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ABSTRACT 

 

 
BLIND DECONVOLUTION TECHNIQUES IN IDENTIFYING FMRI BASED 

BRAIN ACTIVATION 

 

 

 

Akyol, Halime İclal 

M.S., Department of Electrical and Electronics Engineering 

  Supervisor    : Prof. Dr. Aydan Erkmen 

Co-Supervisor  : Assist. Prof. Dr. Didem Gökçay 

 

September 2011, 268 pages 

 

 

In this thesis, we conduct functional Magnetic Resonance Imaging (fMRI) data analysis 

with the aim of grouping the brain voxels depending on their responsiveness to a neural 

task. We mathematically treat the fMRI signals as the convolution of the neural stimulus 

with the hemodynamic response function (HRF). We first estimate a time series 

including HRFs for each of the observed fMRI signals from a given set and we cluster 

them in order to identify the groups of brain voxels. The HRF estimation problem is 

studied within the Bayesian framework through a blind deconvolution algorithm using 

MAP approach under completely unsupervised and model-free settings, i.e, stimulus is 

assumed to be unknown and also no particular shape is assumed for the HRF. Only 
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using a given fMRI signal together with a weak Gaussian prior distribution imposed on 

HRF favoring ‘smoothness’, our method successfully estimates all the components of 

our framework: the HRF, the stimulus and the noise process. Then, we propose to use a 

modified version of Hausdorff distance to detect similarities within the space of HRFs, 

spectrally transform the data using Laplacian Eigenmaps and finally cluster them 

through EM clustering. According to our simulations, our method proves to be robust to 

lag, sampling jitter, quadratic drift and AWGN (Additive White Gaussian Noise). In 

particular, we obtained 100% sensitivity and specificity in terms of detecting active and 

passive voxels in our real data experiments. To conclude with, we propose a new 

framework for a mathematical treatment for voxel-based fMRI data analysis and our 

findings show that even when the HRF is unpredictable due to variability in cognitive 

processes, one can still obtain very high quality activation detection through the method 

proposed in this thesis.    

 

 

Keywords: Functional Magnetic Resonance Imaging, Hemodynamic Response Function, 

Blind Deconvolution, Hausdorff Distance 
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ÖZ 

 

 
FMRG TABANLI BEYİN AKTİVASYONLARININ SAPTANMASINDA GÖZÜ 

KAPALI TERS EVRİŞİM TEKNİKLERİ 

 

 

 

Akyol, Halime İclal 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

         Tez Yöneticisi  :     Prof. Dr. Aydan Erkmen 

         Ortak Tez Yöneticisi :     Yrd. Doç. Dr. Didem Gökçay 

Eylül 2011, 268 sayfa 

 

 

Bu tez çalışmasında; benzer beyin voksellerini, belirli uyaranlara verilen tepkilere bağlı 

olarak gruplandırmak amacıyla, fonksiyonel Manyetik Rezonans Görüntüleme (fMRG) 

veri incelemesi yapılmıştır. fMRG sinyalleri, sinirsel uyarı ile hemodinamik yanıt 

fonksiyonunun (HYF) evrişimi olarak düşünülmüş ve hemodinamik yanıt 

fonksiyonlarını içeren zaman dizilerinin bu sinyaller kullanılarak kestirimi yoluyla, 

beyin vokselleri gruplandırılmıştır. HYF kestirimi problemi; MAP kestirim yöntemi 

kullanan bir gözü kapalı ters evrişim algoritması yoluyla Bayesçi bir çerçeve dahilinde 

çalışılmıştır. Bu yaklaşım; voksellerde oluşan sinirsel uyarılarının bilinmemesi ve HYF 

üzerine herhangi bir model oturtulmaması dolayısıyla gözetimsiz ve modellerden 
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bağımsızdır. Bu bağlamda, HYF dağılımının, küçük türevli fonksiyonlara meyil eden bir 

öncül Gauss dağılımı olduğunu kabul eden ve sadece fMRG sinyallerini girdi olarak 

kullanan başarılı bir HYF kestirim metodu geliştirilmiştir. Bu metot sadece HYF değil 

aynı zamanda söz konusu evrişimin diğer bileşenlerini de (sinirsel uyarılar ve gürültü) 

başarıyla kestirebilmektedir. Bunu takiben, kestirilmiş HYF’lerin arasında düzeltilmiş 

Hausdorff uzaklığı kullanılarak kurulan benzerlikler sayesinde veriler spektral olarak 

dönüştürülür ve bunlar EM gruplama yöntemi ile gruplandırılır. Yapılan simülasyonlara 

göre, geliştirilen metodun zamandaki kaymalara, örnekleme seğirmelerine, bağımsız 

Gauss gürültüye ve genlik sürüklenmelerine karşı gürbüz olduğu gösterilmiştir. 

Özellikle, aktif ve aktif olmayan beyin voxellerinin birbirlerinden ayrıştırılması 

noktasında, yapılan gerçek veri deneylerinde % 100 duyarlılık ve özgüllük tespit 

edilmiştir. Sonuç olarak bu tez çalışmasında matematiksel bir tabana oturan fMRG veri 

incelemesi için yeni bir Bayesci çerçeve geliştirilmiş, önerilmiştir. Deney ve simülasyon 

bulgularına göre, bilişsel süreçlerdeki çeşitlilikler yüzünden HYF tahmin edilemese bile, 

önerilen metot sayesinde halen yüksek kalitede aktivasyon tespiti mümkündür.      

 

 

Anahtar kelimeler: Fonksiyonel manyetik rezonans görüntüleme, hemodinamik yanıt 

fonksiyonu, gözü kapalı ters evrişim, Hausdorff uzaklığı 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 
Researchers are heavily interested in identification of brain activation. Why do 

activations of the brain evoke such a wonder? Because the human brain is a barely 

explored new world with each activation producing a little sight of hidden functionality. 

Unfortunately, the current understanding of brain function is challenged with 

inconsistencies, errors and questions deserving answers. 

 

Initial pioneering researches about brain activation were proposed in the nineteenth 

century. The idea of locating functional areas in the brain and mainly the smallest 

element of the functioning part is the present focus. In the succeeding decades, scientists 

were interested in the measurements of changes in brain physiology either caused by 

lesions or recorded as electrical pulses. The invasive nature of these measurements 

prevented a systematic study of the human brain. Nearly 200 years later, scientists are 

now attracted to functional magnetic resonance imaging (fMRI) and take the pictures 

of the active brain in both clinical and research settings. fMRI is a specialized type of 



 2 

magnetic resonance imaging (MRI), which became popular among the neuroimaging 

society. 

 

MRI is a technique for producing detailed images of the brain or other bodily structures, 

using a very strong magnet and radio waves. The subject lies on a table, with his head 

surrounded by a large magnet. The magnet causes particles inside the atoms, called 

protons, of the patient's brain to align with the static magnetic field. A pulse of radio 

waves is then directed at the patient's head and some of it is absorbed by the protons, 

knocking them out of alignment. The protons, however, gradually realign themselves, 

emitting radio waves as they do. These radio waves are captured by a radio receiver and 

are sent to a computer, which constructs the brain image by taking advantage of the 

different realignment timings of different tissue types. 

 

fMRI uses a conventional MRI scanner, but takes advantage of two additional 

phenomena. The first is that blood contains iron, which is the oxygen-carrying part of 

hemoglobin inside red blood cells. Iron atoms cause small distortions in the magnetic 

field around them. The second phenomenon underlying fMRI is the physiological 

principle that whenever any part of the brain becomes active, the small blood vessels in 

that localized region become larger, causing more blood to flow. A large amount of 

oxygenated blood flows to the activated brain area, reducing the amount of oxygen-free 

(deoxy) hemoglobin. This causes a small change in the magnetic field, and thus in the 

fMRI signal, in the active region. 

 

In order to understand the activations of the human brain, functional neuroimaging 

studies are needed which attempt to determine which areas are responsible for which 

mental processes. Although functional neuroimaging did not begin with fMRI, fMRI 

rapidly became one of the most popular and strong tools in neuroimaging. Before fMRI 

the most popular functional neuroimaging technique was positron emission tomography 

(PET) which is based on the injection of radioactive tracers that are attached to the 
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molecules to measure changes in the brain [1]. For example the radioactive isotope of 

fluorine can be attached to glucose, while the radioactive isotope of oxygen can be 

attached to the oxygen, then the distribution and changes in glucose and oxygen in the 

brain due to the sensory, motor and cognitive activity can be measured. However, the 

radiation used in the studies causes problems for human subjects who can take part in 

only a few PET scans. Also, generating the required isotopes is expensive for repetitive 

experiments. In addition, for obtaining a sufficient signal-to-noise (SNR) ratio, the data 

must be collected over a long period of time. Although PET imaging has several 

disadvantages, it still has critical importance in brain metabolism researches, since it 

directly measures the distribution of glucose or oxygen uptake in the brain by evaluating 

the number and timing of impact of the attached radioactive isotopes. 

 

There are other techniques for studying brain functionality. The oldest approach is to 

investigate the effects of damage to the brain upon behavior. When there is damage in a 

brain area A that affects the behavior B, this approach concludes that the area A is 

necessary for the behavior B. However, due to the network structure of the brain, it can 

not be also concluded as the area A is sufficient for the behavior B. Also, the effects of 

damage usually changes over time and makes it difficult to track the effects of that 

damage. Furthermore, it is hard to find patients with isolated damages and the studies on 

animals can not be directly addressed to humans especially in the context of cognition 

processes. However, transcranial magnetic simulation (TMS) technique can interrupt 

functions temporarily within a brain region so that it can be used in human subjects [1]. 

TMS is a technique for temporarily stimulating a brain region to intervene with its 

function, enabling the identification of isolated damage affects on brain functionality. 

One limitation of TMS is that its range is mostly confined to cortex on the brain surface, 

restricting the range of areas to be studied with this paradigm. 

 

Other methods for assessing brain function depend on drug manipulation. Neurons in the 

brain have receptors that are influenced by specific neurotransmitters. Drugs that affect 
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the action of these neurotransmitters possibly cause changes in the common areas of 

brain. However, systematic application of drugs is difficult to perform, and a number of 

drug manipulations need a long time period, in the order of a few weeks, to give results. 

Furthermore multiple regions with different functionality may be responsive to certain 

drugs, making identification of the activated regions difficult to detect. 

 

Another major technique for brain function studies is based on the measurement of the 

electrical changes. Electrodes are inserted near or into a neuron, and the electrical 

potential is measured so that neural activity of that neuron can be measured directly.  

Since the electrodes cannot be inserted into neurons of the healthy human subjects, due 

to the invasiveness of the technique, electrical and magnetic activity of the brain can be 

measured outside the skull using electroencephalography (EEG) or 

magnetoencephalography (MEG) methods [1]. These methods are used for studying the 

timing of the brain processes since very rapid changes in electrical potentials and 

magnetic flux can be measured. However, it is impossible to uniquely detect the location 

of the neuron which causes the activity detected. 

 

To sum up, functional neuroimaging is necessary to understand the brain activity and 

many methods are provided for this purpose. PET imaging suffers from invasiveness of 

the radioactive injections, the expense of obtaining radioactive isotopes and slow 

processing time. Studies depending on damages on the brain have pointed out that a 

brain region is dedicated to a certain behavior, but can not provide information about the 

timing of its activity or the specific function it is responsible for. Although, EEG and 

MEG give sufficient information about the timing of the activity, they do not provide 

clear information about the location of the responding neuronal populations. 

 

Differing from other functional neuroimaging techniques, fMRI is a noninvasive 

technique so that it can be repeated as many times as needed using the same human 

subject. Also, fMRI localizes the brain activity more precisely (in mm resolution) to the 
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origin of the brain activity location. However, it is difficult, extensive and complex to 

analyze the fMRI data due to its low SNR ratio. Also, it is susceptible to several imaging 

artifacts as well as limited temporal resolution. Although it has these limitations, it is 

worth to employ fMRI for identifying brain activation and it has been rapidly provided 

as a primary investigate tool by thousands of researchers worldwide. Using fMRI, 

invaluable information about cognitive neuroscience, psychology, neurobiology, 

psychiatry, and radiology is provided. 

 

fMRI is used to identify the brain activation by measuring the physiological activity that 

is correlated with neural activity. When there is a neural activation, the metabolic 

requirement (need for glucose and oxygen) and energy consumption of the neurons 

increase. To provide the energy needed, glucose and oxygen is supplied for the neurons. 

Oxygen is attached to hemoglobin molecules in the blood to reach the neurons that are 

consuming energy. Oxygenated hemoglobin (oxy-hemoglobin) is diamagnetic; that is, it 

has the property of a weak repulsion from a magnetic field. Deoxygenated hemoglobin 

(deoxy-hemoglobin) is paramagnetic; it has the property of being attached to a magnetic 

field. Neural activity increases energy demand and therefore increases oxygen 

consumption. Rushing oxygen into the active area washes out and reduces the existing 

deoxy-hemoglobin. Since deoxy-hemoglobin has paramagnetic properties, it has the 

effect of suppressing the MR signal, while oxy-hemoglobin does not. Cerebral blood 

flow refreshes areas of the brain that are active with oxygenated blood, lessening the 

local deoxy-hemoglobin, which in turn causes an increase in the measured MR signal in 

active brain regions. This is called blood–oxygenation-level dependent (BOLD) fMRI 

which is the most common measurement in neuroimaging. The increase in the fMRI 

signal triggered by neuronal energy consumption is known as the hemodynamic 

response function (HRF). Figure 1.1 shows an illustration of a typical HRF. When the 

voxel is active, its HRF would look like a Gamma function as in Figure 1.1. The peak 

emerges as a response to the applied stimulus. In passive voxels the related HRF has no 

peaks and it has a flat shape since it does not respond to the given stimulus. 
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Figure 1.1 Schematic representation of hemodynamic response function 
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1.1 Thesis Objective 

 

The main objective of this thesis is to identify brain activations so that given a voxel of 

the brain; we want to determine whether it is active or passive; and also to group these 

voxels according to their activation status due to a specific task. 

 

fMRI is the most noninvasive technique among all other neuroimaging techniques and to 

get satisfactory results usually repetitive measurements are required. These 

measurements need to be performed on the same human subject for best performance 

and statistical reliability. Considerably short time periods are needed to obtain 

experimental results in the order minutes. So for the time being, fMRI is the best choice 

for brain activation analysis.  

 

However, during fMRI experiments only one physical quantity is measured, which is the 

magnitude of the current in a detector coil measured by the MRI scanner. Unfortunately, 

this measurement which is composed of signal evoked from the neural activity is 

contaminated with noise. The noise arises from 1) intrinsic thermal noise within the 

subject and the scanner; 2) system noise due to the variations or discrepancies in the 

function of the scanner hardware; 3) head motion of the subject; 4) physiological factors 

including fluctuations in the blood flow, blood volume and oxygen metabolism; 5) 

changes in behavioral performance and cognitive strategy; and 6) variability in neural 

activity due to the non-task related brain processes. These unwanted variables in the 

fMRI data are tried to be removed by means of preprocessing processes (See Appendix 

A). The most insidious causes of noise are the head motion and physiological noise. 

Although there are some methods to correct the effects of these noise sources, they 

cannot be totally removed from the fMRI signal, which already presents a low SNR. So 

we need to extract the underlying hemodynamic response from the fMRI signal in order 
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to identify the brain activation since hemodynamic response is evoked predominantly 

due to neural activities. 

 

Retrieval of the hemodynamic response is essential for a better understanding of neural 

activity. Since fMRI considers local changes in deoxy-hemoglobin concentration in the 

brain, hemodynamic response is needed to be obtained properly in order to interpret 

adequately the information provided by the fMRI signal to draw conclusions about the 

underlying neuronal activation. Once the hemodynamic response function (HRF) is 

obtained, analyzing its shape, the extracted features such as amplitude, delay, and 

duration is sufficient to infer information regarding the intensity, onset latency, and 

duration of the underlying brain metabolic activity. The onset and peak latencies of the 

hemodynamic response can provide information about the timing of activation for 

various brain areas and the width provides information about the duration of activation 

and cerebral dynamics [1]. Also, an appropriate hemodynamic response function leads to 

better statistical maps. With the low temporal resolution of fMRI signals, a binary 

baseline-activation description of the data is insufficient so it is necessary to take into 

account the temporal pattern of activation due to the hemodynamic response to the 

activation. Another reason is the possibility to give a physiological interpretation of the 

hemodynamic response function parameters and thus, to better understand the 

neurophysiology [3]. 

 

When functional relations between different voxels are considered, obtaining the 

hemodynamic response of the voxels separately may be inadequate. So given an fMRI 

data set, grouping them according to their similarity provides information for identifying 

sets of voxels whose activity both varies together over time and is maximally different 

from other sets. That is, due to a specific task, some voxels are active while the others 

are passive and grouping the hemodynamic responses into classes for identifying in each 

class, activity and passivity of voxels gives us their functional relationship. In addition, 

analyzing this relationship among the voxels has the potential of elucidating biological 
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relationships between the different functional areas of the brain. These hemodynamic 

responses are obtained for all fMRI data due to activities of given voxels by 

deconvolutions and are further classified to identify voxels which are active, passive, or 

exhibit other artifacts.   

 

 

1.2 Methodology 

 

There are several common methods for obtaining the hemodynamic response that leads 

to the understanding of how the application of certain stimuli leads to changes in 

neuronal activity. In this thesis we use a blind deconvolution technique to obtain the 

HRF. In the literature, researchers applied many other methods for the same purpose. 

But each has some limitations and drawbacks, which will be stated below. With the 

proposed blind deconvolution method we aimed to overcome these problems.  

 

General Linear Model (GLM) approach has become the most known way to analyze 

fMRI data. It models the fMRI time series as a linear combination of several different 

signals. The stimulus function is known and the HRF is modeled using canonical HRF, 

typically either as a gamma function or the linear combinations of gamma functions [4], 

[5]. Since the shape of the HRF varies according to the brain area of subjects, assuming 

that the shape of the HRF is constant across all voxels and subjects as in GLM may give 

rise to misinterpretation of HRF. The assumption on the shape of the HRF is made more 

flexible by expressing the HRF as a linear combination of reference basis waveforms. 

One of the most flexible models, a finite impulse response (FIR) basis set, contains one 

free parameter for every time-point within a given window of time in every cognitive 

event [6], [7]. Also besides this, there are many other approaches that use different basis 

functions such as cosine functions [8], radial basis functions [9], spectral basis functions 

[10], Gaussian functions [11]. However, even if the used basis function differs in these 
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methods, a common problem for all of them is that they require an accurate match of the 

HRF with the combined basis functions. That means, in order to conclude that an 

estimated HRF belongs to an active voxel, the related fMRI has to match well enough to 

the idealized waveform of the HRF of an active voxel. Such approaches are known as 

hypothesis-driven methods.  

 

Although hypothesis-driven analyses are used frequently, the model they try to fit to 

fMRI data does not always hold and the assumptions on the form of HRF may not 

always be valid. So, data-driven methods emerged which are not built on a priori 

statistical hypothesis and try to find the relationships among voxels over time. Two 

common data-driven methods are principal component analysis (PCA) [12] and 

independent component analysis (ICA) [13]. In PCA the orthogonal spatial patterns that 

capture greatest variance in the data are determined. The HRF is modeled linearly using 

these orthogonal components. However, if the hemodynamical changes are only a small 

part of the total signal variance; the obtained orthogonal components contain a little 

information about HRF and hence PCA may tend to model noise more accurately in 

comparison to HRF. Similarly, ICA determines the components of the data and the 

linear combinations of these components are used to model HRF. But the components 

are needed to be independent rather than orthogonal. The independent components are 

not ranked in order of appearance and it is therefore necessary to search for the 

important components to model HRF. Furthermore, both PCA and ICA assume that all 

voxels have similar statistical properties. 

 

Estimating HRF out of the signal can be considered as a deconvolution problem since 

fMRI is assumed to be convolution of the neural activity evoking impulses and the 

underlying hemodynamic response. Moreover, artifacts like cardiac pulsation, scanner 

drift, habituation, subject motions also exist within the measured fMRI signal even 

though majority of these artifacts are eliminated during a preprocessing (See Appendix 

A). So, the hemodynamic response function can be extracted from the measured fMRI 
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time series in each voxel via deconvolution. We use blind deconvolution for this 

purpose. Since the objective of blind deconvolution is to reconstruct the original signal 

from a degraded measurement without the knowledge of either the original signal or the 

degradation process, it fits well to the fMRI problem. Because fMRI is a kind of 

degraded signal and it has many noisy components which have to be removed so that the 

original signal, HRF, due to the neural activity can be extracted. Furthermore, Blind 

deconvolution is a nonlinear process; therefore it is more suitable for HRF which has 

nonlinear characteristics. It is known that when two stimuli are presented successively, 

the resulting hemodynamic response is less than the sum of responses to the two stimuli 

separately [14]. So, linear approaches such as GLM are inadequate for many fMRI 

analyses. As a special case of blind deconvolution, we used Maximum A Posteriori 

(MAP) Blind Deconvolution in which we assume the HRF is convolved with an 

unknown convolution filter under some additive noise. This is expressed as a 

maximization problem over the probability distribution of the posterior using Bayes’ 

rule. 

 

However, all of the methods mentioned above, including blind deconvolution, are voxel-

wise approaches in which the activations of the voxels are considered separately. They 

identify whether a specific given voxel exhibits significant task-related signal changes 

independently from other voxels. Nevertheless, when functional relations between 

different active voxels are considered, these approaches are inadequate since they are 

only specialized to determine the underlying neural activity of a specific voxel. For 

grouping activity responses of voxels together by their functional similarities which are 

HRF resemblances, many classification and clustering techniques are developed so that 

activated voxels can be separated from non-activated voxels. We aim at classifying 

extracted hemodynamics using their waveform features via MAP Blind Deconvolution 

to identify individual clusters as active voxels, passive voxels and other artifacts. In the 

future, a spatial component can also be added to extend our approach into voxel 

neighborhoods. 
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There are a number of different classification methods employed for fMRI data, each of 

which make different assumptions about the data and the training set used for learning 

the parameters of a model. Once the parameters are learned, the model is applied to 

predict the label of a previously unseen data set. Support vector machine (SVM) 

attempts to find a linear separating boundary in the feature space which is the original 

input space. Each data point in the input space represents a spatial pattern. In the event 

that the classes in the input space are not separable through a linear boundary, kernels 

are used for applying a non-linear transformation. In addition, the data that are least 

distinct from the members of other class are chosen as support vectors as they are at the 

boundaries of the classes [15]. But determining important aspects, such as features or 

statistical property of the training data is crucial for consistent separation of the test data 

arising from the same experiment. In linear discriminant analysis (LDA), one part of the 

data is used for training in order to distinguish between the population responses during 

dominance of either of the two percepts. Then the trained classifiers are applied to 

independently obtained test data to determine whether the time course of competing 

perception during their acquisition could be predicted. Also the data used for training 

and testing are independent time series collected at different times [16]. Logistic 

regression (LR) is another classification method applied to fMRI data. In LR the feature 

is selected by a developed method then with this selected feature, training of the model 

parameters is performed. Only a few parameters are selected as important, the other 

parameters are removed from the model. Different than SVM and LDA, the 

classification performance is not degraded with the increase of the number of irrelevant 

features in LR. But it suffers from computational burden. 

 

All classification techniques require the label of each data in the training set to be given. 

In fMRI analysis it would be very difficult to use previously collected fMRI data sets as 

a training set since the fMRI signal depends on many factors such as experimental 

design, subject, and region of the brain activated. To overcome the need for a training 

set, clustering techniques have been developed.  
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In clustering analysis, researchers create similarity between the fMRI time series of 

different voxels so that the voxels can be grouped into distinct clusters, without the 

requirement for training data set. K-means is one of the popular clustering methods used 

with fMRI. It assigns each data to one of k groups, and iteratively determines the center 

of each group by calculating the average of its members [18]. However, k-means 

assumes that the data distribution is a mixture of k classes and the initial assignment of 

the number of clusters, k, is critical [19]. Also it forces the data into scatter with a hyper-

spherical shape since the k-means algorithm implicitly assumes that the clusters in the 

data have diagonal covariance matrices (with the same variance values along the 

diagonal) resulting from the fact that, by design, it always splits the data halfway 

between the cluster means which is optimal only when clusters have (hyper-) spherical 

shape and so diagonal covariances. Hierarchical clustering is another applied method 

which initially considers each data as a member of its own cluster, and then the clusters 

are combined recursively according to developed similarity measure, eventually 

expecting every data to belong to a single cluster [20]. However, existence of the full 

hierarchy is not really appropriate for large fMRI data sets. In general fMRI signals have 

low SNR, which dramatically affects the quality of clusters generated by a hierarchical 

approach. This is because low SNR could result in incorrect grouping at early stages. 

Hierarchical clustering can never undo such errors since at every stage it operates on 

previously generated clusters. Also, some of the relationships exposed by hierarchical 

clustering may be only valid for a specific data set to which it is applied, and may not be 

generalized for other data sets. In addition, it tends to be very demanding 

computationally.  

 

However, performing the clustering in the original high dimensional time domain using 

raw fMRI data usually suffer from the curse of dimensionality, which basically says that 

data spread out exponentially with the number of dimensions. This immediately results 

in sparsity and leads to low confidence in any statistical reasoning. Considering the 

fMRI data, we usually have the signals of dimensionality in the orders of hundreds 
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whereas the amount of existing data is not in exponential order of hundreds.  The 

clustering would be simplified if the fMRI time series can be projected onto a lower 

dimensional space, so that clustering can be performed more easily. For this purpose, we 

used spectral clustering so that we can reduce the feature number, construct new features 

and improve the accuracy of the classifier. 

  

The spectral clustering technique is formulated as a graph partitioning problem and the 

weight of each edge is the similarity between points that correspond to vertices 

connected by the edge. Spectral clustering tends to find the minimum weight cuts in the 

graph, and this problem can be addressed by the eigenvalue decomposition techniques, 

from which the term "spectral" is derived. The basis of the spectral clustering is the 

Laplacian of the similarity matrix, obtained from spectral graph partitioning. The 

success of spectral clustering is based on the fact that it does not make strong 

assumptions on the form of the clusters. As opposed to k-means or hierarchical 

clustering, where the resulting clusters form convex sets, spectral clustering can solve 

very general problems like intertwined spirals. Moreover, spectral clustering can be 

implemented efficiently even for large data sets like fMRI data sets. As all the clustering 

algorithms, spectral clustering can only be as good as the similarity metric used. 

 

Euclidean distance, Mahalanobis distance, Gaussian similarity and Cosine similarity are 

the common metrics used in many clustering algorithms [21]. All of these metrics, as 

will be shown later in this work, is not convenient for fMRI data, since they are overly 

sensitive to shifts and delays in the signals. They are also sensitive to outliers such as 

some unusual activity of a short duration with respect to the general shape of a given 

signal. Therefore, we used Hausdorff distance metric for similarity measure.  

 

The Hausdorff distance is a shape-comparison metric which performs well even when 

the image contains many features, multiple components, noise, spurious features, and 

occlusions. It matches two data without the requirement of point-to-point 
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correspondence, so the measure is insensitive to distortions. Since it is not based on 

point correspondence, it is tolerant to the delay in the two sets of features compared. 

However, when there exists an extraordinary noise peak in the data, this can make the 

Hausdorff distance unnecessarily large and in general very sensitive to outliers. In order 

to overcome this problem, we modified the Hausdorff distance to make it robust. The 

modified Hausdorff metric also allows and can tolerate small variations both in time and 

magnitude which is a big advantage as long as fMRI data is considered.  

 

 

1.3 Contributions 

 
In this thesis, our major contributions can be summarized as follows: (1) Seeing an fMRI 

signal as the convolution of the underlying neural impulses and the hemodynamic 

response function, we estimate the hemodynamic response function through MAP Blind 

deconvolution in completely model free settings, i.e, assuming no particular shape for 

the hemodynamic and no access to stimulus, secondly (2) In order to group the brain 

voxels, we use the output of blind deconvolution which includes the estimated 

hemodynamics as the input to Spectral Clustering using Hausdorff distance for a 

similarity measure. (3) Moreover, we present a thorough analysis of our proposed 

methods and algorithms for HRF estimation, clustering of obtained HRFs using the 

efficiency of Hausdorff distance.  

 

Because the observed fMRI signals are seen as the convolution of the neural stimuli with 

the impulse function, so called hemodynamic response function, to estimate HRF 

usually a deconvolution technique is used. Most of the time, it is assumed that the 

stimulus is known or has a uniform effect on the brain voxels, and/or that a generic 

function or shape is assumed for HRF. Because of the very fact that HRFs and the 

stimulus reaching different regions of brain can vary between voxels, we take a 
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completely model free, unsupervised approach, blind deconvolution, to estimate HRF by 

using only fMRI signals. We do not incorporate any model for the unknown stimulus 

embedded in the fMRI signals and only use weak prior information regarding the HRF, 

such that an HRF should be smooth in a sense that the square sum of derivatives of that 

should be controlled.  

 

Moreover, recent research shows that MAP based blind deconvolution techniques yields 

better results for the problem of image deblurring where the target image derivatives are 

thought to be sparse whereas for fMRI data analysis, hemodynamics should better be 

considered as having not sparse derivatives but small ones knowing that HRF ideally is a 

nicely behaving smooth function. Hence, we modify the MAP approach for HRF 

estimation accordingly and study the problem of HRF estimation within the Bayesian 

framework that provides the flexibility that one can treat the same problem by 

incorporating with different priors with the help of mathematical intuition that the 

Bayesian framework brings.    

 

In order to group the similar brain voxels, for instance, into two groups: active voxels 

and passive voxels depending on that whether a voxel responds to a stimulus, fMRI 

clustering is required. Raw fMRI signals are known to suffer from low SNR. Instead of 

using raw signals, the HRF is estimated beforehands, as described above for further 

clustering them into voxel groups.  The source of the separation between an active voxel 

and a passive voxels is that usually an fMRI signal recorded for an active voxels reflects 

a strong correlation with the stimulus. On the other hand, fMRI signals for passive 

voxels mostly behave randomly. Hence, one can easily expect a baseline shape for active 

fMRIs correlated with the stimulus, and no particular shape for passive fMRIs. Usually 

fMRI signals are checked with the stimulus via cross correlations and then based on that, 

activation is declared if the correlations are large enough. This approach also assumes 

that stimulus is known. Moreover, when there is a weak correlation with the stimulus for 

a given fMRI signal it can still belong to an active voxel if it can be coupled with other 
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active voxels or physically placed close to a set of active pixels. Hence, declaring voxel 

based activation might result in low activation detection. In this thesis, we analyze 

voxels in their clusters, not independently.  

 

As it is true for all type of data analyses including clustering, choosing a right 

distance/similarity metric is very important. In general, Hausdorff distance is widely 

used for shape matching in computer vision problems. We propose to use it in fMRI 

clustering to detect the similar hemodynamic shapes to form the class of active voxels. 

To the best of our knowledge, Hausdorff distance has not been used for this purpose 

before and the modification we provide for this distance metric is novel. We analyze its 

properties and efficacy when it is used under the topology of fMRI data. In clustering 

problems, often feature extraction is used in order to extract the relevant piece of 

information hidden in the data. In this thesis, with the help of Hausdorff distance, we do 

not conduct any feature extraction and so avoid the burden of such an extra process.             

 

 

1.4 Outline of the Thesis 

 

In Chapter 2, recent works in the literature for HRF extraction, their advantages and 

limitations are stated. Then mathematical background is provided through the definition 

and mathematical explanation of blind deconvolution. The most known blind 

deconvolution methods are also presented together with their applications in the 

literature. Then Maximum A Posteriori (MAP) Blind Deconvolution method is defined 

and why it is suitable to fMRI problem is discussed in details.  

 

In Chapter 3 we introduce our methodology. First the mathematical definition of MAP 

Blind Deconvolution is expressed. During implementation, we make a few assumptions 

on HRF and convolution filter. These assumptions and their validity are also discussed. 
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In the same chapter, the meanings of the parameters in the algorithm are demonstrated 

using examples. Then, the spectral clustering used for classifying hemodynamics in our 

approach is then given. There, the chosen distance measure, which is the Hausdorff 

distance, is discussed in details and it is compared with other common metrics showing 

the superiority of Hausdorff distance.  

