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ABSTRACT 
 

WAVELET BASED DECONVOLUTION TECHNIQUES IN IDENTIFYING 

FMRI BASED BRAIN ACTIVATION 

 

Adlı Yılmaz, Emine 

 

M.S. Department of Electrical and Electronics Engineering 

Supervisor   : Prof.Dr. Aydan Erkmen 

Co-supervisor  : Assist. Prof.Dr. Didem Gökçay 

September 2011, 171 pages 

Functional Magnetic Resonance Imaging (fMRI) is one of the most popular 

neuroimaging methods for investigating the activity of the human brain during 

cognitive tasks. The main objective of the thesis is to identify this underlying brain 

activation over time, using fMRI signal by detecting active and passive voxels. We 

performed two sub goals sequentially in order to realize the main objective. First, by 

using simple, data-driven Fourier Wavelet Regularized Deconvolution (ForWaRD) 

method, we extracted hemodynamic response function (HRF) which is the 

information that shows either a voxel is active or passive from fMRI signal. Second, 

the extracted HRFs of voxels are classified as active and passive using Laplacian 

Eigenmaps. By this, the active and passive voxels in the brain are identified, and so 

are the activation areas.  

The ForWaRD method is directly applied to fMRI signals for the first time. The 

extraction method is tested on simulated and real block design fMRI signals, 

contaminated with noise from a time series of real MR images. The output of 

ForWaRD contains the HRF for each voxel. After HRF extraction, using Laplacian 

Eigenmaps algorithm, active and passive voxels are classified according to their 

HRFs. Also with this study, Laplacian Eigenmaps are used for HRF clustering for the 

first time. With the parameters used in this thesis, the extraction and clustering 

methods presented here are found to be robust to changes in signal properties.  
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Performance analyses of the underlying methods are explained in terms of sensitivity 

and specificity metrics. These measurements prove the strength of our presented 

methods against different kinds of noises and changing signal properties. 

 

Keywords: Hemodynamic response function (HRF) extraction, classification of 

HRFs, Functional Magnetic Resonance Imaging, fMRI 
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ÖZ 
 

Yüksek Lisans, Department of Electrical and Electronics Engineering 

Tez Yöneticisi  : Prof.Dr. Aydan Erkmen 

Ortak Tez Yöneticisi : Assist. Prof.Dr. Didem Gökçay 

Eylül 2011, 171 sayfa 

Fonksiyonel Manyetik Rezonans Görüntüleme (fMRG), beynin aktivasyon sürecini 

araştırmada kullanılan en yaygın yöntemlerinden biridir. Bizim tez çalışmamızın 

temel amacı, fMRG sinyallerini kullanarak, beyindeki aktif ve pasif vokselleri 

saptayıp, zamana bağlı olan beyin aktivasyonunu belirlemektir. Bu hedefe ulaşmak 

için sırasıyla iki adet ön hedefi gerçekleştirdik. İlk olarak, basit ve veritabanlı bir 

yöntem olan Fourier ve Wavelet Alanlarında Regülarizasyonlu Ters Konvolusyon 

(ForWaRD) metodunu kullanarak fMRG sinyalinden, bir vokselin aktif ya da pasif 

olduğunu gösteren bilgiyi, yani hemodinamik cevap fonksiyonunu (HCF) elde ettik. 

Daha sonra, Laplacian Özharitalama yöntemini kullanarak, elde ettiğimiz 

hemodinamik cevap fonksiyonlarını aktif ve pasif olma durumlarına bakarak 

sınıflandırdık. Bu sayede hem beyindeki aktif ve pasif vokseller hem de aktivasyon 

bölgeleri bulunmuş oldu.  

Bu tez çalışması ile birlikte ForWaRD yöntemi ilk kez fMRG sinyallerine doğrudan 

uygulanmıştır. Çıkarım yöntemi, üzerine gerçek MR gürültüleri eklenmiş, gerçek ve 

benzetimi yapılmış blok tasarım aktivasyon sinyallerinde test edilmiştir. ForWaRD 

işleminin çıkışı her bir voksel için HCF içermektedir. HCF çıkarımından sonra 

Laplacian Özharitalama yöntemi kullanılarak, aktif ve pasif vokseller HCF'lerine 

göre sınıflandırılmışlardır. Bu çalışma ile ayrıca Laplacian Özharitalama yöntemi ilk 

defa HCF sınıflandırmada kullanılmıştır. 

Mevcut parametreler ile bu tezde uygulanan çıkarım ve sınıflandırma yöntemlerinin, 

sinyal özelliklerindeki değişimlere karşı çok dirençli oldukları görülmüştür. Bahsi 

geçen yöntemlerin verim analizleri, hassaslık ve belirlilik yönlerinden incelenmiş ve 

açıklanmıştır. Bu ölçümler de sunduğumuz metotların farklı gürültü tiplerine ve 

sinyale özelliklerindeki değişikliklere karşı ne kadar güçlü olduğunu kanıtlamıştır.  
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Anahtar kelimeler: Hemodinamik cevap fonksiyonu (HCF) çıkarımı, HCF 

sınıflandırılması, Fonksiyonel Manyetik Rezonans Görüntüleme Analizi, fMRG. 
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CHAPTER 1 

INTRODUCTION 

1 INTRODUCTION 
 

The main objective of this thesis is to identify brain activation over time by detecting 

active and passive voxels using the FMRI signal at a specific period of time, the 

smallest three dimensional unit that spans the grid based three dimensional 

representation of the brain volume being a voxel. 

When people are involved in a task, a process or an emotion, only the voxels that are 

related to these actions become active and others remain passive. On the other hand, 

some voxels are affected by head movement, causing the assoociated time series to 

contain motion artifacts. A set of voxels participating in processing a specific task, 

process or emotion are present in different parts of the brain. If voxels containing 

active processing, passive noise and motion artifacts, as well as their locations in the 

brain can be identified, then we will be able to predict the functionality of that part of 

the brain. 

In order to detect and analyze brain activation, we must first obtain functional data 

from the brain. In the literature, there are many techniques to obtain data from brain 

using brain imaging techniques: Computed tomography (CT), developed in 1970s 

being one of the earliest imaging techniques. In order to constitute cross-sectional 

images of the brain, computed tomography scanning method uses X-rays. When a 

patient goes through a CT scan, X-ray images of the brain are taken with rings that 

circle around the patient’s head. CT scans efficiently map out the gross features of 

the brain, but lack the ability to give a true representation of the brain function [85]. 

Electroencephalography, shortly EEG, is a test method to measure the amount of 

electrical activity in the brain using electrodes. EEG is often used in 
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experimentation because it is non-invasive for the patient. It is notably sensitive and 

is capable of tracking changes in electrical activity milliseconds after neuronal 

activity [86]. Magnetoencephalography (MEG), measures the magnetic fields which 

come from the electrical brain activity.  These magnetic fields are called SQUIDS 

and the devices that are used in MEG are greatly sensitive in detecting them [87]. 

Another method for measuring blood oxygenation in the brain is an optical technique 

called NIRS. Light in the near infrared part of the spectrum (700-900nm) is sent 

through the skull and reemerging light is detected. This measuring depends on 

attenuation of the traveling light which is correlated with blood oxygenation. 

Therefore NIRS can provide an indirect measure of brain activity. [88]. 

In recent papers, Magnetic Resonance Imaging (MRI) method is often investigated in 

the brain imaging. An anatomical view of the brain (not functional) is what exactly 

MRI shows (not functional). It detects radio frequency signals. In the MRI 

procedure, no radioactive materials or X-rays are used and this feature is its major 

advantage. [89] 

Other methods in the literature specifically measure the brain activity. One of them is 

Positron Emission Tomography, or shortly PET scan. PET scan uses short-lived 

radioactive material’s minuscule amount that is either injected or inhaled and detects 

functional processes in the brain. The radioactive material includes nitrogen, oxygen, 

carbon and fluorine. While this material travels through the bloodstream, the oxygen 

and glucose accumulate in the metabolically active areas of the brain. When this 

radioactive material starts to break down, neutrons and positrons are produced. When 

neutron and positron clash, gamma rays are released. This is what creates the image 

of the brain. Another technique is functional magnetic resonance imaging, fMRI, that 

does not need radioactive materials. In addition, it produces images at a higher 

resolution than PET. Since the early 1990s, fMRI's relatively wide availability, low 

invasiveness and absence of radiation exposure have let it dominate the brain 

mapping field. Functional MRI (fMRI) is a brain imaging technique based on MR-

imaging. Functional MRI (fMRI) is a brain imaging technique based on MR-

imaging. This technique is used to measure brain activity by 



3 
 

 monitoring the increase in blood oxygenation and blood flow, which indicates the 

areas of the brain that are most active. fMRI allows us to view both an anatomical 

and a functional image of the brain. 

Functional MRI does not need radioactive materials when detecting functional 

processes in the brain while producing brain images at a higher resolution than the 

other methods. This important feature encourages us to use fMRI method for 

obtaining functional data from the brain which is used for identifying functional 

structure of brain in our thesis. 

fMRI has advantages and disadvantages like any other technique. The experiments 

must be carefully designed and conducted to maximize its strengths and minimize its 

weaknesses in order to be useful. Some important advantages of fMRI are the 

following: First, it can noninvasively record brain signals without risks of radiation 

implicit in other scanning methods, such as CT or PET scans. Second, it has high 

spatial resolution. Third, signals coming from all regions of the brain can be recorded 

with fMRI. Finally, fMRI produces compelling images of brain "activation". In 

addition to these positive features it has some disadvantages too. Being highly 

sensitive to the motion and having limited temporal resolution are the most important 

disadvantages. fMRI technique outputs a blood oxygenation level dependent signal 

(BOLD). A variety of factors, including: brain pathology, drugs/substances, age, 

attention etc. can effect this signal. And since it is a very complex signal, we have to 

perform many computations to identify activation areas. Since the advantages 

outweigh disadvantages, for determining the activation region for a specific task in a 

predetermined time, we will process data collected by fMRI. 
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1.1 Thesis Objective and Goals 
 

The basic aim of our work is to detect voxel based activation in the brain based on 

processing fMRI signals. 

We have to execute two sub goals sequentially in order to realize the main objective. 

First goal is to estimate information about each voxel’s activity and passivity from 

the fMRI signal and this information is called hemodynamic response. All voxels in 

the brain have a hemodynamic response function and when these responses are 

estimated and analyzed we can detect active participation of the voxels based on the 

shape of the hemodynamic response. The first sub goal of the thesis includes 

hemodynamic response extraction. The second sub goal encompasses analyses of the 

estimated hemodynamic responses according to their features yielding classification 

of these features as generated from active versus passive voxels. These subgoals are 

explained in detail below. 

1.1.1 Goal 1: Extraction of Hemodynamic Response from fMRI Signal 

1.1.1.1 What is fMRI and Hemodynamic Response? 
 

Functional MRI (fMRI) is an MRI-based brain imaging technique which allows us 

to detect the brain areas which are involved in a process, a task or an emotion. This 

means that we use fMRI to monitor the brain activity. We can use standard MRI 

scanners since this brain imaging technique is a type of specialized MRI scan. 

fMRI works by detecting the changes in blood oxygenation and flow that occur in 

response to neural activity. When brain voxels are activated, they consume more 

oxygen. To meet this underlying increased demand, blood flow increases towards the 

active brain area. Oxygen is delivered to neurons by hemoglobin. This means when 

neural activity increases, hemoglobin with oxygen called oxyhemoglobin increases 

in blood. 
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Hemoglobin is paramagnetic when it includes no oxygen but diamagnetic when 

oxygenated. This alteration in magnetic properties leads to differences in the MR 

signal of blood depending on the degree of oxygenation [52]. Because blood 

oxygenation varies according to the levels of neural activity, these differences can be 

used to detect brain activity. These changes in blood oxygenation levels are what 

exactly fMRI measures. fMRI outputs, blood oxygenation level dependent (BOLD) 

response signals. These are also called fMRI signal which serve as an indicator of 

neural activity. 

Basically, an fMRI signal is a convolution of 2 signals. 

These are: 

A. Stimulus: the pulse series which represents the incoming stimulant  

B. Hemodynamic response: also known as the changes in the MR signal triggered 

by neuronal activity. Put differently, it is the impulse response of a voxel in the 

brain that depends on the temporal blood oxygenation level. 

Since the 1890s it has been known that changes in both blood oxygenation and flow 

in the brain known as hemodynamics are linked to neural activity.[36] Neural cells 

increase their energy consumption when they are active as we mentioned above. The 

local hemodynamic response to this energy utilization is to increase blood flow to 

increased neural activity regions. This occurs after a delay of approximately 1–5 

seconds. This hemodynamic response shape increases to a peak over 5–6 seconds, 

and returns to baseline within 30 seconds (Figure1.1). 
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Figure1.1 The recorded hemodynamic response signal (solid line) triggered by a single event (dashed 
line)[37] 

Hemodynamic response function’s shape varies according to the voxel’s active or 

passive response to the administered task. If a voxel is active, the response looks like 

the one on the left side, if passive, it looks like the signal on the right side of 

Figure1.2. 

 

Figure1.2 On the left, active voxel’s hemodynamic response waveform of the right is the one for a 
passive voxel. 

In this case, if we want to identify voxel’s situation according to the incoming 

stimulant, we should extract the hemodynamic response from the fMRI signal and 

classify it according to its shape. 

An example of ideal fMRI signal without different types of noises is shown in 

Figure1.3: 
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Figure1.3 FMRI signal without noise [21] 

There could be some noises like cardiac pulsation, scanner drift, subject motion 

which are added to fMRI signal. A real fMRI signal with noise is shown in 

Figure1.4. 

 

Figure1.4-FMRI signal with noise [21] 
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In this part of the thesis work, our aim is to unravel pattern , given stimulus  

from the measured FMRI  

fMRI signal obtained from one of the voxels in brain is a nonstationary signal. 

Because fMRI properties and structure change with time. So that, in this thesis we 

can not analyse direct fMRI signal in order to detect active and passive voxels. 

Hemodynamic response on thwe other hand is the impulse response of a voxel, so it 

is stationary. Because impulse responses of voxels  (stationary signals) carry 

information about activity and passivity, we have to analyse hemodynamic responses 

in the thesis.  

Mathematically, fMRI signal can be modeled as;Equation Section (Next) 

 ( ) ( * )( ) ( )g n h f n e n= +  (1.1) 

g(n): fMRI signal   

h(n): hemodynamic response function 

f(n): stimulus pattern 

e(n): noise 

‘*’:convolution of two signals 

As shown in the above mathematical model, fMRI signal consists of a convolution of 

a hemodynamic response and a stimulus pattern and additive noise. In this case, for 

the first goal -extraction of hemodynamic response signal which includes voxel’s 

activity and passivity information from fMRI-, we need to filter out the additive 

noises from fMRI and implement the inverse operation of convolution in order to 

unravel h(n) waveform. 

In the literature, hemodynamic response extraction from fMRI signal is investigated 

in various papers in which many methods are tested in order to reach the 

hemodynamic response waveform. These methods are reviewed in Chapter 2. 
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1.1.2 Goal 2: Classification of voxels as active and passive 
 

Extracting hemodynamic response waveform will let us classify this waveform in 

terms of identifying active and passive voxels to which it belongs. 

The task of “classification” occurs in a broad range of human activity, at its 

broadest, the underlying term could comprise any kind of context. In this context we 

can make some decision or forecast on the basis of currently available information. 

By this, a “classification procedure” is a method to repeatedly make such judgments 

in new situations. 

 

Statistically, classification has two distinct meanings. A set of observations may be 

given in order to establish the existence of clusters or classes in the data. Or there 

may be so many classes that we know for certain. And since the aim is to determine a 

rule, a new observation can be classified into one of the existing classes. The former 

type is known as Unsupervised Learning (or Clustering), the latter as Supervised 

Learning. 

 

In the literature, there are many areas where classification methods are used [63, 70] 

such as neural networks [68], statistical [69] or machine learning [71,72]. In addition, 

classification of fMRI data is commonly investigated [62, 64, 65, 66, 67, 73, 74] 

where supervised as well as unsupervised classification methods are used. 

Researchers hope to find out unknown, but useful, classes of items by applying 

unsupervised (clustering) algorithms. 

After a detailed survey that we also share in chapter 2, since the structure of fMRI 

data is not suitable for using in training, we decided to use one of the unsupervised 

learning methods. The reason of this can be explained as follows: A training data, 

prepared from an fMRI data set taken from a participant in a special experiment 

cannot be used for another fMRI data taken from another person in another 

experiment because noises and structures of fMRI data and stimulus distributions 

have different features depending on the human being tested, on the task executed, 

and present disturbances. Hence, we can not constitute a general training 
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data for all FMRI data sets. Therefore, a suitable method for fMRI is the 

unsupervised learning which called clustering. 

General information about what clustering is and how it is used for FMRI in the 

literature together with a detailed investigation will be given in the literature survey 

section of Chapter 2. 

1.2 Methodology 
 

In the first part of the thesis, extracting the hemodynamic response from fMRI signal 

is a noisy deconvolution problem. fMRI signal can include different kinds of noises 

(artifacts) such as cardiac pulsation, scanner drift, habituation and spontaneous or 

task related  head movement.  

 

fMRI measures the changes in neural activity in brain but it is not a direct measure. 

Since fMRI signal is a convolution of hemodynamic response and stimulus pattern, 

we should execute inverse operation of convolution which is deconvolution in order 

to estimate hemodynamic response. There are several types of deconvolution 

methods in the literature and some of them are used for analysing fMRI as well. 

However, since a fundamental wavelet has a very similar shape to the active 

hemodynamic response [see Figure1.5] applying a wavelet based deconvolution 

technique for identification of the HRF has been our motivation and contribution. 

 

Figure1.5 Left: Shape of a fundamental wavelet function called Mexican Hat. Right: ideal shape of 
the hemodynamic response in fMRI to a single stimulus. The four stages of the hemodynamic response 

are: A: lag-on; B: rise; C: decay; D: dip 
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The wavelet transform is based on the decomposition of the signals in terms of small 

waves (daughter wavelets) derived from translation (shifting in time) and dilation  

(scaling) of a fixed (fundamental) wavelet function called the “mother wavelet”. The 

basis functions of the wavelet transform constitute this wavelet family.  

Basis functions can be considered as wavelets when they meet a few conditions. 

Those conditions are summarized as follows. They must be oscillatory and they must 

have amplitudes that quickly decay to zero. There are many functions which can 

meet these conditions such as Mexican hat wavelets shown in Figure1.5 and other 

examples of mother wavelet functions illustrated in Figure1.6. 

 

Figure1.6 Examples of mother wavelets: (a) Daubechies family (b) Coiflets family (c) Symlet family 

Hence, extracting a hemodynamic response buried in a noisy convolution which 

resembles a mother wavelet is a valued motivation to use a wavelet based 

deconvolution. We mentioned that, we agree to call a signal a wavelet if it is 

obtainable from the mother wavelet by a change of time scale, a translation in time, 

and multiplication by some positive or negative number. [26] So, we can adjust scale 

and translation parameters of wavelets in order to simulate them as hemodynamic 

response. 
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Every finite-energy signal such as fMRI being able to be expressed as a sum of 

wavelets is the principle behind wavelet analysis. In addition to this, wavelet analysis 

is ideally suited to non-periodic signals with lots of transient content. As a result, a 

wavelet based deconvolution technique can be a good solution for this deconvolution 

problem. 

Among all application methods of wavelet based deconvolution technique as 

reviewed in Chapter 2, we decided to adopt the Fourier-wavelet regularized 

deconvolution (ForWaRD) method to extract the hemodynamic response in our 

thesis. ForWaRD is used to combine deconvolution in frequency-domain for 

identifying overlapping signals, regularization in frequency-domain for suppressing 

noise, and also regularization in wavelet-domain for separating signal and remaining 

noise.[3] 

Among wavelet based deconvolution techniques as reviewed in Chapter 2, wavelet 

regularized deconvolution (WARD) method has been used in fMRI area. [92] It is a 

combined approach to wavelet based deconvolution that uses Fourier domain system 

inversion, after that wavelet domain regularization is used for noise suppression. This 

algorithm uses a regularized inverse filter, which allows it to operate even when the 

system is non-invertible. Using a MSE (mean square error) metric, an optimal 

equilibrium between Fourier-domain and wavelet-domain regularizations is 

discovered. But, this method is not enough for estimating noise free HRF (after 

executing algorithm, obtained HRF signal is still noisy). Fourier-Wavelet 

Regularized Deconvolution method has extended features with respect to the 

WARD. ForWaRD consists of frequency-domain deconvolution step in order to 

determine overlapping signals, frequency-domain regularization (shrinkage) step to 

suppress noise, and wavelet-domain regularization step to separate signal and noise. 

It is related to recent wavelet-based deconvolution techniques [18-20], with an 

important advantage. Roles of signal (for fMRI: sparse, high frequency) and response 

(for fMRI: smooth, low frequency) can be interchanged in this underlying method: 

unlike other wavelet based deconvolution methods, ForWaRD as we implemented, 

does two deconvolution operation in wavelet domain, first one for 
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 suppressing noise and second one for estimating desired HRF. (Details are given in 

Chapter 3). 

Estimating the shape of the hemodynamic response necessitates the interpretation of 

this signal as generated from active, passive voxels or motion-contaminated voxels 

exclusively based on the intrinsic features. This interpretation can be considered as 

an unsupervised classification of the signal based on its shape characteristics. No 

perfect labeling template exists in this classification so a supervised approach cannot 

be used. Clustering being an unsupervised classification approach, we then use this 

methodology in the second subgoal of our approach.  

In the second part of the thesis, our aim becomes then to cluster activation of voxels 

based on the shape features of the hemodynamic response signal which has been 

obtained by deconvolution. Hemodynamic response’s shape determines the activity 

and passivity of the voxel. If it is active the intensity of the hemodynamic response 

function has a peak similar to the left picture in Figure1.2. The magnitude of this 

peak is not a definite number changing in a large definite interval. This situation 

causes ambiguity when clustering hemodynamic responses.  

 

So, we need a clustering method which should work in ambiguous situations. The 

best method for these situations is Fuzzy C-Means Clustering in literature, so we 

decided to use this clustering method for our fMRI problem.  

 

Fuzzy C Means (FCM) Clustering algorithm [30] is commonly used in fMRI 

domain. This method [32] is an example of nonparametric and model-free data 

driven method for analyzing the fMRI data. The data is classified into different 

groups without any prior knowledge about the experiment. However, fuzzy c means 

has some limitations. Because, fMRI time series have poor signal to noise ratio 

(SNR) and confounding effects, the results of clustering on the time series are 

sometimes unsatisfactory, leading to results which are not necessarily grouped 

according to the similarity of the response patterns. Moreover, increasing the 

dimension of the clustering space leads to computational difficulties such as ‘curse of 

dimensionality’. Besides its advantages, because of these poor features of fuzzy c 

means, we combined this method with Laplacian Embedding.  
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This method includes dimension reduction of activation data as explained in detail in 

Chapter 3. In addition, we use a clean hemodynamic response, obtained from 

deconvolved FMRI signal after filtering noise (in first part of the thesis ) in our 

clustering algorithm. Hence, we are able to find solutions for “curse of 

dimensionality” problem, bad signal-to-noise ratios, confound effects, in general 

disadvantages of Fuzzy C-Means. Clustering with this hybrid method, called 

Laplacian Eigenmaps is an important contribution in literature because a method like 

this is not tried out for classifying hemodynamic responses functions before. 

1.3 Contribution 
 

ForWaRD is used in a few applications in literature. It is proposed in a paper [3] but 

after that, it was not investigated deeply. The implementation of ForWaRD to fMRI 

can be found only in one paper in literature. In this paper [21], a frequency domain 

method based on ForWaRD is used to extract hemodynamic response from fMRI and 

results are satisfying. This encourages us to implement direct ForWaRD method to 

fMRI signals. We are curious about how implementation of direct ForWaRD method 

is applied to fMRI results since it does not have any equivalent in the literature. 

 

As a result, we decided to adapt ForWaRD method to our fMRI problem because it is 

the only method which has deconvolution and suppressing noise operations in both 

Fourier domain and wavelet domain among all wavelet deconvolution techniques. 

Suppressing the noise and deconvolution of the data are difficult processes in fMRI 

data. Hence, the ForWaRD method which works in both Fourier and wavelet 

domains for extracting desired signal to achieve complex different deconvolution for 

problems in literature can be the solution of our fMRI problem. It was not tried out 

directly in fMRI before so it is an exciting approach for deconvolution of fMRI 

problems. The most important contribution of this part of the thesis to literature is 

that the direct ForWaRD method (without any preprocessing using a wavelet based 

method before or any curve-fitting after ForWaRD ) is implemented for the first to 

fMRI. In addition to the underlying contribution we have one more. ForWaRD 

method has a regularization parameter τ in its noise filtering mechanism. We define 

this regularization parameter as a vector based variable, by using this definition we 
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can obtain optimum value for regularization parameter easily. The vector based 

definition for the regularization parameter is new for ForWaRD algorithm. So, a 

vector based regularization parameter is another contribution to the literature. 

Clustering the HRF by combining Laplacian Eigenmaps with fuzzy c-means is an 

important contribution to the literature because to the best of our knowledge, a 

method like this is not tried out for hemodynamic responses functions before. 

