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ABSTRACT

TRANSFORMING MISSION SPACE MODELS
TO EXECUTABLE SIMULATION MODELS

Ozhan, Giirkan
Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit Oguztiiziin

September 2011, 232 pages

This thesis presents a two step automatic transformation of Field Artillery Mission Space
Conceptual Models (ACMs) into High Level Architecture (HLA) Federation Architecture
Models (FAMs) into executable distributed simulation code. The approach followed in the
course of this thesis adheres to the Model-Driven Engineering (MDE) philosophy. Both
ACMs and FAMs are formally defined conforming to their metamodels, ACMM and
FAMM, respectively. ACMM is comprised of a behavioral component, based on Live
Sequence Charts (LSCs), and a data component based on UML class diagrams. Using
ACMM, the Adjustment Followed by Fire For Effect (AdjFFE) mission, which serves as
the source model for the model transformation case study, is constructed. The ACM to
FAM transformation, which is defined over metamodel-level graph patterns, is carried out
with the Graph Rewriting and Transformation (GReAT) tool. Code generation from a FAM
1s accomplished by employing a model interpreter that produces Java/Aspect] code. The
resulting code can then be executed on an HLA Run-Time Infrastructure (RTI). Bringing a
fully fledged transformation approach to conceptual modeling is a distinguishing feature of
this thesis. This thesis also aims to bring the chart notations to the attention of the mission
space modeling community regarding the description of military tasks, particularly their
communication aspect. With the experience gained, a set of guidelines for a domain-

independent transformer from any metamodel-based conceptual model to FAM is offered.

Keywords: Domain Specific Modeling, Graph-Based Model Transformation, Field
Artillery, High Level Architecture, Code Generation
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0z

GOREV UZAYI MODELLERINI
KOSTURULABILIR SIMULASYON MODELLERINE DONUSTURME

Ozhan, Giirkan
Doktora, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi: Dog¢. Dr. Halit Oguztiiziin

Eyliil 2011, 232 sayfa

Bu tez Sahra Topgulugu Gorev Uzayr Kavramsal Modelleri’nin (ACM) Yiiksek Seviye
Mimarisi (HLA) Federasyon Mimari Modelleri’'ne (FAM), onun da kosturulabilir dagitik
simiilasyon koduna iki kademeli otomatik doniisiimiinii sunmaktadir. Bu tezin seyrinde
izlenen yaklasim Model Giidiimlii Miihendislik (MDE) felsefesiyle ortiismektedir. ACM ve
FAM’larin her ikisi de, sirasi ile, metamodelleri olan ACMM ve FAMM ile uyumludurlar.
ACMM, Canli Siralama Cizelgelerine (LSCs) dayanan bir davranis bileseni ile, UML sinif
diyagramlarina dayanan bir veri bileseninden olusmaktadir. ACMM kullanilarak, model
doniisiim Ornek c¢alismasi i¢in kaynak model teskil eden, Tanzim Sonrasi Tesir Atist
(AdjFFE) gorevi de kurgulanmistir. Metamodel seviyesi cizge Ooriintiileri iizerinden
tanimlanan ACM’den FAM’a doniisiim, GReAT adi verilen ara¢ ile gerceklestirilmistir.
FAM’dan kod iiretilmesi, Java/Aspect] kodu iireten bir model yorumlayicisi kullanilarak
basarilmgtir. Uretilen kod daha sonra bir HLA Kosma-Zamani Altyapisi (RTI) iizerinde
calistirllabilmektedir. Kavramsal modellemeye olgunlasmig bir doniisim yaklasim
getirmek bu calismanin ayirt edici bir 6zelligidir. Bu tez, askeri gorevlerin, iletisim yonii 6n
plana alinarak betimlenmesiyle ilgili olarak, ¢izelge notasyonlarini gorev uzayr modelleme
camiasinin dikkatine sunmayi1 da hedeflemektedir. Elde edilen tecriibe ile, metamodel
tabanl herhangi bir kavramsal modelden FAM’a alandan bagimsiz bir doniistiiriicii i¢in bir

takim kilavuzlar ortaya konulmustur.

Anahtar Kelimeler: Alana Ozgij Modelleme, Cizge Tabanli Model Doniisiimii, Sahra
Topculugu, Yiiksek Seviye Mimarisi, Kod Uretimi
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CHAPTER1

INTRODUCTION

The Model-Driven Engineering (MDE) approach [1] is becoming prominent in software
and systems engineering, bringing forth a model-centric approach to the development cycle
in contrast to today’s mostly code-centric practices. A well-known MDE initiative is the
Model Driven Architecture (MDA) of Object Management Group (OMG). Model
transformations are considered the heart of MDA, where the Platform Independent Model
(PIM) of a system to be constructed, is transformed into a Platform Specific Model (PSM),
which can be readily translated to executable code [2].

Model Integrated Computing (MIC) [3], an earlier manifestation of MDE, relies on
metamodeling to define domain-specific modeling languages and model integrity
constraints. The metamodel (also called a paradigm) is then used to automatically compose
a domain-specific model building environment for creating, analyzing, and evolving the
system through modeling and generation. In the MIC approach, a crucial point is
generation, where (domain-specific) models are transformed into lower level executable or
analysis models. Model transformation techniques and tools are essential to MIC for

enabling the generation process.

1.1 Motivation and Scope

There has been a considerable proliferation of literature on model transformations, and
specifically on graph-based transformations during the last two decades [4] and a rapid
dissemination of the MDE approach in the last decade [5][6][7][8]. As such, a recent
interest has been shown by the modeling and simulation community [9][10]. More
importantly, it is seen that the approach is perceived as a key ingredient in various major
defense modeling and simulation program of works and researches [88][89][90][91][92].

Up to our knowledge, in most of the related works model transformations are used as a
facilitating step in achieving a major objective in various application areas such as semantic
web, data mining, knowledge engineering and military. These transformations are usually

applied among very specific, narrow domains, compromising realistic concerns and



restrictions [67][68][69][70][71][72]. Many of the efforts are single step source model to
target model transformations [67][68][69][70]1[71][78][83][80]. Some are either done
within the same domain (mostly operating on a single model), or between two highly
similar, tightly coupled domains [67][80]. Finally, although model transformation works
emphasizing either data [76][77][81][82][83][91][94], or behavior transformation
[71][72][73][74] [79] are abundant, works equipoising both aspects in an integrated fashion
are rare.

In most of the cited works, the employment of a formal metamodel for the subject model
or metamodel usage in transformations is not a primary concern [68][70][71][81][83]. The
usual approach is to analyze the model to obtain an abstracted form (could be comparable
to a kind of metamodel) as a preliminary step and consult to it during the transformation
process. Moreover, many of these transformations are not formally defined, but rather
presented barely as algorithms or pseudo codes and usually implemented in a high level
programming language. This nature causes these transformation efforts to be hampered by
procedural details and lack of comprehensibility.

Among many of the works that exhibit a more MDA centric characteristic, it is seen that
although apparently well thought out rules and guidelines on mapping PIM elements to
PSM elements are present, no tool support is provided for automating model
transformations [88][89][93][94]. The target model is built manually or guided by a GUI-
based tool from scratch based on the source model and the rules. (A comparison of related
work on model transformations appears in Section 5.7).

Bringing a fully-fledged transformation approach to conceptual modeling is a
distinguishing feature of our work. In this thesis, we put forth a formal, declarative and
visual transformation process from Field Artillery Conceptual Model (ACM) [11] to
Federation Architecture Model (FAM) [12]. The produced FAM is then fed into a code
generator, packaged as a “model interpreter” in MIC parlance, to generate Java/Aspect]
code that can be executed on a High Level Architecture (HLA) Run-Time Infrastructure
(RTD [13]. In this sense our work can be considered as a sequence of applications of the
MIC approach. It is intended as an MDE-based end-to-end systems development endeavor
from the conceptual model to executable simulation code, promoting model transformation
usage. We treat both data and behavior on equal grounds in our transformation perspective.
Furthermore, we assess our work in the view of a set of model transformation properties
that are published in the literature. From the experience gained and lessons learned, we also
offer a number of suggestions for tailoring the conceptual model of any source domain for

the pursuit of achieving domain-independent FAM transformations.



Within the scope of this thesis, the development of ACM is realized as a preliminary
step before the ACM to FAM transformation definition work. ACM is comprised of a
behavioral component and a data component. Both sub-metamodels are separately
developed and seamlessly integrated with each other. Using ACM, the well known
Adjustment Followed by Fire For Effect (AdJFFE) mission is also modeled, which is the
source model for the model transformation case study. To the best of our knowledge, this
work is unique in applying the LSC language for the modeling of military tasks.

We consider this work as a pioneering step towards introducing the overarching vision
of model driven development advocated by the MDE into the modeling and simulation
domain. The kind of MDE work accomplished in this thesis has been cited as a challenge in
various publications [88][89][90][93].

Using our implementation a field artillery domain expert competent in modeling can
develop his ACM, run the ACM to FAM transformer on it and obtain the corresponding
FAM. Then applying a second transformation (i.e., running the code generator), he would
produce the base and default aspect codes for federation execution on an HLA RTI. The
code becomes ready for execution with a hand from a programmer after organizing it into
an Eclipse project and weaving the hand-written computation aspect that sets the run-time

values for the data structures.

1.2 The Context of the Transformations

In order to clarify the purpose and provide a referential overview of the process, Figure
1.1 illustrates the two-phased transformation approach in a nutshell. The first phase is a
model-to-model transformation whereas the second is a model-to-code transformation,
executed in sequence. We envision an HLA-based distributed simulation development
process consisting of conceptual modeling (ACM), federation architecture modeling (FAM)
and federate code generation, in that order. The ACM is a PIM (or a Computation
Independent Model (CIM) [20] from a more abstract perspective) of the real world system
(i.e., field artillery domain) with which the simulation is concerned. The FAM is a PSM,
where the platform is the RTI in our case. It constitutes a major portion of the federation
design documentation. The graph-based model transformer produces a FAM from an ACM
and the code generator produces executable code from that FAM.

ACMM and FAMM are the metamodels of ACMs and FAMs, respectively. Both
metamodels (and consequently, the models) have data and behavior parts. The metamodel
of Live Sequence Charts (LSC) and Message Sequence Charts (MSC) [14][15][12] are used
for behavioral representation in both metamodels (referred to as BMM (Behavioral

MetaModel) in the figure). Both data models are integrated with the behavioral model in



that the top level data model elements are extended from a set of designated LSC and MSC
elements. The transformation definitions are structured accordingly, so that firstly the data
model transformation is conducted, followed by the behavioral model transformation. In
the second phase, the federate application code generator produces executable federate
source codes and useful artifacts such as Federation Object Model (FOM) Document Data

(FDD) from the FAM.

Phase | Phase I

——
« Actors, Nets === + OMT core

« FA msgs. « Fed.Struct.

« Mission types « HLA services

Federate
Application
+ FwdObserver ! Mission Defs: + Federation « JoinFedEx. Code
- BatRadioNet gy * Adjustment « Federates + RegObjCls.
+Oid W _Msg | FireForEffect « FOM / SOMs J + Sendinteract. Generator

Figure 1.1 The view of FACM to FAM to executable code transformation

It may look plausible to directly produce HLLA federate codes from the conceptual
model, instead of going through two steps of model transformations. Our approach is more
appealing in at least two ways. First, ACM rests at a higher conceptual level (corresponding
to PIM), while federation code is at a lower, much detailed level. FAM on the other hand, is
at an intermediary level (corresponding to PSM, where HLA defines the platform), serving
as a bridge between the two levels. It has a clearer mapping from ACM, and to federation
code. This makes the transformations more modular and maintainable. Second, the
components of a FAM, that is, the HLA Object Model Template (OMT) model (a FOM or
a Simulation Object Model (SOM)) and intra-federation behavioral model are useful
artifacts in their own right. Furthermore, once a FAM, which is machine processible, is
available it can be used as an input to further processing, such as optimization, tuning,
debugging, verification and validation.

The tasks of modeling and metamodeling are both carried out using the Generic
Modeling Environment (GME) [3], an open source toolkit for creating domain-specific
modeling and program synthesis environments. GME initially serves as a metamodel

development environment for domain analysts. Metamodels developed in GME conform to



MetaGME, the metamodel (in fact, meta-metamodel) provided by GME. Once a metamodel
is registered in GME, it provides a domain-specific model building environment for model
developers, characterized by the registered metamodel.

The graph-based model transformer is developed with Graph Rewriting and
Transformation (GReAT) [6], a graph-based model transformation specification language,
and partly hand-coded in C++. GReAT models conform to the pre-registered
UMLModelTransformer (UMT) metamodel that comes bundled with the GME installation.
Hence, model transformations are also defined as models developed in the GME
environment. The transformations are defined over the metamodels of the source and target
domains, expressed in a Unified Modeling Language (UML)-based notation. The
metamodels are exported into the transformation model by invoking a special interpreter
embedded in the visual editor of GME. The relationships between the models and
metamodels mentioned above are summarized in Figure 1.2. The modeling and model
transformation activities and products in this thesis are formally defined due to the

conformance associations between the models and their metamodels.

y = 4
MetaGME

! conforms

FAMM

ACMM export! UMT export
I conforms conform: I conforms

Figure 1.2 The three layers of modeling used in the transformations

Within the context of this thesis, the ACM metamodel and ACM2FAM transformation
are developed. The FAM metamodel [85] and code generation from FAM [86] were
developed in previous theses. We present the details of ACM, ACM2FAM transformation
and demonstrate an end-to-end transformation series for the ACM model of the
conventional Adjustment Followed by Fire For Effect (AdjFFE) mission to simulation

execution in subsequent chapters. We also analyze the presented transformation work with



respect to a set of principles published in literature for analyzing model transformation

approaches. Finally we draw lessons learned and propose directions for further research.

1.3 Rationale for Using Graph Transformations and GReAT

Graph grammars and graph transformations have been recognized as powerful devices
for specifying and performing complex model-to-model transformations. From a
mathematical viewpoint, models in MIC are graphs, to be more precise, vertex and edge
labeled multi-graphs (i.e., graphs that are permitted to have edges that have the same end
vertices), where the labels are denoting the corresponding entities in the metamodel. It has
been proved useful to formulate the model transformation problem as a graph
transformation problem.

Graph transformation offers a set of techniques and associated formalisms that are
directly applicable to model transformation [18][19]. It is powerful and appealing in many
ways. First, it is visual, in that the source, the target and the transformation itself can be
expressed in a visual way. Second, it is formally founded, in that it is possible to prove
certain properties of the transformation by resorting to graph theory. Third, it offers a clean
semantic model to understand and specify model transformations. For example, the order of
rule application is implicit, and the traversal of source models and creation of target models
1s implicit. This allows one to hide the procedural details of the transformation, making the
transformations more compact and maintainable. Last, but not least, it offers mechanism for
transformation composition. The major bottleneck associated with graph transformation is
poor runtime performance.

GReAT [6] is a tool that allows users to specify graph transformations in a graphical
form with precise formal and executable semantics. GReAT has a high-level control flow
language built on top of the graph transformation language with sequencing, non-
determinism, hierarchy, recursion and branching constructs. GReAT is based on the use of
UML class diagrams (and Object Constraint Language (OCL)) for representing the
domains of the transformations, including structural integrity constraints over those
domains. Transformations over multiple domains are supported, and cross-links among
domains are defined at the metamodeling level. Another advantage of selecting GReAT is
its integration with the source and target model development environment, GME [3]. A

transformation definition is yet another model defined in GME (see sections 2.3 and 2.4).

1.4 Organization of the Thesis
This dissertation is organized as follows: Chapter I points to the theoretical foundations

that this work builds on, introduces the motivation and scope, presents the context of the



model transformations, explains the rationale behind the adopted approach and finally
outlines the organization of the thesis.

Chapter II provides a literature overview of the concepts, techniques and tools used in
the thesis. Specifically, the model driven approach to software development, graph
transformations concepts, a set of prominent graph transformation tools, the field artillery
observed fire domain and HLA domain are summarized. Additionally, GME and GReAT,
which are respectively the modeling and graph transformation tools used, are introduced.
Then MSC and LSC, the formalisms that ACM and FAM use in behavioral modeling are
presented. Since FAM, the target domain of the transformations, is developed as part of
another thesis, a brief overview of it is also provided.

Chapter III summarizes the entire model driven development work put forth in this
thesis in a concise, tool and technology independent, and abstract conceptual framework.

Chapter IV presents the ACM metamodel in detail. First, a high level overview of ACM
is presented, and then its realization in the GME environment is explained. The chapter also
demonstrates the development of the source model of the transformation case study,
namely, the AdjFFE mission model, as an ACM instance in GME. The complete AdjFFE
mission model in graphical LSC notation is provided in Appendix A. The chapter further
discusses the challenges encountered and provides an informal assessment of ACM and
usage of LSC in modeling military tasks. Finally it concludes with related works on
conceptual modeling.

Chapter V presents the two step automatic transformation of ACM to FAM and FAM to
executable distributed simulation code. The ACM to FAM transformation is explained in
two sections as data and behavior transformation. Then, the code generation mechanism
from FAM is briefly introduced, followed by some excerpts from of the generated AdjFFE
code and its execution on an HLA RTTI. It also explains a preprocessing step required by the
code generator, where the FAM is further refined so that every LSC containing multiple
instances is stripped into several LSCs containing only one federate and the federation
instances. The details of the transformation rules are delegated to Appendix B. The chapter
further provides an analysis of ACM to FAM transformation in terms of modularity,
internal transformation composition, staging, scope and direction. Finally, the chapter
concludes with related works on model transformations.

Chapter VI is a discussions and future work chapter where we first discuss on the issues
and lessons learned from modeling ACMM and defining ACM2FAM transformation. Then
we discuss the formerly developed FAMM and simulation code generator within the

context of ACM transformations. After that, a comparison of the artifacts of this thesis with



MDA standards is made. The chapter concludes with pointing to future research directions.
Specifically it aims to draw the attention of the reader to a domain-independent CM
transformer for HLA, higher order transformations and BOM usage for intra-federate
modeling. The requirements and outline of the CM transformer, drawn from the experience
gained in this work, is discussed in a broader context.

Chapter VII concludes the thesis by highlighting the major accomplishments and the
novelties of this dissertation. It also points to the way ahead for further research efforts.

Appendix A presents all of the LSCs for the Adjustment Followed by Fire For Effect
(AdjFFE) mission model in graphical notation. Each LSC is provided with a brief
description of its purpose, execution conditions and logic.

Appendix B outlines the set of most prominent ACM to FAM model transformation
blocks and rules as implemented in GReAT-configured GME.

Appendix C summarizes the changes made in the metamodels and the simulation code
generator in the course of developing ACM2FAM transformation. The details of the change
logs are documented in the accompanying thesis CD.

Appendix D provides hints and recommendations derived from our experience in
realizing the ACM2FAM transformation for future model transformation developers of

GReAT.



CHAPTER 11

BACKGROUND

This chapter provides a literature overview of the concepts, techniques and tools used in
this dissertation. Specifically, the model driven approach to software development, graph
transformations, Field Artillery (FA) domain and High Level Architecture (HLA) domain
are summarized. The Model Driven Architecture (MDA) is OMG’s manifestation of
model-driven software development for the future, which envisions systematic refinements,
or technically speaking, transformations of high level domain models into platform specific
models and finally down to executable code. Model transformation through graph
transformation is currently one of the commonly used techniques in putting model-driven
development into practice. There is an extensive set of graph transformation-based tools
and environments developed in the literature, of which we present some. GReAT [6] is the
graph transformation tool used in this thesis, which runs on top of GME, the tool that we
have used in modeling the source and target domains, as well as defining the GReAT
transformation model. Hence, GME and GReAT are also introduced in their own sections.
The FA observed fire techniques and HLA constitute the domains of the source and target
models used in this thesis. Artillery Conceptual Model (ACM) and Federation Architecture
Model (FAM) are the metamodels of the source and target models formally developed in
GME. Message Sequence Chart (MSC) and Live Sequence Chart (LSC), which are the
formalisms used for behavioral modeling in both ACM and FAM are also introduced here.
Since FAM is developed as part of another work, a brief summary of it is also provided.

ACM is developed as part of this thesis and is the subject of Chapter 4.

2.1 Model Driven Architecture/Engineering

Kleppe et al. [20] state in their MDA book that, “The Model-Driven Architecture starts
with the well-known and long established idea of separating the specification of the
operation of a system from the details of the way that system uses the capabilities of its
platform”. MDA provides an approach for, and enables tools to be provided for:

e gpecifying a system independently of the platform that supports it,



e specifying platforms,

e choosing a particular platform for the system, and transforming the system
specification into one for a particular platform

The primary goals of MDA are portability, interoperability and reusability in the course
of architectural separation of concerns. The Model Driven Architecture (MDA) [21] is a
framework for software development put forth by the Object Management Group (OMG).
The MDA development life cycle, which is shown in Figure 2.1, does not look very
different from the traditional life cycle in that the same phases are identified. A remarkable
difference is the artifacts that are created during the development process. The artifacts are
formal models that can be processed by the computers. The following three models are at

the core of the MDA.

‘/”/’/’/ mostly text
> PIM
low-level-design ‘r/////
4”’,///’ PSM
> code
code
deployment

Figure 2.1 MDA software development life cycle [20]

Platform Independent Model (PIM): It is a model with a high level of abstraction so that
it is independent of any implementation technology. The base PIM expresses only business
functionality and behavior.

Platform Specific Model (PSM): A PSM is customized to specify a system in terms of
implementation constructs that are in one specific implementation technology. MDA
proposes that a PIM be transformed into one or more PSMs. It is clear that a PSM will only
seem comprehensible to a developer who has detailed knowledge about the specific
platform.

Code: The final step in the development is the transformation of each PSM to code.
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MDA promises productivity, interoperability and maintainability improvements in the
software development lifecycle.

Kent [22] remarks that MDA focuses on architecture, on artifacts, on models. Although
MDA declares there might be a richer modeling space, it chooses to focus on just one
dimension, the transformation between platform independent and platform specific models.

The OMG MDA strategy envisions a world where models play a more direct role in
software production, being amenable to manipulation and transformation by machine.
Model Driven Engineering (MDE) is wider in scope than MDA. MDE combines process
and analysis with architecture.

Schmidt [1] states that MDE technology is a promising approach to address platform
complexity. Domain-Specific Modeling Languages (DSMLs) formalize the application
structure, behavior, and requirements within particular domains. DSMLs are described
using metamodels, which define the relationships among concepts in a domain and
precisely specify the key semantics and constraints associated with these domain concepts.
Developers use DSMLs to build applications using elements of the type system captured by
metamodels and express design intent declaratively rather than imperatively.

Generators and transformation engines analyze certain aspects of models and then
produce various types of artifacts, such as source code, simulation inputs, test cases or
alternative model representations. The ability to produce artifacts from models helps ensure
the consistency between application implementations and analysis information associated
with functional and quality requirements captured by models. This automated
transformation process is often referred to as “correct-by-construction,” in place of
conventional handcrafted “construct-by-correction” software development processes.

MDE tools force domain-specific constraints and perform model checking that can
detect and prevent many errors early in the life cycle. In addition, MDE tool generators
need not be as complicated since they can produce artifacts that map onto higher-level,
often standardized, middleware platform APIs and frameworks, rather than lower-level
operating system APIs. As a result, it is often much easier to develop, debug, and evolve
MDE tools and applications created with these tools.

Model Integrated Computing (MIC) [3], an earlier manifestation of MDE, relies on
metamodeling to define DSMLs and model integrity constraints. The metamodel (also
called a paradigm) is then used to automatically compose a domain-specific model building
environment for creating, analyzing, and evolving the system through modeling and
generation. In the MIC approach, a crucial point is generation, where (domain-specific)

models are transformed into lower level executable and/or analysis models. Model
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transformation techniques and tools are essential to MIC in realizing the generation

process.

2.2 Graph Transformations

Graph grammars and graph transformations have been recognized as a powerful
technique for specifying complex transformations. Graph grammars are an extension of
textual grammars and they give rise to node replacement grammars [5][23] and hyperedge
replacement grammars [24][25]. Graph transformation research is associated with various
mathematical fields such as category theory, set theory and algebra, and applies it to graphs.
The prominent techniques in this area are double pushout [26], single pushout [27] and
programmed structure replacement systems [28]. A brief introduction to graph
transformation concepts is provided in Section 2.2.1 and some of the prominent graph

transformation tools are shortly mentioned in section 2.2.2.

2.2.1 Graph Transformation Concepts

Graph transformations can be used as a computation abstraction. The basic idea is that
the state of a computation can be represented as a graph, further steps in that computation
can then be represented as transformation rules on that graph. Such rules consist of an
original graph, which is to be matched to a subgraph in the complete state, and a replacing
graph, which will replace the matched subgraph. Formally, a graph rewriting system
consists of a set of graph rewrite rules of the form L>R , with L being called pattern graph
(or Left-Hand Side (LHS)) and R being called replacement graph (or Right-Hand Side
(RHS) of the rule). A graph rewrite rule is applied to the host graph by searching for an
occurrence of the pattern graph and by replacing the found occurrence by an instance of the
replacement graph.

The graph patterns can be rendered in the concrete syntax of their respective source or
target language or in the (Meta Object Facility -MOF [16]) abstract syntax. The LHS often
contains conditions in addition to the LHS pattern. Some additional logic (e.g., in string and
numeric domains) is needed in order to compute target attribute values (such as element
names). An extended form of patterns with multiplicities on edges and nodes is also
common. In most approaches, scheduling has an external form and the scheduling
mechanisms include non-deterministic selection, explicit condition, and iteration (including
fixpoint iterations). Fixpoint iterations are particularly useful for computing transitive
closures.

From a mathematical viewpoint models in MIC are graphs, to be more precise: vertex

and edge labeled multi-graphs (i.e., graphs that are permitted to have edges that have the
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same end vertices), where the labels are denoting the corresponding entities in the
metamodel. It is plausible to formulate the model transformation problem as a graph
transformation problem. We can then use the mathematical concepts of graph
transformations to formally specify the intended behavior of a model transformer.

Many tasks in software development have been formulated using the graph
transformation approach, including weaving of aspect-oriented programs, application of
design patterns, and the transformation of platform-independent models into platform
specific models (Please refer to Section 5.7 for a selective list of related works on model

transformations).

2.2.2 Some Prominent Graph Transformation Tools

AToM3 [29] is a visual Meta-Modeling tool written in Python, which supports modeling
of complex systems, characterized by possibly large numbers of components and aspects
whose structure as well as behavior cannot be described in a single formalism. Using the
metamodels, AToM can automatically generate a tool to process models. Manipulations of
models can be expressed as graph grammars, at the meta-level. Some of these
manipulations are the behavior-preserving transformations of models between formalisms,
optimization, code generation and simulation.

AGG (Attributed Graph Grammars) [30] is a rule based visual language supporting an
algebraic approach to graph transformation. It aims at the specification and prototypical
implementation of applications with complex graph-structured data. AGG may be used
(implicitly in "code") as a general purpose graph transformation engine in high-level Java
applications employing graph transformation methods. The tool environment provides
graphical editors for graphs and rules and an integrated textual editor for Java expressions.
Moreover, visual interpretation and validation is supported.

BOTL (Bidirectional Object oriented Transformation Language) [31] allows to specify
transformations among object oriented models and to verify the desired properties of
applicability and metamodel conformance at specification time. BOTL is proposed as a
language for the specification of mappings between the different model layers of the MDA.
However, BOTL can be easily extended to specify transformations on a single model.

VIATRA2 (VIsual Automated model TRAnsformations) [32] is framework that
provides a general-purpose support for the entire life-cycle of engineering model
transformations including the specification, design, execution, validation and maintenance
of transformations within and between various modeling languages and domains. It
provides a transformation language with both declarative and imperative features, based

upon popular formal mathematical techniques of graph transformation (GT) and abstract
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state machines (ASM). It has a high performance transformation engine supporting
incremental model transformations, trigger-driven live transformations, and handling huge
models (e.g. of 100,000 elements). Generic and meta-transformations (type parameters,
rules manipulating other rules) for providing reuse of transformations are amongst its other
salient features.

The Atlas Transformation Language (ATL) [7] is a hybrid language (a mix of
declarative and imperative constructions) designed to express model transformations as
required by the MDA approach to answer the QVT RFP issued by OMG. It is described by
an abstract syntax (a MOF meta-model), a textual concrete syntax and an additional
graphical notation allowing modelers to represent partial views of transformation models. A
transformation model in ATL is expressed as a set of transformation rules. ATL is
supported by a set of development tools built on top of the Eclipse environment: a
compiler, a virtual machine, an editor, and a debugger. There is an initial library of ATL
transformations and number of documentation available in open source from the GMT
Eclipse project.

The FUJABA (From UML to Java and Back Again) Tool Suite [8] is an open source
tool providing developers with support for model-based software engineering and re-
engineering. It is a formal, graphical, object-oriented software system specification
language, employing UML class diagrams and specialized activity diagrams, so called
Story Diagrams based on graph transformations. It is capable of generating Java code based
on the formal specification of a systems' structure and behavior which results in an
executable system prototype. In Fujaba metamodelling is done with MOF [16] and
transformations specified by triple graph grammars. Finally, Fujaba’s easy plug-in

mechanism makes it a celebrated and extensible toolkit.

2.3 Generic Modeling Environment (GME)

Generic Modeling Environment (GME) [3][33] is a configurable toolkit for creating
domain-specific modeling and program synthesis environments. GME puts the MIC [3]
vision into practice. The configuration is achieved through metamodels specifying the
modeling language (i.e., “paradigm” in the GME vernacular) of the application domain,
which contains the syntactic, semantic, and presentation information regarding the domain.
The paradigm defines the family of models that can be created using the resultant modeling
environment.

The metamodel for each domain-specific modeling language is defined using the UML-
based metamodeling language named MetaGME, which plays exactly the same role MOF
[16] plays in UML2 [17].When a metamodel is registered in GME, GME provides a
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domain-specific model building environment. The generated environment is then used to
build and manipulate domain models. These models can serve as input to various model-
driven development activities, including model transformation and code generation. This is
called model interpretation in GME parlance.

Apart from the visual model editor, GME provides a generic API, called BON2, to access
the models by paradigm-specific interpreters. This API exposes the internal representation
of the models, which is a network of object instances and links (associations). Using the
API, developers are able to programmatically traverse and manipulate a GME model with
the same set of capabilities provided by the visual GME environment. The API supports
both C++ and Java programming languages. The federate code generator of the second

phase transformation shown in Figure 1.1 is implemented using the Java interface.

2.3.1 Modeling Concepts

The vocabulary of the domain-specific languages implemented by different GME
configurations is based on a set of generic concepts built into GME itself. GME supports
various concepts for building large-scale, complex models as depicted in Figure 2.2.

A Project contains a set of Folders. Folders are containers that help organize
Models, just like folders on a disk help organize files. Folders contain Models. Models,
Atoms, References, Connections and Sets are all first class objects, or FCOs for short.
An Fco is used as the abstract base class for these elements in modeling.

Atoms are the elementary objects; that is, they cannot contain parts. Each kind of Atom
is associated with an icon and can have a predefined set of attributes, whose values are user
changeable.

Models are the compound objects that can have parts and inner structure. A part in a
container Model always has a Role. The modeling paradigm determines what kind of parts
are allowed in Models acting in which Roles, but the modeler determines the specific
instances and number of parts a given model contains (of course, explicit constraints can
always restrict the design space). Any element must have at most one parent, which must
be a Model. At least one Model does not have a parent and is called a root Model.

A common way of expressing a relationship between two model elements in GME is
with a Connection. Connections can be directed or undirected, and have Attributes.
In order to make a Connection between two modeling elements they must have the same
parent in the containment hierarchy. It is specified what kind of objects can participate in a
given kind of Connection. Connections can further be restricted by explicit

Constraints, such as their multiplicity.
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Figure 2.2 GME modeling concepts [33]

In GME, a Reference must appear as a part in a Model. This establishes a relationship
between the Model that contains the Reference and the referred-to object. Any FCO,
except for a Connection, can be referred to (even References themselves). A
Reference always refers to exactly one FCO, while a single FCO can be referred to by
multiple References.

Some information does not lend itself well to graphical representation. GME provides
the facility to augment the graphical objects with textual attributes. All FCOs can have
different sets of Attributes among the kinds text, integer, double, boolean and

enumerated.

2.4 Graph Rewrite and Transformations (GReAT)

Graph Rewriting and Transformation (GReAT) [6] is a transformation language
developed for model-to-model transformations and rewriting. GReAT is based on the
theoretical work on graph grammars and transformations [4]. GReAT’s metamodel, the
UMLModelTransformer (UMT) paradigm, comes bundled with the GME installation. By
creating models conforming to this paradigm in GME, it is possible to define model

transformations.
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GReAT defines a production (i.e. Rule in UMT terms) as the basic transformation
entity. A production contains a pattern graph that consists of pattern vertices and edges. The
pattern graph consists of elements from the source and target metamodels and elements that
are newly introduced inside the transformation model (such as cross links or globals) Each
pattern object has a bind, delete or new designation that specifies the role it plays in the
transformation. Bind is used to match objects in the graph. Delete is also used to match
objects in the graph, but afterwards they are deleted from the graph. New is used to create
objects after the pattern is matched

The execution of a rule involves matching every pattern object marked either bind or
delete. If the pattern matcher is successful in finding matches for the pattern, then for each
match, the pattern objects marked delete are deleted from the match and objects marked
new are created.

Sometimes the patterns by themselves are not enough to specify the exact graph parts to
match and other, non-structural constraints on the pattern are needed. These constraints or
pre-conditions are expressed in a Guard and are described wusing OCL.
AttributeMapping elements provide values to attributes of newly created objects and/or
modify attributes of existing object. Attribute mapping is applied to each match after the
structural changes are completed.

Rules are the basic production units, specifying graph patterns in terms of the source
and target metamodels. Rules are explicitly sequenced. Test/Case is used to specify the
conditional execution of a transformation. Compound rules, consisting of Block and
ForBlock, help to modularize transformation sequences and to control traversal schemes.
They provide the means to organize rules into higher-level hierarchies. Within a Block,
rules are chained (and thus sequenced) by passing previously matched elements from rule
to rule. Compound rules can contain other compound rules, Rules and Tests; however,
they have slightly different semantics inside. If we have n incoming packets in a Block
then the all of the packets will be pushed through the first internal rule and then the next
internal rule starts. On the other hand, with ForBlock, the first packet will be pushed
through all its internal rules to produce output packets and then the next packet will be
taken. ExpressionRef is a reference to a previously defined test or (compound) rule. It
opens up the possibility for recursion and rule reuse.

In GReAT, parallel execution of a set of rules can be specified. The order of execution
of these rules is non-deterministic. This is achieved by connecting the output of a rule to the

input of more than one rule.
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GReAT transformations can also specify objects and associations not explicitly present
in the input or output metamodels, including cross-metamodel associations. These entities
are called CrossLinks and their instances exist only as the transformation is being
performed.

Defining a GReAT transformation consists of, first importing the source and target
GME metamodels, second specifying the graph rewriting rules using the imported
metamodel objects, third defining sequencing for the rules by grouping them into rule
blocks, and forth configuring the transformation by specifying the source and target models
(files) and the starting rule (or rule block).

The model transformation language is supported through the GReAT execution engine
as shown in Figure 2.3. The engine basically inputs the transformation definition (i.e. rules
and sequencing) and a source model to automatically produce a corresponding target
model. The engine uses a generic API using the model-driven reflection package called
Universal Data Model (UDM) [34], and is thus suitable for executing any model
transformation that is realized using GReAT. GreAT’s rule executor consists of a pattern
matcher and an effecter that work in tandem to execute a transformation rule. The graph-
based model transformer presented in this thesis employs a user code library written using

the uDM API for the fast execution of some complex transformation rules.
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Figure 2.3 GReAT execution engine (adapted from [6]).
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2.5 Field Artillery Observed Fire Techniques
This section presents a conceptual overview on the elements and fire direction processes

of the observed (i.e., indirect) fire techniques of the Field Artillery (FA) domain. It also
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introduces a narration model for the adjustment followed by fire for effect mission, which is
in the subject of the transformation case study. The content provided in this section is based
on the public domain US Army field manuals [35][36][37], which provide comprehensive

explanations on tactics, techniques and procedures for FA fire direction process.

2.5.1 Elements of the Field Artillery Team

The Army field manual FM-50 [37] states, “The general mission of FA is to destroy,
neutralize or suppress the enemy by cannon, rocket, and missile fires and to help integrate
all fire support assets into combined arms operations”. FA weapons are usually located in
defiladed areas in order to protect them from enemy detection. This nature of FA gunnery
makes it an indirect fire problem. Observed fire, the technique that solves the indirect FA
gunnery problem, is carried out by the coordinated efforts of the Forward Observers
(FwdOpbserver), the Fire Direction Center (FDC), and firing sections of the firing unit, all

together forming the Field Artillery Team (FAT), as related in Figure 2.4.
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Figure 2.4 The field artillery team [35]

Forward Observer

For artillery and mortar support, fire support team personnel act as the observers, or
“eyes”, of the FAT. Since we opt for a functional point of view and avoid tackling with
domain details, we regard all of the personnel and equipment of the fire support team under
the general title FwdObserver. The FwdObserver detects, locates and describes suitable
targets and transmits this information to the FDC to request for observed fires. He strives to

adjust fires onto targets by providing surveillance data pertaining to the fires. In this study,

19



the FwdObserver operates under the pre-designated control option, in that he is assigned to

a particular battery from which he may request fire support.

Fire Direction Center

In combat, the FA battalion provides indirect fire support to maneuver forces on the
battlefield. Among the key components of the battalion, only the battalion FDC
functionality is associated with our modeling concerns. The main duty of the battalion FDC
is to provide tactical fire planning and fire control. It may also give technical fire direction
assistance to battery FDCs as required.

The FA cannon battery is the firing unit within the cannon. The battery FDC is the
control center, or “brain”, as it were, of the gunnery team. The FDC receives fire orders
from the battalion FDC or calls for fire from observers and process that information by
using tactical and technical fire direction procedures. Two notable key personnel within the
battery FDC are the Fire Direction Officer (FDO) and the FDC computer. The FDO is
responsible for all FDC operations including supervising the operation of the FDC,
establishing Standing Operating Procedure (SOP), checking target location, announcing fire
order, and ensuring accuracy of firing data sent to the guns. The FDC computer operates the
primary means of computing firing data. He determines and announces fire commands.

Fire direction is the employment of firepower. Basically there are two types of fire
direction methods, called tactical and technical fire direction. The primary concern of
tactical fire direction is to determine how the target will be attacked. This is specified as a
fire order in which information concerning the units to fire, and the type and amount of
ammunition to be fired are included. Technical fire direction is conducted by issuing fire
commands where the information for orienting, loading and firing a howitzer is included.
Battalion directed and autonomous modes are the two alternatives under which fire
direction can be conducted [36]. In battalion-directed mode, the battalion FDC is the focal
point that carries out tactical fire direction. Technical fire direction is left to the battery
FDC. In autonomous mode, the battery FDC is the most prominent actor, being responsible
for both tactical and technical fire direction. In this setting, the battalion FDC monitors the
radio net and may override battery FDC’s commands, take the control over, or abort the

mission. The presented case study assumes the autonomous mode.
Firing Unit

The firing unit serves as the “brawn” of the gunnery team. It consists of the firing unit
headquarters, firing sections and several other parts. The duty of the firing section is to
deliver fires as directed by the FDC. Its composite organization is treated as a single entire

unit in our modeling.
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2.5.2 Adjustment Followed By Fire For Effect Mission

Observed fire is carried out by the coordinated efforts of the field artillery team, which
is composed of the forward observer, the Fire Direction Center(s) (FDC), and several firing
sections of the firing unit. The basic duty of the forward observer is to detect and locate
suitable indirect fire targets within his zone of observation. In order to start an attack on a
target, the forward observer issues a Call For Fire (CFF) request to the FDC. It contains all
information needed by the FDC to determine the method of attack.