 

In Chapter 4, experimental results of our approach are discussed based on simulation 

datasets first. Adding different noises (drift, lag, jitter and white noise) to the simulated 

data, robustness of our algorithm is tested. Then the same experiments are performed on 

real fMRI data sets. In the experiments, first HRF extraction results are given and 

discussed. After that, hemodynamical time series are extracted from real fMRI data sets; 

their neural and physiological meanings are elaborated. These time series become the 

input of the proposed clustering algorithm, enabling the spectral clustering of these time 

series under the modified Hausdorff distance. The results are discussed in both simulated 

and real data sets.   

 

In Chapter 5, sensitivity analysis based on our simulation as well as the real data is 

conducted on our algorithm. Through this analysis, the parameters of our algorithm are 

optimized, after detailed discussions on the effect of each parameter on the 

deconvolution and clustering performances. The sensitivity and robustness of the 

algorithm are then demonstrated for ranges of system parameters declared optimum.  

 

In Chapter 6 several conclusions are drawn from the results obtained in this thesis. 

Finally some directions for further research are recommended. 
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CHAPTER 2 

 

 

2 LITERATURE SURVEY AND MATHEMATICAL 

BACKGROUND 

 

 

 
A broad literature exists on identification of neural activity of the brain from several 

different perspectives. One perspective is to localize regions of the brain, activated by 

certain task. Others focus on determining distributed networks that correspond to brain 

functions and thus predicting possible psychiatric and disease populations. Regardless of 

what the perspective of the analysis is, all of the researches are trying to understand how 

presentation of a certain stimuli causes changes within the brain.  

 

The analysis of fMRI has been undertaken using many different approaches. Some of 

them analyze the data voxel-by-voxel considering all the voxels independently. These 

approaches also differ from each other according the assumptions they are based upon. 

Among these methods a number of approaches match a model to the fMRI data, which 

are known as hypothesis-driven methods. Other researchers use fMRI data directly to 

explore the structure of the data expecting that task-related activations will emerge from 

the process. Such approaches are known as data-driven methods. 
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When the relationship between the voxels is considered, the relation pattern should be 

grouped yielding classes of voxels that can be labeled as active or passive under the 

administered stimuli. Based on this, researchers provided many classification and 

clustering techniques.  

 

Our purpose in this thesis is to identify brain activations using the measured fMRI signal 

and classify each voxel according to the relation between their underlying hemodynamic 

responses. Different than the previous works in literature, we use a combination of a 

data driven-method, namely blind deconvolution, and a clustering technique, spectral 

clustering, in our approach. fMRI analysis can be considered as a deconvolution 

problem since fMR time series is the convolution of the input stimuli and the underlying 

hemodynamic response. So, the hemodynamic response function can be extracted from 

the measured fMRI via deconvolution. We use blind deconvolution for this purpose. 

Since the objective of blind deconvolution is to reconstruct the original signal from a 

degraded measurement without the knowledge of either the original signal or the 

degradation process, it suits the fMRI problem well. For this purpose we used Maximum 

A Posteriori (MAP) Blind Deconvolution which assumes smoothness of the HRF. Then 

to increase the smoothness of the HRF we maximize the posterior distribution of it using 

Bayes’ rule. By means of MAP Blind Deconvolution, we estimate the HRF of each 

independent voxel and the underlying stimulus pattern given only the fMRI data. In this 

chapter we will give in details, definition and applications of blind deconvolution in 

literature; and clarify why blind deconvolution is suitable to the fMRI analysis. In the 

following chapters we will explain how we adapted MAP Blind Deconvolution to our 

fMRI analysis.  

 

After obtaining the hemodynamic response of each individual voxel, we classify them 

according to their hemodynamical relation pattern via spectral clustering to detect 

whether the voxels are active or passive. fMRI data is high-dimensional and spectral 

clustering can transform the data to a proper feature space, greatly reducing the number 
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of features without losing much information. So, spectral clustering is suitable for fMRI 

data classification. In this chapter we will explain the spectral clustering algorithm and 

its applications in details.   

 

The clustering techniques can only be as good as the distance measure used. There are 

several similarity measures like Euclidean, Mahalanobis distances, Gaussian and Cosine 

similarities which can not deal with the shifts, drifts and outliers among the signals. 

Hausdorff distance outperforms these metrics in the fMRI analysis which will be 

explained with examples in the next chapter. In this chapter in order to establish 

familiarity with the Hausdorff distance, the definition and applications of Hausdorff 

distance in literature will be explained. 

 

To sum up, in this chapter, previous studies on fMRI, their limitations and drawbacks 

will be given. Also, how-well these analyses fit to fMRI data will be discussed. 

Moreover, as the basic approach of this thesis, deconvolution techniques will be 

overviewed and in particular common blind deconvolution techniques and our MAP 

Blind Deconvolution will be introduced. Classification techniques will be analyzed, 

from those existing in the literature with a special emphasis given to spectral clustering. 

Common distance measures used in clustering will be discussed and why we chose the 

Hausdorff distance among those will be clarified. 
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2.1 Approaches to FMRI Analysis 

 

2.1.1 Hypothesis-Driven Methods 

 

General linear model (GLM), as its name implies, represents the given data in a linear 

model as; 

 

     (2.1) 

        

The observed data, y, is equal to a weighted combination of the system state variables, 

xi, plus an additive noise, e, which is assumed to be independent and identically 

distributed normal random variables with zero mean and variance σ2. The parameter 

weights, , expresses the importance of the state variables. The term  represents the 

total DC component. 

 

For fMRI analysis, there is only one known quantity, which is fMRI data. The model is 

made to fit the data so that the weighted sum of the system states produces the closest 

match to the actual data time series. In Figure 2.1 a number of state variables are 

estimated according to what the response should look like to each type of experimental 

stimulus. Then the best parameter weights, αi s are calculated to match the given fMRI 

data. However, in GLM only one set of model factors is used for every voxel in the 

analysis. 
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Figure 2.1 Symbolic representation of fMRI data with GLM 

 

(2.1) can be represented in a matrix form as; 

 

     (2.2) 

 

where Y is a matrix with series of multivariate measurements, X is the design matrix 

that is estimated by the experimenter, A is the parameter matrix that is calculated during 

the experiments and E is a matrix containing errors or noise.  
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The success of a general linear model solely depends on the validity of the design matrix 

model. The design matrix consists of one or more state variables that represent possible 

contributors to the fMRI time series.  

 

There are several assumptions that cause many limitations in GLM. First of all, the 

choice of the design matrix is crucial for the validity of the analysis. One assumption is 

the use of the same design matrix throughout all voxels. A model factor that is correct 

for one region may be incorrect for another since the dynamics of the hemodynamic 

response differ from region to region. Also, the amount of the noise in a voxel does not 

depend on the task condition according to GLM. However, the noise levels are higher 

during the activation than during the rest. Another assumption is that all of the voxels 

are considered independently. It is expected by the experts that adjacent voxels tend to 

have very similar properties. Moreover, GLM assumes that each time point is 

independent from all others. 

 

Although, GLM is limited because of these assumptions, many researchers are attracted 

by its simplicity and satisfactory results. All the researches impose the importance of the 

design matrix construction. In [25], design matrix is divided into two partitions in order 

to separate the interest effects and confounding effects to obtain reliable estimates of 

GLM coefficients. Confounding here means an uninteresting effect that could defeat the 

estimation of interesting effects, i.e, the confounding effect of global changes on 

regional activations. However, for proper division of design matrix, gathering several 

fMRI data is required. In [26], the basis functions in the design matrix are chosen as 

exponentially modulated sine functions which resemble typical of response profiles seen 

in the fMRI so that modeling HRF by means of these basis functions become reasonable. 

In the traditional GLM approach the fMRI data is analyzed imposing an estimated model 

to the hemodynamic response. However, mismatches between this estimation and the 

underlying hemodynamic response of the fMRI data can be present between voxels, 

slice-timing differences, and also between groups of subjects. The use of a 
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hemodynamic model and its temporal derivative for fMRI analysis add flexibility for 

delay-induced modeling mismatches. The effects modeled by the derivative terms are 

interpreted as a shift of the hemodynamic model in time. Using these derivatives, 

minimization of effects of delay in hemodynamic response is provided. [27].  

 

The fMRI signal can also be modeled with an FIR filter in order not to impose a specific 

shape to the hemodynamic response function since HRF has non-systematic behavior 

due to the applied stimuli. FIR models the fMRI signal by a linear combination of 

coefficients multiplied by the stimuli pattern. These coefficients are estimated by a 

maximum likelihood (ML) solution. The filter is needed to be smooth because as the 

number of parameters increases, there is a risk that the model will overfit or parameters 

become ill determined. To overcome this problem a Gaussian process prior on the filter 

parameters is introduced. A drawback of this approach is due to the computational 

complexities. Therefore one of the biggest challenges of this approach lies in the 

practical implementation for whole brain analysis, or for the analysis of a reasonable 

subset of voxels [3]. The idea of the smoothness matrix is not applicable when 

hemodynamics depends both on spatial location and on stimulation conditions. Gaussian 

functions may also be used for modeling hemodynamic response. The fMRI signal is 

considered as the linear convolution of the stimulus function and the Gaussian-shaped 

hemodynamic response function. A candidate model for HRF is said to have enough 

degrees of freedom to fit the actual hemodynamic response, and its parameters should 

highlight significant aspects of related biological event. So, Gaussian functions may be 

chosen for modeling the HRF. But it is not sufficient to make definitive conclusions 

about the nature of the variation of hemodynamic parameters, which depend on a lot of 

factors such as brain region, stimulus condition and frequency, or cognitive processes 

unique to each individual subject [11]. 

 

In the Bayesian analysis, the fMRI data is modeled using a mixture of two Gaussian 

distributions. This mixture aims to discriminate active areas from passive ones in the 
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region of interest. Mean value of one of the two Gaussian distributions is zero which 

represents the mean of the amplitude levels for passive voxels. The hemodynamic 

response is assumed to be smooth enough in the time domain, which is assured by the 

prior Gaussian estimation [28]. Bayesian approach is also used for modeling the noise in 

the fMRI data. Since the noisy nature of the fMRI data makes the detection of the 

hemodynamic response difficult and challenging, the estimation of the noise is important 

in fMRI analysis. In the Bayesian approach, the noise term is modeled as nonstationary, 

since the fMRI noises are inherently time varying due to the movements of the subject, 

or the warming of the scanner coils during rapid switching for fast data acquisition. The 

Bayesian estimator estimates the weights in general linear model for the fMRI noise 

model [29]. 

 

In State-Space Model, the hemodynamic response is formulated into a state-space 

model by applying the Local Linearization (LL) methodology by which the parameters 

and the underlying states of the system generating responses can be estimated. These 

states are the dynamics of the system which are a flow-inducing signal triggered by 

neuronal activation, deoxyhemoglobin, cerebral blood flow and volume. This model is 

used to simulate the trajectories of the state-space variables, and these four state 

variables are used to model the observed fMRI signal. In the context of the LL filter 

theory, the equations for the evolution of the conditional mean and the covariance matrix 

of the state-space variables are properly defined for the hemodynamic approach. 

Equations for differences, which depend on the LL filter gain, are also reported and 

during the estimation procedure, they are only evaluated on those time instants where 

data is available, as defined in the LL filtering strategy for the case of missing values. 

Additionally, radial basis functions have been introduced as a parametric model to 

represent arbitrary temporal input sequences in the hemodynamic approach, which could 

be essential to understanding those brain areas indirectly related to the stimulus. 

However, it is not a practical method due to the large computational costs involved to 

determine the brain activation areas. Furthermore, this method assumes that the 
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uncertainty of the model originating solely from instrumental errors and ignores 

physiological effects [30].  

 

As explained above, in hypothesis-driven methods, a model of the expected 

hemodynamic response is generated and compared with the data. These methods require 

prior knowledge of event timing from which an expected hemodynamic response can be 

modeled. Although accurate experimental paradigms may be available, thorough 

understanding of the hemodynamic changes that relate neuronal activity to the measured 

fMRI signal is still not defined accurately. In addition, they are not adaptive to the 

canonical HRF. The canonical HRF does not fully consider subject-wise differences and 

experimental variance or unpredicted phenomena during the task period, thereby 

reducing the sensitivity of detection in hypothesis-driven methods. Also, for brain 

responses that are not directly locked to the paradigm, model-driven analysis may not be 

adequate.  

 

 

2.1.2 Data-Driven Methods 

 

2.1.2.1 Principal Component Analysis (PCA) 

 

Principal component analysis (PCA) is a classical statistical method that transforms a 

correlated variable set into a set of uncorrelated variables, which are called principal 

components. It reduces data dimensionality by performing a covariance analysis among 

data set. This linear transform has been widely used in data analysis. Principal 

component analysis is based on the statistical representation of a random variable. Given 

a data set, x, where 
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      (2.3) 

 

and the mean of that data set is denoted by 

 

      (2.4) 

 

and the covariance matrix of the same data set is 

 

    (2.5) 

 

The components of Cx, denoted by cij, represent the covariances between the random 

variable components xi and xj. The component cii is the variance of the component xi. 

The variance of a component indicates the spread of the component values around its 

mean value. If two components xi and xj of the data are uncorrelated, their covariance is 

zero (cij=cji=0). The covariance matrix is, by definition, always symmetric. 

From a sample of vectors x1,…, xm, the sample mean and the sample covariance matrix 

can be calculated as the estimates of the mean and the covariance matrix. 

From the covariance matrix, an orthogonal basis by finding its eigenvalues and 

eigenvectors can be calculated. These are important, as they give useful information to 

characterize the concerned data in fewer dimensions. The eigenvectors ei and the 

corresponding eigenvalues λi are the solutions of the equation 

 

     (2.6) 

 

The λis are assumed to be distinct. These values can be found, for example, by finding 

the solutions of the characteristic equation: 
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      (2.7) 

 

where the I is the identity matrix having the same order with Cx and the |.| denotes the 

determinant of the matrix. If the data vector has n components, the characteristic 

equation becomes of order n. This is easy to solve only if n is small. Solving eigenvalues 

and corresponding eigenvectors is a non-trivial task, and many methods exist. By 

ordering the eigenvectors in the order of descending eigenvalues, one can create an 

ordered orthogonal basis with the first eigenvector having the direction of largest 

variance of the data. In this way, directions in which the data set has the most significant 

amounts of energy can be found. 

 

Suppose a data set is given of which the sample mean and the covariance matrix have 

been calculated. Let A be a matrix consisting of eigenvectors of the covariance matrix as 

the row vectors. 

By transforming a data vector x, it is obtained that; 

 

     (2.8) 

 

which is a point in the orthogonal coordinate system defined by the eigenvectors. 

Components of y can be seen as the coordinates in the orthogonal base.  
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As an alternative approach, instead of using all the eigenvectors of the covariance 

matrix, the data can be represented in terms of only a few basis vectors of the orthogonal 

basis. The matrix having the first k eigenvectors can be represented as rows by Ak, a 

similar transformation can be obtained as; 

 

     (2.9) 

 

This means that the original data vector is projected on the coordinate axes having the 

dimension k. This inner product minimizes the mean-square error between the data and 

the representation based on a given number of eigenvectors. 

 

If the data is concentrated in a linear subspace, this provides a way to compress data 

without losing much information, thus simplifying the representation. By picking the 

eigenvectors having the largest eigenvalues we lose as little information as possible in 

the mean-square sense.  

 

When applied to fMRI, PCA runs into serious difficulties since the data have extremely 

high dimensionality relative to the number of observations. The covariance matrix on 

which the analysis is performed is sometimes a poor estimate of the real data covariance. 

Because of this, using PCA directly in the fMRI vector space might suffer from curse of 

dimensionality. So in most studies, PCA is limited to predetermined small regions of 

brain. This means that the PCA is carried out mostly in a subspace where the 

experimental regressors dominate, which will be much smaller than the entire space of 

the original data. Although this is a meaningful way of employing PCA, it also limits its 

scope in exploratory analyses, because the signal of interest has already been identified 

by other means. Instead, one can see fMRI time series as continuous functions of time 

sampled at the interscan interval and subject to observational noise. These functions may 

be estimated by fitting a set of basis functions to each voxel time series. Collectively, the 

functions replace the voxels of a series of images with a single “functional image.” 
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Then, the eigenanalysis is carried out directly on these functions. Depending on the 

assumptions which the hemodynamic response is restricted to, this set of basis function 

can be designed many ways. Hence, the hemodynamic response for each voxel can be 

calculated by projecting its estimated function onto the principal components [31]. 

 

 

2.1.2.2 Independent Component Analysis (ICA) 

 

 

Independent component analysis (ICA) is a statistical and computational technique for 

revealing hidden factors that underlie sets of random variables, measurements, or 

signals. It regenerates the observed data, which is typically given as a large database of 

samples. Since fMRI data sets contain mixtures of many different sources of variability 

including physiological signals, fluctuations due to head motion and noise and also the 

hemodynamics, ICA is used to separate fMRI data into spatially independent patterns of 

activity. 

 

In a linear decomposition of fMRI data, the data matrix can be transformed into a set of 

volume maps, C, by taking linear combinations, defined by an n by n matrix W, of the 

volumes recorded at each time point 

 

     (2.10) 

 

where X is an n x v row mean-zero data matrix (where n is the number of time points in 

the experiment and v is the number of brain voxels), W is an n x n matrix containing 

combinations of volumes and C is an n x v matrix of component maps. W is selected so 

that the resultant component maps C are uncorrelated and summarize the variability in 
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the data in as few maps as possible. ICA is a generalization of PCA that selects W so 

that the rows in C are independent. 

 

ICA assumes that the fMRI data are composed of the linear sum of either spatially or 

temporally independent patterns of activity. In ICA, there is no explicit noise model; 

rather, the noise was assumed to be distributed among one or more of the components. 

The components are assumed to be fixed throughout the fMRI experiment and the 

relative contribution from each component at a given time point in the experiment is the 

same throughout the brain A weighted sum of the extracted components is used to model 

the individual time series at each voxel. ICA does not require a reference function. In 

principle, it identifies the pure time series resulting from the convolution of the 

hemodynamic responses with the stimuli, in addition to a multitude of other noise-

related components such as drift, motion, and flow artifacts. However, ICA has not been 

optimized for fMRI studies. The effects of data matrix size, filtering, and task paradigm 

on the sensitivity and specificity of ICA are unknown. One other weakness of ICA is 

that the trends in the data may be fragmented into multiple components, each with a 

highly related time course [10]. 

 

Besides these assumptions for fMRI analysis, ICA also has some ambiguities that are 

valid for all ICA applications. These are; the variances or the energies of the 

independent components cannot be determined and also the order of the independent 

components is ambiguous [34].  

 

To sum up, data-driven methods examine the fMRI data statistically without any 

assumption about the paradigm or the hemodynamic response function. They can 

naturally provide an alternative to comparing each voxel’s time points against a model 

hypothesis. They explore the data to find “interesting” components or underlying 

sources which is HRF in our problem. For example, structures or patterns in the data, 

which are difficult to identify a priori, are motion related artifacts, and drifts. The 
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flexibility of analyzing the fMRI signal without any constraints on the model is inspiring 

especially where it is difficult to generate a good model. However, among the data-

driven methods, there are drawbacks in PCA and ICA. For example, the assumption 

implicit in PCA is that all components are Gaussian and uncorrelated whereas ICA 

assumes that all components are non-Gaussian and independent. In addition, a 

significant estimate for each component is usually not available. Also, these methods do 

not provide statistics for inferences about whether a component varies over time and 

when changes occur in the time series. In addition, because they do not contain any 

model information, they capture regularities whatever the source is; thus, they are highly 

susceptible to noise, and components can be dominated by artifacts. 

 

Besides, hemodynamic response functions vary from subject to subject, from region to 

region and from task to task, so there is not a stationary and linear straightforward 

correspondence between the fMRI signal and the underlying hemodynamic response 

function. Also, hemodynamic changes result from a complex nonlinear dynamical 

system, which is neuronal synaptic activity, so the fMRI signals have nonlinear 

characteristics. Moreover, the low signal to noise ratio of the fMRI signals makes the 

problem more complicated. A strong limitation that arises in the above-mentioned 

methods is their lack of robustness, mainly due to these reasons. Blind deconvolution 

seems to overcome the problems that the other methods faced with. 

 

 

2.1.3 Blind Deconvolution Applications 

 

In general, the relationship between initial neuronal activation and the observed fMRI 

rests on a complex physiological process. If this process is known and well described, it 

can be approximated by mathematical modeling. However this process is still not known 

well enough in order to have a powerful model. And also assuming a global model 
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across all voxels of brain is not desired.  On the other hand, deconvolution is a good 

candidate to take a rather general approach instead of imposing a model in the 

hemodynamic response estimation process, which assumes fMRI as convolution of the 

underlying HRF with experimental stimuli that can evoke different response for every 

voxel. Since we aim at unveiling the HRF, which is buried within a convolution, a 

deconvolution technique is required. When neither of the convolved signals are known, 

then the deconvolution is named as ‘blind’. Blind deconvolution is a model free 

approach and has a great generality in terms of the capability of generating a rich family 

of time series signals.    Mathematically; 

 

        (2.11) 

 

where 

r(t) : observed signal 

d(t) : desired original signal 

k(t) :  blurring function 

n(t):  noise 

Although convolution is usually defined as a linear operation, the term deconvolution is 

generally used in reference to the inversion of nonlinear convolution models. Considered 

as a challenging problem, the blind deconvolution has been the topic of such numerous 

research efforts and various blind deconvolution methods have been proposed.  

 

2.1.3.1 Blind Deconvolution Methods 

 

There are a few methods widely used in blind deconvolution, including Priori Blur 

Identification Methods, Zero Sheet Separation, Auto Regressive Moving Average 

(ARMA) Estimate and Nonparametric Iterative Methods. This section will describe 

these methods in general. 
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In these blind deconvolution methods preprocessing is needed before deconvolution 

process is performed to eliminate the noise term, n(t) given in (1). These preprocessing 

processes will be mentioned after the blind deconvolution methods are stated. So, in 

most of these methods the noise term will be ignored. 

 

2.1.3.1.1 Priori Blur Identification Methods  

 

The a priori blur identification methods are the class of methods that perform the blind 

deconvolution by identifying the blurring function prior to the restoration. Typically, 

these methods assume the blurring function to be of a known parametric form. The 

associated parameters are unknown and to be determined before restoration. The a priori 

blur identification methods are relatively simple to implement and require low 

computational complexity. But they have some major drawbacks such that they require 

the knowledge of the form of the blurring function and also additive noise can mask the 

blurring function and thus degrade the performance [65]. 

 

2.1.3.1.2 Zero Sheet Separation Method 

 

The method of zero sheet separation provides valuable insight into the blind 

deconvolution problem in multiple dimensions. It depends on the analytical properties of 

Z-Transform. After taking the Z-Transform of the degraded image, the deconvolution 

problem will be solvable if the Z-Transform of the degraded image can be factorized. 

The zero sheet separation algorithms are such a factorization scheme. However, it 

suffers from several major problems. First, the method is highly sensitive to noise. 

Second, it has computational complexity and finally, the method is prone to inaccuracy 

for larger images [65]. 

 



 36 

2.1.3.1.3 Auto Regressive Moving Average (ARMA) Estimate 

 

This method regards the original image as a 2 dimensional AutoRegressive (AR) process 

and blurring function as a 2 dimensional Moving Average (MA). The blurred image is 

therefore modeled as the autoregressive moving average (ARMA) process. Therefore, 

blind deconvolution is translated into the problem of determining the parameter of 

ARMA. 

 

There are several algorithms to estimate the ARMA parameters, including Maximum 

Likelihood, Generalized Cross Validation (GCV), Neural Network and High Order 

Statistics (HOS) etc. They all have good robustness on noise, but when there are too 

many parameters, they cannot convergent to global optimality [66]. 

 

2.1.3.1.4 Nonparametric Iterative Methods 

 

This class of methods does not require certain parametric form for the true image or the 

Point Spread Function (PSF). They are therefore referred to as the nonparametric 

methods. One common feature of these methods is that they all assume certain 

constraints on the original image and the blurring function. There exist different 

algorithms that belong to this category, including nonnegativity and support constraints 

recursive inverse filtering (NAS-RIF) and iterative blind deconvolution (IBD) method. 

 

2.1.3.1.4.1 NAS-­RIF	
  Method	
  

The nonnegativity and support constraints recursive inverse filtering (NAS-RIF) method 

is an iterative algorithm where the coefficients of the inverse filter are updated 

iteratively to minimize a convex cost function. Consider the convolution system 

represented by (2.11), the algorithm employs an inverse filter g(t) to convolve with the 

blurred image r(t) to obtain an estimate of the original image ; 



 37 

         (2.12) 

 

Once  is obtained, the known characteristics are imposed onto the original signal to 

update it and the updated signal is denoted as . The cost function J is then defined 

as the difference between the estimation and the projected estimation : 

 

     (2.13) 

 

The aim is to minimize the cost function, so a number of iterations are to be performed. 

The advantage of the technique is that convergence to a feasible set solution is 

guaranteed, while a lot of other existing approaches do not guarantee convergent 

solutions. The disadvantage of NAS-RIF is that it is sensitive to noise [67]. 

 

 

2.1.3.1.4.2 Iterative	
  Blind	
  Deconvolution	
  (IBD)	
  Method	
  

In the IBD method, first, a nonnegative initial guess is made for the original signal. After 

a random initial guess is made for the original signal, the signal is Fourier transformed 

which is then inverted to form an inverse filter and multiplied by the observed signal to 

form a first estimate of the blurring function's spectrum. The algorithm alternates 

between the signal and Fourier domains, enforcing known constraints in each signal. 

The constraints are based upon information available about the original signal and 

blurring function. The iterative loop is repeated until two positive functions have been 

found [65]. However, the inverse filter associates problems in the regions of the signal 

with low value. Also, the length of the estimated convolution components cannot be 

controlled since the basis functions of Fourier Transform is periodic so the length of 

each of them is infinite.  
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Sometimes we can pose a priori information on the signals we want to estimate. Such 

information can come either from the correct knowledge about the physical process or 

from previous empirical evidence. We can impose such prior information in terms of a 

probability distribution function (PDF) on the signal to be estimated. These probabilities 

are called the prior probabilities. We refer to the inference based on such priors as 

Bayesian inference. Bayes' theorem shows the way for incorporating prior information 

in the estimation process: 

 

    
(2.14) 

 

The term  is called the posterior.  is the likelihood term and  

is the prior term. p(x) serves as a normalization term so that the posterior PDF integrates 

to unity. Thus, Bayesian inference produces the maximum a posteriori (MAP) estimate. 

 

   (2.15) 

 

This is the most general approach in MAP estimation. The method is based on the prior 

assumptions about the specific problem and develops in accordance with the problem 

characteristics. In our fMRI problem the priors are about the smoothness of the 

hemodynamic response function and also the positivity of the blurring signal. We expect 

the estimated HRF to be smooth and the other convolved signal (to which we will call 

convolution filter later) be finite and positive. The details of the method will be clarified 

step by step in the next chapter considering the fMRI problem. 

 

In the literature there are a few blind deconvolution applications using fMRI data. In 

[35], a semi-blind approach is applied. Since the stimuli timing is being known, 

structural knowledge on the input sequence is available to constrain the HRF estimation, 

which leads to a semi-blind deconvolution problem. The HRF is modeled as a smooth 
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function. The hemodynamic levels are assumed to be independent across voxels as well 

as across stimulus types or conditions. To estimate the HRF model parameters, a 

Bayesian approach is developed using physiological prior information. The parameters 

that represent the noise variances of voxels and also location and scaling parameters are 

iteratively estimated using Gibbs sampler algorithm and this estimation is the semi-blind 

deconvolution part of the algorithm.  Gibbs sampling starts with a seed parameter vector 

and sequentially modifies one component at a time by sampling according to the full 

conditional probability distribution function of that component given the remaining 

variables and the data. The parameters are updated with a satisfactory number of 

iterations. The approach in the aforementioned reference is tested only with synthetic 

data.  

 

Another blind deconvolution algorithm is applied to an fMRI data set to separate it into a 

HRF and an unknown series of presentation times of stimuli [36]. The values of the cost 

function are used for this separation algorithm as measures of a neural activity. The cost 

function consists of two terms. One is an error term representing discrepancy from a 

conventional convolution model of fMRI. The other term represents statistical 

characteristics of the estimated stimuli presentation time series. In this approach, only 

one waveform of HRF is assumed for one voxel and one voxel is activated by only one 

kind of stimulus or task. Also the regions activated and deactivated by presentations of 

objects to the patient are determined using a software program before the proposed 

algorithm is applied [36]. 

 

Blind deconvolution is also applied to voxel-specific arterial input functions in dynamic 

contrast brain perfusion imaging. Voxel-specific arterial input functions are estimated 

blindly using the theory of homomorphic transformations and complex cepstrum 

analysis. Wiener filtering is used in the subsequent deconvolution. Tissue residue 

function is the blurring function. In the cepstrum domain there is a cut-off frequency to 

separate the arterial input function and the tissue residue function, which is the crucial 
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part of the algorithm. Separation of the convolved signals in the complex cepstrum is 

complicated in the presence of low signal to noise ratios as in the fMRI cases [37]. 

 

Blind deconvolution is applied mainly to image restoration. Image restoration is the 

process of recovering the original image from the degraded image and also 

understanding the image without any artifacts errors. The main idea is to deconvolve the 

blurred image with the blur kernel function that represents the distortion during the 

imaging process. An original image is degraded and blurred using degradation model to 

produce the blurred image for this deconvolution application. The blurred image is given 

as an input to the deblurring algorithm, which is blind deconvolution in this approach. 

An iterative blind deconvolution algorithm is applied in which both the original image 

and the blurring function is estimated initially. The restoration quality of the algorithm is 

visually and quantitatively compared with other algorithms. [38]. In this work only the 

Gaussian noise is used to blur the original image. In fMRI applications, there is 

obviously more than one type of noise integrated to the degraded image, which is much 

more difficult to deal with.  

 

As an image processing application, blind deconvolution is used to enhance scanning 

electron microscope images after magnification. A self-deconvolving data reconstruction 

algorithm is applied which is a non-iterative method that uses a Wiener filter and a 

special smoothing function. The methodology yields reasonable results as long as the 

images have high resolution [39]. That means high SNR is needed for the success of the 

algorithm, so fMRI signals would not yield reasonable results with this application. 

 

Blind deconvolution process has also been applied to audio signals. An acoustic signal is 

produced by a conventional computer speaker, and simultaneously recorded by the 

computer microphone. This action imposes an unknown frequency response upon the 

signal. A transfer function is derived from the two signals and used to restore the 

degraded signal. The process compares the magnitude of the data in Fourier space to the 
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same quality of a specified reference data set. A filter function is derived from the 

comparison and used as a transfer function for restoring the original data. The qualitative 

experiments verified that the algorithm can be applied to acoustic waveforms to restore 

the frequency characteristics of the signal. The success of the restoration is dependent on 

the choice of an appropriate reference signal [40]. 

 

Another approach of blind deconvolution is bar code reconstruction. The problem is to 

recover a bar code from the noisy signal detected by a bar code reader. This process is 

modeled as the convolution of the pure bar code signal with a Gaussian kernel of 

unknown amplitude and standard deviation. The algorithm minimizes energy functional 

via gradient descent iteratively. As it is an iterative method, initial estimations are 

critical for the results. In test experiments, the original bar code signal was corrupted by 

convolving it with a kernel of known standard deviation, followed by the addition of 

some noise and performance is evaluated based not on the speed of reconstructions but 

their accuracies [41]. 

 

Blind deconvolution has also been applied for eliminating the echo affect in a speech 

signal propagating from a speaker to several distant microphones within a reverberant 

enclosure. The method aims to improve the performance of an automatic speech 

recognition system. The proposed algorithm assumes that a source signal is measured by 

several sensors after propagating through channels and being corrupted by additive 

noise. The channels are modeled as finite impulse response linear filters. The applied 

blind deconvolution algorithm consists of two steps. First, the propagation channels are 

blindly estimated from the sensor signals using maximum likelihood (ML) approach. 

