WAVE COMPONENT SAMPLING METHOD FOR HIGH PERFORMANCE PIPELINED
CIRCUITS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

REFIK SEVER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
ELECTRICAL AND ELECTRONICS ENG. DEPT., METU

SEPTEMBER 2011



Approval of the Thesis:

WAVE COMPONENT SAMPLING METHOD FOR HIGH PERFORMANCE
PIPELINED CIRCUITS

Submitted by REFIK SEVER in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical and Electronics Engineering by,

Prof. Dr. Canan OZGEN

Dean, Graduate School of Natural And Applied Sciences

Prof. Dr. ismet ERKMEN

Head of Department, Electrical and Electronics Engineering

Prof. Dr. Murat ASKAR

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih BILGEN

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Murat ASKAR
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Haluk KULAH

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ozgiir AKTAS

Electrical and Electronics Engineering Dept., BILKENT

Assoc. Prof. Dr. Cuneyt BAZLAMACGCCI
Electrical and Electronics Engineering Dept., METU

Date: 23.09.2011




| hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. | also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

Name, Last name: REFIK SEVER

Signature



ABSTRACT

WAVE COMPONENT SAMPLING METHOD FOR HIGH PERFORMANCE PIPELINED
CIRCUITS

SEVER, Refik
Ph.D., Department of Electrical and Electronics Engineering
Supervisor  : Prof. Dr. Murat ASKAR

September 2011, 126 pages

In all of the previous pipelining methods such as conventional pipelining, wave pipelining,
and mesochronous pipelining, a data wave propagating on the combinational circuit is
sampled whenever it arrives to a synchronization stage. In this study, a new wave-pipelining
methodology named as Wave Component Sampling Method (WCSM), is proposed. In this
method, only the component of a wave, whose maximum and minimum delay difference
exceeds the tolerable value, is sampled, and the other components continue to propagate on
the circuit. Therefore, the total number of registers required for synchronization decreases
significantly. For demonstrating the effectiveness of the proposed WCSM, an 8x8 bit carry
save adder (CSA) multiplier is implemented using 0.18um CMOS technology. A generic
transmission gate logic block with optimized output delay variation depending on the input
pattern is designed and used in all of the sub blocks of the multiplier. Post layout simulation
results show that, this multiplier can operate at a speed of 3GHz, using only 70 latches.
Comparing with the mesochronous pipelining scheme, the number of the registers is
decreased by 41% and the total power of the chip is also decreased by 9.5% without any
performance loss. An ultra high speed full pipelined CSA multiplier with an operating
frequency of 5GHz is also implemented with WCSM. The number of registers is decreased
by 45%, and the power consumption of the circuit is decreased by 18.4% comparing with
conventional or mesochronous pipelining methods. WCSM is also applied to different
multiplier structures employing booth encoders, Wallace trees, and carry look-ahead adders.
Comparing full pipelined 8x8 bit WCSM multiplier with the conventional pipelined
multiplier, the number of registers in the implementation of booth encoder, Wallace tree, and

carry look-ahead adder is decreased by 30%, 51%, and %62, respectively.



Keywords: Wave-pipelining; high performance multiplier; very high speed integrated

circuits; pipeline processing; very large scale integrated circuits.



oz

YUKSEK PERFORMANSLI BORU HATTI MIMARILI DEVRELER ICIN DALGA
ELEMANI ORNEKLEME METODU

SEVER, Refik
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Murat ASKAR

Eylul 2011, 126 sayfa

Konvansiyonel boruhatti, dalga boruhatti ya da mesokron boru hatt1 gibi énceki boruhatt
mimarilerinin tamaminda, kombinezonal devrede ilerleyen bir veri dalgasi, senkronizasyon
béliimiine ulastigi anda 6rneklenmektedir. Bu calismada, Dalga Elemani Ornekleme Metodu
(WCSM) olarak adlandirilan yeni bir dalga boruhattt metodu onerilmektedir. Bu metodda,
yalnizca en az ve en ¢ok gecikme farki tahammiil edilen sinira ulasan dalga elemant
orneklenmekte, diger dalga elemanlar1 devrede ilerlemeye devam etmektedir. Bundan dolay1,
senkronizasyon icin gereken flip-flop sayis1 énemli oranda azalmaktadir. Onerilen metodun
etkinligini gostermek amaciyla, 8x8 bitlik ¢arpici blogu elde saklama metoduyla ve 0.18pum
CMOS teknolojisi kullanilarak gergeklenmistir. Genel bir transmisyon kapili mantik blogu,
cikisindaki gecikme farklar giris very diziliminden en az etkilenecek sekilde tasarlanmis ve
carpicinin degisik alt bloklarinda kullanilmigtir. Serim sonrasi simiilasyonlar gostermistir ki,
bu carpict 3GHz calisma frekansinda ve sadece 70 tane kayit elemami kullanarak
calisabilmektedir. Mesokron boruhatti mimarisine kiyasla, herhangi bir performans kayb1
olmadan toplam kayit elemani sayist %41 ve toplam gii¢ tiiketimi de %9.5 oraninda
azalmigtir. 5SGHz calisma frekansina sahip ¢ok yiiksek hizli bir ¢arpici blogu da WCSM
metodu kullanilarak tasarlanmigtir. Konvansiyonel boruhattt ya da mesokron boru hatti
metodlarina kiyasla, toplam kayit elemani sayis %45 ve toplam gii¢ tiiketimi de %18.4
oraninda azalmigtir. WCSM metodu, booth kodlayici, Wallace agact ve elde 6ngérull
toplayicit gibi farkli garpict yapilarina da uygulanmustir. Boruhattt mimarisi her mantiksal
islemin sonunda bir kayit elemami olacak sekilde kullanildiginda, WCSM metodu
konvalsiyonel boruhatti metoduna kiyasla booth kodlayicida %30, Wallace agacinda %51 ve

elde ongoriilii toplayicida %62 oraninda kayit elemani tasarrufu saglamaktadir.

Vi



Anahtar Kelimeler: Dalga boruhatti metodu; yiiksek performansl ¢arpici; ¢ok yiiksek hizli

entegre devreler; boruhatti isleme; ¢cok biiyiik 6l¢ekli entegre devreler.

vii



I would like to dedicate this work to my dear wife, Asli, and my dear children, Ece and
Metehan.

viii



ACKNOWLEDGMENTS

I would like to express my deepest gratitude for my supervisor Prof. Dr. Murat ASKAR for
his guidance, advice, supervision, and encouragements throughout the research.

I would also like to thank my supervising comittee members Assoc Prof. Dr. Haluk
KULAH and Assist. Prof. Dr. Ozgiir AKTAS for their valuable suggestions, comments and

guidance.

| also wish to express my gratitude for comittee members Prof. Dr. Semih BILGEN, and
Assoc. Prof. Dr. Ciineyt BAZLAMACGCCI.

| also wish to thank TUBITAK-UZAY and Electrical and Electronics Department of
Akdeniz University for the facilities and environment provided to me throughout the

researchs.

I would like to thank to my family for their great patience, sacrifice, and encouragements

throughout my studies.



TABLE OF CONTENTS

ABSTRACT .ttt bbbt iv
O Z e ettt v
ACKNOWLEDGMENTS ..ottt viii
TABLE OF CONTENTS. ...ttt iX
LIST OF ABBREVIATIONS ...ttt e Xii
LIST OF FIGURES ...ttt Xiii
LIST OF TABLES. ...t Xiv
CHAPTERS
1 INTRODUCTION ..ottt 1
2 PIPELINING METHODS ..ottt 8
2.1 Conventional PipeliniNg........ccccooiiiiiiiiii i e 8
2.2 WaVe PIPEIINING ...coiiiiiec e 11
2.2.1 TIMING CONSTIAINTS ....veevviiieceicie et sreees 13
2.2.2 Sources of Delay DIiffer&nCes ........ccveviiiiiicieiecie e 14
2.2.3 LOQIC RESITUCLUIING ...vecveiiecie ettt ettt 14
224 Delay INSEITION.......iiiiiiieciee e 15
2.2.5 The advantages and disadvantages of wave-pipelining ............ccccoovenenienns 16
2.3 Hybrid Wave PIpelining .........cccoiiiiiiie e 16
2.4 Mesochronous Pipelining SCheme............ccooiiiiiiniiece e 17
3 MULTIPLIER STRUCTURES ..ottt 18
3.1  Carry Save Adder (CSA) MUILIPHET .......cooiiiiiiiiereee e 20
3.2 WaIACE TIEES ...ttt 22
3.3 BOOth ENCOOING ...ttt 25
3.3.1 BOOth 2 AIGOITTNM ... s 25
3.3.2 B0o0th 3 AIQOIthM ..o 27
3.3.3 Redundant Booth AlgOrithm ...........cccoci i 28
3.4 Carry Propagate AddItioN ..........ccooieiiiiiie e 30
4  WAVE COMPONENT SAMPLING METHOD (WCSM) ......cccoviiiiiniiiieieneeneeies 35
4.1 Principles of Wave Component Sampling Method...........cccccooeeiiiiiiieiiniie 36
4.2 Advantages and Disadvantages of Wave Component Sampling Method.............. 42



5 APPLICATION OF WCSM TO MULTIPLIER STRUCTURES..........ccccovvnininirnn 44
5.1 LOQIC SEIECLION .....ecuiiiiciece et ene s 44
5.2 Delay BalanCiNg.......ccccciveieiiiieie ettt sttt nne s 53
5.3  Simultaneous generation of complementary OUtPULS ..........c.cccvvvveveieeieieciesie e 55
5.4  Implementation of Multiplier BIOCKS...........ccccoiiiiiiiiii e 58

541 Half adder deSigN .........ooveieiii s 58
54.2 FUll adder deSigN.......ccvooveieeee s 63
543 Partial Product GENEration ............cccceieveeieriereeiesesee e see e 66
5.4.4 Sampling of the SIgNalS ..o 70
55  Implementation of 8x8 bit CSA MUILIPHEr .........cooviiiiiiiieece e 73
551 SCNEMALIC TESIGN ... 73
5.5.2 OpPerating FIrEQUENCY ........cuiiiiriiie et 75
553 Layout Implementation of the multipliers ... 76
5.54 Simulations of MUITIPHETS.........ccooiiiiiee e 77
555 Performance comparison of the mMultipliers........c.cocooe i, 80
56  ASGHZ WCSM-MUIIPHEN ..o 81
5.7 IMPLEMENTATION OF THE OTHER MULTIPLIER STRUCTURES ........... 85
57.1 B00th encoder deSION........c.ccviiiiiiece e 85
5.7.2 Wallace tree deSIgN .....cceciiie e e 88
5.7.3 Carry Lookahead adder deSign ..........ccceceiieieieeicie e 91
5.7.4 CLA Adder Design with 4-input 10giC gates .........cccevevveieieciese e, 100
5.8  Delay analysis of logic blocks With 4 INPUtS..........ccccceviiiiiiiiiccc e, 102

B CONCLUSION... ..ottt ettt sttt eebesaesbesaenaeeeneas 107

BIBLIOGRAHPY ...ttt e sttt s e e st e e s b e e st e e e nte e e s neeeanes 110

APPENDIDX A e 113

HDL CODES OF MULTIPLIER BLOCKS.......co ettt 113
A.1 Verilog HDL code of top module (booth3_bias_wallace_ CLA1G) .............cccceruneee. 113
A.2 Verilog-HDL code of KPIUSIM .........coiiiiiiiiiiessesee e 115
A.3 Verilog-HDL code of KPIUS2ZM ..ot 116
A.4 Verilog-HDL code of KPIUS3M ........ccoiiiiiiiiieiisis e 116
A.5 Verilog-HDL Code 0f KPIUSAM ..ot 117
A.6 Verilog-HDL Code 0f BOOTN3IMUX ........ccoriiiiiiiiiiiisiesiesie e 117
A.7 Verilog-HDL code of wallace_booth3_bias 8X8 ..........cccooveiiiiiiii s 119

Xi



A.8 Verilog-HDL code of half adder..........cccccoiieiiiiiie e 120

A.9 Verilog-HDL code of full adder...........cccoeiieiiiiiie e 121
A.10 Verilog-HDL code of 16 bit Carry lookahead adder ...........c.cccoevvevvrviieicniieiennns 121
A.11 Verilog-HDL code of 4-bit carry lookahead adder .............cccovvvivevenviieiesieiennns 122
A.12 Verilog-HDL code of full-adder in CLA adder .........cccccoooveevieiieieneece e 122
A.13 Verilog-HDL code Of teSthenCh ... 123
CURRICULUM VITAE ...ttt sttt na et sne st saeaensenens 125

Xii



BPAR
CAD
CLA

C*MOS
CMOS

CSA
NPCPL
MOS
MOSFET
nMOS
pMOS
PLL
SAFF
soc
umMmcC
VLSI
WCSM

WPM

LIST OF ABBREVIATIONS

:Bit Plane Associative Router
:Computer Aided Design
:Carry Look-ahead Adder

:Clocked CMOS
:Complimentary Metal-Oxide Semiconductor

:Carry Save Adder

:Normal Process Complementary Pass Transistor Logic
:Metal-Oxide Semiconductor

:Metal-Oxide Semiconductor Field-Effect Transistor
:n-Channel MOSFET

:p-Channel MOSFET

:Phase Locked Loop

:Sense Amplifier Based Flip-Flop

:System on Chip

:United Microelectronics Company

:Very Large Scale Integrated Circuits

:Wave Component Sampling Method

:Wave Pipeline Multiplexed

Xiii



LIST OF FIGURES

FIGURES

Figure 2.1 Combinational logic circuit and input-output registers..........ccocevevieeceneviecriennenn, 9
Figure 2.2 Conventional pipelining SChemME ... 9
Figure 2.3 Temporal/spatial diagram for conventional pipelining...........cccccooviriiiiencienns 10
Figure 2.4 Propagating waves on the same combinational CirCUit..............ccocoovvviiiencnenns 12
Figure 2.5 Temporal/spatial diagram of wave-pipeling operation............c.ccoceevrvrerercnnennns 12
Figure 2.6 LOGIC reSTIUCLUIING ...c.veuveiieiieiiiiietesi ettt 15
Figure 2.7 A combinational 10giC CIFCUIL ..........ccerviiiiieieisiee e 15
Figure 2.8 A combination logic circuit with balanced paths ............ccccoviiiiiiiniieces 16
Figure 2.9 TS diagram of mesochronous Pipelining............ccoovereiiieieiciiic e 17
Figure 3.1 Partial produCt GENEIatioN............covueiieiiiiieieieisie st 19
Figure 3.2 Simple addition of partial producCts ...........ccceveviiieiic i 19
Figure 3.3 CSA multiplier with vector merging adder ...........ccocevvvevieveiieeie e 21
Figure 3.4 CSA Multiplier with half adder tree........c.ccovveiiiieice i 22
Figure 3.5 Reduction of bits using half adder and full adder............cccccooveviiiiiiviiiececee, 23
Figure 3.6 Partial product reduction of 8x8 bit multiplier using Wallace tree [33]............... 24
Figure 3.7 Partial product reduction using (4,2) compressors [33]......ccccoeveiivivieneneeieesienn 25
Figure 3.8 Modified Booth Algorithm (2 bit shift) [33] .......ccccooeiiiiiii e, 26
Figure 3.9 Modified Booth Algorithm (3 bit shift) [33] .......ccccooiiiiiiii e, 28
Figure 3.10 Partially redundant addition [33]........ccccceviiiiiiiiiiiic e 29
Figure 3.11 Negative multiple generation [33]........ccooeiriiiiiiiiieieseees e 30
Figure 3.12 Carry look-ahead design of @ 4-Dit group .........ccoceveieieneieiecese e 32
Figure 3.13 16 bit carry-look-ahead adder.............cooeieiiiiiiiiiieeee e 33
Figure 4.1 Proposed wave component sampling method (WCSM)........cccccvvviiininencnenns 36
Figure 4.2 Input-output delay 0f AND Qate........cccoiiiieiiiiiiiieiese e 36
Figure 4.3 An imaginary combinational CIrCUIt...........ccovviiiiriniieieee e 37
Figure 4.4 Data transition regions after 1% [0giC OPEration...............ccoevevrveerrerererreeeseneenenn. 38
Figure 4.5 Flip-flops inserted using mesochronous pipelining scheme............ccccocveienens 39
Figure 4.6 Flip-flops inserted using proposed WCSM ..........cccooiiiriiiiniieininese e 40
Figure 4.7 Flow chart of register insertion of WCSM ..........ccccooiiiiiiiiiineesee e 41
Figure 5.1 Schematic diagram of 2 input NAND gate.........ccceererriieienieee e 45
Figure 5.2 Schematic diagram of CMOS NAND?2 with current limiting transistors............. 45

Xiv



Figure 5.3 Generic transmission gate [0giC.........cccveviiiiiiieiiiiie e 46

Figure 5.4 Transmission gate logic with 2 inverter cascades at the output...............cc.ccve.e.. 46
Figure 5.5 Block diagram of the simulation SEtUP .........ccccevviiie i 47
Figure 5.6 Simulation of transmission gate 10gic bIOCK............cccovvivieiiiiiciii i 48
Figure 5.7 Parametric sweep analysis of transistor SIZES..........cccvvveveveieeiiine e 49
Figure 5.8 Parametric sweep analysis of INVErter ratio...........ccocovererereieinniiniese e 49
Figure 5.9 Glitch generation between tranSitions ...........cccovveriieneneieeeese e 50
Figure 5.10 Graphical representation of output delay values ... 53
Figure 5.11 A positive pulse and its delayed VErsion .............ccoceoereieieieiniesene e 54
Figure 5.12 Inverter cascade with different W/L ratioS ..........ccocoovriieieiinininne e 54
Figure 5.13 Signals obtained with normal and tuned inverter cascades ...........cc.ccoccvverernenns 55
Figure 5.14 Generation of complementary outputs by using separate 10giC..............cccccevennee 55
Figure 5.15 Simultaneous generation of complementary and normal output signals............. 57

Figure 5.16 Simulation of generating normal and complementary outputs simultaneously..58

Figure 5.17 Schematic diagram of half adder bIOCK .............ccccoveiiiieii i 60
Figure 5.18 A simulation example of half adder .........c.cccooiviiiiiiii 61
Figure 5.19 Graphical representation of the output delay values of half adder ..................... 62
Figure 5.20 Layout of the half adder BIOCK............cccoeiiiiiiiii e 62
Figure 5.21 Schematic diagram of full adder bIOCK............ccccoeviviiiiiiii i 64
Figure 5.22 Graphical representation of output delay values of full adder...............cccc....... 66
Figure 5.23 Layout diagram of the full adder blocK ..., 66
Figure 5.24 Schematic diagram of AND gate........c.ccceiiiiiiiiiiiic e 67
Figure 5.25 Block diagram of partial product generator............c.ccccevveveieevieseiieese e 68
Figure 5.26 Simulation of partial product generator............ccocevererereieiiesiee e 69
Figure 5.27 Layout diagram of partial product generator ...........c.ccoceeeveiieiininienenenesesenns 70
Figure 5.28 Schematic diagram of C?MOS IatCh............coveovuereevecesieeeeceesseeseesies e 71
Figure 5.29 Simulations of internal signals of the 1atch ............cccoeiiiii 72
Figure 5.30 Propagating waves before Sampling..........cccooviiirininineneeesesese e 72
Figure 5.31 Propagating waves after Sampling.........cccceoeeiiiineneneneneeesesese e 73
Figure 5.32 Block diagram of mesochronous multiplier ... 74
Figure 5.33 Block diagram of 8x8 bit multiplier using WCSM ..........cccooviviiiiiiiiiiiciens 75
Figure 5.34 Layout view of 8x8 bit multiplier using mesochronous pipelining.................... 77
Figure 5.35 Propagating waves after first partial product generator...........cccocoeeevvrvererenne 78
Figure 5.36 Propagating waves after the first half adder layer ..o 78
Figure 5.37 Propagating waves after the first full adder layer..........cccccooveiiiiiineiieie e 79

XV



Figure 5.38 Propagating waves after the second full adder layer ...........ccccocvvivieveiiviceinnn. 79

Figure 5.39 Propagating waves after Sampling.........cccocvvveiiiiiic i 80
Figure 5.40 Full pipelined MUILIPHET .........coii i 82
Figure 5.41 Propagating waves before sampling........ccccoccovvviiiiiie i 83
Figure 5.42 Design of Mux6x1 using generic transmission gate 10giC...........ccoccevvvrvevvernnnne. 86
Figure 5.43 Block diagram of 8XmuX module ............ccooeiiiiiiiiiieeeeee e 87
Figure 5.44 Top level block diagram of Booth Encoder module.............ccccoooviiiiiiiincnenns 88
Figure 5.45 Block diagram of wallace tree with modified Booth-2 algorithm..................... 90
Figure 5.46 Schematic design of 4-bit carry look-ahead adder Circuit .............ccocooovieiennenns 91
Figure 5.47 Carry generation l0gIC ........cuiiririieriiieieiee st 91
Figure 5.48 Modified carry generation CIrCUIT..........cccoiveiiiiiiine e 92
Figure 5.49 Carry generation circuit of first stage with 5 levels of l0giC ............cc.ccocereienne 92
Figure 5.50 Carry generation circuit of first stage with 4 levels of l0giC ............cc.ccocereienns 93
Figure 5.51 16 bit adder with carry look-ahead 10giC...........c.cviieieiiicic e 94
Figure 5.52 13 bit adder with carry look-ahead 10giC. ..........ccccovevivivieiiiiiie e 95
Figure 5.53 16 bit carry Save adder tree.........covciiiieeieie et 96
Figure 5.54 Block diagram of 16-bit CLA adder with balanced paths...........cccccocvvveiiennnnne. 99
Figure 5.55 16-bit carry lookahead adder with 4-input 10giC gates .........ccccceevvevevecveniennns 101
Figure 5.56 4-input AND gate with serial current limiting transistor...........c.ccceccovveievennns 102
Figure 5.57 2-input CMOS AND Qate......c.coiiiiiiiiieieseeie ettt sre s 104
Figure 5.58 4-input CMOS And gate constructed with 2-input gates...........c.ccoecevveirerrennns 105