As it is unlikely to achieve a target hit in the first round of fire, the common practice is
first to conduct adjustment on the target. Usually the central gun is selected as the adjusting
weapon. The observer provides correction information to the battery FDC after each shot
based on his spotting of the detonation. Once a target hit is achieved, the observer initiates
the Fire For Effect (FFE) phase by noting this in his correction message. FFE is carried out
by cannons firing all together with the same fire parameters as the last adjustment shot.
After the designated number of rounds is fired, the observer sends a final correction
including surveillance information. Based on the surveillance information, if the desired
effect on the target is achieved, mission ends. Otherwise, the observer may request
repetitions, or restarts the adjustment phase if deemed necessary. Figure 2.5 presents a
simplified sketch of a typical FAT setting as well as the most common communication

sequence among the team members.

observe
spotting Target

FwdObserver
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correction || ||MTO
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>
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Figure 2.5 Typical Field Artillery Team mission setting
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2.6 High Level Architecture

The HLA related background material of this section is based on IEEE standards
[13][38][39][40]. HLA is the common architecture that combines simulations (also called
federates) into a larger simulation (also called a federation). It is based on the
publish/subscribe paradigm. A federation execution is a session of a federation executing
together. A federation has a name, and involves:

e supporting middleware called Runtime Infrastructure (RTI)

e acommon object model for the data exchanged between federates, called FOM

*  member federates

A federate is a member of a federation, one point of attachment to the RTI. A federate
may correspond to one platform, such as a cockpit simulator, or a combined simulation,
such as an entire national air traffic control simulation.

Federates and the RTI are software. The Federation Object Model (FOM) is the data
created by the federation developer typically by using a tool. The FOM states an agreement
on the data exchanged among the participating federates.

The relationship between the software components is presented in Figure 2.6. Federates
are shown in the figure as either simulations, surrogates for live players, or tools for
distributed simulation such as data collectors and passive viewers. A federate might consist
of several processes, possibly running on different computers. A federate might model a

single entity, like a vehicle, or many entities, like all the vehicles in a city.

Live
Farticipants

Data Collectorf
Passive Viewer

Bimulations Bimulation
Burtogate

Interface

Funtime Infrastructure

Figure 2.6 Software Components in the HLA [13]

HLA is foremost a software architecture, rather than a particular implementation of an

infrastructure or tools designed to work with it. The HLA standard supports a variety of
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implementations. Therefore, it is defined not by software, but by a set of documents. The
HLA standard has three parts:

*  Object Model Template (OMT)

e HLA Rules

* Interface Specification

At the time of this writing, there are two parallel efforts in progress for the adoption of
HLA by standards bodies. One is through the Object Management Group (OMG), which
has adopted version 1.3 of the HLA interface specification as “Facility for Distributed
Simulation Systems (FDSS)”. The other is through IEEE, of whose standards are HLA
Framework and Rules [13], Federate Interface Specification [38], and OMT [39].

2.6.1 The Object Model Template (OMT)

The OMT advises the structure of all FOMs. The FOM is the vocabulary of data
exchanged through the RTI for an execution of the federation. Hence, the FOM does not
describe data internal to a single federate, but data that are shared with other federates. The
main components of the OMT are interaction classes and object classes.

An interaction is a collection of data sent by a federate at one time through the RTT to
other federates. An interaction may represent an occurrence or event in the simulation
model of interest to more than one federate. An interaction may be defined to occur at a
point in simulation time. A federate sends an interaction; other (interested) federates receive
the interaction. The interaction is transitory in that it has no continued existence after it has
been received. Each interaction carries with it a series of named data called parameters.

Objects in the RTI refer to simulated entities that are of interest to more than one
federate. They persist or endure for some interval of simulated time. Object classes are
comprised data fields called attributes.

The OMT describes the instances of the classes. Each class has a name, and defines a set
of named data called attributes. Federates create instances of these classes, and change the
state of an object instance in simulation time by supplying new values for its attributes.
Federates indirectly communicate with each other in terms of interactions and objects
through the RTI. Each federate must make some conversion from its internal representation
of simulated entities to HLA objects as specified in the FOM. If the federate is HLA-
compliant, the translation may be straightforward; otherwise it may be more complicated.

In short FOM represents the common, agreed vocabulary between members of a federation.

2.6.2 HLA Rules
The HLA rules express design goals and constraints on HLA-compliant federates and

federations. The first five rules deal with federations, the latter five with federates.
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2.6.3 The Management Object Model (MOM)

HLA federations are typically distributed systems. Federates often run on many
computers. Thus federations are subject to the peculiarities associated with distributed
systems. The RTI offers facilities to maintain and manage a shared view of the federation
as a distributed system. Management data can be described and distributed just like
simulation data. It allows the RTI to describe and manage the state of a federation.

The RTI itself creates the instances and updates attribute values associated with the
MOM. System management can be accomplished through the use of federates designed for
this purpose. Because the MOM is the same for all federations (since it is RTI managed),
management federates can be reused.

The MOM also defines a set of interactions that can be used to affect the state of other
federates. The RTI is required to respond correctly to MOM interactions. These interactions
are used to regulate the federation’s operation, request information, and report on federate

activities.

2.6.4 The HLA Services

HLA services fall into six groups that are defined by the commonality of interest.

(i) Federation Management
Federation services manage a federation in two ways:

* By defining a federation execution in terms of existence and membership

* By accomplishing federation-wide operations.

To define a federation, there are services to create a federation execution and to allow a
federate to join the execution or resign from it. Every federate must join a federation
execution.

Federation-wide operations include the coordination of federation saves and restores.
There are also services to allow a federation to define and meet a federation-wide

synchronization point.

(ii) Declaration Management

The declaration management services are the way for federates to declare their intent to
produce (publish) or consume (subscribe to) data. The RTI uses these declarations for
routing data, transforming data, and interest management. On the subject of routing, the
RTTI uses subscriptions to decide what federates should be informed of the creation or
update of entities. Received data go through reduction and re-labeling in accordance with
the federate’s subscriptions before being delivered. Finally, the RTI uses declarations to

indicate interest to publishing federates. The RTI can tell a federate whether any other

24



federate is subscribed to data it intends to produce, so that it can stop producing when no

other federate needs the information.

(ii1) Object Management

Object management services are used for the actual exchange of data. A federate uses
services from this group to send and receive interactions. These services are also used to
register new instances of an object class and to update its attributes. Other federates will
have services from this group invoked on them to receive interactions, discover new
instances, and receive updates of instance attributes. Other services of this group are used to
control how data are transported, to ask for new updates of attribute values, and to inform a

federate whether it should expect data.

(iv) Ownership Management
The ownership management services in the RTI implement the HLA’s notion of
responsibility for simulating an entity. The RTI ensures that at most one federate at a time
owns a given instance attribute. Responsibility for simulating an entity can be shared
between federates in two ways.
*  First, the complete modeling of an entity may be shared among federates.
* Second, the modeling of entities may pass from one federate to another in the
course of a federation execution.

Ownership management can be ignored if a federation does not need it.

(v) Time Management
While federates are executing in their own threads of control, the proper ordering of events
between federates is an important problem to be solved. In HLA, ordering of events is
expressed in “logical time”. Logical time is an abstract concept; it is not necessarily fixed to
any representation or unit of time. The RTI’s time management services do two things:
e They allow each federate to advance its logical time in coordination with other
federates.
e They control the delivery of time-stamped events so that a federate never has to

receive events from other federates in its past.

(vi) Data Distribution Management

Data distribution management (DDM) services control the producer-consumer relationships
among federates. Whereas the declaration management services manage those relationships
in terms of interaction and object classes, DDM manages in terms of instances and abstract

routing spaces.

(vii) Support Services
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Support services utilized by joined federates for performing name-to-handle and handle-to-
name transformation, setting advisory switches, manipulating regions and RTI startup and

shutdown.

2.7 Message Sequence Chart and Live Sequence Chart

LSC is the formalism used for behavior representation in both source and target models
of this model transformation work. Since LSC is derived from MSC and share many
similarities with it, MSC is introduced before LSC. Illustrative examples of the graphical
MCS/LSC notations are provided in Section 4.4 along with the AdjFFE model
demonstration. For a clearer understanding the reader is encouraged to refer to these
examples while reading each paragraph of this section. Note that the MSC/LSC features

that are not used in this thesis are omitted. For a more extensive coverage, see [15][14].

2.7.1 Message Sequence Chart

An MSC consists of a collection of instances. An instance represents an abstract entity
on which events can be specified. Events are message inputs, message outputs, actions,
conditions, timers and co-regions. An instance is denoted by a hollow box with a vertical
line extending from the bottom. The vertical line represents a time axis where time runs
from top to bottom. Each instance thus has its own time axis and time may progress
independently and at different speeds on two axes.

An MSC can be referenced from within another MSC. This nesting and referencing
mechanisms facilitate encapsulation and modular design principles. MSC references may
have actual parameters that must match the corresponding parameter declarations of the
MSC definition. MSC references must not directly or indirectly refer to their enclosing
MSC. References are represented by rounded rectangles.

The gates represent the interface between the MSC and its environment. Any message or
order relation attached to the MSC frame constitutes a gate. The message gates are used
when references to the MSC are put in a wider context in another MSC. The actual gates on
the MSC reference are then connected to other gates or instances.

Events specified on an instance are totally ordered in time, except in coregions (see
below). An event executes instantaneously, and two events cannot take place at the same
time. Events on different instances are ordered due to the requirement that message input by
one instance must be preceded by the corresponding message output in another instance.
All events in a chart form a partially ordered set. (Recall that a partial order on a set is a

binary relation that is reflexive, anti-symmetric and transitive.)
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Actions are events that are local to an instance. Actions are represented by a box on the
instance axis with an action label inside. Actions are used to specify some computation
performed by the instance.

A message output/input represents the sending/reception of a message to/from another
instance or the environment. A message exchange is represented as an arrow from the
instance axis of the sender to the instance axis of the receiver. The arrow is labeled with a
message identifier. Message exchange is, by default, asynchronous; that is, the message
input is not necessarily simultaneous with the message output.

There are two types of conditions, namely, setting and guarding conditions. Setting
conditions are intended to describe a current global system state, or some non-global,
possibly shared, state. Guarding conditions restrict the behavior of an MSC by only
allowing the execution of events in a certain part of the MSC. A condition is represented by
a hexagon extending across the instance axes for which it holds.

Timers are local to an instance. The setting of a timer is represented by an hourglass
symbol placed next to the instance time line and labeled with a timer identifier. Timer reset
is represented by a cross linked by a horizontal line to the time line. Timer timeout is
represented by an arrow from the hourglass symbol to the time line.

Coregions are parts of instance axes where the usual requirement of total ordering is
lifted. A coregion is shown as replacing a part of the instance axis with a dashed line.

Inline expressions are used to compose event structures inside an MSC. The inline
operators refer to alternative, parallel and sequential composition, iteration, exception and
optional regions. A frame encloses the operands and the dashed lines denote operand
separators. Extra-global inline expressions are those crossing the MSC frame and covering
all of the instances. They are associated with the corresponding inline expressions on the
enclosing (see below) instance.

For enhancing the modularity of MSCs, there is a form of hierarchical decomposition of
complex diagrams into a collection of simpler diagrams, known as instance decomposition.
For each decomposed instance there is a sub-MSC. The single instance that is decomposed
is represented by more than one instance in the sub-MSC.

High-level MSC (HMSC) provides a means to graphically define how a set of MSCs
can be combined together. The HMSC incorporates sequencing, conditioning and inline

expressions that are interpreted much similar to the ones found in MSC.

2.7.2 Live Sequence Chart
The most prominent feature of LSC on top of MSC is the ability to make a distinction

between optional and mandatory behavior. This applies to several elements in charts.
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Universal charts specify behavior that must be satisfied by every possible run of a
system, whereas for existential charts this restriction is relaxed to at least one run. Universal
charts are denoted by a solid box around the chart and existential charts are denoted by a
dashed box.

LSC introduces the notion of a prechart to restrict the applicability of a chart. The
prechart is like a precondition that when satisfied activates the main chart. The prechart is
denoted by a dashed hexagon containing zero or more events.

LSC allows messages to be “hot” or “cold”. A “hot” message is mandatory; that is, if it
is sent then it must be received eventually. This is denoted by a fully drawn arrow. For a
“cold” message reception is not required, hence it may be “lost”. This is denoted by a
dashed arrow. A distinction is also made between a “hot” (i.e., mandatory) and a “cold”
(i.e., optional) condition. A “hot” condition causes an illegal termination of the chart if
evaluated to false, and the opposite (i.e., exit from the condition scope) holds for a “cold”
condition. “Hot” and “cold” notions are further applied to the instance axes. Any point
where an event is specified on the instance axis is called a location. A location may be
“hot” indicating that the corresponding event must eventually take place, or ‘“cold”
indicating that event may never occur. A “hot” and a “cold” location is represented by the
instance axis being fully drawn and dashed, respectively.

LSC further brings enhancements in the semantics of conditions and event occurrence.
A shared condition forces synchronization among the sharing instances; that is, condition
will not be evaluated before all instances have reached it and no instance will progress
beyond the condition until it has been evaluated. Simultaneous regions allow grouping
several elements, which should be observed at the same time.

Chronologically, the last set of enhancements to LSCs are the notion of time (and a sort

of real time), and a notion of genericity via variables and symbolic instances [43].

2.8 Overview of Federation Architecture Metamodel

FAMM is a proposed metamodel for specifying the architecture of an HLA-compliant
federation [12][85]. FAMM formalizes the standard Object Model and Federate Interface
Specification. Beyond formalizing the existing HLA standard, FAMM allows the
behavioral description of federates based on LSCs. Having the behavioral models of the
participating federates gives us the ability to test the federation architecture by executing
the federation.

Federation Architecture is a major portion of the federation design documentation in
HLA based distributed simulations. Federation design includes the activities for:

*  Forming HLA Object Model (federation and simulation object models):
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*  Specifying the behaviors of participating federates so that they can fulfill their

responsibilities within the federation

The Federation Architecture Model (FAM) for a particular federation conforms to
FAMM. It involves the Federation Model (Federation Structure, Federation Object Model
and related HLA Services) and the Behavior Models for each participating federate.

As the composition diagram in Figure 2.7 indicates, FAMM involves two main sub-
metamodels: One for specifying the observable behaviors, and the other for defining the

HLA FOM and the HLA service interface.
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Figure 2.7 Federation Architecture Metamodel structure ([12])

Figure 2.8 depicts the relationship between FAMM and Federation Architecture. Each
participating federate’s behavior is modeled using the behavioral metamodel while the
FOM is described by using the HLA Object Metamodel. HLA Object Metamodel (HOMM)
is a formalization of HLA Object Model Template (OMT) [39]. The OMT Core folder
includes the table contents specified in HLA OMT.

Federation Structure Metamodel (FSMM) represents the structural aspects of the
federation. This metamodel allows the developer to define a federation and its participating
federate applications, and to readily connect them to their respective FOM and SOMs. In

this sub-metamodel, the participating federate applications are emphasized and their
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corresponding SOMs can be specified in addition to the FOM. The FOM and SOMs that
are referred by FSMM are prepared with HOMM.

HLA Federation
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Figure 2.8 Relationship between a FAM and its metamodel ([12])

The HLA Services Metamodel (HSMM) defines the interface of the standard services of
Runtime Infrastructure (RTI). These management services provide a functional interface
between federates and the RTI. These interfaces arranged into seven basic groups are as
follows: Federation management, declaration management, object management, ownership
management, time management, data distribution management, and support services [38].

Behavioral Metamodel (BMM) provides an abstract syntax for specifying the dynamic
and the observable behaviors of a federate. Modeling the behavior of a federate can involve
not only the HLA-specific behavior such as creating regions, but also the interactions
between the components of the federate and the live entities (e.g., the user) in the
environment. The observable behaviors of a federate are represented using Message
Sequence Charts (MSCs) and Live Sequence Charts (LSCs) in the metamodel.

LSC is a graphical language introduced by Harel and his colleagues [14][42], as an
extension of MSC, for specifying the patterns of interactions between components in a
concurrent system. MSCs are widely used in the specification of telecommunication
systems. The MSC language is standardized by ITU [41], the most recent standard being
Recommendation Z.120 [15]. Many features of MSCs are adopted in the UML sequence
diagrams. LSC extends MSC by providing notations for distinguishing mandatory and
optional behavior and by promoting conditions to first class elements.

LSC metamodel defines basic LSC concerns such as instance, event, message, parallel,
alternative, loop and interconnection between these concerns in the meta-level. These
concerns are matched to the first class objects such as folder, atom, model, reference and

connection, which are defined in the Generic Modeling Environment (GME).
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LSC instances can represent federation executions, federates (possibly, with their
constituent modules), live entities such as interactive users and environments. An LSC
document which includes one or more LSC diagrams represents a federate’s behavior.
Federate application code is generated for the given LSC document. A federate may have
some constituent modules whose behavior we might prefer to model explicitly. Each such
module is represented by an instance in the LSC model, and code is generated specifically

for it (Please refer to Section 5.5 for code generation per LSC instance).
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CHAPTER 111

THE CONCEPTUAL FRAMEWORK

This chapter aims to provide a conceptual framework for the model-driven engineering
work, including metamodeling and model transformation, presented in this thesis, before
delving into the nuts and bolts of the particular application presented at length in the
subsequent chapters. The content is abstracted away as much as possible from the details
and jargon of the specific domains, tools and technologies used in an effort to facilitate
comprehensibility and appeal to a broader range of readers and potential adopters.

We present a formal, multi-stage model transformation endeavor from a domain
Conceptual Model (CM) to a Distributed Simulation Architecture Model (DSAM), and
from that, to executable simulation codes and supporting artifacts. Referring to the MDA
terminology, CM and DSAM constitute the Platform-Independent Model (PIM) and
Platform-Specific Model (PSM) of the model transformation work, respectively. The end-
to-end transformation process is depicted in Figure 3.1 to be elaborated on in subsequent
sections. CMs and DSAMs are formally built due to compliance with their metamodels

CMM and DSAMM, respectively. The transformation is defined over these metamodels.
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Figure 3.1 The overall model transformation process
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3.1 The Models
This section introduces the source and target models, particularly the conceptual data
model, the distributed simulation architecture data model and the behavioral model, which

is employed by both of the source and target models.

3.1.1 The Conceptual Data Model

The CMM’s data model, CDMM, consists of a set of domain entities called actors,
which are able to perform computations and receive/send messages (from/to other actors
and the environment) on a one-to-one or multi-cast basis. The multi-cast communication
media are called nets, which are represented simply as sets of references to actors. The
communicated messages are collections of domain information, extracted from
authoritative sources and composed in different granularities.

The messages can be categorized as being durable or non-durable. This durability
distinction facilitates the transformation definitions for target PSMs of distributed
simulation domain, such as HLA because there, this distinction between message
communications matters. Durable type of messages represent information that is intended
to be kept and maintained for a duration by the receiver. Non-durable type of messages
represent information that is meant to be immediately used and then forgotten by the
receiver (barring, of course, logging).

The upper level elements of the CDMM and their associations are sketched in the UML
diagram of Figure 3.2. In the figure, the Model elements are the primary building blocks of
the communicated data and can be organized recursively to accommodate for composite
structures. The Folder elements are containers that are similar to folders found in
computer file systems and are used to maintain model components organized. The data
model is buildup of Messages, Actors and DurableDataStore folders. The messages,
consisting of durable and non-durable types, are stored in the Messages folder. The
durable data messages are further specialized into instantiation, update and delete types.
Since the objects corresponding to durable data messages need to be maintained throughout
system life time, they are kept in the DurableDataStore folder. An instantiation type of
durable message contains the original copy of the durable data (i.e., persistent object) to be
placed in the store for the first time. Subsequent update messages contain template objects
that are used to update the effective copy residing in the store. The message indicates the
corresponding persistent object to be deleted from the store. The Actors folder keeps the

domain elements of type Actor and Net. Net is a special kind of Actor and is treated the
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same as a source or destination for message communications throughout the mission

scenarios realized in CMM.
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Figure 3.2 The upper level CDMM elements

3.1.2 The Distributed Simulation Architecture Data Model

The DSAMM’s data model, DSADMM, consists of elements that collectively define the
static view of a set of autonomous and loosely coupled interoperating simulations. The
interactions are mediated via the simulation infrastructure, or middleware. The middleware
functions as the overarching manager, knows about the identities and data exchange
interests of the participating simulations and orchestrates all of the communication traffic,
whether being one-to-one or one-to-many. To be more concrete, the individual simulations
in an HLA-based distributed simulation [13][38][39] are called federates, the middleware is
called the Run-Time Infrastructure (RTI) and all of this simulation environment, along with
a common simulation data exchange model, are collectively called the federation The
DSADMM defines the structure and organization of the communicated data as classes of
simulation objects in a simulation data exchange model, categorized by having lifetimes of
single interactions, or the whole simulation.

The prominent elements of the DSADMM and their associations are depicted in Figure
3.3. In addition to Folder and Model types, the DSADMM introduces Connection
types, which are association classes between two model elements. The simulation data

model consists of the simulation environment, a number of simulation members, which are
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“members of”’ the simulation environment and a simulation data exchange model. The data
exchange model houses instances of simulation classes, which represent the data structures
communicated within the overall simulation environment. The simulation class is
specialized into simulation object and simulation interaction types, of which the former is
intended to model persistent information and the latter is intended to model instantaneous
events. In a similar vein, objects are associated with durable data messages and interactions
are associated with non-durable data messages defined in CMM. The simulation classes
contain attributes having data types defined in the specific distributed simulation domain.
For instance, HLA has a default set of simple, enumeration, array and record data types.
The simulation environment “manages” and has an overview of the overall communication

3

taking place among the simulation members. The simulation members “use” a set of

simulation classes, which they produce or consume in order to share data with each other.
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Figure 3.3 Prominent DSADMM elements

3.1.3 The Behavioral Model
The behavioral metamodel, BMM, is used in both of the source and target models.

BMM is a representation of the LSC/MSC formalism, which is comparable and shares
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many constructs with UML sequence charts. LSC is based upon MSC [41] and extends it
with various means for distinguishing between possible, necessary and forbidden behavior
[42][43]. The behavioral metamodel is capable of representing the discrete communication
behavior of many practical systems, consisting of components exchanging messages,
independently of the domain. This communication aspect of the system behavior is
particularly emphasized from the LSC modeling perspective. A simplified illustration of the
upper-level and outstanding elements of the BMM and their associations are provided in

the UML class diagram of Figure 3.4.
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Figure 3.4 Simplified illustration of upper-level BMM elements
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The complete behavioral specification of a system can be viewed as a global description
of its components from the communication/interaction viewpoint. This system specification
1s captured in a single MSC document, which consists of a document head and one or two
document bodies. The head part includes declaration lists for the instances, messages and
timers used in the document and optionally a reference to another document that it
“inherits” from (not shown in the figure). The body part of the document is modularized
into a set of MSCs. Each MSC, similar to the MSC document, but pertaining to only its
own scope, has a head and a body. LSC is the most commonly used MSC body type and is
the primary means for representing the behavioral specification of the system being
modeled. The LSC contains, besides others, a set of references to the instances that interact
with each other using a rich variety of instance events. An important and relevant event
group from a model transformation perspective is the message event, which provides the
mechanism to exchange data between the instances in the form of LSC messages. LSC is
recursively defined and is allowed to refer to other MSCs in order to favor better
modularizing and componentizing big behavioral descriptions. Inline operand, which is
defined to be specialized from LSC, is the main building block of the non-orderable, multi-
instance type of events called inline expressions. Inline expressions include constructs for
defining loop, optional, exceptional, alternative, parallel and sequential flows in a
behavioral specification. The language of LSC (or MSC or UML sequence diagrams, for
that matter) is, to a great extent, expressive enough for comprehensive specification of
systems, although in practice they are often used to represent particular use-cases, scenarios

or traces of systems.

3.1.4 Model Integration

The data and behavior models of both CMM and DSAMM are stand alone, separately
built sub-models. LSC provides a generic infrastructure for modeling the discrete
communication behavior of a system as a partially ordered set of events (mainly as message
passing) between a group of instances. In the context of a specific domain, these generic
behavioral elements need to be specialized as the domain’s entities. The specializations are
naturally derived from instance, message and other elements of the LSC metamodel. The
integration of the behavioral and data models is thus achieved by extending the relevant
data model elements from the behavioral model elements in the sense of UML inheritance.

The integration points of the behavioral and data models of CMM and DSAMM are
shown in Figure 3.5. Specifically, on the CMM side, Actor and Message of CDMM
inherit from Instance and Msg of BMM, respectively. On the DSMM  side,

SimEnvironment and SimMember of DSADMM inherit from Instance of BMM,
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SimClass of DSADMM inherits from Msg of BMM, and simAttribute of DSADMM

inherits from Argument of BMM.
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Figure 3.5 Integration of data and behavior in conceptual and simulation models

3.2 The Model Transformations

3.2.1 Overview of the Model Transformer

The graph-based model transformer, which is based on the theoretical work on graph
grammars and transformations [4], produces a DSAM from a CM. An overview of the
architecture of the transformer is illustrated in Figure 3.6.

The model transformer interprets both the CM and the DSAM as vertex and edge
labeled multi-graphs (i.e., graphs that are permitted to have edges that have the same end
vertices), where the labels denote the corresponding entities in the metamodels. Then the
model transformation work is formulated as a graph transformation problem defined over
the source and target metamodels. The model transformer defines a production (i.e.,
transformation rule) as the basic transformation entity. A production contains a pattern
graph that consists of pattern vertices and edges, which are elements from the source and
target metamodels (called LHS and RHS patterns in graph transformation vernacular). Each
pattern object has a bind, delete or new designation that specifies the role it plays in the
transformation. Bind is used to match objects in the graph. Delete is also used to match
objects in the graph, but afterwards they are deleted from the graph. New is used to create
objects after the pattern is matched. Sequencing is accomplished by grouping
transformation rules into recursively defined blocks and connecting these rules and blocks
in sequential, parallel or conditional branching organizations.

The execution of a rule involves matching every pattern object marked either bind or

delete. If the pattern matcher is successful in finding matches for the pattern, then for each
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match, the pattern objects marked delete are deleted from the match and objects marked
new are created. Sometimes the patterns by themselves are not enough to specify the exact
graph parts to match and other, non-structural constraints on the pattern are needed. These
constraints or pre-conditions are expressed in special guard expressions.

The transformer also provides access to a programming API, that can be used further to
manipulate and fine tune the generation, after the structural changes are completed in a rule
execution. This extra mechanism is incorporated by invoking user code library methods
from within transformation rules. The user code library is written to facilitate model
transformations in terms of improved execution performance and saving from the tedium of

graphically defining many uninteresting transformation rules.
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Figure 3.6 Overview of the architecture of the model transformer

3.2.2 Key Elements of the CM to DSAM Transformation

Adopting a parallel design principle, the CM to DSAM transformation is essentially
formulated around the core of data and behavior model transformations, executed in
sequence. Before and after these core blocks, come the smaller sets of pre and post rules
that set up and tear down the stage for the more platform specific distributed simulation
environment. There are also preliminary transformation steps using both data and
behavioral models that produce temporary structures to be utilized in subsequent
transformation rules. This approach to CM-to-DSAM transformation is illustrated in Figure
3.7. The behavioral transformation generally traverses the top-down LSC structure, starting
from the MSC document and going down to individual LSCs and the events inside the

LSCs (please refer to Figure 3.4 for LSC/MSC structure). Since the top-level data model
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elements are extended from LSC elements, the LSC transformation implicitly covers the

data model elements as well.

CM
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Figure 3.7 An overview of CM to DSAM transformation

The set of key transformation steps are enumerated in the list below and the key

mappings done from the CM to DSAM during the transformation process are summarized

in Table 3.1.

every actor is mapped to a simulation member;

every non-durable message is mapped to a simulation interaction;

every durable data element is mapped to a simulation object;

the simulation environment element is brought in as a collection of communicating
simulation members, every actor to actor non-durable message communication is
mapped to a simulation member to simulation member communication via the
simulation environment (running the middleware), using a pair of send/receive
interaction messages;

every actor to actor instantiation type of durable message communication is
mapped to a simulation member to simulation member communication via the
simulation environment, using three pairs of register/discover object,
request/provide attribute update and update/reflect attributes messages;

every actor to actor update type of durable message communication is mapped to a
simulation member to simulation member communication via the simulation
environment, using a pair of update/reflect attributes messages;

every actor to actor delete type of durable message communication is mapped to a
simulation member to simulation member communication via the simulation

environment, using a pair of delete/remove object messages;
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e the default distributed simulation types (that serve simulation classes) are brought

in; simulation environment initialization is introduced in a preliminary LSC by

creating the environment, joining the simulation members to the environment,

declaring simulation member data exchange interests and other sorts of simulation-

specific initializations;

e simulation environment shut down is brought in to the final LSC by resigning the

registered simulation members from the simulation middleware and destroying the

simulation environment;

¢ finally, the rest of the CM LSC parts are directly (i.e., one-to-one) mapped to

equivalent DSAM LSC parts.

Since the data model elements are mostly composed of hierarchically organized optional

and mandatory parts, it is more convenient to perform the details of data transformations

using a programming API, rather than capturing all of the possible pattern combinations in

separate rules, if possible.

Table 3.1 Summary of mappings from Conceptual Model to Distribted Simulation
Architecture Model

CM Component

DSAM Component

Actor/Net

Simulation member

Non-durable message

Simulation interaction

Durable message

Simulation object

<NA>

Simulation environment

Actor-actor non-durable comm.

Sm-sEnv-sm send/receive interaction

Actor-actor durable comm. (inst. type)

Sm-sEnv-sm register/discover object
+ request/provide attribute update
+ update/reflect attributes

Actor-actor durable comm. (upd. type)

Sm-sEnv-sm update/reflect attributes

Actor-actor durable comm. (del. type)

Sm-sEnv-sm delete/remove object

<NA>

Default distributed simulation types

Sim. env. init. LSC (create env., join sim. mems.,

e declare data exchange interests, init. others)

<NA> Sim. env. destruction LSC (resign sim. mems.,
destruct sim. env.)

Other CM LSC components Other DSAM LSC components
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It is important to note that this mapping is one of many possibilities. It can be used, for
example, to create a first-cut simulator for the modeled domain. Different design decisions
can be effected by defining different transformation rules. We argue that for any domain
specific conceptual model which can integrate with the presented CMM as an upper level
model, the model transformation approach presented in this thesis can be used to
automatically generate a corresponding distributed simulation model and code. The
supported distributed simulation model is the Federation Architecture Meta-Model

(FAMM) [12] which formalizes HLA.

3.2.3 Transforming Message Communications

The crux of the model transformation work presented in this thesis is the transformation
of a typical one-to-one direct communication between the actors of a CM. A simplified and
abstracted schematic of this transformation involving a non-durable message event
communication is illustrated in Figure 3.8. The transformation also demonstrates the
mappings of the CM actors and messages onto DSAM counterparts.

The loosely coupled communication architecture of DSAMM would normally
necessitate an actor A to B out-event transmission in a CM to be represented as (simulation)
member A sending an out-event to the (simulation) environment first and the environment
sending another out-event to member B. However, instead of having these two explicit outs
(and two implicit ins), we have decided to implement one explicit out-event between
member A and the simulation environment and an explicit in-event between member B and
the simulation environment, employing both in and out-event types. In this setting, if the
out-event has execution order n, the in-event is given a higher order, say n+/. This member
centric event mapping better supports the code generator’s code generation strategy which
considers each LSC instance (i.e. member) and its associated events individually while

producing the member base code and computation aspect code [61].

CM LSC

DSM LSC

Actor A Actor B Simulation Simulation Simulation
Member A Environment Member B
out | Transform o |
=T . > _Utn> R n
(ND-Message) (Send(inter.)) Ut IMnw
implied implied (Receive(inter.))
| | | | |

Figure 3.8 Abstracted mapping of a CM message communication to DSAM
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Having explained the crucial message communication transformation, it is worthwhile
to complement the topic with the higher level and more straightforward simulation scenario
generation. The main flow of the transformation follows the organizational LSC/MSC
hierarchy of the source model and creates corresponding LSC/MSC components on the
DSAM side as progressing along the path. Indeed it would not be completely wrong to call
the CM to DSAM transformation generally a LSC transformation. At the end of the
transformation, the behavior exhibited in the CM is fully reflected in the produced DSAM.
Of course, as visualized in Figure 3.7, there are transformation rules involving DSAMM

only patterns that setup and tear down the distributed simulation environment.

3.3 Refining the Simulation Model

The behavioral transformation is a one to one LSC/MSC transformation from CM to
DSAM; that is, a corresponding element of the same type is created on the DSAM side for
each MSC document, MSC and LSC of the CM. Furthermore, the content of an LSC is
transformed as summarized in Sections 3.2.1 and 3.2.2. At the end of the transformation, an
equal number of simulation members to the number of actors in a CM LSC plus one
simulation environment instance are created in the corresponding DSAM LSC.

A DSAM with this structure does not fully comply with the input requirements of the
code generator. As explained in [61], the code generator by design expects and generates
code only for one instance (i.e., simulation member) in an LSC. The LSC instance is the
focal element in the code generation process, and ultimately code for each LSC instance is
generated in separate source files. (Note that the set of LSCs for the same instance type in
an MSC document collectively describes the behavior specification of a simulation member
corresponding to the instance type in question.) This necessitates a refinement on the
generated DSAM, achieved through another DSAM to DSAM transformation named
Multi2BinaryLSC. The transformation refactors every LSC that contains multiple
simulation members and the simulation environment into as many binary LSCs as the
number of simulation members, each containing one simulation member and the simulation
environment. Intrinsically Multi2BinaryLSC accomplishes transformation from a global
view of the simulation environment to the collection of local views of the simulation
members.

The stripping of multi-instance LSC into binary-instance LSCs of a DSAM is depicted
in Figure 3.9. Eventually, every binary LSC only contains its simulation member’s mutual
communication with the simulation environment — an organization that facilitates per

simulation member code generation. Note that the stripping process may end-up in loss of
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event orderings in binary-LSCs that were implicitly known in their multi-LSC forms due to

transitive chaining of events among the instances.

3.4 Code Generation from the Simulation Model

A produced and refined DSAM is input to the code generator to produce simulation
member source codes, simulation environment source code and other artifacts such as
simulation configuration. The code generator, which is defined over DSAMM, first
traverses a given DSAM using the programming API to generate an intermediate form that
facilitates code generation. Then this internal representation is further processed to generate
executable code and other products. The heart of the code generator is the generic LSC
code generator component, which purely deals with behavior specifications from a
communication perspective, independent of the domain concepts they describe. The code
generator is specialized into a code generator for the specific simulation domain by way of
integrating the underlying domain’s object model (e.g., OMT in the case of HLA).

An important feature worth mentioning is the multi-threaded approach taken in code
generation. The behaviors of LSC instances that occur in multiple diagrams are handled
through parallel threads in the generated code. The behavioral specification of a simulation
member can be scattered in multiple LSCs within an MSC document; thus, there are
multiple threads of code, each in a separate source file, that describe the execution of a
simulation member.

Aspect Oriented Programming (AOP) [62] paradigm is adopted in generating distributed
simulation code. The AOP approach provides the separation of cross-cutting concerns. In
our case, this allows us to generate code so as to exercise LSCs in a computation-free
manner. Then application-specific computational (and other non-communication) aspect
advices are to be crafted by the simulation developer; these advices are then woven onto the
generated base code by the aspect-oriented programming environment, such as Aspectl.
The LSC instance is the focal element in code generation. All LSC instance codes are
generated in individual class files and are referenced from the diagram code generated from

the LSC itself.
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Figure 3.9 Refining a multi-instance LSC into binary-instance LSCs

Figure 3.10 shows the relationship between the generated simulation code files per

binary-instance LSC. For every LSC message out-event, a simulation middleware (e.g.,

RTI in the case of HLA) interface method call is made, and for every LSC message input

event, a simulation member interface method callback is generated. The LSC instance

aspect code intercepts the middleware interface method calls. It executes developer written

computation code and then redirects the call to the middleware with the computation code

in effect. On the middleware side, in addition to LSC, an aspect code (middleware instance

aspect) is generated for the overall simulation environment. This aspect code catches the

middleware callback methods and forwards them to the LSC instance (simulation member)
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code. Then in the LSC instance aspect code, the result of the callback (with all arguments)
is made available to the developer. The details of the code generator and the code

generation process are presented in [61].
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Figure 3.10 Relationship between generated source codes of a binary-instance LSC

3.5 Summary

This thesis presents a comprehensive graph-based model transformation work from a
Conceptual Model (CM) to an executable Distributed Simulation Architecture Model
(DSAM). The work is undertaken to clearly understand the requirements and challenges of
defining transformations from CM-to-DSAM, eventually executing scenarios of conceptual
models. Both CMs and DSAMs are formally defined conforming to their metamodels,
CMM and DSAMM, respectively. CMM and DSAMM consist of their own separate data
models and a common behavioral model. The data components are based on UML class
diagram and the behavioral component is based on Live Sequence Chart (LSC). The
scenario of a conceptual model is represented by LSC diagrams and forms the kernel of the
scenario of the corresponding simulation model generated through model transformation.

In CM-to-DSAM transformation, which is defined over metamodel-level graph patterns,
data and behavior is preserved. In fact the result of the execution of the transformation rules
is an increase in the “information content” of the models from source to target. The extra
platform specific information required for DSAM is provided through the transformation
rules, and a user code library. Another transformation named Multi2BinaryLSC, to be
applied as a pre-processing step on a produced DSAM before feeding it to the code

generator, is also developed. In essence, Multi2BinaryL.SC accomplishes transformation
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from a global view of the overall simulations to the collection of local views of the
individual simulation members.

A second phase transformation is applied by a code generator to produce executable
simulation code and other useful artifacts from a DSAM. The code generator consists of an
intermediate form generator front-end pipelined to a source code generator back-end. The
front-end walks through the input DSAM using the programming API and constructs an
internal representation of the model, which is fed to the back-end module to generate source
code files for the LSC diagram, instance, computation aspect and simulation execution
aspect. Computation logic has to be woven onto the generated aspect codes in order to
provide legitimate values for the data structures at runtime.

The presented graph-based model transformation work is powerful and appealing in that
it is visual, formally founded (both because it is based on metamodeling and it is possible to
state and prove certain properties of the transformations by resorting to the theory of graph
grammars and graph transformations) and offers a mechanism for transformation
composition. A notable downside of the transformation is its poor performance especially
when source models get bigger. This is accountable for every rule execution boiling down
to solving the sub-graph isomorphism problem on the input model and the match pattern.
This burden is partially relieved by breaking rules into reasonably small chunks and
providing as much initial binding on the match pattern as possible. Another facilitator is the
employment of the user code library which executes faster than pattern matching and saves
from tediously defining many similar transformation rules.

LSCs are particularly powerful for event-based, rather than state-based, descriptions,
which supports the trace-view of the system behavior. This could be particularly suitable
for trace-based applications, such as scenario specification, and course-of-action analysis.
LSCs may not be suitable for representing the execution of tasks that require continuous
interactions among entities. Last, current LSC variants lack some well-known control flow
constructs such as nested exception handling, jumping the flow to another point and global
suspension.