Next, estimated channel filters are used in exact deconvolution to obtain to the pure 

speech signals. Although a fast implementation has been derived by this approach, the 

computational cost is prohibitive for large order channel filters [42]. 
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Detection of failure in rotating machinery is investigated using blind deconvolution. The 

observed signal from the bearing condition monitor is often corrupted by noise during 

the transmission process. The expected time intervals between the impacts of faulty 

bearing components signals are analyzed using the blind deconvolution technique to 

recover the source signal. Blind deconvolution refers to the process of learning the 

inverse of an unknown channel and applying it to the observed signal to recover the 

source signal of a damaged bearing. The estimation time period between the impacts is 

improved by using the technique and consequently provides an approach to identify a 

damaged bearing. The procedure to obtain the optimum inverse equalizer filter is 

addressed to provide the filter parameters for the blind deconvolution process. It is 

shown that the blind deconvolution behaves as a notch filter to remove the noise 

components. Hence, blind deconvolution is said to be used as a signal enhancing 

technique for lifetime testing of a rolling element bearing until failure occurs. Symptoms 

of failure is known by the experimenter in advance and enhancing the observed signal 

by blind deconvolution makes the detection of these symptoms possible and as early as 

possible [43]. 

 

In seismic deconvolution, the geological layers of earth are modeled with different 

acoustic impedance. The sequence of reflection coefficients is estimated corresponding 

to the various types of layer models. The received signal is made up of echoes produced 

at different layers of the model in the response to the excitation, which is in the form of 

short-duration pulse. The extraction of the excitation waveform associated with the 

received signal is usually unknown and blind deconvolution is applied to the observed or 

measured signal to recover the source of excitation. The impulse response of the layered 

earth model is viewed as equally spaced time sequence of reflection coefficients [44], 

[45].  

 

Blind deconvolution has also been concerned with video sequences. The method 

processes the video by applying temporal windows, masking out regions of 
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misregistration, and minimizing a regularized energy function with respect to the high-

resolution frame and blurs, where regularization is carried out in both the image and blur 

domains. The proposed algorithm performs resolution enhancement and deblurring of 

video sequences [46]. 

 

Besides, blind deconvolution is used to measure travel time from two sets of spatially 

separated loop detectors to provide vital information for traffic monitoring, management 

and planning. Blind deconvolution is applied to reverse the effect of convolution by the 

loop detector and to separate the original vehicle signatures from the loop output. Since 

neither the impulse response of the loop detector nor the original vehicle signature is 

known, an iterative blind deconvolution technique is developed to obtain the original 

vehicle signature but the performance of the algorithm depends heavily upon the initial 

estimations [47]. 

 

The examples of blind deconvolution applications can be increased but the main 

objective behind all blind deconvolution applications is the same. The objective of blind 

deconvolution is to reconstruct the original signal from a degraded observed signal 

without the knowledge of either the original signal or the degradation process. Therefore 

blind deconvolution well-fits to our fMRI problem. Because the fMRI signal is degraded 

and it contains many different blurring components due to physiological factors, 

fluctuations in the blood flow, blood volume and oxygen metabolism; changes in 

behavioral performance and cognitive strategy; and variability in neural activity based 

on non-task related brain processes. These blurring signals have to be removed from 

fMRI so that the original signal, HRF, representing neural activity can be extracted. 

Furthermore, blind deconvolution is a nonlinear process which makes it suitable for 

HRF, which has nonlinear characteristics. It is known that when two stimuli are 

presented successively, the resulting hemodynamic response is less than the sum of 

responses to the two stimuli separately [14]. So, linear approaches are inadequate for 

many fMRI analyses. Also in blind deconvolution no priori assumptions are required for 
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HRF. Moreover, usually in fMRI data analysis, it is common to assume that the instant a 

stimulus is administered, it is perceived by the subject. However, there are always 

attentional processes which intervene with stimulus delivery. When we use complex or 

natural stimuli, then sometimes we cannot define the stimulus administration time in a 

straightforward manner. By means of a properly developed blind deconvolution 

algorithm HRF can be obtained without the knowledge of the stimuli function. For these 

advantages, blind deconvolution became the motivation for us while extracting the HRF. 

 

After obtaining HRF by means of blind deconvolution, we will be able to identify 

whether a given specific voxel exhibits significant task-related signal changes. This 

approach is conducted independently on all voxels. Nevertheless, when functional 

relations between different voxels are considered, blind deconvolution would be 

cumbersome, since it is specialized for determining the underlying neural activity of one 

specific voxel. For classifying the voxels according to their functional similarities, many 

classification and clustering techniques are developed so that activated voxels can be 

separated from non-activated voxels. But all classification techniques require a label for 

each data in the training set. In fMRI analysis it would be very difficult to use previously 

collected fMRI data sets as a training set since the fMRI signal depends on many factors 

such as experimental design, subject, and region of the brain activated. For these reasons 

we used clustering to classify voxels. In the following section clustering will be 

discussed. 
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2.2 Approaches to Clustering of fMRI  

 
Although fMRI represents a powerful technique for visualizing rapid and fine activation 

patterns of the human brain, the low signal-to-noise ratio (SNR) and confounding 

sources of artifacts in the fMRI time series, make the detection of brain activation a 

challenging task. After extracting HRF from fMRI signal, the SNR increases since the 

noise in the observed fMRI data is filtered via blind deconvolution. So, detection of 

brain activation and classifying the voxels according to their functional similarities 

become more feasible. We used clustering for activation detection with the aim of 

separating time series into several patterns according to their similarities.  

 

Clustering methods group data samples based only on information found in the data that 

describes the objects and their relationships. The goal is to obtain data within a group be 

similar to one another while being different from the data in other groups. The greater 

the similarity or homogeneity within a group and the greater the difference between 

groups, the better or more distinct is the clustering. 

 

In fMRI data clustering, mostly hierarchical, k-means and spectral clustering methods 

are used.  

 

2.2.1 Hierarchical Clustering 

 

In hierarchical clustering, each sample is initially considered a member of its own 

cluster, after which clusters are recursively combined in pairs according to some 

predetermined condition until eventually every point belongs to a single cluster. Figure 

2.2 shows an illustration of hierarchical clustering. One problem in hierarchical 

clustering is how to choose which clusters or partitions to extract from the hierarchy 
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since display of the full hierarchy is not really appropriate for large data sets. Also it 

suffers from computational cost especially when the data set is too large. 

 

 
Figure 2.2 Hierarchical Clustering 

 

In [20] a hierarchical clustering algorithm is applied to resting-state fMRI in which no 

explicit tasks are performed. Temporal coherence of low frequency oscillations in the 

brain regions characterizes the functional connectivity. The aim is to find clusters whose 

voxel members have high cross correlation coefficients that indicate low frequency 

synchronous fluctuations in the fMRI signal. Synchrony infers to functional 

connectivity. The method does not require prior knowledge of cluster centers or the 

number of clusters present in the data. The algorithm is based on connecting data by a 

single link. As a similarity measure to group voxels into clusters for functional 

connectivity, a cross correlation similarity measure is used. All clusters are obtained by 

considering only frequency contributions. However, analysis of possible motion 

contribution for these clusters gave insignificant numbers and does not provide a 

sufficient explanation. Also, single linkage hierarchical clustering tends to produce long-

chained clusters. That means it assumes that data conform a certain shape. However, in 

our problem the fMRI data set does not have a certain shape. We analyze task-related 

fMRI data which has more complicated structure than resting-state fMRI data since 

there are signals due to the task related neural activity in addition to the resting state 

activities in the brain, so our data set scatters amorphous. Besides, the data sets in our 
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experiments are too large for hierarchical clustering while resting state fMRI is usually 

driven from a small seed region of interest. Because of these, in our approach 

hierarchical clustering is not applicable. 

 

2.2.2 K-means Clustering 

 

In k-means clustering, every data sample is initially assigned to a cluster in a random 

way. Samples are then iteratively transferred from cluster to cluster until some criterion 

function is minimized. Once the process is complete, the samples will have been 

partitioned into separate compact clusters.  

 

K-means procedure follows a simple and easy way to classify a given data set through a 

certain number of clusters, k, fixed a priori. The main idea is to define k centers, one for 

each cluster. These centers initially should be placed carefully because of different 

location causes different result. So, the better choice is to place them as much as possible 

far away from each other. Then, each data point is assigned to the nearest center. After 

placing all the data to a cluster according to their closeness to the center, the early 

clustering is done. After that, new cluster centers are determined and the data points are 

again assigned to the cluster that has the closest center. As a result of these iterations, the 

k centers change their location step by step until no more changes are done. In other 

words centers do not move any more. 

 

This algorithm aims at minimizing an objective function, in this case a squared error 

function; 

     
(2.16) 
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where  is a chosen distance measure between a data point xi
(j) and the cluster 

center cj ,  is an indicator of the distance of the n data points from their respective 

cluster centers. 

 

With a large number of variables, if k is small, k-means may be computationally faster 

than hierarchical clustering. K-Means may produce tighter clusters than hierarchical 

clustering, especially if the clusters are spherical. Distance between cluster centers is the 

furthest when data scatter spherically, so center points can be determined easily. But if 

the data set does not have a spherical shape such as it is elliptical, the data may be closer 

to a different cluster center than it belongs to. So, we may put data to wrong clusters.  

 

Although it can be proved that the center determination procedure will always terminate, 

the k-means algorithm does not necessarily find the most optimal configuration, 

corresponding to the global objective function minimum. The algorithm is also 

significantly sensitive to the initial randomly selected cluster centers. The k-means 

algorithm can be run multiple times to reduce this effect. Different initial k values affect 

the performance of the clustering, so it is difficult to compare the quality of the clusters 

produced. Also, fixed number of clusters can make it difficult to predict what k should 

be.  

The obtained clusters after k-means clustering are not stable enough in repeated runs 

with the same data sets.  A clustering result can be characterized by the quantization 

errors, i.e., the distances between representants and data points, and the reduction 

degree, i.e., the number of data points divided by the number of cluster centers k. Since 

the tradeoff between the quantization errors and the reduction degree varies from data 

set to data set, the k value in k-means analysis must often be optimized iteratively by a 

result driven search for each data set [48]. 
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K-means is applied to a large data set of fMRI to divide the data as extrinsic and 

intrinsic. Extrinsic areas are associated with the external applied stimuli, while intrinsic 

areas are activated internally not due to the external stimuli. However, some data do not 

fall into either the extrinsic or intrinsic subdivisions since the functional characteristics 

of the intrinsic system cannot fully established [18]. 

 

Also the k-means algorithm intrinsically assumes that the data are scattered with respect 

to a spherical distribution, i.e, for example normal distribution with identity covariance. 

As the distribution of data gets further from spherical shape, the k-means clustering 

algorithm performs poorer. Figure 2.3 illustrates an optimum data distribution for k-

means algorithm. 

 
Figure 2.3. K-means clustering with spherical distributed data  

 

As it is shown in Figure 2.3, k-means perfectly identify the two clusters. On the other 

hand, if the two clusters of data are scattered as follows, ‘banana’ shape, then k-means 

fails since it does not deal with the geometry. Although two clusters in Figure 2.4 are far 

from having Gaussian distribution, k-means still tries to find two centers and assign 

labels to points by checking to which center they are closer.  
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Figure 2.4 Failure of k-means with data in different manifolds 

 

In order to cope with this issue, one has to first consider the geometry of the data by 

probably defining an appropriate metric between points, then, if possible, transform it to 

a space wherein standard clustering algorithms can perform well. For instance, there is 

another clustering algorithm named ‘spectral clustering’ which first spectrally transform 

the data by constructing a neighborhood graph and then applies k-means. It is widely 

used in clustering applications, which has been reported repeatedly to give good 

clustering results. Even after the transformation one might need to use a more 

sophisticated clustering than k-means for which Expectation Maximization (EM) 

clustering can be proposed. It is the generalization of k-means and has the capability of 

dealing with elliptic distributions as well, not only spherical. In the following we first 

explain the details of EM and how it works, then Spectral Clustering. In this thesis for 

fMRI clustering, we use for aforementioned reasons Spectral Clustering with EM.  

 



 51 

2.2.3 Expectation Maximization (EM) 

 

Expectation Maximization (EM) is a generalized version of k-means clustering.  EM 

finds clusters by determining a mixture of Gaussians that fit a given data set. Each 

Gaussian has an associated mean and covariance matrix. The prior probability for each 

Gaussian is the fraction of points in the cluster defined by that Gaussian. These 

parameters can be initialized by randomly selecting means of the Gaussians, or by using 

the output of k-means for initial centers. The algorithm converges on an optimal solution 

by iteratively updating values for means and variances of the clusters. 

 

Let x = (x1,x2,…,xn) be a data set of n independent observed signal from a mixture of 

two multivariate normal distributions of dimension d, and let z=(z1,z2,…,zn) be the 

variables that determine the component to which the observed signals belong. 

 

 

    (2.17) 

 

where  

 

     (2.18) 

 

We try to estimate the unknown parameters of the Gaussian clusters of which; 

 

      (2.19) 

 

Also the likelihood function can be given as: 
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  (2.20) 

 

where I is the indicator function which is defined as: 

 

     (2.21) 

 

and f is the probability density function of a multivariate normal. In the exponential form 

this likelihood function can be written as; 

 

 (2.22) 

 

 

E-Step 

 

The parameters of the Gaussians are initially estimated in this step. The estimation of the 

parameters in the t th iteration, θ(t)
, are used to calculate the conditional distribution of 

the Zi. It is determined by Bayes’ theorem weighted by τ. 

 

 

 (2.23) 
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Then the expectation of θ is given by: 

 

  (2.24) 

 

 

M-Step 

 

In the Maximization (M) step the aim is to find the parameters that maximize the 

expected log-likelihood found in the E step. Since  is quadratic, taking the 

derivative and find where it equals to zero gives us the maximizing values of .  

can be maximized independently from each other since they 

all appear in separate linear terms. 

 

Firstly we maximize τ, which has the constraint of . 

 

    (2.25) 

 

 

This has binomial distribution form and can be restated as: 

    (2.26) 
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Next estimates of (µ1, Σ1) can be similarly calculated to maximize the log-likelihood 

function: 

 (2.27) 

 

This has the normal distribution form, so: 

 

  (2.28) 

 

 and by symmetry: 

 

   (2.29) 

 

 

These estimated parameters are used in the next E step to determine the distribution of 

the Gaussian variables Z. These iterations continue until the estimated parameters 

converge to stable values and so the change in their values becomes negligible. 
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2.2.4 Spectral Clustering 

 
In recent years, spectral clustering has become one of the most popular modern 

clustering algorithms. It is widely used in machine learning, exploratory data analysis, 

computer vision, speech processing and statistics [49], [50]. It is simple to implement, 

can be solved efficiently by standard linear algebra software, and very often outperforms 

traditional clustering algorithms such as the k-means algorithm, EM clustering, PCA. 

The reason behind is that these traditional techniques do not consider the intrinsic 

geometry of the data.  

 

On the other hand, Laplacian Eigenmaps, which is the essence of Spectral Clustering, 

builds a similarity graph from neighborhood information of the data set. Each data point 

serves as a node on the graph and connectivity between nodes is governed by the 

proximity of neighboring points (using e.g. the k-nearest neighbor algorithm) along with 

the weight of the edges, if constructed based on whether they are declared to be 

neighbors, between them. This is in accordance with the intuition behind the clustering 

which is that one wants to divide the data points into several groups such that points in 

the same group are similar and points in different groups are dissimilar to each other. 

The problem of clustering can then be reformulated using the similarity graph: we want 

to find a partition of the graph such that the edges between different groups have very 

low weights (which means that points in different clusters are dissimilar from each 

other) and the edges within a group have high weights (which means that points within 

the same cluster are similar to each other). The graph, thus, generated can be considered 

as a discrete approximation of the low dimensional manifold in the high dimensional 

space. Minimization of a cost function based on the graph ensures that points close to 

each other on the manifold are mapped close to each other in the low dimensional space, 

preserving local distances wherein the traditional methods, then, are expected to perform 

well. In short, Spectral Clustering via the Laplacian Eigen Maps by connecting the data 

points only to its neighbors, it estimates the intrinsic geometry of the data.  As a result, it 
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has been repeatedly reported in the literature that it outperforms traditional clustering 

algorithms, which usually assume Gaussianity in the data and so misses possibly the 

geometric structures. 

 

When there are no exact Gaussian clusters, that means the data do not scatter spherically 

in a cluster and most of the data in that cluster do not place close to the cluster center, 

the data can be grouped via spectral clustering by transforming the data to a proper 

feature space. The idea behind the spectral clustering is to replace a group of similar 

variables by a cluster center, which becomes a new derived feature. The new derived 

feature then is treated as a representative for the whole cluster as the new input for the 

classifier. The main trick is to change the representation of the abstract data points, so 

that clusters can be trivially detected in the new representation. In particular, the simple 

k-means clustering algorithm has no difficulties to detect the clusters in this new 

representation. The spectral clustering will greatly reduce the number of features and 

meanwhile without losing much information. In Figure 2.5a the data scattered in a spiral 

shape. There are two “banana-shaped” structures one inside the other. Spectral clustering 

identifies these two different behaviors and selects these behaviors as feature 

representatives of each banana-shape in Figure 2.5b. Then by means of a simple 

clustering algorithm such as k-means, these two data can be separated easily since they 

are far enough from each other in the transformed space. Finally as seen in Figure 2.5c 

the data set is clustered according to their feature similarities.  
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a. Original Data    b. Transformed Data        c. Spectral Clustering 

Figure 2.5 Spectral Clustering 

 
Figure 2.5 shows a famous data set, which is known as the ‘banana data set’ in the 

machine learning literature. It has a special geometry of banana shape wherein an 

assumption of Gaussianity badly fails. And precisely for this reason other algorithms 

like k-means or EM clustering perform poorly in terms of the clustering of these two 

banana shape data sets. However, once the geometry is exploited through the Laplacian 

Eigenmaps in Spectral Clustering as in Figure 2.5b, and the data points are mapped to a 

low dimensional space, therein, then by means of a simple clustering algorithm like k-

means, these two data can be separated easily since they are far enough from each other 

in the transformed space. 

 

In the spectral clustering application, given a set of data points x1,...xn firstly the 

similarities sij between all pairs of data points xi and xj are calculated by using a proper 

distance metric.  After similarities between the data points are known which have 

already been calculated using a proper metric, the data is presented in form of what is 

known as the similarity graph G = (V, E). The data points xi are represented by the 

vertices vi in this similarity graph. Two vertices are connected if the similarity sij 

between the corresponding data points xi and xj is larger than a determined threshold 

value, and the connection edge is weighted according to sij.  
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Similarity graphs are essential for modeling the local neighborhood relationships 

between the data points and can be developed in different forms: 

 

The ε-neighborhood graph: In these type graphs, the vertices vi and vj are connected if 

the related distance is smaller than ε, otherwise they are not connected. 

k-nearest neighbor graphs: In these type graphs, the vertex vi is connected with vj if  vj 

is among the k nearest neighbors of vi. Since the neighborhood relationship may not be 

symmetric, these graphs lead to a directed graph. This graph can be made undirected by 

connecting vi and vj with an undirected edge if vi is among the k-nearest neighbors of vj 

or if vj is among the k-nearest neighbors of vi. The second method to make the graph 

undirected is to connect vertices vi and vj if both vi is among the k-nearest neighbors of 

vj and vj is among the k-nearest neighbors of vi. After connecting the appropriate 

vertices, the edges are weighted by the similarity of the adjacent points. 

The fully connected graph: In that type of graph all point are connected with each 

other, with all the edges are weighted according to their similarity. 

 

Using the proper similarity graph, partitions of the graph can be created such that the 

edges between different groups have a very low weight to indicate the dissimilarity of 

clusters and the edges within a group have high weight meaning that the points in the 

same cluster are similar.  

 

Let G= (V, E) be a similarity graph with vertex set V= {v1,…,vn}. The graph G can be 

weighted, that means each edge between two vertices vi and vj carries a nonnegative 

weight wij≥0. Using these weights a weight matrix is defined as W= (wij)i,j=1,…,n. If 

vertices vi and vj are not connected then wij=0. G is also undirected which yields wij= 

wji. The degree of a vertex vi ∈V is defined as 
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     (2.30) 

 

The degree matrix D is then defined as the diagonal matrix with the degrees d1,…, dn on 

the diagonal. 

 

Firstly, the graph Laplacian matrix L is calculated using weight matrix W that has 

already constructed by means of chosen similarity metric. That is; 

 

     (2.31) 

   

The matrix L satisfies the properties below: 

• For every vector f ∈ Rn, it is satisfied that 

 

    (2.32) 

 

• L is symmetric, semi-definite and positive. 

• The smallest eigenvalue of L is 0; the corresponding eigenvector is the constant one 

vector. 

•  L has n non-negative, real-valued eigenvalues 0=λ1≤ λ2≤ …≤ λn 

 

After calculating the Laplacian matrix L, the generalized eigenvalue problem should be 

solved which is; 

      (2.33) 

 

This eigenvalue problem yields eigenvectors of v1,…,vn  as solution. 
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If there exists k clusters in the data it would be better to take first k eigenvectors v1,…vk 

as columns to form a V matrix in the form of . In the generated V matrix, ith 

row vector yi, will represent the corresponding data xi. Then these points (yi)i=1,…,n can 

be clustered into k clusters by means of a proper clustering algorithm, like k-means, 

fuzzy c-means, expectation maximization, etc.  

 

To sum up, the goal of spectral clustering is to separate a finite unlabeled data set into a 

finite and discrete labeled set of “natural”, hidden data structures. Clustering is an ill-

posed problem from the mathematical point of view, because what is “natural” is usually 

decided by human judgment since no labeled data are available, but despite of this, 

clustering algorithms are frequently applied to gain insight to the structure of the data. 

 

Spectral clustering is used as a machine learning technique in medical arena among 

which investigating relations between a gene graphs constructed using microarray 

experiments and the one based on the text corpus is envisaged. The performance of a 

spectral clustering method using text data only, using microarray data only and using the 

technique for integrating both knowledge bases is discussed [51]. The learning technique 

addresses the unsupervised learning problem of finding meaningful clusters co-occurring 

in both knowledge bases.  

 

Spectral clustering is examined for breaking up the behavior of a multi-agent system in 

space and time into smaller, independent elements. The clustering technique is extended 

into temporal domain [51]. For example, in a football match grouping the agents into 

two teams can be discussed in this research. There are many indicators of interaction to 

separate these agents. The agents participated in performing to score a goal can be 

determined to put in the same cluster. It means we need to identify temporal and spatial 

boundaries between these elements in a very noisy environment. Since only agent 

positions is not enough for catching the behavioral aspects of the multi-agent system, 

knowledge about events of multi-agent interaction with different importance is exposed 
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by developed spectral clustering technique, so events are assumed to have relative 

importance measure. Besides, spectral clustering is applied to a strategic computer game 

to detect the events covering some important interaction. 

 

Spectral clustering is also used in genomics for clustering homologous proteins when 

only their sequence information is known. Spectral clustering, as a global method, has 

been compared with the local clustering methods of which have some limitations. The 

local methods are said to be based on simply thresholding a measure related to the 

distance between the sequences. They assign a protein to a cluster taking into account 

only the distances between that protein and the other proteins in the set. Instead, as a 

global method, spectral clustering assigns a protein to a cluster taking into account all 

the distances between every pair of proteins in the set. In the performed experiments, it 

is concluded as the quality of the clusters as quantified by a measure that combines 

sensitivity and specificity was consistently better when spectral clustering is used [53]. 

 

Especially in biological data analysis the large data sets are difficult to handle due to 

time and memory limitations. Spectral clustering is modified by adding an information 

preserving sampling procedure and applying a post-processing stage. Flow cytometry 

data as an example of large, multidimensional data containing potentially hundreds of 

thousands of data points is used as test data. Modified method reduces the size of input 

for spectral clustering algorithms and consequently they can now be efficiently applied 

on flow cytometry data in spite of its large size. In conclusion, the spectral clustering 

approach demonstrates significant advantages in proper identification of populations 

with non-elliptical shapes, low-density populations close to dense ones, minor 

subpopulations of a major population, rare populations, and overlapping populations. 

Moreover, applying the modified spectral clustering method to other biological data 

such as microarrays and protein databases may result in significant improvements in 

gene expression and protein classification [54]. 
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Spectral clustering algorithms also have found application in tissue classification in 

MRI. An empirical evaluation of a stochastic sampling approach to modeling voxel-to-

voxel relationships for spectral clustering is exposed [55]. Stochastic sampling captures 

sufficient intensity structure to give plausible tissue classification in 3D brain MRI. 

Magnetic Resonance images are classified into three common tissue types which are 

Grey- Matter (GM), White-Matter (WM), Cerebro-Spinal Fluid (CSF) and also the 

background in the field of view. 

 

Spectral clustering is also applied to fMRI time series [56]. It is compared with other 

clustering methods by using a modified version of a common fMRI clustering metric 

obtained by the cross-correlation of the fMRI signal with the experimental protocol 

signal [56]. Experiments are performed with synthetic and real fMRI data. Real fMRI 

data are picked from 300 voxels that correspond to about 5% of the brain voxels. The 

modified clustering metric gives satisfactory results though, but spectral and stochastic 

clustering methods had better to be evaluated further in the presence of more inactive 

noise voxels.  

 

Spectral clustering has the advantage of performing well with non-Gaussian clusters as 

well as being easily implementable. It is also non-iterative with no local minima.  

Besides it is not restricted to convex regions of similarity and the robustness to noise 

makes spectral clustering attractive. Hence in this thesis, spectral clustering is chosen to 

group the fMRI data according to their activation states (i.e. active, passive). 

Furthermore another reason for preferring spectral clustering is that besides the used 

distance measure, it requires no assumptions about spatial location and extension of 

activation sites or the shape of the expected activation time series. Spectral clustering 

often outperforms other clustering techniques, since it captures the natural structure of 

the data set. This implies that spectral clustering can identify clusters with complex 

signal geometries. Moreover, spectral clustering can be implemented efficiently even for 
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large data sets. As all the clustering algorithms, spectral clustering can only be as good 

as the distance measure used. 

 

2.2.4.1 Distance Measure 

 

The success of any clustering algorithm depends heavily on the choice of the distance 

measure, which will give the similarity of two elements in the data set. This will 

influence the shape of the clusters, as some elements may be close to one another 

according to one distance but farther away according to another. The problem at hand is 

to meaningfully quantify the similarity between two fMRI time series. 

 

There are many distance functions, the most known being the Euclidean distance. 

 

Euclidean Distance 

 

Euclidean distance is the distance between two points defined as the square root of the 

sum of the squares of the differences between the corresponding coordinates of the 

points. It is the function that assigns to any two vectors in Euclidean n-

space x = (x1…xn) and y = (y1…yn)  the number;  

 

    (2.34) 

 

and so gives the Euclidean distance between any two vectors in Rn. 

 

Euclidean distance can distinguish data obtained from similar task paradigms, having 

large and discernible timing variability, of the order of a few seconds. However, if the 

timing difference is small, of the order of a few tens of milliseconds, Euclidean distance 

is not successful to identify the similarities of the data. Moreover, Euclidean distance 
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does not accurately delineate the interference of noise points in fMRI signals [21]. So, in 

the literature there are not many applications that use the conventional Euclidean 

distance. It does not define a similarity measure of the data, but instead it measures the 

direct distance between the data. So, in this thesis Hausdorff distance is used for 

similarity measure. 

 

Hausdorff Distance 

 

Hausdorff distance is a metric used especially for object matching and shape detection 

which measures the extent to which each point of a model set lies near some point of an 

image set and vice versa. It attracts many engineers, scientists since it is insensitive to 

affine invariants like translation, rotation and scaling [57]. 

 

In clustering analysis, Hausdorff distance is used as distance measure in this thesis. 

Hausdorff distance computes the distance between two data sets. Given two finite point 

sets A={a1,…, an} and B={b1,…, bn} the distance from any point a∈A to the set B is 

calculated with an underlying norm  (e,g., the L2 norm or Euclidean norm) which can 

be defined as; 

   
(2.35) 

 

 
Figure 2.6 Distance from a point to a set. 

 

Then, the distance from A to B which is called as directed Hausdorff distance, h(A,B) is 

obtained using; 
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(2.36) 

  

Basically h(A,B) determines the point a∈A which is the farthest to any point of B, to 

any point of B and computes the distance from a to the point b∈B which is the nearest 

point to a. That means it searches each point of A to find out its distance to the nearest 

point of B, and then selects the largest distance of those. The point of A yielding the 

largest distance is the most mismatched point of A. 

Then, the Hausdorff distance is the maximum of h(A,B) and h(B,A). That can be 

represented as; 

    (2.37) 

     

Hausdorff distance can be thought to measure the degree of mismatch between two sets 

by measuring the distance of the point of A that is farthest from any point of B and vice 

versa.  

 
Figure 2.7 Distance from a set to other set 

 

Equivalently, Hausdorff distance can be reposed by means of the dilations by the balls of 

the space, which gives a more intuitive understanding. If  is the 
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compact ball centered at a point x, then one-way Hausdorff distance from a set A to a set 

B is given by:   

   (2.38) 

   

So the Hausdorff distance basically is the minimum amount of dilation of the set A by 

balls of the space to cover the set B, and vice versa. This directly reveals an important 

disadvantage of using Hausdorff distance which is that when there exists an outlier in set 

A or set B, in other words when – for instance- there exists a separated point, this can 

make the Hausdorff distance unnecessarily large and in general very sensitive to outliers. 

In order to overcome this, one-way Hausdorff distance can be modified to cover the 

target set to a significant fraction but not completely: 

 

  (2.39) 

 

where the parameter α controls what fraction of the target set is desired to be covered 

and it is, usually, close 1. This is equivalent to taking not the very maximum but the 

’th maximum in (2.39). 

 

In our application we will use this modified version of Hausdorff distance in which 

basically we do not take the maximum distance but instead we take αth maximum to 

prevent the misleading effects of the large distances due to the outliers (instant noisy 

peaks).  

 

Hausdorff distance is used for human face recognition by obtaining the edge map of a 

facial image, which contains crucial information about its shape and structure. Hausdorff 

distance is modified to determine the weight function derived from the spatial 

information of the human face [58]. Hausdorff distance is also used in hybrid image 

matching with a similarity measure, which combines a modified Hausdorff distance with 
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the normalized image gradient matching. This integrated image similarity measure that 

uses Hausdorff distance is applied to the problem of face recognition under different 

illumination conditions [59].  

 

A method for determining affine transformations that bring a model into close 

correspondence with a portion of an image is applied via modified version of the 

Hausdorff distance [60]. Even in the presence of occlusion, spurious points, positional 

uncertainty, strong restrictions on the transformation range and the presence of multiple 

objects, Hausdorff distance model detects the true object and determines the location of 

the object accurately. However, the model runs quite slowly as the image set becomes 

larger. 

 

The shape-matching problem with and without constraints on the allowed 

transformations under the Hausdorff distance is also studied in [61]. Computation of 

exactly or approximately the smallest Hausdorff distance over all possible rigid motions 

in two and three dimensions is examined. In many biological applications especially in 

molecular biology, shapes can be approximated by a finite union of balls. For example, 

proteins with similar shapes are likely to have similar functionalities; therefore 

classifying proteins based on their shapes is an important problem in computational 

biology. So, the main type of input it the application is the ball shapes 

 

Hausdorff Distance is applied to finding words by image matching, that is to say that the 

process locates user-specified words in the document images. Through this method the 

performance of the optical character recognition systems deteriorate severely when 

confronted with degraded images at the presence of image noise and poor printing 

quality and when adjacent characters are joined or fused. This is because these systems 

rely on the segmentation procedure. A segmentation-free approach using Hausdorff 

distance measure is developed which yields promising results for word image matching 

[62]. 
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As the error measurement between the target curve and approximation curve, the 

Hausdorff distance is used in CAD/CAM or Approximation Theory. Hausdorff distance 

between offset of quadratic Bezier curve and its quadratic approximation is calculated 

for error measurement [63]. 

