

TRANSFORMING MISSION SPACE MODELS
TO EXECUTABLE SIMULATION MODELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜRKAN ÖZHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

SEPTEMBER 2011

Approval of the thesis:

TRANSFORMING MISSION SPACE MODELS
TO EXECUTABLE SIMULATION MODELS

Submitted by GÜRKAN ÖZHAN in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

─────────────

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

─────────────

Assoc. Prof. Dr. Halit Oğuztüzün
Supervisor, Computer Engineering Dept., METU

─────────────

Examining Committee Members:

Prof. Dr. Faruk Polat
Computer Engineering Dept., METU

─────────────

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

─────────────

Assoc. Prof. Dr. Levent Yılmaz
Computer Science and Software Eng., Auburn University

─────────────

Prof. Dr. Đsmail Hakkı Toroslu
Computer Engineering Dept., METU

─────────────

Assist. Prof. Dr. Aysu Betin Can
Informatics Institute, METU

─────────────

Date:

─────────────

iii

I hereby declare that the information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

Name, Last name: Gürkan Özhan

Signature:

iv

ABSTRACT

TRANSFORMING MISSION SPACE MODELS

TO EXECUTABLE SIMULATION MODELS

Özhan, Gürkan

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün

September 2011, 232 pages

This thesis presents a two step automatic transformation of Field Artillery Mission Space

Conceptual Models (ACMs) into High Level Architecture (HLA) Federation Architecture

Models (FAMs) into executable distributed simulation code. The approach followed in the

course of this thesis adheres to the Model-Driven Engineering (MDE) philosophy. Both

ACMs and FAMs are formally defined conforming to their metamodels, ACMM and

FAMM, respectively. ACMM is comprised of a behavioral component, based on Live

Sequence Charts (LSCs), and a data component based on UML class diagrams. Using

ACMM, the Adjustment Followed by Fire For Effect (AdjFFE) mission, which serves as

the source model for the model transformation case study, is constructed. The ACM to

FAM transformation, which is defined over metamodel-level graph patterns, is carried out

with the Graph Rewriting and Transformation (GReAT) tool. Code generation from a FAM

is accomplished by employing a model interpreter that produces Java/AspectJ code. The

resulting code can then be executed on an HLA Run-Time Infrastructure (RTI). Bringing a

fully fledged transformation approach to conceptual modeling is a distinguishing feature of

this thesis. This thesis also aims to bring the chart notations to the attention of the mission

space modeling community regarding the description of military tasks, particularly their

communication aspect. With the experience gained, a set of guidelines for a domain-

independent transformer from any metamodel-based conceptual model to FAM is offered.

Keywords: Domain Specific Modeling, Graph-Based Model Transformation, Field

Artillery, High Level Architecture, Code Generation

v

ÖZ

GÖREV UZAYI MODELLERĐNĐ

 KOŞTURULABĐLĐR SĐMÜLASYON MODELLERĐNE DÖNÜŞTÜRME

Özhan, Gürkan

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün

Eylül 2011, 232 sayfa

Bu tez Sahra Topçuluğu Görev Uzayı Kavramsal Modelleri’nin (ACM) Yüksek Seviye

Mimarisi (HLA) Federasyon Mimari Modelleri’ne (FAM), onun da koşturulabilir dağıtık

simülasyon koduna iki kademeli otomatik dönüşümünü sunmaktadır. Bu tezin seyrinde

izlenen yaklaşım Model Güdümlü Mühendislik (MDE) felsefesiyle örtüşmektedir. ACM ve

FAM’ların her ikisi de, sırası ile, metamodelleri olan ACMM ve FAMM ile uyumludurlar.

ACMM, Canlı Sıralama Çizelgelerine (LSCs) dayanan bir davranış bileşeni ile, UML sınıf

diyagramlarına dayanan bir veri bileşeninden oluşmaktadır. ACMM kullanılarak, model

dönüşüm örnek çalışması için kaynak model teşkil eden, Tanzim Sonrası Tesir Atışı

(AdjFFE) görevi de kurgulanmıştır. Metamodel seviyesi çizge örüntüleri üzerinden

tanımlanan ACM’den FAM’a dönüşüm, GReAT adı verilen araç ile gerçekleştirilmiştir.

FAM’dan kod üretilmesi, Java/AspectJ kodu üreten bir model yorumlayıcısı kullanılarak

başarılmıştır. Üretilen kod daha sonra bir HLA Koşma-Zamanı Altyapısı (RTI) üzerinde

çalıştırılabilmektedir. Kavramsal modellemeye olgunlaşmış bir dönüşüm yaklaşımı

getirmek bu çalışmanın ayırt edici bir özelliğidir. Bu tez, askeri görevlerin, iletişim yönü ön

plana alınarak betimlenmesiyle ilgili olarak, çizelge notasyonlarını görev uzayı modelleme

camiasının dikkatine sunmayı da hedeflemektedir. Elde edilen tecrübe ile, metamodel

tabanlı herhangi bir kavramsal modelden FAM’a alandan bağımsız bir dönüştürücü için bir

takım kılavuzlar ortaya konulmuştur.

 Anahtar Kelimeler: Alana Özgü Modelleme, Çizge Tabanlı Model Dönüşümü, Sahra

Topçuluğu, Yüksek Seviye Mimarisi, Kod Üretimi

vi

To my family

vii

ACKNOWLEDGEMENTS

I express sincere gratitude and appreciation to my supervisor Assoc. Prof. Dr. Halit

Oğuztüzün for his guidance, continuous support and insightful comments throughout this

research.

Many thanks to Prof. Dr. Faruk Polat, Prof. Dr. Hakkı Toroslu, Assoc. Prof. Dr. Ali Doğru,

Assoc. Prof. Dr. Levent Yilmaz and Assist. Prof. Dr. Aysu Betin Can for their contributions

in my thesis committee.

I also would like to thank to fellow PhD students Okan Topçu and Mehmet Adak for their

fruitful discussions and comments.

I cannot say enough to express my gratitude to my wife Didem for her endless patience

during my thesis study and for her support and assistance in every aspect of my life. I

would like to mention my beloved ones here, Ece and Gülce, whom were born and grown

into their early childhoods along with this marathon. Finally, my love and respect goes my

father and especially my mother; without her motivating advices this thesis might have not

been completed on time.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xxi

CHAPTERS

1. INTRODUCTION .. 1

1.1 Motivation and Scope ... 1

1.2 The Context of the Transformations ... 3

1.3 Rationale for Using Graph Transformations and GReAT .. 6

1.4 Organization of the Thesis .. 6

2. BACKGROUND .. 9

2.1 Model Driven Architecture/Engineering .. 9

2.2 Graph Transformations ... 12

2.2.1 Graph Transformation Concepts .. 12

2.2.2 Some Prominent Graph Transformation Tools... 13

2.3 Generic Modeling Environment (GME) ... 14

2.3.1 Modeling Concepts ... 15

2.4 Graph Rewrite and Transformations (GReAT) .. 16

2.5 Field Artillery Observed Fire Techniques .. 18

2.5.1 Elements of the Field Artillery Team ... 19

2.5.2 Adjustment Followed By Fire For Effect Mission ... 21

2.6 High Level Architecture ... 22

2.6.1 The Object Model Template (OMT) .. 23

2.6.2 HLA Rules .. 23

2.6.3 The Management Object Model (MOM) ... 24

2.6.4 The HLA Services .. 24

ix

2.7 Message Sequence Chart and Live Sequence Chart ... 26

2.7.1 Message Sequence Chart .. 26

2.7.2 Live Sequence Chart ... 27

2.8 Overview of Federation Architecture Metamodel .. 28

3. THE CONCEPTUAL FRAMEWORK .. 32

3.1 The Models ... 33

3.1.1 The Conceptual Data Model ... 33

3.1.2 The Distributed Simulation Architecture Data Model 34

3.1.3 The Behavioral Model .. 35

3.1.4 Model Integration ... 37

3.2 The Model Transformations ... 38

3.2.1 Overview of the Model Transformer .. 38

3.2.2 Key Elements of the CM to DSAM Transformation 39

3.2.3 Transforming Message Communications ... 42

3.3 Refining the Simulation Model .. 43

3.4 Code Generation from the Simulation Model ... 44

3.5 Summary ... 46

4. FIELD ARTILLERY CONCEPTUAL MODEL ... 48

4.1 Introduction .. 49

4.1.1 Motivation .. 49

4.1.2 Rationale for Using Live Sequence Charts ... 50

4.2 Metamodel Scope, Methodology and User Perspective ... 50

4.2.1 Scope and Assumptions .. 50

4.2.2 Methodology ... 51

4.2.3 User Perspective ... 52

4.3 Field Artillery Metamodel .. 53

4.3.1 Data Model ... 54

4.3.2 Composition of the Behavioral and Data Models ... 60

4.4 Adjustment Followed by Fire-for-Effect Mission Model 62

4.4.1 The Top Level Mission Model ... 62

4.4.2 Instance Decomposition of BatteryFDC ... 68

4.4.3 Overview of Missions via a High Level MSC.. 70

4.5 Discussions ... 71

4.5.1 Challenges Encountered ... 71

4.5.2 An Informal Assessment of ACM .. 72

x

4.5.3 An Assessment of Using LSCs in Modeling of Military Tasks 73

4.6 Related Work on Conceptual Modeling ... 74

4.6.1 Conceptual Models of the Mission Space .. 75

4.6.2 KAMA .. 76

4.6.3 Defense Conceptual Modeling Framework .. 77

4.6.4 Base Object Model ... 77

4.6.5 Ontology as Conceptual Model .. 78

4.6.6 JC3IEDM .. 78

4.6.7 Model-Based Approaches... 79

5. ACM TO FAM TO CODE TRANSFORMATION ... 80

5.1 Setting the Stage for Transformation .. 82

5.2 Data Model Transformation ... 83

5.2.1 Object Model Transformation .. 84

5.2.2 Federation Structure Transformation .. 87

5.3 Behavioral Model Transformation.. 88

5.3.1 MSC Document Transformation .. 90

5.3.2 MSC Transformation .. 92

5.3.3 LSC Transformation ... 96

5.4 Multiple Instance LSC to Binary Instance LSC Transformation of FAM 109

5.4.1 Initializing Multi2BinaryLSC Transformation ... 111

5.4.2 Creating Binary MSCs and LSCs per Federate .. 112

5.4.3 Multi to Binary LSC Transformation ... 113

5.5 FAM-to-Simulation Code Generation and Execution .. 116

5.6 Analysis of the Transformations ... 119

5.6.1 Modularity Analysis ... 120

5.6.2 Internal Transformation Composition Analysis ... 120

5.6.3 Staging Analysis ... 121

5.6.4 Scope Analysis ... 121

5.6.5 Direction Analysis .. 123

5.7 Related Work on Model Transformations .. 123

5.7.1 Transformations Targeting Simulation ... 123

5.7.2 Automata, State Chart, State Diagram Transformations 127

5.7.3 LSC to Code Transformations .. 128

5.7.4 Schema Transformations .. 128

5.7.5 Web Services Transformations ... 129

xi

5.7.6 Transformation by Example ... 130

5.7.7 Miscellaneous UML-based Transformations ... 130

6. DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS 131

6.1 Discussions on ACM Model and ACM2FAM Transformation 131

6.2 Discussions on FAMM and the Code Generator .. 132

6.2.1 Discussion and Assessment of FAMM .. 132

6.2.2 Discussion and Assessment of the Code Generator 133

6.3 A Comparison to MDA .. 135

6.3.1 Our Artifacts Associated with MDA Standards ... 135

6.3.2 Our Models from MDA’s Modeling Viewpoints ... 136

6.4 Towards a Domain-Independent CM Transformer for HLA 137

6.4.1 The Transformation Definition Experience .. 137

6.4.2 The Highlights of ACM to FAM Transformation .. 139

6.4.3 Designing the Domain-Independent HLA Transformer 140

6.5 Future Research Directions ... 142

6.5.1 Domain-Independent HLA Transformer .. 142

6.5.2 Possibilities for Higher Order Transformations ... 142

6.5.3 Using BOMs for Intra-Federate Modeling ... 144

7. CONCLUSION .. 146

REFERENCES ... 148

APPENDICES

A. ADJFFE MODEL LSCS IN GRAPHICAL NOTATION .. 155

B. ACM TO FAM MODEL TRANSFORMATION RULES ... 171

B.1 Start Block ... 171

B.2 Data Model Transformation ... 172

B.2.1 Object Model Transformation .. 172

B.2.2 Federation Structure Transformation ... 177

B.2.3 Initializing Variable Lists Per Federate ... 180

B.3 Behavioral Model Transformation ... 182

B.3.1 MSC Document Transformation .. 187

B.3.2 MSC Transformation ... 192

B.3.3 Federation Initialization ... 196

B.3.4 LSC Transformation .. 198

B.3.5 Bind Decomposed Instance MSC References ... 219

C. CHANGES MADE IN METAMODELS AND CODE GENERATOR 221

xii

C.1 Issues with the Metamodels ... 221

C.1.1 Eliminating One-to-Many Connections ... 221

C.1.2 Name Clashes with Reserved Words ... 222

C.1.3 Non-unique FCO Names ... 222

C.1.4 References Pointing to Multiple Items .. 222

C.2 Issues with the Simulation Code Generator ... 223

D. TIPS AND PITFALLS IN DEVELOPMENT WITH GREAT 224

D.1 Defining Cross-Links ... 224

D.2 Role Names and Cardinalities in Cross-Links ... 225

D.3 Working with Globals .. 227

D.3.1 Rules for Defining Global Objects .. 227

D.3.2 Defining Multiple Global Objects ... 227

D.4 Library Usage in Models ... 229

D.4.1 Rules for Attaching a Library .. 229

D.4.2 Crashing of GReAT during Library Import ... 230

CURRICULUM VITAE ... 231

xiii

LIST OF TABLES

TABLES

Table 3.1 Summary of mappings from Conceptual Model to Distribted Simulation

Architecture Model ... 41

Table 4.1 FA metamodel (ACMM) correlated with OMG’s four-layer model hierarchy ... 53

Table 5.1 Metrics for the ACM2FAM transformation... 83

Table 5.2 AttributeMapping code of InitBinaryMSCLSC rule ... 113

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 The view of FACM to FAM to executable code transformation 4

Figure 1.2 The three layers of modeling used in the transformations 5

Figure 2.1 MDA software development life cycle [20] ... 10

Figure 2.2 GME modeling concepts [33] ... 16

Figure 2.3 GReAT execution engine (adapted from [6]). .. 18

Figure 2.4 The field artillery team [35] .. 19

Figure 2.5 Typical Field Artillery Team mission setting ... 21

Figure 2.6 Software Components in the HLA [13] .. 22

Figure 2.7 Federation Architecture Metamodel structure ([12]) .. 29

Figure 2.8 Relationship between a FAM and its metamodel ([12]) 30

Figure 3.1 The overall model transformation process ... 32

Figure 3.2 The upper level CDMM elements .. 34

Figure 3.3 Prominent DSADMM elements ... 35

Figure 3.4 Simplified illustration of upper-level BMM elements .. 36

Figure 3.5 Integration of data and behavior in conceptual and simulation models 38

Figure 3.6 Overview of the architecture of the model transformer 39

Figure 3.7 An overview of CM to DSAM transformation ... 40

Figure 3.8 Abstracted mapping of a CM message communication to DSAM 42

Figure 3.9 Refining a multi-instance LSC into binary-instance LSCs 45

Figure 3.10 Relationship between generated source codes of a binary-instance LSC 46

Figure 4.1 A simplified sample ACM model as shown in GME model browser 52

Figure 4.2 The actors and nets of the field artillery data model .. 56

Figure 4.3 a)Msg. for observer identification and warning b)Msgs for FireCommandSOP

 .. 57

xv

Figure 4.4 A message communication example .. 58

Figure 4.5 The mission hierarchy .. 59

Figure 4.6 FA domain entities as attached to JC3IEDM ... 60

Figure 4.7 Integration of data model to behavioral model (partial view) 61

Figure 4.8 Adjustment followed by fire for effect ... 62

Figure 4.9 Call for fire ... 64

Figure 4.10 Adjustment loop ... 65

Figure 4.11 Initial Fire Command.. 66

Figure 4.12 Round shot .. 67

Figure 4.13 Adjustment followed by fire for effect in decomposed BatteryFDC instance .. 69

Figure 4.14 Call for fire in decomposed Battery FDC instance ... 69

Figure 4.15 High level MSC for FA behavioral model ... 70

Figure 5.1 An overview of ACM to FAM transformation ... 81

Figure 5.2 Partial view of AdjFFE LSC in a produced FAM .. 81

Figure 5.3 The start rule block of ACM2FAM transformation in GME/GReAT 82

Figure 5.4 The main DataModelTr block .. 84

Figure 5.5 The InteractionClasses rule .. 86

Figure 5.6 A conceptualized field artillery message to OMT transformation 87

Figure 5.7 Transformation of field artillery actors/nets to HLA federates and federation .. 88

Figure 5.8 The BehavioralModelTr and AscInstanceOfFacm blocks 89

Figure 5.9 The MSCDocTr block .. 90

Figure 5.10 Part of the MSC document metamodel [12] ... 91

Figure 5.11 The MSCTrans block.. 92

Figure 5.12 Part of the MSC metamodel [12] .. 93

Figure 5.13 The MSCHeadTr block .. 94

Figure 5.14 The InitFederation block .. 95

Figure 5.15 The LSCTrans block ... 96

Figure 5.16 The PreSubChartTr block ... 97

Figure 5.17 The MultiInstanceEventTr and RefIdentTr blocks ... 98

Figure 5.18 The OrderableEventTr block .. 100

Figure 5.19 The MsgEventTr and OutMsg2HLAMeth blocks .. 101

Figure 5.20 ACM out event to FAM out/in event federation execution 102

Figure 5.21 The OutNonDurableMsg2HLAMeth bock ... 103

Figure 5.22 The SendRecvIntClsSrc rule .. 104

xvi

Figure 5.23 Partial view of non-durable message transformation and its result in FAM .. 105

Figure 5.24 The OutDurableMsg2HLAMeth bock .. 106

Figure 5.25 Partial view of (instantiation type) durable message transformation and its

result in FAM .. 107

Figure 5.26 The SpecialConnsTr block ... 109

Figure 5.27 Stripping a multi-instance FAM LSC into binary-instance LSCs 110

Figure 5.28 The Start and Multi2BinaryTr blocks ... 111

Figure 5.29 Multi2BinaryMainTr block and InitBinaryMSCLSC rule 112

Figure 5.30 LSCTrans_M2B block .. 113

Figure 5.31 InstRefTr_M2B block and CreateInstRef rule ... 114

Figure 5.32 PreSubChartTr_M2B block and CreateSubchart rule 115

Figure 5.33 HandleOut block and FederationOutFederate rule ... 116

Figure 5.34 Sample generated source code folders and files view 117

Figure 5.35 Static structure of a generated federate application [61] 118

Figure 5.36 A screenshot of the generated AdjFFE mission code in Eclipse 118

Figure 5.37 A screenshot of an AdjFFE simulation execution in pRTI 119

Figure 5.38 Horizontal and vertical internal transformation compositions 121

Figure 6.1 Associating our metamodeling artifacts to OMG standards 136

Figure 6.2 The envisioned domain-independent HLA transformer 141

Figure 6.3 The overview of the FAM-oriented CM template .. 141

Figure A.1 The Main LSC for AdjFFE mission LSC .. 155

Figure A.2 Call for fire LSC .. 156

Figure A.3 FO_MTO_AI (Fire Order, Message to Observer, Additional Information) LSC

 .. 157

Figure A.4 Adjustment loop LSC .. 158

Figure A.5 Observe spotting LSC .. 158

Figure A.6 Initial fire command LSC .. 159

Figure A.7 Process fire command LSC ... 160

Figure A.8 Subsequent fire command LSC ... 161

Figure A.9 Instantiation type of durable messages LSC .. 162

Figure A.10 Overall update type of durable messages LSC .. 163

Figure A.11 Battalion fire order update and delete LSC ... 163

Figure A.12 Fire command update and delete LSC ... 163

xvii

Figure A.13 Metro report update and delete LSC .. 164

Figure A.14 Round shot LSC ... 165

Figure A.15 Volley shot LSC .. 165

Figure A.16 Volley fire LSC ... 166

Figure A.17 Metro net LSC ... 167

Figure A.18 Battery radio net LSC .. 168

Figure A.19 Battalion intervention LSC .. 169

Figure A.20 Fire for effect loop LSC ... 170

Figure B.1 Start block .. 171

Figure B.2 InitGlobalRoot rule .. 172

Figure B.3 DataModelTr block .. 172

Figure B.4 ObjectModelTr block ... 173

Figure B.5 DataTypes block .. 173

Figure B.6 InitDataTypeFolders rule ... 173

Figure B.7 BasicTypes rule .. 174

Figure B.8 SimpleTypes rule ... 174

Figure B.9 EnumTypes rule ... 175

Figure B.10 ArrayTypes rule ... 175

Figure B.11 InitFOM rule .. 176

Figure B.12 InteractionClasses rule ... 176

Figure B.13 ObjectClasses rule .. 177

Figure B.14 FederationStructureTr block .. 177

Figure B.15 InitFOMSOMs block ... 178

Figure B.16 FederationFOM rule... 178

Figure B.17 ActorFederateSOM block .. 178

Figure B.18 GetTopLevelActors rule .. 179

Figure B.19 GetFATActors rule .. 179

Figure B.20 ActorFederateSOM rule ... 179

Figure B.21 FederateVarLists block .. 180

Figure B.22 BatteryFDCFdVarList block .. 180

Figure B.23 InitVarList rule .. 181

Figure B.24 OMTTime rule ... 181

Figure B.25 FireCommandSOP_OC rule .. 182

Figure B.26 BehavioralModelTr block .. 182

xviii

Figure B.27 AscGlobalHlaMeths block ... 183

Figure B.28 AscInstanceOfFacm block and DocHead_InstOf for-block 184

Figure B.29 DocHeadNets_InstOf_DataModelNets rule .. 184

Figure B.30 DocHeadActors_InstOf_DataModelActors block ... 185

Figure B.31 EstablishInstOf rule ... 185

Figure B.32 MSCHeadIns_InstOf_DocHeadIns rule .. 186

Figure B.33 CrtBehaviorMdlFld and CrtMscDoc rules ... 186

Figure B.34 MscDocTr block .. 187

Figure B.35 DocumentHeadTr block ... 187

Figure B.36 CrtDocumentHead rule .. 188

Figure B.37 InstanceListTrans block ... 188

Figure B.38 GetFedApps block and GetTopActorFedApps rule 189

Figure B.39 CrtInstFedStr2DHInstLst and AscInstanceOfFamDH rules 189

Figure B.40 CrtFederationInst rule .. 190

Figure B.41 TimerListTrans and HandleTimer rule .. 190

Figure B.42 DocumentBodyTr and DocumentBody-Utility blocks and InitDocBodyUtility

rule .. 191

Figure B.43 DocBodyTrans block and InitMSC rule .. 192

Figure B.44 MSCTrans and MscHeadTr blocks .. 193

Figure B.45 CrtMscHead rule .. 193

Figure B.46 CrtDerivedFamInst rule ... 194

Figure B.47 MatchFamDocMscInst rule ... 194

Figure B.48 DecomposeInst rule ... 195

Figure B.49 MscBodyTr block and InitMscBody-LSC rule .. 195

Figure B.50 InitFederation block and GetTopLSCPrechart rule 196

Figure B.51 CreateFedEx block and CreateFedExLSC rule .. 197

Figure B.52 HandleCreateFedEx block and CopyCreateFedEx and

UpdateCreateFedExArgs rules ... 197

Figure B.53 SendCreateFedEx rule ... 198

Figure B.54 JoinFedEx block and AscParentInst rule ... 198

Figure B.55 LSCTrans block ... 199

Figure B.56 ActivationConditionTr block and ActivationCondition rule 199

Figure B.57 InstanceRefTr block ... 200

Figure B.58 InstRef4ActorsNets rule ... 200

Figure B.59 GetMSC4LSC block and DispatchLSC rule .. 201

xix

Figure B.60 MatchParentMSC, MatchParentInlExp and MatchParentLSC rules 201

Figure B.61 InstRef4Fed rule... 201

Figure B.62 PreSubChartTr block ... 202

Figure B.63 DispPreSubchart test and CasePrechart case ... 202

Figure B.64 The CreatePreChart rule .. 203

Figure B.65 The MultiInstanceEventTr and RefIdentTr blocks .. 204

Figure B.66 The GetMultiInstEvent rule and DispMultiInstEvents case 204

Figure B.67 The CreateCondition rule ... 205

Figure B.68 The CreateReference and CreateMSCRef rules ... 205

Figure B.69 The GetInlExpFromLSC rule .. 205

Figure B.70 The RefIdentCommonTr block and CreateGate rule 206

Figure B.71 The OrderableEventTr block and HanleAction rule 207

Figure B.72 The GetOrdEvent rule and DispOrdEvents case .. 207

Figure B.73 The TimerEventTr block and CreateStartTimer rule 208

Figure B.74 The InstRefTimerEvAscs rule ... 208

Figure B.75 The HandleTimerRef rule .. 209

Figure B.76 The GeneralOrderTr block and HandleBefore rule 209

Figure B.77 The MethEventTr block and HandleCall rule .. 210

Figure B.78 The MsgEventTr and OutMsg2HLAMeth blocks ... 211

Figure B.79 The OutNonDurableMsg2HLAMeth block and GetNDMsg rule 211

Figure B.80 The CreateIntCls rule ... 212

Figure B.81 The SendRecvIntClsSrc rule .. 213

Figure B.82 The SendRecvIntClsDstInst rule .. 214

Figure B.83 The OutDurableMsg2HLAMeth block .. 215

Figure B.84 The CrtObjClsUpdRef rule .. 215

Figure B.85 The ObjClsOutInSrc rule ... 216

Figure B.86 The ObjClsOutInDstInst rule ... 216

Figure B.87 The NonorderableEventTr block and GetNonOrdEvent rule 217

Figure B.88 The HandleMethod rule ... 218

Figure B.89 The SpecialConnsTr block and AscSimRegToInstEv rule 219

Figure B.90 AssocDecompAsRefs block and GetBothMSCs rule 220

Figure B.91 GetAndBindDecomposedMSC rule ... 220

Figure D.1 Errors thrown by GR-engine when using cross-links to define model elements

 .. 226

xx

Figure D.2 Sample cross-links ... 226

Figure D.3 Global object definition in GReAT/GME ... 228

Figure D.4 GReAT rule showing two global objects and a library usage 228

Figure D.5 IMLib and IEEE1516_Defaults used as libraries in a FAM model 229

xxi

LIST OF ABBREVIATIONS

ACM Artillery Conceptual Model

ACMM Artillery Conceptual Meta-Model

Adj Adjustment

AdjFFE Adjustment Followed by Fire For Effect

AGG Attributed Graph Grammar

Alt Alternative

AOP Aspect Oriented Programming

API Application Programming Interface

ATL ATLAS Transformation Language

AToM3 A Tool for Multi-formalism and Meta Modelling

BML Battle Management Language

BMM Behavioral Metamodel

BOM Base Object Model

BOTL Bidirectional Object oriented Transformation Language

C2 Command and Control

CF Check Firing

CFF Call For Fire

CIM Computation Independent Model

CL Cease Loading

CM Conceptual Model

CMMS Conceptual Models of the Mission Space

CodeGen Code Generator

DCMF Defense Conceptual Modeling Framework

DDM Data Distribution Management

DIHT Domain-Independent HLA Transformer

DoD Department of Defense

DSAM Distributed Simulation Architecture Model

DSML Domain Specific Modeling Language

Exc Exception

xxii

FA Field Artillery

FAM Federation Architecture Model

FAMM Federation Architecture Meta-Model

FAT Field Artillery Team

FC Fire Command

Fd Federate

FDC Fire Direction Center

FDD FOM Document Data

FDO Fire Direction Officer

FDSS Facility for Distributed Simulation Systems

Fed Federation

FFE Fire For Effect

FO Fire Order

FOM Federation Object Model

FSMM Federation Structure Meta-Model

FUJABA From UML to Java and Back Again

FwdObserver Forward Observer

GME Generic Modeling Environment

GReAT Graph Rewriting And Transformation

GXL Graph eXchange Language

HFMM HLA Federation Metamodel

HLA High Level Architecture

HMSC High-Level MSC

HOMM HLA Object Meta-Model

HSMM HLA Services Meta-Model

IEEE Institute of Electrical and Electronic Engineers

ISupp Immediate Suppression

ITU-T International Telecommunication Union

JC3IEDM Joint C3 Information Exchange Data Model

KAMA KAvramsal Modelleme Aracı (in Turkish)

LHS Left Hand Side

LSC Live Sequence Chart

LscRTILib LSC RTI Library

MDA Model Driven Architecture

MDE Model Driven Engineering

xxiii

MetaGME GME Metamodel

MIC Model Integrated Computing

METU Middle East Technical University

MOF Meta Object Facility

MOM Management Object Model

MSC Message Sequence Chart

MTO Message To Observer

OCL Object Constraint Language

Oid_W_Msg Observer Identification and Warning Message

OMG Object Modeling Group

OMT Object Model Template

Opt Option

Par Parallel

PIM Platform Independent Model

PSM Platform Specific Model

pRTI Pitch RTI

RBAC Role-Based Access Control

RHS Right Hand Side

RTI Runtime Infrastructure

RTILib RTI Library

Seq Sequence

SIW Simulation Interoperability Workshop

SOA Service Oriented Architecture

SOM Simulation Object Model

SOP Standing Operating Procedures

STANAG STANdardization AGreement

Supp Suppression

SVBR Semantics of Business Vocabulary and Business Rules

UDM Universal Data Model

UML Unified Modeling Language

UMT Universal Model Transformer

UWE UML-based Web Engineering

VIATRA VIsual Automated model TRAnsformations

XML Extendible Markup Language

XMSF Extendible Modeling and Simulation Framework

1

CHAPTER I

INTRODUCTION

 The Model-Driven Engineering (MDE) approach [1] is becoming prominent in software

and systems engineering, bringing forth a model-centric approach to the development cycle

in contrast to today’s mostly code-centric practices. A well-known MDE initiative is the

Model Driven Architecture (MDA) of Object Management Group (OMG). Model

transformations are considered the heart of MDA, where the Platform Independent Model

(PIM) of a system to be constructed, is transformed into a Platform Specific Model (PSM),

which can be readily translated to executable code [2].

 Model Integrated Computing (MIC) [3], an earlier manifestation of MDE, relies on

metamodeling to define domain-specific modeling languages and model integrity

constraints. The metamodel (also called a paradigm) is then used to automatically compose

a domain-specific model building environment for creating, analyzing, and evolving the

system through modeling and generation. In the MIC approach, a crucial point is

generation, where (domain-specific) models are transformed into lower level executable or

analysis models. Model transformation techniques and tools are essential to MIC for

enabling the generation process.

1.1 Motivation and Scope

 There has been a considerable proliferation of literature on model transformations, and

specifically on graph-based transformations during the last two decades [4] and a rapid

dissemination of the MDE approach in the last decade [5][6][7][8]. As such, a recent

interest has been shown by the modeling and simulation community [9][10]. More

importantly, it is seen that the approach is perceived as a key ingredient in various major

defense modeling and simulation program of works and researches [88][89][90][91][92].

 Up to our knowledge, in most of the related works model transformations are used as a

facilitating step in achieving a major objective in various application areas such as semantic

web, data mining, knowledge engineering and military. These transformations are usually

applied among very specific, narrow domains, compromising realistic concerns and

2

restrictions [67][68][69][70][71][72]. Many of the efforts are single step source model to

target model transformations [67][68][69][70][71][78][83][80]. Some are either done

within the same domain (mostly operating on a single model), or between two highly

similar, tightly coupled domains [67][80]. Finally, although model transformation works

emphasizing either data [76][77][81][82][83][91][94], or behavior transformation

[71][72][73][74] [79] are abundant, works equipoising both aspects in an integrated fashion

are rare.

 In most of the cited works, the employment of a formal metamodel for the subject model

or metamodel usage in transformations is not a primary concern [68][70][71][81][83]. The

usual approach is to analyze the model to obtain an abstracted form (could be comparable

to a kind of metamodel) as a preliminary step and consult to it during the transformation

process. Moreover, many of these transformations are not formally defined, but rather

presented barely as algorithms or pseudo codes and usually implemented in a high level

programming language. This nature causes these transformation efforts to be hampered by

procedural details and lack of comprehensibility.

 Among many of the works that exhibit a more MDA centric characteristic, it is seen that

although apparently well thought out rules and guidelines on mapping PIM elements to

PSM elements are present, no tool support is provided for automating model

transformations [88][89][93][94]. The target model is built manually or guided by a GUI-

based tool from scratch based on the source model and the rules. (A comparison of related

work on model transformations appears in Section 5.7).

 Bringing a fully-fledged transformation approach to conceptual modeling is a

distinguishing feature of our work. In this thesis, we put forth a formal, declarative and

visual transformation process from Field Artillery Conceptual Model (ACM) [11] to

Federation Architecture Model (FAM) [12]. The produced FAM is then fed into a code

generator, packaged as a “model interpreter” in MIC parlance, to generate Java/AspectJ

code that can be executed on a High Level Architecture (HLA) Run-Time Infrastructure

(RTI) [13]. In this sense our work can be considered as a sequence of applications of the

MIC approach. It is intended as an MDE-based end-to-end systems development endeavor

from the conceptual model to executable simulation code, promoting model transformation

usage. We treat both data and behavior on equal grounds in our transformation perspective.

Furthermore, we assess our work in the view of a set of model transformation properties

that are published in the literature. From the experience gained and lessons learned, we also

offer a number of suggestions for tailoring the conceptual model of any source domain for

the pursuit of achieving domain-independent FAM transformations.

3

 Within the scope of this thesis, the development of ACM is realized as a preliminary

step before the ACM to FAM transformation definition work. ACM is comprised of a

behavioral component and a data component. Both sub-metamodels are separately

developed and seamlessly integrated with each other. Using ACM, the well known

Adjustment Followed by Fire For Effect (AdjFFE) mission is also modeled, which is the

source model for the model transformation case study. To the best of our knowledge, this

work is unique in applying the LSC language for the modeling of military tasks.

 We consider this work as a pioneering step towards introducing the overarching vision

of model driven development advocated by the MDE into the modeling and simulation

domain. The kind of MDE work accomplished in this thesis has been cited as a challenge in

various publications [88][89][90][93].

 Using our implementation a field artillery domain expert competent in modeling can

develop his ACM, run the ACM to FAM transformer on it and obtain the corresponding

FAM. Then applying a second transformation (i.e., running the code generator), he would

produce the base and default aspect codes for federation execution on an HLA RTI. The

code becomes ready for execution with a hand from a programmer after organizing it into

an Eclipse project and weaving the hand-written computation aspect that sets the run-time

values for the data structures.

1.2 The Context of the Transformations

 In order to clarify the purpose and provide a referential overview of the process, Figure

1.1 illustrates the two-phased transformation approach in a nutshell. The first phase is a

model-to-model transformation whereas the second is a model-to-code transformation,

executed in sequence. We envision an HLA-based distributed simulation development

process consisting of conceptual modeling (ACM), federation architecture modeling (FAM)

and federate code generation, in that order. The ACM is a PIM (or a Computation

Independent Model (CIM) [20] from a more abstract perspective) of the real world system

(i.e., field artillery domain) with which the simulation is concerned. The FAM is a PSM,

where the platform is the RTI in our case. It constitutes a major portion of the federation

design documentation. The graph-based model transformer produces a FAM from an ACM

and the code generator produces executable code from that FAM.

 ACMM and FAMM are the metamodels of ACMs and FAMs, respectively. Both

metamodels (and consequently, the models) have data and behavior parts. The metamodel

of Live Sequence Charts (LSC) and Message Sequence Charts (MSC) [14][15][12] are used

for behavioral representation in both metamodels (referred to as BMM (Behavioral

MetaModel) in the figure). Both data models are integrated with the behavioral model in

4

that the top level data model elements are extended from a set of designated LSC and MSC

elements. The transformation definitions are structured accordingly, so that firstly the data

model transformation is conducted, followed by the behavioral model transformation. In

the second phase, the federate application code generator produces executable federate

source codes and useful artifacts such as Federation Object Model (FOM) Document Data

(FDD) from the FAM.

Graph Based

Model

Transformer

Federate

Application

Code

Generator

FDD
File

Federate
Source

Code
Uses Uses

Phase I Phase II

FACMM

• Actors, Nets
• FA msgs.

• Mission types

FADMM

• LSC MM

• MSC MM

BMM

FACM

• FwdObserver
• BatRadioNet

• Oid_W_Msg

FADM

Mission Defs:
• Adjustment

• FireForEffect

FA BM

FADM

To
HOM

FABM

To
HBM

Transformation Defs. FAMM

• OMT core
• Fed.Struct.

• HLA services

HOMM

• LSC MM

• MSC MM

BMM

FAM

• Federation
• Federates

• FOM / SOMs

HOM

• JoinFedEx.
• RegObjCls.

• SendInteract.

HLA BM

C
o

n
fo

rm
s

C
o

n
fo

rm
s

Figure 1.1 The view of FACM to FAM to executable code transformation

 It may look plausible to directly produce HLA federate codes from the conceptual

model, instead of going through two steps of model transformations. Our approach is more

appealing in at least two ways. First, ACM rests at a higher conceptual level (corresponding

to PIM), while federation code is at a lower, much detailed level. FAM on the other hand, is

at an intermediary level (corresponding to PSM, where HLA defines the platform), serving

as a bridge between the two levels. It has a clearer mapping from ACM, and to federation

code. This makes the transformations more modular and maintainable. Second, the

components of a FAM, that is, the HLA Object Model Template (OMT) model (a FOM or

a Simulation Object Model (SOM)) and intra-federation behavioral model are useful

artifacts in their own right. Furthermore, once a FAM, which is machine processible, is

available it can be used as an input to further processing, such as optimization, tuning,

debugging, verification and validation.

 The tasks of modeling and metamodeling are both carried out using the Generic

Modeling Environment (GME) [3], an open source toolkit for creating domain-specific

modeling and program synthesis environments. GME initially serves as a metamodel

development environment for domain analysts. Metamodels developed in GME conform to

5

MetaGME, the metamodel (in fact, meta-metamodel) provided by GME. Once a metamodel

is registered in GME, it provides a domain-specific model building environment for model

developers, characterized by the registered metamodel.

 The graph-based model transformer is developed with Graph Rewriting and

Transformation (GReAT) [6], a graph-based model transformation specification language,

and partly hand-coded in C++. GReAT models conform to the pre-registered

UMLModelTransformer (UMT) metamodel that comes bundled with the GME installation.

Hence, model transformations are also defined as models developed in the GME

environment. The transformations are defined over the metamodels of the source and target

domains, expressed in a Unified Modeling Language (UML)-based notation. The

metamodels are exported into the transformation model by invoking a special interpreter

embedded in the visual editor of GME. The relationships between the models and

metamodels mentioned above are summarized in Figure 1.2. The modeling and model

transformation activities and products in this thesis are formally defined due to the

conformance associations between the models and their metamodels.

Figure 1.2 The three layers of modeling used in the transformations

 Within the context of this thesis, the ACM metamodel and ACM2FAM transformation

are developed. The FAM metamodel [85] and code generation from FAM [86] were

developed in previous theses. We present the details of ACM, ACM2FAM transformation

and demonstrate an end-to-end transformation series for the ACM model of the

conventional Adjustment Followed by Fire For Effect (AdjFFE) mission to simulation

execution in subsequent chapters. We also analyze the presented transformation work with

ACM

ACMM

ACM2FAM
Transformation

MetaGME

UMT

FAM

FAMM

conforms conforms

conforms

model
(M1)

metamodel
(M2)

 meta-metamodel
(M3)

export export

conforms

(MOF equivalent)

6

respect to a set of principles published in literature for analyzing model transformation

approaches. Finally we draw lessons learned and propose directions for further research.

1.3 Rationale for Using Graph Transformations and GReAT

 Graph grammars and graph transformations have been recognized as powerful devices

for specifying and performing complex model-to-model transformations. From a

mathematical viewpoint, models in MIC are graphs, to be more precise, vertex and edge

labeled multi-graphs (i.e., graphs that are permitted to have edges that have the same end

vertices), where the labels are denoting the corresponding entities in the metamodel. It has

been proved useful to formulate the model transformation problem as a graph

transformation problem.

 Graph transformation offers a set of techniques and associated formalisms that are

directly applicable to model transformation [18][19]. It is powerful and appealing in many

ways. First, it is visual, in that the source, the target and the transformation itself can be

expressed in a visual way. Second, it is formally founded, in that it is possible to prove

certain properties of the transformation by resorting to graph theory. Third, it offers a clean

semantic model to understand and specify model transformations. For example, the order of

rule application is implicit, and the traversal of source models and creation of target models

is implicit. This allows one to hide the procedural details of the transformation, making the

transformations more compact and maintainable. Last, but not least, it offers mechanism for

transformation composition. The major bottleneck associated with graph transformation is

poor runtime performance.

 GReAT [6] is a tool that allows users to specify graph transformations in a graphical

form with precise formal and executable semantics. GReAT has a high-level control flow

language built on top of the graph transformation language with sequencing, non-

determinism, hierarchy, recursion and branching constructs. GReAT is based on the use of

UML class diagrams (and Object Constraint Language (OCL)) for representing the

domains of the transformations, including structural integrity constraints over those

domains. Transformations over multiple domains are supported, and cross-links among

domains are defined at the metamodeling level. Another advantage of selecting GReAT is

its integration with the source and target model development environment, GME [3]. A

transformation definition is yet another model defined in GME (see sections 2.3 and 2.4).

1.4 Organization of the Thesis

 This dissertation is organized as follows: Chapter I points to the theoretical foundations

that this work builds on, introduces the motivation and scope, presents the context of the

7

model transformations, explains the rationale behind the adopted approach and finally

outlines the organization of the thesis.

 Chapter II provides a literature overview of the concepts, techniques and tools used in

the thesis. Specifically, the model driven approach to software development, graph

transformations concepts, a set of prominent graph transformation tools, the field artillery

observed fire domain and HLA domain are summarized. Additionally, GME and GReAT,

which are respectively the modeling and graph transformation tools used, are introduced.

Then MSC and LSC, the formalisms that ACM and FAM use in behavioral modeling are

presented. Since FAM, the target domain of the transformations, is developed as part of

another thesis, a brief overview of it is also provided.

 Chapter III summarizes the entire model driven development work put forth in this

thesis in a concise, tool and technology independent, and abstract conceptual framework.

 Chapter IV presents the ACM metamodel in detail. First, a high level overview of ACM

is presented, and then its realization in the GME environment is explained. The chapter also

demonstrates the development of the source model of the transformation case study,

namely, the AdjFFE mission model, as an ACM instance in GME. The complete AdjFFE

mission model in graphical LSC notation is provided in Appendix A. The chapter further

discusses the challenges encountered and provides an informal assessment of ACM and

usage of LSC in modeling military tasks. Finally it concludes with related works on

conceptual modeling.

 Chapter V presents the two step automatic transformation of ACM to FAM and FAM to

executable distributed simulation code. The ACM to FAM transformation is explained in

two sections as data and behavior transformation. Then, the code generation mechanism

from FAM is briefly introduced, followed by some excerpts from of the generated AdjFFE

code and its execution on an HLA RTI. It also explains a preprocessing step required by the

code generator, where the FAM is further refined so that every LSC containing multiple

instances is stripped into several LSCs containing only one federate and the federation

instances. The details of the transformation rules are delegated to Appendix B. The chapter

further provides an analysis of ACM to FAM transformation in terms of modularity,

internal transformation composition, staging, scope and direction. Finally, the chapter

concludes with related works on model transformations.

 Chapter VI is a discussions and future work chapter where we first discuss on the issues

and lessons learned from modeling ACMM and defining ACM2FAM transformation. Then

we discuss the formerly developed FAMM and simulation code generator within the

context of ACM transformations. After that, a comparison of the artifacts of this thesis with

8

MDA standards is made. The chapter concludes with pointing to future research directions.

Specifically it aims to draw the attention of the reader to a domain-independent CM

transformer for HLA, higher order transformations and BOM usage for intra-federate

modeling. The requirements and outline of the CM transformer, drawn from the experience

gained in this work, is discussed in a broader context.

 Chapter VII concludes the thesis by highlighting the major accomplishments and the

novelties of this dissertation. It also points to the way ahead for further research efforts.