The experience gained in this thesis is a step forward in designing a domain-independent
model transformer for DSAM from any conceptual model that is based on LSC for

behavioral representation and UML-like class diagrams for data modeling.
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CHAPTER IV

FIELD ARTILLERY CONCEPTUAL MODEL

This chapter presents a formalized conceptual model for the Field Artillery (FA)
observed (i.e. indirect) fire domain. The structural part of the model identifies the entities in
the FA domain along with their properties and associations. The behavioral part of the
model is used to describe FA missions in the language of Live Sequence Charts (LSCs).
The conceptual model is constructed as a metamodel with the Generic Modeling
Environment (GME) toolkit. Once the FA metamodel is registered, GME automatically
provides a customized environment to model particular FA missions. The intended
application is to use the FA metamodel as the source for defining model transformations
targeting FA federation architectures. Another intent is to help evaluate the power and
limitations of chart notations for describing military tasks visually yet precisely.

Section 4.1 is an introduction to the chapter, clarifying what is meant by a conceptual
model, drawing the general outline of the field Artillery Conceptual Model (ACM),
identifying the potential benefits of it and stating where it fits in the overall study. It also
describes the reasoning behind selecting LSC for behavioral modeling. Section 4.2 explains
ACM’s scope, its implementation approach and its two user perspectives corresponding to
a model builder and a software developer. Section 4.3 is an in-depth presentation of ACM’s
implementation in GME. The data model and the integration of the data and behavioral
models are demonstrated. The behavioral model is actually the LSC metamodel and since it
was developed as part of another study [12][85], its modeling is not covered. Section 4.4
presents the LSCs of the Adjustment Followed by Fire For Effect (AdjFFE) mission model
in graphical notation. The section also shows the instance decomposition of the
BatteryFDC model element into a lower level MSC document and the HSMC that shows
how other mission definitions can be accessed. Section 4.5 discusses the challenges
encountered and provides an informal assessment of ACM and usage of LSC in modeling

military tasks. Finally Section 4.6 presents a selective set of related work of conceptual
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modeling from the literature. Note that in the context of this thesis, the distinction between

the terms task and mission is not important; thus, these are used interchangeably.

4.1 Introduction

A Conceptual Model (CM) represents the relevant entities of a domain and the
relationships between them, independently of implementation details. CMs are essential
artifacts both in operational systems and simulation systems lifecycle. In this thesis CM is
to be understood in the context of modeling and simulation. Formalization of a CM is
achieved when we construct it in a formal language, for example, as a model conforming to
some metamodel. A metamodel essentially defines the language in which models are
expressed. A formal representation serves as a basis for machine processing, and supports
automated generation of useful artifacts, such as other (specialized) models and executable

code.

4.1.1 Motivation

Robinson [44] defines a CM as "non-software-specific description of the simulation
model that is to be developed, describing the objectives, inputs, outputs, content,
assumptions, and simplifications of the model." He also points out that there is a significant
need to agree on how to develop CMs and capture information formally. The need for
formalizing task representations in military domains has been further emphasized in several
other studies [45][46]. In another study, “Mission Space Models” are defined to be domain
specific models that are consistent, structured and functional descriptions of real military
operations or processes [50].

This chapter presents a tool supported formal model for the FA observed fire domain,
verified and validated with a subject matter expert. Considering the definitions given in
[44] and [50], it is necessary to underline that the modeling of military tasks by LSCs in
this thesis constitute a part of a CM (or a mission space model), emphasizing inter-entity
communications, rather than a complete CM (or a mission space model).

Formal modeling of the FA missions has many potential benefits. In the course of
modeling one has to fill in the gaps found in the informal descriptions and clarify
ambiguities. This helps with the clear understanding of the domain by an individual and
shared understanding by a group of people, and facilitates processing with a computer.

The ACM is developed with the intention for use within the context of a model
transformation work that aspires to produce executable distributed simulation code from
FA mission models through a series of transformations. The purpose of the ACM is to lay

the groundwork for a Platform Independent Model (PIM) to be utilized in (semi)automatic
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model transformations to a Platform Specific Model (PSM), e.g. a Federation Architecture
Model (FAM), where the platform is the High Level Architecture (HLA). A secondary

objective is to assess the use of LSCs in FA mission modeling.

4.1.2 Rationale for Using Live Sequence Charts

Message Sequence Chart (MSC) [15], upon which LSC is built, is a well-established
visual formalism for the description of inter-working of processes or entities. Both the
graphical and textual syntax as well as the formal semantics (in terms of process algebra)
are defined for MSC [41]. The sequence diagram notation [17] of Unified Modeling
Language (UML) 2.0 is very similar to MSC. LSC is introduced by Damm and Harel [14]
as an extension to MSC primarily to provide the distinction between mandatory and
optional elements.

The play-in/play-out mechanism proposed by Harel and Marelly [43] support what they
call scenario-based programming. The basic idea is to play-in the desired interactions and
use LSCs to record them. Later these records are used as behavior specifications, which
monitor a user-guided simulation (play-out). The mechanism is realized by the Play Engine,
developed by the authors [43]. This operational view put into practice by the play-in/out
mechanism looks attractive for the early validation of mission models.

Recently a linking tool called “InterPlay” has been developed [47], which can be used to
mix inter-object behavior given in LSCs with separate behavior given for some of the
objects in an intra-object language, such as conventional code or statecharts [48]. Note that
in this thesis, we are concerned with the observable behavior of a system where the system
state is implicit, whereas statecharts emphasize the state-transition view, which may include
unobservable behaviors (e.g., data management and computation) as well, and the state is
represented explicitly. Enriching the models with intra-entity behavior representation,
promised by the InterPlay tool, seems to be an appealing future study and hence, another

reason to leverage LSCs

4.2 Metamodel Scope, Methodology and User Perspective

4.2.1 Scope and Assumptions

The ACM addresses certain aspects of technical, rather than tactical, fire direction.
Accordingly, the focus is on the autonomous fire direction mode instead of the battalion
directed mode. Consequently, the battery FDC becomes the most outstanding actor while
the battalion FDC’s role diminishes to merely monitoring the mission activities and
interceding in exceptional situations. Even if such an intervention occurs, the flow still

keeps the autonomous mode after the battalion fire order (i.e., a new mission assignment) is
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received. This makes sure that the missions are always executed within the context of the
battery’s perspective. Owing to this viewpoint, massing of fires, which requires
coordination of multiple batteries under the same battalion FDC, is omitted.

Ammunition preparation, fire parameter computations, ballistic conditions under which
a projectile flies, and trajectory calculations all require computational and domain expertise.
Such issues are considered far too technical and left out of the scope of the study. These
processes are assumed to be transparently performed and their outcomes are readily
provided by the infrastructure, if need arises. Moreover, the modelings of the environment
such as geographic and man-made features are also omitted. Detailed modeling of possible
targets, guns and ammunitions is avoided. What remains inside the scope of the model is
the description of the firing missions from the viewpoint of message exchanges among the
participants.

The metamodel is built in accordance to the relevant Army field manuals [35][36][37].
On the other hand, there were some routine military procedures that we judged as irrelevant
for our modeling purposes. For example, the callee reads back whatever the caller has read
within combat radio net conversations for verification purposes. Another example is that at
the end of a conversation the parties may enter an authentication session. Such general
issues are left out of scope to keep the model less cluttered.

There are seven kinds of FA mission types represented in the model under area and
precision fire categories. There are many more special and ammunition specific missions
mentioned in the field manuals. Since these seven types are probably the most widely used
ones and they adequately serve the purpose of testing the use of LSC in the description of
military tasks, no other mission types are modeled. Finally, the entire top level domain

entities in the data model are specialized from NATO’s JC3IEDM (refer to Section 4.3.1).

4.2.2 Methodology

The ACM is an integration of two separate sub-metamodels, namely, the behavioral and
data models, as shown in the sample model of Figure 4.11, where the former relies upon the
latter for the definition of domain-specific data types. The term domain is used in the sense
of an area of interest, FA being an example.

The FA observed fire mission descriptions are represented by means of LSCs,
specialized for the FA domain. Specialization is achieved by formulating FA mission
messages as LSC messages and integrating the FA message structures as the data language
of LSC. The LSCs in the behavioral model use the data model elements via referencing.
Note that the behavioral metamodel is capable of representing the discrete communication

behavior of many practical systems, consisting of components exchanging messages,
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independently of the domain. This communication aspect of the system behavior is
particularly emphasized from the LSC modeling perspective.

The data model consists of domain specific information, including actors, nets, mission
messages, message communications and the mission hierarchy. The structures of these
entities and relationships among them, as well as constraints are explicitly modeled. The
structural constraints such as association, containment, attribute names and types, interface
(via the port mechanism) and cardinality are readily defined thanks to the UML based
notation of GME. Moreover, logical or semantic constraints are also defined either directly
on model elements or globally (i.e., metamodel wide) in OCL.

The AdjFFE mission model is presented in Section 4.4. AdjFFE is one of the most
prominent mission types of the FA observed fire and also serves well to reveal the use of
the behavioral and data model elements together. Both ACM (metamodel) and AdjFFE
(model) are realized using GME.
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Figure 4.11 A simplified sample ACM model as shown in GME model browser

4.2.3 User Perspective

The MDA brings its own paradigm to software development as compared to the
common state of the art approaches. In the MDA paradigm the most outstanding roles of
development are the model and transformation rule developers. In our context, the potential

users of the FA models are expected to be the FA domain experts who are building the
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conceptual models and software developers who need both the source and target
metamodels at hand in order to write model transformations.

A conceptual model builder has to develop the FA behavioral and data models as similar
to Figure 4.11. Since this thesis’s focus is on inter-entity communications, the user is
relieved from defining intra-entity processes (e.g. computations, state management). The
user is also free of concerning with the specifics of the data types of the data model, in the
sense of programming languages.

A software developer, who is a model transforming user, must have a thorough
understanding of the source and target metamodels to write transformation rules. He has to
deal with the lower level data type mappings between the source and target models, hence
requiring programming language knowledge. This user should further incorporate all sorts
of HLA specific context that cannot readily be inferred from the FA model into the

transformation rules.

4.3 Field Artillery Metamodel

This section illustrates and explains the prominent parts of the metamodel as realized in
GME. Before moving any further, a clarification on the levels of modeling would be
worthwhile. Object Management Group (OMG) introduces a four-layer metamodel
hierarchy for defining modeling, metamodeling, and meta-metamodeling languages and
activities in [17]. Table 4.2 relates the FA metamodel (field Artillery Meta-Model
(ACMM)) to OMG’s four-layer modeling hierarchy. Please refer to List of Abbreviations
section at the beginning of the thesis for the model element name acronyms and

abbreviations.

Table 4.2 FA metamodel (ACMM) correlated with OMG’s four-layer model hierarchy

OMG’s Metamodel Hierarchy | Related Model

Meta-metamodel (M3 layer) GME metamodel (metaGME)

FA metamodel (referred to as a “paradigm” in GME

Metamodel (M2 layer) vernacular) - the ACMM

A particular FA mission description, e.g., AdjFFE

Model (M1 1
odel ( ayer) (provided as the case study) - an ACM

A particular execution of a FA mission (e.g.,

Run-time inst MO 1
un-time instance ( ayer) exercising an AdjFFE scenario)
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4.3.1 Data Model

This section elaborates on the constitution and organization of the structural part of the
domain model. First, a brief but informative introduction to the entities is provided. Then,
they are explained in detail, along with GME excerpts of the most important ones.

Actors correspond to the real world FA members, such as the personnel, the units or the
environment. As they all take part in mission execution, they are considered the producers
and consumers of domain information captured in messages.

Messages are an important part of the FA domain information. Typically, they are
highly structured and they have many optional or conditional fields of various data types.
There are further syntactic, semantic or cardinality constraints on the message structures,
both on a single field and inter-field basis. These constraints are captured as OCL
statements throughout the model.

Our analysis has revealed two kinds of message usage in the domain. The first kind
includes those messages that are sent as single chunks of information independent of any
previous ones. Every such message supplants its immediate predecessor of the same type.
The second kind of usage is practically an accumulation of a series of communications of
the same message type. Specifically, the current interpretation of a message at a particular
destination is a function of all previous receptions of that message kind. In such a usage, the
first reception of a message creates an initial copy at the destination. Subsequent message
receptions result in updates on the original copy. The message is removed from the scope of
the actor with the arrival of a special deletion message. In the FA domain model the
majority of the message usages are of the first kind.

A single message communication typically involves the triple of a source actor, a
destination actor and a message to be sent from the source to the destination. Often there is
an extra “net” acting as a means to deliver the message to secondary receivers. In some
communications, there is no particular destination actor, but only a net.

The net concept, which is a set abstraction of actor members, is used to serve multicast
communication needs within the model. A net transparently relays any message that it
receives to its members. Nets are formed according to the dictations of domain specific
requirements, such as intra- and inter-battery and meteorological communications.

The mission hierarchy builds up the set of FA observed fire missions that can be
modeled. The mission model elements themselves do not possess mission related
information; rather they are simple atomic elements merely used as markers of mission
types. Mission specific information is conveyed within message structures. Mission model

elements exist as parts of some of those message structures. For each kind of mission there
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is a corresponding mission definition as part of the behavioral model. In this respect, the
mission hierarchy bridges the data and behavioral models together, establishing traceability
from the data model to the behavioral model in that, given a mission LSC, there must be a
message transmitted within the LSC that indicates the mission’s type by including a

corresponding mission model element in the message.

Actors

Throughout the modeling work, a functional point of view is adhered to. Hence the
organizational structure of the military domain is not of major interest in identifying the
actors. Accordingly, the FAT trio is modeled as the FwdObserver, the BatteryFDC and the
FiringUnit. FwdObserver is identified as an actor due to his central role in observed fire
missions. BatteryFDC and FiringUnit could be organized under the firing battery part of a
cannon battery, but since they directly play important roles in missions, they are treated as
two actors on their own.

BatteryFDC is further decomposed into BatteryFDO and BatteryFDCComputer. This layered
modeling of the BatteryFDC is primarily a consequence of focusing on autonomous fire
direction mode. In this setting, as indicated in Section 2.5.1, the BatteryFDO is responsible
for producing fire order and fire order Standing Operating Procedures (SOP), and the
battery computers (abstracted as the BatteryFDCComputer) participate in producing the fire
command. As these messages lie at the heart of FA missions, their producers and
consumers deserve to be treated explicitly.

In the Army field manuals [35][36], it is indicated that many important messages are
addressed to the BatteryFDC by the other actors, such as FwdObserver, FiringUnit and
BattalionFDC. No specific component inside the BatteryFDC is mentioned as this is not a
concern to these exterior parties. Of course, when the focus is on the BatteryFDC itself, then
intra BatteryFDC actors and their interactions are explicitly described.

The BattalionFDC is an actor outside FAT, supervising the FAT’s activities, occasionally
intervening or taking over the control on its own accord.

Meteorological data in the form of a metro report is an input for technical fire direction,
especially for the computation of fire commands. Usually a meteorology station at the army
corps produces and distributes metro reports [36]. ACM accounts for this fact with the
MetStation actor which distributes metro reports to the related FAT members.

Being the object of firing missions, Target is an obvious model entity. It is referred in
messages such as call for fire, and refinement and surveillance. Target, however, is not

elaborated in the model.
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All the entities and processes of FA missions are deployed in accordance to an order of
battle. This environment is modeled using the FeatureType entity in the sense of JC3IEDM
(see below). FeatureType specifically covers geographical and meteorological features. The

model, however does not address environmental concerns.

Nets

Within this thesis scope, the radio-net and metro-net concepts corresponding to the real-
world battlefield radio nets are modeled. An actor can join or listen to a conversation taking
place within a net that it is a member of. By this way multicast or broadcast messages such
as meteorology messages are handled uniformly. The BatteryRadioNet consists of references
to the FwdObserver, BatteryFDC and BattalionFDC. The MetroNet consists of references to the
MetStation, BatteryFDC and BattalionFDC. In both of the nets, the sole inclusion of the
BatteryFDC implicitly assumes that the BatteryFDO and BatteryFDCComputer are also
informed of the conversations as they are included in the BatteryFDC. Finally, it is worth
noting that although the BatteryRadioNet is intended as a usual radio net, the MetroNet is
merely an abstraction; it may not be an actual radio-based network.

Figure 4.12 sketches the organization of the FA actor and net entities. Note that there is
a Reference to every actor (not shown in the figure) as only the references to actors are used
in message communications and nets. All the actors and nets are modeled as GME Model

elements and are collected in their respective folders, except the two BatteryFDC members.

Actor Actors E{E’F";’)I"ng:l Nets FANat
<<Model>> | | <<Folder>> <<Folder>> ], | <<Model>>
h‘% FAT %L

FudObserver || |l ==Model>> "1 FiringUnit BatteryRadioNet | [ MatroNet
<<Model>> J— <<Model>> <<Model>> <<Model>>
—
—— BatteryFDC
BatteryFDO <<Model>> BatteryFDCComputer
<<Modeal>> <<Modeal>>

Figure 4.12 The actors and nets of the field artillery data model

Messages
The set of messages comprises the bulk of the FA data model. There are more than 70
messages defined, ranging from simple, single piece of command-type forms to complex,

highly structured union forms. In order to utilize powerful modeling principles such as
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modularity, reuse and polymorphism, families and hierarchies of messages are defined.
There are two major abstraction layers established in the message model, namely the utility
and the conceptual layers. The utility layer gathers most of the commonly used parts found
in the messages, such as ammunition, measurement, date and time, location, and direction.
The conceptual layer contains the higher level messages employed in mission descriptions.
These elements include the relevant utility components in addition to the message-specific
parts.

The family of messages defined in the metamodel, all extracted from the Army field
manuals [35][36], has two kinds of usages as mentioned in in the beginning of this section.
The messages of the first category include CFF, MTO, FO (of both BatteryFDC and
BattalionFDC), FC, FiringReport, Spotting and Correction types. The messages of the second
category are each a trio of instantiation, update and deletion messages for Ammunition, SOPs
for FO and FC, and MetroReports. In Figure 4.13, the parts a and b present a sample for each

category.

FireCammandSOFRef |
Oid__Mso ==Refarences== ?nglnaIRef
==hodel==
furdObsCallSign @ field : PP originalFef |1 1
Duration - 3 iz Type Irlci;;fgéﬁzlrpeﬂssizn FireCommand3OP FireCommand30OPUpdate_Msg
==MadelProys= g”'““””'“""“s 1 i ==MadelProxy== ‘;_P;’E z=Model==
s 1 ? ”
L ocation CFRWarningOrder MetOfmgtLoc original 4 3 3
=<ModelProxe> |igis ==Maodel=» ==Atom== FireCommandSOPInst_Msg | | FireCommandSOPDel_Msy
C
.1 tatld : field [z knownPaint : field =<Model-> ==hodel->
. callSign2FFE . field type enum

Figure 4.13 a)Msg. for observer identification and warning b)Msgs for FireCommandSOP

Both syntactic and semantic constraints on the selection and formation of message parts
are expressed in OCL statements, which are directly bound to the messages themselves or
are defined globally at the metamodel level. These constraints in the metamodel are
enforced either during model development time or after model construction according to
their priority levels. Below is a sample OCL expression for Oid_W_Msg of CFF type
message, indicating that “Target location is only given in immediate suppression or

immediate smoke missions’:

let missionType = self.parent.connectedFCOs (“src”,MissionType) in
missionType.name = “Supp” or missionType.name = “ISupp”
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Message Communications

Message communications are the top level yield of the data model before moving into
the behavioral model. The actors, nets and messages introduced up to this point are used in
combinations into meaningful message communications.

Structurally, a message communication embodies the message, the sender and the
receivers of the message. Apart from one or two exceptions, there is only one sender per
message. For this reason the message communication hierarchy is based upon the senders
of messages, which are actors. A net cannot be a sender, but only a receiver since its sole
function is to relay an incoming message to its member actors. Figure 4.14 illustrates a
sample branch of the message communication hierarchy.

Note that every member has a suggestive role name and a cardinality of 1 in its
composition relation with the parent communication element. Another point to note is that
the sender and the receivers are references, whereas the message is a model element itself.
Consequently, in a series of message communications, every message must be a new
individual, but the senders and receivers must be existent actors. In cases of multiple

receivers, each receiver gets its own copy of the message.

PaiDbse nvers foC o
==hlodal==
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FuwdObserverRef Qid_W_Com BatteryFDCRef
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- = RadioMetRef
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El

»

Figure 4.14 A message communication example

Missions

A perusal of the field manuals revealed the types of observed fire missions shown in the
mission hierarchy in Figure 4.15. In this classification, observed fire missions are grouped
under two fire categories, namely AreaFire and PrecisionFire. This distinction is based on the

fact that area fires are conducted with all of the guns in a battery, whereas precision fires

58



are conducted with usually one, or at most, two guns. Area fires are categorized as
adjustment, fire for effect, suppression, immediate suppression, quick smoke, immediate
smoke and illumination. Precision fires are destruction and precision registration.

The purpose of area fire is to cover the target area with dense fire so that the greatest
possible effect on the target can be achieved [35]. Fire For Effect (FFE) is the most
common and important of area fire missions. The observer strives for first-round FFE,
provided that if he can locate the target accurately. If the observer cannot locate the target
accurately enough to warrant FFE, he conducts an adjustment. Even with an accurate target
location, if the current firing data corrections are not available, adjustment may be
necessary [36]. In adjustment, fire from the central gun alone is step by step brought onto a
designated adjusting point. Fire parameters are refined through observer corrections after

each round. FFE is started by the entire battery once a satisfactory adjustment has been

obtained.
QhsanvedFiranfission
==podal==
AreaFire PracisionFire
==hodeal== ==Maodel==
Adj FFE ISmoke { Hiwrnination Dest PReg
==podel== U| ==model== z=hpigdel== ==Madel== ==plodel== ==fodel==
pattern : enum
Fe—— 1
Supp ISupp QEmoke
==Model== U| ==Maodel== ==htodel==
impactinagle . field
smakeidth . field

Figure 4.15 The mission hierarchy

Several points need clarification. First of all, adjustment may be conducted in
conjunction with smoke and illumination missions as well. In this respect, adjustment can
be considered as a preliminary activity rather than a standalone mission. This opens a
debate as to discard adjustment as an area fire mission. However, due to adjustment’s
significance, frequent application, and the field manuals’ practice of counting it as a

mission on its own, we opted to place adjustment under area fire mission hierarchy.
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Second, illumination, suppression and registration missions have several variations, each
employing different techniques. There are further variations based on special munitions
used in the missions. These are considered out of scope of this thesis.

Finally, since FFE is the most common mission among the others and is usually
preceded by an adjustment, adjustment followed by FFE (i.e., AdjFFE) mission is used as
the case study of this work. Most of the other kinds of missions are indeed conducted

similar to these two with special differences and/or additions.

JC3IEDM as an Upper Level Data Model

JC3IEDM [53] is adopted as an upper level data model for ACM. Particularly, every
top-level entity in the data model is specialized from a JC3IEDM element by means of the
inheritance mechanism. A simplified hierarchy of the used JC3IEDM elements is readily
defined in the data model for the sake of soundness and completeness. This conceptual
traceability of the model from JC3IEDM promotes the model’s compatibility and
recognition. Figure 4.16 shows the top-level FA domain entities (plain boxes) and their

extension points with JC3IEDM (shaded boxes).

| Action | |CandidateTargetList|
o |
|Faci|i£yType| | PersoLlType | |Organi;ationT.| |Materi‘eIType| |Featu|"eType| | ActionTask ||CandidateTargetDetaiI|
| Network | | BatteryFDO || GovernmentOrg.T. | |Con=l bleMat ieIT.ll M ge ||ObsFireActionTask| | Target |
| MetroNet ||BatteryRadioNet| |Mi|itary0rg.T.| |AmmunitionT.| |SimpIeAction| |ObsFireMission|
/\ /\ /\
/\
MetSLation ”Fdet‘)server”Battali‘onFDC” Firin;Unit || Batter‘yFDC ||BatteryFDéComputer|| FAT |

Figure 4.16 FA domain entities as attached to JC3IEDM

4.3.2 Composition of the Behavioral and Data Models

The behavioral part of the ACM is essentially the LSC metamodel [12]. As LSC is
extended from MSC, the metamodel also covers the MSC metamodel in its core. MSC is a
visual language for specifying the behavior of a concurrent system focusing on the
communication among the components of the system. The metamodel covers all the

standard MSC features [15][41] and the proposed LSC extensions [14] as a coherent whole.
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The data model narration together with the chart samples of the graphical notation should
suffice for having a grasp of the LSC notation for the unfamiliar reader. Also an
introduction to the MSC and LSC specifications are provided in Section 2.7. Please refer to
[12] for more details and examples from the HLA-based simulation domain.

To put it another way, the LSC metamodel provides a generic infrastructure for
modeling the discrete communication behavior of a system as a partially ordered set of
events (mainly as message passing) between a group of instances. In the context of a
specific domain, these generic behavioral elements need to be specialized as the domain’s
entities. The specializations are naturally derived from instance, message and other
elements of the LSC metamodel. The composition of the behavioral and data models is thus
achieved by integrating the data model to the LSC model. The integration points of the
behavioral and data models are shown in Figure 4.17. It is seen that all of the FA actors and
nets are inherited from LSC Instance and that the FA domain messages are inherited
from LSC Msg.

GME’s being a configurable toolkit for creating domain-specific modeling
environments comes handy in creating the ACM paradigm. The paradigm is the result of
importing the existent LSC and FA data metamodels as libraries into GME through its
built-in Model Integration paradigm and then defining the integration points in a separate
paradigm sheet, as explained above and partly shown in Figure 4.17. Once the ACM is

registered as a GME paradigm, a domain specific modeling environment capable of

enabling domain experts to build FA mission models is obtained.
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Figure 4.17 Integration of data model to behavioral model (partial view)
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4.4 Adjustment Followed by Fire-for-Effect Mission Model

This section describes the AdjFFE mission, the source model for the model
transformation case study, in graphical LSC notation. The model includes around 40 LSCs,
each being about one page long and an HMSC. In this section, only a set of important
charts will be presented. The complete set of LSCs can be found in Appendix A. Since the
graphical notation elements are not introduced elsewhere, they will be described wherever

they are first encountered.

4.4.1 The Top Level Mission Model
Figure 4.18 fully covers the AdjFFE mission description at the topmost level and sets up

the framework for the remaining charts.
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Figure 4.18 Adjustment followed by fire for effect

The horizontal dimension is the structural dimension and the vertical dimension
corresponds to the time dimension. On top of the vertical axes are the instance heads, drawn
as rectangles with instance names. Vertical lines are the instance axes and thin solid

rectangles at the bottom indicate the syntactical end of an axis.

62



The LSC has a superimposed pre-chart shown as a dashed elongated hexagon indicating
that the LSC scenario takes effect, provided the pre-chart has been traversed successfully.
The thin rounded rectangles orthogonally crossing the instance axes are references to other
MSCs. A reference symbol contains the referenced MSC’s name and, if applicable, its
actual parameters. If an instance is not involved in a referenced MSC, then its axis is drawn
through the reference symbol. The consecutive arrangement of MSC references implies
sequential ordering in time. Within the LSC, it is seen that there is a parallel inline
expression with two operands, separated by a dashed line.

Finally, note that BatteryFDC is “decomposed as BatteryFDC_FFE”. The keyword
decomposed below the instance head indicates that the instance is decomposed within at
least one MSC to further refine its behavior. Thus an MSC document may be interpreted
relative to its own instances only, disregarding any decomposition, or it may be interpreted
relative to lower levels of instances by following the decomposition relations. The
decomposed BatteryFDC is presented in Section 4.4.2.

The CFF chart, depicted in Figure 4.19, describes the FwdObserver's sending of CFF
messages to the BatteryFDC. The messages are also transmitted by the BatteryRadioNet to its
members. We devised a simplifying convention that net transmissions are only shown as
incoming messages to an MSC reference whose sole instance is the net, in order not to
clutter the chart with unnecessary obvious information. The net together with its members
are explicitly shown in the defining chart of the called MSC reference.

Messages are shown as directed arrows with labels drawn from the sender to the
receiver. A message may originate from and arrive into an instance, an MSC reference or
the exterior environment. It may get lost in transmission. A message contacts an MSC
reference at a gate, which interfaces the MSC to the outer world. The small black circles are
simultaneous regions, meaning that the set of events touching the circle are perceived to
happen at the same time. An action is an atomic event represented by a rectangular box
attached to an instance axis. The actions are treated in our study as annotations where user
defined computations can be entered. The LSC body consists of a guarded optional inline

expression where the condition variables being provided as MSC parameters.
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decomposed as HatteryFDC-CFF

/ > \
4 ‘Prepare Oid_W_Msg \
/ > IS\ considering missionType’ \\
A /
\ ; ; /

W_M
\\ @RN - Oid_W_Msg l Oid_W_Msg N //
\ /
| Simultaneous region |
[o} ;J ______________________________________________
£ ____ When (missionType="Adj" or missionType="FFE” or missionType="Dest’) __ _ __>
/] [
I ‘Prepare TargetLoc_Msg’
@RN < TargetLoc_Msg ]| TargetLoc_Msg R

‘Prepare DT_ME_MFC_Msg
considering missionType’

~ DT_ME_MFC_Msg 1 DT_ME_MFC_Msg
BRN )«
)
I I [ ]

Figure 4.19 Call for fire

Following the CFr and MTO message transmissions, the adjustment loop starts as shown
in Figure 4.20. Prior to the loop start, an initial fire command must be prepared and sent,
resulting in system state to become AdjNotDone (i.e., adjustment is not done). As long as the
adjustment is not done, round shot, spotting observation, shot assessment through
correction sending, and subsequent fire command preparation in the light of incoming
correction information are executed in sequence. The preparation of correction data and
deciding whether the adjustment is accomplished or not require domain specific
computations. Thanks to the action mechanism these technical details are abstracted away.
The vertical dotted line segment besides the two action events indicates a coregion meaning

that the execution order of these two does not matter.
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Figure 4.20 Adjustment loop

Note that, concurrently with the MTO and before the initial fire command, there is a fire
order message transmission taking place between the sub-instances of BatteryFDC. As these
instances are defined in the lower level MSC document called FDC, the fire order message
is shown there. For details, refer to Section 4.4.2

The initial fire command chart is depicted in Figure 4.21. Fire commands are prepared
within BatteryFDC as the result of a series of detailed computations involving ballistics.

At this stage, only the produced commands are seen to be sent from BatteryFDC to
FiringUnit. The decisions on selecting the specific fire commands are extensively guided by
the dynamic instance variable metCtrl. Each instance maintains its own copy of metCtrl in
order to keep track of its command and control state. We envision the exceptional
CheckFiring (CF) and CeaseLoading (CL) events to occur non-deterministically. Whenever the
FAT enters into CF or CL states, the instances in question halt in the sense that they do not

emit any messages until the BatteryFDC sends cancellation messages for CF or CL.
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decomposed as
BatteryFDC-IngFireCommand

Alt .~ When ((metCtrl.isFO-AMC & DT_ME_MFC_Msg.MetOfCtrI.Fire)\\)
AN | metCtrl.isFDC-AMC | metCtrl.isTOT) ,

@RN < Fire MsﬂFlre Msg

Otherwise
|
Opt -7 When (metCtrl.isCF | getlsExc(“CF”)) _>

CheckFiring_M391CheckFiring_Msg

[]
: metCtrl.isCF := true

.
I a
' When (getlsCancelExc(“CF")) .
]
CanceICheckFiring_MsglCanceICheckFiring_Msg

BRN )<
)
metCtrl.isCF := false

CeaseLoading_MsglCeaseLoading_Msg

[]
: metCtrlisCL := true

When (getlsCancelExc(“CL"))

[)
L}
L]
U
e

Q
o
a
o
Q
9
=
=1

Yeceee

CancelCeaselLoading_Msg l CancelCeaselLoading_Msg

metCtrl.isCL := false

O\ InitFireCommand_Msg

@RrNji L 4

InitFireCommand_Msg

fireCommand := downcastFC
(InitFireCommand_Msg)

( ProcessFireCommand )

Figure 4.21 Initial Fire Command

There is no restriction on the instances other than emitting messages in due course; that
is, they may continue any other activities of their own. This situation is captured by cold
locations represented as dashed line segments in the instance axes. A cold location has the
semantic that execution may remain at that point indefinitely. The flow ends with an

invocation of the ProcessFireCommand chart.
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The life cycle of Ammunition, from the moment it is brought into the firing position till its
removal after detonation is reflected in the chart of Figure 4.22. Ammunition is created by the
Environment instance and made known to the radio net members through an instantiation
message. Then the FiringUnit fires the round and the projectile (i.e., ammunition) proceeds
traversing its trajectory. The ammunition instantiation message event happens strictly
before the firing action event of the FiringUnit, as shown by the dotted arrow between the
two. If not explicitly ordered, events that occur on different instances are assumed to take

place independently, by definition.
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Figure 4.22 Round shot

As the projectile follows its trajectory, Environment sends ammunition position update
messages at every second until detonation. Timer events are symbolized with an hour glass

having a time value alongside. A timer start event is a horizontal line segment between the
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instance axis and the timer symbol. A timer stop event is an L-shaped directed line segment
from the timer symbol to the instance axis. After the projectile is shot, a Shot_Msg is sent
from FiringUnit to BatteryFDC and then propagated to FwdObserver and the other radio net
members. If a warning message was requested before projectile detonation, BatteryFDC

sends a Splash_Msg to FwdObserver five seconds prior to detonation.

4.4.2 Instance Decomposition of BatteryFDC

The inner structure and behavior of an instance kind are defined through an MSC
document with the same name as the instance kind. To indicate how the behaviors
described at different levels of abstraction are related, the behavior of an instance inside an
MSC diagram can be specified to be refined in an MSC of the MSC document defining the
instance being decomposed.

In the figures of Section 4.4.1 the BatteryFDC instance was tagged as “decomposed”
meaning that there is an MSC document called BatteryFDC containing further refinements of
the charts that included BatteryFDC as an instance. There are some requirements to be met
by the decomposition, which are best explained through exemplifying figures below.

Figure 4.23 illustrates the decomposed chart of AJJFEE as situated in the lower level
MSC document refining the BatteryFDC. Note how the MSC references CFF and MTO_Al are
refined as viewed from the BatteryFDC's perspective. One important detail that is not present
in the upper level chart is the production and sending of the fire order message, since fire
orders take place only within the battery FDC scope.

The content of the refined version of CFF is given in Figure 4.24. In terms of inline
expressions, the decomposition contains a corresponding inline expression of the same
operation and operand structure as the one in the decomposed chart. The inline expression
in the decomposition is “extra-global” (i.e., crossing the MSC frame) indicating that the
operands are connected to other operands of similar inline expressions when interpreted
through decomposition. The harmony between the lower and higher level charts can be
clearly followed through the similarities in the structures of the MSC constructs. (Compare

Figure 4.19 and Figure 4.24).
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Figure 4.23 Adjustment followed by fire for effect in decomposed BatteryFDC instance
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4.4.3 Overview of Missions via a High Level MSC

High-level MSC (HMSC) provides a means to graphically define how a set of MSCs are
combined. An HMSC consists of start and end symbols, flow lines, conditions, top level
MSC references and inline expressions. A flow line indicates sequential flow, and start and
end symbols have the obvious role of scope marking. The latter three have much similar
interpretations as the ones found in MSCs.

Figure 4.25 presents the HMSC for the ACM behavioral model. It is a top level view
covering which mission executions are started under what conditions. This high level chart
first sets the global system states of operation mode and mission type, and later steers the
flow towards the desired mission execution. This thesis only covers battery directed
operation mode and demonstrates the AdjFFE mission, but the other options are provided
for future model extensions. Note that we allow the option for battalion directed operation
mode, but do not provide a description for it. Mission type is to be selected among the

seven possibilities covered by the present work.
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4.5 Discussions

This section provides a discussion on challenges encountered, lessons learned,

assessment of ACM and assessment of using LSC notation in modeling military tasks.

4.5.1 Challenges Encountered

A number of difficulties had to be overcome in both modeling the FA domain and using
the LSC metamodel in developing the AdjFFE model. The following paragraphs discuss
the notable challenges.

Information on FA observed fire techniques are dispersed in a series of Army field
manuals. The narrations of these manuals are fairly informal in that they bear traces of
experience and insight obtained in battlefields. Moreover, they presume much background
knowledge on the part of the reader, and sometimes even have seemingly incongruent parts.
It took a considerable amount of effort to comprehend that content and come up with a
coherent domain model. SME consultations also proved to be very fruitful in resolving
ambiguities and filling in gaps.

The point of view taken in the manuals dictates the hierarchical chains of command and
seniority relationships among the actors. We did not consider military hierarchy in our
modeling practice and followed a functional modeling approach instead. Specifically, some
of the actors represent humans (e.g., BatteryFDO), some represent units (e.g. BatteryFDC,
FiringUnit), and even some represent a mixture of both (FwdObserver, BatteryFDCComputer).
All of the actors are selected and organized according to their roles in the observed
communication flows in performing FA missions.

Another inconvenience was met in deciding from which JC3IEDM elements to extend
the data model elements. Sometimes there were more than one alternative, sometimes there
was no obvious candidate and sometimes there was a JC3IEDM entity with the same name
as an ACM entity, but having a slightly different meaning. For example, a debated decision
was whether to extend the FwdObserver element from JC3IEDM UnitType or MilitaryPostType.
For the no-candidate cases, we made up intermediary entities between the JC3IEDM and
the entities in question. For the same-name cases, we put an identification tag in front of the
entities for preventing name clashes. We used intuition in resolving such situations.

On the behavioral model side, while we enjoyed the convenience in representing the
message communications between the actors, we suffered representing global state
information. For example, the unary valued setting conditions of MSC was an obvious
shortcoming, which we had to relax in modeling for convenience.

An MSC message event has a signature comprised of the message name and the

parameter set. The types of the parameters are defined in the data language provided to the
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MSC. On the other hand, an FA message is a coherent unit, typically with a nested
structure; hence it is inconvenient to flatten it into a list of parameters. In order to adapt the
FA message as an MSC message, we set the top level FA message element’s name as the
name of the corresponding MSC message without parameters. We embed the information
content that otherwise would be conveyed by MSC message parameters into FA message
definitions.

LSC lacks some well-known utility constructs such as nested exception handling,
jumping the flow to another point and global suspension. We strived to avoid these cases;
however, in some cases we had to devise workarounds. There were some situations where
LSC provided the operators, but they were either insufficient or not applicable under certain
conditions. For example it might be the case that a timer starts inside an optional inline
operand and timeouts somewhere outside. In this situation we allowed the timer to start
inside the operand and go off outside. The interpretation we give is that if the optional

operator executes the timer starts, otherwise the timer has no effect.

4.5.2 An Informal Assessment of ACM

This section constitutes an evaluation of the ACM in terms of the approaches taken in
domain modeling. Then the selection of tool and technology are critiqued. Consequently
the assessment covers a set of recognized CM evaluation criteria such as completeness,
traceability, modularity, layering, extensibility, reusability, composability and
interoperability of the model.

ACM is a well-focused and framed artifact. Converging to the smaller scale battery level
and a limited portion of the overall domain (i.e. observed fire techniques) enabled us to
disregard many tactical issues peculiar to the battalion level as well as computational
issues, yielding a more compact and comprehensible model. This tight scoping approach
makes the model domain specific enough so as to open way for feasible model
transformations.

The U.S. Army field manuals [35][36][37] are utilized as the authoritative information
sources. In that respect we strived to make use of the original terminology from the field
manuals for the model elements. Hence all the data model entities and their attributes can
be traced back to the related sections of the field manuals for validation.