 

A method is examined that automatically detects and attributes neuroanatomical names 

to the substructures of the cortical folds using image analysis methods applied to 

magnetic resonance data of human brains. For label assignment process the Hausdorff 

distance metric is used as shape similarity measure. Correlations between substructures 

of brain labellings and functional activations measured by fMRI studies are left as future 

work [64]. 

 

As a result of this chapter, blind deconvolution is an inspiring method for fMRI analysis, 

so we decided to blindly estimate HRF from the given fMRI signal without any 

knowledge about the underlying stimulus pattern. For this purpose we developed MAP 

Blind Deconvolution method which will be detailed mathematically in the following 

chapter. Also, by adjusting the parameters of the convolution filter we have created a 

hemodynamic response time series which includes the hemodynamical peaks at the 

stimulus locations and along their durations so that we do not loose the effect of 

underlying stimulus pattern. Then we used these HRF time series as inputs for clustering 

the voxels as active and inactive (passive and clusters due to other artifacts). We used a 

standard spectral clustering algorithm which can detect the intrinsic geometry within 

data. Being aware of the selection of the proper metric is crucial for the success of the 

clustering algorithm; we tried a number of common metrics and a special metric that 

was developed for fMRI analysis within spectral clustering and finally we decided that 

Hausdorff distance gives most promising results for our approach. In the following 

chapter the comparisons and discussions about the clustering metrics will be given and 

modified Hausdorff distance will be explained in details. 
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CHAPTER 3 
 

 

3 METHODOLOGY 

 

 

 

3.1 Maximum a Posteriori (MAP) Blind Deconvolution of fMRI 

 

For most cases, fMRI signals are known to suffer from low SNR due to several subject 

or hardware dependent conditions. To increase the SNR, we estimate hemodynamic 

response function (HRF), which is known as the impulse response of brain voxels under 

a neural task. Also we extract a time series signal including HRF’s, which is basically 

the change in the fMRI magnitudes triggered by the neural changes due to the given 

stimulus pattern. Hemodynamic response is essential for a better understanding of neural 

activity and it needs to be obtained properly in order to use the information provided by 

the fMRI signal for drawing conclusions about the underlying unobserved neuronal 

activation.  

 

The observed time series, fMRI signal in this application, is modeled as the convolution 

of two independent signals: hemodynamic response and a convolution filter that in our 

problem will be used to estimate the stimulus. Recall that the hemodynamic response 

function is the response to impulse. Since we aim at unveiling the hemodynamic 
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response, which is buried within a convolution, a deconvolution technique is required. 

Because of the statistical variety of HRF from a voxel to another, we use blind 

deconvolution to take a rather general approach instead of imposing an estimated model 

of the HRF with the deconvolution process. Since the objective of blind deconvolution is 

to reconstruct the original signal from a linearly convolved measurement without the 

knowledge of either the original signal or the degradation process (stimulus pattern in 

our approach), and also seeing the fMRI signal as the degraded version of the underlying 

HRF, this type of deconvolution is found to fit well the HRF extraction problem. 

 

Hence, the problem of HRF estimation is posed and studied within the framework of 

blind deconvolution in this thesis as in (3.1)  

 

    (3.1) 

     

where, 

r(t): Observed signal, fMRI 

d(t): Hemodynamic response function 

k(t): Convolution filter (in our problem this is the unknown stimulus pattern) 

n(t): Noise 

t    :  Discrete time 

 

The goal of blind deconvolution is to recover or estimate d(t) when only the observed 

signal, r(t) is accessible. Unfortunately, with no prior knowledge about d(t) and k(t), this 

is an ill-posed problem because there are infinitely many pairs of (d(t), k(t)) such that 

(3.1) is satisfied. Considering the Fourier domain representations,  
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   (3.2) 

 

            (3.3) 

 

            (3.4) 

 

Basically, for a given fixed G(f), then for every different K(f), there exists another pair  

(D(f), K(f))= (G(f) K(f)-1,K(f)) such that it satisfies (3.2), since Fourier Transform takes 

values from the complex domain in which every element has a multiplicative inverse. 

This non-uniqueness of solution makes blind deconvolution, in its most general form, 

ill-posed. And actually that is why it is named ‘blind’; no prior knowledge exists on d(t) 

and k(t). 

 

Recent researches show that a key success in blind deconvolution algorithms is to 

consider the overall shape of the posterior distribution. There is a large amount of 

research [83], [84], [85], [86], [87], [88], [89] that studies the blind deconvolution 

problem within a Bayesian framework through Maximum A Posteriori (MAP) 

estimation. All of those works report favorable results over other types of blind 

deconvolution techniques. Therefore, we also follow the MAP approach for HRF 

estimation in this thesis. In an iterative MAP estimation, one tries to find the most likely 

estimate for the convolution filter (stimulus pattern in our case) given the target signal 

(HRF in our case) and for the target signal given the convolution filter. This is, in 

general, expressed as a maximization over the probability distribution of the posterior 

using Bayes’ rule. Mathematically, 

 
   (3.5) 

    

If one treats d(t) and k(t) as some parameters of the posterior distribution, then this 

maximization turns out to be the Maximum Likelihood Estimation. On the other hand, if 
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we assume that a prior distribution exists over d(t) and k(t), then d(t) and k(t) can be 

treated as random variables as in Bayesian Statistics. Then the posterior distribution 

becomes as in (3.6): 

 

  (3.6) 

  

In all blind deconvolution problems one has to take some application dependent 

assumptions in order to cope with the ill-posed nature of the problem. MAP approach 

mathematically formulates these assumptions as some prior distributions on the 

convolution filter, target signal, and the noise in the blind deconvolution problem. This 

allows one to treat the problem in the framework of Bayesian Statistics. In what follows, 

similarly, we try to develop this prior knowledge for fMRI data analysis. 

 

In general, fMRI data analysis is based on the observation that the local energy 

consumption in the brain correlates with the underlying neural activity. Although the 

exact coupling of neural activation to the vascular system is unknown, the mechanism of 

this coupling generates significant blurring and delays to the original responses over 

time, which suggests a low-pass filtering operation. Hemodynamic events have a time 

scale of few seconds, whereas neural events happen almost instantly [72]. Furthermore, 

due to the finite sampling of brain volume as voxels, hemodynamic response from a 

single voxel is thought to be the average of all responses in the space of that voxel [73]. 

Because of the slow responsiveness of hemodynamics to the neural activation and 

because HRF is likely to be the average of all such responses within the space of a 

voxel, we impose, in our problem at hand, ‘smoothness’ on the hemodynamic response, 

d(t). That is to say, we do not expect to see sudden changes or jumps in the 

hemodynamics. Although such sudden changes or jumps do exist in the raw fMRI, we 

model them as noise. The ‘smoothness of the hemodynamics’ is measured as the sum of 
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all derivative squares in a hemodynamic response. As that value decreases, the 

hemodynamic response is said to be smoother. In the limiting case, if the value tends to 

zero, then basically we have a flat hemodynamic response. Mathematically, smoothness 

expressed in discrete time is thus: 

 

given a hemodynamic response function d(t): 

 

  (3.7) 

 

Thus, using vector notation, 

 

       (3.8) 

 

where, 

 

     (3.9) 

 

Then (3.7) becomes: 

 

  (3.10) 
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is the difference operator approximating the derivatives via 

the first order differences. 

 

is the vector form of the signal hemodynamic response. 

 

In our model, we want to impose smoothness on hemodynamic response using the 

minimization of this smoothness metric: 

 

    (3.11) 

 

Note that, as smoothness(d) goes to 0, then  

 

  (3.12) 

 

Then, we obtain a flat signal with zero derivative everywhere which is the most smooth 

signal. This is definitely we do not want to end up with and need some deeper 

consideration. We will explain this later and for now, let us continue analyzing our issue 

of smoothness. 
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Probabilistically, enforcing smoothness on the hemodynamic response through the 

minimization in (3.11) is nothing but putting a Gaussian prior distribution ond. For the 

sake of formulating our smoothness idea within the framework of Bayesian Statistics, 

now, we show how the minimization in (3.11) can be re-posed as a maximization over a 

Gaussian distribution.  

 

Since the exponential function ex is a  monotonically increasing function, if we take the 

exponential of the ‘smoothness’, we obtain an equivalent minimization in terms of the 

argument:  

 

    (3.13) 

    

Taking the negative of the exponent together with an insignificant constant Cd, then the 

minimization turns into maximization, 

 

    (3.14) 
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Then also we can multiply the exponent with a positive real number ; 

    (3.15) 

   

Let  then, 

 

   (3.16) 

  
 

Considering the difference matrix L, its last row is just the opposite sign of its (N-1)’th 

row, i.e, L(N, :) = - L(N-1, :), (MATLAB notation) 

 

Hence its determinant is zero; however, we can do a benign trick on this. Since in 

general the fMRI time series is long in the order of hundreds, we can discard the 

derivative at the last time instant, and we can adjust our difference matrix L in the 

following way: 

 

 

 

By adjusting the last row of L as above, instead of calculating the difference on d(N) 

directly, we assume it normalized , because the mean of the first order differences 
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of fMRI that we study is approximately 1/1000 of the mean intensity. This normalization 

facilitates our calculations, since L becomes invertible: det(L)=0.001 (independent of 

N). 

 

Now in this new form, since L invertible, then LTL is a positive definite matrix.  

Proof: 

For every nonzero x, 

 

     (3.17) 

 

Since L is invertible, then and then since x is nonzero , hence; 

 

     (3.18) 

 

LTL is strictly positive definite. 

 

Then STS is also strictly positive definite and its inverse exists. Let  

 

As a result of this,  

    (3.19) 

 



 78 

Note that, with a normalization constant Cd is Gaussian with zero 

mean and Σ covariance. Then basically,  

 

    

(3.20) 

      

 

Smoothness constraint on the hemodynamic response implies, in our model, the 

minimization of the magnitude of the square sum of derivatives and this turns out to be a 

Gaussian prior, which favors or assigns high probabilities to low derivative magnitudes. 

And note that in the limiting case, this prior assigns the maximum probability to the 

zero, mean vector (in general, mode of a Gaussian is equal to the mean) that is a flat 

signal, the smoothest signal. 

 

Our second prior is on the noise signal in our model. Since we bury the high frequency 

noises in our fMRI measurement process in this noise component, we assume it to be 

Gaussian and independent at every time instant, which is, by definition Additive White 

Gaussian Noise (AWGN). Since it is independent at every time instant, it has a diagonal 

covariance with σ2
 at diagonal entries.  
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    (3.21) 

      

 

Third, we put a uniform prior on the convolution filter k. That is to say, we do not have 

a constraint on the shape or magnitudes of the stimulus pattern except that we assume it 

to be finite impulse response of some length p with . 

 

    (3.22) 

 

Here the length of the convolution filter (stimulus) p has an important meaning. There 

are basically two different cases resulting from p: (1) If the convolution filter has a small 

length with respect to the full length N, then we hope to recover one impulse block (a 

single square; we think of the underlying stimulus as a square wave) of the underlying 

stimulus pattern in the fMRI application as the convolution filter. In this case, then, the 

other component of the convolution d(t) will be a time series signal including a series of 

hemodynamics. We name it ‘hemodynamical time series’ (2) Secondly, if the 

convolution filter is of full length N, or close to being full length, then we hope to 

recover the whole stimulus pattern (whole square wave) as our convolution filter. Then 

in this case, d(t) will be the impulse function, in other words for our approach, the 

hemodynamic response function (HRF). In this thesis, we use hemodynamical time 

series for clustering of fMRI time series and HRF extraction is studied separately. The 

reason behind not using HRF in clustering is that: when HRF is extracted the stimulus is 

separated and captured as k(t). On the other hand, hemodynamical time series clearly 

includes the information of the stimulus in it such as the location of impulses as well as 

the duration of them. Since the impulse is the only separation regarding the activation 

detection, we use hemodynamical time series in our clustering. These will be discussed 

both in this chapter as well as the experiments chapter. 
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Lastly, we also put a uniform prior on the observations meaning that we have no 

constraints for the observations. 

 

     (3.23) 

 

Having constructed all of our priors for the components of our convolution model, we 

can repose our problem and goal: 

  

 

Problem: 

    (3.24) 

 

where, 

r(t): Observed signal, fMRI:  

d(t): Hemodynamic response function:  

k(t): Finite Impulse Response (FIR) convolution filter:  

n(t): Additive White Gaussian Noise (AWGN):  

t     : Discrete time 

 

Goal: 

Given the observations, r(t), 

Estimate d(t), k(t), n(t) subject to the priors. 
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Solution (1): 

 

For blind deconvolution problems, recent research in [77] shows that to consider the 

overall shape of posterior distribution provides promising results. We take a 

MAP approach in this work in accordance with the latest research activities in the 

literature. Since Log is a monotone increasing function, it would not affect the 

maximization of the posterior distribution however it facilitates the derivations by letting 

us avoid the exponentials. Together with a negative sign, it becomes minimization:  

 

    (3.25)

    

Note that we assume k and d are independent since we do not expect any functional 

dependencies in between them, and p(r) does not show in (3.25) since it is constant. 

In the following derivations we always have the constraint:  

 

Then, 
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(3.26) 

 

Here we can write the first term in vector notation using Ak which is: 

 

 

 
 

Ak is the convolution matrix of k(t) such that;  
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    (3.27) 

 

Hence our first attempt MAP approach suggests the optimization problem in (3.28) for a 

solution to our blind deconvolution problem: 

 

 (3.28) 

 

 

This optimization problem basically tries to approximate the observed signal as a 

convolution of d and k while at the same time having the hemodynamic d as smooth as 

possible. And the parameter κ nicely controls the trade-off between the approximation of 

the observations and the smoothness of the hemodynamics. Unfortunately, this solution 

is badly problematic because of the following reason: 

 

Let us pick a pair (d, k) and consider another pair (d’, k’) such that d’=sd, and 

k’=(1/s)k, where s is a scaling factor. 
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As ; 

 

(1) The first term of the optimization in (3.28) stays the same since 

 

    (3.29) 

 

(2) However, the second term that stands for the smoothness of the hemodynamic 

decreases, overall the optimization improves! 

 

Therefore, the joint optimization always favors to flat signal for hemodynamic since as 

 then as well. To tackle this problem, we modify the solution above using an 

iterative optimization of the same cost function through the Expectation-Maximization 

Algorithm (EM) by basically alternating between the optimum hemodynamic given the 

convolution filter and the optimum convolution filter given the hemodynamic. With the 

help of an EM type iterative algorithm, therefore, we can avoid the joint optimization 

and get a suboptimal solution for the same optimization problem avoiding the flat 

hemodynamic problem. This algorithm can be summarized as follows: 
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Solution (2): Iterative EM optimization for MAP estimate of hemodynamic 

 

 Input:  

• Observations,  

• Initial estimate for convolution filter,  

• Maximum Iteration number, iter. 

• Parameters:  

 Let  

 While i<iter 

• EM optimization: 

o E-step 

  

o M-step (Likelihood Maximization) 

  

o  

• return  

 

In the following, we give the details of our algorithm: 
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E-step 

 

In this step the algorithm calculates the mean hemodynamic, , given the 

convolution filter and the observations. 

 

Note that: 

  (3.30) 

 

and since r is also known: 

 

     (3.31) 

   

where C is just a normalization constant such that integral of is 1. 

 

Seeing that  is a multiplication of two Gaussian functions, itself must be another 

Gaussian of which we are seeking the mean, . Because mean of a Gaussian is 

also the mode of it, then (3.32) must hold: 

 

   (3.32) 

 

 

 

 

 



 87 

The derivations we already made in (3.25), (3.26), (3.27) and (3.28) simplify (3.32) into: 

 

  (3.33) 

    

 

The λ parameter in the optimization (3.32) controls the covariance of the prior on p(d). 

As it increases, we start allowing larger derivatives, and so tolerating less smooth 

hemodynamics, on the other hand, smaller λ implies a tighter prior around the mean, 0, 

which in turn makes our model favor smooth hemodynamics more. In the limiting cases, 

if goes to infinity, note that the second term of the cost which stands for the 

smoothness condition of the hemodynamic goes to zero and all of the cost gets 

concentrated on the first term which is the data fitting term. If λ goes to 0, then the 

second term goes to infinity and all of the cost this time gets concentrated on the 

smoothness constraint. As for the  parameter, it controls the fitting accuracy of the 

convolution d with k to the observations. Larger σ means a larger variance for the noise 

in the model which then allows relatively a larger deviation between the observations 

and the convolution. On the other hand if the noise variance is small, then it means we 

do not really expect much noise and so we do want a tighter fitting to the observations 

by the convolution. Similarly, if σ goes to 0, data fitting term gets dominant and if it 

goes to infinity then the smoothness constraint gets dominant. For the ease of 

demonstration, we lump the effect of these two parameters into a single parameter κ of 

which tuning allows us to we simply adjust the trade-off between the data fitting 

accuracy of the convolution and the smoothness constraint on the estimated 

hemodynamic. Hence the minimization we are considering is based on the cost function 

in (3.34): 
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     (3.34) 

 

The first term in the cost function is a least square approximation problem in which one 

basically fits a linear function of d to the observations r. It is a convex optimization 

problem [78] with an exact solution  where  is the pseudo inverse of A. 

This is the situation for the first term. As for the second term this situation is not 

different, seeing that is just another least square approximation 

problem which is also convex. Since sum of two convex functions is also convex 

(closeness of convexity under addition), overall cost of the E-step is convex. Then we 

can easily calculate the minimum analytically for this optimization by just taking the 

zero derivative: 

 

 (3.35) 

   

 

Then, solving the partial derivatives for 0, (Note that,  exists since it 

is positive definite). 

 

     (3.36) 
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d* is the optimum MAP solution for the hemodynamic response for a given convolution 

filter calculated by the E-step of our algorithm. Note that, this solution is not the trivial 

solution (which is the flat signal) of the joint optimization we explained as solution(1) 

simply because d* can be 0 only when κ=0. Since solution(1) performs a joint 

optimization over (d,k), the degree of freedom is more than the one of our proposed 

solution(2), as a result, the problem becomes ill-posed as already explained. We tackle 

this problem with this EM type iterative approach by alternating between the optimum 

hemodynamic given the convolution filter and the optimum convolution filter given the 

hemodynamic and by never letting the algorithm get stuck at a trivial solution. 

Moreover, the parameter κ nicely incorporates our priors.  

 

 

M-step 

 

In this step, the algorithm maximizes the data likelihood through the maximization, 

given the hemodynamic. 

 

  (3.37) 

 

We rewrite this optimization in (3.36) using the vector/matrix notation of the 

convolution as Adk using the convolution matrix derived from d as opposed 

to using Ak previously. Namely: 
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Ad is the Nxp convolution matrix of d(t) such that; 

 

                              (3.38) 

 

Hence, our optimization then turns out: 

 

   (3.39) 

     

This is a quadratic minimization subject to linear constraints [79], and thus a convex 

problem that can be solved using quadratic programming. Actually there is a dedicated 

MATLAB routine for such problems: “quadprog”.  
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Illustration of the MAP blind deconvolution Algorithm:  

 

We illustrate our MAP blind deconvolution algorithm, and explain the outputs of our 

algorithm at each step with a real fMRI data (Figure 3.1).  

 

 
Figure 3.1 An example of real fMRI data 

 

Although there is clearly a large amount of noise in this fMRI signal, the overall 

behavior of the signal is still detectable. We expect a good hemodynamic estimation to 

decrease the noise effect and at the same time not to fade away the general trend in the 

signal. For instance, in the signal of Figure 3.1, we have peaks approximately between 

the time instants [20, 40], [50, 60], [70, 100], [100 120]. Peak magnitudes (after the 

noise is estimated and extracted), and their locations are known to be among important 

features of fMRI which give clues about the underlying neural activity. This is because 

they are correlated with the stimulus governing that neural activity [70]. For instance in 

the signal of Figure 3.1, we can predict that there exists stimulus in the aforementioned 
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intervals with the help of peak magnitudes and their locations. Especially these features 

are supposed to be extracted by the hemodynamic estimation and all other effects are 

supposed to be then suppressed as much as possible which in total should increase the 

SNR.  

 

Setting the parameters κ=0.1 as we want to put more importance on the smoothness of 

the hemodynamic and p=10 (a small length filter) as we want to extract the 

hemodynamical time series to preserve the effect of stimulus and still have denoised 

hemodynamical signal, we are able to nicely observe the hemodynamical peaks as seen 

in Figure 3.2. 

 
Figure 3.2 Estimated hemodynamic response function 

  

Visually speaking, MAP blind deconvolution successfully eliminates the noise from the 

fMRI signal of Figure 3.1 and extracts the peak magnitude and location features. 

Furthermore, it clearly estimates the overall shape. Note that comparing to the signal of 

Figure 3.1, the estimated hemodynamical time series is clearly cleaned and denoised 

while it still does have the peaks in the aforementioned intervals. And since it is 

denoised, now the peaks are far more detectable which effectively means an increase in 
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SNR in the signal of Figure 3.2 when compared that of Figure 3.1.  In general, from a 

voxel to another, activation strength and patterns can vary significantly even if they 

belong to active regions in the brain since different regions of the brain depending on 

their functionality can respond differently to the same neural activity. The interactions 

between the voxels also add onto this variety. Hence, most of the modeling approaches 

in the literature, which try to model active or passive hemodynamics uniformly over the 

voxels, are not capable of considering the variety of hemodynamic responses between 

voxels. With the help of the blind deconvolution, which is unsupervised (stimulus is 

assumed unknown) and model-free (no particular shape is assumed for the 

hemodynamics), we overcome this issue. 

 

 Using blind deconvolution generates a model free approach in estimating the 

hemodynamics only through extracting the good features. This increases significantly 

the estimation accuracy. 

 

 
Figure 3.3 Estimated convolution filter and noise process 
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Figure 3.3 shows an estimated convolution filter when the signal of Figure 3.1 is used in 

our MAP blind deconvolution. We consider this as one single impulse block of a given 

square wave like stimulus pattern. And our blind deconvolution locates a series of 

hemodynamics in d(t) each of which passes through the convolution filter in the process 

of convolution, and generates the fMRI before noise. It has a Gaussian shape centered at 

5 or 6 and is decaying on tails which immediately reveals a delay between the observed 

signal and the hemodynamical time series. This is because in the process of convolution, 

each hemodynamic of the hemodynamical time series generates when it hits the peak of 

the convolution filter taking 5 time points. Note that the peak of the hemodynamic 

corresponding to the interval [40 60] in Figure 3.2 is closer to the time point 35, and on 

the other hand, in the observed fMRI signal (Figure 3.1) the same peak is closer to the 

time point 40 which is the mentioned delay. This is actually consistent with what we 

should expect as delay between the underlying neural activity and the actual time when 

the brain develops a physical and observable response. Hence, the moment that a new 

neural response is generated, has an effect on the raw fMRI in a delay which is, in this 

simple example 5 time points. The noise process is also shown in Figure 3.3. If it is 

added to the convolution output, we precisely recover back the raw fMRI. 

 

What follows in Figure 3.4 is the model log-likelihood (up to a scaling factor) of the 

observations against the iterations of our algorithm: 
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  (3.40) 

 

 
Figure 3.4 Likelihood of the model 

 

As shown in Figure 3.4, our MAP blind deconvolution algorithm successfully increases 

the likelihood of our model at every iteration. Moreover, the convergence is also quick, 

after around 30(x2 for E_step and M_step) iterations for the optimization to converge in 

the estimations. 
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Figure 3.5 illustrates the effect of the parameter κ on the algorithm when p=10. These 

plots justify our theoretical explanations. The parameter κ controls the trade-off between 

the data fitting by the convolution and the smoothness of the estimated hemodynamic. 

Setting κ=0.1 is reasonable for hemodynamic estimation since it seems to yield a 

balanced estimation regarding the noise reduction and extraction good features. Note 

that when κ=0.5 or larger; the estimated hemodynamical time series become noisy. And 

when κ=0.05 the peak of the interval [100 120] fades away. 
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Figure 3.5 The effect of the parameter κ on the algorithm when p=10 
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Figure 3.6 The effect of the parameter p on the convolution filter when κ=0.1 

  

The parameter p controls the length of the finite impulse convolution filter. If it is set to 

1, then basically it becomes a single impulse which would not change the 

hemodynamics: (up to scaling of the delay). In this case, blind 

deconvolution turns into denoising of the fMRI. When we increase p, it starts 

converging to the underlying stimulus of the conducted neural task. For instance, when it 

is 5 as shown in the upper left of Figure 3.6, the first block of the stimulus is estimated. 

When it is 10, it still estimates the first block since it has duration more than 5 and even 

10. And finally, when it is set to 20, our algorithm captures one block of the underlying 

stimulus. Note that for these fMRIs, we have categorical stimulus, and each block 
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stimulus basically consists of two different types of stimulus. This is clearly reflected in 

our estimated convolution filter when p is 20 where, the two peaks next to each other 

create a valley shape. So Figure 3.6 illustrates the evolution of the estimated convolution 

filter as p increases and shows so how it approaches the real stimulus pattern 

 

Figure 3.7 illustrates the corresponding estimated hemodynamics as p changes from 5 to 

20: 

 
Figure 3.7 The effect of the parameter p on the algorithm when κ=10 

 

According to the estimated hemodynamical time series signals, when p=20 the degree of 

freedom in the model increases which generates more space for the hemodynamic to be 

smooth while having not much changes in the data fitting accuracy. As it is already clear 

from the signals illustrated in Figure 3.7, as p increases, they become smoother, meaning 

that the square sum of the derivatives decreases even though is kept fixed. Note that 
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the smoothest one is the one having p = 20. Comparing the estimated hemodynamical 

time series of p =5 and p = 10, we notice that they are similar to each other in terms of 

representing the duration of stimulus blocks as well as their locations. Moreover, when p 

= 20, the estimated convolution filter extends to the second block of the stimulus which 

completely fades away the peak around the time instant 50 and also the same affect is 

also observable to a less degree for the ones coming after the time point 100.  

 

In terms of the activation detection between voxels, the most important thing is the 

neural activity created on a voxel under a neural task. For instance, when a subject is 

shown a picture, this immediately creates a electro-chemical (neural) activity on the 

voxels in the visual vortex of the brain. On the other hand, in the regions of the brain 

which are irrelevant to visual inputs, voxels are insensitive, i.e, no particular neural 

activity is expected. This neural activity is named as the stimulus reaching the voxels 

estimated as the convolution filter signal in our blind deconvolution. For this reason, and 

in terms of the activation detection through clustering, one should use either the 

estimated stimulus or the hemodynamical time series which embodies the effect of 

stimulus. Passive voxels are the ones that the stimulus is not reaching, however they are 

still subject to some kind of stimulus due to the resting state neural activities. Actually, 

these resting state neural activities are always existent in the brain which can be modeled 

as noise, a stochastic delta process. Due to this noise, we think that instead of using the 

estimated stimulus directly, clustering the hemodynamical time series for selecting the 

activity type of the brain voxels is more reasonable. If one can capture one block of a 

stimulus pattern as the convolution filter in our model, then the other component d(t) 

will basically have a nice smooth peak located on the time points of each stimulus block 

for active voxels, named hemodynamical time series in this thesis. We believe, that is 

the ideal input for clustering. In this chapter, we analyze our blind deconvolution in 

terms of the hemodynamical time series estimation. For a good estimation we try to 

show that the length of the convolution filter should not be big such that it extends to the 

second block of the stimulus. Optimally, it should just contain a single block because 
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then the estimated hemodynamic time series includes only the HRFs for every block of 

stimulus and nothing else. In our cases, that corresponds to p is somewhere between 10 

and 20 in value (true value is 18). The effect of p on clustering is also explored in the 

sensitivity analysis in Chapter 5. 

 

As for HRF extraction, one should use a full length convolution filter meaning that p 

should be equal or close to the length of the input fMRI signal. Hopefully, then all the 

blocks of stimulus can be found as k(t), then d(t) would correctly estimate the HRF.  We 

treat this as a separated issue independent of the clustering. So we analyze this in the 

HRF extraction part in Section 4.1. 

 

 

3.2 Preprocessing  

 

Often fMRI signals are known to suffer from low SNR due to several subject or 

hardware dependent conditions. Our MAP based blind deconvolution algorithm 

increases the SNR for every fMRI signal, extracting basically the signal triggered only 

by the neural activity. In our real data experiments, we use the parameters for our blind 

deconvolution as in order to obtain the input signals for clustering. 

These parameters are going to be discussed in a more detailed way in the sensitivity 

analysis in Chapter 5.  

 

After we extract the hemodynamics, we realize a significant drift effect on many of the 

signals although our raw fMRI data are said to be preprocessed. So we propose a simple 

preprocessing algorithm to eliminate the so-called ‘drifts’ from the hemodynamics, that 

is to say, given the hemodynamics, we then fit a quadratic function to estimate the 

overall trend in the signal and then simply subtract it from the signal. It works in the 

linear case as follows: 
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Given an hemodynamical signal (di ), we want to approximate it with , so 

 

      (3.41) 

 

where 
 

 

 

 

And the solution is given as: 

 

      (3.42) 

 

        (3.43) 

 

As for the case of quadratic fitting, we update the matrices above such that they also 

incorporate the square terms: 
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Then the solution stays the same as in (3.43) and di is estimated to be di = ai2+bi+c. 

 

We standardize each filtered time course by subtracting the mean and dividing it by its 

standard deviation. In the absence of standardization, cross-correlation between two 

signals could be dominated by similar signal variances rather than similar patterns [56], 

[75]. 

 
 

Algorithm of preprocessing: 
 
Input: Raw fMRI, r 

1. d  extract_hemodynamic(r) 

2. Find d’ by quadratic fitting 

3. d  (d-mean(d)) / std (d) 

4. Return D=d-d’ 

 
Figure 3.8 illustrates the pre-processing on a real fMRI example: 
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Figure 3.8 Obtaining drift eliminated hemodynamic response 
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After we preprocess “hemodynamical time series” which is the output of our MAP Blind 

deconvolution algorithm, we use them as input to the clustering. In all clustering 

algorithms, the chosen distance/similarity metric is crucial for the success of the 

clustering algorithm so this is also valid for spectral clustering that we applied in this 

thesis. For this reason we compare possible metrics and this comparison showed us that 

the best results are obtained with Hausdorff distance. Through the following section we 

will give these comparisons with examples and also show how it fits well to the fMRI 

problem at hand.  

 

 

3.3 Hausdorff Distance of fMRI 

 

Activation detection is an important topic in fMRI data analysis. Given the fMRI signal 

for a voxel, a technique is required to declare whether that voxel is active or inactive 

under a neural task. In this thesis, one of our goals is to cluster the estimated 

hemodynamics based on their features highly correlated with voxel activation. As we 

state in the MAP Blind Deconvolution section, peak magnitudes and the locations of the 

peaks in a given fMRI signal are good features since they are strongly correlated with 

the stimulus reaching voxels which plays a central on activation. In this respect, we 

analyze the Hausdorff metric for clustering since we think of it as having powerful 

properties for activation detection of brain voxels. 

 

Unlike most distance measures, Hausdorff distance measures the distance or similarity 

between sets. That is, in the context of Hausdorff distance, vectors become sets and 

ordered points become unordered elements. Accordingly, given a hemodynamical time 

series which was extracted via MAP Blind Deconvolution D, we map it to a set S via:  

   (3.44) 
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where τ is the scaling factor in order for the time index i not to dominate the 

hemodynamic magnitudes, di. This mapping is due to the definition of the Hausdorff 

distance and the way it is calculated.  

 

First, we note that Hausdorff distance between S1 and S2 is the maximum of the directed 

Hausdorff distance from S1 to S2 and the one from S2 to S1 i.e,  

 

    (3.45) 

 

This is the usual way of generating a ‘metric’ which is symmetric based on the directed 

Hausdorff.  

Following is the algorithm for its calculation: 

 

Input:  

 Two time series:   

 Scaling parameter τ 

Algorithm: 

(1) Switch to set representations:  

a.  

b.  

 

 

(2)  Calculate the directed Hausdorff via: 

a. For every , 

i. Find   such the Euclidean distance 

 is minimized. So, s2j is the closest element in 
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set S2 to the element s1i, and the distance  is the corresponding minimum 

distance, let us denote it by dE1i. 