 Appendix A presents all of the LSCs for the Adjustment Followed by Fire For Effect

(AdjFFE) mission model in graphical notation. Each LSC is provided with a brief

description of its purpose, execution conditions and logic.

 Appendix B outlines the set of most prominent ACM to FAM model transformation

blocks and rules as implemented in GReAT-configured GME.

 Appendix C summarizes the changes made in the metamodels and the simulation code

generator in the course of developing ACM2FAM transformation. The details of the change

logs are documented in the accompanying thesis CD.

 Appendix D provides hints and recommendations derived from our experience in

realizing the ACM2FAM transformation for future model transformation developers of

GReAT.

9

CHAPTER II

BACKGROUND

 This chapter provides a literature overview of the concepts, techniques and tools used in

this dissertation. Specifically, the model driven approach to software development, graph

transformations, Field Artillery (FA) domain and High Level Architecture (HLA) domain

are summarized. The Model Driven Architecture (MDA) is OMG’s manifestation of

model-driven software development for the future, which envisions systematic refinements,

or technically speaking, transformations of high level domain models into platform specific

models and finally down to executable code. Model transformation through graph

transformation is currently one of the commonly used techniques in putting model-driven

development into practice. There is an extensive set of graph transformation-based tools

and environments developed in the literature, of which we present some. GReAT [6] is the

graph transformation tool used in this thesis, which runs on top of GME, the tool that we

have used in modeling the source and target domains, as well as defining the GReAT

transformation model. Hence, GME and GReAT are also introduced in their own sections.

The FA observed fire techniques and HLA constitute the domains of the source and target

models used in this thesis. Artillery Conceptual Model (ACM) and Federation Architecture

Model (FAM) are the metamodels of the source and target models formally developed in

GME. Message Sequence Chart (MSC) and Live Sequence Chart (LSC), which are the

formalisms used for behavioral modeling in both ACM and FAM are also introduced here.

Since FAM is developed as part of another work, a brief summary of it is also provided.

ACM is developed as part of this thesis and is the subject of Chapter 4.

2.1 Model Driven Architecture/Engineering

 Kleppe et al. [20] state in their MDA book that, “The Model-Driven Architecture starts

with the well-known and long established idea of separating the specification of the

operation of a system from the details of the way that system uses the capabilities of its

platform”. MDA provides an approach for, and enables tools to be provided for:

• specifying a system independently of the platform that supports it,

10

• specifying platforms,

• choosing a particular platform for the system, and transforming the system

specification into one for a particular platform

 The primary goals of MDA are portability, interoperability and reusability in the course

of architectural separation of concerns. The Model Driven Architecture (MDA) [21] is a

framework for software development put forth by the Object Management Group (OMG).

The MDA development life cycle, which is shown in Figure 2.1, does not look very

different from the traditional life cycle in that the same phases are identified. A remarkable

difference is the artifacts that are created during the development process. The artifacts are

formal models that can be processed by the computers. The following three models are at

the core of the MDA.

Figure 2.1 MDA software development life cycle [20]

 Platform Independent Model (PIM): It is a model with a high level of abstraction so that

it is independent of any implementation technology. The base PIM expresses only business

functionality and behavior.

 Platform Specific Model (PSM): A PSM is customized to specify a system in terms of

implementation constructs that are in one specific implementation technology. MDA

proposes that a PIM be transformed into one or more PSMs. It is clear that a PSM will only

seem comprehensible to a developer who has detailed knowledge about the specific

platform.

 Code: The final step in the development is the transformation of each PSM to code.

requirements

analysis

low-level-design

coding

testing

deployment

mostly text

PIM

PSM

code

code

11

 MDA promises productivity, interoperability and maintainability improvements in the

software development lifecycle.

 Kent [22] remarks that MDA focuses on architecture, on artifacts, on models. Although

MDA declares there might be a richer modeling space, it chooses to focus on just one

dimension, the transformation between platform independent and platform specific models.

 The OMG MDA strategy envisions a world where models play a more direct role in

software production, being amenable to manipulation and transformation by machine.

Model Driven Engineering (MDE) is wider in scope than MDA. MDE combines process

and analysis with architecture.

 Schmidt [1] states that MDE technology is a promising approach to address platform

complexity. Domain-Specific Modeling Languages (DSMLs) formalize the application

structure, behavior, and requirements within particular domains. DSMLs are described

using metamodels, which define the relationships among concepts in a domain and

precisely specify the key semantics and constraints associated with these domain concepts.

Developers use DSMLs to build applications using elements of the type system captured by

metamodels and express design intent declaratively rather than imperatively.

 Generators and transformation engines analyze certain aspects of models and then

produce various types of artifacts, such as source code, simulation inputs, test cases or

alternative model representations. The ability to produce artifacts from models helps ensure

the consistency between application implementations and analysis information associated

with functional and quality requirements captured by models. This automated

transformation process is often referred to as “correct-by-construction,” in place of

conventional handcrafted “construct-by-correction” software development processes.

 MDE tools force domain-specific constraints and perform model checking that can

detect and prevent many errors early in the life cycle. In addition, MDE tool generators

need not be as complicated since they can produce artifacts that map onto higher-level,

often standardized, middleware platform APIs and frameworks, rather than lower-level

operating system APIs. As a result, it is often much easier to develop, debug, and evolve

MDE tools and applications created with these tools.

 Model Integrated Computing (MIC) [3], an earlier manifestation of MDE, relies on

metamodeling to define DSMLs and model integrity constraints. The metamodel (also

called a paradigm) is then used to automatically compose a domain-specific model building

environment for creating, analyzing, and evolving the system through modeling and

generation. In the MIC approach, a crucial point is generation, where (domain-specific)

models are transformed into lower level executable and/or analysis models. Model

12

transformation techniques and tools are essential to MIC in realizing the generation

process.

2.2 Graph Transformations

 Graph grammars and graph transformations have been recognized as a powerful

technique for specifying complex transformations. Graph grammars are an extension of

textual grammars and they give rise to node replacement grammars [5][23] and hyperedge

replacement grammars [24][25]. Graph transformation research is associated with various

mathematical fields such as category theory, set theory and algebra, and applies it to graphs.

The prominent techniques in this area are double pushout [26], single pushout [27] and

programmed structure replacement systems [28]. A brief introduction to graph

transformation concepts is provided in Section 2.2.1 and some of the prominent graph

transformation tools are shortly mentioned in section 2.2.2.

2.2.1 Graph Transformation Concepts

 Graph transformations can be used as a computation abstraction. The basic idea is that

the state of a computation can be represented as a graph, further steps in that computation

can then be represented as transformation rules on that graph. Such rules consist of an

original graph, which is to be matched to a subgraph in the complete state, and a replacing

graph, which will replace the matched subgraph. Formally, a graph rewriting system

consists of a set of graph rewrite rules of the form L�R , with L being called pattern graph

(or Left-Hand Side (LHS)) and R being called replacement graph (or Right-Hand Side

(RHS) of the rule). A graph rewrite rule is applied to the host graph by searching for an

occurrence of the pattern graph and by replacing the found occurrence by an instance of the

replacement graph.

 The graph patterns can be rendered in the concrete syntax of their respective source or

target language or in the (Meta Object Facility –MOF [16]) abstract syntax. The LHS often

contains conditions in addition to the LHS pattern. Some additional logic (e.g., in string and

numeric domains) is needed in order to compute target attribute values (such as element

names). An extended form of patterns with multiplicities on edges and nodes is also

common. In most approaches, scheduling has an external form and the scheduling

mechanisms include non-deterministic selection, explicit condition, and iteration (including

fixpoint iterations). Fixpoint iterations are particularly useful for computing transitive

closures.

 From a mathematical viewpoint models in MIC are graphs, to be more precise: vertex

and edge labeled multi-graphs (i.e., graphs that are permitted to have edges that have the

13

same end vertices), where the labels are denoting the corresponding entities in the

metamodel. It is plausible to formulate the model transformation problem as a graph

transformation problem. We can then use the mathematical concepts of graph

transformations to formally specify the intended behavior of a model transformer.

 Many tasks in software development have been formulated using the graph

transformation approach, including weaving of aspect-oriented programs, application of

design patterns, and the transformation of platform-independent models into platform

specific models (Please refer to Section 5.7 for a selective list of related works on model

transformations).

2.2.2 Some Prominent Graph Transformation Tools

 AToM3 [29] is a visual Meta-Modeling tool written in Python, which supports modeling

of complex systems, characterized by possibly large numbers of components and aspects

whose structure as well as behavior cannot be described in a single formalism. Using the

metamodels, AToM can automatically generate a tool to process models. Manipulations of

models can be expressed as graph grammars, at the meta-level. Some of these

manipulations are the behavior-preserving transformations of models between formalisms,

optimization, code generation and simulation.

 AGG (Attributed Graph Grammars) [30] is a rule based visual language supporting an

algebraic approach to graph transformation. It aims at the specification and prototypical

implementation of applications with complex graph-structured data. AGG may be used

(implicitly in "code") as a general purpose graph transformation engine in high-level Java

applications employing graph transformation methods. The tool environment provides

graphical editors for graphs and rules and an integrated textual editor for Java expressions.

Moreover, visual interpretation and validation is supported.

 BOTL (Bidirectional Object oriented Transformation Language) [31] allows to specify

transformations among object oriented models and to verify the desired properties of

applicability and metamodel conformance at specification time. BOTL is proposed as a

language for the specification of mappings between the different model layers of the MDA.

However, BOTL can be easily extended to specify transformations on a single model.

 VIATRA2 (VIsual Automated model TRAnsformations) [32] is framework that

provides a general-purpose support for the entire life-cycle of engineering model

transformations including the specification, design, execution, validation and maintenance

of transformations within and between various modeling languages and domains. It

provides a transformation language with both declarative and imperative features, based

upon popular formal mathematical techniques of graph transformation (GT) and abstract

14

state machines (ASM). It has a high performance transformation engine supporting

incremental model transformations, trigger-driven live transformations, and handling huge

models (e.g. of 100,000 elements). Generic and meta-transformations (type parameters,

rules manipulating other rules) for providing reuse of transformations are amongst its other

salient features.

 The Atlas Transformation Language (ATL) [7] is a hybrid language (a mix of

declarative and imperative constructions) designed to express model transformations as

required by the MDA approach to answer the QVT RFP issued by OMG. It is described by

an abstract syntax (a MOF meta-model), a textual concrete syntax and an additional

graphical notation allowing modelers to represent partial views of transformation models. A

transformation model in ATL is expressed as a set of transformation rules. ATL is

supported by a set of development tools built on top of the Eclipse environment: a

compiler, a virtual machine, an editor, and a debugger. There is an initial library of ATL

transformations and number of documentation available in open source from the GMT

Eclipse project.

 The FUJABA (From UML to Java and Back Again) Tool Suite [8] is an open source

tool providing developers with support for model-based software engineering and re-

engineering. It is a formal, graphical, object-oriented software system specification

language, employing UML class diagrams and specialized activity diagrams, so called

Story Diagrams based on graph transformations. It is capable of generating Java code based

on the formal specification of a systems' structure and behavior which results in an

executable system prototype. In Fujaba metamodelling is done with MOF [16] and

transformations specified by triple graph grammars. Finally, Fujaba’s easy plug-in

mechanism makes it a celebrated and extensible toolkit.

2.3 Generic Modeling Environment (GME)

 Generic Modeling Environment (GME) [3][33] is a configurable toolkit for creating

domain-specific modeling and program synthesis environments. GME puts the MIC [3]

vision into practice. The configuration is achieved through metamodels specifying the

modeling language (i.e., “paradigm” in the GME vernacular) of the application domain,

which contains the syntactic, semantic, and presentation information regarding the domain.

The paradigm defines the family of models that can be created using the resultant modeling

environment.

 The metamodel for each domain-specific modeling language is defined using the UML-

based metamodeling language named MetaGME, which plays exactly the same role MOF

[16] plays in UML2 [17].When a metamodel is registered in GME, GME provides a

15

domain-specific model building environment. The generated environment is then used to

build and manipulate domain models. These models can serve as input to various model-

driven development activities, including model transformation and code generation. This is

called model interpretation in GME parlance.

 Apart from the visual model editor, GME provides a generic API, called BON2, to access

the models by paradigm-specific interpreters. This API exposes the internal representation

of the models, which is a network of object instances and links (associations). Using the

API, developers are able to programmatically traverse and manipulate a GME model with

the same set of capabilities provided by the visual GME environment. The API supports

both C++ and Java programming languages. The federate code generator of the second

phase transformation shown in Figure 1.1 is implemented using the Java interface.

2.3.1 Modeling Concepts

 The vocabulary of the domain-specific languages implemented by different GME

configurations is based on a set of generic concepts built into GME itself. GME supports

various concepts for building large-scale, complex models as depicted in Figure 2.2.

 A Project contains a set of Folders. Folders are containers that help organize

Models, just like folders on a disk help organize files. Folders contain Models. Models,

Atoms, References, Connections and Sets are all first class objects, or FCOs for short.

An FCO is used as the abstract base class for these elements in modeling.

 Atoms are the elementary objects; that is, they cannot contain parts. Each kind of Atom

is associated with an icon and can have a predefined set of attributes, whose values are user

changeable.

 Models are the compound objects that can have parts and inner structure. A part in a

container Model always has a Role. The modeling paradigm determines what kind of parts

are allowed in Models acting in which Roles, but the modeler determines the specific

instances and number of parts a given model contains (of course, explicit constraints can

always restrict the design space). Any element must have at most one parent, which must

be a Model. At least one Model does not have a parent and is called a root Model.

 A common way of expressing a relationship between two model elements in GME is

with a Connection. Connections can be directed or undirected, and have Attributes.

In order to make a Connection between two modeling elements they must have the same

parent in the containment hierarchy. It is specified what kind of objects can participate in a

given kind of Connection. Connections can further be restricted by explicit

Constraints, such as their multiplicity.

16

1
..*

Figure 2.2 GME modeling concepts [33]

 In GME, a Reference must appear as a part in a Model. This establishes a relationship

between the Model that contains the Reference and the referred-to object. Any FCO,

except for a Connection, can be referred to (even References themselves). A

Reference always refers to exactly one FCO, while a single FCO can be referred to by

multiple References.

 Some information does not lend itself well to graphical representation. GME provides

the facility to augment the graphical objects with textual attributes. All FCOs can have

different sets of Attributes among the kinds text, integer, double, boolean and

enumerated.

2.4 Graph Rewrite and Transformations (GReAT)

 Graph Rewriting and Transformation (GReAT) [6] is a transformation language

developed for model-to-model transformations and rewriting. GReAT is based on the

theoretical work on graph grammars and transformations [4]. GReAT’s metamodel, the

UMLModelTransformer (UMT) paradigm, comes bundled with the GME installation. By

creating models conforming to this paradigm in GME, it is possible to define model

transformations.

17

 GReAT defines a production (i.e. Rule in UMT terms) as the basic transformation

entity. A production contains a pattern graph that consists of pattern vertices and edges. The

pattern graph consists of elements from the source and target metamodels and elements that

are newly introduced inside the transformation model (such as cross links or globals) Each

pattern object has a bind, delete or new designation that specifies the role it plays in the

transformation. Bind is used to match objects in the graph. Delete is also used to match

objects in the graph, but afterwards they are deleted from the graph. New is used to create

objects after the pattern is matched

 The execution of a rule involves matching every pattern object marked either bind or

delete. If the pattern matcher is successful in finding matches for the pattern, then for each

match, the pattern objects marked delete are deleted from the match and objects marked

new are created.

 Sometimes the patterns by themselves are not enough to specify the exact graph parts to

match and other, non-structural constraints on the pattern are needed. These constraints or

pre-conditions are expressed in a Guard and are described using OCL.

AttributeMapping elements provide values to attributes of newly created objects and/or

modify attributes of existing object. Attribute mapping is applied to each match after the

structural changes are completed.

 Rules are the basic production units, specifying graph patterns in terms of the source

and target metamodels. Rules are explicitly sequenced. Test/Case is used to specify the

conditional execution of a transformation. Compound rules, consisting of Block and

ForBlock, help to modularize transformation sequences and to control traversal schemes.

They provide the means to organize rules into higher-level hierarchies. Within a Block,

rules are chained (and thus sequenced) by passing previously matched elements from rule

to rule. Compound rules can contain other compound rules, Rules and Tests; however,

they have slightly different semantics inside. If we have n incoming packets in a Block

then the all of the packets will be pushed through the first internal rule and then the next

internal rule starts. On the other hand, with ForBlock, the first packet will be pushed

through all its internal rules to produce output packets and then the next packet will be

taken. ExpressionRef is a reference to a previously defined test or (compound) rule. It

opens up the possibility for recursion and rule reuse.

 In GReAT, parallel execution of a set of rules can be specified. The order of execution

of these rules is non-deterministic. This is achieved by connecting the output of a rule to the

input of more than one rule.

18

 GReAT transformations can also specify objects and associations not explicitly present

in the input or output metamodels, including cross-metamodel associations. These entities

are called CrossLinks and their instances exist only as the transformation is being

performed.

 Defining a GReAT transformation consists of, first importing the source and target

GME metamodels, second specifying the graph rewriting rules using the imported

metamodel objects, third defining sequencing for the rules by grouping them into rule

blocks, and forth configuring the transformation by specifying the source and target models

(files) and the starting rule (or rule block).

 The model transformation language is supported through the GReAT execution engine

as shown in Figure 2.3. The engine basically inputs the transformation definition (i.e. rules

and sequencing) and a source model to automatically produce a corresponding target

model. The engine uses a generic API using the model-driven reflection package called

Universal Data Model (UDM) [34], and is thus suitable for executing any model

transformation that is realized using GReAT. GreAT’s rule executor consists of a pattern

matcher and an effecter that work in tandem to execute a transformation rule. The graph-

based model transformer presented in this thesis employs a user code library written using

the UDM API for the fast execution of some complex transformation rules.

2.5 Field Artillery Observed Fire Techniques

 This section presents a conceptual overview on the elements and fire direction processes

of the observed (i.e., indirect) fire techniques of the Field Artillery (FA) domain. It also

AC Meta-
Model

Rules Sequencing
Fed.Arch.

Meta-Model

Graph Rewrite API

 G
eneric U

D
M

 A
P

I

Rule Executor

AC Model

Sequencer

G
eneric U

D
M

 A
P

I

Fed.Arch.
Model

D
efines

D
efines

User Code Library

Figure 2.3 GReAT execution engine (adapted from [6]).

19

introduces a narration model for the adjustment followed by fire for effect mission, which is

in the subject of the transformation case study. The content provided in this section is based

on the public domain US Army field manuals [35][36][37], which provide comprehensive

explanations on tactics, techniques and procedures for FA fire direction process.

2.5.1 Elements of the Field Artillery Team

 The Army field manual FM-50 [37] states, “The general mission of FA is to destroy,

neutralize or suppress the enemy by cannon, rocket, and missile fires and to help integrate

all fire support assets into combined arms operations”. FA weapons are usually located in

defiladed areas in order to protect them from enemy detection. This nature of FA gunnery

makes it an indirect fire problem. Observed fire, the technique that solves the indirect FA

gunnery problem, is carried out by the coordinated efforts of the Forward Observers

(FwdObserver), the Fire Direction Center (FDC), and firing sections of the firing unit, all

together forming the Field Artillery Team (FAT), as related in Figure 2.4.

Figure 2.4 The field artillery team [35]

Forward Observer

 For artillery and mortar support, fire support team personnel act as the observers, or

“eyes”, of the FAT. Since we opt for a functional point of view and avoid tackling with

domain details, we regard all of the personnel and equipment of the fire support team under

the general title FwdObserver. The FwdObserver detects, locates and describes suitable

targets and transmits this information to the FDC to request for observed fires. He strives to

adjust fires onto targets by providing surveillance data pertaining to the fires. In this study,

20

the FwdObserver operates under the pre-designated control option, in that he is assigned to

a particular battery from which he may request fire support.

Fire Direction Center

 In combat, the FA battalion provides indirect fire support to maneuver forces on the

battlefield. Among the key components of the battalion, only the battalion FDC

functionality is associated with our modeling concerns. The main duty of the battalion FDC

is to provide tactical fire planning and fire control. It may also give technical fire direction

assistance to battery FDCs as required.

 The FA cannon battery is the firing unit within the cannon. The battery FDC is the

control center, or “brain”, as it were, of the gunnery team. The FDC receives fire orders

from the battalion FDC or calls for fire from observers and process that information by

using tactical and technical fire direction procedures. Two notable key personnel within the

battery FDC are the Fire Direction Officer (FDO) and the FDC computer. The FDO is

responsible for all FDC operations including supervising the operation of the FDC,

establishing Standing Operating Procedure (SOP), checking target location, announcing fire

order, and ensuring accuracy of firing data sent to the guns. The FDC computer operates the

primary means of computing firing data. He determines and announces fire commands.

 Fire direction is the employment of firepower. Basically there are two types of fire

direction methods, called tactical and technical fire direction. The primary concern of

tactical fire direction is to determine how the target will be attacked. This is specified as a

fire order in which information concerning the units to fire, and the type and amount of

ammunition to be fired are included. Technical fire direction is conducted by issuing fire

commands where the information for orienting, loading and firing a howitzer is included.

Battalion directed and autonomous modes are the two alternatives under which fire

direction can be conducted [36]. In battalion-directed mode, the battalion FDC is the focal

point that carries out tactical fire direction. Technical fire direction is left to the battery

FDC. In autonomous mode, the battery FDC is the most prominent actor, being responsible

for both tactical and technical fire direction. In this setting, the battalion FDC monitors the

radio net and may override battery FDC’s commands, take the control over, or abort the

mission. The presented case study assumes the autonomous mode.

Firing Unit

 The firing unit serves as the “brawn” of the gunnery team. It consists of the firing unit

headquarters, firing sections and several other parts. The duty of the firing section is to

deliver fires as directed by the FDC. Its composite organization is treated as a single entire

unit in our modeling.

21

2.5.2 Adjustment Followed By Fire For Effect Mission

 Observed fire is carried out by the coordinated efforts of the field artillery team, which

is composed of the forward observer, the Fire Direction Center(s) (FDC), and several firing

sections of the firing unit. The basic duty of the forward observer is to detect and locate

suitable indirect fire targets within his zone of observation. In order to start an attack on a

target, the forward observer issues a Call For Fire (CFF) request to the FDC. It contains all

information needed by the FDC to determine the method of attack.

 As it is unlikely to achieve a target hit in the first round of fire, the common practice is

first to conduct adjustment on the target. Usually the central gun is selected as the adjusting

weapon. The observer provides correction information to the battery FDC after each shot

based on his spotting of the detonation. Once a target hit is achieved, the observer initiates

the Fire For Effect (FFE) phase by noting this in his correction message. FFE is carried out

by cannons firing all together with the same fire parameters as the last adjustment shot.

After the designated number of rounds is fired, the observer sends a final correction

including surveillance information. Based on the surveillance information, if the desired

effect on the target is achieved, mission ends. Otherwise, the observer may request

repetitions, or restarts the adjustment phase if deemed necessary. Figure 2.5 presents a

simplified sketch of a typical FAT setting as well as the most common communication

sequence among the team members.

Firing Section

FwdObserver

CFF,
correction MTO

fire command

Target
observe
spotting

fire

fire report
BatteryFDC

2 1

3

4

6

5

7

Figure 2.5 Typical Field Artillery Team mission setting

22

2.6 High Level Architecture

 The HLA related background material of this section is based on IEEE standards

[13][38][39][40]. HLA is the common architecture that combines simulations (also called

federates) into a larger simulation (also called a federation). It is based on the

publish/subscribe paradigm. A federation execution is a session of a federation executing

together. A federation has a name, and involves:

• supporting middleware called Runtime Infrastructure (RTI)

• a common object model for the data exchanged between federates, called FOM

• member federates

 A federate is a member of a federation, one point of attachment to the RTI. A federate

may correspond to one platform, such as a cockpit simulator, or a combined simulation,

such as an entire national air traffic control simulation.

 Federates and the RTI are software. The Federation Object Model (FOM) is the data

created by the federation developer typically by using a tool. The FOM states an agreement

on the data exchanged among the participating federates.

 The relationship between the software components is presented in Figure 2.6. Federates

are shown in the figure as either simulations, surrogates for live players, or tools for

distributed simulation such as data collectors and passive viewers. A federate might consist

of several processes, possibly running on different computers. A federate might model a

single entity, like a vehicle, or many entities, like all the vehicles in a city.

Figure 2.6 Software Components in the HLA [13]

 HLA is foremost a software architecture, rather than a particular implementation of an

infrastructure or tools designed to work with it. The HLA standard supports a variety of

23

implementations. Therefore, it is defined not by software, but by a set of documents. The

HLA standard has three parts:

• Object Model Template (OMT)

• HLA Rules

• Interface Specification

 At the time of this writing, there are two parallel efforts in progress for the adoption of

HLA by standards bodies. One is through the Object Management Group (OMG), which

has adopted version 1.3 of the HLA interface specification as “Facility for Distributed

Simulation Systems (FDSS)”. The other is through IEEE, of whose standards are HLA

Framework and Rules [13], Federate Interface Specification [38], and OMT [39].

2.6.1 The Object Model Template (OMT)

 The OMT advises the structure of all FOMs. The FOM is the vocabulary of data

exchanged through the RTI for an execution of the federation. Hence, the FOM does not

describe data internal to a single federate, but data that are shared with other federates. The

main components of the OMT are interaction classes and object classes.

 An interaction is a collection of data sent by a federate at one time through the RTI to

other federates. An interaction may represent an occurrence or event in the simulation

model of interest to more than one federate. An interaction may be defined to occur at a

point in simulation time. A federate sends an interaction; other (interested) federates receive

the interaction. The interaction is transitory in that it has no continued existence after it has

been received. Each interaction carries with it a series of named data called parameters.

 Objects in the RTI refer to simulated entities that are of interest to more than one

federate. They persist or endure for some interval of simulated time. Object classes are

comprised data fields called attributes.

 The OMT describes the instances of the classes. Each class has a name, and defines a set

of named data called attributes. Federates create instances of these classes, and change the

state of an object instance in simulation time by supplying new values for its attributes.

Federates indirectly communicate with each other in terms of interactions and objects

through the RTI. Each federate must make some conversion from its internal representation

of simulated entities to HLA objects as specified in the FOM. If the federate is HLA-

compliant, the translation may be straightforward; otherwise it may be more complicated.

In short FOM represents the common, agreed vocabulary between members of a federation.

2.6.2 HLA Rules

 The HLA rules express design goals and constraints on HLA-compliant federates and

federations. The first five rules deal with federations, the latter five with federates.

24

2.6.3 The Management Object Model (MOM)

 HLA federations are typically distributed systems. Federates often run on many

computers. Thus federations are subject to the peculiarities associated with distributed

systems. The RTI offers facilities to maintain and manage a shared view of the federation

as a distributed system. Management data can be described and distributed just like

simulation data. It allows the RTI to describe and manage the state of a federation.

 The RTI itself creates the instances and updates attribute values associated with the

MOM. System management can be accomplished through the use of federates designed for

this purpose. Because the MOM is the same for all federations (since it is RTI managed),

management federates can be reused.

 The MOM also defines a set of interactions that can be used to affect the state of other

federates. The RTI is required to respond correctly to MOM interactions. These interactions

are used to regulate the federation’s operation, request information, and report on federate

activities.

2.6.4 The HLA Services

 HLA services fall into six groups that are defined by the commonality of interest.

(i) Federation Management

Federation services manage a federation in two ways:

• By defining a federation execution in terms of existence and membership

• By accomplishing federation-wide operations.

 To define a federation, there are services to create a federation execution and to allow a

federate to join the execution or resign from it. Every federate must join a federation

execution.

 Federation-wide operations include the coordination of federation saves and restores.

There are also services to allow a federation to define and meet a federation-wide

synchronization point.

(ii) Declaration Management

The declaration management services are the way for federates to declare their intent to

produce (publish) or consume (subscribe to) data. The RTI uses these declarations for

routing data, transforming data, and interest management. On the subject of routing, the

RTI uses subscriptions to decide what federates should be informed of the creation or

update of entities. Received data go through reduction and re-labeling in accordance with

the federate’s subscriptions before being delivered. Finally, the RTI uses declarations to

indicate interest to publishing federates. The RTI can tell a federate whether any other

25

federate is subscribed to data it intends to produce, so that it can stop producing when no

other federate needs the information.

(iii) Object Management

Object management services are used for the actual exchange of data. A federate uses

services from this group to send and receive interactions. These services are also used to

register new instances of an object class and to update its attributes. Other federates will

have services from this group invoked on them to receive interactions, discover new

instances, and receive updates of instance attributes. Other services of this group are used to

control how data are transported, to ask for new updates of attribute values, and to inform a

federate whether it should expect data.

(iv) Ownership Management

The ownership management services in the RTI implement the HLA’s notion of

responsibility for simulating an entity. The RTI ensures that at most one federate at a time

owns a given instance attribute. Responsibility for simulating an entity can be shared

between federates in two ways.

• First, the complete modeling of an entity may be shared among federates.

• Second, the modeling of entities may pass from one federate to another in the

course of a federation execution.

 Ownership management can be ignored if a federation does not need it.

(v) Time Management

While federates are executing in their own threads of control, the proper ordering of events

between federates is an important problem to be solved. In HLA, ordering of events is

expressed in “logical time”. Logical time is an abstract concept; it is not necessarily fixed to

any representation or unit of time. The RTI’s time management services do two things:

• They allow each federate to advance its logical time in coordination with other

federates.

• They control the delivery of time-stamped events so that a federate never has to

receive events from other federates in its past.

(vi) Data Distribution Management

Data distribution management (DDM) services control the producer-consumer relationships

among federates. Whereas the declaration management services manage those relationships

in terms of interaction and object classes, DDM manages in terms of instances and abstract

routing spaces.

(vii) Support Services

26

Support services utilized by joined federates for performing name-to-handle and handle-to-

name transformation, setting advisory switches, manipulating regions and RTI startup and

shutdown.

2.7 Message Sequence Chart and Live Sequence Chart

 LSC is the formalism used for behavior representation in both source and target models

of this model transformation work. Since LSC is derived from MSC and share many

similarities with it, MSC is introduced before LSC. Illustrative examples of the graphical

MCS/LSC notations are provided in Section 4.4 along with the AdjFFE model

demonstration. For a clearer understanding the reader is encouraged to refer to these

examples while reading each paragraph of this section. Note that the MSC/LSC features

that are not used in this thesis are omitted. For a more extensive coverage, see [15][14].

2.7.1 Message Sequence Chart

 An MSC consists of a collection of instances. An instance represents an abstract entity

on which events can be specified. Events are message inputs, message outputs, actions,

conditions, timers and co-regions. An instance is denoted by a hollow box with a vertical

line extending from the bottom. The vertical line represents a time axis where time runs

from top to bottom. Each instance thus has its own time axis and time may progress

independently and at different speeds on two axes.

 An MSC can be referenced from within another MSC. This nesting and referencing

mechanisms facilitate encapsulation and modular design principles. MSC references may

have actual parameters that must match the corresponding parameter declarations of the

MSC definition. MSC references must not directly or indirectly refer to their enclosing

MSC. References are represented by rounded rectangles.

 The gates represent the interface between the MSC and its environment. Any message or

order relation attached to the MSC frame constitutes a gate. The message gates are used

when references to the MSC are put in a wider context in another MSC. The actual gates on

the MSC reference are then connected to other gates or instances.

 Events specified on an instance are totally ordered in time, except in coregions (see

below). An event executes instantaneously, and two events cannot take place at the same

time. Events on different instances are ordered due to the requirement that message input by

one instance must be preceded by the corresponding message output in another instance.

All events in a chart form a partially ordered set. (Recall that a partial order on a set is a

binary relation that is reflexive, anti-symmetric and transitive.)

27

 Actions are events that are local to an instance. Actions are represented by a box on the

instance axis with an action label inside. Actions are used to specify some computation

performed by the instance.

 A message output/input represents the sending/reception of a message to/from another

instance or the environment. A message exchange is represented as an arrow from the

instance axis of the sender to the instance axis of the receiver. The arrow is labeled with a

message identifier. Message exchange is, by default, asynchronous; that is, the message

input is not necessarily simultaneous with the message output.

 There are two types of conditions, namely, setting and guarding conditions. Setting

conditions are intended to describe a current global system state, or some non-global,

possibly shared, state. Guarding conditions restrict the behavior of an MSC by only

allowing the execution of events in a certain part of the MSC. A condition is represented by

a hexagon extending across the instance axes for which it holds.

 Timers are local to an instance. The setting of a timer is represented by an hourglass

symbol placed next to the instance time line and labeled with a timer identifier. Timer reset

is represented by a cross linked by a horizontal line to the time line. Timer timeout is

represented by an arrow from the hourglass symbol to the time line.

 Coregions are parts of instance axes where the usual requirement of total ordering is

lifted. A coregion is shown as replacing a part of the instance axis with a dashed line.

 Inline expressions are used to compose event structures inside an MSC. The inline

operators refer to alternative, parallel and sequential composition, iteration, exception and

optional regions. A frame encloses the operands and the dashed lines denote operand

separators. Extra-global inline expressions are those crossing the MSC frame and covering

all of the instances. They are associated with the corresponding inline expressions on the

enclosing (see below) instance.

 For enhancing the modularity of MSCs, there is a form of hierarchical decomposition of

complex diagrams into a collection of simpler diagrams, known as instance decomposition.

For each decomposed instance there is a sub-MSC. The single instance that is decomposed

is represented by more than one instance in the sub-MSC.

 High-level MSC (HMSC) provides a means to graphically define how a set of MSCs

can be combined together. The HMSC incorporates sequencing, conditioning and inline

expressions that are interpreted much similar to the ones found in MSC.

2.7.2 Live Sequence Chart

 The most prominent feature of LSC on top of MSC is the ability to make a distinction

between optional and mandatory behavior. This applies to several elements in charts.

28

 Universal charts specify behavior that must be satisfied by every possible run of a

system, whereas for existential charts this restriction is relaxed to at least one run. Universal

charts are denoted by a solid box around the chart and existential charts are denoted by a

dashed box.

 LSC introduces the notion of a prechart to restrict the applicability of a chart. The

prechart is like a precondition that when satisfied activates the main chart. The prechart is

denoted by a dashed hexagon containing zero or more events.

 LSC allows messages to be “hot” or “cold”. A “hot” message is mandatory; that is, if it

is sent then it must be received eventually. This is denoted by a fully drawn arrow. For a

“cold” message reception is not required, hence it may be “lost”. This is denoted by a

dashed arrow. A distinction is also made between a “hot” (i.e., mandatory) and a “cold”

(i.e., optional) condition. A “hot” condition causes an illegal termination of the chart if

evaluated to false, and the opposite (i.e., exit from the condition scope) holds for a “cold”

condition. “Hot” and “cold” notions are further applied to the instance axes. Any point

where an event is specified on the instance axis is called a location. A location may be

“hot” indicating that the corresponding event must eventually take place, or “cold”

indicating that event may never occur. A “hot” and a “cold” location is represented by the

instance axis being fully drawn and dashed, respectively.

 LSC further brings enhancements in the semantics of conditions and event occurrence.

A shared condition forces synchronization among the sharing instances; that is, condition

will not be evaluated before all instances have reached it and no instance will progress

beyond the condition until it has been evaluated. Simultaneous regions allow grouping

several elements, which should be observed at the same time.

 Chronologically, the last set of enhancements to LSCs are the notion of time (and a sort

of real time), and a notion of genericity via variables and symbolic instances [43].

2.8 Overview of Federation Architecture Metamodel

 FAMM is a proposed metamodel for specifying the architecture of an HLA-compliant

federation [12][85]. FAMM formalizes the standard Object Model and Federate Interface

Specification. Beyond formalizing the existing HLA standard, FAMM allows the

behavioral description of federates based on LSCs. Having the behavioral models of the

participating federates gives us the ability to test the federation architecture by executing

the federation.

 Federation Architecture is a major portion of the federation design documentation in

HLA based distributed simulations. Federation design includes the activities for:

• Forming HLA Object Model (federation and simulation object models):

29

• Specifying the behaviors of participating federates so that they can fulfill their

responsibilities within the federation

 The Federation Architecture Model (FAM) for a particular federation conforms to

FAMM. It involves the Federation Model (Federation Structure, Federation Object Model

and related HLA Services) and the Behavior Models for each participating federate.

 As the composition diagram in Figure 2.7 indicates, FAMM involves two main sub-

metamodels: One for specifying the observable behaviors, and the other for defining the

HLA FOM and the HLA service interface.

Figure 2.7 Federation Architecture Metamodel structure ([12])

 Figure 2.8 depicts the relationship between FAMM and Federation Architecture. Each

participating federate’s behavior is modeled using the behavioral metamodel while the

FOM is described by using the HLA Object Metamodel. HLA Object Metamodel (HOMM)

is a formalization of HLA Object Model Template (OMT) [39]. The OMT Core folder

includes the table contents specified in HLA OMT.

 Federation Structure Metamodel (FSMM) represents the structural aspects of the

federation. This metamodel allows the developer to define a federation and its participating

federate applications, and to readily connect them to their respective FOM and SOMs. In

this sub-metamodel, the participating federate applications are emphasized and their

30

corresponding SOMs can be specified in addition to the FOM. The FOM and SOMs that

are referred by FSMM are prepared with HOMM.

Figure 2.8 Relationship between a FAM and its metamodel ([12])

 The HLA Services Metamodel (HSMM) defines the interface of the standard services of

Runtime Infrastructure (RTI). These management services provide a functional interface

between federates and the RTI. These interfaces arranged into seven basic groups are as

follows: Federation management, declaration management, object management, ownership

management, time management, data distribution management, and support services [38].

 Behavioral Metamodel (BMM) provides an abstract syntax for specifying the dynamic

and the observable behaviors of a federate. Modeling the behavior of a federate can involve

not only the HLA-specific behavior such as creating regions, but also the interactions

between the components of the federate and the live entities (e.g., the user) in the

environment. The observable behaviors of a federate are represented using Message

Sequence Charts (MSCs) and Live Sequence Charts (LSCs) in the metamodel.

 LSC is a graphical language introduced by Harel and his colleagues [14][42], as an

extension of MSC, for specifying the patterns of interactions between components in a

concurrent system. MSCs are widely used in the specification of telecommunication

systems. The MSC language is standardized by ITU [41], the most recent standard being

Recommendation Z.120 [15]. Many features of MSCs are adopted in the UML sequence

diagrams. LSC extends MSC by providing notations for distinguishing mandatory and

optional behavior and by promoting conditions to first class elements.

 LSC metamodel defines basic LSC concerns such as instance, event, message, parallel,

alternative, loop and interconnection between these concerns in the meta-level. These

concerns are matched to the first class objects such as folder, atom, model, reference and

connection, which are defined in the Generic Modeling Environment (GME).

31

 LSC instances can represent federation executions, federates (possibly, with their

constituent modules), live entities such as interactive users and environments. An LSC

document which includes one or more LSC diagrams represents a federate’s behavior.

Federate application code is generated for the given LSC document. A federate may have

some constituent modules whose behavior we might prefer to model explicitly. Each such

module is represented by an instance in the LSC model, and code is generated specifically

for it (Please refer to Section 5.5 for code generation per LSC instance).

32

CHAPTER III

THE CONCEPTUAL FRAMEWORK

 This chapter aims to provide a conceptual framework for the model-driven engineering

work, including metamodeling and model transformation, presented in this thesis, before

delving into the nuts and bolts of the particular application presented at length in the

subsequent chapters. The content is abstracted away as much as possible from the details

and jargon of the specific domains, tools and technologies used in an effort to facilitate

comprehensibility and appeal to a broader range of readers and potential adopters.

 We present a formal, multi-stage model transformation endeavor from a domain

Conceptual Model (CM) to a Distributed Simulation Architecture Model (DSAM), and

from that, to executable simulation codes and supporting artifacts. Referring to the MDA

terminology, CM and DSAM constitute the Platform-Independent Model (PIM) and

Platform-Specific Model (PSM) of the model transformation work, respectively. The end-

to-end transformation process is depicted in Figure 3.1 to be elaborated on in subsequent

sections. CMs and DSAMs are formally built due to compliance with their metamodels

CMM and DSAMM, respectively. The transformation is defined over these metamodels.

Figure 3.1 The overall model transformation process

33

3.1 The Models

This section introduces the source and target models, particularly the conceptual data

model, the distributed simulation architecture data model and the behavioral model, which

is employed by both of the source and target models.

3.1.1 The Conceptual Data Model

 The CMM’s data model, CDMM, consists of a set of domain entities called actors,

which are able to perform computations and receive/send messages (from/to other actors

and the environment) on a one-to-one or multi-cast basis. The multi-cast communication

media are called nets, which are represented simply as sets of references to actors. The

communicated messages are collections of domain information, extracted from

authoritative sources and composed in different granularities.

 The messages can be categorized as being durable or non-durable. This durability

distinction facilitates the transformation definitions for target PSMs of distributed

simulation domain, such as HLA because there, this distinction between message

communications matters. Durable type of messages represent information that is intended

to be kept and maintained for a duration by the receiver. Non-durable type of messages

represent information that is meant to be immediately used and then forgotten by the

receiver (barring, of course, logging).

 The upper level elements of the CDMM and their associations are sketched in the UML

diagram of Figure 3.2. In the figure, the Model elements are the primary building blocks of

the communicated data and can be organized recursively to accommodate for composite

structures. The Folder elements are containers that are similar to folders found in

computer file systems and are used to maintain model components organized. The data

model is buildup of Messages, Actors and DurableDataStore folders. The messages,

consisting of durable and non-durable types, are stored in the Messages folder. The

durable data messages are further specialized into instantiation, update and delete types.

Since the objects corresponding to durable data messages need to be maintained throughout

system life time, they are kept in the DurableDataStore folder. An instantiation type of

durable message contains the original copy of the durable data (i.e., persistent object) to be

placed in the store for the first time. Subsequent update messages contain template objects

that are used to update the effective copy residing in the store. The message indicates the

corresponding persistent object to be deleted from the store. The Actors folder keeps the

domain elements of type Actor and Net. Net is a special kind of Actor and is treated the

34

same as a source or destination for message communications throughout the mission

scenarios realized in CMM.

Figure 3.2 The upper level CDMM elements

3.1.2 The Distributed Simulation Architecture Data Model

 The DSAMM’s data model, DSADMM, consists of elements that collectively define the

static view of a set of autonomous and loosely coupled interoperating simulations. The

interactions are mediated via the simulation infrastructure, or middleware. The middleware

functions as the overarching manager, knows about the identities and data exchange

interests of the participating simulations and orchestrates all of the communication traffic,

whether being one-to-one or one-to-many. To be more concrete, the individual simulations

in an HLA-based distributed simulation [13][38][39] are called federates, the middleware is

called the Run-Time Infrastructure (RTI) and all of this simulation environment, along with

a common simulation data exchange model, are collectively called the federation The

DSADMM defines the structure and organization of the communicated data as classes of

simulation objects in a simulation data exchange model, categorized by having lifetimes of

single interactions, or the whole simulation.

 The prominent elements of the DSADMM and their associations are depicted in Figure

3.3. In addition to Folder and Model types, the DSADMM introduces Connection

types, which are association classes between two model elements. The simulation data

model consists of the simulation environment, a number of simulation members, which are

35

“members of” the simulation environment and a simulation data exchange model. The data

exchange model houses instances of simulation classes, which represent the data structures

communicated within the overall simulation environment. The simulation class is

specialized into simulation object and simulation interaction types, of which the former is

intended to model persistent information and the latter is intended to model instantaneous

events. In a similar vein, objects are associated with durable data messages and interactions

are associated with non-durable data messages defined in CMM. The simulation classes

contain attributes having data types defined in the specific distributed simulation domain.

For instance, HLA has a default set of simple, enumeration, array and record data types.

The simulation environment “manages” and has an overview of the overall communication

taking place among the simulation members. The simulation members “use” a set of

simulation classes, which they produce or consume in order to share data with each other.

Figure 3.3 Prominent DSADMM elements

3.1.3 The Behavioral Model

The behavioral metamodel, BMM, is used in both of the source and target models.

BMM is a representation of the LSC/MSC formalism, which is comparable and shares

36

many constructs with UML sequence charts. LSC is based upon MSC [41] and extends it

with various means for distinguishing between possible, necessary and forbidden behavior

[42][43]. The behavioral metamodel is capable of representing the discrete communication

behavior of many practical systems, consisting of components exchanging messages,

independently of the domain. This communication aspect of the system behavior is

particularly emphasized from the LSC modeling perspective. A simplified illustration of the

upper-level and outstanding elements of the BMM and their associations are provided in

the UML class diagram of Figure 3.4.

