation. After 4
th
 logic stage, maximum delay difference

becomes 320ps.

Figure 4.4 shows the data transition regions after the first logic stage. W1, W2, W3, and W4

are the components of the wave, and W shows the total propagating wave. The shaded

regions are the transition regions, and the white regions are the stable regions, in which no

transition occurs.

TS+TH+2∆u

20ps

40ps

80ps

W1

W2

W3

W4

W

Tclk

Figure 4.4 Data transition regions after 1
st
 logic operation

Total propagation time of this imaginary combinational logic circuit is 1600ps. Without

pipelining, this logic circuit operates with a maximum operating frequency of 625MHz,

ignoring the clocking overhead.

If wave-pipelining is used, then Equation (5) dictates the operating frequency. If total

clocking overhead (TS+TH+2∆U) is assumed to be 40ps, then TCLK > (DMAX-DMIN) + 40ps

39

holds. If the target operating frequency is assumed to be 5GHz (i.e. clock period of 200ps),

then, (DMAX-DMIN) should be smaller than 160ps. This is the critical value (i.e. the tolerable

value) of the minimum and maximum delay difference. If classical wave-pipelining or

mesochronous pipelining schemes are used, then all of the components of the wave are

needed to be sampled after second logic stage, because the delay difference value of the 4
th

path reaches to 160ps after 2
nd

 logic stage. Otherwise, the delay difference value of the 4th

path reaches to 240ps after 3
rd

 logic stage, which exceeds the tolerable value of 160ps.

Figure 4.5 shows the case in which mesochronous pipelining scheme is applied to this

circuit.

B

C

D

0 psA DL DL

1.F1

2.F2

3.F3 6.F3

4.F1

5.F2

0 ps

0 ps

0 ps

0 ps

20 ps

40 ps

80 ps

0 ps

40 ps

80 ps

160 ps

FF

FF

FF

FF

0 ps
DL DL

7.F1

8.F2

9.F3 12.F3

10.F1

11.F2

0 ps

0 ps

0 ps

0 ps

20 ps

40 ps

80 ps

0 ps

40 ps

80 ps

160 ps

FF

FF

FF

FF

DL
clk1 clk2

Figure 4.5 Flip-flops inserted using mesochronous pipelining scheme

As seen in Figure 4.3, only the 4
th
 branch reaches to the critical value of 160ps after 2

nd
 logic

stage. Therefore, if WCSM is used, it is enough to sample only the 4
th
 component of the

wave. Considering the 3
rd

 logic stage, sampling the 3
rd

 component after 2
nd

 logic stage is

adequate. Otherwise, we will need to sample the 4
th
 component after 3

rd
 logic stage. Figure

4.6 shows the logic circuit when WCSM is applied. Instead of 8 flip-flops used in

mesochronous or wave-pipelining schemes, only 3 flip-flops are enough for proper

operation.

40

0 ps

B

C

D

0 psA DL DL

1.F1

2.F2

3.F3 6.F3

4.F1

5.F2

0 ps

0 ps

0 ps

0 ps

20 ps

40 ps

80 ps

0 ps

40 ps

80 ps

160 ps
FF

0 ps
DL DL

7.F1

8.F2

9.F3 12.F3

10.F1

11.F2

40 ps

0 ps

0 ps

0 ps

60 ps

80 ps

80 ps

0 ps

80 ps

120 ps

160 ps
FF

DL
clk1 clk2

DL

DL

FF

DL

DL

DL
120 ps

80 ps

0 ps

Figure 4.6 Flip-flops inserted using proposed WCSM

Figure 4.7 shows the register insertion algorithm of WCSM. TC is the critical value of the

delay difference, where TC=TCLK-(TS+TH+2∆U). Here, (i,j) represents the location of a node,

and ∆T(i,j) shows the width of the transition region at node(i,j). In calculating ∆T(i,j), the

transition variation of the logic block at node(i,j) is added with the maximum transition

variation of the inputs which enter to the logic block block at node(i,j).

41

Start

i=0, j=0

Calculate ∆T(i,j)

∆T(i,j)>∆Tc?

Insert a register

on node(i,j)

i=i+1 i==n?

i=0

j=j+1

j==m?

YES

NO

YES

NO

Finish

Figure 4.7 Flow chart of register insertion of WCSM

42

4.2 Advantages and Disadvantages of Wave Component Sampling Method

The advantages of the Wave Component Sampling Method can be listed as:

 Number of synchronizing flip-flops or latches is decreased significantly.

Only the paths whose delay difference value reach to the critical level

are sampled, the other components continue propagating without being

sampled. Therefore, the total number of flip-flops or latches is decreased

significantly.

 Power consumption due to the flip-flops or latches is decreased.

Latches and flip-flops consume significant power, especially when a

high performance latch or flip-flop is used at high operating frequency.

The reduction in the total number of registers also reduces the power

consumption due to these unnecessary registers. Delay elements, which

are replaced with the registers for aligning the propagating waves,

consume lower power than the registers, especially when the operating

speed is high. Therefore, total power of the chip is reduced.

 Clock distribution to the synchronizing flip-flops or latches becomes much

easier.

Clock distribution is a challenging task, especially in complicated

circuits. The distribution of a global clock signal to all of the flip-flops

or latches with minimal skew is a very big problem. In WCSM, clock

distribution is much easier because of two reasons: First, a global clock

signal is not used and instead of it several clock signals which drive a

small number of registers are used. Controlling skew between a small

number of registers is much easier, therefore, routing of the clock

signals with minimal skew becomes easy. Second, the reduction in the

number of registers also decreases the total number of clock paths to be

routed.

 Power consumption due to the clock buffers is reduced significantly.

The power of the clocking network can be significant, which can be

more than half of the total power of the entire chip. A lot of repeaters

must be inserted for properly distributing the clock signal throughout the

chip. In WCSM, the number of the registers is decreased and several

43

clock signals are used to drive small number of registers, therefore the

power consumption due to the clock distribution is decreased.

 High speed operation

WCSM provides significant increase in the operating speed compared

with the conventional or wave pipelining methods. The speed is also

better than mesochronous pipelining method, because considering the

layout, the reduction in the number of flip-flops and the clock signals

makes placement and routing easier, which increases the operating

speed of the chip.

The disadvantages of WCSM can be listed as:

 The design complexity is increased compared with conventional pipelining.

In conventional pipelining, only the paths with worst case delay are

considered. However, in WCSM, both the worst case and best case

delay values of all the paths must be analyzed, which is similar to

mesochronous or wave pipelining methods.

 The operating frequency cannot be changed afterwards.

In WCSM, unnecessary registers are replaced with active delay elements

and the components of the waves which are sampled with registers are

aligned with the components of the waves, which propagate without

being sampled. Therefore, the operating frequency must be initially set

and it cannot be changed afterwards. Otherwise, the change in the

frequency corrupts the alignment of the propagating waves.

 WCSM is more susceptible to temperature and process parameter variations.

The absolute delay values of the active delay elements are strictly

dependent on temperature and process variations. The registers are

replaced with active delay elements; therefore the variation of the clock

frequency and delay values of the delay elements with respect to

temperature and process parameter changes must be handled carefully.

Simulations using corner temperature and process parameters must be

performed, and all the variations depending on temperature and process

parameters must be analyzed.

44

CHAPTER 5

5 APPLICATION OF WCSM TO MULTIPLIER STRUCTURES

In order to demonstrate the effectiveness of the WCSM and compare it with the other

pipelining methods, 8x8 bit multiplier is implemented using UMC-0.18µm CMOS

technology. In [24], carry save adder multiplier structure was used to demonstrate the

performance of the mesochronous pipelining scheme, therefore same structure is used for

comparing WCSM with mesochronous pipelining method. For achieving high performance

multipliers, several optimizations are performed in the implementation of the multiplier

blocks.

The application of WCSM to other multiplier structures including booth encoding, Wallace

trees and carry look-ahead adders is also investigated. 8x8 bit multiplier using these

structures is implemented and the performance comparison with the other pipelining

methods is performed.

5.1 Logic selection

The logic gates used in WCSM must have small delay variation at the output. The rise time

and fall time of the logic must also be small, in order to have high clock frequency. At the

same time, the power consumption of the logic and the latency must also be small.

Output delay of classical CMOS logic is strictly dependent on the input pattern. Figure 5.1

shows a classical CMOS 2 input NAND gate. When both of the inputs are HIGH, then

PMOS transistors are OFF and the NMOS transistors pull down the output to LOW. When

one of the inputs are LOW and the other input is HIGH, then the pull down path is closed

and one PMOS transistor pulls up the output to HIGH. When both of the inputs are HIGH,

then there will be two pull-up paths, therefore the output delay becomes much smaller. In

45

classical CMOS gates with 3 or higher inputs, the delay variation at the output becomes

much higher. In [17], CMOS gates with current limiting transistors are proposed. Figure 5.2

shows a 2 input CMOS NAND gate with current limiting PMOS transistor at the top. Pull-up

current is limited with PMOS transistor which is always ON, however in this case the rise

time becomes longer, which is not suitable for very high speed operations.

A B

A

B

Q

Figure 5.1 Schematic diagram of 2 input NAND gate

A B

A

B

Q

gnd

Figure 5.2 Schematic diagram of CMOS NAND2 with current limiting transistors

A symmetrical circuit structure is important to achieve small delay variation at the output.

Figure 5.3 shows the schematic diagram of symmetrical transmission gate logic, which has 4

inputs named as X, NX, Y, and Z, where NX is the complement of X input. The output

function of this logic block is Q=~(X’Y+XZ). This generic block is suitable for WCSM and

it is used to implement several logic operations in the various sub blocks of the multiplier.

46

X

X

NX

Y

Z

Q

Figure 5.3 Generic transmission gate logic

After the transmission gates, an inverter is used to provide the required drive strength needed

for driving the cascading stages. It is also possible to use a cascade of 2 inverters at the

output for further improving the drive strength, which is shown in Figure 5.4. The sizes of

the transistors of transmission gate logic must be optimized for high speed, and low power

operation with minimal delay variation at the output. The ratio between the inverters must

also be optimized. Rise and fall time of not only the output but also the internal signals must

be low.

X

X

NX

Y

Z

Q

Figure 5.4 Transmission gate logic with 2 inverter cascades at the output

The lengths of the transistors are used as minimum size, which is 180nm. The parameters to

be optimized can be listed as:

 The width of the PMOS transistors of transmission gates (Wp).

 The width of the NMOS transistors of transmission gates (Wn).

 The width of the PMOS transistor of the first inverter stage (Wp1).

 The width of the NMOS transistor of the first inverter stage (Wn1).

 Assuming that the transistor sizes of the second inverter are a constant times

that of the first inverter, the ratio between these inverters.

47

These parameters are analyzed considering all of the possible transitions at the input. The

inputs and the outputs of the logic are connected to the logic gates with the same structure;

therefore a simulation setup shown in Figure 5.5 is used. Cadence Analog Design

Environment is used and post-layout simulations are performed.

X

NX

Y

Z

QTrans.

gate

logic

X

NX

Y

Z

QTrans.

gate

logic

X

NX

Y

Z

QTrans.

gate

logic

X

NX

Y

Z

QTrans.

gate

logic

X

NX

Y

Z

QTrans.

gate

logic

X

NX

Y

Z

QTrans.

gate

logic

A<1>

NA<1>

B<1>

B<2>

A<1>

NA<1>

NB<1>

NB<2>

A<2>

NA<2>

B<3>

B<4>

A<3>

NA<3>

B<5>

B<6>

Xin

NXin

Yin

Zin

Qout

Figure 5.5 Block diagram of the simulation setup

Figure 5.6 shows the simulation of this circuit, where the internal signals of transmission

gate in the middle are displayed. In this figure, only a transition in “Y” input occurs. An

input pulse with a period of 250ps is applied to the circuit. As it is seen from the figure, the

width of the negative pulse is 243ps, and the rise time and fall time at the output of the

transmission gates are 132ps and 86ps, respectively. Table 5.1 shows the parameters used in

the simulation:

48

Figure 5.6 Simulation of transmission gate logic block

Table 5-1 Parameters of transistors

Parameter Value

Wp 600n

Wn 240n

Wp1 600n

Wn1 240n

a 1.5

For optimizing the parameter values, parametric sweep analysis is performed. Figure 5.7

shows an example parametric analysis, in which “a” is kept as 1.5 and the sizes of the PMOS

transistors are changed from 500n to 900n and the sizes of the NMOS transistors are changed

from 180n to 350n. Every parameter takes 5 different values; therefore the total number of

simulations is 5
4
=625. Figure 5.8 shows parametric sweep of the inverter ratio “a” between

1.5 and 2.3.

49

Figure 5.7 Parametric sweep analysis of transistor sizes

Figure 5.8 Parametric sweep analysis of inverter ratio

50

The average current drawn from 1.8V supply using 2 inverter cascades at the output is

calculated as 59µA. When a single inverter is used, the average current becomes 19µA. The

output delay variation and rise-fall time values are measured to be similar; therefore

transmission gate logic with 1 inverter at the output is decided to be used in the multiplier

design.