 

1.4 Outline of the Thesis 
 

The outline of the thesis is as follows: Chapter 2, introduces an extracted literature 

survey not only for deconvolution of fMRI signals but also for their classification 

based on their shape features in order to find active voxels, passive ones and ones 

with artifacts such as motion. In addition, the mathematical background about 

wavelets, wavelet based deconvolution and Fuzzy C-Means clustering algorithm will 

be given in the underlying chapter.  

 

Chapter 3 introduces the ForWaRD method to extract HRF from fMRI data sets. The 

BOLD response is assumed to be LTI, and this property is used to obtain the HRF 

from an fMRI time series with a combination of frequency domain methods and 

wavelet domain methods. In addition, the clustering algorihm, Laplacian Eigenmaps 

is also explained. This chapter ends with an example that shows the accuracy of 

methods and how they work step by step. 

 

Chapter 4 provides the experimental results for our methods with different types of 

data sets such as a simulated data with various artifacts such as additive white 

Gaussian noise (AWGN), drift, jitter and lag as well as two real fMRI datasets. The 

results are analysed and discussed. The ForWaRD method is shown to be very robust 

and so is Laplacian Eigenmaps.  

 

Performance and sensitivity analysis of the approaches according to system 

parameters are given in Chapter 5, while Chapter 6 contains summary and general 

conclusions of the thesis, and gives recommendations for future research. 
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CHAPTER 2 

LITERATURE SURVEY AND MATHEMATICAL 
BACKGROUND 

 

2 LITERATURE SURVEY and MATHEMATICAL 
BACKGROUND 

 

Functional magnetic resonance imaging (fMRI) is an imaging technique which is 

primarily used to perform localization. In fMRI, blood oxygen level dependent 

signal, called fMRI signal, is measured to identify modynamic response signal which 

serves as an indicator of neural activity in the brain [34]. 

 

fMRI is a powerful non-invasive tool in the study of the function of the brain, used 

by neurologists, psychiatrists and psychologists. fMRI can give high quality 

visualization of the location of activity in the brain resulting from sensory 

stimulation or cognitive function. Therefore, it allows investigate how the healthy 

brain functions, how it attempts to recover after damage, how it is affected by 

different diseases and how drugs can modulate activity or post-damage recovery. [2] 

 

fMRI images are obtained by experiments. In these experiments, researchers use the 

MRI scanner to obtain a set of measurements in response to a psychological task. 

After an fMRI experiment has been configured and carried out, the collected signals 

must be passed through various analysis steps to be able to predict active areas. The 

aim of this fMRI analysis is to determine for which voxels the signal of interest is 

significantly greater than the noise level. 

Chronologically, Blood-oxygen-level dependence (BOLD), the MRI contrast related 

to deoxyhemoglobin, is first discovered in 1990 by Seiji Ogawa [38]. Ogawa and 

colleagues recognized the potential importance of BOLD for functional brain 

imaging with MRI. But the first successful fMRI study was reported by John W. 

Belliveau and colleagues in 1991 using an intraveneously administered paramagnetic 

contrast agent [39]. Localized increases in blood volume were detected in the 
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primary visual cortex by using a visual stimulus paradigm. In 1992, three articles 

were published using endogenous BOLD contrast MRI. One was submitted by Peter 

Bandettini [40] and the other by Kenneth Kwong and colleagues [41]. These articles 

used much simpler signal analysis techniques compared to the large number of 

models and techniques developed recently to improve fMRI time series analysis. 

2.1 The fMRI time series and Pre-Processing Steps 
 

Pre-processing is necessary in fMRI analysis in order to take raw data from the 

scanner and prepare it for statistical analysis. The pre-processing steps take the raw 

MR data and apply various image and signal processing techniques to reduce noise 

and artifacts. These steps are crucial in making the statistical analysis valid and 

greatly improve the power of the subsequent analyses such as deconvolution. 

 

In the literature, several studies describe the various pre-processing steps to estimate 

where significant activation occurred. [3][4][5][6] These pre-processing steps take 

the fMRI data, convert it into images that actually look like a brain image, then 

reduce unwanted noise originating from various sources such as the subject, the task, 

the physical environment, the scanner hardware and software. Later statistical 

analysis is often seen as the most ‘important’ part of fMRI analysis; however, 

without the pre-processing steps, the statistical analysis is, at best, greatly reduced in 

power, and at worst, rendered invalid. [15] 

 

2.1.1 Principal Component Analysis of fMRI Data 
 

Principal component analysis (PCA) is a mathematical procedure that uses a 

transformation to convert a set of observations of possibly correlated variables into a 

set of values of uncorrelated variables distributed along orthogonal axes called 

principal components. The number of principal components is less than or equal to 

the number of original variables. In other words, PCA is a technique to separate 

important modes of variation in high-dimensional data into a set of orthogonal 

directions in space [12]. PCA is used for analyzing fMRI time series in many ways in 

the literature. “Functional Principal Component Analysis of fMRI Data” [13] 



18 
 

describes a principal component analysis (PCA) method for functional magnetic 

resonance imaging (fMRI). The data delivered by the fMRI scans are used to 

estimate an image in which smooth functions replace the voxels. These scans can be 

viewed as continuous functions of time sampled at the interscan interval and subject 

to observational noise [13]. We can use the techniques of functional data analysis in 

order to carry out PCA directly on these functions. Even when the structure of the 

experimental design is unknown or no prior knowledge of the form of hemodynamic 

function is specified, it is shown -in recovering the signal of interest- that functional 

PCA is more effective than is its ordinary counterpart. The rationale and advantages 

of the proposed approach in the work [13] is discussed relative to other exploratory 

methods, such as clustering or independent component analysis. 

 

In another article[14], a different PCA method called sparse PCA is proposed. This 

new analysing method is compared with standard PCA and ICA. Standard PCA 

derives a set of variables by forming linear combinations of the original variables. 

The new variables are orthonormal and describe the main sources of variation in the 

data set. The projected data vectors are known as principal components (PCs) and are 

uncorrelated. The transformation can be written Z=XB where X is the (n by p) data 

matrix, the columns of Z are the PCs, and B is the orthonormal loading matrix. 

Sparse PCA (SPCA) aims at approximating the properties of regular PCA while 

keeping the number of non-zero loadings small, that is, each derived variable is a 

linear combination of a small number of original variables. The sparse PCA (SPCA) 

method poses regular PCA as a regression problem, and adds a constraint on the sum 

of absolute values for each loading vector. The constraint, known from the LASSO 

[16] regression technique, drives some loadings to exactly zero, while the others are 

adjusted to approximate the properties of PCA. According to paper, SPCA is better at 

separating the noise from the signal, while ICA managed to model the actual signal 

more precisely, conclusion is that SPCA and ICA has similar performance, but 

SPCA is more flexible and easier to interpret. 
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2.1.2 Independent Component Analysis (ICA) of fMRI Data 
 

Independent component analysis (ICA) is efficiently applied to the analysis of fMRI 

data, both for noise removal (pre-processing) and temporal/spatial clustering of 

voxels. This approach has a principal advantage: ICA is applicable to cognitive 

paradigms for which detailed a priori models of brain activity are not available. [17] 

In the literature, ICA is successfully utilized in a lot of fMRI applications. These 

include: 1) identification of several signal-types; such as task and transiently task-

related, and physiology-related in the spatial or temporal domain, 2) the analysis of 

multi-subject fMRI data, 3) the incorporation of a priori information, and 4) the 

analysis of complex-valued fMRI data. In the literature, ICA has been introduced to 

fMRI analyses by McKeown [16] where their work provides a complete overview 

about the ICA method for fMRI including different analysis types, their comparison, 

advantages and disadvantages, examples and results.  

In another paper, decomposition of an fMRI dataset into spatially independent 

components through spatial ICA is investigated [18]. By returning the projection 

pursuit directions i.e interesting projections of the multivariate dataset, the Spatial 

ICA algorithm provides an extremely useful way of exploring large fMRI datasets. In 

addition, the article states that, temporally coherent brain regions without 

constraining the temporal domain is found. Due to the lack of a well-understood 

brain-activation model, it is difficult to study the temporal dynamics of many fMRI 

experiments with functional magnetic resonance imaging (fMRI). Inter-subject and 

inter-event differences in the temporal dynamics can be revealed by ICA. Strength of 

ICA is its ability to reveal dynamics for which a temporal model is not available 

Spatial ICA also works well for fMRI. Because it is often the case that one is 

interested in spatially distributed brain networks.  

On the other hand, in another article [19] ICA of fMRI data is extended from single 

subjects to simultaneous analysis of data from a group of subjects. This results in a 

set of time courses which are common to the whole group, together with an 

individual spatial response pattern for each of the subjects in the group. The method 

uses data from several fMRI experiments. These results indicate that: (a) ICA is able 

to extract nontrivial task related components without any a priori information about 
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the fMRI experiment; (b) ICA identifies components common to the whole group as 

well as components manifested in single subjects only, in analysis of group data. 

 

2.2 Data-driven approaches for fMRI analysis 
In 2001, two classical activation detection methods, analysis of variance (ANOVA) 

and Mutual Information (MI), are explained and four new ways of detecting 

activations in fMRI sequences are proposed in an article titled “Activation detection 

and characterization in brain fMRI sequences” [43]. These methods are 

ANOVA+Memory, MI-2D, Markov+ANOVA and Markov+MI. It is shown in the 

publication that these methods embody minimum assumptions related to the signal 

and avoid any pre_modelling of the expected signal. In particular they try to avoid 

linear models as much as possible. Instead, the sensitivity of the methods according 

to signal autocorrelation is investigated.  Considering an experimental block design, 

a key point is the ability of taking into account transitions between different signal 

levels. But still this should be applied without the use of predefined impulse 

response.  

Another new detection method [46] does not rely on any of prior knowledge of 

mental event timing. In this method, they linearly add the assumption of the 

hemodynamic response to mental activity and estimate or model the shape of that 

response frequently. But still, prior knowledge of characteristics of the spatial 

distribution of neural activity is required by analysis methods that do not make these 

assumptions. This new fMRI data analyzing method does not rely on any of these 

assumptions. Instead, it is based on the following simple ground: the time course of 

signal in activated voxels will not vary significantly when an entire task protocol is 

repeated by the same individual. The model-independence of this approach makes it 

suitable for “screening” fMRI data for brain activation. 
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2.3 Model-driven approaches for fMRI analysis based on wavelets 
 

In the following subsections, methods in fMRI analysis based on models of the fMRI 

time series are explained. In general, several statistical tests such as such as t-test and 

Kolmogorov-Smirnov test have been used [58, 61]. However, these tests are utilized 

along with  the well-known general linear model [60] implemented through statistical 

parametric mapping (SPM) [59]. The main drawback of the linear model is that the 

‘system’ which produces the fMRI time series is thought to be a linear system. 

However, it is clear that there are refractory effects as well as non-stationary 

responses in the human brain. So the ‘system’ under investigation is hardly linear 

 

For instance, the framework proposed by Ildar Khalidov [44], is based on two main 

ideas. First, they introduce a problem specific type of wavelet basis, for which they 

coin the term “activelets”. The design of these wavelets is inspired bye the form of 

the canonical hemodynamic response function. Second, in order to find the most 

compact representation for the BOLD signal under investigation, advantage of 

sparsity pursuing searcg techniques is taken. The non-linear optimization allows us 

to overcome the sensitivity-specificity trade-off that limits most standard techniques. 

Remarkably, the knowledge of stimulus onset times is not required by the activelet 

framework. Wavelet theory is used in another article [45] which proposes a new 

method based on nonparametric analysis of selected resolution levels in TIWT 

domain. As a result an optimal set of resolution levels is selected. Then a 

nonparametric randomization method is applied in the wavelet domain for activation 

detection. 

 

The wavelet transform is a powerful tool [91], [92]. Wavelets have more advantages 

than Fourier sinusoids. Fourier provide a sharp frequency characterization of a given 

signal. However, they are not capable of defining transient events. In contrast,  

wavelets achieve a balance between localization in space or time, and localization in 

the frequency domain. This balance is intrinsic 
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to multiresolution, which allows the analysis to deal with image features at any scale. 

As the discrete wavelet transform corresponds to a basis decomposition, it provides a 

non-redundant and unique representation of the signal. These fundamental properties 

are key to the efficient decomposition of the non-stationary processes typical of 

fMRI experimental settings. Consequently, wavelets have received a large 

recognition in biomedical signal and image processing; several overviews are 

available [93]–[94], including work that is tailored to fMRI [95].  

 

The first application of wavelets in fMRI was pioneered by [96], [97]. After 

computing the wavelet transform of each volume, the parameter for an on/off type 

activation is extracted, followed by a coefficient-wise statistical test for this 

parameter. Such a procedure takes advantage of two properties of the wavelet 

transform. First, wavelets allow us to obtain a sparse representation of the activation 

map, in the sense that only a few wavelet coefficients are needed to efficiently 

encode the spatial activation patterns. Consequently, the SNR of signal-carrying 

coefficients has increased with respect to the original voxels, thus improving the 

potential sensitivity of detecting activation patterns burried in large noise. Second, 

the wavelet transform approximately acts as a decorrelator. Therefore, the use of 

simple techniques to deal with the multiple testing problem, such as Bonferroni 

correction, is appropriate since the coefficients are nearly decorrelated. The power of 

the statistical test in the wavelet domain has been increased by proposing other error 

rates than the type I error (i.e., the number of false positives). [98] introduced 

recursive testing (or change-point detection) in fMRI analysis, which consists of 

altering the hypotheses of the test procedure in the wavelet domain. On the other 

hand, the principle of false discovery rate (FDR) is applied in [99], [100].  

 

The wavelet transform has also been deployed along the temporal dimension. At the 

same time, [101] and [102] proposed a temporal denoising preprocessing step. Serial 

correlations in fMRI data are common due to head-motion artifacts, background 

neuronal processes, and acquisitions effects. [103] pioneered bootstrapping 

techniques in the wavelet domain to deal with the colored noise structure of fMRI 

data. Bootstrapping techniques rely on the whitening property of the wavelet 

transform to generate “surrogate” data that are used to build an empirical statistical 
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measure under the null hypothesis [104]– [105]. [106] proposed the use of the 

continuous wavelet transform in a non-parametric detection scheme. [107] exploited 

the whitening property of the discrete transform to obtain a best linear unbiased 

estimate for the parameters of the linear model.. [108] deployed a redundant wavelet 

transform for non-parametric detection, while [109] proposed them as a tool to 

estimate semiparametric models in fMRI. Finally, [110] and [111] obtained spectral 

characteristics of fMRI time series using the wavelet transform.  

 

2.4 Clustering of FMRI data 
 

Clustering is commonly used in FMRI applications. From simple to elaborate, there 

are lots of clustering definitions in the literature. The simplest definition consists of 

one fundamental concept: the grouping together of similar data items into clusters. 

Lately, clustering has been applied to a wide range of areas and topics. Uses of 

clustering techniques can be found in pattern recognition: "Gaussian Mixture Models 

for Human Skin Color and its Applications in Image and Video databases" [25]; 

compression, as in "Vector quantization by deterministic annealing"[23]; 

classification, as in "Semi-Supervised Support Vector Machines for Unlabeled Data 

Classification" [28]; and classic disciplines as psychology and business. As a result, 

we can say that clustering merges and combines techniques from different disciplines 

such as mathematics, statistics, physics, computer sciences, math-programming, 

databases and artificial intelligence among others.   

 

In any clustering problem, a good solution depends on two components: the choice 

of the clustering metric and the clustering algorithm itself. A simple, formal, 

mathematical definition of clustering, as stated in [29] is as follows: let X (which is 

an element of Rmxn) be a set of data items representing a set of m points xi in Rn. The 

goal is to partition X into k groups Ck such every data that belong to the same group 

are more “alike” than data in different groups. Each of the k groups is called a 

cluster. The result of the algorithm is an injective mapping X C of data items Xi to 
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clusters Ck. The number k might be pre-assigned by the user or it can be an unknown, 

determined by the algorithm. 

In our fMRI problem we have to cluster the hemodynamic response waveform into 

two groups driven from the active and passive voxels. Using training data is not 

suitable for the structure of fMRI. The reason can be explained by the following way: 

A training data, prepared from an fMRI data set extracted from a single participant in 

a special experiment cannot be used for another fMRI data taken from another person 

in another experiment. This is due to unprecedented effects introduced by differing 

stimuli and noise in fMRI data. Therefore, we can not constitute a generic training 

data for all fMRI data sets, making clustering a suitable method. 

 

In this part of the thesis, we will summarize common fMRI clustering methods and 

approaches to clustering of fMRI data. Previously in neuroimaging, clustering 

methods have been used.[49, 50, 51, 52, 53]. However when clustering methods, 

such as fuzzy K-means [54], with obtained contributions are performed directly on 

the fMRI time series, the results of clustering on the time series are often 

unsatisfactory and do not necessarily group data according to the similarity of their 

pattern of response to the stimulus because of the high noise level in fMRI 

experiments. This consideration has led [55] and [56] to consider a metric based on 

the correlation between stimulus and time series. In one of these papers [56] due to 

the high noise level in the data, stability problems are dealt with and suggested 

clustering of voxels on the basis of the cross-correlation function is suggested. This 

clustering yielded improved performance, and noise reduction. 

 

The efficiency and power of several cluster analysis techniques have been compared 

on fully artificial (mathematical) and synthesized (hybrid) fMRI data sets [57]. The 

clustering algorithms used are hierarchical, and crisp (neural gas, hard competitive 

learning, maximin distance, self-organizing maps, k-means, CLARA) and fuzzy (c-

means, fuzzy competitive learning). In order to compare these methods they use two 

performance measures, namely the correlation coefficient and the weighted Jaccard 

coefficient. Both performance coefficients clearly show that the neural gas and the k-

means algorithm perform remarkably better than all the other methods. 
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In the “Clustering fMRI Time Series” article [48] a new method is not proposed, but 

instead a modified version of a common fMRI clustering metric obtained by the 

cross correlation of the fMRI signal with the experimental protocol signal is 

suggested. To address a perceived deficiency of this signal-to-protocol metric, a 

signal-to-signal metric is devised by modifying the cross-correlation of two fMRI 

signals. 

 

The aim of the second part of our thesis is to cluster estimated HRF signals based on 

their shape feature. Three classes are used for the HRFs that belong to 1.active 

voxels, 2.passive voxel and 3.voxels with artifacts such as head motion. 

Hemodynamic response’s shape is assumed to have determining power regarding the 

activity and passivity of the voxel. If it is active, the intensity of the hemodynamic 

response function has a peak like left picture presented earlier in Figure1.2. The 

values of these peaks are not definite numbers, they are changing in a large definite 

interval. This situation causes ambiguity when clustering hemodynamic responses. 

So, we need a clustering method which should work in ambiguous situations. The 

best method for these situations is fuzzy C means clustering in literature because of 

this we decided to use this clustering method for our fMRI problem. 
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2.5 Mathematical Background 

2.5.1 Deconvolution 
Deconvolution is the undoing of convolution. This means that instead of mixing two 

signals like in convolution, we are isolating them. This is useful for analyzing the 

characteristics of the input signal and the impulse response when only given the 

output of the system. For example, when given a convolved signal y(t)=x(t)*h(t), the 

system should isolate the components x(t) and h(t) so that we may study each 

individually. An ideal deconvolution system is shown below: 

 

Figure2.1 A system that performs deconvolution separates two convolved signals 

 

In another point of view, deconvolution is the process of filtering a signal to 

compensate for an undesired convolution. Unwanted convolution is an intrinsic 

problem in analyzing desired information. For instance, all of the following can be 

modeled as a convolution: image blurring in a shaky camera, echoes in long distance 

telephone calls, the finite bandwidth of analog sensors and electronics, etc. The goal 

of deconvolution is to recreate the signal as it existed before the convolution took 

place (see Figure2.2). This usually requires the characteristics of the convolution 

(i.e., the impulse or frequency response) to be known. 
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Figure2.2 Undesired convolution and structure of deconvolution [9] 

In our thesis’ first part, the goal is to estimate hemodynamic response from blurred 

and noisy observation called fMRI signal. In the fMRI system, first hemodynamic 

response is convolved with stimulus pattern and a lot of measurement noises such as 

cardiac pulsation, scanner drift, subject motion are added on this convolution. So, in 

order to estimate hemodynamic response we have to filter noise and deconvolve 

fMRI signal. Different types of deconvolution methods exist in the literature, among 

these methods we will use wavelet based deconvolution because the fundamental 

wavelet has a very similar shape to active hemodynamic response. [see Figure1.5]. 

So, estimating a hemodynamic response buried in a noisy convolution, and that 

resembles a wavelet is a valued motivation to use a wavelet based deconvolution. 
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2.5.1.1 Wavelet Based Deconvolution Techniques in the Literature 
 

Since we extract the HRF in this thesis using a wavelet based deconvolution, we 

chose to review wavelet based deconvolution techniques in order to provide the 

mathematical background to our work. 

2.5.1.1.1 The WaveD Method 
 

WaveD as proposed in [33], is a method of wavelet deconvolution in a periodic 

setting which combines Fourier analysis with wavelet expansion. This method can 

recover a blurred function observed in white noise in the periodic setting. The 

blurring process is achieved through a convolution operator which can either be 

irregular (such as the convolution with a box-car) or smooth (polynomial decay of 

the Fourier transform). This method is non-linear and uses band-limited wavelets (: a 

function f  L2(R) (the space of square-summable sequences) is said to be band-

limited if the support of fˆ is contained in a finite interval.) that offer both 

computational and theoretical advantages over traditional compactly supported 

wavelets. 

 

2.5.1.1.2 Wavelet Regularised Deconvolution (WaRD) 
 

WaRD is a hybrid approach to wavelet-based deconvolution that includes Fourier-

domain system inversion followed by wavelet-domain noise suppression. The 

algorithm of this method employs a regularized inverse filter, which allows it to 

operate even when the system is non-invertible. The analytical explanation of this 

method is given below. 
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In the simplest form, the WaRD algorithm can be explained deeply by using a 1-d 

deconvolution problem which runs as follows. The desired signal x is an input to a  

known linear time-invariant (LTI) system H having impulse response h. Independent 

identically distributed (i.i.d.) samples of Gaussian noise γ with variance σ2 corrupt 

the output samples of the system H. The observations at discrete points tn, are given 

by 

Equation Chapter 2 Section 1 

 ( ) : ( )( ) ( ),     where 0,..., 1n n ny t x h t t n Nγ= ∗ + = −  (2.1) 

Given y, we want to estimate x. In the discrete Fourier transform (DFT) domain, we 

equivalently have 

Equation Section (Next) 

 ( ) ( ) ( ) ( )n n n nY f H f X f R f= +  (2.2) 

The fn:=2πn/N denote the normalized frequencies in the DFT domain. 

If the system frequency response H(fn) has no zeros, then we can obtain an unbiased 

estimate of X as  

Equation Section (Next) 

 � 1 1( ) : ( ) ( ) ( ) ( ) ( )n n n n n nX f H f Y f X f H f R f− −= = +  (2.3) 

However, if H(fn) is small at any frequency, then enormous noise amplification 

results, yielding an infinite-variance, useless estimate.  

In situations involving such ill-conditioned systems, some amount of regularization 

becomes essential. Regularization reduces the variance of the signal estimate (noise 

reduction) in exchange for an increase in bias (signal distortion).  The LTI Wiener 

filter exploits Fourier domain noise attenuation to estimate the signal from � ( )nX f . 
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An improved wavelet- based regularized deconvolution (WaRD) algorithm is 

proposed for use with any ill-conditioned system.  The basic idea of this method is 

that: employ both Fourier-domain (Wiener-like) regularized inversion and wavelet-

domain signal estimation. This process benefits from Fourier-domain regularization 

adapted to the convolution system to control the noise. The bulk of the noise removal 

and signal estimation is achieved using wavelet shrinkage. (Figure2.3) 

 

Figure2.3 Wavelet Based Regularized Deconvolution (WaRD) [93] 

Given the general deconvolution problem from above part, the general form of a 

Fourier-domain-regularized signal estimate is given by 

Equation Section (Next) 

 � ( ) : ( ) ( )X f G f Y fα α=  (2.4) 

where  

Equation Section (Next) 

 
2

2 2

( ) ( )1( ) :
( ) ( ) ( )

x

x

H f P f
G f

H f H f P f
α

ασ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 (2.5) 

The regularization parameter α controls the tradeoff between the amount of noise 

suppression and the amount of signal distortion. Setting α = 0 gives an unbiased but 

noisy estimate. Setting α =∞ completely suppresses the noise, but also totally distorts 

the ˆ 0x∞ = . For α = 1, equation (2.5) corresponds to the LTI Wiener filter, which is 

optimal in  the mean square error (MSE) sense for the input  signal x. 

After inversion step� ( )X fα , the noisy estimation of the input signal x, is obtained. 

This inversion significantly amplifies noise components at Gα(f) is small. 
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The following step is regularization by wavelet denoising. In this step, compute the 

DWT of %xα , then denoise using thresholding and finally invert the DWT to obtain 

the final signal estimate x% . 