Figure 3.4 Simplified illustration of upper-level BMM elements

37

The complete behavioral specification of a system can be viewed as a global description

of its components from the communication/interaction viewpoint. This system specification

is captured in a single MSC document, which consists of a document head and one or two

document bodies. The head part includes declaration lists for the instances, messages and

timers used in the document and optionally a reference to another document that it

“inherits” from (not shown in the figure). The body part of the document is modularized

into a set of MSCs. Each MSC, similar to the MSC document, but pertaining to only its

own scope, has a head and a body. LSC is the most commonly used MSC body type and is

the primary means for representing the behavioral specification of the system being

modeled. The LSC contains, besides others, a set of references to the instances that interact

with each other using a rich variety of instance events. An important and relevant event

group from a model transformation perspective is the message event, which provides the

mechanism to exchange data between the instances in the form of LSC messages. LSC is

recursively defined and is allowed to refer to other MSCs in order to favor better

modularizing and componentizing big behavioral descriptions. Inline operand, which is

defined to be specialized from LSC, is the main building block of the non-orderable, multi-

instance type of events called inline expressions. Inline expressions include constructs for

defining loop, optional, exceptional, alternative, parallel and sequential flows in a

behavioral specification. The language of LSC (or MSC or UML sequence diagrams, for

that matter) is, to a great extent, expressive enough for comprehensive specification of

systems, although in practice they are often used to represent particular use-cases, scenarios

or traces of systems.

3.1.4 Model Integration

 The data and behavior models of both CMM and DSAMM are stand alone, separately

built sub-models. LSC provides a generic infrastructure for modeling the discrete

communication behavior of a system as a partially ordered set of events (mainly as message

passing) between a group of instances. In the context of a specific domain, these generic

behavioral elements need to be specialized as the domain’s entities. The specializations are

naturally derived from instance, message and other elements of the LSC metamodel. The

integration of the behavioral and data models is thus achieved by extending the relevant

data model elements from the behavioral model elements in the sense of UML inheritance.

 The integration points of the behavioral and data models of CMM and DSAMM are

shown in Figure 3.5. Specifically, on the CMM side, Actor and Message of CDMM

inherit from Instance and Msg of BMM, respectively. On the DSMM side,

SimEnvironment and SimMember of DSADMM inherit from Instance of BMM,

38

SimClass of DSADMM inherits from Msg of BMM, and SimAttribute of DSADMM

inherits from Argument of BMM.

Figure 3.5 Integration of data and behavior in conceptual and simulation models

3.2 The Model Transformations

3.2.1 Overview of the Model Transformer

 The graph-based model transformer, which is based on the theoretical work on graph

grammars and transformations [4], produces a DSAM from a CM. An overview of the

architecture of the transformer is illustrated in Figure 3.6.

 The model transformer interprets both the CM and the DSAM as vertex and edge

labeled multi-graphs (i.e., graphs that are permitted to have edges that have the same end

vertices), where the labels denote the corresponding entities in the metamodels. Then the

model transformation work is formulated as a graph transformation problem defined over

the source and target metamodels. The model transformer defines a production (i.e.,

transformation rule) as the basic transformation entity. A production contains a pattern

graph that consists of pattern vertices and edges, which are elements from the source and

target metamodels (called LHS and RHS patterns in graph transformation vernacular). Each

pattern object has a bind, delete or new designation that specifies the role it plays in the

transformation. Bind is used to match objects in the graph. Delete is also used to match

objects in the graph, but afterwards they are deleted from the graph. New is used to create

objects after the pattern is matched. Sequencing is accomplished by grouping

transformation rules into recursively defined blocks and connecting these rules and blocks

in sequential, parallel or conditional branching organizations.

 The execution of a rule involves matching every pattern object marked either bind or

delete. If the pattern matcher is successful in finding matches for the pattern, then for each

39

match, the pattern objects marked delete are deleted from the match and objects marked

new are created. Sometimes the patterns by themselves are not enough to specify the exact

graph parts to match and other, non-structural constraints on the pattern are needed. These

constraints or pre-conditions are expressed in special guard expressions.

 The transformer also provides access to a programming API, that can be used further to

manipulate and fine tune the generation, after the structural changes are completed in a rule

execution. This extra mechanism is incorporated by invoking user code library methods

from within transformation rules. The user code library is written to facilitate model

transformations in terms of improved execution performance and saving from the tedium of

graphically defining many uninteresting transformation rules.

Figure 3.6 Overview of the architecture of the model transformer

3.2.2 Key Elements of the CM to DSAM Transformation

 Adopting a parallel design principle, the CM to DSAM transformation is essentially

formulated around the core of data and behavior model transformations, executed in

sequence. Before and after these core blocks, come the smaller sets of pre and post rules

that set up and tear down the stage for the more platform specific distributed simulation

environment. There are also preliminary transformation steps using both data and

behavioral models that produce temporary structures to be utilized in subsequent

transformation rules. This approach to CM-to-DSAM transformation is illustrated in Figure

3.7. The behavioral transformation generally traverses the top-down LSC structure, starting

from the MSC document and going down to individual LSCs and the events inside the

LSCs (please refer to Figure 3.4 for LSC/MSC structure). Since the top-level data model

Conceptual
Model

Conceptual
Meta-Model

Rules Sequencing
Dist. Simul.
Meta-Model

Graph Rewrite API

G
eneric M

eta-M
odel A

P
I

Rule Executor

Sequencer

G
eneric M

eta-M
odel A

P
I

Dist. Simul.
Model

C
on

fo
rm

s

C
on

fo
rm

s

User Code Library

40

elements are extended from LSC elements, the LSC transformation implicitly covers the

data model elements as well.

Figure 3.7 An overview of CM to DSAM transformation

 The set of key transformation steps are enumerated in the list below and the key

mappings done from the CM to DSAM during the transformation process are summarized

in Table 3.1.

• every actor is mapped to a simulation member;

• every non-durable message is mapped to a simulation interaction;

• every durable data element is mapped to a simulation object;

• the simulation environment element is brought in as a collection of communicating

simulation members, every actor to actor non-durable message communication is

mapped to a simulation member to simulation member communication via the

simulation environment (running the middleware), using a pair of send/receive

interaction messages;

• every actor to actor instantiation type of durable message communication is

mapped to a simulation member to simulation member communication via the

simulation environment, using three pairs of register/discover object,

request/provide attribute update and update/reflect attributes messages;

• every actor to actor update type of durable message communication is mapped to a

simulation member to simulation member communication via the simulation

environment, using a pair of update/reflect attributes messages;

• every actor to actor delete type of durable message communication is mapped to a

simulation member to simulation member communication via the simulation

environment, using a pair of delete/remove object messages;

CM

DSAM

Trans.
Execution

Conceptual
Data Model

SimMems, SimEnv,
SimObjs

Native
DataTypes

Actors, Nets, Msgs.

Dist. Simulation Architecture
Data Model

Conceptual
Behavior Model

LSCs of simul.
scenario

Simulation
Init. LSC

LSCs in CM domain

Simulation
Term. LSC

Dist. Simulation Architecture
Behavior Model

Snd/Rcv.
interest, ...

Temp.
Model Ext.

41

• the default distributed simulation types (that serve simulation classes) are brought

in; simulation environment initialization is introduced in a preliminary LSC by

creating the environment, joining the simulation members to the environment,

declaring simulation member data exchange interests and other sorts of simulation-

specific initializations;

• simulation environment shut down is brought in to the final LSC by resigning the

registered simulation members from the simulation middleware and destroying the

simulation environment;

• finally, the rest of the CM LSC parts are directly (i.e., one-to-one) mapped to

equivalent DSAM LSC parts.

 Since the data model elements are mostly composed of hierarchically organized optional

and mandatory parts, it is more convenient to perform the details of data transformations

using a programming API, rather than capturing all of the possible pattern combinations in

separate rules, if possible.

Table 3.1 Summary of mappings from Conceptual Model to Distribted Simulation
Architecture Model

CM Component DSAM Component

Actor/Net Simulation member

Non-durable message Simulation interaction

Durable message Simulation object

<NA> Simulation environment

Actor-actor non-durable comm. Sm-sEnv-sm send/receive interaction

Actor-actor durable comm. (inst. type)
Sm-sEnv-sm register/discover object
+ request/provide attribute update
+ update/reflect attributes

Actor-actor durable comm. (upd. type) Sm-sEnv-sm update/reflect attributes

Actor-actor durable comm. (del. type) Sm-sEnv-sm delete/remove object

<NA> Default distributed simulation types

<NA>
Sim. env. init. LSC (create env., join sim. mems.,
declare data exchange interests, init. others)

<NA>
Sim. env. destruction LSC (resign sim. mems.,
destruct sim. env.)

Other CM LSC components Other DSAM LSC components

42

 It is important to note that this mapping is one of many possibilities. It can be used, for

example, to create a first-cut simulator for the modeled domain. Different design decisions

can be effected by defining different transformation rules. We argue that for any domain

specific conceptual model which can integrate with the presented CMM as an upper level

model, the model transformation approach presented in this thesis can be used to

automatically generate a corresponding distributed simulation model and code. The

supported distributed simulation model is the Federation Architecture Meta-Model

(FAMM) [12] which formalizes HLA.

3.2.3 Transforming Message Communications

 The crux of the model transformation work presented in this thesis is the transformation

of a typical one-to-one direct communication between the actors of a CM. A simplified and

abstracted schematic of this transformation involving a non-durable message event

communication is illustrated in Figure 3.8. The transformation also demonstrates the

mappings of the CM actors and messages onto DSAM counterparts.

 The loosely coupled communication architecture of DSAMM would normally

necessitate an actor A to B out-event transmission in a CM to be represented as (simulation)

member A sending an out-event to the (simulation) environment first and the environment

sending another out-event to member B. However, instead of having these two explicit outs

(and two implicit ins), we have decided to implement one explicit out-event between

member A and the simulation environment and an explicit in-event between member B and

the simulation environment, employing both in and out-event types. In this setting, if the

out-event has execution order n, the in-event is given a higher order, say n+1. This member

centric event mapping better supports the code generator’s code generation strategy which

considers each LSC instance (i.e. member) and its associated events individually while

producing the member base code and computation aspect code [61].

Figure 3.8 Abstracted mapping of a CM message communication to DSAM

43

Having explained the crucial message communication transformation, it is worthwhile

to complement the topic with the higher level and more straightforward simulation scenario

generation. The main flow of the transformation follows the organizational LSC/MSC

hierarchy of the source model and creates corresponding LSC/MSC components on the

DSAM side as progressing along the path. Indeed it would not be completely wrong to call

the CM to DSAM transformation generally a LSC transformation. At the end of the

transformation, the behavior exhibited in the CM is fully reflected in the produced DSAM.

Of course, as visualized in Figure 3.7, there are transformation rules involving DSAMM

only patterns that setup and tear down the distributed simulation environment.

3.3 Refining the Simulation Model

 The behavioral transformation is a one to one LSC/MSC transformation from CM to

DSAM; that is, a corresponding element of the same type is created on the DSAM side for

each MSC document, MSC and LSC of the CM. Furthermore, the content of an LSC is

transformed as summarized in Sections 3.2.1 and 3.2.2. At the end of the transformation, an

equal number of simulation members to the number of actors in a CM LSC plus one

simulation environment instance are created in the corresponding DSAM LSC.

 A DSAM with this structure does not fully comply with the input requirements of the

code generator. As explained in [61], the code generator by design expects and generates

code only for one instance (i.e., simulation member) in an LSC. The LSC instance is the

focal element in the code generation process, and ultimately code for each LSC instance is

generated in separate source files. (Note that the set of LSCs for the same instance type in

an MSC document collectively describes the behavior specification of a simulation member

corresponding to the instance type in question.) This necessitates a refinement on the

generated DSAM, achieved through another DSAM to DSAM transformation named

Multi2BinaryLSC. The transformation refactors every LSC that contains multiple

simulation members and the simulation environment into as many binary LSCs as the

number of simulation members, each containing one simulation member and the simulation

environment. Intrinsically Multi2BinaryLSC accomplishes transformation from a global

view of the simulation environment to the collection of local views of the simulation

members.

 The stripping of multi-instance LSC into binary-instance LSCs of a DSAM is depicted

in Figure 3.9. Eventually, every binary LSC only contains its simulation member’s mutual

communication with the simulation environment – an organization that facilitates per

simulation member code generation. Note that the stripping process may end-up in loss of

44

event orderings in binary-LSCs that were implicitly known in their multi-LSC forms due to

transitive chaining of events among the instances.

3.4 Code Generation from the Simulation Model

 A produced and refined DSAM is input to the code generator to produce simulation

member source codes, simulation environment source code and other artifacts such as

simulation configuration. The code generator, which is defined over DSAMM, first

traverses a given DSAM using the programming API to generate an intermediate form that

facilitates code generation. Then this internal representation is further processed to generate

executable code and other products. The heart of the code generator is the generic LSC

code generator component, which purely deals with behavior specifications from a

communication perspective, independent of the domain concepts they describe. The code

generator is specialized into a code generator for the specific simulation domain by way of

integrating the underlying domain’s object model (e.g., OMT in the case of HLA).

 An important feature worth mentioning is the multi-threaded approach taken in code

generation. The behaviors of LSC instances that occur in multiple diagrams are handled

through parallel threads in the generated code. The behavioral specification of a simulation

member can be scattered in multiple LSCs within an MSC document; thus, there are

multiple threads of code, each in a separate source file, that describe the execution of a

simulation member.

 Aspect Oriented Programming (AOP) [62] paradigm is adopted in generating distributed

simulation code. The AOP approach provides the separation of cross-cutting concerns. In

our case, this allows us to generate code so as to exercise LSCs in a computation-free

manner. Then application-specific computational (and other non-communication) aspect

advices are to be crafted by the simulation developer; these advices are then woven onto the

generated base code by the aspect-oriented programming environment, such as AspectJ.

The LSC instance is the focal element in code generation. All LSC instance codes are

generated in individual class files and are referenced from the diagram code generated from

the LSC itself.

45

Simulation
Environment

Simulation
Member B

Simulation
Member A

‘Prepare Interaction1’

In (Receive (Interaction1))

Out (Send (Interaction1))

Opt When (conditionX)

Timer Timeout

Out (Update (Object1))

Out (Send (Interaction2))

In (Reflect (Object1))

In (Receive (Interaction2))

Out (Send (Interaction1))

Opt When (conditionX)

Timer Timeout

Out (Update (Object1))

In (Receive (Interaction2))

In (Receive (Interaction1))

When (conditionX)

In (Reflect (Object1))

Out (Send (Interaction2))

SMA_DSM_LSC SMB_DSM_LSC

DSM_LSC

‘Prepare Interaction2’

‘Prepare Interaction1’

‘Prepare Object1’

Simulation
Member A

Simulation
Member B

Simulation
Environment

Simulation
Environment

‘Prepare Object1’

‘Prepare Interaction2’

Opt

Figure 3.9 Refining a multi-instance LSC into binary-instance LSCs

 Figure 3.10 shows the relationship between the generated simulation code files per

binary-instance LSC. For every LSC message out-event, a simulation middleware (e.g.,

RTI in the case of HLA) interface method call is made, and for every LSC message input

event, a simulation member interface method callback is generated. The LSC instance

aspect code intercepts the middleware interface method calls. It executes developer written

computation code and then redirects the call to the middleware with the computation code

in effect. On the middleware side, in addition to LSC, an aspect code (middleware instance

aspect) is generated for the overall simulation environment. This aspect code catches the

middleware callback methods and forwards them to the LSC instance (simulation member)

46

code. Then in the LSC instance aspect code, the result of the callback (with all arguments)

is made available to the developer. The details of the code generator and the code

generation process are presented in [61].

Figure 3.10 Relationship between generated source codes of a binary-instance LSC

3.5 Summary

 This thesis presents a comprehensive graph-based model transformation work from a

Conceptual Model (CM) to an executable Distributed Simulation Architecture Model

(DSAM). The work is undertaken to clearly understand the requirements and challenges of

defining transformations from CM-to-DSAM, eventually executing scenarios of conceptual

models. Both CMs and DSAMs are formally defined conforming to their metamodels,

CMM and DSAMM, respectively. CMM and DSAMM consist of their own separate data

models and a common behavioral model. The data components are based on UML class

diagram and the behavioral component is based on Live Sequence Chart (LSC). The

scenario of a conceptual model is represented by LSC diagrams and forms the kernel of the

scenario of the corresponding simulation model generated through model transformation.

 In CM-to-DSAM transformation, which is defined over metamodel-level graph patterns,

data and behavior is preserved. In fact the result of the execution of the transformation rules

is an increase in the “information content” of the models from source to target. The extra

platform specific information required for DSAM is provided through the transformation

rules, and a user code library. Another transformation named Multi2BinaryLSC, to be

applied as a pre-processing step on a produced DSAM before feeding it to the code

generator, is also developed. In essence, Multi2BinaryLSC accomplishes transformation

LSC Diagram LSC Instance
<<cover>>

LSC Instance

Aspect

Simulation

 Environment

Aspect

LSC

MiddleWare

Lib

MiddleWare

<<MW method call>> <<forward call-back>>

<<override

computation>>

<<catch

call-back>>

<<handle actual

 MW call>>

47

from a global view of the overall simulations to the collection of local views of the

individual simulation members.

 A second phase transformation is applied by a code generator to produce executable

simulation code and other useful artifacts from a DSAM. The code generator consists of an

intermediate form generator front-end pipelined to a source code generator back-end. The

front-end walks through the input DSAM using the programming API and constructs an

internal representation of the model, which is fed to the back-end module to generate source

code files for the LSC diagram, instance, computation aspect and simulation execution

aspect. Computation logic has to be woven onto the generated aspect codes in order to

provide legitimate values for the data structures at runtime.

 The presented graph-based model transformation work is powerful and appealing in that

it is visual, formally founded (both because it is based on metamodeling and it is possible to

state and prove certain properties of the transformations by resorting to the theory of graph

grammars and graph transformations) and offers a mechanism for transformation

composition. A notable downside of the transformation is its poor performance especially

when source models get bigger. This is accountable for every rule execution boiling down

to solving the sub-graph isomorphism problem on the input model and the match pattern.

This burden is partially relieved by breaking rules into reasonably small chunks and

providing as much initial binding on the match pattern as possible. Another facilitator is the

employment of the user code library which executes faster than pattern matching and saves

from tediously defining many similar transformation rules.

 LSCs are particularly powerful for event-based, rather than state-based, descriptions,

which supports the trace-view of the system behavior. This could be particularly suitable

for trace-based applications, such as scenario specification, and course-of-action analysis.

LSCs may not be suitable for representing the execution of tasks that require continuous

interactions among entities. Last, current LSC variants lack some well-known control flow

constructs such as nested exception handling, jumping the flow to another point and global

suspension.

 The experience gained in this thesis is a step forward in designing a domain-independent

model transformer for DSAM from any conceptual model that is based on LSC for

behavioral representation and UML-like class diagrams for data modeling.

48

CHAPTER IV

FIELD ARTILLERY CONCEPTUAL MODEL

 This chapter presents a formalized conceptual model for the Field Artillery (FA)

observed (i.e. indirect) fire domain. The structural part of the model identifies the entities in

the FA domain along with their properties and associations. The behavioral part of the

model is used to describe FA missions in the language of Live Sequence Charts (LSCs).

The conceptual model is constructed as a metamodel with the Generic Modeling

Environment (GME) toolkit. Once the FA metamodel is registered, GME automatically

provides a customized environment to model particular FA missions. The intended

application is to use the FA metamodel as the source for defining model transformations

targeting FA federation architectures. Another intent is to help evaluate the power and

limitations of chart notations for describing military tasks visually yet precisely.

 Section 4.1 is an introduction to the chapter, clarifying what is meant by a conceptual

model, drawing the general outline of the field Artillery Conceptual Model (ACM),

identifying the potential benefits of it and stating where it fits in the overall study. It also

describes the reasoning behind selecting LSC for behavioral modeling. Section 4.2 explains

ACM’s scope, its implementation approach and its two user perspectives corresponding to

a model builder and a software developer. Section 4.3 is an in-depth presentation of ACM’s

implementation in GME. The data model and the integration of the data and behavioral

models are demonstrated. The behavioral model is actually the LSC metamodel and since it

was developed as part of another study [12][85], its modeling is not covered. Section 4.4

presents the LSCs of the Adjustment Followed by Fire For Effect (AdjFFE) mission model

in graphical notation. The section also shows the instance decomposition of the

BatteryFDC model element into a lower level MSC document and the HSMC that shows

how other mission definitions can be accessed. Section 4.5 discusses the challenges

encountered and provides an informal assessment of ACM and usage of LSC in modeling

military tasks. Finally Section 4.6 presents a selective set of related work of conceptual

49

modeling from the literature. Note that in the context of this thesis, the distinction between

the terms task and mission is not important; thus, these are used interchangeably.

4.1 Introduction

 A Conceptual Model (CM) represents the relevant entities of a domain and the

relationships between them, independently of implementation details. CMs are essential

artifacts both in operational systems and simulation systems lifecycle. In this thesis CM is

to be understood in the context of modeling and simulation. Formalization of a CM is

achieved when we construct it in a formal language, for example, as a model conforming to

some metamodel. A metamodel essentially defines the language in which models are

expressed. A formal representation serves as a basis for machine processing, and supports

automated generation of useful artifacts, such as other (specialized) models and executable

code.

4.1.1 Motivation

 Robinson [44] defines a CM as "non-software-specific description of the simulation

model that is to be developed, describing the objectives, inputs, outputs, content,

assumptions, and simplifications of the model." He also points out that there is a significant

need to agree on how to develop CMs and capture information formally. The need for

formalizing task representations in military domains has been further emphasized in several

other studies [45][46]. In another study, “Mission Space Models” are defined to be domain

specific models that are consistent, structured and functional descriptions of real military

operations or processes [50].

 This chapter presents a tool supported formal model for the FA observed fire domain,

verified and validated with a subject matter expert. Considering the definitions given in

[44] and [50], it is necessary to underline that the modeling of military tasks by LSCs in

this thesis constitute a part of a CM (or a mission space model), emphasizing inter-entity

communications, rather than a complete CM (or a mission space model).

 Formal modeling of the FA missions has many potential benefits. In the course of

modeling one has to fill in the gaps found in the informal descriptions and clarify

ambiguities. This helps with the clear understanding of the domain by an individual and

shared understanding by a group of people, and facilitates processing with a computer.

 The ACM is developed with the intention for use within the context of a model

transformation work that aspires to produce executable distributed simulation code from

FA mission models through a series of transformations. The purpose of the ACM is to lay

the groundwork for a Platform Independent Model (PIM) to be utilized in (semi)automatic

50

model transformations to a Platform Specific Model (PSM), e.g. a Federation Architecture

Model (FAM), where the platform is the High Level Architecture (HLA). A secondary

objective is to assess the use of LSCs in FA mission modeling.

4.1.2 Rationale for Using Live Sequence Charts

 Message Sequence Chart (MSC) [15], upon which LSC is built, is a well-established

visual formalism for the description of inter-working of processes or entities. Both the

graphical and textual syntax as well as the formal semantics (in terms of process algebra)

are defined for MSC [41]. The sequence diagram notation [17] of Unified Modeling

Language (UML) 2.0 is very similar to MSC. LSC is introduced by Damm and Harel [14]

as an extension to MSC primarily to provide the distinction between mandatory and

optional elements.

 The play-in/play-out mechanism proposed by Harel and Marelly [43] support what they

call scenario-based programming. The basic idea is to play-in the desired interactions and

use LSCs to record them. Later these records are used as behavior specifications, which

monitor a user-guided simulation (play-out). The mechanism is realized by the Play Engine,

developed by the authors [43]. This operational view put into practice by the play-in/out

mechanism looks attractive for the early validation of mission models.

 Recently a linking tool called “InterPlay” has been developed [47], which can be used to

mix inter-object behavior given in LSCs with separate behavior given for some of the

objects in an intra-object language, such as conventional code or statecharts [48]. Note that

in this thesis, we are concerned with the observable behavior of a system where the system

state is implicit, whereas statecharts emphasize the state-transition view, which may include

unobservable behaviors (e.g., data management and computation) as well, and the state is

represented explicitly. Enriching the models with intra-entity behavior representation,

promised by the InterPlay tool, seems to be an appealing future study and hence, another

reason to leverage LSCs

4.2 Metamodel Scope, Methodology and User Perspective

4.2.1 Scope and Assumptions

 The ACM addresses certain aspects of technical, rather than tactical, fire direction.

Accordingly, the focus is on the autonomous fire direction mode instead of the battalion

directed mode. Consequently, the battery FDC becomes the most outstanding actor while

the battalion FDC’s role diminishes to merely monitoring the mission activities and

interceding in exceptional situations. Even if such an intervention occurs, the flow still

keeps the autonomous mode after the battalion fire order (i.e., a new mission assignment) is

51

received. This makes sure that the missions are always executed within the context of the

battery’s perspective. Owing to this viewpoint, massing of fires, which requires

coordination of multiple batteries under the same battalion FDC, is omitted.

 Ammunition preparation, fire parameter computations, ballistic conditions under which

a projectile flies, and trajectory calculations all require computational and domain expertise.

Such issues are considered far too technical and left out of the scope of the study. These

processes are assumed to be transparently performed and their outcomes are readily

provided by the infrastructure, if need arises. Moreover, the modelings of the environment

such as geographic and man-made features are also omitted. Detailed modeling of possible

targets, guns and ammunitions is avoided. What remains inside the scope of the model is

the description of the firing missions from the viewpoint of message exchanges among the

participants.

 The metamodel is built in accordance to the relevant Army field manuals [35][36][37].

On the other hand, there were some routine military procedures that we judged as irrelevant

for our modeling purposes. For example, the callee reads back whatever the caller has read

within combat radio net conversations for verification purposes. Another example is that at

the end of a conversation the parties may enter an authentication session. Such general

issues are left out of scope to keep the model less cluttered.

 There are seven kinds of FA mission types represented in the model under area and

precision fire categories. There are many more special and ammunition specific missions

mentioned in the field manuals. Since these seven types are probably the most widely used

ones and they adequately serve the purpose of testing the use of LSC in the description of

military tasks, no other mission types are modeled. Finally, the entire top level domain

entities in the data model are specialized from NATO’s JC3IEDM (refer to Section 4.3.1).

4.2.2 Methodology

 The ACM is an integration of two separate sub-metamodels, namely, the behavioral and

data models, as shown in the sample model of Figure 4.11, where the former relies upon the

latter for the definition of domain-specific data types. The term domain is used in the sense

of an area of interest, FA being an example.

 The FA observed fire mission descriptions are represented by means of LSCs,

specialized for the FA domain. Specialization is achieved by formulating FA mission

messages as LSC messages and integrating the FA message structures as the data language

of LSC. The LSCs in the behavioral model use the data model elements via referencing.

Note that the behavioral metamodel is capable of representing the discrete communication

behavior of many practical systems, consisting of components exchanging messages,

52

independently of the domain. This communication aspect of the system behavior is

particularly emphasized from the LSC modeling perspective.

 The data model consists of domain specific information, including actors, nets, mission

messages, message communications and the mission hierarchy. The structures of these

entities and relationships among them, as well as constraints are explicitly modeled. The

structural constraints such as association, containment, attribute names and types, interface

(via the port mechanism) and cardinality are readily defined thanks to the UML based

notation of GME. Moreover, logical or semantic constraints are also defined either directly

on model elements or globally (i.e., metamodel wide) in OCL.

 The AdjFFE mission model is presented in Section 4.4. AdjFFE is one of the most

prominent mission types of the FA observed fire and also serves well to reveal the use of

the behavioral and data model elements together. Both ACM (metamodel) and AdjFFE

(model) are realized using GME.

Figure 4.11 A simplified sample ACM model as shown in GME model browser

4.2.3 User Perspective

 The MDA brings its own paradigm to software development as compared to the

common state of the art approaches. In the MDA paradigm the most outstanding roles of

development are the model and transformation rule developers. In our context, the potential

users of the FA models are expected to be the FA domain experts who are building the

53

conceptual models and software developers who need both the source and target

metamodels at hand in order to write model transformations.

 A conceptual model builder has to develop the FA behavioral and data models as similar

to Figure 4.11. Since this thesis’s focus is on inter-entity communications, the user is

relieved from defining intra-entity processes (e.g. computations, state management). The

user is also free of concerning with the specifics of the data types of the data model, in the

sense of programming languages.

 A software developer, who is a model transforming user, must have a thorough

understanding of the source and target metamodels to write transformation rules. He has to

deal with the lower level data type mappings between the source and target models, hence

requiring programming language knowledge. This user should further incorporate all sorts

of HLA specific context that cannot readily be inferred from the FA model into the

transformation rules.

4.3 Field Artillery Metamodel

 This section illustrates and explains the prominent parts of the metamodel as realized in

GME. Before moving any further, a clarification on the levels of modeling would be

worthwhile. Object Management Group (OMG) introduces a four-layer metamodel

hierarchy for defining modeling, metamodeling, and meta-metamodeling languages and

activities in [17]. Table 4.2 relates the FA metamodel (field Artillery Meta-Model

(ACMM)) to OMG’s four-layer modeling hierarchy. Please refer to List of Abbreviations

section at the beginning of the thesis for the model element name acronyms and

abbreviations.

Table 4.2 FA metamodel (ACMM) correlated with OMG’s four-layer model hierarchy

OMG’s Metamodel Hierarchy Related Model

Meta-metamodel (M3 layer) GME metamodel (metaGME)

Metamodel (M2 layer)
FA metamodel (referred to as a “paradigm” in GME

vernacular) - the ACMM

Model (M1 layer)
A particular FA mission description, e.g., AdjFFE

(provided as the case study) - an ACM

Run-time instance (M0 layer)
A particular execution of a FA mission (e.g.,

exercising an AdjFFE scenario)

54

4.3.1 Data Model

 This section elaborates on the constitution and organization of the structural part of the

domain model. First, a brief but informative introduction to the entities is provided. Then,

they are explained in detail, along with GME excerpts of the most important ones.

 Actors correspond to the real world FA members, such as the personnel, the units or the

environment. As they all take part in mission execution, they are considered the producers

and consumers of domain information captured in messages.

 Messages are an important part of the FA domain information. Typically, they are

highly structured and they have many optional or conditional fields of various data types.

There are further syntactic, semantic or cardinality constraints on the message structures,

both on a single field and inter-field basis. These constraints are captured as OCL

statements throughout the model.

 Our analysis has revealed two kinds of message usage in the domain. The first kind

includes those messages that are sent as single chunks of information independent of any

previous ones. Every such message supplants its immediate predecessor of the same type.

The second kind of usage is practically an accumulation of a series of communications of

the same message type. Specifically, the current interpretation of a message at a particular

destination is a function of all previous receptions of that message kind. In such a usage, the

first reception of a message creates an initial copy at the destination. Subsequent message

receptions result in updates on the original copy. The message is removed from the scope of

the actor with the arrival of a special deletion message. In the FA domain model the

majority of the message usages are of the first kind.

 A single message communication typically involves the triple of a source actor, a

destination actor and a message to be sent from the source to the destination. Often there is

an extra “net” acting as a means to deliver the message to secondary receivers. In some

communications, there is no particular destination actor, but only a net.

 The net concept, which is a set abstraction of actor members, is used to serve multicast

communication needs within the model. A net transparently relays any message that it

receives to its members. Nets are formed according to the dictations of domain specific

requirements, such as intra- and inter-battery and meteorological communications.

 The mission hierarchy builds up the set of FA observed fire missions that can be

modeled. The mission model elements themselves do not possess mission related

information; rather they are simple atomic elements merely used as markers of mission

types. Mission specific information is conveyed within message structures. Mission model

elements exist as parts of some of those message structures. For each kind of mission there

55

is a corresponding mission definition as part of the behavioral model. In this respect, the

mission hierarchy bridges the data and behavioral models together, establishing traceability

from the data model to the behavioral model in that, given a mission LSC, there must be a

message transmitted within the LSC that indicates the mission’s type by including a

corresponding mission model element in the message.

Actors

 Throughout the modeling work, a functional point of view is adhered to. Hence the

organizational structure of the military domain is not of major interest in identifying the

actors. Accordingly, the FAT trio is modeled as the FwdObserver, the BatteryFDC and the

FiringUnit. FwdObserver is identified as an actor due to his central role in observed fire

missions. BatteryFDC and FiringUnit could be organized under the firing battery part of a

cannon battery, but since they directly play important roles in missions, they are treated as

two actors on their own.

 BatteryFDC is further decomposed into BatteryFDO and BatteryFDCComputer. This layered

modeling of the BatteryFDC is primarily a consequence of focusing on autonomous fire

direction mode. In this setting, as indicated in Section 2.5.1, the BatteryFDO is responsible

for producing fire order and fire order Standing Operating Procedures (SOP), and the

battery computers (abstracted as the BatteryFDCComputer) participate in producing the fire

command. As these messages lie at the heart of FA missions, their producers and

consumers deserve to be treated explicitly.

 In the Army field manuals [35][36], it is indicated that many important messages are

addressed to the BatteryFDC by the other actors, such as FwdObserver, FiringUnit and

BattalionFDC. No specific component inside the BatteryFDC is mentioned as this is not a

concern to these exterior parties. Of course, when the focus is on the BatteryFDC itself, then

intra BatteryFDC actors and their interactions are explicitly described.

 The BattalionFDC is an actor outside FAT, supervising the FAT’s activities, occasionally

intervening or taking over the control on its own accord.

 Meteorological data in the form of a metro report is an input for technical fire direction,

especially for the computation of fire commands. Usually a meteorology station at the army

corps produces and distributes metro reports [36]. ACM accounts for this fact with the

MetStation actor which distributes metro reports to the related FAT members.

 Being the object of firing missions, Target is an obvious model entity. It is referred in

messages such as call for fire, and refinement and surveillance. Target, however, is not

elaborated in the model.

56

 All the entities and processes of FA missions are deployed in accordance to an order of

battle. This environment is modeled using the FeatureType entity in the sense of JC3IEDM

(see below). FeatureType specifically covers geographical and meteorological features. The

model, however does not address environmental concerns.

Nets

 Within this thesis scope, the radio-net and metro-net concepts corresponding to the real-

world battlefield radio nets are modeled. An actor can join or listen to a conversation taking

place within a net that it is a member of. By this way multicast or broadcast messages such

as meteorology messages are handled uniformly. The BatteryRadioNet consists of references

to the FwdObserver, BatteryFDC and BattalionFDC. The MetroNet consists of references to the

MetStation, BatteryFDC and BattalionFDC. In both of the nets, the sole inclusion of the

BatteryFDC implicitly assumes that the BatteryFDO and BatteryFDCComputer are also

informed of the conversations as they are included in the BatteryFDC. Finally, it is worth

noting that although the BatteryRadioNet is intended as a usual radio net, the MetroNet is

merely an abstraction; it may not be an actual radio-based network.

 Figure 4.12 sketches the organization of the FA actor and net entities. Note that there is

a Reference to every actor (not shown in the figure) as only the references to actors are used

in message communications and nets. All the actors and nets are modeled as GME Model

elements and are collected in their respective folders, except the two BatteryFDC members.

Figure 4.12 The actors and nets of the field artillery data model

Messages

 The set of messages comprises the bulk of the FA data model. There are more than 70

messages defined, ranging from simple, single piece of command-type forms to complex,

highly structured union forms. In order to utilize powerful modeling principles such as

57

modularity, reuse and polymorphism, families and hierarchies of messages are defined.

There are two major abstraction layers established in the message model, namely the utility

and the conceptual layers. The utility layer gathers most of the commonly used parts found

in the messages, such as ammunition, measurement, date and time, location, and direction.

The conceptual layer contains the higher level messages employed in mission descriptions.

These elements include the relevant utility components in addition to the message-specific

parts.

 The family of messages defined in the metamodel, all extracted from the Army field

manuals [35][36], has two kinds of usages as mentioned in in the beginning of this section.

The messages of the first category include CFF, MTO, FO (of both BatteryFDC and

BattalionFDC), FC, FiringReport, Spotting and Correction types. The messages of the second

category are each a trio of instantiation, update and deletion messages for Ammunition, SOPs

for FO and FC, and MetroReports. In Figure 4.13, the parts a and b present a sample for each

category.

Figure 4.13 a)Msg. for observer identification and warning b)Msgs for FireCommandSOP

 Both syntactic and semantic constraints on the selection and formation of message parts

are expressed in OCL statements, which are directly bound to the messages themselves or

are defined globally at the metamodel level. These constraints in the metamodel are

enforced either during model development time or after model construction according to

their priority levels. Below is a sample OCL expression for Oid_W_Msg of CFF type

message, indicating that “Target location is only given in immediate suppression or

immediate smoke missions”:

let missionType = self.parent.connectedFCOs(“src”,MissionType) in

missionType.name = “Supp” or missionType.name = “ISupp”

58

Message Communications

 Message communications are the top level yield of the data model before moving into

the behavioral model. The actors, nets and messages introduced up to this point are used in

combinations into meaningful message communications.

 Structurally, a message communication embodies the message, the sender and the

receivers of the message. Apart from one or two exceptions, there is only one sender per

message. For this reason the message communication hierarchy is based upon the senders

of messages, which are actors. A net cannot be a sender, but only a receiver since its sole

function is to relay an incoming message to its member actors. Figure 4.14 illustrates a

sample branch of the message communication hierarchy.

 Note that every member has a suggestive role name and a cardinality of 1 in its

composition relation with the parent communication element. Another point to note is that

the sender and the receivers are references, whereas the message is a model element itself.

Consequently, in a series of message communications, every message must be a new

individual, but the senders and receivers must be existent actors. In cases of multiple

receivers, each receiver gets its own copy of the message.

Figure 4.14 A message communication example

Missions

 A perusal of the field manuals revealed the types of observed fire missions shown in the

mission hierarchy in Figure 4.15. In this classification, observed fire missions are grouped

under two fire categories, namely AreaFire and PrecisionFire. This distinction is based on the

fact that area fires are conducted with all of the guns in a battery, whereas precision fires

59

are conducted with usually one, or at most, two guns. Area fires are categorized as

adjustment, fire for effect, suppression, immediate suppression, quick smoke, immediate

smoke and illumination. Precision fires are destruction and precision registration.

 The purpose of area fire is to cover the target area with dense fire so that the greatest

possible effect on the target can be achieved [35]. Fire For Effect (FFE) is the most

common and important of area fire missions. The observer strives for first-round FFE,

provided that if he can locate the target accurately. If the observer cannot locate the target

accurately enough to warrant FFE, he conducts an adjustment. Even with an accurate target

location, if the current firing data corrections are not available, adjustment may be

necessary [36]. In adjustment, fire from the central gun alone is step by step brought onto a

designated adjusting point. Fire parameters are refined through observer corrections after

each round. FFE is started by the entire battery once a satisfactory adjustment has been

obtained.

Figure 4.15 The mission hierarchy

 Several points need clarification. First of all, adjustment may be conducted in

conjunction with smoke and illumination missions as well. In this respect, adjustment can

be considered as a preliminary activity rather than a standalone mission. This opens a

debate as to discard adjustment as an area fire mission. However, due to adjustment’s

significance, frequent application, and the field manuals’ practice of counting it as a

mission on its own, we opted to place adjustment under area fire mission hierarchy.

60

 Second, illumination, suppression and registration missions have several variations, each

employing different techniques. There are further variations based on special munitions

used in the missions. These are considered out of scope of this thesis.

 Finally, since FFE is the most common mission among the others and is usually

preceded by an adjustment, adjustment followed by FFE (i.e., AdjFFE) mission is used as

the case study of this work. Most of the other kinds of missions are indeed conducted

similar to these two with special differences and/or additions.

JC3IEDM as an Upper Level Data Model

 JC3IEDM [53] is adopted as an upper level data model for ACM. Particularly, every

top-level entity in the data model is specialized from a JC3IEDM element by means of the

inheritance mechanism. A simplified hierarchy of the used JC3IEDM elements is readily

defined in the data model for the sake of soundness and completeness. This conceptual

traceability of the model from JC3IEDM promotes the model’s compatibility and

recognition. Figure 4.16 shows the top-level FA domain entities (plain boxes) and their

extension points with JC3IEDM (shaded boxes).

Figure 4.16 FA domain entities as attached to JC3IEDM

4.3.2 Composition of the Behavioral and Data Models

 The behavioral part of the ACM is essentially the LSC metamodel [12]. As LSC is

extended from MSC, the metamodel also covers the MSC metamodel in its core. MSC is a

visual language for specifying the behavior of a concurrent system focusing on the

communication among the components of the system. The metamodel covers all the

standard MSC features [15][41] and the proposed LSC extensions [14] as a coherent whole.

61

The data model narration together with the chart samples of the graphical notation should

suffice for having a grasp of the LSC notation for the unfamiliar reader. Also an

introduction to the MSC and LSC specifications are provided in Section 2.7. Please refer to

[12] for more details and examples from the HLA-based simulation domain.

 To put it another way, the LSC metamodel provides a generic infrastructure for

modeling the discrete communication behavior of a system as a partially ordered set of

events (mainly as message passing) between a group of instances. In the context of a

specific domain, these generic behavioral elements need to be specialized as the domain’s

entities. The specializations are naturally derived from instance, message and other

elements of the LSC metamodel. The composition of the behavioral and data models is thus

achieved by integrating the data model to the LSC model. The integration points of the

behavioral and data models are shown in Figure 4.17. It is seen that all of the FA actors and

nets are inherited from LSC Instance and that the FA domain messages are inherited

from LSC Msg.

 GME’s being a configurable toolkit for creating domain-specific modeling

environments comes handy in creating the ACM paradigm. The paradigm is the result of

importing the existent LSC and FA data metamodels as libraries into GME through its

built-in Model Integration paradigm and then defining the integration points in a separate

paradigm sheet, as explained above and partly shown in Figure 4.17. Once the ACM is

registered as a GME paradigm, a domain specific modeling environment capable of

enabling domain experts to build FA mission models is obtained.

Figure 4.17 Integration of data model to behavioral model (partial view)

… … …

Behavioral Model

Data Model

… … …

62

4.4 Adjustment Followed by Fire-for-Effect Mission Model

 This section describes the AdjFFE mission, the source model for the model

transformation case study, in graphical LSC notation. The model includes around 40 LSCs,

each being about one page long and an HMSC. In this section, only a set of important

charts will be presented. The complete set of LSCs can be found in Appendix A. Since the

graphical notation elements are not introduced elsewhere, they will be described wherever

they are first encountered.

4.4.1 The Top Level Mission Model

 Figure 4.18 fully covers the AdjFFE mission description at the topmost level and sets up

the framework for the remaining charts.

Figure 4.18 Adjustment followed by fire for effect

 The horizontal dimension is the structural dimension and the vertical dimension

corresponds to the time dimension. On top of the vertical axes are the instance heads, drawn

as rectangles with instance names. Vertical lines are the instance axes and thin solid

rectangles at the bottom indicate the syntactical end of an axis.

63

 The LSC has a superimposed pre-chart shown as a dashed elongated hexagon indicating

that the LSC scenario takes effect, provided the pre-chart has been traversed successfully.

The thin rounded rectangles orthogonally crossing the instance axes are references to other

MSCs. A reference symbol contains the referenced MSC’s name and, if applicable, its

actual parameters. If an instance is not involved in a referenced MSC, then its axis is drawn

through the reference symbol. The consecutive arrangement of MSC references implies

sequential ordering in time. Within the LSC, it is seen that there is a parallel inline

expression with two operands, separated by a dashed line.

 Finally, note that BatteryFDC is “decomposed as BatteryFDC_FFE”. The keyword

decomposed below the instance head indicates that the instance is decomposed within at

least one MSC to further refine its behavior. Thus an MSC document may be interpreted

relative to its own instances only, disregarding any decomposition, or it may be interpreted

relative to lower levels of instances by following the decomposition relations. The

decomposed BatteryFDC is presented in Section 4.4.2.

 The CFF chart, depicted in Figure 4.19, describes the FwdObserver’s sending of CFF

messages to the BatteryFDC. The messages are also transmitted by the BatteryRadioNet to its

members. We devised a simplifying convention that net transmissions are only shown as

incoming messages to an MSC reference whose sole instance is the net, in order not to

clutter the chart with unnecessary obvious information. The net together with its members

are explicitly shown in the defining chart of the called MSC reference.