XVi



LIST OF TABLES

TABLES

Table 3-1 Partial Product Selection of modified Booth-2 algorithm. ..........ccccooviiiinennn. 26
Table 3-2 Partial product selection table of Booth-3 algorithm............ccccooiiiiiiiiiee 27
Table 5-1 Parameters Of tranSIStOrS. ... ...cviveiriiee et s nee e 48
Table 5-2 Optimized transiStor PAraMELErS.........c.cvoiierreieieeseee s 51
Table 5-3 Output propagation times for all transitions Of INPULS..........ccccoeveviriiiievivneiene 52

Table 5-4 Input combinations of generic trans. gate logic for NAND and AND gates......... 56

Table 5-5 Output propagation times of Q and NQ Signals ..........c.ccceevivieiiieveiieeie e 57
Table 5-6 Truth table of half adder. ..o 58
Table 5-7 Output delay values of half adder for all input transitions ............cc.cccecevvveveiennee 61
Table 5-8 The truth table of full adder............ccovviiiiiic s 63
Table 5-9 Output delay values of full @dder ..o 65
Table 5-10 Transistor sizes 0f C2MOS IAtCh. .........cocvvvvverreeieeereee s 71
Table 5-11 Comparison between mesochronous and WCSM multiplier..........ccccccoovevveveneee 81
Table 5-12 Comparison between 5GHz mesochronous and WCSM multipliers .................. 84
Table 5-13 Comparison of the multipliers with random iNPUES ..........ccccevviviiiineninesene 85
Table 5-14 Wallace tree construction of Modified Booth-2 with 3 levels........c...ccccccoeenrnee. 89
Table 5-15 Comparison of Wallace trees with mesochronous pipelining and WCSM ........ 90
Table 5-16 Transistor count of 16-bit carry save adder implementation..............cc.ccocerenene. 96
Table 5-17 Transistor count of 16-bit carry lookahead adder implementation...................... 97
Table 5-18 Transistor count of 13-bit carry lookahead adder implementation...................... 97
Table 5-19 Overall comparison of the MUItIPHErS ... 100
Table 5-20 Delays of 4-input CMOS with a limiting pmos of W=900nm at the top .......... 103
Table 5-21 CMOS_AND4_v1_delays with no limiting transistor at the top..........cc.cc....... 103
Table 5-22 Delay values of CMOS _AND2 V1 ......cccccooiiiiiiiiieciece et 104
Table 5-23 Delay values of CMOS_ANDZ V2 ..o s 105
Table 5-24 Comparison of CMOS_AND4_v1 and CMOS_AND4 V2........cccccovvviveienennne 106

XVii



CHAPTER 1

INTRODUCTION

In today’s high performance digital systems, pipelining technique is widely used to increase
the operating frequency of a logic circuit. In conventional pipelining technique, the
combinational logic circuit is divided into several sub-stages. Between these sub-stages,
synchronization registers are inserted. Since the computation time between the
synchronization registers is decreased, the overall operating speed of the logic circuit
increases. It is possible to increase the operating frequency of the logic up to N times by
using N levels of equally separated pipeline stages. However, the clocking overheads such as
clock skew and setup-hold time requirements of the registers generally limit the operating
frequency improvements. Also, the clock distribution and the power consumption of the

synchronization registers are the other major drawbacks of the conventional pipelining.

Wave-pipelining [1] is another pipelining method in which the pipeline registers or latches
are removed and the capacitances of the internal logic gates act as virtual storage elements.
In wave-pipelining method, an input data vector is applied to the logic circuit, and before it
arrives to the end of the logic circuit, another input data vector is sent. Therefore, multiple
data vectors, which are also named as data waves, propagate on the circuit simultaneously.
The important concept in wave-pipelining is that the circuit must be designed properly so
that the cascading data waves do not collapse with each other. Therefore, the minimum and
maximum delay variation of all the paths must be balanced in order to achieve wave-pipeline

operation.

Previous work on wave pipelining is summarized as follows:

Wave pipelining method was first used in the design of the IBM System/360 Model 91

floating point unit [2], where the operating frequency of the chip was 2 times the normal

frequency. Then, Cotton [3] formalized the wave pipelining method, and named it as



“maximal rate clocking”. Ekroot [4] developed linear programs which automatically insert

delay elements to equalize the propagating waves.

Fishburn [5] investigated the performance improvements achieved by adjusting the path
delays of the clock signal distributed to the flip-flops. He investigated the effects by both
trying to minimize the clock period while avoiding clock hazards and maximizing the

minimum safety margin for a given period.

In [6], a 63 bit bipolar population counter is designed by using wave pipelining. The circuit
was operated at a frequency which is 2.5 times the normal operating frequency; therefore 2

or 3 waves propagate on the logic simultaneously.

Sakallah et al [7] developed timing models for multiphase synchronous clocking. They
proposed a special class of clock schedules named as coincident multiphase clocks, which

provide lower bound on the optimal clock cycle time.

Joy and Ciesielski [8] presented a methodology for minimizing the clock period for a given
data path. They developed a linear program which minimizes the clock period by adjusting
the clock delays to the input and output flip-flops for a logic block. Their method allows
simultaneous signals to propagate in the logic without interference; therefore the clock

period reduces significantly.

Wong et al [9] presented algorithms for automatically equalizing delays in combinational
logic circuits to achieve wave pipelining. Their algorithms insert minimal number of active
delay elements for balancing the input-output path lengths. The algorithms not only

minimize the number of delay elements, but also optimize the power under delay constraints.

Gray et al [10] presented a method for high resolution sampling of a high speed data signal.
Instead of using a high speed latch with a high speed clock signal, they used active delay
elements to simultaneously propagate clock and data signals. Therefore, the resolution is
controlled by the difference between clock and data signals. They implemented an integrated
circuit, in which the delay is externally adjusted with a resolution of 25ps between 0 and
250ps.



In a different study by Gray et al. [11], the timing constraints for single and multiple stage
systems with arbitrary feedback were presented. It is demonstrated that feedback loops
impose additional constraints on the minimal and maximal clock period. A linear program

was also used to optimize the minimum clock period.

A 250-MHz adder in 2-um CMOS technology is presented in [12]. 16-bit parallel adder was
designed using wave pipelining concept, and it has a wave pipelining degree of 9. They
developed a biased CMOS cross-coupled NAND gate in a custom layout, which has minimal
input data dependency at the outputs.

Ghosh and Nandy [13] designed a high performance wave pipelined 8x8 bit multiplier using
CMOS. They used a single generic block in normal process complementary pass transistor
logic (NPCPL) for equalizing the propagation paths in the design. The multiplier was
implemented using 0.8um CMOS technology. It operates at a speed of 400MHz, and

dissipates a total power of 0.6W.

In [14], a 16-Mb BiCMOS SRAM is designed using 0.4um BiCMOS process. This SRAM,
which has a total size of 512Kw*8b*4, includes a PLL self-timing generator and
incorporates 2 stage wave pipeline operation.

A 4-Mb synchronous wave pipeline SRAM was designed and fabricated by using 0.25um
CMOS technology in [15]. This multiplier operates at a speed of 300MHz, resulting in a
bandwidth of 2.4GB/s.

In [16], a wave pipelined SRAM of 16kb with dual sensing latch circuit was implemented
using 0.25um CMOS technology. This SRAM has an access time of 2.6ns at 2.5V supply

voltage.

In [17], wave pipelining concept is reviewed with special emphasis on CMOS. The effects of
temperature, voltage and process parameters on CMOS wave-pipelining are explained. The
conventional pipelining considers only the worst case timing constraints; however in wave
pipelining both the worst case and the best case timing constraints depending on temperature
must be handled. A dynamically adaptive clocking mechanism is proposed, which

compensates the effects of environmental fluctuations and process parameter deviations. A



dynamically adaptive power supply is also proposed. The dependency of output delay on
input pattern in conventional CMOS design was analyzed in detail. A biased CMOS gate is
also proposed for reducing the input dependency at the output.

In [18], valid clocking frequencies of wave pipelining are investigated. They used a new
representation named as timed boolean functions and derived analytical expressions for valid

clocking intervals.

Boemo et al [19] studied wave pipelining on FPGA’s. They showed that wave pipelining can
be achieved by using automatic place and route, if the circuit has same number of Look-up-
tables (LUTS) in all paths.

In [20], an excellent tutorial on wave pipelining is given. They explained the principles of
wave pipelining in detail, including the timing constraints, circuit and timing models,
internal node constrains etc. The sources of delay variations and the Computer Aided Design
(CAD) tools developed for synthesis and placement-routing of wave pipelined circuits are

also explained.

In [21], hybrid wave pipelining method is proposed. In hybrid wave pipelining method, wave
pipelined sub stages are composed to form pipeline stages. A bit plane associative router

(BPAR) is designed with hybrid wave pipelining method using 0.5um CMOS technology.

Wave Pipeline Multiplexed (WPM) routing technique is proposed in [22] in which multiple
signals are sent in a single wire interconnect within a clock period. They suggested that
WPM routing technique can be applied to both inter-core and intra-core interconnects in any
system-on- chip (SoC) or microprocessor design. The number of total routing channels can
be reduced by 50% without any performance loss in the throughput. They analyzed the
application of WPM routing technique to a design including 40 million transistors, and they
showed that total number of metal layers is decreased by 20% with only 4% increase at the

dynamic power without any loss in the throughput.

A study in [23] showed that, the power dissipation in long global wires is significantly
reduced by adding wave pipeline stages to global wires and by lowering the supply voltage

of repeaters, without any performance loss.



In [24] a novel pipelining scheme named mesochronous pipelining is proposed. In this
method, data and clock signals propagate together, and when the minimum and maximum
delay difference of a path reaches the tolerable value, then the signals in this logic depth are
all sampled. They implemented an 8x8 bit multiplier to compare their method with
conventional pipelining scheme, and a speedup of 1.7 was achieved by using fewer pipeline
stages and pipeline registers.

In [25] a new pipeline method, named as MOUSETRAP, is proposed. This method uses
simple latches and control structures with an efficient event driven protocol. They claim that
this pipelining method has a performance comparable to that of wave pipelining with much

less design complexity.

In [26] a pipelining method named as surfing pipelines is proposed. This method is similar to
the wave pipelining, however in this method timing events are propagated along the pipeline
and events in the data path are matched with the timing events. Therefore, timing uncertainty

is reduced.

Voltage scaling, wire sizing, and repeater insertion are simultaneously applied in [27] for
achieving high performance, low power, and low area on wave-pipelined interconnect
circuits. They found that optimal supply voltage is twice the threshold voltage for low power
applications. The throughput-per-energy-area in their method is 10% lower than that of low-
voltage differential signaling (LVDS).

Schinkel et al [28] used wave pipelining in a network on chip design, and demonstrated that

the link power is reduced by a factor of 3.3 and data rate is increased by 80%.

In [29] a double data rate, wave-pipelined interconnect for asynchronous network on chips is
proposed. They used interleaved lines, misaligned repeaters and clock gating for low power

and high speed chip interconnects.

In [30] a synchronizing logic gate, which has an almost constant gate delay, is proposed for

wave pipelining. This logic gate is used as an intermediate latch for synchronizing data



paths. An 8x8 bit multiplier is designed using 90nm technology, and it has an operating
speed of 3.57 GHz.

All the conventional pipelining, wave-pipelining, hybrid pipelining and mesochronous
pipelining methods have a common property: A data wave is sampled whenever it reaches to
the synchronization stage, which is composed of flip-flops or latches for sampling the data
waves. In fact, a data wave is composed of several signal components, and all of these

components may have different maximum and minimum delay differences.

In this thesis, a new wave-pipelining methodology, which is named as Wave Component
Sampling Method (WCSM), is developed. This method permits individual sampling of the
signal components of a wave. Only the component of a wave, whose minimum and
maximum delay difference value exceeds the tolerable value, is sampled. The other
components of the wave, whose minimum and maximum delay differences do not reach the
tolerable value, continue to propagate on the combinational circuit without being sampled.
Therefore, the number of synchronization registers is decreased significantly in this proposed
method. The area and power consumption due to these synchronization registers, and the

associated power of the clock distribution are also decreased.

The organization of this dissertation is as follows:

Chapter 2 describes the theoretical background of current pipelining methods. In Chapter 3,
different multiplier structures including Wallace trees, booth encoders and carry look-ahead

adders are overviewed.

Chapter 4 describes the details of the proposed WCSM. The advantages and disadvantages

of the proposed method compared with the other pipelining methods are also given.

In Chapter 5, the application of WCSM to different multiplier structures are analyzed. Two
8x8 bit carry save adder multipliers are implemented using mesochronous pipelining scheme
and WCSM, for comparing the methods. WCSM is also applied to other multiplier structures
including booth encoder, Wallace tree and carry look-ahead adder. The optimization of the

sub blocks and the performance gain of WCSM are described in detail.



In Chapter 6 the thesis work is summarized, and concluding remarks are given. Some
suggestions are made for future improvements and possible utilizations of the proposed wave
component sampling method.



CHAPTER 2

PIPELINING METHODS

The following parameters are used to explain the timing constraints for obtaining the
maximum operating frequency for different pipelining methodologies:

Dmin: Minimum propagation time in the combinational circuit.
Duax: Maximum propagation time in the combinational circuit.
Tek: Minimum clock period.

AC: Constructive clock skew.

AU: Unconstructive clock skew.

Ts, Tw: Setup-hold times of registers.

Dr: Propagation delay of a register.

2.1 Conventional Pipelining

A combinational logic circuit with its input and output registers are shown in Figure 2.1. An
input data is sent to the combinational circuit with the rising or falling edge of the clock.
Before another data is applied, the combinational circuit must complete the logical operation.
Considering the propagation delay of the input registers, the setup time requirement of the
output registers, and the clock skew between the input and the output registers, the minimum

clock period for that circuit is shown in Equation (1).

TCLK = DMAX + DR + Ts + AU (1)



—_ — n
5 %) o : = 3
a = Combinational Logic = 8
= ) ) 3

o 14 ©)
clock T T

Figure 2.1 Combinational logic circuit and input-output registers

Generally, Dg, Ts and AU cannot be decreased further; therefore the only way for decreasing
the clock period is to decrease Dyax. In conventional pipelining method, pipeline registers or
latches are inserted to increase the operating frequency by decreasing the maximum
propagation time, Dyax. Figure 2.2 shows the N stage pipelined version of the same
combinational circuit. If the pipeline registers are separated with equal propagation delays,
then the propagation delay between consecutive pipeline registers becomes Dyax/N. In this
case, the minimum clock frequency can be expressed by

@ - Logic | | o Logic z Logic | | * @
3 - @ - Stage 1 D~ Stage - Ammm gﬁStageﬁg#ﬁ;
= o 1 14 2 o N 2 3
clock T T T T

Figure 2.2 Conventional pipelining scheme

At every rising or falling edge of the clock signal, a new input data vector is applied to the
circuit. At the end of N™ clock cycle, the first input vector reaches to the output, therefore
the latency between input and output is N. Assume that the data throughput is continuous,
such that at every clock edge a different input vector is applied. After the initial latency of N
clock cycles, a new output is obtained at every clock cycle. Therefore, the clocking
overheads such as setup-hold times, clocking skew, and register propagation delay are

ignored, then the data throughput increases up to N times.

A temporal-spatial diagram shows the transition times of the signals at different locations of

the combinational circuit. The “Y” axis represents the logic depth of the combinational



circuit, and the “X” axis represents time. Figure 2.3 shows the temporal/spatial diagram for
conventional pipelining. The fastest signals arrive at the output after Dy,n seconds, and the
slowest signals arrive at the output after Dyax Seconds. The shaded region, which is between
Duin and Dywax, IS the transition region, where the combinational logic blocks change their
state and the data is unstable. In the other regions, the combinational circuits are idle,
keeping their states. In a conventional pipelined system, operating clock frequency is limited
by the slowest path in the logic stages. As it is seen from Figure 2.3, a new input data vector
is accepted after all the combinational operations are calculated by the logic stages, i.e. a
new data can only be launched after the slowest signal arrives at the output register. The

setup time and clock uncertainty must also be handled.

Logic depth

Time

Tek

Acik

Figure 2.3 Temporal/spatial diagram for conventional pipelining

As it is seen from Figure 2.3, the combinational logic blocks are idle for the vast majority
of time. Although the fast signals arrive early at the output, they must wait for the slowest
signal for sampling.

The disadvantages of conventional pipelining can be listed as:

o Pipeline registers increase the area and power consumption of the circuit.

o Clock distribution to the pipeline registers with minimal skew is a challenging task.

10



¢ The combinational logic blocks are idle for the vast majority of time, therefore logic
utilization is small.

¢ The slowest path determines the operating speed of the entire circuit.

The advantages of the conventional pipelining:
e The design complexity is lower than wave-pipelining.
e Since only worst case timing is considered, it is less sensitive to temperature and

process parameter variations.

2.2 Wave pipelining

In wave-pipelining method, the pipeline registers are removed from the circuit. The internal
capacitances of the logic gates act as virtual storage elements, which store the states of the
pipelining data. An input data wave is sent to the combinational circuit, and before it reaches
to the output, another data wave is sent. Therefore, multiple data waves propagate on the
logic circuit simultaneously. While propagating, those waves encounter with different
delays. For proper operation, the fastest signal component of a data wave should not catch
the slowest signal component of the preceding wave. Therefore, in wave-pipelining method,
the minimum and maximum delays of the waves are tried to be made equal by slowing down

the fast components.

Figure 2.4 shows multiple waves propagating on the same combinational circuit. There are 5
different data waves propagating on this circuit from left to right. The shaded regions
between the waves are data transition regions in which the data is unstable. As seen in Figure
4, the width of the transition region increases and the width of the stable wave decreases
while propagating on the logic circuit. The waves must be sampled, before the width

becomes too small, which creates setup and hold time violations.

11



Stable data waves

N,

® o — o~ ™ < © ) 0
S _JBl ) ¢ S 0 @ 0 2 .3
2 2 © ®© ®© ®© ®© = 5
= o = = = = = o o
cIockT ] T

SN/

Unstable transition regions

Figure 2.4 Propagating waves on the same combinational circuit.

Figure 2.5 shows the temporal/spatial diagram of the wave-pipelining operation. Similar to
Figure 2.4, the shaded regions are transition regions and the width of those transition regions
increases while propagating on the direction of logic depth. As it is seen from Figure 2.5,
before a data wave reaches to the output register, another wave is launched. Therefore,
multiple data waves propagate on the combinational logic circuit simultaneously. Analogues
with the eye diagram of telecommunication theory, an adequate aperture is needed for proper
sampling of the data waves at the output.

Tst+Tut+2Ay

Logic depth

g g et

ZAU @

Figure 2.5 Temporal/spatial diagram of wave-pipeline operation

12



221 Timing constraints

There are two constraints for sufficient aperture for proper sampling. The first constraint
comes from setup time requirement of the sampling flip-flops: The slowest signal component
of a data wave must arrive at least Ts seconds before the sampling edge of the clock signal.
The second constraint comes from the hold time requirement: The fastest signal component
of the previously launched data wave arrives at time T¢ x+Dwn+tDgr. This value must be
larger than the hold time requirement of the flip-flops. Let T, be the latching time of the data

waves at the output, where

TL:N*TCLK + AC (3)
N represents the number of clock cycles passed during the propagation of a data wave from
the input register to the output register. It also represents the degree of wave-pipelining, i.e.

the number of data waves propagating on the combinational logic simultaneously.

Equation (4) describes the lower bound on the latching time, which comes from the setup

time requirement of the register:

TL>Dgr + Duax + Ts + AU (4)

Equation (5) describes the upper bound on the latching time, which comes from the hold

time requirement due to the fastest signal component of the succeeding wave.

T <Tcik + Dmin+ Dr— (AU + Ty) (5)

Combining (4) and (5), the constraint on the operating frequency can be obtained as

Tcik > (Dmax-Duin) + Ts + Ty + 2AU (6)

Equation (6) shows that the minimum clock period depends on DMAX-DMIN rather than

DMAX. Therefore, to increase the operating frequency, DMIN and DMAX are tried to be

balanced.

13



2.2.2

Sources of Delay Differences

The major sources of delay differences can be given as:

2.2.3

Data dependent delay variation

A combinational logic gate has a propagation delay between its inputs and outputs.
This delay is not constant; rather it depends on the input pattern. Consider a 2 input
NAND gate designed with static CMOS logic. If one of its inputs is at logic-0 and
the other one is at logic-1, then there will be one path for pulling up the output load.
If both of the inputs are at logic-0, then there will be 2 paths for pull-up, which
creates double driving strength. Therefore, the output delay is much lower. If a
CMOS logic gate with 3 or more inputs is used, then the variation of the output

delay becomes higher.