We have conducted a series of face validations with an SME. This proved to be very
fruitful especially when dealing with the ambiguities inherent in the field manuals.

All of the top-level data model entities are derived from NATO JC3IEDM, establishing
the metamodel on a mature and common formalism. This further favors the model in terms

of compatibility and recognition. In [45] it is underlined that the Battle Management
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Language (BML), which this work can be considered to fall in line with, must use the
existing C2 data representations whenever possible. Extending the data model from
JC3IEDM clearly echoes this argument.

A salient feature of the model is its capability to illustrate the domain at higher and
lower abstraction levels and the seamless integration of the two. In particular, the
interactions of the BatteryFDC to other actors and the intra BatteryFDC actors and their
interactions are readily demonstrated.

In [49], Davis and Anderson emphasize the relevance of reuse and composability in
conceptual models. The FA metamodel promotes these concepts by defining the top level
generic model elements as FCOs to provide for easy model extension. An outstanding
example exhibiting model reuse and composition is importing the data and behavioral
metamodel libraries and then defining specialization relations between the relevant data
model elements and the behavioral ones as explained in Section 4.3.2.

To have an overall view of all of the mission descriptions, HMSC mechanism has been
utilized. This way, the model user finds a common interface in configuring and selecting a
mission description.

On the tool side we believe that deciding on GME was appropriate. GME is a domain-
specific, model-integrated program synthesis tool for creating and evolving domain-
specific, multi-aspect system models. Due to GME’s inherent UML basis, the models are
bolstered by being compliant with a common industry standard. (Note that GME’s UML
support is limited to only class diagrams). This further enabled the model to utilize the
tenets of object oriented design such as encapsulation, inheritance and polymorphism. The
dynamic semantics of a model is not defined in GME, but this can be introduced through
model interpreters that can be plugged into GME. Moreover, the model is capable of
representing semantic (business) constraints both on a model element basis and globally in
OCL. Finally, it is possible to obtain tool independent XML exports of the models,
facilitating interoperability. By this way “silos” are avoided; that is the metamodel is

realized in GME, but we are not restricted to GME.

4.5.3 An Assessment of Using LSCs in Modeling of Military Tasks

LSCs are particularly powerful for event-based, rather than state-based, descriptions.
The point of view is to capture the observable interactions of an entity, distinguishing
between mandatory and optional. The observers can be other system entities or any outside
entity, including the environment. The interactions do not have to be only the sending or
receiving of messages. More generally, any discrete action by one entity that can be

observed by another entity, e.g. shooting, can be modeled as an MSC/LSC message. The

73



event-based nature of LSCs supports the trace-view of the system behavior. This could be
particularly suitable for trace-based applications, such as scenario specification, and course-
of-action analysis.

Use of LSC as a practical modeling notation, invariably requires a data model (static
model) to be integrated with the action (behavioral) model. The variables, values and
expressions communicated by the messages refer to the data model. The action boxes, then,
represent internal computations performed on data items by individual instances. The
description (though not the ordering) of computations falls outside the scope of LSCs. This
issue is best handled by an algorithmic language.

LSCs may not be suitable for representing the execution of tasks that require continuous
interactions among entities. Consider, for example, a maneuvering tank platoon.
Maintaining its formation and changing the formation when ordered require the tracking of
all team members, say, by maintaining line-of-sight, by each member continuously.
Representing in LSC how such a task is executed is not convenient. A typical recourse
would be to represent the team-wide start and finish conditions of the task and consider it
done in the meantime. In the similar vein, the execution of tasks that involve a spatial
element, such as illumination patterns, could be handled by action boxes in a way akin to a
computational or menial task. It is, then, up to the model transformer or code generator to
interpret such conditions and action boxes suitably.

Chart notations, such as MSC, LSC and UML sequence diagrams are often used by
software developers to represent certain typical runs of the system being specified. Our
approach, in contrast, strives for a complete specification. This explains the extensive use
of nested control structures in our charts. With the usual trace-oriented use a much more
flat chart structure would suffice.

As the state information is indirectly and implicitly represented in LSCs, they do not
readily support system implementation. However, this does not prevent us from animating
LSCs, say, for validation purposes, or generating executable code from LSCs, say, for

generating prototypes.

4.6 Related Work on Conceptual Modeling

This section points to a selective set of related conceptual modeling techniques,
frameworks and approaches in literature that fall in line with the present modeling work.
Before starting, a basic understanding of conceptual modeling, formal specification and
perspectives from different application domains is worthwhile to provide.

In a broader context, Conceptual Model (CM) is defined in [95] as, “An abstract,

idealized and symbolic description of the structure and behavior of the real system, which
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1s understandable for those from the application domain”. Ideally, the CM provides insight
into modeler‘s purpose-related understanding of the structure and behavior of the real
system as well as the system knowledge used for modeling. It should also explain the
motivation and justification of conducted abstraction, idealization, and selection of the
model boundaries. Furthermore, providing the hierarchical organization of the sub-models
is desirable. Generally speaking, CMs hardly feature completeness, self-consistency,
unambiguousness, direct support for development, maintenance and reuse. Last, CMs can
contain comprehensible natural language specifications, i.e. narration, as well as formal
specifications in their descriptions.

A formal specification is a solution-oriented, unambiguous symbolic specification of the
structure and behavior of the real system, based on a well-defined modeling formalism [95].
Some examples to general purpose formal specifications can be given as UML, Queuing
Nets, Petri Nets and DEVS. ACMM and FAMM - the metamodels used in this thesis for
representing the field artillery observed fire and HLA domains, are examples to formal
specifications tailored for domain-specific modeling. Formal specification supports
unambiguousness, efficient implementation of solution, platform independent specification,
and automated verification and validation activities such as syntax checking, semantic
checking (including self-consistency), control flow and data flow analysis, model checking,
and (limited) testing.

There are different conceptions of conceptual modeling from different perspectives such
as information systems development, database management systems, knowledge
engineering, ontology and simulation. The following subsections provide more insight into

some of these.

4.6.1 Conceptual Models of the Mission Space

The Conceptual Models of the Mission Space (CMMS) effort, initiated by the U.S.
Department of Defense (DoD), aims to facilitate the development and reuse of simulation
models. CMMS is defined in [50] as “First abstractions of the real world that serve as a
frame of reference for simulation development by capturing the basic information about
important entities involved in any mission and their key actions and interactions”. CMMS
emphasizes the implementation-independent functional descriptions of the real world
processes, entities, environmental factors, and associated relationships and interactions
constituting a particular set of missions, operations or tasks. An important part of CMMS
includes the domain specific conceptual models, called “Mission Space Models”. They are
consistent, structured and functional descriptions of real military operations or processes.

Some recent studies, notably Defense Conceptual Modeling Framework (DCMF) [51] and
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the conceptual modeling tool KAMA [52] have further elaborated the vision promoted by
the CMMS.

4.6.2 KAMA

KAMA is a conceptual modeling framework that incorporates a notation, a modeling
process and a supporting tool for developing mission space conceptual models [52][106].
The process is based on the works of CMMS [50] and Pace [115]. The framework does not
mandate the developer to follow the proposed process; any other process is possible, as
long as pre-requisite relationships among the diagrams, such as an entity state diagram
requiring an entity to be defined or a task flow diagram requiring the existence of a mission
or a task, are satisfied. The KAMA notation is a graphical, UML-based specification that
provides a domain specific language for conceptual modeling. It is composed of four major
packages, namely, Foundation, Mission Space, Structure and Dynamic Behavior — an
inspiration from UML Infrastructure specification [17], and defines seven diagrams for
representing the structural and behavioral aspects of a model. The tool supports both the
notation and the process and provides the developers facilities such as reusing conceptual
models from the common repository, filtering diagrams, context-sensitive search,
navigation, n-dimensional model viewing, versioning, custom report generation,
verification and custom properties management of the model elements.

The case studies conducted with KAMA have revealed that the users had difficulty of
comprehension as the diagrams became cluttered. Model development in GME also suffers
similar cluttering problems, but the view aspect capability of GME [3][33] allows the
developer to group related model elements into user defined aspects so that the elements in
the same aspect are visible and others are filtered-out when the aspect is active.

Karagoz [52] emphasizes the great value of transforming CMs into simulation design
models and admits that using common metamodels for both would ease the process. He
further mentions that KAMA'’s scope does not include that. In our work, we have ACMM
and FAMM developed with the same meta-metamodel — metaGME. They also share the
same LSC formalism for behavior representation and the ACM2FAM transformation is
defined over the metamodels.

The KAMA tool benefits from a common repository similar to the one in DCMF [51]
that stores all of the published and accredited conceptual models, model elements and the
diagrams, and a simple repository search mechanism, which GME does not (intend to) have
support for. On the other hand it lacks two features as stated by the author, namely,

metamodel editing and model merging.
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4.6.3 Defense Conceptual Modeling Framework

The CMMS initiative was prematurely ended by DoD a few years after its sparkling. It
was later independently continued by FOI, the Swedish Defense Research Agency. FOI has
refined and enriched the original CMMS concepts and later has evolved its FOI-CMMS
work into Defense Conceptual Modeling Framework (DCMF) [51].

A fundamental contribution of DCMF is the introduction of the Knowledge Meta Meta
Model (KM3) [96], a meta-metamodel to capture system structures and behavior in an
object-oriented and rule based way. The DCMF is an iterative process spanning four major
phases governed by different roles of responsibilities. Information is first gathered within
the Knowledge Acquisition phase. The Producer role processes unstructured knowledge
and transforms it into represented knowledge. To accomplish this, a parsing method must
be used. During the Knowledge Representation phase, smaller sections of this data are
structured as Knowledge Instances (KI) and validated for storage in the repository by the
Controller role. KIs are useful for some purposes, but they are not reusable since they are
specific to the scenario data. To get reusable knowledge, Kls are abstracted to the type
level, modeled as Knowledge Components (KC) and then validated in the third phase,
called Knowledge Modeling. These components are, upon Consumer requests, composed to
form Conceptual Models (CM) in the fourth and final phase, Knowledge Use. All the
described artifacts are stored in a repository for use and reuse.

In a more recent work [97] the FOI team has investigated enriching DCMF models with
semantics in an effort to better conceptualize and reuse knowledge. This is achieved by
creating an ontology for Base Object Model (BOM) and producing semantically enriched
BOMs as the outcomes of DCMF processes.

4.6.4 Base Object Model

Base Object Model (BOM) is proposed by the SISO to encourage and support reuse,
interoperability, composability, and to help enable rapid development of HLA simulations.
Conceived in 1997, BOM was standardized by SISO in 2006 [98]. At a high level, BOMs
are reusable packages of information representing independent patterns of simulation
interplay and are intended to be used as building blocks in the development and extension
of simulations. These components can also be composed in larger models (e.g., BOM
assemblies). Additionally, interplay within a simulation or federation can be captured and
characterized in the form of reusable patterns. These are sequences of events between
simulation elements. Implementation of these patterns using HLA object model constructs

is also captured in the BOM [99].
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Structured in five major parts, a BOM is an XML document that encapsulates the
information needed to describe a simulation component. The first part is Model
Identification, where metadata about the component is stored. These facts describe the point
of contact, what it simulates, how it can and has been used, as well as descriptions aimed
towards helping developers find and reuse it. The second part is the Conceptual Model.
This part includes what types of actions and events that take place in the component, and is
described by a pattern description, a state-machine, and a listing of conceptual entities and
events, which, when taken together, describe the flow and dependencies of events and their
exceptions. The third part is Model Mapping, and is where conceptual entities and events
are mapped to their HLA Object Model representations. This part bridges the Conceptual
Model with the HLA Object Model described in the fourth part of the BOM. The fifth
section is called Supporting Tables that contain semantic information about events and
entities as well as actions that is specified in the Conceptual Model, and are used to provide

a human-readable understanding of the patterns described in the BOM.

4.6.5 Ontology as Conceptual Model

Ontologies are structured descriptions that categorize concepts and relationships among
concepts within a particular knowledge domain [100]. Ontologies are, like taxonomies,
used to classify entities within a domain, but they hold several advantages over traditional
taxonomies in that they allow the entities to have properties and relationships. They also
allow types of things within a particular domain to be defined as classes, and the meaning
of a class is captured via its position within subclass-of (is-a) hierarchy as well as by its
properties, relationships, and restrictions. Because ontologies are meant to define a domain
and to be shared by many, the most useful ontologies are created by expert groups.

The use of ontologies in M&S has recently emerged as a growing area of research
interest as evidenced by the creation of the Discrete-event Modeling Ontology (DeMO)
[101], the evaluation of the Command and Control Information Exchange Data Model
(C2IEDM) as an interoperability enabling ontology [102], the development of the Process
Interaction Modeling Ontology for Discrete-event Simulations (PIMODES) [103], the
development of the Component Simulation and Modeling Ontology (COSMO) [104] and

the use of domain ontologies in agent-supported interoperability of simulations [105].

4.6.6 JC3IEDM

Joint Command, Control and Consultation Information Exchange Data Model
(JC3IEDM) is the core of NATO Reference Model and is also a view model of NATO
STANAG 5525 [53]. The data model is focused primarily on the information requirements

that support the operations planning and execution activities of a military or civilian
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headquarters or a command post. JC3IEDM has recently evolved from C2IEDM, or
Command and Control Information Exchange Data Model [54] by additionally including
and modeling new joint operational concepts.

There have been numerous efforts in evaluating C2IEDM as an enabling referential data
model for semantic simulation interoperability [55][56]. The results turned out to be that
C2IEDM could support concepts and entities very well and was sufficient for the formation
of relationships. The extensibility of C2IEDM is noted as yet another strength.

Brutzman and Tolk [57] offer recommendations for a framework ensuring
interoperability, reusability, and composability for the U.S. Air Force Joint Synthetic
Battlespace. They propose benefiting from distributed modeling methods using Model
Driven Architecture (MDA). They underline the use of C2IEDM as a common reference
model on the semantic level as a promising way to obtain meaningful interoperability

between components within joint and combined environments (i.e., system of systems).

4.6.7 Model-Based Approaches

The MDE approach is becoming prominent in software and systems engineering,
bringing forth a model-centric approach to the development cycle in contrast with today’s
mostly code-centric practices [1][58]. A well-known MDE initiative is the MDA of Object
Management Group (OMG), launched after the broad acceptance of the UML [17], which
became the lingua franca for modeling over the past decade. Model transformations are
considered the heart of MDA, where the PIM of a system to be constructed, is transformed,
or refined, into a PSM [2][20]. Both PIM and PSM conform to their own metamodels,
which act as grammars that define these models. Depending on the abstraction layer of the
models, the PSM may even be the executable code. If not, it can be further transformed into
code through another transformation.

Model Integrated Computing (MIC), an earlier manifestation of MDE, relies on
metamodeling to define domain-specific modeling languages and model integrity
constraints [3]. The language is then used to automatically compose a domain-specific
model-building environment for creating, analyzing, and evolving the system through
modeling and generation.

An exemplary MDA approach supporting Program Executive Office Soldier is
presented in [59]. The aim is to develop a modeling federation that integrates the
capabilities of various existing C2 systems in order to analyze the effects of a soldier on

tactical missions. UML chart notations are used to represent the mission descriptions.
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CHAPTER V

ACM TO FAM TO CODE TRANSFORMATION

This chapter presents a two-step automatic transformation of a Field Artillery
Conceptual Model (ACM) into a High Level Architecture (HLA) Federation Architecture
Model (FAM) into executable distributed simulation code. The approach taken adheres to
the Model-Driven Engineering (MDE) philosophy. The ACM and the FAM conform to
their own metamodels, which are separately built with the Generic Modeling Environment
(GME) tool. Both metamodels are composed of data and behavior parts, where the behavior
representation in both is based on Live Sequence Charts (LSC). The ACM to FAM
transformation is carried out with the Graph Rewriting and Transformation (GReAT) tool
and partly hand-coded in C++. Code generation from FAM is accomplished by employing a
Java based model interpreter that produces Java/Aspect] code. The code can then be
executed on an HLA Run-Time Infrastructure (RTI) engine after weaving the necessary
computational aspects. The experience gained in this work provides a step forward for the
inspiration of a domain-independent conceptual model transformer for HLA.

The ACM data model defines the field artillery domain entities, and its behavior model
defines observed fire missions in LSC form. Likewise, the FAM data model defines the
field artillery entities as federates, the federation and HLA messages, and its behavior
model defines the fire missions as inter-communicating federates via the RTI, again in LSC
form. Adopting a parallel design principle, the ACM to FAM (ACM2FAM)
transformations are essentially formulated around the core of data and behavior model
transformations, executed in sequence. Before and after these core blocks, come the smaller
sets of pre and post rules that set up and tear down the stage for the HLA federation
execution. This overview is sketched in Figure 5.1.

Before starting the details of this lengthy transformation process, we would like to
provide the user a grasp of how a produced FAM as the result of an ACM2FAM
transformation looks like through a FAM LSC in graphical notation. Figure 5.2 partially
presents the top level AdjFFE LSC diagram of the produced FAM that corresponds to the
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same named ACM LSC of Figure 4.18. Their structural resemblance is apparent with the
exceptions of the introduction of the instance named FieldArtilleryFed representing
the RTI federation execution and the two LSCs at the beginning and the end for federation

initialization and tear down, respectively.
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Figure 5.2 Partial view of AdjFFE LSC in a produced FAM
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5.1 Setting the Stage for Transformation

The separately and independently built source and target metamodels are exported into
an empty transformation model as a preliminary step to start the development of the
transformations. The development environment is again GME, as shown in Figure 5.3, but
tailored using the GReAT paradigm towards model transformations. Be reminded that
transformation development is yet another modeling activity and can therefore be realized
in GME. The transformation model consists of source and target models, transformation
configuration, transformation blocks and rules and other utility model elements for
providing easy global access and cross domain associations to be used during the
transformation.

The transformation configuration generally points to the source and target models and
metamodels, and the user code library employed by some of the transformation rules. It
also designates one of the rules as the start rule.

Cross-links establish cross model associations between the source and target
metamodels. Cross-links can be defined not only between different domains but can also be
used to extend a domain to provide some extra functionality required by the transformation.
By using a separate package for cross-links we are able to specify a larger, heterogeneous

domain that encompasses all the domains and cross-references.
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Figure 5.3 The start rule block of ACM2FAM transformation in GME/GReAT

A transformation step always starts pattern matching with an initial context, which is an
initial partial binding of the pattern graph. The initial binding reduces the search complexity
in two ways, (1) the exponential is reduced to only the unmatched pattern vertices and (2)
only host graph elements within a distance d from the bound vertex are used for the search,
where d is the longest pattern path from the bound pattern vertex [6]. This context is passed

along from rule to rule via ports during the transformation, similar to parameter passing in
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procedural languages. The main weakness of this approach is that the programmer needs to
specify context passing through several rules, even if the context is actually used only in
one remote, non-adjacent, step. The general idea of the global container is that the objects it
contains have global scope; that is, they are accessible throughout the whole
transformation, and it is not necessary to pass them along in the context. The capability of
eliminating portions of context passing and recurring complex pattern matching is one of
the key facilitating factors in terms of the development effort and execution performance in
this work.

The transformation definition is comprised of a set of major blocks, which further
consist of other blocks, rules, cases or expression references. Table 5.1 summarizes the
metrics for the overall ACM2FAM transformation effort, indicating a total of 64 blocks, 4
for-blocks, 187 rules, 13 tests (with a total of 55 cases) and 21 references to
other rules. The DataModelTr and especially the BehavioralModelTr blocks constitute

the core of the transformation and are further explained in the subsequent sections.

Table 5.1 Metrics for the ACM2FAM transformation

Transformation Expression | Count | Transformation Expression | Count

Block 64 | Test 13
ForBlock 4 | Case 55
Rule 187 | Expression Reference 21

5.2 Data Model Transformation

Data model transformation corresponds to the structural part of the ACM2FAM
transformation. Looking from a FAM perspective, it aims to construct the federation object,
the federate objects and the Federation Object Model (FOM) for the federation. The main
DataModelTr block is shown in Figure 5.4. It is composed of two inner blocks named
ObjectModelTr and the relatively smaller FederationStructureTr that are executed

sequentially, in that order.
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Figure 5.4 The main DataModelTr block

5.2.1 Object Model Transformation

Object model transformation basically transforms the set of field artillery message
structures that are communicated among domain actors during mission executions into
HLA classes. The field artillery messages are represented as free format UML structures
with information content provided by the domain. On the other hand, HLA-OMT
specification [39] puts forth a data type system. Several OMT tables (attribute, parameter,
dimension, time representation, user-supplied tag, and synchronization) provide columns
for data type specifications. A data type used in these tables shall be one of simple,
enumerated, record, array, and variant record data types. OMT specifies a core set of
default data types of basic, simple, enumerated, and array types, that correspond to
universally recognized types such as byte, integer, float, boolean and string. The HLA-
based distributed simulation model of any domain has to use an arrangement of OMT data
types.

As a preliminary step to the field artillery message to OMT class transformation, the
DataTypes block creates all of the basic, simple, enumerated and array data types that
make up the default, predefined HLA data set. Note that there are no default fixed and
variant record types. Domain specific ones are later defined in the rules that create
interaction and object classes.

The InitFoOM rule creates containers for interaction classes and object classes and an
empty FOM element, which is later filled with interaction and object classes. These two
OMT classes are the key elements in FAM data model; they are used frequently throughout
the rest of the rules in the transformation. In addition, the stubs that correspond to the other
OMT tables are also created in the FOM, of which only dimensions and timestamps are

maintained and used, whilst the rest left out of the scope of this thesis.
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Then, the transformation flow splits into two parallel branches, where interaction and
object classes are created concurrently. The crux of the data model transformation logic is
that all non-durable (i.e., stateless, with a life span of only a message transmission period)
messages are transformed into interaction classes and durable messages (i.e., stateful, with
a life span of the federation execution unless deliberately deleted) are transformed into
object classes.

At this point, the user code library interferes to apply operations on the bound objects
using the Universal Data Model (UDM) API [34]. These operations range from simple
ones, such as setting a new object’s name or position on the screen, to sophisticated graph
traversals, object creations or deletions. In our case, the user code library realizes the actual
field artillery message to OMT class transformations programmatically. We have identified
and implemented three approaches for transforming an ACM message into an OMT class
and its attributes. The library has more than 600 lines of C++ code with public entry
methods for the three approaches and eight non-public utility methods. Please refer to [60]
for details.

The InteractionClasses rule is provided in Figure 5.5 for illustrative purposes,
where black colored model elements indicate a pattern to match, and blue colored elements
designate the new elements to be created. The code snippet inside an AttributeMapping
element is executed after GReAT’s pattern matcher matches the rule pattern and the
effecter makes structural modifications on the matched model elements. The
AttributeMapping in the figure invokes the user code library’s message transformation
method.

There are two reasons why an important part of the data transformation is handled by
means of a code library. The biggest problem is that a field artillery message is usually
deeply structured, possibly having child objects bound to their parents in varying
cardinalities. This makes the situation even more complicated, because in order to represent
such combinations we would need many patterns, hence rules. For example, if a message
can have n direct children each having zero or one composition cardinality, then we would
need at least n parallel rules to cover all possible matched combinations of the source
model. On the other hand, by employing the user code library, we only need one rule, no
matter how many children with whatever cardinality a message structure may have.

The other reason is obtaining considerable performance gain by directly executing C++
code. This is much faster than first matching a graph and then calling the effecter to execute
it. (Be reminded that the sub-graph isomorphism problem, which is involved in every

pattern matching step, is NP-complete).
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Figure 5.5 The InteractionClasses rule

Figure 5.6 illustrates a conceptualized sample field artillery message structure to OMT
class transformation. On the left side is a field artillery message structure, named Msg,
having two components, named BCmn and CProp, both of which further have a couple of
children. Each leaf child has one attribute named va1l, of the type shown. It is assumed that
BCmn is a common, shared component used by other field artillery messages, and CProp is
a proprietary component specific to the message in question.

The transformation rule creates the MsgIC interaction class on the right hand side
through sole pattern matching. The user code library programmatically creates the rest of
the structure below MsgIc. The field artillery message structure is transformed into an
OMT attribute having a fixed record data type, within the OMT class. Each common
message part that is reused is transformed into a field of a record type, having further a
fixed record data type, mimicking the common message part. All of the other non-common
parts of the message structure are transformed into fields of the fixed record type having
appropriate primitive/simple types, with the field name reflecting the message structure
hierarchy. The field name consists of a string of concatenated message structure element

names, separated by “_”, from the leaf to the root node.
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Figure 5.6 A conceptualized field artillery message to OMT transformation

5.2.2 Federation Structure Transformation

The federation structure transformation concludes the data model transformation part. It
instantiates the single federation object together with a reference to the FOM that was
previously created. It also maps every field artillery Actor and Net to a corresponding HLA
federate along with a reference to an associated SOM. In this thesis, SOMs per federate are
left as stubs and not developed any further. The FOM is sufficient to capture all the OMT
objects participating in the federation execution. Indeed, FOM is what an RTI needs to run
a federation [13].

Finally, cross-domain associations establish referencing from each actor/net of the ACM
domain to its corresponding federate of the FAM domain. These temporary associations of
actor-federate pairs later function as a key enabler in the transformation of message
communications among the actors in a field artillery mission to inter-federate
communications in the behavioral model transformation step.

The result of the application of the federation structure transformation rules is depicted
as a UML sketch in Figure 5.7. It shows a subset of the (hierarchically structured) actor/net

collection inside the data model of an ACM, being transformed into their corresponding
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federates (flattened) inside the federation structure of a FAM. This one-to-one
correspondence is exposed by the blue has-correspInst associations. It is further seen
that every federate is a MemberOf the field artillery federation and that the federation has
another association with a reference to the FOM. The naming convention employed in this
work assigns the name FieldArtilleryFed to the federation element, and an actor/net’s

name in the field artillery model suffixed by Fd to its corresponding federate element.
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Figure 5.7 Transformation of field artillery actors/nets to HLA federates and federation

5.3 Behavioral Model Transformation

Behavioral model transformation is the bigger and more challenging part of the overall
ACM to FAM transformation. It uses the resulting objects of the data model transformation
as the instances and message parameters in LSCs that are being produced.

The main block of the behavioral model transformation, BehavioralModelTr, iS
shown in Figure 5.7. AscGlobalHlaMeths gets the method library of FAM that contains

predefined HLA methods for federation, declaration, object, ownership and time
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management. The block contains rules that take copies of all the methods used in the
transformation and associate them with the global HLA methods element so that they are
readily accessible by the LSC transformation rules. These methods are meant to function as
templates; hence their method parameters are left empty. Their copies in the LSCs are
assigned parameters with appropriate HLA class instances during the transformation. A
simplified and unified sketch of AscInstanceOfFacm is also shown in Figure 5.8. The
block basically creates is-InstanceOf associations between the instances that stand for
the same actor element in ACM. An actor instance in the MSC head of an MSC is an
instance of the same type of instance in the MSC document head, which in turn is an
instance of the canonical actor instance in the data model’s Actors folder. This chain of
associations establishes traceability between the behavior and data sub-models of ACM and
provides convenience in subsequent rules. A similar scheme is also applied progressively

on the FAM side as the transformation rules construct the model.
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Figure 5.8 The BehavioralModelTr and AscInstanceOfFacm blocks

The crtBehaviorMdlF1ld and CrtMscDoc rules are triggered one after another for
simply creating a FAM behavioral model folder and an MSC document underneath it,
provided that their corresponding counterparts are matched in the ACM. A has-
correspMscDoc association is established between the ACM and FAM MSC documents,

since there can be more than one MSC document in a source model and in such a case this
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association is necessary for keeping track of MSC references in different documents and

during instance decomposition.

5.3.1 MSC Document Transformation

The MSCDocTr block is displayed in Figure 5.9. It consists of three sub-blocks, namely,
DocumentHeadTr, DocumentBodyTr and AscReferences, executed in that order. All
of the blocks and rules within MSCDocTr are defined so as to traverse the structure
delineated by the MSC metamodel to create a FAM MSC document from an ACM MSC

document.

IFacmDaoc
Fac | . .Fac IFa, _ .OFa IFa, ,-OFad
Fam Fam IFa OFa IFa OFa[3

DocumentHeadTr DocumentBodyTr AscReferences

amDoc

Figure 5.9 The MSCDocTr block

To serve as a reference for the reader, part of the metamodel pertaining to the MSC
document is reproduced in Figure 5.10. An MSC document consists of a document head
and two document bodies of which, the defining part is mandatory and utility part is
optional. The MSC body essentially consists of one or more MSCs. The overall LSC/MSC
metamodel can be found in [12] in detail. The following two sub-sections describe the

document head and body transformations, respectively.

MSC Document Head Transformation

The DocumentHeadTr block handles the data definition, message declaration, instance
declaration (i.e., the containing clause) and timer declaration parts of the document head of
the FAM being constructed. Note also that data definition and message declaration are only
addressed as stubs since the content related with these parts are practically provided by the
data model.

The instance declaration part of the MSC document head transformation is also one of
the key steps in the overall behavioral model transformation. Its role is basically to create
federate objects and a federation object derived from the corresponding counterparts found

in the federation structure portion of the FAM data model.
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Figure 5.10 Part of the MSC document metamodel [12]

A derived object, which is a deep copy of another structured object, is created inside the
attribute mapping code by invoking a UDM API method. This, at the same time creates a
sort of inheritance association where, the attribute values of the derived object are kept in
sync with the values of the corresponding attributes in the archetype object (i.e. the object
that is at the farthest position within the chain of base objects; that is, the one which is not
derived from anything) as long as they are modified only through their archetype. Once an
attribute’s value is modified alone (i.e., directly on the derived object), the attribute
becomes de-synched from the archetype, which means that its value is not synchronized to
the corresponding attribute’s value in the archetype. Please refer to [34] for details.

This architecture is a deliberate design decision in order to have the behavior model
content wise backed-up by the data model. With this schema, any attribute update to core
federate objects in the data model will be automatically propagated down to the derived
objects in the MSC document and from them to the further derived objects in the MSCs of
the behavioral model. The benefit of this approach reveals itself when considering this
chain of derivations. Another noteworthy choice is calling a generic (in terms of
applicability for any type of UDM object) library method instead of employing specific (in
terms of being per object type) pattern matching. Otherwise, the pattern matching solution

would be bulky, time consuming to define and slower to execute.

MSC Document Body Transformation

The main rule block of the document body transformation, DocumentBodyTr, basically

transforms the utility and defining parts of an MSC document. Note that it is necessary to
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handle the utility part first because the MSCs of the utility part are referenced from within
the defining part and therefore they have to exist prior to the defining part transformation.

The MSC document body transformation essentially boils down to MSC transformation. In
order to start the process, an empty FAM MSC is created per matched ACM MSC in the
given document body. The cross-domain has—correspMSC association is established for
keeping track of the paired MSCs in subsequent rules. The attribute mapping code copies
the chart order index in addition to the name and screen position properties of the ACM
MSC to the FAM MSC. The chart order index, although not an artifact of the MSC
metamodel, is a crucial annotation that facilitates model interpreters and particularly the
code generator, by providing the execution/interpretation order of the MSCs at run-time.
Similarly, for multiple documents in a model, the order of the documents may be specified
by the document order index [12]. The rule finally delivers both MSCs to the MSCTrans
block for further building up of the FAM MSC. This fundamental step is elaborated in the

following section.

5.3.2 MSC Transformation

MSC transformation is handled by the mainstream MSCTrans block, shown in Figure
5.11. Its importance is due to its incorporation of LSC transformation, which virtually is the
heart of behavioral model transformation. MSC transformation consists of three
consecutive steps that handle MSC head and body transformation, and initialize the
federation after the completion of the former two. MSC body transformation essentially
boils down to LSC transformation after an empty LSC context is created. LSC

transformation is explained in Section 4.3.3.

FacmM IFa, __OFa IFa, . .OFa IFa, )
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FamMSC MscHeadTr MscBodyTr InitFederation

Figure 5.11 The MSCTrans block

To serve as a reference for the reader, the top level MSC metamodel is presented in
Figure 5.12. An MSC consists of an MSC head and a body. The MSC body can be one of
HMSC (High-level MSC), MscBody, LSC or InlineOperand. In this work we practically
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use LSC as the MSC body and allow LSCs (having Prechart or Subchart role) and inline
operands within LSCs. HMSC and MSC body are not used in this thesis.
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Figure 5.12 Part of the MSC metamodel [12]

MSC Head Transformation

The head part of an MSC is transformed in a four rule block, as shown in Figure 5.13.
The head of an MSC houses the instances referenced in the MSC’s body, besides other
elements. The basic functionality of MSCHeadTr is to prepare the instances used in the
FAM MSC, by looking at the instances found in the corresponding MSC. Other MSC head
components such as offset, parameter set and its subcomponents are either provided
explicitly inside the MSC body or considered irrelevant for the purposes of this work and

hence, are not covered.
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The MSC head transformation also addresses instance decomposition. The MSC
specification [15] states that, an instance can be viewed as an abstraction of a whole MSC
document (representing a system component) that is participating in a higher level system,
hence the mechanism for hierarchical decomposition. The practical outcome of this is the
introduction of a separate MSC document per decomposed instance and a new MSC for
every MSC in the higher level document that the decomposed instance participates in,
which describes the MSC from that instance’s lower level perspective. The instance
decomposition handling rules are DecomposeInst explained in this section and

AssocDecompAsRefs block residing immediately under the top-level block.

FacmM Fac Fac Fac Fac Fac Fac Fac Lu
Fam é Fam Fam é Fam Fam 9 Fam Fam 9
Fam Fam Fam Fam

CriMscHead CriDerivedFaminst MatchFamDocMscinst  Decomposelnst

FamMsc

Figure 5.13 The MSCHeadTr block

Derived FAM MSC instances are created from the corresponding FAM document head
instances and are associated with the ACM MSC instances (using has-correspInst)
and with the FAM document instance archetypes (using is-instance0Of) By this way,
structural and one-to-one correspondences are established between and inside ACM and
FAM MSCs. This principle is proliferated throughout MSC document, LSC, data element
and event transformations. It is a key property of ACM to FAM transformations and
provides for traceability and soundness.

If the given ACM MSC instance is defined to be decomposed and has a reference to a
specific MSC in the decomposition document, then the FAM instance is also added a
decomposed element and a non-assigned MSC reference. These stub references will be
assigned later in a post-processing rule after all of the MSC document transformations are
completed and hence the entire set of MSCs are created. The attribute mapping code copies

property values from the matched source elements to the newly created target elements.
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Federation Initialization

Before moving into LSC transformation this section makes a fast forward to explain the
federation initialization on the FAM side. The federation initialization is done after an MSC
document is transformed head and body-wise (see Figure 5.11). This indicates that it is a
post processing step following the full transformation of all the LSCs in the document.
(Recall that in a block, a child block or a rule receives input packets after all the packets
pass through the previous child.)

The HLA federation initialization activities are done in the InitFederation block
shown in Figure 5.14. This is a part of the behavioral model transformation indigenous to
the FAM domain; that is, there are no associations in the transformation rules to ACM
except for the identification of the instances involved. Due to the lack of such an input
source, the information content flowing through the federation initialization part is directly
embedded inside the transformation rule definitions. This causes the InitFederation
block to have a substantially hard wired structure. On the other hand, it potentially lends
itself for external configuration; that is, the hard wired content can be provided from an
outer source, for instance, a GUI front-end, or a configuration file.

The InitFederation block handles four preliminary federation execution activities of
creating a federation execution, joining federates to the federation execution, initializing
time management and declaration management. The federation initialization events are
gathered in a sub-chart which itself is placed inside the pre-chart of the top-level FAM
LSC. This way, federation initialization is guaranteed to be performed right at the
beginning. The subchart is made temperature-wise “hor”’; hence, mandatory to execute [14].
Since there is no clue from the ACM regarding the execution order of the chart, it is read
from a look up table in the user code library; thus, effectively delegated to external

configuration.

JoinFedEx
GetTopLSCPrechart| “JldFa. .. .. IFa_
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TimeMgmt CapabilityDecl)

Figure 5.14 The InitFederation block
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5.3.3 LSC Transformation

The LSC transformation is the heart of ACM2FAM behavioral model transformation. It
is the place where the nuts and bolts of the evolution of field artillery inter-entity
communications to federate interactions, mediated through the HLA RTI, are defined. The
HLA RTI is represented by the federation entity specifically introduced in FAM. The
LSC transformation process is carried out in the LSCTrans block, as overviewed in Figure
5.15. Each pass of the block inputs an ACM LSC and an empty (i.e., stub) FAM LSC, and
step by step constructs the FAM LSC as the transformation proceeds through the internal
blocks.

The execution order of the sub-blocks does not matter except for the second and the last
blocks. The InstanceRefTr is a reusable block that has already been utilized in
federation initialization. It creates the necessary federate instances (i.e., references) in the
FAM LSC by inspecting the ones found in the corresponding ACM LSC. Since these
instances are used in the graph patterns of most of the subsequent rules, InstanceRefTr
must be executed before them. The last block, SpecialConnsTr, create associations
between two instance events [12] within the LSC and thus need to be executed after
ensuring all such events have been created. The activation condition is a boolean condition,
which expresses the activation point for a chart [12]. Activation condition transformation is
performed in the ActivationConditionTr block. There is a simple one-to-one
correspondence and equivalence between ACM and FAM activation conditions. The
definition of the LSC transformation blocks are generally based on the instance event type
categorization of the child elements to be processed in the LSC. These blocks are briefly

explained in the rest of the section.
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Figure 5.15 The LsCTrans block
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Prechart and Subchart Transformation

Precharts and subcharts are actually child LSCs that have special role names on the
containment associations with their parents. The PresubChartTr block, shown in Figure
5.16, handles the transformation of precharts and subcharts of an LSC. The
CreateSubSchart rule creates a subchart under the current FAM LSC with the
Subchart composition role for every subchart of the corresponding ACM LSC. The
CreatePreChart rule is defined similarly. A notable statement in attribute mapping code
(partly shown in the figure) is the call to the Set InstRefAssocs4LSCChildren method
of the user code library. This method is invoked for all LSC child creations of type LSC
(pre/subchart) and multi instance event, including inline expressions (Loop, Opt, Exc, Par,
Alt and Seq), references, conditions, otherwise clauses, and LSC idioms [12]. It handles
the routine task of creating associations between an LSC’s child elements and the relevant
instances in the LSC programmatically. This extensively used method could be
implemented with transformation rules, but that would require as many rules as the LSC
child types listed above and take longer to execute considering the execution speeds of

pattern matching vs. direct C++ invocation.

FacmLSC

o«
Facrm

CreateSuhChart

ModelTransUtils::SetinstRefAssocs4LSCChildren
amL FamL
u (FamSubchart,FacmSubchart, FamLSC); _SC/

Figure 5.16 The PreSubChartTr block

The role of DispPreSubchart test is to direct the execution flow to one of the attached
rules based on the child element type of the input ACM LSC being a prechart or a subchart.
After a child pre/subchart is created under the given FAM LSC, the block ends with a
recursive call to the LsCTrans block to continue the transformation for the child element,

which is yet another LSC.
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Multi-Instance Event Transformation

This section explains the transformation of multi-instance events, which constitute a set
of frequently used elements, including conditions, otherwises, inline expressions and
references (to MSCs). The top-level block, MultiInstanceEventTr, is depicted in
Figure 5.17. Initially, a child multi instance event of the ACM LSC is matched and
dispatched to one of the three alternative transformers together with the FAM LSC.

The CreateCondition and CreateOw rules perform condition and otherwise
transformations, respectively. These rules simply create FAM elements that directly
correspond to matched ACM elements. The other types of multi instance events form the
family of reference identifications and are handled in the RefldentTr block, also shown in
the figure. Reference identification types are inline expressions and reference. The
CreateReference and CreateMSCRef rules simply create a FAM Reference element
and a reference to an MSC under that, respectively.