The sizes of the transistors of the inverter must also be optimized. A weak inverter with

small transistors will not be able to drive the succeeding logic gates. Then, glitches occur

between the transitions. In Figure 5.9, a small glitch in signal C1 is shown. If the sizes of the

transistors become too large, than the pass transistors won’t be able to drive the inverter.

Therefore the rise-time and fall-time will be high. Table 5.2 shows the sizes of the transistors

optimized with parametric analysis.

Figure 5.9 Glitch generation between transitions

51

Table 5-2 Optimized transistor parameters

Parameter Value

Wp 450n

Wn 350n

Wp1 600n

Wn1 280n

Table 5.3 shows the output propagation times for all transitions in the input. Output delays

change between 73ps and 100ps, giving an output delay variation of 27ps. Figure 5.10 shows

graphical representation of output delay values.

52

Table 5-3 Output propagation times for all transitions of inputs

Transition

no
ABCin_i ABCin_f

Output

Delay

Transition

no
ABCin_i ABCin_f

Output

Delay

1 000 001 NC 29 100 000 NC

2 000 010 73ps 30 100 001 NC

3 000 011 78ps 31 100 010 83ps

4 000 100 NC 32 100 011 74ps

5 000 101 88ps 33 100 101 76ps

6 000 110 NC 34 100 110 NC

7 000 111 83ps 35 100 111 78ps

8 001 000 NC 36 101 000 85ps

9 001 010 74ps 37 101 001 85ps

10 001 011 78ps 38 101 010 NC

11 001 100 NC 39 101 011 NC

12 001 101 77ps 40 101 100 78ps

13 001 110 NC 41 101 110 96ps

14 001 111 75ps 42 101 111 NC

15 010 000 76ps 43 110 000 NC

16 010 001 96ps 44 110 001 NC

17 010 011 NC 45 110 010 73ps

18 010 100 77ps 46 110 011 79ps

19 010 101 NC 47 110 100 NC

20 010 110 83ps 48 110 101 75ps

21 010 111 NC 49 110 111 76ps

22 011 000 94ps 50 111 000 84ps

23 011 001 74ps 51 111 001 100ps

24 011 010 NC 52 111 010 NC

25 011 100 85ps 53 111 011 NC

26 011 101 NC 54 111 100 96ps

27 011 110 92ps 55 111 101 NC

28 011 111 NC 56 111 110 76ps

53

Figure 5.10 Graphical representation of output delay values

5.2 Delay Balancing

The delay differences between propagating waves must be minimized. A single inverter has

a propagation delay of 32ps; therefore cascades of inverters are used for delay balancing

between the propagating waves. Delay variation at the output of a single transmission gate

logic is measured to be 27ps. When several transmission gates are cascades, the output delay

variation increases further. Therefore delay adjustment with a resolution of 32ps is suitable.

An inverter used as a delay element must have small and equal rise and fall times.

Otherwise, the width of the incoming pulse decreases or increases at the output of the

inverter. Then the propagating pulses may vanish when several inverters are cascaded for

providing high delay values. Figure 5.11 shows the transitions of a signal before and after a

cascade of 8 inverters. As it is seen from the figure, the shape of the pulse is not distorted

while propagating.

60
65
70
75
80
85
90
95

100
105
110

0 20 40 60

O
u

tp
u

t
d

e
la

y(
p

s)

Sample number

Output delay

54

Figure 5.11 A positive pulse and its delayed version

When a delay resolution smaller than 32ps is needed, than inverter cascades with different

W/L ratios are used, which is shown in Figure 5.12. The ratio of the sizes of the cascading

inverters must be carefully designed, in order to obtain the required delay value without any

distortion in the propagating signal. Figure 5.13 shows the signals obtained by using 4

inverter cascades with normal inverters and tuned inverters. Delay between them is around

10ps.

A_dA
1.6µm 1.6µm0.8µm 0.8µm

0.56µm 0.56µm0.28µm 0.28µm

Figure 5.12 Inverter cascade with different W/L ratios

55

Figure 5.13 Signals obtained with normal and tuned inverter cascades

5.3 Simultaneous generation of complementary outputs

When the complementary and normal signals are generated from different logic blocks, then

a delay difference between them occurs. Consider a 2 input AND gate designed with

transmission gate logic blocks in Figure 5.14, which produce Q and NQ signals by using

separate logic blocks. Table 5.4 shows the corresponding input combinations of transmission

gates configured to implement AND gate and NAND gate. Table 5.5 shows the output

propagation times of Q and NQ signals, which are taken from the output delay values of

generic transmission gate logic in Table 5.3. As it is seen from the table, there is a maximum

delay difference of 17ps between Q and NQ signals.

A

A

NA

0

B

Q=~AB

A

A

NA

1

B’

Q=AB

Figure 5.14 Generation of complementary outputs by using separate logic

56

Table 5-4 Input combinations of generic trans. gate logic for NAND and AND gates

ABC inputs of trans. gate

implementing NAND

Corresponding ABC inputs of trans.

gate implementing AND

000 011

010 001

100 111

110 101

Complementary and normal output signals are connected to succeeding logic blocks,

including gates of the pass transistors. Both of Q and NQ will be at the same state for 17ps,

which means that two different signals drive the same net for 17ps. This creates a conflict on

the net, and some glitches may occur.

Simultaneous generation of complementary and normal signals with symmetrical transition

is very important for decreasing the delay variation of propagating waves. For this purpose,

the circuit shown in Figure 5.15 is designed. A transmission gate, which is always “ON” and

has same delay with that of the inverter, is used to produce normal and complementary

signals simultaneously. Since same logic is used to produce them, there will be no delay

variation between Q and NQ due to input pattern. They always make symmetrical transition

at the same time instant. Figure 5.16 shows the simulation of the complementary and normal

output generation.

57

Table 5-5 Output propagation times of Q and NQ signals

Output delay of transitions of NAND gate Output delay of corresponding transitions of

AND gate

000 – 010 73ps 011 – 001 74ps

000 – 100 NC 011 – 111 NC

000 – 110 NC 011 – 101 NC

010 – 000 76ps 001 – 011 78ps

010 – 100 77ps 001 – 111 75ps

010 – 110 83ps 001 – 101 77ps

100 – 000 NC 111 – 011 NC

100 – 010 83ps 111 – 001 100ps

100 – 110 NC 111 – 101 NC

110 – 000 NC 101 – 011 NC

110 – 010 73ps 101 – 001 85ps

110 – 100 NC 101 – 111 NC

A

A

NA

B

C

gnd

vdd

Q

NQ

INT1 INT2 INT3a

INT3b

Figure 5.15 Simultaneous generation of complementary and normal output signals

58

Figure 5.16 Simulation of generating normal and complementary outputs simultaneously

There is another important advantage of using this structure for producing complementary

and normal outputs: Since a separate logic is not used, an input signal is connected to only

one logic gate, instead of two. This makes the drive strength required to drive the logic to be

half of using separate logic, which decreases the area and power consumption significantly.

5.4 Implementation of Multiplier Blocks

5.4.1 Half adder design

Half adder block has 2 inputs, and produces Sum and Carry-out. Table 5.6 shows the truth

table of half adder.

Table 5-6 Truth table of half adder

A B Sum Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Sum=A exor B = A’B + AB’

Cout=A & B.

59

Generic transmission gate logic performs logical function of

Q=~(AC+A’B)=(A’+C’)*(A+B’). For obtaining “Sum” using the generic transmission gate

logic, the inputs of Half adder are connected to the inputs of transmission gate as:

X=B, NX=B’, Y=A’, Z=A

Then, Sum output becomes:

Sum=(B’+A’)(B+A)=BB’+B’A+A’B+A’A=A’B+AB’

For Cout, inputs of half adder are connected to the inputs of transmission gate logic as:

X=A, NX=A’, Y=1, Z=B’

Then, Cout becomes:

Cout=(A’+B)(A+0)=A’A+A’0+AB+B0=AB

Each input of half adder is connected to 2 transmission gate logic blocks. For increasing the

drive strength of the inputs, they are passed through buffers. Figure 5.17 shows the block

diagram of the half adder including the input buffers.

60

Ain

B

B

NB

NA

A

gnd

vdd

Sum

NSum

A

A

NA

vdd

NB

gnd

vdd

Cout

NCout

NA

1.6µm

0.56µm

NAin A

1.6µm

0.56µm

Bin NB

1.6µm

0.56µm

NBin B

1.6µm

0.56µm

Figure 5.17 Schematic diagram of half adder block

Figure 5.18 shows an example simulation of half adder block. Table 5.7 shows the output

propagation times for all input transitions. Figure 5.19 shows same values in a graphical

representation.

61

Figure 5.18 A simulation example of half adder

Table 5-7 Output delay values of half adder for all input transitions

AB_initial AB_final Sum Cout

00 01 194ps NC

00 10 210ps NC

00 11 NC 215ps

01 00 209ps NC

01 10 NC NC

01 11 214ps 215ps

10 00 212ps NC

10 01 NC NC

10 11 221ps 216ps

11 00 NC 198ps

11 01 215ps 215ps

11 10 217ps 217ps

62

Figure 5.19 Graphical representation of the output delay values of half adder

Figure 5.20 shows the layout of the half adder block.

Figure 5.20 Layout of the half adder block

190

195

200

205

210

215

220

225

0 2 4 6 8 10 12 14

O
u

tp
u

t
d

e
la

y(
p

s)

Sample number

Cout

Sum

63

5.4.2 Full adder design

Full adder has 3 inputs named as A, B, and Carry input (Cin). Table 5.8 shows the truth table

of full adder.

Table 5-8 The truth table of full adder

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Sum=A xor B xor Cin = A’B’Cin+A’BCin’+AB’Cin’+ABCin

Cout=AB+ACin+BCin+ABCin

Sum and Cout are generated using two stages in full adder implementation. An intermediate

signal “P” (propagate) is generated in the first stage, where

P=A xor B=A’B+AB', therefore connection of inputs to generic transmission gate block is

similar to the half adder:

X=B, NX=B’, Y=A’, Z=A,

P=~(AB+A’B’)=(A’+B’)(A+B)=A’B+AB’

P signal is used in the generation of both the Sum and Cout, where

Sum=P xor Cin

Cout=~(PCin’+P’B’).

Fan out of P and NP signals are 2, however they are connected to the gates of the transistors.

Driving the gate of a transmission gate is easier than driving source or gate. Therefore,

64

driving capacities of P and NP signals are enough for driving the gates of double

transmission gate logic. Figure 5.21 shows the transistor level diagram of full adder. “Cin”

and “NCin” inputs are delayed using a cascade of 5 inverters. "P" and “NP” signals are used

with the delayed version of "carry" input and “B” input to produce the outputs “Sum” and

“Cout”.

NCin-dCin

A

A

NA

B

NB

gnd

vdd

P

NP

P

P

NP

NCin-d

gnd

vdd

Sum

NSum

Cin-d

S1 S2

Cin-dNCin

NB-dB

P

P

NP

NB-d

gnd

vdd

Cout

NCout

NCin-d

Figure 5.21 Schematic diagram of full adder block

Table 5.9 shows the output delay values of full adder block. The minimum delay is 340ps

and the maximum delay is 402ps. Figure 5.22 shows the graphical representation of the

output delay values.

65

Table 5-9 Output delay values of full adder

Trans.

no

ABCin

initial

ABCin

final

Delay of

Sum

Delay of

Cout

Trans.

no

ABCin

initial

ABCin

final

Delay of

Sum

Delay of

Cout

1 000 001 366ps NC 29 100 000 390ps NC

2 000 010 385ps NC 30 100 001 NC NC

3 000 011 NC 380ps 31 100 010 NC NC

4 000 100 378ps NC 32 100 011 349ps 364ps

5 000 101 NC 357ps 33 100 101 353ps 367ps

6 000 110 NC 353ps 34 100 110 376ps 370ps

7 000 111 367ps 364ps 35 100 111 NC 387ps

8 001 000 365ps NC 36 101 000 NC 374ps

9 001 010 NC NC 37 101 001 376ps 390ps

10 001 011 394ps 368ps 38 101 010 340ps 348ps

11 001 100 NC NC 39 101 011 NC NC

12 001 101 387ps 374ps 40 101 100 354ps 363ps

13 001 110 364ps 363ps 41 101 110 NC NC

14 001 111 NC 354ps 42 101 111 367ps NC

15 010 000 387ps NC 43 110 000 NC 358ps

16 010 001 NC NC 44 110 001 365ps 378ps

17 010 011 353ps 367ps 45 110 010 376ps 391ps

18 010 100 NC NC 46 110 011 NC NC

19 010 101 354ps 366ps 47 110 100 372ps 378ps

20 010 110 393ps 381ps 48 110 101 NC NC

21 010 111 NC 367ps 49 110 111 366ps NC

22 011 000 NC 378ps 50 111 000 363ps 374ps

23 011 001 370ps 390ps 51 111 001 NC 357ps

24 011 010 354ps 364ps 52 111 010 NC 402ps

25 011 100 353ps 363ps 53 111 011 393ps NC

26 011 101 NC NC 54 111 100 NC 401ps

27 011 110 NC NC 55 111 101 389ps NC

28 011 111 380ps NC 56 111 110 365ps NC

66

Figure 5.22 Graphical representation of output delay values of full adder

Figure 5.23 shows the layout diagram of full adder.