 Messages are shown as directed arrows with labels drawn from the sender to the

receiver. A message may originate from and arrive into an instance, an MSC reference or

the exterior environment. It may get lost in transmission. A message contacts an MSC

reference at a gate, which interfaces the MSC to the outer world. The small black circles are

simultaneous regions, meaning that the set of events touching the circle are perceived to

happen at the same time. An action is an atomic event represented by a rectangular box

attached to an instance axis. The actions are treated in our study as annotations where user

defined computations can be entered. The LSC body consists of a guarded optional inline

expression where the condition variables being provided as MSC parameters.

64

Figure 4.19 Call for fire

 Following the CFF and MTO message transmissions, the adjustment loop starts as shown

in Figure 4.20. Prior to the loop start, an initial fire command must be prepared and sent,

resulting in system state to become AdjNotDone (i.e., adjustment is not done). As long as the

adjustment is not done, round shot, spotting observation, shot assessment through

correction sending, and subsequent fire command preparation in the light of incoming

correction information are executed in sequence. The preparation of correction data and

deciding whether the adjustment is accomplished or not require domain specific

computations. Thanks to the action mechanism these technical details are abstracted away.

The vertical dotted line segment besides the two action events indicates a coregion meaning

that the execution order of these two does not matter.

65

SubsFireCommand(“Adj”)

InitFireCommand

FwdObserver BatteryFDCEnvironment FiringUnitBatteryRadioNet

While do

AdjustmentCorr_Msg

ObserveSpotting

RoundShot

AdjNotDone

‘Prepare AdjustmentCorr_Msg’

AdjNotDone := getIsAdjNotDone()

AdjNotDone

decomposed as

BatteryFDC-AdjustmentLoop

C
o

re
g

io
n

Setting condition

Figure 4.20 Adjustment loop

 Note that, concurrently with the MTO and before the initial fire command, there is a fire

order message transmission taking place between the sub-instances of BatteryFDC. As these

instances are defined in the lower level MSC document called FDC, the fire order message

is shown there. For details, refer to Section 4.4.2

 The initial fire command chart is depicted in Figure 4.21. Fire commands are prepared

within BatteryFDC as the result of a series of detailed computations involving ballistics.

 At this stage, only the produced commands are seen to be sent from BatteryFDC to

FiringUnit. The decisions on selecting the specific fire commands are extensively guided by

the dynamic instance variable metCtrl. Each instance maintains its own copy of metCtrl in

order to keep track of its command and control state. We envision the exceptional

CheckFiring (CF) and CeaseLoading (CL) events to occur non-deterministically. Whenever the

FAT enters into CF or CL states, the instances in question halt in the sense that they do not

emit any messages until the BatteryFDC sends cancellation messages for CF or CL.

66

Figure 4.21 Initial Fire Command

 There is no restriction on the instances other than emitting messages in due course; that

is, they may continue any other activities of their own. This situation is captured by cold

locations represented as dashed line segments in the instance axes. A cold location has the

semantic that execution may remain at that point indefinitely. The flow ends with an

invocation of the ProcessFireCommand chart.

67

 The life cycle of Ammunition, from the moment it is brought into the firing position till its

removal after detonation is reflected in the chart of Figure 4.22. Ammunition is created by the

Environment instance and made known to the radio net members through an instantiation

message. Then the FiringUnit fires the round and the projectile (i.e., ammunition) proceeds

traversing its trajectory. The ammunition instantiation message event happens strictly

before the firing action event of the FiringUnit, as shown by the dotted arrow between the

two. If not explicitly ordered, events that occur on different instances are assumed to take

place independently, by definition.

FwdObserver BatteryFDCEnvironment FiringUnitBatteryRadioNet

AmmunitionInst_Msg

T3(1)

AmmunitionUpdate_Msg

AmmunitionDel_Msg

Par
T1(TOF)

Shot_Msg

Shot_Msg

Splash_Msg

Splash_Msg
T2(5)

Shot_Msg

Opt

‘Prepare AmmunitionInst_Msg’

‘Prepare

Ammunition

Update_Msg’

Loop

<0,TOF>

When (metCtrl.isSplash)

BRN

BRN

BRN

BRN

BRN

decomposed as

BatteryFDC_RoundShot

‘Do Fire’Ordering relation

Timer

Figure 4.22 Round shot

 As the projectile follows its trajectory, Environment sends ammunition position update

messages at every second until detonation. Timer events are symbolized with an hour glass

having a time value alongside. A timer start event is a horizontal line segment between the

68

instance axis and the timer symbol. A timer stop event is an L-shaped directed line segment

from the timer symbol to the instance axis. After the projectile is shot, a Shot_Msg is sent

from FiringUnit to BatteryFDC and then propagated to FwdObserver and the other radio net

members. If a warning message was requested before projectile detonation, BatteryFDC

sends a Splash_Msg to FwdObserver five seconds prior to detonation.

4.4.2 Instance Decomposition of BatteryFDC

 The inner structure and behavior of an instance kind are defined through an MSC

document with the same name as the instance kind. To indicate how the behaviors

described at different levels of abstraction are related, the behavior of an instance inside an

MSC diagram can be specified to be refined in an MSC of the MSC document defining the

instance being decomposed.

 In the figures of Section 4.4.1 the BatteryFDC instance was tagged as “decomposed”

meaning that there is an MSC document called BatteryFDC containing further refinements of

the charts that included BatteryFDC as an instance. There are some requirements to be met

by the decomposition, which are best explained through exemplifying figures below.

 Figure 4.23 illustrates the decomposed chart of AdjFEE as situated in the lower level

MSC document refining the BatteryFDC. Note how the MSC references CFF and MTO_AI are

refined as viewed from the BatteryFDC’s perspective. One important detail that is not present

in the upper level chart is the production and sending of the fire order message, since fire

orders take place only within the battery FDC scope.

 The content of the refined version of CFF is given in Figure 4.24. In terms of inline

expressions, the decomposition contains a corresponding inline expression of the same

operation and operand structure as the one in the decomposed chart. The inline expression

in the decomposition is “extra-global” (i.e., crossing the MSC frame) indicating that the

operands are connected to other operands of similar inline expressions when interpreted

through decomposition. The harmony between the lower and higher level charts can be

clearly followed through the similarities in the structures of the MSC constructs. (Compare

Figure 4.19 and Figure 4.24).

69

Figure 4.23 Adjustment followed by fire for effect in decomposed BatteryFDC instance

Figure 4.24 Call for fire in decomposed Battery FDC instance

70

4.4.3 Overview of Missions via a High Level MSC

 High-level MSC (HMSC) provides a means to graphically define how a set of MSCs are

combined. An HMSC consists of start and end symbols, flow lines, conditions, top level

MSC references and inline expressions. A flow line indicates sequential flow, and start and

end symbols have the obvious role of scope marking. The latter three have much similar

interpretations as the ones found in MSCs.

 Figure 4.25 presents the HMSC for the ACM behavioral model. It is a top level view

covering which mission executions are started under what conditions. This high level chart

first sets the global system states of operation mode and mission type, and later steers the

flow towards the desired mission execution. This thesis only covers battery directed

operation mode and demonstrates the AdjFFE mission, but the other options are provided

for future model extensions. Note that we allow the option for battalion directed operation

mode, but do not provide a description for it. Mission type is to be selected among the

seven possibilities covered by the present work.

When (missionT=Adj)

AdjFFE(‘Adj’,‘Area’)

Alt

RegTypeSet

Alt

When (regType=RegOnKP

PrecReg(‘Preg’,‘RegOnKP’)

Otherwise

PrecReg(‘Preg’,‘RegByFO’)

When (missionT=PReg)

When (missionT=FFE)

FFE(‘Adj’,‘Area’)

When (missionT=Supp)

Supp

When (missionT=ISupp)

ISupp

When (missionT=ISmoke)

ISmoke

When (missionT=Dest)

Destruction

MissionTypeSet

OperationModeSet

Figure 4.25 High level MSC for FA behavioral model

71

4.5 Discussions

 This section provides a discussion on challenges encountered, lessons learned,

assessment of ACM and assessment of using LSC notation in modeling military tasks.

4.5.1 Challenges Encountered

 A number of difficulties had to be overcome in both modeling the FA domain and using

the LSC metamodel in developing the AdjFFE model. The following paragraphs discuss

the notable challenges.

 Information on FA observed fire techniques are dispersed in a series of Army field

manuals. The narrations of these manuals are fairly informal in that they bear traces of

experience and insight obtained in battlefields. Moreover, they presume much background

knowledge on the part of the reader, and sometimes even have seemingly incongruent parts.

It took a considerable amount of effort to comprehend that content and come up with a

coherent domain model. SME consultations also proved to be very fruitful in resolving

ambiguities and filling in gaps.

 The point of view taken in the manuals dictates the hierarchical chains of command and

seniority relationships among the actors. We did not consider military hierarchy in our

modeling practice and followed a functional modeling approach instead. Specifically, some

of the actors represent humans (e.g., BatteryFDO), some represent units (e.g. BatteryFDC,

FiringUnit), and even some represent a mixture of both (FwdObserver, BatteryFDCComputer).

All of the actors are selected and organized according to their roles in the observed

communication flows in performing FA missions.

 Another inconvenience was met in deciding from which JC3IEDM elements to extend

the data model elements. Sometimes there were more than one alternative, sometimes there

was no obvious candidate and sometimes there was a JC3IEDM entity with the same name

as an ACM entity, but having a slightly different meaning. For example, a debated decision

was whether to extend the FwdObserver element from JC3IEDM UnitType or MilitaryPostType.

For the no-candidate cases, we made up intermediary entities between the JC3IEDM and

the entities in question. For the same-name cases, we put an identification tag in front of the

entities for preventing name clashes. We used intuition in resolving such situations.

 On the behavioral model side, while we enjoyed the convenience in representing the

message communications between the actors, we suffered representing global state

information. For example, the unary valued setting conditions of MSC was an obvious

shortcoming, which we had to relax in modeling for convenience.

 An MSC message event has a signature comprised of the message name and the

parameter set. The types of the parameters are defined in the data language provided to the

72

MSC. On the other hand, an FA message is a coherent unit, typically with a nested

structure; hence it is inconvenient to flatten it into a list of parameters. In order to adapt the

FA message as an MSC message, we set the top level FA message element’s name as the

name of the corresponding MSC message without parameters. We embed the information

content that otherwise would be conveyed by MSC message parameters into FA message

definitions.

 LSC lacks some well-known utility constructs such as nested exception handling,

jumping the flow to another point and global suspension. We strived to avoid these cases;

however, in some cases we had to devise workarounds. There were some situations where

LSC provided the operators, but they were either insufficient or not applicable under certain

conditions. For example it might be the case that a timer starts inside an optional inline

operand and timeouts somewhere outside. In this situation we allowed the timer to start

inside the operand and go off outside. The interpretation we give is that if the optional

operator executes the timer starts, otherwise the timer has no effect.

4.5.2 An Informal Assessment of ACM

 This section constitutes an evaluation of the ACM in terms of the approaches taken in

domain modeling. Then the selection of tool and technology are critiqued. Consequently

the assessment covers a set of recognized CM evaluation criteria such as completeness,

traceability, modularity, layering, extensibility, reusability, composability and

interoperability of the model.

 ACM is a well-focused and framed artifact. Converging to the smaller scale battery level

and a limited portion of the overall domain (i.e. observed fire techniques) enabled us to

disregard many tactical issues peculiar to the battalion level as well as computational

issues, yielding a more compact and comprehensible model. This tight scoping approach

makes the model domain specific enough so as to open way for feasible model

transformations.

 The U.S. Army field manuals [35][36][37] are utilized as the authoritative information

sources. In that respect we strived to make use of the original terminology from the field

manuals for the model elements. Hence all the data model entities and their attributes can

be traced back to the related sections of the field manuals for validation.

 We have conducted a series of face validations with an SME. This proved to be very

fruitful especially when dealing with the ambiguities inherent in the field manuals.

 All of the top-level data model entities are derived from NATO JC3IEDM, establishing

the metamodel on a mature and common formalism. This further favors the model in terms

of compatibility and recognition. In [45] it is underlined that the Battle Management

73

Language (BML), which this work can be considered to fall in line with, must use the

existing C2 data representations whenever possible. Extending the data model from

JC3IEDM clearly echoes this argument.

 A salient feature of the model is its capability to illustrate the domain at higher and

lower abstraction levels and the seamless integration of the two. In particular, the

interactions of the BatteryFDC to other actors and the intra BatteryFDC actors and their

interactions are readily demonstrated.

 In [49], Davis and Anderson emphasize the relevance of reuse and composability in

conceptual models. The FA metamodel promotes these concepts by defining the top level

generic model elements as FCOs to provide for easy model extension. An outstanding

example exhibiting model reuse and composition is importing the data and behavioral

metamodel libraries and then defining specialization relations between the relevant data

model elements and the behavioral ones as explained in Section 4.3.2.

 To have an overall view of all of the mission descriptions, HMSC mechanism has been

utilized. This way, the model user finds a common interface in configuring and selecting a

mission description.

 On the tool side we believe that deciding on GME was appropriate. GME is a domain-

specific, model-integrated program synthesis tool for creating and evolving domain-

specific, multi-aspect system models. Due to GME’s inherent UML basis, the models are

bolstered by being compliant with a common industry standard. (Note that GME’s UML

support is limited to only class diagrams). This further enabled the model to utilize the

tenets of object oriented design such as encapsulation, inheritance and polymorphism. The

dynamic semantics of a model is not defined in GME, but this can be introduced through

model interpreters that can be plugged into GME. Moreover, the model is capable of

representing semantic (business) constraints both on a model element basis and globally in

OCL. Finally, it is possible to obtain tool independent XML exports of the models,

facilitating interoperability. By this way “silos” are avoided; that is the metamodel is

realized in GME, but we are not restricted to GME.

4.5.3 An Assessment of Using LSCs in Modeling of Military Tasks

 LSCs are particularly powerful for event-based, rather than state-based, descriptions.

The point of view is to capture the observable interactions of an entity, distinguishing

between mandatory and optional. The observers can be other system entities or any outside

entity, including the environment. The interactions do not have to be only the sending or

receiving of messages. More generally, any discrete action by one entity that can be

observed by another entity, e.g. shooting, can be modeled as an MSC/LSC message. The

74

event-based nature of LSCs supports the trace-view of the system behavior. This could be

particularly suitable for trace-based applications, such as scenario specification, and course-

of-action analysis.

 Use of LSC as a practical modeling notation, invariably requires a data model (static

model) to be integrated with the action (behavioral) model. The variables, values and

expressions communicated by the messages refer to the data model. The action boxes, then,

represent internal computations performed on data items by individual instances. The

description (though not the ordering) of computations falls outside the scope of LSCs. This

issue is best handled by an algorithmic language.

 LSCs may not be suitable for representing the execution of tasks that require continuous

interactions among entities. Consider, for example, a maneuvering tank platoon.

Maintaining its formation and changing the formation when ordered require the tracking of

all team members, say, by maintaining line-of-sight, by each member continuously.

Representing in LSC how such a task is executed is not convenient. A typical recourse

would be to represent the team-wide start and finish conditions of the task and consider it

done in the meantime. In the similar vein, the execution of tasks that involve a spatial

element, such as illumination patterns, could be handled by action boxes in a way akin to a

computational or menial task. It is, then, up to the model transformer or code generator to

interpret such conditions and action boxes suitably.

 Chart notations, such as MSC, LSC and UML sequence diagrams are often used by

software developers to represent certain typical runs of the system being specified. Our

approach, in contrast, strives for a complete specification. This explains the extensive use

of nested control structures in our charts. With the usual trace-oriented use a much more

flat chart structure would suffice.

 As the state information is indirectly and implicitly represented in LSCs, they do not

readily support system implementation. However, this does not prevent us from animating

LSCs, say, for validation purposes, or generating executable code from LSCs, say, for

generating prototypes.

4.6 Related Work on Conceptual Modeling

 This section points to a selective set of related conceptual modeling techniques,

frameworks and approaches in literature that fall in line with the present modeling work.

Before starting, a basic understanding of conceptual modeling, formal specification and

perspectives from different application domains is worthwhile to provide.

 In a broader context, Conceptual Model (CM) is defined in [95] as, “An abstract,

idealized and symbolic description of the structure and behavior of the real system, which

75

is understandable for those from the application domain”. Ideally, the CM provides insight

into modeler‘s purpose-related understanding of the structure and behavior of the real

system as well as the system knowledge used for modeling. It should also explain the

motivation and justification of conducted abstraction, idealization, and selection of the

model boundaries. Furthermore, providing the hierarchical organization of the sub-models

is desirable. Generally speaking, CMs hardly feature completeness, self-consistency,

unambiguousness, direct support for development, maintenance and reuse. Last, CMs can

contain comprehensible natural language specifications, i.e. narration, as well as formal

specifications in their descriptions.

 A formal specification is a solution-oriented, unambiguous symbolic specification of the

structure and behavior of the real system, based on a well-defined modeling formalism [95].

Some examples to general purpose formal specifications can be given as UML, Queuing

Nets, Petri Nets and DEVS. ACMM and FAMM - the metamodels used in this thesis for

representing the field artillery observed fire and HLA domains, are examples to formal

specifications tailored for domain-specific modeling. Formal specification supports

unambiguousness, efficient implementation of solution, platform independent specification,

and automated verification and validation activities such as syntax checking, semantic

checking (including self-consistency), control flow and data flow analysis, model checking,

and (limited) testing.

 There are different conceptions of conceptual modeling from different perspectives such

as information systems development, database management systems, knowledge

engineering, ontology and simulation. The following subsections provide more insight into

some of these.

4.6.1 Conceptual Models of the Mission Space

 The Conceptual Models of the Mission Space (CMMS) effort, initiated by the U.S.

Department of Defense (DoD), aims to facilitate the development and reuse of simulation

models. CMMS is defined in [50] as “First abstractions of the real world that serve as a

frame of reference for simulation development by capturing the basic information about

important entities involved in any mission and their key actions and interactions”. CMMS

emphasizes the implementation-independent functional descriptions of the real world

processes, entities, environmental factors, and associated relationships and interactions

constituting a particular set of missions, operations or tasks. An important part of CMMS

includes the domain specific conceptual models, called “Mission Space Models”. They are

consistent, structured and functional descriptions of real military operations or processes.

Some recent studies, notably Defense Conceptual Modeling Framework (DCMF) [51] and

76

the conceptual modeling tool KAMA [52] have further elaborated the vision promoted by

the CMMS.

4.6.2 KAMA

 KAMA is a conceptual modeling framework that incorporates a notation, a modeling

process and a supporting tool for developing mission space conceptual models [52][106].

The process is based on the works of CMMS [50] and Pace [115]. The framework does not

mandate the developer to follow the proposed process; any other process is possible, as

long as pre-requisite relationships among the diagrams, such as an entity state diagram

requiring an entity to be defined or a task flow diagram requiring the existence of a mission

or a task, are satisfied. The KAMA notation is a graphical, UML-based specification that

provides a domain specific language for conceptual modeling. It is composed of four major

packages, namely, Foundation, Mission Space, Structure and Dynamic Behavior – an

inspiration from UML Infrastructure specification [17], and defines seven diagrams for

representing the structural and behavioral aspects of a model. The tool supports both the

notation and the process and provides the developers facilities such as reusing conceptual

models from the common repository, filtering diagrams, context-sensitive search,

navigation, n-dimensional model viewing, versioning, custom report generation,

verification and custom properties management of the model elements.

The case studies conducted with KAMA have revealed that the users had difficulty of

comprehension as the diagrams became cluttered. Model development in GME also suffers

similar cluttering problems, but the view aspect capability of GME [3][33] allows the

developer to group related model elements into user defined aspects so that the elements in

the same aspect are visible and others are filtered-out when the aspect is active.

Karagöz [52] emphasizes the great value of transforming CMs into simulation design

models and admits that using common metamodels for both would ease the process. He

further mentions that KAMA’s scope does not include that. In our work, we have ACMM

and FAMM developed with the same meta-metamodel – metaGME. They also share the

same LSC formalism for behavior representation and the ACM2FAM transformation is

defined over the metamodels.

The KAMA tool benefits from a common repository similar to the one in DCMF [51]

that stores all of the published and accredited conceptual models, model elements and the

diagrams, and a simple repository search mechanism, which GME does not (intend to) have

support for. On the other hand it lacks two features as stated by the author, namely,

metamodel editing and model merging.

77

4.6.3 Defense Conceptual Modeling Framework

 The CMMS initiative was prematurely ended by DoD a few years after its sparkling. It

was later independently continued by FOI, the Swedish Defense Research Agency. FOI has

refined and enriched the original CMMS concepts and later has evolved its FOI-CMMS

work into Defense Conceptual Modeling Framework (DCMF) [51].

 A fundamental contribution of DCMF is the introduction of the Knowledge Meta Meta

Model (KM3) [96], a meta-metamodel to capture system structures and behavior in an

object-oriented and rule based way. The DCMF is an iterative process spanning four major

phases governed by different roles of responsibilities. Information is first gathered within

the Knowledge Acquisition phase. The Producer role processes unstructured knowledge

and transforms it into represented knowledge. To accomplish this, a parsing method must

be used. During the Knowledge Representation phase, smaller sections of this data are

structured as Knowledge Instances (KI) and validated for storage in the repository by the

Controller role. KIs are useful for some purposes, but they are not reusable since they are

specific to the scenario data. To get reusable knowledge, KIs are abstracted to the type

level, modeled as Knowledge Components (KC) and then validated in the third phase,

called Knowledge Modeling. These components are, upon Consumer requests, composed to

form Conceptual Models (CM) in the fourth and final phase, Knowledge Use. All the

described artifacts are stored in a repository for use and reuse.

 In a more recent work [97] the FOI team has investigated enriching DCMF models with

semantics in an effort to better conceptualize and reuse knowledge. This is achieved by

creating an ontology for Base Object Model (BOM) and producing semantically enriched

BOMs as the outcomes of DCMF processes.

4.6.4 Base Object Model

 Base Object Model (BOM) is proposed by the SISO to encourage and support reuse,

interoperability, composability, and to help enable rapid development of HLA simulations.

Conceived in 1997, BOM was standardized by SISO in 2006 [98]. At a high level, BOMs

are reusable packages of information representing independent patterns of simulation

interplay and are intended to be used as building blocks in the development and extension

of simulations. These components can also be composed in larger models (e.g., BOM

assemblies). Additionally, interplay within a simulation or federation can be captured and

characterized in the form of reusable patterns. These are sequences of events between

simulation elements. Implementation of these patterns using HLA object model constructs

is also captured in the BOM [99].

78

 Structured in five major parts, a BOM is an XML document that encapsulates the

information needed to describe a simulation component. The first part is Model

Identification, where metadata about the component is stored. These facts describe the point

of contact, what it simulates, how it can and has been used, as well as descriptions aimed

towards helping developers find and reuse it. The second part is the Conceptual Model.

This part includes what types of actions and events that take place in the component, and is

described by a pattern description, a state-machine, and a listing of conceptual entities and

events, which, when taken together, describe the flow and dependencies of events and their

exceptions. The third part is Model Mapping, and is where conceptual entities and events

are mapped to their HLA Object Model representations. This part bridges the Conceptual

Model with the HLA Object Model described in the fourth part of the BOM. The fifth

section is called Supporting Tables that contain semantic information about events and

entities as well as actions that is specified in the Conceptual Model, and are used to provide

a human-readable understanding of the patterns described in the BOM.

4.6.5 Ontology as Conceptual Model

 Ontologies are structured descriptions that categorize concepts and relationships among

concepts within a particular knowledge domain [100]. Ontologies are, like taxonomies,

used to classify entities within a domain, but they hold several advantages over traditional

taxonomies in that they allow the entities to have properties and relationships. They also

allow types of things within a particular domain to be defined as classes, and the meaning

of a class is captured via its position within subclass-of (is-a) hierarchy as well as by its

properties, relationships, and restrictions. Because ontologies are meant to define a domain

and to be shared by many, the most useful ontologies are created by expert groups.

 The use of ontologies in M&S has recently emerged as a growing area of research

interest as evidenced by the creation of the Discrete-event Modeling Ontology (DeMO)

[101], the evaluation of the Command and Control Information Exchange Data Model

(C2IEDM) as an interoperability enabling ontology [102], the development of the Process

Interaction Modeling Ontology for Discrete-event Simulations (PIMODES) [103], the

development of the Component Simulation and Modeling Ontology (COSMO) [104] and

the use of domain ontologies in agent-supported interoperability of simulations [105].

4.6.6 JC3IEDM

 Joint Command, Control and Consultation Information Exchange Data Model

(JC3IEDM) is the core of NATO Reference Model and is also a view model of NATO

STANAG 5525 [53]. The data model is focused primarily on the information requirements

that support the operations planning and execution activities of a military or civilian

79

headquarters or a command post. JC3IEDM has recently evolved from C2IEDM, or

Command and Control Information Exchange Data Model [54] by additionally including

and modeling new joint operational concepts.

 There have been numerous efforts in evaluating C2IEDM as an enabling referential data

model for semantic simulation interoperability [55][56]. The results turned out to be that

C2IEDM could support concepts and entities very well and was sufficient for the formation

of relationships. The extensibility of C2IEDM is noted as yet another strength.

 Brutzman and Tolk [57] offer recommendations for a framework ensuring

interoperability, reusability, and composability for the U.S. Air Force Joint Synthetic

Battlespace. They propose benefiting from distributed modeling methods using Model

Driven Architecture (MDA). They underline the use of C2IEDM as a common reference

model on the semantic level as a promising way to obtain meaningful interoperability

between components within joint and combined environments (i.e., system of systems).

4.6.7 Model-Based Approaches

 The MDE approach is becoming prominent in software and systems engineering,

bringing forth a model-centric approach to the development cycle in contrast with today’s

mostly code-centric practices [1][58]. A well-known MDE initiative is the MDA of Object

Management Group (OMG), launched after the broad acceptance of the UML [17], which

became the lingua franca for modeling over the past decade. Model transformations are

considered the heart of MDA, where the PIM of a system to be constructed, is transformed,

or refined, into a PSM [2][20]. Both PIM and PSM conform to their own metamodels,

which act as grammars that define these models. Depending on the abstraction layer of the

models, the PSM may even be the executable code. If not, it can be further transformed into

code through another transformation.

 Model Integrated Computing (MIC), an earlier manifestation of MDE, relies on

metamodeling to define domain-specific modeling languages and model integrity

constraints [3]. The language is then used to automatically compose a domain-specific

model-building environment for creating, analyzing, and evolving the system through

modeling and generation.

 An exemplary MDA approach supporting Program Executive Office Soldier is

presented in [59]. The aim is to develop a modeling federation that integrates the

capabilities of various existing C2 systems in order to analyze the effects of a soldier on

tactical missions. UML chart notations are used to represent the mission descriptions.

80

CHAPTER V

ACM TO FAM TO CODE TRANSFORMATION

 This chapter presents a two-step automatic transformation of a Field Artillery

Conceptual Model (ACM) into a High Level Architecture (HLA) Federation Architecture

Model (FAM) into executable distributed simulation code. The approach taken adheres to

the Model-Driven Engineering (MDE) philosophy. The ACM and the FAM conform to

their own metamodels, which are separately built with the Generic Modeling Environment

(GME) tool. Both metamodels are composed of data and behavior parts, where the behavior

representation in both is based on Live Sequence Charts (LSC). The ACM to FAM

transformation is carried out with the Graph Rewriting and Transformation (GReAT) tool

and partly hand-coded in C++. Code generation from FAM is accomplished by employing a

Java based model interpreter that produces Java/AspectJ code. The code can then be

executed on an HLA Run-Time Infrastructure (RTI) engine after weaving the necessary

computational aspects. The experience gained in this work provides a step forward for the

inspiration of a domain-independent conceptual model transformer for HLA.

 The ACM data model defines the field artillery domain entities, and its behavior model

defines observed fire missions in LSC form. Likewise, the FAM data model defines the

field artillery entities as federates, the federation and HLA messages, and its behavior

model defines the fire missions as inter-communicating federates via the RTI, again in LSC

form. Adopting a parallel design principle, the ACM to FAM (ACM2FAM)

transformations are essentially formulated around the core of data and behavior model

transformations, executed in sequence. Before and after these core blocks, come the smaller

sets of pre and post rules that set up and tear down the stage for the HLA federation

execution. This overview is sketched in Figure 5.1.

 Before starting the details of this lengthy transformation process, we would like to

provide the user a grasp of how a produced FAM as the result of an ACM2FAM

transformation looks like through a FAM LSC in graphical notation. Figure 5.2 partially

presents the top level AdjFFE LSC diagram of the produced FAM that corresponds to the

81

same named ACM LSC of Figure 4.18. Their structural resemblance is apparent with the

exceptions of the introduction of the instance named FieldArtilleryFed representing

the RTI federation execution and the two LSCs at the beginning and the end for federation

initialization and tear down, respectively.

Update_SOP-Met_Info

Inst_SOP-Met_Info

FwdObserverFd

decomposed as

BatteryFDCFd_AdjFFE

Par

CFF(missionType)

FO_MTO_AI(missionType,adjType,null)

FFELoop(missionType,adjType,“FollowingAdjustment”)

AdjustmentLoop(missionType,adjType)

FieldArtilleryFed BatteryFDCFd FiringUnitFd =

Initialize_Federation

Finalize_Federation

ACM

FAM

Trans.
Execution

Field Artillery
Data Model

Feds, Fd, HLA Msgs HLA DTs

Actors, Nets, Msgs.

Federation Architecture
Data Model

Field Artillery
Behavior Model

FedMissionLSCs FedInitLSC

FieldArtMissionLSCs

FedTermLSC

Federation Architecture
Behavior Model

Figure 5.1 An overview of ACM to FAM transformation

Figure 5.2 Partial view of AdjFFE LSC in a produced FAM

82

5.1 Setting the Stage for Transformation

 The separately and independently built source and target metamodels are exported into

an empty transformation model as a preliminary step to start the development of the

transformations. The development environment is again GME, as shown in Figure 5.3, but

tailored using the GReAT paradigm towards model transformations. Be reminded that

transformation development is yet another modeling activity and can therefore be realized

in GME. The transformation model consists of source and target models, transformation

configuration, transformation blocks and rules and other utility model elements for

providing easy global access and cross domain associations to be used during the

transformation.

 The transformation configuration generally points to the source and target models and

metamodels, and the user code library employed by some of the transformation rules. It

also designates one of the rules as the start rule.

 Cross-links establish cross model associations between the source and target

metamodels. Cross-links can be defined not only between different domains but can also be

used to extend a domain to provide some extra functionality required by the transformation.

By using a separate package for cross-links we are able to specify a larger, heterogeneous

domain that encompasses all the domains and cross-references.

Figure 5.3 The start rule block of ACM2FAM transformation in GME/GReAT

 A transformation step always starts pattern matching with an initial context, which is an

initial partial binding of the pattern graph. The initial binding reduces the search complexity

in two ways, (1) the exponential is reduced to only the unmatched pattern vertices and (2)

only host graph elements within a distance d from the bound vertex are used for the search,

where d is the longest pattern path from the bound pattern vertex [6]. This context is passed

along from rule to rule via ports during the transformation, similar to parameter passing in

83

procedural languages. The main weakness of this approach is that the programmer needs to

specify context passing through several rules, even if the context is actually used only in

one remote, non-adjacent, step. The general idea of the global container is that the objects it

contains have global scope; that is, they are accessible throughout the whole

transformation, and it is not necessary to pass them along in the context. The capability of

eliminating portions of context passing and recurring complex pattern matching is one of

the key facilitating factors in terms of the development effort and execution performance in

this work.

 The transformation definition is comprised of a set of major blocks, which further

consist of other blocks, rules, cases or expression references. Table 5.1 summarizes the

metrics for the overall ACM2FAM transformation effort, indicating a total of 64 blocks, 4

for-blocks, 187 rules, 13 tests (with a total of 55 cases) and 21 references to

other rules. The DataModelTr and especially the BehavioralModelTr blocks constitute

the core of the transformation and are further explained in the subsequent sections.

Table 5.1 Metrics for the ACM2FAM transformation

Transformation Expression Count Transformation Expression Count

Block 64 Test 13

ForBlock 4 Case 55

Rule 187 Expression Reference 21

5.2 Data Model Transformation

 Data model transformation corresponds to the structural part of the ACM2FAM

transformation. Looking from a FAM perspective, it aims to construct the federation object,

the federate objects and the Federation Object Model (FOM) for the federation. The main

DataModelTr block is shown in Figure 5.4. It is composed of two inner blocks named

ObjectModelTr and the relatively smaller FederationStructureTr that are executed

sequentially, in that order.

84

5.2.1 Object Model Transformation

 Object model transformation basically transforms the set of field artillery message

structures that are communicated among domain actors during mission executions into

HLA classes. The field artillery messages are represented as free format UML structures

with information content provided by the domain. On the other hand, HLA-OMT

specification [39] puts forth a data type system. Several OMT tables (attribute, parameter,

dimension, time representation, user-supplied tag, and synchronization) provide columns

for data type specifications. A data type used in these tables shall be one of simple,

enumerated, record, array, and variant record data types. OMT specifies a core set of

default data types of basic, simple, enumerated, and array types, that correspond to

universally recognized types such as byte, integer, float, boolean and string. The HLA-

based distributed simulation model of any domain has to use an arrangement of OMT data

types.

 As a preliminary step to the field artillery message to OMT class transformation, the

DataTypes block creates all of the basic, simple, enumerated and array data types that

make up the default, predefined HLA data set. Note that there are no default fixed and

variant record types. Domain specific ones are later defined in the rules that create

interaction and object classes.

 The InitFOM rule creates containers for interaction classes and object classes and an

empty FOM element, which is later filled with interaction and object classes. These two

OMT classes are the key elements in FAM data model; they are used frequently throughout

the rest of the rules in the transformation. In addition, the stubs that correspond to the other

OMT tables are also created in the FOM, of which only dimensions and timestamps are

maintained and used, whilst the rest left out of the scope of this thesis.

Figure 5.4 The main DataModelTr block

85

 Then, the transformation flow splits into two parallel branches, where interaction and

object classes are created concurrently. The crux of the data model transformation logic is

that all non-durable (i.e., stateless, with a life span of only a message transmission period)

messages are transformed into interaction classes and durable messages (i.e., stateful, with

a life span of the federation execution unless deliberately deleted) are transformed into

object classes.

 At this point, the user code library interferes to apply operations on the bound objects

using the Universal Data Model (UDM) API [34]. These operations range from simple

ones, such as setting a new object’s name or position on the screen, to sophisticated graph

traversals, object creations or deletions. In our case, the user code library realizes the actual

field artillery message to OMT class transformations programmatically. We have identified

and implemented three approaches for transforming an ACM message into an OMT class

and its attributes. The library has more than 600 lines of C++ code with public entry

methods for the three approaches and eight non-public utility methods. Please refer to [60]

for details.

 The InteractionClasses rule is provided in Figure 5.5 for illustrative purposes,

where black colored model elements indicate a pattern to match, and blue colored elements

designate the new elements to be created. The code snippet inside an AttributeMapping

element is executed after GReAT’s pattern matcher matches the rule pattern and the

effecter makes structural modifications on the matched model elements. The

AttributeMapping in the figure invokes the user code library’s message transformation

method.

 There are two reasons why an important part of the data transformation is handled by

means of a code library. The biggest problem is that a field artillery message is usually

deeply structured, possibly having child objects bound to their parents in varying

cardinalities. This makes the situation even more complicated, because in order to represent

such combinations we would need many patterns, hence rules. For example, if a message

can have n direct children each having zero or one composition cardinality, then we would

need at least n parallel rules to cover all possible matched combinations of the source

model. On the other hand, by employing the user code library, we only need one rule, no

matter how many children with whatever cardinality a message structure may have.

 The other reason is obtaining considerable performance gain by directly executing C++

code. This is much faster than first matching a graph and then calling the effecter to execute

it. (Be reminded that the sub-graph isomorphism problem, which is involved in every

pattern matching step, is NP-complete).

86

 Figure 5.6 illustrates a conceptualized sample field artillery message structure to OMT

class transformation. On the left side is a field artillery message structure, named Msg,

having two components, named BCmn and CProp, both of which further have a couple of

children. Each leaf child has one attribute named val, of the type shown. It is assumed that

BCmn is a common, shared component used by other field artillery messages, and CProp is

a proprietary component specific to the message in question.

 The transformation rule creates the MsgIC interaction class on the right hand side

through sole pattern matching. The user code library programmatically creates the rest of

the structure below MsgIC. The field artillery message structure is transformed into an

OMT attribute having a fixed record data type, within the OMT class. Each common

message part that is reused is transformed into a field of a record type, having further a

fixed record data type, mimicking the common message part. All of the other non-common

parts of the message structure are transformed into fields of the fixed record type having

appropriate primitive/simple types, with the field name reflecting the message structure

hierarchy. The field name consists of a string of concatenated message structure element

names, separated by “_”, from the leaf to the root node.

InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC";
ModelTransUtils::TransformNonDurableMsg2InteractionCls_Hybrid
 (NonDurableMsg, InteractionClass, FixedRecordDataTypes);

Figure 5.5 The InteractionClasses rule

87

5.2.2 Federation Structure Transformation

 The federation structure transformation concludes the data model transformation part. It

instantiates the single federation object together with a reference to the FOM that was

previously created. It also maps every field artillery Actor and Net to a corresponding HLA

federate along with a reference to an associated SOM. In this thesis, SOMs per federate are

left as stubs and not developed any further. The FOM is sufficient to capture all the OMT

objects participating in the federation execution. Indeed, FOM is what an RTI needs to run

a federation [13].

 Finally, cross-domain associations establish referencing from each actor/net of the ACM

domain to its corresponding federate of the FAM domain. These temporary associations of

actor-federate pairs later function as a key enabler in the transformation of message

communications among the actors in a field artillery mission to inter-federate

communications in the behavioral model transformation step.

 The result of the application of the federation structure transformation rules is depicted

as a UML sketch in Figure 5.7. It shows a subset of the (hierarchically structured) actor/net

collection inside the data model of an ACM, being transformed into their corresponding

FixRec

FixRec

OMT class

OMT attribute

Datatype ref.

HLA datatype

Legend

FixRec field

Field Artillery
 Message

HLA-OMT
Class

Transform

Figure 5.6 A conceptualized field artillery message to OMT transformation

88

federates (flattened) inside the federation structure of a FAM. This one-to-one

correspondence is exposed by the blue has-correspInst associations. It is further seen

that every federate is a MemberOf the field artillery federation and that the federation has

another association with a reference to the FOM. The naming convention employed in this

work assigns the name FieldArtilleryFed to the federation element, and an actor/net’s

name in the field artillery model suffixed by Fd to its corresponding federate element.

5.3 Behavioral Model Transformation

 Behavioral model transformation is the bigger and more challenging part of the overall

ACM to FAM transformation. It uses the resulting objects of the data model transformation

as the instances and message parameters in LSCs that are being produced.

 The main block of the behavioral model transformation, BehavioralModelTr, is

shown in Figure 5.7. AscGlobalHlaMeths gets the method library of FAM that contains

predefined HLA methods for federation, declaration, object, ownership and time

Transform

has

correspInst

ACM

F
A

M

ACM
Actors/Nets

F
A

M

F
e

d
e

ra
ti

o
n

/F
e

d
e

ra
te

s

Figure 5.7 Transformation of field artillery actors/nets to HLA federates and federation

89

management. The block contains rules that take copies of all the methods used in the

transformation and associate them with the global HLA methods element so that they are

readily accessible by the LSC transformation rules. These methods are meant to function as

templates; hence their method parameters are left empty. Their copies in the LSCs are

assigned parameters with appropriate HLA class instances during the transformation. A

simplified and unified sketch of AscInstanceOfFacm is also shown in Figure 5.8. The

block basically creates is-InstanceOf associations between the instances that stand for

the same actor element in ACM. An actor instance in the MSC head of an MSC is an

instance of the same type of instance in the MSC document head, which in turn is an

instance of the canonical actor instance in the data model’s Actors folder. This chain of

associations establishes traceability between the behavior and data sub-models of ACM and

provides convenience in subsequent rules. A similar scheme is also applied progressively

on the FAM side as the transformation rules construct the model.

 The CrtBehaviorMdlFld and CrtMscDoc rules are triggered one after another for

simply creating a FAM behavioral model folder and an MSC document underneath it,

provided that their corresponding counterparts are matched in the ACM. A has-

correspMscDoc association is established between the ACM and FAM MSC documents,

since there can be more than one MSC document in a source model and in such a case this

create
is-InstanceOf
assocs. among

data model, doc.
head & doc. body
actor/instances

Figure 5.8 The BehavioralModelTr and AscInstanceOfFacm blocks

90

association is necessary for keeping track of MSC references in different documents and

during instance decomposition.

5.3.1 MSC Document Transformation

 The MSCDocTr block is displayed in Figure 5.9. It consists of three sub-blocks, namely,

DocumentHeadTr, DocumentBodyTr and AscReferences, executed in that order. All

of the blocks and rules within MSCDocTr are defined so as to traverse the structure

delineated by the MSC metamodel to create a FAM MSC document from an ACM MSC

document.

 To serve as a reference for the reader, part of the metamodel pertaining to the MSC

document is reproduced in Figure 5.10. An MSC document consists of a document head

and two document bodies of which, the defining part is mandatory and utility part is

optional. The MSC body essentially consists of one or more MSCs. The overall LSC/MSC

metamodel can be found in [12] in detail. The following two sub-sections describe the

document head and body transformations, respectively.

MSC Document Head Transformation

 The DocumentHeadTr block handles the data definition, message declaration, instance

declaration (i.e., the containing clause) and timer declaration parts of the document head of

the FAM being constructed. Note also that data definition and message declaration are only

addressed as stubs since the content related with these parts are practically provided by the

data model.

 The instance declaration part of the MSC document head transformation is also one of

the key steps in the overall behavioral model transformation. Its role is basically to create

federate objects and a federation object derived from the corresponding counterparts found

in the federation structure portion of the FAM data model.

Figure 5.9 The MSCDocTr block

91

 A derived object, which is a deep copy of another structured object, is created inside the

attribute mapping code by invoking a UDM API method. This, at the same time creates a

sort of inheritance association where, the attribute values of the derived object are kept in

sync with the values of the corresponding attributes in the archetype object (i.e. the object

that is at the farthest position within the chain of base objects; that is, the one which is not

derived from anything) as long as they are modified only through their archetype. Once an

attribute’s value is modified alone (i.e., directly on the derived object), the attribute

becomes de-synched from the archetype, which means that its value is not synchronized to

the corresponding attribute’s value in the archetype. Please refer to [34] for details.

 This architecture is a deliberate design decision in order to have the behavior model

content wise backed-up by the data model. With this schema, any attribute update to core

federate objects in the data model will be automatically propagated down to the derived

objects in the MSC document and from them to the further derived objects in the MSCs of

the behavioral model. The benefit of this approach reveals itself when considering this

chain of derivations. Another noteworthy choice is calling a generic (in terms of

applicability for any type of UDM object) library method instead of employing specific (in

terms of being per object type) pattern matching. Otherwise, the pattern matching solution

would be bulky, time consuming to define and slower to execute.

MSC Document Body Transformation

 The main rule block of the document body transformation, DocumentBodyTr, basically

transforms the utility and defining parts of an MSC document. Note that it is necessary to

Figure 5.10 Part of the MSC document metamodel [12]

92

handle the utility part first because the MSCs of the utility part are referenced from within

the defining part and therefore they have to exist prior to the defining part transformation.

The MSC document body transformation essentially boils down to MSC transformation. In

order to start the process, an empty FAM MSC is created per matched ACM MSC in the

given document body. The cross-domain has-correspMSC association is established for

keeping track of the paired MSCs in subsequent rules. The attribute mapping code copies

the chart order index in addition to the name and screen position properties of the ACM

MSC to the FAM MSC. The chart order index, although not an artifact of the MSC

metamodel, is a crucial annotation that facilitates model interpreters and particularly the

code generator, by providing the execution/interpretation order of the MSCs at run-time.

Similarly, for multiple documents in a model, the order of the documents may be specified

by the document order index [12]. The rule finally delivers both MSCs to the MSCTrans

block for further building up of the FAM MSC. This fundamental step is elaborated in the

following section.

5.3.2 MSC Transformation

 MSC transformation is handled by the mainstream MSCTrans block, shown in Figure

5.11. Its importance is due to its incorporation of LSC transformation, which virtually is the

heart of behavioral model transformation. MSC transformation consists of three

consecutive steps that handle MSC head and body transformation, and initialize the

federation after the completion of the former two. MSC body transformation essentially

boils down to LSC transformation after an empty LSC context is created. LSC

transformation is explained in Section 4.3.3.