Process dependent delay variation

The delays of the gates are strictly dependent on the process parameters. The circuits
produced at different manufacturing runs will have different delay values.
Furthermore, the circuits produced at the same wafer will also have different delay
values at the output.

Temperature dependent delay variation

The delays of the gates depend on the temperature. The wave-pipelined circuits must

be properly designed to compensate for the delay variation due to temperature.

Delay variation due to the supply noise

The noise in the power supply will produce additional delay variation at the outputs
of the logic gates. Also, the coupling capacitances between adjacent wires will

produce delay variation.

Logic Restructuring

For equalizing the minimum and maximum delays in the logic circuit, it may be re-

structured. The main idea is to balance the logic so that all the signals encounter with the

same number of logic gates while propagating. Figure 2.6 shows the logic restructuring

14



technique. Both of the circuits have same function. In the upper circuit, D input arrives to the
output early. By restructuring the logic, all the paths are balanced, which can be seen in
Figure 2.6. In some situations, logic restructuring increases the number of logic blocks
required to obtain same logic operation.

A—

T § s

Figure 2.6 Logic restructuring

224 Delay Insertion

After the logic restructuring, there can still be unbalanced paths. For balancing such paths,
inverters or buffers are inserted to slow down the fast paths. Figure 2.7 shows a

combinational logic and Figure 2.8 shows the delay buffer inserted for slowing down the fast

i——

Figure 2.7 A combinational logic circuit

path.

15



i)

Figure 2.8 A combination logic circuit with balanced paths

2.2.5 The advantages and disadvantages of wave-pipelining

The advantages and disadvantages of wave-pipelining can be summarized as [17]:

Advantages of wave-pipelining:

Very high clock rates can be obtained.

No partitioning in the combinational logic is performed; therefore unequal
partitioning is not a problem.

Reduced clocking latency overhead.

Clock distribution problem is reduced because fewer registers are used.
Simultaneous switching noise is reduced.

Power consumption and silicon area due to flip-flops and clock buffers are

reduced.

Disadvantages of wave-pipelining:

Design complexity is increased due to delay balancing.

Power consumption and area increase because of delay balancing.
Debugging and testing are difficult.

Process parameters and environmental changes effect much more than

conventional pipelining.

2.3 Hybrid Wave Pipelining

Hybrid wave pipelining is another pipelining method proposed in [21]. In this method, wave

pipelined sub stages are composed to form pipeline stages. In wave-pipelining the clock

cycle time is determined by the delay difference value at the output register. However, in

hybrid wave-pipelining combinational logic is partitioned into several stages, and the clock

16



cycle time is determined by the delay difference value of a stage with the largest delay
variation. Therefore, the operating frequency of the logic circuit is increased.

2.4 Mesochronous Pipelining Scheme

Mesochronous pipelining scheme [24] is similar to the hybrid pipelining method. In
mesochronous pipelining scheme, clock signal is delayed so that it propagates with the data.
Delay elements, which give the same delay value with the corresponding combinational
logic stage, are inserted in the clock signal path.

The cascading registers form wave-pipeline regions, therefore multiple data waves propagate
on the combinational logic circuit simultaneously. Figure 2.9 shows the temporal-spatial
diagram of mesochronous pipeline operation for a three stage pipelined system. The second
stage is assumed to have maximum delay variation, therefore the clock cycle time is
determined by this stage. Equation (7) gives the requirement on minimum clock period for

mesochronous pipelining scheme.

Dmaxg) — Dming) + Ts + Ty + 2AU < Tk m (7)
jf AS3 N

92] |
3 |
ol Y AS2 \1

c @ | |

T « |

© % i

) |

88

S as1 D
o)
o
8
(7))

Time

Figure 2.9 TS diagram of mesochronous pipelining

17



CHAPTER 3

MULTIPLIER STRUCTURES

Let X and Y be two unsigned binary numbers, which are M and N bits wide. If we express X
and Y in their binary representation with X;, Y; € {0,1}:

Then the multiplication of X and Y is defined as:

Z=X.Y= Z x2' Z Y2

=

N-1
XiY;2"
j=0

Iy
o

Multiplication operation is composed of generating partial products and addition of those
partial products. Partial product generation is the AND operation of a multiplier bit with all

the bits of the multiplicand, which can be seen in Figure 3.1.

18



X Xe Xs Xa X3 Xo Xy Xo

OYI

PP PP PPis PP,y PP PP, PPy PPy

Figure 3.1 Partial product generation

Partial products and simple addition of those partial products for an 8x8 bit multiplier can be
seen in Figure 3.2. In this figure there are 64 dots, which represent the 64 partial products
generated by AND operation of the corresponding bits of the multiplicand and the multiplier.
The partial products are shifted to the corresponding weight of the multiplicand bit for
addition.

0000006 06

0000000 PP1
0000000 PP2
0000000 PP3
0000000 PP4
0000000 PP5

0 00000O0 PP6
+..Q..... PP7
OO0 0000000000000 O rouc

Figure 3.2 Simple addition of partial products

For inputs which are M and N bits wide (M<N), the simplest multiplier can be composed of
a single N bit adder with 2-inputs [31]. The partial products are generated and added at every
clock cycle, so the multiplication operation is completed at M clock cycles. This multiplier is

named as iterative multiplier.

To increase the speed of the multiplier, partial products are generated and added in parallel.

For this purpose, adder trees can be used. In adder tree structures, the output delay is log(N),

19



instead of N. In this architecture, the adders are carry propagate adders. The carry propagate
addition operation is very time-consuming which increases the critical path delay of the
circuit. To overcome this problem, Wallace trees are generally used in the literature.

3.1 Carry Save Adder (CSA) Multiplier

All the partial product bits must be added in the multiplication. Multiplication result does not
change when the carry bits are sent diagonally to the next stages, instead of sending to the
right. In the carry save multiplier structure, the carry outputs are sent diagonally to the next
stage for addition. At the last stage, a vector merging adder is used to merge the carry and
sum outputs. Figure 3.3 shows the block diagram of carry save multiplier with vector
merging adder. As it is seen from the figure, the carry output of a full adder is fed back to the
carry input of the neighboring full adder. In pipelined designs, the feedback paths must be
avoided for increasing the throughput, therefore a half adder tree can be used instead of carry
propagate addition. The blocks circulated with dashed line are replaced with a half adder

tree, which is shown in Figure 3.4.

20



— M<0>
M<1>

THLJFL - Me2>
HEJFLF Ms>
HEFS SRR Mt
JHL%FLﬁ% FIF M
HIJF R
g

ﬁ_L‘ ﬁﬂ%ﬁ Fl—

L
|
GRetlal
e
= JHL P

oA | P

Y<7:0> r@%

X<7.0>
Figure 3.3 CSA multiplier with vector merging adder

21



M<1>
%_ FL S L
JF K JF 3 M<8>
iF—LF ﬁ_Fi r Fl j: JH| j'\HA‘Q>M<10>
>JFIE HA gFL g e jk":‘k“},,«}
e AR JH A JH M3
I i H H H M
e > P H IH] M<15>
= > F H H H H
> > H
~Ds
~ies
~e
Y<7:0>1 r{%

X<T:0>
Figure 3.4 CSA Multiplier with half adder tree

3.2 Wallace Trees

The carry propagate addition is the most time consuming operation in multiplication. In
order to avoid using carry propagate addition, Wallace proposed a method [32]. In this
method, by using an adder tree composed of full adders and half adders, any number of
partial products can be decreased to 2 numbers without any carry propagate addition. In the

last step, these 2 numbers are added using a fast carry propagate adder.

Figure 3.5 shows the reduction of two and three partial product bits using a half adder and a
full adder, respectively. The carry output is shifted to the left by one bit; therefore the weight
of it is doubled. Figure 3.6 shows the complete partial product reduction of an 8x8 bit
multiplier using a Wallace tree. It is seen that in the first stage, 16 full adders and 5 half
adders are used. In the second stage, 10 full adders and 6 half adders are used. In the third

stage 6 full adders and 6 half adders are used, while in the fourth stage 6 full adders and 5

22



half adders are used for reducing the partial products. As it is seen from the figure, no carry
propagate addition is used and all the partial products are reduced to 2 numbers, which must

be added using carry propagate addition.

Full adder is used as a compressor, which compresses 3 bits into 2 bits. Wallace trees using
(3,2) compressors suffer from the irregularity in the routing [33]. There are more regular
compressors, like (4,2) compressors, which compresses 4 bits into 2 bits. Figure 3.7 shows
the partial product reduction using (4,2) compressors, in which the routing is much more

simple than Wallace trees.

l
v

H
Y
X o0

Carry Sum Carry Sum

Figure 3.5 Reduction of bits using half adder and full adder

23



e

Lid
K]

-I'|

(R[] [F [FF] [FF] [H]
| (K] [R

==
-I'|
oy
[l ==l
IR
==

ecoo e
XX
(XX
CIC 2

°

°

[H] [H] [H] R [ [F] [ (R (R [H]H] H]
° 0000000000000
RN

o0
[H] [H] [H] (R TH (] () TR (R (W] [H]

Figure 3.6 Partial product reduction of 8x8 bit multiplier using Wallace tree [33]

24



K E NN N >
o000 0

| N )

[

[
- o
o v/

00006000

[
[ ]
0
Stage 1
0/0/0/0 e e e e o000
0/0/0|0/0o®o®®0®0®O®O®OGS®ES
L0 0 0 iC JAE 20 I HE i JHE HE )
o 0
Stage 2

Figure 3.7 Partial product reduction using (4,2) compressors [33]

3.3 Booth Encoding
3.3.1 Booth 2 Algorithm

Booth’s algorithm [34] is a well known algorithm which is used to decrease the number of
partial products used in the multiplication. In this algorithm, the multiplier bits are grouped
into pairs of two bits to select the partial products from the set of {0, M, 2M, 3M}, which are
pre-calculated. The calculation of 2M is completed by only shifting the multiplier M by one
bit to the left. However, the calculation of 3M requires a carry propagate addition of M and
2M. Therefore, 3M is called as a hard multiple. In order to avoid this carry propagate
addition, modified Booth algorithm, which selects partial products from the set of {0, M,
2M, 4M+-M}, is used. In this algorithm, instead of 3M multiple, either 4M or —M is used,
depending on the adjacent multiplier groups. Table 3.1 shows the partial product selection

table and Figure 3.8 shows the modified booth algorithm. The multiplier bits are grouped

25



into pairs of 3 bits, and they are used to select multiplicands. Negative multiples can be
obtained by using 2’s complement logic, so if the selected partial product is negative, then all
the bits are negated and then a 1 (which is shown as S-bit) is added to complete the 2’s
complement operation. As it is seen from the figure, the number of rows of partial products
is decreased from 8 to 5. In general, n partial products are decreased to the biggest integer
which is smaller than or equal to (n+2)/2.

Table 3-1 Partial Product Selection of modified Booth-2 algorithm.

Partial Product Selection Table
Multiplier bits | Selection | S
000 +0 0
001 +M 0
010 +M 0
011 +2M 0
100 -2M 1
101 -M 1
110 -M 1
111 -0 1
0
SSS000000000 ® LSB
11S000000000 S [
11S000000000 S [
S0O00000000 s\ ®
N 00000000 S o
00000000000 0OC0OCOCGCCOCGS :
® MSB

Figure 3.8 Modified Booth Algorithm (2 bit shift) [33]

26



3.3.2 Booth 3 Algorithm

The multiplier bits can be grouped with pairs larger than 3 bits, so the amount of shift
operation between partial products can be greater than 2. In booth 3 algorithm, the partial
products are selected from the set of {0, +M, +2M, +3M, +4M}. There is also a hard
multiple of 3M in Booth-3 algorithm. Table 3.2 and Figure 3.9 show the partial product
selection table of Booth-3 algorithm and the reduction of partial products, respectively. The
number of rows of partial products is decreased from 8 to 3.

Table 3-2 Partial product selection table of Booth-3 algorithm.

Partial Product Selection Table
Multiplier bits | Selection | S
0000 +0 0
0001 +M 0
0010 +M 0
0011 +2M 0
0100 +2M 0
0101 +3M 0
0110 +3M 0
0111 +4M 0
1000 -4M 1
1001 -3M 1
1010 -3M 1
1011 -2M 1
1100 -2M 1
1101 -M 1
1110 -M 1
1111 -0 1

27



_ 0
SSSSe0e00000000O0 ® st

115 0000006060600 S .fuﬂ
0o00000OQCOOO S :;
°,

o !

+ o
@
00 0000000O0C0COCGBOGBOOOEOS 0 wmsB

Figure 3.9 Modified Booth Algorithm (3 bit shift) [33]

Booth 4 and higher booth algorithms are also possible, but the partial product selection logic
becomes too complicated. Also, hard multiples (5M and 7M) are difficult to obtain, so it is

not feasible to use booth4 and higher.

3.33 Redundant Booth Algorithm

Hard multiple of 3M in the booth 3 algorithm requires carry propagate addition. In order to
overcome this problem, fully redundant booth algorithm is used. In this algorithm, all the
partial products are represented by their redundant form (i.e. Redundant form of 3M is
M+2M). The number of the dots is doubled, because of this redundant representation.

Therefore, fully redundant form is not feasible.

Partially redundant booth algorithm is used to compute hard multiple of 3M, in which small
length adders are used. Figure 3.10 shows the partially redundant addition of 16 bit M and
2M, using small length adders of 4 bits. Carry propagate addition of 4 bits is performed in
the small adders; however no carry signal propagates between these adders. Therefore, the
length of the carry propagation is reduced and limited to 4. As it is seen from Figure 3.10,

the number of dots is much smaller than the fully redundant representation.

A problem with this partially redundant representation arises when negative partial products
are required. As it is seen from Figure 3.11, large gaps of 0’s become large gaps of 1’s when

negated. Also considering the addition of 1’s in the LSB’s of partially redundant represented

28



numbers, in the worst case (all partial products are negative) same hardware of fully
redundant representation plus the hardware of small length adders are needed. Therefore, the

problem is to obtain negative multiples from positive multiples, or vice versa.

=N )
N )
| N )
N )
(N )
(N )
(N )
o0
o0
N J
o0
o0
o0
| N )
N )
(N )
® o
<

4 4 4 4 4 4 4 4
%4 Biﬁ +4 Bit% %4 Biﬁ %4 Biﬁ 1
Adder Adder Adder Adder

c‘%z c%z c%z c%z

000000000OC0OGCOGCOGOGEOSOOSS
C C C C

Figure 3.10 Partially redundant addition [33]

29



C C C C
Negate
100000000000000000
c111C111C111C 1
1

Figure 3.11 Negative multiple generation [33]

3.4 Carry Propagate Addition

The final 2 numbers which are produced by Wallace trees must be added using carry
propagate addition. In ripple carry addition, each full adder must wait until the previous
carry output has been calculated in order to begin calculation of its carry output and sum. In
order to speed up this carry propagate addition, carry look-ahead adders are widely used. In

carry look-ahead adders, the carry outputs are generated before the sum outputs.

Let A and B are two n-bit numbers, and S is the summation of A and B. In binary expanded

form:
n-1
= Z ak2k
k=0
Let
ab: Boolean AND operation of aand b

a|lb: Boolean OR operation of aand b
a”b: Boolean EXOR operation of aand b

a+b: Summationofaandb

30



The addition of A and B and the carry input ¢, can be computed as:
Sk=ak ™ b Mk
Cier1= Ak || ACi | bick
k=0,1,..,n-1

The sum and carry outputs can be interpreted using auxiliary signals, gx (generate) and px
(propagate). If propagate signal py is 1, then the incoming carry signal to that stage is
propagated to the next stage. Similarly, if generate signal gy is 1, then a carry signal is
generated at that stage and it is sent to the next stage. For obtaining the propagate signal, the
two equations shown below can be used. They both give the same result while generating

carry out.
Ok = aby
P = a || bx
= ay " by

The carry signal can be interpreted using generate and propagate signals and the incoming

carry signal, such that:

Ci+1 = Ok || PCk

Using these equations, a carry output can be calculated in terms of preceding generate and

propagate signals and a carry signal at any bit position:
Cis1 = Gk || Pii-t I| PiPic10ic-2 || PrPr-1Pie2Cr-2

This leads to two new functions:
90.K) = g [ I PG | I PiPs-aGi2 | [ --- || PiPy1.- - - Presa Ok
PG.K) = PiPj-1. . . Pre1Pi

Let GG and PG be the group generate and group propagate signals of a 4-bit group

respectively.
GG =9(3,0) =93] P39z | | P3P201 | | PaP2p190

PG =p(3,0) = psp2p1po

The carry output of a 4 bit carry look-ahead adder is expressed using group propagate and

group generate signals:

31



¢,=GG + PG*cy

GG and PG signals are generated immediately without using carry inputs. When the carry
input has come, then the 4 level shifted carry output is generated, therefore the carry
propagation is completed with 2 clocks, instead of 4.

Using 4 of these group signals, a super group can be composed. Figure 3.12 shows the carry
look-ahead design of a 4-bit group and Figure 3.13 shows the super group signals of 16 bit
addition. These super groups can also be combined to make larger groups.

Al3] B[3] Al2] B[2] Al1] B[1] Al0] BIO]

A B Ci, A B Cj, A B Ci, A B Cj,

Full Adder Full Adder Full Adder Full Adder

S PG S PG S PG S PG

L L] L L] L L] L L]
Cout < Cout Cs C C4 Co
PG < PG Carry Look-ahead Logic C Cin
GG «— GG "

S[3] S[2] S[1] S[0]

Figure 3.12 Carry look-ahead design of a 4-bit group

32



) o o R
8 o = S L S 8
< o < m < o < o
A B Ci, A B G, A B Ci, A B G,
CLA-4bit CLA-4bit CLA-4bit CLA-4bit
S PG S PG S PG S PG
V) L L] VR L L]
Cout S Cout C3 CZ C‘l CO
PG < PG Carry Look-ahead Logic C: . G
GG «— GG "
S[15:12] S[11:8] S[7:4] S[3:0]

Figure 3.13 16 bit carry-look-ahead adder

For demonstrating the speed improvements using carry look-ahead adders, the timing details
of an addition of two 16 bit numbers using 4 carry look-ahead adders of 4 bits and 1 carry

look-ahead logic are investigated.

Starting at time 0,

e Individual p; and g; signals are calculated at time 1. (pi=&; || bi; and g; = a;b;)
¢ Individual c; signals are calculated at time 3 for the first CLA. (AND operation is

completed at time 2 and then OR operation is completed at time 3 )

C1=0o*PoCo

C2=01+P190*P1PoCo
C3=021P291+P2P190P2P1P0Co
C4=03+P302+P3P201tPaP2P190+P3P2P1PoCo

e Group propagate signals (PG) are calculated at time 2.

PG[1]=pspzp1Po
PG[2]=p7Pepspa
PG[3]=p11P10P9Ps
PG[4]=p1sP14P13P12

33



e Group generate signals (GG) are calculated at time 3.

GG[1] = gstPsgatP3p2gitPspzp190

GGI[2] = gr+Pr9e6+P7PsYs*P7PePsYa

GG[3] = g11+P11910+P11P109o+P11P10PeTs
GG[4] = g15+P15014+P15P14013*P15P14P13T12

e Look-ahead Carry Unit (LCU) generates the inputs required by Carry Look-ahead
Adder Blocks at:

Time 0O for the first CLA

Time 5 for the second CLA (c4=GG[1] + PG[1]c0)

Time 5 for the third CLA (c8=GG[2] + PG[2]GG[1]+PG[2]PG[1]c0)

Time 5 for the fourth CLA (c12=GG[3] + PG[3]GG[2]+PG[3]PG[2]GG[1]+
PG[3]PG[2]PG[1]c0)

e Calculation of Sum outputs are calculated at:

Time 4 for the first CLA (si=a;*bic; and c; are calculated at time 3 for the first
CLA)

Time 8 for the second CLA (carry input is generated at time 5, and individual c;
signals are generated at time 7 for the second CLA)

Time 8 for the third CLA (carry input is generated at time 5, and individual c;
signals are generated at time 7 for the third CLA)

Time 8 for the fourth CLA (carry input is generated at time 5, and individual c;
signals are generated at time 7 for the fourth CLA)

e The carry output of the 16 bit adder (c16)is calculated at time 5

(c16= GG[4] + PG[4]GG[3]+PG[4]PG[3]GG[2]+ PG[4]PG[3]PG[2]GG[1]+
PG[4]PG[3]PG[2]PG[1]c0)

e The carry output of the entire adder is generated with a 5 gate-delay and the overall
addition is completed with 8 gate delays. If carry look-ahead addition is not used and

ripple carry addition is used, then the overall addition takes 31 gate delays.

34



CHAPTER 4

WAVE COMPONENT SAMPLING METHOD (WCSM)

A data wave propagating on the combinational logic circuit has many signal components.
The combinational logic circuit is also composed of many sub stages of logic gates, which
have different propagation delays. Therefore, all of the signal components experience
different delays while propagating on the logic. The minimum and maximum delays of all
the wave components may be different.