2.5.1.1.3 Fourier-Wavelet Regularized Deconvolution (ForWaRD) 
 

Fourier-wavelet regularized deconvolution (ForWaRD) is a hybrid deconvolution 

algorithm that performs noise regularization via scalar shrinkage in both the Fourier 

and wavelet domains. This estimation algorithm requires few assumptions 

(separability of signal and noise in the frequency and wavelet domains and the 

general linear model). We will explain how it works in general way [see Figure2.4]. 

Given 1-d deconvolution problem below; 

Equation Section (Next) 

 ( ) : ( * )( ) ( ), where 0,..., 1n ny t x h t n n Nγ= + = −  (2.6) 

Given observed signal y, we want to estimate input signal x. In order to estimate x 

signal, ForWaRD first employees operator inversion and then a small amount of 

scalar Fourier shrinkage λf  and after that attenuate the leaked noise with scalar 

wavelet shrinkage λw (see Figure2.4). During operator inversion, some Fourier 

coefficients of the noise are significantly amplified; just a small amount of Fourier 

shrinkage (most 1f
kλ ≅ ) is sufficient to attenuate these amplified Fourier noise 

coefficients with minimal loss of signal components. The leaked noise that Fourier 

shrinkage λf fails to attenuate has significantly reduced energy in all wavelet 

coefficients, but the signal part % fxλ  that Fourier shrinkage retains continues to be 

represented in the wavelet domain. Hence, subsequent wavelet shrinkage effectively 

extracts the retained signal from the leaked noise and provides a robust estimate. 

(Detailed analytic explanation is in Chapter 3) 
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Figure2.4 Fourier-wavelet regularized deconvolution ( ForWaRD ) process steps[21] 

In our first part of the thesis, we want to estimate hemodynamic response signal from 

functional magnetic resonance imaging (fMRI) time series. Hemodynamic response 

is included in fMRI signal which is a blurred and very noisy observation in our 

problem. So, in our work we have to deconvolve and filter noises from observed 

fMRI signal successfully in order to estimate satisfying hemodynamic responses. 

Hemodynamic response can get lost in the noise or better it can be mixed with some 

noises because intensity of these responses does not increase overly from baseline in 

anytime included its peak point. Briefly, filtering noise is an important problem for 

our deconvolution problem. Because of filtering noise from observed signal in both 

Fourier and wavelet domain in very successful way during the deconvolution, 

ForWaRD method dreadfully encourages us to adapt it to our fMRI problem. 

ForWaRD based methods are rarely used for different topics such as ill conditioned 

systems, lidar systems, Computerized Tomography in literature. In one work, a 

method based on ForWaRD is used to extract hemodynamic response from fMRI 

signal, but basic ForWaRD method does not adapted to a fMRI problem anytime. 

This is the one of our thesis’ contributions that we will adapt basic ForWaRD 

algorithm directly to our fMRI signal and estimate hemodynamic response. 
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2.5.1.2 Wavelet Deconvolution 

 

Given a blurred (blurred means desired signal is convolved with an undesired 

another signal, called blurring function) and noisy observation of a signal, 

deconvolution is the process of filtering this observation to compensate for an 

undesired convolution. The aim of deconvolution is to extract desired signal from 

observation. When we utilized forward and inverse wavelet transform, means 

wavelet theory and a threshold between forward and inverse transforms, then it is 

called wavelet based deconvolution. In other words, using the deconvolution 

algorithm based on wavelet transforms to extract information from unknown signal is 

called wavelet based deconvolution. Detailed explanation of computational algorithm 

of the wavelet based deconvolution is given following part. 

2.5.1.2.1 Computational Algorithm of the Wavelet Based Deconvolution 
 

A general system subject to noise is considered as a convolution of its known linear 

time invariant impulse response H(t) with a blurring signal. As a rule, this function 

decays quite rapidly and has the form of an isolated peak with exponentially 

decaying wings. The system observed output signal y(t) can be represented as: 

Equation Section (Next) 

 ( ) ( ) ( ) ( )( )( ) * ( )y t H t x d u t h x t u tτ τ τ
∞

−∞

= − + = +∫  (2.7) 

where x(t) is an original signal, h(t) is a blurring signal and u(t) is noise.  

 

For our FMRI problem, the signal y(t) represent FMRI time series data that we obtain 

through experiments from patients, x(t) signal is hemodynamic response function, 

h(t) will be stimulus pattern and u(t) will be noise. We want to estimate x(t), 

hemodynamic response function, from obtained y(t), fMRI signal. In order to 

estimate x(t), we have to deconvolve and denoise fMRI signal    

 

The solution to the deconvolution problem consists in the evaluation of the function 

x(t) in the presence of noise u(t).  
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The scaling φ(t) and wavelet ψ(t) functions are called wavelets. Their 

extension/compression (scaling) and shifts form bases for representation of signals in 

the form of a functional series (Wavelet theory described in detail in earlier parts.) 

Equation Section (Next) 

 0 ,1
( ) ( ) ( ) ( ) ( )J

k j j kk j k
x t c k t d k tϕ ψ∞ ∞

=−∞ = =−∞
= +∑ ∑ ∑  (2.8) 

Where the first term is a rough approximation of the signal and the second is its 

refinement up to the highest resolution at a scale value of J; c0(k)  and dj(k) are the 

coefficients of signal expansion in terms of scaling and wavelet functions, 

respectively; and j and k are the scale and shift of basis functions, respectively. 

The function φ(t) must satisfy the scaling equation 

Equation Section (Next) 

 0( ) ( ) 2 (2 )
n

t h n t b nϕ ϕ= −∑  (2.9) 

and ψ(t) satisfies the equation 

Equation Section (Next) 

 0( ) ( ) 2 (2 )
n

t g n t b nψ ϕ= −∑  (2.10) 

where b0  is the shift parameter, h(n) are the coefficients of the scaling equation, g(n) 

are the wavelet coefficients, and 

Equation Section (Next) 

 1( ) ( 1) (1 )ng n h n−= − −  (2.11) 

In practice, coefficients h(n) and g(n) are called low frequency and high-frequency 

filters, respectively, because they are impulse responses of the filters of wavelet 

transforms.  

 

To calculate h, both sides (2.9) are multiplied scalarly by the function φ(2t-b0n) and, 

as a result of orthogonality, we obtain 

Equation Section (Next) 

 0( ) ( ), (2 )h n t t b nϕ ϕ= −  (2.12) 
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After computation of h(n), we can calculate g(n), scaling equation ( )tϕ  and wavelet 

function ( )tψ . After computation of these coefficients and functions, we should find 

remaining coefficients in order to extract x(t) (2.13) from observed signal y(t). 

Equation Section (Next) 

 0 ,1
( ) ( ) ( ) ( ) ( )J

k j j kk j k
x t c k t d k tϕ ψ∞ ∞

=−∞ = =−∞
= +∑ ∑ ∑  (2.13) 

In order to find c0(k)  and dj(k) coefficients we should follow the wavelet based 

deconvolution algorithm which is given below. 

 

Figure2.5 Bank of filters for deconvolution of signal x(t), which is distorted by the instrument function 
H(t), with a three-stage scheme of DWT: y(n) are samples of the observed signal; =γ(−k), =h(-k) 

and ḡ =g(–k) are the coefficients of the filters for analysis; γ, h, and g are the coefficients of the filters 
for synthesis; and f(t) is the reconstructing function.[9] 
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In general, it is required to evaluate useful signal x(t) distorted by the system function 

H(t). Signal x(t) in the form of discrete time samples y(n) arrives at the input of  a 

discrete filter with response   (see Figure2.5). This filter’s output is exposed to the 

DWT with filters  and  (three DWT stages are shown in Figure2.5) with 

subsequent threshold processing; after that, an inverse DWT is executed with filters h 

and g. The output discrete sequence is processed with filter ; then, using the filter 

characterized by pulse response f(t), the desired signal estimate  is calculated. 

The coefficients of filters , h, and g are found from the formulas presented above 

equations. 

 

Let us derive the processing algorithms performed by the bank of filters (Figure2.5). 

Let signal x(t) and scaling functions ( ) ( ){ }k 0t  t b k ,  k  Z ϕ ϕ= − ò , orthonormalized 

basis, belong to a common subspace. Then, the equality 

Equation Section (Next) 

 0( ) ( ) ( )kk
x t c k tϕ= ∑  (2.14) 

is valid.  

The following expressions can be obtained for coefficients c0(k): 

Equation Section (Next) 

 0 ( ) ( ) ( ) ( ) ( ) ( ) ( )k n n
c k x t t dt y bn n k y bn k nϕ γ γ

∞

−∞
= = − = −∑ ∑∫  (2.15) 

where ( ) ( )k kγ γ= −  and ( ) ( ) n
n

b ty b x t H
μ

∞

−∞

⎛ − ⎞
= ⎜ ⎟

⎝ ⎠
∫  are samples of the distortion 

output taken with a step b=b0μ, k, n ϵ N.  

 

Coefficients c0(k) represent the input of the cascade algorithm of the wavelet analysis 

performed with filters ( ) ( )h k h k= −  and ( ) ( )g k g k= −  

Equation Section (Next) 

 1

1

( ) ( 2 ) ( )

( ) ( 2 ) ( )
j jm

j jm

c k h m k c m

d k g m k c m
+

+

= −

= −

∑
∑

 (2.16) 
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Where j = –1, –2, ... 

In order to suppress noise, the expansion coefficients of observed signal y(t) 

expanded in terms of wavelet functions dj(k) are subjected to the threshold 

processing following the algorithm. The inverse wavelet transform is then performed 

in order to calculate coefficients 0 ( )c k(  using filters h and g from the recurrence 

formula. 

Equation Section (Next) 

 1( ) ( ) ( 2 ) ( ) ( 2 )j j jn n
c k c n h k n d n g k n+ = − + −∑ ∑

(( (  (2.17) 

To derive the algorithm for calculating estimate 0 ( )x k(  on the basis of coefficients, 

0 ( )c k(  we obtain from (2.15) 

Equation Section (Next) 

 0 0( ) ( ) ( ) ( ) ( ) ( )kk n k

t bnx t c k t f c k n kϕ γ
μ

−
= = −∑ ∑ ∑( ( (  (2.18) 

Hence, the complete reconstruction of signal x(t) requires that 0 ( )c k(  be passed 

through filter γ(k) (see Figure2.5); subsequently, we obtain the desired estimate ( )x k(  

with the use of the function f(t). 

 

Figure2. 6 shows a reconstructed signal ( )x k(  reconstructed from an observed signal 

y(t) for capillary electrophoresis using the wavelet-based deconvolution. The 

comparison of the observed signal (Figure2. 6a) and the signal after processing 

(Figure2. 6b) demonstrate high similarity with significantly improved resolution: 

hardly noticeable variations in the observed signal became quite discernable. 
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Figure2. 6 Reconstructed signal from an observation for capillary electrophoresis: (a) observed 
signal y(t) and (b)  signal processed in accordance with the wavelet-based deconvolution 

The basic algorithm of the wavelet based deconvolution method is explained in this 

part. In literature, there are lots of applications of wavelets based on this basic 

algorithm. We will use Fourier Wavelet Regularized Deconvolution among all 

applications because of its excellent noise filtering mechanism which is explained 

below part. 

2.5.1.3 Fourier Wavelet Regularized Deconvolution (ForWaRD) 
 

In order to explain this method, first we have to give problem statement in 

mathematical view. 

 

Assume that we have an observed signal sample y(n). The observed signal consists of 

unknown desired signal sample x(n) which is convolved with a known impulse 

response h(n) from a linear time-invariant (LTI) system and then disturbed by zero-

mean additive white Gaussian noise (AWGN) γ(n) with variance σ2 (see Figure2.7) 

 

 

Figure2.7 Convolution model setup. 
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Equation Section (Next) 

 
( ) : ( ) ( ),    0,..., 1

       : ( )( ) ( )
y n x n n n N

h x n n
= Η + γ = −
= ⊗ + γ

 (2.19) 

When y and h are given, we want to estimate x. 

A naive deconvolution estimate ( )x n(  is obtained using the operator inverse H-1 as: 

Equation Section (Next) 

 %( ) : ( ) ( ) ( )x n y n x n n−1 −1= Η = + Η γ  (2.20) 

Regrettably, the variance of the noise H-1 γ(n) in ( )x n( is large when H is ill 

conditioned. In such a case, the mean-squared error (MSE) between x and is large, 

making x(  an unsatisfactory deconvolution estimate.  

 

In general, deconvolution algorithms can be interpreted as estimating x from the 

noisy signal x(  in (2.20). In our thesis, we focus on a simple and fast estimation 

based on scalar shrinkage of individual components in a suitable transform domain. 

 

2.5.1.3.1 Transform-Domain Shrinkage 
 

It is given that we have an orthonormal basis  for RN, the naive estimate from 

(2.20) can be conveyed as; 

Equation Section (Next) 

 % ( )
1

0

,  
N

k k k
k

x x b b b
−

−1

=

= + Η γ,∑  (2.21) 

A better estimate xλ
(  can be easily obtained by shrinking the kth component in (2.21) 

with a scalar λk, 0< λk <1. [6] 
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Equation Section (Next) 

 
% ( )

1

0

: ,

     :=

N

k k k k
k

x x b b b

x

−
−1

λ

=

−1
λ λ

= + Η γ, λ

+ Η γ

∑  (2.22) 

The : , k k k
k

x x b bλ λ= ∑  denotes the retained part of the signal x that the shrinkage 

(2.20), whereas 1 1: , k k kk
H H b bλγ γ λ− −= ∑  denotes the leaked part of the colored 

noise H-1γ that the shrinkage fails to attenuate.  

 

Obviously, we should set λk=0 if the variance 
22 1: ( , )k kE H bσ γ−=  of the colored 

noise component is large relative to the energy 2, kx b  of the corresponding signal 

component and set λk=1 otherwise. For the deconvolution inverse problem, the 

shrinkage by λk can also be explained as a form of regularization. 

 

There is an easily undestandable tradeoff associated with the choice of λk[6]: 

 

• If λk =1, then most of the kth noise component leaks into xλ% with the 

corresponding signal component; the result is a distortion-free but noisy estimate.  

• In contrast, if λk =0, then most of the kth signal component is lost with 

the corresponding colored noise component; the result is a noise-free but distorted 

estimate. Since the variance of the leaked noise  in (2.22) and the energy of 

the lost signal x xλ− %  constitute the MSE of the shrunk estimate xλ%  judicious choices 

of the λk’s help lower the estimate’s MSE. 

However, for a given transform domain an important fact is that, the lower bound of 

the estimate xλ% ’s MSE is given in (2.23) even with the best possible λk’s, 

Equation Section (Next) 

 
1 2 2

0

1 min( , , )
2

N

k k
k

x b σ
−

=
∑  (2.23) 



41 
 

We understand from (2.23) small MSE of xλ%  is obtained only when most of the 

signal energy (
2

, k
k

x b∑ ) and noise energy is caught by a few transform-domain 

coefficients—such a representation is termed as economical—and when the energy-

capturing coefficients for the signal and noise are different. Otherwise, the xλ%  is 

either distorted due to lost signal components or overly noisy due to leaked noise 

components. 

In literature, the Fourier domain methods (with sinusoidal bk’s) are used to estimate x 

from x% . The strength of the Fourier domain basis is that it most economically 

represents the colored noise H-1 γ. However, the weakness of the Fourier domain is 

that it does not economically represent signals x with singularities such as images 

with edges. Accordingly, as shown by the MSE bound in (2.23), any estimate of 

desired signal obtained via Fourier shrinkage is unsatisfactory with a large MSE; for 

the signals with singularities, the estimate is either noisy or distorted. 

  

Recently, the wavelet domain (with shifts and dilates of a mother wavelet function as 

bk’s) has been used to estimate x from x% . The strength of the wavelet domain is that 

it economically represents classes of signals containing singularities that satisfy a 

wide variety of local smoothness constraints, including piecewise smoothness. 

However, the weakness of the wavelet domain is that it typically does not 

economically represent the colored noise H-1 γ. Consequently, as dictated by the MSE 

bound (2.23), any estimate of the desired signal obtained by wavelet shrinkage is 

unsatisfactory with a large MSE; the estimate is either noisy or distorted for many 

types of H.  

 

Unfortunately, any of the noise colored by a general H-1 and signals from a general 

smoothness class cannot be economically represented in any single transform domain 

So, deconvolution techniques which employ shrinkage in a single transform domain 

cannot yield sufficient estimates in many interested deconvolution problems. 

Because of this reason, ForWaRD method, which combines both Fourier and 

wavelet-domain shrinkage, is used in the thesis. This method overcomes the 

corresponding problem. 
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Fourier Wavelet Regularized Deconvolution (ForWaRD) method relies on scalar 

processing in both the Fourier domain, which economically represents the noise H-1γ, 

and the wavelet domain, which economically represents signal x from a wide variety 

of smoothness classes.  

 

Figure2.8 Process steps of Fourier-wavelet regularized deconvolution (ForWaRD) 

 

Fourier-Wavelet Regularized Deconvolution (ForWaRD) technique estimates x from 

x%  by first employing a small amount of scalar Fourier shrinkage λf and then 

attenuating the leaked noise with scalar wavelet shrinkage λw (see Figure2.8).[21] 

 

Here is how it works: During operator inversion, some Fourier coefficients of the 

noise γ are significantly amplified; just a small amount of Fourier shrinkage (most 

1f
kλ ≅ ) is sufficient to attenuate these amplified Fourier noise coefficients with 

minimal loss of signal components. The leaked noise 1
fH

λ
γ−  that Fourier shrinkage 

λf fails to attenuate has significantly reduced energy in all wavelet coefficients, but 

the signal part fx
λ

 that Fourier shrinkage retains continues to be economically 

represented in the wavelet domain.  

 

Therefore, later wavelet shrinkage effectively obtains the retained signal fx
λ

 from 

the leaked noise 1
fH

λ
γ−  and a robust estimate is provided. 
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2.5.1.3.2 Mathematical Algorithm of ForWaRD Method 
 

Assume that, we have observed signal y(n) which is blurred and noisy: 

Equation Section (Next) 

 
( ) : ( ) ( ),    0,..., 1

       : ( )( ) ( )
y n x n n n N

h x n n
= Η + γ = −
= ⊗ + γ

 (2.24) 

Given y(n) and h(n), we want to estimate x(n). The mathematical algorithm of 

ForWaRD method, explained in detail above, for extracting x(n) signal is given 

briefly in below part. 

2.5.1.3.2.1 FORD 
 

By computing the DFTs of y and h, we obtain Y and H. Then, in order to obtain , 

we invert H as in the following way: 

Equation Section (Next) 

 ( ) ( ) ( ) ( )k k k kY f H f X f f= + Γ  (2.25) 

where Y, H, X and Γ  are discrete Fourier transforms (DFTs) of y, h, x and γ , 

respectively, and fk := πk/N, (N: length of the DFTs) are the normalize DFT 

frequencies. The pseudo inversion (which is given in (2.20) before) in the Fourier 

domainEquation Section (Next) 

 �
( )( ) ,   if ( ) 0
( )( ) :

0                           otherwise

k
k k

kk

fX f H f
H fX f
Γ⎧ + >⎪= ⎨

⎪⎩

 (2.26) 

Where X%  is the DFT of x%  obviously illustrates that noise components where 

( ) 0kH f ≅  are especially amplified during operator inversion. 

 

Deconvolution via Fourier shrinkage called Fourier-based Regularized 

Deconvolution (FoRD), attenuates the amplified noise in �X  with shrinkage 
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Equation Section (Next) 

 
2

2

( )
( ) ( )

kf
k

k k

H f
H f f

λ =
+ Λ

 (2.27) 

The ( ) 0kfΛ ≥ , usually defined as regularization terms [4, 21] which control the 

amount of shrinkage. The discrete Fourier transform components of the FoRD 

estimate fX
λ are: 

Equation Section (Next) 

 � �( ) : ( )f f
k k kX f X fλ λ=  (2.28) 

Using the equation (2.27) we obtain 

Equation Section (Next) 

 � ( )
( ) : ( )

( )
f

f
f

k
k k

k

f
X f X f

H f
λ

λ λ

Γ
= +  (2.29) 

The fX
λ

 and /f H
λ

Γ  comprising � fX λ denote the respective DFTs of the retained 

signal fX
λ

and leaked noise 1
fλ

γ−Η components that constitute the FoRD estimate 

% fxλ .(See equation (2.22) 

 

Limitations of FoRD : For signals with singularities, it is not provided economical 

representations in the Fourier domain, such as images with edges, due to the fact that 

the energy of the singularities spreads over many Fourier coefficients. 

 

2.5.1.3.2.2 Wavelet ShrinkageBased Signal Estimation 
 

Economical signal representation of the wavelet transform facilitates an effective 

solution to the problem of extracting the desired signal x(n) from AWGN-corrupted 

observations, 
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Equation Section (Next) 

 %( ) ( ) ( )x n x n n= + γ  (2.30) 

Simple shrinkage in the wavelet domain with scalars λw can provide excellent 

estimates of x. this shrinkage is illustrated by (2.22) with wavelet basis functions as 

the bk’s. 

Oracle thresholding [75] shrinks with  

Equation Section (Next) 

 ,
,

,

1,     if | |>  

0,     if | |
j l jw

j l
j l j

w

w

σ
λ

σ
⎧ ⎫⎪ ⎪= ⎨ ⎬≤⎪ ⎪⎩ ⎭

 (2.31) 

where 2
jσ  is the noise variance at wavelet scale. It is provided an excellent 

estimation by oracle thresholding. However, it is impractical because of the 

assumption of knowledge of the wavelet coefficients ,j lw  of the desired x. Hard 

thresholding, which has similar performance to the Oracle thresholding and it is also 

practical. Hard thresholding employs, 

Equation Section (Next) 

 

~

,

, ~

,

1,     if | |>  

0,     if | |

j l j jw
j l

j l j j

w

w

ρ σ
λ

ρ σ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪≤⎩ ⎭

 (2.32) 

where 
~ ~

, ,: ,j l j lw x ψ=< > , and jρ  is  a scale-dependent threshold factor. 

In practice, the Wavelet-domain Wiener Filter (WWF) improves on the MSE 

performance of hard thresholding by employing Wiener estimation on each wavelet 

coefficient. 
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WWF chooses 

Equation Section (Next) 

 
2

,
, 2 2

,

| |
| |

j lw
j l

j l j

w
w

λ
σ

=
+

 (2.33) 

We have % fxλ signal after processing the FORD algorithm. In this step compute 

Discrete Wavelet Transform of the still noisy % fxλ  to obtain wavelet coefficients 

, ; fj l
w

λ

( . Shrink
, ; fj l

w
λ

(  with ,
w
j lλ  using (2.33) (shrinkage (thresholding) parameters in 

wavelet domain) to obtain new thresholded wavelet coefficients: , ,, ;
ˆ : f

w
j l j lj l

w w
λ

λ= ( . 

Compute the inverse DWT with the ,ˆ j lw  to obtain the ForWaRD estimate x̂ . 

 

2.5.2 Clustering of Hemodynamic responses as active and passive 
 

The main objective of our thesis is to identify brain activation from fMRI signals. In 

order to identify active regions in brain according to the incoming stimulant, we 

should determine which brain voxels are active, which ones are passive. This 

information is included in voxels’ hemodynamic response functions’ shapes, as 

explained briefly in previous section. Once the necessary hemodynamic response 

functions’ shapes are extracted, we need to cluster these to determine active versus 

passive groups.  

 

We mentioned that hemodynamic response’s shape determines the activity and 

passivity of the underlying voxel. If it is active the intensity of the hemodynamic 

response function has a peak like left picture in the Figure1.2. The values of this 

peak, as well as its latency change in a large definite interval. This situation causes 

ambiguity when clustering hemodynamic responses. So, we need a clustering method 

which should work in ambiguous situations. The best method for these situations is  

fuzzy C means clustering in literature, so we decided to use this clustering method 

for our problem. The basis of this algorithm is explained in below. 
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In fuzzy clustering, each point has a degree of belonging to clusters, as in fuzzy 

logic, rather than belonging completely to just one cluster. Thus, points on the edge 

of a cluster, may belong to the cluster with a lesser degree than points in the center of 

cluster. For each point x we have a coefficient giving the degree of being in the kth 

cluster uk(x). Usually, the sum of those coefficients for any given x is defined to be 1: 

Equation Section (Next) 

 
.

1

( ) 1
num clusters

k
k

x u x
=

⎛ ⎞∀ =⎜ ⎟
⎝ ⎠

∑  (2.34) 

With fuzzy k-means, the centroid of a cluster is the mean of all points, weighted by 

their degree of belonging to the cluster: 

Equation Section (Next) 

 
( )
( )

m
kx

k m
kx

u x x
center

u x
= ∑

∑
 (2.35) 

The degree of belonging is related to the inverse of the distance to the cluster center: 

Equation Section (Next) 

 
1( )

( , )k
k

u x
d center x

=  (2.36) 

then the coefficients are normalized and fuzzyfied with a real parameter m>1 so that 

their sum is 1. So Equation Section (Next) 

 2/( 1)
1( )

( , )
( , )

k m

k
j

j

u x
d center x
d center x

−=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
 (2.37) 

For m equal to 2, this is equivalent to normalizing the coefficient linearly to make 

their sum 1. When m is close to 1, then cluster center closest to the point is given 

much more weight than the others, and the algorithm is similar to k-means. 
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The fuzzy c-means algorithm is very similar to the k-means algorithm:  

• Choose a number of clusters. 