The inline expressions are transformed in the InlineExpTrans block. The block
initially directs the execution flow to one of the nine inline expression creator rules based
on the input ACM inline expression type. Six of these create alt, par, opt, loop, exc
and seq elements [15], and three of them create i f-then-else, while-do and repeat-
until idioms [12]. These rules simply create FAM inline expressions for the given ACM
inline expressions and link them together using the has—correspInlExp cross-domain

association. The attribute mapping codes copy the element properties.
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Figure 5.17 The MultiInstanceEventTr and RefIdentTr blocks
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Every inline expression by definition contains one or more inline operands. After the
creation of inline expressions, the execution flow joins into a single path to create inline
operands. Inline operand is defined to be specialized from LSC [12], in the sense of UML
inheritance. The only addition brought in by inline operand is the operand order index
property that specifies the order of the operand with respect to the other peer operands
within the inline expression. Finally, paired inline operands are recursively handed over to
the LSCTrans rule for further processing as LSCs.

The RefIdentCommonTr is the last, sink block of the RefIdentTr block that creates
gate, top, bottom and time interval components common for all reference identification type
of elements. Time interval transformations further specialize into measurement, singular
time and bounded time transformations. All of these rules are quite intuitive and perform

ACM to FAM attribute value copying in a straightforward manner.

Orderable Event Transformation

Orderable events are generally the most frequently used set of events in the behavioral
model of field artillery scenarios. They form the mechanism for the actual communication
among the instances (i.e., actors in ACM terms). The top level orderableEventTr block
1s shown in Figure 5.18. The block starts by matching and dispatching a LSC contained
ACM orderable event to the appropriate rule or block to create its FAM counterpart. The
kinds of orderable events handled are action, create, timer event, method event, and
message event. Once these events are transformed in their specifics, any general orderings
(i.e., before and after) imposed on them are applied in the final block GeneralorderTr.

The HandleAction rule is also provided in the figure as an example to explain how a
typical orderable event rule works. For any given ACM action, a new FAM action is
created in the given parent FAM LSC. Also, the ACM instance that is in association with
the matched action is identified. From that, the corresponding FAM instance reference is
obtained using the cross-domain association, has-correspInstRef. Then a similar
association is established between the new FAM action and the FAM instance reference.
Finally, the matched ACM action and the created FAM action are passed to the next rule in
line.

The timer events, consisting of start timer, stop timer and timeout, form a sub-category
of orderable events. The TimerEventTr block performs the transformation of timer
events. The block initially dispatches a matched ACM timer event and a FAM LSC to one
of the three timer event creator rules. After the event creations, instance reference - timer

event associations are established in the same manner shown in HandleAction rule of
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Figure 5.18. Timer events contain references to timer elements. Finally, the references to
timers are set for the FAM timer events. In LSC metamodel [12], timer objects are stored in
the timer list of the document head of the MSC document. Since the document head is
processed before the LSCs, all of the timers should be readily available.

The MethEventTr block handles the transformation of call, receive, replyout and
replyin events that constitute method call event category. These transformations are quite

straightforward and handled similar to the HandleAction rule explained above.
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Figure 5.18 The orderableEventTr block

\

Message Event Transformation

Message events are the most common and important group of orderable events that
represent the inter instance (i.e., actor in ACM and federate in FAM terms)
communications. Their role is so crucial that message event transformations can be
regarded as the crux of this ACM2FAM transformation work. Except for the HLA
federation specific initialization and tear-down rules (see Section 4.3.2), most of the other

types of transformations are generally dominated by same type of LSC element creating
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and value copying in the FAM being constructed per matched LSC element in ACM. On
the other hand, message event transformations are more sophisticated in that there are one-
to-many event creations that go beyond simple copying of ACM content into FAM.
Moreover, these transformations are driven by conditions that take into consideration the
type and structure of the ACM data being communicated. This is the primary part where
platform (i.e. HLA) specific content is introduced. Because of these, message event rules
are more complex and bigger than the other rules.

The main message event transformation block, MsgEventTr, is displayed in Figure
5.19. It distributes the incoming packets according to the type of the matched ACM
message event. Out and in events are the two kinds message events and are the conjugate of
each other in that for two interacting instances A and B, every out-event from A to B
implies a corresponding in-event sourced B and targeted A, sequenced in that order [15].
We assume that the transmission of an out-event and its implied in-event are atomic and
instantaneous in time, occurring immediately one after another. Because of these, we have

conventionally modeled source ACMs having out-events as the sole message event type.

QutDurableMsg2HLAMeth

Figure 5.19 The MsgEventTr and OutMsg2HLLAMeth blocks

On the other hand, the situation is different in a FAM, in that, any federate to federate
communication has to be mediated via the HLA RTI (the federation execution, to be more
specific), as dictated by the HLA specification [13]. This loosely coupled communication

architecture would normally necessitate an actor A to B out-event transmission in an ACM
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to be represented as federate A sending an out-event to the federation first and the
federation sending another out-event to federate B. However, instead of having these two
explicit outs (and two implicit ins), we have decided to implement one explicit out-event
between federate A and the federation and an explicit in-event between federate B and the
federation, explicitly employing both in and out-event types. In this setting, if the out-event
has order n, the in-event is given order n+/. (Note that ordering is implemented by
incrementing a counter). The approach is diagrammatically illustrated in Figure 5.20. This
federate centric event mapping better supports the code generator’s code generation
strategy which considers each LSC instance (i.e. federate) and its associated events
individually while producing the federate base code and computation aspect code [61].

The outMsg2HLAMeth block, also shown in Figure 5.19, handles the transformation of
out-events. Within the block, both ACM and FAM input packets are fed to two for-blocks
in parallel that are specialized in out-event transformations based on the ACM message
payload type. Non-durable message out-events are transformed inside
OutNonDurableMsg2HLAMeth for-block and durable message out-events are transformed
inside OutDurableMsg2HLAMeth for-block. Non-durable message transformation is
relatively simpler than the durable, because a non-durable message transmission in ACM
maps to two HLA message transmissions in FAM, whereas a durable message transmission
can map up to six.

Since there are no in-events used in source ACMs, there is no practical need for an in-
event transformer counterpart. Therefore the InMsg2HLAMeth block is created for the sake
of completeness, but left as a stub. The collection of all in-events on the FAM side are
created only as a result of out-event transformation as explained above and shown in Figure

5.20.

ACM LSC FAM LSC
Actor A Actor B Federate A GederatioD Federate B
out | Transform out In
Uty E :“> Uty
_} —_——— _} —_———
D Utngq N4+
. R
implied implied
| | | | |

Figure 5.20 ACM out event to FAM out/in event federation execution
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Before moving into non-durable and durable message transformations, it is worth to
clarify that, the durability and non-durability of ACM message structures is not imposed by
a standard or field manual, but is introduced in ACMM at the end of our field artillery
domain analysis as a convenience for providing a correspondence to FAM object and

interaction classes. Please refer to Section 4.2.1 and [11] for details.

Non-durable Message Transformation

The OutNonDurableMsg2HLAMeth block that handles non-durable ACM out-message
transformation is sketched in Figure 5.21. The initial rule, GetNDMsg, matches and delivers
the ACM out-event, non-durable message and FAM LSC to the next rule, and in the
meantime, programmatically creates a copy of SendInteraction and Receivelnteraction
HLA methods using the attribute mapping code. The template HLA methods have already
been created at a preliminary step, and associated with the global root element for quick
access (see Section 4.1). The original methods do not contain any arguments, but their
copied instances will have theirs assigned (such as HLA classes and federate references) as

the transformation proceeds.

NDD Msg Fac
3 NDM Fac Fac Fam
[JFac e Fam Fam e Ind
[J Fam Rec Rec Msg
Sen Sen
CreatelntCls SendRecvIntClsSro

SendRecvIntClsDstRef)

Figure 5.21 The outNonDurableMsg2HLAMeth bock

The CreateIntCls rule creates a new interaction class corresponding to the ACM
non-durable message in the FAM FOM. It also sets both of the HLA methods to refer to the
new interaction class inside their supplied arguments. Finally, it assigns the name of the
non-durable message suffixed by “1c” as the name of the new interaction class, and
invokes the user code library to build the interaction class from the non-durable message.

The sendRecvIntClsSrc rule of Figure 5.22 is one of the most crowded rules in the
transformation that actually define the federate-to-federate HLA method transmissions via

the federation. It first creates a message out-event and associates it with the source instance
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(i.e., federate) using an ordered connection. Then it associates the out-event to the send
interaction method using a special connection. Finally, it associates the send interaction
method to the federation instance using an address connection.

After that, a similar set of activities start for the receive interaction method from the
federation to the target federate. First the receive interaction method is associated to the
federation instance using an address connection. Then an in-event message is created and
associated to the receive interaction method using a special connection.

The last part of the out-event transformation is done by one of the two parallel rules
SendRecvIntClsDstInst and SendRecvIntClsDstRef. They similarly associate the

new FAM in-event to a target instance or an MSC Reference, respectively.

FacminstanceRefSrc o L FacmLSC ‘
<<Reference>>  ZmmeradConinsEve FAEMOrdCon_InsTypEl_MscinsEv <<Model=>
<= tion==
2 | Sa— onnection I ActivationMode : String="Iterative"
s 0.* | detOrderedConlnsi@Event Quantification : String="Existential"
FacmOut "
u <ohModel>> n
- - FamLSC o FacmOrdCon
FacmoOut Lost : Bool - <<Model>> .
2 Y
e ™ ActivationMode : String="lterative"
E Quantification : String="Existential" lg FamLSC
FamLSC z
I
correspinstRef N
Sendlnt Sendinteraction - -
FaminstanceRefSrc ‘ <<Model>> REC:L“;:JSE:“‘J" 1
<<Refarence>> ||| ” e e m 1
- Lmtlator. String="Federate-initiated' Initiator : String="Federate-initiated" [SpCon_MelCallEy_MagTypeEl
e r— L
0.7 | seeQpests — T e i 0.7 | srcAdiCon_MsgTypEl_in: Faml
Fomo! IN N o R c<h-1ann;eT>>
Recvint - <<Model>> Mdecan_Metcalify g Typed FederationRef srespCon_MelGalEy_MEGTYRRFT
dslOrdaredCaninglE v N — _| - = | <<Reference=> Found : Boolean=false
1 Lost : Boolean=false 1AdrCon_MagTypEMineRel 0. !
H i | ” GelAdiCon_TegTypE|_InsRal )
] 1 |
| 1 | referedbylnslacerel | 1
1
OrdCon_InsTypE|_MscinsEv i AdrCon_MsgTypEl_InsRef1 AdrCon_MsgTypEl_InsRef2 ||| SpCon_MsgEv_MsgTypeEI2
<<Connection>> L <<Connection>> <<Connection>> <<Connection>>
1
L BE J J
: rel
Atribute Atfribute SpCon_MsgEv_MsgTypeEIl1 Fedearation NonDurableMsg
old Stiing v/ BN <<Connection=>=> <<Model>> u_' <<Model=>> _n
\ AttributeMapping J ’ Msg | 2 Msg

Figure 5.22 The sendrRecvIntClsSrc rule

The outcome of the non-durable message transformation process is illustrated in Figure
5.23, showing the partial view of an ACM LSC and its corresponding FAM LSC (in
abstract syntax) produced as the result of executing OutNonDurableMsg2HLAMeth
transformation block. The model element stereo-types are tagged in the figure. In the source
LSC is seen an 0id_W message out-event sent from FwdObserver to BatteryFDC. On

the produced LSC, this corresponds to two HLLA message event transmissions. The figure
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shows the FwdObserver federate sending a message out-event of SendInteraction to
the field artillery federation, and BatteryFDC federate receiving the corresponding
message in-event of ReceiveInteraction from the federation. Sequencing (i.e.,
precedence attribute) information of the message transmissions are annotated in the callout
boxes of the figure. The precedence value of the ACM message event is copied to the initial
FAM message event, and its auto-incremented value is assigned to the second event. The
algorithm used ensures a conflict-free generation of ordering values throughout the FAM
LSC. Both of the HLA methods have references to the same interaction class of
0id_W_MsgIC type, which corresponds to the transformed ACM message, as their supplied

arguments (not shown in the figure).
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Figure 5.23 Partial view of non-durable message transformation and its result in FAM

Durable Message Transformation

Durable message transformation is the most complicated of the LSC instance event

transformations. Figure 5.24 displays the big OutDurableMsg2HLAMeth bock. It is
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defined methodologically similar to OutNonDurableMsg2HLAMeth block, most notably
being about three times in size. Therefore it is regarded redundant to explain the
transformation in detail, but appropriate to provide an overview of the differences.

The durable messages in ACM are defined to be of three types; namely, instantiation,
update and deletion (please refer to Section 4.2.1 and [11]). There are three parallel courses
of transformations that address message out-events of each durable message type. An ACM
instantiation type message out-event maps to six FAM HLA message out-events. The

mapping cardinalities of an out-event for update and delete types are both one to two.
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Figure 5.24 The outDurableMsg2HLAMeth bock

The outcome of the instantiation type of durable message transformation process is
illustrated in Figure 5.25, showing the partial view of an ACM LSC and its corresponding
FAM LSC (in abstract syntax) produced as the result of executing
OutDurableMsg2HLAMeth transformation block. The model element stereo-types are
tagged in the figure. The source LSC has a single FireCommandSOPInst message sent
from the BatteryFDC to the FiringUnit. On the produced LSC, this corresponds to six
HLA message out-event transmissions. The figure shows the BatteryFDC federate
sending a message out-event of RegisterObjectInstance to the field artillery
federation, and the FiringUnit federate receiving a following message in-event of
DiscoverObjectInstance from the federation. Then the FiringUnit federate sends a
message out-event of RequestAttributeValueUpdate to the field artillery federation,
and the BatteryFDC federate receives a following message in-event of

ProvideAttributeValueUpdate from the federation. Finally, the BatteryFDC
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federate sends a message out-event of UpdateAttributevValues to the field artillery
federation, and then the FiringUnit federate receives a message in-event of
ReflectAttributeValues from the federation. Ordering information of the message
transmissions are annotated in the callout boxes of the figure and are produced similarly to
non-durable message transformation case explained above. Both of the HLA methods in
each of the three message event transmissions have references to the same object class of
FireCommondSOPInst_MsgOC type, which corresponds to the transformed ACM

message, as their supplied arguments (not shown in the figure).
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Figure 5.25 Partial view of (instantiation type) durable message transformation and its
result in FAM

Non-orderable Event Transformation

The non-orderable events constitute the set of instance events that do not require an
explicit ordering of execution. A relative execution order among the events of an instance is

implicit along the axis line of an instance; that is, the events that are attached higher up
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along the axis execute before the ones attached lower. However, no claim can be made
about the execution order of two disjoint events on separate instance axes without using
explicit ordering [15]. The NonorderableEventTr block performs the transformation of
non-orderable events. The block matches and dispatches the input packets to one of the
handler rules according to the type of the ACM non-orderable event. The block is defined
similar to the OrderableEventTr block in Figure 5.18 and its handler rules are defined
similar to the simple rules shown there. The handler rules perform the transformation of
method, end-method, concurrent, end-concurrent, suspension, end-suspension, stop, end-

instance, invariant, end-invariant and simultaneous region.

Special Associations Formation

Most of the LSC transformation blocks and rules are related with instance event
transformations, which generally involve associations between instance events and
instances. This top down instance event driven approach successfully addresses the
majority of the LSC transformation spectrum. However, there is a small set of LSC
structures not covered up to now that does not involve instances, such as special
associations pertaining only to events. The SpecialConnsTr block placed at the end of
the LSC transformation path, is responsible for the transformation of those parts. It is
deliberately positioned as the last LSC transformation block because it requires all of the
FAM LSC entities to be already created and available by the time it starts execution;
otherwise, it is likely to miss the transformation of some special associations.

Figure 5.26 shows the SpecialConnsTr block, which is the transformer for special
associations. There are three kinds of special connections used in this work, namely, the
ones that associate simultaneous regions to instance events, timer starts to timer events and
general order elements to ordered events. An in-depth examination of the LSC specification
and the metamodel might reveal some more special association types, but they are out of
the scope of this work and indeed are rarely used in practice. The figure additionally shows
the AscSimRegToInstEv rule as an illustrative example. For any ACM simultaneous
region that is specially associated with an instance event, the rule matches their
corresponding FAM simultaneous region and the instance event by utilizing their cross-
links to FAM. Then a similar kind of special association is established between the two
FAM elements. The other two special connection transformations are defined with the same

approach.
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Figure 5.26 The SpecialConnsTr block

5.4 Multiple Instance LSC to Binary Instance LSC Transformation of FAM

The behavioral transformation of ACM2FAM is a one to one MSC transformation from
ACM to FAM; that is, a corresponding element of the same type is created on the FAM
side for each MSC document, MSC and LSC of ACM. Furthermore, the content of an LSC
is transformed as described in Section 5.3 in detail. At the end of the transformation, an
equal number of federates to the number of actors in an ACM LSC plus one federation
instance are created in the corresponding FAM LSC.

However, a FAM with this structure does not fully comply with the input requirements
of the code generator. As explained in [61], the code generator by design expects and
generates code only for one instance (i.e., federate application) in an LSC. If there are more
than one instances, exercises have shown that code is generated only for the first one and
the others are simply ignored. The LSC instance is the focal element in the code generation
process, and ultimately all LSC instances are generated in separate class files and they are
declared and used in the diagram code generated from the LSC diagram. Instance codes
drive the simulation and each instance runs in its own thread.

Under these circumstances, a generated FAM has to be refactored into an organization

completely processible by the code generator. In simplest terms, every LSC that contains
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multiple federate applications has to be stripped down into as many binary LSCs as the
number of federate applications, each containing one federate application and the
federation. This process is depicted in Figure 5.27. In this way, every binary LSC only
contains its federate’s mutual communication with the federation — a closer organization
towards a local, federate-oriented view. Note that the stripping process may end-up in loss
of event orderings in binary LSCs that were implicitly known in multi LSCs due to

transitive chaining of events among the instances.

CFF LSC

|Fwd0bserveer| ( Federation ’ |BatteryFDCFd|
/ %debsTimer TO

‘Prepare Oid_W_Msg
considering missionType’

SendInteractionWithRegions(Q}d_W_Msg,C1C2)

Receivelnteraction(Oid_W_Mdg)
—XfdebsTimer St

Op;J < When (missionType="Adj” or “FFE” or “Dest")

\/

‘Prepare
TargetLoc_Msg’

SendInteractionWithRegions(TgrgetLoc_Msg,C1C2)

Receivelnteraction(TargetLoc_Msg)

‘Prepare DT_ME_MFC_Msg
considering missionType’

SendinteractionWithRegions(D]_ME_MFC_Msg,C1C2)

Receivelnteraction(TargetLoc, _Msg)

CFF_FwdObserverFd Lsc| NS NN - BatteryFDCFd LsC
|Fdebserveer| 1 Federation ’ 1 Federation ’ I BatteryFDCFd I
A NV A [0 +7 | Receivelnteraction0id_w_mdg)
| %debsTimer TO \ § dd ion(Oid_W_Mdo) >

\
/| ‘Prepare Oid_W_Msg \
! | considering missionType’

\

When (missionType="Adj" ...) >

~

\ SendinteractionWithRegions(. / Receivelnteraction(TargetLoc_Msg)

\
/
\\ —X:debsTimer St /

<

Op;Jx/ When (missionType="Adj" ...) _~

~

Receivelnteraction(TargetLoc,_Msg)

‘Prepare
TargetLoc_Msg’

SendInteractionWithRegions(...

‘Prepare DT_ME_MFC_Msg
considering missionType’

Multi2Binary Instance LSC Transformation

SendinteractionWithRegionsy(...

Figure 5.27 Stripping a multi-instance FAM LSC into binary-instance LSCs
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In an effort to adapt a FAM produced as the result of an ACM2FAM transformation for
code generation, we have developed yet another GReAT transformation that refines a FAM
having multiple instance LSCs into another FAM having two instance (i.e., one for the
federate and one for the federation) LSCs. The following sub-sections elaborate on this

transformation, named Multi2BinaryLSC.

5.4.1 Initializing Multi2BinaryLSC Transformation

The Multi2BinaryLL.SC is configured first to create a copy of the input model and then
perform the transformation on that copied model. The start block is shown in Figure 5.28. It
consists of the bigger Multi2BinaryTr that handles the transformation without handling
the MSC references. The last block, AscMSCRefs_M2B, is a kind of post-processing step
that binds the unbound MSC references among each other.

The Multi2BinaryTr block consists of two rules, one block and one rule defined in
sequence. The first rule creates temporary associations between the MSC document,
federation and environment elements for easy referencing in subsequent rules. The second
rule simply matches each MSC in an MSC document and passes it to the main block. The

last rule deletes all of the multi instance MSCs after they are stripped down.
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Figure 5.28 The Start and Multi2BinaryTr blocks
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5.4.2 Creating Binary MSCs and LSCs per Federate

The main transformation block is expounded in Figure 5.29. It consists of an initializer
rule, InitBinaryMsCcLSC, and a reference to the LSC transformer block.
InitBinaryMSCLSC is a crucial rule where the crux of the multi-to-binary stripping is
done. It matches every federeate application in the multi-MSC and creates a binary MSC
and LSC for each. It also creates a new MSC head and instance list for the binary MSC and
creates a new federate application inside the instance list corresponding to the matched

federate of the multi-MSC.

OmMSsC
IbL
LSCTransRef_M28
( MscHead minstancelist
mMSC ';nl t 5 o 3
c<Model>> I Model - - Model
. a -
IMSC fhamrdedndex Integer o
mLSC
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Figure 5.29 Multi2BinaryMainTr block and InitBinaryMSCLSC rule

The attribute mapping code of InitBinaryMSCLSC rule is presented in Table 5.2. The
naming convention for binary MSC (and LSC) name is the concatenation of the multi MSC
(and LSC) name with the name of the federate application in question. Another issue to
resolve during the stripping process is to calculate the positions in terms of coordinates and
the chart order index properties of the binary MSCs inside the document body. Chart order

index specifies the execution order of an MSC with respect to others in the containing MSC
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document. Every invocation of the GetNextChartOrderIndex () method of the user

code library returns an ever increasing relative offset value that initially starts from 0, and is

reset per multi MSC. Finally, the activation modes and quantifications of the binary LSC

are copied from the multi LSC.

Table 5.2 AttributeMapping code of TnitBinaryMSCLSC rule

bMSC.name()=(std::string)mMSC.name()+"_"+(std::string)mFederateApplication.name();
bLSC.name()=(std::string)mLSC.name()+"_"+(std::string)mFederateApplication.name();
bFederateApplication.name()=mFederateApplication.name();
bMscHead.name()=mMscHead.name();

blnstanceList.name()=minstanceList.name();

int chartOrderindCnt=ModelTransUtils::GetNextChartOrderIndex();

int yPos = 100*(1+chartOrderlndCnt);

char yPosStr[10];

_itoa_s(yPos, yPosStr, 10);

bMSC.position()="(100,"+string(yPosStr)+")";
bMSC.ChartOrderIindex()=(__int64)mMSC.ChartOrderIndex()+chartOrderIndCnt;
bLSC.position()=mLSC.position();

bMscHead.position()="(100,100)";

bLSC.ActivationMode()=mLSC.ActivationMode();
bLSC.Quantification()=mLSC.Quantification();

5.4.3 Multi to Binary LSC Transformation

The bulk of the transformations consist of multi to binary LSC transformations,

collected under the LSCTrans_M2B block which is presented in Figure 5.30. The block is

generally organized in a similar structure with ACM2FAM’s LSC transformation as

explained in Section 5.3.3. Differences of special interest are emphasized in this section.

Note that within this and all of its subordinate blocks, the LHS context is the multiLSC and

the RHS context is the binaryL.SC, as input by the blue ports and output by the red ports.

\L MultilnstEventTr_M2B

ImLSC
o
bLSC ActivCondTr M2B InstRefTr M2EB PreSubChantTr_M2B |
ImL . OmL ImL | , OmL IFa. , ., OFa ImL | _DmL[]
O [ER obm 3 - [IR obm 3 IFa OFa  [18 ool
OrdEventTr_M2E

NonordEveniTr_M2B  SpecialConn sTr_M_EB/

Figure 5.30 LsCcTrans_M2B block
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A unique approach is in setting the instance references in a binary LSC to their
corresponding federate applications in the instance list of the binary MSC, as shown in
Figure 5.31. The key facilitator is the temporary has—correspInst association that has
already been established in a previous InitBinaryMSCLSC rule execution. The attribute
mapping code (not shown in the figure) copies the name and position values of the multi

instance reference to the binary instance reference.
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ImLsc | Quantification : String="Existential ' =71 Info String
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«=zModel>> <=Model>>
FCI&EL&EMR*, ChartOrderindex : Integer . Concaining .
\bLSC \_ : y

Figure 5.31 InstRefTr_M2B block and CreateInstRef rule

Another interesting rule to demonstrate is the binary subchart creator rule depicted in
Figure 5.32. The originality here is not in the rule pattern, which is more or less the same as
its ACM2FAM counterpart, but in the employment of a new temporary association and a
guard expression. The srcLscMsc-dstLscMsc association is used to maintain a direct
link from every subordinate LSC type; that is, prechart, subchart or inline operand, to its
MSC ancestor, eliminating the need for the commonly used and expensive GetMSC4LSC
block, which is explained in Section 6.5.2 and shown in Figure B.59 with details. The
ifHasCorrespInstRef () method checks whether the given multiSubchart contains an
instance reference that has a corresponding instance reference inside the given binaryLL.SC.
It acts as a filter to uniquely identify the binaryL.SC inside which to create a binarySubchart
that corresponds to the multiSubchart. The guard is extensively used in the rest of the

LSCTrans_M2B rules.
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Figure 5.32 PresubChartTr_M2B block and CreateSubchart rule

The attribute mapping code is the same as its ACM2FAM counterpart, associating
instance references of the parent binary LSC to the child binary subchart and copying
activation mode and quantification values from multiSubchart to binarySubchart.

The final representative rule set is the blocks that handle out and in message events to
and from federates and the federation. HandleOut block and FederationOutFederate
rule are shown in Figure 5.33. In the figure it is seen that for every out message event from
the federation reference that sends an HLA method to a federate in the multiLSC, a similar
out message event and HLA method are created from the corresponding federation
reference to the corresponding federate in the binaryLSC. The other message event
handling rules are defined similarly. A newly introduced user code library method is
DeepCopyMgaObject () that traverses the Mga object provided as the second parameter
and creates a copy of its structure in the stub object given as the first parameter. This is an
alternative to the CreateInstance () UDM API method that is extensively used in the

ACM2FAM transformation with a difference in usage context and parameter preparation.
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Figure 5.33 HandleOut block and FederationOutFederate rule

5.5 FAM-to-Simulation Code Generation and Execution

Referring back to Figure 1.1, the content presented up to this point constitutes the first

phase of the overall transformation process, where ACM-to-FAM transformation is

explained in detail. In the second phase, the produced FAM is fed to the code generator to

produce federate source codes, federation source code and useful artifacts such as FOM

Document Data (FDD). The details of the code generation are presented in [61].

Aspect Oriented Programming (AOP) [62] paradigm is adopted in generating HLA-

based distributed simulation code. The AOP approach provides the separation of cross-

cutting concerns. In our case, this allows us to generate code so as to exercise LSCs in a

computation-free manner. Then application-specific computational (and other non-

communication) aspect advices are hand woven onto the generated base code. On the other

hand, HLA-specific portions of the code are automatically woven into the base code

generated from the LSC.
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The LSC instance is the focal element in code generation. The federation and the
federates are all specialized from the LSC instance element. All LSC instances are
generated in separate class files and they are declared and used in the diagram code
generated from the LSC diagram. A snapshot of the generated source code folders with the

source files per binary-instance LSC is presented in Figure 5.34.

MName - Date modified Type -
Mame Type

) CFF_BatteryFDCFd 19-04-201110:22  File folder || CFF_FwdObserverFd java JAVA File
. CFF_BatteryRadioMetFd 19-04-201110:22  File folder [ FieldArtilleryFed java JAVA File
. CFF_FwdObserverFd 19-04-2011 10:22  File folder | | FieldArtilleryFedAspect.j AJ File

) InstSOPMet_BattalionFDCFd 19-04-201110:22  File folder | FieldArtilleryFedLibAspectaj A File

J InstSOPMet_BatteryFDCFd 19-04-201110:22  File folder || FwdObserverFd java JAVA File
J InstSOPMet_FiringUnitFd 19-04-201110:22  File folder || FwdObserverFdAspect.j AJ File

) InstSOPMet_MetroMetFd 19-04-201110:22  File folder

J InstSOPMet_MetStationFd 19-04-201110:22  File folder

Figure 5.34 Sample generated source code folders and files view

Figure 5.35 depicts the static structure of the generated federate application. Each
instance runs in its own thread. For every LSC message out-event, an RTI ambassador
method call is made, and for every LSC message input event, a federate ambassador
method callback is generated. The LSC instance aspect code intercepts the RTI ambassador
method calls. It executes developer written computation code (e.g., modifying method
arguments and value of arguments) and then redirects the call to the RTI with the
computation code in effect. On the RTI side, in addition to LSC, an aspect code (RTI
Instance Aspect) is generated for every federation execution. This aspect code catches the
RTT callback methods and forwards them to the LSC Instance (federate application) code.
Then in the LSC instance aspect code, the result of a callback (with all arguments) is made
available to the developer.

The code generator creates an Eclipse project and stores the generated Java and Aspect]
codes in the project root folder. We use an AOP-enabled Eclipse installation to weave the
aspects and run the simulation code. (Eclipse gains AOP capability by installing Aspect]
Development Tools software on it. Aspect] [63] is an aspect-oriented extension for the Java
programming language.) An Eclipse screenshot of the generated code from the FAM model
of an AdjFFE mission scenario [11] of the field artillery domain is displayed in Figure 5.36.
The details of code generation for the AdjFFE case study are presented in [84].
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Figure 5.35 Static structure of a generated federate application [61]
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Figure 5.36 A screenshot of the generated AdjFFE mission code in Eclipse
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After the aspect codes are written and the source is compiled the simulation is run for
execution. Currently the code generator supports the RTI implementation developed by
Pitch Technologies (certified for IEEE-1516), named pRTI. A pRTI screenshot of an

AdjFFE simulation execution is shown in Figure 5.37.
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Figure 5.37 A screenshot of an AdjFFE simulation execution in pRTI

5.6 Analysis of the Transformations

Wijngaarden and Visser [64] identify three fundamental aspects of transformation
mechanics, namely, scope, staging and direction. Although these aspects are intended for
evaluating transformation approaches in a broader sense, it can still be referred in assessing
this specific transformation work. Besides these, modularity is recognized as a key aspect
to achieve reusable and adaptable transformation definitions [65]. Internal transformation
composition [66] is an issue which is closely related to modularity. Composition of
transformation definitions requires a proper modular construct, providing a composition
operator, such that separate transformation definitions can be created as composable units.
In this section we analyze our two phased transformation work from the points of view of

modularity, internal transformation composition, staging, scope and direction.
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5.6.1 Modularity Analysis

Modularity is a key factor in developing reusable and maintainable transformation
definitions. Through a modular construct, decomposition and composition are possible.
Transformation reusability is facilitated if a transformation unit has a specification, so that
the developer only needs to know what is transformed into what, but not how the
transformation is done. ACM2FAM transformations clearly comply with this principle
because Section 5.2.1 explains which parts of the ACM data model are transformed into
which parts of the FAM data model, and Section 5.3.3 does the same for the behavioral
models. These statements are made prior to how the transformations are actually explained
in detail. Figure 5.1 provides an overview of the modular breakdown of the ACM2FAM
transformation. Following this breakdown, the whole transformation is defined as a set of
hierarchical transformation blocks, down to individual transformation rule level. Moreover,
the use of expression references for recurring transformations provide us transformation

rule and block reuse.

5.6.2 Internal Transformation Composition Analysis

The behavior representation formalism LSC/MSC provides a comprehensive instance
decomposition construct [15]. The inner structure and behavior of an instance kind is
defined through an MSC document with the same name as the instance kind. To indicate
how the behaviors described at different levels of abstraction are related, the behavior of an
instance inside an MSC diagram can be specified to be refined in an MSC of the MSC
document defining the instance being decomposed.

In this thesis, BatteryFDC is a decomposed instance that is further refined into another
MSCDocument of its own, which models the internal organization and workflow of the fire
direction center of a battery. Work is under way to complete the BatteryFDC
transformation. From a vertical perspective, we perform ACM2FAM and
BatteryFDC2FAM transformations in composition. From a lateral perspective, the two
phased end to end transformation presented in this paper is logically a composition of
ACM2FAM and FAM2Code in sequence. Moreover, at a finer level, data and behavior
model transformations within ACM2FAM are also performed as a composition of the two.
The horizontal and vertical internal transformation compositions performed in this work are
summarized in Figure 5.38. As a final remark, GReAT does not provide a composition
operator in the sense of [66]. The closest construct can be the expression reference [15] that
is used to invoke another transformation rule or block, but this not the same as invoking a

separate, independent transformation.
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Figure 5.38 Horizontal and vertical internal transformation compositions

5.6.3 Staging Analysis

Staging is the ability of a transformation tool to split a transformation definition into
several stages. Usually, model transformation languages are single-stage tools, that is, the
transformation execution consists of applying the transformation rules as a whole. In
contrast, a multi-stage generate approach allows a transformation definition to be split into
several independent stages, each one generating a part of the target model, and then one or
more final merging stages connect the results of the previous stages.

This aspect is inherent in our two-phased transformation mechanism, as seen in Figure
1.1. The first phase transforms an ACM into FAM and the second phase transforms the
generated FAM to simulation code. Note that in this thesis, the stages are literally loose in
that, the first phase is a GReAT transformation, while the second is actually a model
interpretation over the FAM model. The only constraint is that ACM2FAM transformation
must precede FAM2Code and that the output of the former is the input of the latter. It is
necessary to note that GReAT itself is a single-stage tool, but our end-to-end mechanism is

a staged approach. Finally, we do not have the so called final merging stage.

5.6.4 Scope Analysis

Scope is the area of a model (either source or target) covered by a single transformation
step, where a transformation step is usually a single rule application. The pivot of a
transformation step is defined as the main source element from which a rule resolves. Four
main types of transformation steps can be identified between a piece of source model and a
piece of target model, namely local (source) to local (target scope), local to global, global to

local and global to global transformations.
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In a local to local transformation step, a source element can be directly translated to a
target element. All the information needed to create the target element is accessible (i.e. can
be easily reached) from the source element. Many of the transformation rules in this work
are of local to local type. Especially, most of the LSC transformation rules are local to
local, except for the ones associated with the payloads of the communicated messages. This
1s not surprising since the LSC metamodel is used for behavior modeling of both domains
and we would generally expect behavior preservation across domains. After all, a
simulation model is a representation of the real world in a different formalism.

In a local to global transformation step, a source element is transformed into several
target elements. Usually, one of these target elements is part of the piece of target model
being generated by the rule, while the other target elements need to be allocated in a
different part of the target model. These target elements are referred to as non-local results.
A considerable amount of rules in this work are of this type. This is mostly due to the fact
of transforming a PIM into a PSM which require the introduction of model elements
regarding the platform and other target domain specific aspects. Examples to this category
on data model transformation side include rules that initialize HLA data types, FOM and its
sub-container elements, rules that create and populate interaction and object classes and
rules that create the federation structure elements. On the behavioral model transformation
side are the rules that create federation initialization and tear-down, and especially, the
orderable event transformation rules for durable and non-durable messages, which are the
most complex and platform specific content adding rules, are typical examples.

In a global to local transformation step, additional information is needed to create a
target element from a source element. This additional information is not easily accessible
from the source element being transformed (i.e. the pivot), but a complex query is needed.
This kind of situations stemmed frequently in this work. GReAT has two handy
mechanisms in easing this burden, called “global container” and “cross-links”. Global
container contains elements that have global scope; that is, they are accessible throughout
the whole transformation, and it is not necessary to pass them along in the context. Cross-
links establish cross model associations between the source and target metamodels (see
Section 5.1 for both constructs). Many rules spread throughout the data and behavior
transformations employ cross-links or global containers, and thus are examples of global to
local transformation step.

Global to global transformation is a combination of the previous two situations. They
usually involve complicated rules. We have tried to avoid such cases as much as possible

since pattern matching is an expensive operation. Our approach was to divide the
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transformation into a set of serial and/or parallel smaller rules, each exhibiting a local to
local or local to global pattern. In spite of our efforts, the orderable event transformation
rules for durable and non-durable messages are still quite complex and are global to global
type of transformations.

An interesting aspect of ACM2FAM transformations related with the scope topic is the
employment of the user code library. This library that we’ve written in C++ is invoked
from within various transformation rules to complement the graph based transformations
with a high level programming language support. It utilizes the flexible and powerful UDM
API [34] to manipulate the GReAT transformation model to completely handle or partially
assist a number of the transformation rules. This resulted in a reduction in the number and
complexity of the transformation rules (i.e., simplify global-to-global rules into local-to-

global, or global-to-local and the like).

5.6.5 Direction Analysis

Finally, direction refers to whether a transformation is controlled by the structure of the
source model (source-driven) or by the structure of the target model (target-driven). Since
this is a characteristic of the underlying transformation language, there is not much to
discuss on this topic here. It should be enough to state that GReAT is a source-driven

transformation language and thus, so is the ACM2FAM transformation.

5.7 Related Work on Model Transformations

Although there is a wide range of works in the literature that are focused on behavioral
or data model transformations, to our knowledge, the transformation of a fully-fledged
conceptual model to an executable model has not been reported before. We treat both data
and behavior on equal grounds in our transformation perspective and put forth a two-
phased transformation framework for PIM-to-PSM and PSM-to-executable code
transformations. The section starts with transformations targeting simulation models, which
are the ones that adopt similar approaches to this work, and continues, in decreasing

relevance, with others.

5.7.1 Transformations Targeting Simulation

The past few years have seen the publication of ontologies for a large number of
domains. The modeling and simulation community is beginning to see potential for using
these ontologies in the modeling process. There is a group researchers who tend to
formulate CMs as ontologies and then follow a transformation path towards (executable)
simulation models. Silver et al. [107] suggests a tool called Ontology Driven Simulation

(ODS) that establishes relationships between domain ontologies and a modeling ontology
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and then uses the relationships to instantiate a simulation model as ontology instances.
Then, translating these instances into XML based markup languages and then into
executable models for various software packages are also possible. As a case study, they
map Problem-oriented Medical Records Ontology (PMRO) [108], which represents a
hospital emergency department, to the Discrete Event Modeling Ontology (DeMO) [101],
which describes a discrete event simulation from state, event, activity, and process oriented
world views. The DeMO instances were then translated into to Extensible Process
Interaction Markup Language (XPIML) [109], which then could be translated by the tool
into executable models for either JSIM or ARENA tools. This work is principally similar to
ours in that it employs a multi-phased transformation technique from a domain model down
to code. Yet, the source domain ontology to DeMO and DeMO to XPIML transformations
are not done automatically, but manually with the help of GUI supported mapping tools.

Another ontology-based work is presented by Durak et al. [110], where they semi-
automatically transform the Trajectory Simulation ONTology (TSONT) [111] models to
two different target models. Two different tools are used for two different programming
paradigms. For object oriented programming paradigm, the OWL2UML tool transforms
OWL ontologies to UML class diagrams with user guidance [112]. Then, Platform
Independent Framework Architecture or trajectory simulation reuse infrastructure is
constructed by means of user guided transformations. For function oriented programming
paradigm, TSONT2SIM tool [110] generates MATLAB Simulink block definitions by
transforming the trajectory simulation function definitions captured in TSONT. This double
targeted transformation work requires man in the loop in its processes and currently does
not produce executable code.