In conventional pipelining, wave-pipelining and mesochronous pipelining schemes, all of the
components of a propagating wave are sampled at the same time whenever they arrive to a
synchronization stage. In the proposed WCSM, only the components of a wave, whose
minimum and maximum delay differences reach to the tolerable value, are sampled. The
other components of the wave are aligned with the sampled components by using delay
elements. Figure 4.1 shows the basic operation principle of WCSM. FF and DL represent
flip-flops and delay elements, respectively. As it is seen in Figure 4.1, only some of the
signal components of propagating waves, whose delay difference values reach to the

tolerable value, are sampled by using flip-flops.

35



—IFF — %% —i{FF — —FF—
| %% i
o 1FF 1 Logic %% Logic —PL Logic Logic [ {FF|— £
2 T Stage Stage Stage Stage T =
= J4FF > 1 | JFF - 2 |pb-s 3 N —FF— O
| | i
—{FF — - FF D> —+FF|—
C|k1 ‘DL C|k2 ‘DL C|k3 ‘DL ‘DL CIkN+1

Figure 4.1 Proposed wave component sampling method (WCSM)

4.1 Principles of Wave Component Sampling Method

Consider the 2 input AND gate in Figure 4.2. A0, B0 and CO are the initial values, and Al,
B1 and C1 are the final values of the inputs and the output, respectively. Assume that, both
of the inputs change their state at the same time instant. Then, the output C changes its state
with a propagation delay, which depends on the inputs. The propagation delay has a mean
value of TP seconds and a variation of ATP seconds as shown in Figure 4.2. If one or both of
the inputs have a transition variation of ATin seconds, then the transition variation of the

output becomes approximately ATin+ATP seconds.
A c

B —
Ao,Bo } A1,B4

o
ATp

Figure 4.2 Input-output delay of AND gate

36



For describing WCSM in detail, an imaginary combinational circuit is constructed as in
Figure 4.3. In this circuit, 3 combinational logic blocks, which are named as F1, F2, and F3,
are used. Assume that the mean values of the propagation delays of F1, F2 and F3 are all
400ps and the transition variation of F1, F2 and F3 are 20ps, 40ps, and 80ps, respectively.
Also, assume that the delay elements used in this combinational logic circuit do not have a
transition variation at the output; i.e. they only give a time shift to the incoming signal. By
using these delay elements, all the branches which enter to the same node are aligned with
each other.

Figure 4.3 An imaginary combinational circuit

As seen from Figure 4.3, 4 inputs are applied to the circuit. It is assumed that they are all
applied at the same time instant, i.e. there is no delay difference between them at the
beginning. In Figure 4.3, total propagation times are not shown, only the minimum and
maximum delay differences are displayed. While propagating on the circuit, the components
of the wave experience different delays. At the beginning, all of the components have a delay
difference of Ops. After first logic stage, 4 components of the wave have delay differences of
Ops, 20ps, 40ps, and 80ps, respectively. After second logic stage, the delay differences
become Ops, 40ps, 80ps, and 160ps, respectively. Obviously, the delay differences are

37



increasing after each logic operation. After 4" logic stage, maximum delay difference
becomes 320ps.

Figure 4.4 shows the data transition regions after the first logic stage. W1, W2, W3, and W4
are the components of the wave, and W shows the total propagating wave. The shaded
regions are the transition regions, and the white regions are the stable regions, in which no

transition occurs.

TstTH+2Au

Figure 4.4 Data transition regions after 1% logic operation

Total propagation time of this imaginary combinational logic circuit is 1600ps. Without
pipelining, this logic circuit operates with a maximum operating frequency of 625MHz,
ignoring the clocking overhead.

If wave-pipelining is used, then Equation (5) dictates the operating frequency. If total
clocking overhead (Ts+Ty+2AU) is assumed to be 40ps, then Tcik > (Dmax-Dwmin) + 40ps

38



holds. If the target operating frequency is assumed to be 5GHz (i.e. clock period of 200ps),
then, (Dumax-Dmin) should be smaller than 160ps. This is the critical value (i.e. the tolerable
value) of the minimum and maximum delay difference. If classical wave-pipelining or
mesochronous pipelining schemes are used, then all of the components of the wave are
needed to be sampled after second logic stage, because the delay difference value of the 4™
path reaches to 160ps after 2™ logic stage. Otherwise, the delay difference value of the 4th
path reaches to 240ps after 3" logic stage, which exceeds the tolerable value of 160ps.
Figure 4.5 shows the case in which mesochronous pipelining scheme is applied to this

circuit.

clki Z clk2

Figure 4.5 Flip-flops inserted using mesochronous pipelining scheme

As seen in Figure 4.3, only the 4™ branch reaches to the critical value of 160ps after 2™ logic
stage. Therefore, if WCSM is used, it is enough to sample only the 4™ component of the
wave. Considering the 3™ logic stage, sampling the 3™ component after 2™ logic stage is
adequate. Otherwise, we will need to sample the 4™ component after 3" logic stage. Figure
4.6 shows the logic circuit when WCSM is applied. Instead of 8 flip-flops used in
mesochronous or wave-pipelining schemes, only 3 flip-flops are enough for proper

operation.

39



clk1 A clk2
Figure 4.6 Flip-flops inserted using proposed WCSM

Figure 4.7 shows the register insertion algorithm of WCSM. T is the critical value of the
delay difference, where Tc=T¢ k-(Ts+TH+2AU). Here, (i,j) represents the location of a node,
and AT(i,j) shows the width of the transition region at node(i,j). In calculating AT(i,j), the
transition variation of the logic block at node(i,j) is added with the maximum transition

variation of the inputs which enter to the logic block block at node(i,j).

40



i=0, j=0

Calculate AT(i,j)

NO AT(i,j)>ATc?

YES

Insert a register
on node(i,j)

i=i+1 . NO i==n?

YES

i=0
=+

Figure 4.7 Flow chart of register insertion of WCSM

41



4.2

Advantages and Disadvantages of Wave Component Sampling Method

The advantages of the Wave Component Sampling Method can be listed as:

Number of synchronizing flip-flops or latches is decreased significantly.

Only the paths whose delay difference value reach to the critical level
are sampled, the other components continue propagating without being
sampled. Therefore, the total number of flip-flops or latches is decreased

significantly.

Power consumption due to the flip-flops or latches is decreased.

Latches and flip-flops consume significant power, especially when a
high performance latch or flip-flop is used at high operating frequency.
The reduction in the total number of registers also reduces the power
consumption due to these unnecessary registers. Delay elements, which
are replaced with the registers for aligning the propagating waves,
consume lower power than the registers, especially when the operating

speed is high. Therefore, total power of the chip is reduced.

Clock distribution to the synchronizing flip-flops or latches becomes much

easier.

Clock distribution is a challenging task, especially in complicated
circuits. The distribution of a global clock signal to all of the flip-flops
or latches with minimal skew is a very big problem. In WCSM, clock
distribution is much easier because of two reasons: First, a global clock
signal is not used and instead of it several clock signals which drive a
small number of registers are used. Controlling skew between a small
number of registers is much easier, therefore, routing of the clock
signals with minimal skew becomes easy. Second, the reduction in the
number of registers also decreases the total number of clock paths to be

routed.

Power consumption due to the clock buffers is reduced significantly.

The power of the clocking network can be significant, which can be
more than half of the total power of the entire chip. A lot of repeaters
must be inserted for properly distributing the clock signal throughout the

chip. In WCSM, the number of the registers is decreased and several

42



clock signals are used to drive small number of registers, therefore the
power consumption due to the clock distribution is decreased.

e High speed operation

WCSM provides significant increase in the operating speed compared
with the conventional or wave pipelining methods. The speed is also
better than mesochronous pipelining method, because considering the
layout, the reduction in the number of flip-flops and the clock signals
makes placement and routing easier, which increases the operating

speed of the chip.

The disadvantages of WCSM can be listed as:

e The design complexity is increased compared with conventional pipelining.

In conventional pipelining, only the paths with worst case delay are
considered. However, in WCSM, both the worst case and best case
delay values of all the paths must be analyzed, which is similar to
mesochronous or wave pipelining methods.

e The operating frequency cannot be changed afterwards.

In WCSM, unnecessary registers are replaced with active delay elements
and the components of the waves which are sampled with registers are
aligned with the components of the waves, which propagate without
being sampled. Therefore, the operating frequency must be initially set
and it cannot be changed afterwards. Otherwise, the change in the
frequency corrupts the alignment of the propagating waves.

e WCSM is more susceptible to temperature and process parameter variations.

The absolute delay values of the active delay elements are strictly
dependent on temperature and process variations. The registers are
replaced with active delay elements; therefore the variation of the clock
frequency and delay values of the delay elements with respect to
temperature and process parameter changes must be handled carefully.
Simulations using corner temperature and process parameters must be
performed, and all the variations depending on temperature and process

parameters must be analyzed.

43



CHAPTER 5

APPLICATION OF WCSM TO MULTIPLIER STRUCTURES

In order to demonstrate the effectiveness of the WCSM and compare it with the other
pipelining methods, 8x8 bit multiplier is implemented using UMC-0.18um CMOS
technology. In [24], carry save adder multiplier structure was used to demonstrate the
performance of the mesochronous pipelining scheme, therefore same structure is used for
comparing WCSM with mesochronous pipelining method. For achieving high performance
multipliers, several optimizations are performed in the implementation of the multiplier
blocks.

The application of WCSM to other multiplier structures including booth encoding, Wallace
trees and carry look-ahead adders is also investigated. 8x8 bit multiplier using these
structures is implemented and the performance comparison with the other pipelining

methods is performed.

5.1 Logic selection

The logic gates used in WCSM must have small delay variation at the output. The rise time
and fall time of the logic must also be small, in order to have high clock frequency. At the

same time, the power consumption of the logic and the latency must also be small.

Output delay of classical CMOS logic is strictly dependent on the input pattern. Figure 5.1
shows a classical CMOS 2 input NAND gate. When both of the inputs are HIGH, then
PMOS transistors are OFF and the NMOS transistors pull down the output to LOW. When
one of the inputs are LOW and the other input is HIGH, then the pull down path is closed
and one PMOS transistor pulls up the output to HIGH. When both of the inputs are HIGH,

then there will be two pull-up paths, therefore the output delay becomes much smaller. In

44



classical CMOS gates with 3 or higher inputs, the delay variation at the output becomes
much higher. In [17], CMOS gates with current limiting transistors are proposed. Figure 5.2
shows a 2 input CMOS NAND gate with current limiting PMOS transistor at the top. Pull-up
current is limited with PMOS transistor which is always ON, however in this case the rise

time becomes longer, which is not suitable for very high speed operations.

A B,

o >

Figure 5.1 Schematic diagram of 2 input NAND gate

Figure 5.2 Schematic diagram of CMOS NAND?2 with current limiting transistors

A symmetrical circuit structure is important to achieve small delay variation at the output.
Figure 5.3 shows the schematic diagram of symmetrical transmission gate logic, which has 4
inputs named as X, NX, Y, and Z, where NX is the complement of X input. The output
function of this logic block is Q=~(X’Y+XZ). This generic block is suitable for WCSM and

it is used to implement several logic operations in the various sub blocks of the multiplier.

45



JLX

Y

, LNX Q
X

Figure 5.3 Generic transmission gate logic

After the transmission gates, an inverter is used to provide the required drive strength needed
for driving the cascading stages. It is also possible to use a cascade of 2 inverters at the
output for further improving the drive strength, which is shown in Figure 5.4. The sizes of
the transistors of transmission gate logic must be optimized for high speed, and low power
operation with minimal delay variation at the output. The ratio between the inverters must
also be optimized. Rise and fall time of not only the output but also the internal signals must

be low.

Figure 5.4 Transmission gate logic with 2 inverter cascades at the output

The lengths of the transistors are used as minimum size, which is 180nm. The parameters to

be optimized can be listed as:

e The width of the PMOS transistors of transmission gates (\Wp).

e The width of the NMOS transistors of transmission gates (Wn).

e The width of the PMOS transistor of the first inverter stage (Wp1).

e The width of the NMOS transistor of the first inverter stage (Wn1).

e Assuming that the transistor sizes of the second inverter are a constant times

that of the first inverter, the ratio between these inverters.

46



These parameters are analyzed considering all of the possible transitions at the input. The
inputs and the outputs of the logic are connected to the logic gates with the same structure;
therefore a simulation setup shown in Figure 5.5 is used. Cadence Analog Design

Environment is used and post-layout simulations are performed.

A<1> X Xin
Ng<117> NX Trz?:- 4 Nxin r)\l(x Trans. QUL rx Trans. Q——
<1> |y Ig ! Yin y gate —NX ate.
B<2> |, logic Zin logic Y
n |, 7 logic

A<1>
NA<1> Xx Trans. Q
NB<‘I7>Y gate
NB<2> |, logic

A<2> e
NA<2> Trans. Q
—=—NX

B<3> Y gate

B<4> 2 logic

A<3> X
NA<3> Trans. Q
==~ INX

B<5> Y gate

B<6> 7 logic

Figure 5.5 Block diagram of the simulation setup

Figure 5.6 shows the simulation of this circuit, where the internal signals of transmission
gate in the middle are displayed. In this figure, only a transition in “Y” input occurs. An
input pulse with a period of 250ps is applied to the circuit. As it is seen from the figure, the
width of the negative pulse is 243ps, and the rise time and fall time at the output of the
transmission gates are 132ps and 86ps, respectively. Table 5.1 shows the parameters used in

the simulation:

47



/] =131 ez miEL il el m/'El =il

MOZAE dps, -2, -l'-1r'r'|'.l':l___

12 13 2.0 2.1 el
[ZE48Fns [ 2E82000V time s

Figure 5.6 Simulation of transmission gate logic block

Table 5-1 Parameters of transistors

Parameter | Value
Wp 600n
Wn 240n
Wpl 600n
wnl 240n
a 15

For optimizing the parameter values, parametric sweep analysis is performed. Figure 5.7
shows an example parametric analysis, in which “a” is kept as 1.5 and the sizes of the PMOS
transistors are changed from 500n to 900n and the sizes of the NMOS transistors are changed
from 180n to 350n. Every parameter takes 5 different values; therefore the total number of
simulations is 5'=625. Figure 5.8 shows parametric sweep of the inverter ratio “a” between
1.5and 2.3.

48



WQ1 (Wples,006-07,wnlel.80e-07 Wpws.00e-07 wnw2 . 22¢-07)
=Q1 (wpl=5.00e-07, wnl=1.80e-07 wp=5.00e-07 wn=3.08:-07)
MmO (wpl=5,00e~07,wnl=1.80t~07,wp=56.00e~07 wn=1.80e-07)

WO (wplw5.00e-07,wnlewl 80e-07 wpes, 006-07, wnwl 80e-07)
=01 (wpl=5.00e-07,wnl=1.280e-07,wp=5.00e-07 wn=2.65e-07)
=01 (wpl=5.00e~07 wnl=180e~07, wp=5,00e~07,wn=3 50e~07)

v

1.8 1.9 2.0 2.1
time {ns)

1.0187v

Figure 5.7 Parametric sweep analysis of transistor sizes

W31t (aed 50e+00) m31Int] (awd G0e+00) 3Lt (el 70e+00) E31Int] (awl 20e+00) 310t (el 20:+00) MI31Int] (ae2 008+00) 3100t (w2, 10:+00) E31Int1 (aw2 208+00)
Ri3Lintl (a=2.30e+00) MI31Int2 (a=1.50e+00) MI3LInt2 (a=1.60e+00) @IZLInt2 (a=1.70e+00) ERI3Lnt2 (a=1.20e+00) EI3LInt2 (a=1.90e+00) SI3LInt2 (a=2.00e+00) @IILnt2 (a=2.10e+00)
BI3LIAM2 [a=2.20e+00) B3 L1012 [1=2.30e+00) E01 {a=1.50e+00) =01 (a=1.60e+00) 01 (a=1.70e+00) 01 (a=1.80e+00) 01 (a=1.90e+00) =01 (a=2.00e+00)

2085 21 218

La 1.98 20

2.0751ns LE1105Y

time {(ns)

Figure 5.8 Parametric sweep analysis of inverter ratio

49



The average current drawn from 1.8V supply using 2 inverter cascades at the output is
calculated as 59pA. When a single inverter is used, the average current becomes 19uA. The
output delay variation and rise-fall time values are measured to be similar; therefore
transmission gate logic with 1 inverter at the output is decided to be used in the multiplier
design.

The sizes of the transistors of the inverter must also be optimized. A weak inverter with
small transistors will not be able to drive the succeeding logic gates. Then, glitches occur
between the transitions. In Figure 5.9, a small glitch in signal C1 is shown. If the sizes of the
transistors become too large, than the pass transistors won’t be able to drive the inverter.
Therefore the rise-time and fall-time will be high. Table 5.2 shows the sizes of the transistors

optimized with parametric analysis.

—jc1 — Al — /Bl [NAL — fI131/Intl
1.54
; A
; Intl
1.0
=]
= ] MA
54
] (o]
0
T T T T T
1.4 1.5 16 1.7 1.8
[[1.49Zns| 1.8v time (ns)

Figure 5.9 Glitch generation between transitions

50



Table 5-2 Optimized transistor parameters

Parameter Value
Wp 450n
Wn 350n
Wpl 600n
Wnl 280n

Table 5.3 shows the output propagation times for all transitions in the input. Output delays
change between 73ps and 100ps, giving an output delay variation of 27ps. Figure 5.10 shows
graphical representation of output delay values.

51



Table 5-3 Output propagation times for all transitions of inputs

Transition ABCin | ABCin f Output Transition ABCi | ABCin f Output
no - - Delay no - - Delay
1 000 001 NC 29 100 000 NC
2 000 010 73ps 30 100 001 NC
3 000 011 78ps 31 100 010 83ps
4 000 100 NC 32 100 011 74ps
5 000 101 88ps 33 100 101 76ps
6 000 110 NC 34 100 110 NC
7 000 111 83ps 35 100 111 78ps
8 001 000 NC 36 101 000 85ps
9 001 010 74ps 37 101 001 85ps
10 001 011 78ps 38 101 010 NC
11 001 100 NC 39 101 011 NC
12 001 101 77ps 40 101 100 78ps
13 001 110 NC 41 101 110 96ps
14 001 111 75ps 42 101 111 NC
15 010 000 76ps 43 110 000 NC
16 010 001 96ps 44 110 001 NC
17 010 011 NC 45 110 010 73ps
18 010 100 77ps 46 110 011 79ps
19 010 101 NC 47 110 100 NC
20 010 110 83ps 48 110 101 75ps
21 010 111 NC 49 110 111 76ps
22 011 000 94ps 50 111 000 84ps
23 011 001 74ps 51 111 001 100ps
24 011 010 NC 52 111 010 NC
25 011 100 85ps 53 111 011 NC
26 011 101 NC 54 111 100 96ps
27 011 110 92ps 55 111 101 NC
28 011 111 NC 56 111 110 76ps

52




110

105

100 4

3(5) ® o 7y ? 3 ? 3

. o
£ 3 & & ® o @ Output delay

;(5) T QA’ & & y’ L

65

60 T T 1

Output delay(ps)

Sample number

Figure 5.10 Graphical representation of output delay values

5.2 Delay Balancing

The delay differences between propagating waves must be minimized. A single inverter has
a propagation delay of 32ps; therefore cascades of inverters are used for delay balancing
between the propagating waves. Delay variation at the output of a single transmission gate
logic is measured to be 27ps. When several transmission gates are cascades, the output delay

variation increases further. Therefore delay adjustment with a resolution of 32ps is suitable.

An inverter used as a delay element must have small and equal rise and fall times.
Otherwise, the width of the incoming pulse decreases or increases at the output of the
inverter. Then the propagating pulses may vanish when several inverters are cascaded for
providing high delay values. Figure 5.11 shows the transitions of a signal before and after a
cascade of 8 inverters. As it is seen from the figure, the shape of the pulse is not distorted

while propagating.

53



— fAlin — fA_out
2.0

1.54
S1.04
= =]

od

2.0

1.5 226,2ps) 2(256.7ps)
1.0
= =]

od

1.25 Lve

[1.79704ns | Lezzlv e (s

Figure 5.11 A positive pulse and its delayed version

When a delay resolution smaller than 32ps is needed, than inverter cascades with different
WI/L ratios are used, which is shown in Figure 5.12. The ratio of the sizes of the cascading
inverters must be carefully designed, in order to obtain the required delay value without any
distortion in the propagating signal. Figure 5.13 shows the signals obtained by using 4

inverter cascades with normal inverters and tuned inverters. Delay between them is around

10ps.
1 Bum 0.8um 1.6um 0.8um
WE ﬁg ﬁg EJ Ad
0.56um %O .28u %70 .56um %70 .28um %7

Figure 5.12 Inverter cascade with different W/L ratios

54



— fA_out FA_outZ

1.754

0(12.47ps)

0 & = — d

T T
10 125 15 175 20 225 25
[980.874ps [ -11.9508n/ time (nz)

Figure 5.13 Signals obtained with normal and tuned inverter cascades

5.3 Simultaneous generation of complementary outputs

When the complementary and normal signals are generated from different logic blocks, then
a delay difference between them occurs. Consider a 2 input AND gate designed with
transmission gate logic blocks in Figure 5.14, which produce Q and NQ signals by using
separate logic blocks. Table 5.4 shows the corresponding input combinations of transmission
gates configured to implement AND gate and NAND gate. Table 5.5 shows the output
propagation times of Q and NQ signals, which are taken from the output delay values of
generic transmission gate logic in Table 5.3. As it is seen from the table, there is a maximum

delay difference of 17ps between Q and NQ signals.