• Assign randomly to each point coefficients for being in the clusters. 

• Repeat until the algorithm has converged (that is, the coefficients' change 

between two iterations is no more than ε , the given sensitivity threshold): 

o Compute the centroid for each cluster, using the formula above. 

For each point, compute its coefficients of belonging to the clusters, using the 

formula above. 
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CHAPTER 3 

METHOD 
 

3 METHOD 
 

In our thesis, basic aim is to identify voxel based activation of the brain based on 

processing fMRI signals. We have to perform two sub goals in order to realize our 

main aim. Firstly, we have to extract the hemodynamic response function from fMRI 

signal whose shape is information about voxels situation as active or passive by 

using a deconvolution algorithm. We adapt the direct Fourier Wavelet Regularized 

Deconvolution (ForWaRD) method to our fMRI problem in order to extract 

hemodynamic response from fMRI signal. In Chapter 2, we layed the necessary 

mathematical background related to ForWaRD. In this chapter we express how we 

adapted direct ForWaRD to our fMRI problem.  Secondly, hemodynamic responses 

of voxels have to be clustered in order to decide which HRF resulted from active 

voxels and which ones from passive voxels. Our clustering method is fuzzy c-means 

algorithm with laplacian eigenmaps. In previous chapters we mentioned the 

generalities about this method, now we depict how we use it ın our problem.  

The block diagram of our system for fMRI problem is given below, details are in the 

following parts. 

 

Figure3.1 System Diagram of the Thesis 
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3.1 How ForWaRD is Adapted for Hemodynamic Response Function 
Extraction 

 

The extraction of hemodynamic response function (HRF) from FMRI data is the 

focus of this subsection. Fourier-wavelet regularized deconvolution (ForWaRD] 

which was developed recently [76] is adapted for use in our FMRI problem. The 

important point is that this method is directly implemented for the first time to fMRI 

signals, we do not change its mathematical formulation. In fact, this method was 

developed for denoising and deblurring images [76]. ForWaRD combines frequency 

domain deconvolution with frequency domain regularization and wavelet domain 

regularization. Each of these phases will be introduced and demonstrated on fMRI 

signals in the coming subsections of this chapter. The advantage of deconvolution in 

the frequency domain is identifying overlapping signals. Its main disadvantage is 

noise amplification. Noise can be reduced in the frequency domain by shrinking 

frequency coefficients but it is may be difficult to separate noise and signal. 

ForWaRD solves this problem by using wavelet domain shrinkage [20]  

Our adaptation of the ForWaRD method uses an FMRI data set and the stimulus time 

pattern. Mathematically, FMRI signal can be modeled as; 

Equation Chapter (Next) Section 1 

 ( ) ( * )( ) ( )g n h f n e n= +  (3.1) 

g(n): FMRI signal, h(n): hemodynamic response function, f(n): stimulus pattern, e(n): 

noise. ForWaRD uses known fMRI signal g(n) and stimulus pattern f(n) to estimate 

unknown hemodynamic response h(n). 

When this method is compared with the other HRF extraction methods, reviewed in 

Chapter 2, it has some important advantages. It takes overlapping responses into 

account and is much simpler than reviewed methods in Chapter 2, due to the fact that 

it does not rely on shape assumptions of the HRF: using only the FMRI signal and 

the stimuli, we determine the extracted time points: so, this method is data driven 

instead of model driven. This property means that HRF is not biased by any a priori 
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 model. 

The outline of the extraction of HRF from FMRI data part of the Chapter 3 is 

organized as follows. Section 3.1.1 mentions the general linear model which is used 

in ForWaRD extraction algorithm. Section 3.1.2, Section 3.2 and its subsections 

explain the extraction algorithm of ForWaRD for fMRI signals. 

 

3.1.1 Determining the HRF 
 

fMRI signals are responses obtained by patients processing stimula. Therefore, those 

stimula are inputs to the patient brain as activation are processed there, leading to 

measured fMRI signals.  

The process is formulated by the measured signal g representing a single response to 

a pattern f of stimuli being a convolution of stimulus pattern f with the brain activity 

impulse response h, plus an additive term representing noise. 

Equation Section (Next) 

 ( ) ( * )( ) ( ),  1,....,g n h f n e n n N= + =  (3.2) 

g(n): FMRI signal   

h(n): hemodynamic response function 

f(n): stimulus pattern 

e(n): noise 

with ‘*’ denoting discrete convolution. (reviewed in Section 1.1.1 in Chapter 1). 

 

The brain activity responding to a stimulus is represented as a hemodynamic 

response function as defined by h(n) above. 
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A convolution in the time domain is defined as a pointwise multiplication in the 

frequency domain, and a deconvolution is a pointwise division: 

Equation Section (Next) 

 ( ) ( ) ( ) ( ),  k 1,....,G k H k F k E k N= + =  (3.3) 

where F(k), G(k) and H(k) denote the Fourier transforms of f(n), g(n) and h(n), 

respectively. In the absence of noise e(n) and if f and g are given, the Fourier 

Transform of hemodynamic response is computed by pointwise division as follows: 

Equation Section (Next) 

 ( )( )
( )

G kH k
F k

=  (3.4) 

In the presence of noise, the Fourier Transform of the estimation of the 

hemodynamic response function, called hest, is obtained by pointwise division: 

Equation Section (Next) 

 ( ) ( )( )
( ) ( )

G k E kH k
F k F k

= +  (3.5) 

Where ( )
( )

G k
F k

 is the estimate of H(k), called Hest(k). Then the equation becomes as 

follows: 

Equation Section (Next) 

 
( )( ) ,   if  | ( ) | 0
( )( )  

0                        otherwise 

E kH k F k
F kHest k

⎧ ⎫+ >⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (3.6) 

Noise is amplified at frequencies k where F(k) is small,. If F(k) =0, the deconvolution 

problem becomes singular and such systems are called ill-conditioned. 

Deconvolution of noisy signals which are output of the ill-conditioned systems is an 

ill posed-problem. Our FMRI problem is an ill-posed problem because F(k), stimulus 

pattern, can be zero at some frequencies (see Figure3. 2). 
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Figure3. 2 Example of a block design stimulus pattern and its Fourier transform 

 

It may not be possible to obtain a unique solution or solution can be meaningless or 

at best unstable: when a noise is amplified at frequencies k, where F(k) is close to 

zero, parts of the noise e may appear in the extracted response. The regularization 

methods in the frequency and wavelet domains are used in ForWaRD algorithm to 

cope with this problem. The ForWaRD regularisation scheme, used in the thesis, is 

described in Section 3.2, the general block diagram of the ForWaRD as will be 

treated in the thesis is given in Figure3.3: 

 

Figure3.3 Block Diagram of ForWaRD 
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3.1.2 Regularization 

3.1.2.1 Shrinkage I: the Frequency Domain 
 

For one stimulus, one response function and additive noise, our fMRI deconvolution 

becomes as in the equation (3.2). An estimate Hest of the Fourier transform of hest is 

shown in (3.6) in the previous part. 

 

Deconvolution via Fourier shrinkage attenuates the amplified noise in the Fourier 

transform estimate of HRF as Hest(k) after the pointwise division with wiener 

shrinkage, by multiplying each frequency coefficient Hest(k) by a wiener shrinkage 

factor f
kλ : 

Equation Section (Next) 

 
2

2~

2
2

| ( ) |( )  

| ( ) |
| ( ) |

f
k

e

F kk
NF k

H k

λ
στ

=

+

 (3.7) 

 

τ : regularization parameter 
� eσ  :the variance of the noise e(n) 

N :length of data 

For our thesis, the estimation of the noise level � eσ  from the data is important rather 

than to assume that the noise level is known. We compute an estimate from the finest 

scale empirical wavelet coefficients: � ( )| |e nMedian wσ =  where wn is the finest 

wavelet coefficient vector at level n and n is the maximum decomposition level 

corresponding to these wavelet coefficients. We believe it is important to use the 

median estimator, in case the fine scale wavelet coefficients include a small ratio of 

strong “signals” mixed in with “noise”. 
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Another important point here is to identify the wiener shrinkage factor λ (k). We 

desire to choose the shrinkage factor that minimizes the ForWaRD MSE:
2

, 2
ˆh hλ κ−  

h     : original hemodynamic response 

,ĥλ κ : ForWaRD estimate hemodynamic response 

However, since the original HRF is unknown, we define an observation based cost 

and choose shrinkage factor that minimizes this cost. 

Observation based cost function:  

F(fk)        : Fourier transform of stimulus pattern 

,
ˆ ( )kH fλ κ : Fourier transform of ForWaRD estimate hemodynamic response 

In the observation based cost function the stimulus pattern F(fk) and fMRI signal 

G(fk) is known so they can not be changed during the computations of desired 

hemodynamic response function. Therefore, only the regularization parameter τ 

changes the extracted hemodynamic response function in the underlying observation 

based cost. Because regularization parameter is important we define it as a 

probability vector based variable. In order to obtain minimum value for the 

observation based cost, we change regularization parameter in a vector and find the 

optimum value. 

 

We compute regularization parameter τ as: 
2 22
2 2

[0, 01 0, 05 0,1 0,5 1 5 10] / ( )N f y yτ σ μ= × −  

        Vector A 

Values of vector A change according to the problem We calculate each τ based on 

each element of determined vector A. For each calculated τ value, we calculate the 

observation based cost function value. Calculated cost values are saved to a vector 

respectively. The smallest cost value is chosen from this vector and the τ value 

which was used in order to calculate this cost is determined. This τ value is our 

optimum regularization parameter. Shrinkage factor is calculated based on this value. 

After computing shrinkage factor we shrink Hest(k) with this λ(k) (see equ 3.9). In 

this way we suppressed the amplified noise components in this step.

2/2 2

,2
( /2) 1

( ) 1 ˆ( ) ( ) ( )
( )( )

N
k

k k k
k N kk

F f
F f H f G f

F fF f
λ κ

τ=− +

−
+

∑
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The discrete Fourier transform (DFT) components of the deconvolution via Fourier 

shrinkage estimate �hλ are: 

Equation Section (Next) 

 � ( ) : ( ) ( )f
est kH k H k kλ λ=  (3.8) 

Equation Section (Next) 

 �
2 2

2 2~ ~

2 2
2 2

| ( ) | ( ) | ( ) |( ) : ( )
( )

| ( ) | | ( ) |
| ( ) | | ( ) |

e e

F k E k F kH k H k
F kN NF k F k

H k H k

λ

σ στ τ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.9) 

Equation Section (Next) 

 � ( )( ) : ( )
( )

E kH k H k
F k

λ
λ λ= +  (3.10) 

The ( )H kλ and ( )
( )

E k
F k

λ  comprising � ( )H kλ  denote the respective Discrete Fourier 

Transforms of the retained signal hλ and leaked noise 1F eλ
−  components that 

comprise the deconvolution via fourier domain wiener shrinkage estimate �hλ .  

 

Briefly, when an estimate � eσ (the noise variance e(n)) and a regularization factor τ is 

given, each frequency coefficient of Hest(k) is multiplied with a f
kλ  for attenuating 

the noise and the result is � ( )H kλ . 

 

The hemodynamic response function estimate �hλ (n) is the inverse Fourier transform 

of � ( )H kλ . Wiener shrinkage minimizes �
2

h hλ − . Where F(k) is large, ( )k 1f
kλ ≈ and 

where F(k) is small, ( )k 0f
kλ ≈ . In order to remove noise from smooth signals 

wiener shrinkage is the optimal method, but signals which have irregularities (such 

as steep edges) are handled less well. “Irregularities contain high frequencies, so 

either noise is not suppressed, or artifacts (such as ringing) occur.” [76].  
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Optimal values for the regularization parameter τ in above equations are obtained 

from the strength of the signal and of the noise. 

3.1.2.2 Shrinkage II: Wavelets and ForWaRD 
 

After Fourier domain inversion step we obtain noisy deconvolution Hest(k) of desired 

hemodynamic response signal h(n). Because of the unsatisfactory result of Fourier 

inversion, we use Fourier domain regularization with wiener shrinkage. This 

frequency domain shrinkage attenuates the noise by multiplying each frequency 

coefficient of Hest(k) by f
kλ (k) and through this shrinkage we obtain regularized 

deconvolution� ( )H kλ . Since � ( )H kλ is still noisy, ForWaRD implements another 

regularization to deconvolved signal � ( )H kλ  in wavelet domain, to filter the rest of 

the noise. In this part of the Chapter 3, we will mention wavelet domain 

regularization in detail.  

 

Briefly, as we mentioned “ForWaRD regularizes the deconvolution with both 

frequency domain and wavelet domain shrinkage” [82]. ForWaRD uses wavelet 

domain wiener shrinkage because Fourier domain shrinkage does not adequate to 

filter the whole noise in fMRI signal. Wavelet domain Wiener (and also Tikhonov) 

shrinkage is a very muscular regularization method for signals with irregularities. It 

needs an estimate of the regular part of the signal. Wavelet transform is used in the 

ForWaRD method to obtain this estimate. 

 

A discrete wavelet transform defines a sampled signal c0 of length N as a sum of 

localised basis functions. We write the regular part c1 and irregular part d1 as 

weighted sums of shifted and dilated versions of a scaling function  and wavelet 

function ψ, respectively. By dividing subsequent cj into cj+1 and dj+1 analysis at 

multiple levels is done. The underlying inverse wavelet transform uses cj and dj to 

reconstruct cj−1. 

In general, a DWT with J levels of decomposition JϵN recursively separates the 

signal into a regular part cJ and detail signals d1,d2…dJ  
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Wavelet domain Wiener shrinkage is applied to the estimate �hλ by ForWaRD. For 

smooth signals, most energy is stored in the approximation part cJ, and the 

coefficients of dj are small [80]. In the underlying signal, large coefficients of dj 

appear at irregularities. The regular and irregular parts of the signal are separated: cJ 

and large coefficients of dj are regarded as signal, the rest is noise. Wavelet Domain 

Wiener Filtering is executed via two wavelet transforms. Two different wavelet 

transforms of �hλ , represented by the basis functions ( 1,ψ1) and ( 2,ψ2), 

respectively, are similar. ForWaRD uses first estimate of is obtained by computing 

the Discrete Wavelet Transform of �hλ , using ( 1,ψ1), and thresholding the detail 

coefficients { }1 1
( )  ( 1, ........., / 2 )

Jj j

j
d n n N

=
= to remove noise. After thresholding, 

result is thresholded detail coefficients 1 ( )
j

d n
−

.  

This estimate of the wavelet spectrum of the desired signal is used in the wavelet 

domain Wiener shrinkage (second step). After computing a second Discrete Wavelet 

Transform using ( 2,ψ2), its detail coefficients are shrunk [6]: 

Equation Section (Next) 
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e
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n

d n
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−

−

=

=
+

 (3.11) 

We estimate the noise standard deviation eσ  using the median absolute value (MAD) 

of the first-level detail coefficients [80]. 
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Here, known as 1 ( )
j

d n
−

denotes 1 ( )jd n after thresholding. The concluding estimate 

hκ is the inverse discrete wavelet transform (IDWT) of 2
jc  and { },2 1

( )
Jj

j
d nκ =

. 

We obtain hemodynamic response signal of our sample data after processing the 

ForWaRD algorithm. Result signal is a noise free hemodynamic response function 

estimate. Wavelet domain Wiener shrinkage filtered remaining noise after Fourier 

shrinkage and deconvolved signal successfully. 

3.1.3 Using ForWaRD to obtain the HRF 
 

When stimulus pattern f and an fMRI signal g is given, we use ForWaRD (see 

Algorithm 3.1) to obtain an HRF in each voxel. Basic ForWaRD algorithm, 

explained above, is directly implemented to the one of voxels obtained fMRI time 

series. The extraction procedure is explained for each voxel in the following steps: 

 

1: the fMRI signal g and the stimulus pattern f is loaded; 

2: ForWaRD is applied to g, in order to estimate the HRF hκ  to the stimuli with 

pattern f.  

 

We can process the fMRI signals which are at different voxel locations 

independently, this situation enables us reduce the computation load during 

extraction. The output of the algorithm shows HRF signals in the activated brain 

areas and absurd signals in the passive areas. We use MatLab for this algorithm 

during the thesis. ForWaRD method is given in pseudo code in the Algorithm3.1. 

The next section describes a series of experiments, using simulated time series with 

activations of known shape and strength.  
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Algorithm3.1 ForWaRD in pseudo-code 
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Illustration of ForWaRD algorithm with a sample data step by step: 

Step1:Fourier Inversion 

Figure3.2, shows the flow of the process within the ForWaRD algoritm.. Now we 

will give an example with a simulated fMRI data that will show the flow of the 

algorithm step by step and the results of the algorithm after each step. Thus, we will 

able to understand how ForWaRD extracts hemodynamic response function from an 

fMRI signal. 

First, we have the observation signal g, called FMRI data in the beginning of the 

algorithm. One sample of FMRI data is given in Figure3.4  
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Figure3.4 fMRI signal. 
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ForWaRD first performs fourier inversion step. In this step observed fMRI signal is 

deconvolved in order to obtain hemodynamic response. The result of this step is 

given in Figure3.5. 

 

0 20 40 60 80 100 120 140
-80

-60

-40

-20

0

20

40

60

80

100
After Fourier Inversion (without Regularisation)

Time Point  

Figure3.5 Output of  Fourier inversion step 

After Fourier inversion because of the structure of fMRI signal stimulus pattern, we 

cannot obtain a satisfactory estimate. Since, the stimulus is much closer to zero in 

some places, the noise is extremely amplified. As we mentioned before, when a noise 

is amplified at frequencies k, where stimulus pattern is close to zero, parts of the 

noise may appear in the extracted response. So, we need some regularization in order 

to attenuate noise components. We know from previous parts, ForWaRD uses the 

regularization methods in the frequency and wavelet domains. Frequency 

regularization is performed first. 
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Step2:Fourier Shrinkage 
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Figure3.6 Deconvolved HRF After Fourier Shrinkage 

After fourier shrinkage step noise component are attenuated. But result deconvolved 

HRF is still noisy. In order to filter remaining noise on deconvolved HRF signal, 

ForWaRD performs wavelet domain regularization. 
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Step3:Wavelet Shrinkage 
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Figure3.7 ForWaRD - Extract deconvolved and denoised HRF from fMRI signal 

After the last step called wavelet regularization, we have achieved very satisfactory 

result as a result of the program. HRF shape is similar to the ideal one which is 

explained in Chapter 1. 

Thus we have proven the program is working correctly and it is very robust to the 

noise on fMRI signal. Detailed experiments and results related with the performance 

and correct operation of the program are given in the next section. 
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3.2 Clustering 

3.2.1 Clustering of FMRI data 
 

At the start of the thesis work, we have a blurred and noisy FMRI signal and our aim 

is to find which voxels in the brain are active which ones are passive. We mentioned 

that FMRI signals include hemodynamic response signals that possess in their shape, 

information about whether a voxel is active or passive. In order to achieve 

information about voxel activity and passivity, we have to extract hemodynamic 

response from FMRI signal. The way of extracting hemodynamic response from 

FMRI signal is to apply deconvolution process on FMRI.  

 

Therefore, in the first part of the thesis, a wavelet based deconvolution method called 

ForWaRD is applied to the FMRI and obtained hemodynamic responses from FMRI 

signal. Every voxel has a unique hemodynamic response.  

 

In this part of the thesis, we want to classify the estimated HRF patterns as generated 

from active and passive voxels by use of a clustering algorithm. Separation can be 

done through the pattern information in hemodynamic responses. Analyzing possible 

relations between different active voxels’ hemodynamic responses and in the same 

way, analyzing possible relations between different passive voxels’ hemodynamic 

responses is the start point of the clustering because active voxels posess similarities 

in HRF and likewise, passive voxels have separate similarities in HRF. By defining a 

similarity measure between different hemodynamic response signal time series, we 

aim to group voxels with similar properties. If we group hemodynamic response 

signals according to their similarities meaning voxels with similar properties, active 

and passive signals will be separated from each other. 

3.2.2 Clustering Algorithm Outline 
 

The investigated algorithms are explained in Chapter 2. After investigations of 

methods and some sample tests, we decided to use fuzzy c means algorithm with 

nonlinear dimension reduction of hemodynamic responses. The reason for providing  
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Using the fuzzy c means approach can be explained as follows: We mentioned that 

hemodynamic response’s shape determines the activity and passivity of the voxel. If 

it is active the waveform of the hemodynamic response function has a peak like in 

the left picture of Figure1.2. The values of this peak are not definite numbers, they 

are changing in a large definite interval. This situation causes ambiguious when 

clustering hemodynamic responses. So, we need a clustering method which should 

work in ambiguity situations. The best method for these situations is fuzzy C means 

clustering, so we decided to use this clustering method for our fMRI problem. Even 

though these features are advantageus for our classification problem, fuzzy c means 

has some limitations. Because, fMRI time series have poor signal to noise ratio 

(SNR) and confounding effects -mean kinds of noises-, sometimes we obtain 

unsatisfactory clustering results on the time series. As a result data are not 

necessarily grouped according to the similarity of their pattern of response to the 

stimulation. Moreover, increasing the dimension of the clustering space leads to 

practical difficulties such as “curse of dimensionality.” Besides its advantages, 

because of these poor features of fuzzy c means, we combine this method with 

Laplacian Embedding. This method includes dimension reduction of activation data. 

 

For nonlinear dimension reduction, there are several methods in literature such as 

Locally Linear Embeddings (LLE)[5], Isomap [6], and Laplacian Embeddings [2]. 

We decided to use the Laplacian method. The power of this Laplacian Embedding 

method is to detect significant structures within the noisy and complex dynamics of 

hemodynamic response signals. This Laplacian Embedding Approach with fuzzy c-

means clustering is called Laplacian Eigenmaps Method. [1] 
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3.2.2.1 Laplacian Eigenmaps Algorithm 
 

Suppose that our FMRI data set is converted to N x T matrix. Let N be the voxel 

order and T be the time point. Each row shows the time series which is obtained for 

one voxel. 

 

For each voxel (with 1...T time points): 

 

• Step 1:  Obtain adjacency graph using n-nearest  neighbors where the Cosine 

similarity is used. So for each voxel we obtain the similarities with respect to 

other voxels. 

• Step 2: After calculation of similarities, weights are calculated using Distance 

method where binary similarity measure is assigned as weight wij. 

• Step 3: Evaluate eigenvectors using generalized eigenvector problem. These 

eigenvectors will be used in Fuzzy C-Means algorithm. 

• Step 4: After calculation of eigencvectors, we choose some of them to use in 

Fuzzy C-Means algorithm. Then we set the cluster number as three which are 

active, passive and motion. 

 

It is briefly mentioned above which steps are followed while clustering 

hemodynamic response function signals -obtained from fMRI signals- with 

Laplacian eigenmaps algorithm. Now, each step will be explained in detail and the 

application of Laplacian eigenmaps method to fMRI will become more clear. 

 

STEP 1 - Adjacency Graph Construction 

Given k points x1, x2, x3, ….., xk in l� , we put an edge between nodes i and j if xi and 

xj are “neighbour”.  There are two variations: 

1. ε- neighborhoods where ε ∈ � . Nodes i and j are connected by an edge if 
2

 –  i jx x ε< where the norm is Euclidean Norm in l� . 
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2. n-nearest neighbors where n N∈ . Nodes i and j are connected by an edge if i is 

among n nearest neighbors of j or j is among n nearest neighbors of i. N-nearest 

neighbors can be calculated using two metrics which are Euclidean distance and  

Cosine similarity. 

i. Euclidean Distance: In cartesian coordinates; p = (p1, p2, .., pn) and q = (q1, q2, 

.., qn). Euclidean distance from p to q: 

Equation Section (Next) 

 2 2 2 2
1 1 2 2

1
( , ) ( , ) ( ) ( ) ......( ) ( )

n

n n i i
i

d p q d q p q p q p q p q p
=

= = − + − + − = −∑ (3.12) 

ii.  Cosine Similarity: It is a similarity measure which can be obtained by 

evaluating the cosine between two vectors. If the angle is 0, the cosine is equal to 

1, for other cases it is smaller than 1. So if we calculate the cosine of the angle 

between two vectors, it shows us how these vectors are similar directions.  Cosine 

similarity: 

Equation Section (Next) 

 1

2 2

1 1

.cos( )
( ) ( )

n

i i
i

n n

i i
i i

A xB
A Bsimilarity

A B
A x B

θ =

= =

= = =
∑

∑ ∑
 (3.13) 
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STEP 2 – Choosing Weight 

There are three variations for weighting the edges: 

1. Heat Kernel: [ ]t ∈� . If nodes i and j are connected, put 

Equation Section (Next) 

 
2

i jx x

t
ijw e

−
−

=  (3.14) 

2. Distance: If nodes i and j are connected, Euclidean distance or  

Cosine similarity are assigned as weight wij 

3. Simple-Minded: If nodes i and j are connected, wij = 1. 

STEP 3 – Eigenmaps 

Eigenvalues and eigenvectors computation with respect to generalized eigenvector 

problem: 

Equation Section (Next) 

 Lf Dfλ=  (3.15) 

where  

D: diagonal weight matrix  

Diagonal weight matrices entries are row (or column since W is symmetric) sum of 

W, 

Equation Section (Next) 

 
ii ji

j
D W

L W D

=

= −

∑
 (3.16) 

where L is Laplacian matrix .  