 To serve as a reference for the reader, the top level MSC metamodel is presented in

Figure 5.12. An MSC consists of an MSC head and a body. The MSC body can be one of

HMSC (High-level MSC), MscBody, LSC or InlineOperand. In this work we practically

Figure 5.11 The MSCTrans block

93

use LSC as the MSC body and allow LSCs (having Prechart or Subchart role) and inline

operands within LSCs. HMSC and MSC body are not used in this thesis.

MSC Head Transformation

 The head part of an MSC is transformed in a four rule block, as shown in Figure 5.13.

The head of an MSC houses the instances referenced in the MSC’s body, besides other

elements. The basic functionality of MSCHeadTr is to prepare the instances used in the

FAM MSC, by looking at the instances found in the corresponding MSC. Other MSC head

components such as offset, parameter set and its subcomponents are either provided

explicitly inside the MSC body or considered irrelevant for the purposes of this work and

hence, are not covered.

Figure 5.12 Part of the MSC metamodel [12]

94

 The MSC head transformation also addresses instance decomposition. The MSC

specification [15] states that, an instance can be viewed as an abstraction of a whole MSC

document (representing a system component) that is participating in a higher level system,

hence the mechanism for hierarchical decomposition. The practical outcome of this is the

introduction of a separate MSC document per decomposed instance and a new MSC for

every MSC in the higher level document that the decomposed instance participates in,

which describes the MSC from that instance’s lower level perspective. The instance

decomposition handling rules are DecomposeInst explained in this section and

AssocDecompAsRefs block residing immediately under the top-level block.

 Derived FAM MSC instances are created from the corresponding FAM document head

instances and are associated with the ACM MSC instances (using has-correspInst)

and with the FAM document instance archetypes (using is-instanceOf) By this way,

structural and one-to-one correspondences are established between and inside ACM and

FAM MSCs. This principle is proliferated throughout MSC document, LSC, data element

and event transformations. It is a key property of ACM to FAM transformations and

provides for traceability and soundness.

 If the given ACM MSC instance is defined to be decomposed and has a reference to a

specific MSC in the decomposition document, then the FAM instance is also added a

decomposed element and a non-assigned MSC reference. These stub references will be

assigned later in a post-processing rule after all of the MSC document transformations are

completed and hence the entire set of MSCs are created. The attribute mapping code copies

property values from the matched source elements to the newly created target elements.

Figure 5.13 The MSCHeadTr block

95

Federation Initialization

 Before moving into LSC transformation this section makes a fast forward to explain the

federation initialization on the FAM side. The federation initialization is done after an MSC

document is transformed head and body-wise (see Figure 5.11). This indicates that it is a

post processing step following the full transformation of all the LSCs in the document.

(Recall that in a block, a child block or a rule receives input packets after all the packets

pass through the previous child.)

 The HLA federation initialization activities are done in the InitFederation block

shown in Figure 5.14. This is a part of the behavioral model transformation indigenous to

the FAM domain; that is, there are no associations in the transformation rules to ACM

except for the identification of the instances involved. Due to the lack of such an input

source, the information content flowing through the federation initialization part is directly

embedded inside the transformation rule definitions. This causes the InitFederation

block to have a substantially hard wired structure. On the other hand, it potentially lends

itself for external configuration; that is, the hard wired content can be provided from an

outer source, for instance, a GUI front-end, or a configuration file.

 The InitFederation block handles four preliminary federation execution activities of

creating a federation execution, joining federates to the federation execution, initializing

time management and declaration management. The federation initialization events are

gathered in a sub-chart which itself is placed inside the pre-chart of the top-level FAM

LSC. This way, federation initialization is guaranteed to be performed right at the

beginning. The subchart is made temperature-wise “hot”; hence, mandatory to execute [14].

Since there is no clue from the ACM regarding the execution order of the chart, it is read

from a look up table in the user code library; thus, effectively delegated to external

configuration.

 Figure 5.14 The InitFederation block

96

5.3.3 LSC Transformation

 The LSC transformation is the heart of ACM2FAM behavioral model transformation. It

is the place where the nuts and bolts of the evolution of field artillery inter-entity

communications to federate interactions, mediated through the HLA RTI, are defined. The

HLA RTI is represented by the federation entity specifically introduced in FAM. The

LSC transformation process is carried out in the LSCTrans block, as overviewed in Figure

5.15. Each pass of the block inputs an ACM LSC and an empty (i.e., stub) FAM LSC, and

step by step constructs the FAM LSC as the transformation proceeds through the internal

blocks.

 The execution order of the sub-blocks does not matter except for the second and the last

blocks. The InstanceRefTr is a reusable block that has already been utilized in

federation initialization. It creates the necessary federate instances (i.e., references) in the

FAM LSC by inspecting the ones found in the corresponding ACM LSC. Since these

instances are used in the graph patterns of most of the subsequent rules, InstanceRefTr

must be executed before them. The last block, SpecialConnsTr, create associations

between two instance events [12] within the LSC and thus need to be executed after

ensuring all such events have been created. The activation condition is a boolean condition,

which expresses the activation point for a chart [12]. Activation condition transformation is

performed in the ActivationConditionTr block. There is a simple one-to-one

correspondence and equivalence between ACM and FAM activation conditions. The

definition of the LSC transformation blocks are generally based on the instance event type

categorization of the child elements to be processed in the LSC. These blocks are briefly

explained in the rest of the section.

Figure 5.15 The LSCTrans block

97

Prechart and Subchart Transformation

 Precharts and subcharts are actually child LSCs that have special role names on the

containment associations with their parents. The PreSubChartTr block, shown in Figure

5.16, handles the transformation of precharts and subcharts of an LSC. The

CreateSubSchart rule creates a subchart under the current FAM LSC with the

Subchart composition role for every subchart of the corresponding ACM LSC. The

CreatePreChart rule is defined similarly. A notable statement in attribute mapping code

(partly shown in the figure) is the call to the SetInstRefAssocs4LSCChildren method

of the user code library. This method is invoked for all LSC child creations of type LSC

(pre/subchart) and multi instance event, including inline expressions (Loop, Opt, Exc, Par,

Alt and Seq), references, conditions, otherwise clauses, and LSC idioms [12]. It handles

the routine task of creating associations between an LSC’s child elements and the relevant

instances in the LSC programmatically. This extensively used method could be

implemented with transformation rules, but that would require as many rules as the LSC

child types listed above and take longer to execute considering the execution speeds of

pattern matching vs. direct C++ invocation.

 The role of DispPreSubchart test is to direct the execution flow to one of the attached

rules based on the child element type of the input ACM LSC being a prechart or a subchart.

After a child pre/subchart is created under the given FAM LSC, the block ends with a

recursive call to the LSCTrans block to continue the transformation for the child element,

which is yet another LSC.

ModelTransUtils::SetInstRefAssocs4LSCChildren
 (FamSubchart,FacmSubchart, FamLSC);

Figure 5.16 The PreSubChartTr block

98

Multi-Instance Event Transformation

 This section explains the transformation of multi-instance events, which constitute a set

of frequently used elements, including conditions, otherwises, inline expressions and

references (to MSCs). The top-level block, MultiInstanceEventTr, is depicted in

Figure 5.17. Initially, a child multi instance event of the ACM LSC is matched and

dispatched to one of the three alternative transformers together with the FAM LSC.

 The CreateCondition and CreateOw rules perform condition and otherwise

transformations, respectively. These rules simply create FAM elements that directly

correspond to matched ACM elements. The other types of multi instance events form the

family of reference identifications and are handled in the RefIdentTr block, also shown in

the figure. Reference identification types are inline expressions and reference. The

CreateReference and CreateMSCRef rules simply create a FAM Reference element

and a reference to an MSC under that, respectively.

 The inline expressions are transformed in the InlineExpTrans block. The block

initially directs the execution flow to one of the nine inline expression creator rules based

on the input ACM inline expression type. Six of these create alt, par, opt, loop, exc

and seq elements [15], and three of them create if-then-else, while-do and repeat-

until idioms [12]. These rules simply create FAM inline expressions for the given ACM

inline expressions and link them together using the has-correspInlExp cross-domain

association. The attribute mapping codes copy the element properties.

Figure 5.17 The MultiInstanceEventTr and RefIdentTr blocks

99

 Every inline expression by definition contains one or more inline operands. After the

creation of inline expressions, the execution flow joins into a single path to create inline

operands. Inline operand is defined to be specialized from LSC [12], in the sense of UML

inheritance. The only addition brought in by inline operand is the operand order index

property that specifies the order of the operand with respect to the other peer operands

within the inline expression. Finally, paired inline operands are recursively handed over to

the LSCTrans rule for further processing as LSCs.

 The RefIdentCommonTr is the last, sink block of the RefIdentTr block that creates

gate, top, bottom and time interval components common for all reference identification type

of elements. Time interval transformations further specialize into measurement, singular

time and bounded time transformations. All of these rules are quite intuitive and perform

ACM to FAM attribute value copying in a straightforward manner.

Orderable Event Transformation

 Orderable events are generally the most frequently used set of events in the behavioral

model of field artillery scenarios. They form the mechanism for the actual communication

among the instances (i.e., actors in ACM terms). The top level OrderableEventTr block

is shown in Figure 5.18. The block starts by matching and dispatching a LSC contained

ACM orderable event to the appropriate rule or block to create its FAM counterpart. The

kinds of orderable events handled are action, create, timer event, method event, and

message event. Once these events are transformed in their specifics, any general orderings

(i.e., before and after) imposed on them are applied in the final block GeneralOrderTr.

 The HandleAction rule is also provided in the figure as an example to explain how a

typical orderable event rule works. For any given ACM action, a new FAM action is

created in the given parent FAM LSC. Also, the ACM instance that is in association with

the matched action is identified. From that, the corresponding FAM instance reference is

obtained using the cross-domain association, has-correspInstRef. Then a similar

association is established between the new FAM action and the FAM instance reference.

Finally, the matched ACM action and the created FAM action are passed to the next rule in

line.

 The timer events, consisting of start timer, stop timer and timeout, form a sub-category

of orderable events. The TimerEventTr block performs the transformation of timer

events. The block initially dispatches a matched ACM timer event and a FAM LSC to one

of the three timer event creator rules. After the event creations, instance reference - timer

event associations are established in the same manner shown in HandleAction rule of

100

Figure 5.18. Timer events contain references to timer elements. Finally, the references to

timers are set for the FAM timer events. In LSC metamodel [12], timer objects are stored in

the timer list of the document head of the MSC document. Since the document head is

processed before the LSCs, all of the timers should be readily available.

 The MethEventTr block handles the transformation of call, receive, replyout and

replyin events that constitute method call event category. These transformations are quite

straightforward and handled similar to the HandleAction rule explained above.

Message Event Transformation

 Message events are the most common and important group of orderable events that

represent the inter instance (i.e., actor in ACM and federate in FAM terms)

communications. Their role is so crucial that message event transformations can be

regarded as the crux of this ACM2FAM transformation work. Except for the HLA

federation specific initialization and tear-down rules (see Section 4.3.2), most of the other

types of transformations are generally dominated by same type of LSC element creating

Figure 5.18 The OrderableEventTr block

101

and value copying in the FAM being constructed per matched LSC element in ACM. On

the other hand, message event transformations are more sophisticated in that there are one-

to-many event creations that go beyond simple copying of ACM content into FAM.

Moreover, these transformations are driven by conditions that take into consideration the

type and structure of the ACM data being communicated. This is the primary part where

platform (i.e. HLA) specific content is introduced. Because of these, message event rules

are more complex and bigger than the other rules.

 The main message event transformation block, MsgEventTr, is displayed in Figure

5.19. It distributes the incoming packets according to the type of the matched ACM

message event. Out and in events are the two kinds message events and are the conjugate of

each other in that for two interacting instances A and B, every out-event from A to B

implies a corresponding in-event sourced B and targeted A, sequenced in that order [15].

We assume that the transmission of an out-event and its implied in-event are atomic and

instantaneous in time, occurring immediately one after another. Because of these, we have

conventionally modeled source ACMs having out-events as the sole message event type.

 On the other hand, the situation is different in a FAM, in that, any federate to federate

communication has to be mediated via the HLA RTI (the federation execution, to be more

specific), as dictated by the HLA specification [13]. This loosely coupled communication

architecture would normally necessitate an actor A to B out-event transmission in an ACM

Figure 5.19 The MsgEventTr and OutMsg2HLAMeth blocks

102

to be represented as federate A sending an out-event to the federation first and the

federation sending another out-event to federate B. However, instead of having these two

explicit outs (and two implicit ins), we have decided to implement one explicit out-event

between federate A and the federation and an explicit in-event between federate B and the

federation, explicitly employing both in and out-event types. In this setting, if the out-event

has order n, the in-event is given order n+1. (Note that ordering is implemented by

incrementing a counter). The approach is diagrammatically illustrated in Figure 5.20. This

federate centric event mapping better supports the code generator’s code generation

strategy which considers each LSC instance (i.e. federate) and its associated events

individually while producing the federate base code and computation aspect code [61].

 The OutMsg2HLAMeth block, also shown in Figure 5.19, handles the transformation of

out-events. Within the block, both ACM and FAM input packets are fed to two for-blocks

in parallel that are specialized in out-event transformations based on the ACM message

payload type. Non-durable message out-events are transformed inside

OutNonDurableMsg2HLAMeth for-block and durable message out-events are transformed

inside OutDurableMsg2HLAMeth for-block. Non-durable message transformation is

relatively simpler than the durable, because a non-durable message transmission in ACM

maps to two HLA message transmissions in FAM, whereas a durable message transmission

can map up to six.

 Since there are no in-events used in source ACMs, there is no practical need for an in-

event transformer counterpart. Therefore the InMsg2HLAMeth block is created for the sake

of completeness, but left as a stub. The collection of all in-events on the FAM side are

created only as a result of out-event transformation as explained above and shown in Figure

5.20.

Figure 5.20 ACM out event to FAM out/in event federation execution

103

 Before moving into non-durable and durable message transformations, it is worth to

clarify that, the durability and non-durability of ACM message structures is not imposed by

a standard or field manual, but is introduced in ACMM at the end of our field artillery

domain analysis as a convenience for providing a correspondence to FAM object and

interaction classes. Please refer to Section 4.2.1 and [11] for details.

Non-durable Message Transformation

 The OutNonDurableMsg2HLAMeth block that handles non-durable ACM out-message

transformation is sketched in Figure 5.21. The initial rule, GetNDMsg, matches and delivers

the ACM out-event, non-durable message and FAM LSC to the next rule, and in the

meantime, programmatically creates a copy of SendInteraction and ReceiveInteraction

HLA methods using the attribute mapping code. The template HLA methods have already

been created at a preliminary step, and associated with the global root element for quick

access (see Section 4.1). The original methods do not contain any arguments, but their

copied instances will have theirs assigned (such as HLA classes and federate references) as

the transformation proceeds.

 The CreateIntCls rule creates a new interaction class corresponding to the ACM

non-durable message in the FAM FOM. It also sets both of the HLA methods to refer to the

new interaction class inside their supplied arguments. Finally, it assigns the name of the

non-durable message suffixed by “IC” as the name of the new interaction class, and

invokes the user code library to build the interaction class from the non-durable message.

 The SendRecvIntClsSrc rule of Figure 5.22 is one of the most crowded rules in the

transformation that actually define the federate-to-federate HLA method transmissions via

the federation. It first creates a message out-event and associates it with the source instance

Figure 5.21 The OutNonDurableMsg2HLAMeth bock

104

(i.e., federate) using an ordered connection. Then it associates the out-event to the send

interaction method using a special connection. Finally, it associates the send interaction

method to the federation instance using an address connection.

 After that, a similar set of activities start for the receive interaction method from the

federation to the target federate. First the receive interaction method is associated to the

federation instance using an address connection. Then an in-event message is created and

associated to the receive interaction method using a special connection.

 The last part of the out-event transformation is done by one of the two parallel rules

SendRecvIntClsDstInst and SendRecvIntClsDstRef. They similarly associate the

new FAM in-event to a target instance or an MSC Reference, respectively.

 The outcome of the non-durable message transformation process is illustrated in Figure

5.23, showing the partial view of an ACM LSC and its corresponding FAM LSC (in

abstract syntax) produced as the result of executing OutNonDurableMsg2HLAMeth

transformation block. The model element stereo-types are tagged in the figure. In the source

LSC is seen an Oid_W message out-event sent from FwdObserver to BatteryFDC. On

the produced LSC, this corresponds to two HLA message event transmissions. The figure

Figure 5.22 The SendRecvIntClsSrc rule

105

shows the FwdObserver federate sending a message out-event of SendInteraction to

the field artillery federation, and BatteryFDC federate receiving the corresponding

message in-event of ReceiveInteraction from the federation. Sequencing (i.e.,

precedence attribute) information of the message transmissions are annotated in the callout

boxes of the figure. The precedence value of the ACM message event is copied to the initial

FAM message event, and its auto-incremented value is assigned to the second event. The

algorithm used ensures a conflict-free generation of ordering values throughout the FAM

LSC. Both of the HLA methods have references to the same interaction class of

Oid_W_MsgIC type, which corresponds to the transformed ACM message, as their supplied

arguments (not shown in the figure).

Durable Message Transformation

 Durable message transformation is the most complicated of the LSC instance event

transformations. Figure 5.24 displays the big OutDurableMsg2HLAMeth bock. It is

N
o
n
-D

u
ra

b
le

 A
C

M
 M

e
s
s
a
g

e
 E

v
e
n

t
T

ra
n
s
m

is
s
io

n

2

Transform

2

3

<<InstanceRef>>

<<MsgOut>>

<<ACMMsg>>

<<InstanceRef>>

<<OrderedCon>>

<<AddressCon>>

<<InstanceRef>>

<<MsgOut>>

<<HLAMethod>>

<<InstanceRef>>

<<HLAMethod>>

<<MsgIn>>

<<InstanceRef>>

C
o
rr

e
s
p
o
n
d

in
g
 F

A
M

 M
e
s
s
a
g
e
 E

v
e

n
t
T

ra
n
s
m

is
s
io

n
s

<
S

p
e
c
ia

lC
o
n
>

Instance mapping

Event mapping

Message mapping

Figure 5.23 Partial view of non-durable message transformation and its result in FAM

106

defined methodologically similar to OutNonDurableMsg2HLAMeth block, most notably

being about three times in size. Therefore it is regarded redundant to explain the

transformation in detail, but appropriate to provide an overview of the differences.

 The durable messages in ACM are defined to be of three types; namely, instantiation,

update and deletion (please refer to Section 4.2.1 and [11]). There are three parallel courses

of transformations that address message out-events of each durable message type. An ACM

instantiation type message out-event maps to six FAM HLA message out-events. The

mapping cardinalities of an out-event for update and delete types are both one to two.

Figure 5.24 The OutDurableMsg2HLAMeth bock

 The outcome of the instantiation type of durable message transformation process is

illustrated in Figure 5.25, showing the partial view of an ACM LSC and its corresponding

FAM LSC (in abstract syntax) produced as the result of executing

OutDurableMsg2HLAMeth transformation block. The model element stereo-types are

tagged in the figure. The source LSC has a single FireCommandSOPInst message sent

from the BatteryFDC to the FiringUnit. On the produced LSC, this corresponds to six

HLA message out-event transmissions. The figure shows the BatteryFDC federate

sending a message out-event of RegisterObjectInstance to the field artillery

federation, and the FiringUnit federate receiving a following message in-event of

DiscoverObjectInstance from the federation. Then the FiringUnit federate sends a

message out-event of RequestAttributeValueUpdate to the field artillery federation,

and the BatteryFDC federate receives a following message in-event of

ProvideAttributeValueUpdate from the federation. Finally, the BatteryFDC

107

federate sends a message out-event of UpdateAttributeValues to the field artillery

federation, and then the FiringUnit federate receives a message in-event of

ReflectAttributeValues from the federation. Ordering information of the message

transmissions are annotated in the callout boxes of the figure and are produced similarly to

non-durable message transformation case explained above. Both of the HLA methods in

each of the three message event transmissions have references to the same object class of

FireCommondSOPInst_MsgOC type, which corresponds to the transformed ACM

message, as their supplied arguments (not shown in the figure).

Non-orderable Event Transformation

 The non-orderable events constitute the set of instance events that do not require an

explicit ordering of execution. A relative execution order among the events of an instance is

implicit along the axis line of an instance; that is, the events that are attached higher up

7 11

106

8

9

Transform

D
u

ra
b

le
 A

C
M

 M
e

s
s
a

g
e

 E
v
e

n
t
T

ra
n

s
m

is
s
io

n
 (

in
s
ta

n
ti
a

ti
o

n
 t
y
p
e

)

C
o

rr
e

s
p
o

n
d

in
g

 F
A

M
 M

e
s
s
a

g
e

 E
v
e

n
t
T

ra
n
s
m

is
s
io

n
s

6

Figure 5.25 Partial view of (instantiation type) durable message transformation and its
result in FAM

108

along the axis execute before the ones attached lower. However, no claim can be made

about the execution order of two disjoint events on separate instance axes without using

explicit ordering [15]. The NonorderableEventTr block performs the transformation of

non-orderable events. The block matches and dispatches the input packets to one of the

handler rules according to the type of the ACM non-orderable event. The block is defined

similar to the OrderableEventTr block in Figure 5.18 and its handler rules are defined

similar to the simple rules shown there. The handler rules perform the transformation of

method, end-method, concurrent, end-concurrent, suspension, end-suspension, stop, end-

instance, invariant, end-invariant and simultaneous region.

Special Associations Formation

 Most of the LSC transformation blocks and rules are related with instance event

transformations, which generally involve associations between instance events and

instances. This top down instance event driven approach successfully addresses the

majority of the LSC transformation spectrum. However, there is a small set of LSC

structures not covered up to now that does not involve instances, such as special

associations pertaining only to events. The SpecialConnsTr block placed at the end of

the LSC transformation path, is responsible for the transformation of those parts. It is

deliberately positioned as the last LSC transformation block because it requires all of the

FAM LSC entities to be already created and available by the time it starts execution;

otherwise, it is likely to miss the transformation of some special associations.

 Figure 5.26 shows the SpecialConnsTr block, which is the transformer for special

associations. There are three kinds of special connections used in this work, namely, the

ones that associate simultaneous regions to instance events, timer starts to timer events and

general order elements to ordered events. An in-depth examination of the LSC specification

and the metamodel might reveal some more special association types, but they are out of

the scope of this work and indeed are rarely used in practice. The figure additionally shows

the AscSimRegToInstEv rule as an illustrative example. For any ACM simultaneous

region that is specially associated with an instance event, the rule matches their

corresponding FAM simultaneous region and the instance event by utilizing their cross-

links to FAM. Then a similar kind of special association is established between the two

FAM elements. The other two special connection transformations are defined with the same

approach.

109

Figure 5.26 The SpecialConnsTr block

5.4 Multiple Instance LSC to Binary Instance LSC Transformation of FAM

 The behavioral transformation of ACM2FAM is a one to one MSC transformation from

ACM to FAM; that is, a corresponding element of the same type is created on the FAM

side for each MSC document, MSC and LSC of ACM. Furthermore, the content of an LSC

is transformed as described in Section 5.3 in detail. At the end of the transformation, an

equal number of federates to the number of actors in an ACM LSC plus one federation

instance are created in the corresponding FAM LSC.

 However, a FAM with this structure does not fully comply with the input requirements

of the code generator. As explained in [61], the code generator by design expects and

generates code only for one instance (i.e., federate application) in an LSC. If there are more

than one instances, exercises have shown that code is generated only for the first one and

the others are simply ignored. The LSC instance is the focal element in the code generation

process, and ultimately all LSC instances are generated in separate class files and they are

declared and used in the diagram code generated from the LSC diagram. Instance codes

drive the simulation and each instance runs in its own thread.

 Under these circumstances, a generated FAM has to be refactored into an organization

completely processible by the code generator. In simplest terms, every LSC that contains

110

multiple federate applications has to be stripped down into as many binary LSCs as the

number of federate applications, each containing one federate application and the

federation. This process is depicted in Figure 5.27. In this way, every binary LSC only

contains its federate’s mutual communication with the federation – a closer organization

towards a local, federate-oriented view. Note that the stripping process may end-up in loss

of event orderings in binary LSCs that were implicitly known in multi LSCs due to

transitive chaining of events among the instances.

Federation BatteryFDCFdFwdObserverFd

‘Prepare Oid_W_Msg

considering missionType’

ReceiveInteraction(Oid_W_Msg)

SendInteractionWithRegions(Oid_W_Msg,C1C2)

Opt When (missionType=“Adj” or “FFE” or “Dest”)

‘Prepare

TargetLoc_Msg’

‘Prepare DT_ME_MFC_Msg

considering missionType’

FwdObsTimer TO

FwdObsTimer St

SendInteractionWithRegions(TargetLoc_Msg,C1C2)

SendInteractionWithRegions(DT_ME_MFC_Msg,C1C2)

ReceiveInteraction(TargetLoc_Msg)

ReceiveInteraction(TargetLoc_Msg)

FederationFwdObserverFd

‘Prepare Oid_W_Msg

considering missionType’

SendInteractionWithRegions(...)

Opt When (missionType=“Adj” ...)

‘Prepare

TargetLoc_Msg’

‘Prepare DT_ME_MFC_Msg

considering missionType’

FwdObsTimer TO

FwdObsTimer St

SendInteractionWithRegions(...)

SendInteractionWithRegions(...)

Federation BatteryFDCFd

ReceiveInteraction(Oid_W_Msg)

When (missionType=“Adj” ...)

ReceiveInteraction(TargetLoc_Msg)

ReceiveInteraction(TargetLoc_Msg)

CFF_FwdObserverFd LSC CFF_BatteryFDCFd LSC

CFF LSC

Figure 5.27 Stripping a multi-instance FAM LSC into binary-instance LSCs

111

 In an effort to adapt a FAM produced as the result of an ACM2FAM transformation for

code generation, we have developed yet another GReAT transformation that refines a FAM

having multiple instance LSCs into another FAM having two instance (i.e., one for the

federate and one for the federation) LSCs. The following sub-sections elaborate on this

transformation, named Multi2BinaryLSC.

5.4.1 Initializing Multi2BinaryLSC Transformation

 The Multi2BinaryLSC is configured first to create a copy of the input model and then

perform the transformation on that copied model. The start block is shown in Figure 5.28. It

consists of the bigger Multi2BinaryTr that handles the transformation without handling

the MSC references. The last block, AscMSCRefs_M2B, is a kind of post-processing step

that binds the unbound MSC references among each other.

 The Multi2BinaryTr block consists of two rules, one block and one rule defined in

sequence. The first rule creates temporary associations between the MSC document,

federation and environment elements for easy referencing in subsequent rules. The second

rule simply matches each MSC in an MSC document and passes it to the main block. The

last rule deletes all of the multi instance MSCs after they are stripped down.

Figure 5.28 The Start and Multi2BinaryTr blocks

112

5.4.2 Creating Binary MSCs and LSCs per Federate

 The main transformation block is expounded in Figure 5.29. It consists of an initializer

rule, InitBinaryMSCLSC, and a reference to the LSC transformer block.

InitBinaryMSCLSC is a crucial rule where the crux of the multi-to-binary stripping is

done. It matches every federeate application in the multi-MSC and creates a binary MSC

and LSC for each. It also creates a new MSC head and instance list for the binary MSC and

creates a new federate application inside the instance list corresponding to the matched

federate of the multi-MSC.

Figure 5.29 Multi2BinaryMainTr block and InitBinaryMSCLSC rule

 The attribute mapping code of InitBinaryMSCLSC rule is presented in Table 5.2. The

naming convention for binary MSC (and LSC) name is the concatenation of the multi MSC

(and LSC) name with the name of the federate application in question. Another issue to

resolve during the stripping process is to calculate the positions in terms of coordinates and

the chart order index properties of the binary MSCs inside the document body. Chart order

index specifies the execution order of an MSC with respect to others in the containing MSC

113

document. Every invocation of the GetNextChartOrderIndex() method of the user

code library returns an ever increasing relative offset value that initially starts from 0, and is

reset per multi MSC. Finally, the activation modes and quantifications of the binary LSC

are copied from the multi LSC.

Table 5.2 AttributeMapping code of InitBinaryMSCLSC rule

bMSC.name()=(std::string)mMSC.name()+"_"+(std::string)mFederateApplication.name();
bLSC.name()=(std::string)mLSC.name()+"_"+(std::string)mFederateApplication.name();
bFederateApplication.name()=mFederateApplication.name();
bMscHead.name()=mMscHead.name();
bInstanceList.name()=mInstanceList.name();
int chartOrderIndCnt=ModelTransUtils::GetNextChartOrderIndex();
int yPos = 100*(1+chartOrderIndCnt);
char yPosStr[10];
_itoa_s(yPos, yPosStr, 10);
bMSC.position()="(100,"+string(yPosStr)+")";
bMSC.ChartOrderIndex()=(__int64)mMSC.ChartOrderIndex()+chartOrderIndCnt;
bLSC.position()=mLSC.position();
bMscHead.position()="(100,100)";
bLSC.ActivationMode()=mLSC.ActivationMode();
bLSC.Quantification()=mLSC.Quantification();

5.4.3 Multi to Binary LSC Transformation

 The bulk of the transformations consist of multi to binary LSC transformations,

collected under the LSCTrans_M2B block which is presented in Figure 5.30. The block is

generally organized in a similar structure with ACM2FAM’s LSC transformation as

explained in Section 5.3.3. Differences of special interest are emphasized in this section.

Note that within this and all of its subordinate blocks, the LHS context is the multiLSC and

the RHS context is the binaryLSC, as input by the blue ports and output by the red ports.

Figure 5.30 LSCTrans_M2B block

114

 A unique approach is in setting the instance references in a binary LSC to their

corresponding federate applications in the instance list of the binary MSC, as shown in

Figure 5.31. The key facilitator is the temporary has-correspInst association that has

already been established in a previous InitBinaryMSCLSC rule execution. The attribute

mapping code (not shown in the figure) copies the name and position values of the multi

instance reference to the binary instance reference.

Figure 5.31 InstRefTr_M2B block and CreateInstRef rule

 Another interesting rule to demonstrate is the binary subchart creator rule depicted in

Figure 5.32. The originality here is not in the rule pattern, which is more or less the same as

its ACM2FAM counterpart, but in the employment of a new temporary association and a

guard expression. The srcLscMsc-dstLscMsc association is used to maintain a direct

link from every subordinate LSC type; that is, prechart, subchart or inline operand, to its

MSC ancestor, eliminating the need for the commonly used and expensive GetMSC4LSC

block, which is explained in Section 6.5.2 and shown in Figure B.59 with details. The

ifHasCorrespInstRef() method checks whether the given multiSubchart contains an

instance reference that has a corresponding instance reference inside the given binaryLSC.

It acts as a filter to uniquely identify the binaryLSC inside which to create a binarySubchart

that corresponds to the multiSubchart. The guard is extensively used in the rest of the

LSCTrans_M2B rules.

115

Figure 5.32 PreSubChartTr_M2B block and CreateSubchart rule

 The attribute mapping code is the same as its ACM2FAM counterpart, associating

instance references of the parent binary LSC to the child binary subchart and copying

activation mode and quantification values from multiSubchart to binarySubchart.

 The final representative rule set is the blocks that handle out and in message events to

and from federates and the federation. HandleOut block and FederationOutFederate

rule are shown in Figure 5.33. In the figure it is seen that for every out message event from

the federation reference that sends an HLA method to a federate in the multiLSC, a similar

out message event and HLA method are created from the corresponding federation

reference to the corresponding federate in the binaryLSC. The other message event

handling rules are defined similarly. A newly introduced user code library method is

DeepCopyMgaObject() that traverses the Mga object provided as the second parameter

and creates a copy of its structure in the stub object given as the first parameter. This is an

alternative to the CreateInstance() UDM API method that is extensively used in the

ACM2FAM transformation with a difference in usage context and parameter preparation.

ModelTransUtils::SetInstRefAssocs4LSCChildren(bSubchart,mSubchart, bLSC);
bSubchart.ActivationMode()=mSubchart.ActivationMode();
bSubchart.Quantification()=mSubchart.Quantification();

return ModelTransUtils::ifHasCorrespInstRef(mSubchart,bLSC);

116

Figure 5.33 HandleOut block and FederationOutFederate rule

5.5 FAM-to-Simulation Code Generation and Execution

 Referring back to Figure 1.1, the content presented up to this point constitutes the first

phase of the overall transformation process, where ACM-to-FAM transformation is

explained in detail. In the second phase, the produced FAM is fed to the code generator to

produce federate source codes, federation source code and useful artifacts such as FOM

Document Data (FDD). The details of the code generation are presented in [61].

 Aspect Oriented Programming (AOP) [62] paradigm is adopted in generating HLA-

based distributed simulation code. The AOP approach provides the separation of cross-

cutting concerns. In our case, this allows us to generate code so as to exercise LSCs in a

computation-free manner. Then application-specific computational (and other non-

communication) aspect advices are hand woven onto the generated base code. On the other

hand, HLA-specific portions of the code are automatically woven into the base code

generated from the LSC.

ModelTransUtils::DeepCopyMgaObject
 (bHLAMethod,mHLAMethod);

117

 The LSC instance is the focal element in code generation. The federation and the

federates are all specialized from the LSC instance element. All LSC instances are

generated in separate class files and they are declared and used in the diagram code

generated from the LSC diagram. A snapshot of the generated source code folders with the

source files per binary-instance LSC is presented in Figure 5.34.

 Figure 5.35 depicts the static structure of the generated federate application. Each

instance runs in its own thread. For every LSC message out-event, an RTI ambassador

method call is made, and for every LSC message input event, a federate ambassador

method callback is generated. The LSC instance aspect code intercepts the RTI ambassador

method calls. It executes developer written computation code (e.g., modifying method

arguments and value of arguments) and then redirects the call to the RTI with the

computation code in effect. On the RTI side, in addition to LSC, an aspect code (RTI

Instance Aspect) is generated for every federation execution. This aspect code catches the

RTI callback methods and forwards them to the LSC Instance (federate application) code.

Then in the LSC instance aspect code, the result of a callback (with all arguments) is made

available to the developer.

 The code generator creates an Eclipse project and stores the generated Java and AspectJ

codes in the project root folder. We use an AOP-enabled Eclipse installation to weave the

aspects and run the simulation code. (Eclipse gains AOP capability by installing AspectJ

Development Tools software on it. AspectJ [63] is an aspect-oriented extension for the Java

programming language.) An Eclipse screenshot of the generated code from the FAM model

of an AdjFFE mission scenario [11] of the field artillery domain is displayed in Figure 5.36.

The details of code generation for the AdjFFE case study are presented in [84].

… … …

Figure 5.34 Sample generated source code folders and files view

118

Figure 5.35 Static structure of a generated federate application [61]

Figure 5.36 A screenshot of the generated AdjFFE mission code in Eclipse

119

 After the aspect codes are written and the source is compiled the simulation is run for

execution. Currently the code generator supports the RTI implementation developed by

Pitch Technologies (certified for IEEE-1516), named pRTI. A pRTI screenshot of an

AdjFFE simulation execution is shown in Figure 5.37.

Figure 5.37 A screenshot of an AdjFFE simulation execution in pRTI

5.6 Analysis of the Transformations

 Wijngaarden and Visser [64] identify three fundamental aspects of transformation

mechanics, namely, scope, staging and direction. Although these aspects are intended for

evaluating transformation approaches in a broader sense, it can still be referred in assessing

this specific transformation work. Besides these, modularity is recognized as a key aspect

to achieve reusable and adaptable transformation definitions [65]. Internal transformation

composition [66] is an issue which is closely related to modularity. Composition of

transformation definitions requires a proper modular construct, providing a composition

operator, such that separate transformation definitions can be created as composable units.

In this section we analyze our two phased transformation work from the points of view of

modularity, internal transformation composition, staging, scope and direction.

120

5.6.1 Modularity Analysis

 Modularity is a key factor in developing reusable and maintainable transformation

definitions. Through a modular construct, decomposition and composition are possible.

Transformation reusability is facilitated if a transformation unit has a specification, so that

the developer only needs to know what is transformed into what, but not how the

transformation is done. ACM2FAM transformations clearly comply with this principle

because Section 5.2.1 explains which parts of the ACM data model are transformed into

which parts of the FAM data model, and Section 5.3.3 does the same for the behavioral

models. These statements are made prior to how the transformations are actually explained

in detail. Figure 5.1 provides an overview of the modular breakdown of the ACM2FAM

transformation. Following this breakdown, the whole transformation is defined as a set of

hierarchical transformation blocks, down to individual transformation rule level. Moreover,

the use of expression references for recurring transformations provide us transformation

rule and block reuse.

5.6.2 Internal Transformation Composition Analysis

 The behavior representation formalism LSC/MSC provides a comprehensive instance

decomposition construct [15]. The inner structure and behavior of an instance kind is

defined through an MSC document with the same name as the instance kind. To indicate

how the behaviors described at different levels of abstraction are related, the behavior of an

instance inside an MSC diagram can be specified to be refined in an MSC of the MSC

document defining the instance being decomposed.

 In this thesis, BatteryFDC is a decomposed instance that is further refined into another

MSCDocument of its own, which models the internal organization and workflow of the fire

direction center of a battery. Work is under way to complete the BatteryFDC

transformation. From a vertical perspective, we perform ACM2FAM and

BatteryFDC2FAM transformations in composition. From a lateral perspective, the two

phased end to end transformation presented in this paper is logically a composition of

ACM2FAM and FAM2Code in sequence. Moreover, at a finer level, data and behavior

model transformations within ACM2FAM are also performed as a composition of the two.

The horizontal and vertical internal transformation compositions performed in this work are

summarized in Figure 5.38. As a final remark, GReAT does not provide a composition

operator in the sense of [66]. The closest construct can be the expression reference [15] that

is used to invoke another transformation rule or block, but this not the same as invoking a

separate, independent transformation.

121

Figure 5.38 Horizontal and vertical internal transformation compositions

5.6.3 Staging Analysis

 Staging is the ability of a transformation tool to split a transformation definition into

several stages. Usually, model transformation languages are single-stage tools, that is, the

transformation execution consists of applying the transformation rules as a whole. In

contrast, a multi-stage generate approach allows a transformation definition to be split into

several independent stages, each one generating a part of the target model, and then one or

more final merging stages connect the results of the previous stages.

 This aspect is inherent in our two-phased transformation mechanism, as seen in Figure

1.1. The first phase transforms an ACM into FAM and the second phase transforms the

generated FAM to simulation code. Note that in this thesis, the stages are literally loose in

that, the first phase is a GReAT transformation, while the second is actually a model

interpretation over the FAM model. The only constraint is that ACM2FAM transformation

must precede FAM2Code and that the output of the former is the input of the latter. It is

necessary to note that GReAT itself is a single-stage tool, but our end-to-end mechanism is

a staged approach. Finally, we do not have the so called final merging stage.

5.6.4 Scope Analysis

 Scope is the area of a model (either source or target) covered by a single transformation

step, where a transformation step is usually a single rule application. The pivot of a

transformation step is defined as the main source element from which a rule resolves. Four

main types of transformation steps can be identified between a piece of source model and a

piece of target model, namely local (source) to local (target scope), local to global, global to

local and global to global transformations.

122

 In a local to local transformation step, a source element can be directly translated to a

target element. All the information needed to create the target element is accessible (i.e. can

be easily reached) from the source element. Many of the transformation rules in this work

are of local to local type. Especially, most of the LSC transformation rules are local to

local, except for the ones associated with the payloads of the communicated messages. This

is not surprising since the LSC metamodel is used for behavior modeling of both domains

and we would generally expect behavior preservation across domains. After all, a

simulation model is a representation of the real world in a different formalism.

 In a local to global transformation step, a source element is transformed into several

target elements. Usually, one of these target elements is part of the piece of target model

being generated by the rule, while the other target elements need to be allocated in a

different part of the target model. These target elements are referred to as non-local results.

A considerable amount of rules in this work are of this type. This is mostly due to the fact

of transforming a PIM into a PSM which require the introduction of model elements

regarding the platform and other target domain specific aspects. Examples to this category

on data model transformation side include rules that initialize HLA data types, FOM and its

sub-container elements, rules that create and populate interaction and object classes and

rules that create the federation structure elements. On the behavioral model transformation

side are the rules that create federation initialization and tear-down, and especially, the

orderable event transformation rules for durable and non-durable messages, which are the

most complex and platform specific content adding rules, are typical examples.

 In a global to local transformation step, additional information is needed to create a

target element from a source element. This additional information is not easily accessible

from the source element being transformed (i.e. the pivot), but a complex query is needed.

This kind of situations stemmed frequently in this work. GReAT has two handy

mechanisms in easing this burden, called “global container” and “cross-links”. Global

container contains elements that have global scope; that is, they are accessible throughout

the whole transformation, and it is not necessary to pass them along in the context. Cross-

links establish cross model associations between the source and target metamodels (see

Section 5.1 for both constructs). Many rules spread throughout the data and behavior

transformations employ cross-links or global containers, and thus are examples of global to

local transformation step.

 Global to global transformation is a combination of the previous two situations. They

usually involve complicated rules. We have tried to avoid such cases as much as possible

since pattern matching is an expensive operation. Our approach was to divide the

123

transformation into a set of serial and/or parallel smaller rules, each exhibiting a local to

local or local to global pattern. In spite of our efforts, the orderable event transformation

rules for durable and non-durable messages are still quite complex and are global to global

type of transformations.

 An interesting aspect of ACM2FAM transformations related with the scope topic is the

employment of the user code library. This library that we’ve written in C++ is invoked

from within various transformation rules to complement the graph based transformations

with a high level programming language support. It utilizes the flexible and powerful UDM

API [34] to manipulate the GReAT transformation model to completely handle or partially

assist a number of the transformation rules. This resulted in a reduction in the number and

complexity of the transformation rules (i.e., simplify global-to-global rules into local-to-

global, or global-to-local and the like).

5.6.5 Direction Analysis

 Finally, direction refers to whether a transformation is controlled by the structure of the

source model (source-driven) or by the structure of the target model (target-driven). Since

this is a characteristic of the underlying transformation language, there is not much to

discuss on this topic here. It should be enough to state that GReAT is a source-driven

transformation language and thus, so is the ACM2FAM transformation.

5.7 Related Work on Model Transformations

 Although there is a wide range of works in the literature that are focused on behavioral

or data model transformations, to our knowledge, the transformation of a fully-fledged

conceptual model to an executable model has not been reported before. We treat both data

and behavior on equal grounds in our transformation perspective and put forth a two-

phased transformation framework for PIM-to-PSM and PSM-to-executable code

transformations. The section starts with transformations targeting simulation models, which

are the ones that adopt similar approaches to this work, and continues, in decreasing

relevance, with others.

5.7.1 Transformations Targeting Simulation

 The past few years have seen the publication of ontologies for a large number of

domains. The modeling and simulation community is beginning to see potential for using

these ontologies in the modeling process. There is a group researchers who tend to

formulate CMs as ontologies and then follow a transformation path towards (executable)

simulation models. Silver et al. [107] suggests a tool called Ontology Driven Simulation

(ODS) that establishes relationships between domain ontologies and a modeling ontology

124

and then uses the relationships to instantiate a simulation model as ontology instances.

Then, translating these instances into XML based markup languages and then into

executable models for various software packages are also possible. As a case study, they

map Problem-oriented Medical Records Ontology (PMRO) [108], which represents a

hospital emergency department, to the Discrete Event Modeling Ontology (DeMO) [101],

which describes a discrete event simulation from state, event, activity, and process oriented

world views. The DeMO instances were then translated into to Extensible Process

Interaction Markup Language (XPIML) [109], which then could be translated by the tool

into executable models for either JSIM or ARENA tools. This work is principally similar to

ours in that it employs a multi-phased transformation technique from a domain model down

to code. Yet, the source domain ontology to DeMO and DeMO to XPIML transformations

are not done automatically, but manually with the help of GUI supported mapping tools.

 Another ontology-based work is presented by Durak et al. [110], where they semi-

automatically transform the Trajectory Simulation ONTology (TSONT) [111] models to

two different target models. Two different tools are used for two different programming

paradigms. For object oriented programming paradigm, the OWL2UML tool transforms

OWL ontologies to UML class diagrams with user guidance [112]. Then, Platform

Independent Framework Architecture or trajectory simulation reuse infrastructure is

constructed by means of user guided transformations. For function oriented programming

paradigm, TSONT2SIM tool [110] generates MATLAB Simulink block definitions by

transforming the trajectory simulation function definitions captured in TSONT. This double

targeted transformation work requires man in the loop in its processes and currently does

not produce executable code.