. A 1 A

%{ Q=~AB minn Q=AB
5 LINA - LNA

S SHa

A A

Figure 5.14 Generation of complementary outputs by using separate logic

55



Table 5-4 Input combinations of generic trans. gate logic for NAND and AND gates

ABC inputs of trans. gate | Corresponding ABC inputs of trans.
implementing NAND gate implementing AND

000 011

010 001

100 111

110 101

Complementary and normal output signals are connected to succeeding logic blocks,
including gates of the pass transistors. Both of Q and NQ will be at the same state for 17ps,
which means that two different signals drive the same net for 17ps. This creates a conflict on

the net, and some glitches may occur.

Simultaneous generation of complementary and normal signals with symmetrical transition
is very important for decreasing the delay variation of propagating waves. For this purpose,
the circuit shown in Figure 5.15 is designed. A transmission gate, which is always “ON” and
has same delay with that of the inverter, is used to produce normal and complementary
signals simultaneously. Since same logic is used to produce them, there will be no delay
variation between Q and NQ due to input pattern. They always make symmetrical transition
at the same time instant. Figure 5.16 shows the simulation of the complementary and normal

output generation.

56



Table 5-5 Output propagation times of Q and NQ signals

Output delay of transitions of NAND gate

Output delay of corresponding transitions of

AND gate
000 -010 73ps 011 - 001 74ps
000 - 100 NC 011-111 NC
000 - 110 NC 011-101 NC
010 - 000 76ps 001-011 78ps
010-100 77ps 001-111 75ps
010-110 83ps 001 -101 77ps
100 — 000 NC 111-011 NC
100 - 010 83ps 111-001 100ps
100 - 110 NC 111-101 NC
110 - 000 NC 101-011 NC
110 -010 73ps 101 - 001 85ps
110 - 100 NC 101-111 NC
4LA
B D
INT1 INT3a
c LNA
A

gnd

*L INT3b NQ

o

Figure 5.15 Simultaneous generation of complementary and normal output signals

57




— /BL — AL — jAl S3LANTL — /MGl fol
JBLANT3E — I31/INT3a = fIS1/INTZ  — fC1

2.0
1.5
1.0
=

.54
0

T T T T T

3.1 s 23 2.4 35

time (ns)

Figure 5.16 Simulation of generating normal and complementary outputs simultaneously

There is another important advantage of using this structure for producing complementary
and normal outputs: Since a separate logic is not used, an input signal is connected to only
one logic gate, instead of two. This makes the drive strength required to drive the logic to be

half of using separate logic, which decreases the area and power consumption significantly.

5.4 Implementation of Multiplier Blocks
54.1 Half adder design

Half adder block has 2 inputs, and produces Sum and Carry-out. Table 5.6 shows the truth
table of half adder.

Table 5-6 Truth table of half adder

A B Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Sum=A exor B=A’B + AB’
Cout=A & B.

58



Generic transmission gate logic performs logical function of

Q=~(AC+A’B)=(A’+C’)*(A+B’). For obtaining “Sum” using the generic transmission gate

logic, the inputs of Half adder are connected to the inputs of transmission gate as:

X=B, NX=B’, Y=A", Z=A

Then, Sum output becomes:

Sum=(B’+A’)(B+A)=BB’+B’A+A’B+A’A=A’B+AB’

For Cout, inputs of half adder are connected to the inputs of transmission gate logic as:

X=A,NX=A’,Y=1,7Z=B’

Then, Cout becomes:

Cout=(A’+B)(A+0)=A’A+A’0+AB+B0=AB

Each input of half adder is connected to 2 transmission gate logic blocks. For increasing the

drive strength of the inputs, they are passed through buffers. Figure 5.17 shows the block
diagram of the half adder including the input buffers.

59



B
1.6um e
" NA
Ain NA
INB Sum
0.56um A
1B
NAiIn <1j A JL NSum
0.56um T
vdd
1.6um JLA
Bin NB vdd
Cout
A
1.6um
gnd
NBin B L
NCout
0.56um
T
vdd

Figure 5.17 Schematic diagram of half adder block

Figure 5.18 shows an example simulation of half adder block. Table 5.7 shows the output
propagation times for all input transitions. Figure 5.19 shows same values in a graphical

representation.

60



— fhAin — fBin fsum — fCout

2.0

£ 1 Ain
=
-, 251
2.0n
= Ein P
= b
-.254
2.0n _
o MO(194.1p5)
= 3 Sum e
= :
- 251
2.0a
= Caut
=
-.25 : : :
© 2 1o 15 2.0
[ 1.9158ns[ 1.72223v time (ns)

Figure 5.18 A simulation example of half adder

Table 5-7 Output delay values of half adder for all input transitions

AB_initial AB _final Sum Cout
00 01 194ps NC
00 10 210ps NC
00 11 NC 215ps
01 00 209ps NC
01 10 NC NC
01 11 214ps 215ps
10 00 212ps NC
10 01 NC NC
10 11 221ps 216ps
11 00 NC 198ps
11 01 215ps 215ps
11 10 217ps 217ps

61




225

S
S
5 € S
o > ©
O wvn Y=
]
¢ B =
G
<
r (%]
- (<5}
=
[l
>
>
[ | - o =
3
| -
>
o g
‘ T >
° ¥
[<B}
[5)
* N < 8
(] Y o)
|Oob o —_
€ = @
2 | S 3
[ | o b=~ ]
—_— +— Y—
g o =
‘ - o £ n R
© 1)
(7] —_ [<B]
o <
e -
— Y
— o
N ©
. .Plv ..w
=
>
2 < F
© L
[«B]
[ | - o =
(@)) B
— %)
0 5o £
S &
>
o > o
O 1N O 1N © n O [ N
N 4 4 O O o & e}
AN N &N AN N - Py
(sd)Aejap andinp 5
2
LL

Figure 5.20 Layout of the half adder block
62



54.2 Full adder design

Full adder has 3 inputs named as A, B, and Carry input (Cin). Table 5.8 shows the truth table
of full adder.

Table 5-8 The truth table of full adder
Cin Sum Cout

R P P P o o o o »
| R o o R Rl o o w
| o k| o k| o r| o
| o o k| o R r| o
| R R o k| o o o

Sum=A xor B xor Cin = A’B’Cin+A’BCin’+AB’Cin’+ABCin
Cout=AB+ACin+BCin+ABCin

Sum and Cout are generated using two stages in full adder implementation. An intermediate
signal “P” (propagate) is generated in the first stage, where
P=A xor B=A’B+AB), therefore connection of inputs to generic transmission gate block is

similar to the half adder:

X=B, NX=B’, Y=A", Z=A,
P=~(AB+A’B’)=(A’+B’)(A+B)=A’B+AB’

P signal is used in the generation of both the Sum and Cout, where

Sum=P xor Cin
Cout=~(PCin’+P’B’).

Fan out of P and NP signals are 2, however they are connected to the gates of the transistors.

Driving the gate of a transmission gate is easier than driving source or gate. Therefore,

63



driving capacities of P and NP signals are enough for driving the gates of double
transmission gate logic. Figure 5.21 shows the transistor level diagram of full adder. “Cin”
and “NCin” inputs are delayed using a cascade of 5 inverters. "P" and “NP” signals are used
with the delayed version of "carry” input and “B” input to produce the outputs “Sum” and
“Cout”.

5 A NCin-dJLP
S1
Ng-NA "E ; Cind 2"
A Ip

gnd
JLD NP JLD NSum
I I

d
vdd d
d
d

=y

Cout

%Hﬁ%ﬁ“”ﬁépﬁﬁ
s
bty

Figure 5.21 Schematic diagram of full adder block

NCout

Table 5.9 shows the output delay values of full adder block. The minimum delay is 340ps
and the maximum delay is 402ps. Figure 5.22 shows the graphical representation of the

output delay values.

64



Table 5-9 Output delay values of full adder

Trans. | ABCin ABCin Delay of | Delay of | Trans. | ABCin ABCin Delay of | Delay of
no initial final Sum Cout no initial final Sum Cout
1 000 001 366ps NC 29 100 000 390ps NC

2 000 010 385ps NC 30 100 001 NC NC

3 000 011 NC 380ps 31 100 010 NC NC

4 000 100 378ps NC 32 100 011 349ps 364ps
5 000 101 NC 357ps 33 100 101 353ps 367ps
6 000 110 NC 353ps 34 100 110 376ps 370ps
7 000 111 367ps 364ps 35 100 111 NC 387ps
8 001 000 365ps NC 36 101 000 NC 374ps
9 001 010 NC NC 37 101 001 376ps 390ps
10 001 011 394ps 368ps 38 101 010 340ps 348ps
11 001 100 NC NC 39 101 011 NC NC
12 001 101 387ps 374ps 40 101 100 354ps 363ps
13 001 110 364ps 363ps 41 101 110 NC NC
14 001 111 NC 354ps 42 101 111 367ps NC
15 010 000 387ps NC 43 110 000 NC 358ps
16 010 001 NC NC 44 110 001 365ps 378ps
17 010 011 353ps 367ps 45 110 010 376ps 391ps
18 010 100 NC NC 46 110 011 NC NC
19 010 101 354ps 366ps 47 110 100 372ps 378ps
20 010 110 393ps 381ps 48 110 101 NC NC
21 010 111 NC 367ps 49 110 111 366ps NC
22 011 000 NC 378ps 50 111 000 363ps 374ps
23 011 001 370ps 390ps 51 111 001 NC 357ps
24 011 010 354ps 364ps 52 111 010 NC 402ps
25 011 100 353ps 363ps 53 111 011 393ps NC
26 011 101 NC NC 54 111 100 NC 401ps
27 011 110 NC NC 55 111 101 389ps NC
28 011 111 380ps NC 56 111 110 365ps NC

65




[l Cout
Sum

30 40 50 60
Sample number

20

10

Figure 5.22 Graphical representation of output delay values of full adder

Figure 5.23 shows the layout diagram of full adder.

I | |

Figure 5.23 Layout diagram of the full adder block

Partial Product Generation

543

Partial products are generated by using AND operation of a single bit of the multiplier with

all the bits of the multiplicand. AND gate is also designed by using generic transmission gate

logic. The inputs of the AND block is connected to the inputs of transmission gate as:

X=B; NX=B’; Y=1; Z=A"

Q

(B’+A)(B+0)=AB

(BA’+B’1)=

=~

66



Schematic diagram of AND gate is shown in Figure 5.24.

|8
A NB '—E -
B
gnd
B
e

Figure 5.24 Schematic diagram of AND gate

The inputs of X, NX and Z comes from the outputs of inverters. For balancing the drive
strengths of Y input with those inputs, Y input is not connected directly to VDD. Rather, it is
connected by using an inverter, whose input is tied to GND. Since NMOS transistor is

always OFF, it is omitted and only PMOS transistor is used.

A partial product generator combines one bit of multiplier with all the bits of the
multiplicand. In an 8x8 bit multiplier, a fan out of 8 is needed to produce partial products.
For driving 8 inputs, the drive strength of the single bit of multiplier is increased by a buffer
composed of a cascade of 3 inverters. Buffered signal is used to drive the gates of transistors
in the transmission gate logic, since driving the gates require less drive capability than

driving drain or source of the transistors.

8 bits of the multiplicand are delayed by using cascades of 4 inverters for equalizing the
delay differences. Figure 5.25 and Figure 5.26 show the block diagram and simulation of the
partial product generator, respectively. Layout diagram of the partial product generator is
shown in Figure 5.27.

67



3.2u| 6.4u

1.6u
B «E NB_buf

0.56u | 1.12u| 2.24u

3.2u | 6.4u

1.6u
NB<E B_buf

0.56u [1.12u 12.24u

NA<7:0> | D_NA<7:0>

8 x Delay

NB_buf

— Q<7>
b Nacys | AND2 | NO<7>
NBB—_b?’l;f AND2 nggz
D_NA<6> B
D _NA<5> AND2 | NQ<5>
NBBBZUTf |Qed>
D NA<d> AND2 | NQ<4>
NBBBZUT]C |_Q<3>
D_NR<37> AND2 | NQ<3>
o | | o
D_NR<2> AND2 | NQ<2>
NB%BZT AND2 ng;
D _NA<1> Bhhae
o NAcos | AND2 | Na<o>

Figure 5.25 Block diagram of partial product generator

68



B o .y —INB_buf
1.5
1.0
=
=
54
0
T T T T T T T T
2.0 21 22 23 24 2.5 2.6 27
[2.4391n: | 1641y time [ns)
(@)
—HI0/1277/D_NA<O> — NE_buf — HI0/PP1<0>
1.5
1.0
z
=3
5]
O i
T T T T T T T
2.0 21 2.2 23 2.4 2.5 26 2.7
[2.1253ns| 676.55my time {ns)
(b)

Figure 5.26 Simulation of partial product generator

69



Figure 5.27 Layout diagram of partial product generator

5.4.4 Sampling of the signals

The width of the waves decreases while propagating through the logic, and they must be
sampled before their aperture becomes too small which creates setup and hold time
violations. Sampling resets the propagating waves, and they start propagating with equalized

delays. It is important to use a register, which is capable of sampling narrow pulses.

The setup time is the minimum amount of time the data signal should be held steady before
the clock event so that the data are reliably sampled by the clock. Hold time is the minimum
amount of time the data signal should be held steady after the clock event so that the data are
reliably sampled. Setup and hold time must be small, in order to sample narrow pulses.
There are many flip-flop and latch structures. Mesochronous multiplier in [24] uses Sense
Amplifier Based Flip-Flop (SAFF). The setup and hold time of SAFF is 10ps and 130ps,
respectively. The clock High time of the SAFF is 160ps, and considering a clock signal with
50% duty cycle, the minimum clock period is 320ps. A margin of 30ps is used, so that
operating frequency of SAFF becomes 2.86GHz.

70



In this implementation, C2MOS latches are used for sampling because of their high speed
operation, which is seen in Figure 5.28. By using iterations and parametric analysis, the sizes
of the transistors are optimized for sampling narrow pulses with minimal delay variation at
the output. Table 5.10 shows the sizes of the transistors of the latch, which is capable of
sampling a pulse with a width of 120ps. The setup time of the latch is 0. Latching occurs in
the positive clock cycle; therefore the signals must be stable in this region. A clock signal
with a frequency of 5GHz is used in the simulations of the C2MQOS latch. Figure 5.29 shows
the transitions of the internal signals of the latch. In Figure 5.30, several propagating waves
with an aperture of 120ps and clock signal are shown before sampling. Figure 5.31 shows the

same signals after sampling.

—
Nclk
Din | bﬁ Q
ok
—
gnd
JLD NQ
T
vdd

Figure 5.28 Schematic diagram of C?MOS latch

Table 5-10 Transistor sizes of C°MOS latch.

Wp1l 1.6um
Wp2 1.6um
Wnl | 480nm
Wn2 | 480nm

71



" “""‘-!-_.__ _/ I'“""""'---._._‘_

&4 (S 8 7.0
tirme (ns)

Figure 5.29 Simulations of internal signals of the latch

WV

3.25 3.5 3.75 4.0 4,25
time (ns)

Figure 5.30 Propagating waves before sampling

72



Y (W)

| - - —
1.5
1.0
54
JUL
T Y Y et e M
3.25 3.5 4.0 4.25

3.75%
time (ns)

Figure 5.31 Propagating waves after sampling

Input to output delay of C2MOS depends slightly on the shape and position of the input.
Therefore, a delay difference of 10ps occurs after sampling.

55 Implementation of 8x8 bit CSA multiplier

In order to demonstrate the effectiveness of WCSM and compare it with the mesochronous
pipelining scheme, two 8x8-bit multipliers using both the mesochronous pipelining scheme
and WCSM are implemented. First, the mesochronous multiplier using the same structure of
the multiplier in [24] is implemented. Then WCSM is applied to this multiplier. Internal

logic blocks described before are used in the multipliers.
55.1 Schematic design

Figure 5.32 shows the block diagram of the multiplier, where full-adders are shown with

“F”, half adders are shown with “H”, and the registers are shown with “R”.

Full adder has two levels of transmission gate logic, while half adder and partial product
generator have one level of logic. Every logic level increases the delay difference between
signals; therefore at most 6 levels of logic stages are used between registers, which is seen in
Figure 5.32.

73



The first register stage is used at the input. The second register stage is used after a cascade
of a partial product generator, a half adder, and 2 full adders, which takes 6 levels of logic
stages. The third register stage is used after a cascade of 3 full adders. The fourth register
stage is used after a full adder plus a cascade of 3 half adders. The fifth register stage, which

is also the output stage, is used after a cascade of 4 half adders plus an “OR” gate.

~ N\ ~n

cloct 2R\ St >
1>E>>>m>>>>>|5
[ SIS NS
[ o T 7 S < A
* g ig%p JHF %T L Ll R s E s Ll
[ L L D e S e e
Enl e @Eﬁ P e Ly
N I o N 2 G < S < i - I
= | I D I S it
N G i A e G IS - N <R RNy
R 1RM] TH TH IR I -ﬂﬁ M<13>
s s G . G ol i . ot
g Gy RN L LR [ e EENE L (R M<15>
[ Al H H (A H
N N G - I
S O i
JF H o)
~ JH . DR

Figure 5.32 Block diagram of mesochronous multiplier

As it is seen from Figure 5.32, there are some paths which do not contain 6 levels of logic
operation. The paths in the upper triangular region are composed of only buffer cascades.
Also, the paths in the partial product generation region are composed of an “AND” gate and
buffer cascades. Therefore, the delay differences of those paths do not reach to critical delay
difference value. When WCSM s applied to this multiplier, the latches which are circled
with dashed lines are eliminated and they are replaced with delay elements. Figure 5.33

shows 8x8 bit multiplier implemented using WCSM.

74



\ 4
\ 4

clock >
> M<0>

M<1>
M<2>

M<3>

M<4>

M<5>
M<6>

M<7>
M<8>
M<9>
M<10>
M<11>
M<12>
M<13>
M<14>

M<15>

VARV
v
“IVVVVVVV

““‘VVVVVVV
5“““"'7"'

““VVVVVVV

1L
107

VN
[T]

VWYWWY VY VYV VY
ﬂﬂ.ﬂ.ﬂlﬂlﬂ.ﬂ.ﬂ.ﬂ (= Ha -z Hz Ha o =]

N
[T

RN
[z (=]
VAN
[T]
Ly

Figure 5.33 Block diagram of 8x8 bit multiplier using WCSM

In mesochronous multiplier, 110 registers are used including input and output registers.
However, in WCSM multiplier only 70 registers are used, without any performance loss in
the operating frequency. The total number of the registers in the multiplier implemented with
WCSM is 41% lower than the multiplier implemented with mesochronous pipelining
method. The reduction of the registers also decreases the transistor sizes of the associated

clock buffers, which significantly reduces the power consumption.

55.2 Operating Frequency

In the multiplier, at most 6 transmission gate logic cells are cascaded between two successive
register stages. Each transmission gate logic has a delay difference of 25ps at the output,
when the inputs are applied simultaneously. When they are cascaded, the delay differences
of the logic cells are accumulated. Therefore, the total delay difference, which is also the
width of the transition region, becomes 150ps after 6 logic levels. C2MOS latch samples the
data at positive cycle of the clock signal; therefore the transition of the signals must occur at
negative cycle. This condition limits the minimum width of the negative clock cycle to be

equal to the width of the transition region, which is 150ps. If a clock signal with a duty cycle

75



of 50% is used, then the minimum clock period becomes 300ps. Considering the additional
delay difference coming from the latch itself and to have some margin, it is proper to use a
clock signal with a period of 330ps (an operating frequency of 3GHz).

553 Layout Implementation of the multipliers

The layouts of the multipliers are implemented using UMC 0.18um technology with
Cadence design tools. All the logic blocks, clock buffers and the latches are drawn by using
full custom design methodology. 1 poly and 3 metal layers are used in the design. The
placement and routing is performed carefully to minimize the delay difference between

signals.
The height of the standard logic cell is 15.8um. Figure 5.34 shows the layout of the

multiplier implemented using mesochronous pipelining method. The area of both of the

multipliers is 0.175mm?.

76



E
t

Figure 5.34 Layout view of 8x8 bit multiplier using mesochronous pipelining

554 Simulations of multipliers

Random input pattern at a frequency of 3GHz is applied to the multipliers. Figure 5.35
shows the propagating waves after the first partial product generation layer. The width of the
propagating waves decreases to 260ps after partial product generation. Figure 5.36 shows the
propagating waves after the first half adder layer. The width of the propagating waves
become 235ps. Figure 5.37 and Figure 5.38 shows the propagating waves after the first full
adder layer and the second full adder layer, respectively. The widths of the propagating

waves become 185ps after first full adder layer and 130ps after second full adder layer.

77



Figure 5.39 shows the propagating waves at the output of the registers. The width of the
propagating waves increases to 270ps after sampling.