 

b. Then,   

 

(3)  

 

By shifting from vector representations to set representations, we are basically 

discarding the correspondences that are given by the order/position (or even dimension) 

of vector components in the vector representation, that is to say, d1i corresponds to d2i. 

However, the same is not true for s1i and s2i, i.e, we do not say, s1i corresponds to s2i 

since they are set elements but not vector components.  

 

For the sake of a simple comparison, standard Euclidean distance is a function of 

differences of the ordered vector components: . On the 

other hand, Hausdorff distance discards the correspondences between d1i and d2i. 

Instead, it constructs its own directed correspondences by finding the closest (closest in 

a sense with respect to the underlying metric which is usually the Euclidean metric) 

element  to a given element . Hence, with this new form of 

correspondence schema, d1i does not correspond to d2i but corresponds d2j. The 

Hausdorff correspondences are directly related to the map from the vector representation 

to the set representation which should be designed according to the application in hand. 

For instance one can use the map in (3.46): 

 

     (3.46) 
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In this case Hausdorff correspondences are completely based on the magnitude di’s, and 

so the vector positions (index i) are completely discarded.   

 

There can be many choices for this map and it is really a design issue depending on the 

application. Considering our clustering problem, we choose to use the map:  

  

     (3.47) 

 

This is a flexible choice for the reason that it provides a nice trade-off between the two 

extreme via the parameter τ. This is going to be illustrated later in this chapter (pages 

115-118) but before that let us continue with a mathematical treatment of our thoughts: 

 

• As , then our map converges to the map in (3.46): 

 

     (3.48) 

 

And then Hausdorff distance will completely ignore the positions of vector components, 

i’s, and the correspondences will be completely based on the magnitudes of vector 

components, di’s. In this case, for instance, there will be a perfect correspondence from 

d5 to d500 if d5 = d500 even though d5 and d500 are realized at positions which are very far 

from each other. 

 

• As , the scenario is totally different and the vector positions start dominating 

the calculation of pairwise distances: 

given instances,  and , then the distances between them, 

 

   (3.49) 
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    (3.50) 

 

Then, the Hausdorff correspondence will always be from  and  i.e, from 

 to  such that i=j. Hence, the correspondences will be completely based 

on the positions of vector components, i’s. In this case, directed Hausdorff distances 

become symmetric since  corresponds to  and  corresponds 

to . And interestingly, the Hausdorff 

distance converges to  distance between D1 and D2. The following theorem 

formalizes our thoughts for the case . 

 

Theorem: Given two finite length vectors (or time series),  

 

and given the maps 

 

 

 

the Hausdorff distance (as defined above) converges to distance between 

D1 and D2,  as  . 

 

Proof:  

For an element , we say corresponds to  iff  

.  

Then put the sets: 
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. 

 

Claim 1  such that , 

Then so for every ,  

and .  

    (3.51) 

 

Because of the symmetry,  

 
   

(3.52) 

 

Then obviously,  

      (3.53) 

 

 

Claim 2 If for some , , then there exists  and such that 

, . 

Pick an element . 

Then since , 

; where  
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However, 
 

 

 

 

 
 

Then put   so, 

 

 

and we can similarly define  also put . 

 

Hence, obviously,  

 and  

(by definition) 

Finally, by claim 1, since , 

 

 

 

This completes the proof. 
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As a result, as the parameter changes in the interval , we obtain a nice trade-off 

between having correspondences of the vector components based on alone their 

positions versus having those correspondences based on their magnitudes alone. These 

are the two limits of the trade-off. When , we obtain hard correspondences, which 

means that the magnitude values are completely ignored. On the other hand, when , 

this time the positions are ignored and the correspondences are based on magnitudes. 

And any value within this interval provides the trade-off.  

 

By fine-tuning this parameter, the Hausdorff distance gains the capability of establishing 

soft correspondences between the time instants of a time series and the neighboring time 

instants of another one. For example in the above example, d1i can possibly correspond 

to d2j if i is in the neighborhood of j. And the parameter τ precisely controls the size of 

this neighborhood. If it is zero, the size of this neighborhood is also zero and so d1i is 

forced to correspond to d2i. If we tune it, we can adjust the size of this neighborhood and 

d1i can correspond to d2j such that they are close to each other in time and is 

sufficiently smaller than . This is one of the nice properties of Hausdorff 

distance especially for the hemodynamic clustering problem because it often happens 

that the hemodynamics from a voxel turns out to be a delayed version of the 

hemodynamics of another voxel. In such cases, one wants to take care of such delays 

instead of directly assigning a large distance to them due to incorrect correspondences of 

the time instants. Let us consider a hypothetical example:     

 

Let ;  , 

     ; , and 

      

 

So we have two sinusoids, one D2, has larger peak-to-peak amplitude and a phase shift 

with respect to D1. We show the aforementioned property of Hausdorff distance on these 
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signals. Ideally one can argue that a good distance metric between D1 and D2 should be a 

function of (A-B) and ϕ which may be  where c is 

a weighting factor for the phase difference. For instance, the Euclidean distance 

, then would not be a good choice because it uses hard 

correspondences and never considers possible phase differences or shifts between its 

arguments. On the other hand, we expect the Hausdorff distance to be a better choice 

and closer to reality due to the aforementioned and discussed property. Figure 3.9 

illustrates these signals: 

 

 

 
Figure 3.9 Hausdorff distance between two sinusoidal signals 
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D1 is the blue colored sinusoid and D2 is black and as illustrated D2 is 100 seconds (time 

axis is shown as scaled by the parameter ) shifted rightward. The distances 

calculated by the Euclidean and Hausdorff are as follows: 

Euclidean = 341.6783  

Hausdorff = 5.6759 (which is precisely the length of red arrow) 

 

First thing to note is that the Euclidean distance generates an unnecessarily large 

distance due to the misalignment of the two signals. On the other hand Hausdorff 

distance generates a reasonable distance or at least satisfies our expectations since it is 

only related to the real deviation between the two signals in amplitude and phase. The 

arrows are the detected correspondences among which, the ones from D1 to D2 are not 

good matches because Hausdorff distance catches the similar or even same magnitude 

values from D1 to D2. This is mainly because the range of D2 covers the range of D1 and 

so it becomes trivial to find a similar magnitude value in D2 with respect to the 

magnitude of a given point in D1 since the distance calculation in this example is not 

very sensitive to the time due to a relatively low value of . The arrow A is an 

example of such incorrect correspondences. Note that its tail is on D1 and its head is on 

D2 which means the correspondence is from D1 to D2. As it is expected, the point (125, 

10) in D1 corresponds to (159, 10.07) in D2. Tail of this match is the peak magnitude of 

D1 and on the other hand, the head of this match is only 66% of the amplitude of D2 , 

meaning that a peak is matched to a hill. Similarly, all correspondences from D1 to D2 

are not good matches. However, Hausdorff distance is wisely not affected from such 

incorrect matches because at the final step of its algorithm, a maximum is taken between 

the two directed Hausdorff distances, that is to say, that Hausdorff distance is defined to 

be the maximum of length of all such correspondences, both from D1 to D2 and D2 to D1. 

As for the correspondences from D2 to D1, they are all correct correspondences, and so 

the two signals are clearly aligned well with the help of these correspondences. 

However, an interesting thing is happening that the red arrow (arrow B) is matching to 

far minima (still both minimums are in the same cycle of the sinusoids) but the others 
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(arrows C and D) are matching to close minima. To understand this, one should note that 

the second sinusoid D2 is 100 seconds ahead of the first sinusoid, and so the 

correspondences C and D are pointing leftward in time, which are correct. However, the 

minimum in the signal D1 corresponding to the tail of arrow B is not available, and so 

Hausdorff distance finds the next minimum in the signal D1, which is approximately 

3.75 seconds ahead. This is still a correct match in terms of the peak matches but just the 

time shift is found to be in the signal D2  but not . This happens only once and 

only in the first and last cycles of the signals (in the first cycle, from D2 to D1 and in the 

last cycle from D1 to D2). However, one can easily correct this issue by looking at not 

the maximum of lengths of all correspondences but, for instance, n’th maximum (note 

that the majority of matches are correct, in this example it is 2 correct and 1 incorrect 

matches) and actually we use this kind of adjustment and we call it ‘modified Hausdorff 

distance’ which was explained in Chapter 2.  

 

As a final note on this, after scaling the time with ( ), time axis lies within the 

range [0, 10] and the magnitude range is [-15, 15]. These ranges are comparable and so 

with the help of time scaling, we obtain the aforementioned trade-off. However, as we 

state in the theorem, if τ is set to a large value, say 10 in this example, then the range for 

time becomes [0 10000] and dominates the magnitude values which results in hard 

correspondences and make the Hausdorff distance  become  distance. Figure 3.10 

shows the same example with the scaling . 
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Figure 3.10 The effect of the time scaling parameter, τ, on the Hausdorff distance 

 

In this case the correspondences are shown with double headed arrows since with  

the directed Hausdorff distances become symmetric, that is to say,  corresponds to  

and  corresponds to . This is also clear from the fact that the arrows become 

vertical. The following are the calculated distances: 

 

Euclidean = 341.6783 

Hausdorff = 15.2727 

LinfEuclidean = 15.2727 

 

The effect is that the Hausdorff distance in this case becomes larger and far from 

optimality since the sinusoids here differ from each other not only through amplitude but 

also in phase and ideally we expect a good metric to be related to both of these 

parameters. With hard correspondences as in this example, and noting that the Hausdorff 

distance increased with respect to the previous example two times (5.6759-15.2727), it 
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becomes too sensitive to the phase shift since it discards the possibility that a phase shift 

exists. This example is also an illustration of the theorem proved before (page 111). 

 

Next we analyze how Hausdorff distance behaves under some noise conditions. We 

consider two cases on the same example: 

 

Case 1: We use zero mean unit variance additive independent Gaussian noises added to 

the signals above at every time instant: 

 

 

, 

 

, and 

 

 

Figure 3.11 shows an example of a realization of the above sinusoidal signals: 
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Figure 3.11 Hausdorff distance between two sinusoidal signals under zero mean unit variance 

additive independent Gaussian noises added to the signals above at every time instant 

 

Case 2: We use zero mean unit variance additive independent Gaussian noises added to 

the signal amplitudes: 

 

 

, 

 

, and  

 

 

Figure 3.12 shows an example of 100 realizations of the signals above, the blue region 

contains all the D1 realizations and the black region contains all the D2 realizations. 
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Figure 3.12 Hausdorff distance between two sinusoidal signals under zero mean unit variance 

additive independent Gaussian noises added to the signal amplitudes 

 

Case 3: We use zero mean unit variance additive independent Gaussian noises added to 

the phase of signal D2: 

 

, 

 

, 

and  

 

Figure 3.13 shows an example of 5 realizations of the signal D2 and also the D1 signal. 
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Figure 3.13 Hausdorff distance between two sinusoidal signals under zero mean unit variance 

additive independent Gaussian noises added to the phase of signal D2 

 

In order to have a statistically meaningful analysis of the behavior of Hausdorff distance 

under such noise conditions, we generate such signals 100 times and calculate the 

Hausdorff distance; Table 3.1 shows the mean and standard deviations of our findings: 
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Mean (Hausdorff(D1, D2)) Std (Hausdorff(D1, D2)) 

No Noise 
 

5.6759 

 

0 

Additive Noise at every 

time instant (zero mean, 

unit variance, Gaussian) 

 

5.7463 
 

 

0.4550 

Additive Amplitude noise 

(zero mean, unit variance, 

Gaussian) 

 

5.9194 

 

1.0891 

Additive Phase noise (zero 

mean, unit variance, 

Gaussian) 

 

5.476 
 

 

0.49 

 

Table 3.1 The mean and standard deviations of HD under different noise conditions 

  

According to our results, the standard deviation is approximately 1 when a unit variance 

and zero mean Gaussian noise is added to the amplitudes. This shows that Hausdorff 

distance with the settings above is directly and proportionally responsive to any 

amplitude changes. One can argue the same for the case when the same noise is added to 

the phase shift. Although the standard deviation is approximately 0.5 which may seem a 

little low, the distance measure prove to be still reasonably large since the distance is 

calculated together with the amplitude, which has a greater effect on the final distance 

value than the phase shifts due to a small . And lastly, Hausdorff distance is a 

little more sensitive than our expectations to the point wise independent Gaussian noises. 

This is because along a long time interval (in our example 1000), whenever a large noise 

happens, it directly affects the Hausdorff distance since it is based on the maximum of 

lengths of all correspondence vectors. However, it is still on an acceptable level since 

the most important thing is the responsiveness to amplitude and phase shifts which is, 
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according to our findings, good enough to dominate the point wise Gaussian noise 

conditions. Furthermore, for the fMRI-clustering problem, we work with smooth 

hemodynamics, so usually we do not expect point wise noise effect on the 

hemodynamics.   

 

One important drawback of Hausdorff distance is that it is overly sensitive to outliers, 

which, in the case of time series data, often happen in a relatively short interval of time. 

This is really expected because Hausdorff distance in its original form is directly the 

maximum of the length of aforementioned pointwise correspondences. Hence, whenever 

we observe a sudden magnitude-wise unusual activity that we call ‘outliers’, in a given 

time series data, this might result in a severe, wrong correspondence at one time instance 

at least and then the Hausdorff distance immediately gets affected by this. So it is overly 

sensitive to such outliers. To illustrate this effect, we simulate this kind of outliers by a 

Gaussian wavelet as in Figure 3.14:  
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Figure 3.14 Gaussian wavelet to simulate an outlier for a short interval of time 

 

Then we add this Gaussian wavelet representing a possible outlier to the signal D2  as 

follows: 

 

Case 4: Additive Gaussian wavelet of short support as outliers 

 

, (D2 stays unchanged.) 

=’Gaussian wavelet of order 8’ generated by the MATLAB command: gauswavf.  

It is illustrated in Figure 3.14.  

 

 

, and 
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The resulting signals are as in Figure 3.15. 

 
Figure 3.15 Two sinusoidal signals under additive Gaussian wavelet of short support as outliers  

 

Euclidean = 342.044 

Hausdorff = 9.6739 

 

In this case the Hausdorff distance turns out to be approximately 9.6739, which is 

approximately 70% more than the distance value without the outlier: 5.6759. This 

proves that even such an outlier of a short time interval severely affects the Hausdorff 

distance. However, we can make it more robust by using the ‘modified Hausdorff 

distance’, which was defined in Chapter 2. Recall that in the case of modified Hausdorff 

distance, instead of calculating the very maximum deviation between two given signals, 

we calculate the n’th maximum. The benefit of using modified Hausdorff distance is as 

follows: As long as the time duration of the unusual activity is short enough compared to 

the total length of the time series, then the majority of the point correspondences should 

still be correct, in other words, when the outlier is of a short period of time, then the 

wrong correspondences resulting from this outlier will not be many. Then just by 
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calculating the, say, n’th maximum of length of all correspondences, Hausdorff distance 

should then again be producing a reasonable distance, because in this case, it would be 

not sensitive to the first n-1 correspondences which would be wrong due to the outlier. 

Figure 3.16 shows the modified Hausdorff distance vs different choices for the 

‘coverage rate’ or the α parameter of the modified Hausdorff distance under different 

conditions:  

 

 
Figure 3.16 Modified Hausdorff distance with different α parameters under outlier, no noise and 

Gaussian noise conditions. 

 

The ‘blue’ curve in Figure 3.16 shows the behavior of modified Hausdorff distance 

between the original signals D1 to D2 (no noise and no outliers) versus different 

coverage rates. So when the coverage is 100% we recover the original Hausdorff 

distance, which is 5.676 as we reported before. As shown in the figure, there is a sudden 

drop between the 100% coverage (1st maximum) and 99%coverage (11th maximum). 

This is due to the fact that even though the signal D2 is ahead of D1 by , some of the 
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correspondences are found as if the phase difference was . In other words, 

because the infinite extension of the signals are not available or because the two signals 

start at different positions within their cycles, for some of the points in D2 the correct 

correspondences do not exist in D1 which results in some of the points in D2 being 

matched in the next cycle in D1. However, with the help of the modified distance, if we 

operate at the end of the initial drop, i.e, in ( ) we overcome this 

issue as long as the signals are long enough such that misalignment of the initialization 

of the signals cannot dominate the overall time series. And so at 

, the distance turns out to be 5.103 which is approximates the 

ideal distance:  

As for the case when there exists an outlier, modified Hausdorff distance still helps to a 

great degree. The ‘red’ curve in the above figure shows our findings for this case: If we 

set ( ), then we approximately recover the ideal distance again, 

5.103, and so we successfully discard the wrong correspondences due to the outlier.  

  

On the other hand, the situation is a little different when there exists pointwise 

independent unit variance zero mean Gaussian noise in signals. The ‘black’ curve shows 

the average of modified Hausdorff distances over 100 experiments with the same 

parameters under this noise conditions. As expected, when , then the 

average is equal to the original distance because the effect of zero mean noise is faded 

away. However, if we set  then there is an offset of 0.5 

compared to the no noise case. We think, this is because in an interval of 50 seconds, it 

is very likely that one of the realizations of 50 Gaussian noise components results in a 

wrong correspondence, which in turn generates an offset of . Through 

Tables 3.2, 3.3, 3.4, and 3.5, we summarize our findings on our hypothetical examples: 
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 Mean(Hausdorff(D1,D2)) Std (Hausdorff(D1,D2)) 

No Noise 5.6759 0 

Additive Noise at every time 

instant (zero mean, unit variance, 

Gaussian) 
5.7463 0.4550 

Additive Amplitude noise (zero 

mean, unit variance, Gaussian) 
5.9194 1.0891 

Additive Phase noise (zero 

mean, unit variance, Gaussian) 
5.476 0.49 

Outlier (Gaussian wavelet of 

order 8) 
9.6739 0 

 

Table 3.2 The mean and standard deviations of standard HD under different noise conditions 

 

 

 

 Mean (modified 

Hausdorff(D1,D2)) 
Std (modified 

Hausdorff(D1,D2)) 
No Noise 5.103 0 
Additive Noise at every time 

instant 
4.669 0.2356 

Additive Amplitude noise 5.2116 1.0891 
Additive Phase noise 5.4332 0.45 
Outlier 6.1581 0 

 

Table 3.3 The mean and standard deviations of modified HD with α=0.99 under different noise 

conditions 
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 Mean (modified 

Hausdorff(D1,D2)) 
Std (modified 

Hausdorff(D1,D2)) 
No Noise 5.0931 0 
Additive Noise at every time 

instant 
4.1104 0.2021 

Additive Amplitude noise 5.2175 1.3380 
Additive Phase noise 5.3231 0.3400 
Outlier 5.0993 0 

 

Table 3.4 The mean and standard deviations of modified HD with α=0.97 under different noise 

conditions 

 

 

 

 
Mean(modified 

Hausdorff(D1,D2)) 

Std(modified 

Hausdorff(D1,D2)) 

No Noise 5.0724 0 

Additive Noise at every time 

instant 
3.799 0.1819 

Additive Amplitude noise 5.451 1.4246 

Additive Phase noise 5.1441 0.1915 

Outlier 5.0846 0 

 

Table 3.5 The mean and standard deviations of modified HD with α=0.95 under different noise 

conditions 
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Noting the mean and standard deviation values in the above tables for the case of 

additive white Gaussian noise at every time instant, there emerges the variance-bias 

trade-off, since as the coverage rates drops, the modified Hausdorff distance becomes 

more and more robust to noise and the standard deviation declines. On the other hand, 

the average distance value becomes far from the original distance value in the case of no 

noise which brings a bias. For instance, when using the 50th maximum in the modified 

Hausdorff distance, we get the lowest standard deviation value 0.18 shown in table 3.5. 

This low value of standard deviation means that the distance is insensitive to the additive 

noise. On the other hand and for the same case, the mean value of the distance is 3.79 

which is 5.07 – 3.8 = 1.27 offset from the true mean. This is the bias aforementioned.   

 

As we already explained, modified Hausdorff distance is robust to outliers, i.e, unusual 

activity of a small time interval. Note that until using the 11th maximum as shown in 

tables 3.3 and 3.2, the modified Hausdorff distance is far from the true mean. However if 

we use the 30th maximum or more, it turns out to be very close to the true mean in 

Tables 3.5 and 3.4.   

 

Changes in the amplitudes of the signals directly show their effects in the calculated 

modified Hausdorff distances in all of the 4 tables above. Note that the standard 

deviations for this case are large, between 1 and 1.4, which is due to the unit variance 

amplitude changes we applied. This is reasonable and also desirable, because we want a 

good metric sensitive to general amplitude changes as well as the phase changes. 

 

As for the phase changes, the modified Hausdorff distance becomes less sensitive as the 

coverage rate decreases. This is not desirable but we, at least, want a good metric to be 

more sensitive to the phase changes than it is to the point-wise noise. And this is 

satisfied according to our findings. Note that, the standard deviation for phase changes is 

always bigger than the one for the point wise noise in all cases. 
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Hence, It is critical to operate at a right coverage rate. For our hypothetical examples, it 

seems to be somewhere between 99% and 97%. 

 

To sum up, modified Hausdorff distance has the following desirable properties: 

• Through the fine-tuning of parameter , it has the flexibility to correspond points on 

a given signal with the neighboring ones on another given signal. Hence, it can tolerate 

shifts and delays, which often happen in time series data. 

• It assigns distances with respect to only the amplitude differences between two given 

signals after correspondences as opposed to summing up all the differences at every time 

instant. So it is sensitive to two parameters: Amplitude and Phase shifts. 

• It allows small deviations such as small point wise magnitude changes. It is robust to 

such noises. 

• It is robust to unusual activities in a given time series: outliers. 

• In addition, since it is mostly sensitive to Amplitude changes and Phase shifts and 

less sensitive / robust to other effects, it tries to capture the space of signals in 2 

dimensions only. As a result of this, for the space of signals which can be parameterized 

through amplitude and phase shifts, it can capture the underlying topology of the space 

of such signals to a greater degree when compared to standard Euclidean based distance 

measures. And interestingly, for the space of such signals, i.e, signals that can be 

parameterized through Amplitude and phase shifts, using Hausdorff distance also means 

an effective dimensionality reduction since it is designed here on purpose for such 

signals. 
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Commonly used metrics on fMRI data and the Hausdorff metric: 

 

Almost all clustering methods involve three steps: (1) Preprocessing of the raw data and 

feature extraction, (2) using the right distance or similarity metric, (3) and using the right 

clustering algorithm. In this thesis, we combine the first two steps because one can 

always embed the first step in the distance calculation either explicitly or implicitly. It is 

well known that a clustering algorithm can be as good as the distance or similarity 

metric used. For aforementioned properties, we think Hausdorff metric is a good choice 

for fMRI data clustering. To understand this, in this section we compare Hausdorff 

metric with standard metrics such as Euclidean distance, Mahalonobis distance, Radial 

Basis Function (rbf) similarity, cosine similarity and also the ones which are frequently 

used in fMRI analysis. 

 

FMRI clustering has been extensively used for the identification of active regions in the 

brain as well as constructing a neural connectivity map. Most of them work either 

directly or through characteristic features such as the cross correlation with the 

experimental impulse train signal or again cross correlations between signals in the 

phase of defining the distances or similarities [19], [56], [70], [71], [74], [75]. For a 

couple of examples, in [19], the cross correlation function of a given time series ( in our 

case this time series is the estimated hemodynamical time series, but cross correlation in 

these papers are directly used on raw fMRI signals, so we denote it as F instead of D  ) 

with the underlying impulse train (the stimulus) is used as features and then hierarchical 

clustering is applied. Basically the transformation in (3.54) is: 

 

    
(3.54) 

 

where F is the fMRI signal of interest and s is the underlying impulse train of the 

experiment which takes zero value when the subject is at rest and 1 when he is given a 
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stimulus, and Z(n) is the cross correlation function.  In [19], Z(n) is used as the extracted 

features as well as the delay at which the maximum of Z(n) is observed. Based on these 

features, a clustering algorithm is applied. In this approach, the delay between the 

impulse train and the fMRI signal is carefully extracted and used. However, this 

approach requires the knowledge of the impulse train which is something we do not 

have in hand, and thus it is a signal we want to avoid in this thesis leading to a 

completely unsupervised method. 

 

In [19], cross correlation is used as features, and the clustering based on the features uses 

the standard Euclidean distance. In another work [70], inspired by [19], the following 

distance measure is defined based on the cross correlation features: Given two fMRI 

signals, ;  where  is the peak difference in the 

corresponding cross correlation functions  and .  And similarly,  is the delay 

difference in the corresponding cross correlation functions again. Here, as  decreases 

then the distance also decreases which makes sense because then also F1 and F2 gets 

closer to each other. And at the same time the delay between the two is also considered 

so that as the delay increases the distance also increases through L12.  

 

 As a result, this approach also requires the knowledge of the impulse train. Another 

issue is that, considering three time series:   and 

 is more similar to  than with each other, because  

while . This is counter intuitive, since a positive signal should be 

considered more similar to a negative signal. Furthermore, the metric defined above 

implicitly assumes that the temporal extent of the hemodynamic response and the 

underlying impulse train are equal which is not necessarily true. However, this kind of a 

metric might be used for a data reduction tool to which we will return later. So we can 

call this kind of metrics as ‘semi model based metrics’. 
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 On the other hand, in [56], a signal to signal distance measure is defined again based on 

cross correlations as a modification to the metric above: 

 

Given two fMRI signals: F1 and F2 

, ,  

And the distance,  
 

When compared to the semi model based metrics, this does not require the knowledge of 

the underlying impulse train. However, it still incorporates with the cross correlation. 

This time, as P12 increases, the distance value decreases since a greater P12 means a 

greater similarity or a stronger correlation between F1and F2. And similarly, the delay 

between the two again is considered in the distance function through L12. 

 

So these kind of metrics or slightly different versions of them are commonly used in 

fMRI data analysis. There are two common properties here to be noted: (1) the delay 

between given two fMRI signals are carefully extracted and it is incorporated in the 

distance function and secondly, (2) after the delay is compensated, the similarity 

between the two signals is measured by the correlation, or by the inner product. And 

finally a distance metric is constructed. 

 

Comparing the modified Hausdorff metric with cross correlation based metrics, 

especially the first property above makes good evidence that the delay or misalignment 

is an important issue not only in the analysis of time series data in general but also in 

fMRI analysis. And hence it makes the modified Hausdorff metric a good choice since it 

has its own way to deal with the delay. Intuitively the idea behind the Hausdorff metric 

can also be posed as in (3.55): 
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Hausdorff distance: 

 

   (3.55) 

 

Similarly, the idea of the cross correlation based metric is: 

 

  (3.56) 

 

The fundamental difference between the modified Hausdorff metric and the cross 

correlation based metrics is that modified Hausdorff metric is only sensitive to the 

maximum amplitude deviation between the given two fMRI signals. Let us say the 

difference between the peak-to-peak amplitude difference is 1 (in magnitude units) given 

two signals, then the modified Hausdorff distance is only sensitive to this quantity which 

means that it is completely insensitive to any magnitude differences less than 1. Through 

this property, the modified Hausdorff metric can tolerate any kind of variations and 

noise at any time points except the ones where peaks are located. On the other hand, 

cross correlation based distances are sensitive not only to peak-to-peak properties. In 

order for two signals to become similar in the case of cross correlation based distances, 

their overall shapes should be globally correlative, meaning that, after the delay is 

compensated, the inner product between them should be large. For an experimental 

demonstration on real fMRI signals, we choose an fMRI signal, which has an ID number 

608, which is shown in Figure 3.17. 
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Figure 3.17 fMRI signal with ID 608 

 

Then we find the nearest 10 neighbors of it (including itself) with respect to modified 

Hausdorff metric (with parameters ) as well as the cross correlation 

based metric, which are: 

 

Nearest 10 neighbors of the fMRI with ID: 608 w.r.t. modified Hausdorff metric =  

{608   607   609   611   660   664   551   663   661   553} 

 

Nearest 10 neighbors of the fMRI with ID: 608 w.r.t. cross correlation based metric =  

{ 608   607   609   605   611   660   604   553   664   551}. 

 

For a discussion of these, some examples are shown in Figure 3.18: 
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Figure 3.18 Cross correlation and modified Hausdorff distance between the fMRI with ID: 608 

and its neighbors  
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Both metrics seem to be good at finding the similar signals among nearly 2000 fMRI 

signals given the query signal 608. In the Figure 3.18 it is shown a couple of examples 

from the neighborhood of the query signal with respect to both metrics. First to note here 

is that the modified Hausdorff metric, as expected, is not affected by the large deviations 

in magnitude values of a short duration. For instance, the initial value of signal 611 

(Figure 3.18 C) is around -0.1 whereas the same value for 663 (Figure 3.18 E) is around 

0.1. Note that the query signal (Figure 3.17) also starts with a magntiude around -0.1 and 

so eventhough the maximum magntiude-wise deviation between the signals 608(query) 

and 663 is at least 0.2 initially but still this does not last too long, they can still be 

detected as similar with the help of the ability to adjust the coverage rate through α 

parameter. And next, even though the signal 663 is almost 10 time points ahead of the 

query signal, the modified Hausdorff metric is still able to catch the similarity. We can 

make the similar arguments for the cross correlation based metric; hence, with respect to 

the query signal, both metrics seem to perform similarly.  

 

 

However, the signals 661 (Figure 3.19E), 663 (Figure 3.19C) are not included in the 

neighborhood with respect to the cross correlation based metric, and the signals 604 

(Figure 3.19F) and 605 (Figure 3.19D) are not included in the one with respect to the 

modified Hausdorff metric.  These signals are as in Figure 3.19:  
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Figure 3.19 Different neighbors of fMRI with ID 608 wrt modified Hausdorff and cross 

correlation metrics 
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Considering the signals 663 (Figure 3.19 C) and 661 (Figure 3.19 E), they are not 

detected by the cross correlation (CC) based metric mostly because the shape of the 

signals in the time intervals around [55 65] and [80 100] do not match the corresponding 

parts of the query signal (Figure 3.17). CC based metric is sensitive to such variations. 

On the other hand, the modified Hausdorff metric can tolerate such variations as long as 

the maximum deviation between the two signals (maximum of length of all 

correspondences) is not affected.  As for the signals 604 (Figure 3.19 D) and 605 (Figure 

3.19 F), they are not detected, this time, by the modified Hausdorff metric because in the 

time interval [35 50] there is too much magnitude deviation between them and the query 

signal 608. Hence, this takes them out of the 10-neighborhood calculated by the 

modified Hausdorff metric.  

 

As a result, the two metrics are behaving very similarly but if taken a closer look, the 

fact that Hausdorff distance is more sensitive to amplitude changes and the cross 

correlation is more sensitive to the overall shapes of the signals through correlations, 

becomes appearant. 
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Hausdorff Metric in Comparison to Standard Metrics 

 

In this section we compare the modified Hausdorff metric to some of the well-known 

metrics: 

 

• Euclidean Distance(L2-distance):  

o Given two signals F1 and F2, the Euclidean distance is defined as; 

 

         (3.57) 

 

o Since it assumes 1-1 correspondences between ordered vector components, it is 

overly sensitive to shifts and delays in the signals. 

o It is also sensitive to outliers such as some unusual activity of a short duration with 

respect to the general shape of a given signal. 

o We can also extend the properties above in general for Lp-distances,   

 

    
(3.58) 

 

since, for all p, it still does not have the ability to tolerate delays and outliers since the 

generalization through p does not bring any capability to cover such delays or outliers. 
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• Generalized Euclidean Distance(Mahalanobis distance):  

 

Through linear transformations of the data, a fairly large class of metrics can be obtained 

by defining the following generalized distance: 

o Given two signals F1 and F2, the Mahalanobis distance is defined as;  

 

       (3.59) 
 

where Σ is a symmetric positive definite matrix. If it is used as the identity matrix, 

generalized Euclidean distance precisely turns out to be the standard  

Euclidean distance. If it is a diagonal matrix, then this metric first scales the signals in 

each dimension (or at each time instant) with the corresponding diagonal element, and 

then calculates again the standard Euclidean distance. And in general, since Σ is positive 

definite, then there exists T such that Σ=TTT. Then, 

 

 (3.60) 

 

where  which defines a linear transformation through the matrix T. 
 