 Küçükyavuz et al. [93] propose a method for transforming KAMA [52] mission space

conceptual models into simulation space BOMs [98]. They have established mappings from

KAMA elements and attributes to BOM elements and attributes in a tabular format. They

have demonstrated the applicability of their approach on a radar warning receiver mission

space model. They have discovered that there were some fields in KAMA that had no

correspondence in BOM and vice versa and argue that this should be anticipated since

KAMA and BOM have different concerns and abstraction levels. Unlike ours, this work

presents sketchy mappings without any transformation automation and code generation. In

our work, we also have partial correspondence between ACM and FAM, but we obtain a

complete transformation from ACM to FAM thanks to the information embedded inside the

transformation rules.

125

 Etienne et al. [90] report on French military’s work to improve interoperability between

their simulations. They have investigated the feasibility of two aspects of the MDE

approach for their needs: high quality code design through a prototype of Domain Specific

Language (DSL), and model transformation, through an HLA code generator, associated to

the former DSL. They demonstrated a case study based on a simple tank platoon mission.

An interesting aspect of their work is that they use the same modelling and model

transformation tools used in this thesis, namely, GME and GReAT. Consequently, they

concluded that the MDE appears to be powerful in easing dialog between officers and

engineers, and enabling short development or modification cycles through drag/drop model

reuse and automated HMI generation, for instance.

 The CAPSULE study [91] is another French military contracted work that aims to apply

the MDA approach to the M&S domain to investigate the degree of portability,

interoperability and reuse MDA can offer for their simulations. The study was conducted in

three stages, where, in the first stage, a suitable state of the art model transformation tool is

selected (which turned out to be MIA-Transformer). In the second stage, the feasibility of

applying such an approach on three existing simulation “frameworks” (HLA, Escadre,

Ligase) by using a technique they called “MOF transformation” is investigated, and in the

final stage, the design and development of a demonstrator that addresses HLA and Ligase

target simulation platforms is done. During the study, a meta-PIM and three meta-PSMs for

the three target simulation platforms were created, all being in XMI format. The generated

PSMs were opened in Rational Rose, and C++ skeleton code was generated automatically.

Note that the reported transformations covered only data models; behaviour was not

included.

 Experiences of Raytheon Missile Systems on MDE are highlighted and summarized in

[92]. For the last several years, Raytheon has been employing auto-code processes and

tools to facilitate rapid deployment of models and algorithms into Integrated Flight

Simulations (IFS). The paper demonstrates the concrete benefits of employing MDE

approach at Raytheon through several benchmark charts and tables. It concludes that the

MDE processes significantly reduces overall cost and readily allows fidelity enhancements,

yielding better system performance assessment and characterization. They utilize MDE

approach only for direct code generation from relatively small models; there is no usage of

any intermediary PIM to PSM transformations.

 The purpose of PEO Soldier Simulation Road Map study [88] is to continue to build a

capability for Program Executive Office (PEO) Soldier to assess the platoon level

effectiveness of different soldier equipment architectures using distributed simulation. The

126

capability is being built by means of Army’s Modeling Architecture for Technology,

Research, and Experimentation (MATREX), which is an implementation of a unified Army

federation to support distributed engineering-level analysis within a greater force-on-force

environment. At its core, MATREX provides an RTI, a FOM, and a middleware

independent capability that allows simulation developers to move with agility from

different implementations of HLA or Test and Training Enabling Architecture (TENA).

These capabilities are enabled by a set of components and tools. Key components include

battle command management services which implement federation services for

communications, situation awareness, and command and control. The Protocore tool is a

simulation architecture development environment that allows federation developers to

design a FOM and automatically generate source code for participating simulations that

interact with that FOM in a middleware independent fashion. This capability is based on a

transformation from a PIM specification, the FOM to a PSM specification, such as HLA

1.3. In this sense, MATREX is a realization of MDA in support of federated simulation.

Within the scope of the study, the PIM for a PEO Soldier scenario is demonstrated to be

transformed into its corresponding PSM. They use UML sequence diagrams to describe

their selected scenarios, whereas we use LSCs for the complete behavioral specification of

the missions of interest.

 Ambrogio et al. [113] introduces a model-driven approach that allows automating most

of the activities that are traditionally carried out manually to implement a DEVS-based

simulation from a high-level model of the system under simulation. The paper illustrates

the set of UML profiles and model transformations that endow simulation developers with

an automated approach that produces a significant portion of the final simulation code. As a

case study, the production of a DEVS/SOA simulation for a basic queuing system is

presented. The model-to-model transformations specified in ATL [7] are executed by use of

the ATL engine provided by the Eclipse tool, while model-to-text transformations specified

in Xpand are executed by use of the openArchitectureware tool [114]. Specific and mostly

automated processes have been introduced to yield not only the code but also the

configuration data for the DEVS/SOA platform, so as to produce a DEVS/SOA simulation

ready to be executed. This work is a two-phased model transformation effort similar to

ours, however, in its present form, the approach only produces the core skeleton of Java

classes that implement DEVS models. Work is in progress to deal with the inclusion of

UML-based abstract models that specify the simulation logic (i.e., behavior) as well. We

incorporate the computational part of the simulation logic in the form of advises to be

woven into the generated AspectJ code.

127

5.7.2 Automata, State Chart, State Diagram Transformations

 Szemethy [67] introduces a tool that performs transformations from high-level domain-

specific models of the time-triggered language, Giotto, which is used to describe embedded

systems, into analysis models represented in timed automata. It uses the same modeling and

transformation tools employed in this work, namely GME and GReAT. It is an early case

study demonstrating PIM to PSM transformations of the kind shown in this thesis.

According to the time-triggered paradigm, all activities of the system must be strictly

periodic, with possibly different frequencies in different modes of operation. The activities

in our domains, on the other hand, are majorly event driven. Time triggering exists in only

a few specific places to initiate various (sub) scenarios in a field artillery mission. Our work

has a wider and more diverse scope in terms of the source and target models. The number

and complexity of our transformation rules also outrange theirs. Since the concepts and

functionality of their source and target domains are closely related, the mapping of Giotto

entities to timed automata entities is simple and straightforward. The only sophistication in

the course of their transformation is the generation of timed automata instruction sequences

from Giotto timing constraints.

 There is a body of work dealing with the translation of sequence diagrams to state

charts, see for example, [68][69][70]. The approaches in these examples differ from

traditional graph transformation approaches, where the transformations are specified over

the abstract syntax. Gronmo and Pedersen [68] base their transformation on the concrete

syntax of both domains. Ziadi et al. [69] and Sun [70] define their transformations by

pseudo-code operating on algebraic definitions. Our transformation is defined over the

abstract syntax of the source and target domains and hence any input model and its

produced output model are guaranteed to be correct by construction. Owing to the

simplicity and small size of the sequence diagrams and state charts, the set of

transformation rules in these works are relatively smaller. In our opinion this characteristic

facilitates defining the transformations over concrete syntax. The field artillery data model,

HLA OMT and LSC domains, on the other hand, are much bigger and complex. In order to

cope with this complexity, our transformation additionally incorporates a fast user code

library that leverages the execution performance.

 Van Amstel et al. [71] have developed a transformation from Algebra of

Communicating Processes (ACP) into UML state machines. Using the Rhapsody tool they

generate code to execute the produced UML state machine and the action dispatcher. By

this way, the execution of an ACP model is simulated. On the other hand, its behavior

preservation is limited to execution trace equivalence. In our transformation, both data and

128

behavior are preserved and this is traceable through the rule definitions. Note that we are

performing transformation between two totally unrelated domains and our source model

has smaller information content than the target model. Information is not lost, but increased

and the transformation rules are where this is done.

5.7.3 LSC to Code Transformations

 Code generation from behavioral specifications in LSC is an ongoing challenge for

researchers [72]. There is also a body of literature dealing with transforming LSCs to some

executable form; in particular, state charts [73][74]. We favor executable code generation

directly from LSC as this approach tends to yield more readable code. Harel and Marelly

[43] propose a play-in/play-out engine to capture behavioral requirements. The Play-Engine

automatically constructs the behavioral model in LSCs, and then provides a simulation of

the execution of the LSC diagrams by playing out different scenarios. In contrast, our

metamodeling approach, due to its data model integration capability, provides the

opportunity to extend or tailor the code generator or interpreter in accordance with the data

model.

5.7.4 Schema Transformations

 In software engineering, the functional requirements of the system are formally

specified in a conceptual schema, or a conceptual (data) model. Conceptual schemas are

described in a conceptual modeling tool/language such as GME or UML. Schema

translation has been considered an important practical problem in the fields of databases

and information systems [75]. The topic has nowadays gained more momentum due to the

need for translation between ontology languages and for translation between models in the

sense of MDA.

 The MDA of OMG specifies three system viewpoints and three corresponding default

system models: a CIM, PIM and a PSM. Semantics of Business Vocabulary and Business

Rules (SBVR) defines the metamodel for documenting the semantics of business

vocabulary, business facts and business rules. Business rules in SBVR are structured by

logical semantic formulations, which facilitate their automation in software systems. In

fact, SBVR specifies a metamodel to describe CIMs and UML is the standard language

proposed by OMG to build PIMs (consequently, the conceptual schemas).

 Raventós and Olivé [76] propose an automatic approach to translation between schemas

modeled in UML and SBVR vocabularies and rules, and vice versa. The authors have

formulated this translation as a particular application of the more generic problem of

schema translation. Both the source and target schemas used in the translations are

instances of metaschemas which are MOF-compliant [16]. The main contribution of their

129

approach is the extensive use of object-oriented concepts in the definition of translation

mappings, particularly the use of operations (and their refinements) and invariants, both of

which are formalized in OCL.

 To facilitate the application of their approach, they have developed a transformation tool

framework on top of Eclipse tool, that allows designers to model the UML context schema,

generate the corresponding SBVR instance and finally obtain a natural language description

of the schema (in Structured English) [77]. The UML/OCL-to-SVBR transformation is

formalized in the ATLAS Transformation Language and the SVBR-to-text transformation

is implemented in MOFScript. A surprising aspect of their study, is that they follow a PIM-

to-CIM and CIM-to-structured natural language transformation direction, which is the

opposite of most MDE practices.

5.7.5 Web Services Transformations

 Heckel and Lohman [78] propose a model-driven approach to the development of

reactive information systems, such as dynamic web pages or web services, modeling their

typical request-query-update-response pattern by means of graph transformation rules. The

transformation is carried out using story diagrams which is a graph transformation language

based on UML and Java. With the transformations, source models in UML are transformed

into contracts expressed in the Java Modeling Language (JML). Unlike ours, this work is a

single step MDD effort that does not further attempt to generate executable code from the

produced JML models.

 Another work in the Web domain is the UML-based Web Engineering (UWE) approach

[79], where rule-based transformations written in ATL are defined for all model-to-model

transitions, and model-to-code transformations pertaining to web content, navigation and

presentation. First, business process models are transformed to UML activity diagrams by

the ATLAS transformation engine. Then a run-time environment built on top of the Spring

framework performs direct execution of the generated activity models. In a more recent

work [80], a graph transformation approach is taken to refine business-oriented architecture

models to service oriented architecture models, focusing on the ability of dynamic

reconfiguration typical for Service Oriented Architecture (SOA). The authors have formally

defined the refinement relations from the component-based business level architectural

style to the SOA style in UML, but the work is still under way to implement the

transformations in Graph eXchange Language (GXL), the language supported by both the

AGG transformation tool and CheckVML, a model checker for graph transformation

systems.

130

5.7.6 Transformation by Example

 A noteworthy approach to model transformation, so called transformation by example,

is proposed in [81]. The authors view model transformation essentially as a combinatorial

optimization problem where the transformation of a source model is obtained by finding,

for each of its constructs, a similar transformation in an example base. Two strategies based

on two search-based algorithms, namely particle swarm optimization and simulated

annealing, are employed. The approach is illustrated and evaluated on the well-known case

of transforming UML class diagrams to relational schemas. This work is unique in not

requiring metamodels and transformation definitions for the source and target models.

5.7.7 Miscellaneous UML-based Transformations

 Braga [82] proposes an automatic and validated code generation process from Role-

Based Access Control (RBAC) policies into aspect code. They have developed a

transformation from SecureUML, a RBAC policy specification language, to AAC, a simple

abstract aspect-oriented language. Both languages are specified by metamodels defined in

UML. The transformation essentially maps each entity and its associated RBAC policy in

the source model to an abstract entity class and an aspect in the target model. The abstract

class represents an interface that a concrete implementation of the controlled component

must implement. The aspect implements the access control constraints that must hold when

a component's method is called. As the last step, AspectJ code is generated from the

produced AAC model. The transformation is implemented as a Java application on top of

an OCL evaluator named ITP/OCL. This work purely takes an RBAC perspective on a

generic entity-relationship data model formation. The metamodels and the transformation

do not incorporate any sort of behavior representation that would capture the processes or

workflows in a domain.

 UML2Alloy [83] is a tool which transforms a subset of UML class diagrams and OCL

constraints into the Alloy language, so that the generated specifications in Alloy can be

automatically analyzed by the Alloy Analyzer, a tool used for identifying design faults in a

software specification. This work differs from ours in that it employs transformations for

UML model analysis with the motivation to catch design faults at earlier stages of software

development lifecycle, whereas we are transform a conceptual domain model down to its

executable simulation model. Another major difference is that UML2Alloy uses the SiTra

model transformation framework, which is a minimal, Java based library that simply

facilitates a style of programming that incorporates the concept of transformation rules.

SiTra is a primitive tool compared to GReAT in terms of the offered transformation

capabilities.

131

CHAPTER VI

DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS

 This thesis has presented an end to end comprehensive model transformation endeavor

from the field artillery conceptual model, ACM, to the HLA federation architecture model,

FAM. The resulting FAM is further processed through the code generator to generate

executable simulation code. The ACM and FAM both consist of data and behavioral parts

and the transformations revolve around transforming the two parts in sequence. In the data

model transformation, ACM domain actors are transformed into federates and the

communicated message structures are transformed into HLA classes. The behavior model

transformation is based on transforming ACM LSCs that represent domain actor

communications to FAM LSCs that represent the corresponding HLA federate

communications via the federation execution inside the RTI. The extra platform specific

content and logic required for FAM is provided through the transformation rules, and the

user code library employed by the transformation.

6.1 Discussions on ACM Model and ACM2FAM Transformation

 This section briefly discusses on ACM and ACM2FAM transformation. Appendix D

provides hints and recommendations derived from our experience in realizing ACM2FAM

transformation for future model transformation developers of GReAT.

 Within the scope of this thesis, ACM has initially been developed in order to lay the

groundwork for transformations. ACM’s information content is obtained from the US

Army field manuals in the public domain. ACM’s data model is based on message formats

and JC3IEDM, and its behavior model is based on LSC, whose metamodel was developed

in another work together with FAM. The challenges encountered and an evaluation of

employing LSC notation in observed fire mission modeling is shared with the community

[11]. Another intention for developing ACM is to bring the attention of the CM community

to the employment of chart notations in describing military tasks, which has not been done

before in the literature.

132

 The transformation from an ACM to FAM provides the ability to exercise the resulting

federation architecture. In a fully automated exercise, intra-federation communication will

follow the specified patterns; the communicated values, being randomly generated, will not

be correct. This can be regarded as a first-cut simulation of the exercise. Taking a step

towards complete federate application generation, the developer has to weave the

computation logic onto the generated code.

 A notable downside of the transformation is its poor performance especially when

source models get bigger. This is accountable for every rule execution boiling down to

solving the sub-graph isomorphism problem on the input model and the match pattern. This

burden is ameliorated by breaking rules into reasonably small chunks and providing as

much initial binding on the match pattern as possible. Another facilitator is the employment

of a C++ user code library that programmatically aid in transformations. This provides a

two-fold gain in that, first, the execution of the code library is faster, and second, it saves

from tediously defining many similar transformation rules.

6.2 Discussions on FAMM and the Code Generator

 FAMM has been developed in a previous work and tested together with the code

generator in various exercices [85][86][87], wherein the FAMs were manually developed in

close coordination with the code generator team. Eventually, base codes were successfully

generated, aspects were woven and the resulting codes were successfully run on RTI. On

the other hand, problems and unforeseen issues emerged when we started testing FAMs

that were automatically produced as results of ACM2FAM transfomations. Even before

being able to test code generation for auto-produced FAMs, the FAMM itself needed

various modifications in order for it to be used as a target (meta)model in GReAT

transformations. In short, changes were required on both FAMM and the code generator in

order to have the two-phased end-to-end ACM to executable code transformation vision to

flourish in practice. This section informally asseses FAMM and the code generator for their

usability in graph-based model transformations based on our experience, and categorically

summarizes the required changes. The summary of changes done in FAMM and the code

generator are provided in Appendix C. All of the new FAMM versions along with a change

log per version as well as the modified code generator source are available through the

thesis distribution CD. The source code also reports the changes done in comments.

6.2.1 Discussion and Assessment of FAMM

FAMM has been developed in GME as a metamodel for building HLA-based distributed

simulation models [85]. Its development was closely coordinated with the development of

133

FAM to Java/AspectJ code generator [86]. Although its prospective role as the target model

for transformations from ACM was also taken into account in its design, it was never tried

in GReAT tool until it was fully completed. We started encountering various issues from

the moment we have imported FAMM into GReAT for use in ACM2FAM transformation

definition. The paragraphs below briefly explain the adaptation process of FAMM to make

it compatible with GReAT transformations. Note that issues mentioned in this sections are

specific to FAMM’s usage in GReAT. Otherwise, it is flawless as a GME domain model

for HLA.

Before starting with the issues, it is worthwhile to recall that GReAT transformation

models (of UMLModelTransformer paradigm) are first processed by the GReAT Master

Interpreter to generate C++ code of the metamodels and transformation definition and

then the Graph Rewrite Engine executes this code to actually perform transformations.

All of the connection elements that are used in associating more than one pair of

modeling elements had to be avoided. (Because if a connection element is used more

than one time as source-to-connector or connector-to-destination, then the code generator

generates duplicate method definitions for those connection parts, which result in

compile errors.) This is achieved by building a connection hierarchy so that ambiguities

in code generation are eliminated.

All of the modeling element, role or attribute names that are at the same time C++

reserved words (such as if, else, for, string, etc) had to be renamed for obvious

reasons. Not as obvious as these were, the GReAT interpreter generating utility methods

(such as “Create”) which had the same name with some other FAM elements. Such name

clashes, which could only be detected by trial and error, also had to be resolved.

 Some FAM elements in different paradigm sheets were named the same. This does not

cause any problem as far as GME modeling is concerned; however, the GReAT interpreter

produces duplicate class names for those elements, which result in syntax errors at compile

time. Thus, name uniqueness had to be enforced throughout the entire FAM.

 This last action is not taken due to an obligation, but just for convention. A reference

that points to all of a super class’s child classes is made to refer to the super class only, in

order to reduce redundancy.

6.2.2 Discussion and Assessment of the Code Generator

 Before starting the discussion on code generator, it is worthwhile to mention about a

post-processing work that has to be done on a produced FAM, in order to comply with the

requirements of the code generator on LSC structure. The code generator expects an LSC to

only cover a single federate and its communication with the federation. The developers of

134

the code generator had the motivation that such a local federate view would better facilitate

code generation. Consequently, the Multi2BinaryLSC transformer was developed in order

to refine FAMs having multi instance LSCs into FAMs having binary instance LSCs, as

explained in Section 5.4.

 After FAMM was sanitized of the aforementioned issues that prevented it from being

used in ACM2FAM transformations, we could start generating FAMs that correspond to

various AdjFFE ACM mission models. Then these FAMs were opened in GME and the

Code Generator (CodeGen) plug-in was run on them to generate simulation base codes.

However, things did not go as expected again and run-time errors were thrown. The

problems generally had to do with the imperfection of the CodeGen, because our AdjFFE

FAMs were automatically generated and they were correct-by construction due to their

compliance to FAMM. Note that the fixes done on the original FAMM introduced nothing

that would have negatively affected the CodeGen’s execution. The reason for these issues,

we think, is that the development of CodeGen was majorly steered by the samples that were

manually created during FAM testing. The scope and representative power of those

samples were not as far-reaching as AdjFFE FAMs. As a result, some of the permissible

FAM structure combinations were simply missed by the CodeGen. These patterns were

revealed during modeling with an ACM perspective and mindset. In addition to these, the

CodeGen simply had some syntactic and semantic flaws in its code generation logic and

shortcomings in FAM coverage that we have discovered during our exercises. The rest of

the section summarizes the issues fixed in the CodeGen.

 Since CodeGen traverses a given FAM to generate code, most of the modifications that

we had to make in FAM had corresponding change requirements in CodeGen. These

include; writing getter methods for the newly introduced connection types in FAMM, and

calling them in appropriate places, reflecting any FAMM modeling element name change

(either due to reserved name clash, duplicate name definition, or convention) in the code. In

the original CodeGen, only the “DefiningPart” of an MSCDocument was processed, but the

similar “UtilityPart” was commented out. We have opened up the comment since AdjFFE

FAMs contained both defining and utility parts.

 Other more serious issues include; all OrderedConnections have priority

attributes as dictated by the MSC metamodel, which indicate relative execution order

among the events. CodeGen processes the OrderedConnections inside a list data

structure that is indexed by the connections’ priorities. CodeGen overlookingly assumes

that the list index starts with one and sequentially increases in ones. This assumption might

be valid for a manually constructed FAM, but AdjFFE FAMs are auto generated from their

135

corresponding ACMs. Even if we try to arrange the list index as required, we end up in

non-sequentially ordered priorities in the produced FAMs, because the number of

OrderedConncetions at least doubles due to extra HLA-RTI communications. We have

devised more sophisticated data structures and algorithms to correctly work with a sparsely

filled OrderedConnection list. If the code was left intact, then either no or semantically

incorrect and missing code was generated.

 The AStyle plug-in, which is a source code indenter, formatter, and beautifier for Java

did not work for some reason and caused run-time error. We had to abandon its usage.

 Occasionally, null value checks for variables were not written, causing null pointer

exceptions at runtime. Such issues are the results of making assumptions on the input

FAMs and quick-and-dirty coding practice. We have corrected almost all of these cases.

 The generated code for inline operand “Opt” contained a syntax error. Opt was most

probably never tested by the CodeGen team before. We have correctly added the “.” field

accessor before the “coldChoices” field of the active LSC.

 Since CodeGen was designed as a GME plug-in, there was no “main” Java method to

launch it standalone in Eclipse environment. We have defined a main method inside the

LSCCodeGen class that invoked the main interpreter method with the relevant parameters.

6.3 A Comparison to MDA

 This section explores the questions of where the artifacts used in the overall MDE

activities of this thesis lie with respect to concepts and standards advocated by MDA and

how our models align with MDA’s triple modeling viewpoints.

6.3.1 Our Artifacts Associated with MDA Standards

 Object Management Group (OMG) introduces a four-layer metamodel hierarchy for

defining modeling, metamodeling, and meta-metamodeling languages and activities in [17].

Table 4.2 relates the different levels of models used in this thesis to OMG’s modeling

hierarchy. Besides that, Figure 1.2 shows the abstraction levels of these domain and

transformation models with respect to OMG’s hierarchy. Taking this one step further,

Figure 6.1 associates the concepts and standards that OMG has put into its MDA vision

with the MDE artifacts employed in this thesis. According to the figure, metaGME, the

meta-metamodel of GME, is functionally equivalent to MOF of OMG at M3 level. ACMM

and FAMM, the metamodels of the source and target domains of this MDE work, are

functionally equivalent to UML of OMG at M2 level. Finally, UMT, the metamodel of the

FACM2FAM transformation presented in this thesis, is functionally equivalent to QVT of

OMG at M2 level.

136

6.3.2 Our Models from MDA’s Modeling Viewpoints

 MDA establishes three different modeling viewpoints [21], called CIM, PIM and PSM.

The highest level of abstraction is the Computation Independent Model (CIM). This is a

conceptual model that identifies the concepts and processes important on the business level.

This is easily mappable to the missions and means identified on the operational level. The

main artifacts are use cases. The Platform Independent Model (PIM) capture concepts and

processes in software engineering artifacts of class and object hierarchies, activities,

sequences, and other means showing the roles of each component. PIMs are very close to

conceptual models that already use vignette and scenario elements motivating the various

possible actions and their sequencing. If this conceptual model is mapped to a concrete

platform, e.g. the middleware to be used, the result is a Platform Specific Model (PSM). In

the optimal case, the PSM can be used to produce code, as all information needed is

available.

 Considering the above definitions, ACMM can best be classified as a PIM since it

captures the field artillery observed fire domain entities and missions in a UML-based

notation, yet avoiding any simulation-specific details. The classification of field artillery

messages in ACMM as durable or non-durable is not evident from the authoritative

publications we have consulted. Yet, this distinction is free from any simulation notion and

can even be regarded as a good modeling practice that facilitates building families of

message structures based on usage characteristics. Eventually, this distinction promotes

concise ACM2FAM transformations.

 FAMM, being the HLA domain model, incorporates all the necessary details to

represent any HLA-based distributed simulation. Similar to ACMM, it uses a UML-based

Figure 6.1 Associating our metamodeling artifacts to OMG standards

137

notation, hence built out of software engineering artifacts. Different than ACMM, it defines

constructs that provide interfaces to the underlying implementation platform, which is

HLA/ RTI. It is relatively straightforward to generate executable simulation code from a

FAM than directly from an ACM.

 Having identified ACMM and FAMM as the PIM and the PSM, there is nothing much

left to identify as a CIM in our work. The narrative model of the field artillery observed fire

domain provided in Section 2.5 possesses CIM characteristics. It explains the concepts,

processes and missions of FA concisely, at a natural language level. It incorporates use case

information, but not in a formal way. It can serve as a (part of) user requirements

specification of the system to be developed, built as a result of the analysis of the

authoritative references about the FA domain. Consequently, the FA narrative model seems

comparable to a CIM.

6.4 Towards a Domain-Independent CM Transformer for HLA

The experience gained in this thesis has shown that domain to domain transformations

are doable to the degree of success in mapping the source domain’s actors and

communicated data structures to the target domain, and in mapping each set of appropriate

behavior elements of the source domain to the behavior elements in the target domain. The

design of these groupings and mappings is the most challenging task of the transformations.

The behavioral model transformation of ACM2FAM essentially being an LSC-to-LSC

transformation brings a degree of ease to the process and opens possibility for automation.

6.4.1 The Transformation Definition Experience

This section presents a summary of the applied model transformation definition process

in the course of this thesis, which has evolved based on our experience. It is intended as a

useful reference for researchers studying graph-based model transformations (in GReAT).

Admittedly, defining transformations for ACM2FAM in GReAT has been a manual and

cumbersome undertaking. Working on two large source and target metamodels such as

ACMM and FAMM surely has a major role in that. In this first experience most of the

transformation rules have each been defined individually and separately since there were no

artifacts at our disposal to reuse or utilize. We could start reusing some of the previous rule

patterns in subsequent rules as we progressed through the process. Along with that,

GReAT’s being a declarative and visual tool facilitated tackling with the burden of this

tedious model transformation work.

We have defined a work breakdown of the overall transformation into fundamental

modules, such as data model transformation, behavioral model transformation, and a

138

number of others under these. We first started developing the smaller and lower level

modules, which have already been refined into legitimate conception levels. Then we

merged the smaller modules into larger ones, and finally connected the behavioral

transformation module after data transformation module. Modules were represented as

GReAT transformation blocks with varying depths, eventually ending up in rules.

Similar to function definitions in programming languages, rules and blocks have

explicit input and output interfaces consisting of ports. As the rules were defined, they

were connected to one another and subsequently blocks were connected similarly. This

development style of GReAT provided an implicit and convenient means for

transformation sequencing. As the development continued, some rules and several

blocks turned out to be reusable with some tweaking. The 21 references used in the

transformation is an indication of the degree of block/rule reuse.

We have generally adopted a spiral development approach, where blocks and rules,

and even modules on a larger scale, were occasionally refactored after discussions among

the research team. Since GReAT transformation rules are defined over source and target

metamodel elements, even small changes on these could have significant effects on the

transformation definitions. GReAT documentation [6] explains how updates to metamodels

are reflected in the transformations. Model migration is based on internal identifiers of the

model elements, where an old metamodel element reference in a transformation rule is

directed to the new metamodel element that has the same id. Once the migration is done,

the old metamodel is manually deleted from the transformation definition. For the

unmatched model elements in the transformation definition, the associated transformation

rule elements are left unassigned. Our experience has proved that model migration in

GReAT is easier said than done.

We have experienced several model updates in the course of this thesis, of which a few

caused catastrophic effects, causing the migration process to fail unexpectedly or ending up

part of the transformation definition being lost. Apparently some of changes in structure,

inheritance or other type of associations of the metamodel were such that the migration

engine of GReAT could not cope with them. In such cases, there was no way but to roll-

back changes on the metamodel controllably until the migration worked, and then modify

the transformation definition so that it would prevent failing when the changes on the

metamodel were reapplied. Alternatively, we could directly prune the transformation

definition to a safe point that would tolerate model migration. Then, in any case, we had to

redefine the pruned parts of the transformation definition in accordance with the new

metamodel. This is really a painful process, so we advise transformation writers in GReAT

139

to invest their time and effort for obtaining well designed and stable metamodels in the

beginning before they actually start defining the transformations. Subsequent changes at

metamodel level end up in expensive reworks on transformation definitions and

unnecessary skidding to bring the transformation back on tracks.

6.4.2 The Highlights of ACM to FAM Transformation

In this section we highlight the corresponding key elements of ACM and FAM matched

during the transformation, in an effort to identify the points of abstraction in a CM that

facilitates designing a domain-independent CM transformer for HLA.

Model transformations are usually defined from more conceptual (e.g. less platform

specific) to more implementation-oriented (e.g. more platform specific) models. This

generally implies that many source-to-target model mappings are possible. Besides that, the

target model is likely to have extra data elements, such as actors and message structures.

Also, it usually has extra behavior patterns, such as system initialization, complementary

communications via the extra actors and system shut-down, for which the source model

provides no clues. Extra behavior patterns and all sorts of book keeping, which do not have

direct correspondence in the source model, contribute to the level of difficulty in defining

the transformations.

In an effort to couple the key source and target model elements participating in

ACM2FAM transformation in the light of the above points in a nutshell, every field

artillery actor is mapped to a federate; every non-durable message is mapped to an

interaction class; every durable data element is mapped to an object class; the federation

element is brought in as a collection of communicating federates, every actor to actor non-

durable message communication is mapped to a federate to federate communication via the

federation (executing on the HLA RTI), using a pair of send/receive interaction class

messages; every actor to actor instantiation type of durable message communication is

mapped to a federate to federate communication via the federation, using three pairs of

register/discover object instance, request/provide attribute value update and update/reflect

attribute values messages; every actor to actor update type of durable message

communication is mapped to a federate to federate communication via the federation, using

a pair of update/reflect attribute values messages; every actor to actor delete type of durable

message communication is mapped to a federate to federate communication via the

federation, using a pair of delete/remove object instance messages; the default HLA types

(that serve HLA classes) are brought in; federation initialization is introduced in a

preliminary LSC by creating the federation execution, joining the federates to the

federation, initializing time management, and declaring capabilities; federation destruction

140

is brought in to the final LSC by resigning the federates from the federation and destroying

the federation execution; finally, the rest of the FACM LSC parts are directly (i.e., one-to-

one) mapped to equivalent FAM LSC parts.

6.4.3 Designing the Domain-Independent HLA Transformer

Generalizing over the specific model transformation work presented, an interesting

research question would be whether it is possible to develop a domain-independent

transformation from any conceptual domain model to the HLA simulation model, FAM. As

summarized in Section 6.4.2, the experience of ACM2FAM transformation has been useful

to identify the “hot” points of FAM that would play a pivotal role in generalizing the

transformation perspective from ACM2FAM to AnyCM2FAM. These points would be used

in bridging the source model to FAM in defining the transformations. Once these mapping

points are bound, we have the incentive that it is potentially viable to carry-out the model

transformation as a domain-independent LSC-to-LSC transformation.

A PSM is naturally expected to cover the content conveyed by its corresponding PIM

and introduce extra, lower level, platform related information. Returning to our work, FAM

enriches the information content with the HLA-based distributed simulation concepts, such

as federation, declaration, object, ownership, time and data distribution management and

HLA default data types. These extras have their places in both the data and behavioral

models and need to be addressed during a Conceptual Model (CM) to FAM transformation.

In this thesis, this addressing is directly done (i.e., hard coded) inside the transformation

rules, hence preventing the use of the transformation with other source domains.

Therefore, the first step forward in obtaining a domain-independent HLA transformer

should be to devise a mechanism which guides the model transformer in matching the

relevant elements of the source CM with the aforementioned points in FAM. Also, the user

code library needs to be adapted for the parts pertaining to the new source CM. Figure 6.2

shows the architecture of the envisioned Domain-Independent HLA Transformer (DIHT).

DIHT would be a FAM transformation framework that provides a GUI-based front-end

adapter to tailor a given CM towards FAM transformation. The adapter’s role would be to

let the user graphically configure the transformation’s source domain dependent content.

Tailoring is accomplished by fitting the conceptual model to a so-called abstract FAM-

oriented CM template, which is partly sketched in Figure 6.3 in metamodel form. This CM

template is derived and generalized from the experience of this thesis. Fitting is used in the

sense of hooking appropriate user-designated CM elements to the extension points in the

template model, using an inheritance mechanism in the sense of object oriented

programming. The framework assumes that the CM consists of actors communicating

141

stateful (i.e., durable) and/or stateless (i.e., instantaneous or volatile) data elements with

each other. Also, the CM is supposed to use the same LSC metamodel as FAM’s for its

behavior representation.

Figure 6.2 The envisioned domain-independent HLA transformer

Figure 6.3 The overview of the FAM-oriented CM template

142

The result of the adaptation process is an intermediary model which is a unification of

the template and the given CM. This composite model is then fed to the CM-to-FAM LSC

transformer to produce the FAM. Specifically, the CM actors and nets are mapped to HLA

federates and the CM data elements are transformed into HLA classes by invoking the

configured user code library methods. The LSC-to-LSC transformations are carried out

using the template model elements, independent of the CM elements in question. This fact

can be seen in the LSC transformation rules of Section 5.3.3. The specific CM elements

are only accessed inside the code library, which is effectively detached from the

transformations. The Pre and Post HLA generation parts of the transformer are independent

of the source model and only generate the HLA prerequisities, federation initialization and

shut down parts of the FAM mentioned in Section 6.4.2.

 With this architecture, obtaining an executable simulation model for another domain

would be a matter of developing its data model and integrating the data model with the LSC

model to obtain a complete CM of the domain. Then the DIHT would be used to adapt the

CM for HLA through the front end tool and then the rest of the transformation would be

performed automatically over the LSCs.

6.5 Future Research Directions

 This section points to three main future research directions, namely, the development of

a domain-independent HLA transformer, investigating the possibility for higher order

transformations, and leveraging this work with BOMs that represent intra-federate state and

behavior.

6.5.1 Domain-Independent HLA Transformer

 This thesis has provided the ground laying work for a future Domain-Independent HLA

Transformer (DIHT) that can transform any CM to FAM, provided that the CM is

formulated as entities communicating stateful (i.e., durable) and/or stateless (i.e., non-

durable) data elements with each other, and is based on the LSC metamodel for behavior

representation. The user needs to pre-process the CM by a front end tool to integrate it with

the so-called FAM-oriented CM template. Then the resulting intermediate form would

automatically be transformed to FAM. In this scheme, the specific CM elements would

only be accessed inside the code library, which is effectively detached from the

transformation definition (Please refer to Section 6.4 for details).

6.5.2 Possibilities for Higher Order Transformations

 A promising future research direction is to investigate the possibility for higher order

transformations. The natural starting point is to identify and formulate transformation

143

patterns that emerge from this work. Then by defining higher-order transformation rules

these patterns can be generated. These higher-order rules would potentially be reusable in

other CM transformation tasks. The primary motivation for higher order consideration of a

transformation component is it having potential for reuse or it being a representative of a

large set of rules that are similar in structure, suitable for auto generation once

parameterized or externally configured. As a quick start, we would like to point some of

the more obvious rules and patterns in ACM2FAM transformation that have the potential

for being subjects of higher order transformations.

 In data model transformation part, we make use of the default HLA methods defined by

the IEEE1516 standard. These methods, which were created as a FAM model in a previous

work, are imported as a library into the stub FAM whose remaining parts will be built by

the transformation rules. Actually, this library usage is the reason why we start

transformations with a stub FAM; otherwise, we could completely create and build the

FAM on the fly. Later in transformations, we create deep copies of these methods into

FAM LSCs, modify and use them in LSC message transmissions. The same case holds for

the default HLA data types: They are also imported as a library into the stub FAM, but for

some reason, perhaps unnecessarily, we also manually create the needed default HLA data

types in the FederationModel folder of the root folder of the FAM, and refer them from the

HLA attributes and parameters then on. We consider that higher order transformation rules

can be written to generate all of the default HLA methods and data types, so that the need

for the library import mechanism, which might not always be available, can be eliminated.

 In behavior transformation part, there are more opportunities for higher order

transformations. The promising areas are the transformation rules that construct FAM parts

having no direct correspondence with ACM. Principally, almost all of the federation

initialization and tearing down rules seems to be suitable for generation via higher order

transformations. These include rules dealing with federation creation, joining to federation,

initializing time management, capability declaration for federates, deleting object classes,

resigning federation, etc.

 We would like to draw the reader’s attention to a specific case: Currently the knowledge

for publish/subscribe declarations of interaction classes are embedded inside transformation

rules, requiring two blocks and two rules for each and every interaction class. The situation

is even more complicated with object classes. Considering the amount of overhead

involved, it can be concluded that handling capability declarations with ordinary

transformation rules is definitely infeasible and requires an efficient delegation mechanism.

(Currently the declarations for all of the classes are not done due to the burden). Among the

144

alternatives are, defining higher order transformation rules, employing a user code library

to solve the problem through the UDM API and writing a preprocessing model interpreter

that runs over the source ACM to extract these relationships, annotate the model(s), perhaps

in crosslinks packages, so as to ease the job of subsequent rules that actually handle

capability declarations. The overall process seems to be suitable for parameterization and

whichever alternative is selected, it can benefit from this fact.

 There are some transformation rules and blocks that we have reused throughout the

transformations. These can also be considered as candidates for higher order generation.

However, we advise a case by case analysis of generic reuse potential for each to decide

whether it is actually worth going for higher order transformation. One suitable generic

candidate is the “get MSC parent of a LSC” idiom (i.e., GetMSC4LSC block) that we have

commonly used. To summarize, an LSC might happen to have more than one ancestor

LSC, prechart, subchart, or inline operand (note that each of these “is-a” LSC). Above this

ancestor chain comes always a parent MSC. Sometimes it necessitates accessing this parent

MSC when only the lowest child LSC is available within the rule context; hence we invoke

the GetMSC4LSC block. Such blocks and rules that generically work on the model

structure in a context-free manner are good candidates for higher order transformations.

 Finally, all of the utility UDM API methods that are invoked inside the user code library

and some of the higher-level, user-defined ones can be delegated to higher order

transformations. Indeed it would be an interesting exercise to work out these functionalities

into higher order transformations. One outstanding example is the CreateInstance

method that we commonly use to create deep copies of model elements into a given

container. Actually, this capability is crucial for our transformations and currently this

UDM method call is the only way to achieve it.

6.5.3 Using BOMs for Intra-Federate Modeling

 FAM adopts an inter-federate modeling perspective within a federation. The state,

behavior or processes inside a federate are not emphasized. This, however, does not

necessarily mean that it is all together impossible to model what is inside a federate with

FAM. LSC, the behavior representation formalism that FAM uses, provides the “instance

decomposition” mechanism just for this purpose. It allows an instance (note that federates

are modeled as instances in FAM), to be represented as a standalone MSC document of its

own, on a lower scale, thus “decomposed”. We have demonstrated the decomposition of

BatteryFDC in Section 4.4.2. An MSC document is comparable to a federation within the

context of this thesis. The analogy to the HLA world is that a federate, depending on its

internal organization, can behave like or is a federation on a lower scale; or reversely, a

145

federation can be wrapped as a federate in another higher scale federation. Having said

these, the instance decomposition mechanism cannot provide the means for the co-

existence of inter-federate and intra-federate modeling of a federation. This is a crucial

deficiency of instance decomposition.

 BOM is an open standard that aims to encourage and support reuse, interoperability,

composability, and to help enable rapid development of HLA simulations [98][99]. At a

higher level, BOMs are reusable packages of information representing independent patterns

of simulation interplay and are intended to be used as building blocks in the development

and extension of simulations. These components can also be composed in larger models

e.g., BOM Assemblies. The Conceptual Model part, which is one of the five parts of a

BOM, contains information that describes the patterns of interplay of the component. This

part includes the types of actions and events that take place in the component, and is

described by a pattern description, a state-machine, and a listing of conceptual entities and

events, which, when taken together, describe the flow and dependencies of events and their

exceptions. This organization of BOM makes it a very convenient formalism to model

intra-federate state and behavior, an issue not addressed in FAMM.

 We support instance decomposition in this work, and have demonstrated its usage in

graphical LSC notation during BatteryFDC modeling. The decomposition of an instance

yields another (lower level) MSC document for the decomposed instance besides the main

MSC document inside the BehavioralModels folder of ACM. Although there are no

formal associations established between the main document’s and decomposed document’s

LSCs currently, they can easily be identified by the employed naming convention, as

advised by the MSC standard [15]. At the end of an ACM2FAM transformation, all of the

corresponding MSC documents are generated on the FAM side. This way we have all the

necessary information to create BOMs for the decomposed instances, hence federates. The

code generator creates federation code per MSC document in a FAM. Therefore, the

information in subordinate MSC documents has to be consolidated into the main document

as BOMs. In order to achieve this, the FAMM definition must be enriched with a BOM

metamodel in the first place. Then, a model interpreter for FAM can be written to carry the

intra-federate knowledge embedded in decomposed MSC documents as BOM components

inside the main MSC document. Eventually this will give the opportunity for both inter-

federate and intra-federate state and behavior being present in a federation definition. Of

course, the code generator has also to be extended in order to process BOMs in a given

FAM.

146

CHAPTER VII

CONCLUSION

 This thesis has presented a comprehensive graph-based model transformation work from

the field artillery conceptual model (ACM) to HLA federation architecture model (FAM).

The work was undertaken to understand the difficulties involved from a mission space

model to an executable simulation model adhering to the Model-Driven Engineering

(MDE) philosophy. Both ACMs and FAMs are formally defined conforming to their

metamodels, ACMM and FAMM, respectively. ACMM has been developed within the

scope of this thesis to serve as a realistic source model for the transformations. ACMM is

comprised of a behavioral component, based on Live Sequence Charts (LSCs), and a data

component based on UML class diagrams. Using ACMM, the Adjustment Followed by Fire

For Effect (AdjFFE) mission, which serves as the source model for the model

transformation case study, is constructed.

 The ACM2FAM transformation, which is defined over metamodel-level graph patterns,

is carried out with the Graph Rewriting and Transformation (GReAT) tool. Data and

behavior are preserved while transforming an ACM into its corresponding FAM. In fact the

result of the execution of the transformation rules is an increase in the “information

content” of the models from source to target. The extra platform specific information

required for FAM is provided through the transformation rules, and a user code library. The

user code library is written to facilitate the model transformations in terms of improved

execution performance and saving from the tedium of graphically defining many

uninteresting transformation rules.

 Another transformation named Multi2BinaryLSC is also developed, to be applied as a

pre-processing step on a produced FAM before feeding it to the code generator. In essence,

Multi2BinaryLSC accomplishes transformation from a global view of the federation to the

collection of local views of the federates. Multi2BinaryLSC strips down a FAM’s LSCs

having more one than one federate and the federation into a set of LSCs having only one

147

federate and the federation. This way code generation is also facilitated in that it can

generate code one federate at each run.

 A second phase transformation is applied by a code generator to produce executable

simulation code in Java/AspectJ from a FAM. Computation logic has to be woven onto the

generated (aspect) code in order to provide legitimate values for the data structures at

runtime. The resulting code can then be executed on an HLA Run-Time Infrastructure.

 The metamodels used for the domain and transformation modeling in this thesis have

one to one correspondences with the standards advocated by the Model Driven Architecture

(MDA) of OMG.