Kiiciikyavuz et al. [93] propose a method for transforming KAMA [52] mission space
conceptual models into simulation space BOMs [98]. They have established mappings from
KAMA elements and attributes to BOM elements and attributes in a tabular format. They
have demonstrated the applicability of their approach on a radar warning receiver mission
space model. They have discovered that there were some fields in KAMA that had no
correspondence in BOM and vice versa and argue that this should be anticipated since
KAMA and BOM have different concerns and abstraction levels. Unlike ours, this work
presents sketchy mappings without any transformation automation and code generation. In
our work, we also have partial correspondence between ACM and FAM, but we obtain a
complete transformation from ACM to FAM thanks to the information embedded inside the

transformation rules.
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Etienne et al. [90] report on French military’s work to improve interoperability between
their simulations. They have investigated the feasibility of two aspects of the MDE
approach for their needs: high quality code design through a prototype of Domain Specific
Language (DSL), and model transformation, through an HLA code generator, associated to
the former DSL. They demonstrated a case study based on a simple tank platoon mission.
An interesting aspect of their work is that they use the same modelling and model
transformation tools used in this thesis, namely, GME and GReAT. Consequently, they
concluded that the MDE appears to be powerful in easing dialog between officers and
engineers, and enabling short development or modification cycles through drag/drop model
reuse and automated HMI generation, for instance.

The CAPSULE study [91] is another French military contracted work that aims to apply
the MDA approach to the M&S domain to investigate the degree of portability,
interoperability and reuse MDA can offer for their simulations. The study was conducted in
three stages, where, in the first stage, a suitable state of the art model transformation tool is
selected (which turned out to be MIA-Transformer). In the second stage, the feasibility of
applying such an approach on three existing simulation “frameworks” (HLA, Escadre,
Ligase) by using a technique they called “MOF transformation” is investigated, and in the
final stage, the design and development of a demonstrator that addresses HLA and Ligase
target simulation platforms is done. During the study, a meta-PIM and three meta-PSMs for
the three target simulation platforms were created, all being in XMI format. The generated
PSMs were opened in Rational Rose, and C++ skeleton code was generated automatically.
Note that the reported transformations covered only data models; behaviour was not
included.

Experiences of Raytheon Missile Systems on MDE are highlighted and summarized in
[92]. For the last several years, Raytheon has been employing auto-code processes and
tools to facilitate rapid deployment of models and algorithms into Integrated Flight
Simulations (IFS). The paper demonstrates the concrete benefits of employing MDE
approach at Raytheon through several benchmark charts and tables. It concludes that the
MDE processes significantly reduces overall cost and readily allows fidelity enhancements,
yielding better system performance assessment and characterization. They utilize MDE
approach only for direct code generation from relatively small models; there is no usage of
any intermediary PIM to PSM transformations.

The purpose of PEO Soldier Simulation Road Map study [88] is to continue to build a
capability for Program Executive Office (PEO) Soldier to assess the platoon level

effectiveness of different soldier equipment architectures using distributed simulation. The
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capability is being built by means of Army’s Modeling Architecture for Technology,
Research, and Experimentation (MATREX), which is an implementation of a unified Army
federation to support distributed engineering-level analysis within a greater force-on-force
environment. At its core, MATREX provides an RTI, a FOM, and a middleware
independent capability that allows simulation developers to move with agility from
different implementations of HLA or Test and Training Enabling Architecture (TENA).
These capabilities are enabled by a set of components and tools. Key components include
battle command management services which implement federation services for
communications, situation awareness, and command and control. The Protocore tool is a
simulation architecture development environment that allows federation developers to
design a FOM and automatically generate source code for participating simulations that
interact with that FOM in a middleware independent fashion. This capability is based on a
transformation from a PIM specification, the FOM to a PSM specification, such as HLA
1.3. In this sense, MATREX is a realization of MDA in support of federated simulation.
Within the scope of the study, the PIM for a PEO Soldier scenario is demonstrated to be
transformed into its corresponding PSM. They use UML sequence diagrams to describe
their selected scenarios, whereas we use LSCs for the complete behavioral specification of
the missions of interest.

Ambrogio et al. [113] introduces a model-driven approach that allows automating most
of the activities that are traditionally carried out manually to implement a DEVS-based
simulation from a high-level model of the system under simulation. The paper illustrates
the set of UML profiles and model transformations that endow simulation developers with
an automated approach that produces a significant portion of the final simulation code. As a
case study, the production of a DEVS/SOA simulation for a basic queuing system is
presented. The model-to-model transformations specified in ATL [7] are executed by use of
the ATL engine provided by the Eclipse tool, while model-to-text transformations specified
in Xpand are executed by use of the openArchitectureware tool [114]. Specific and mostly
automated processes have been introduced to yield not only the code but also the
configuration data for the DEVS/SOA platform, so as to produce a DEVS/SOA simulation
ready to be executed. This work is a two-phased model transformation effort similar to
ours, however, in its present form, the approach only produces the core skeleton of Java
classes that implement DEVS models. Work is in progress to deal with the inclusion of
UML-based abstract models that specify the simulation logic (i.e., behavior) as well. We
incorporate the computational part of the simulation logic in the form of advises to be

woven into the generated Aspect] code.
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5.7.2 Automata, State Chart, State Diagram Transformations

Szemethy [67] introduces a tool that performs transformations from high-level domain-
specific models of the time-triggered language, Giotto, which is used to describe embedded
systems, into analysis models represented in timed automata. It uses the same modeling and
transformation tools employed in this work, namely GME and GReAT. It is an early case
study demonstrating PIM to PSM transformations of the kind shown in this thesis.
According to the time-triggered paradigm, all activities of the system must be strictly
periodic, with possibly different frequencies in different modes of operation. The activities
in our domains, on the other hand, are majorly event driven. Time triggering exists in only
a few specific places to initiate various (sub) scenarios in a field artillery mission. Our work
has a wider and more diverse scope in terms of the source and target models. The number
and complexity of our transformation rules also outrange theirs. Since the concepts and
functionality of their source and target domains are closely related, the mapping of Giotto
entities to timed automata entities is simple and straightforward. The only sophistication in
the course of their transformation is the generation of timed automata instruction sequences
from Giotto timing constraints.

There is a body of work dealing with the translation of sequence diagrams to state
charts, see for example, [68][69][70]. The approaches in these examples differ from
traditional graph transformation approaches, where the transformations are specified over
the abstract syntax. Gronmo and Pedersen [68] base their transformation on the concrete
syntax of both domains. Ziadi et al. [69] and Sun [70] define their transformations by
pseudo-code operating on algebraic definitions. Our transformation is defined over the
abstract syntax of the source and target domains and hence any input model and its
produced output model are guaranteed to be correct by construction. Owing to the
simplicity and small size of the sequence diagrams and state charts, the set of
transformation rules in these works are relatively smaller. In our opinion this characteristic
facilitates defining the transformations over concrete syntax. The field artillery data model,
HLA OMT and LSC domains, on the other hand, are much bigger and complex. In order to
cope with this complexity, our transformation additionally incorporates a fast user code
library that leverages the execution performance.

Van Amstel et al. [71] have developed a transformation from Algebra of
Communicating Processes (ACP) into UML state machines. Using the Rhapsody tool they
generate code to execute the produced UML state machine and the action dispatcher. By
this way, the execution of an ACP model is simulated. On the other hand, its behavior

preservation is limited to execution trace equivalence. In our transformation, both data and
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behavior are preserved and this is traceable through the rule definitions. Note that we are
performing transformation between two totally unrelated domains and our source model
has smaller information content than the target model. Information is not lost, but increased

and the transformation rules are where this is done.

5.7.3 LSC to Code Transformations

Code generation from behavioral specifications in LSC is an ongoing challenge for
researchers [72]. There is also a body of literature dealing with transforming LSCs to some
executable form; in particular, state charts [73][74]. We favor executable code generation
directly from LSC as this approach tends to yield more readable code. Harel and Marelly
[43] propose a play-in/play-out engine to capture behavioral requirements. The Play-Engine
automatically constructs the behavioral model in LSCs, and then provides a simulation of
the execution of the LSC diagrams by playing out different scenarios. In contrast, our
metamodeling approach, due to its data model integration capability, provides the
opportunity to extend or tailor the code generator or interpreter in accordance with the data

model.

5.7.4 Schema Transformations

In software engineering, the functional requirements of the system are formally
specified in a conceptual schema, or a conceptual (data) model. Conceptual schemas are
described in a conceptual modeling tool/language such as GME or UML. Schema
translation has been considered an important practical problem in the fields of databases
and information systems [75]. The topic has nowadays gained more momentum due to the
need for translation between ontology languages and for translation between models in the
sense of MDA.

The MDA of OMG specifies three system viewpoints and three corresponding default
system models: a CIM, PIM and a PSM. Semantics of Business Vocabulary and Business
Rules (SBVR) defines the metamodel for documenting the semantics of business
vocabulary, business facts and business rules. Business rules in SBVR are structured by
logical semantic formulations, which facilitate their automation in software systems. In
fact, SBVR specifies a metamodel to describe CIMs and UML is the standard language
proposed by OMG to build PIMs (consequently, the conceptual schemas).

Raventés and Olivé [76] propose an automatic approach to translation between schemas
modeled in UML and SBVR vocabularies and rules, and vice versa. The authors have
formulated this translation as a particular application of the more generic problem of
schema translation. Both the source and target schemas used in the translations are

instances of metaschemas which are MOF-compliant [16]. The main contribution of their
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approach is the extensive use of object-oriented concepts in the definition of translation
mappings, particularly the use of operations (and their refinements) and invariants, both of
which are formalized in OCL.

To facilitate the application of their approach, they have developed a transformation tool
framework on top of Eclipse tool, that allows designers to model the UML context schema,
generate the corresponding SBVR instance and finally obtain a natural language description
of the schema (in Structured English) [77]. The UML/OCL-to-SVBR transformation is
formalized in the ATLAS Transformation Language and the SVBR-to-text transformation
is implemented in MOFScript. A surprising aspect of their study, is that they follow a PIM-
to-CIM and CIM-to-structured natural language transformation direction, which is the

opposite of most MDE practices.

5.7.5 Web Services Transformations

Heckel and Lohman [78] propose a model-driven approach to the development of
reactive information systems, such as dynamic web pages or web services, modeling their
typical request-query-update-response pattern by means of graph transformation rules. The
transformation is carried out using story diagrams which is a graph transformation language
based on UML and Java. With the transformations, source models in UML are transformed
into contracts expressed in the Java Modeling Language (JML). Unlike ours, this work is a
single step MDD effort that does not further attempt to generate executable code from the
produced JML models.

Another work in the Web domain is the UML-based Web Engineering (UWE) approach
[79], where rule-based transformations written in ATL are defined for all model-to-model
transitions, and model-to-code transformations pertaining to web content, navigation and
presentation. First, business process models are transformed to UML activity diagrams by
the ATLAS transformation engine. Then a run-time environment built on top of the Spring
framework performs direct execution of the generated activity models. In a more recent
work [80], a graph transformation approach is taken to refine business-oriented architecture
models to service oriented architecture models, focusing on the ability of dynamic
reconfiguration typical for Service Oriented Architecture (SOA). The authors have formally
defined the refinement relations from the component-based business level architectural
style to the SOA style in UML, but the work is still under way to implement the
transformations in Graph eXchange Language (GXL), the language supported by both the
AGG transformation tool and CheckVML, a model checker for graph transformation

systems.
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5.7.6 Transformation by Example

A noteworthy approach to model transformation, so called transformation by example,
is proposed in [81]. The authors view model transformation essentially as a combinatorial
optimization problem where the transformation of a source model is obtained by finding,
for each of its constructs, a similar transformation in an example base. Two strategies based
on two search-based algorithms, namely particle swarm optimization and simulated
annealing, are employed. The approach is illustrated and evaluated on the well-known case
of transforming UML class diagrams to relational schemas. This work is unique in not

requiring metamodels and transformation definitions for the source and target models.

5.7.7 Miscellaneous UML-based Transformations

Braga [82] proposes an automatic and validated code generation process from Role-
Based Access Control (RBAC) policies into aspect code. They have developed a
transformation from SecureUML, a RBAC policy specification language, to AAC, a simple
abstract aspect-oriented language. Both languages are specified by metamodels defined in
UML. The transformation essentially maps each entity and its associated RBAC policy in
the source model to an abstract entity class and an aspect in the target model. The abstract
class represents an interface that a concrete implementation of the controlled component
must implement. The aspect implements the access control constraints that must hold when
a component's method is called. As the last step, Aspect] code is generated from the
produced AAC model. The transformation is implemented as a Java application on top of
an OCL evaluator named ITP/OCL. This work purely takes an RBAC perspective on a
generic entity-relationship data model formation. The metamodels and the transformation
do not incorporate any sort of behavior representation that would capture the processes or
workflows in a domain.

UML2Alloy [83] is a tool which transforms a subset of UML class diagrams and OCL
constraints into the Alloy language, so that the generated specifications in Alloy can be
automatically analyzed by the Alloy Analyzer, a tool used for identifying design faults in a
software specification. This work differs from ours in that it employs transformations for
UML model analysis with the motivation to catch design faults at earlier stages of software
development lifecycle, whereas we are transform a conceptual domain model down to its
executable simulation model. Another major difference is that UML2Alloy uses the SiTra
model transformation framework, which is a minimal, Java based library that simply
facilitates a style of programming that incorporates the concept of transformation rules.
SiTra is a primitive tool compared to GReAT in terms of the offered transformation

capabilities.
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CHAPTER VI

DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS

This thesis has presented an end to end comprehensive model transformation endeavor
from the field artillery conceptual model, ACM, to the HLA federation architecture model,
FAM. The resulting FAM is further processed through the code generator to generate
executable simulation code. The ACM and FAM both consist of data and behavioral parts
and the transformations revolve around transforming the two parts in sequence. In the data
model transformation, ACM domain actors are transformed into federates and the
communicated message structures are transformed into HLA classes. The behavior model
transformation is based on transforming ACM LSCs that represent domain actor
communications to FAM LSCs that represent the corresponding HLA federate
communications via the federation execution inside the RTI. The extra platform specific
content and logic required for FAM is provided through the transformation rules, and the

user code library employed by the transformation.

6.1 Discussions on ACM Model and ACM2FAM Transformation

This section briefly discusses on ACM and ACM2FAM transformation. Appendix D
provides hints and recommendations derived from our experience in realizing ACM2FAM
transformation for future model transformation developers of GReAT.

Within the scope of this thesis, ACM has initially been developed in order to lay the
groundwork for transformations. ACM’s information content is obtained from the US
Army field manuals in the public domain. ACM’s data model is based on message formats
and JC3IEDM, and its behavior model is based on LSC, whose metamodel was developed
in another work together with FAM. The challenges encountered and an evaluation of
employing LSC notation in observed fire mission modeling is shared with the community
[11]. Another intention for developing ACM is to bring the attention of the CM community
to the employment of chart notations in describing military tasks, which has not been done

before in the literature.
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The transformation from an ACM to FAM provides the ability to exercise the resulting
federation architecture. In a fully automated exercise, intra-federation communication will
follow the specified patterns; the communicated values, being randomly generated, will not
be correct. This can be regarded as a first-cut simulation of the exercise. Taking a step
towards complete federate application generation, the developer has to weave the
computation logic onto the generated code.

A notable downside of the transformation is its poor performance especially when
source models get bigger. This is accountable for every rule execution boiling down to
solving the sub-graph isomorphism problem on the input model and the match pattern. This
burden is ameliorated by breaking rules into reasonably small chunks and providing as
much initial binding on the match pattern as possible. Another facilitator is the employment
of a C++ user code library that programmatically aid in transformations. This provides a
two-fold gain in that, first, the execution of the code library is faster, and second, it saves

from tediously defining many similar transformation rules.

6.2 Discussions on FAMM and the Code Generator

FAMM has been developed in a previous work and tested together with the code
generator in various exercices [85][86][87], wherein the FAMs were manually developed in
close coordination with the code generator team. Eventually, base codes were successfully
generated, aspects were woven and the resulting codes were successfully run on RTIL. On
the other hand, problems and unforeseen issues emerged when we started testing FAMs
that were automatically produced as results of ACM2FAM transfomations. Even before
being able to test code generation for auto-produced FAMs, the FAMM itself needed
various modifications in order for it to be used as a target (meta)model in GReAT
transformations. In short, changes were required on both FAMM and the code generator in
order to have the two-phased end-to-end ACM to executable code transformation vision to
flourish in practice. This section informally asseses FAMM and the code generator for their
usability in graph-based model transformations based on our experience, and categorically
summarizes the required changes. The summary of changes done in FAMM and the code
generator are provided in Appendix C. All of the new FAMM versions along with a change
log per version as well as the modified code generator source are available through the

thesis distribution CD. The source code also reports the changes done in comments.

6.2.1 Discussion and Assessment of FAMM
FAMM has been developed in GME as a metamodel for building HLA-based distributed

simulation models [85]. Its development was closely coordinated with the development of
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FAM to Java/Aspect] code generator [86]. Although its prospective role as the target model
for transformations from ACM was also taken into account in its design, it was never tried
in GReAT tool until it was fully completed. We started encountering various issues from
the moment we have imported FAMM into GReAT for use in ACM2FAM transformation
definition. The paragraphs below briefly explain the adaptation process of FAMM to make
it compatible with GReAT transformations. Note that issues mentioned in this sections are
specific to FAMM’s usage in GReAT. Otherwise, it is flawless as a GME domain model
for HLA.

Before starting with the issues, it is worthwhile to recall that GReAT transformation
models (of UMLModelTransformer paradigm) are first processed by the GReAT Master
Interpreter to generate C++ code of the metamodels and transformation definition and
then the Graph Rewrite Engine executes this code to actually perform transformations.

All of the connection elements that are used in associating more than one pair of
modeling elements had to be avoided. (Because if a connection element is used more
than one time as source-to-connector or connector-to-destination, then the code generator
generates duplicate method definitions for those connection parts, which result in
compile errors.) This is achieved by building a connection hierarchy so that ambiguities
in code generation are eliminated.

All of the modeling element, role or attribute names that are at the same time C++
reserved words (such as if, else, for, string, etc) had to be renamed for obvious
reasons. Not as obvious as these were, the GReAT interpreter generating utility methods
(such as “create”) which had the same name with some other FAM elements. Such name
clashes, which could only be detected by trial and error, also had to be resolved.

Some FAM elements in different paradigm sheets were named the same. This does not
cause any problem as far as GME modeling is concerned; however, the GReAT interpreter
produces duplicate class names for those elements, which result in syntax errors at compile
time. Thus, name uniqueness had to be enforced throughout the entire FAM.

This last action is not taken due to an obligation, but just for convention. A reference
that points to all of a super class’s child classes is made to refer to the super class only, in

order to reduce redundancy.

6.2.2 Discussion and Assessment of the Code Generator

Before starting the discussion on code generator, it is worthwhile to mention about a
post-processing work that has to be done on a produced FAM, in order to comply with the
requirements of the code generator on LSC structure. The code generator expects an LSC to

only cover a single federate and its communication with the federation. The developers of
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the code generator had the motivation that such a local federate view would better facilitate
code generation. Consequently, the Multi2BinaryLSC transformer was developed in order
to refine FAMs having multi instance LSCs into FAMs having binary instance LSCs, as
explained in Section 5.4.

After FAMM was sanitized of the aforementioned issues that prevented it from being
used in ACM2FAM transformations, we could start generating FAMs that correspond to
various AdjFFE ACM mission models. Then these FAMs were opened in GME and the
Code Generator (CodeGen) plug-in was run on them to generate simulation base codes.
However, things did not go as expected again and run-time errors were thrown. The
problems generally had to do with the imperfection of the CodeGen, because our AdjFFE
FAMs were automatically generated and they were correct-by construction due to their
compliance to FAMM. Note that the fixes done on the original FAMM introduced nothing
that would have negatively affected the CodeGen’s execution. The reason for these issues,
we think, is that the development of CodeGen was majorly steered by the samples that were
manually created during FAM testing. The scope and representative power of those
samples were not as far-reaching as AdjFFE FAMs. As a result, some of the permissible
FAM structure combinations were simply missed by the CodeGen. These patterns were
revealed during modeling with an ACM perspective and mindset. In addition to these, the
CodeGen simply had some syntactic and semantic flaws in its code generation logic and
shortcomings in FAM coverage that we have discovered during our exercises. The rest of
the section summarizes the issues fixed in the CodeGen.

Since CodeGen traverses a given FAM to generate code, most of the modifications that
we had to make in FAM had corresponding change requirements in CodeGen. These
include; writing getter methods for the newly introduced connection types in FAMM, and
calling them in appropriate places, reflecting any FAMM modeling element name change
(either due to reserved name clash, duplicate name definition, or convention) in the code. In
the original CodeGen, only the “DefiningPart” of an MSCDocument was processed, but the
similar “UtilityPart” was commented out. We have opened up the comment since AdjFFE
FAMs contained both defining and utility parts.

Other more serious issues include; all OrderedConnections have priority
attributes as dictated by the MSC metamodel, which indicate relative execution order
among the events. CodeGen processes the OrderedConnections inside a list data
structure that is indexed by the connections’ priorities. CodeGen overlookingly assumes
that the list index starts with one and sequentially increases in ones. This assumption might

be valid for a manually constructed FAM, but AdjFFE FAMs are auto generated from their
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corresponding ACMs. Even if we try to arrange the list index as required, we end up in
non-sequentially ordered priorities in the produced FAMs, because the number of
OrderedConncetions at least doubles due to extra HLA-RTI communications. We have
devised more sophisticated data structures and algorithms to correctly work with a sparsely
filled 0OrderedConnection list. If the code was left intact, then either no or semantically
incorrect and missing code was generated.

The AStyle plug-in, which is a source code indenter, formatter, and beautifier for Java
did not work for some reason and caused run-time error. We had to abandon its usage.

Occasionally, null value checks for variables were not written, causing null pointer
exceptions at runtime. Such issues are the results of making assumptions on the input
FAMs and quick-and-dirty coding practice. We have corrected almost all of these cases.

The generated code for inline operand “Opt” contained a syntax error. Opt was most
probably never tested by the CodeGen team before. We have correctly added the ““.” field
accessor before the “coldChoices” field of the active LSC.

Since CodeGen was designed as a GME plug-in, there was no “main” Java method to
launch it standalone in Eclipse environment. We have defined a main method inside the

LSCCodeGen class that invoked the main interpreter method with the relevant parameters.

6.3 A Comparison to MDA
This section explores the questions of where the artifacts used in the overall MDE
activities of this thesis lie with respect to concepts and standards advocated by MDA and

how our models align with MDA'’s triple modeling viewpoints.

6.3.1 Our Artifacts Associated with MDA Standards

Object Management Group (OMG) introduces a four-layer metamodel hierarchy for
defining modeling, metamodeling, and meta-metamodeling languages and activities in [17].
Table 4.2 relates the different levels of models used in this thesis to OMG’s modeling
hierarchy. Besides that, Figure 1.2 shows the abstraction levels of these domain and
transformation models with respect to OMG’s hierarchy. Taking this one step further,
Figure 6.1 associates the concepts and standards that OMG has put into its MDA vision
with the MDE artifacts employed in this thesis. According to the figure, metaGME, the
meta-metamodel of GME, is functionally equivalent to MOF of OMG at M3 level. ACMM
and FAMM, the metamodels of the source and target domains of this MDE work, are
functionally equivalent to UML of OMG at M2 level. Finally, UMT, the metamodel of the
FACM2FAM transformation presented in this thesis, is functionally equivalent to QVT of
OMG at M2 level.
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Figure 6.1 Associating our metamodeling artifacts to OMG standards

6.3.2 Our Models from MDA’s Modeling Viewpoints

MDA establishes three different modeling viewpoints [21], called CIM, PIM and PSM.
The highest level of abstraction is the Computation Independent Model (CIM). This is a
conceptual model that identifies the concepts and processes important on the business level.
This is easily mappable to the missions and means identified on the operational level. The
main artifacts are use cases. The Platform Independent Model (PIM) capture concepts and
processes in software engineering artifacts of class and object hierarchies, activities,
sequences, and other means showing the roles of each component. PIMs are very close to
conceptual models that already use vignette and scenario elements motivating the various
possible actions and their sequencing. If this conceptual model is mapped to a concrete
platform, e.g. the middleware to be used, the result is a Platform Specific Model (PSM). In
the optimal case, the PSM can be used to produce code, as all information needed is
available.

Considering the above definitions, ACMM can best be classified as a PIM since it
captures the field artillery observed fire domain entities and missions in a UML-based
notation, yet avoiding any simulation-specific details. The classification of field artillery
messages in ACMM as durable or non-durable is not evident from the authoritative
publications we have consulted. Yet, this distinction is free from any simulation notion and
can even be regarded as a good modeling practice that facilitates building families of
message structures based on usage characteristics. Eventually, this distinction promotes
concise ACM2FAM transformations.

FAMM, being the HLA domain model, incorporates all the necessary details to
represent any HLA-based distributed simulation. Similar to ACMM, it uses a UML-based
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notation, hence built out of software engineering artifacts. Different than ACMM, it defines
constructs that provide interfaces to the underlying implementation platform, which is
HLA/ RTL. It is relatively straightforward to generate executable simulation code from a
FAM than directly from an ACM.

Having identified ACMM and FAMM as the PIM and the PSM, there is nothing much
left to identify as a CIM in our work. The narrative model of the field artillery observed fire
domain provided in Section 2.5 possesses CIM characteristics. It explains the concepts,
processes and missions of FA concisely, at a natural language level. It incorporates use case
information, but not in a formal way. It can serve as a (part of) user requirements
specification of the system to be developed, built as a result of the analysis of the
authoritative references about the FA domain. Consequently, the FA narrative model seems

comparable to a CIM.

6.4 Towards a Domain-Independent CM Transformer for HLA

The experience gained in this thesis has shown that domain to domain transformations
are doable to the degree of success in mapping the source domain’s actors and
communicated data structures to the target domain, and in mapping each set of appropriate
behavior elements of the source domain to the behavior elements in the target domain. The
design of these groupings and mappings is the most challenging task of the transformations.
The behavioral model transformation of ACM2FAM essentially being an LSC-to-LSC

transformation brings a degree of ease to the process and opens possibility for automation.

6.4.1 The Transformation Definition Experience

This section presents a summary of the applied model transformation definition process
in the course of this thesis, which has evolved based on our experience. It is intended as a
useful reference for researchers studying graph-based model transformations (in GReAT).

Admittedly, defining transformations for ACM2FAM in GReAT has been a manual and
cumbersome undertaking. Working on two large source and target metamodels such as
ACMM and FAMM surely has a major role in that. In this first experience most of the
transformation rules have each been defined individually and separately since there were no
artifacts at our disposal to reuse or utilize. We could start reusing some of the previous rule
patterns in subsequent rules as we progressed through the process. Along with that,
GReAT’s being a declarative and visual tool facilitated tackling with the burden of this
tedious model transformation work.

We have defined a work breakdown of the overall transformation into fundamental

modules, such as data model transformation, behavioral model transformation, and a
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number of others under these. We first started developing the smaller and lower level
modules, which have already been refined into legitimate conception levels. Then we
merged the smaller modules into larger ones, and finally connected the behavioral
transformation module after data transformation module. Modules were represented as
GReAT transformation blocks with varying depths, eventually ending up in rules.
Similar to function definitions in programming languages, rules and blocks have
explicit input and output interfaces consisting of ports. As the rules were defined, they
were connected to one another and subsequently blocks were connected similarly. This
development style of GReAT provided an implicit and convenient means for
transformation sequencing. As the development continued, some rules and several
blocks turned out to be reusable with some tweaking. The 21 references used in the
transformation is an indication of the degree of block/rule reuse.

We have generally adopted a spiral development approach, where blocks and rules,
and even modules on a larger scale, were occasionally refactored after discussions among
the research team. Since GReAT transformation rules are defined over source and target
metamodel elements, even small changes on these could have significant effects on the
transformation definitions. GReAT documentation [6] explains how updates to metamodels
are reflected in the transformations. Model migration is based on internal identifiers of the
model elements, where an old metamodel element reference in a transformation rule is
directed to the new metamodel element that has the same id. Once the migration is done,
the old metamodel is manually deleted from the transformation definition. For the
unmatched model elements in the transformation definition, the associated transformation
rule elements are left unassigned. Our experience has proved that model migration in
GReAT is easier said than done.

We have experienced several model updates in the course of this thesis, of which a few
caused catastrophic effects, causing the migration process to fail unexpectedly or ending up
part of the transformation definition being lost. Apparently some of changes in structure,
inheritance or other type of associations of the metamodel were such that the migration
engine of GReAT could not cope with them. In such cases, there was no way but to roll-
back changes on the metamodel controllably until the migration worked, and then modify
the transformation definition so that it would prevent failing when the changes on the
metamodel were reapplied. Alternatively, we could directly prune the transformation
definition to a safe point that would tolerate model migration. Then, in any case, we had to
redefine the pruned parts of the transformation definition in accordance with the new

metamodel. This is really a painful process, so we advise transformation writers in GReAT
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to invest their time and effort for obtaining well designed and stable metamodels in the
beginning before they actually start defining the transformations. Subsequent changes at
metamodel level end up in expensive reworks on transformation definitions and

unnecessary skidding to bring the transformation back on tracks.

6.4.2 The Highlights of ACM to FAM Transformation

In this section we highlight the corresponding key elements of ACM and FAM matched
during the transformation, in an effort to identify the points of abstraction in a CM that
facilitates designing a domain-independent CM transformer for HLA.

Model transformations are usually defined from more conceptual (e.g. less platform
specific) to more implementation-oriented (e.g. more platform specific) models. This
generally implies that many source-to-target model mappings are possible. Besides that, the
target model is likely to have extra data elements, such as actors and message structures.
Also, it usually has extra behavior patterns, such as system initialization, complementary
communications via the extra actors and system shut-down, for which the source model
provides no clues. Extra behavior patterns and all sorts of book keeping, which do not have
direct correspondence in the source model, contribute to the level of difficulty in defining
the transformations.

In an effort to couple the key source and target model elements participating in
ACM2FAM transformation in the light of the above points in a nutshell, every field
artillery actor is mapped to a federate; every non-durable message is mapped to an
interaction class; every durable data element is mapped to an object class; the federation
element is brought in as a collection of communicating federates, every actor to actor non-
durable message communication is mapped to a federate to federate communication via the
federation (executing on the HLA RTI), using a pair of send/receive interaction class
messages; every actor to actor instantiation type of durable message communication is
mapped to a federate to federate communication via the federation, using three pairs of
register/discover object instance, request/provide attribute value update and update/reflect
attribute values messages; every actor to actor update type of durable message
communication is mapped to a federate to federate communication via the federation, using
a pair of update/reflect attribute values messages; every actor to actor delete type of durable
message communication is mapped to a federate to federate communication via the
federation, using a pair of delete/remove object instance messages; the default HLA types
(that serve HLA classes) are brought in; federation initialization is introduced in a
preliminary LSC by creating the federation execution, joining the federates to the

federation, initializing time management, and declaring capabilities; federation destruction
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1s brought in to the final LSC by resigning the federates from the federation and destroying
the federation execution; finally, the rest of the FACM LSC parts are directly (i.e., one-to-

one) mapped to equivalent FAM LSC parts.

6.4.3 Designing the Domain-Independent HLLA Transformer

Generalizing over the specific model transformation work presented, an interesting
research question would be whether it is possible to develop a domain-independent
transformation from any conceptual domain model to the HLA simulation model, FAM. As
summarized in Section 6.4.2, the experience of ACM2FAM transformation has been useful
to identify the “hot” points of FAM that would play a pivotal role in generalizing the
transformation perspective from ACM2FAM to AnyCM2FAM. These points would be used
in bridging the source model to FAM in defining the transformations. Once these mapping
points are bound, we have the incentive that it is potentially viable to carry-out the model
transformation as a domain-independent LSC-to-LSC transformation.

A PSM is naturally expected to cover the content conveyed by its corresponding PIM
and introduce extra, lower level, platform related information. Returning to our work, FAM
enriches the information content with the HLA-based distributed simulation concepts, such
as federation, declaration, object, ownership, time and data distribution management and
HLA default data types. These extras have their places in both the data and behavioral
models and need to be addressed during a Conceptual Model (CM) to FAM transformation.
In this thesis, this addressing is directly done (i.e., hard coded) inside the transformation
rules, hence preventing the use of the transformation with other source domains.

Therefore, the first step forward in obtaining a domain-independent HLA transformer
should be to devise a mechanism which guides the model transformer in matching the
relevant elements of the source CM with the aforementioned points in FAM. Also, the user
code library needs to be adapted for the parts pertaining to the new source CM. Figure 6.2
shows the architecture of the envisioned Domain-Independent HLA Transformer (DIHT).

DIHT would be a FAM transformation framework that provides a GUI-based front-end
adapter to tailor a given CM towards FAM transformation. The adapter’s role would be to
let the user graphically configure the transformation’s source domain dependent content.
Tailoring is accomplished by fitting the conceptual model to a so-called abstract FAM-
oriented CM template, which is partly sketched in Figure 6.3 in metamodel form. This CM
template is derived and generalized from the experience of this thesis. Fitting is used in the
sense of hooking appropriate user-designated CM elements to the extension points in the
template model, using an inheritance mechanism in the sense of object oriented

programming. The framework assumes that the CM consists of actors communicating
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stateful (i.e., durable) and/or stateless (i.e., instantaneous or volatile) data elements with
each other. Also, the CM is supposed to use the same LSC metamodel as FAM’s for its

behavior representation.

Platform
Independent
Model

Generic HLA Transformer

Platform
Specific
Model

Figure 6.2 The envisioned domain-independent HLA transformer
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Figure 6.3 The overview of the FAM-oriented CM template
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The result of the adaptation process is an intermediary model which is a unification of
the template and the given CM. This composite model is then fed to the CM-to-FAM LSC
transformer to produce the FAM. Specifically, the CM actors and nets are mapped to HLA
federates and the CM data elements are transformed into HLA classes by invoking the
configured user code library methods. The LSC-to-LSC transformations are carried out
using the template model elements, independent of the CM elements in question. This fact
can be seen in the LSC transformation rules of Section 5.3.3. The specific CM elements
are only accessed inside the code library, which is effectively detached from the
transformations. The Pre and Post HLA generation parts of the transformer are independent
of the source model and only generate the HLA prerequisities, federation initialization and
shut down parts of the FAM mentioned in Section 6.4.2.

With this architecture, obtaining an executable simulation model for another domain
would be a matter of developing its data model and integrating the data model with the LSC
model to obtain a complete CM of the domain. Then the DIHT would be used to adapt the
CM for HLA through the front end tool and then the rest of the transformation would be

performed automatically over the LSCs.

6.5 Future Research Directions

This section points to three main future research directions, namely, the development of
a domain-independent HLLA transformer, investigating the possibility for higher order
transformations, and leveraging this work with BOMs that represent intra-federate state and

behavior.

6.5.1 Domain-Independent HLA Transformer

This thesis has provided the ground laying work for a future Domain-Independent HLA
Transformer (DIHT) that can transform any CM to FAM, provided that the CM is
formulated as entities communicating stateful (i.e., durable) and/or stateless (i.e., non-
durable) data elements with each other, and is based on the LSC metamodel for behavior
representation. The user needs to pre-process the CM by a front end tool to integrate it with
the so-called FAM-oriented CM template. Then the resulting intermediate form would
automatically be transformed to FAM. In this scheme, the specific CM elements would
only be accessed inside the code library, which is effectively detached from the

transformation definition (Please refer to Section 6.4 for details).

6.5.2 Possibilities for Higher Order Transformations
A promising future research direction is to investigate the possibility for higher order

transformations. The natural starting point is to identify and formulate transformation
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patterns that emerge from this work. Then by defining higher-order transformation rules
these patterns can be generated. These higher-order rules would potentially be reusable in
other CM transformation tasks. The primary motivation for higher order consideration of a
transformation component is it having potential for reuse or it being a representative of a
large set of rules that are similar in structure, suitable for auto generation once
parameterized or externally configured. As a quick start, we would like to point some of
the more obvious rules and patterns in ACM2FAM transformation that have the potential
for being subjects of higher order transformations.

In data model transformation part, we make use of the default HLA methods defined by
the IEEE1516 standard. These methods, which were created as a FAM model in a previous
work, are imported as a library into the stub FAM whose remaining parts will be built by
the transformation rules. Actually, this library usage is the reason why we start
transformations with a stub FAM; otherwise, we could completely create and build the
FAM on the fly. Later in transformations, we create deep copies of these methods into
FAM LSCs, modify and use them in LSC message transmissions. The same case holds for
the default HLA data types: They are also imported as a library into the stub FAM, but for
some reason, perhaps unnecessarily, we also manually create the needed default HLA data
types in the FederationModel folder of the root folder of the FAM, and refer them from the
HLA attributes and parameters then on. We consider that higher order transformation rules
can be written to generate all of the default HLA methods and data types, so that the need
for the library import mechanism, which might not always be available, can be eliminated.

In behavior transformation part, there are more opportunities for higher order
transformations. The promising areas are the transformation rules that construct FAM parts
having no direct correspondence with ACM. Principally, almost all of the federation
initialization and tearing down rules seems to be suitable for generation via higher order
transformations. These include rules dealing with federation creation, joining to federation,
initializing time management, capability declaration for federates, deleting object classes,
resigning federation, etc.

We would like to draw the reader’s attention to a specific case: Currently the knowledge
for publish/subscribe declarations of interaction classes are embedded inside transformation
rules, requiring two blocks and two rules for each and every interaction class. The situation
is even more complicated with object classes. Considering the amount of overhead
involved, it can be concluded that handling capability declarations with ordinary
transformation rules is definitely infeasible and requires an efficient delegation mechanism.

(Currently the declarations for all of the classes are not done due to the burden). Among the
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alternatives are, defining higher order transformation rules, employing a user code library
to solve the problem through the UDM API and writing a preprocessing model interpreter
that runs over the source ACM to extract these relationships, annotate the model(s), perhaps
in crosslinks packages, so as to ease the job of subsequent rules that actually handle
capability declarations. The overall process seems to be suitable for parameterization and
whichever alternative is selected, it can benefit from this fact.

There are some transformation rules and blocks that we have reused throughout the
transformations. These can also be considered as candidates for higher order generation.
However, we advise a case by case analysis of generic reuse potential for each to decide
whether it is actually worth going for higher order transformation. One suitable generic
candidate is the “get MSC parent of a LSC” idiom (i.e., GetMSC4LSC block) that we have
commonly used. To summarize, an LSC might happen to have more than one ancestor
LSC, prechart, subchart, or inline operand (note that each of these “is-a” LSC). Above this
ancestor chain comes always a parent MSC. Sometimes it necessitates accessing this parent
MSC when only the lowest child LSC is available within the rule context; hence we invoke
the GetMSC4LSC block. Such blocks and rules that generically work on the model
structure in a context-free manner are good candidates for higher order transformations.

Finally, all of the utility UDM API methods that are invoked inside the user code library
and some of the higher-level, user-defined ones can be delegated to higher order
transformations. Indeed it would be an interesting exercise to work out these functionalities
into higher order transformations. One outstanding example is the CreatelInstance
method that we commonly use to create deep copies of model elements into a given
container. Actually, this capability is crucial for our transformations and currently this

UDM method call is the only way to achieve it.