 Let f0, f1, …, fk-1 be solutions of equation (3.15), ordered according to their 

eigenvalues, 
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Equation Section (Next) 
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 (3.17) 

We leave out the eigenvector f0 corresponding to eigenvalue 0 and use the next m 

eigenvectors for embedding in m-dimensional Euclidean space where m<k. 

Equation Section (Next) 

 1( ( ),......., ( ))i mx f i f i→  (3.18) 

STEP 4 – (Clustering): Fuzzy C-Means (FCM) 

In fuzzy clustering, each point has a degree of belonging to clusters, as in fuzzy 

logic, rather than belonging completely to just one cluster. Thus, points on the edge 

of a cluster, may be in the cluster to a lesser degree than points in the center of 

cluster.  

Fuzzy C-Means algorithm minimizes the cost function below. 

Equation Section (Next) 

 
2

1 1
,       1

N C
m

m ij i j
i j

J u x c m
= =

= − ≤ ≤ ∞∑∑  (3.19) 

Algorithm is started by assigning a random value for membership matrix. And for 

the second step center vectors are calculated with the equation below. 
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Equation Section (Next) 
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 (3.20) 

Finally the matrix U is calculated again using the equation below. Then the new U 

matrix is compared with the old one. The process continues until the difference 

between U matrices become smaller than ε. 

Equation Section (Next) 

 2
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1
ij

mC
i i

k i k

u
x c
x c

−

=
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∑

 (3.21) 

After the clustering processing, U membership matrix which contains fuzzy values 

gives the result of clustering. 
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CHAPTER 4 

EXPERIMENT RESULTS AND DISCUSSIONS 

4 EXPERIMENT RESULTS AND DISCUSSIONS 

4.1 Experimental Design Types 

 

Within the literature, there are two basic types of fMRI studies: Block designs and 

event-related designs. 

4.1.1 Block design paradigm 
 

A blocked design presents two or more conditions in an alternating pattern. 

Experimental conditions are separated into distinct blocks, so that each condition is 

presented for an extended period of time. Most early fMRI studies used blocked 

designs. For example in [41], a bright visual pattern was presented for 60s and then 

the display was dark for 60s. This approach can be classified as an “ABABAB…” 

blocked design. In most fMRI studies, each block is about 10 to 30s in duration, and 

there may be many alternations between different block types in a single run. 

Example of a block design paradigm is given below: 

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

 

Figure4.1 Example of a block design stimulus pattern 
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4.1.2 Event-related design paradigm 
 

Event-related design is the presentation of discrete, short duration events whose 

timing and order may be randomized. In an event-related design, stimuli are 

presented as individual events, or trials. The study by Blamire and colleagues in 1992 

[83] was the first to present event-related data. In slow event-related designs, the 

hemodynamic response decays to baseline after each stimulus, which allows the 

response to each trial to be individuated. In rapid experiments, the events are 

presented sufficiently close together (i.e., less than 10s) so that the hemodynamic 

response does not have time to decay to baseline between successive stimuli. For fast 

designs, special analysis procedures are required to separate the hemodynamic 

responses to different events. Example of a event- related design paradigm is given 

below: 

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5

1

1.5

Time Point

Event Related Stimulus Pattern

 

Figure4.2 Example of a event-related design stimulus pattern 

In this thesis, we aim at understanding the activation areas of brain by means of 

determine active and passive voxels in the brain during a specific experiment. Two 

sub algorithms are performed sequentially using the simulated and real data which 

are comparatively analyzed after individual results analyses. First algorithm, called 

ForWaRD, is performed to extract HRF information performing to voxel’s activity or 

passivity included in FMRI signal as reviewed in Chapter 1 and the second sub 

algorithm, called Laplacian Eigenmaps, is performed to separate active and passive 

voxels by classifying hemodynamic response functions obtained in first step. These  
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two different algorithms are performed for fMRI signals obtained from all 

experiments in order to identify brain activation. 

In this chapter initially, we created a set of simulated fMRI data based on the Balloon 

Model [86, 87] and the flow-inducing signal model presented in [88]. The aim of 

creating this set of simulated fMRI data is to test the performance of our proposed 

method. The experiment results (extracted hemodynamic response function shapes 

and clustering results of simulated fMRI data) are shown in this chapter (in the 

following subparts). A detailed performance analysis will be performed in the 

Chapter 5 using the results obtained in Chapter 4. 

 

In addition to the experiment with simulated data, in this chapter we will explain two 

different experimental results, performed with real block design fMRI data.  

 

4.2 Experiment Results 
 

Chapter 4 presents results in two subparts. These are: 

1.  Results of Extracted HRF with ForWaRD Algorithm 

2.  Clustering Results and Identification of Active and Passive Voxels in Brain 

Every subpart includes results for three different experiments, obtained from three 

different fMRI data. These experiments are conducted with: 

     1.  Simulated data with BOLD response modeled based on the Balloon Model 

   2.  Real data from a specified fingertapping experiment 

   3.  Real data from a specified fMR adaptation paradigm. 
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4.2.1 Results of Extracted HRF with ForWaRD Algorithm 

 

In this part, we will analyze results from three different experiments. Adapted for 

fMRI data, Fourier Wavelet Regularized Deconvolution (ForWaRD) method is 

executed for extraction of hemodynamic response functions (HRF’s) from fMRI 

signals. For each data, obtained HRF results are analyzed and discussed in the 

following subsections. 

4.2.1.1 Experiment 1: HRF Results of Simulated Data Based on the 
Balloon Model 

 

In this experiment, we used a set of simulated fMRI data which is generated based on 

the Balloon Model [86, 87] and the flow-inducing signal model presented in [88]. 

The parameters for the simulation of fMRI signal are taken to be same as in [88] that 

is: ε=0.5, τS= 0.8, τf= 0.4, τ0= 1, α= 0.2, E0 = 0.8, V0 =0.02 and the stimulus pattern 

and simulated ideal pure (without noises) fMRI time series (BOLD response) are 

shown in Figure4.3. 

We include four noise sources to the basic fMRI signal.  

1.  Additive white gaussian noise (AWGN) 

      2.  Sampling jitter 

3.  Lag  

4. Drift (linear and quadratic slope; increasing or decreasing with variable 

values). 

The time series of the neighboring voxels of a target voxel are also generated with 

the same noise parameters. 

 

In Figure4.3, an example block design stimulus pattern of this simulated data 

experiment and the response in form of a simulated ideal BOLD response are shown. 

This BOLD response is a pure and ideal form of the fMRI signal (reviewed in 

Chapter 1 Figure1.3 and Figure1.4) which is modeled based on Balloon Model. 
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Figure4.3 Stimulus pattern and simulated pure fMRI signal, called ideal BOLD response 

In this work, our main objective is to identify voxel based activation in the brain 

according to the obtained fMRI signal. Active voxels can be placed anywhere in the 

brain during a specific experiment, but spatial information is disregarded in our 

experiment. In this part, we focus on the extraction of HRF. We analyze the accuracy 

of the extracted hemodynamic response functions (HRF) which are results of 

ForWaRD algorithm. 

In simulations, BOLD responses are corrupted by additive noises such as additive 

white Gaussian noise (AWGN), jitter, lag and drift. For varying values of noises, 

ForWaRD (HRF extraction algorithm) results are investigated. Effects of noises with 

different variances on the performance of ForWaRD are analyzed. In order to 

evaluate the accuracy of the results of ForWaRD algorithm, we used a MSE based 

evaluation criteria. After extraction of HRF with ForWaRD, obtained HRF and the 

stimulus pattern of the experiment (shown in Figure4.3) are  
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convolved. In the end, an estimated BOLD response according to the ForWaRD is 

obtained. In order to understand the similarity between the estimated time series and 

ideal BOLD response, the MSE is computed between these signals according to the 

formulation below. The more similar the ideal BOLD and the estimated BOLD are, 

the more successfully ForWaRD algorithm works. 

Equation Chapter (Next) Section 1 

 2
1 2

1

1 ( )
N

i i
i

MSE y y
N =

= −∑  (4.1) 

y1 : ideal BOLD signal, 

y2 :estimated BOLD signal, 

i :time point, 

N :total time point 

In addition, the performance of ForWaRD algorithm is analyzed in terms of 

sensitivity and specificity measure. After ForWaRD algorithm is performed for 

simulated data, obtained HRFs are clustered. Thus, we compute the sensitivity and 

specificity values for active and passive clusters. 

 

4.2.1.1.1 Jitter, Lag, Drift and Additive Noise Values and Ranges Used in 
Simulations 

 

(1) fMRI signals might have lag in time. We create a uniformly distributed lag 

for the BOLD signals, i.e,  

x(t)                                            x(t- Δ) where Δ~ Uniform([0, ]) 

(2) fMRI signals might have drift in time. We create a quadratic random drift and 

add it onto the BOLD signal, i.e,  

x(t)                                                       x(t) + at2+ bt  where a,b ~ Normal(0,
2

2N
σ ) 

Δ lag in time 

quadratic drift in time 
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(3) fMRI signals might have noise which is mostly due to the noisy 

measurement. We create a Additive White Gaussian Noise (AWGN) to simulate 

such an effect, i.e,  

x(t)                                        x(t) + n(t) where n(t) ~ Normal(0,σ2) 

(4) Finally, fMRI signals might also have sampling jitter which is, like AWGN, 

mostly due to the jittery measurement process.  

x(t)                                        x(t + Δ(t)) where Δ(t) ~ Normal(0,σ2) 

4.2.1.1.2 Extracted HRF with ForWaRD 
 

In this part, we corrupted ideal simulated BOLD signal (shown in Figure4.3) 

exclusively with AWGN only in order to understand the effects of AWGN noise on 

the performance of ForWaRD. Then, we analysed performance of ForWaRD for 

varying values of all artifacts such as AWGN, jitter, drift and lag. The values of 

every type of artifacts changed in a specific interval. According to all varying values 

of artifacts, the success of ForWaRD algorithm in retrieving HRF is observed. It is 

investigated until the program worked correctly or when it started to be wrong for 

each of the artifact. Finally, the special values of AWGN, drift and lag are introduced 

to the BOLD response and HRF extraction performance of ForWaRD with these 

values are observed. By this observation it was found out against which error 

ForWaRD method was sensitive or robust. Detailed figures and explanations can be 

seen in the subparts below. 

 

AWGN noise 

sampling jitter 
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Extracted HRFs for Active Simulated Data: 

A. Case1: only AWGN noise added 

 

A.1 AWGN with mean: μ=0, variance: σ=4 

 

Figure4.4 Hemodynamic Response Extraction steps. 

 

In the Figure4.4 above; stimulus pattern shown in Figure4.4a is used in the making 

of the ideal BOLD given in Figure4.3. The graph "Simulated fMRI Signal" shown in 

Figure4.4b is made by adding AWGN to ideal BOLD with mean μ=0 and variant 

σ=4. This simulated noisy fMRI signal is put into ForWaRD algorithm. In the graph 

shown in Figure4.4c the HRF signal can be seen which is obtained after the 

deconvolution operation by ForWaRD.  But obtained hemodynamic response is still 

noisy because denoisying process has not yet been applied. In the last graph shown in 

Figure4.4d, the outcome of the ForWaRD algortihm can be seen after denoisying in 

both Fourier and Wavelet domains and this outcome is called "deconvolved and 

denoised HRF". The Hemodynamic Response function (HRF) can be seen with more 

detail in Figure4.7. 
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Figure4.5 Extracted Hemodynamic Response 

 

The assumption of an ideal Hemodynamic response function (HRF)shown in 

Figure4.6 was covered in chapter 1, section 1.1.1.1. We mentioned that 

hemodynamic response is the change in the MR signal triggered by neural activity. 

HRF occurs after a stimulus given and is modeled as follows. When the subject is 

given a work to do, the response signal in the brain to this work, called hemodynamic 

resposne is 1-5 seconds delayed. In other words, when a stimulus is given, HRF 

occurs after a delay of approximately 1–5 seconds. Peak of HRF is achieved around 

5–6 seconds, and returns to baseline within 30 seconds (Figure4.6).  

 

Figure4. 6 Ideal hemodynamic response shape 
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In Figure4.7 a cumulative hemodynamic response function extracted by ForWaRD 

for each train of stimuli within the On periods of the block is shown. It is shown that 

the ideal assumption covered in chapter 1 is quite alike the HRF as shown in 

Figure4.5. Extracted hemodynamic response shape (Figure4.7c) has a little lag in 

initial part like ideal hemodynamic response and it has an acceleration which 

resembles to ideal ones (Figure4.7d) when rising to the peak point and decreasing to 

the baseline. In addition to that, extracted hemodynamic response has a dip after 

coming to the baseline like ideal hemodynamic response. Because extracted 

hemodynamic response is not as ideal as hemodynamic response shown in Figure4.6, 

it diverges from base line between the 70 and 250 time points. But in spite of this, the 

big part of the noise on extracted hemodynamic response is successfully filtered. As 

an output of ForWaRD, a decent, almost ideal and noise-free signal is obtained. 

 

Figure4.7 Similarity Between The Estimated BOLD and Ideal BOLD 

We applied a crosscheck test in order to see if obtained HRF by ForWaRD method is 

correct or not. We convolved the extracted HRF shown in Figure4.7b and the 

stimulus pattern shown in Figure4.7a that is used in the experiment. This gave us an 

estimated BOLD response signal as shown in Figure4.8c 
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According to the Figure4.8c and Figure4.7d, estimated BOLD signal resembles ideal 

BOLD in terms of shape, the time interval where HRF’s occured and amplitude 

value. But, amplitude of the estimated BOLD signal is smaller than ideal one. The 

reason of that is filtering procedure of the ForWaRD algorithm. We compared 

estimated fMRI and ideal fMRI signals in terms of mean square signal shown in 

Table1. This evaluation parameter gives us a reliable result.  

 

 A.2 AWGN with mean: μ=0, variance: σ=8 

 

Figure4.8 Hemodynamic Response Extraction steps. 

 

We increased the standard deviation of the noise from σ=4 to σ=8. The stimulus 

pattern of this case shown in Figure4.8a is similar to previous case’s one shown in 

Figure 4.7a. ForWaRD algorithm deconvolved and denoised the blurred and noisy 

simulated fMRI signal shown in Figure4.8b. After processing of ForWaRD 

algorithm we obtain the deconvolved and denoised hemodynamic response shown in 

Figure4.8d. 
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Figure4.9 Extracted Hemodynamic Response 

 

Although, we increased the standard deviation of the noise from σ=4 to σ=8, the 

HRF extraction algorithm is not effected much from this increment. Though the 

AWGN noise is increased, the hemodynamic response function of noisy simulated 

fMRI, shown in Figure4.10 is similar with previous HRF in Figure4.7 in terms of 

shape, magnitude value and activation interval, only the difference between previous 

case’s HRF shown in Figure4.5 and HRF of this case shown in Figure4.9 is that, 

HRF shown in Figure4.9 has initial dip between 0-4 time points intervals. The 

differences can have occurred because of the characteristics of hemodynamic 

response. In the literature, some studies [1] have reported an initial negative-going 

dip of 1-2 seconds duration that has been attributed to a transient increase in the 

density of deoxygenated hemoglobin (Chapter 1, Section 1.1.1) which is mainly 

because the existing oxygen in the vessels are consumed. The simulated data is 

modeled to be close to the actual real data. So, the data can normally give a result 

that contains initial dip. On the other hand, increase in noise can also cause this 

initial dip. When the fMRI signal is observed in Figure4.9b, it is seen that the 

magnitude value of the signal's first 4 time points remains below zero because of the 

noise overlaid. The ForWaRD algorithm can only smooth the noise on the signal by 

deconvolution and denoising as much as seen on the Figure4.8d.  
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We applied a test in order to check whether extracted HRF by ForWaRD method is 

correct or not. The extracted HRF shown in Figure4.10b and the stimulus pattern 

shown in Figure4.10a are convolved. This convolution gave us an estimated BOLD 

response signal as shown in Figure4.810c. The estimated BOLD response shown in 

Figure4.10c resembles to the ideal BOLD shown in Figure4.10d in terms of the time 

interval where HRF’s occurred, shape and amplitude value. According to these 

results, ForWaRD seems to be robust against noise. But in order to understand the 

performance of this method deeply we will continue to increase the noise. 

 

Figure4.10 Similarity Between The Estimated BOLD and Ideal BOLD 

 

When we convolved the extracted HRF in Figure4.10b and stimulus pattern in 

Figure4.10a, obtained fMRI data in Figure4.10c resembles ideal one in Figure4.10d 

as before but MSE gives us the most accurate similarity results. MSE results are 

given in Table1.  
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A.3 AWGN with mean: μ=0, variance: σ=10 

 

Figure4.11 Hemodynamic Response Extraction steps. 

 

We added a white Gaussian noise with standard deviation σ=10 to the ideal 

simulated BOLD signal shown in Figure4.4 and obtained a very noisy simulated 

fMRI signal shown in Figure4.11b. This time, after processing ForWaRD algorithm 

we obtained HRF which is slightly different from ideal HRF model. Obtained HRF is 

shown in Figure4.11d and Figure4.12. 
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Figure4.12 Extracted Hemodynamic Response 

 

In the extracted hemodynamic response shown in Fgure4.12, the initial dip between 

0-5 time points is increased according to previous results shown in Figure4.5 and 

Figure4.9 because of the increased AWGN noise. The reason of this might be the 

sudden signal changes due to noise or the sudden drops in the noisy "Simulated 

fMRI" signal. And since the ForWaRD algorithm tries to filter the less detailed 

coefficients in order to cover these sudden changes, it uses lower threshold and this 

causes noise to leak into the to extracted hemodynamic response. In addition, 

between time points 200 and 250, HRF signal values, which should be zero, are 

corrupted and diverges from zero. Despite all this, obtained HRF with ForWaRD 

preserves basic shape between 0 and 90 time points which resembles the ideal HRF 

shown in Figure4.6. When we convolved the extracted hemodynamic response in 

Figure4.12 with stimulus pattern, the obtained in the Figure4.13c result is satisfying 

in terms of shape, magnitude values and time intervals in which HRF occurs 

according to ideal BOLD response shown in Fgure4.13d. 
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Figure4.13 Similarity between The Estimated BOLD and Ideal BOLD 

 

According to the graph above, MSE does not increase much more in the case of 

increasing noise. So, ForWaRD method demonstrates to be still robust against noise. 

We continue to increase noise and analyze the results. 
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A.4  AWGN with mean: μ=0, variance: σ=12 

 

Figure4.14 Hemodynamic Response Extraction steps. 

When the overlayed noise is increased, or in other words, its variance becomes 12 

instead of 10, there is an unwanted amount of fluctuation on the signal because of 

HRF's structure. This is the 5-10 seconds long wave fluctuation which occurs when 

the signal turns back to baseline after it peaks. (Figure4.41d). 
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Figure4.15 Extracted Hemodynamic Response 
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In Figure4.16b we can see that this fluctuation is longer than expected both in time 

and amplitude. The reason of this is the raise of noise on the signal which is more 

than ForWaRD can filter. This makes things difficult for ForWaRD algorithm during 

deconvolution and denoising. While the ForWaRD algorithm tries to catch the real 

HRF signal, because of sudden drops or rises as in intervals between 45 and 65, the 

noise values might get mixed with the real HRF signal and this might cause 

corruption in the output.  

 

Figure4.16 Similarity Between The Estimated BOLD and Ideal BOLD 

 

In Figure4.16a the stimulus pattern of the simulation experiment is shown. We can 

see the extracted deconvolved and denoised hemodynamic response function signal 

after executing ForWaRD algorithm in Figure4.16b, this underlying hemodynamic 

response is shown detailed in Figure4.15.  

The convolution of stimulus pattern in Figure4.16a and extracted hemodynamic 

response in Figure4.16b is shown in Figure4.16c, called estimated fMRI signal. 

When we compare estimated fMRI signal with ideal fMRI, shown in Figure4.16d, 
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we obtain the following results. Estimated fMRI and ideal fMRI signals resemble 

each other in terms of structure and shape in specific time intervals and magnitude. 

Magnitude value of estimated fMRI signal is lower than the ideal one. The reason of 

that is the increased noise on the fMRI signal. Due to the increased noise, we loose 

some of the high frequency signal components and this situation causes low 

magnitude level.  

 

A.5 AWGN with mean: μ=0, variance  σ=16 

 

Figure4.17 Hemodynamic Response Extraction steps. 

 

We increased the noise variance from 12 to 16 in this part. We cannot distinguish 

fMRI signal from the added noise shown in Figure4.17b. After increasing noise, 

simulated fMRI signal becomes very noisy corrupted signal shown in Figure4.17b. 

The extraction of hemodynamic response signal from this fMRI becomes very 

difficult. We analyze the ForWarRD performance in this difficult situation. After 

executing ForWaRD algorithm we obtain hemodynamic response function shown in 

Figure4.17d. We can see the extracted HRF in Figure4.18 in a detailed manner. 
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Figure4.18 Extracted Hemodynamic Response 

As seen in Figure4.19, the rise in noise increases the corruption in HRF. Due to the 

increased noise, ForWaRD can not extract the exact hemodynamic response signal. 

We obtain corrupted hemodynamic response shown in Figure4.18. 

 

Figure4.19 Similarity Between The Estimated BOLD and Ideal BOLD 
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In order to obtain increased noise on fMRI signal shown in Figure4.17b, we increase 

noise variance from σ=12 to σ=16. While noise increases, the error between the 

estimated pure fMRI in Figure4.19c obtained with the convolution of extracted HRF 

with ForWaRD in Figure4.19b and stimulus in Figure4.19a, and the ideal pure fMRI 

increases.  

 

A.6. AWGN with mean: μ=0, variance σ=20  

 

Figure4.20 Hemodynamic Response Extraction steps. 

 

In this part, we increased the noise variance from σ=16 to σ=20, this means that the 

fMRI signal shown in Figure4.20b is highly corrupted. If ForWaRD deconvolve this 

simulated fMRI signal and filters noise successfully than it will be proved that 

ForWaRD is very robust against noise. The result of extracted deconvolved and 

denoised hemodynamic response signal is given in Figure4.20d and a detailed 

explanation and detailed HRF figure is given in Figure4.21. 
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Figure4. 21 Extracted Hemodynamic Response 

 

In Figure4. 221, even though there is a basic hemodynamic response in ForWaRD 

output between time points 1 and 55, the amplitude of the negative dip between 40 

and 55 is more than expected. And the noise that was not tolerated remains in the 55-

250 interval. If we were to observe how close the HRF is to the ideal signal, we 

could see that the HRF is more corrupted if ForWaRD noise deviation is σ=20 and 

that in wavelet domain, the real signal and noise coefficients get mixed. 

But there is an important result here that needs attention. Even though the output 

HRF -at the end of ForWaRD- is not so close to ideal, it still gives us information 

whether the observed voxel is active or passive, because of the similarities with the 

ideal signal. And the fact that this information can be obtained from such noisy fMRI 

signal shows us how robust the used algorithm is against noise.  
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Figure4. 22 Similarity Between The Estimated BOLD and Ideal BOLD 

The convolution process done in order to crosscheck our results can be seen in 

Figure4.23. We convolved extracted HRF in Figure4.22b with stimulus pattern in 

Figure4.22a and we obtain the estimated fMRI signal shown in Figure4.22c. Even 

though the extracted HRF is more corrupted than previous, it still is alike the pure 

fMRI signal in Figure4.22d when convolved with stimulus pattern, considering shape 

and the places of peaks in time. And this proves that during analysis, the active signal 

can still be separated from the passive signal. 
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A.7 AWGN with mean: μ=0, variance: σ =30 

 

Figure4.23 Hemodynamic Response Extraction steps. 

 

The noise variance is increased from σ=20 to σ=30. In Figure 4.23a the stimulus 

pattern of the experiment is shown, in Figure4.23b the simulated fMRI signal is 

shown, the deconvolved but noisy hemodynamic response function is in Figure4.23c 

and the extracted hemodynamic response function with ForWaRD algorithm is 

shown in Figure4.23d. 

The increase in noise cannot be tolerated by the system when is increased until 30 

and HRF signal is lost shown in Figure4.23d.  

By the help of the analysis, it is understood that the ForWaRD method is a strong 

solution for Gaussian noise changes. Even if the noise is increased above expected 

levels, this method can still extract the HRF. We had to overlay an extreme amount 

of noise in order to corrupt and loose the HRF.  
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The MSE values are calculated for the ideal fMRI and estimated pure fMRI which is 

used to control the accuracy. This values show us the corruption of the HRF that was 

obtained according to the rise in noise. 