 The model transformer presented in this thesis is analyzed against published model

transformation analysis studies in literature.

 The experience gained in this thesis is a step forward in designing a domain-independent

model transformer for HLA from any conceptual model that is based on LSC for behavioral

representation. As a future study, a conceptual model of another domain can be developed

in parallel to building the domain-independent HLA model transformer in the light of the

recommendations and guidance drawn out of this thesis. Another future research direction

is to investigate the utility of higher order transformations; that is, developing higher level,

declarative rules to define the recurring patterns of ordinary transformation rules. We have

identified with justifications the parts of the transformations amenable for generation

through higher order transformations. Finally, another interesting further study would be to

enrich this work with BOM formalism so as to incorporate intra-federate modeling

capability to complement the existing inter-federate modeling within a federation.

148

REFERENCES

[1] D.C. Schmidt, Model-driven engineering, IEEE Computer, vol. 39, no. 2, pp. 25–32,
2006.

[2] S. Sendall, W. Kozaczynski, Model transformation: The heart and soul of model-
driven software development, IEEE Software, vol. 20, no. 5, pp. 42–45, 2003.

[3] A. Ledeczi, A. Bakay, M. Maroti, P. Volgvesi, G. Nordstorm, J. Sprinkle, G. Karsai,
Composing domain-specific design environments, IEEE Computer, vol. 34, no.11,
pp. 44–51, 2001.

[4] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph
Transformation, World Scientific Publishing Co. Pte. Ltd., 1997.

[5] J. Bézivin, Advances in Model Driven Engineering, in: Jornadas de Ingeniería del
Software y Bases de Datos (JISBD), San Sebastian, Spain, September, 2009.

[6] A. Agrawal, G. Karsai, S. Neema, F. Shi, A. Vizhanyo, The design of a language for
model transformations, Software and System Modeling, vol. 5, no. 3, pp. 261–288,
2006.

[7] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, P. Valduriez, ATL: a QVT-like
transformation language, in: Companion of the 21th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pp. 719–720, Portland, OR, October, 2006.

[8] L. Geiger, A. Zündorf, Tool modeling with FUJABA, Electronic Notes in
Theoretical Computer Science (ENTCS), vol. 148, no. 1, pp. 173–186, 2006.

[9] A. Tolk, Avoiding another green elephant –A Proposal for the next generation HLA
based on the Model Driven Architecture, in: Fall Simulation Interoperability
Workshop (SIW), Orlando, FL, September, 2002.

[10] S. Parr, R. Keith-Magee, Making the case for MDA, in: Fall Simulation
Interoperability Workshop (SIW), Orlando, FL, September, 2003.

[11] G. Özhan, H. Oguztüzün, P. Evrensel, Modeling of field artillery tasks with Live
Sequence Charts, The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology (JDMS), vol. 5, no. 4, pp. 219–252, October, 2008.

[12] O. Topçu, M. Adak, H. Oğuztüzün, A metamodel for federation architectures, ACM
Transactions on Modeling and Computer Simulation (TOMACS), vol. 18, no. 3.10,
2008.

[13] IEEE 1516 Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) – Framework and Rules, September, 2000.

[14] W. Damm, D. Harel, LSCs: Breathing life into Message Sequence Charts, Formal
Methods in System Design, vol. 19, no. 1, pp. 45–80, 2001.

[15] Z.120, Formal Description Techniques (FDT) - Message Sequence Charts. Pre-
published Recommendation Telecommunication Standardization Sector of
International Telecommunication Union, 2004.

[16] OMG 2006, Meta Object Facility (MOF) core specification, Version 2.0, Available
Specification formal / 2006-01-01.

149

[17] OMG 2007, Unified Modeling Language: Infrastructure, version 2.3, Technical
Report formal/2010-05-03.

[18] A. Gerber, M. Lawley, K. Raymond, J. Steel, A. Wood, Transformation: The missing
link of MDA, in: International Conference on Graph Transformation (ICGT), pp. 90–
105, Barcelona, Spain, October, 2002.

[19] T. Mens, P. Van Gorp, A Taxonomy of model transformation, Electronic Notes in
Theoretical Computer Science (ENTCS), vol. 152, pp. 125–142, 2006.

[20] A. Kleppe, J. Warmer, W. Bast, MDA Explained: Practice and Promise, Addison
Weslesy, 2003.

[21] OMG 2003, MDA Guide Version 1.0.1. Object Management Group,
http://www.omg.org/mda, last accessed on August 18, 2011.

[22] S. Kent, Model Driven Engineering, Lecture Notes In Computer Science, Vol. 2335
Proceedings of the Third International Conference on Integrated Formal Methods,
pp. 286–298, 2002.

[23] M. Nagl, Formal Languages of Labeled Graphs, Computing, vol. 16, pp. 113–137,
1976.

[24] A. Habel, Hyperedge Replacement: Grammars and Languages, Lecture Notes in
Computer Science (LNCS), vol. 643, Springer-Verlag, Berlin, 1992.

[25] A Habel, Hypergraph Grammars: Transformational and algorithmic aspects, Journal
of Information Processing and Cybernetics EIK, vol. 28, pp. 241–277, 1992.

[26] H. Ehrig, M. Pfender, H. J. Schneider, Graph Grammars: an algebraic approach, In
Proceegings IEEE Conf. on Automata and Switching Theory, pp. 167–180, 1973.

[27] M. Löwe, Algabraic approach to single-pushout graph transformation, Theoritical
Computer Science, vol. 109, pp. 181–224, 1993.

[28] D. Blostein, A. Schürr , Computing with Graphs and Graph Rewriting, Technical
Report AIB, pp. 97–8, Fachgruppe Informatik, RWTH Aachen, Germany, 1997.

[29] J.D. Lara, H. Vangheluwe, AToM3: A Tool for Multi-formalism and Meta-
modelling, in: 5th international Conference on Fundamental Approaches To Software
Engineering, April, 2002. Lecture Notes In Computer Science (LNCS), vol. 2306,
pp. 174-188, Springer-Verlag, London, 2002.

[30] G. Taentzer, Parallel and Distributed Graph Transformation: Formal Description and
Application to Communication-Based Systems, Ph.D.Thesis, TU Berlin, Shaker
Verlag, Germany, 1996.

[31] F. Marschall, P. Braun, Model Transformations for the MDA with BOTL, in:
Workshop on Model Driven Architecture: Foundations and Applications, pp. 83-90,
University of Twente, Enschede, The Netherlands, 2003.

[32] D. Varro , G. Varro , A. Pataricza, Designing the automatic transformation of visual
languages, Journal of Science of Computer Programming, vol. 44, no. 2, pp. 205-
227, 2002.

[33] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,
J. Sprinkle, P. Volgyesi, The Generic Modeling Environment, In Proceedings of
WISP’2001, Budapest, Hungary, May 2001.

[34] A. Bakay, E. Magyari, The UDM framework, Institute for Software-Integrated
Systems, Vanderbilt University, Nashville, TN, October, 2004.

[35] FM 6-30, Tactics, Techniques, and Procedures for Observed Fire,
http://www.globalsecurity.org/military/library/policy/army/fm/6-30/index.html,
1991, last accessed on August 18, 2011.

[36] FM 6-40, Tactics, Techniques, and Procedures for Field Artillery Manual Cannon
Gunnery, http://www.globalsecurity.org/military/library/policy/army/fm/6-
40/index.html, 1999, last accessed on August 18, 2011.

150

[37] FM 6-50, Tactics, Techniques, and Procedures for The Field Artillery Cannon
Battery, http://www.globalsecurity.org/military/library/policy/army/fm/6-
50/index.html, 1990, last accessed on August 18, 2011.

[38] Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) –
Federate Interface Specification (IEEE 1516.1), 2000.

[39] Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) –
Object Model Template Specification (IEEE 1516.2), 2000.

[40] Standard for IEEE Recommended Practice for High Level Architecture (HLA)
Federation Development and Execution Process (FEDEP- IEEE 1516.3), 2003.

[41] Z.120 – Annex B, Formal Semantics of Message Sequence Charts, Recommendation
of Telecommunication Standardization Sector of International Telecommunication
Union (ITU-T), 1998.

[42] M. Brill, W. Damm, J. Klose, B. Westphal, H. Witteke, Live Sequence Charts: An
Introduction to Lines, Arrows, and Strange Boxes in the Context of Formal
Verification, Springer-Verlag LNCS, vol. 3147, pp. 374-399, 2004.

[43] D. Harel, R. Marelly, Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine, Springer-Verlag, 2003.

[44] S. Robinson, Conceptual Modelling for Simulation Part I: Definition and
Requirements, Journal of the Operational Research Society, vol. 59, pp. 278–290,
2008.

[45] W.P. Sudnikovich, J.M. Pullen, M.S. Kleiner, S.A. Carey, Extensible Battle
Management Language as a Transformation Enabler, SIMULATION, vol. 80, pp.
669–680, 2004.

[46] U. Schade, M.R. Hieb, Improving Planning and Replanning: Using a Formal
Grammar to Automate Processing of Command and Control Information for
Decision Support, International C2 Journal, vol. 1, no. 2, pp. 9-90, 2007.

[47] D. Barak, D. Harel, R. Marelly, InterPlay: Horizontal Scale-Up and Transition to
Design in Scenario-Based Programming, IEEE Transactions on Software
Engineering, vol. 32, no. 7, pp. 467-485, July 2006.

[48] D. Harel, Statecharts: A visual formalism for complex systems, Science of Computer
Programming, vol. 8, no.3, pp. 231-274, 1987.

[49] P.K. Davis, R.H. Anderson, Improving the Composability of DoD Models and
Simulations, Journal of Defense Modeling and Simulation, vol. 1, no. 1 pp. 5 -17,
2004.

[50] J. Sheehan, T. Prosser, H. Conley, G. Stone, K. Yentz, J. Morrow, Conceptual
Models of the Mission Space (CMMS): Basic Concepts, Advanced Techniques, and
Pragmatic Examples, in: Spring Simulation Interoperability Workshop, Orlando, FL,
March 1998.

[51] V. Mojtahed, M.G. Lozano, P. Svan, B. Andersson, V. Kabilan, DCMF – Defence
Conceptual Modelling Framework, A FOI methodology report, FOI-R–1754—SE,
November 2005.

[52] N.A. Karagöz, A Framework for Developing Conceptual Models of the Mission
Space for Simulation Systems, Ph.D. thesis, Department of Information Systems,
METU, Ankara, Turkey, 2008.

[53] The Joint Command, Control and Consultation Information Exchange Data Model,
JC3IEDM – UK – DMWG Edition 3.1a, Greding, Germany, 2007.

[54] The C2 Information Exchange Data Model, C2IEDM Main-US-DMWG Edition 6.1,
Greding, Germany, 2003.

[55] C. Turnitsa, A. Tolk, Evaluation of the C2IEDM as an Interoperability-Enabling
Ontology, European Simulation Interoperability Workshop, 05E-SIW-045, Toulouse,
France, June 2005.

151

[56] C. Turnitsa, A. Tolk, Ontology of the C2IEDM –Further studies to enable Semantic
Interoperability, Paper 05F-SIW-084, Fall Simulation Interoperability Workshop,
Orlando, FL, September 2005.

[57] D. Brutzman, A. Tolk, JSB composability and Web services interoperability via
Extensible Modeling & Simulation framework (XMSF) and Model Driven
Architecture (MDA), In Proceedings of Enabling Technologies for Simulation
Science: VIII, vol. 5423, pp. 310-319, Orlando, FL, April 2004.

[58] J. Bezivin, On the Unification Power of Models, Springer Verlag, Journal of
Software and Systems Modeling, vol.4, no.2, pp. 171-188, 2005.

[59] A. Tolk, R. Kewley, R. Landaeta, T. Litwin, A Systems Engineering Process for
driving System of Systems Development with Operational Requirements, in: 29th
American Society for Engineering Management Annual Conference, West Point,
NY, November, 2008.

[60] G. Özhan, A.C. Dinç, H. Oguztüzün, Model-integrated development of field artillery
Federation Object Model, in: Second International Conference on Advances in
System Simulation (SIMUL), pp.109–114, Nice, France, August, 2010.

[61] M. Adak, O. Topçu, H. Oguztüzün, Model-based code generation for HLA federates,
Software — Practice & Experience, vol. 40, no. 2, pp. 149–175, 2010.

[62] T. Elrad, M. Akşit, G. Kiczales, K. Lieberherr, H. Ossher, Discussing aspects of
AOP, Communications of the ACM, vol.44, no. 10, pp. 33–38, 2001.

[63] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, Getting
started with AspectJ, Communications of the ACM, vol. 44, no. 10, pp. 59–65, 2001.

[64] J. v. van Wijngaardeen, E. Visser, Program transformation mechanics: A
classification of mechanisms for program transformation with a survey of existing
transformation systems, Technical Report, Utrecht University, May, 2003.

[65] I. Kurtev, K. van den Berg, F. Jouault, Rule-based modularization in model
transformation languages illustrated with ATL, in: ACM Symposium on Applied
Computing (SAC), pp. 1202–1209, Dijon, France, 2006.

[66] A. Kleppe, MCC: A model transformation environment, in: 2nd European
Conference on Model Driven Architecture, LNSC, pp. 173–187, 2006.

[67] T. Szemethy, Case study: Model transformations for time-triggered systems, in:
International Workshop on Graph and Model Transformations (GRaMoT), Tallinn,
Estonia, September, 2005.

[68] R. Grønmo, B. Møller-Pedersen, From sequence diagrams to state machines by graph
transformation, in: International Conference on Model Transformation (ICMT), pp.
93–107, Malaga, Spain, June, 2010.

[69] T. Ziadi, L. Helouet, J. M. Jezequel, Revisiting statechart synthesis with an algebraic
approach, in: International Conference on Software Engineering (ICSE), pp. 242-
251, Edinburg, UK, May, 2004.

[70] X. Sun, A model-driven approach to scenario-based requirements engineering, MSc.
thesis, School of Computer Science, McGill University, Montreal, Canada, 2007.

[71] F. van Amstel, M.G.J. van den Brand, Z. Protić, T. Verhoeff, Transforming process
algebra models into UML state machines: Bridging a semantic gap?, Theory and
Practice of Model Transformations - Lecture Notes in Computer Science, vol. 5063,
pp. 61–75, 2008.

[72] S. Maoz, D. Harel, From multi-model scenarios to code: compiling LSCs into
AspectJ, in: ACM SIGSOFT Int. Symposium on Foundations of Software
Engineering, pp. 219–230, Portland, OR, November, 2006.

[73] Y. Bontemps, P. Heymans, P.Y. Schobbens, From live sequence charts to state
machines and back: a guided tour, IEEE Transactions on Software Engineering, vol.
31, no. 12, pp. 999–1014, 2005.

152

[74] I. Krüger, R. Grosu, P. Scholz, M. Broy, From MSCs to statecharts, in: International
Workshop on Distributed and Parallel Embedded Systems, pp.61–71, Scholoß
Eringerfeld, Germany, October, 1998.

[75] J.J. van Griethuysen, Concepts and terminology for the conceptual schema and the
information base, Secretariat ISO/TC97/SC5, American Standards Institute in New
York, 1982.

[76] R. Raventós, A. Olivé, An object-oriented operation-based approach to translation
between MOF metaschemas, Data & Knowledge Engineering, vol. 67, no. 3, pp.
444–462, 2008.

[77] J. Cabot, R. Pau, R. Raventós, From UML/OCL to SBVR specifications: A
challenging transformation, Information Systems, vol. 35, no. 4, pp. 417–440, 2010.

[78] R. Heckel, M. Lohmann, Model-driven development of reactive information
systems: from graph transformation rules to JML contracts, International Journal on
Software Tools for Technology Transfer (STTT), vol. 9, no. 2, pp. 193-207, 2007.

[79] A. Kraus, A. Knapp, N. Koch, Model-Driven Generation of Web Applications in
UWE, In 3rd International Workshop on Model-Driven Web Engineering (MDWE),
CEUR-WS, vol 261, 2007.

[80] L. Baresi, R. Heckel, S. Thöne, D. Varro, Style-based modeling and refinement of
service-oriented architectures, Software and Systems Modeling (SoSyM), vol. 5, no.
2, pp. 187–207, 2006.

[81] M. Kessentini, H. Sahraoui, M. Boukadoum, O. Benomar, Search-Based Model
Transformation by Example, Software and Systems Modeling (SoSyM), Special
Issue of MoDELS 20), pp. 1–18, 2010

[82] C. Braga, From Access Control Policies to an Aspect-Based Infrastructure: A
Metamodel-Based Approach, in MoDELS, pp. 243-256, 2008.

[83] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, On Challenges of Model
Transformation from UML to Alloy, Software and Systems Modeling (SoSym),
Special Issue on MoDELS 2007, vol. 9, no. 1, pp. 69-86, 2008.

[84] G. Özhan, H. Oguztüzün, Generating simulation code from federation models: A
field artillery case study, in: European Simulation Interoperability Workshop
(EuroSIW), 11E-SIW-007, The Hague, Netherlands, June, 2011.

[85] O. Topçu, Metamodeling for the HLA Federation Architectures, Ph.D.Thesis,
Department of Computer Engineering, METU, Ankara, Turkey, 2007.

[86] M. Adak, Model-Based Code Generation for the High Level Architecture Federates,
Ph.D.Thesis, Department of Computer Engineering, METU, Ankara, Turkey, 2007.

[87] A. Molla, K. Sarıoğlu, O. Topçu, M. Adak, H. Oğuztüzün, Federation Architecture
Modeling: A Case Study with NSTMSS, in: Fall Simulation Interoperability
Workshop (SIW), 07F-SIW-052, Orlando, Florida, USA, September pp. 16-21, 2007.

[88] R. Kewley, A. Tolk, T. Litwin, PEO Soldier Simulation Road Map V – The
MATREX Federation, Technical Report DSE-TR-0802, Operations Research Center
of Excellence, Westpoint, NY, September, 2008.

[89] M. G. Lozano, V. Mojtahed, A Process for Developing Conceptual Models or
the Mission Space (CMMs) – From Knowledge Acquistion to Knowledge Use, in:
Fall Simulation Interoperability Workshop, 05F-SIW-038, Orlando, FL, September,
2005.

[90] S. Etienne, L. Xavier, V. Olivier, Applying MDE for HLA federation rapid
generation, in: European Simulation Interoperability Workshop, 06E-SIW-066,
Stockholm, Sweden, June, 2006.

[91] E. Guiffard, D. Kadi, J. P. Mochet, R. Mauget, CAPSULE: Application of the
MDA methodology to the simulation domain, in: European Simulation
Interoperability Workshop, 06E-SIW-026, Stockholm, Sweden, June, 2006.

153

[92] J. Carlaftes, B. Collins, D. Fiehler, Auto-Code Based Model-Driven Engineering
Techniques for Simulation Development, in: Spring Simulation Interoperability
Workshop, 10S-SIW-015, Orlando, FL, April, 2010.

[93] F. Küçükyavuz, N. A. Karagöz, O. Demirörs, Constructing Bridges between Mission
Space Conceptual Models and BOM, in: Spring Simulation Interoperability
Workshop, 11S-SIW-036, Boston, MA, April, 2011.

[94] Ö. Özdikiş , U Durak , H. Oǧuztüzün, Tool support for transformation from an OWL
ontology to an HLA Object Model, in: 3rd International ICST Conference on
Simulation Tools and Techniques, Malaga, Spain, March, 2010.

[95] D. A. Brade, Conceptual Modeling Meets Formal Specifications, in: Spring
Simulation Interoperability Workshop, 04S-SIW-138, Orlando, FL, April, 2003.

[96] B. Andersson, M. G. Lozano, V. Mojtahed, The Use of a Knowledge Meta Meta
Model (KM3) when Building Conceptual Models of the Mission Space, in: Fall
Simulation Interoperability Workshop, 05F-SIW-040, Orlando, FL, September,
2005.

[97] V. Mojtahed, E. O. Svee, J. Zdravkovic, Semantic enhancements when designing a
BOM-based conceptual repository, in: European Simulation Interoperability
Workshop, 10E-SIW-021, Ottawa, Canada, July, 2010.

[98] SISO, Base Object Model (BOM) Template Specification, SISO-STD-003-2006,
2006.

[99] SISO, Guide for Base Object Model (BOM) Use and Implementation, SISO-STD-
003.1-2006, 2006.

[100] T. Gruber, A translation approach to portable ontology specifications, Knowledge
Acquisition, vol. 5, pp. 199–220, 1993.

[101] J. Miller, G. Baramidze, P.Fishwick, Investigating ontologies for simulation and
modeling, in: 37th Annual Simulation Symposium, pp.55–71, 2004.

[102] A. Tolk, Evaluation of the C2IEDM as an interoperability-enabling ontology, in:
European Simulation Interoperability Workshop, Toulouse, France, June, 2005.

[103] L. W. Lacy, Interchanging discrete-event simulation process interaction models using
the web ontology language – OWL. PhD Dissertation, Department of Industrial
Engineering and Management Systems, University of Central Florida, 2006.

[104] Y. Teo, C. Szabo, CODES: An integrated approach to composable modeling and
simulation, in: 41st Annual Simulation Symposium, pp.103–110, 2008.

[105] L. Yilmaz, S. Paspuleti, Toward a meta-level framework for agent-supported
interoperation of defense simulations, The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology (JDMS), vol. 2, pp. 161–175,
2005.

[106] U. Eryılmaz, N.A. Karagöz, KAMA: A Tool for Developing Conceptual Models For
C4ISR Simulations, in: European Simulation Interoperability Workshop, 09E-SIW-
020, Đstanbul, Turkey, July, 2009.

[107] G. A. Silver, O. A. Hassan, J. A. Miller, From domain ontologies to modeling
ontologies to executable simulation models, in: 39th Winter Simulation Conference,
Washington D.C., December, 2007.

[108] WC3 Health Care and Life Science Group, A Problem-Oriented Medical Records
Ontology, http://esw.w3.org/topic/HCLS/POMROntology, 2006, last accessed on
August 18, 2011.

[109] G. A. Silver, L. W. Lacy, J. A. Miller, Ontology Based Representations of
Simulation Models Following the Process Interaction World View, in: Winter
Simulation Conference, pp. 1168–1176, Monterey, CA, 2006.

154

[110] U. Durak, H. Oğuztüzün, S. K. Đder, Ontology-based domain engineering for
trajectory simulation reuse, International Journal of Software Engineering and
Knowledge Engineering, vol. 19, no. 8, pp.1109–1129, 2009.

[111] U. Durak, H. Oğuztüzün, S. K. Đder, An ontology for trajectory simulation, in:
Winter Simulation Conference, Monterey, CA, 2006.

[112] O. Özdikiş, User guided transformations of OWL ontologies to UML class diagrams,
M.Sc. Thesis, Department of Computer Engineering, METU, Turkey, 2007.

[113] A. D’Ambrogio, D. Gianni, J. L. Risco-Martín, A. Pieroni, A MDA-based Approach
for the Development of DEVS/SOA Simulations, in: Spring Simulation
Interoperability Workshop, Orlando, FL, April, 2010.

[114] openArchitectureware, an MDA/MDD generator framework,
http://www.openarchitectureware.org/, last accessed on August 18, 2011.

[115] D. K. Pace, Conceptual Model Descriptions, in: Spring Simulation Interoperability
Workshop, 99S-SIW-025, Orlando, FL, March 1999.

155

APPENDIX A

ADJFFE MODEL LSCS IN GRAPHICAL NOTATION

This appendix presents all of the LSCs for the Adjustment Followed by Fire For Effect

(AdjFFE) mission model in graphical notation. Each LSC is provided with a brief

description of its purpose, execution conditions and logic.

Figure A.1 shows the top-level chart, AdjFFE, which provides an overall coverage of

the mission. Its LSC activation mode is iterative and quantification is existential [14] (from

this point on only the values of activation mode and quantification will be mentioned for

the sake of brevity). The chart includes all of the eight instances, a prechart and a body with

a parallel inline expression with two inline operands. The prechart consists of references to

three MSCs and the parallel expression has references to two MSCs in its first operand and

has a reference to one MSC in its second operand. The referred MSCs (and their contained

LSCs) are presented in subsequent figures.

Figure A.1 The Main LSC for AdjFFE mission LSC

156

The iterative and universal call for fire chart, CFF, is depicted in Figure A.2. It describes

the call for fire request made by the forward observer to the battery FDC. It consists of the

preparation and sending of one mandatory and two optional messages. The optional

messages are sent if the mission type is given as adjustment, FFE or destruction. All

the messages sent to the battery FDC are also simultaneously sent to the battery radio net.

FwdObserver BatteryFDCBatteryRadioNet

decomposed as BatteryFDC-CFF

‘Prepare Oid_W_Msg

considering missionType’

Oid_W_MsgOid_W_Msg

Opt
When (missionType=“Adj” or missionType=“FFE” or missionType=“Dest”)

‘Prepare TargetLoc_Msg’

TargetLoc_MsgTargetLoc_Msg

DT_ME_MFC_MsgDT_ME_MFC_Msg

‘Prepare DT_ME_MFC_Msg

considering missionType’

BRN

BRN

BRN

Figure A.2 Call for fire LSC

The iterative and universal FO_MTO_AI chart is illustrated in

Figure A.3. It covers the messages sent by the battery FDC to the forward observer in

response to a previous CFF request. It consists of three alternatively sent MTO, one optional

additionalInfo and one mandatory fireOrder (not shown in the figure – sent within

decomposed BatteryFDC) messages. All of the messages sent to the battery FDC are also

simultaneously sent to the battery radio net.

Set Oid_W_Msg.CFFWarningOrder.missionType
to either of Adj, FFE, Supp, ISupp, ISmoke, Dest,
PReg, QSmoke, Illum

Set Oid_W_Msg.MetOfEngagement.adjType to
 - Area if missionType=Adj or FFE
 - Precision if missionType=Dest

157

BatteryFDC FwdObserver

MTO_AreaF_Msg

When (adjType=“Area” or (adjType=“Precision” and missionType=“Dest”))

MTO_RegKP_Msg

When (regType=“RegOnKP”)

Otherwise

MTO_RegSelByFO_MsgMTO_RegSelByFO_Msg

BatteryRadioNet

MTO_RegKP_Msg

MTO_AreaF_Msg

Alt

When (missionType=”PReg”)

Alt

BRN

BRN

BRN

AdditionalInfo_Msg

When (getIsPErSignificant() | getIsAngleTToSend() | getIsTimeOfFlightToSend())

AdditionalInfo_Msg

Opt

BRN

decomposed as BatteryFDC-FO_MTO_AI

Figure A.3 FO_MTO_AI (Fire Order, Message to Observer, Additional Information) LSC

The iterative and existential AdjustmentLoop chart is sketched in Figure A.4. Its

activation condition [14] is that the cannotObserve flag of the methodOfControl part

of the CFF message be false. The chart starts with a prechart those references to an MSC

handling the initial fire command preparation and sending. Then it loops until the

adjustment is complete, cycling through rounds firing, spotting observation, adjustment

correction and subsequent fire command generation steps. When the adjustment is decided

to be done in the last loop cycle, the missionType is set to FFE. The system method

getIsAdjNotDone()computes its value from an ObservedSp_Msg sent within the

ObserveSpotting MSC.

The invariant and universal ObserveSpotting chart is shown in Figure A.5. Its

activation depends on the detonation of the ammunition. Environment tests the observed

spotting in a four operand alternative expression and sends a spotting message accordingly.

These 3 data language method calls compute
their values from previous the CFF requests

158

Figure A.4 Adjustment loop LSC

Figure A.5 Observe spotting LSC

159

The iterative and universal InitFireCommand chart is depicted in Figure A.6. It covers

the generation of an initial fire command message based on value combinations of the

method of control variable. It consists of an alternative expression with two operands. The

second operand has two optional blocks followed by an initial fire command message

transmission and ends with a call to an MSC that processes the fire command. All of the

messages sent to the firing unit are also simultaneously sent to the battery radio net.

Alt

InitFireCommand_Msg

BatteryFDC FiringUnitBatteryRadioNet

decomposed as

BatteryFDC-InitFireCommand

Otherwise

CeaseLoading_Msg CeaseLoading_Msg

When ((metCtrl.isFO-AMC & DT_ME_MFC_Msg.MetOfCtrl.Fire)

| metCtrl.isFDC-AMC | metCtrl.isTOT)

Fire_Msg Fire_Msg

Opt

CancelCeaseLoading_Msg CancelCeaseLoading_Msg

InitFireCommand_Msg

When (metCtrl.isCL | getIsExc(“CL”))

When (getIsCancelExc(“CL”))

metCtrl.isCL := true

metCtrl.isCL := false

CheckFiring_Msg CheckFiring_Msg

Opt

CancelCheckFiring_Msg CancelCheckFiring_Msg

When (metCtrl.isCF | getIsExc(“CF”))

When (getIsCancelExc(“CF”))

metCtrl.isCF := false

metCtrl.isCF := true

fireCommand := downcastFC

(InitFireCommand_Msg)

ProcessFireCommand

BRN

BRN

BRN

BRN

BRN

BRN

Figure A.6 Initial fire command LSC

160

The iterative and universal InitFireCommand LSC is illustrated in Figure A.7. Once

the initial fire command is received, this chart is used for managing further communication

between the firing unit and the battery FDC. It consists of an LSC body with four optional

blocks that are entered based on various properties of the received fire command and set

various properties of the method of control variable based on those values. The last two

optional blocks house Ready, Fire and Laid message transmissions.

Figure A.7 Process fire command LSC

The iterative and universal SubsFureCommand LSC is sketched in Figure A.8. It is

used for managing fire commands sent after the initial one. It consists of a prechart and an

LSC body with three-operand alternative expression. The prechart starts execution with two

gates that input messages from the external world and relay them to two MSCs. The

alternative expression covers the generation of a subsequent fire command message based

on value combinations of the method of control variable. The third operand has two

161

optional blocks followed by a subsequent fire command message transmission and ends

with a call to an MSC that processes the fire command. All of the messages sent to the

firing unit are also simultaneously sent to the battery radio net.

Alt

BatteryFDC FiringUnitBatteryRadioNet

decomposed as BatteryFDC-

SubsFireCommand

Otherwise

When (corrType=“Adj”)Alt

AdjustmentCorr_Msg

RefineSurveil_Msg

g1

g2

When (corrType=“RefSur” & RefineSurveil_Msg.EOM)

EOM_Msg EOM_Msg

metCtrl.isEOM := true

When ((metCtrl.isFO-AMC & corrMsg.Fire) |

metCtrl.isFDC-AMC | metCtrl.isTOT)

Fire_Msg Fire_Msg

Otherwise

MissionComplete

CheckFiring_Msg CheckFiring_Msg

Opt

CancelCheckFiring_Msg CancelCheckFiring_Msg

CeaseLoading_Msg CeaseLoading_Msg

Opt

CancelCeaseLoading_Msg CancelCeaseLoading_Msg

When (corrMsg.CheckFiring | (!metCtrl.isCF & getIsExc(“CF”)))

When (getIsCancelExc(“CF”))

metCtrl.isCF := false

metCtrl.isCF := true

When (corrMsg.CeaseLoading | (!metCtrl.isCL & getIsExc(“CL”)))

When (getIsCancelExc(“CL”))

metCtrl.isCL := true

metCtrl.isCL := false

SubsFireCommand_MsgSubsFireCommand_Msg

fireCommand := downcastFC

(SubsFireCommand_Msg)

ProcessFireCommand

BRN

BRN

BRN

BRN

BRN

BRN

BRN

BRN

BRN

Figure A.8 Subsequent fire command LSC

162

The initial and universal durable message instantiator chart, InstSOPMet, is shown in

Figure A.9. It simply houses the preparation and transmission of battalion fire order SOP,

fire command SOP and computer meteorology report instantiation messages.

FiringUnit MetStationBattalionFDC BatteryRadioNetBatteryFDC

decomposed as

BatteryFDC_InstSOPMet

MetroNet

BattalFireOrderSOPInst_Msg
BRN

FireCommandSOPInst_Msg

BRN

ComputerMetRepInst_Msg
MRN

‘Prepare BattalFire

OrderSOPInst_Msg’

Prepare ‘Computer

MetRepInst_Msg’

Prepare ‘FireCom

mandSOPInst_Msg’

Figure A.9 Instantiation type of durable messages LSC

The initial and universal durable message updater chart, UpdateSOPMet, is depicted in

Figure A.10. It consists of a parallel expression with three operands that contain references

to MSCs handling battalion fire order SOP, fire command SOP and computer meteorology

report updating.

The initial and universal battalion fire order SOP updater chart, BattalionFOUpdate,

is illustrated in Figure A.11. The battalion FDC periodically prepares and sends update

messages for the battalion fire order SOP to the battery radio net until the mission

completes or fails. The message update period is timer based. After the while-do loop exits,

the final message sent is deletion for the SOP.

The initial and universal fire command SOP updater chart, FireCommandUpdate, is

sketched in Figure A.12. The battery FDC periodically prepares and simultaneously sends

update messages for the fire command SOP to the firing unit and the battery radio net until

the mission completes or fails. The message update period is timer based. After the while-

do loop exits, the final message sent is deletion for the SOP.

163

Figure A.10 Overall update type of durable messages LSC

BattalionFDC BatteryRadioNet

BattalFireOrderSOPUpdate_Msg

While do

‘Prepare BattalFireOr

derSOPUpdate_Msg’

BRN

!(MissionComplete | MissionFailed)

BRN

T(getTime(“BtlnFO-SOP”)

BattalFireOrderSOPDel_Msg

Figure A.11 Battalion fire order update and delete LSC

Figure A.12 Fire command update and delete LSC

164

The initial and universal meteorology report updater chart, MetRepUpdate, is shown in

Figure A.13. The meteorology station periodically prepares and sends update messages for

the computer meteorology report to the metro net until the mission completes or fails. The

message update period is timer based. After the while-do loop exits, the final message sent

is deletion for the meteorology report.

Figure A.13 Metro report update and delete LSC

The invariant and existential RoundShot LSC is depicted in Figure A.14. It models a

durable ammunition object’s life cycle from the moment of its creation, to being fired, to

being updated throughout its flight for trajectory changes, to its detonation and finally

deletion. The fire action is explicitly ordered after the ammunition’s instantiation. The

ammunition’s flight and its trajectory updates take place in a parallel expression. The time

of flight and ammunition update period are both timer based, where the time of flight is

acquired through a system variable and update period is constant. After the ammunition is

fired, a series of two shot messages and an optional splash message are also transmitted.

The invariant and existential VolleyShot LSC is illustrated in Figure A.15. It is very

similar to the RoundShot LSC with the difference that VolleyShot has a three-operand

parallel expression where the first operand’s optional expression and the second operand

are controlled by the volleyShotType variable, which effectively makes their executions

mutually exclusive. When volleyShotType is initial, then the LSC behaves exactly

as the RoundShot LSC. When it is final, a rounds complete message is sent after firing.

165

Figure A.14 Round shot LSC

Figure A.15 Volley shot LSC

166

The invariant and existential VolleyFire LSC is sketched in Figure A.16. Its

activation condition is a fire command with quadrant elevation being sent. The chart body

starts with an initial volley shot followed by a spotting observation. If the number of

rounds to fire is greater than 2, then rounds-2 intermediate volley shots are fired with

observations. If the number of rounds to fire is greater than 1, then a final volley shot is

made. Note that all of the events in this LSC are references to either VolleyShot (with a

parameter) or ObserveSpotting MSCs.

FwdObserver BatteryFDCEnvironment FiringUnitBatteryRadioNet

VolleyShot(“Intermediate”)

Loop <0,rnds()-2>

When (rnds()>1)

VolleyShot(“Final”)

ObserveSpotting

ObserveSpotting

ObserveSpotting

VolleyShot(“Initial”)

decomposed as

BatteryFDC_VolleyFire

Opt

Figure A.16 Volley fire LSC

The invariant and universal MetroNet LSC is shown in Figure A.17. It models all of

the incoming meteorology report messages to the meteorology net and their distribution

within the net members. There are instantiation, update and delete types of computer and

ballistic meteorology reports. The LSC body loops receiving and distributing these six

messages in an alternative expression of six operands until the mission completes or fails.

167

Alt

decomposed as

BatteryFDC-MetroNet

!(MissionComplete | MissionFailed)

BattalionFDC BatteryFDCMetroNet

While do

BallisticMetRepInst_Msgg4 BallisticMetRepInst_Msg

BallisticMetRepUpdate_Msgg5 BallisticMetRepUpdate_Msg

BallisticMetRepDel_Msgg6 BallisticMetRepDel_Msg

ComputerMetRepInst_Msgg1 ComputerMetRepInst_Msg

ComputerMetRepUpdate_Msgg2 ComputerMetRepUpdate_Msg

ComputerMetRepDel_Msgg3 ComputerMetRepDel_Msg

Figure A.17 Metro net LSC

The invariant and universal BatteryRadioNet LSC is depicted in Figure A.18. It

models all of the incoming messages to the battery radio net and their distribution within

the net members. There are 23 types of incoming messages through the gates. The LSC

body loops receiving and distributing these messages in an alternative expression of 23

operands until the mission completes or fails. The loop also includes a reference to the

BattalionIntervention MSC after the alternative expression, to check whether there

is an intervention on the mission by the battalion. One of the incoming messages is the EOM

message. When this message is received, the global MissionComplete flag is set and the

mission ends successfully.

The iterative and universal BattalionIntervention LSC is shown in Figure A.19.

This chart is not a main stream chart and is used to provide an upper command intervention

on the mission. It consists of an optional block controlled by an external system method. If

the block is entered the mission is aborted, variables are reset and a new fire order is issued.

168

Alt

decomposed as BatteryFDC-BRN

!(MissionComplete | MissionFailed)

BattalionFDC BatteryFDCBatteryRadioNet FwdObserver

g1

g2

Oid_W_Msg

TargetLoc_Msg

DT_ME_MFC_Msgg3

Oid_W_Msg

TargetLoc_Msg

DT_ME_MFC_Msg

MTO_AreaF_Msgg4 MTO_AreaF_Msg

MTO_RegKP_Msgg5 MTO_RegKP_Msg

MTO_RegSelByFO_Msgg6 MTO_RegSelByFO_Msg

AdditionalInfo_Msgg7 AdditionalInfo_Msg

CeaseLoading_Msgg8 CeaseLoading_Msg

metCtrl.isCL:=true metCtrl.isCL:=true

CheckFiring_Msgg9 CheckFiring_Msg

metCtrl.isCF:=true metCtrl.isCF:=true

CancelCeaseLoading_Msgg10 CancelCeaseLoading_Msg

metCtrl.isCL:=false metCtrl.isCL:=false

CancelCheckFiring_Msgg11 CancelCheckFiring_Msg

metCtrl.isCF:=false metCtrl.isCF:=false

EOM_Msgg12 EOM_Msg

metCtrl.isEOM:=true metCtrl.isEOM:=true

Fire_Msgg13 Fire_Msg

InitFireCommand_Msgg14 InitFireCommand_Msg

SubsFireCommand_Msgg15 SubsFireCommand_Msg

g16 Shot_Msg

Splash_Msgg17

Shot_Msg

Splash_Msg

RndsCmplt_Msgg18 RndsCmplt_Msg

AmmunitionInst_Msgg19 AmmunitionInst_Msg

AmmunitionUpdate_Msgg20 AmmunitionUpdate_Msg

AmmunitionDel_Msgg21 AmmunitionDel_Msg

g22 AdjustmentCorr_Msg

RefineSurveil_Msgg23

AdjustmentCorr_Msg

RefineSurveil_Msg

MissionComplete

BattalionIntervention

While do

Figure A.18 Battery radio net LSC

169

decomposed as

BatteryFDC-BattalionInt

BattalionFDC BatteryFDCBatteryRadioNet FwdObserver

When (getIsBattalionIntervention())

metCtrl.opMode:=“Battalion”

BattalionFireOrder_MsgBattalionFireOrder_Msg

BattalionFireOrder_Msg

Opt

‘Reset metCtrl to defaults’

metCtrl.opMode:=“Battalion”

‘Reset metCtrl to defaults’

metCtrl.opMode:=“Battalion”

‘Reset metCtrl to defaults’

Figure A.19 Battalion intervention LSC

The iterative and existential FFELoop LSC is illustrated in Figure A.20. The chart can

be entered without a prior adjustment step, or after an adjustment that ends with a

correction message transmission indicating that the adjustment is done and fire for effect

can be started. The fire for effect chart models the scenario where all the guns in a battery

fire their rounds with the same fire parameters. FFELoop starts with a prechart that issues

an initial fire command if the mission is being performed without an adjustment. The chart

body usually ends after a call to VolleyFire that yields a satisfactory result. If the

outcome is accurate, but insufficient, then volley shots are repeated in a loop until a

different result is obtained. If the result is worse; that is, inaccurate and insufficient, then

the mission is restarted from adjustment stage. In any case, a last refinement and

surveillance message with EOM flag set is sent into the SubsFireCommand, which in turn,

ends the mission.

170

InitFireCommand

SubsFireCommand(“FFE”)

SubsFireCommand(“FFE”)

SubsFireCommand(“FFE”)

RefineSurveil_Msg

FwdObserver BatteryFDCEnvironment FiringUnitBatteryRadioNet

Opt

VolleyFire

FFEResult := getFFEResult()

FFEResult=“AccurateInsufficient”

When (ffeType=“WithoutAdjustment”)

VolleyShot(“Initial”)

ObserveSpotting

FFEResult := getFFEResult()

Exc When (FFEResult=“InaccurateInsufficient”)

RefineSurveil_Msg

RefineSurveil_Msg

While do

Figure A.20 Fire for effect loop LSC

RefineSurveil_Msg.EOM RefineSurveil_Msg.metOfCtrl.ctrlInfo=Repeat RefineSurveil_Msg.missionType=Adj

171

APPENDIX B

ACM TO FAM MODEL TRANSFORMATION RULES

This Appendix presents the set of most prominent ACM to FAM model transformation

blocks and rules as implemented in GReAT-configured GME. Although there are an

abundance of blocks and rules depicted (about 130), it is still half of the total number. Only

relevant and representative blocks and rules are included. The full set can be found in the

transformation definition file accompanied with the thesis CD. The presented blocks and

rules are usually compact enough and self explanatory. Overall explanations are provided at

section heads and specifics are provided above the figures where deemed necessary.

B.1 Start Block

The start block is shown in Figure B.1. It presents a top-level view of the overall

transformations. It is seen that ACM2FAM transformation consists of the global container’s

initialization, data model transformation, behavioral model transformation and binding the

calls to decomposed instance document’s MSCs from the main document’s MSCs.

Figure B.1 Start block

The initialization of the global container is sketched in Figure B.2. The general idea of

the global container is that the objects it contains have global scope; that is, they are

accessible throughout the whole transformation, and it is not necessary to pass them along

in the context. The capability of eliminating portions of context passing and recurring

complex pattern matching is one of the key facilitating factors in terms of the development

effort and execution performance in this work.

172

Figure B.2 InitGlobalRoot rule

B.2 Data Model Transformation

 Data model transformation corresponds to the structural part of the ACM2FAM

transformation. Looking from a FAM perspective, it aims to construct the federation object,

the federate objects and the Federation Object Model (FOM) for the federation. The main

DataModelTr block is shown in Figure B.3. It is composed of two inner blocks named

ObjectModelTr and the relatively smaller FederationStructureTr that are executed

sequentially, in that order.

Figure B.3 DataModelTr block

B.2.1 Object Model Transformation

Object model transformation, whose top-level block is seen in Figure B.4, basically

transforms the set of field artillery message structures that are communicated among

domain actors during mission executions into HLA-OMT classes. The field artillery

messages are represented as free format UML structures with information content provided

173

by the domain. On the other hand, HLA-OMT specification [39] puts forth a data type

system. OMT specifies a core set of default data types of basic, simple, enumerated, and

array types, that correspond to universally recognized types such as byte, integer, float,

boolean and string.