Figure 5.23 Layout diagram of the full adder block

5.4.3 Partial Product Generation

Partial products are generated by using AND operation of a single bit of the multiplier with

all the bits of the multiplicand. AND gate is also designed by using generic transmission gate

logic. The inputs of the AND block is connected to the inputs of transmission gate as:

X=B; NX=B’; Y=1; Z=A’

Q=~(BA’+B’1)=(B’+A)(B+0)=AB

330

340

350

360

370

380

390

400

410

0 10 20 30 40 50 60

O
u

tp
u

t
d

e
la

y(
p

s)

Sample number

Cout

Sum

67

Schematic diagram of AND gate is shown in Figure 5.24.

B

B

NB

gnd

vdd

Q

NQ

NA

Figure 5.24 Schematic diagram of AND gate

The inputs of X, NX and Z comes from the outputs of inverters. For balancing the drive

strengths of Y input with those inputs, Y input is not connected directly to VDD. Rather, it is

connected by using an inverter, whose input is tied to GND. Since NMOS transistor is

always OFF, it is omitted and only PMOS transistor is used.

A partial product generator combines one bit of multiplier with all the bits of the

multiplicand. In an 8x8 bit multiplier, a fan out of 8 is needed to produce partial products.

For driving 8 inputs, the drive strength of the single bit of multiplier is increased by a buffer

composed of a cascade of 3 inverters. Buffered signal is used to drive the gates of transistors

in the transmission gate logic, since driving the gates require less drive capability than

driving drain or source of the transistors.

8 bits of the multiplicand are delayed by using cascades of 4 inverters for equalizing the

delay differences. Figure 5.25 and Figure 5.26 show the block diagram and simulation of the

partial product generator, respectively. Layout diagram of the partial product generator is

shown in Figure 5.27.

68

NB_bufB

1.6u 3.2u 6.4u

0.56u 1.12u 2.24u

B_bufNB

1.6u 3.2u 6.4u

0.56u 1.12u 2.24u

8 x Delay
NA<7:0> D_NA<7:0>

AND2

Q<7>

NQ<7>

NB_buf

D_NA<7>

B_buf

AND2

Q<6>

NQ<6>

NB_buf

D_NA<6>

B_buf

AND2

Q<5>

NQ<5>

NB_buf

D_NA<5>

B_buf

AND2

Q<4>

NQ<4>

NB_buf

D_NA<4>

B_buf

AND2

Q<3>

NQ<3>

NB_buf

D_NA<3>

B_buf

AND2

Q<2>

NQ<2>

NB_buf

D_NA<2>

B_buf

AND2

Q<1>

NQ<1>

NB_buf

D_NA<1>

B_buf

AND2

Q<0>

NQ<0>

NB_buf

D_NA<0>

B_buf

Figure 5.25 Block diagram of partial product generator

69

(a)

(b)

Figure 5.26 Simulation of partial product generator

70

Figure 5.27 Layout diagram of partial product generator

5.4.4 Sampling of the signals

The width of the waves decreases while propagating through the logic, and they must be

sampled before their aperture becomes too small which creates setup and hold time

violations. Sampling resets the propagating waves, and they start propagating with equalized

delays. It is important to use a register, which is capable of sampling narrow pulses.

The setup time is the minimum amount of time the data signal should be held steady before

the clock event so that the data are reliably sampled by the clock. Hold time is the minimum

amount of time the data signal should be held steady after the clock event so that the data are

reliably sampled. Setup and hold time must be small, in order to sample narrow pulses.

There are many flip-flop and latch structures. Mesochronous multiplier in [24] uses Sense

Amplifier Based Flip-Flop (SAFF). The setup and hold time of SAFF is 10ps and 130ps,

respectively. The clock High time of the SAFF is 160ps, and considering a clock signal with

50% duty cycle, the minimum clock period is 320ps. A margin of 30ps is used, so that

operating frequency of SAFF becomes 2.86GHz.

71

In this implementation, C2MOS latches are used for sampling because of their high speed

operation, which is seen in Figure 5.28. By using iterations and parametric analysis, the sizes

of the transistors are optimized for sampling narrow pulses with minimal delay variation at

the output. Table 5.10 shows the sizes of the transistors of the latch, which is capable of

sampling a pulse with a width of 120ps. The setup time of the latch is 0. Latching occurs in

the positive clock cycle; therefore the signals must be stable in this region. A clock signal

with a frequency of 5GHz is used in the simulations of the C2MOS latch. Figure 5.29 shows

the transitions of the internal signals of the latch. In Figure 5.30, several propagating waves

with an aperture of 120ps and clock signal are shown before sampling. Figure 5.31 shows the

same signals after sampling.

clk

Nclk

gnd

vdd

Q

NQ

Din

Figure 5.28 Schematic diagram of C
2
MOS latch

Table 5-10 Transistor sizes of C
2
MOS latch.

Wp1 1.6um

Wp2 1.6um

Wn1 480nm

Wn2 480nm

72

Figure 5.29 Simulations of internal signals of the latch

Figure 5.30 Propagating waves before sampling

73

Figure 5.31 Propagating waves after sampling

Input to output delay of C2MOS depends slightly on the shape and position of the input.

Therefore, a delay difference of 10ps occurs after sampling.

5.5 Implementation of 8x8 bit CSA multiplier

In order to demonstrate the effectiveness of WCSM and compare it with the mesochronous

pipelining scheme, two 8x8-bit multipliers using both the mesochronous pipelining scheme

and WCSM are implemented. First, the mesochronous multiplier using the same structure of

the multiplier in [24] is implemented. Then WCSM is applied to this multiplier. Internal

logic blocks described before are used in the multipliers.

5.5.1 Schematic design

Figure 5.32 shows the block diagram of the multiplier, where full-adders are shown with

“F”, half adders are shown with “H”, and the registers are shown with “R”.

Full adder has two levels of transmission gate logic, while half adder and partial product

generator have one level of logic. Every logic level increases the delay difference between

signals; therefore at most 6 levels of logic stages are used between registers, which is seen in

Figure 5.32.

74

The first register stage is used at the input. The second register stage is used after a cascade

of a partial product generator, a half adder, and 2 full adders, which takes 6 levels of logic

stages. The third register stage is used after a cascade of 3 full adders. The fourth register

stage is used after a full adder plus a cascade of 3 half adders. The fifth register stage, which

is also the output stage, is used after a cascade of 4 half adders plus an “OR” gate.

H

H

H

H

H

H

H

F

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

H

H

H

H

R

R

R

H

H

H

H

H

H

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RR
X<7:0>

Y<7:0>

M<15>

M<14>
M<13>
M<12>

M<11>
M<10>
M<9>
M<8>
M<7>

M<6>

M<5>

M<4>

M<3>

M<2>

M<1>

M<0>

clock

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

Figure 5.32 Block diagram of mesochronous multiplier

As it is seen from Figure 5.32, there are some paths which do not contain 6 levels of logic

operation. The paths in the upper triangular region are composed of only buffer cascades.

Also, the paths in the partial product generation region are composed of an “AND” gate and

buffer cascades. Therefore, the delay differences of those paths do not reach to critical delay

difference value. When WCSM is applied to this multiplier, the latches which are circled

with dashed lines are eliminated and they are replaced with delay elements. Figure 5.33

shows 8x8 bit multiplier implemented using WCSM.

75

H

H

H

H

H

H

H

F

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

H

H

H

H

R

R

R

H

H

H

H

H

H

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R
X<7:0>

Y<7:0>

M<15>

M<14>
M<13>
M<12>

M<11>
M<10>
M<9>
M<8>
M<7>

M<6>

M<5>

M<4>

M<3>

M<2>

M<1>

M<0>

clock

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

Figure 5.33 Block diagram of 8x8 bit multiplier using WCSM

In mesochronous multiplier, 110 registers are used including input and output registers.

However, in WCSM multiplier only 70 registers are used, without any performance loss in

the operating frequency. The total number of the registers in the multiplier implemented with

WCSM is 41% lower than the multiplier implemented with mesochronous pipelining

method. The reduction of the registers also decreases the transistor sizes of the associated

clock buffers, which significantly reduces the power consumption.

5.5.2 Operating Frequency

In the multiplier, at most 6 transmission gate logic cells are cascaded between two successive

register stages. Each transmission gate logic has a delay difference of 25ps at the output,

when the inputs are applied simultaneously. When they are cascaded, the delay differences

of the logic cells are accumulated. Therefore, the total delay difference, which is also the

width of the transition region, becomes 150ps after 6 logic levels. C2MOS latch samples the

data at positive cycle of the clock signal; therefore the transition of the signals must occur at

negative cycle. This condition limits the minimum width of the negative clock cycle to be

equal to the width of the transition region, which is 150ps. If a clock signal with a duty cycle

76

of 50% is used, then the minimum clock period becomes 300ps. Considering the additional

delay difference coming from the latch itself and to have some margin, it is proper to use a

clock signal with a period of 330ps (an operating frequency of 3GHz).

5.5.3 Layout Implementation of the multipliers

The layouts of the multipliers are implemented using UMC 0.18um technology with

Cadence design tools. All the logic blocks, clock buffers and the latches are drawn by using

full custom design methodology. 1 poly and 3 metal layers are used in the design. The

placement and routing is performed carefully to minimize the delay difference between

signals.

The height of the standard logic cell is 15.8µm. Figure 5.34 shows the layout of the

multiplier implemented using mesochronous pipelining method. The area of both of the

multipliers is 0.175mm
2
.

77

Figure 5.34 Layout view of 8x8 bit multiplier using mesochronous pipelining

5.5.4 Simulations of multipliers

Random input pattern at a frequency of 3GHz is applied to the multipliers. Figure 5.35

shows the propagating waves after the first partial product generation layer. The width of the

propagating waves decreases to 260ps after partial product generation. Figure 5.36 shows the

propagating waves after the first half adder layer. The width of the propagating waves

become 235ps. Figure 5.37 and Figure 5.38 shows the propagating waves after the first full

adder layer and the second full adder layer, respectively. The widths of the propagating

waves become 185ps after first full adder layer and 130ps after second full adder layer.

78

Figure 5.39 shows the propagating waves at the output of the registers. The width of the

propagating waves increases to 270ps after sampling.

Figure 5.35 Propagating waves after first partial product generator

Figure 5.36 Propagating waves after the first half adder layer

79

Figure 5.37 Propagating waves after the first full adder layer

Figure 5.38 Propagating waves after the second full adder layer

80

Figure 5.39 Propagating waves after sampling

5.5.5 Performance comparison of the multipliers

The replacement of unnecessary latches with the delay elements does not affect the

remaining circuit; therefore both of the multipliers have the same operating frequency of 3

GHz.

The number of the latches is reduced by 41%, which decreases the power consumption due

to the latches. Since the number of latches is decreased, the transistor sizes of the clock

buffers driving the latches are reduced in accordance with the reduction of the latches. This

significantly reduces the power consumption due to the clock buffers. The delay elements

replaced with the latches consume additional power; however it is lower than the power

consumed by the latches. Table 5.11 shows the comparison between the multiplier with

mesochronous pipelining scheme and the multiplier with WCSM. Total power of the

multiplier is decreased by 9.5%.

81

Table 5-11 Comparison between mesochronous and WCSM multiplier

 Mesochronous

multiplier

WCSM

multiplier

Number of registers 110 70

Power of half adders 6.43mW 6.29mW

Power of full adders 20.63mW 20.94mW

Power of partial

product generators

15.95mW 15.72mW

Power of clock

buffers and latches

25.29mW 14.83mW

Power of delay

elements

25.87mW 27.42mW

Total power 94.17mW 85.20mW

Percentage of power

of clocking circuits

21.5% 17.4%

Reduction in total

power

- 9.5%

5.6 A 5GHz WCSM-Multiplier

The power consumption of registers and clock buffers increases when the number of pipeline

stages is increased. For demonstrating the effectiveness of WCSM in fully pipelined

structures, an ultra high speed multiplier is designed using carry save structure. Figure 5.40

shows the block diagram of the full pipelined multiplier. After all logic operations, the

propagating waves are sampled. Therefore, there are totally 17 clock signals, which all have

a frequency of 5GHz but different phases, in the multiplier. Since each clock signal drives at

most 16 gates, the sizes of the clock buffers are much smaller than that of a single clock

buffer.