 Additive Zero Mean Gaussian Nosie Variances 

σ 4 8 10 12 16 20 30 

MSE 2.6261 3.3359 3.6401 3.7492 4.3361 4.4986 8.0638

 

Table 1 MSE values between estimated and ıdeal fMRI 

 

Extracted HRFs for Passive Simulated Data: 

In this part of the thesis, we analyse the performance of the ForWaRD algorithm on 

passive fMRI signals. We create a random passive data using AWGN noise. After 

creation of the data, we add some other noises on it such as jitter, drift and lag and at 

the end we obtain the simulated passive data where one of them is shown in 

Figure4.24. 
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Figure4.24 Simulated Passive fMRI Data 
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ForWaRD algorithm filters the noise and deconvolves the stimulus pattern of the 

experiment shown in Figure4.23a and the fMRI signal in order to extract the 

hemodynamic response function 

 

Figure4.25: Hemodynamic response signal of passive data 

Passive signals do not include hemodynamic response. After deconvolution of 

passive fMRI data we expect to obtain a baseline signal like in the Figure4.25.  
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Figure4.26 Extracted Hemodynamic Response Function for a Passive Simulated Data 
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After deconvolving and denoising a sample passive data shown in Figure4.24, we 

did not obtain any signal that resembles HRF. ForWaRD successfully filtered the 

noise and obtain a baseline signal which is not like any HRF signal (Figure4.26).  

4.2.1.2 Experiment 2: HRF Results of Real Data Obtained from a Block 
Design Fingertapping Experiment 

 

In this fMRI experiment, in a classical fingertapping paradigm, 60 timepoints are 

collected in 3 cycles which contained 10 samples for each ON or OFF periods 

through the echoplanar imaging protocol. In other words, the experiment is block-

design with 60 samples across time. The ON periods consist of finger-tapping and 

the OFF periods are rest, with 3 repeats.  

27 FMRI signal with 60 time points are obtained from 27 voxels in brain in this 

experiment. These correspond to voxels predicted as active according to GLM.  First, 

we apply ForWaRD method to this dataset in order to extract hemodynamic response 

functions of voxels. We expect to see meaningful hemodynamic responses (reviewed 

in Chapter 1) in active voxels and while signals with pure noise mean that the voxels 

these signals originate from are passive. In other words, extracted signals include 

information of activity and passivity of the voxels. The stimulus pattern of this 

experiment is shown in Figure4.27 below. 
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Figure4.27 Stimulus pattern of Fingertapping Experiment  
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4.2.1.2.1 Extracted HRF with ForWaRD 
 

Active and passive voxels in both real data are classified beforehand via the general 

linear model, which served as ‘ground truth’. 

1. Active Data, voxel  23: 
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Figure4.28 Observed Real active Finger-tapping data 

In Figure4.28 the observed real finger-tapping data is given for one of the voxels in 

the brain. We execute the ForWaRD algorithm in order to obtain hemodynamic 

response function signal of this data. 

 

Figure4.29 ForWARD steps for HRF extraction 
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The process steps for the ForWaRD for extracting HRF is given Figure4.29. First, 

real active fingertapping fMRI signal shown in Figure4.29b is deconvolved and 

obtained noisy hemodynamic response signal shown in Figure4.29c. After 

deconvolution of the fMRI signal, noise is filtered in both Fourier and Wavelet 

domains and the obtained deconvolved and denoised hemodynamic response 

function signal shown in Figure4.29d.  
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Figure4.30 Extracted HRF for active fMRI data 

Extracted hemodynamic response signal is shown in detail in Figure4.30. According 

to the result HRF in Figure4.30, after performing ForWaRD we obtained a highly 

satisfactory result. Gdgdfgdgfddfffffffffffffffffffffffffffffffffffffffffffffffffff 
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2. Passive Data, voxel 12: 
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Figure4.31 Observed Real passive Finger-tapping data 

Figure4.31 shows a real passive fingertapping data. We execute ForWaRD algorithm 

in order to extract hemodynamic response signal of the passive data. We expect to 

see a baseline signal which does not resemble the ideal hemodynamic response 

function shape since voxels are passive.  
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Figure4.32 Extracted passive signal 

Passive data is detected so successfully by the ForWaRD algorithm. There is not any 

signal in the resulting impulse response that resembles HRF shape as found in the 

extracted signal givenin Figure4.32. Thus, ForWaRD algorithm is very successful in 

analyzing the fMRI data that active and passive. 



102 
 

4.2.1.3 Experiment 3: HRF Results of Real Data obtained from specified 
fMR adaptation paradigm 

 

The third experiment is an fMR adaptation paradigm consisting of 177 time samples, 

investigating subtle effects in face processing. Active and passive voxels in this data 

are classified beforehand via the general linear model which served as ‘ground truth’.  

Real fMRI data is obtained from an experiment conducted on a 1.5T Siemens 

scanner.  

We have a special stimulus pattern in here. There is no stimulus for the initial 9 time 

points. Then, a block which has 27 time points, is repeated for 6 times. This block 

consists of zero for the first 9 time points, then it has ones for last 18 time points. 

Stimuli in last 18 time points are divided into two categories. First 9 stimuli belong 

to one kind of face category and last 9 stimuli belong to another kind of face 

category. As mentioned before, we are analyzing subtle effects in face processing in 

this experiment. 

Experimental design can be summarized as below: 

Task: Block paradigm, face perception: 177 sample points: 

9 dummies at the beginning (0) 

9 patches (0) --------------------- 

9 faces (1) ------------------------ 

9 faces (2) ------------------------ 

(this group of 27 samples is repeated 6 times) with 6 dummies trailing at the 

end 

In this experiment, the subject gets used to seeing the same face image for the first 9 

stimulus causing a decrease due to habituation in the responding active voxel. 

Afterwards, when a new image is shown as the 10th stimulus without any break, the 

brain detects the difference between the earlier images for which it has habituated, 

causing an increase in the activation of the voxels responding to the face image. 
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This kind of experiments are classified in adaptation paradigm and it is harder to 

obtain HRF from this type of experiment data.. Because 2 different categories are 

used in one block of stimulus, activation profile of the voxels do not obey the 

standard rise and fall in HRF. The recognition of this profile is difficult and 

complicated for HRF extraction algorithms. In this section, we analyzed the 

performance of ForWaRD method on HRF extraction with this kind of data. 

The following method is used in order to investigate the accuracy of the obtained 

HRFs. 

• We modeled our ideal hemodynamic response function according to the 

gamma function as shown in the Figure4.34a.. 

• We convolved this ideal HRF with the stimulus pattern of the experiment as 

shown in Figure4.34 and determined the ideal fMRI signal shown in 

Figure4.34b for this experiment if there was no noise in the system. 

• After this process, we convolved the HRF which is obtained by the ForWaRD 

method and the stimulus pattern of the experiment, and found the estimated 

fMRI signal. 

• We finalized the accuracy test by finding the error between ideal and 

estimated fMRI signals.  

The outcome gave us information about the performance of the ForWaRD method. 

Active and passive voxels in both real data are classified beforehand via the general 

linear model. Stimulus pattern used in the experiment is shown in Figure4.33. 
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Figure4.33 Stimulus pattern of the experiment 



104 
 

Ideal Hemodynamic response function shape is modelled according to the gamma 

function and shown in Figure4.34(a): 
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Figure4.34 Ideal HRF(a) & Ideal fMRI (b) 

When we convolve ideal HRF shown in Figure4.34(a) and stimulus pattern shown in 

Figure4.33 we obtain ideal fMRI shape shown in Figure4.34(b). In order to 

understand ForWaRD performance we will be utilized ideal fMRI, shown in 

Figure4.34b 

For this fMR adaptation paradigm data set we analyzed how regularization parameter 

is related with voxel locations. The underlying data set includes active and passive 

voxels which are placed in different locations in the brain shown in Figure 4.35. We 

investigate how regularization parameter τ changes for voxels which are in different 

locations. 

First, regularization parameter τ is calculated for active voxels (blue ones) shown in 

Figure 4.35 .For active voxels we have τ=12. Second, we calculate τ for passive 

voxels which are red ones in Figure 4.35. We obtain τ=11.6 for passive voxels 

In conclusion, values of obtained regularization parameters are close to each other 

for active and passive voxels which are located in different geographical places in the 

brain. So the regularization parameter τ does not inform us about location of the 

voxels. In other words, location of the voxel does not affect the regularization 

parameter τ. 
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4.2.1.3.1 Extracted HRF with ForWaRD 
 

1. Active Data, voxel 137 
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Figure4.36 a) Original real fMRI data and b) normalized version of the underlying one 

The original active fMRI data is shown in Figure4.36a. We normalize the original 

data because of its computational advantage which is shown in Figure4.36b. We 

deconvolve and denoise the real fMRI signal with ForWaRD method and obtain 

hemodynamic response function signal for Active Data 137. HRF Result is shown in 

Figure4.37 and comparisons with ideal data are shown in Figure4.38.  
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Figure4.37 Extracted Hemodynamic Response 
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HRF in Figure4.37 is extracted by ForWaRD algorithm. The HRF shape resembles 

the ideal HRF model. The main difference occurred in the 0-3 time point interval. 

There is a sharp and fast increase in this interval and at the same time there is too 

much noise on the signal. ForWaRD algorithm assumes that HRF is a smooth signal 

but when there is too much noise violating this assumption, it cannot catch this 

increase cautiously. This is acceptable for such a complicated time series. 

Disregarding the beginning, rest of the signal is quite alike the HRF shape; so the 

algorithm is able to recover the HRF signal from the fMRI data. An accuracy test is 

done in order to understand how well the algorithm has extracted the HRF signal as 

shown below. 
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Figure4.38 Comparison of ideal and estimated BOLD change 

Figure4.38 shows the ideal HRF and ideal fMRI data on the left hand side and 

extracted HRF and estimated fMRI data on the right hand side. When we convolve 

the ideal hemodynamic response function and stimulus pattern, we obtain ideal fMRI 

signal shown in the left hand side of the Figure4.38. In the same way, when the 

extracted hemodynamic response function is convolved with the stimulus pattern we 

obtain an estimated fMRI signal.  

 

The signal obtained from the convolution of the extracted HRF and the stimulus 

pattern is similar to the ideal signal shape shown on the right side of the Figure4.38. 

The reason there are 6 blocks in stimulus pattern of the experiment is because 
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activation occurred 6 times in the responding voxels. These 6 activation transitions 

can also be seen in the estimated fMRI data. This accuracy test is done in order to 

understand how well the algorithm has extracted the HRF signal and estimated fMRI 

signal. The results of the test show that ForWaRD algorithm successfully extracts the 

hemodynamic response from a complicated very noisy real fMRI signal.  

 

2. Active Data, voxel 100 
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Figure4.39 Original real fMRI data and normalized version of the underlying one 

 

Figure4.39 shows the original active data 100 fMRI signal (Figure4.39a) and its 

normalized version (Figure4.39b). We use the normalized original signal in our 

computations because of its computational convenience. After executing the 

ForWaRD algorithm, we obtain a hemodynamic response which resembles the ideal 

one in terms of shape, magnitude and time intervals where peak values occur. The 

underlying hemodynamic response function is shown in Figure4.40.   
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Figure4.40 Extracted Hemodynamic Response 

The extracted HRF signal shape given in Figure4.40 is purified again as expected 

and the obtained waveform is similar to the ideal model which is shown in 

Figure4.34(a). ForWaRD method is significantly successful in filtering noise on the 

signal but the sharp increase at the beginning could not be detected because the 

signal was assumed to be smooth. 
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Figure4.41 Comparison of ideal and estimated BOLD change 

In figure 4.41, the comparison of ideal and estimated fMRI signals is given. Ideal 

fMRI signal shown on the left side of the Figure4.41 is obtained with the convolution 

of ideal hemodynamic response and stimulus pattern of this experiment. On the right 

hand side, we convolve extracted hemodynamic response function with the same 

stimulus pattern and obtain the estimated fMRI signal. The basic reason of the 

difference between ideal and estimated fMRI signal is due to using the ideal stimulus 

pattern 
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when computing estimated fMRI signal. It is possible that, during the experiment 

ideal stimulus pattern may not be given to the patient. The differences between ideal 

stimulus pattern and the used one in the experiment cause distortions in the extracted 

hemodynamic response which is the result of the ForWaRD algorithm. When this 

underlying distorted hemodynamic response is convolved with ideal stimulus pattern, 

the obtained estimated fMRI signal becomes distorted and it becomes different from 

the ideal one. 

 

3. Passive Data, voxel 280 
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Figure4.42 Original passive fMRI signal 

Figure4.42 shows a passive data example from the specified fMR adaptation 

paradigm. We want to extract the hemodynamic response function of this data with 

ForWaRD algorithm. Extracted hemodynamic response is shown in Figure4.43. 
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Figure4.43 ForWARD output of passive fMRI data 
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4. Motion Data, voxel 400 

Motion data is a type of passive data which correspond to the voxels affected by head 

movement. We analyzed this type of data because it can be confused with active 

data. We want to understand the strength of ForWaRD method for this type of data. 
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Figure4.44 Original motion fMRI data 

In Figure4.44 one of the data labeled as motion type data is shown. We investigate 

the extracted hemodynamic response function of the underlying data. The extracted 

hemodynamic response function is shown in Figure4.45. 
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Figure4.45 ForWARD output of motion fMRI data 

HRF result for motion data is not like those derived from active voxels, it is like 

noise. In this case we may say that ForWaRD is a very robust HRF extraction 

method against complex data such as motion signal. 
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4.2.2 Clustering Results and Identification of Active and Passive Voxels 

4.2.2.1 Clustering Results of Simulated Data Based on the Balloon Model 

4.2.2.1.1 Case1: only AWGN noise added 
In this section, only AWGN noise is added to fMRI signal with different variants as 

sigma=4, 8, 12, 16, 20, 30. For each noise variant (sigma value) a 1000 time series 

are created. In each data set, 500 signals are set to represent active voxels and the 

other 500 is set to represent passive voxels. In the previous section, a sample signal 

was chosen for each data set, then hemodynamic response was found, observed and 

shown in graphics. But now, data sets are clustered for each variant in order to 

measure the behavior of ForWaRD method under noise manipulations. In the end, 

one of the clusters is expected to contain active and the other passive voxels. 

Sensitivity -the percentage of active voxels being in active cluster- and specificity -

the percentage of passive voxels being in passive cluster- are calculated accordingly. 

Clustering results are obtained using Laplacian Eigenmaps algorithm. The inputs of 

the underlying Laplacian Eigenmaps algorithm are HRFs extracted in the ForWaRD 

step. Our extracted HRF data set is converted to N x T matrix. ( Let N be the voxel 

number and T be the time point). Each row of the matrix contains the HRF which is 

obtained for one voxel. The outputs of the Laplacian eigenmaps are eigenvalues and 

corresponding eigenvectors. According to the results, it is found that first eigenvector 

is a constant one so gives no information about characteristic of the data set. Second 

and third eigenvectors shows the separation of the active and passive voxels 

explicitly. So, we decided to use second and third eigenvectors in fuzzy c means for 

clustering data.   

1. σ =4 
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Figure4.46 Cluster results for noisy simulated fMRI data which has AWGN σ=4 
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Active Voxels 

(total number is 500) 

Passive voxels 

(total number  is 500) 

Amount of True Detection 500 484 

Amount of False Detection 0 16 

Figure4.46 represents, cluster result for noisy simulated fMRI data which has 

AWGN with variance σ=4. Recall that first, the hemodynamic responses of the 

underlying noisy fMRI were obtained by using ForWaRD method. After this phase 

the clustering phase is performed where hemodynamic responses are clustered with 

the laplacian eigenmaps method. In the end, the amount of true and false detection of 

hemodynamic responses of active and passive voxels are calculated.  

All of the active voxels are found to be correctly detected when AWGN variance is 

4. The measurement for correct detection of active voxels is measured as sensitivity 

which is in case %100. The measurement for correct detection of passive voxels 

called as specificity so, the spesicificity is %96.8. Thus, for AWGN with variance 4, 

laplacian eigenmaps method successfully clustered the data. 

2. σ =16: 
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Figure4. 47 Cluster results for noisy simulated fMRI data which has AWGN σ=16 
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 Active Voxels (total 
number is 500) 

Passive voxels (total 
number  is 500) 

Amount of True Detection 484 436 

Amount of False Detection 16 64 

 

In this part, we increased the noise variance from σ =4 to σ =16. When we increased 

the noise on the fMRI data, the sensitivity and specificity values are decreased. 

Before clustering, we execute ForWaRD algorithm and obtain hemodynamic 

response functions for active and passive signals. Increase in noise causes extraction 

of distorted hemodynamic response functions. Due to the distortion in hemodynamic 

responses, clustering performance of laplacian eigenmaps algorithm is decreased.In 

other words, some of the hemodynamic responses for active and passive signals are 

confused and they are not correctly detected. Hence the sensitivity which is the 

correct detection of hemodynamic responses of active voxels, becomes %96.8 and 

the specificity which is the correct detection of hemodynamic responses of passive 

voxels, becomes %87.2.    

3. σ =30  
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Figure4.48 Cluster results for noisy simulated fMRI data which has AWGN σ=30 
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 Active Voxels (total 
number is 500) 

Passive voxels (total 
number  is 500) 

Amount of True Detection 389 286 

Amount of False Detection 111 214 

 

When we highly increased the noise variance, meaning σ =30, the extracted 

hemodynamic response functions with ForWaRD algorithm become highly 

corrupted. Due to the fact that, the amount of correct detection of hemodynamic 

reponse functions for active and passive voxels are dreadfully decreases. We cannot 

catch all the hemodynamic response functions for active voxels in the clustering 

because in these conditions the extracted hemodynamic response functions’ shapes 

are corrupted and resembles the waveform for passive voxels. So, clustering 

algorithm confuses the hemodynamic responses of active and passive ones and the 

sensitivity and specificity values are decreased to %77.8 and %57.2 respectively. 

 

 
σ=4 σ=8 σ=16 σ=20 σ=30 

Sensitivity 1 0.996 0.968 0.93 0.778 

Specificity 0.968 0.936 0.872 0.768 0.572 

 

Table 2 Sensitivity and Specificity values for clustering results of data on which only AWGN noise 
added 

As a result of clustering HRFs for which features are extracted by Laplacian 

Embedding and clustering is done by using fuzzy c means, we can see that the active 

and passive groups are clustered with a high percentage when sigma increased till 20. 

For sigma being 20, we see that actives and passive voxels are confused, and when σ 

is 30, the confusion is even bigger and the voxels cannot be grouped anymore in the 

correct clusters. The result is that ForWaRD is quite robust against noise. It can 

provide sensible results even for high noise values such as σ=16. In order to decrease 
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the performance of ForWaRD against noise, extreme values of noise should be added 

to the signal such as with σ=30 

4.2.2.1.2 Case 2: Varying Values for AWGN, jitter, drift, lag 
 

In this section, different values of AWGN, jitter noise, drift and lag are added to the 

ideal simulated fMRI signal. Each noisy combination signal with all additions is ran 

through the ForWaRD algorithm. As an output of this algorithm, the obtained HRF 

signals are clustered with fuzzy c means with features coming from Laplacian 

Embedding algorithm. Then we observed whether active and passive voxels are 

clustered correctly. A data set of 1000 time series is used for this process. There are 

500 specific active and 500 passive signals in this data set. Under each graphics, true 

and false detection rates are indicated for active and passive voxels. 

Also the correct clustering performances of the active and passive voxels are 

represented by sensitivity and specificity values, which are shown in Table 2. 

Sensitivity is the percentage of active voxels being in active cluster and specificity is 

the percentage of passive voxels being in passive cluster. 

 Performance 

 Sensitivity  Specificity 

σ_AWGN = 2; σ_Jitter = 2 

σ_Drift = 2;   σ_Lag = 8 
 0.996 0.97 

σ_AWGN = 4; σ_Jitter = 2 

σ_Drift = 2; σ_Lag = 8 
 1  0.944 

σ_AWGN = 8; σ_Jitter = 2 

σ_Drift = 2; σ_Lag = 8 
0.998 0.878  

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 2; σ_Lag = 8 
1  0.946 

σ_AWGN = 4; σ_Jitter = 8 

σ_Drift = 2; σ_Lag = 8 
1 0.914 
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σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 4; σ_Lag = 8 
 1  0.946 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 8; σ_Lag = 8 
 0,96  0.938 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 16; σ_Lag = 8 
 0.996  0.92 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 16; σ_Lag = 16 
0.998  0.922 

σ_AWGN = 8; σ_Jitter = 4 

σ_Drift = 16; σ_Lag = 16 
 0.998  0.822 

σ_AWGN = 8; σ_Jitter = 8 

σ_Drift = 16; σ_Lag = 16 
 0.984  0.714 

σ_AWGN = 16; σ_Jitter = 
8 

σ_Drift = 16; σ_Lag = 16 

 0.852  0.32 

 

Table 3 Sensitivity and Specificity values results for clustering of data on which varying values of  

AWGN, jitter, drift, lag 

In Table 3 above, AWGN, jitter noise, drift and lag is shown on the simulated data 

with different values. Then noisy data is put to ForWaRD algorithm and HRF results 

are obtained, HRF results and the simulated passive signal samples are entered into 

the clustering algorithm and sensitivity and specificity values are obtained. With this, 

the performance of ForWaRD algorithm is observed according to the changing 

artifact types.  

In the above Table 3, sensitivity and specificity values are provided for various 

situations. Data is added with jitter (σ = 2), drift (σ = 2), lag (σ = 8), AWGN values 

are changed in the specific part of the Table 3. Related part of the table is shown 

below Table 4 
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 Sensitivity Specificity 

σ_AWGN = 2; σ_Jitter = 2 

σ_Drift = 2;   σ_Lag = 8 
0.996 0.97 

σ_AWGN = 4; σ_Jitter = 2 

σ_Drift = 2; σ_Lag = 8 
1 0.944 

σ_AWGN = 8; σ_Jitter = 2 

σ_Drift = 2; σ_Lag = 8 
0.998 

0.878 

 

Table 4 Sensitivity and Specifity Analysis for Variable σAWGN  

 

Increasing AWGN doesnot affect the percentage of active voxels being in the correct 

cluster. Even though σ_AWGN = 8 represents a high noise value, still the active data 

remains in the correct cluster. But on the other hand when σ value of AWGN reaches 

8, it is observed that the specificity value decreases. This shows us that when noise 

increases extensively, passive voxels can get confused with active ones. In other 

words, since the clustering algorithm groups HRFs quite close to each other in one 

cluster, it also decides about some of the passives which are also similar to these 

HRFs. The reason of this may be that HRF magnitudes decreases while noise 

increases. Laplacian Eigenmaps extracts similar features for active and passive 

HRFs. 

When we look at the #4th and #5rd results of Table 5 shown below, we can see that 

jitter is changed while AWGN, drift and lag are kept constant. Increase in jitter didn't 

affect the sensitivity -the percentage of active voxels being in active cluster- value. 

But it decreased the percentage of passive voxels being in the correct cluster with 

%0.032. If we think that this percentage corresponds to 2 voxels where there are 500 

passive signals in a data set of 1000, it means that clustering these 2 voxels are faulty 

with the increase in jitter. In this case, we can say that the system performance is  
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indeed affected by the change in jitter and passive signals get mixed up with actives 

with this change. 

 

 Sensitivity Specificity 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 2; σ_Lag = 8 
1  0.946 

σ_AWGN = 4; σ_Jitter = 8 

σ_Drift = 2; σ_Lag = 8 
1 0.914 

 

Table 5 Sensitivity and Specifity Analysis for Variable σJitter 

 

The parts where AWGN, jitter and lag had constant values are given in Table 6 for 

the case where the performance is changing when drift is increased. Even with the 

highest value of drift the performance of the system is quite high. At the end of 

ForWaRD, active and passive HRFs are grouped in correct clusters with negligible 

errors. 

 Sensitivity Specificity 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 2; σ_Lag = 8 
1  0.946 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 4; σ_Lag = 8 
 1  0.946 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 8; σ_Lag = 8 
 0,96  0.938 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 16; σ_Lag = 8 
 0.996  0.92 

 

Table 6 Sensitivity and Specifity Analysis for Variable σDrift 
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 Sensitivity Specificity 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 16; σ_Lag = 8 
 0.996  0.92 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 16; σ_Lag = 16 
0.998  0.922 

 

Table 7 Sensitivity and Specifity Analysis for Variable σLag 

 

In Table7 is shown the part where lag changes with the constant values of AWGN, 

jitter and drift. Lag being increased alone did not even affect the system 

performance. The system is robust only to the changes in lag. 

 

 Sensitivity Specificity 

σ_AWGN = 4; σ_Jitter = 4 

σ_Drift = 16; σ_Lag = 16 
0.998  0.922 

σ_AWGN = 8; σ_Jitter = 4 

σ_Drift = 16; σ_Lag = 16 
 0.998  0.822 

σ_AWGN = 8; σ_Jitter = 8 

σ_Drift = 16; σ_Lag = 16 
 0.984  0.714 

σ_AWGN = 16; σ_Jitter = 8 

σ_Drift = 16; σ_Lag = 16 
 0.852  0.32 

 

Table 8 Sensitivity and Specifity Analysis for Variable σLag, σDrift, σAWGN and σJitter 
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 Table 8 shows the situations where all the artifact values are changed. According to 

our previous observations, the increase in a single artifact did not affect the system 

performance, much. But when we increase all the artifacts slowly at the same time, 

we see that the system performance proportionally gets affected adversely. Since the 

hemodynamic responses of active signals are characteristically similar, the 

percentage of active voxels grouped in the same cluster did not change so much but 

the percentage of passive voxels grouping in the correct cluster is affected 

drastically. The main reason of this is jitter and AWGN noise. Even though 

ForWaRD is robust against these noises, system performance decreases when 

AWGN and jitter are increased together. With the artifacts having the values 

σ_AWGN = 16; σ_Jitter = 8; σ_Drift = 16; σ_Lag = 16 added on ideal simulated 

fMRI, the observed results are not successful especially specificity is considered. 