>0 55 6.0 6.5 20
[ &.0lns| -2.2407my tirne (ns)

Figure 5.35 Propagating waves after first partial product generator

1.25

i >3 B0 6.5 7.0
[ 5.99ns] L1.BOOOZV time {ns)

Figure 5.36 Propagating waves after the first half adder layer

78



1.5+
1.0+
= ]
= |
5

0_- g W

T T T T T T T T T T T T T T T T T T T T T
5.0 5.5 &0 6.5 7.0
time (ns)

5.4ns|  Bl0.6mY
Figure 5.37 Propagating waves after the first full adder layer

04~ ~ ool

>0 35 &.0 6.5 7.0

£.708ns| 9.7S08BSmY time (ns)

Figure 5.38 Propagating waves after the second full adder layer

79



15_ III r /
i |
. |
1.0 ]
= |
=] |
B }
: |
|

O "'J"—\—\_H—'_
T ¥ ¥ — T T ¥ — — ¥ ¥ ¥ " T
5.0 5.5 6.0 6.5 7.0
tife (ns)

S 468ns | 79.444my
Figure 5.39 Propagating waves after sampling

555 Performance comparison of the multipliers

The replacement of unnecessary latches with the delay elements does not affect the
remaining circuit; therefore both of the multipliers have the same operating frequency of 3

GHz.

The number of the latches is reduced by 41%, which decreases the power consumption due
to the latches. Since the number of latches is decreased, the transistor sizes of the clock
buffers driving the latches are reduced in accordance with the reduction of the latches. This
significantly reduces the power consumption due to the clock buffers. The delay elements
replaced with the latches consume additional power; however it is lower than the power
consumed by the latches. Table 5.11 shows the comparison between the multiplier with
mesochronous pipelining scheme and the multiplier with WCSM. Total power of the

multiplier is decreased by 9.5%.

80



Table 5-11 Comparison between mesochronous and WCSM multiplier

Mesochronous | WCSM
multiplier multiplier
Number of registers 110 70
Power of half adders 6.43mwW 6.29mwW
Power of full adders 20.63mw 20.94mwW
Power of partial 15.95mwW 15.72mwW
product generators
Power  of  clock 25.29mwW 14.83mW
buffers and latches
Power of  delay 25.87TmwW 27.42mW
elements
Total power 94.17mwW 85.20mwW
Percentage of power 21.5% 17.4%
of clocking circuits
Reduction in total - 9.5%
power

5.6 A 5GHz WCSM-Multiplier

The power consumption of registers and clock buffers increases when the number of pipeline
stages is increased. For demonstrating the effectiveness of WCSM in fully pipelined
structures, an ultra high speed multiplier is designed using carry save structure. Figure 5.40
shows the block diagram of the full pipelined multiplier. After all logic operations, the
propagating waves are sampled. Therefore, there are totally 17 clock signals, which all have
a frequency of 5GHz but different phases, in the multiplier. Since each clock signal drives at
most 16 gates, the sizes of the clock buffers are much smaller than that of a single clock
buffer.

81



M<0>
H M<1>
;% F M<2>
el nlie e
H[" %L% FFT‘%F M<4>
H[ %Lﬂ FFTL F M<5>
HE A FL AT M<6>
- M<7>
HL A S vile
] H Vo>
I FLH F H V<1 0>
] JH JH N1 o
> F [ JH JH M0
L - - W voihe
g B e ﬁm‘;
JHC 1 JH [ JH D]
e et
[ H
JH
Y<7:.0>
X<7:0>
clkin B e e P P

Figure 5.40 Full pipelined multiplier

When WCSM s applied to this circuit all the unnecessary registers, which are used after
delay elements, are omitted. The signals of these paths are aligned with the sampled signals
by using cascades of inverters, which decreases the total number of latches by 45%
compared with the mesochronous pipelined multiplier. The sizes of the corresponding clock

buffers are also decreased.

For comparing 5GHz WCSM multiplier with the mesochronous pipelined multiplier, both of
the circuits are implemented using UMC 0.18um CMOS technology. Full custom design
methodology with Cadence design tools is used in the design of all the logic blocks and
latches. Post layout simulations are performed using Analog Design Environment of
Cadence. Figure 5.41 shows the propagating waves at a frequency of 5 GHz before
sampling.

82



= =

125

325 3.5 375 4.0 425
tirme (ns)

Figure 5.41 Propagating waves before sampling

Maximum power consumptions of the multipliers are measured by alternatively applying
00x00 and FFxFF to the inputs, in which maximum number of transitions occurs in the
multiplier circuit. Table 5.12 shows the maximum power comparison of the proposed
multiplier with the mesochonous pipelined multiplier. The total power consumption of
mesochronous pipelined multiplier is 113.5mA, and 65mA of it comes from clock buffers
and latches. In WCSM multiplier, the power consumption is slightly increased due to delay
elements. However, the power consumption of clock buffers and latches decreases
significantly, therefore the total power consumption is decreased by 13.7% without any

performance loss in the operating speed of the circuit.

83



Table 5-12 Comparison between 5GHz mesochronous and WCSM multipliers

Wave-pipelined Proposed multiplier
multiplier
Half adders 6.12mwW 6.59mW
Full adders 13.14mW 13.90mw
Partial product | 19.44mW 27.18mwW
generators
Clock buffers and| 117.0mW 69.12mw
latches
Delay elements 48.60mw 59.70mwW
Total power 204.3mwW 176.5mwW
Power percentage of | 57.2% 39.2%
clocking circuits

For measuring the average power with random inputs, same random input pattern is applied
to both multipliers. Table 5.13 shows the comparison of the power consumption with random
inputs. The rate of the transitions is lower when random input pattern is used; therefore the
power of logic elements and latches decreases. However, the power of clock buffers remains
almost the same, therefore the percentage of total power of clocking circuits in the multiplier
is increased to 62.5%, and in WCSM multiplier it is only 42.1%. Overall power of the

WCSM multiplier is also 18.4% lower than that of the mesochronous-pipelined multiplier.

84



Table 5-13 Comparison of the multipliers with random inputs

Wave-pipelined | Proposed
multiplier multiplier
Half adders 3.92mwW 3.85mwW
Full adders 9.09mwW 9.02mwW
Partial product | 12.80mW 18.85mwW
generators
Clock buffers and | 100.85mW 55.44mW
latches
Delay elements 34.79mW 44.42mwW
Total power 161.45mwW 131.58mwW
Power percentage | 62.4% 42.1%
of clocking circuits

5.7 IMPLEMENTATION OF THE OTHER MULTIPLIER STRUCTURES
57.1 Booth encoder design

Modified Booth-2 algorithm is implemented using UMC-0.18um CMOS technology. Figure
5.42 shows the block diagram of the mux_6x1 logic which selects inputs from the set of {0,
+M, +2M, -2M, -M, 1}. Both the normal and complementary outputs are generated. Figure
5.43 shows the MUX module containing 8 mux_6x1 logic blocks. Figure 5.44 shows the top
level schematic of the booth-2 module. There are 5 MUX modules, each of them containing
8 internal MUX modules. There are also 16 buffers which drive the inputs of the MUX es. 4
of the MUX modules select one of 5 inputs, and the last MUX selects one of 2 inputs, which
is either 0 or M.

85



leokﬁ
INS1

Buso%{ 52
lNSZ%{ »{j Q

s2

S0

2M gnd

y 1NSO%{ E L E NG
[s0 j]%“Sﬂ E ;g;

S0 on

M - Ist

ENSO%{
d

Iso

Figure 5.42 Design of Mux6x1 using generic transmission gate logic

86



M<0> | Mux
| 6x1
S0S1S2
M<0> | Mux
M<is 6x1
S0S1S2
M<1> | Mux
M<2s 6x1
S0S1S2
M<2> Mux
M<3s 6x1
S0S1S2
M<3> | Mux
M<ds 6x1
S0S1S2
M<4> | Mux
M<5> | 6x1
S0S1S2
M<5> | Mux
M<6> | 6x1
S0S1S2
M<6> | Mux
M<7> 6x1
S0S1S2
sO —
S1.d
S2 d2

87

PP<0>

NPP<0>

PP<1>

NPP<1>

PP<2>

NPP<2>

PP<3>

NPP<3>

PP<4>

NPP<4>

PP<5>

NPP<5>

PP<6>

NPP<6>

PP<7>

NPP<7>

Figure 5.43 Block diagram of 8xmux module



Mbuf<7:0>——{M<7:0> pp<g:0>| P P0<8:0>
NMbuf<7:0>——|NM<7:0> 8 X Mux 6x1  Npp<g.0> NPP0<8:0>

{B<1>,B<0>,0} sel<2:0>
{NB<1 >,NB<0>,1) Nsel<2:0>
Mbuf<7:0> M<7:0> PP<8:0> PE;:B:S
NMbuf<7:0> NM<7:0> 0> NPP1<58:0>
(B<3>,B<2>B<1> Nlezos  BXMux6xl  NPP<g0>
{NB<3>NB<2>NB<1> Nsel<2:0>
Ain<7:0> Mbuf<7:0> \Mouf<7:0> | w<r:0> PP<8:0> %EE?&
s . uf<7:0> NM<7:0> 0> INEFE :
NAIn<7:0> 8 x Buffer NMbuf<7:0> B<5> B<4> B<3> T 8 X Mux 6x1  NPP<8:0>
{NB<5>,NB<4> NB<3> Nsel<2:0>
Bin<7:0>] B<7:0>
NBin<7:0> 8 x Buffer NB<7:0> Mbuf<7:0> M<7:0> PP<g:0> ESg;SBO;
NMbuf<7:0> NM<7:0 0> NPP3<5:0>
B<7>,B<6>,B<5> Selezos  BXMux6xl  NPP<g0>
{NB<7> NB<6> NB<5>}—| Nsel<2:0>
Mbuf<7:0>——|M<7:0> PP<7:0> %27:703
NMbuf<7:0> NM<7:0> 0> NPPA</0>
B<7o o 8 X Mux 2x1  NPpP<7:0>
NB<7> Nsel

Figure 5.44 Top level block diagram of Booth Encoder module

When mesochronous pipelining or conventional pipelining method is used, then there will be
10 latches in mux_6x1 block including latches of S1_d and S2_d2 signals. There are 8x5=40
mux_6x1 block in the booth-2 module, therefore total number of latches is 400. If WCSM s
applied, then there is no need to sample S1 and S2 signals, and 7 latches are enough in
mux_6x1 module. This decreases total number of latches by 30%, which is 280.

57.2 Wallace tree design

Table 5.14 shows the constructed Wallace tree, in which 3 levels of logic is used. In this

table, following abbreviation is used:

X: Partial product bit

H: Half adder (X+X)

H’: Modified half adder (X+X+1)
F: Full adder (X+X+X)

G: Gates (X+1)

D: Direct transfer.

88



Table 5-14 Wallace tree construction of Modified Booth-2 with 3 levels

0] 0 0 0 [1S0[ S0 ] S0 X[ X[ X[ X[ X[ X[ X[ XX
0] o 0 T [ 81| X | X | X | X | X | X | X | x| X S0
0] 1 |2 X | X | X[ X[ X[ X[ X[ X[ X S1
3] X | X | X | X | X | X | X | X [ X S2
X| X | X | X | X | X | X | X s3
H| W | F | FD|FH| FH| FH| FH| FD | FH| F | FD | H F D | H
X | X | X 1 X | X | X | X | X | X X | X X | X
X[ X [ X | X | X [ X | X | X[ X[ X[ X ]| X[ X X

X | X | X | X | X | x| X X

X | X | X | X X

I
I
I
a
v}
a
v}
o
lw)
a
v}
M
Bl
v}
M
I
M
I
o
I
w)

X X 1 X X X X X X
X X X X X X X X X X X X X

X X X X X
H H H ;i F F F H F H H H D H D D
X X X X X X X X X X X X X X
X X X X X X X X X X X X

Figure 5.45 shows the block diagram of the Wallace tree implementation. Full adder blocks
have 2 stages, and half adder blocks have 1 stage. If conventional pipelining or
mesochronous pipelining with latches after all logic stages are used in Wallace tree, then
every half adder and delay element must be sampled two times, for equalizing the path with
the full adder. In this case, there will be 239 latches in the conventional pipelined
implementation. If WCSM is applied, the total number of latches becomes 117, which
constitutes a reduction of 51%. The comparison between conventional or mesochronous

pipelining and WCSM in terms of number of registers is shown in Table 5.15.

89



Stage 1 Stage 2 Stage 3
[ D | [ D]
[ D] [ D]
[ D]
[ D]
[ D]
PPO <8:0> @
i Sum_w1 <15:5>
Pr2<ge> [ > (D] [ > gy [ > [P >
PP3 <8:0> o Sum_w2 <15:0>
PP4 <7:0>
D]
D]
D]
D

Figure 5.45 Block diagram of wallace tree with modified Booth-2 algorithm

Table 5-15 Comparison of Wallace trees with mesochronous pipelining and WCSM

Conventional or mesochronous

pipelining methods

Wave Component
Sampling Method

Latches used in half adders 24x2x2=96 24x2x1=48
Latches used in full adders 23x5=115 23x3=69
Latches used in delay elements | 14x2=28 -

Total number of latches 239 117
Reduction in latches - 51%

90




5.7.3

4 bit carry look-ahead adder circuit is designed using transmission gate logic with two
inputs. Figure 5.46 shows the first carry look-ahead adder circuit design. It can be seen from
the figure that, the generation of the group propagate (PG) and group generate (GG) signals
are completed in 3 and 5 levels of logic stages, respectively. The generation of carry output

Carry Lookahead adder design

(C4) is completed in 6 levels of logic stages, which is quite high.

A0 ——

BO—

PO

GO

Al——

B1——

P1

G1

A2 ——

B2 ——

P2

G2

POP1

GOP1

GOP1P2P3

G1P2P3

C4

A3——

B3 —

P3

G3

D POP1P2P3 [
L

P2P3

The carry signal is produced using the formula Ck+1=PkCk+Gk. The logic circuit of this
carry generation formula using 2 input logic gates can be seen in Figure 5.47. It can be seen
from the figure that the carry output is generated 2 logic stages after the arrival of the carry

input. In order to speed up this operation, carry generation formula is modified to be

COPOP1P2P3

G2P3
G3+G2P3 M
J -

™S
V

co_d

Figure 5.46 Schematic design of 4-bit carry look-ahead adder circuit

compatible with the transmission gate logic, such that:

Ck+1=Pka+Gk(Ck+ ! Ck)ZCK(Pk+Gk)+ 1IC Gy

co POCO
A12 —| PO
c1
B12 — GO—e

Figure 5.47 Carry generation logic

91



Figure 5.48 shows the modified carry generation using this formula, from which it can be

seen that the carry is generated using only one level of logic.

GO

P0+G0

Cco

Cco

Co

P0+G0

1c0 4 > o Go_|

MUX

| C1

Figure 5.48 Modified carry generation circuit

Figure 5.49 shows the carry generation at the first stage of 4 bits. Since there is no incoming

carry signal in the first stage, no need to produce group propagate or group generate signals.

Therefore, all the logic related to GG and PG is omitted. Also there is no need to produce PO

signal. Therefore, the carry signal is produced using 5 levels of logic in the first stage.

No need to
PO in first

t;

ge
el

A0—— PO
BO—— GO
Al—— P1
B1—— G1
A2 —— P2
B2—— G2
A3—— P3
B3—— G3

C1=G0

P1
G1

P2
G2
P3
G3

P1+G1
G1_d1

MUX | C2

c1 S
P2+G2
G2_d2

C3

MUX ——

C2
P3+G3

M
- ca |

MUX

C4

Figure 5.49 Carry generation circuit of first stage with 5 levels of logic

In the generation of P signal, both “EXOR” and OR operations can be used. “EXOR”

operation is preferred, because “A XOR B” is needed while obtaining Sum output. However,

when OR gate is used in the generation of P1, then P1+G1=Al1+B1+A1B1=A1+B1=P1.

Therefore, OR gate which produces P1+G1 can be neglected for decreasing the latency of

carry generation of the first stage by 1. The carry output at the first stage can be completed

using 4 levels of logic instead of 5, which is shown in Figure 5.50.

92



A0 ——

BO—

PO

GO

Al——

B1—

P1

G1

A2 ——

B2—

P2

G2

A3——

B3—

P3

G3

Figure 5.50 Carry generation circuit of first stage with 4 levels of logic

Figure 5.51 shows the carry generation of 16 bit adder circuit. In the first group of 4 bits, no
carry look-ahead logic is used, while in the 2nd and the 3rd groups, carry outputs are

C1=G0

A1+B1

G1

C1

MUX

Cc2

P2+G2

G2_d1

C2

MUX

C3

P3+G3

G3_d2

C3

MUX

generated 1 logic level after the arrival of the incoming carry signal.

In the design of 8x8 bit multiplier, the constructed Wallace tree produces 2 outputs of 13 bits
and 16 bits, respectively. Therefore, 13 bit carry look-ahead adder is suitable for this

particular application. Figure 5.52 shows the block diagram of 13 bit carry look-ahead adder,

where carry look-ahead logic is only used in the 2nd group of 4 bits.

93

C4



GG[1]

ca

PG2+GG2

A6— P6
B6——

AT—| P7
B7T— G7|
AB— P8
B8— G8
A9— P9
B9—— [e]
A10— P10
B10—] Gl

A11— P11
B11— G11
A12— P12
B12—| G12]
A13— P13
B13— G13
A14— P14
B14——| G14]
A15— P15
B15— G15

P12+G12

S15

P15+G15

C16
.
C15:

Figure 5.51 16 bit adder with carry look-ahead logic

94



A0 s
80
mj) > st
A0 c1
80 G0 c1=60
A1+B1
-
P2
2 ) y =
c2
P3
@ ) > . s
c3

P4+G4

P5+GS5 s6
5 MUX

P7jz :
%PE 3
G6 c7

PB+G8
P9 so
G8 | yux Lco
A8 P8 c8
B8 G8
P9+GY P10 s10
) cto
A9 P9 co
B9 G9
P10+G10 P11 s
c10
B10 G10| P11+G11 P12 si2
o 012
cit

B11 G11
P12+G12 P13 s

G12 C13
c12

Figure 5.52 13 bit adder with carry look-ahead logic.

For comparing the areas of the carry look-ahead adder and the carry save adder, 16 bit carry
save adder tree is designed using Half adder blocks. Figure 5.53 shows the schematic design
of the 16 bit carry save adder tree. It can be seen from the figure that, the addition takes 16

levels of logic stage, where each stage is composed of Half adders.

95



i
____________-ﬂ
__________mmﬂmﬂmmm

e e e e o I e
| |T

Figure 5.53 16 bit carry save adder tree.

Table 5.16, 5.17 and 5.18 show the number of sub blocks and total number of transistors

used in the 16-bit carry save adder, 16 bit carry look-ahead adder and 13 bit carry look-ahead

adder, respectively. Comparing Table 5.16 with Table 5.17, it can be seen that carry look-

ahead adder implementation utilizes 35% less transistors than the 16 bit carry save adder

implementation.

Table 5-16 Transistor count of 16-bit carry save adder implementation

of

Number

used
3144
720

1440
3864

number

gate | transistors

logic
524
120
240

of | Total

trans. gate logic | of trans.

in block

of | Number

Number

instantiation

136
120
80

Block name

HA

Delay
Latch

Total number of transistors without latches

96



Table 5-17 Transistor count of 16-bit carry lookahead adder implementation.

Block name Number of | Number of pass | Total number | Number  of
instantiation logic in block | of pass logic transistors

used

PG 15 4 60 360

XOR 16 2 32 192

AND2 14 2 28 168

OR2 19 2 38 228

MUX 14 2 28 168

Delay 230 1 230 1380

Total number of transistors 2496

Table 5-18 Transistor count of 13-bit carry lookahead adder implementation.

Block name Number of | Number of | Total number | Number  of
instantiation trans. gate logic | of trans. gate | transistors
in block logic used
PG 12 4 48 288
XOR 13 2 26 156
AND2 7 2 14 84
OR2 15 2 30 180
MUX 11 2 22 132
Delay 180 1 180 1080
Total number of transistors 1920

Block diagram of 16-bit CLA adder with WCSM is shown in Figure 5.54. The delays of all
the paths in the direction of propagation are balanced by using active delay elements. For
simplicity, not all of the delay elements are shown in the figure. Rather, following

abbreviation is used: “i_dj” means “i” signal is delayed by “j” stages, i.e. “P_d3” means P

signal is delayed by 3 stages.
Summation is completed in 11 stages. Only 1 logic level is used in every stage. For having

an ultra high speed adder, latches are inserted between every stage. Therefore, there are 11

register regions and 11 clock signals.

97




If mesochronous pipelining method or conventional pipelining methods are used, then the
total number of registers in 16-bit CLA design becomes 251. When WCSM s applied, a
register is only used after a logical operation occurs. Therefore, all the registers, which are
used after a delay element, are omitted and replaced by delay elements. In this case, total
number of latches becomes 96, which is 62% lower than the conventional or mesochronous

pipelining methods.