6.5.3 Using BOMs for Intra-Federate Modeling

FAM adopts an inter-federate modeling perspective within a federation. The state,
behavior or processes inside a federate are not emphasized. This, however, does not
necessarily mean that it is all together impossible to model what is inside a federate with
FAM. LSC, the behavior representation formalism that FAM uses, provides the “instance
decomposition” mechanism just for this purpose. It allows an instance (note that federates
are modeled as instances in FAM), to be represented as a standalone MSC document of its
own, on a lower scale, thus “decomposed”. We have demonstrated the decomposition of
BatteryFDC in Section 4.4.2. An MSC document is comparable to a federation within the
context of this thesis. The analogy to the HLA world is that a federate, depending on its

internal organization, can behave like or is a federation on a lower scale; or reversely, a
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federation can be wrapped as a federate in another higher scale federation. Having said
these, the instance decomposition mechanism cannot provide the means for the co-
existence of inter-federate and intra-federate modeling of a federation. This is a crucial
deficiency of instance decomposition.

BOM is an open standard that aims to encourage and support reuse, interoperability,
composability, and to help enable rapid development of HLA simulations [98][99]. At a
higher level, BOMs are reusable packages of information representing independent patterns
of simulation interplay and are intended to be used as building blocks in the development
and extension of simulations. These components can also be composed in larger models
e.g., BOM Assemblies. The Conceptual Model part, which is one of the five parts of a
BOM, contains information that describes the patterns of interplay of the component. This
part includes the types of actions and events that take place in the component, and is
described by a pattern description, a state-machine, and a listing of conceptual entities and
events, which, when taken together, describe the flow and dependencies of events and their
exceptions. This organization of BOM makes it a very convenient formalism to model
intra-federate state and behavior, an issue not addressed in FAMM.

We support instance decomposition in this work, and have demonstrated its usage in
graphical LSC notation during BatteryFDC modeling. The decomposition of an instance
yields another (lower level) MSC document for the decomposed instance besides the main
MSC document inside the BehavioralModels folder of ACM. Although there are no
formal associations established between the main document’s and decomposed document’s
LSCs currently, they can easily be identified by the employed naming convention, as
advised by the MSC standard [15]. At the end of an ACM2FAM transformation, all of the
corresponding MSC documents are generated on the FAM side. This way we have all the
necessary information to create BOMs for the decomposed instances, hence federates. The
code generator creates federation code per MSC document in a FAM. Therefore, the
information in subordinate MSC documents has to be consolidated into the main document
as BOMs. In order to achieve this, the FAMM definition must be enriched with a BOM
metamodel in the first place. Then, a model interpreter for FAM can be written to carry the
intra-federate knowledge embedded in decomposed MSC documents as BOM components
inside the main MSC document. Eventually this will give the opportunity for both inter-
federate and intra-federate state and behavior being present in a federation definition. Of
course, the code generator has also to be extended in order to process BOMs in a given

FAM.
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CHAPTER VII

CONCLUSION

This thesis has presented a comprehensive graph-based model transformation work from
the field artillery conceptual model (ACM) to HLA federation architecture model (FAM).
The work was undertaken to understand the difficulties involved from a mission space
model to an executable simulation model adhering to the Model-Driven Engineering
(MDE) philosophy. Both ACMs and FAMs are formally defined conforming to their
metamodels, ACMM and FAMM, respectively. ACMM has been developed within the
scope of this thesis to serve as a realistic source model for the transformations. ACMM is
comprised of a behavioral component, based on Live Sequence Charts (LSCs), and a data
component based on UML class diagrams. Using ACMM, the Adjustment Followed by Fire
For Effect (AdjFFE) mission, which serves as the source model for the model
transformation case study, is constructed.

The ACM2FAM transformation, which is defined over metamodel-level graph patterns,
is carried out with the Graph Rewriting and Transformation (GReAT) tool. Data and
behavior are preserved while transforming an ACM into its corresponding FAM. In fact the
result of the execution of the transformation rules is an increase in the “information
content” of the models from source to target. The extra platform specific information
required for FAM is provided through the transformation rules, and a user code library. The
user code library is written to facilitate the model transformations in terms of improved
execution performance and saving from the tedium of graphically defining many
uninteresting transformation rules.

Another transformation named Multi2BinaryL.SC is also developed, to be applied as a
pre-processing step on a produced FAM before feeding it to the code generator. In essence,
Multi2BinaryL.SC accomplishes transformation from a global view of the federation to the
collection of local views of the federates. Multi2BinaryLSC strips down a FAM’s LSCs

having more one than one federate and the federation into a set of LSCs having only one
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federate and the federation. This way code generation is also facilitated in that it can
generate code one federate at each run.

A second phase transformation is applied by a code generator to produce executable
simulation code in Java/Aspect] from a FAM. Computation logic has to be woven onto the
generated (aspect) code in order to provide legitimate values for the data structures at
runtime. The resulting code can then be executed on an HLA Run-Time Infrastructure.

The metamodels used for the domain and transformation modeling in this thesis have
one to one correspondences with the standards advocated by the Model Driven Architecture
(MDA) of OMG.

The model transformer presented in this thesis is analyzed against published model
transformation analysis studies in literature.

The experience gained in this thesis is a step forward in designing a domain-independent
model transformer for HLA from any conceptual model that is based on LSC for behavioral
representation. As a future study, a conceptual model of another domain can be developed
in parallel to building the domain-independent HLA model transformer in the light of the
recommendations and guidance drawn out of this thesis. Another future research direction
is to investigate the utility of higher order transformations; that is, developing higher level,
declarative rules to define the recurring patterns of ordinary transformation rules. We have
identified with justifications the parts of the transformations amenable for generation
through higher order transformations. Finally, another interesting further study would be to
enrich this work with BOM formalism so as to incorporate intra-federate modeling

capability to complement the existing inter-federate modeling within a federation.
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This appendix presents all of the LSCs for the Adjustment Followed by Fire For Effect
(AdJFFE) mission model in graphical notation. Each LSC is provided with a brief

APPENDIX A

description of its purpose, execution conditions and logic.

Figure A.1 shows the top-level chart, AdjFFE, which provides an overall coverage of
the mission. Its LSC activation mode is iterative and quantification is existential [14] (from
this point on only the values of activation mode and quantification will be mentioned for
the sake of brevity). The chart includes all of the eight instances, a prechart and a body with
a parallel inline expression with two inline operands. The prechart consists of references to
three MSCs and the parallel expression has references to two MSC:s in its first operand and

has a reference to one MSC in its second operand. The referred MSCs (and their contained

LSCs) are presented in subsequent figures.

ADJFFE MODEL LSCS IN GRAPHICAL NOTATION

FwdObserver|

BatteryRadioNet

BatteryFDC

Environment;

FiringUnit

MetStation

MetroNet

ecomgosed as

BatteryFDIC_AdjFFE

C

Inst_SOP-Met_lInfo

CFF(missionType)

)

|
( FO_MTO_Al(missionType,adjType,null) )

Par,

AdjustmentLoop(missionType,adjType)

(
(

FFELoop(missionType,adjType,“FollowingAdjustment”)

Update_SOP-Met_Info

Figure A.1 The Main LSC for AdjFFE mission LSC

155

BattalionFDC




The iterative and universal call for fire chart, CFF, is depicted in Figure A.2. It describes

the call for fire request made by the forward observer to the battery FDC. It consists of the

preparation and sending of one mandatory and two optional messages. The optional

messages are sent if the mission type is given as adjustment, FFE or destruction. All

the messages sent to the battery FDC are also simultaneously sent to the battery radio net.

BatteryRadioNet FwdObserver BatteryFDC
decomposed as HatteryFDC-CFF
‘Prepare Oid_W_Msg
considering missionType’
o\ 7\Oid_W_Msg l Oid_W_Msg
BR_N/: >
Op!

/
When (missionTy,Se=“Adj” or missionType="FFE” or missionType="Dest")

I ‘Prepare TargetLoc_Msg’

TargetLoc_Msg | TargetLoc_Msg
BRN )«

A 4

‘Prepare DT_ME_MFC_Msg
considering missionType’

C—\ DT_ME_MFC_Msg l DT_ME_M Fc&sg

BRN )« N

A /

I I I

Set Oid_W_Msg.CFFWarningOrder.missionType
to either of Adj, FFE, Supp, ISupp, ISmoke, Dest,
PReg, QSmoke, lllum

Set Oid_W_Msg.MetOfEngagement.adjType to
- Area if missionType=Adj or FFE
- Precision if missionType=Dest

Figure A.2 Call for fire LSC

The iterative and universal FO_MTO_AT chart is illustrated in

Figure A.3. It covers the messages sent by the battery FDC to the forward observer in

response to a previous CFF request. It consists of three alternatively sent MTO, one optional

additionallInfo and one mandatory fireOrder (not shown in the figure — sent within

decomposed BatteryFDC) messages. All of the messages sent to the battery FDC are also

simultaneously sent to the battery radio net.
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BatteryRadioNet BatteryFDC FwdObserver

decomposed as BattlaryFDC-FO_MTO_AI
Alt
When (adjType="Area” or (adjType=Precision” and missionType="Dest"))
0 MTO_AreaF_Msg | MTO_AreaF_Msg
BRN )« 3
When (missionType="PReg")
Alt
When (regTypp="RegOnKP”)
@RN < MTO_RegKP_Msg 'MTO_RegKP_Msg
Othefwise
0 MTO_RegSelByFO_Msg | MTO_RegSelByFO_Msg
BRN )« L 4
=
Opt —— - -
When (getlsPErSignificant() | getlsAngleTToSend() | getlsTimeOfFlightToSend())
Additionallnfo_Msg lAdditionallnfo_Msg
BRN )«
_/
| | |

These 3 data language method calls compute
their values from previous the CFF requests

Figure A.3 FO_MTO_AI (Fire Order, Message to Observer, Additional Information) LSC

The iterative and existential AdjustmentLoop chart is sketched in Figure A.4. Its
activation condition [14] is that the cannotObserve flag of the methodOfControl part
of the CFF message be false. The chart starts with a prechart those references to an MSC
handling the initial fire command preparation and sending. Then it loops until the
adjustment is complete, cycling through rounds firing, spotting observation, adjustment
correction and subsequent fire command generation steps. When the adjustment is decided
to be done in the last loop cycle, the missionType is set to FFE. The system method
getIsAdjNotDone ()computes its value from an ObservedSp_Msg sent within the
ObserveSpotting MSC.

The invariant and universal ObserveSpotting chart is shown in Figure A.5. Its
activation depends on the detonation of the ammunition. Environment tests the observed

spotting in a four operand alternative expression and sends a spotting message accordingly.
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BatteryRadioNet Environment FwdObserver BatteryFDC FiringUnit
decomppsed as
BatteryFDC-AgljustmentLoop
|
( InitFireCpmmand )
I | |
AdjNotDone
|
1
While do_J
AdjNotDone
I I I I 1
( RoundShot >

ObserveSpotting

)
|

| AdjNotDone := getlsAdjNotDone() |

. | ‘Prepare AdjustmentCorr_Msg’ |

AdjustmentCorr_Msg

SubsFireCofnmand(“Adj”)

v/

Figure A.4 Adjustment loop LSC

Enviro

nment

FwdObserver

| spottingType := getSpottingType() |

Alt
. (spottingT:

When

N

| ‘Prepare ObservedSp_Msg’ |

ObservedSp_Msg

Figure A.5 Observe spotting LSC
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The iterative and universal InitFireCommand chart is depicted in Figure A.6. It covers
the generation of an initial fire command message based on value combinations of the
method of control variable. It consists of an alternative expression with two operands. The
second operand has two optional blocks followed by an initial fire command message
transmission and ends with a call to an MSC that processes the fire command. All of the

messages sent to the firing unit are also simultaneously sent to the battery radio net.

BatteryRadioNet BatteryFDC FiringUnit
decomposed as
BatteryFDC-IngFireCommand
Alt ~” When ((metCtrl.isSFO-AMC & DT_ME_MFC_Msg.MetOfCtrl Fire) "~
AN | metCtrl.isFDC-AMC | metCtrl.isTOT) 7
@R_N\: Fire Msg}Flre_Msg
_____ [ - Otherwise N
|
Opt <. When (metCtrl.isCF | getlsExc(“CF”)) >
BR_N\‘ CheckFiring MsglCheckFiring_Msg R

L}
H metCtrl.isCF := true

When (getlsCancelExc(“CF”)) E
P CanceICheckFiring_MsglCancelCheckFiring_Msg _:
BRN )«
v ]
ImetCtrI.isCF := false
Opt - When (metCtrl.isCL | getlsExc(“CL”)) >
BR_N\‘ CeaseLoading_MsglCeaseLoading_Msg
]
' H metCtrl.isCL := true
: When (getlsCancelExc(“CL")) E
[}
L CancelCeasel.oading MsglCanceICeaseLoading_Msg ‘:
BR_N/‘ r|

metCtrl.isCL := false

InitFireCommand_Msg InitFireCommand_Msg

fireCommand := downcastFC
(InitFireCommand_Msg)

( ProcessFireCommand >

Figure A.6 Initial fire command LSC
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The iterative and universal InitFireCommand LSC is illustrated in Figure A.7. Once
the initial fire command is received, this chart is used for managing further communication
between the firing unit and the battery FDC. It consists of an LSC body with four optional
blocks that are entered based on various properties of the received fire command and set
various properties of the method of control variable based on those values. The last two

optional blocks house Ready, Fire and Laid message transmissions.

BatteryFDC FiringUnit

decomposed 4s BatteryFDC-
ProcessFirgfCommand

OPY” ~ When (fireCommand.CancelDNL) >
~— —— e ——— = l_ ________ -
[ metCtrl.isDNL := false |
Opt e ~
P < When (fireCommand.AMC) >
________ ———————~—
[ metCtrl.isAMC := true |
P Ready Msg
Fire_Msg
O t s T T T T T T T ~
P < When (fireCommand.DNL) >
~— —— e —— — = l_ ________ -
[ metCtrlisDNL := true |
Laid_Msg
] ]

Figure A.7 Process fire command LSC

The iterative and universal SubsFureCommand LSC is sketched in Figure A.8. It is
used for managing fire commands sent after the initial one. It consists of a prechart and an
LSC body with three-operand alternative expression. The prechart starts execution with two
gates that input messages from the external world and relay them to two MSCs. The
alternative expression covers the generation of a subsequent fire command message based

on value combinations of the method of control variable. The third operand has two
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optional blocks followed by a subsequent fire command message transmission and ends
with a call to an MSC that processes the fire command. All of the messages sent to the

firing unit are also simultaneously sent to the battery radio net.

BatteryRadioNet BatteryFDC FiringUnit
decomposed gs BatteryFDC-
SubsFirefommand
Alt <~ When (corrType="Adj’) >
. djustmentCorr_Msg DN -
9 1
BRN Otherwise
efineSurveil_Msg
g2
BRN
Alt < When (corrType="RefSur’ & RefineSurveiI_Msg.EOM):>
@RN < EOM Msg{EOM_Msg
MissionComplete I metCtrl.isEOM := true
_____ I P S Y———
" When ((metCtrl.isFO-AMC & corrMsg.Fire) | ~\
N _ metCirisFDC-AMG | meiCirlisTOT)__
@RN < Fire_MsgJ Fire_Msg
_____ [ - Otherwise S
|
Opt < When (corrMsg.CheckFiring | (ImetCtrl.isCF & getIsExc(“CF”))) >
BR—N\: CheckFiring_Msgl CheckFiring_Msg
: metCtrl.isCF := true
' When (getlsCancelExc(“CF”)) E
.
BRN )« CancelCheckFiring MsglCanceICheckFiring Msg _:
F/ metCtrl.isCF := false
Opt, <7 When (corrMsg.CeaseLoading | (ImetCtrl.isCL & getlsExc(“CL"))) >>
BR_N\‘ Ceaseloading MsglCeaseLoading Msg
.
' H metCtrl.isCL := true
' When (getlsCancelExc(“CL")) E
.
P CancelCeaseloading MsglCanceICeaseLoading_Msg j
BRN )«
)
metCtrl.isCL := false
)L SubsFireCommand_Msgl SubsFireCommand_Msg
BRN )« L 4
=
fireCommand := downcastFC
(SubsFireCommand_Msg)
|
C ProcessFireCommand )
| I |

Figure A.8 Subsequent fire command LSC
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The initial and universal durable message instantiator chart, InstSOPMet, is shown in
Figure A.9. It simply houses the preparation and transmission of battalion fire order SOP,

fire command SOP and computer meteorology report instantiation messages.

BatteryFDC BattalionFDC FiringUnit MetStation BatteryRadioNet MetroNet

decomposed as
BatteryFDC] InstSOPMet

‘Prepare BattalFire
OrderSOPInst_Msg’

BattalFireOrderSOPIfgst_Msg R /B—R:I\D

Prepare ‘FireCom
mandSOPInst_Msg’

FireCommandSOPIngt_Msg
te ‘ @
> N

Prepare ‘Computer
MetReplnst_Msg’

ComputerMetRepl M
puterMetReplns{ Msg :/’\;@
.
| | | | | |

Figure A.9 Instantiation type of durable messages LSC

The initial and universal durable message updater chart, UpdateSOPMet, is depicted in
Figure A.10. It consists of a parallel expression with three operands that contain references
to MSCs handling battalion fire order SOP, fire command SOP and computer meteorology
report updating.

The initial and universal battalion fire order SOP updater chart, BattalionFOUpdate,
is illustrated in Figure A.11. The battalion FDC periodically prepares and sends update
messages for the battalion fire order SOP to the battery radio net until the mission
completes or fails. The message update period is timer based. After the while-do loop exits,
the final message sent is deletion for the SOP.

The initial and universal fire command SOP updater chart, FireCommandUpdate, is
sketched in Figure A.12. The battery FDC periodically prepares and simultaneously sends
update messages for the fire command SOP to the firing unit and the battery radio net until
the mission completes or fails. The message update period is timer based. After the while-

do loop exits, the final message sent is deletion for the SOP.
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MetStation MetroNet

FiringUnit BatteryRadioNet BattalionFDC

BatteryFDC

decompgsed as
BgtteryFDC_UpdateSOPMet

ar

_( UpdateFC-SOP
- - - — — — — |- _ ] I _____________________

(UpdateBattaIionFO-SOP)

—/

C UpdateMetRep >

Figure A.10 Overall update type of durable messages LSC

BatteryRadioNet

BattalionFDC

While do)«: I(MissionComplete | MissionFailed) >

T(getTime(“BtinFO-SOP”)

‘Prepare BattalFireOr
derSOPUpdate_Msg’

‘lBattalFireOrderSOPUpdate_Msg »(BRN

BattalFireOrderSOPDel_M
attalFireOrder. el_Msg »(BRN
I *

Figure A.11 Battalion fire order update and delete LSC

BatteryFDC FiringUnit BatteryRadioNet
| |
| |
While do/'< l(MissionComplete | MissionFailed) bR
T(getTime(“FC-SOP”)
‘Prepare FireComma
ndSOPUpdate_Msg’
‘lTCommandSOPUpdate_Msg _
:KB—RN
FireCommandSOPDel_Msg
— »(BRN

_*

Figure A.12 Fire command update and delete LSC
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The initial and universal meteorology report updater chart, MetRepUpdate, is shown in
Figure A.13. The meteorology station periodically prepares and sends update messages for
the computer meteorology report to the metro net until the mission completes or fails. The
message update period is timer based. After the while-do loop exits, the final message sent

is deletion for the meteorology report.

MetStation MetroNet
| |
While do -~ I(MissionComplete | MissionFailed) >

T(getTime(“CompMet”)

‘Prepare Computer
MetRepUpdate_Msg’

= lComputerMetRepUpdate_Msg

ComputerMetRepDel_Msg

Figure A.13 Metro report update and delete LSC

The invariant and existential Roundshot LSC is depicted in Figure A.14. It models a
durable ammunition object’s life cycle from the moment of its creation, to being fired, to
being updated throughout its flight for trajectory changes, to its detonation and finally
deletion. The fire action is explicitly ordered after the ammunition’s instantiation. The
ammunition’s flight and its trajectory updates take place in a parallel expression. The time
of flight and ammunition update period are both timer based, where the time of flight is
acquired through a system variable and update period is constant. After the ammunition is
fired, a series of two shot messages and an optional splash message are also transmitted.

The invariant and existential volleyshot LSC is illustrated in Figure A.15. It is very
similar to the Roundshot LSC with the difference that volleyShot has a three-operand
parallel expression where the first operand’s optional expression and the second operand
are controlled by the volleyShotType variable, which effectively makes their executions
mutually exclusive. When volleyShotType is initial, then the LSC behaves exactly

as the Roundshot LSC. When it is £inal, a rounds complete message is sent after firing.
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BatteryRadioNet Environment FwdObserver BatteryFDC FiringUnit
| decomposed as BatjeryFDC_RoundShot
1
| ‘Prepare Ammunitioninst_Msg’
Ammunitioninst_Msg
@RE(* ...................................................... P
[Do Fire
Par
Shot_Msg %T (TOF)
Shot_Msg
Shot_Ms
BRE< =
st << iien (meiCi sSpiash)_>-
Splash_Msg
< = T2(5)
Splash_Ms
BRD‘ pash
AmmunitionDel_Msg
BRN )« <
T3(1)
['Prepare Ammunition Update_Msg'|
émmunitionUpdate_Msg .
| | ] | ]
Figure A.14 Round shot LSC
BatteryRadioNet | Environment | FwdObserver BatteryFDC FiringUnit
decomposed as BatferyFDC_VolleyShot
| ‘Prepare Ammynitioninst_Msg’ |
Ammunitioninst_Msg
@RH ------------------------------------------------------ B
) ‘Do Fire’
Par ST (TOF()
t
Op When (volleyShotType="Initial")
Shot_Msg
Shot_Msg
Shot_Ms
BRE< =
R < When (metCtrlisSpiash) >
Splash_Msg
@Rﬁ‘ Splash_Ms; T2(5)
A

AmmunitionDel_Msg

<

When (volleyShotType="Final”)

RndsCmplt_Msg

RndsCmplt_Ms:
BRN )« pit|
oo T30
“T— [‘Prepare Ammunition Update_Msg'|
mmunitionUpdate_Msg
I I | I |

Figure A.15 Volley shot LSC
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The invariant and existential volleyFire LSC is sketched in Figure A.16. Its
activation condition is a fire command with quadrant elevation being sent. The chart body
starts with an initial volley shot followed by a spotting observation. If the number of
rounds to fire is greater than 2, then rounds-2 intermediate volley shots are fired with
observations. If the number of rounds to fire is greater than 1, then a £inal volley shot is
made. Note that all of the events in this LSC are references to either VvolleyShot (with a

parameter) or ObserveSpotting MSCs.

BatteryRadioNet Environment FwdObserver BatteryFDC FiringUnit

decomppsed as
BatteryFD{ VolleyFire

C VolleyShot(“Initial’) >
I I

C ObserveSpotting >

Loop <0,rnds()-2>

C VolleyShot(“Intermediate”) >
| |
( ObserveSpotting >
Op!
<r When (rnds()>1) T
| | |
( VolleyShot(*Final”) )
| |
< ObserveSpotting )
] ] ] ] ]

Figure A.16 Volley fire LSC

The invariant and universal MetroNet LSC is shown in Figure A.17. It models all of
the incoming meteorology report messages to the meteorology net and their distribution
within the net members. There are instantiation, update and delete types of computer and
ballistic meteorology reports. The LSC body loops receiving and distributing these six

messages in an alternative expression of six operands until the mission completes or fails.
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MetroNet BattalionFDC BatteryFDC

decomfosed as
BatteryFD@-MetroNet

While do J
< I(MissionComplefe | MissionFailed) >
Alt
g1 ComputerMetReplnst_Msg - .C\omputerMetReplnst_Msg
g2 ComputerMetRepUpdate_Msg N .C\omputerMetRepUpdate_Ms

g3 ComputerMetRepDel_Msd

Y

g4 BallisticMetReplnst_Msg BallisticMetReplnst_Msg

/‘6
A

joe]

g5 BallisticMetRepUpdate_Msg allisticMetRepUpdate_Msg |

Y

[vo]

g6 BallisticMetRepDel_Msg allisticMetRepDel_Msg

Y

Figure A.17 Metro net LSC

The invariant and universal BatteryRadioNet LSC is depicted in Figure A.18. It
models all of the incoming messages to the battery radio net and their distribution within
the net members. There are 23 types of incoming messages through the gates. The LSC
body loops receiving and distributing these messages in an alternative expression of 23
operands until the mission completes or fails. The loop also includes a reference to the
BattalionIntervention MSC after the alternative expression, to check whether there
is an intervention on the mission by the battalion. One of the incoming messages is the EoM
message. When this message is received, the global MissionComplete flag is set and the
mission ends successfully.

The iterative and universal BattalionIntervention LSC is shown in Figure A.19.
This chart is not a main stream chart and is used to provide an upper command intervention
on the mission. It consists of an optional block controlled by an external system method. If

the block is entered the mission is aborted, variables are reset and a new fire order is issued.
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BatteryRadioNet BattalionFDC BatteryFDC FwdObserver
decomposed ls BatteryFDC-BRN
While do J
I(MissionComplete | MissiohFailed)
Alt

g1 Oid_W_Msg Oid_W_Msg N
g2\ TargetLoc_Msg B T;'g;tLgc_T/lsE - _: ___________________
DT MEMFC Msg | [ JoTMEMFCMsg I~~~ [
g4 MTO_AreaF_Msg ] IVI_TO__Ar_eaF_I\ng_ B _: ___________________
g MTO_RegKP_Msg ] IVI_TO_ Rzgkz:’ T/Is; B _: ___________________
g MTO_RegSelByFQ_M9gg | IVI_TO__R;gS_eIB_yFB_ﬁsg_ ____________________
g7|Additionalinfo_Ms, ] Agdit})rgllgo__l\lls; ______________________

Ceaseloading_Ms|

CeaselLoading_Msg

>

g9

CheckFiring_Msg

metCtrl.isCL:=true

CheckFiring_Msg

>

metCtrl.isCF:=true

g10 CancelCeaseloading_Msg 1CancelCeaselLoading_Msg |

metCtrl.isCL:=false metCtrl.isCL:=false
g11 CancelCheckFiring Msg _ 1CancelCheckFiring_Msg

metCtrl.isCF:=false metCtrl.isCF:=false
g1 EOM_Msg . JEOM_Msg R

metCtrl.isEOM:=true metCtrl.isEOM:=true

MissionComplete
g1 Fire_Msg . AFire_Msg
g14InitFireCommand_\/Isg _ dInitFireCommand_Msg |
g15) SubsFireCommand_Mdg . JSubsFireCommand_Msg |
g1 Shot_Msg Shot_Msg ~
g17 Splash_Msg B Saa;_r/ls; T _: __________________
g1 RndsCmplt_Msg RndsCmplt_Msg N
g1qumunitionInst_M 5 _ JAmmunitioninst_Msg N
920 AmmunitionUpdatg Vls_: Aﬁﬁlnﬁom;;ag_ﬁsg_ ___________________
g21 AmmunitionDel_Msg _: AErTEnEon_DeI_I\Eg_ _: _________________
g22|AdjustmentCorr_Mgg AdjustmentCorr_Msg
g23|RefineSurveil_Msg B _-R;fir;S?rvgil_T/lsg_ _____________________
C BattalionIntervention )
] ] L ]

metCtrl.isCL:=true
metCtrl.isCF:=true

Figure A.18 Battery radio net LSC
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BatteryRadioNet BattalionFDC BatteryFDC FwdObserver
decomppsed as
BatteryFDC}Battalionint
O | < W (gelsBatalorimerverion]) >
I ‘Reset metCt|;I to defaults’ I
I metCtrI.opMo¢I:1e:=“BattaIion" I
BattalionFireOrder_Msg] BattalionFireOrder Msg
I ‘Reset metCtrl to defaults’ I
I metCtrI.opMotl:Ie:=“BattaIion” I
BattalionFireOrder Msg
I ‘Reset metCtrl to defaults’ I
I metCtrI.opMo:.le:=“Batta|ion” I
| | | |

Figure A.19 Battalion intervention LSC

The iterative and existential FFELoop LSC is illustrated in Figure A.20. The chart can
be entered without a prior adjustment step, or after an adjustment that ends with a
correction message transmission indicating that the adjustment is done and fire for effect
can be started. The fire for effect chart models the scenario where all the guns in a battery
fire their rounds with the same fire parameters. FFELoop starts with a prechart that issues
an initial fire command if the mission is being performed without an adjustment. The chart
body usually ends after a call to VvolleyFire that yields a satisfactory result. If the
outcome is accurate, but insufficient, then volley shots are repeated in a loop until a
different result is obtained. If the result is worse; that is, inaccurate and insufficient, then
the mission is restarted from adjustment stage. In any case, a last refinement and

surveillance message with EOM flag set is sent into the SubsFireCommand, which in turn,

ends the mission.
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BatteryRadioNet Environment FwdObserver BatteryFDC FiringUnit
Op
When (ffeType="“WithoutAdjustment”) >
| |
( InitFireCpmmand )

VolleyFire

|
FFEResult := getFFEResult()

While do_J

RefineSurveil_Msg

SubsFireConfmand(“FFE”)

v/

(I

VolleyShot(“Initial”)

(

ObserveSpotting >

|
FFEResult := getFFEResult()

iy

< _ When (FFEResult="Inaccuratelnsufficient’) >~

RefineSurveil_Msg

SubsFireConfmand(“FFE”)

v/

(a
(

RefineSurveil_Msg

SubsFireConfmand(“FFE”)

v/

T

1l

RefineSurveil_Msg.EOM

RefineSurveil_Msg.missionType=Ad;]

RefineSurveil_Msg.metOfCitrl.ctrlinfo=Repeat

Figure A.20 Fire for effect loop LSC
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APPENDIX B

ACM TO FAM MODEL TRANSFORMATION RULES

This Appendix presents the set of most prominent ACM to FAM model transformation
blocks and rules as implemented in GReAT-configured GME. Although there are an
abundance of blocks and rules depicted (about 130), it is still half of the total number. Only
relevant and representative blocks and rules are included. The full set can be found in the
transformation definition file accompanied with the thesis CD. The presented blocks and
rules are usually compact enough and self explanatory. Overall explanations are provided at

section heads and specifics are provided above the figures where deemed necessary.

B.1 Start Block

The start block is shown in Figure B.1. It presents a top-level view of the overall
transformations. It is seen that ACM2FAM transformation consists of the global container’s
initialization, data model transformation, behavioral model transformation and binding the

calls to decomposed instance document’s MSCs from the main document’s MSCs.

IFacm_d[3iFa OFa[} FAC . .. Fac[y QFa. . . OFa[} QFa. . . OFa[]
Fa P OFa[3 I FAM FAM[Y DFa OFa[} D Fa OFa[3
IFam InitGlobalRoot DataModelTr BehavioralModelTr AssocDecompAsRefs

Figure B.1 Start block

The initialization of the global container is sketched in Figure B.2. The general idea of
the global container is that the objects it contains have global scope; that is, they are
accessible throughout the whole transformation, and it is not necessary to pass them along
in the context. The capability of eliminating portions of context passing and recurring
complex pattern matching is one of the key facilitating factors in terms of the development

effort and execution performance in this work.
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( FacmRootFolder \

<<Folder>>

name :String[0..1]

~ OFacm

IFacm

ds!GIbFacmBRoot
ereGIbF acmRoot

GlobalRoot

r

arcGIbFamRool
dsiGibFamRoot

FamRootFolder
<<Folder>>

Cm :ame :String[0..1) OFamj

Figure B.2 InitGlobalRoot rule

B.2 Data Model Transformation

Data model transformation corresponds to the structural part of the ACM2FAM
transformation. Looking from a FAM perspective, it aims to construct the federation object,
the federate objects and the Federation Object Model (FOM) for the federation. The main
DataModelTr block is shown in Figure B.3. It is composed of two inner blocks named
ObjectModelTr and the relatively smaller FederationStructureTr that are executed

sequentially, in that order.

IFacm ! IFa, . . .. OFa IFa. . . .. DFa 'OFacm
—0Fa OFa IFa OFa

IFam ObjectModelTr FederationStructureTr OF am

Figure B.3 DataModelTr block

B.2.1 Object Model Transformation

Object model transformation, whose top-level block is seen in Figure B.4, basically
transforms the set of field artillery message structures that are communicated among
domain actors during mission executions into HLA-OMT classes. The field artillery

messages are represented as free format UML structures with information content provided
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by the domain. On the other hand, HLA-OMT specification [39] puts forth a data type

system. OMT specifies a core set of default data types of basic, simple, enumerated, and

array types, that correspond to universally recognized types such as byte, integer, float,

boolean and string.

IFam
.

OFam

IFacm OFacm
Msg
o orapl e P
Obj
DataTypes InitFOM

ObjectClasses

J/

Figure B.4 ObjectModelTr block

IFeT:m Facm
IFa oFa[l}—43IFa OoFa[3}—4{0IFa oFa[l} —{[dFa oFa[l}—{dIFa OFa[}|
¥a @ opr #mr =2 oor %—Fmr > onr#lm 2 oot %—F ot "2 oor (¥
InitDataTypeFolders BasicTypes SimpleTypes EnumTypes ArrayTypes n
OFam

IFam

Figure B.5 DataTypes block

/

~

RootFolder DataModel

<<Folder>> <<Folder>> GlobalRoot
IFacm name :String[0..1] —‘ name : String[0..1] a

a sroGibDataTypes
ﬁstGlDDaml‘ypaso'__acm

RootFolder HLAObjectModel HLADataTypes

<<Folder>> <<Folder>> <<Folder>> n
IFam name :String[0..1] name - String[0..1) name : String[0..1) ODTs

a 4 r ¢
— ¢ '_l

BasicDataTypes |

SimpleDataTypes

EnumeratedDataTypes

<<Folder>> <<Folder>> <<Folder>>
name : String[0..1] name : String[0..1] name : String[0..1]
i J
——
ArrayDataTypes FixedRecordDataTypes VariantRecordDataTypes
<<Folder>> <<Folder>> <<Folder>>
k name : String[0..1] name : String[0..1] name : String[0..1]
J s J

Figure B.6 InitDataTypeFolders rule
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-

return (std::string)HLAoctet.name()== "HLAoctet" &&
(std::string)HLAinteger32BE.name()=="HLAinteger32BE"
&& (std::string)HLAfloat32BE.name()=="HLAfloat32BE";

FACMMRoot
u <<Folder>> n
name : String[0..1 '
IFacm . 9[0.-1] OFacm
HLADataTypes
u <<Folder>> H
name : String[0..1
IDTs name :Stngl0- 1] ODTs
Aribute Adtibute !
old : Stiing new . Sting BasicDataTypes
- - <<Folder>>
AttributeMapping * -
name : String[0..1]
»
HLAfloa[32BE HLAinteger32BE HLAoctet
<<Model>> <<Model>> <<Model>>
size : Integer size : Integer size : Integer
interpretatign : String interpretation : String interpretation : String
endian : Stjng="Big" endian : String="Big" endian : String="Big"
encoding : String encoding : String encoding : String
notes : String notes : String notes : String
\|v J J
BasicDataTypes.name()="BasicDataTypes";
HLAfloat32BE.name()="HLAfloat32BE";
HLAinteger32BE.name()="HLAinteger32BE";
HLAoctet.name()="HLAoctet";
Figure B.7 BasicTypes rule
( FACMMROOt \
n <<Folder== n
|Facm :ame:Strinng.j] OFacm
HLADataTypes
E <<Folder=» n
I0Ts :ame : String[0.1] ODTs
HLAByte Int32
<=Model== SimpleDataTypes <<hodel=>
. - =<Folder=> -
units : String="NA" units : String="NA"
resolution : String="NA" name : String[0..1] resolution : String="NA"
accuracy:  String="Na" » [Awbue | accuracy:  String="NA"
— Q e
HLAByleRepReT Gyard BasicDalaTypes AttribulgMapping Int3ZRepRef
<<Reference=> |___ <<Folders> Teredby <<Refe
J 1 name : String[0..1] J
’
HLAASCIIChar T Reala2
<=Model=> <=hodel=>
- - HUyAoctet HLAInteger32BE HLAjoat32BE - -
units String=' ! — units : String="NA"
resolution : String=" “<Modei> <<Madel>> <<Nodet~> resolution : String="NA"
accuracy:  String=' ref| size: Integer size Integer size Integer accuracy:  String="NA"
F interpretption : String interpretation : String interpretation : Sting | | &
¥ T endian : [String="Big" endian : String="Big" |™'| endian :|String="Big" |™ []
HLAASCIICharRepRef | encoding - String encoding : String encodinfi:  String Real32RepRerl
<<Reference>> notes : String notes : String notes : String <<Roforence>>
i 2 [ y
\Lv v /
y

HLAByte.name()="HLABYyte";
HLAASCIIChar.name()="HLAASCIIChar";
Int32.name()="Int32";
Real32.name()="Real32";
HLAByteRepRef.name()="HLAByteRepRef";
HLAASCIICharRepRef.name()="HLAASCIICharRepRef";
Int32RepRef.name()="Int32RepRef";
Real32RepRef.name()="Real32RepRef";

Figure B.8 SimpleTypes rule
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/ FACMMRoot \
u <<Folder>>
IFaem :ame :String[0..1] OFaem
® Affribute Aftribute
old : String new - String
Guard HLADataTypes AttributeMapping
u <<Folder>>
IDTs :arne - String[0..1) ODTs
t t
I I
BasicDataTypes EnumeratedDataTypes
<<Folder>> <<Folder>>
name : String[0..1] name : String[0..1]
2 2
T T BattalionDirected
HLAinteger32BE BatteryOpMode <<Atom>>
<<Model>> <<Model>> .
values :  String
size : Integer J notes : String
interpretation : String 1 J
endian : String="Big" "
:gg’:{”g : 2::23 BatteryDirected
’ Int32RepRef il
<<Reference>> values : String
: ! notes :  String

Figure B.9 EnumTypes rule

7~

FACMMRoot \
<<Folder==

IFacm :ame - String[0..1] OFacm
® Aftribute Attribute
.8 -8
Guard HLADataTypes o0.Swng)  |oew g
a —— =<Folder=> AttributeMapping O
name : String[0..1]
I0Ts ["simpleDhtaTypes a AmrayDataTypes | OOTS
=<Folder== ==Fo|der==>
name : String[0..1] ' name : String[0..1]
» HLAASCIICharRef »
eteredoydatatf zzReferences= T
HLAASCIIChar L -
HLAASECIIString
<<Mogel=> <<Mddel>=
:‘I;s“nsllillian' g::mg:mi ref cardinality : Stfing="Dynamic"
accuracy: |String="NA" encoding: Siring
\_* ‘
v v

return std::string)HLAASCIIChar.name()=="HLAASCIIChar";

HLAASCIIString.name()="HLAASCIIString";
HLAASCIICharRef.name()="HLAASCIICharRef";

Figure B.10 ArrayTypes rule
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[ Messages \
<<Folder>> n
FacmRootFolder DataModel I name : String[0..1) Msgs
<<Folder>> <<Folder>> s - —
o R
|Facm name : String[0..1] name : String[0..1] DurableDataStore b Bhing
’ : <<Folder>> - —
= AttributeMapping
:ama : String[0..1] DDS
HLAInteractionRoot
SynoNA <<Model>>
<<Model>> GlobalRoot r
capabilityNA : String="NotApplicable” 2 L
L ScGRFom Interactions
dstGibFom <<Modal>> | u
FamRootFolder HLAObjectModel ObjectModels Le] FOM 7 Ints
u <<Folder>> <<Folder>> <<Folder>> .—“ <<Model>>
IFam ;lame :String[0..1] :ama : String[0..1) :ame - String[0..1] 7 Objects
) <<Model>> _..u
: ! J Obis
TimeStamp Lookahead E:B':L'}':IT;
<<Modal>> <c<Model>> T
4 HLAObjectRoot
¥ J <<Model>>
Identification f T ¢
<<Atom>> HLADataTypeRef_TS | | HLADataTypeRef_LH
- S <<Reference>> <<Reference>> f
name - tring HLAPrivilegeToDeleteObject
version : String r 4 <<Model>>
date : String
purpose : String Swilches Fi
appDomain : String <<Atom>>
sponsor : String
pocName : Strimg attributeRelevanceAdvisory :  String="Disabled"
pocOrg : String objectClassRelevanceAdvisory : String="Disabled"
pocPhone : String conveyRegionDesignatorSets : String
pocEmail : String attributeScopeAdvisory : String="Disabled" [
references : String="NA" interactionRelevanceAdvisory : String="Disabled"
other : String="NA" autoProvide : String="Disabled"
MOMVersion : String="IEEE 1516-2000" serviceReporting : String="Disabled"
notas : String notes : String
\: -' Y

Figure B.11 InitFOM rule

( HLADataTypes leadRecordDataTypeA
GlobaiRoot <<Folder>> <<Folder>>
- SroGID| Types
anCROSETE name : String[0..1) name : String[0..1)
2 ”
Messages
<<Folder>> Noffgzzit'sg
Msgs :ams:String[O.J] -
HLAInteractionRoot
. <<Model>> 0.
[ entiC!
I ' ParentiCRoot
~v | <<Connection>>
— | : K
Interactions ICInheritance |o.* B
F <<Model>> [ <<Atom>> ﬂ;_ entlCR:
Inter » 0—I 4 R &
ChildiC
- InteractionClass i | <<Connection>>
Afrib ute Altnbute | | <<Model>> e
old: Sting new . Stiing p e LY
\ AttributeMapping )
N4

InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC";
/IModelTransUtils class is in FADM2HOM_Utils.cpp, which is in UserCodeLib, as declared in Configurations/CodeLibrary
ModelTransUtils::TransformNonDurableMsg2InteractionCls Hybrid(NonDurableMsa, InteractionClass, FixedRecordDataTypes);

Figure B.12 InteractionClasses rule
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( GlobalRoot HLADataTypes leedRecordDataTypA

<<Folder>> <<Folder>>
” weGIbDMATypes
dsGibOsETypas | "o e - String[0..1] name : String[0..1]

’ a

Du?:,:,?:;f,s,mm DurableData

<<Model>>
DDS :ame :String[0..1) .