4.2.2.2 Clustering Results of Real Data Obtained from a Block Design 
Fingertapping Experiment 

 

After HRF extraction, we cluster through their structural features, the results of the 

ForWaRD algorithm, which are the hemodynamic responses. We expect to see active 

voxels with meaningful hemodynamic response functions in one cluster and passive 

voxels with noise in the other cluster. Consequently, using two algorithms, we 

identify active and passive voxels, meaning find activation regions of the brain. 

Clustering results of the data are given below. 

 

Figure4.49 Clusters of fingertapping data 
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In Figure4.49 green voxels are active, while red ones are passive. All of the active 

voxels are clustered in the same cluster, similarly all passive one are in the passive 

cluster. Therefore, our algorithm has 100 % sensitivity and 100 % specificity on the 

data of the fingertapping experiment. 

The result shows the strength of the Laplacian eigenmaps on clustering and indirectly 

the strength of ForWaRD on HRF extraction. 

4.2.2.3 Clustering Results of Real Data obtained from specified fMRI 
adaptation paradigm 

 

For this experiment, using obtained FMRI data, first we examine the HRF of all 

voxels and then cluster them. In addition, we estimate the basic shape of the 

hemodynamic response in each voxel.  

Active and passive voxels in both real data are classified beforehand via general 

linear model, which served as ‘ground truth’. Motion voxels are classified by eye 

inspection from among voxels that are predicted by GLM as if they are active. 

• 180 active voxel 

• 150 passive voxel 

• 180 motion voxel 

The labeled 510 samples are executed with ForWaRD algorithm and then clustered 

with Laplacian Eigenmap and fuzzy c-means algorithm. The result is given below. 
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Figure4.50 Clusters of fMR adaptation paradigm 

 

Active voxels are red, passive voxels are yellow and motion voxels are green ones. 

According to our clustering method, 177 of 180 labeled active voxels are in the same 

cluster, 148 of 150 labeled passive voxels are in the same cluster and 178 of 180 

motion voxels are in the same cluster  

Consequently, according to Figure4.50 our method has 98.3 % sensitivity and 98.6 

% specificity. 
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CHAPTER 5 

SENSITIVITY AND PERFORMANCE ANALYSIS 

5 SENSITIVITY AND PERFORMANCE ANALYSIS 

5.1 Sensitivity and Performance Analysis 
 

In this chapter, our aim is to test our algorithms, ForWaRD and laplacian eigenmaps, 

according to their varying algorithm parameters. Changing the system parameters, 

we would like to analyze under what conditions our system performance is affected. 

We wish to see the sensitivity of our program depending on the changes of the 

parameters. 

In Chapter 4, we demonstrated that our ForWaRD algorithm extracts successfully 

the Hemodynamic Response Functions of different types of data such as; finger-

tapping and categorized face recognition as real data and a complex simulated data, 

the success being assessed in terms of sensitivity and specificity values. 

In this part, we investigated the best system parameters for our subsystem through 

sequential modifications. In order to evaluate the effects of parameters of our work 

correctly, we are utilizing simulated data in this Chapter, since the extracted 

hemodynamic response functions are the most satisfying ones. In addition to that, 

stimulus pattern and the ideal BOLD response curve, which is modeled based on 

balloon model, are available, before adding anyone of the noises such as AWGN, 

jitter, drift and lag. 

In our system, fMRI is first input to the ForWaRD algorithm then the output of this 

algorithm extracted HRFs are clustered by the laplacian eigenmaps algorithm. In this 

case, the logical approach is to analyze how the algorithms outputs change under 

system parameters changes by keeping the analysis in two levels defined by the 2 sub 

systems: First, a parameter analysis is performed for ForWaRD algorithm where 

fMRI data is first processed. After the sensitivity analysis on this first sub system, we 

set parameters to their optimum values. Then keeping these parameters set to their 

optimized values, a performance analysis for clustering algorithm is conducted 

depending on the changes of clustering parameters. 
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In Chapter 4, a data set with the values AWGN σ=8, jitter σ=8, drift σ=16, lag σ=16 

was created and analyzed. We use a random sample from this data set in order to 

accomplish the performance analysis explained above. A random sample signal can 

be seen in Figure5.1 which is chosen from that data set and used in the analysis 

conducted in this chapter. 
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Figure5.1 Noisy Simulated Data 

The sample in Figure5.1 is an extremely corrupted signal so that we cannot detect 

the original simulated fMRI signal by bare eyes. As a reminder the original simulated 

fMRI signal and stimulus pattern are shown in Figure5.2 
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Figure5.2 Stimulus pattern and pure simulated fMRI signal 
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5.1.1 Sensitivity and Performance Analysis of ForWaRD method 
According to The Changing System Parameters. 

 

 

Figure5.3 Process steps of Fourier-wavelet regularized deconvolution (ForWaRD)[21]  

Fourier Wavelet Regularized Deconvolution (ForWaRD) is a HRF extraction 

method. ForWaRD combines frequency domain deconvolution with frequency 

domain regularization and wavelet domain regularization, shown in Figure5.3 Since 

denoising process is performed in both Fourier and Wavelet domain, the filtering 

process of this method is very robust against many artifacts such as AWGN, jitter, 

drift, lag as mentioned and analyzed in Chapter 4. The advantage of deconvolution in 

the frequency domain is in identifying overlapping signals so that Fourier 

deconvolution separates hemodynamic response and stimulus pattern in a noisy way. 

But its main disadvantage is noise amplification. Noise can be reduced in the 

frequency domain by frequency-domain shrinkage that attenuates the noise after the 

pointwise division, by multiplying each frequency coefficient by a factor λf. Two 

popular methods for shrinking in Fourier domain are Wiener shrinkage and Tikhonov 

shrinkage [17]. 

Equation Chapter (Next) Section 1 
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 (5.1) 

The computations and approximations of parameters; εσ (the variance of noise), α 

(wiener) and τ (tikhonov) are explained in Chapter 3 section 3.1.2.1. 

As also mentioned in chapter 3 section 3.1.2.2, we use wiener shrinkage in our 

simulations. In this chapter, we will adopt Tikhonov shrinkage instead of wiener 

shrinkage to test the effect of shrinkage methodology to our performance of  
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ForWaRD. The analyses will be conducted in terms of mean square error (MSE), 

calculated between estimated BOLD response (which is convolution of extracted 

HRF and stimulus pattern shown in Figure5.2) and original pure BOLD response 

shown in Figure5.2. 

One of the important parameters is threshold value. In general a small threshold 

value will leave behind all the noisy coefficients and subsequently the resultant 

denoised image may still be noisy. On the other hand a large threshold value 

generates more number of zero coefficients which destroys signal details and the 

resultant image begins to have blur and artifacts. So optimum threshold value should 

be found out, which is adaptive to different data characteristics. Since the optimum 

threshold value changes for each data type, we shall calculate the optimum value for 

fMRI data. In this part of the thesis, we will try to find the most suitable threshold for 

simulated fMRI data with ForWaRD algorithm. 

The other important parameters of ForWaRD are decomposition level and wavelet 

basis. The decomposition parameter shows how detailed the separation of this signal 

is. The higher the decomposition level, the more detailed coefficients are obtained. In 

the wavelet domain, the discrete wavelet transformation only depends on the 

maximum decomposition level and the filters (wavelet basis). For a given wavelet 

basis, the maximum number of decomposition levels, n, of DWT mainly depends on 

the dimensions of the input signals. Maximum decomposition level is computed with 

formula below: 

Equation Section (Next) 

 max 2  :  log ( ),  :   Maximum Decomposition Level n N N length of data=  (5.2) 

We will find the optimum level for our simulated data. In addition, mother wavelet 

selection is also an important process, so we will examine the changes in system 

performance for different mother wavelets and at the end we will decide which one is 

best for simulated data. 

Briefly; the following settings of the ForWaRD routine will be varied: 
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1. Type of frequency shrinkage:  

  A) Wiener Shrinkage 

  B) Tikhonov Shrinkage 

2. Wavelet domain threshold level 

3. Decomposition levels of wavelet transform 

5.1.1.1 Sensitivity Analysis According to the Varying Frequency 
Shrinkage 

 

In this section, as mentioned before, we tested the performance of the system 

according to MSE metric by changing the Fourier Domain Shrinkage method used in 

ForWaRD program. 

This is how MSE value was calculated: The noisy simulated data given in Figure5.1 

was put into ForWaRD algorithm and HRF signal was obtained as the output. Then 

this HRF signal was convolved with the stimulus pattern given in Figure5.2. In the 

end the MSE value was found by the the difference between ideal BOLD response 

given in Figure5.2 and BOLD response as the output of the convolution. Open 

formula for MSE is given below.Equation Section (Next) 

 2
1 2

1

1 ( )
N

i i
i

MSE y y
N =

= −∑  (5.3) 

y1 : ideal BOLD signal 

y2 : estimated BOLD signal 

i : time point 

N : total time point 
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Shrinkage 
Type 

Tikhonov 

τ = 1 

Tikhonov 

τ =5 

Tikhonov 

τ = 7 

Tikhonov 

τ = 10 

Tikhonov 

τ = 20 

Tikhonov 

τ = 40 

Tikhonov 

τ = 60 

Tikhonov 

τ = 100 

MSE 1.7235 1.6950 1.6447 1.5952 1.5018 1.4594 1.6366 1.6825 

 

Table 9 MSE comparison for varying Tikhonov regularization parameter τ 

 

Figure5.4 MSE plot versus varying Tikhonov regularization parameter τ 

 

Shrinkage 
Type 

Wiener 

=0.01 

Wiener 

=0.1 

Wiener 

=1 

Wiener 

=10 

Wiener 

=50 

MSE 1.7143 1.6115 1.4185 1.4324 1.4706 

 

Table 10 MSE comparison for varying Wiener regularization parameter α 



130 
 

 

 

Figure5. 5 MSE plot versus varying Wiener regularization parameter α 

From Table9 and Table10, Tikhonow shrinkage is found to provide the best MSE 

value while regularization parameter τ = 40. When τ gets bigger than 40, MSE starts 

to increase. The reason of this is that even though most of the noise is cleared, 

because the regularization parameter is highly increased, the signal is corrupted; the 

result is noise free but distorted estimate of HRF. Since HRF is corrupted, as the 

outcome of the convolution of obtained HRF and stimulus, a distorted BOLD is 

obtained and the MSE value with ideal BOLD is increased. 

Regularization parameter is a critical parameter for the denoising process. When it is 

kept small in order not to corrupt the HRF signal, noise component leaks into the 

desired signal HRF, and the result is distortion free but noisy estimate 

As explained in Chapter 3, the reason regularization is done in Fourier domain is to 

prevent the amplification on the error during Fourier inversion, when stimulus 

pattern is either zero or very close to zero. 

There is not so much difference between Tikhonow and Wiener thresholds in term of 

the ForWaRD performance Wiener has given relatively better results for our data. 

That is why we used wiener shrinkage in our simulations.  
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The regularization process and therefore the decision for the regularization parameter 

differs in the signal that is processed. The amount of noise on the signal decides how 

much regularization should be made. So even though the best outcome for the 

sample data that is used in this chapter is obtained for wiener coefficient =1, this 

value can change for different data. 

 

5.1.1.2 Sensitivity Analysis According to the Varying Wavelet Domain 
Threshold Level 

 

Choice of Threshold: The threshold 
jdT must be chosen just above the maximum 

level of the noise. Assume that we want to estimate f  from the X f W= +  where W 

is a Gaussian white noise of variance of 2σ . Then we should determine a threshold 

in order to filter noise coefficients. Towards this objective, firstly define a threshold 

factor as in equation (5.4) which depends on the data length N. Finally apply hard 

threshold to the signal coefficients dj at level j as in equation (5.5) which depends on 

both noise variance at level j and threshold factor. 
j

Hard
dT is the hard thresholded 

signal coefficients at level j The overall threshold t at level j becomes as in equation 

(5.6) 

Equation Section (Next) 

 ( 2)*loge Nρ β= +  (5.4) 

Equation Section (Next) 
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 (5.5) 

Equation Section (Next) 

 ( 2)*logj j j et Nρσ σ β= = +  (5.6) 

The reason why we define a threshold factor depending on data length is based on 

the structure of Gaussian white noise. The tail of the Gaussian distribution creates 

larger amplitude noise coefficients when the sample size increases.  
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Due to the fact that if we define the threshold tj at level j according to data length N, 

the maximum amplitude of the noise has a very high probability of being just below 

tj [90]. The threshold tj is not optimal and in general a lower threshold reduces the 

risk. 

As seen in the formulas, the threshold value depends on the data length and indirectly 

to the decomposition level. We added the "β” parameter to the formula in order to 

see how much the system performance is affected when the data length N and 

decomposition level is kept constant while threshold changing. By changing the “β” 

parameter and keeping decomposition level constant, we analyzed the effects of 

threshold value on the performance results of the ForWaRD algorithm. 

Decomposition level value is fixed at 4 because the best results are obtained at this 

level. Obtained MSE values and HRF shapes are given in the coming subsection. 

5.1.1.2.1 Extracted HRFs According to the Varying Threshold Values 
 

In this part, we change threshold value of ForWaRD algorithm and analyze the 

effects of varying threshold values on the extracted hemodynamic response function. 

In the Fıgure5.8 the ideal hemodynamic response shape is shown. We compare the 

underlying ideal hemodynamic response function and the extracted ones. By this 

way, we obtain the performance of ForWaRD for varying threshold values.  

 

Figure5.8 Ideal hemodynamic response shape 
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• Threshold Factor: μ=1 • Threshold Factor : μ=5 
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Figure5.9 Extracted HRF for Threshold Factor 

value μ=1 
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Figure5.10 Extracted HRF for Threshold Factor 

value μ=5 

 

For the threshold factor values μ=1 and μ=5, ForWaRD cannot catch the HRF shape 

(Figure5.9 and Figure5.10). So, this threshold values are not enough to filter out 

noise on the signal at μ=1 and μ=5. When threshold value set to μ=1 and μ=5, then 

the noise components disturb more the desired hemodynamic response function 

signal components so we can not obtain any meaningful hemodynamic responses 

after executing ForWaRD algorithm (Figure5.9 and Figure5.10). When threshold 

value is increased from μ=1 to μ=5, noise components filtered more but still we can 

not obtain a meaningful hemodynamic response function signal at the threshold value 

μ=5 (Figure5.9 and Figure5.10). So, we have to continue to increase threshold value.     
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• Threshold Factor: μ=10 • Threshold Factor : μ=15 
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Figure5.11 Extracted HRF for Threshold Factor 

value μ=10 
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Figure5.12 Extracted HRF for Threshold Factor 

value μ=15 

 

In Figure5.11, we can find the extracted hemodynamic response function. When 

threshold factor μ value becomes 10 with decomposition level 4, then we obtain the 

most identical correspondence between the hemodynamic response function and the 

ideal hemodynamic response function shown in Figure5.8. When threshold is μ=10, 

ForWaRD filters noise components on the desired hemodynamic response function 

very well. Extracted hemodynamic response function shown in Figure5.11 is similar 

to ideal hemodynamic response function shown in Figure5.8 in terms of shape, 

acceleration when rising and decreasing and time intervals where hemodynamic 

response occurs. 

When threshold factor value is μ=15 we obtain a satisfying HRF shape according to 

the ideal hemodynamic response function shown in Figure5.8. But since the filtered 

signal coefficients increase with the increase of threshold level, we can see a 

decrease in the signal amplitude. This shows that the threshold level with the value 

μ=15 yield to the filtering of some important signal coefficients. 
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• Threshold: μ=20 
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Figure5.6 Extracted HRF for Threshold Factor value μ=20 

The continuous increase in the threshold level causes HRF to be less ideal when we 

compare the extracted hemodynamic response function for threshold value μ=20 

shown in the Figure5.13 to the ideal hemodynamic response function shown in the 

Figure5.8. Shape of the extracted hemodynamic response shown in the Figure5.13 is 

corrupted where the initial peak is not rising smoothly if we compare Figure5.13 to 

the ideal hemodynamic response function in the Figure5.8. The reason is that the 

signal coefficients in wavelet domain are being filtered by the rising of the threshold. 

So, a large threshold value yields more number of zero coefficients of the 

hemodynamic response function signal yields which destroys the signal details and 

the resultant image yields blur and artifacts. On the other hand, a small threshold 

value will leave behind all the noisy coefficients and subsequently the resultant is a 

denoised image which may still be noisy.  
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Variable 
Threshold 
Factor μ 

μ=1 μ=5 μ=10 μ=15 μ=20 

Fixed 
Decomposition 

Level n 
n=4 n=4 n=4 n=4 n=4 

MSE 1.7980 1.6279 1.4290 1.4381 1.4602 

 

Table 11 MSE comparison for variable Threshold Factor µ while decomposition level is fixed at 4 

 

 

Figure5.7 MSE versus Threshold Factor µ 

In Table11, MSE comparison for variable Threshold Factor µ while decomposition 

level is fixed at 4 is shown. At fixed decomposition level, when the threshold value is 

μ=10, we obtain the most satisfying hemodynamic response signal shown in the 

Figure5.11 in terms of shape, magnitude and time intervals where hemodynamic 

response shape occurred.  On the other hand, the graphic of MSE versus Threshold 

Factor µ is given in Figure5.14 which shows that the minimum error is obtained 

when the threshold factor is μ=10. So, the optimum threshold factor for our 

experiment is μ=10, we will use this threshold value in the following analysis.  
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 1 2 3 4 5 6 7 

 
μ:1 

n:4 

μ:5 

n:4 

μ:10 

n:4 

μ:13 

n:4 

μ:15 

n: 4 

μ:15 

n: 4 

μ:20 

n: 4 

Sensitivity (%) 0.75 0.85 0.99 0.96 0.95 0.9 0.88 

Specificity (%) 0.68 0.7 0.78 0.74 0.72 0.69 0.69 

 

Table 12 Specificity and Sensitivity analysis for variable threshold factor µ 

Briefly in this part, decomposition level value is kept at 4 and threshold value is 

changed. The reason decomposition level value is 4 is that, the best results are 

obtained at this level. As understood by the HRF shapes and MSE values, when 

decomposition level is 4, the best data results are obtained while μ=10 (Figure5.11 

and Table 11). Also the results for μ=15 are quite close to the best result shown in 

the Figure5.12.  

When HRF graphics are observed, the HRFs that are obtained for the best two 

threshold values μ=10 shown in the Figure5.11 and μ=15 shown in the Figure5.12 

look satisfying in terms of magnitude, shape structure and time intervals where 

hemodynamic response function shape occurs. 

Another analysis was also made sensitivity and specificity wise shown in the 

Table12. Data sets are created with the AWGN σ=8, jitter σ=8, drift σ=16, lag 

σ=16 artifact values while decomposition level is constant and threshold value 

varying. These datasets, including both active and passive signals, are put into the 

ForWaRD algorithm. HRFs that are extracted from ForWaRD are clustered by using 

laplacian eigenmaps. As a result of clustering, sensitivity and specificity values are 

found. And the best results are obtained when threshold factor is 10. Because when 

threshold factor is 10, the successful and decent HRFs shown in the Figure5.11 are 

able to be clustered since they look alike characteristically. For other values of 
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threshold factor µ, it was observed that the results had frequent confusions with 

passive signals. 

These results show us that threshold level is quite an important parameter while 

extracting HRF. The settings must be done precisely because the more extracted 

HRF shapes get corrupted, the harder it gets for clustering algorithm to separate 

active and passive signals. 

5.1.1.3 Sensitivity Analysis According to the Varying Decomposition 
Levels of Wavelet Transform 

 

As explained in the previous analysis, the threshold value changes according to the 

decomposition level value. This time ForWaRD performance is analyzed according 

to the threshold values which are calculated for non-constant decomposition level 

values, while β=15.  

ForWaRD can make two types of thresholding in the wavelet domain. These are soft 

thresholding and hard thresholding. The open formulas for these threshold shapes are 

given in equation (5.7). [89]Equation Section (Next) 

 

( )sgn( ) ,      
 ( )

                    0,       

,      
Hard ( )

0,       

soft
d

hard
d

d d t d t
Soft Thresholding T d

d t

d d t
Thresholding T d

d t

⎧ ⎫− >⎪ ⎪→ = ⎨ ⎬
≤⎪ ⎪⎩ ⎭

⎧ > ⎫⎪ ⎪→ = ⎨ ⎬
≤⎪ ⎪⎩ ⎭

 (5.7) 

where d is the wavelet coefficient. In soft thresholding the remaining coefficient are 

reduced by an amount equal to the value of the threshold. In hard thresholding the 

magnitudes of the wavelet coefficients above the threshold are unchanged. 

We analyzed how the ForWaRD performance changes according to these two types 

of threshold for the sample data we have.  

The results are given in Table 13 both MSE and sensitivity specificity wise. Also 

HRF shapes are shown in the figures between Figure5.15 and Figure5.22 for each 

threshold type and decomposition level value. 
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 n=2 n=3 n=4 n=6 n=8 

Threshold 
Type Soft  Hard  Soft  Hard  Soft  Hard  Soft  Hard  Soft  Hard  

MSE 1.6697 1.7296 1.4996 1.5048 1.4310 1.4290 1.4780 1.4494 1.5254 1.4661 

 

Table 13 MSE comparison with respect to variable Decomposition levels with Soft and Hard 
Thresholds 

 

 

Figure5.8 MSE versus Decomposition Level n with Soft & Hard Thresholding 

 

The results for Soft threshold are better when decomposition level is less (compare 

Figure5.15 and Figure5.16, and compare Figure 5.17 and Figure5.18). The reason 

of this is that the details of the signal are less distinct for low decomposition levels. 

So if we use Soft threshold for lower decomposition levels, we will be able to keep 

the signal information. At this point if we use Hard threshold, we can get rid of the 

unwanted parts of the signal more clearly and have more detailed information when 

the decomposition level increases.  
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But there is an important point here. We cannot have satisfying results either with 

soft or hard thresholding, unless we reach the minimum decomposition level value at 

which the signal can be separated while incorporating noise. An example for this can 

be seen at decomposition level n=2 shown in the Figure5.15 and Figure 5.16. Since 

we do not elaborate the signal enough, the noise and coefficients of the signal cannot 

be separated from each other and when one of the threshold methods is used on 

wavelet coefficients, important signal coefficients are also filtered which at the end 

leads to loosing HRF (Figure5.15 and Figure 5.16). This definitely is an unwanted 

situation. In order not to come across such situation, the signal should be elaborated 

to a suitable level to apply threshold (Figure5.17 and Figure 5.18). In other words, 

firstly the decomposition level value should be roughly determined and later the 

threshold value and decomposition level should be set to improve the results. 

The best values for our sample data are obtained when decomposition level n=4. At 

this level, hard threshold process worked better because of reasons explained in the 

previous paragraph. 

• Decomposition level n=2 

Decomposition Level n=2 

Soft Threshold  Hard Threshold 

0 20 40 60 80 100 120 140 160
-1

-0.5

0

0.5

1

1.5

2
Deconvolved and Denoised HRF

Time Points

Figure5.15 Extracted HRF for Soft Threshold 
when decomposition level n=2 
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Figure5.16 Extracted HRF for Hard Threshold 
when decomposition level n=2 

 

In Figure5.15 the extracted hemodynamic response function signal for soft 

thresholding is shown and in the Figure5.16 the extracted hemodynamic response 
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function for hard thresholding is shown when decomposition level n=2. We cannot 

have any meaningful hemodynamic response function signal results either with soft 

or hard thresholding in the Figure5.15 and Figure5.16, because we cannot reach the 

minimum decomposition level value at which the signal can be separated while 

incorporating noise. So, we have to increase decomposition level in order to reach 

the desired hemodynamic response signal. 

• Decomposition level n=4 

Decomposition Level n=4 

Soft Threshold  Hard Threshold 
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Figure5.17 Extracted HRF for Soft Threshold 
when decomposition level n=4 
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Figure5.18 Extracted HRF for Hard Threshold 
when decomposition level n=4 

 

When decomposition level becomes n=4 we obtain satisfactory hemodynamic 

response signals with both soft and hard thresholding, results are shown in the 

Figure5.17 for soft thresholding and Figure5.18 for hard thresholding. Extracted 

hemodynamic response using soft thresholding has better magnitude level shown in 

the Figure5.17 than extracted one using hard thresholding shown in the Figure5.18. 

Hard thresholding is to smooth the desired signal because of its structure (formula is 

given in equation 5.7). When we compare results shown in the Figure5.17 and 

Figure5.18 with the ideal hemodynamic response function signal shown in the 

Figure 5.8, we find that, extracted hemodynamic responses is very similar to the 

ideal one in terms of  shape and acceleration for rising to peak value and decreasing 

to the base line. 
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• Decomposition level n=6 

Decomposition Level n=6 

Soft Threshold  Hard Threshold 
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Figure5.19 Extracted HRF for Soft Threshold 
when decomposition level n=6 
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Figure5.20 Extracted HRF for Hard Threshold 
when decomposition level n=6 

 

Figure5.19 and Figure5.20 show the extracted hemodynamic response function 

signals for decomposition level n=6. When we compare these results to the previous 

ones shown in the Figure5.17 and Figure5.18, it is found that results for 

decomposition level n=6 shown in the Figure5.19 and Figure5.20 are corrupted. 