Hence, in general, Generalized Euclidean Distance is just the standard Euclidean after 

some linear transformation. 

 

o The data covariance is often used as . In this case the corresponding linear 

transformation uncorrelates the data and makes it of unit variance in each dimension. In 

terms of distances, this might be a better choice because it adaptively finds the principal 

directions in the data and then it calculates the Euclidean distance according to the 

directions and corresponding variances. For instance, from a point to another one on a 
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direction on which there is large variance, this distance then is relatively small compared 

to the ones having small variance.    

o Despite good properties, however, it is still not suitable for fMRI clustering. Firstly 

because, it requires the covariance estimation. In general fMRI data have high 

dimensionality, say, 150. Then ((150x150+150)/2)=11325 parameters need to be 

estimated. And most of the time a large enough sample size is not available in order to 

have a good estimation. Secondly, this metric also does not address the delay and outlier 

issues because it brings a generalization through linear transformations only. On the 

other hand, we want to discard some unknown parts of the signals intelligently if there 

exists an outlier and compensate for possible delays. These two together already require 

a nonlinear process and would increase the complexity of the method.  

 

 

• Gaussian Similarity:  

 

As opposed to measuring ‘dissimilarity’ between two data points by defining a distance 

function, one can also use a ‘similarity’ measure as they are very close notions being the 

inverse of each other. One of the very well-know similarity measures is Gaussian 

Similarity is defined as (3.57): 

 

        (3.61) 

 

where g is the bandwith parameter controlling how fast the similarity decays from one 

point to another as they get further from each other.  

o The quality of this similarity measure is dependent not only on the bandwidth 

parameter but also on the distance funtion whose exponential is taken. In this example, 

and in its mostly used form, standard Euclidan metric is used. Hence, unfortunately, this 

kind of measures do not help in terms of delays and outliers. 
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• Cosine Similarity:  

 

This is another commonly used similarity mesure in data analysis. Given two data 

points, it is basically cosine of the angle between them.   

 

     
(3.62) 

 

o Cosine similarity turns out to be just the inner product between the data points when 

they have unit norm. And in this case, interestingly, it is precisely the cross correlation at 

zero’th shift. However, since we can actually observe shifts in the data as we already 

mentioned, this kind of a similarity measure is also not a good choice for our approach. 

If the delay is compensated and then the cosine similairty is calculated, then this might 

do a decent job. Though, then it would be nothing but a different version of the cross 

correlation based metric which has been already analyzed versus the modified Hausdorff 

metric. 

 

For an experimental comparison of these metrics, we choose three fMRI signals from 

nearly 2000 fMRI’s. For the calculation of mahalanobis distance, we use the empirical 

data covariance. A summary of our findings are in Figure 3.20: 
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Figure 3.20 Comparison of the metrics 

 

Visually speaking, FMRI_553 (Figure 3.20 A) and FMRI_611 (Figure 3.20 C) are 

similar to each other but FMRI_553 is 10 time points ahead of FMRI_611, moreover, 

there is also an outlier effect in FMRI_553 which is that it starts with a very high 

magnitude, 0.1. On the other hand, FMRI_491 (Figure 3.20 B) is shape-wise 

significantly different from the other two. Except the modified Hausdorff distance, 

FMRI_553 turns out to be more similar to FMRI_491 than it is to FMRI_611 for all 

other metrics and similarity measures which is incorrect due to the delay between them 

and the outlier in the beginning of FMRI_553. On the contrary, modified Hausdorff 

metric succesfully satisfies our visual expectations and detects the shape-wise similarity 

between FMRI_553 and FMRI_611 with the help of its capability of coping with 

possible delays and its robustness to outliers as H(553,611) < H(553,491). 
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So, according to our discussions and comparisons, the modified Hausdorff metric is 

readily a powerful choice for fMRI data analysis and it has a close relationship with the 

Cross Correlation Based metrics in terms of the way they deal with possible lags in the 

observed fMRI signals. Hausdorff metric matches the time instants with the ones in 

another given signal by finding the amount of shift. On the other hand, Cross Correlation 

Based Metrics matches the signals by finding the possible shifts in between two given 

signals. From a perspective of computational complexity, since Hausdorff metric 

calculates all possible distances between every pair of fMRI magnitudes at time instants, 

it has a complexity of O(N2) where N is the dimension of fMRI data. However, if we 

expect at most z amount of delay, then the complexity for a cross correlation operation 

would be O(zN). So instead of matching the time points, via cross correlation first we 

estimate the possible delays, and then we apply modified Hausdorff metric. Also 

throughout our work we do not use stimulus pattern (since it is unknown to us in our 

problem), which is needed for the cross correlation metric. From these points of view 

modified Hausdorff distance is chosen as distance measure. 

 

Given two fMRI signals: F1, and F2, if the estimated delay between them is 

 and  is our scaling parameter, then the distance measure that is used in 

our clustering algorithm is: 

 

   
(3.63) 

 

 

 

 

 



 146 

3.4 Spectral Clustering after MAP Blind Deconvolution 

 

After calculating the modified Hausdorff distances between the pairs within the fMRI 

data set, we use them for constructing the similarity graph on data and so for generating 

the matrix W in our algorithm, which holds the edges and edge weights for each pair of 

graph nodes. There are several ways proposed for this part, such as generating fully 

connected graphs and partially connected graphs. For fully connected graphs the most 

common method is that each node is connected to every other node and the weight for 

each node is assigned according to a Gaussian kernel using Euclidean distance, i.e,  

. This is also called similarity matrix. As for the partially 

connected graphs, the most common way is taking a neighborhood approach and 

masking the similarity matrix, i.e,  

 

 

 

 

 

Taking the maximum of two edge weights is to just make the similarity matrix 

symmetric. Using the minimum is also possible. Instead of having a real valued 

similarity matrix, using a binary valued similarity matrix is also reasonable choice, i.e, 
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In this work, we used a binary valued similarity matrix with respect to modified 

Hausdorff distance. That is to say, we detected whether a point di is in the k’th 

neighborhood of di by using the modified Hausdorff distance. Once having the similarity 

matrix constructed, then spectral clustering is solving the generalized eigenvalue 

problem  where L is the Laplacian and D is the diagonal matrix computed via 

similarity matrix W. Then, the eigenvectors returned by the generalized eigenvalue 

problem are sorted in ascending order with respect to the corresponding eigenvalues and, 

depending on the desired number of cluster that one want to find in a given data set, first 

nclass of them give the spectral mapping: 

 

Given the eigenvectors as: 

 

 
 

 

where , 

so the spectral mapping of a data point given nclass is 
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In the end clustering is finalized by applying EM clustering in the spectrally transformed 

space. Here the reason using EM instead of using k-means is that EM is a more 

sophisticated algorithm and is capable of detecting nonlinear boundaries between 

clusters. 
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Algorithm 

 

In what follows, we summarize our complete algorithm. The preprocessing step was 

already explained in Section 3.2. The details of the algorithm are going to be discussed 

along with the experimental results in Chapter 4. 

 

Algorithm (using MATLAB notation): 

 Input: 

o fMRI data:  

o Parameters: 

 Blind Deconvolution parameters:  

 Hausdorff distance parameters:  

 Spectral Clustering parameters:  

 Processing of fMRI: 

o Extract each hemodynamic:  

o Normalization: 

  

  

o Drift Elimination 

  

 Compute the distance matrix: 

o  

o  

 Spectral Estimation: 

o Construct the graph matrix  

  

 Symmetrization: 
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•  

•  

o Compute the matrices:  

  

  

o Compute the eigen map 

 (eigenvectors are sorted w.r.t eigen values in 

ascending order) 

  

 Clustering 

o EM:  
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CHAPTER 4 

 

 

4 EXPERIMENTS AND RESULTS 

 

 

 
There are two types of experimental designs commonly used in fMRI: blocked design 

and event-related design. In our work both the simulated and the real fMRI data adheres 

to the block design experiment paradigms. Before going further in the results of our 

experiments, we will mention what is the meaning and difference of these two 

paradigms in order to make more realistic comments and understand the meaning of the 

outputs in our algorithms. After experimental paradigm explanations we will give and 

discuss the results of our algorithm. 

 

Blocked designs were the earliest type of experimental design used for fMRI research 

and remain important today. In a blocked design, there are two conditions, the 

experimental condition and the control condition. The experimental condition is the task 

that the researcher tries to test which is known as task block. These tasks may involve 

finger tapping, lip pursing, and toe curling, illustrations of lights, patterns, photographs, 

word rhyming, word generation, decision making in response to a stimulus that is 

delivered visually or auditory. In the control condition, the stimulus is either not present 
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at all or it is much less evident which is known as rest. The task and rest blocks are 

alternated, allowing the hemodynamic response to rise and saturate. Statistical 

comparison of the two states is done, and any background neuronal activity occurring 

during the rest block is subtracted from the activity elicited by the independent variable. 

The task blocks may be the same each time or may consist of different tasks, and the 

time between the blocks can be varied as needed. When blocks are too short, there is 

very little difference between the task and rest blocks. Longer blocks give the best 

separation between peak hemodynamic response and resting state. However, when 

blocks are too long, low frequency noise becomes a big problem. Blocked designs are 

very good at detecting active voxels, but not very good at estimating the timing of the 

hemodynamic response. Blocked designs are simple to set up and understand, and they 

provide strong, statistically relevant results. Blocked designs are the most frequently 

used design for clinical fMRI. An example of an fMRI time course using a blocked 

design is provided in Figure 4.1. 

 

 
Figure 4.1 fMRI signal generated using Block-Design Experiment 
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There is also a special and advanced type of block design, which is called categorical 

block design. By means of categorical block design, activation in one task is compared 

to that in another task. Categorical designs assume that cognitive processes can be 

dissected into sub-cognitive processes and that one can add or remove cognitive 

processes by “Pure insertion”. Pure insertion assumes that one can add or remove 

cognitive processes without influencing others. Activation in one task is compared to 

that in another task considering the fact that the neural structures supporting cognitive 

and behavioral processes combine in a simple additive manner using categorical block 

design paradigm. It gives the opportunity of testing multiple categorized hypotheses. 

Several hypotheses are tested, asking whether all the activations in a series of task pairs 

are jointly significant. 

 

Event-related design, is the other major type of experimental design used in fMRI, well 

suited for stimuli that generate brief bursts of neural activity. An example of fMRI using 

an event-related design is a flash of bright light that elicits a burst of activity in the 

occipital cortex. These stimuli are known as "events". Event-related designs are very 

good at estimating the timing of the hemodynamic response and can be optimized to 

infer similar activation information as in blocked designs. An example of an event-

related design is shown in Figure 4.2. 
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Figure 4.2 Example of Event-Related Experiment 

 

a. Impulses of stimuli      b. fMRI signal c. Hemodynamic response function 

 

In this chapter initially we will give the results of hemodynamic response estimation. 

These estimated HRFs give the characteristics of the related voxel. Then changing the 

convolution filter parameters we obtain smooth time series that contain the 

hemodynamical time series. These time series include the hemodynamical response to 

each stimulus block and gives the instant information how the subject responded to the 

administered impulse pattern. These hemodynamical time series are then used as input 

of our clustering algorithm. Finally the results for clustering will be discussed.  
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During the experiments we used one set of simulated data and two sets of real data. For 

the simulated data set we used Balloon Model [80], [81], [82] with parameters ε=0.5, 

τS= 0.8, τf= 0.4, τ0= 1, α= 0.2, E0 = 0.8, V0 = 0.02.  

 

First real fMRI data set ”Data27” is obtained from a block design experiment. In this 

block design experiment, a classical finger tapping paradigm is used, with 60 time points 

collected in 3 cycles which contained 10 samples for each ON or OFF periods through 

the echo planar imaging protocol.  

 

Second real fMRI data set is obtained from a categorical block design experiment. In 

this experiment, fMRI data is obtained from a 1.5T Siemens scanner. It is an fMR 

adaptation paradigm investigating subtle effects in face processing. This fMRI data 

consists of 177 time points with 6 cycles. 

 

Active and passive voxels in both real datasets are classified beforehand via general 

linear model, which served as ‘ground truth’. 
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4.1 Hemodynamic Response Function Extraction 

 

Recalling our convolution regarding the observed fMRI signals, we have the model in 

(4.1): 

 

    (4.1) 

      

where, 

 
r(t): Observed signal, fMRI. 

d(t): Hemodynamic response function. 

k(t): Convolution filter (stimulus). 

n(t):  Additive White Gaussian Noise (AWGN) 

t:       Discrete time 

 

In the fMRI literature, Hemodynamic Response Function (HRF) is known as the impulse 

function of brain voxels. Hence, ideally, fMRI signals are modeled as response of brain 

voxels to a given stimulus, such as an impulse train like a square wave which can be 

posed as the convolution of HRF with the stimulus as in (4.1) with noise added on. In 

the methodology chapter, we explain our blind deconvolution algorithm and study the 

case for estimating the hemodynamical time series where k(t) is used as a convolution 

filter of a small support. If we use k(t) of full length or close to full length, we hope to 

recover the stimulus as k(t) and extract HRF as d(t). Ideally, HRF is expected to have a 

characteristic shape as shown in Figure 4.3:   
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Figure 4.3 Hypothetical Hemodynamic Response Function 

 
 

A typical HRF as shown in Figure 4.3 exhibits a rise to a peak around 5-6 sec followed 

by an undershoot, which lasts until 10-12 sec and then a recovers around 15-18 sec. The 

duration for HRF to reach its peak is reflected as a delay in the BOLD response, or in 

fMRI time series due to the convolution. And assuming that there is a sufficient time 

between impulses in a given stimulus, the resulting fMRI time series should have peaks 

as many as the number of single impulses or task blocks. 

 

To test our HRF extraction, first we used the simulation data, which is based on the 

Balloon Model [80], [81], [82]. The parameters for the simulation of BOLD signal 

change is the same as in [82], ε=0.5, τS= 0.8, τf= 0.4, τ0= 1, α= 0.2, E0 = 0.8, V0 = 0.02.  

Then we applied our algorithm on both real data sets.  
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Figure 4.4 An example of simulated fMRI and its stimulus pattern and its original BOLD 

response 
 
 
We apply stimuli blocks between the time intervals of [40, 60], [100, 120], [160, 180] 

for generating simulation data. In Figure 4.4 first thing to note is that the BOLD 

response of the fMRI signal is a little delayed with respect to the corresponding 

stimulus. This is actually due to the rising time of HRF. Secondly the base level of the 

BOLD response is around 96 and the value it takes at time instant 100 is around 95, the 

difference in between the peak and minimum value that BOLD response takes is 

precisely due to the undershoot of HRF.  

 

We run our MAP blind deconvolution algorithm to estimate the Hemodynamic 

Response Function, for an example, on this example with the parameters: 

•  

•  
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Here, we choose a very small number for κ, which controls the smoothness of estimated 

HRF. In order to avoid any large swings on HRF, we should set it small. And also we 

choose a sufficiently large number of the convolution filter length since we aim to 

capture the whole stimulus pattern as our convolution filter. Note that the last time point 

at which the true stimulus has an impulse, is 180, so p should be at least 180. Under 

these settings, we successfully estimate the stimulus when only the observed fMRI is 

given. Our findings are illustrated in Figure 4.5:  

 

 
Figure 4.5 Estimated HRF, estimated stimulus and their convolution “Estimated BOLD 
Response” given a simulated fMRI signal with and p=200 
 

 

As shown in Figure 4.5, we extract the unknown stimulus very nicely (Figure 4.5c), 

which seems almost perfect except that it is shifted rightward by an amount of 5 time 

points. As for our estimated HRF (Figure 4.5d), we can argue that our algorithm 
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performs well except that HRF estimation misses the rise to the peak of the ideal HRF. 

Otherwise, it has a nice undershoot and it also settles around zero. To understand why it 

misses the rise to the peak, we should concentrate on our smoothness constraint that we 

impose on HRF. Basically, a quick rise to the peak violates our smoothness constraint in 

the iterative optimization phase of our MAP blind deconvolution. In order for our 

deconvolution to also find the rise to the peak in the HRF, it has to locate the stimulus at 

its exact locations, which should be shifted leftward with respect to the one shown in 

Figure 4.5 by amount 5 time units. Then, the approximation error of the observed signal 

in our model by the convolution would not change much. On the other hand, the HRF 

then would have a larger sum of first order derivatives, which is further penalized in our 

optimization. Hence, our algorithm basically chooses the stimulus at its original location 

and misses the rise to the peak in favor of lower derivatives. In this case one can 

immediately think to lower the smoothness parameter κ, one example of this idea is as 

follows with : 
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Figure 4.6 Estimated HRF, estimated stimulus and their convolution “Estimated BOLD 
Response” given a simulated fMRI signal with and p=200 
 
 
In this case, we have a little better catch of the rise to the peak in the estimated HRF 

(Figure 4.6d) which, though, still does not seem satisfactory enough. Note that this time 

we have a better estimate for the BOLD response (Figure 4.6b). Hence, we better 

increase the smoothness parameter : 
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Figure 4.7 Estimated HRF, estimated stimulus and their convolution, “Estimated BOLD 
Response”, given a simulated fMRI signal with and p=200 
 
 
However, Figure 4.7 shows that further increasing the smoothness parameter does not 

actually help. The algorithm after a critical value for κ between 10-4 and 10-3 starts 

estimating the HRF and stimulus in favor of a better data fitting which means that 

algorithm starts fitting to noise as well. For that reason, HRF and stimulus estimation are 

not satisfactory in this case.   

 

Next we do a similar analysis on the categorized block design real data set. Figure 4.8 

shows the real fMRI data with voxel ID_70 from this data set together with the stimulus: 
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Figure 4.8 The real fMRI with ID_70 and its stimulus pattern 

 

The stimulus of this experiment actually consists of impulse blocks each of which has 

two different successive categories. As a result of this type of design, in each block, 

fMRI signals tend to have two sub-blocks, which show itself in this example as well. 

Note that for the blocks 2, 3, 4, and 5, two separate peaks are visible. 

 

When we run our MAP blind deconvolution on this fMRI signal, we estimate, as before, 

HRF, BOLD response and stimulus which are all shown in Figure 4.9: 
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Figure 4.9 Estimated HRF, estimated stimulus and their convolution, “Estimated BOLD 
Response”, given the real fMRI signal with ID_70 
 
 
First of all, although the estimation of stimulus pattern (Figure 4.9c) in this case is not as 

good as the one in our simulation data, it is still good enough to locate the impulses only 

within the true impulse blocks. Moreover, the estimated BOLD response (Figure 4.9b) 

clearly has all peaks corresponding to the stimulus blocks except the last one. This is 

basically because in the observed fMRI signal, the last stimulus is not distinguished or 

visible, so the algorithm does not detect it. As for the estimated HRF signal (Figure 

4.9d), we can argue that it is similar to our findings in the simulations except that the 

initial peak is followed by a smaller next one because of the categorical stimulus design. 

That is to say, the first peak in fMRI corresponding to the stimulus blocks is generated 

by initial peak of the HRF, and the second one of fMRI’s is then generated by the 

smaller peak of estimated HRF. Normally, since we want to capture the impulses as our 

convolution filter, we upperbound the filter taps by 1. Indeed, the responses for each of 
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the category in blocks are expected to differ especially in the intensity point of view. 

But, for the sake of generalization, usually the applied stimulus blocks have the same 

intensity, which in turn forces to give the same impact. In reality, this is not the case. 

Instead when the category changes naturally its impact on the neural activity should also 

change. So, in this experiment which has stimulus blocks in different categories, the 

stimulus pattern should better be more relaxed. For that reason we may remove the 

upper bound on the convolution filter taps.  

 

Next we study the fMRI signal from voxel with ID_100 in Figure 4.10. This voxel is 

extracted from our real data set with no upper bound convolution filter:  

 

 
Figure 4.10 Real fMRI data with ID_100 and its stimulus pattern 
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Figure 4.11 Estimated HRF, estimated stimulus and their convolution, “Estimated BOLD 
Response”, given real fMRI signal with ID_100 
 
 
The very first observation is that by removing the upper bound on convolution filter 

taps; we now are also able to detect the strength of the stimulus blocks (Figure 4.11c). 

For instance, in this example the strongest stimulus block is the one in the middle. 

Moreover, in the stimulus blocks, we detect two impulses, one is smaller and the other 

one is the larger. These impulses basically represent each categorical impulse in the 

underlying neural task, or represent the two successive peaks for each block in the fMRI 

signal. With the help of the two-peak detection for every block, we basically get rid of 

the second small peak of HRF of the previous case and obtain a better HRF estimation 

(Figure 4.11d). Similar to the previous case, there is no impulse detected in the last 

stimulus block (Figure 4.11b) since it is not distinguishable in the given signal, fMRI. 
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In the following, we show an example from voxel ID_215 from the class of passive 

fMRI time series, which represents the case when the voxel does not respond to the 

given stimuli. Figure 4.12 is the output of our algorithm: 

 

 
Figure 4.12 Estimated HRF, estimated stimulus and their convolution, “Estimated BOLD 
Response”, given real fMRI signal with ID_215 
 
 
As expected, this time the detected peaks in our estimated stimulus (Figure 4.12c) are 

very small ones and they are probably due to some intrinsic noise in the brain. Estimated 

BOLD response (Figure 4.12b) is hardly showing any sign for activation, mostly 

fluctuating around zero. The estimated HRF (Figure 4.12d) is the signal which is going 

to produce the observed fMRI through the convolution of estimated BOLD signal with 

very small impulses located in the middle. Hence, it spreads to a larger area in time 

compared to any other characteristic HRF. 

 



 168 

At last, we conduct an HRF estimation experiment on the data set ‘Data27’ which is 

from a finger tapping neural task that has a block stimulus as in Figure 4.13:  

 
Figure 4.13 An example of real fMRI data from “Data27” with ID_11 

 

In this experiment, once again the brain generates a valid physiological response to the 

motor stimulus with some delay of 2-3 time units. Our algorithm generates the results in 

Figure 4.14 for this example:  
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Figure 4.14 Estimated HRF, estimated stimulus and their convolution, “Estimated BOLD 
Response”, given real fMRI signal from “Data27”with ID_11 
 
 
The true stimulus pattern is estimated with a correct amount of duration and periodicity 

but it is shifted (Figure 4.14c). Ideally the estimated HRF (Figure 4.14d) should have 

been narrower with a quicker decrease after hitting the peak. However, our smoothness 

constrain forces it to be a little wider and for that reason it creates a larger delay. As a 

result, to compensate the large delay that the HRF puts, the estimated impulse pattern 

begins a little earlier.  
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Modification for HRF Extraction 

 

To sum up, the stimulus patterns estimated by our algorithm are acceptable. As for the 

estimated HRFs, in order for it to settle, κ is chosen to be small. But then we miss the 

initial rise of the ideal HRF. To adjust for the initial rise, κ should be increased, but then 

HRF does not settle and starts fluctuating. This is because we use the same penalties for 

derivatives at every time point. However, ideally HRF has large derivative values in the 

beginning and small ones in the end. To overcome this issue, and also to improve the 

overall HRF estimation, we adjust the smoothness constraint accordingly: 

Recall that the smoothness constraint was: 

 

 (4.2) 

 

Instead of it, we use time dependent derivative penalties, meaning that at every time 

instant we apply a different penalty for the derivative: 

 

(4.3) 

 

where Z is a diagonal penalty matrix. Ideally, Z values for the first time instants should 

be smaller than the rest, so that we allow larger variations in the beginning of estimated 

HRF than the ones in the end. 

 

Originally, we assign uniform penalty to large derivatives throughout the estimated 

HRF. We adjust it by incorporating the diagonal matrix Z in our MAP estimation, such 
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that instead of minimizing |Ld|2, we minimize |ZLd|2 where the diagonal entries of Z 

keep the penalty values for a unit derivative at every time instant. Hence, if we put large 

values in the first diagonal entries and small values in the rest of the entries, we get the 

desired effect. Mathematically, this results in a prior Gaussian distribution on the HRF 

which does not have a circular shape but an elliptic one. This kind of change can easily 

be incorporated within our Bayesian approach. 

 

 
Figure 4.15 Modified HRF of the simulation data with σAWGN=4 

 
With the help of this modification, the estimated HRF of the previous simulation data 

with σAWGN=4 as shown in Figure 4.6d becomes closer to the ideal HRF and we can 

obtain the initial rise of the HRF as it is seen in Figure 4.15d. Also, the estimated 

stimulus pattern (blue one) in Figure 4.15c almost matches the unknown true stimulus 

(red one).  
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Figure 4.16 Modified HRF of the simulation data with σAWGN=4, σjitter=4, σlag=16, σdrift=16 
 

Even if we have a noisier fMRI signal with σAWGN=4, σjitter=4, σlag=16, σdrift=16 (Figure 

4.16a), our algorithm can still estimate HRF with initial rise as shown in Figure 4.16d. 

Stimulus pattern is also estimated well except that a few incorrect impulses are observed 

in the estimated stimulus as in Figure 4.16c.  
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Figure 4.17 Modified HRF of the real data with ID_6 

 

Our real fMRI experiments produce results as good as the ones in simulations as it is 

seen in Figure 4.17 (real fMRI data from the experiment with successive categories). If 

we take a closer look on the estimated HRF (Figure 4.17d), we notice that it is very close 

to the ideal shape of HRF. 
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Figure 4.18 Modified HRF of the real data with ID_135 

 

Figure 4.18 shows another example voxel from the same real fMRI dataset. Here the 

HRF is estimated satisfactorily (Figure 4.18d). As for the estimated stimulus pattern 

(Figure 4.18c), our findings show that, the external stimulus does not truly show itself in 

the fMRI signal and the subject cannot perceive the whole applied stimuli. For example, 

the subject may not perceive the entire stimuli or may not attend similarly throughout 

the experiment. This explains why we do not prefer to use external applied stimulus as 

input in our approach. 

 

Estimated hemodynamic response functions give the characteristics of the corresponding 

voxel. They can be used as input to clustering in order for determining functional 

similarities of voxels. But due to the variability of the HRFs we preferred to use 

hemodynamical time series in clustering analysis. In the following section we present 

the estimated hemodynamical time series and the advantages of using them as input for 

our spectral clustering algorithm. 
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Hemodynamical Time Series  

 

Hemodynamic response is essential for a better understanding of the activation 

characteristics of the related voxel. But, for our clustering approach using HRFs of 

voxels does not yield satisfactory results since HRF is intrinsic to the neural tissue 

underlying a specific voxel or a group of voxels and it is not the same for all active 

voxels.  That means, even if the general shape of the active HRFs are similar, their 

intensity, rise time, durations and the fall time can vary from voxel to voxel. Due to the 

variety of HRFs, using a single HRF for representing the related voxel is not convenient 

for grouping the voxels according to their activation. Instead, in this thesis, we use 

“hemodynamical time series” as input to our clustering algorithm.  

 

Hemodynamical time series includes the characteristics of HRF and also the information 

of the underlying stimulus such as the location of stimulus blocks as well as the duration 

of them. In some way, it represents a noise-free physiological response for the stimulus 

perceived by the subject. Throughout the experiments, at some period, the subject may 

not concentrate on the task; therefore the activity in the responding voxels may slip. This 

also affects the obtained HRF, so the clustering algorithms using pure HRFs may have 

misleading results. In another example, the subject may move his head at some instant 

yielding a defected HRF derived from this interference. But, these will affect the 

response of all voxels at the same instant with same durations. For instance, active 

voxels will be inactivated or less activated during the same time period, causing an 

unexpected variation in the fMRI signal. However, this variation will be consistent 

throughout the voxels that are similar in their functionality, allowing for their clustering 

together. Unfortunately, in the extracted HRFs, we cannot observe properly these 

defects, more importantly we cannot know the timing of the actual stimulus. Since 

hemodynamical time series contain response to the stimulus perceived by the subject on 

the spot, we can clearly realize the activation due to the actual stimulation for all voxels. 

As a result our clustering algorithm will be immune to this type of problem. 
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In the following sections we will give some examples on hemodynamical time series of 

real fMRI data sets. The example signals are chosen to clearly show that the evoked 

neural activity is not always the perfect response to the applied stimulus rather it is the 

response only to the actually received underlying stimulus. As we claim that the receipt 

of actual stimulus may differ from voxel to voxel, then it only natural that the related 

neural responses differ as well. Here, the effect of the actual stimulation on the neural 

response will be clarified making the reason for using the hemodynamical time series 

more evident. Also, we will put forward some physiological inferences and comments 

on the neural responses.   

 

4.1.1 Block Design Hemodynamical Time Series 

 

In the block design experiment, fMR images are obtained, in a classical finger tapping 

paradigm, as 60 time points are collected in 3 cycles which contained 10 samples for 

each ON or OFF periods through the echo planar imaging protocol.  

 

 
Figure 4.19  fMRI Block Design Paradigm 

 

Active and passive voxels are classified beforehand via general linear model, which 

served as ‘ground truth’. 

 

Below, the fMRI data generated using block design stimuli and the corresponding 

hemodynamical time series are shown: 
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a) Active Voxels: 

 

 
Figure 4.20 a) fMRI Signal b) Hemodynamical Time Series obtained from 1st voxel of 

Data27 

 

If we present a categorically similar stimuli block to the subject, we obtain activations as 

in Figure 4.20. If only one stimulus is delivered, a small peak would be observed as 

activation, which sometimes may be too small to be detected. However as the number of 

the applied stimuli is increased to form a block, the hemodynamical activations will 

exhibit a cumulative effect through convolution. Since the type of stimulus is fixed 

within a block, the evoked brain activity is thought to be the same for each stimulus. 

However, this assumption fails to consider changes over time in arousal and attention. 

Even when fully alert, subjects are often thinking about something other than the 

experimental task. Moreover, if one repeatedly presents the same stimulus blocks to a 



 178 

subject, for example when giving a mild electric shock to a rat or showing a bright red 

balloon to a human infant, the response to that stimulus will diminish over time. This 

explains why the amplitude of the second peak is smaller than the first one.  

 

 

 
Figure 4.21 a) fMRI Signal b) Hemodynamical Time Series obtained from 4th voxel of 

Data27 

 

The voxel we consider in Figure 4.21 is active according to the applied blind 

deconvolution method. There are three precise neural peaks as in Figure 4.20. But the 

intensity levels in Figure 4.21 are less than that of Figure 4.20.  Even though the subject 

sees the same stimulus and performs the same action in each trial, the amplitudes of 

these activations are smaller. The presented experimental tasks evoke activity in a set of 

related brain regions. Since the task is finger tapping, it will elicit activity in motor 
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regions of the brain such as primary motor cortex, supplementary motor cortex, and 

cerebellum. But all motor regions will not be activated at the same level, which will 

yield differences in the activation levels as in Figure 4.20 and Figure 4.21. 

 

 
Figure 4.22 a) fMRI Signal b) Hemodynamical Time Series obtained from 5th voxel of 

Data27 

 

The obtained hemodynamical time series in Figure 4.22 indicates that this voxel also 

becomes active when faced with this type of stimuli. When the stimulus is presented in 

blocks with high frequencies, the activation peak extends into a plateau as in the first 

activation period in Figure 4.22. Here, in the second activation period, the cumulative 

activation stands for a shorter period. It is expected that it would form a plateau and stay 

in saturation until around the time point 40 as in Figure 4.20 and Figure 4.21. But, the 

intensity decreases after a few time points period. During the experiments, subjects may 
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lose their attention as they are hearing sounds of the scanner gradients, receiving varying 

visual stimuli as they look around and may be prone to the mental imaginary activities. 

Also subjects may get tired over time and their performance may worsen as the 

experiment goes on. As a result even if the applied stimulus has 10 time points of 

duration, the actual stimulus that evokes the neural activation seems to have smaller 

duration. This can explain the shortness of the activation interval and the early decay of 

the second activation in Figure 4.22. 

 

 

 

b) Passive Voxels: 

 

 
Figure 4.23 a) fMRI Signal b) Hemodynamical Time Series obtained from 16th voxel of 

Data27 
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In the passive voxels, the fMRI signal has no meaningful profile. These changes emerge 

from temperature fluctuations in the scanner or the subject’s body and physiological 

effects like head motion, heart rate and respiration, which occur together with an 

experimental manipulation. Although these artifacts are diminished during data 

preprocessing, they cannot be totally discarded. Furthermore non-task related neural 

variability cannot be totally eliminated. During the finger tapping experiment, the 

feeling evoked on the subject’s finger may become an irrelevant stimulus for the neural 

tissue in some voxels. Figure 4.23 shows such a routine neural variability. 