82

H

H

H

H

H

H

H

F

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H
H

X<7:0>

Y<7:0>

M<15>

M<14>
M<13>
M<12>
M<11>
M<10>
M<9>
M<8>
M<7>

M<6>

M<5>

M<4>

M<3>

M<2>

M<1>

M<0>

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

R

R

clkin

Figure 5.40 Full pipelined multiplier

When WCSM is applied to this circuit all the unnecessary registers, which are used after

delay elements, are omitted. The signals of these paths are aligned with the sampled signals

by using cascades of inverters, which decreases the total number of latches by 45%

compared with the mesochronous pipelined multiplier. The sizes of the corresponding clock

buffers are also decreased.

For comparing 5GHz WCSM multiplier with the mesochronous pipelined multiplier, both of

the circuits are implemented using UMC 0.18um CMOS technology. Full custom design

methodology with Cadence design tools is used in the design of all the logic blocks and

latches. Post layout simulations are performed using Analog Design Environment of

Cadence. Figure 5.41 shows the propagating waves at a frequency of 5 GHz before

sampling.

83

Figure 5.41 Propagating waves before sampling

Maximum power consumptions of the multipliers are measured by alternatively applying

00x00 and FFxFF to the inputs, in which maximum number of transitions occurs in the

multiplier circuit. Table 5.12 shows the maximum power comparison of the proposed

multiplier with the mesochonous pipelined multiplier. The total power consumption of

mesochronous pipelined multiplier is 113.5mA, and 65mA of it comes from clock buffers

and latches. In WCSM multiplier, the power consumption is slightly increased due to delay

elements. However, the power consumption of clock buffers and latches decreases

significantly, therefore the total power consumption is decreased by 13.7% without any

performance loss in the operating speed of the circuit.

84

Table 5-12 Comparison between 5GHz mesochronous and WCSM multipliers

 Wave-pipelined

multiplier

Proposed multiplier

Half adders 6.12mW 6.59mW

Full adders 13.14mW 13.90mW

Partial product

generators

19.44mW 27.18mW

Clock buffers and

latches

117.0mW 69.12mW

Delay elements 48.60mW 59.70mW

Total power 204.3mW 176.5mW

Power percentage of

clocking circuits

57.2% 39.2%

For measuring the average power with random inputs, same random input pattern is applied

to both multipliers. Table 5.13 shows the comparison of the power consumption with random

inputs. The rate of the transitions is lower when random input pattern is used; therefore the

power of logic elements and latches decreases. However, the power of clock buffers remains

almost the same, therefore the percentage of total power of clocking circuits in the multiplier

is increased to 62.5%, and in WCSM multiplier it is only 42.1%. Overall power of the

WCSM multiplier is also 18.4% lower than that of the mesochronous-pipelined multiplier.

85

Table 5-13 Comparison of the multipliers with random inputs

 Wave-pipelined

multiplier

Proposed

multiplier

Half adders 3.92mW 3.85mW

Full adders 9.09mW 9.02mW

Partial product

generators

12.80mW 18.85mW

Clock buffers and

latches

100.85mW 55.44mW

Delay elements 34.79mW 44.42mW

Total power 161.45mW 131.58mW

Power percentage

of clocking circuits

62.4% 42.1%

5.7 IMPLEMENTATION OF THE OTHER MULTIPLIER STRUCTURES

5.7.1 Booth encoder design

Modified Booth-2 algorithm is implemented using UMC-0.18µm CMOS technology. Figure

5.42 shows the block diagram of the mux_6x1 logic which selects inputs from the set of {0,

+M, +2M, -2M, -M, 1}. Both the normal and complementary outputs are generated. Figure

5.43 shows the MUX module containing 8 mux_6x1 logic blocks. Figure 5.44 shows the top

level schematic of the booth-2 module. There are 5 MUX modules, each of them containing

8 internal MUX modules. There are also 16 buffers which drive the inputs of the MUX’es. 4

of the MUX modules select one of 5 inputs, and the last MUX selects one of 2 inputs, which

is either 0 or M.

86

S2

S2

NS2

gnd

vdd

Q

NQ

S1

S1

NS1

S1

S1

NS1
gnd

S0

S0

NS0

S0

S0

NS0

S0

S0

NS0

S0

S0

NS0

vdd

gnd

~M

~M

~2M

2M

M

M

Figure 5.42 Design of Mux6x1 using generic transmission gate logic

87

M<0>

S0 S1S2

Mux

6x1

M<0>

M<1>
S0 S1S2

Mux

6x1

M<1>

M<2>
S0 S1S2

Mux

6x1

M<2>

M<3>
S0 S1S2

Mux

6x1

M<3>

M<4>
S0 S1S2

Mux

6x1

M<4>

M<5>
S0 S1S2

Mux

6x1

M<5>

M<6>
S0 S1S2

Mux

6x1

M<6>

M<7>
S0 S1S2

Mux

6x1

PP<0>

NPP<0>

PP<1>

NPP<1>

PP<2>

NPP<2>

PP<3>

NPP<3>

PP<4>

NPP<4>

PP<5>

NPP<5>

PP<6>

NPP<6>

PP<7>

NPP<7>

S0

S1_d

S2_d2

Figure 5.43 Block diagram of 8xmux module

88

8 x Buffer

8 x Buffer

M<7:0>

NM<7:0>
sel<2:0>
Nsel<2:0>

8 X Mux 6x1
PP<8:0>

NPP<8:0>

PP0<8:0>

NPP0<8:0>
Mbuf<7:0>

NMbuf<7:0>
{B<1>,B<0>,0}

{NB<1>,NB<0>,1}

M<7:0>

NM<7:0>
sel<2:0>
Nsel<2:0>

8 X Mux 6x1
PP<8:0>

NPP<8:0>

PP1<8:0>

NPP1<8:0>
Mbuf<7:0>

NMbuf<7:0>
{B<3>,B<2>,B<1>}

M<7:0>

NM<7:0>
sel<2:0>
Nsel<2:0>

8 X Mux 6x1
PP<8:0>

NPP<8:0>

PP2<8:0>

NPP2<8:0>
Mbuf<7:0>

NMbuf<7:0>

M<7:0>

NM<7:0>
sel<2:0>
Nsel<2:0>

8 X Mux 6x1
PP<8:0>

NPP<8:0>

PP3<8:0>

NPP3<8:0>
Mbuf<7:0>

NMbuf<7:0>

M<7:0>

NM<7:0>
sel
Nsel

8 X Mux 2x1
PP<7:0>

NPP<7:0>

PP4<7:0>

NPP4<7:0>
Mbuf<7:0>

NMbuf<7:0>

{NB<3>,NB<2>,NB<1>}

{B<5>,B<4>,B<3>}
{NB<5>,NB<4>,NB<3>}

{B<7>,B<6>,B<5>}
{NB<7>,NB<6>,NB<5>}

B<7>
NB<7>

Mbuf<7:0>

NMbuf<7:0>

B<7:0>

NB<7:0>

Ain<7:0>

NAin<7:0>

Bin<7:0>

NBin<7:0>

Figure 5.44 Top level block diagram of Booth Encoder module

When mesochronous pipelining or conventional pipelining method is used, then there will be

10 latches in mux_6x1 block including latches of S1_d and S2_d2 signals. There are 8x5=40

mux_6x1 block in the booth-2 module, therefore total number of latches is 400. If WCSM is

applied, then there is no need to sample S1 and S2 signals, and 7 latches are enough in

mux_6x1 module. This decreases total number of latches by 30%, which is 280.

5.7.2 Wallace tree design

Table 5.14 shows the constructed Wallace tree, in which 3 levels of logic is used. In this

table, following abbreviation is used:

X: Partial product bit

H: Half adder (X+X)

H’: Modified half adder (X+X+1)

F: Full adder (X+X+X)

G: Gates (X+1)

D: Direct transfer.

89

Table 5-14 Wallace tree construction of Modified Booth-2 with 3 levels

0 0 0 0 !S0 S0 S0 X X X X X X X X X

0 0 0 1 !S1 X X X X X X X X X S0

0 1 !S2 X X X X X X X X X S1

!S3 X X X X X X X X X S2

X X X X X X X X S3

H H’ F F,D F,H F,H F,H F,H F,D F,H F F,D H F D H

X X X 1 X X X X X X X X X X X X

X X X X X X X X X X X X X X

 X X X X X X X X

 X X X X X

H H H F,D F,D F,D F,D F F,D F H F H D H D

X X X 1 X X X X X X X X X X X X

X X X X X X X X X X X X X

 X X X X X

H H H H’ F F F H F H H H D H D D

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X

Figure 5.45 shows the block diagram of the Wallace tree implementation. Full adder blocks

have 2 stages, and half adder blocks have 1 stage. If conventional pipelining or

mesochronous pipelining with latches after all logic stages are used in Wallace tree, then

every half adder and delay element must be sampled two times, for equalizing the path with

the full adder. In this case, there will be 239 latches in the conventional pipelined

implementation. If WCSM is applied, the total number of latches becomes 117, which

constitutes a reduction of 51%. The comparison between conventional or mesochronous

pipelining and WCSM in terms of number of registers is shown in Table 5.15.

90

D

HA

FA

HA

FA

D

FA

FA

FA

HA

D

FA

HA

FA

HA

FA

HA

FA

HA

FA

D

FA

HA’

HA

HA

D

D

HA

FA

HA

FA

FA

D

FA

FA

D

FA

D

FA

D

FA

D

HA

HA

HA

D

D

HA

D

HA

HA

HA

FA

FA

HA

FA

FA

HA’

HA

HA

HA

Stage 1 Stage 2 Stage 3

PP0 <8:0>

PP1 <8:0>

PP2 <8:0>

PP3 <8:0>

PP4 <7:0>

Sum_w1 <15:5>

Sum_w2 <15:0>

Figure 5.45 Block diagram of wallace tree with modified Booth-2 algorithm

Table 5-15 Comparison of Wallace trees with mesochronous pipelining and WCSM

 Conventional or mesochronous

pipelining methods

Wave Component

Sampling Method

Latches used in half adders 24x2x2=96 24x2x1=48

Latches used in full adders 23x5=115 23x3=69

Latches used in delay elements 14x2=28 -

Total number of latches 239 117

Reduction in latches - 51%

91

5.7.3 Carry Lookahead adder design

4 bit carry look-ahead adder circuit is designed using transmission gate logic with two

inputs. Figure 5.46 shows the first carry look-ahead adder circuit design. It can be seen from

the figure that, the generation of the group propagate (PG) and group generate (GG) signals

are completed in 3 and 5 levels of logic stages, respectively. The generation of carry output

(C4) is completed in 6 levels of logic stages, which is quite high.

P0

G0

A0

B0

P1

G1

A1

B1

P2

G2

A2

B2

P3

G3

A3

B3

G0P1P2P3

G1P2P3

P0P1P2P3

GG

PG

P0P1

G0P1

P2P3

G2P3

G3+G2P3

C0_d

C0P0P1P2P3

C4

Figure 5.46 Schematic design of 4-bit carry look-ahead adder circuit

The carry signal is produced using the formula Ck+1=PkCk+Gk. The logic circuit of this

carry generation formula using 2 input logic gates can be seen in Figure 5.47. It can be seen

from the figure that the carry output is generated 2 logic stages after the arrival of the carry

input. In order to speed up this operation, carry generation formula is modified to be

compatible with the transmission gate logic, such that:

Ck+1=PkCk+Gk(Ck+!Ck)=Ck(Pk+Gk)+!CkGk

P0

G0

A12

B12

C0

C1

P0C0

Figure 5.47 Carry generation logic

92

Figure 5.48 shows the modified carry generation using this formula, from which it can be

seen that the carry is generated using only one level of logic.

C0

C0

P0+G0

C1
!C0

G0

MUXG0

P0+G0

C0

C1

Figure 5.48 Modified carry generation circuit

Figure 5.49 shows the carry generation at the first stage of 4 bits. Since there is no incoming

carry signal in the first stage, no need to produce group propagate or group generate signals.

Therefore, all the logic related to GG and PG is omitted. Also there is no need to produce P0

signal. Therefore, the carry signal is produced using 5 levels of logic in the first stage.

P0

G0

A0

B0

P1

G1

A1

B1

P2

G2

A2

B2

P3

G3

A3

B3

P1

G1
MUX

S

P1+G1

C1

G1_d1 C2

P2

G2
MUX

S

P2+G2

C2

G2_d2 C3

P3

G3
MUX

S

P3+G3

C3

G3_d3 C4

C1=G0

No need to

P0 in first

stage

Figure 5.49 Carry generation circuit of first stage with 5 levels of logic

In the generation of P signal, both “EXOR” and OR operations can be used. “EXOR”

operation is preferred, because “A XOR B” is needed while obtaining Sum output. However,

when OR gate is used in the generation of P1, then P1+G1=A1+B1+A1B1=A1+B1=P1.