98



S0 DS DS DS DS DS DS ™~ ™~ ™~ S0
? ) > > > > > > > > > >
P1 N N N N N N g S1
0 012)} PS> > > > > > > > >
BO— GO—C1=G0
A1— p—ALEBI S2 o P~ P~ N P~ M M s2
G1 MUXCZ > > L > > 1> L~ >
B1— Gl—
S3 o P~ P~ P~ P~ P~ s3
A2—[ P2}— .- G2_d1 MUXcs ) ) L L~ L~ L L~ L~ >
B2— G2—
A3 P3 P4 d3 s4
—] — P~ P~ P~ P~ P~ >
B3 Ga_ G3 d2 C4 L~ L L 1~ 1~
P4 d 4 P5.d4
Gadz) MG - S5 M~ M~ M S5
A PE s 4 d B >
Ba— & P6_d5
P5_d3
P + - S6 M P S6
A5 P5 _ G5 d4 cé 1> 1> > >
B5— G5 Cs
PG+ T S7 P~ s7
A6— P6 = G6 d 7 L L >
B6— G6 Cé
s8 S8
AT— P7 cs > > >
B7T— G7
P8_d4 pg+Gg P9_ GZ
G8_d4 8 d5 MUXCQ
P9_d5 P10_d7
A8—{ P8 G9_ d5 P + ~[C10
Bs_| Gs Go_dly
c9 —1
A9— P9 PG2+GG2 P10_d6 -
BO—| GO > = S11 S11
A10—] P10
B10—] G10 Pe2
P12 d6 s S12
A11—] P11
B11—| GM1
P12_d P12+G12 P13 d
Al2—[ P12
B12— G12 g}g—gg P13+G13P1g; S14~~__S14
| 13_d7
A13—[ P13 c13
B13—{ G13| P14_d7<—R14+G14 P15_d9
G14_d7 15 > > 815
Al4—] P14 G14_dg |MUX
B14— G14 c14
P15_d P15+G15
A15—] P15 G14_d8 IC16
B15—| G15 G15_ag MUX
C15

Figure 5.54 Block diagram of 16-bit CLA adder with balanced paths

Table 5.19 shows the comparison of the multipliers implemented using booth encoder,
Wallace tree, and carry look-ahead adder blocks with conventional pipelining and WCSM,
respectively. As it is seen from the table, total number of registers is decreased by 45%,
when WCSM is used.

99



Table 5-19 Overall comparison of the multipliers

Conventional or | Wave Component Sampling
mesochronous pipelining | Method
methods

Latches wused in booth | 400 280

encoder

Latches used in Wallace tree | 239 117

Latches used in carry look- | 251 96

ahead logic

Total number of latches 890 493

Percentage of reduction in| - 45%

number of latches

574

CLA Adder Design with 4-input logic gates

Carry look-ahead adders are used to reduce the total latency of the outputs. However, when

using 2-input logic gates, group propagate and group generate signals cannot be produced

fast enough, which decreases the efficiency of carry look-ahead logic. Therefore, 16 bit carry

look-ahead adder using 4 input logic blocks is implemented, which is shown in Figure 5.55.

As it is seen from the figure, first carry output (C4) is produced with a latency of 3 logic

levels. At the same time instant, GG1 & GG2 (group generate 1-2) signals are produced,

therefore C8 and C12 are obtained with a latency of 4. Therefore, overall summation is

completed with a latency of 5. The reduction of latency brings a lot of reduction in the

number of delay elements in wave-pipelining. Therefore, the delay characteristics of 4-input

logic elements are analyzed.

100




P0'a gerek
yok GO
A0— P1
P2
BO—— GO— C1=G0  ——
P3
Al— P1— _
] c4
B1—— Gl— P2
P3
A2—| P2l — -
B2—— G2— G2
P
A3— P3l—
G3
B3— 63— —‘H
PO
P1
— PG
P2
_P3
G4
A4— Pal— 5
B4—| Ga— _P6 |
P7
A5 —] Psl—
G5 GG1
B5—— G5—— “ps |
P7
i GG1
A6—— P6l—— — c8
PG1_d AB+C
B6—— G6—— a6
P7 c4
A7 —] P7—
B7 —| G7—— i‘%

P5
— PG1
_P6 |

P7

c12
C_logic_2
A8 — Ps|—
B8 ——| G8——
A9—— Pol—
B9——| Go——
A10— P10}—
BIo—|  Glo|—
A11— P1—
B11—|  GU|—
a2—| P12
B12—  G12|
AM3—] P13
B13—|  G13
AMa—] P14
B14—|  Gi4
AMs5—] P15
B15—  G15|

Figure 5.55 16-bit carry lookahead adder with 4-input logic gates

101



5.8 Delay analysis of logic blocks with 4 inputs

Delay difference value of Classical CMOS logic is much higher than that of the pass
transistor logic. One of the main reasons is that the number of pull-up or pull-down paths
depends on the input data pattern. Considering CMOS Nand gate with 2 inputs, if both of the
inputs are LOW, then there will be two pull-up paths. For limiting the current, [17] proposed
to use a serial transistor at the top. Figure 5.56 shows a 4 input CMOS AND gate with a
serial current limiting pull up transistor at the top.

gnd,

‘ ‘
.

b B G0 o T
Q

° 0o W >

Figure 5.56 4-input AND gate with serial current limiting transistor

The fastest transition at the output occurs when all of the inputs switch from HIGH to LOW,
which causes all of the pmos transistors to join pull-up current. The delay time at the output
becomes 92ps in this case. The slowest transition occurs when all the inputs are HIGH and
the last input (connected to the nmos transistor closest to ground) switches to LOW, i.e.
ABCD input pattern is 1111 and switches to 1110. In that case, output delay time is 173ps. If
the input pattern is 1111 and switches to 0111, then the delay time at the output becomes
116ps. Therefore, the place of the switching transistor at the serial pull-down path is another
main reason of the delay difference at the output. Table 5.20 shows the delay values of the 4
input AND gate depending on the input patterns of concern. It can be seen that, delay
difference value is 81ps. Table 5.21 shows the output delay values when there is no limiting
transistor at the top. In that case, the delay difference value becomes 84ps, and the slowest

path becomes pull-down path, rather than one transistor pull-up of the previous one.

102



Table 5-20 Delays of 4-input CMOS with a limiting pmos of W=900nm at the top

ABCD1 ABCD?2 Delay
0000 1111 139ps
1111 0000 92ps

0111 1111 107ps
1111 0111 116ps
1110 1111 143ps
1111 1110 173ps
Delay difference value 81ps

Table 5-21 CMOS_AND4_v1_delays with no limiting transistor at the top

ABCD1 ABCD2 Delay
0000 1111 131ps
1111 0000 51ps
0111 1111 107ps
1111 0111 89ps
1110 1111 135ps
1111 1110 121ps
Delay difference value 84ps

It is possible to use a small pmos limiting transistor at the top, but in that case the rise time
will be very high, which is not a recommended case in high speed wave-pipelined design.

A 2 input AND gate is also designed which can be seen in Figure 5.57. The output delay
values of this circuit can be seen in Table 5.22, and the delay difference value at the output

becomes 27ps.

103



Figure 5.57 2-input CMOS AND gate

Table 5-22 Delay values of CMOS_AND2_v1

AB1 AB2 Delay
00 11 103ps
11 00 87ps
01 11 92ps
11 01 97ps
11 10 114ps
10 11 98ps
Delay difference value 27ps

Using 2 input AND gates, another 4 input AND gate is designed, which can be seen in
Figure 5.58. Table 5.23 shows the output delay values where the delay difference value is
58ps. Comparison with the CMOS_AND4 vl gate is given in Table 5.24. Although the
delay difference value decreases from 81ps to 58ps, the number of transistors is increased
from 11 to 21 and the latency is also increased from 173ps to 234ps. Therefore, the choice

will be a design trade-off.

104



Figure 5.58 4-input CMOS And gate constructed with 2-input gates

Table 5-23 Delay values of CMOS_AND4_v2

AB1 AB2 Delay
0111 1111 234ps
1111 0111 198ps
0000 1111 209ps
1111 0000 176ps
Delay difference value 58ps

105




Table 5-24 Comparison of CMOS_AND4_v1 and CMOS_AND4_v2.

CMOS_AND4_v1

CMOS_AND4_v2

Number of trans. 11 21
Output Latency 176ps 234ps
Delay difference at the | 81ps 58ps

output

106




CHAPTER 6

CONCLUSION

In this thesis a novel wave-pipelining methodology named as Wave Component Sampling
Method (WCSM) is developed and discussed. In all of the previous pipelining methods such
as conventional pipelining, wave pipelining, and mesochronous pipelining, all of the
components of propagating waves are sampled whenever they arrive to a synchronization
stage. However, WCSM allows partial sampling of the signal components of the propagating
waves. Only the components, whose minimum and maximum delay differences reach to the
tolerable value, are sampled and the other signal components are delayed using active delay
elements. Therefore, this methodology promises significant reduction in the number of the

sampling flip-flops or latches.

To demonstrate the effectiveness of this method and to compare it with the mesochronous
pipelining methodology, two 8x8 bit multipliers are implemented using mesochronous
pipelining scheme and WCSM, respectively. Several optimizations are performed in the
design of sub blocks for achieving high performance multipliers with low power

consumption.

Minimizing the delay differences between propagating waves is very important for having
high speed multiplication with a small number of pipeline stage. Therefore, a generic
transmission gate logic block, which has minimum delay variation at the output depending
on the input pattern, is designed. This transmission gate logic block has three inputs and
performs the output function of Q=~(X*Z+NX*Y). The minimum and maximum delay

variation of this generic logic block is kept within 27ps.
In the implementation of multiplier, both the normal and complementary signals are

required. When the normal and complementary signals are generated using different logic

blocks, a delay difference between them occurs. And when they are connected to the gates of

107



the transistors of cascading transmission gate logic blocks, the asymmetry between the
transitions of normal and complementary signals creates conflict on the succeeding output.
Therefore, simultaneous generation of normal and complementary signals is important. A
method for generating normal and complementary signals simultaneously with symmetric
transitions is proposed. Instead of using separate logic blocks, both the normal and the
complementary outputs are generated using same transmission gate logic. Another
transmission gate, which is always “ON” and has same delay value with that of the inverter,
is used to obtain both of the normal and the complementary signals. The reduction in the
number of logic blocks also reduces the drive strength required at the output of the preceding

logic block.

Half adder and full adder blocks are designed using generic transmission gate logic blocks.
Half adder has single stage, where full adder has two stages of logic operation. The delay

variation at the output of half adder and full adder blocks are 27ps, and 62ps, respectively.

In the multiplier, fan out is kept as at most two for having high speed operation. However, in
the generation of partial products, a fan out of 8 is needed. For driving 8 inputs, the drive
strength of the single bit of multiplier is increased by a buffer composed of a cascade of 3
inverters with increasing transistor sizes. Buffered signals are used to drive the gates of
transistors in the transmission gate logic, since driving the gates requires less drive capability

than driving drain or source of the transistors.

While propagating, the width of the waves decreases. They must be sampled before their
aperture becomes too small which creates setup and hold time violations. C2MQOS latch is
designed and used to sample narrow waves with a minimum aperture of 120ps. Latches are

operational at a frequency of 5GHz.

8x8-bit carry save adder (CSA) multipliers are implemented with mesochronous pipelining
scheme and WCSM. For comparing the methods adequately, same structure of [24] is used,
in which a layer of register is used after 3 layers of full adders. Full custom design
methodology with Cadence design tools is used and UMC-0.18um CMOS technology is
employed in the implementation. The operating frequency of both of the multipliers is 3GHz.
The number of the latches is decreased by 41% when WCSM is employed. The reduction in

the number of latches also decreases the power consumption of the associated clocking

108



network. Post layout simulations show that total power of the chip is also decreased by 9.5%,

without any performance loss.

For investigating the benefits of WCSM in higher level pipelined circuits, two CSA
multiplier using mesochronous pipelining method and WCSM are implemented with a fully
pipelined structured. A register layer is used after all of the logic layers. In this case, the
operating frequency of the multipliers is increased to 5GHz, which is the fastest multiplier
using 0.18um CMOS technology. In the multiplier employing WCSM, the number of the
registers is decreased by 45%. The power of the multiplier is also decreased by 18.4%. This
demonstrates that, benefits of WCSM increase when the number of pipeline stages and

operating frequency of the circuit increase.

WCSM is also applied to the other multiplier structures for observing its effects with
different circuit structures. Booth encoder, Wallace tree and carry look-ahead blocks for 8x8
bit multiplication are designed with full pipelined structures, and then WCSM is applied to
them. In the design of booth encoder, the number of registers decreases from 400 to 280,
which constitutes a reduction of 30%. In the design of Wallace tree, the number of registers
is decreased from 239 to 117, with a reduction of %51. The number of the registers is also
decreased from 251 to 96 in the implementation of 16 bit carry look-ahead adder,
constituting a reduction of 62%. The overall reduction in the implementation of 8x8 bit
multiplier employing booth encoder, Wallace tree and carry look-ahead adder is from 890 to
493, which constitues a reduction of 45%.

WCSM is a novel pipelining methodology which provides a significant reduction in the
number of registers, without a performance loss. For future research, the application of
WCSM to different pipelined circuits could be investigated. Crypto processes, filter
applications, multiplier and accumulators (MAC), memory structures, communications

algorithms like Viterbi decoders etc are good candidates for the application of WCSM.

Besides the benefits of WCSM, its design complexity is high. Computer Aided Design

(CAD) tools could be developed for automatically implementing circuits using WCSM.

109



BIBLIOGRAHPY

[1].  W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, "Wave-Pipelining: A Tutorial
and Research Survey," IEEE Trans. VLSI Syst., vol. 6, no. 3, pp. 464 - 474, Sep. 1998.

[2].  S. Anderson, J. Earle, R. Goldschmidt, and D. Powers, “The IBM system/360 model
91 floating point execution unit,” IBM J. Res. Develop. Jan. 1967.

[3]. L. Cotten, "Maximum rate pipelined systems." in AFIPS Pror. Spring Joirlr Coniput.
Conf., 1969. pp. 581-586.

[4].  B. Ekroot, “Optimization of pipelined processors by insertion of combinational logic
delay,” Ph.D. dissertation, Stanford Univ., Stanford, CA, 1987.

[5].  J. P. Fishburn, “Clock Skew Optimization”, IEEE Trans. on Computers, vol. 39, no.
7, pp. 945 - 951, July 1990.

[6]. D. Wong, G. De Micheli, M. Flynn, and R. Huston, “A bipolar population counter
using wave pipelining to achieve 2.5 normal clock frequency,” IEEE J. Solid-State Circuits,
vol. 27, May 1992.

[7]. K. A. Sakallah, T. N. Mudge, T. M. Burks, and E. S. Davidson, “Synchronization of
pipelines,” in IEEE Trans. Computer-Aided Design, vol. 12, 1993.

[8]. D. A. Joy and M. J. Ciesielski, “Clock period minimization with wave pipelining,”
in IEEE Trans. Computer-Aided Design, Apr. 1993.

[9]. D. Wong, G. De Micheli, and M. Flynn, “Designing high performance digital
circuits using wave pipelining: Algorithms and practical experiences,” IEEE Trans.
Computer-Aided Design, vol. 12, Jan. 1993.

[10]. C. T. Gray, W. Liu, W.A.M. Van Noije, T.A. Hughes, R. Cavin III, “A sampling
technique and its CMOS implementation with 1 Gb/s bandwidth and 25 ps resolution,” IEEE
J. Solid-State Circuits, vol. 29, pp. 340-349, March 1994,

[11]. C. T. Gray, W. Liu, and R. Cavin III, “Timing constraints for wave pipelined
systems,” IEEE Trans. Computer-Aided Design, vol. 13, pp.987-1004, Aug. 1994.

[12]. W. Liu, C. Gray, D. Fan, T. Hughes, W. Farlow, and R. Cavin “A 250- Hz wave
pipelined adder in 2-_m CMOS,” IEEE J. Solid-State Circuits, pp. 11171128, Sept. 1994.

[13]. D. Ghosh and S. Nandy, “Design and realization of high-performance wave-
pipelined 8 _ 8 b multiplier in CMOS technology,” IEEE Trans. VLSI Syst., vol. 3, pp. 37—
48, 1995.

[14]. K. Nakamura et al., “A 220-MHz pipelined 16-mb BiCMOS SRAM with PLL
proportional self-timing generator,” IEEE J. Solid-State Circuits, pp. 1317-1322, Nov. 1994.

110



[15]. K. Ishibashi et al., “A 300 MHz 4-mb wave-pipelined CMOS SRAM using a multi-
phase PLL,” in Proc. ISSCC’95, 1995, pp. 308-309.

[16]. S. Tachibana et al., “A 2.6 ns wave pipelined CMOS SRAM with dual sensing-latch
circuits,” IEEE J. Solid-State Circuits, pp. 487-490, pr. 1995.

[17]. F. Klass, “Wave pipelining: Theoretical and Practical Issues in CMOS,” Ph.D.
dissertation, Stanford Univ., Stanford, CA,1994.

[18]. W.K.C. Lam, R.K. Brayton, A.L. Sangiovanni-Vincentelli, “Valid clock frequencies
and their computation in wavepipelined circuits,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 15, pp. 791-807, July 1996.

[19]. E.I. Boemo, S. Lopez-Buedo, and J. M. Meneses, “Some experiments about wave-
pipelining FPGAs,” IEEE Trans. VLSI Syst., vol. 6, pp. 232-237, June 1998.

[20]. W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, "Wave-Pipelining: A Tutorial
and Research Survey," IEEE Trans. VLSI Syst., vol. 6, no. 3, pp. 464 - 474, Sep. 1998.

[21]. J. Nyathi and J. G. Delgado-Frias, “Hybrid-wave pipelined network router,” IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 49, no. 12, pp. 1764-1772, Dec. 2002.

[22]. A. Joshi and J. Davis, “Wave-pipelined multiplexed (WPM) routing for gigascale
integration (GSI),” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 8, pp.
899-910, Aug. 2005.

[23]. V. Deodhar and J. Davis, “Optimization for throughput performance for low power
VLSI interconnects,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 3, pp.
308-318, Mar. 2005.

[24]. S.B. Tatapudi, J.G. Delgado-Frias, "A mesochronous pipelining scheme for high-
performance digital systems," IEEE Trans. Circ. Syst. I, vol. 53, no. 5, pp. 1078 - 1088, May
2006.

[25]. M. Singh, S.M. Nowick, “MOUSETRAP: High-Speed Transition-Signaling
Asynchronous Pipelines,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 6,
pp. 684-698, June 2007.

[26]. Y. Suwen, B.D. Winters, M.R. Greenstreet, “Surfing Pipelines: Theory and
Implementation,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1405-1414, June 2007.

[27]. V. Deodhar and J. Davis, “Optimization for throughput performance for low power
VLSI interconnects,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 3, pp.
308-318, Mar. 2005.

[28]. D. Schinkel, E. Mensink, E. Klumperink, E. Tuijl, B. Nauta, “Low-Power, High-

Speed Transceivers for Network-on-Chip Communication,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 17, no. 1, pp. 12-21, Jan. 2009.

111


http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43

[29]. X. Jiang, W. Wolf, Z. Wei, “Double-Data-Rate, Wave-Pipelined Interconnect for
Asynchronous NoCs,” IEEE Micro, vol. 29, no. 3, pp. 20-30, June 2009.

[30]. Z. Xia, S. Ishihara, M. Hariyama, M. Kameyama, “Synchronising logic gates for
wave-pipelining design,” Elect. Letters, vol. 46, no. 16, pp. 1116-1117, Aug. 2010.

[31]. J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, 2nd ed.,
Upper Saddle River: NJ, Prentice Hall, 2002.

[32]. C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on
Electronic Computers, EC-13:14-17, February 1964.

[33]. G. W. Bewick, “Fast Multiplication: Algorithms And Implementation,” PhD
Dissertation, Stanford University, 1994,

[34]. A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly Journal of
Mechanics and Applied Mathematics, 4(2):236-240, June 1951.

[35]. A. Weinberger, and J. L. Smith, “A One-Microsecond Adder Using One-Megacycle
Circuitry,” IRE Transactions on Electronic Computers, EC-5:65-73, June 1956.