 

 

 
Figure 4.24 a) fMRI Signal b) Hemodynamical Time Series obtained from 20th voxel of 

Data27 
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The obtained hemodynamic time series in Figure 4.24, belongs to a passive voxel as in 

Figure 4.23, since no Gaussian-like peaks are observed. The signal intensity increases at 

some time points, but is not enough to decide that this voxel is activated, because the 

rises are independent from the applied stimulus. 

 

Similarly, the variation in the signal level of the obtained hemodynamical time series 

does not alter considerably during the experiment time in Figure 4.25. Therefore, this 

signal also comes from a passive voxel. 

 

 

 
Figure 4.25 a) fMRI Signal b) Hemodynamical Time Series obtained from 27th voxel of 

Data27 

 



 183 

4.1.2 Categorical Block Design Hemodynamical Time Series 

 

After obtaining reasonable results using block design experiments and in order to better 

validate the followed methodology, new and different types of fMRI data are used. Here 

the applied stimuli are again in block but 2 categories exist within a block. 

 

In this categorical block design experiment, fMRI data is conducted in a 1.5T Siemens 

scanner. It is an fMR adaptation paradigm consisting of 177 time samples, investigating 

subtle effects in face processing.  

 

 
 

Figure 4.26 fMRI Categorical Block Design Paradigm 

 

If face recognition task is represented as 1, rests can be represented simply as 0. On a 

period of nine time points, faces in one category are shown, after that other category of 

faces are shown on a period of nine time points. After these two tasks are performed a 

period of nine points of rest is given, that means no face pictures are shown. This is an 

experiment with 6 cycles. The experiment begins with eighteen time points of rest. Then 

one period of stimulus series will be basically 111111111 111111111 000000000. 
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Task: Block paradigm, face perception: 177 sample points: 

       9 dummies at the beginning (0) 

               9 patches (0) --------------------- 

               9 faces (1) ------------------------ 

               9 faces (2) ------------------------ 

               (this group of 27 samples is repeated 6 times) 

       6 dummies at the end  

 

In the following, the fMRI data generated using categorical block design stimuli and the 

corresponding hemodynamic responses are shown: 
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a) Active Voxels:  

 

 

 

 
Figure 4.27 a) Applied stimuli  b) fMRI Signal c) Hemodynamical Time Series obtained 

from 100th voxel of Active_male_1 
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During the repeated stimuli representations, the response to that stimulus will diminish 

over time which is due to the nonlinear characteristics of the fMRI and is known as 

refractory effects [68]. When the response to a stimulus decreases with repeated 

presentation, the voxel is said to have adapted to that stimulus. By changing the stimulus 

slightly, one can infer to which aspects of the stimulus the voxel adapted. Many voxels 

in the visual regions of the brain will preferentially fire for one type of visual stimulus, 

due to its particular shape, color, contrast, or motion. But with repeated presentations of 

that stimulus, the voxel’s firing rate will decrease.  

 

In the face perception experiment, face images that evoke activity in the visual regions 

of brain are presented repeatedly, After 9 time points repetition, than another type of 

faces that differ in some fashion are presented. If the voxels being investigated respond 

differently to the new face stimulus, it will show an increase in fMRI activity. But if the 

voxels do not distinguish between the old and new stimuli, there would be no increase in 

the fMRI intensity level compared to the old stimuli presentation. In Figure 4.27, as 

stimuli are presented in succession, each contributes to the total activation. With long 

task blocks, which are greater than the width of the hemodynamic response to a single 

stimulus, every time point within the block contains a contribution from multiple 

stimuli, each at different phase. Because of the refractory effects in the fMRI signal, if 

there were no change in the category of the face images, we would expect the activation 

increases rapidly at the onset of the task, thereafter remaining at the plateau value until 

the cassation of the block, or more dramatically it would start to fall before the second 

task block started. The activations in Figure 4.27 triggered due to the both categories of 

faces and the related voxel fire for the differences of the stimuli blocks presented in 

succession. If the change in the category of the stimuli would not be detected by this 

voxel, the intensity levels of the peaks will be smaller as well. However for the last task 

block there is no activation. That indicates there is no actually stimulated neural activity 

during this interval.  
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Figure 4.28 a) Applied stimuli  b) fMRI Signal c) Hemodynamical Time Series obtained 

from 135th voxel of Active_male_1 
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A hemodynamic response with large-amplitude might reflect greater metabolic demand, 

and thus greater neural activity. Also, since veins have much greater volume than 

capillaries, there would be a greater change in the amount of the deoxygenated 

hemoglobin and thus in the total hemodynamic response within the voxels nearby the 

veins. That means, some brain regions have greater blood flow than others, and some 

regions have higher oxygen requirements than others independent from the task of being 

concerned. However, the basic assumption of all block design paradigms is that block 

related changes result from the differences between the experimental conditions that are 

task and control. The task condition is assumed to contain all of the neural processes 

present in the control condition as well as additional processes related to the task. Also, 

the intensity levels of the activations are to provide information about the relative 

difference between the two conditions, not about the absolute levels of activity. For the 

purpose of proper analysis, an appropriate baseline is crucial so that all experimental 

conditions can be compared relative to each other [69]. In Figure 4.28, even though, 

there are six clear activation peaks, it does not have a clear baseline but a quadratic drift 

in the raw fMRI data. We eliminated this drift and that is why the obtained 

hemodynamical time series has a settled baseline.  
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Figure 4.29 a) Applied stimuli  b) fMRI Signal c) Hemodynamical Time Series obtained 

from 6th voxel of Active_male_1 
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The duration of the stimulus does not necessarily correspond to the duration of the 

neural activity. During the face presentation experiment, the voxels in the primary visual 

cortex of the subject exhibit their largest response immediately after the presentation of 

the first stimulus and then become much less active. Voxels within the face-sensitive 

regions in the inferior temporal lobe are active at stimulus onset, as well as throughout 

the stimuli block period due to the feedback from other brain regions. Some voxels 

within the frontal and parietal lobes may become active after the face disappears 

reflecting what the subject just saw. Moreover, when the stimulus is presented, a 

response time for subject is needed to perceive the face and thus yielding a delay for the 

activation. However, the activation corresponding to the onset of the stimulus may also 

exhibit an early response in time compared to those responses with offset to the stimulus 

administration time. This early response reflects the preparation process, due to the 

subject knowing or anticipating when the stimulus would appear. In Figure 4.29, first 

activation appears before the stimuli presentation.  
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b) Passive Voxels:  

 

 

 
Figure 4.30 a) Applied stimuli  b) fMRI Signal c) Hemodynamical Time Series obtained 

from 18th voxel of Passive_male_1 
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In the face perception experiment, generally we attempt to investigate which areas of 

brain are activated by visual stimuli. However, the subject hears the sounds from the 

surrounding, feels the cold within the scanner, and looks around during the time between 

the two successive stimuli, at the same time that he experiences the task-related 

stimulus. All of these internal and external stimuli yield activation in the brain and thus 

affect the voxel intensity over time. But the changes in the intensity level, as seen in the 

Figure 4.30, are random since they are unrelated to the stimulus of interest. These non-

task-related stimuli randomly evoke neural activities in any area of brain, which emerge 

independently from the concerned stimuli timing. Since there are no systematic peaks 

due to the applied stimuli blocks, this voxel is not activated by the stimuli blocks of 

interest. 
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Figure 4.31 a) Applied stimuli  b) fMRI Signal c) Hemodynamical Time Series obtained 

from 60th voxel of Passive_male_1 
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In Figure 4.31 there are also random variations in the hemodynamic time series. These 

random variations, as in Figure 4.30, are most probably due to the routine neural 

processes, which alters the fMRI intensity at every moment. Physiological factors may 

also cause these variations. Since the fMRI signal depends on the interaction between 

physiological factors (i.e. blood flow, blood volume, oxygen metabolism) any 

fluctuations and changes in these factors evoke neural activity even if they are not 

caused by the applied stimuli.  
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c) Motion Voxels:  

 

 
 

 
 

Figure 4.32 a) Applied stimuli  b) fMRI Signal c) Hemodynamical Time Series obtained 

from 140th voxel of Motion_male_1 
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During an experiment, the subject may shift the position of his head; move his 

shoulders, arms, or legs to become more comfortable; and swallow more due to 

nervousness. These subject motions cause signal variability in fMRI studies. If the 

subject’s head moves, then time series of each voxel is derived from more than one brain 

location. We named such voxels as “motion voxels”. Because of the head motion, the 

hemodynamic responses of the neighbor voxels can be mixed. In the best cases, head 

motions are corrected during data preprocessing (See Appendix A). In the worst cases, it 

cannot be corrected and the hemodynamic time series may begin as active voxel but end 

up, after motion, as passive voxel or vice versa. In Figure 4.32 a motion voxel that is a 

mixture of active and passive voxels is observed. The activation peaks at about the third 

and the fifth stimuli representations indicate that there is activation at these durations. 

But in the rest of the experiment there is not a clear peak evoked due to the applied 

stimuli.  
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Figure 4.33 a) Applied stimuli  b) fMRI Signal c) Hemodynamical Time Series obtained 

from 40th voxel of Motion_male_1 
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Figure 4.33 illustrates another type of motion voxel in which two passive voxels are 

mixed. At about the time point of 70, the baseline level of the hemodynamical time 

series slightly increases, but still exhibits noisy peaks. This points out that there are at 

least two different types of responses in this fMRI signal.  

 

Besides head motion, the motion due to cardiac activity also causes variations in the 

fMRI signal. In particular, cardiac effects are mostly too fast to be sampled effectively. 

So the variability due to the cardiac activity is distributed throughout the fMRI time 

series in a manner that may be difficult to identify or correct. In Figure 4.33 the signal 

variations may also be caused due to the cardiac activity. 
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4.2 Clustering Results  

 
After extracting the hemodynamical time series by means of MAP Blind Deconvolution, 

we group them according to their waveforms depending upon voxel activation. Since the 

shapes of the extracted hemodynamical time series due to the neural activation are 

different for active and passive voxels as we discussed in the previous section, we can 

cluster them using this underlying information. The modified Hausdorff distance which 

was investigated in details in Chapter 3, can successfully detect the similarities between 

these hemodynamical time series. 

 

In order to demonstrate the steps our algorithm and test the performance of the method 

we propose, firstly, we propose to test a set of simulated BOLD signals based on the 

Balloon Model [80], [81], [82]. And secondly, we conduct experiments on a real fMRI 

data set. 

 

4.2.1 Clustering Results for Simulated Data 
 
The set of data in our simulations consists of simulated BOLD signals belonging to 

active voxels as well as the ones belonging to inactive voxels. The parameters for the 

simulation of BOLD signal change is the same as in [82], ε=0.5, τS= 0.8, τf= 0.4, τ0= 1, 

α= 0.2, E0 = 0.8, V0 = 0.02. We use two different stimulus patterns to generate active 

and inactive voxels. These patterns are shown in the Figure 4.34. 
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Figure 4.34 Stimulus patterns for active and inactive voxel simulations 

  

For a simulation of a neural task we use a stimulus pattern which has the impulses in the 

intervals [40, 60], [100, 120] and [160, 180]. As for the simulation of BOLD signals of 

inactive voxels, ideally, we should have a zero stimulus. However, in order to have a 

better representation of inactive voxels due to the given specific task, we use a noisy 

stimulus to simulate the non-task related activities within the brain. An example of 

random stimulus for a passive voxel is illustrated in Figure 4.34. At every time interval 

for each passive voxel, we independently create a stimulus with probability 0.2 so that 

these random impulses simulate the activities within the brain that are not related with 

the experimental task.   

 

An example of simulated BOLD signals for active and passive voxels is shown in the 

Figure 4.35: 
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Figure 4.35 Examples of simulated active and passive BOLD signals 

 

Generally, fMRI signals are output of several noisy processes due either to some 

intrinsic processes occurring in the brain or to the measurement process itself. For 

example the noise added onto the zero stimuli for modeling the BOLD response of 

passive voxels is an intrinsic noise. In order to have more realistic simulations and 

modeling of fMRI signals, we additionally use four more noise sources which are related 

to the measurement process. 
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(1)  fMRI signals might have lag in time. We create a uniformly distributed lag for 

the BOLD signals, i.e,  

 

 

 

(2)  fMRI signals might have drift in time. We create a quadratic random drift and 

add it onto the BOLD signal, i.e,  

 

 

 

(3)  fMRI signals might have noise which is mostly due to the noisy measurement. 

We create a Additive White Gaussian Noise (AWGN) to simulate such an effect, i.e, 

 

 

 

(4) Finally, fMRI signals might also have sampling jitter which is, like AWGN, 

mostly due to the jittery measurement process. 

 

 

 

In the demonstration of our algorithm, we use these parameters as:   

 

 

Figure 4.36 shows an example of the simulated a pair of active and passive fMRI 

signals: 
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Figure 4.36 Examples of simulated active and passive fMRI signals 

 

Based on this simulation model, we generate our simulated fMRI data set which consists 

of 1000 simulated fMRI time series data along with the true labels, i.e,. 

 

Each of the simulated fMRI is of dimensionality 250. If an fMRI is ‘active’ or ‘passive’ 

then it is labeled as 1 or 2 respectively.  Locations of the active and passive fMRI’s in 

our data set are as follows: 
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In our algorithm we use the following parameter values: 

• Blind deconvolution parameters:  
  

• Modified Hausdorff Distance Parameters:  

 

• Spectral Clustering Parameters: 

 
 

This particular setting of parameters is not necessarily the optimum one. Here, we use a 

reasonable set of parameter values and in the performance analysis in Chapter 5 we are 

modifying the parameters and analyzing the performance change due to these changes.  

 

Recall that spectral clustering is a graph based method; it starts with constructing a 

graph on data and generating the matrix W which holds the edges and edge weights for 

each pair of graph nodes. There are several ways proposed for this construction such as 

fully connected graphs and partially connected graphs. For fully connected graphs the 

most common method is that each node is connected to every other node and the weight 

for each node is assigned according to a Gaussian kernel using Euclidean distance, 

. This is also called similarity matrix. For the partially 

connected graphs, the most common way is to adopt a neighborhood approach using the 

similarity matrix, i.e,  
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  (4.4) 

 

       (4.5) 

 

Taking the maximum of two edge weights is to just make the similarity matrix 

symmetric. Using the minimum is also a possible approach. Instead of having a real 

valued similarity matrix, using a binary valued similarity matrix is also reasonable 

choice, i.e, 

 

    (4.6) 

 

       (4.7) 

 

In this work, we used a binary valued similarity matrix with respect to modified 

Hausdorff distance as in (4.4) and (4.5). That is to say, we detect whether a point di is in 

the k’th neighborhood of dj by using the modified Hausdorff distance. Once having the 

similarity matrix constructed, then spectral clustering solves the generalized eigenvalue 

problem  where L is the Laplacian and is D the diagonal matrix computed 

via similarity matrix W.  
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In Figure 4.37, we show the first 6 eigenvectors of this equation when all the 

eigenvectors are sorted in ascending order with respect to their eigenvalues. 

 

 
Figure 4.37 First 6 eigenvectors of Spectral Estimation 

 
First eigenvector in Figure 4.37a is basically a constant one, so provides no 

discriminative capability for clustering and activation detection. However, on the second 

eigenvector, Figure 4.37b, the two classes become visible, based on the step that the 

eigenvector starts taking greater values after the instant 500. This is an expected result 

because by design we generated two classes in our data set and using the eigenvectors as 

many as the number of expected clusters in the data is what is done, in general, in 

spectral methods. Furthermore, on the 3rd and 4th eigenvectors, Figure 4.37c and Figure 

4.37d, clusters get separated even better. Hence using first four eigenvectors together 

should give a very good clustering. After the 4th eigenvector, for instance using the 5th 
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and 6th eigenvectors, Figure 4.37e and Figure 4.37f, bring no gain in terms of clustering 

quality.  

 

 
Figure 4.38 7.-12. Eigenvectors of Spectral Estimation 

 

 

However, for the eigenvectors following the sixth one there is no separation and 

bringing them to the eigenmap would bring only confusion. Note that in Figure 4.38, the 

two classes are not visible exactly. Figure 4.39 shows the corresponding eigenvalues: 
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Figure 4.39 Eigenvalues of eigenvectors 

 

Deciding upon the number of clusters is always an important issue in clustering. For 

spectral clustering method there is what is called in the literature ‘eigengap’ heuristic, 

which is a good way of estimating the number of clusters after the generalized 

eigenvalue problem is solved. Eigengap heuristic tells that when the data is perfectly 

clustered, then . Since no real data is 

perfectly clustered, when there is a sudden increase, so-called ‘eigengap’, on the plot of 

eigenvalues, that should be the number of clusters. In Figure 4.39, and on right, we show 

the eigenvalues of the first 6 eigenvectors. It is clear that from 3rd to 4th, the eigenvalue 

jump is more than 50%. On the other hand, from the 2nd eigenvalue to 3rd eigenvalue 

there is a very little change. Hence, this justifies that we clearly have 2 or 3 clusters, 

nclass=2, 3. We can use both nclass = 2 and nclass = 3. Note that by design we had 2 
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classes in our data, however, we impose large deviations onto the original BOLD 

responses through sampling jitter, lag, drift, noise, which can further scatter the data into 

a few new classes. Hence we can also use as nclass = 3. The spectral clustering is doing 

a decent job together with the modified Hausdorff distance under these clustering 

numbers as shown below. 

 

A final note on this, Figure 4.40 shows the spectral-mapped data distribution using the 

eigenvectors 2, 3 and 2, 3, 4. 

 

 
Figure 4.40 Different distributions of the simulated data 

 

According to Figure 4.40, data are scattered onto a triangular area. Using the 

eigenvectors 2 and 3, a two class separation is perfectly visible. One class is on an edge 
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(the line: x=-0.005) of the triangular area and the other class is located on the corner 

(corner: (0.01, 0)) of that area. These are probably the classes of active and passive 

fMRIs which are the most visible and best separated. Also, on the edge, we clearly have 

two clusters on two ends of the edge; these are brought by the 3rd eigenvector. Even 

though we expect two clusters in the data scattering; we obtain an extra one when we 

use the 3rd eigenvector. This is due to the several noise conditions we applied on our 

simulation model. However, separation between the classes active and passive is much 

more powerful than between the ones under imposed noise and model conditions (noise, 

lag, drift, and jitter). As a result, at the earliest stage (using the 2nd eigen vector) the 

active and passive classes immediately become visible. Afterwards, the other clusters in 

the data come into scene. 

 

Once the spectral mapping is finalized as , we locate the clusters 

by Expectation Maximization (EM) clustering algorithm. In  

Figure 4.41 we show the clustering results illustrated on 2D plots: 

 

Figure 4.41 Different clustering results on 2D plots 
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By means of spectral clustering, we can perform active and passive detection in both 

cases (nclass = 2 and nclass = 3). However, we detect two modes existing in the active 

class if we set nclass = 3. 

 

If we use nclass = 2, then the sensitivity (percentage of active fMRI’s that are correctly 

detected) for active-passive detection turns out to be: 1. And the specificity (percentage 

of passive fMRI’s that are correctly detected) is 0.9040. For nclass = 3, sensitivity: 

0.9980; sensitivity:  0.9320. 

 

Furthermore, one should note that above clustering is performed under an unbalanced 

operating point. That is to say, prior probabilities for active and passive classes are not 

necessarily 0.5. On the other hand, we actually do have equal prior probabilities, i.e,  

500 data points from both classes. One can always change this (when EM clustering is 

used) by pushing the decision boundary returned by EM clustering towards one of the 

classes whichever is more desired such that the decisions will not be biased to one of the 

classes or can be biased in a desired way. For instance, by setting p(active) = 0.45 and 

p(passive)=0.55, one can possibly increase the specificity and decrease the sensitivity. A 

plot of sensitivity and specificity values versus all possible choices for operating points 

is named ‘Receiver Operating Characteristics’ (ROC) curve. By incorporating with this 

curve, one can adjust the balance between sensitivity and specificity regarding the 

requirements of his/her application. For instance, cancer / HIV detection problems 

require an extremely high specificity in order to avoid the devastating effect of telling a 

patient that he has the disease when actually he has not. In such cases, by choosing the 

right operating point, one can have high specificity while sacrificing from the sensitivity. 

Following is the ROC curve for our activation detection problem: 
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Figure 4.42 ROC Curve for simulation data with  

 
 
The original sensitivity / specificity values we reported previously correspond to the 

operating point A in the ROC curve as illustrated in Figure 4.42 for our simulation data. 

Note that Specificity is 1 – False Alarm. For the operating point A, sensitivity is 1 and 

specificity is 0.9040. If we choose to operate at point B, sensitivity drops to 0.99 (only a 

1% drop) however, on the other hand we gain 6.8% increase in specificity and it 

becomes 0.972. And similarly for the operating point C, for a 2.6 % drop in sensitivity, 

we gain an 8% increase in specificity. Hence, for our activation detection problem, 

actually operating point B is better than the operating point A. However, in order to have 

a fair comparison among all cases (as opposed to finding the best operating point for 

each of the cases), we do not touch the boundaries returned by EM clustering and show 

the results without optimizing them in this chapter. To keep in mind that, all the results 

can always be improved by finding the right operating point with the help of the  ROC 
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curves. However for an fMRI application, the number of voxels in a region of interest 

which becomes activated in response to a task condition is not arbitrary, so p(active) and 

p(passive) can not be optimized. Usually we operate with a rate of 1-2% of the voxels 

being active. 

 

As shown, even though we use relatively large deviations from the original BOLD 

responses, we still do have high sensitivity and specificity. At the heart of this is the 

hemodynamic response function estimation through blind deconvolution and the 

modified Hausdorff metric. Figure 4.43 shows the clustering of the same simulated data 

when the hemodynamic response function is not estimated and raw fMRI is directly used 

with nclass = 3 and 4 eigenvectors. 

 

 
Figure 4.43 Clustering on the raw fMRI data (without HRF extraction) 
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In this case, sensitivity is 0.7960 and the specificity is 0.5800. This proves the necessity 

of HRF estimation and shows that our blind deconvolution for HRF estimation performs 

very well. Table 4.1 summarizes our findings so far: 

 

 

Simulation results Sensitivity Specificity 

Spectral clustering of 

HRF’s through modified 

Hausdorff distance 

1 0.9040 

Spectral clustering of raw 

fMRIs through modified 

Hausdorff distance 

0.7960 0.5800 

 

Table 4.1 Clustering results using and BOLD response and the raw fMRI 

 
 
Having shown the efficiency of our HRF estimation through MAP blind deconvolution, 

we also compare our clustering results with the results of the cases when other distance 

functions are used such as Euclidean distance, Mahalanobis distance, cosine similarity, 

RBF similarity, Cross Correlation based distance. In Table 4.2, we show the sensitivity 

and specificity values corresponding to the cases different metrics used in Spectral 

Clustering. In all cases we used the optimum number of clusters according to the 

eigengap heuristic. 
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Simulation 

results 

Modified 

Hausdorff 

distance 

Euclidean 

distance 
Mahalanobis 

distance 
Cosine 

Similarity 
RBF 

similarity 
CC based 

distance 

Sensitivity 1 1 0.0300 1 1 0.9800 

Specificity 0.9040 0.7540 0.9820 0.8460 0.7540 0.8360 

 

Table 4.2 Comparison of different distance and similarity measures 

 

Among these distances, our modified Hausdorff distance turns out to be the best one 

with the sensitivity and specificity values in Table 4.2. Among the other distances, 

Euclidean distance and RBF similarity do not perform well mainly because they do not 

consider any possible lags in the data. Since Cosine Similarity and CC based metric 

perform similarly and performs better than Euclidean distance, we can conclude that 

correlation based features for fMRI data analysis provides better active/passive 

clustering than directly using Euclidean metric. In particular, Mahalanobis distance fails 

on active/passive clustering. This is because Mahalanobis distance is good only for the 

cases when the data is normally distributed, i.e, when the data is scattered around a 

center. However, our data has two clusters and so two centers: Active Cluster and 

Passive Cluster. In other words, our data has a distribution similar to a mixture of 

Gaussians with two components. For this reason, Mahalanobis distance cannot detect the 

clusters in our data. 

 

Next we analyze how our method behaves under different conditions. For that, we 

design simulation sceneries such that the effect of the noise conditions are considered 

separately: we add individually one at time, AWGN noise, sampling jitter, lags, and 

drift. Table 4.3 shows the results on these different conditions, and in each case we use 

either nclass = 2 or nclass = 3 whichever gives a better clustering. 
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 AWGN 
Sampling 

Jitter 
Lag 

Quadratic 

drift 

Sensitivity 1 1 1 1 
Sigma=1 

Specificity 1 0.9920 0.9880 0.9200 

Sensitivity 1 1 1 1 
Sigma=2 

Specificity 0.9800 0.9920 0.9860 0.9420 

Sensitivity 0.9980 1 1 1 
Sigma=4 

Specificity 0.9680 0.9860 0.9640 0.9200 

Sensitivity 0.9980 1 0.9400 1 
Sigma=8 

Specificity 0.9380 0.97 0.9820 0.9160 

Sensitivity 0.9560 0.9100 1 1 
Sigma=16 

Specificity 0.8460 0.8000 0.888 0.8880 

 

Table 4.3 Clustering results under different noise conditions 

 

 

According to our findings summarized in Table 4.3, our method is very robust to 

AWGN and sampling jitter. It performs very well even under the large noise conditions 

.  
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Figure 4.44 An example fMRI with AWGN noise of standard deviation 16, the hypothetical 

BOLD Response, and the estimated BOLD Response 

 

Figure 4.44b shows an example fMRI with AWGN noise of standard deviation 16, the 

hypothetical BOLD Response, Figure 4.44a,  and the estimated BOLD Response, Figure 

4.44c. MAP blind deconvolution is seen to successfully estimate the BOLD Response. 

Although we put a large amount of AWGN noise, it is visually clear that our estimated 

BOLD Response is close to the hypothetical one.  

 

The situation is a little different for the cases when we have lag and quadratic drift. In 

the case of quadratic drift, the distances in the passive cluster, the pair-wise distances do 

not change significantly because there is already a large variety in that class and drifts do 

not bring extra deviations since we estimate and filter quadratic drifts in the phase of 
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preprocessing of fMRI. Consequently, the data scattering within the passive class do not 

change. However, this is not the case for the active class. Note that we have generic 

BOLD response for the active class and we add quadratic drift onto that generic BOLD 

response. Then in our preprocessing step, we filter out the drifts. However, even very 

small drift estimation errors in the preprocessing dramatically change the pair-wise 

distances because basically before the drifts those pair-wise distance were all 0 

(d(BOLD response, BOLD response) = 0). As a result, those small drift estimation errors 

become very important when compared to the original pair-wise distances, which are 0. 

Also noting that quadratic drifts take effect on the fMRI signals globally, the only source 

of the variety in the active class becomes only the drift estimation error. For this reason, 

the whole class of active fMRIs can be parameterized over only the drift amount. Figure 

4.45 illustrates the clustering under . 

 

	
  

 
Figure 4.45 Clustering results with  
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As a result of the aforementioned reasons, the active class get scattered on almost a 

circular path. And since the passive class does not have a similar powerful structure, it 

gets cluttered around a center. Noting that the active class has a lot larger variance than 

the one of passive class, EM clustering draws the boundary tightly around the center of 

passive class and so does not allow the ~10% of the passive class come into the detected 

passive cluster. However, if we shift the boundary a little towards the active class, we 

would improve the specificity a lot without sacrificing from the sensitivity since there is 

a very good separation between two classes even though EM draws the boundary 

conservatively.  We can argue similarly for the other cases of quadratic drift. As the drift 

strength decreases, the variance in the active class decreases as well, and so the variance 

between of two classes gets more balanced and so the specificity gets better. In 

particular, this case of simulations provides a very good example of where one can 

incorporates with the ROC curve and improve the clustering performance by choosing 

the right operating point. Figure 4.46 gives the ROC curve: 
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Figure 4.46 ROC Curve for simulation data with  

 

According to the ROC curve in Figure 4.46, the results for this case presented in Table 

4.3 correspond to the clustering operating at point A which is, indeed, not so preferable 

choice. By choosing the operating point B instead, we can nicely push the boundary 

between both classes in favor of the passive class and so improve the specificity almost 

10% without sacrificing from the sensitivity at all. This turns into 100% sensitivity and 

98% specificity. Although this is the case where we used the largest amount of drift, we 

still have near-perfect results. This proves that our drift estimation and filtering in the 

phase of preprocessing works very well and so our method is greatly robust to quadratic 

drift.    

 

Now let us consider the case of adding lags, if  then we add random lags with 

varying strengths up to 16. Then in this case, we basically have 16 different clusters in 
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our data since we do not have continuous lags but discrete ones. So each fMRI with 

some lag gets precisely coupled with the ones having the same amount of lag. The 

eigenvalue distribution shows this very clearly in Figure 4.47: 

 

 

 

Figure 4.47  Eigenvalues when  

 

As it is shown in Figure 4.47, there is large eigengap between the 17th and 18th 

eigenvalues. This justifies our thought that there should be 17 clusters. Following is the 

clustering of the data under this condition; note that we have two-dimensional plot, so 

not all clusters are visible: 
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Figure 4.48 Clustering of data into 17 clusters 

 

 

As it is clear from the Figure 4.48 that, as the strength of the lag is increased, the data is 

get clustered into more clusters and our method successfully locate those clusters.  

 

Next, we present our sensitivity and specificity results under combined noise and lag-

drift conditions in Table 4.4. 
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 Sensitivity Specificity 

Sigma_AWGN = 2; Sigma_Jitter = 2 

Sigma_Drift = 2;   Sigma_Lag = 8 
1 0.9440 

Sigma_AWGN = 4; Sigma_Jitter = 2 

Sigma_Drift = 2; Sigma_Lag = 8 
0.9980 0.9300 

Sigma_AWGN = 8; Sigma_Jitter = 2 

Sigma_Drift = 2; Sigma_Lag = 8 
0.9200 0.9420 

Sigma_AWGN = 4; Sigma_Jitter = 4 

Sigma_Drift = 2; Sigma_Lag = 8 
0.9600 0.9620 

Sigma_AWGN = 4; Sigma_Jitter = 8 

Sigma_Drift = 2; Sigma_Lag = 8 
0.9120 0.9540 

Sigma_AWGN = 4; Sigma_Jitter = 4 

Sigma_Drift = 4; Sigma_Lag = 8 
0.9980 0.9360 

Sigma_AWGN = 4; Sigma_Jitter = 4 

Sigma_Drift = 8; Sigma_Lag = 8 
0.9700 0.9580 

Sigma_AWGN = 4; Sigma_Jitter = 4 

Sigma_Drift = 16; Sigma_Lag = 8 
0.9960 0.9120 

Sigma_AWGN = 4; Sigma_Jitter = 4 

Sigma_Drift = 16; Sigma_Lag = 16 
1 0.9040 

Sigma_AWGN = 8; Sigma_Jitter = 4 

Sigma_Drift = 16; Sigma_Lag = 16 
0.9780 0.8240 

Sigma_AWGN = 8; Sigma_Jitter = 8 

Sigma_Drift = 16; Sigma_Lag = 16 
0.7900 0.8620 

Sigma_AWGN = 16; Sigma_Jitter = 8 

Sigma_Drift = 16; Sigma_Lag = 16 
0.5800 0.7740 

Sigma_AWGN = 16; Sigma_Jitter = 16 

Sigma_Drift = 16; Sigma_Lag = 16 
0.6080 0.6200 

 

Table 4.4 Clustering results under combined noise and lag-drift conditions 
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Based on our findings presented in Table 4.4, we can conclude that up to the noise and 

jitter with  our method stays robust and performs reasonably well. On 

the other hand, even if we use large amount of delays and drifts, since we incorporate 

delays in our distance calculation and drifts in our data preprocessing, our method stays 

above 90% sensitivity and specificity. As already discussed before, these results can be 

improved a lot if the ROC curve is further incorporated with and the right operating 

point is chosen. Here, we used a balanced clustering between both classes, that is to say, 

we assumed prior probabilities for both classes are 0.5 in order to observe the effect of 

our noise conditions and have a better comparison among them.   