Therefore, OR gate which produces P1+G1 can be neglected for decreasing the latency of

carry generation of the first stage by 1. The carry output at the first stage can be completed

using 4 levels of logic instead of 5, which is shown in Figure 5.50.

93

P0

G0

A0

B0

P1

G1

A1

B1

P2

G2

A2

B2

P3

G3

A3

B3

MUX

S

A1+B1

C1

G1 C2

MUX

S

P2+G2

C2

G2_d1 C3

MUX

SC3

G3_d2 C4

C1=G0

P3+G3

Figure 5.50 Carry generation circuit of first stage with 4 levels of logic

Figure 5.51 shows the carry generation of 16 bit adder circuit. In the first group of 4 bits, no

carry look-ahead logic is used, while in the 2nd and the 3rd groups, carry outputs are

generated 1 logic level after the arrival of the incoming carry signal.

In the design of 8x8 bit multiplier, the constructed Wallace tree produces 2 outputs of 13 bits

and 16 bits, respectively. Therefore, 13 bit carry look-ahead adder is suitable for this

particular application. Figure 5.52 shows the block diagram of 13 bit carry look-ahead adder,

where carry look-ahead logic is only used in the 2nd group of 4 bits.

94

P4

G4

A4

B4

P5

G5

A5

B5

P6

G6

A6

B6

P7

G7

A7

B7

GG[1]

PG[1]

C4

P8

G8

A8

B8

P9

G9

A9

B9

P10

G10

A10

B10

P11

G11

A11

B11

P1

G0

A0

B0

G1

A1

B1

P2

G2

A2

B2

P3

G3

A3

B3

MUX

S

A1+B1

C1

G1 C2

MUX

SC2

G2_d1 C3

MUX

SC3

G3_d2 C4

C1=G0

C8

MUX

S

PG2

C8

GG2 C12

P12

G12

A12

B12

P13

G13

A13

B13

P14

G14

A14

B14

P15

G15

A15

B15

MUX

SC13

G13 C14

MUX

S

P14+G14

C14

G14 C15

MUX

SC15

G15 C16

P15+G15

MUX

S

G12 C13

P12+G12

P13+G13

C12

MUX

SC9

G9 C10

MUX

S

P10+G10

C10

G10 C11

MUX

S

G8 C9

P8+G8

P9+G9

C8

MUX

SC5

G5 C6

MUX

S

P6+G6

C6

G6 C7

MUX

S

G4 C5

P4+G4

P5+G5

C4

B0

A0 S0

C1

P1 S1

P2

G2

P3

G3

PG2+GG2

GG2

P2 S2

P3 S3

P4 S4

P5 S5

P6 S6

P7 S7

P9 S9

C8

P8 S8

P10 S10

P11 S11

P13 S13

P14 S14

P15 S15

Figure 5.51 16 bit adder with carry look-ahead logic

95

P4

G4

A4

B4

P5

G5

A5

B5

P6

G6

A6

B6

P7

G7

A7

B7

GG[1]

PG[1]

C4

P8

G8

A8

B8

P9

G9

A9

B9

P10

G10

A10

B10

P11

G11

A11

B11

P1

G0

A0

B0

G1

A1

B1

P2

G2

A2

B2

P3

G3

A3

B3

MUX

S

A1+B1

C1

G1 C2

MUX

SC2

G2_d1 C3

MUX

SC3

G3_d2 C4

C1=G0

C8

P12

G12

A12

B12

P13

G13

A13

B13

MUX

S

G12 C13

P12+G12

C12

MUX

SC9

G9 C10

MUX

S

P10+G10

C10

G10 C11

MUX

S

G8 C9

P8+G8

P9+G9

C8

MUX

SC5

G5 C6

MUX

S

P6+G6

C6

G6 C7

MUX

S

G4 C5

P4+G4

P5+G5

C4

B0

A0 S0

C1

P1 S1

P2

G2

P3

G3

P2 S2

P3 S3

P4 S4

P5 S5

P6 S6

P7 S7

P9 S9

C8

P8 S8

P10 S10

P11 S11

P13 S13

MUX

SC11

G11 C12

P12 S12
P11+G11

Figure 5.52 13 bit adder with carry look-ahead logic.

For comparing the areas of the carry look-ahead adder and the carry save adder, 16 bit carry

save adder tree is designed using Half adder blocks. Figure 5.53 shows the schematic design

of the 16 bit carry save adder tree. It can be seen from the figure that, the addition takes 16

levels of logic stage, where each stage is composed of Half adders.

96

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA

HA
HA

HA

HA

Figure 5.53 16 bit carry save adder tree.

Table 5.16, 5.17 and 5.18 show the number of sub blocks and total number of transistors

used in the 16-bit carry save adder, 16 bit carry look-ahead adder and 13 bit carry look-ahead

adder, respectively. Comparing Table 5.16 with Table 5.17, it can be seen that carry look-

ahead adder implementation utilizes 35% less transistors than the 16 bit carry save adder

implementation.

Table 5-16 Transistor count of 16-bit carry save adder implementation

Block name Number of

instantiation

Number of

trans. gate logic

in block

Total number

of trans. gate

logic

Number of

transistors

used

HA 136 4 524 3144

Delay 120 1 120 720

Latch 80 3 240 1440

Total number of transistors without latches 3864

97

Table 5-17 Transistor count of 16-bit carry lookahead adder implementation.

Block name Number of

instantiation

Number of pass

logic in block

Total number

of pass logic

Number of

transistors

used

PG 15 4 60 360

XOR 16 2 32 192

AND2 14 2 28 168

OR2 19 2 38 228

MUX 14 2 28 168

Delay 230 1 230 1380

Total number of transistors 2496

Table 5-18 Transistor count of 13-bit carry lookahead adder implementation.

Block name Number of

instantiation

Number of

trans. gate logic

in block

Total number

of trans. gate

logic

Number of

transistors

used

PG 12 4 48 288

XOR 13 2 26 156

AND2 7 2 14 84

OR2 15 2 30 180

MUX 11 2 22 132

Delay 180 1 180 1080

Total number of transistors 1920

Block diagram of 16-bit CLA adder with WCSM is shown in Figure 5.54. The delays of all

the paths in the direction of propagation are balanced by using active delay elements. For

simplicity, not all of the delay elements are shown in the figure. Rather, following

abbreviation is used: “i_dj” means “i” signal is delayed by “j” stages, i.e. “P_d3” means P

signal is delayed by 3 stages.

Summation is completed in 11 stages. Only 1 logic level is used in every stage. For having

an ultra high speed adder, latches are inserted between every stage. Therefore, there are 11

register regions and 11 clock signals.

98

If mesochronous pipelining method or conventional pipelining methods are used, then the

total number of registers in 16-bit CLA design becomes 251. When WCSM is applied, a

register is only used after a logical operation occurs. Therefore, all the registers, which are

used after a delay element, are omitted and replaced by delay elements. In this case, total

number of latches becomes 96, which is 62% lower than the conventional or mesochronous

pipelining methods.

99

P4

G4

A4

B4

P5

G5

A5

B5

P6

G6

A6

B6

P7

G7

A7

B7

GG[1]

PG[1]

C4

P8

G8

A8

B8

P9

G9

A9

B9

P10

G10

A10

B10

P11

G11

A11

B11

P1

G0

A0

B0

G1

A1

B1

P2

G2

A2

B2

P3

G3

A3

B3

MUX
S

A1+B1

C1

G1 C2

MUX
SC2

G2_d1 C3

MUX
SC3

G3_d2 C4

C1=G0

MUX
S

PG2
C8

GG2 C12

P12

G12

A12

B12

P13

G13

A13

B13

P14

G14

A14

B14

P15

G15

A15

B15

MUX
SC13

G13_d7 C14

MUX
S

P14+G14

C14
G14_d8

C15

MUX
S

C15
G15_d9

C16

P15+G15

MUX
S

G12_d6 C13

P12+G12

P13+G13

C12

MUX
SC9

G9_d6 C10

MUX
S

P10+G10

C10
G10_d7 C11

MUX
S

G8_d5 C9
P8+G8

P9+G9

C8

MUX
SC5

G5_d4 C6

MUX
S

P6+G6

C6
G6_d5 C7

MUX
S

G4_d3 C5

P4+G4

P5+G5

C4

B0

A0 S0

C1

P1 S1

P2

G2

P3

G3

PG2+GG2

GG2

P2
S2

P3 S3

P4_d3
S4

P5_d4
S5

P6_d5
S6

P7
S7

P9_d6
S9

C8

P8_d5
S8

P10_d7
S10

P11_d8

S11

P13_d7
S13

P14_d8
S14

P15_d9
S15

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S13

S14

C12
P12_d6 S12 S12

P4_d2
G4_d2

P5_d3
G5_d3

P6_d4
G6_d4

P8_d4

G8_d4

P9_d5
G9_d5

P10_d6
G10_d6

P12_d5
G12_d5

P13_d6
G13_d6

P14_d7
G14_d7

P15_d8
G14_d8

Figure 5.54 Block diagram of 16-bit CLA adder with balanced paths

Table 5.19 shows the comparison of the multipliers implemented using booth encoder,

Wallace tree, and carry look-ahead adder blocks with conventional pipelining and WCSM,

respectively. As it is seen from the table, total number of registers is decreased by 45%,

when WCSM is used.

100

Table 5-19 Overall comparison of the multipliers

 Conventional or

mesochronous pipelining

methods

Wave Component Sampling

Method

Latches used in booth

encoder

400 280

Latches used in Wallace tree 239 117

Latches used in carry look-

ahead logic

251 96

Total number of latches 890 493

Percentage of reduction in

number of latches

- 45%

5.7.4 CLA Adder Design with 4-input logic gates

Carry look-ahead adders are used to reduce the total latency of the outputs. However, when

using 2-input logic gates, group propagate and group generate signals cannot be produced

fast enough, which decreases the efficiency of carry look-ahead logic. Therefore, 16 bit carry

look-ahead adder using 4 input logic blocks is implemented, which is shown in Figure 5.55.

As it is seen from the figure, first carry output (C4) is produced with a latency of 3 logic

levels. At the same time instant, GG1 & GG2 (group generate 1-2) signals are produced,

therefore C8 and C12 are obtained with a latency of 4. Therefore, overall summation is

completed with a latency of 5. The reduction of latency brings a lot of reduction in the

number of delay elements in wave-pipelining. Therefore, the delay characteristics of 4-input

logic elements are analyzed.

101

P4

G4

A4

B4

P5

G5

A5

B5

P6

G6

A6

B6

P7

G7

A7

B7

P8

G8

A8

B8

P9

G9

A9

B9

P10

G10

A10

B10

P11

G11

A11

B11

P1

G0

A0

B0

G1

A1

B1

P2

G2

A2

B2

P3

G3

A3

B3

C1=G0

P0'a gerek

yok

P12

G12

A12

B12

P13

G13

A13

B13

P14

G14

A14

B14

P15

G15

A15

B15

B0

A0 S0

G0

P1

P2

P3

G1

P2

P3

G2

P3

G3

P0

P1

P2

P3

PG

C4

G4

P5

P6

P7

G5

P6

P7

G6

P7

G7

P4

P5

P6

P7

PG1

GG1

G8

P9

P10

P11

G9

P10

P11

G10

P11

G11

P8

P9

P10

P11

PG2

GG2

PG1_d

C4

AB+C

GG1

C8

C_logic_2

GG1

C12

C4

PG1_d

GG2

PG2_d

Figure 5.55 16-bit carry lookahead adder with 4-input logic gates

102

5.8 Delay analysis of logic blocks with 4 inputs

Delay difference value of Classical CMOS logic is much higher than that of the pass

transistor logic. One of the main reasons is that the number of pull-up or pull-down paths

depends on the input data pattern. Considering CMOS Nand gate with 2 inputs, if both of the

inputs are LOW, then there will be two pull-up paths. For limiting the current, [17] proposed

to use a serial transistor at the top. Figure 5.56 shows a 4 input CMOS AND gate with a

serial current limiting pull up transistor at the top.

A B

A

B

Q

gnd

C D

C

D

Figure 5.56 4-input AND gate with serial current limiting transistor

The fastest transition at the output occurs when all of the inputs switch from HIGH to LOW,

which causes all of the pmos transistors to join pull-up current. The delay time at the output

becomes 92ps in this case. The slowest transition occurs when all the inputs are HIGH and

the last input (connected to the nmos transistor closest to ground) switches to LOW, i.e.

ABCD input pattern is 1111 and switches to 1110. In that case, output delay time is 173ps. If

the input pattern is 1111 and switches to 0111, then the delay time at the output becomes

116ps. Therefore, the place of the switching transistor at the serial pull-down path is another

main reason of the delay difference at the output. Table 5.20 shows the delay values of the 4

input AND gate depending on the input patterns of concern. It can be seen that, delay

difference value is 81ps. Table 5.21 shows the output delay values when there is no limiting

transistor at the top. In that case, the delay difference value becomes 84ps, and the slowest

path becomes pull-down path, rather than one transistor pull-up of the previous one.