112



APPENDIX A

HDL CODES OF MULTIPLIER BLOCKS

A.1 Verilog HDL code of top module (booth3_bias_wallace_ CLA16)

module booth3_bias_wallace_CLA16(
input [7:0] a,//multiplicand
input [7:0] b,//multiplier
output [15:0] c,
output [15:0] sum_wallace,
output [15:0] sum_cla,
output cla_overflow

);

wire [3:0] selO, sell;
wire [2:0] sel2;
wire [10:0] K_M,K_2M,K_3M,K_4M;

wire [10:0] mux0_out,mux1_out,mux2_out;

wire [15:0] pp0,ppl,pp2,pp0_y,pp0_s,ppl_y,ppl_s,pp2_y;
wire s0,s1;

wire [15:0] comp;
wire [15:0] sum1,sum2,sum;

/Iwire [15:0] sum_wallace;

wire [15:0] sum_cla_compsuz;

KplusM

KplusM(
.M(a[7:0]),
K_M(K_M[10:0])
)i

Kplus2M

113



Kplus2M(
.M(a[7:0]),
K_2M(K_2M[10:0])
)

Kplus3M

Kplus3M(
.M(a[7:0]),
.K_3M(K_3M[10:0])
)

Kplus4M

Kplus4M(
.M(a[7:0]),
K_4M(K_4M[10:0])
)i

booth3_mux

mux0(

.sel(sel0[3:0]),

.mux_in_0(K_M[10:0]), IIK+M  /filk bit yO
.mux_in_1(K_2M[10:0]), IIK+2M  /lilk bit y0
.mux_in_2(K_3M[10:0]), IIK+3M  //ilk bit yO
.mux_in_3(K_4M[10:0]), IIK+4M  [lilk bit y0
.mux_out(mux0_out[10:0])

),

mux1(

.sel(sel1[3:0]),

.mux_in_0(K_M[10:0]), IIK+M  /lilk bit yO
.mux_in_1(K_2M[10:0]), IIK+2M  /filk bit yO
.mux_in_2(K_3M[10:0]), /IK+3M  /lilk bit y0
.mux_in_3(K_4M[10:0]), IIK+4M  /filk bit yO
.mux_out(mux1_out[10:0])

)

booth3_mux_sondaki
mux2(

.sel(sel2[2:0]), //sonuncu muxta select 3 bit

.mux_in_0(K_M[10:0]), /IK+M  /lilk bit yO
.mux_in_1(K_2M[10:0]), /IK+2M  //ilk bit yO
.mux_in_2(K_3M[10:0]), /IK+3M  //ilk bit yO
.mux_in_3(K_4M[10:0]), /IK+4M  //ilk bit yO
.mux_out(mux2_out[10:0])

)

114



wallace_booth3_bias_8x8 wallace(

-PPO(PPO),-PPL(PPL).-PP2(PP2),-PPO_Y(PPO_Y),-PPL_Y(PPL_Y).-PP2_Y(PP2_Y),-PPO_S(PPO_S).-pPpL_s(ppl_s),.suml(sumd),.sum2(
sum2),.sum(sum));

CLA_16 CLA(.A(sum1[15:0]),.B(sum2[15:0]),.Cin(1'd0),.PP(),.PG(),.Sum(sum_cla_compsuz[15:0]),.Cout(cla_overflow));

assign sum_cla[15:0]=sum_cla_compsuz[15:0]+comp[15:0];

assign sum_wallace[15:0]=sum[15:0]+comp[15:0];

assign sel0[3:0]={b[2:0],1'd0};

assign sel1[3:0]=b[5:2];

assign sel2[2:0]=b[7:5];//sonuncu selectin basi 0
assign s0=b[2];

assign s1=b[5];

assign pp0[15:0]={2'd0,!s0,s0,s0,50,mux0_out[9:0]};
assign pp1[15:0]={2'b11,!s1,mux1_out[9:0],3'd0};
assign pp2[15:0]={mux2_out[9:0],6'd0};//sonuncu farkli

assign pp0_y[15:0]={9'd0,mux0_out[10],6'd0}; //muxlarin 10.bitleri y
assign ppl_y[15:0]={6'd0,mux1_out[10],9'd0}; //muxlarin 10.bitleri y

assign pp0_s[15:0]={15'd0,s0};
assign pp1_s[15:0]={12'd0,s1,3'd0};

Ilek

assign pp2_y[15:0]={3'd0,mux2_out[10],12'd0}; //muxlarin 10.bitleri y

assign comp[15:0]=16'hF6EO;

/lassign c[15:0]=pp0[15:0]+pp1[15:0]+pp2[15:0]+pp0_y[15:0]+pp0_s[15:0]+ppl_y[15:0]+ppl_s[15:0]+comp[15:0];
assign
¢[15:0]=pp0[15:0]+pp1[15:0]+pp2[15:0]+pp0_y[15:0]+pp0_s[15:0]+ppl_y[15:0]+ppl_s[15:0]+pp2_y[15:0]+comp[15:0];

endmodule

A.2 Verilog-HDL code of KplusM

module KplusM(
input [7:0] M,
output [10:0] K_M //10.bit yO
/loutput yO
)
assign K_M[10]=M[5];
assign K_M[9:0]={2'd0,M[7:6],!M[5],M[4:0]};

115



A.3 Verilog-HDL code of Kplus2M

module Kplus2M(
input [7:0] M,
output [10:0] K_2M //10.bit y0O
/loutput yO
)
[lassign yO=M[4];
assign K_2M[10:0]={M[4],1'd0,M[7:5],!IM[4],M[3:0],1'd0};

A.4 Verilog-HDL code of Kplus3M

module booth3_mux(
input [3:0] sel,
input [10:0] mux_in_0,//K+M  //ilk bit yO

input [10:0] mux_in_1,//K+2M /1ilK bit yO
input [10:0] mux_in_2,//K+3M /lilk bit y0
input [10:0] mux_in_3,//K+4M /1ilk bit y0
output reg [10:0] mux_out /1ilk bit yO cikisi
)i
always @(sel or mux_in_0 or mux_in_1 or mux_in_2 or mux_in_3)
case (sel)
4'd0://K+0
begin

mux_out[10]<=0;//y0

mux_out[9:6]<=4'd0;

mux_out[5]<=1;

mux_out[4:0]<=5'd0;

end
4'd1://K+M

mux_out[10:0]<=mux_in_0[10:0];//y0
4'd2://K+M

mux_out[10:0]<=mux_in_0[10:0];//y0
4'd3://K+2M

mux_out[10:0]<=mux_in_1[10:0];
4'd4:/IK+2M

mux_out[10:0]<=mux_in_1[10:0];
4'd5://K+3M

mux_out[10:0]<=mux_in_2[10:0];
4'd6://K+3M

mux_out[10:0]<=mux_in_2[10:0];
4'd7:/IK+4M

mux_out[10:0]<=mux_in_3[10:0];
4'd8:/IK-4M

116



mux_out[10:0]<=~mux_in_3[10:0];

4'd9://K-3M
mux_out[10:0]<=~mux_in_2[10:0];
4'd10:/K-3M
mux_out[10:0]<=~mux_in_2[10:0];
4'd11://IK-2M
mux_out[10:0]<=~mux_in_1[10:0];
4'd12://K-2M
mux_out[10:0]<=~mux_in_1[10:0];
4'd13://K-M
mux_out[10:0]<=~mux_in_0[10:0];
4'd14://K-M
mux_out[10:0]<=~mux_in_0[10:0];
4'd15:
begin
mux_out[10]<=1;//y0
mux_out[9:6]<=4'hF;
mux_out[5]<=0;
mux_out[4:0]<=5'h1F;
end
default
begin
end
endcase
endmodule

A.5 Verilog-HDL Code of Kplus4M

module Kplus4M(
input [7:0] M,
output [10:0] K_4M //10.bit yO
/loutput yO

/lassign yO=M[3];
assign K_4M[10:0]={M[3],M[7:4],'M[3],M[2:0],2'd0};

endmodule

A.6 Verilog-HDL Code of Booth3Mux

module booth3_mux(

117



input [3:0] sel,

input [10:0] mux_in_0,//K+M  //ilk bit yO
input [10:0] mux_in_1,//K+2M

input [10:0] mux_in_2,//K+3M

input [10:0] mux_in_3,//K+4M

output reg [10:0] mux_out
)

/1ilk bit yO
/1ilk bit yO
/1ilk bit yO

/1ilk bit yO cikisi

always @(sel or mux_in_0 or mux_in_1 or mux_in_2 or mux_in_3)

case (sel)

4'd0://K+0
begin
mux_out[10]<=0;//y0
mux_out[9:6]<=4'd0;
mux_out[5]<=1;
mux_out[4:0]<=5'd0;
end

4'd1://K+M

mux_out[10:0]<=mux_in_0[10:0];//y0

4'd2://IK+M

mux_out[10:0]<=mux_in_0[10:0];//y0

4'd3://IK+2M

mux_out[10:0]<=mux_in_1[10:0];

4'd4:/IK+2M

mux_out[10:0]<=mux_in_1[10:0];

4'd5://K+3M

mux_out[10:0]<=mux_in_2[10:0];

4'd6://K+3M

mux_out[10:0]<=mux_in_2[10:0];

4'd7://K+4M

mux_out[10:0]<=mux_in_3[10:0];

4'd8://K-4M

mux_out[10:0]<=~mux_in_3[10:0];

4'd9://K-3M

mux_out[10:0]<=~mux_in_2[10:0];

4'd10://K-3M

mux_out[10:0]<=~mux_in_2[10:0];

4'd11://K-2M

mux_out[10:0]<=~mux_in_1[10:0];

4'd12://K-2M

mux_out[10:0]<=~mux_in_1[10:0];

4'd13://K-M

mux_out[10:0]<=~mux_in_0[10:0];

4'd14://K-M

118



mux_out[10:0]<=~mux_in_0[10:0];
4'd15:
begin
mux_out[10]<=1;//y0
mux_out[9:6]<=4'hF;
mux_out[5]<=0;
mux_out[4:0]<=5'h1F;
end
default
begin
end

endcase

endmodule

A.7 Verilog-HDL code of wallace_booth3_bias_8x8

module wallace_booth3_bias_8x8(
input [15:0] ppO,
input [15:0] pp1,
input [15:0] pp2,
input [15:0] ppO0_y,
input [15:0] ppl_y,
input [15:0] pp2_y,
input [15:0] pp0_s,
input [15:0] ppl_s,
output [15:0] sum1,
output [15:0] sum2,
output [15:0] sum
)

wire [15:0] S1,C1,S2,C2;

/lLevel 1

half_adder u11(.A(ppO[0]),.B(pp0_s[0]),.S(S1[0]),.C_out(C1[0]));

assign S1[1]=ppO[1]; assign C1[1]=1'd0;//dogrudan ul2

half_adder u13(.A(pp0[2]),.B(ppl_s[2]),.S(S1[2]),.C_out(C1[2]));

full_adder u14(.A(ppO[3]),.B(pp1[3]),.C_in(pp1_s[3]),.S(S1[3]),.C_out(C1[3]));
full_adder u15(.A(ppO[4]),.B(pp1[4]),.C_in(ppl_s[4]),.S(S1[4]),.C_out(C1[4]));
half_adder u16(.A(ppO[5])..B(pp1[5]),.S(S1[5]),.C_out(C1[5]));

full_adder u17(.A(pp0[6]),-B(pp1[6]),.C_in(pp2[6]),.S(S1[6]),.C_out(C1[6]));
full_adder u18(.A(pp0[71),-B(pp1[7]),.C_in(pp2[7]),.S(S1[7]),.C_out(C1[7]));
full_adder u19(.A(pp0[8]),.B(pp1[8]),.C_in(pp2[8]),.S(S1[8]),.C_out(C1[8]));
full_adder u110(.A(ppO[9]),.B(pp1[9]),.C_in(pp2[9]),.S(S1[9]),.C_out(C1[9]));

119



full_adder u111(.A(pp0[10]),.B(pp1[10]),.C_in(pp2[10]),.S(S1[10]),.C_out(C1[10]));
full_adder u112(.A(ppO[11]),.B(pp1[11]),.C_in(pp2[11]),.S(S1[11]),.C_out(C1[11]));
full_adder u113(.A(pp0[12]),.B(pp1[12]),.C_in(pp2[12]),.S(S1[12]),.C_out(C1[12]));
full_adder u114(.A(ppO[13]),.B(pp1[13]),.C_in(pp2[13]),.S(S1[13]),.C_out(C1[13]));
half_adder/*m*/ u115(.A(1'd1),.B(pp2[14]),.S(S1[14]),.C_out(C1[14]));
half_adder/*m*/ u116(.A(1'd1),.B(pp2[15]),.S(S1[15]),.C_out(C1[15]));

//Level 2

assign S2[0]=S1[0]; assign C2[0]=1'd0;//dogrudan u21

half_adder u22(.A(C1[0]),.B(S1[1]),.S(S2[1]),.C_out(C2[1]));

assign S2[2]=S1[2]; assign C2[2]=1'd0;//dogrudan u23

half_adder u24(.A(C1[2]),.B(S1[3]),-S(S2[3]),.C_out(C2[3]));

half_adder u25(.A(C1[3]),.B(S1[41),.S(S2[4]),.C_out(C2[4]));

half_adder u26(.A(C1[4]),.B(S1[5]),.S(S2[5]),.C_out(C2[5]));

full_adder u27(.A(C1[5]),.B(S1[6]),.C_in(ppO_y[6]),.S(S2[6]),.C_out(C2[6]));
half_adder u28(.A(C1[6]),.B(S1[7]),.S(S2[7]),.C_out(C2[7]));

half_adder u29(.A(C1[7]),.B(S1[8]),.S(S2[8]),.C_out(C2[8]));

full_adder u210(.A(C1[8]),.B(S1[9]),.C_in(pp1_y[9]),.S(S2[9]),.C_out(C2[9]));
half_adder u211(.A(C1[9]),.B(S1[10]),.S(S2[10]),.C_out(C2[10]));

half_adder u212(.A(C1[10]),.B(S1[11]),.S(S2[11]),.C_out(C2[11]));

full_adder u213(.A(C1[11]),.B(S1[12]),.C_in(pp2_y[12]),.S(S2[12]),.C_out(C2[12]));
half_adder u214(.A(C1[12]),.B(S1[13]),.S(S2[13]),.C_out(C2[13]));

half_adder u215(.A(C1[13]),.B(S1[14]),.S(S2[14]),.C_out(C2[14]));

half_adder u216(.A(C1[14]),.B(S1[15]),.S(S2[15]),.C_out(C2[15]));

assign sum1[15:0]=S2[15:0];
assign sum2[15:0]={C2[14:0],1'd0};

assign sum=suml+sum2; //Carry propagate adder

endmodule

A.8 Verilog-HDL code of half adder

module half_adder(
input A,
input B,
output S,
output C_out
)

assign S=A /N B;
assign C_out= A && B;

120



endmodule

A.9 Verilog-HDL code of full adder

module full_adder(
input A,
input B,
input C_in,
output S,
output C_out
)

assign SSANB AN C_in;
assign C_out= (A&B) | (A&C_in) | (B&C_in);

endmodule

A.10 Verilog-HDL code of 16 bit Carry lookahead adder

module CLA_16(

input [15:0] A,

input [15:0] B,

input Cin,

output PP,

output PG,

output [15:0] Sum,

output Cout

)
wire [3:0] P,G,C;
CLA 4bit
ul(.A(A[3:0]),.B(B[3:0]),.Cin(C[0]),.Sum(Sum[3:0]),.PP(P[0]),.PG(G[0])),
u2(.A(A[7:4]),.B(B[7:4]),.Cin(C[1]),.Sum(Sum[7:4]),.PP(P[1]),.PG(G[1])),
u3(.A(A[11:8]),.B(B[11:8]),.Cin(C[2]),.Sum(Sum[11:8]),.PP(P[2]),.PG(G[2])),
ud(.A(A[15:12]),.B(B[15:12]),.Cin(C[3]),.Sum(Sum[15:12]),.PP(P[3]),.PG(G[3]));

assign C[0]=Cin;

assign C[1]=G[0] | (P[0] & C[O]):;

assign C[2]=G[1] | (P[1] & G[0]) | (P[1] & P[0] & C[0]);

assign C[3]=G[2] | (P[2] & G[1]) | (P[2] & P[1] & G[0]) | (P[2] & P[1] & P[0] & C[0]);

121



assign Cout=G[3] | (P[3] & G[2]) | (P[3] & P[2] & G[1]) | (P[3] & P[2] & P[1] & G[0]) | (P[3] & P[2] & P[1] & P[0] & C[0]);

assign PP=P[3] & P[2] & P[1] & P[0];
assign PG=G[3] | (G[2] & P[3]) | (G[1] & P[3] & P[2]) | (G[0] & P[3] & P[2] & P[1]);

endmodule

A.11 Verilog-HDL code of 4-bit carry lookahead adder

module CLA_4bit(
input [3:0] A,
input [3:0] B,
input Cin,
output PP,
output PG,
output [3:0] Sum,
output Cout
)i

wire [3:0] P,G,C;

full_adder_CLA

ul(.A(A[0]),.B(B[0]),.Cin(C[0]),.Sum(Sum[0]),.P(P[0]),.G(G[0])),
u2(.A(A[1]),.B(B[11)..Cin(C[1]),.Sum(Sum[1]),.P(P[1])..G(G[1])),
u3(.A(A[2]),.B(B[2]),.Cin(C[2]),.Sum(Sum[2]),.P(P[2]),.G(G[2])),
u4(.A(A[3])..B(B[3])..Cin(C[3]),.Sum(Sum(3]),.P(P[3])..G(G[3]));

assign C[0]=Cin;

assign C[1]=G[0] | (P[0] & C[O]);

assign C[2]=G[1] | (P[1] & G[0]) | (P[1] & P[0] & C[0]);

assign C[3]=G[2] | (P[2] & G[1]) | (P[2] & P[1] & G[0]) | (P[2] & P[1] & P[0] & C[0]);

assign Cout=G[3] | (P[3] & G[2]) | (P[3] & P[2] & G[1]) | (P[3] & P[2] & P[1] & G[0]) | (P[3] & P[2] & P[1] & P[0] & C[0]);

assign PP=P[3] & P[2] & P[1] & P[0];

assign PG=G[3] | (G[2] & P[3]) | (G[1] & P[3] & P[2]) | (G[0] & P[3] & P[2] & P[1]);

endmodule

A.12 Verilog-HDL code of full-adder in CLA adder

module full_adder_CLA(
input A,
input B,
input Cin,

output Sum,

122



output P,
output G

)

assign P=A"B;
assign G=A&B,;
assign Sum=A"B"Cin;

endmodule

A.13 Verilog-HDL code of testbench

module tb_booth3 bias_wallace_clal6;

I Inputs
reg [7:0] &;
reg [7:0] b;

/I Outputs
wire [15:0] c,sum_wallace,sum_cla;
wire cla_overflow;
reg [15:0] a_b;
/I Instantiate the Unit Under Test (UUT)
booth3_bias_wallace_CLA16 uut (
.a(a),
b(b),
.c(c),
.sum_wallace(sum_wallace),
.sum_cla(sum_cla),

.cla_overflow(cla_overflow)

always @(a or b)
a_b[15:0]=a[7:0]*b[7:0];

reg clk;
initial

begin clk=0;
#1,

forever
begin
clk=Iclk;
#2;

end

end

123



reg hata;

initial hata=0;

reg hata_wallace;
initial hata_wallace=0;
reg hata_cla;

initial hata_cla=0;

always @(posedge clk)
if (a_b[15:0]!=c[15:0])

hata<=1;
else

hata<=0;

always @ (posedge clk)
if (a_b[15:0]!'=sum_wallace[15:0])
hata_wallace<=1;

else
hata_wallace<=0;
always @ (posedge clk)
if (a_b[15:0]!=sum_cla[15:0])
hata_cla<=1,;
else
hata_cla<=0;
initial begin
/I Initialize Inputs
a=0;
b=0;
/] Wait 100 ns for global reset to finish
#100;
forever
begin
a=$random;
b=$random;
#10;
/I Add stimulus here
end
end
endmodule

124



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Sever, Refik

Nationality: Turkish (TC)

Date and Place of Birth; 4" August 1979, Ankara
Phone: +90 242 310 63 89

email: refiksever@akdeniz.edu.tr

EDUCATION

Degree Institution Year of Graduation
MS METU Electrical & Electronics Engineering 2003

BS METU Electrical & Electronics Engineering 2001

High School Ankara Atatiirk Anatolian High School 1997

WORK EXPERIENCE

Year Place Enrollment
2010 — Present Akdeniz University Instructor
2000-2009 TUBITAK UZAY Senior Researcher,

Project Manager

Design Engineer

FOREIGN LANGUAGES
English

RECENT PUBLICATIONS
Refik Sever, Murat Askar, “8x8-Bit Multiplier Designed With a New Wave-Pipelining
Scheme,” in proceedings of International Symposium on Circuits and Systems (ISCAS-

2010), May 31- June 3, Paris.

R. Sever, O. Benderli, S. Yesil, N. Ismailoglu, B. Okcan, O. Sengiil, R. Oktem, “GEZGIN &
GEZGIN-2: Adaptive Real-Time Image Processing Subsystems for Earth-Observing Small

125


mailto:refiksever@akdeniz.edu.tr

Satellites”, 1st NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2006)
Konferans Kitabi, Istanbul, 15-18 Haziran 2006.

R. Sever, N. Ismailoglu, Y. C. Tekmen, M. Askar, “Efficient High Speed Asic
Implementation of The Rijndael Algorithm”, 1. Ulusal Kriptoloji Sempozyumu Konferans
Kitabi, ODTU, Ankara, 18-20 Kasim 2005.

R.Sever, A.N.Ismailoglu, M.Askar, Y.C.Tekmen, “A High Speed ASIC Implementation of
the Rijndael Algorithm,” 2004 IEEE International Symposium on Circuits and Systems, Vol.
2, pp. 541-544, May 2004, Vancouver, Canada.

R.Sever, A.N.Ismailoglu, M.Askar, Y.C.Tekmen, B. Okcan, “A High Speed FPGA
Implementation of the Rijndael Algorithm,” Digital System Design, Euromicro Symposium,
Page(s):358 — 362, 31 Aug.-3 Sept. 2004, Rennes, France.

S. Yesil, R. Sever, B. Okcan, N. Ismailoglu, “GOLGE: A Case Study of a Secure Data
Communication Subsystem for Micro-Satellites,” to appear in IEEE Proc. RAST 2005,
Istanbul, Turkey.

N. Ismailoglu, O. Benderli, S. Yesil, R. Sever, B. Okcan, R. Oktem, "GEZGIN-2: An
Advanced Image Processing Subsystem for Earth-Observing Small Satellites,” to appear in
IEEE Proc. RAST 2005, Istanbul, Turkey.

N. Ismailoglu, O. Benderli, I. Korkmaz, S. Yesil, R. Sever, H. Sunay, T. Kolcak, Y. C.
Tekmen, "GEZGIN: A Case Study of a Real-time Image Processing Sub-system for Micro-
satellites,” RAST 2003 International Conference on Recent Advances in Space
Technologies, November 20, 2003, Istanbul, Turkey.

R. Sever, " High Speed VLSI Implementation of the Rijndael Encryption Algorithm,”
Master Thesis, September 2003, Ankara, Turkey.

126