 

 

4.2.2 Clustering Results for Real Data 
 

We also conduct experiments on real fMRI data. The set of data that we use in our 

experiments consists of in total of  fMRI time series along with the true labels, 

i.e, . Different from our simulations, we have 

three classes in this part: ‘active’, ’passive’, ’motion’ among which the ‘motion’ class is 

newly added. This actually consists of fMRI’s coming from some passive voxels, 

however, because of the some small-scale motion artifacts on fMRI’s such as regular 

oscillatory activity of the heart and lungs, this set of fMRIs do not look like the other 

‘passive’ fMRI’s.  We still consider them as ‘passive’ though in our experiments since 

the voxels that they are registered for are ‘passive’. Hence, it is basically another 

independent cluster in the passive class and leading to running our algorithms with at 

least nclass = 3, but when calculating the sensitivity and specificity we label them as 

‘passive’.  

 



 225 

Each of the time series is of dimensionality 177 and if an fMRI is labeled as ‘active’, 

‘passive’ or ‘motion’ then the corresponding labels are 1, 2, and 3 respectively. 

Locations of these labeled fMRI’s in our training data are as follows: 

 

 

 

 

 

 

For this data set, we use the following parameter values: 

• Blind deconvolution parameters:  
 

• Modified Hausdorff Distance Parameters:  

 

• Spectral Clustering Parameters: 

 
 

This particular setting of parameters is not necessarily the optimum one. Here, we use a 

reasonable set of parameter values and in the performance analysis chapter we will vary 

values to assess system performance to those changes. The only difference in this 

parameter setting when compared to the previous one is that κ=1 in this experiment. 

This is because the underlying neural task of this experiment involved more and 

complicated (2-folded) impulse periods. So, by decreasing the parameter as κ=1 we get a 

less smooth input signals. 

 

Figure 4.49 is the eigenvector distribution for this data returned by our algorithm: 
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Figure 4.49 First 4 eigenvectors of spectral estimation of real data 

 

First eigenvector in Figure 4.49a, like in our simulations, is a constant one, so it gives no 

information about the clusters. However, on the second eigenvector, Figure 4.49b, the 

‘passive’ class of fMRI’s becomes almost perfectly visible. And similarly, on the third 

eigenvector, Figure 4.49c, we finally get the ‘motion’ class of fMRI’s. On the other 

hand, the 4th eigenvector, Figure 4.49d, is confusing the classes so we should not use it. 

Figure 4.50 shows the corresponding eigenvalues: 

 

 

 



 227 

 
Figure 4.50 First 20 and 5 Eigenvalues of the eigenvectors respectively 

 

 

According to the eigengap heuristic, the number of clusters in this data set should be 3 

since there is a jump from the 3rd eigenvalue to the 4th one. This is what we expect 

because we know that there are three classes of fMRI’s in our data: ‘active’, ’passive’ 

and ‘motion’. 
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Figure 4.51 shows the spectral-mapped data distribution using the eigen vectors 2, 3 and 

2, 3, 4. 

 

 
Figure 4.51 Distribution of the real data using different eigenvectors 

 

As it is clear from the figure that using the 2nd and 3rd eigenvector, we recover all 

clusters very clearly, but on the other hand, if we further use the 4th eigenvector, the 

clusters become less separated. Hence, using the 2nd and 3rd eigenvector along with 

nclass = 3 should give a good performance. Then we run our EM clustering algorithm on 

this spectrally distributed data, which is illustrated in Figure 4.52: 
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Figure 4.52 EM Clustering of the real data 

  

As it is shown in Figure 4.52, our algorithm gets all three classes very nicely. Active 

class of fMRI’s are well separated from the passive class of fMRI’s which further 

includes the motion class of fMRI’s as another cluster. The sensitivity and the 

specificity turn out to be 1 in this case. This shows, under real life conditions, our 

method not only successfully detects activation among brain voxels but also implicitly 

concentrate on the good features regarding the activation providing a very good 

separation between active / passive classes.  
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CHAPTER 5 

 

 

5 SENSITIVITY AND PERFORMANCE ANALYSIS 

 

 

 
In this chapter we analyze the sensitivity of our algorithm based on our simulation as 

well as the real data and through this analysis we optimize the parameters of our 

algorithm. Recall that our algorithm incorporates with the following parameters: 

 

• Blind deconvolution parameters:  

  

• Modified Hausdorff Distance Parameters:  

 

• Spectral Clustering Parameters: 
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In the following we present our findings on the simulation as well as the real data sets. 

For each of these data sets, we start with a certain set of parameter values and then by 

changing each of them within an interval, we calculate the sensitivity and specificity. 

 

 

Sensitivity Analysis on Simulation Data 

 

Similar to Chapter 4, we generate a set of simulation data including all noise conditions  

but now with parameters: 

 

 
 

This setting is different from the one in the previous chapter. Here, on purpose, we use 

AWGN and jitter having standard deviations two times greater since we want to have a 

harder data set for sensitivity analysis to see the effect of the parameters to a better 

degree. 

 

And we initially set the parameters of our algorithm as: 
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Table 5.1 shows the performance of our algorithm under different choices for the length 

of the convolution filter, p. 

 

 Sensitivity Specificity 

p = 1 0.9960 0.9160 

p = 5 0.9980 0.8920 

p = 10 1 0.8800 

p = 15 1 0.8600 

p = 20 1 0.8540 

p = 30 1 0.8580 

p = 40 0.9980 0.8760 

P = 60 0.8440 0.5340 

 

Table 5.1 Sensitivity and specificity of the algorithm under different choices for p 
 

According to our findings, as p increases the sensitivity does not change much, so that 

an increase from 0.9960 to 1 is not significant. On the other hand, specificity decreases. 

And when p is set to 60, then the algorithm turns out to be performing poorly. This is 

certainly expected. Considering the active/passive clustering, what is distinguishing 

between a passive fMRI and active fMRI is, the actual stimulation. For active fMRI’s 

there is a common activation regarding the stimulus, as for the passive fMRI’s, this is 

not the case. Ideally for passive fMRI’s there should be no activation at all, however, 

due to resting state activities in brain, there still undergo a stimulated effect that can be 

modeled as randomly, which exists in our simulations as well. Recall that we randomly 

generate an impulse at every time instant with probability 0.2 for passive fMRI’s. Hence 

the source of separation between the active fMRI’s and passive fMRI’s is the pattern of 

the underlying stimulus. First recall that as p increases we switch from estimating a 

hemodynamical time series to HRF estimation in which we do not have information 

about the stimulus pattern. In other words, as we increase p, we start having a better 
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estimate for the stimulus pattern as the convolution filter. If we use the HRF as the input 

to our clustering, the clustering will have no access to the stimulus pattern. And the 

performance decreases. The sensitivity does not decrease as fast as the specificity 

because the single-peak hemodynamics for active fMRIs are same or very similar to 

each other, so they are mostly clustered well even when p=60. On the other hand, since 

the variety within the class of passive fMRI’s is large, they start mixing with active 

fMRI’s quicker and the specificity decreases faster. Figure 5.1 is an illustration of our 

discussion: 

 

 

 

Figure 5.1 The effect of the parameter p on the estimations of active and passive voxel responses 

 

In Figure 5.1 note that, when p = 10, we clearly see the duration and strengths of the 

stimulus on hemodynamics. On the other hand, when p = 60, the effect of stimulus on 
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the hemodynamic is separated and reflected on the other component on the blind 

deconvolution. As a result, using the HRFs in our clustering, as p increases, we loose the 

separation between active and passive classes.  

 

Next, we show the effect of the parameter κ on our algorithm together with the 

following parameter values: 

 

 
 

Note that we choose as p=10, since it give a 100% sensitivity together with a good 

specificity. Table 5.2 shows the performance of our algorithm under different choices: 

 

 Sensitivity Specificity 

 1 0.8800 

 1 0.8480 

 1 0.8640 

 0.9960 0. 9260 

 0.9440 0.9260 

 0.9600 0.8980 

 0.99 0.8820 

 0.9840 0.8260 

 
 

Table 5.2 Sensitivity and specificity under different κ values 
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The parameter κ of our blind deconvolution algorithm is to impose smoothness on 

estimated hemodynamics. The smaller it is, the smoother estimate we get for the 

hemodynamics. The optimum value turns out to be 0.5 for values greater than which the 

algorithm performs poorly.  

 

Figure 5.2 shows the hemodynamics for κ = 0.5 and κ = 5. 

 

Figure 5.2 The effect of the parameter κ on the estimations of active and passive voxel responses 
 

 

As seen when κ  is too large, like 5, then the estimated hemodynamics become too noisy 

which badly affects our clustering. Our findings show that using κ as 0.5 is reasonable.   

 

Next, we show the effect of the parameter α on our algorithm together with the 

following parameter values: 



 236 

 
 

Note that we choose as κ = 0.1, since it give a 100% sensitivity together with a good 

specificity. Table 5.3 shows the performance of our algorithm under different choices: 

 

 Sensitivity Specificity 

 0.9420 0.8360 

 0.9240 0.8660 

 0.9260 0.8560 

 0.9340 0.8320 

 0.9480 0.8180 

 0.9120 0.8440 

 0.9380 0.8140 

 

Table 5.3 Sensitivity and specificity under different α values 

 

According to our findings, our algorithm is not really sensitive to this parameter on our 

simulation data. Note that all of the sensitivity and specificity do not change much with 

respect to the tuning of this parameter. In general Hausdorff distance, as discussed 

earlier, is very sensitive to outliers or an unexpected magnitude changes in fMRIs. It 

basically measures the maximum deviation between two signals after they are aligned 

and since the maximum deviation can get affected by any outlier in the signals, it is very 

sensitive to such an effect. Precisely to address this issue we introduce the parameter α 

which provides a relaxation such that our metric does not measure the maximum 

deviation but instead measures, say, 10th maximum deviation. As a result, it does not get 

affected by an outlier which is of a shorter duration than 10 time units. However, we do 
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not get benefits on our simulation data which clearly shows that we do not have any 

outlier effect. This is, indeed, true since we do not include that in our simulation model. 

Following is the results for our real data for the same case: 

 

 

 Sensitivity Specificity 

 0.9167 0.5788 

 1 0.9182 

 1 0.9939 

 1 0.9980 

 1 0.9667 

 

Table 5.4 Sensitivity and specificity under different α values in real data set 

 

As it is clear from the values in Table 5.4, using α=10 dramatically increases the 

performance as opposed to using α=1. This actually proves that under real conditions, 

having outliers is an issue and needs a good care. In our algorithm, with the modification 

on Hausdorff distance through adjusting the covering ratio, we overcome this issue. 

Following is two different clustering results for real data with α=2 and α=10 

respectively. 
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Figure 5.3 Clustering results of real data when α=2  

 
 

 
Figure 5.4 Clustering of real data when α=10 
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As seen in Figure 5.3, when  α=0.2 the inactive voxels mix with active voxels and the 

performance decreases. When we set α=10 as seen in Figure 5.4 the clusters are 

distinctly separated. So, using a right covering ratio significantly improves the clustering 

structure in our real data. 

 

 

Next, we show the effect of the parameter τ on our algorithm together with the following 

parameter values: 

 

 

 

Note that we choose, for now, α as 10, Table 5.5 shows the performance of our 

algorithm under different choices: 

 

 Sensitivity Specificity 

 0.9140 0.8500 

 0.9260 0.8560 

 0.9680 0.8520 

 0.9740 0.6720 

 0.9420 0.6880 

 
Table 5.5 Sensitivity and specificity under different κ values 

 
 

Recall that our distance metric first aligns two given signals and then measures the α’th 

maximum deviation. And the parameter τ basically tells how much penalty the algorithm 

gives to misalignments. It is, so, closely related to the possible lags in the data we work 
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on. For instance if it is set to 0, then basically we do not give penalty to any lags, in this 

case and according to our findings, the sensitivity turns out to be low which means that 

if the active fMRIs gets coupled with passive fMRI’s, and if we start not allowing large 

lags then we get a better sensitivity. Note that sensitivity is maximum when τ is 0.01. If 

we set it to very large values, then the pairwise distances will dominate and the lag 

amount starts becoming the only parameter controlling the distribution of the active 

fMRI’s (note that before lags, the pairwise distance for active fMRIs are already very 

small). This scatters  the active fMRIs as a cluster onto a intrinsically one dimensional 

(only one parameter, lag amount) space, such as a curve. However, this effect would not 

be realized for passive fMRIs. For this reason even for large settings for this parameter, 

the sensitivity does not drop much. Figure 5.5  shows our clustering when choosing τ as 

1. 

 

 

Figure 5.5 Clustering results for simulation data when τ=1 
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As we discussed, the fMRI’s from active class get clustered on an intrinsically one 

dimensional curve, and on the other hand because of the large variety in the passive 

class, they are spread out onto the whole spectral domain which decreases the specificity 

but does not change the sensitivity much. 

 

Next, we show the effect of the parameter k on our algorithm together with the following 

parameter values: 

 

 

 

Note that we choose as τ=0.01, since it gives the greatest sensitivity together with a 

good specificity.  Table 5.6 shows the performance of our algorithm under different 

choices: 

 

 Sensitivity Specificity 

k = 4 0.9140 0.8560 

k = 6 0.9700 0.7860 

k = 8 0.9600 0.8200 

k = 10 0.9560 0.8480 

k = 16 0.9680 0.8520 

k = 20 0.9780 0.8100 

 

Table 5.6 Sensitivity and specificity under different k values 

 

As for the parameter k which is used in the spectral clustering, the optimum value for 

that turns out to be 16. Note that it basically tells how many other fMRI’s, an fMRI 

should be connected to in the graph of Spectral Clustering. For instance, if it is set to 4, 
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then the algorithm performs poorly. This is because in a neighborhood of an active fMRI 

of size 4, some passive fMRI’s, by chance, can leak in. However, if it is set to a larger 

value like 16, then most of them should be also active, in turn that it would result in a 

good clustering. And if it is a too large value, then again an active fMRI would start 

accepting passive fMRI’s in its neighborhood which then would result in a bad 

clustering. So it should be carefully set and in this case it is better to be 16 according to 

our findings. 

 

To conclude with, for our simulation data the optimum set of parameters is as follows: 

 

 

 

Based on our findings, each of these parameters contributes to our fMRI data analysis 

and clustering differently. Moreover, the results presented in this chapter are in 

accordance with our original intuition discussed in the theoretical analysis in previous 

chapters
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CHAPTER 6 
 

 

6 CONCLUSIONS 

 

 

 
In this thesis, we conducted fMRI data analysis assuming that there is no extra 

information about the conducted neural task. Through a blind deconvolution algorithm, 

we estimated the hemodynamic response function (HRF) within the Bayesian 

framework using a MAP approach. We showed in our analysis that although this was 

completely an unsupervised and model free (no particular shape is assumed for HRF) 

method, we obtained accurate estimates for HRF as well as the unknown stimulus 

pattern under weak assumptions such as smoothness constraint on HRF. This indicates 

that even when one has no information about the experimental details of conducted 

psychological experiment, or when it is not reasonable to use the stimulus pattern (even 

if it is known) due to high variability in the resulting stimulus perception, it is possible 

that one can still have a reasonable estimate of not only the response of the brain voxels 

to the stimulus, but the hemodynamic response function, as well as the stimulus pattern. 

(In Appendix B we make a comparison with a different method which shows our 

estimates on the underlying stimulus pattern and the hemodynamic response function are 

reasonable and successful.)   
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According to our findings based on our simulations and the real fMRI data, we can also 

conclude that blind deconvolution together with a smoothness prior on HRF provides a 

very good approach for fMRI data analysis. Furthermore, posing our methodology 

within the Bayesian framework using MAP approach is proven to have high efficacy, 

and brought a new, insightful and an elegant mathematical treatment to the problem.    

 

The only limitation of our approach is that the rise to the peak of an ideal HRF seems to 

be incompletely reflected in our HRF estimates; there exists an initial offset. In 

accordance with this, the stimulus is estimated to occur a little earlier in time, and the 

well known delay between the stimulus exposure on a subject and the brain’s response is 

estimated to be a little smaller. This is basically due to the high degree of freedom in our 

blind deconvolution. To understand this, we first should note that our estimated HRF 

with an initial magnitude offset and a less rise to the peak is smoother than the ideal 

HRF. And one can always find two different patterns of stimulus; one is a delayed 

version of the other, with which the convolution of those two HRFs (one is the ideal one 

and the other is the one with an offset) generate the same result. As a result, our blind 

deconvolution, in this case, favors not the ideal HRF but the one with an initial offset. 

This type of a limitation is actually a fundamental one, not due to the method itself but 

the amount of information being exploited. The only way to get around this is just to 

bring extra information to our Bayesian framework. For instance, the stimulus, if known, 

can be directly used. However, this is not our initial motivation. Instead one can also 

assume a lag between impulse and the voxel response. In this case, we could just 

artificially add the assumed lag in the estimated stimulus, and re-run the E-step of our 

algorithm once only, to get the corrected hemodynamic response function. Another way, 

which might be a better one perhaps, is to incorporate the assumed lag in the E-step at 

each iteration. As said, we see this as a limitation due to the insufficient amount of 

information assumed to be available to the algorithms as opposed to seeing it due to the 

blind deconvolution. And possible solutions are available.  
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In this work, we also studied activation detection among brain voxels through clustering 

the hemodynamics of the active and inactive voxels. The source of the separation 

between an active voxel and a passive voxels is reflected in the strong correlation in an 

active voxel between the stimulus and the fMRI time series. This type of correlation is 

absent in passive voxels, HRF signals for passive voxels mostly behave randomly. 

Hence, one can comfortably expect a baseline shape for active HRFs correlated with the 

stimulus, and no particular shape for passive HRFs. Bearing in our mind that fMRI 

signals have low SNR, the input to clustering should have the information of underlying 

stimulus (duration as well as number) and increased SNR. In this respect, using HRF for 

clustering is not a good idea since it is defined to be the response to a given 

instantaneous stimulus and ideally we expect it to be of similar shape all over the brain. 

What makes a voxel passive is not its HRF but the lack of its overall response in our 

understanding. Hence for clustering, we got the idea of using the response of a voxel not 

to a stimulus but to the entire pattern of stimulus, which we named in this work as 

‘hemodynamical time series’. Secondly, since the distance is at the heart of any type of 

clustering, we investigated Hausdorff distance for fMRI data analysis with spectral 

clustering followed by an EM algorithm. According to our thorough analysis conducted 

in the chapter of methodology and results, we can conclude that this approach is robust 

to AWGN noise, sampling jitter, quadratic drift and lag. In our simulations, even when 

we consider highly large variance conditions, we generally still have performance above 

90% sensitivity and specificity. In particular, we got 100% detection of active and 

passive voxels for our real fMRI data. Visually speaking, spectrally transformed real 

data got clustered very nicely and well separated. This proves the capability of 

Hausdorff distance in terms of capturing the fMRI data distribution. As we analyzed in 

the methodology, with the modification we used, Hausdorff distance is insensitive to 

abnormal fMRI magnitude of short durations (which we named outliers) and robust to 

AWGN noise. It assigns distances mainly considering the maximum magnitude-wise 

deviation and lag between given signals. Robustness of Hausdorff distance was 

validated in simulations. This suggests that, in terms of activation detection, fMRI data 
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distribution has intrinsically 2 dimensions: lag and magnitude. This is our intuition and it 

requires some further mathematical analysis for justification. Also, with the help of 

Hausdorff distance, we avoided the burden of feature extraction often performed before 

clustering since, we think, Hausdorff distance is already highly sensitive to the valid 

features implicitly. Also based on our comparison with other commonly used metrics, 

Hausdorff distance turned out to be the one performing best.  

 

To conclude with, we proposed a completely unsupervised and a model-free method for 

fMRI data analysis which is treated within the Bayesian framework using MAP 

approach: HRF estimation through MAP blind deconvolution and activation detection 

through clustering. Based on our findings, our proposed solution proves to be very 

effective even under variable settings and weak conditions.  

 

Future Work 

 

• In MAP Blind Deconvolution the ‘smoothness’ constraint may be considered with 

second order derivatives and also with L1 norm minimization instead of L2. 

• In MAP Blind Deconvolution we may also put a continuity constraint on the 

convolution filter (unknown stimulus). 

•  Hausdorff Distance may be further modified to cover the location correlations of 

voxels. Since voxels that are closer to each other have similar activations due to the 

same applied stimulus pattern, these location correlations should be considered while 

calculating the distances between the hemodynamical signals. 

• Experiments with real data sets should be increased. 
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APPENDICES 

 
 
APPENDIX A: Preprocessing of fMRI data 
 
Slice-timing correction 

 

Most fMRI data are acquired using two-dimensional pulse sequences to generate thin 

image planes (slices).The number of slices required to cover the whole brain depends on 

the capabilities of the scanner. These slices are acquired with equal spacing across the 

repetition time (TR), but in different orders. 

 
Figure A.1: Slice-timing correction for fMRI data. 

 

Figure A.1 illustrates an example volume with four slices. In order to avoid cross-slice 

excitation, most pulse sequences use interleaved slice acquisition, in which the odd 
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slices are scanned first, followed by the even slices. For instance, in Figure A.1, there 

are four slices in one volume, and each volume is scanned within TR = 3s. The four 

slices are acquired at 0.75 s (red), 1.5s (green), A.25s (blue) and 3s (yellow). However, 

in data analysis, it is commonly assumed that all these slices in this volume are  

 

acquired at time 0s. Such difference in the timing of acquiring each slice is called the 

slice timing problem. The most commonly used method to correct slice-timing errors is 

temporal interpolation. In this method, using the information from nearby time points, 

different interpolation techniques are used to estimate amplitude of the MR signal at the 

onset of the TR. Thus, for each volume, the intensity of any voxel in that volume is 

corrected to its intensity values at 0s. Although some researchers have proposed more 

advanced algorithms for slice-timing correction, no method could perfectly recover the 

missing information from samples. The accuracy of correction depends on the variability 

in the experimental data and the rate of sampling. Generally, when the variability is low 

or TR is short, accuracy is higher. For the fMRI data sets with typical temporal 

variability, slice timing correction is more effective for data acquired at relatively short 

TRs. For the data sets with longer TRs, slice timing correction could introduce errors. 

Therefore, this step could be skipped when the TR is long. 

 

 

Motion Correction 

 

In fMRI analyses, it is assumed that each voxel represents a fixed location of the brain. 

If the volunteer’s head moves, each voxel’s time course is derived from more than one 

brain location. Even small head motion may cause very large damage to raw signal over 

time. Despite the widespread use of head restraints during fMRI scans, it is hardly 

possible to keep the head perfectly still. The goal of motion correction is to adjust the 

time series of images so that �t, the voxels v(x, y, z, t) in every image correspond to the 

same position in the brain. 
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Generally, the process of establishing spatial correspondences between two images is 

called co-registration. Let M and N be two image volumes. F denotes the spatial 

transformation that maps voxel coordinates in image M to the coordinates in image N. 

The coregistration between M and N can be described as an optimization problem: 

 

 
 

where represents the similarity between the image N and the deformed 

image  is the regularization on the deformation . 

 

Many coregistration methods have been developed for different image modalities. In 

motion correction, the images of the time series are from the same brain. Therefore, all 

the volumes in the time series are coregistered to a single reference volume with rigid-

body transformation. When using rigid-body transformations for coregistration of two 

images, it is assumed that the size and shape of the two objects are identical. By a 

combination of translations and rotations, one image can be superimposed exactly upon 

the other. 

 

Here, translation is defined as the movement of the whole image volume along the axes. 

Let m = [x y z]′ be a point in image volume M, where x, y, z are the coordinates in three-

dimensional space. The transformation is: 
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where m is translated αx, αy, αz units along the axis x, y and z. 

 

Rotation is defined as the turning of the entire image volume around the axes. The 

Rotation of θx radians around axis x is normally described by: 

 
 

Similarly, rotations around axis y and z can be implemented by the following matrices:  
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Let Ω = {αx, αy, αz, θx, θy, θz} be the set of parameters in translation and rotation. We 

denote the rigid-body transformation with parameter Ω on image volume M as  

 (M| Ω). The realignment parameters are determined as: 

 

 
 

The sum of squared differences or mutual information can be used to measure similarity 

between the reference and corrected volume. As there is a large number of parameters in 

Ω, it is challenging to optimize the equation above . Thus, realignment algorithms use 

iterative approaches for head-motion correction. Gauss-Newton optimization is 

commonly used in rigid registration. 

 

 

Spatial normalization 

 

In fMRI analysis, it is sometimes desirable to analyze the functional data from a group 

of subjects. For instance, some experiments need to examine cross-subject consistency 

of results. Some researchers try to establish the difference in fMRI responses between 

healthy and diseased subjects. To analyze fMRI data across subjects, each subject must 

be transformed into a standard space so that it is the same size and shape as the others. 

This process is known as spatial normalization, which is an important preprocessing step 

for most voxel-based fMRI studies. After registration into the standard space, it is 

generally assumed that the same Euclidean coordinates correspond to approximately the 

same brain region in all subjects. Although many brain atlases have been proposed and 

MNI space are the most commonly adopted coordinate systems for spatial 

normalization. 
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Figure A.2: One slice of functional image, structural image and MNI atlas. 

 

Figure A.2 shows a slice of the functional image (left), the structural image (middle) and 

the MNI atlas (right). A typical functional image has a relatively low resolution. With 

this type of image, it is difficult to identify anatomical structures or boundaries and 

match them with the atlas. On the contrary, high-resolution structural images provide 

more details. Thus, it is common to acquire a structural image with an fMRI scan. The 

reference volume of the functional image is first mapped with the structural image using 

affine registration. 

 

Affine transformations can be described as: 

 

 
Let matrix A be 
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Since most motions for medical imaging applications are reversible, invertibility is a 

natural requirement for image registration. An affine transformation is invertible if and 

only if the matrix A is invertible. The rigid body transformations introduced previously 

are a subset of affine transformations. As affine transformations are linear, they can only 

model the global geometric differences between images. However, as the functional and 

structural images are acquired with the same brain at almost the same time, affine 

registration is sufficient to align them with each other. After registering the functional 

volumes onto the structural image, the structural image is normalized into a standard 

space. Then, the same transformations are applied to the functional volumes to bring 

them into the standard space. 
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APPENDIX B:  COMPARISON 
 

 

In this part we compare and discuss our proposed algorithm (MAP Blind Deconvolution 

and spectral clustering with EM) with another thesis work [90] in which Fourier Wavelet 

Regularized Deconvolution (FORWARD) method is used for the purpose of HRF 

extraction and Laplacian Eigenmaps with fuzzy c-means is used for clustering. 

 

ForWaRD method combines frequency domain deconvolution with frequency domain 

regularization and wavelet domain regularization. The advantage of deconvolution in the 

frequency domain is in identifying overlapping signals. But its main weakness is noise 

amplification. Noise can be reduced in the frequency domain by shrinking frequency 

coefficients; however, noise and signal may be difficult to separate. ForWaRD solves 

this by using wavelet domain Wiener shrinkage. 

 

Given a stimulus pattern and an fMRI time series, obtain Fourier transform of r (fMRI 

signal) and k (stimulus pattern), called R and K. Convolution corresponds to 

multiplication in frequency domain. In absence of noise, it is possible to compute an 

estimate of hemodynamic response function, d, through deconvolution shown in (B.1):  

 

  

    

(B.1) 

 

If noise is amplified at frequencies fk where K(fk) is close to zero, parts of noise can 

appear in the extracted response. ForWaRD uses regularization methods in frequency 

and wavelet domains in order to overcome this problem. Frequency-domain shrinkage 

attenuates the noise after the pointwise division, by multiplying each frequency 
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coefficient by a factor λ(k). λ(k) is the Wiener shrinkage coefficient. After 

shrinking signal in frequency domain, the leaked noise  that Fourier shrinkage 

λ(k) fails to attenuate has significantly reduced energy in all wavelet coefficients, but the 

signal part that Fourier shrinkage retains continues to be represented in the wavelet 

domain. Hence, subsequent wavelet shrinkage effectively extracts the retained signal 

 from the leaked noise and provides a robust estimate. 

 

Differing from our method, ForWaRD estimates HRF for each fMRI signal using the 

externally applied stimulus. The output of ForWaRD is then used as input to clustering. 

Before clustering the HRFs, because of the curse of dimensionality problem, a nonlinear 

dimension reduction method, called Laplacian embedding is performed. Then, fuzzy c-

means clustering with cosine distance is used to separate the voxels as active and 

passive. Figure B.1 shows the comparative HRF extraction results for simulated data 

with σAWGN=4 (Figure B.1a). ForWaRD uses the external applied stimulus pattern (red 

one in Figure B.1c) to estimate the HRF (Figure B.1b). As it is seen it is very similar to 

our estimation (Figure B.1d) except that ForWaRD catches a deeper undershoot in the 

estimated hemodynamic. 
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Figure B.1 Comparison of extracted HRFs from simulated data with σAWGN=4 

 
 
Figure B.2 shows the results for a real fMRI data from face perception experiment. With 

the help of our modification for initial rise in MAP Blind Deconvolution, we can 

successfully estimate the HRF with its rise to peak (Figure B.2d). However, ForWaRD 

fails to catch this initial rise (Figure B.2b).  

 

This is because the estimated underlying stimulus pattern (blue one in Figure B.2c) is 

leading the external applied stimulus. It is highly probable that the subject exhibits an 

anticipation before the stimulus is delivered. Interestingly, as seen in Figure B.2c, at 

some instants external applied stimulus does not trigger an actual stimulus perception. 

This is unlikely in a block design, since a cumulative participation is triggered from the 

underlying neuronal sites. The reason for the absence of stimulus within the blocks need 

further investigation. However, when ForWaRD uses the estimated stimulus produced 

via our method, then it can also successfully estimate the HRF recovering the initial rise 

as shown in Figure B.3b. This is a very good example that our stimulus estimation 

reflects the actual stimulus as perceived by the subject.  
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Figure B.2 Comparison of extracted HRFs from real data with voxel ID_100 

 
 

 

 
Figure B.3 Comparison of extracted HRFs from real data with voxel ID_100 (ForWaRD uses the 

MAP estimation of stimulus pattern as input) 
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To sum up, both methods can successfully estimate the underlying HRF of a voxel. But 

as we stated earlier, the externally applied stimulus is not always reflected on the subject 

as it is delivered. The stimulus estimated by our method helps in the recovery of the 

HRF by both ForWaRD and blind deconvolution methods. 

 

For a comparison of clustering performances we firstly use simulated data with 

σAWGN=4, σjitter=4, σlag=16, σdrift=16.  Figure B.4a shows our results in which the 

active voxel samples (red) scatter less than the passive ones (blue). In Figure B.4b, using 

fuzzy c-means clustering with Laplacian Eigenmaps, we observe the opposite case, in 

which the active data (red) scatter more than the passive ones (green). That means our 

clustering results are better in sensitivity, while the other method is better in specificity. 

We get 100% sensitivity, 90.4% specificity and the other method gets 99.8% sensitivity, 

92.2% specificity. 

 

 

 

 
         a) Spectral clustering with EM               b) Fuzzy c-means with Laplacian Eigenmaps  

Figure B.4 Comparison of clustering results for simulated data 
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Finally, Figure B.5 shows the clustering results for real data. As shown in Figure B.5a, 

we get very nice separation among three classes existing in our real data: active, passive 

and motion. Also the nice nonlinear boundaries provide a natural separation and the 

cluster centers are distant from each other. On the other hand, in Figure B.5b, although 

the other method also groups the data into three clusters, the cluster centers are closer 

than our separation. This is due to the superiority of the Hausdorff distance which can 

determine similarities and dissimilarities better than the cosine distance that is used in 

the other method. Here we have 100 % sensitivity and specificity where the other 

method obtains 98% sensitivity, 99% specificity. 

 

 

 
 

a) Spectral clustering with EM               b) Fuzzy c-means with Laplacian Eigenmaps  

Figure B.5 Comparison of clustering results for real data 

 

 

 

 