103

Table 5-20 Delays of 4-input CMOS with a limiting pmos of W=900nm at the top

ABCD1 ABCD2 Delay

0000 1111 139ps

1111 0000 92ps

0111 1111 107ps

1111 0111 116ps

1110 1111 143ps

1111 1110 173ps

Delay difference value 81ps

Table 5-21 CMOS_AND4_v1_delays with no limiting transistor at the top

ABCD1 ABCD2 Delay

0000 1111 131ps

1111 0000 51ps

0111 1111 107ps

1111 0111 89ps

1110 1111 135ps

1111 1110 121ps

Delay difference value 84ps

It is possible to use a small pmos limiting transistor at the top, but in that case the rise time

will be very high, which is not a recommended case in high speed wave-pipelined design.

A 2 input AND gate is also designed which can be seen in Figure 5.57. The output delay

values of this circuit can be seen in Table 5.22, and the delay difference value at the output

becomes 27ps.

104

A B

A

B

gnd

Q

Figure 5.57 2-input CMOS AND gate

Table 5-22 Delay values of CMOS_AND2_v1

AB1 AB2 Delay

00 11 103ps

11 00 87ps

01 11 92ps

11 01 97ps

11 10 114ps

10 11 98ps

Delay difference value 27ps

Using 2 input AND gates, another 4 input AND gate is designed, which can be seen in

Figure 5.58. Table 5.23 shows the output delay values where the delay difference value is

58ps. Comparison with the CMOS_AND4_v1 gate is given in Table 5.24. Although the

delay difference value decreases from 81ps to 58ps, the number of transistors is increased

from 11 to 21 and the latency is also increased from 173ps to 234ps. Therefore, the choice

will be a design trade-off.

105

A B

A

B

gnd

Q1

C D

C

D

gnd

Q2

gnd

Q

Q1 Q2

Q1

Q2

Figure 5.58 4-input CMOS And gate constructed with 2-input gates

Table 5-23 Delay values of CMOS_AND4_v2

AB1 AB2 Delay

0111 1111 234ps

1111 0111 198ps

0000 1111 209ps

1111 0000 176ps

Delay difference value 58ps

106

Table 5-24 Comparison of CMOS_AND4_v1 and CMOS_AND4_v2.

 CMOS_AND4_v1 CMOS_AND4_v2

Number of trans. 11 21

Output Latency 176ps 234ps

Delay difference at the

output

81ps 58ps

107

CHAPTER 6

6 CONCLUSION

In this thesis a novel wave-pipelining methodology named as Wave Component Sampling

Method (WCSM) is developed and discussed. In all of the previous pipelining methods such

as conventional pipelining, wave pipelining, and mesochronous pipelining, all of the

components of propagating waves are sampled whenever they arrive to a synchronization

stage. However, WCSM allows partial sampling of the signal components of the propagating

waves. Only the components, whose minimum and maximum delay differences reach to the

tolerable value, are sampled and the other signal components are delayed using active delay

elements. Therefore, this methodology promises significant reduction in the number of the

sampling flip-flops or latches.

To demonstrate the effectiveness of this method and to compare it with the mesochronous

pipelining methodology, two 8x8 bit multipliers are implemented using mesochronous

pipelining scheme and WCSM, respectively. Several optimizations are performed in the

design of sub blocks for achieving high performance multipliers with low power

consumption.

Minimizing the delay differences between propagating waves is very important for having

high speed multiplication with a small number of pipeline stage. Therefore, a generic

transmission gate logic block, which has minimum delay variation at the output depending

on the input pattern, is designed. This transmission gate logic block has three inputs and

performs the output function of Q=~(X*Z+NX*Y). The minimum and maximum delay

variation of this generic logic block is kept within 27ps.

In the implementation of multiplier, both the normal and complementary signals are

required. When the normal and complementary signals are generated using different logic

blocks, a delay difference between them occurs. And when they are connected to the gates of

108

the transistors of cascading transmission gate logic blocks, the asymmetry between the

transitions of normal and complementary signals creates conflict on the succeeding output.

Therefore, simultaneous generation of normal and complementary signals is important. A

method for generating normal and complementary signals simultaneously with symmetric

transitions is proposed. Instead of using separate logic blocks, both the normal and the

complementary outputs are generated using same transmission gate logic. Another

transmission gate, which is always “ON” and has same delay value with that of the inverter,

is used to obtain both of the normal and the complementary signals. The reduction in the

number of logic blocks also reduces the drive strength required at the output of the preceding

logic block.

Half adder and full adder blocks are designed using generic transmission gate logic blocks.

Half adder has single stage, where full adder has two stages of logic operation. The delay

variation at the output of half adder and full adder blocks are 27ps, and 62ps, respectively.

In the multiplier, fan out is kept as at most two for having high speed operation. However, in

the generation of partial products, a fan out of 8 is needed. For driving 8 inputs, the drive

strength of the single bit of multiplier is increased by a buffer composed of a cascade of 3

inverters with increasing transistor sizes. Buffered signals are used to drive the gates of

transistors in the transmission gate logic, since driving the gates requires less drive capability

than driving drain or source of the transistors.

While propagating, the width of the waves decreases. They must be sampled before their

aperture becomes too small which creates setup and hold time violations. C2MOS latch is

designed and used to sample narrow waves with a minimum aperture of 120ps. Latches are

operational at a frequency of 5GHz.

8x8-bit carry save adder (CSA) multipliers are implemented with mesochronous pipelining

scheme and WCSM. For comparing the methods adequately, same structure of [24] is used,

in which a layer of register is used after 3 layers of full adders. Full custom design

methodology with Cadence design tools is used and UMC-0.18µm CMOS technology is

employed in the implementation. The operating frequency of both of the multipliers is 3GHz.

The number of the latches is decreased by 41% when WCSM is employed. The reduction in

the number of latches also decreases the power consumption of the associated clocking

109

network. Post layout simulations show that total power of the chip is also decreased by 9.5%,

without any performance loss.

For investigating the benefits of WCSM in higher level pipelined circuits, two CSA

multiplier using mesochronous pipelining method and WCSM are implemented with a fully

pipelined structured. A register layer is used after all of the logic layers. In this case, the

operating frequency of the multipliers is increased to 5GHz, which is the fastest multiplier

using 0.18µm CMOS technology. In the multiplier employing WCSM, the number of the

registers is decreased by 45%. The power of the multiplier is also decreased by 18.4%. This

demonstrates that, benefits of WCSM increase when the number of pipeline stages and

operating frequency of the circuit increase.

WCSM is also applied to the other multiplier structures for observing its effects with

different circuit structures. Booth encoder, Wallace tree and carry look-ahead blocks for 8x8

bit multiplication are designed with full pipelined structures, and then WCSM is applied to

them. In the design of booth encoder, the number of registers decreases from 400 to 280,

which constitutes a reduction of 30%. In the design of Wallace tree, the number of registers

is decreased from 239 to 117, with a reduction of %51. The number of the registers is also

decreased from 251 to 96 in the implementation of 16 bit carry look-ahead adder,

constituting a reduction of 62%. The overall reduction in the implementation of 8x8 bit

multiplier employing booth encoder, Wallace tree and carry look-ahead adder is from 890 to

493, which constitues a reduction of 45%.

WCSM is a novel pipelining methodology which provides a significant reduction in the

number of registers, without a performance loss. For future research, the application of

WCSM to different pipelined circuits could be investigated. Crypto processes, filter

applications, multiplier and accumulators (MAC), memory structures, communications

algorithms like Viterbi decoders etc are good candidates for the application of WCSM.

Besides the benefits of WCSM, its design complexity is high. Computer Aided Design

(CAD) tools could be developed for automatically implementing circuits using WCSM.

110

BIBLIOGRAHPY

[1]. W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, "Wave-Pipelining: A Tutorial

and Research Survey," IEEE Trans. VLSI Syst., vol. 6, no. 3, pp. 464 - 474, Sep. 1998.

[2]. S. Anderson, J. Earle, R. Goldschmidt, and D. Powers, “The IBM system/360 model

91 floating point execution unit,” IBM J. Res. Develop. Jan. 1967.

[3]. L. Cotten, "Maximum rate pipelined systems." in AFlPS Pror. Spring Joirlr Coniput.

Conf., 1969. pp. 581-586.

[4]. B. Ekroot, “Optimization of pipelined processors by insertion of combinational logic

delay,” Ph.D. dissertation, Stanford Univ., Stanford, CA, 1987.

[5]. J. P. Fishburn, “Clock Skew Optimization”, IEEE Trans. on Computers, vol. 39, no.

7, pp. 945 - 951, July 1990.

[6]. D. Wong, G. De Micheli, M. Flynn, and R. Huston, “A bipolar population counter

using wave pipelining to achieve 2.5_ normal clock frequency,” IEEE J. Solid-State Circuits,

vol. 27, May 1992.

[7]. K. A. Sakallah, T. N. Mudge, T. M. Burks, and E. S. Davidson, “Synchronization of

pipelines,” in IEEE Trans. Computer-Aided Design, vol. 12, 1993.

[8]. D. A. Joy and M. J. Ciesielski, “Clock period minimization with wave pipelining,”

in IEEE Trans. Computer-Aided Design, Apr. 1993.

[9]. D. Wong, G. De Micheli, and M. Flynn, “Designing high performance digital

circuits using wave pipelining: Algorithms and practical experiences,” IEEE Trans.

Computer-Aided Design, vol. 12, Jan. 1993.

[10]. C. T. Gray, W. Liu, W.A.M. Van Noije, T.A. Hughes, R. Cavin III, “A sampling

technique and its CMOS implementation with 1 Gb/s bandwidth and 25 ps resolution,” IEEE

J. Solid-State Circuits, vol. 29, pp. 340–349, March 1994.

[11]. C. T. Gray, W. Liu, and R. Cavin III, “Timing constraints for wave pipelined

systems,” IEEE Trans. Computer-Aided Design, vol. 13, pp.987–1004, Aug. 1994.

[12]. W. Liu, C. Gray, D. Fan, T. Hughes, W. Farlow, and R. Cavin “A 250- Hz wave

pipelined adder in 2-_m CMOS,” IEEE J. Solid-State Circuits, pp. 1117–1128, Sept. 1994.

[13]. D. Ghosh and S. Nandy, “Design and realization of high-performance wave-

pipelined 8 _ 8 b multiplier in CMOS technology,” IEEE Trans. VLSI Syst., vol. 3, pp. 37–

48, 1995.

[14]. K. Nakamura et al., “A 220-MHz pipelined 16-mb BiCMOS SRAM with PLL

proportional self-timing generator,” IEEE J. Solid-State Circuits, pp. 1317–1322, Nov. 1994.

111

[15]. K. Ishibashi et al., “A 300 MHz 4-mb wave-pipelined CMOS SRAM using a multi-

phase PLL,” in Proc. ISSCC’95, 1995, pp. 308–309.

[16]. S. Tachibana et al., “A 2.6 ns wave pipelined CMOS SRAM with dual sensing-latch

circuits,” IEEE J. Solid-State Circuits, pp. 487–490, pr. 1995.

[17]. F. Klass, “Wave pipelining: Theoretical and Practical Issues in CMOS,” Ph.D.

dissertation, Stanford Univ., Stanford, CA,1994.

[18]. W.K.C. Lam, R.K. Brayton, A.L. Sangiovanni-Vincentelli, “Valid clock frequencies

and their computation in wavepipelined circuits,” IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, vol. 15, pp. 791-807, July 1996.

[19]. E. I. Boemo, S. Lopez-Buedo, and J. M. Meneses, “Some experiments about wave-

pipelining FPGAs,” IEEE Trans. VLSI Syst., vol. 6, pp. 232–237, June 1998.

[20]. W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, "Wave-Pipelining: A Tutorial

and Research Survey," IEEE Trans. VLSI Syst., vol. 6, no. 3, pp. 464 - 474, Sep. 1998.

[21]. J. Nyathi and J. G. Delgado-Frias, “Hybrid-wave pipelined network router,” IEEE

Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 49, no. 12, pp. 1764–1772, Dec. 2002.

[22]. A. Joshi and J. Davis, “Wave-pipelined multiplexed (WPM) routing for gigascale

integration (GSI),” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 8, pp.

899–910, Aug. 2005.

[23]. V. Deodhar and J. Davis, “Optimization for throughput performance for low power

VLSI interconnects,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 3, pp.

308–318, Mar. 2005.

[24]. S.B. Tatapudi, J.G. Delgado-Frias, "A mesochronous pipelining scheme for high-

performance digital systems," IEEE Trans. Circ. Syst. I, vol. 53, no. 5, pp. 1078 - 1088, May

2006.