When the decomposition level equals to 6 than signal becomes more detailed but the 

original structure begins to be more destroyed since we separate a signal into a lot of 

decomposition levels with wavelet basis. Then we have to filter the required signal 

components to correct the corruption and generate less levels.    

 1 2 3 4 

 
μ:10 

n:2 

μ:10 

n:4 

μ:10 

n:6 

μ:10 

n: 8 

Sensitivity(%) 0.7 0.99 0.85 0.66 

Specificity(%) 0.6 0.71 0.7 0.56 

Table 14 Sensitivity and Specificity analysis for variable decomposition level n with fixed threshold 

factor µ 
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Table14 demonstrated smoother analysis made according to the sensitivity and 

specificity.  Data sets are created with the AWGN σ=8, jitter σ=8, drift σ=16, lag 

σ=16 artifact values while decomposition level is varying. These datasets, including 

both active and passive signals, are put into the ForWaRD algorithm. HRFs that are 

extracted from ForWaRD are clustered by using laplacian eigenmaps. As a result of 

clustering shown in the Chapter 4, Section 4.2.2.1, sensitivity and specificity values 

are found. And the best results are obtained for decomposition level n=4. 

At the end of this part, after all of the analysis with varying ForWaRD parameters we 

found all of the optimum parameters for our experiment. The best extracted HRF 

result shown in the Figure5.21 for the data we used in this chapter is obtained with 

the following parameters: 

 Fourier Shrinkage Type : Wiener Shrinkage 

 Decomposition Level n : 4 

 Threshold Factor µ : 10 

 Wavelet Basis  : Daubechies db2, db3 
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Figure5.9 The best extracted HRF result for data we used in Chapter 5 
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5.1.2 Sensitivity and Performance Analysis of Fuzzy C means Clustering 
Method According to The Changing System Parameters 

 

In this part, we analyzed the sensitivity and performance of the Laplacian Eigenmaps 

algorithm. 

Specific data sets are created with the AWGN σ=8, jitter σ=8, drift σ=16, lag σ=16 

artifact values. These datasets, including both active and passive signals, are put into 

the ForWaRD algorithm. HRFs that are extracted from ForWaRD are clustered by 

using laplacian eigenmaps. Various algorithm parameters of Laplacian Eigenmaps 

are changed and how this change affects the clustering results, is observed.  

Laplacian Eigenmaps algorithm has 3 important system parameters. These are:  

• Metric of similarity between the neighboring points: Here is the information 

for according to which metric, the closest neighbors will be calculated. 

Euclidean distance and cosine similarity which are common are used and 

results are observed. 

o Euclidean distance is the linear distance between two points and is 

given by the Pythagorean formula. 

o  Cosine similarity is a measure of similarity between two vectors by 

measuring the cosine of the angle between these two vectors. 

•  Nearest neighbors of each voxels within the data set. 

 

 

The two important parameters mentioned above are changed and the uniform data set 

is separated into 2 clusters. These clusters are active and passive voxel clusters. 

According to the results, obtained sensitivity and specificity values and specific 

graphics are given in the following pages. 

In all simulations Cosine distance and 4-6-8 nearest neighbors are used.  
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Figure5.10 Clustering Result, Euclidean, 4NN 
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Figure5.11 Clustering Result, Euclidean, 6NN 

 

In the Figure5.10, the clustering result for the created data set is shown. Euclidean 

distance and 4 nearest neighbor is used for this clustering in the laplacian eigenmaps 

algorithm. Figure5.11 shows the clustering result when Euclidean distance and 6 

nearest neighbor is used. In both Figures it is shown that clustering is unsuccessful 

because hemodynamic responses can not be separated as active and passive. There is 

not any crisp boundary between active and passive clusters where the boundary is 

rather fuzzy. The sensitivity and specificity values shown in the Table 15 verifies this 

unsuccessful situation.   
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Figure5.12 Clustering Result, Cosine, 6NN 
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In the Figure5.12, the clustering result of the specific data set is given. Cosine 

distance and 6 nearest neighbor is used for this clustering. We can find a boundary 

between active and passive clusters in the underlying clustering result shown in the 

Figure5.12. When we compare using euclidian distance (Figure5.11) and using 

cosine distance (Figure5.12) with the same nearest neighbor value, we obtain that 

using cosine distance is by far more successful than using Euclidean distance.  

 

 Euclidian, 

4NN 

Euclidian, 

6NN 
Euclidian, 

8NN 

Sensitivity 

(%) 

256/553 

0.512 

254/584 

0.508 

251/547 

0.502 

Specificity 

(%) 

203/447 

0.406 

169/416 

0.338 

205/453 

0.41 
 

Table 15-Sensitivity and Specificity analyses with respect to Euclidean Dist. and Nearest Neighbor 

 

When Euclidean Distance is used according to the obtained results shown in the 

Table15, it is observed that the most significative sample set can be determined by 

looking at the 8 nearest neighbors. On the other hand, the most sensitive sample set 

can be seen with the nearest 4 neighbors. When analyzed in general, sensitivity 

values are quite close to each other for all 4-6-8 neighbors. Sensitivity and specificity 

values are not satisfying when found by Euclidian distance. Active and passive 

signals could not be separated. 

 
Cosine, 

4NN 
Cosine, 

6NN 
Cosine, 

8NN 

Sensitivity (%) 
492/631 

0.984 

494/638 

0.988 

494/630 

0.988 

Specificity (%) 
361/369 

0.722 

356/362 

0.712 

364/370 

0.728 
 

Table 16 Sensitivity and Specificity analyses with respect to Cosine Distance and Nearest Neighbor 
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When Cosine similarity is used according to the obtained results Table 16, it is 

observed that the most significative sample set can be determined by looking at the 8 

nearest neighbors. Results seem to be quite close to each other when evaluated 

sensitivity wise. It is understood that Cosine distance is a strong metric in separating 

active and passive signals from each other. In the end, Cosine similarity is more 

successful than Euclidean distance.  
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CHAPTER 6 

DISCUSSIONS 

6 DISCUSSIONS 

6.1 Performance Comparison of ForWaRD and Blind Deconvolution 
 

6.1.1  ForWaRD and Blind Deconvolution 
In this section, we compared two different model-free approaches for identifying 

brain activations from fMRI signals by estimating the underlying hemodynamic 

response function (HRF) and interpreting shape features of the obtained HRF 

through clustering: 

1. Fourier Wavelet Regularized Deconvolution (ForWaRD) 

2. Maximum A Posteriori (MAP) Blind Deconvolution  

For the purpose of HRF extraction we compared our method to a different 

deconvolution technique called MAP blind deconvolution. Following HRF extraction 

using ForWaRD, we used Laplacian Eigenmaps algorithm and, for HRF extraction 

based on blind deconvolution we used spectral clustering with expectation 

maximization (EM) for clustering hemodynamic response functions in order to detect 

activation. 

We explain maximum a posteriori (MAP) blind deconvolution method briefly in the 

following subsection. 

6.1.1.1  Maximum A Posteriori (MAP) Blind Deconvolution 
 

The problem is presented as follows: 

( ) ( ) ( ) ( )r t d t k t n t= ⊗ +  

where, 

r(t): Observed fMRI signal,  

d(t): Hemodynamic response function.   
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k(t): Stimulus pattern 

n(t): Additive White Gaussian noise (AWGN) 

Maximum A Posteriori (MAP) Blind Deconvolution technique in which we assume 

the fMRI signal is the convolution of HRF with a convolution filter under an 

Additive White Gaussian noise (AWGN). We made application dependent 

assumptions and formulated them mathematically as prior distributions in order to 

cope with the ill-posed nature of blind deconvolution. Because of the slowness of the 

hemodynamic response to the neural activation and the averaging of the signal within 

the entire neural space of a voxel, we assumed ‘smoothness’ of HRF. Smoothness 

constraint on the hemodynamic response implies, in our model, the minimization of 

the square sum of derivatives and this turns out to be a Gaussian prior, which favors 

high probabilities to low derivative magnitudes. Also, for the convolution filter we 

assume it to be of finite impulse response (FIR) of some length p with positive taps: 

r(t): Observed fMRI signal, p(r) = Cr   

d(t): Hemodynamic response function. 2

1

)(
ddT

d
−∑−

= eCp d  

k(t): Finite Impulse Response (FIR) convolution filter 

p(k) = Ck such that ∀i k(i) ≥ 0  

n(t): AWGN  

By means of MAP approach [1] and the prior distributions we try to minimize the 

posterior distribution: 

(d * , k * ) = arg m in ( d , k ) − log p r k, d( )p d, k( ){ } 

This optimization problem basically tries to approximate the observed signal as a 

convolution of d and k while at the same time having the hemodynamic d as smooth 

as possible. Unfortunately we face with joint optimization problem in this solution 

and we always obtain flat signal for optimum HRF. To tackle this problem, we 

modify the solution above using an iterative optimization of the same cost function 

through the Expectation-Maximization Algorithm (EM) by basically alternating 
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between the optimum hemodynamic given the convolution filter and the optimum 

convolution filter given the hemodynamic. With the help of EM algorithm, we can 

avoid the joint optimization and get a suboptimal solution for the same optimization 

problem avoiding the flat hemodynamic problem. 

The length of the convolution filter p is important. If p is full length we estimate the 

HRF. If we choose a suitable and rather smaller p value we obtain a smooth time 

series containing both the characteristics of HRF and the information about locations 

and durations of the impulses as well. So, these obtained smooth time series signals 

are used as input to our clustering algorithm for activation detection meaning that no 

further feature extraction is used. 

After blind deconvolution, we use spectral clustering with EM for seperating active 

and inactive voxels. For a distance measure, we use Hausdorff distance which 

outperforms other common distance measures since it is especially robust to the 

outliers in the data and able to discard the affect of phase and amplitude shifts among 

the signals. Details of this approach are found explicitly in the thesis work [91]. 

6.1.2  RESULTS 
 

For application first we used simulated data and then we worked with real data. For 

the simulated data set we used Balloon Model [3] with parameters ε=0.5, τS= 0.8, 

τf= 0.4, τ0= 1, α= 0.2, E0 = 0.8, V0 = 0.02. We discuss the effects of additive noise, 

lag, jitter and drift within the data samples.  

Real fMRI data set is obtained from a categorical block design experiment. In this 

experiment, fMRI data is conducted from a 1.5T Siemens scanner. It is an fMR 

adaptation paradigm investigating subtle effects in face processing. Each fMRI data 

consist of 177 time points with 6 cycles. 

Active and passive voxels in both real data are classified beforehand via general 

linear model, which served as ‘ground truth’. 
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6.1.2.1 Hemodynamic Response Function Extraction 

6.1.2.1.1  Estimated HRF for Simulated Data 
 

MAP Blind Deconvolution estimates both the HRF and stimulus pattern from a noisy 

fMRI data as in Figure6.1 ‘Estimated BOLD response’ refers to the convolution of 

the two outputs of the algorithm. Figure6.2 shows the extracted hemodynamic 

response using ForWaRD method. ForWaRD method gives better HRF results than 

Blind Deconvolution in terms of shape. We loose the initial rise of the HRF when 

Blind Deconvolution is used. 

 

Figure6.1 Estimated HRF and stimulus pattern via MAP Blind Deconvolution using simulated data 
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Figure6.2 Estimated HRF and stimulus pattern via FORWARD using simulated data 
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6.1.2.1.2 Estimated HRF for Real Data 
 

Figure6.3 and Figure6.4 show the estimated HRF and stimulus pattern for a sample 

real fMRI data. In Figure6.3 using Blind Deconvolution, estimated stimulus cannot 

detect the last block of the given stimulus pattern. ForWaRD catches the initial rise 

of the HRF better than Blind Deconvolution. 

 

Figure6.3 Estimated HRF and stimulus pattern via MAP Blind Deconvolution using real fMRI data 
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Figure6.4 Estimated HRF and stimulus pattern via FORWARD using real fMRI data 
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6.1.2.2 Clustering 
 

In the clustering part we use Spectral Clustering after MAP Blind Deconvolution and 

Laplacian eigenmaps after FORWARD method. 

6.1.2.2.1 Clustering of Simulated Data 
 

Method1: Blind Deconvolution 

Method2: ForWaRD 

Table17 shows the performance of both algorithms under different AWGN, lag and 

drift artifacts for the simulated data set. Here Table17 gives the standard deviation of 

each artifact. 

  AWGN Lag Quadratic drift 

   Method1 Method2 Method1 Method2 Method1 Method2 

σ=4 

Sensitivity 0.998  1 1  0.993 1  0.998

Specificity 0.968  1 0.964  0.992 0.92  0.98

σ=8 

Sensitivity 0.998  0.991 0.94  0.962 1  0.976

Specificity 0.938  0.967 0.982  0.945 0.916  0.98

σ=16 

Sensitivity 0.956  0.962 1  0.985 1  0.928

Specificity 0.846  0.901 0.888  0.922 0.886  0.932

 

Table 17 The effect of different noises on the clustering results of both methods 

 

Table18 gives the sensitivity and specificity of each method when all four artifacts 

exist within the data with varying standard deviations. 



154 
 

 

  
Sensitivity  Specificity 

Method1 Method2 Method1 Method2 

σ_AWGN = 2; σ_Jitter = 2 
1  0.996 0.944 0.97 

σ_Drift = 2;   σ_Lag = 8 

σ_AWGN = 4; σ_Jitter = 2 
0.998  1 0.93  0.944 

σ_Drift = 2; σ_Lag = 8 

σ_AWGN = 8; σ_Jitter = 2 
0.92 0.998 0.942 0.878  

σ_Drift = 2; σ_Lag = 8 

σ_AWGN = 4; σ_Jitter = 4 
0.96 1 0.962  0.946 

σ_Drift = 2; σ_Lag = 8 

σ_AWGN = 4; σ_Jitter = 8 
0.912 1 0.954 0.914 

σ_Drift = 2; σ_Lag = 8 

σ_AWGN = 4; σ_Jitter = 4 
0.998 0.998 0.904  0.922 

σ_Drift = 16; σ_Lag = 16 

 

Table 18 Clustering results under combined noise and lag-drift conditions 

 

Figure6. 5 The illustration of clustering with the simulated data parameters σ_AWGN = 4; σ_Jitter=4 
σ_Drift = 16; σ_Lag = 16 using Blind Deconvolution 



155 
 

According to Figure6.5, Method1:Blind deconvolution has 99.8 % sensitivity and 

90.4 % specificity on the simulated data which has σ_AWGN = 4, σ_Jitter = 4, 

σ_Drift = 16, σ_Lag = 16. 

 

Figure6.6 The illustration of clustering with the simulated data parameters σ_AWGN = 4; σ_Jitter=4 

σ_Drift = 16; σ_Lag = 16 using Method2 

 

According to Figure6.6, Method2:ForWaRD has 99.8 % sensitivity and 92.2 % 

specificity on the simulated data which has σ_AWGN = 4, σ_Jitter = 4, σ_Drift = 16, 

σ_Lag = 16. 

6.1.2.2.2 Clustering of Real Data 
 

 

Figure6.7 Clustering of real fMRI data via Method1 
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Method1 obtains 100% performance in both sensitivity and specificity using the 

second real fMRI data set as shown in Figure6.7. Active voxels are red, inactive 

voxels are blue ones. 

 

Figure6.8 Clustering of real fMRI data via Method2 

In Figure6.8, active voxels are red, passive voxels are yellow and motion voxels are 

green ones. According to the ForWaRD, sensitivity is 98 % and specificity is 99 %. 

6.1.3 CONCLUSIONS 
 

In this work, we basically conducted fMRI data analyses of two types: (1) we 

assumed that there is no extra information about the conducted task, and through a 

blind deconvolution algorithm within Bayesian framework using a MAP approach, 

we estimated the hemodynamic response function. We showed in our analysis that 

although this was completely an unsupervised and model free method, we obtained 

satisfactory estimates for HRF as well as the unknown stimulus pattern. (2) in order 

to further improve our results, we assumed that stimulus is known, By applying the 

ForWaRD method, we obtained comparable estimates to the ideal HRF.  

 Moreover, we also studied Spectral Clustering of fMRI time series using the input 

signal as the convolution of estimated HRF and the stimulus estimated from blind 

deconvolution under two different settings. Since the distance / similarity metric is 

always important for any type of clustering, we analyzed cosine similarity in 

ForWaRD method, and the Hausdorff distance in blind deconvolution. In our 
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simulations, we obtained comparable results between these two methods. In case of 

blind deconvolution, spectral clustering is followed by an EM clustering in order to 

get nice nonlinear boundaries and in case of ForWaRD method, Spectral Clustering 

is followed by fuzz-c means which basically assumes Gaussian distribution in data 

and declares class memberships accordingly. Since our fMRI simulations assume a 

baseline fMRI signal for active class, it tends to generate data having a Gaussian 

distribution, which returns favorable results for clustering with fuzz c-means. As for 

the real data experiments, clustering after blind deconvolution with Hausdorff 

distance outperforms the simulations by generating better sensitivity and specificity 

as well as separating the two classes far better in the transformed domain. The reason 

behind is that real fMRI signals contain larger within class variability with less 

Gaussian distribution with an empowering effect of EM. Moreover, Hausdorff 

distance is less sensitive to lags and outliers in signals such as unexpected magnitude 

changes in fMRI signals which help much under real life conditions in terms of 

clustering. 

 To sum up with, we obtain a more stable HRF estimations if the stimulus is known 

with ForWaRD method, nevertheless, this is not always the case. Whenever HRF is 

unpredictable due to variability in cognitve processes, one can still estimate HRF 

well and perform a very high quality activation detection through clustering with 

Blind Deconvolution. 

6.2 Enhancing the Extracted Hemodynamic Response Results for 
ForWaRD using a Blind Deconvolution Method  

 

In this section, in order to validate the hemodynamic response functions that are 

obtained for fMR adaptation paradigm, we crosschecked our results with that of 

blind deconvolution which is used obtain hemodynamic response from the same 

data. 

Blind deconvolution is a method which does not take stimulus pattern as input but 

assumes that only fMRI signal is known. Shortly, Blind deconvolution takes the 

fMRI signal as input and produces estimated hemodynamic response and estimated 

stimulus pattern as output. An example implementation with this approach is 
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 provided in [91]. 

In the previous section, we claimed that the most important reason why the initial 

values of hemodynamic response (Figure4.35, Figure 4.38, Figure4.41) does not 

include a baseline region might be due to the input given to the ForWaRD algorithm. 

What we thought was that during the experiment, a subject might not receive an ideal 

stimulus pattern due to interfering sensory and attentional processes. Since the Blind 

deconvolution method estimates the actual stimulus pattern perceived by the subject 

instead of the ideal stimulus administered by the program, it sets forth a more 

realistic stimulus in the output.  

When we give the more realistic stimulus pattern -predicted by the Blind 

deconvolution method- as input to the ForWaRD algorithm. can we obtain an output 

that is closer to the ideal hemodynamic response and retrieve the initial point starting 

from a closer point to zero? Using the estimated stimulus pattern for the fMR 

adaptation data, “Active Data_100” the result for the ForWaRD estimating a new 

hemodynamic response function is given below. 

 

 

Figure6. 9 HRF Results for Ideal and Estimated Stimulus Patterns  
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As seen in Figure6.9 above, changing the stimulus given to the ForWaRD program 

effects the shape of hemodynamic response obtained in the output. The graphics of 

hemodynamic response that is obtained by using an ideal stimulus pattern as input 

starts from the value 0.3. The initial raise of hemodynamic response is not captured 

in this HRF. However, when the stimulus pattern that is estimated with Blind 

deconvolution is given to ForWaRD algorithm and the associated hemodynamic 

response is obtained, the HRF obtained by using the estimated stimulus is much 

closer to the ideal hemodynamic response shape. The initial dip values in the 

beginning are caught. So successful results are obtained in the ForWaRD output. 

This proves that the most important reason why hemodynamic response functions -

estimated using an ideal stimulus pattern- are inaccurate is because during the 

experiment, the actual stimulus pattern that the subject receives is not known and this 

stimulus pattern is different than the ideal. Once the input pattern is predicted, the 

performance of the ForWaRD program increases drastically. 
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CHAPTER 7 

CONCLUSION 
 

The objective of this work was to identify brain activations from fMRI signals by 

extracting the underlying hemodynamic response function (HRF) and interpreting 

shape features of the obtained HRF through clustering.  

In other words, the aim of our study was to identify brain activations so that given a 

voxel, we could identify whether there was neural activity in this voxel under a 

specific task. We mentioned two sub steps in Chapter 1 and explained in detail how 

they can be accomplished to satisfy our goal. We used fMRI signal in form of a time 

series signal for each voxel. Unfortunately, for most cases fMRI signals are known to 

suffer from low SNR due to several subject/hardware dependent conditions. We 

extracted hemodynamic response function (HRF) for every fMRI signal. 

Hemodynamic response function (HRF) beared similarity with a system’s impulse 

response function, so it was essential for better understanding the underlying neural 

activity. In literature survey part of Chapter 2, we mentioned other studies in 

literature that are about analyzing fMRI signal. 

In general, the relationship between initial neuronal activation and the observed 

fMRI rests on a complex physiological process. If this process was known and well 

described, it could be approximated by mathematical modeling. However, this 

process was still not adequately defined for deriving a model in literature. In 

addition, assuming a global model across all voxels of brain is also not realistic.  On 

the other hand, deconvolution, which is the process of filtering a signal to 

compensate for an undesired convolution, was a good alternative approach to address 

an intrinsic problem in analyzing desired information. The goal of deconvolution was 

to recreate the signal as it existed before the convolution. Deconvolution approach 

recovered the fMRI signal as convolution of the underlying HRF with a stimulus 

pattern. Since we aimed to unveil the HRF, which was buried within a convolution, a 

deconvolution technique was indispensable. 
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In Chapters 2 and 3, we mentioned that the shape features of the obtained HRF 

posess information about whether a voxel is “active” or “passive”. After extracting 

HRF, in order to identify the activation regions we needed clustering. Chapter 3 

deals with the HRF extraction and clustering. We used a simple model-free approach 

for this purpose: Fourier Wavelet Regularized Deconvolution (ForWaRD) which 

combined frequency-domain deconvolution for identifying overlapping signals, 

frequency-domain regularization for suppressing noise, and wavelet-domain 

regularization for separating signal and remaining noise. The presented method 

ForWaRD, explained in Chapter 3 is attractive, because it requires no knowledge 

about the shape of the HRF, and extracting it requires only the fMR image time 

series and the stimulus pattern.The output of the ForWaRD algorithm represented the 

HRF in every voxel. Application of methods based on ForWaRD to fMRI signal 

analysis is a recently studied concept limited to a few articles in the literature. In this 

study, the direct ForWaRD method (original method presented in [3]) is applied to 

fMRI signals for the first time.  

After HRF extraction, fuzzy c-means clustering with Laplacian Embedding 

algorithm, called Laplacian eigen maps was used for clustering of active and passive 

voxels. Since increasing the dimension of the clustering space leads to practical 

difficulties such as “curse of dimensionality” in fuzzy c means algorithm, we 

combined this method with laplacian embedding. This includes dimension reduction 

of activation data as explained in detail in Chapter 3. Although Laplacian 

Embedding or in other terms, manifold based approaches have been tried on fMRI 

signal analysis before, to the best of our knowledge, our application of Laplacian 

Embedding for classification of extracted HRFs is novel. 

In result section of Chapter 4, as a result of ForWaRD algorithm being performed for 

block design simulated and real data, extracted HRFs are analyzed. The extracted 

HRFs are evaluated both shapewise and magnitudewise. These HRFs are compared 

with the ideal HRF model and the difference is observed, the amount of error is 

calculated for MSE, specificity and sensitivity. The results showed that ForWaRD 

method is very successful in filtering fMRI artifacts (AWGN noise, jitter, drift and 

lag) and seperating stimulus from HRF. HRF was successfully obtained even when 

fMRI was corrupted with high amount of noise. 
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HRF signals that are obtained by the ForWaRD algorithm are clustered by the 

Laplacian eigenmaps algorithm. HRF clustering results obtained from the Laplacian 

eigenmaps algorithm gave us important information about performance of both 

ForWaRD and clustering. Through the obtained information, we can say ForWaRD 

and laplacian eigenmaps methods are successful respectively in obtaining HRF from 

fMRI signals and clustering HRFs.  

Finally in Chapter 5, sensitivity and performance analysis is performed for both 

ForWaRD and Laplacian eigenmaps methods. The aim of this analysis is to observe 

how these methods react to changes in system parameters. In this chapter, it is also 

shown how and in which values these system parameters are obtained.  

In this study of ours, ForWaRD and Laplacian eigemaps algorithms have given quite 

satisfying results for block design simulated and real data sets. In the future, this 

combination of algorithms should be applied on event related data types and results 

should be analyzed in detail.  
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