Figure B.4 ObjectModelTr block

Figure B.5 DataTypes block

Figure B.6 InitDataTypeFolders rule

174

Figure B.7 BasicTypes rule

Figure B.8 SimpleTypes rule

BasicDataTypes.name()="BasicDataTypes";
HLAfloat32BE.name()="HLAfloat32BE";
HLAinteger32BE.name()="HLAinteger32BE";
HLAoctet.name()="HLAoctet";

HLAByte.name()="HLAByte";
HLAASCIIChar.name()="HLAASCIIChar";
Int32.name()="Int32";
Real32.name()="Real32";
HLAByteRepRef.name()="HLAByteRepRef";
HLAASCIICharRepRef.name()="HLAASCIICharRepRef";
Int32RepRef.name()="Int32RepRef";
Real32RepRef.name()="Real32RepRef";

return (std::string)HLAoctet.name()== "HLAoctet" &&
(std::string)HLAinteger32BE.name()=="HLAinteger32BE"
&& (std::string)HLAfloat32BE.name()=="HLAfloat32BE";

175

Figure B.9 EnumTypes rule

Figure B.10 ArrayTypes rule

return std::string)HLAASCIIChar.name()=="HLAASCIIChar"; HLAASCIIString.name()="HLAASCIIString";
HLAASCIICharRef.name()="HLAASCIICharRef";

176

Figure B.11 InitFOM rule

Figure B.12 InteractionClasses rule

InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC";
//ModelTransUtils class is in FADM2HOM_Utils.cpp, which is in UserCodeLib, as declared in Configurations/CodeLibrary
ModelTransUtils::TransformNonDurableMsg2InteractionCls_Hybrid(NonDurableMsg, InteractionClass, FixedRecordDataTypes);

177

Figure B.13 ObjectClasses rule

B.2.2 Federation Structure Transformation

 The federation structure transformation concludes the data model transformation part. It

instantiates the single federation object together with a reference to the FOM that was

previously created. It also maps every field artillery Actor and Net to a corresponding

HLA federate along with a reference to an associated SOM. In this thesis, SOMs per

federate are left as stubs and not developed any further.

Figure B.14 FederationStructureTr block

ObjectClass.name()=(std::string)DurableData.name()+"OC";
//ModelTransUtils class is in FACM2FAM_Utils.cpp, which is in UserCodeLib, as declared in Configurations/CodeLibrary
ModelTransUtils::TransformDurableData2ObjectCls_Hybrid(DurableData, ObjectClass, FixedRecordDataTypes);

178

Figure B.15 InitFOMSOMs block

Figure B.16 FederationFOM rule

Figure B.17 ActorFederateSOM block

FederationStructureFolder.name()="FieldArtilleryFederationStructureFolder";
FederationStructure.name()="FieldArtilleryFederationStructure";
Federation.name()="FieldArtilleryFed";
FOMRef.name()="FieldArtilleryFOMRef";

179

Figure B.18 GetTopLevelActors rule

Figure B.19 GetFATActors rule

Figure B.20 ActorFederateSOM rule

string temp; Actor.GetStrValue("name", temp); temp+="Fd";
FederateApplication.SetStrValue("name", temp); Actor.GetStrValue("name", temp);
temp+="SOMRef"; SOMRef.SetStrValue("name", temp);
Arguments.name()="Variables";

180

B.2.3 Initializing Variable Lists Per Federate

Every HLA federate has a variable list by definition [39]. The rules in this section create

the variable lists of the set of federates that correspond to the 8 actors and nets defined by

ACMM. The top-level variable list creation block is illustrated in Figure B.21. Every

federate has self specific variables of different data types. This makes the variable

definition by transformation rules a tedious and frustrating process. The generation of these

rules might be handy by employing higher order transformations with a text-based variable

configuration per federate. Luckily, the variable lists of the federates are not directly used

by the subsequent transformation rules and the code generator. Thus we have only created

and filled-in the variable list for the BatteryFDC federate for the sake of not skipping an

HLA defined component, and left the others as stubs.

Figure B.21 FederateVarLists block

Figure B.22 BatteryFDCFdVarList block

181

Figure B.23 InitVarList rule

Figure B.24 OMTTime rule

return (std::string)PersonnelSize.name()=="PersonnelSize" &&
(std::string)BatteryOpMode.name()=="BatteryOpMode";

TimeStamp.CreateInstance(VariableList);
Lookahead.CreateInstance(VariableList);

182

Figure B.25 FireCommandSOP_OC rule

B.3 Behavioral Model Transformation

 Behavioral model transformation is the bigger and more challenging part of the overall

ACM2FAM transformation. It uses the resulting objects of the data model transformation

as the instances and message parameters in LSCs that are being produced. The main block

of the behavioral model transformation, BehavioralModelTr, is shown in Figure B.26.

Figure B.26 BehavioralModelTr block

The AscGlobalHlaMeths block, as expounded in Figure B.27, gets the method

library of FAM that contains predefined HLA methods for federation, declaration, object,

ownership and time management. The block contains rules that take copies of all the

FireCommandSOP_OC.
CreateInstance(VariableList);

183

methods used in the transformation and associate them with the global HLA methods

element so that they are readily accessible by the LSC transformation rules. These methods

are meant to function as templates; hence their method parameters are left empty. Their

copies in the LSCs are assigned parameters with appropriate HLA class instances during

the transformation.

Figure B.27 AscGlobalHlaMeths block

 The AscInstanceOfFacm block and its subordinate blocks and rules are displayed in

Figure B.28, Figure B.29, Figure B.30, Figure B.31 and Figure B.32. The block basically

creates is-InstanceOf associations between the instances that stand for the same actor

184

element in ACM. An actor instance in the MSC head of an MSC is an instance of the same

type of instance in the MSC document head, which in turn is an instance of the canonical

actor instance in the data model’s Actors folder. This chain of associations establishes

traceability between the behavior and data sub-models of ACM and provides convenience

in subsequent rules. A similar scheme is also applied progressively on the FAM side as the

transformation rules construct the model.

Figure B.28 AscInstanceOfFacm block and DocHead_InstOf for-block

Figure B.29 DocHeadNets_InstOf_DataModelNets rule

return (std::string) FANetSrc.name()==(std::string) FANetDst.name();

185

Figure B.30 DocHeadActors_InstOf_DataModelActors block

Figure B.31 EstablishInstOf rule

return (std::string)ActorSrc.name()==(std::string)ActorDst.name();

186

Figure B.32 MSCHeadIns_InstOf_DocHeadIns rule

The CrtBehaviorMdlFld and CrtMscDoc rules are triggered one after another for

simply creating a FAM behavioral model folder and an MSC document underneath it,

provided that their corresponding counterparts are matched in the ACM. A has-

correspMscDoc association is established between the ACM and FAM MSC documents,

since there can be more than one MSC document in a source model and in such a case this

association is necessary for keeping track of MSC references in different documents and

during instance decomposition.

Figure B.33 CrtBehaviorMdlFld and CrtMscDoc rules

return (std::string)InstanceSrc.name()==(std::string)InstanceDst.name();

187

B.3.1 MSC Document Transformation

The MSCDocTr block is shown in Figure B.34. It consists of three sub-blocks, namely,

DocumentHeadTr, DocumentBodyTr and AscReferences, executed in that order. All

of the blocks and rules within MSCDocTr are defined so as to traverse the structure

delineated by the MSC metamodel to create a FAM MSC document from an ACM MSC

document.

Figure B.34 MscDocTr block

 The DocumentHeadTr block handles the data definition, message declaration, instance

declaration and timer declaration parts of the document head of the FAM being constructed.

Note also that data definition and message declaration are only addressed as stubs since the

content related with these parts are practically provided by the data model.

Figure B.35 DocumentHeadTr block

188

The instance declaration part of the MSC document head transformation is also one of

the key steps in the overall behavioral model transformation. Its role is basically to create

federate objects and a federation object derived from the corresponding counterparts found

in the federation structure portion of the FAM data model.

Figure B.36 CrtDocumentHead rule

Figure B.37 InstanceListTrans block

189

Figure B.38 GetFedApps block and GetTopActorFedApps rule

Figure B.39 CrtInstFedStr2DHInstLst and AscInstanceOfFamDH rules

190

Figure B.40 CrtFederationInst rule

Figure B.41 TimerListTrans and HandleTimer rule

 The MSC document body transformation, whose top-level block is illustrated in Figure

B.42, essentially boils down to MSC transformation. In order to start the process, an empty

FAM MSC is created per matched ACM MSC in the given document body. The cross-

domain has-correspMSC association is established for keeping track of the paired MSCs

191

in subsequent rules. The attribute mapping code copies the chart order index in addition to

the name and screen position properties of the ACM MSC to the FAM MSC. The chart

order index, although not an artifact of the MSC metamodel, is a crucial annotation that

facilitates model interpreters and particularly the code generator, by providing the

execution/interpretation order of the MSCs at run-time. Similarly, for multiple documents

in a model, the order of the documents may be specified by the document order index [12].

Figure B.42 DocumentBodyTr and DocumentBody-Utility blocks and InitDocBodyUtility
rule

FAMDocumentBody.name()=FACMDocumentBody.name();
FAMDocumentBody.position()=FACMDocumentBody.position()

192

Figure B.43 DocBodyTrans block and InitMSC rule

B.3.2 MSC Transformation

 MSC transformation is handled by the mainstream MSCTrans block, shown in Figure

B.44. Its importance is due to its incorporation of LSC transformation, which virtually is

the heart of behavioral model transformation. MSC transformation consists of three

consecutive steps that handle MSC head and body transformation, and initialize the

federation after the completion of the former two. MSC body transformation essentially

boils down to LSC transformation after an empty LSC context is created. LSC

transformation rules are further found in Section B.3.4.

 The head part of an MSC is transformed in a four rule block. The head of an MSC

houses the instances referenced in the MSC’s body, besides other elements. The basic

functionality of MSCHeadTr is to prepare the instances used in the FAM MSC, by looking

at the instances found in the corresponding MSC. Other MSC head components such as

offset, parameter set and its subcomponents are either provided explicitly inside the MSC

body or considered irrelevant for the purposes of this work and hence, are not covered. The

MSC head transformation also addresses instance decomposition.

FamMSC.name()=FacmMSC.name();
FamMSC.position()=FacmMSC.position();
FamMSC.ChartOrderIndex()=FacmMSC.ChartOrderIndex();

193

Figure B.44 MSCTrans and MscHeadTr blocks

Figure B.45 CrtMscHead rule

194

Figure B.46 CrtDerivedFamInst rule

Figure B.47 MatchFamDocMscInst rule

return (std::string)FamMscInstance.name()==(std::string)FamDocInstance.name();

FamDocInstance.CreateDerived(FamMscInstanceList)

195

Figure B.48 DecomposeInst rule

Figure B.49 MscBodyTr block and InitMscBody-LSC rule

FamLSC.name()=FacmLSC.name();
FamLSC.position()=FacmLSC.position();
FamLSC.ActivationMode()=FacmLSC.ActivationMode();
FamLSC.Quantification()=FacmLSC.Quantification();

FamDecomposed.name()=FacmDecomposed.name();
FamMscRef.name()=FacmMscRef.name();
FamDecomposed.position()=FacmDecomposed.position();
FamMscRef.position()=FacmMscRef.position();

196

B.3.3 Federation Initialization

 Before moving into LSC transformation this section makes a fast forward to explain the

federation initialization on the FAM side. The federation initialization is done after an MSC

document is transformed head and body-wise. This indicates that it is a post processing step

following the full transformation of all the LSCs in the document

 The HLA federation initialization activities are done in the InitFederation block

sketched in Figure B.50. This is a part of the behavioral model transformation indigenous to

the FAM domain; that is, there are no associations in the transformation rules to ACM

except for the identification of the instances involved. Due to the lack of such an input

source, the information content flowing through the federation initialization part is directly

embedded inside the transformation rule definitions.

Figure B.50 InitFederation block and GetTopLSCPrechart rule

The InitFederation block handles four preliminary federation execution activities of

creating a federation execution, joining federates to the federation execution, initializing

time management and declaration management. The federation initialization events are

gathered in a sub-chart which itself is placed inside the pre-chart of the top-level FAM

LSC. This way, federation initialization is guaranteed to be performed right at the

return ((std::string)FamMSC.name()=="AdjFFE" &&
(std::string)FamLSC.name()=="AdjFFELSC" &&
(std::string)FamPrechartLSC.name()=="PrechartAdjFFE");

197

beginning. The subchart is made temperature-wise “hot”; hence, mandatory to execute [14].

Since there is no clue from the ACM regarding the execution order of the chart, it is read

from a look up table in the user code library; thus, effectively delegated to external

configuration.

Figure B.51 CreateFedEx block and CreateFedExLSC rule

Figure B.52 HandleCreateFedEx block and CopyCreateFedEx and
UpdateCreateFedExArgs rules

CreateFederationExecution.CreateInstance(FamLSC);

FamSubchart.name()="InitCreateFedEx";
FamSubchart.position()="(700,200)";

198

Figure B.53 SendCreateFedEx rule

Figure B.54 JoinFedEx block and AscParentInst rule

B.3.4 LSC Transformation

 The LSC transformation is the where the nuts and bolts of the evolution of field artillery

inter-entity communications to federate interactions, mediated through the HLA RTI, are

defined. The LSC transformation process is carried out in the LSCTrans block, as

overviewed in Figure B.55. Each pass of the block inputs an ACM LSC and a stub FAM

LSC, and step by step constructs the FAM LSC as the transformation proceeds through the

internal blocks.

std::string name=(std::string)CreateFederationExecution.name();
__int64 p=(_int64)ModelTransUtils::GetIntegralValueForKey("Meth",name,"Precedence");
FamOrdCon_InsTypEl_MscInsEv.SetIntValue("Precedence",p);
FamOrdCon_InsTypEl_MscInsEv.Temperature()="Hot";

199

Figure B.55 LSCTrans block

Activation condition transformation is performed in the ActivationConditionTr

block, as illustrated in Figure B.56. There is a simple one-to-one correspondence and

equivalence between ACM and FAM activation conditions. The definition of the LSC

transformation blocks are generally based on the instance event type categorization of the

child elements to be processed in the LSC.

Figure B.56 ActivationConditionTr block and ActivationCondition rule

B.3.4.1 Instance Reference Transformation

The execution order of the sub-blocks of the LSCTrans block does not matter except for

the second and the last blocks. The InstanceRefTr depicted in Figure B.57 creates the

necessary federate instances (i.e., references) in the FAM LSC by inspecting the ones found

200

in the corresponding ACM LSC. Since these instances are used in the graph patterns of

most of the subsequent rules, InstanceRefTr must be executed before them. The last

block, SpecialConnsTr, create associations between two instance events [12] within the

LSC and thus need to be executed after ensuring all such events have been created.

Figure B.57 InstanceRefTr block

Figure B.58 InstRef4ActorsNets rule

FamInstanceRef.name()=(std::string)FacmInstanceRef.name()+"Fd";
FamInstanceRef.position()=(std::string)FacmInstanceRef.position();

201

Figure B.59 GetMSC4LSC block and DispatchLSC rule

Figure B.60 MatchParentMSC, MatchParentInlExp and MatchParentLSC rules

Figure B.61 InstRef4Fed rule

FamFedInstanceRef.name()=(std::string)Federation.name()+"Ref";
FamFedInstanceRef.position()=(std::string)Federation.position();

202

B.3.4.2 Prechart and Subchart Transformation

Precharts and subcharts are actually child LSCs that have special role names on the

containment associations with their parents. The PreSubChartTr block, shown in Figure

B.62, handles the transformation of precharts and subcharts of an LSC. The

CreateSubSchart rule creates a subchart under the current FAM LSC with the

Subchart compsition role for every subchart of the corresponding ACM LSC.

Figure B.62 PreSubChartTr block

Figure B.63 DispPreSubchart test and CasePrechart case

203

The CreatePreChart rule, which is sketched in Figure B.64, is defined similar to the

CreateSubChart rule. A notable statement in attribute mapping code (partly shown in the

figure) is the call to the SetInstRefAssocs4LSCChildren method of the user code

library. This method is invoked for all LSC child creations of type LSC (pre/subchart) and

multi instance event, including inline expressions, references, conditions, otherwise clauses,

and LSC idioms [12]. It handles the routine task of creating associations between an LSC’s

child elements and the relevant instances in the LSC programmatically.

Figure B.64 The CreatePreChart rule

B.3.4.3 Multi Instance Event Transformation

 The top-level block, MultiInstanceEventTr, is depicted in Figure B.65. Initially, a

child multi instance event of the ACM LSC is matched and dispatched to one of the three

alternative transformers together with the FAM LSC. The CreateCondition (seen in

Figure B.67) and CreateOw rules perform condition and otherwise transformations,

respectively. These rules simply create FAM elements that directly correspond to matched

ACM elements. The other types of multi instance events form the family of reference

identifications and are handled in the RefIdentTr block. Reference identification types are

inline expressions and references. The CreateReference and CreateMSCRef rules, both

shown in Figure B.68, simply create a FAM Reference element and a reference to an

MSC under that, respectively.

FamPrechart.name()=FacmPrechart.name();
FamPrechart.position()=FacmPrechart.position();
FamPrechart.ActivationMode()=FacmPrechart.ActivationMode();
FamPrechart.Quantification()=FacmPrechart.Quantification();
ModelTransUtils::SetInstRefAssocs4LSCChildren
 (FamPrechart,FacmPrechart, FamLSC);

204

Figure B.65 The MultiInstanceEventTr and RefIdentTr blocks

Figure B.66 The GetMultiInstEvent rule and DispMultiInstEvents case

 The inline expressions are transformed in the InlineExpTrans block. The block

initially directs the execution flow to one of the nine inline expression creator rules based

on the input ACM inline expression type. Six of these create alt, par, opt, loop, exc

and seq elements [15], and three of them create if-then-else, while-do and repeat-

until idioms [12]. These rules simply create FAM inline expressions for the given ACM

inline expressions and link them together using the has-correspInlExp cross-domain

association. The attribute mapping codes copy the element properties.

205

.

Figure B.67 The CreateCondition rule

Figure B.68 The CreateReference and CreateMSCRef rules

Figure B.69 The GetInlExpFromLSC rule

FamCondition.name()=FacmCondition.name();
FamCondition.position()=FacmCondition.position();
ModelTransUtils::SetInstRefAssocs4LSCChildren
(FamCondition,FacmCondition, FamLSC);

206

 The RefIdentCommonTr is the last, sink block of the RefIdentTr block that creates

gate, top, bottom and time interval components common for all reference identification type

of elements. Time interval transformations further specialize into measurement, singular

time and bounded time transformations. All of these rules are quite intuitive and perform

ACM to FAM attribute value copying in a straightforward manner.

Figure B.70 The RefIdentCommonTr block and CreateGate rule

B.3.4.4 Orderable Event Transformation

 The top level OrderableEventTr block is shown in Figure B.71. The block starts by

matching and dispatching a LSC contained ACM orderable event to the appropriate rule or

block to create its FAM counterpart. The kinds of orderable events handled are action,

create, timer event, method event, and message event. The HandleAction rule is also

provided in the figure as an example to explain how a typical orderable event rule works.

For any given ACM action, a new FAM action is created in the given parent FAM LSC.

From the ACM instance that is in association with the matched action, the corresponding

FAM instance reference is obtained using the cross-domain association. Then a similar

association is established between the FAM action and the FAM instance reference.

207

Figure B.71 The OrderableEventTr block and HanleAction rule

Figure B.72 The GetOrdEvent rule and DispOrdEvents case

The timer events, consisting of start timer, stop timer and timeout, form a sub-category

of orderable events. The TimerEventTr block, sketched in Figure B.73, performs the

208

transformation of timer events. The block initially dispatches a matched ACM timer event

and a FAM LSC to one of the three timer event creator rules. After the event creations,

instance reference - timer event associations are established in the same manner shown in

HandleAction rule. Timer events contain references to timer elements. Finally, the

references to timers are set for the FAM timer events..

Figure B.73 The TimerEventTr block and CreateStartTimer rule

Figure B.74 The InstRefTimerEvAscs rule

209

Figure B.75 The HandleTimerRef rule

Once the orderable events are transformed in their specifics, any general orderings (i.e.,

before and after) imposed on them are finally applied in the GeneralOrderTr block, as

expounded in Figure B.76.

Figure B.76 The GeneralOrderTr block and HandleBefore rule

 r
e
tu

rn
 (

s
td

::
s
tr

in
g
)F

a
c
m

T
im

e
r.

n
a
m

e
()

=
=

(s
td

::
s
tr

in
g
)F

a
m

T
im

e
r.

n
a
m

e
()

;

210

The MethEventTr block is shown in Figure B.77 where it handles the transformation

of call, receive, replyout and replyin events that constitute the method call event

category. These transformations are quite straightforward and handled similar to the

HandleAction rule explained above.

Figure B.77 The MethEventTr block and HandleCall rule

B.3.4.5 Message Event Transformation

The main message event transformation block, MsgEventTr, is displayed in Figure

B.78. It distributes the incoming packets according to the type of the matched ACM

message event. The OutMsg2HLAMeth block, also shown in the figure, handles the

transformation of out events. Within the block, both FACM and FAM input packets are fed

to two for-blocks in parallel that are specialized in out event transformations based on the

type of the message payload of the FACM out event. Non-durable message transmitting out

events are transformed in OutNonDurableMsg2HLAMeth for-block and durable message

transmitting out events are transformed in OutDurableMsg2HLAMeth for-block.

211

Figure B.78 The MsgEventTr and OutMsg2HLAMeth blocks

B.3.4.5.1 Non-Durable Message Event Transformation

The OutNonDurableMsg2HLAMeth block that handles non-durable ACM out message

transformation is rendered in Figure B.79.

Figure B.79 The OutNonDurableMsg2HLAMeth block and GetNDMsg rule

FAMM::HLAMethod sendInt = SendInteraction.CreateInstance(FamLSC);
sendInt.name()="NewSendInteraction";
FAMM::HLAMethod recvInt = ReceiveInteraction.CreateInstance(FamLSC);
recvInt.name()="NewReceiveInteraction";

212

The initial rule, GetNDMsg, matches and delivers the ACM out event and the non-

durable message and FAM LSC to the next rule, as well as programmatically creating a

copy of SendInteraction and ReceiveInteraction HLA methods inside FAM LSC. The

original methods do not contain any arguments, but their copied instances will have theirs

assigned (such as HLA classes and federate references) as the transformation proceeds. The

method copies are tagged as “New” to differentiate and match them from the others of the

same type in the next rule

In the CreateIntCls rule of Figure B.80, the guard expression is used to make a name

comparison to check whether the send and receive interaction methods are prefixed with

“New” in their names. Once the match is there, a new interaction class corresponding to the

ACM non-durable message is created in the FAM FOM. The interaction class references of

the both HLA methods’ supplied arguments are made to refer to the new interaction class.

The attribute mapping code removes the “New” tags of the HLA methods, sets the name of

the new interaction class to the name of the non-durable message suffixed by “IC”, and

invokes the user library code method to programmatically build the interaction class from

the non-durable message

Figure B.80 The CreateIntCls rule

SendInteraction.name()="SendInteraction";
InteractionClassRef1.name()=(std::string)NonDurableMsg.name()+"_IntRef";
ReceiveInteraction.name()="ReceiveInteraction";
InteractionClassRef2.name()=(std::string)NonDurableMsg.name()+"_IntRef";
InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC";
ModelTransUtils::TransformNonDurableMsg2InteractionCls_Hybrid

 (NonDurableMsg, InteractionClass, FixedRecordDataTypes);

re
tu

rn
 (

s
td

::
s
tr

in
g
)S

e
n
d
In

te
ra

c
ti
o
n
.n

a
m

e
()

=
=

"N
e
w

S
e
n
d
In

te
ra

c
ti
o
n
"

&
&

(s

td
::
s
tr

in
g
)R

e
c
e
iv

e
In

te
ra

c
ti
o
n
.n

a
m

e
()

=
=

"N
e
w

R
e
c
e
iv

e
In

te
ra

c
ti
o
n
";

213

The SendRecvIntClsSrc rule in Figure B.81 first creates an out message event and

associates it with the source instance (i.e., federate) using an ordered connection. Then it

associates the out event to the send interaction method using a special connection. Finally it

associates the send interaction method to the federation instance using an address

connection. After this, a similar complementary stage starts for the receive interaction

method, but this time from the federation to the target federate. First it associates the

receive interaction method to the federation instance using an address connection. Then it

creates an in message event and associates it to the receive interaction method using a

special connection. The attribute mapping code copies the precedence and temperature

values from the ACM ordered connection to the FAM ordered connection.

Figure B.81 The SendRecvIntClsSrc rule

The last part of the out event transformation is done by one of the two parallel rules

named SendRecvIntClsDstInst and SendRecvIntClsDstRef, addressing the cases of

message event target being an instance or an MSC reference, respectively. The

SendRecvIntClsDstInst rule is shown in Figure B.82. It matches the pattern that associates

the ACM non-durable message to the target instance reference, and creates a corresponding

association on the FAM side. The attribute mapping code copies the precedence and

214

temperature values from the ACM ordered connection to the FAM ordered connection with

precedence being increased by one, since that value was already used for the other message

event in the previous rule. The other parallel rule, SendRecvIntClsDstRef, is defined

similarly with the only difference being the reference to an instance replaced by a reference

to an MSC reference.

Figure B.82 The SendRecvIntClsDstInst rule

B.3.4.5.2 Durable Message Event Transformation

Durable message transformation is the biggest of the LSC instance event

transformations in terms of size and complexity. Figure B.83 displays the

OutDurableMsg2HLAMeth. It is defined methodologically similar to the

OutNonDurableMsg2HLAMeth block, only being about three times in size. Thus, it is

redundant to explain the details of the transformation, but appropriate to provide an

overview on the differences.

The durable messages in ACM are defined to be of, instantiation, update and deletion

types [11]. There are three parallel courses of transformations that address out message

215

events of each durable message type. An ACM instantiation message out event maps to six

FAM HLA method out events. The mapping cardinalities of an out event for update and

delete types are both one to two.

Figure B.83 The OutDurableMsg2HLAMeth block

Figure B.84 The CrtObjClsUpdRef rule

216

Figure B.85 The ObjClsOutInSrc rule

Figure B.86 The ObjClsOutInDstInst rule

.

B.3.4.6 Non-Orderable Event Transformation

The non-orderable events constitute the set of instance events that do not require an

explicit ordering of execution. Figure B.87 depicts the NonorderableEventTr block that

217

handles the transformation of non-orderable events. The block initially matches and

dispatches the input packets to one of the handler rules according to the type of the ACM

non-orderable event. The handler rules perform the transformation of method, end method,

concurrent, end concurrent, suspension, end suspension, stop, end instance, invariant, end

invariant and simultaneous region.

Figure B.87 The NonorderableEventTr block and GetNonOrdEvent rule

The HandleMethod rule is provided as an example to explain how a typical non-

orderable event rule works, in Figure B.88. For any given ACM method, a new FAM

method is created in the given parent FAM LSC. From the ACM instance that is in

association with the matched method, the corresponding FAM instance reference is

obtained using the cross-domain association, “has-correspInstRef”. Then a similar

association is established between the new FAM method and the FAM instance reference.

218

Finally, a “has-correspInEv” association is established between the new FAM method and

the ACM method. All the other non-orderable event rules are similarly defined in a

straightforward manner.

Figure B.88 The HandleMethod rule

B.3.4.7 Special Associations Formation

The SpecialConnsTr block, placed at the end of the LSC transformation path, is

responsible for the transformation of those parts that do not involve instances. It is

deliberately positioned as the last LSC transformation block because it requires all of the

FAM LSC entities to be already created and available by the time it starts execution.

Figure B.89 shows the SpecialConnsTr block, which is the transformer for special

associations. There are three kinds of special connections used in this work that associate

FamMethod.name()=FacmMethod.name();
FamMethod.position()=FacmMethod.position();
FamOrdCon_InsTypEl_MscInsEv.Precedence()=FacmOrdCon_InsTypEl_MscInsEv.Precedence();
FamOrdCon_InsTypEl_MscInsEv.Temperature()=FacmOrdCon_InsTypEl_MscInsEv.Temperature();

219

simultaneous regions to instance events, timer starts to timer events and general order

elements to ordered events. The figure additionally shows the AscSimRegToInstEv rule as

an explicatory example. For any ACM simultaneous region that is specially associated with

an instance event, the rule matches their corresponding FAM simultaneous region and the

instance event by utilizing their cross-links to FAM. Then a similar kind of special

association is established between the two FAM elements. The other two special

connection transformations are defined with the same approach.

Figure B.89 The SpecialConnsTr block and AscSimRegToInstEv rule

message, start timer event, etc.

B.3.5 Bind Decomposed Instance MSC References

The last block of the start rule, AssocDecompAsRefs, is illustrated in Figure B.90. In

the previous DecomposeInst block, new decomposed FAM MSCs were created

corresponding to the FAM MSCs that contained decomposed-labeled instances. Such

instances contain references to their decomposed MSCs. At the end of the transformations,

the reference associations between the new FAM decomposed instances and MSCs are still

not bound. The role of AssocDecompAsRefs, is to establish these bindings.

220

Figure B.90 AssocDecompAsRefs block and GetBothMSCs rule

Figure B.91 GetAndBindDecomposedMSC rule

221

APPENDIX C

CHANGES MADE IN METAMODELS AND CODE GENERATOR

This appendix summarizes the changes made in ACMM, FAMM and the simulation

Code Generator (CodeGen) in the course of developing ACM2FAM transformations. The

change log for FAMM is especially important because it was previously developed in

another study [12]. Although FAMM functions smoothly as a domain metamodel in GME,

it causes some errors and issues when used as a target model for transformation rules in

GReAT. The reason for most of these problems is that transformation definitions in GReAT

are first interpreted into C++ code and then this code is executed to actually perform the

transformation. C++ is a strongly typed language and has strict syntax rules. The part of the

generated model transformation code from FAMM in its original state is not error free.

The first part of this appendix categorically summarizes the issues revealed in the

metamodels and the generated transformation code. The second part outlines the issues

with the simulation code generator, which were either inherent or introduced indirectly due

to the changes made in FAMM. The change log for the metamodels and the CodeGen are

provided in the thesis documentation CD.

C.1 Issues with the Metamodels

This section summarizes the issues caused by ACMM, FAMM or their sub-metamodels

during the ACM2FAM development and transformation code generation processes and

describes the solutions, and sometimes, the workarounds applied to mitigate the problems.

The changes made in between the metamodel versions together with the dependent sub-

model versions, if there are any, are documented in the accompanying thesis CD.

C.1.1 Eliminating One-to-Many Connections

If a connection modeling element is used more than one time as source-to-connector or

connector-to-destination, then the code generator generates duplicate method definitions for

those connection parts, which result in compile errors. In other words, if a model element

E1 (e.g., InlineOperandInterfaceBase) is associated as source with more than one

elements, say, E2 and E3 (e.g., Reference and Final) as destinations using the same

222

connection element (e.g., HmscOperandConnection), then the generated code is

erroneous with duplicate type definitions. The specific place of the error is inside the class

definition of E1 where duplicate association role types are defined for E2 and E3 with the

same name as the connection element. As a result, the GR-engine or GR-debugger gives

error. This case is simply exercised and verified in the House2OrderTest sample. The

same problem also arises if the associations were destinations.

Note that if the association source (or destination) role names are manually changed to

unique names in the umt.mga file, then the above problem of method redefinition is

resolved, but this time the metamodel header file produces an error.

Therefore, one to many connections of the same Connection element must be avoided.

This is achieved by building a connection hierarchy so that ambiguities in code generation

are eliminated.

C.1.2 Name Clashes with Reserved Words

GReAT’s transformation code generator generates a class or method for every modeling

element, role or attribute having either the exact element name or prefixed/suffixed by

some tag word. In the exact name usage, the C++ compiler produces syntax errors for those

names that are C++ keywords. These names must be altered to non-keyword forms within

the metamodels.

Also, there are some auto-generated utility or management methods for every generated

First Class Object (FCO) class, such as Create(). Modeling element names must not also

be the same with such internally used artifact names for the same reason.

C.1.3 Non-unique FCO Names

Some FCOs in different paradigm sheets within the same metamodel or in the unified

ACM2FAM transformation model obtained by exporting ACMM and FAMM into the

transformation model, may occasionally have exactly the same name. This does not cause

any problem as far as GME modeling is concerned. However, when those modeling

elements are used in GReAT, the transformation code generator produces duplicate class

names, which result in syntax errors at compile time.

Therefore, modeling element name uniqueness must be established all across the

components in a GReAT transformation model.

C.1.4 References Pointing to Multiple Items

Any GME Reference that pointed to all of a super class's child classes was modified to

refer to the super class only, in order to reduce redundancy. This resulted in an extra

inheritance hierarchy in the model transformation definition file to pack all the child classes

223

under a generated common parent, and the reference pointing to that super class. This is just

for the reader’s information. This modification is just an internal optimization and does not

have any negative effect on the models or transformation definitions.

C.2 Issues with the Simulation Code Generator

 As in the case of FAMM usage, the simulation Code Generator (CodeGen) gave errors

when invoked on the FAMs that were generated from AdjFFE mission ACMs. The

problems generally had to do with the imperfection of the CodeGen. The reason for most of

the issues, we think, is that the development of CodeGen was majorly steered by the

samples that were manually created during FAM testing. The scope and representative

power of those samples were not as far-reaching as AdjFFE FAMs. In addition to these, the

CodeGen simply had some syntactic and semantic flaws in its code generation logic and

shortcomings in FAM coverage that we have discovered during our exercises. Finally, a

portion of the problems were introduced after changes were made to FAMM due to GReAT

and C++ restrictions, because the CodeGen is strictly coupled to FAMM in terms of model

element names and structures.

 The details of the changes made to the CodeGen are provided in a separate document

inside the accompanying thesis CD. The changes are presented in two-column tables per

Java source file, where the first column shows the original code part and the second column

shows the changed code part.

224

APPENDIX D

TIPS AND PITFALLS IN DEVELOPMENT WITH GREAT

This appendix provides hints and recommendations derived from our experience in

realizing ACM2FAM transformation for future model transformation developers of

GReAT. The GReAT version used in this thesis is 1.7.1. Although GReAT documentation

contains a fair amount of information and samples on how to use GReAT in defining

transformations we have found out that it was not clear enough on some crucial points or

contained missing information. In addition to that, GReAT’s error messages are often not

very informative and even worse, the system occasionally crashes after encountering errors.

Thus we expect that the tips and the explanations on the pitfalls presented in here would be

very valueble for the prospective GReAT developers.

D.1 Defining Cross-Links

It is often the case in model transformations that maintaining references between the

different models is necessary. Moreover, it is usually required to maintain temporary

information that may correspond to both source and target paradigms. Such problems are

tackled in GReAT by using an additional domain to represent all the cross-domain links

and temporary links. In GReAT users can create a Package for describing the cross-links.

In the package the users can drag references to classes in other packages and create new

association types

Cross-links can be defined not only between different domains but can also be used to

extend a domain to provide some extra functionality required by the transformation. By

using a different domain/package for cross-links we are able to specify a larger,

heterogeneous domain that encompasses all the domains and cross-references. This model

extension capability can be very handy in defining the ACM2FAM transformation, but care

must be spent during its usage.

We tried to utilize the cross-links mechanism to annotate the metamodels with extra

model elements for facilitating the transformations, but unexpected errors thrown at run-

time later proved it useless. An example to this from our case study was the introduction of

the NonDurableMsg type to represents the whole family of durable messages in the model.

225

It was decided in ACM2FAM transformations to transform every DurableData_Msg

messages into HLA object classes and all the other messages into interaction classes. Every

ACMM message extends from the FAMessage abstract super type, including the

DurableData_Msg. However, there was initially no super type to represent “Non-

Durable” messages. The existence of DurableData_Msg enabled us to produce all of the

object classes with a simple, straightforward rule definition. On the other hand, without a

“Non-Durable” super type, pattern matching for the production of interaction classes would

be cumbersome, with many similar, but distinct rules. An alternative to that was a single

rule with a fairly sophisticated guarding mechanism to distinguish among the FAMessages

– not a better solution either.

We introduced the NonDurableMsg abstract element, which is not part of the ACMM,

in a new cross-links package in the ACM2FAM model to gather all the messages having

non-durable nature under a single super type. A single transformation rule that catched any

non-durable message sufficed to create the stubs of all the interaction classes in the target

model, just as in the case of object class generation. Things went fine during transformation

rule definition until it came for testing.

When we introduced the new message type inside a class diagram that is not under the

ACMM package (e.g., a cross-links package), then the GReAT master interpreter threw a

“Buffer overrun error”, leading to the crash of the execution and corruption of the

transformation file, with an abnormal exit. The sequence of error messages are presented in

Figure D.1.

Only after defining the element inside the ACMM package, the transformation worked.

The new hierarchy definition then could be inside cross-links, or ACMM, it did not matter.

What is important is that the new element must be defined under ACMM package. (We

believe that this provides a namespace for the new element, which is mandatory for all of

the patterns that are used in transformation definitions.).

 Our lesson learned was to spare cross-links usage for only defining associations

between the source and target metamodels, not introducing new model elements. After this

incident we modified ACMM to accommodate the new NonDurableMsg element there.

D.2 Role Names and Cardinalities in Cross-Links

If new associations are defined as cross-links between the source and target metamodel

elements and roles and cardinalities are given to both association ends, as seen in Figure

D.2, then the associations have to be used with exactly the same role names (and

cardinalities) later in rule definitions. Otherwise, the transformation crashes at runtime,

226

giving a “FACM2FAM-gr.dll don’t exist” error. This error never goes away unless the

association usage is corrected and the GReAT Master Interpreter is re-run (to regenerate

everything). Note that whenever we modify something in CrossLinks, we have to re-run

GReAT Master Interpreter, since this is counted as part of metamodel.

Figure D.1 Errors thrown by GR-engine when using cross-links to define model elements

Figure D.2 Sample cross-links

227

D.3 Working with Globals

In order to easily access an element not found in a rule pattern, a “Global” object is

defined and an association between the element and the global object is created. A global

object can directly be accessed anywhere within transformation rules. Through a global

object other model elements can be accessed, provided that they are defined to be

associated with the global object in a separate package, and that a CreateNew binding is

established between them in a previous rule, before being accessed. Please refer to Figure

D.3 and Figure D.4 for a sample global object definition and usage.

D.3.1 Rules for Defining Global Objects

The rules listed below should be followed in defining and using global objects:

1. Define a package under the root folder. Set the Temporary attribute of the package

to True. (This is mandatory for globals to work!)

2. Define a class diagram under the package created in 1.

3. Drag and drop an object of kind Class to the class diagram from the part browser.

4. Create as many ClassCopy objects into the class diagram as needed. Make those

copies refer to the necessary model elements in the source or target metamodels.

5. Establish associations between the global class and the class copies. Make sure to

give valid and unique role names to association ends. Also set both src and dst

cardinalities, where 0..1 is usually what is needed.

D.3.2 Defining Multiple Global Objects

It is possible to define as many global objects as wished; however, there is a crucial

point to take into consideration in doing so: Instead of defining extra class diagrams into

the previously defined package, define a separate package and define the new class diagram

with the new global object under the new package.

Otherwise, GReAT mistakenly disregards at least one of the global objects that are

under the same package, but in different class diagrams. This could be observed as an

ERROR in the Translator.log file if the CodeGen interpreter is run, indicating that one

of the global objects that is used in rules are unbound. (Actually, in our exercise, it was the

first GlobalRoot, not the newly defined GlbHlaMeths). Consequently, all of the

associated objects with the global object in question are also reported to be unbound.

Although in this situation, GReAT execution completes, desired results are not obtained.

We have not tried to define extra global objects in the same package and in the same

class diagram, but have the feeling that it would most probably work correctly. However,

228

limiting oneself to a single package and class diagram would quickly clutter the diagram

sheet and it would be impractical to define many items there.

Figure D.3 Global object definition in GReAT/GME

Figure D.4 GReAT rule showing two global objects and a library usage

Top-level RootFolder

RootFolder coming from library

Global object

229

D.4 Library Usage in Models

A previously defined model could be imported and used as a library in another newly

defined model, provided that the latter model’s metamodel is a superset of the former

model’s metamodel. For example a model of HOMM can be attached as a library in a

HFMM or FAMM model. Please refer to Figure D.4 and Figure D.5 for sample library

usages in a transformation definition and in a FAM, respectively.

D.4.1 Rules for Attaching a Library

The rules listed below should be followed in attaching a library to a model:

1. Open a model in GME editor. Right click the root folder and select “Attach Library”

menu item from the context menu.

2. Select the .mga file of the library model from the opened file selector, and press OK.

3. The model is seen attached, as is, under the root folder, marked with a booklet icon.

4. Note that the library item indicated with the icon is also a (subordinate) RootFolder

type, such as the already existing, system provided, top level RootFolder.

5. In accessing the library’s child objects during model transformations, make sure to

indicate (as a pattern) the root folder coming from the library under the top level root

folder (see Figure D.4).

Figure D.5 IMLib and IEEE1516_Defaults used as libraries in a FAM model

230

D.4.2 Crashing of GReAT during Library Import

In the default GReAT/GME configuration, we receive a “Buffer Overrun” exception

similar to the one shown in Figure D.1 if we try to attach large libraries such as LMM into,

for example, ACMM or FAMM. We occasionally need such library updates after we

modify the underlying libraries in the models. The solution to this problem was provided by

the GReAT development team when we had reported the issue to them.

There is an add-on in GME that runs in the background when a MetaGME project, such

as ACMM or FAMM, is edited. Its role is to turn the abstract attribute of FCOs to true,

anytime an FCO is added. This add-on called MetaMAid is causing the problem. We are

advised to turn off that add-on while a project is open and then attach the library. The add-

on is turned off by selecting MetaMAid from the list provided by the File�Register

Components menu item and then pressing the Toggle (Disable since GME 11) button.

Also, the ‘Systemwide’ radio button must be selected (‘For user only’ is selected by

default) in the Register radio group in order for the operation be effective. After the

library is attached, we can turn back the add-on if we want to. Future releases of GME

might solve this problem.

231

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Özhan, Gürkan
Nationality: Turkish (TC)
Date and Place of Birth: 18 August 1976, Tarsus
Marital Status: Married, two daughters.
Phone: +90 532 3102067
Email: gurkanozhan@gmail.com

EDUCATION

Degree Institution Year of Graduation

MS METU Computer Engineering 2001
BS METU Computer Engineering 1998
High School Tarsus American School 1994

WORK EXPERIENCE

Year Place Enrollment

2008-Present NATO C3 Agency Senior Scientist
2004-2008 STM A.Ş. Software Team Leader
2002-2004 Havelsan A.Ş. Software Engineer
2001-2002 Cybersoft A.Ş. Software Engineer
1998-2001 METU Computer Engineering Research Assistant

FOREIGN LANGUAGES

English, Dutch, German

PUBLICATIONS

Journals

1 G. Özhan and H. Oguztüzün, Graph-based transformation of conceptual models to
executable high level architecture federation models, (under review).

2 G. Özhan, H. Oguztüzün, P. Evrensel, Modeling of field artillery tasks with Live
Sequence Charts, The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology (JDMS), vol. 5, no. 4, pp. 219–252, October, 2008. DOI:
10.1177/875647930800500402.

232

International Conferences

1. G. Özhan, H. Oguztüzün, Generating Simulation Code From Federation Models: A
Field Artillery Case Study, in: European Simulation Interoperability Workshop, 11E-
SIW-007, The Hague, Netherlands, June, 2011.

2. G. Özhan, A.C. Dinç, H. Oguztüzün, Model-integrated development of field artillery
Federation Object Model, in: Second International Conference on Advances in System
Simulation (SIMUL), pp.109–114, Nice, France, August, 2010.

3. G. Özhan, H. Oguztüzün, Model-Integrated Development of HLA-Based Field
Artillery Simulation, in: European Simulation Interoperability Workshop, 06E-SIW-
027, pp. 187-196, Stockholm, Sweden, June, 2006.

National Conferences

1. G. Özhan, H. Oguztüzün, Topçu Bataryası Đçin Kavramsal Modelleme Ve
Uygulamaları (Conceptual Modeling for Field Artillery Battery and Its Applications),
in: 2. Ulusal Savunma Uygulamaları Modelleme ve Simülasyon Konferansı –
USMOS’07 (2nd National Conference on Defense Applications of Modeling and
Simulation), pp. 437-446, Ankara, Turkey, April, 2007.

2. G. Özhan, H. Oguztüzün, N. E. Özdemirel, Olay Çizgeleriyle Simülasyon
Modellemesi (Simulation Modeling with Event Graphs), in: YA/EM’01 Yöneylem
Araştırması ve Endüstri Mühendisliği XXII. Ulusal Kongresi, p. 55, Ankara, Turkey,
July, 2001.

Thesis

1. G. Özhan, Developing a Discrete Event Simulation Engine with Concurrent Constraint
Programming, MSc Thesis, Department of Computer Engineering, Middle East
Technical University (METU), Ankara, Turkey, January, 2001.

HOBBIES

Reading, traveling, swimming