[25]. M. Singh, S.M. Nowick, “MOUSETRAP: High-Speed Transition-Signaling

Asynchronous Pipelines,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 6,

pp. 684–698, June 2007.

[26]. Y. Suwen, B.D. Winters, M.R. Greenstreet, “Surfing Pipelines: Theory and

Implementation,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1405–1414, June 2007.

[27]. V. Deodhar and J. Davis, “Optimization for throughput performance for low power

VLSI interconnects,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 3, pp.

308–318, Mar. 2005.

[28]. D. Schinkel, E. Mensink, E. Klumperink, E. Tuijl, B. Nauta, “Low-Power, High-

Speed Transceivers for Network-on-Chip Communication,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 17, no. 1, pp. 12–21, Jan. 2009.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43

112

[29]. X. Jiang, W. Wolf, Z. Wei, “Double-Data-Rate, Wave-Pipelined Interconnect for

Asynchronous NoCs,” IEEE Micro, vol. 29, no. 3, pp. 20-30, June 2009.

[30]. Z. Xia, S. Ishihara, M. Hariyama, M. Kameyama, “Synchronising logic gates for

wave-pipelining design,” Elect. Letters, vol. 46, no. 16, pp. 1116-1117, Aug. 2010.

[31]. J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, 2nd ed.,

Upper Saddle River: NJ, Prentice Hall, 2002.

[32]. C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on

Electronic Computers, EC-13:14–17, February 1964.

[33]. G. W. Bewick, “Fast Multiplication: Algorithms And Implementation,” PhD

Dissertation, Stanford University, 1994.

[34]. A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly Journal of

Mechanics and Applied Mathematics, 4(2):236–240, June 1951.

[35]. A. Weinberger, and J. L. Smith, “A One-Microsecond Adder Using One-Megacycle

Circuitry,” IRE Transactions on Electronic Computers, EC-5:65–73, June 1956.

113

APPENDIX A

HDL CODES OF MULTIPLIER BLOCKS

A.1 Verilog HDL code of top module (booth3_bias_wallace_CLA16)

module booth3_bias_wallace_CLA16(

 input [7:0] a,//multiplicand

 input [7:0] b,//multiplier

 output [15:0] c,

 output [15:0] sum_wallace,

 output [15:0] sum_cla,

 output cla_overflow

);

wire [3:0] sel0, sel1;

wire [2:0] sel2;

wire [10:0] K_M,K_2M,K_3M,K_4M;

wire [10:0] mux0_out,mux1_out,mux2_out;

wire [15:0] pp0,pp1,pp2,pp0_y,pp0_s,pp1_y,pp1_s,pp2_y;

wire s0,s1;

wire [15:0] comp;

wire [15:0] sum1,sum2,sum;

//wire [15:0] sum_wallace;

wire [15:0] sum_cla_compsuz;

KplusM

KplusM(

.M(a[7:0]),

.K_M(K_M[10:0])

);

Kplus2M

114

Kplus2M(

.M(a[7:0]),

.K_2M(K_2M[10:0])

);

Kplus3M

Kplus3M(

.M(a[7:0]),

.K_3M(K_3M[10:0])

);

Kplus4M

Kplus4M(

.M(a[7:0]),

.K_4M(K_4M[10:0])

);

booth3_mux

mux0(

.sel(sel0[3:0]),

.mux_in_0(K_M[10:0]), //K+M //ilk bit y0

.mux_in_1(K_2M[10:0]), //K+2M //ilk bit y0

.mux_in_2(K_3M[10:0]), //K+3M //ilk bit y0

.mux_in_3(K_4M[10:0]), //K+4M //ilk bit y0

.mux_out(mux0_out[10:0])

),

mux1(

.sel(sel1[3:0]),

.mux_in_0(K_M[10:0]), //K+M //ilk bit y0

.mux_in_1(K_2M[10:0]), //K+2M //ilk bit y0

.mux_in_2(K_3M[10:0]), //K+3M //ilk bit y0

.mux_in_3(K_4M[10:0]), //K+4M //ilk bit y0

.mux_out(mux1_out[10:0])

)

;

booth3_mux_sondaki

mux2(

.sel(sel2[2:0]), //sonuncu muxta select 3 bit

.mux_in_0(K_M[10:0]), //K+M //ilk bit y0

.mux_in_1(K_2M[10:0]), //K+2M //ilk bit y0

.mux_in_2(K_3M[10:0]), //K+3M //ilk bit y0

.mux_in_3(K_4M[10:0]), //K+4M //ilk bit y0

.mux_out(mux2_out[10:0])

);

115

wallace_booth3_bias_8x8 wallace(

.pp0(pp0),.pp1(pp1),.pp2(pp2),.pp0_y(pp0_y),.pp1_y(pp1_y),.pp2_y(pp2_y),.pp0_s(pp0_s),.pp1_s(pp1_s),.sum1(sum1),.sum2(

sum2),.sum(sum));

CLA_16 CLA(.A(sum1[15:0]),.B(sum2[15:0]),.Cin(1'd0),.PP(),.PG(),.Sum(sum_cla_compsuz[15:0]),.Cout(cla_overflow));

assign sum_cla[15:0]=sum_cla_compsuz[15:0]+comp[15:0];

assign sum_wallace[15:0]=sum[15:0]+comp[15:0];

assign sel0[3:0]={b[2:0],1'd0};

assign sel1[3:0]=b[5:2];

assign sel2[2:0]=b[7:5];//sonuncu selectin basi 0

assign s0=b[2];

assign s1=b[5];

assign pp0[15:0]={2'd0,!s0,s0,s0,s0,mux0_out[9:0]};

assign pp1[15:0]={2'b11,!s1,mux1_out[9:0],3'd0};

assign pp2[15:0]={mux2_out[9:0],6'd0};//sonuncu farkli

assign pp0_y[15:0]={9'd0,mux0_out[10],6'd0}; //muxlarin 10.bitleri y

assign pp1_y[15:0]={6'd0,mux1_out[10],9'd0}; //muxlarin 10.bitleri y

assign pp0_s[15:0]={15'd0,s0};

assign pp1_s[15:0]={12'd0,s1,3'd0};

//ek

assign pp2_y[15:0]={3'd0,mux2_out[10],12'd0}; //muxlarin 10.bitleri y

assign comp[15:0]=16'hF6E0;

//assign c[15:0]=pp0[15:0]+pp1[15:0]+pp2[15:0]+pp0_y[15:0]+pp0_s[15:0]+pp1_y[15:0]+pp1_s[15:0]+comp[15:0];

assign

c[15:0]=pp0[15:0]+pp1[15:0]+pp2[15:0]+pp0_y[15:0]+pp0_s[15:0]+pp1_y[15:0]+pp1_s[15:0]+pp2_y[15:0]+comp[15:0];

endmodule

A.2 Verilog-HDL code of KplusM

module KplusM(

 input [7:0] M,

 output [10:0] K_M //10.bit y0

 //output y0

);

assign K_M[10]=M[5];

assign K_M[9:0]={2'd0,M[7:6],!M[5],M[4:0]};

116

A.3 Verilog-HDL code of Kplus2M

module Kplus2M(

 input [7:0] M,

 output [10:0] K_2M //10.bit y0

 //output y0

);

//assign y0=M[4];

assign K_2M[10:0]={M[4],1'd0,M[7:5],!M[4],M[3:0],1'd0};

A.4 Verilog-HDL code of Kplus3M

module booth3_mux(

 input [3:0] sel,

 input [10:0] mux_in_0,//K+M //ilk bit y0

 input [10:0] mux_in_1,//K+2M //ilk bit y0

 input [10:0] mux_in_2,//K+3M //ilk bit y0

 input [10:0] mux_in_3,//K+4M //ilk bit y0

 output reg [10:0] mux_out //ilk bit y0 cikisi

);

always @(sel or mux_in_0 or mux_in_1 or mux_in_2 or mux_in_3)

case (sel)

 4'd0://K+0

 begin

 mux_out[10]<=0;//y0

 mux_out[9:6]<=4'd0;

 mux_out[5]<=1;

 mux_out[4:0]<=5'd0;

 end

 4'd1://K+M

 mux_out[10:0]<=mux_in_0[10:0];//y0

 4'd2://K+M

 mux_out[10:0]<=mux_in_0[10:0];//y0

 4'd3://K+2M

 mux_out[10:0]<=mux_in_1[10:0];

 4'd4://K+2M

 mux_out[10:0]<=mux_in_1[10:0];

 4'd5://K+3M

 mux_out[10:0]<=mux_in_2[10:0];

 4'd6://K+3M

 mux_out[10:0]<=mux_in_2[10:0];

 4'd7://K+4M

 mux_out[10:0]<=mux_in_3[10:0];

 4'd8://K-4M

117

 mux_out[10:0]<=~mux_in_3[10:0];

 4'd9://K-3M

 mux_out[10:0]<=~mux_in_2[10:0];

 4'd10://K-3M

 mux_out[10:0]<=~mux_in_2[10:0];

 4'd11://K-2M

 mux_out[10:0]<=~mux_in_1[10:0];

 4'd12://K-2M

 mux_out[10:0]<=~mux_in_1[10:0];

 4'd13://K-M

 mux_out[10:0]<=~mux_in_0[10:0];

 4'd14://K-M

 mux_out[10:0]<=~mux_in_0[10:0];

 4'd15:

 begin

 mux_out[10]<=1;//y0

 mux_out[9:6]<=4'hF;

 mux_out[5]<=0;

 mux_out[4:0]<=5'h1F;

 end

 default

 begin

 end

endcase

endmodule

A.5 Verilog-HDL Code of Kplus4M

module Kplus4M(

 input [7:0] M,

 output [10:0] K_4M //10.bit y0

 //output y0

);

//assign y0=M[3];

assign K_4M[10:0]={M[3],M[7:4],!M[3],M[2:0],2'd0};

endmodule

A.6 Verilog-HDL Code of Booth3Mux

module booth3_mux(

118

 input [3:0] sel,

 input [10:0] mux_in_0,//K+M //ilk bit y0

 input [10:0] mux_in_1,//K+2M //ilk bit y0

 input [10:0] mux_in_2,//K+3M //ilk bit y0

 input [10:0] mux_in_3,//K+4M //ilk bit y0

 output reg [10:0] mux_out //ilk bit y0 cikisi

);

always @(sel or mux_in_0 or mux_in_1 or mux_in_2 or mux_in_3)

case (sel)

 4'd0://K+0

 begin

 mux_out[10]<=0;//y0

 mux_out[9:6]<=4'd0;

 mux_out[5]<=1;

 mux_out[4:0]<=5'd0;

 end

 4'd1://K+M

 mux_out[10:0]<=mux_in_0[10:0];//y0

 4'd2://K+M

 mux_out[10:0]<=mux_in_0[10:0];//y0

 4'd3://K+2M

 mux_out[10:0]<=mux_in_1[10:0];

 4'd4://K+2M

 mux_out[10:0]<=mux_in_1[10:0];

 4'd5://K+3M

 mux_out[10:0]<=mux_in_2[10:0];

 4'd6://K+3M

 mux_out[10:0]<=mux_in_2[10:0];

 4'd7://K+4M

 mux_out[10:0]<=mux_in_3[10:0];

 4'd8://K-4M

 mux_out[10:0]<=~mux_in_3[10:0];

 4'd9://K-3M

 mux_out[10:0]<=~mux_in_2[10:0];

 4'd10://K-3M

 mux_out[10:0]<=~mux_in_2[10:0];

 4'd11://K-2M

 mux_out[10:0]<=~mux_in_1[10:0];

 4'd12://K-2M

 mux_out[10:0]<=~mux_in_1[10:0];

 4'd13://K-M

 mux_out[10:0]<=~mux_in_0[10:0];

 4'd14://K-M

119

 mux_out[10:0]<=~mux_in_0[10:0];

 4'd15:

 begin

 mux_out[10]<=1;//y0

 mux_out[9:6]<=4'hF;

 mux_out[5]<=0;

 mux_out[4:0]<=5'h1F;

 end

 default

 begin

 end

endcase

endmodule

A.7 Verilog-HDL code of wallace_booth3_bias_8x8

module wallace_booth3_bias_8x8(

 input [15:0] pp0,

 input [15:0] pp1,

 input [15:0] pp2,

 input [15:0] pp0_y,

 input [15:0] pp1_y,

 input [15:0] pp2_y,

 input [15:0] pp0_s,

 input [15:0] pp1_s,

 output [15:0] sum1,

 output [15:0] sum2,

 output [15:0] sum

);

wire [15:0] S1,C1,S2,C2;

//Level 1

half_adder u11(.A(pp0[0]),.B(pp0_s[0]),.S(S1[0]),.C_out(C1[0]));

assign S1[1]=pp0[1]; assign C1[1]=1'd0;//dogrudan u12

half_adder u13(.A(pp0[2]),.B(pp1_s[2]),.S(S1[2]),.C_out(C1[2]));

full_adder u14(.A(pp0[3]),.B(pp1[3]),.C_in(pp1_s[3]),.S(S1[3]),.C_out(C1[3]));

full_adder u15(.A(pp0[4]),.B(pp1[4]),.C_in(pp1_s[4]),.S(S1[4]),.C_out(C1[4]));

half_adder u16(.A(pp0[5]),.B(pp1[5]),.S(S1[5]),.C_out(C1[5]));

full_adder u17(.A(pp0[6]),.B(pp1[6]),.C_in(pp2[6]),.S(S1[6]),.C_out(C1[6]));

full_adder u18(.A(pp0[7]),.B(pp1[7]),.C_in(pp2[7]),.S(S1[7]),.C_out(C1[7]));

full_adder u19(.A(pp0[8]),.B(pp1[8]),.C_in(pp2[8]),.S(S1[8]),.C_out(C1[8]));

full_adder u110(.A(pp0[9]),.B(pp1[9]),.C_in(pp2[9]),.S(S1[9]),.C_out(C1[9]));

120

full_adder u111(.A(pp0[10]),.B(pp1[10]),.C_in(pp2[10]),.S(S1[10]),.C_out(C1[10]));

full_adder u112(.A(pp0[11]),.B(pp1[11]),.C_in(pp2[11]),.S(S1[11]),.C_out(C1[11]));

full_adder u113(.A(pp0[12]),.B(pp1[12]),.C_in(pp2[12]),.S(S1[12]),.C_out(C1[12]));

full_adder u114(.A(pp0[13]),.B(pp1[13]),.C_in(pp2[13]),.S(S1[13]),.C_out(C1[13]));

half_adder/*m*/ u115(.A(1'd1),.B(pp2[14]),.S(S1[14]),.C_out(C1[14]));

half_adder/*m*/ u116(.A(1'd1),.B(pp2[15]),.S(S1[15]),.C_out(C1[15]));

//Level 2

assign S2[0]=S1[0]; assign C2[0]=1'd0;//dogrudan u21

half_adder u22(.A(C1[0]),.B(S1[1]),.S(S2[1]),.C_out(C2[1]));

assign S2[2]=S1[2]; assign C2[2]=1'd0;//dogrudan u23

half_adder u24(.A(C1[2]),.B(S1[3]),.S(S2[3]),.C_out(C2[3]));

half_adder u25(.A(C1[3]),.B(S1[4]),.S(S2[4]),.C_out(C2[4]));

half_adder u26(.A(C1[4]),.B(S1[5]),.S(S2[5]),.C_out(C2[5]));

full_adder u27(.A(C1[5]),.B(S1[6]),.C_in(pp0_y[6]),.S(S2[6]),.C_out(C2[6]));

half_adder u28(.A(C1[6]),.B(S1[7]),.S(S2[7]),.C_out(C2[7]));

half_adder u29(.A(C1[7]),.B(S1[8]),.S(S2[8]),.C_out(C2[8]));

full_adder u210(.A(C1[8]),.B(S1[9]),.C_in(pp1_y[9]),.S(S2[9]),.C_out(C2[9]));

half_adder u211(.A(C1[9]),.B(S1[10]),.S(S2[10]),.C_out(C2[10]));

half_adder u212(.A(C1[10]),.B(S1[11]),.S(S2[11]),.C_out(C2[11]));

full_adder u213(.A(C1[11]),.B(S1[12]),.C_in(pp2_y[12]),.S(S2[12]),.C_out(C2[12]));

half_adder u214(.A(C1[12]),.B(S1[13]),.S(S2[13]),.C_out(C2[13]));

half_adder u215(.A(C1[13]),.B(S1[14]),.S(S2[14]),.C_out(C2[14]));

half_adder u216(.A(C1[14]),.B(S1[15]),.S(S2[15]),.C_out(C2[15]));

assign sum1[15:0]=S2[15:0];

assign sum2[15:0]={C2[14:0],1'd0};

assign sum=sum1+sum2; //Carry propagate adder

endmodule

A.8 Verilog-HDL code of half adder

module half_adder(

 input A,

 input B,

 output S,

 output C_out

);

assign S=A ^ B;

assign C_out= A && B;

121

endmodule

A.9 Verilog-HDL code of full adder

module full_adder(

 input A,

 input B,

 input C_in,

 output S,

 output C_out

);

assign S=A ^ B ^ C_in;

assign C_out= (A&B) | (A&C_in) | (B&C_in);

endmodule

A.10 Verilog-HDL code of 16 bit Carry lookahead adder

module CLA_16(

 input [15:0] A,

 input [15:0] B,

 input Cin,

 output PP,

 output PG,

 output [15:0] Sum,

 output Cout

);

wire [3:0] P,G,C;

CLA_4bit

u1(.A(A[3:0]),.B(B[3:0]),.Cin(C[0]),.Sum(Sum[3:0]),.PP(P[0]),.PG(G[0])),

u2(.A(A[7:4]),.B(B[7:4]),.Cin(C[1]),.Sum(Sum[7:4]),.PP(P[1]),.PG(G[1])),

u3(.A(A[11:8]),.B(B[11:8]),.Cin(C[2]),.Sum(Sum[11:8]),.PP(P[2]),.PG(G[2])),

u4(.A(A[15:12]),.B(B[15:12]),.Cin(C[3]),.Sum(Sum[15:12]),.PP(P[3]),.PG(G[3]));

assign C[0]=Cin;

assign C[1]=G[0] | (P[0] & C[0]);

assign C[2]=G[1] | (P[1] & G[0]) | (P[1] & P[0] & C[0]);

assign C[3]=G[2] | (P[2] & G[1]) | (P[2] & P[1] & G[0]) | (P[2] & P[1] & P[0] & C[0]);

122

assign Cout=G[3] | (P[3] & G[2]) | (P[3] & P[2] & G[1]) | (P[3] & P[2] & P[1] & G[0]) | (P[3] & P[2] & P[1] & P[0] & C[0]);

assign PP=P[3] & P[2] & P[1] & P[0];

assign PG=G[3] | (G[2] & P[3]) | (G[1] & P[3] & P[2]) | (G[0] & P[3] & P[2] & P[1]);

endmodule

A.11 Verilog-HDL code of 4-bit carry lookahead adder

module CLA_4bit(

 input [3:0] A,

 input [3:0] B,

 input Cin,

 output PP,

 output PG,

 output [3:0] Sum,

 output Cout

);

wire [3:0] P,G,C;

full_adder_CLA

u1(.A(A[0]),.B(B[0]),.Cin(C[0]),.Sum(Sum[0]),.P(P[0]),.G(G[0])),

u2(.A(A[1]),.B(B[1]),.Cin(C[1]),.Sum(Sum[1]),.P(P[1]),.G(G[1])),

u3(.A(A[2]),.B(B[2]),.Cin(C[2]),.Sum(Sum[2]),.P(P[2]),.G(G[2])),

u4(.A(A[3]),.B(B[3]),.Cin(C[3]),.Sum(Sum[3]),.P(P[3]),.G(G[3]));

assign C[0]=Cin;

assign C[1]=G[0] | (P[0] & C[0]);

assign C[2]=G[1] | (P[1] & G[0]) | (P[1] & P[0] & C[0]);

assign C[3]=G[2] | (P[2] & G[1]) | (P[2] & P[1] & G[0]) | (P[2] & P[1] & P[0] & C[0]);

assign Cout=G[3] | (P[3] & G[2]) | (P[3] & P[2] & G[1]) | (P[3] & P[2] & P[1] & G[0]) | (P[3] & P[2] & P[1] & P[0] & C[0]);

assign PP=P[3] & P[2] & P[1] & P[0];

assign PG=G[3] | (G[2] & P[3]) | (G[1] & P[3] & P[2]) | (G[0] & P[3] & P[2] & P[1]);

endmodule

A.12 Verilog-HDL code of full-adder in CLA adder

module full_adder_CLA(

 input A,

 input B,

 input Cin,

 output Sum,

123

 output P,

 output G

);

assign P=A^B;

assign G=A&B;

assign Sum=A^B^Cin;

endmodule

A.13 Verilog-HDL code of testbench

module tb_booth3_bias_wallace_cla16;

 // Inputs

 reg [7:0] a;

 reg [7:0] b;

 // Outputs

 wire [15:0] c,sum_wallace,sum_cla;

 wire cla_overflow;

 reg [15:0] a_b;

 // Instantiate the Unit Under Test (UUT)

 booth3_bias_wallace_CLA16 uut (

 .a(a),

 .b(b),

 .c(c),

 .sum_wallace(sum_wallace),

 .sum_cla(sum_cla),

 .cla_overflow(cla_overflow)

);

always @(a or b)

a_b[15:0]=a[7:0]*b[7:0];

reg clk;

initial

begin clk=0;

#1;

forever

begin

clk=!clk;

#2;

end

end

124

reg hata;

initial hata=0;

reg hata_wallace;

initial hata_wallace=0;

reg hata_cla;

initial hata_cla=0;

always @(posedge clk)

if (a_b[15:0]!=c[15:0])

 hata<=1;

else

 hata<=0;

always @(posedge clk)

if (a_b[15:0]!=sum_wallace[15:0])

 hata_wallace<=1;

else

 hata_wallace<=0;

always @(posedge clk)

if (a_b[15:0]!=sum_cla[15:0])

 hata_cla<=1;

else

 hata_cla<=0;

initial begin

 // Initialize Inputs

 a = 0;

 b = 0;

 // Wait 100 ns for global reset to finish

 #100;

forever

begin

a=$random;

b=$random;

#10;

 // Add stimulus here

 end

end

endmodule

125

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Sever, Refik

Nationality: Turkish (TC)

Date and Place of Birth: 4
th
 August 1979, Ankara

Phone: +90 242 310 63 89

email: refiksever@akdeniz.edu.tr

EDUCATION

Degree Institution Year of Graduation

MS METU Electrical & Electronics Engineering 2003

BS METU Electrical & Electronics Engineering 2001

High School Ankara Atatürk Anatolian High School 1997

WORK EXPERIENCE

Year Place Enrollment

2010 – Present Akdeniz University Instructor

2000-2009 TÜBİTAK UZAY Senior Researcher,

Project Manager

 Design Engineer

FOREIGN LANGUAGES

English

RECENT PUBLICATIONS

Refik Sever, Murat Askar, “8x8-Bit Multiplier Designed With a New Wave-Pipelining

Scheme,” in proceedings of International Symposium on Circuits and Systems (ISCAS-

2010), May 31- June 3, Paris.

R. Sever, O. Benderli, S. Yeşil, N. İsmailoğlu, B. Okcan, O. Şengül, R. Öktem, “GEZGİN &

GEZGİN-2: Adaptive Real-Time Image Processing Subsystems for Earth-Observing Small

mailto:refiksever@akdeniz.edu.tr

126

Satellites”, 1st NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2006)

Konferans Kitabı, İstanbul, 15-18 Haziran 2006.

R. Sever, N. İsmailoğlu, Y. Ç. Tekmen, M. Aşkar, “Efficient High Speed Asic

Implementation of The Rijndael Algorithm”, 1. Ulusal Kriptoloji Sempozyumu Konferans

Kitabı, ODTÜ, Ankara, 18-20 Kasım 2005.

R.Sever, A.N.Ismailoglu, M.Askar, Y.C.Tekmen, “A High Speed ASIC Implementation of

the Rijndael Algorithm,” 2004 IEEE International Symposium on Circuits and Systems, Vol.

2, pp. 541-544, May 2004, Vancouver, Canada.

R.Sever, A.N.Ismailoglu, M.Askar, Y.C.Tekmen, B. Okcan, “A High Speed FPGA

Implementation of the Rijndael Algorithm,” Digital System Design, Euromicro Symposium,

Page(s):358 – 362, 31 Aug.-3 Sept. 2004, Rennes, France.

S. Yesil, R. Sever, B. Okcan, N. Ismailoglu, “GOLGE: A Case Study of a Secure Data

Communication Subsystem for Micro-Satellites,” to appear in IEEE Proc. RAST 2005,

Istanbul, Turkey.

N. Ismailoglu, O. Benderli, S. Yesil, R. Sever, B. Okcan, R. Oktem, "GEZGIN-2: An

Advanced Image Processing Subsystem for Earth-Observing Small Satellites," to appear in

IEEE Proc. RAST 2005, Istanbul, Turkey.

N. Ismailoglu, O. Benderli, I. Korkmaz, S. Yesil, R. Sever, H. Sunay, T. Kolcak, Y. C.

Tekmen, "GEZGIN: A Case Study of a Real-time Image Processing Sub-system for Micro-

satellites," RAST 2003 International Conference on Recent Advances in Space

Technologies, November 20, 2003, Istanbul, Turkey.

R. Sever, " High Speed VLSI Implementation of the Rijndael Encryption Algorithm,”

Master Thesis, September 2003, Ankara, Turkey.