HLAObjectRoot

<<Model>> 0.~

1 sreParenfOCRoG
~ ParentOCRoot
¥ -L.]| <<Connection>>
Objects o OCinheritance |o.- J
u <<Model>> b <<Atom>> gxl_PammDL'"‘
Objs |« 1 v seeniape ChildoC
——] <<Connection>>
ObjectClass !
Afribute Adtribute L | <<Models> |o.- J
old: Sting new . String [asiChildoC

J
K AltributeMapping )

ObjectClass.name()=(std::string)DurableData.name()+"OC";
/IModelTransUltils class is in FACM2FAM_Utils.cpp, which is in UserCodeLib, as declared in Configurations/CodeLibrary|
ModelTransUtils::TransformDurableData20biectCls Hybrid(DurableData, ObjectClass, FixedRecordDataTypes);

Figure B.13 ObjectClasses rule

B.2.2 Federation Structure Transformation

The federation structure transformation concludes the data model transformation part. It
instantiates the single federation object together with a reference to the FOM that was
previously created. It also maps every field artillery Actor and Net to a corresponding
HLA federate along with a reference to an associated SOM. In this thesis, SOMs per

federate are left as stubs and not developed any further.

IntFOMSOMSs FederateVarLists

o o
\I-Fam OFamj

Figure B.14 FederationStructureTr block
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IFacm IFa OFa IFa, .. . OFa FAC Fac Facm
IFa > OFa IFa OFa FAM 2> Fam

IFam FederationFOM ActorFederateSOM  NetFederateSOM  OFam

Figure B.15 InitFOMSOM:s block
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Figure B.16 FederationFOM rule
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string temp; Actor.GetStrValue("name", temp); temp+="Fd";
FederateApplication.SetStrValue("name", temp); Actor.GetStrValue("name", temp);
temp+="SOMRef"; SOMRef.SetStrValue("name", temp);
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Figure B.20 ActorFederateSOM rule
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B.2.3 Initializing Variable Lists Per Federate

Every HLA federate has a variable list by definition [39]. The rules in this section create
the variable lists of the set of federates that correspond to the 8 actors and nets defined by
ACMM. The top-level variable list creation block is illustrated in Figure B.21. Every
federate has self specific variables of different data types. This makes the variable
definition by transformation rules a tedious and frustrating process. The generation of these
rules might be handy by employing higher order transformations with a text-based variable
configuration per federate. Luckily, the variable lists of the federates are not directly used
by the subsequent transformation rules and the code generator. Thus we have only created
and filled-in the variable list for the BatteryFDC federate for the sake of not skipping an

HLA defined component, and left the others as stubs.

BattalionF DCFdvarLi

MetroMetFdvarList

k BatteryRadioNetFdva rly

Figure B.21 FederateVarLists block
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Figure B.22 BatteryFDCFdVarList block
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Lookahead.Createlnstance(VariableList);

Figure B.24 OMTTime rule
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Figure B.25 FireCommandSOP_OC rule

B.3 Behavioral Model Transformation

Behavioral model transformation is the bigger and more challenging part of the overall

ACM2FAM transformation. It uses the resulting objects of the data model transformation

as the instances and message parameters in LSCs that are being produced. The main block

of the behavioral model transformation, BehavioralModelTr, is shown in Figure B.26.
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‘QiFa. | . OFa FAC | . .OFa IFa IFa IFa OFa IFa
OiFa OFa HFAM OFa Fa ¥ OFa Fa P> OFag]:[g IFa 0
AscGlobalHlaMeths  AscinstanceOfFacm CrtBehaviorMdiFId CrtMscDoc MscDocTr

\JFam Ogm 1/

Figure B.26 BehavioralModelTr block

The AscGlobalHlaMeths block, as expounded in Figure B.27, gets the method

library of FAM that contains predefined HLA methods for federation, declaration, object,

ownership and time management. The block contains rules that take copies of all the
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methods used in the transformation and associate them with the global HLA methods

element so that they are readily accessible by the LSC transformation rules. These methods

are meant to function as templates; hence their method parameters are left empty. Their

copies in the LSCs are assigned parameters with appropriate HLA class instances during

the transformation.
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Figure B.27 AscGlobalHlaMeths block

The AscInstanceOfFacm block and its subordinate blocks and rules are displayed in

Figure B.28, Figure B.29, Figure B.30, Figure B.31 and Figure B.32. The block basically

creates is—-InstanceOf associations between the instances that stand for the same actor
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element in ACM. An actor instance in the MSC head of an MSC is an instance of the same
type of instance in the MSC document head, which in turn is an instance of the canonical
actor instance in the data model’s Actors folder. This chain of associations establishes
traceability between the behavior and data sub-models of ACM and provides convenience
in subsequent rules. A similar scheme is also applied progressively on the FAM side as the

transformation rules construct the model.
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Figure B.28 AscInstanceOfFacm block and DocHead_InstOf for-block
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Figure B.30 DocHeadActors_InstOf_DataModelActors block
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Figure B.32 MSCHeadIns_InstOf_DocHeadlIns rule

The CrtBehaviorMdlF1ld and CrtMscDoc rules are triggered one after another for

simply creating a FAM behavioral model folder and an MSC document underneath it,

provided that their corresponding counterparts are matched in the ACM. A has-

correspMscDoc association is established between the ACM and FAM MSC documents,

since there can be more than one MSC document in a source model and in such a case this

association is necessary for keeping track of MSC references in different documents and

during instance decomposition.
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B.3.1 MSC Document Transformation

The MSCDocTr block is shown in Figure B.34. It consists of three sub-blocks, namely,
DocumentHeadTr, DocumentBodyTr and AscReferences, executed in that order. All
of the blocks and rules within MSCDocTr are defined so as to traverse the structure
delineated by the MSC metamodel to create a FAM MSC document from an ACM MSC

document.

!

iFacmine IFa. . . .OFa iQFa, .. ., OFa[} IFa, . ., OFa[j
IFa OFa ‘OiFa oFa[} IFa oFa[)
r
DocumentHeadTr DocumentBodyTr AscReferences
IFamDoc

Figure B.34 MscDocTr block

The DocumentHeadTr block handles the data definition, message declaration, instance
declaration and timer declaration parts of the document head of the FAM being constructed.
Note also that data definition and message declaration are only addressed as stubs since the

content related with these parts are practically provided by the data model.

e

IFacmDoc

CrtDocumentHead
= ) |
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Figure B.35 DocumentHeadTr block
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The instance declaration part of the MSC document head transformation is also one of
the key steps in the overall behavioral model transformation. Its role is basically to create
federate objects and a federation object derived from the corresponding counterparts found

in the federation structure portion of the FAM data model.
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Figure B.36 CrtDocumentHead rule
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Figure B.38 GetFed Apps block and GetTopActorFed Apps rule
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Figure B.41 TimerListTrans and HandleTimer rule

The MSC document body transformation, whose top-le

B.42, essentially boils down to MSC transformation. In order to start the process, an empty
FAM MSC is created per matched ACM MSC in the given document body. The cross-

domain has—correspMSC association is established for keeping track of the paired MSCs
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in subsequent rules. The attribute mapping code copies the chart order index in addition to
the name and screen position properties of the ACM MSC to the FAM MSC. The chart
order index, although not an artifact of the MSC metamodel, is a crucial annotation that
facilitates model interpreters and particularly the code generator, by providing the
execution/interpretation order of the MSCs at run-time. Similarly, for multiple documents

in a model, the order of the documents may be specified by the document order index [12].
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Figure B.42 DocumentBodyTr and DocumentBody-Ultility blocks and InitDocBodyUtility
rule
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Figure B.43 DocBodyTrans block and InitMSC rule

B.3.2 MSC Transformation

MSC transformation is handled by the mainstream MSCTrans block, shown in Figure
B.44. Its importance is due to its incorporation of LSC transformation, which virtually is
the heart of behavioral model transformation. MSC transformation consists of three
consecutive steps that handle MSC head and body transformation, and initialize the
federation after the completion of the former two. MSC body transformation essentially
boils down to LSC transformation after an empty LSC context is created. LSC
transformation rules are further found in Section B.3.4.

The head part of an MSC is transformed in a four rule block. The head of an MSC
houses the instances referenced in the MSC’s body, besides other elements. The basic
functionality of MSCHeadTr is to prepare the instances used in the FAM MSC, by looking
at the instances found in the corresponding MSC. Other MSC head components such as
offset, parameter set and its subcomponents are either provided explicitly inside the MSC
body or considered irrelevant for the purposes of this work and hence, are not covered. The

MSC head transformation also addresses instance decomposition.
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Figure B.46 CrtDerivedFamlInst rule
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B.3.3 Federation Initialization

Before moving into LSC transformation this section makes a fast forward to explain the
federation initialization on the FAM side. The federation initialization is done after an MSC
document is transformed head and body-wise. This indicates that it is a post processing step
following the full transformation of all the LSCs in the document

The HLA federation initialization activities are done in the InitFederation block
sketched in Figure B.50. This is a part of the behavioral model transformation indigenous to
the FAM domain; that is, there are no associations in the transformation rules to ACM
except for the identification of the instances involved. Due to the lack of such an input
source, the information content flowing through the federation initialization part is directly

embedded inside the transformation rule definitions.
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Figure B.50 InitFederation block and GetTopL.SCPrechart rule

The InitFederation block handles four preliminary federation execution activities of
creating a federation execution, joining federates to the federation execution, initializing
time management and declaration management. The federation initialization events are
gathered in a sub-chart which itself is placed inside the pre-chart of the top-level FAM

LSC. This way, federation initialization is guaranteed to be performed right at the
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beginning. The subchart is made temperature-wise “hot”’; hence, mandatory to execute [14].
Since there is no clue from the ACM regarding the execution order of the chart, it is read

from a look up table in the user code library; thus, effectively delegated to external

configuration.
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Figure B.51 CreateFedEx block and CreateFedEXLSC rule
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Figure B.52 HandleCreateFedEx block and CopyCreateFedEx and
UpdateCreateFedExArgs rules
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Figure B.53 SendCreateFedEx rule
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Figure B.54 JoinFedEx block and AscParentInst rule

B.3.4 LSC Transformation

The LSC transformation is the where the nuts and bolts of the evolution of field artillery
inter-entity communications to federate interactions, mediated through the HLA RTI, are
defined. The LSC transformation process is carried out in the LSCTrans block, as
overviewed in Figure B.55. Each pass of the block inputs an ACM LSC and a stub FAM
LSC, and step by step constructs the FAM LSC as the transformation proceeds through the

internal blocks.
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Figure B.55 LSCTrans block

Activation condition transformation is performed in the ActivationConditionTr
block, as illustrated in Figure B.56. There is a simple one-to-one correspondence and
equivalence between ACM and FAM activation conditions. The definition of the LSC
transformation blocks are generally based on the instance event type categorization of the

child elements to be processed in the LSC.
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Figure B.56 ActivationConditionTr block and ActivationCondition rule

B.3.4.1 Instance Reference Transformation
The execution order of the sub-blocks of the LSCTrans block does not matter except for
the second and the last blocks. The InstanceRefTr depicted in Figure B.57 creates the

necessary federate instances (i.e., references) in the FAM LSC by inspecting the ones found
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in the corresponding ACM LSC. Since these instances are used in the graph patterns of
most of the subsequent rules, InstanceRefTr must be executed before them. The last
block, SpecialConnsTr, create associations between two instance events [12] within the

LSC and thus need to be executed after ensuring all such events have been created.
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Figure B.57 InstanceRefTr block
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Figure B.58 InstRef4 ActorsNets rule
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Figure B.60 MatchParentMSC, MatchParentInlExp and MatchParentL.SC rules
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Figure B.61 InstRef4Fed rule
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B.3.4.2 Prechart and Subchart Transformation

Precharts and subcharts are actually child LSCs that have special role names on the
containment associations with their parents. The PreSubChartTr block, shown in Figure
B.62, handles the transformation of precharts and subcharts of an LSC. The

CreateSubSchart rule creates a subchart under the current FAM LSC with the

Subchart compsition role for every subchart of the corresponding ACM LSC.
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Figure B.62 PreSubChartTr block
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Figure B.63 DispPreSubchart test and CasePrechart case

202




The CreatePreChart rule, which is sketched in Figure B.64, is defined similar to the
CreateSubChart rule. A notable statement in attribute mapping code (partly shown in the
figure) is the call to the SetInstRefAssocs4LSCChildren method of the user code
library. This method is invoked for all LSC child creations of type LSC (pre/subchart) and
multi instance event, including inline expressions, references, conditions, otherwise clauses,
and LSC idioms [12]. It handles the routine task of creating associations between an LSC’s

child elements and the relevant instances in the LSC programmatically.
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Figure B.64 The CreatePreChart rule

B.3.4.3 Multi Instance Event Transformation

The top-level block, MultiInstanceEventTr, is depicted in Figure B.65. Initially, a
child multi instance event of the ACM LSC is matched and dispatched to one of the three
alternative transformers together with the FAM LSC. The CreateCondition (seen in
Figure B.67) and CreateOw rules perform condition and otherwise transformations,
respectively. These rules simply create FAM elements that directly correspond to matched
ACM elements. The other types of multi instance events form the family of reference
identifications and are handled in the RefldentTr block. Reference identification types are
inline expressions and references. The CreateReference and CreateMSCRef rules, both
shown in Figure B.68, simply create a FAM Reference element and a reference to an

MSC under that, respectively.
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Figure B.65 The MultilnstanceEventTr and RefldentTr blocks
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Figure B.66 The GetMultilnstEvent rule and DispMultilnstEvents case

The inline expressions are transformed in the InlineExpTrans block. The block
initially directs the execution flow to one of the nine inline expression creator rules based
on the input ACM inline expression type. Six of these create alt, par, opt, loop, exc
and seq elements [15], and three of them create i f-then-else, while-do and repeat—
until idioms [12]. These rules simply create FAM inline expressions for the given ACM
inline expressions and link them together using the has-correspInlExp cross-domain

association. The attribute mapping codes copy the element properties.
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Figure B.68 The CreateReference and CreateMSCRef rules
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Figure B.69 The GetInlExpFromLSC rule
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The RefIdentCommonTr is the last, sink block of the RefIdentTr block that creates
gate, top, bottom and time interval components common for all reference identification type
of elements. Time interval transformations further specialize into measurement, singular
time and bounded time transformations. All of these rules are quite intuitive and perform

ACM to FAM attribute value copying in a straightforward manner.
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Figure B.70 The RefldentCommonTr block and CreateGate rule

B.3.4.4 Orderable Event Transformation

The top level OrderableEventTr block is shown in Figure B.71. The block starts by
matching and dispatching a LSC contained ACM orderable event to the appropriate rule or
block to create its FAM counterpart. The kinds of orderable events handled are action,
create, timer event, method event, and message event. The HandleAction rule is also
provided in the figure as an example to explain how a typical orderable event rule works.
For any given ACM action, a new FAM action is created in the given parent FAM LSC.
From the ACM instance that is in association with the matched action, the corresponding
FAM instance reference is obtained using the cross-domain association. Then a similar

association is established between the FAM action and the FAM instance reference.
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The timer events, consisting of start timer, stop timer and timeout, form a sub-category

of orderable events. The TimerEventTr block, sketched in Figure B.73, performs the
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transformation of timer events. The block initially dispatches a matched ACM timer event

and a FAM LSC to one of the three timer event creator rules. After the event creations,

instance reference - timer event associations are established in the same manner shown in

HandleAction rule. Timer events contain references to timer elements. Finally, the

references to timers are set for the FAM timer events..
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Figure B.73 The TimerEventTr block and CreateStartTimer rule
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Figure B.74 The InstRefTimerEvAscs rule
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Figure B.75 The HandleTimerRef rule

Once the orderable events are transformed in their specifics, any general orderings (i.e.,
before and after) imposed on them are finally applied in the GeneralOrderTr block, as

expounded in Figure B.76.

-

Facrr FacmOrderableEvent FacmBefore
u_' <<podel>> le—]| <<AlOm=»
L ”
\andleBefore
FamQrderableEvent FamBefore
n_~ <<Model=> lo—1 <<Atom»>
’ J
FamOrdEv e e
\ HandleAﬂer\ old:Swing| | new. Stng
\ AttnbuteMapping iy

Figure B.76 The GeneralOrderTr block and HandleBefore rule
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The MethEventTr block is shown in Figure B.77 where it handles the transformation
of call, receive, replyout and replyin events that constitute the method call event
category. These transformations are quite straightforward and handled similar to the

HandleAction rule explained above.
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Figure B.77 The MethEventTr block and HandleCall rule

B.3.4.5 Message Event Transformation

The main message event transformation block, MsgEventTr, is displayed in Figure
B.78. It distributes the incoming packets according to the type of the matched ACM
message event. The OutMsg2HLLAMeth block, also shown in the figure, handles the
transformation of out events. Within the block, both FACM and FAM input packets are fed
to two for-blocks in parallel that are specialized in out event transformations based on the
type of the message payload of the FACM out event. Non-durable message transmitting out
events are transformed in OutNonDurableMsg2HLLAMeth for-block and durable message
transmitting out events are transformed in OutDurableMsg2HIL. AMeth for-block.
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Figure B.78 The MsgEventTr and OutMsg2HLLAMeth blocks

B.3.4.5.1 Non-Durable Message Event Transformation

The OutNonDurableMsg2HILLAMeth block that handles non-durable ACM out message

transformation is rendered in Figure B.79.
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Figure B.79 The OutNonDurableMsg2HI.AMeth block and GetNDMsg rule



The initial rule, GetNDMsg, matches and delivers the ACM out event and the non-
durable message and FAM LSC to the next rule, as well as programmatically creating a
copy of SendInteraction and Receivelnteraction HLA methods inside FAM LSC. The
original methods do not contain any arguments, but their copied instances will have theirs
assigned (such as HLA classes and federate references) as the transformation proceeds. The
method copies are tagged as “New” to differentiate and match them from the others of the
same type in the next rule

In the CreateIntCls rule of Figure B.80, the guard expression is used to make a name
comparison to check whether the send and receive interaction methods are prefixed with
“New” in their names. Once the match is there, a new interaction class corresponding to the
ACM non-durable message is created in the FAM FOM. The interaction class references of
the both HLA methods’ supplied arguments are made to refer to the new interaction class.
The attribute mapping code removes the “New” tags of the HLA methods, sets the name of
the new interaction class to the name of the non-durable message suffixed by “IC”, and
invokes the user library code method to programmatically build the interaction class from

the non-durable message

NonDurableMsg
o <Modeb> 3

Sendlnteraction.name()="SendInteraction";
InteractionClassRef1.name()=(std::string)NonDurableMsg.name()+"_IntRef";
Receivelnteraction.name()="Receivelnteraction";
InteractionClassRef2.name()=(std::string)NonDurableMsg.name()+"_IntRef";
InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC";
ModelTransUtils::TransformNonDurableMsg2InteractionCls_Hybrid
(NonDurableMsg, InteractionClass, FixedRecordDataTypes);
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Figure B.80 The CreateIntCls rule
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The SendRecvIntClsSrc rule in Figure B.81 first creates an out message event and
associates it with the source instance (i.e., federate) using an ordered connection. Then it
associates the out event to the send interaction method using a special connection. Finally it
associates the send interaction method to the federation instance using an address
connection. After this, a similar complementary stage starts for the receive interaction
method, but this time from the federation to the target federate. First it associates the
receive interaction method to the federation instance using an address connection. Then it
creates an in message event and associates it to the receive interaction method using a
special connection. The attribute mapping code copies the precedence and temperature

values from the ACM ordered connection to the FAM ordered connection.
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Figure B.81 The SendRecvIntClsSrc rule

The last part of the out event transformation is done by one of the two parallel rules
named SendRecvIntClsDstlnst and SendRecvIntClsDstRef, addressing the cases of
message event target being an instance or an MSC reference, respectively. The
SendRecvIntClsDstlnst rule is shown in Figure B.82. It matches the pattern that associates
the ACM non-durable message to the target instance reference, and creates a corresponding

association on the FAM side. The attribute mapping code copies the precedence and
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temperature values from the ACM ordered connection to the FAM ordered connection with
precedence being increased by one, since that value was already used for the other message
event in the previous rule. The other parallel rule, SendRecvIntClsDstRef, is defined
similarly with the only difference being the reference to an instance replaced by a reference

to an MSC reference.
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Figure B.82 The SendRecvIntClsDstInst rule

Famin

B.3.4.5.2 Durable Message Event Transformation

Durable message transformation is the biggest of the LSC instance event
transformations in terms of size and complexity. Figure B.83 displays the
OutDurableMsg2HLLAMeth. It is defined methodologically similar to the
OutNonDurableMsg2HL.AMeth block, only being about three times in size. Thus, it is
redundant to explain the details of the transformation, but appropriate to provide an
overview on the differences.

The durable messages in ACM are defined to be of, instantiation, update and deletion

types [11]. There are three parallel courses of transformations that address out message
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events of each durable message type. An ACM instantiation message out event maps to six

FAM HLA method out events. The mapping cardinalities of an out event for update and

delete types are both one to two.
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Figure B.83 The OutDurableMsg2HLAMeth block
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Figure B.84 The CrtObjClsUpdRef rule
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Figure B.85 The ObjClsOutInSrc rule
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Figure B.86 The ObjClIsOutInDstInst rule

B.3.4.6 Non-Orderable Event Transformation
The non-orderable events constitute the set of instance events that do not require an

explicit ordering of execution. Figure B.87 depicts the NonorderableEventTr block that
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handles the transformation of non-orderable events. The block initially matches and
dispatches the input packets to one of the handler rules according to the type of the ACM
non-orderable event. The handler rules perform the transformation of method, end method,
concurrent, end concurrent, suspension, end suspension, stop, end instance, invariant, end

invariant and simultaneous region.
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Figure B.87 The NonorderableEventTr block and GetNonOrdEvent rule

The HandleMethod rule is provided as an example to explain how a typical non-
orderable event rule works, in Figure B.88. For any given ACM method, a new FAM
method is created in the given parent FAM LSC. From the ACM instance that is in
association with the matched method, the corresponding FAM instance reference is
obtained using the cross-domain association, ‘“has-corresplnstRef”. Then a similar

association is established between the new FAM method and the FAM instance reference.
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Finally, a “has-correspInEv” association is established between the new FAM method and
the ACM method. All the other non-orderable event rules are similarly defined in a

straightforward manner.
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Figure B.88 The HandleMethod rule

B.3.4.7 Special Associations Formation

The SpecialConnsTr block, placed at the end of the LSC transformation path, is
responsible for the transformation of those parts that do not involve instances. It is
deliberately positioned as the last LSC transformation block because it requires all of the
FAM LSC entities to be already created and available by the time it starts execution.

Figure B.89 shows the SpecialConnsTr block, which is the transformer for special

associations. There are three kinds of special connections used in this work that associate
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simultaneous regions to instance events, timer starts to timer events and general order
elements to ordered events. The figure additionally shows the AscSimRegTolnstEv rule as
an explicatory example. For any ACM simultaneous region that is specially associated with
an instance event, the rule matches their corresponding FAM simultaneous region and the
instance event by utilizing their cross-links to FAM. Then a similar kind of special
association is established between the two FAM elements. The other two special

connection transformations are defined with the same approach.
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Figure B.89 The SpecialConnsTr block and AscSimRegTolnstEv rule

message, start timer event, etc.

B.3.5 Bind Decomposed Instance MSC References

The last block of the start rule, AssocDecompAsRefs, is illustrated in Figure B.90. In
the previous DecomposeInst block, new decomposed FAM MSCs were created
corresponding to the FAM MSCs that contained decomposed-labeled instances. Such
instances contain references to their decomposed MSCs. At the end of the transformations,
the reference associations between the new FAM decomposed instances and MSCs are still

not bound. The role of AssocDecompAsRefs, is to establish these bindings.

219



o )

IFacmRoot

GetAndBindDecomposedMS

OF acmDoc

\
OaDOC‘

\JamRoot
N,
FacmMscDocument
FacmRootFolder FacmBehavioralModel FacmMSC
<<Folders>» <<Folder> <<Model>> Fasmﬂ:ﬂ”;;ﬁ'lm“d* <<Model>>
- - Related - String [*]
:Iame.Stnng[o..ﬂ :ama. String[0..1) DocumentOrderindex : Intager=1 - EhanOIHierlndex‘ Integer
[ has P
o = [
earresphise Doo 'y
F Rlazr Id FamBehavioralModel FamiscDocument Dekdy F uscc
amRootFolder amBehavioralMode c<hodel>> FamDocumentSody ami
<<Folder=> <<Folder>> <<Model>» <<Model>>
- - Related : String [*]
r:ame.stnng[ﬂ..ﬂ :ame String[0..1] DocumentOrderindex: Integer=1 - EhartO:denndevx Integer
L »

_/
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APPENDIX C

CHANGES MADE IN METAMODELS AND CODE GENERATOR

This appendix summarizes the changes made in ACMM, FAMM and the simulation
Code Generator (CodeGen) in the course of developing ACM2FAM transformations. The
change log for FAMM is especially important because it was previously developed in
another study [12]. Although FAMM functions smoothly as a domain metamodel in GME,
it causes some errors and issues when used as a target model for transformation rules in
GReAT. The reason for most of these problems is that transformation definitions in GReAT
are first interpreted into C++ code and then this code is executed to actually perform the
transformation. C++ is a strongly typed language and has strict syntax rules. The part of the
generated model transformation code from FAMM in its original state is not error free.

The first part of this appendix categorically summarizes the issues revealed in the
metamodels and the generated transformation code. The second part outlines the issues
with the simulation code generator, which were either inherent or introduced indirectly due
to the changes made in FAMM. The change log for the metamodels and the CodeGen are

provided in the thesis documentation CD.

C.1 Issues with the Metamodels

This section summarizes the issues caused by ACMM, FAMM or their sub-metamodels
during the ACM2FAM development and transformation code generation processes and
describes the solutions, and sometimes, the workarounds applied to mitigate the problems.
The changes made in between the metamodel versions together with the dependent sub-

model versions, if there are any, are documented in the accompanying thesis CD.

C.1.1 Eliminating One-to-Many Connections

If a connection modeling element is used more than one time as source-to-connector or
connector-to-destination, then the code generator generates duplicate method definitions for
those connection parts, which result in compile errors. In other words, if a model element
El (e.g., InlineOperandInterfaceBase) is associated as source with more than one

elements, say, E2 and E3 (e.g., Reference and Final) as destinations using the same
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connection element (e.g., HmscOperandConnection), then the generated code is
erroneous with duplicate type definitions. The specific place of the error is inside the class
definition of £E1 where duplicate association role types are defined for E2 and E3 with the
same name as the connection element. As a result, the GR-engine or GR-debugger gives
error. This case is simply exercised and verified in the House20rderTest sample. The
same problem also arises if the associations were destinations.

Note that if the association source (or destination) role names are manually changed to
unique names in the umt.mga file, then the above problem of method redefinition is
resolved, but this time the metamodel header file produces an error.

Therefore, one to many connections of the same Connection element must be avoided.
This is achieved by building a connection hierarchy so that ambiguities in code generation

are eliminated.

C.1.2 Name Clashes with Reserved Words

GReAT’s transformation code generator generates a class or method for every modeling
element, role or attribute having either the exact element name or prefixed/suffixed by
some tag word. In the exact name usage, the C++ compiler produces syntax errors for those
names that are C++ keywords. These names must be altered to non-keyword forms within
the metamodels.

Also, there are some auto-generated utility or management methods for every generated
First Class Object (FCO) class, such as Create (). Modeling element names must not also

be the same with such internally used artifact names for the same reason.

C.1.3 Non-unique FCO Names

Some FCOs in different paradigm sheets within the same metamodel or in the unified
ACM2FAM transformation model obtained by exporting ACMM and FAMM into the
transformation model, may occasionally have exactly the same name. This does not cause
any problem as far as GME modeling is concerned. However, when those modeling
elements are used in GReAT, the transformation code generator produces duplicate class
names, which result in syntax errors at compile time.

Therefore, modeling element name uniqueness must be established all across the

components in a GReAT transformation model.

C.1.4 References Pointing to Multiple Items
Any GME Reference that pointed to all of a super class's child classes was modified to
refer to the super class only, in order to reduce redundancy. This resulted in an extra

inheritance hierarchy in the model transformation definition file to pack all the child classes
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under a generated common parent, and the reference pointing to that super class. This is just
for the reader’s information. This modification is just an internal optimization and does not

have any negative effect on the models or transformation definitions.

C.2 Issues with the Simulation Code Generator

As in the case of FAMM usage, the simulation Code Generator (CodeGen) gave errors
when invoked on the FAMs that were generated from AdjFFE mission ACMs. The
problems generally had to do with the imperfection of the CodeGen. The reason for most of
the issues, we think, is that the development of CodeGen was majorly steered by the
samples that were manually created during FAM testing. The scope and representative
power of those samples were not as far-reaching as AdjFFE FAMs. In addition to these, the
CodeGen simply had some syntactic and semantic flaws in its code generation logic and
shortcomings in FAM coverage that we have discovered during our exercises. Finally, a
portion of the problems were introduced after changes were made to FAMM due to GReAT
and C++ restrictions, because the CodeGen is strictly coupled to FAMM in terms of model
element names and structures.

The details of the changes made to the CodeGen are provided in a separate document
inside the accompanying thesis CD. The changes are presented in two-column tables per
Java source file, where the first column shows the original code part and the second column

shows the changed code part.
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APPENDIX D

TIPS AND PITFALLS IN DEVELOPMENT WITH GREAT

This appendix provides hints and recommendations derived from our experience in
realizing ACM2FAM transformation for future model transformation developers of
GReAT. The GReAT version used in this thesis is 1.7.1. Although GReAT documentation
contains a fair amount of information and samples on how to use GReAT in defining
transformations we have found out that it was not clear enough on some crucial points or
contained missing information. In addition to that, GReAT’s error messages are often not
very informative and even worse, the system occasionally crashes after encountering errors.
Thus we expect that the tips and the explanations on the pitfalls presented in here would be

very valueble for the prospective GReAT developers.

D.1 Defining Cross-Links

It is often the case in model transformations that maintaining references between the
different models is necessary. Moreover, it is usually required to maintain temporary
information that may correspond to both source and target paradigms. Such problems are
tackled in GReAT by using an additional domain to represent all the cross-domain links
and temporary links. In GReAT users can create a Package for describing the cross-links.
In the package the users can drag references to classes in other packages and create new
association types

Cross-links can be defined not only between different domains but can also be used to
extend a domain to provide some extra functionality required by the transformation. By
using a different domain/package for cross-links we are able to specify a larger,
heterogeneous domain that encompasses all the domains and cross-references. This model
extension capability can be very handy in defining the ACM2FAM transformation, but care
must be spent during its usage.

We tried to utilize the cross-links mechanism to annotate the metamodels with extra
model elements for facilitating the transformations, but unexpected errors thrown at run-
time later proved it useless. An example to this from our case study was the introduction of

the NonDurableMsg type to represents the whole family of durable messages in the model.
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It was decided in ACM2FAM transformations to transform every DurableData_Msg
messages into HLA object classes and all the other messages into interaction classes. Every
ACMM message extends from the FAMessage abstract super type, including the
DurableData_Msg. However, there was initially no super type to represent ‘“Non-
Durable” messages. The existence of DurableData_Msg enabled us to produce all of the
object classes with a simple, straightforward rule definition. On the other hand, without a
“Non-Durable” super type, pattern matching for the production of interaction classes would
be cumbersome, with many similar, but distinct rules. An alternative to that was a single
rule with a fairly sophisticated guarding mechanism to distinguish among the FAMessages
— not a better solution either.

We introduced the NonDurableMsg abstract element, which is not part of the ACMM,
in a new cross-links package in the ACM2FAM model to gather all the messages having
non-durable nature under a single super type. A single transformation rule that catched any
non-durable message sufficed to create the stubs of all the interaction classes in the target
model, just as in the case of object class generation. Things went fine during transformation
rule definition until it came for testing.

When we introduced the new message type inside a class diagram that is not under the
ACMM package (e.g., a cross-links package), then the GReAT master interpreter threw a
“Buffer overrun error”’, leading to the crash of the execution and corruption of the
transformation file, with an abnormal exit. The sequence of error messages are presented in
Figure D.1.

Only after defining the element inside the ACMM package, the transformation worked.
The new hierarchy definition then could be inside cross-links, or ACMM, it did not matter.
What is important is that the new element must be defined under ACMM package. (We
believe that this provides a namespace for the new element, which is mandatory for all of
the patterns that are used in transformation definitions.).

Our lesson learned was to spare cross-links usage for only defining associations
between the source and target metamodels, not introducing new model elements. After this

incident we modified ACMM to accommodate the new NonDurableMsg element there.

D.2 Role Names and Cardinalities in Cross-Links

If new associations are defined as cross-links between the source and target metamodel
elements and roles and cardinalities are given to both association ends, as seen in Figure
D.2, then the associations have to be used with exactly the same role names (and

cardinalities) later in rule definitions. Otherwise, the transformation crashes at runtime,

225



giving a “FACM2FAM-gr.dll don’t exist” error. This error never goes away unless the
association usage is corrected and the GReAT Master Interpreter is re-run (to regenerate

everything). Note that whenever we modify something in CrossLinks, we have to re-run

GReAT Master Interpreter, since this is counted as part of metamodel.

"j An application error has occured in component MGA. Interpreter GReAT Master Interpreter,
e The systerm might not be in a stable state any more.
Please save your work and restart the GME.

) Ernergency event, Your current wark may have been saved to MGA =D \PhDYMode Trans\FACMEFAMYCopy of BOZUKFACMZFAM_20090508-emergency L. mga.
. The original project file has not been modified.
Wi apologize for the inconvenience.

@ Buffer overrun detected!

Prograrm: C:\Program Files\GMENGVE. exe

& buffer overrun has been detected which has corrupted the program's
internal state. The program cannot safely continue execution and must
now be terminated.

Figure D.1 Errors thrown by GR-engine when using cross-links to define model elements

Actar FederateApplicatign
==pode|== |M@s_ cemespFd ==hModel==
1 1
a L
Durablelata ObjectClass
zzModel== ?35 GDITESpI:I? < <Model==
’ .

MSC Yy
==hlndel== has  comesphisC <<Modal»>
1 1

? L

Figure D.2 Sample cross-links
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D.3 Working with Globals

In order to easily access an element not found in a rule pattern, a “Global” object is
defined and an association between the element and the global object is created. A global
object can directly be accessed anywhere within transformation rules. Through a global
object other model elements can be accessed, provided that they are defined to be
associated with the global object in a separate package, and that a CreateNew binding is
established between them in a previous rule, before being accessed. Please refer to Figure

D.3 and Figure D.4 for a sample global object definition and usage.

D.3.1 Rules for Defining Global Objects

The rules listed below should be followed in defining and using global objects:

1. Define a package under the root folder. Set the Temporary attribute of the package
to True. (This is mandatory for globals to work!)

2. Define a class diagram under the package created in 1.

3. Drag and drop an object of kind Class to the class diagram from the part browser.

4. Create as many ClassCopy objects into the class diagram as needed. Make those
copies refer to the necessary model elements in the source or target metamodels.

5. Establish associations between the global class and the class copies. Make sure to
give valid and unique role names to association ends. Also set both src and dst

cardinalities, where 0. . 1 is usually what is needed.

D.3.2 Defining Multiple Global Objects

It is possible to define as many global objects as wished; however, there is a crucial
point to take into consideration in doing so: Instead of defining extra class diagrams into
the previously defined package, define a separate package and define the new class diagram
with the new global object under the new package.

Otherwise, GReAT mistakenly disregards at least one of the global objects that are
under the same package, but in different class diagrams. This could be observed as an
ERROR in the Translator. log file if the CodeGen interpreter is run, indicating that one
of the global objects that is used in rules are unbound. (Actually, in our exercise, it was the
first GlobalRoot, not the newly defined GlbHlaMeths). Consequently, all of the
associated objects with the global object in question are also reported to be unbound.
Although in this situation, GReAT execution completes, desired results are not obtained.

We have not tried to define extra global objects in the same package and in the same

class diagram, but have the feeling that it would most probably work correctly. However,
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limiting oneself to a single package and class diagram would quickly clutter the diagram

sheet and it would be impractical to define many items there.

GME Browser

Aggregate | Inheritance | Meta

" GlobalClsDiagram - /FACMM2FAMM/Global/ x1| GlobalClsDiagram - /FACMMZFAMM/Global/ |+
1F Name:%ﬁlobaIEIsDiagram ||EIassD iagram iAspect: | LikL v ! Base: iN.-"A Zoorr
A
HLADataTypes il
<<Folder=>
name : String[0..1]
L
0.1 | dsiGIBData T ypes "
E— e Commo:f;c;phg:sFoldar
<<Model>> |01 0.1 older
; dRGFe 0.1 | secaibbaaTypes 45" [ name String[0..1]
0.1 | GlobalRoot [0-1 i
SICGIDEE] BCCOMMGNE LG
e {freGEFom ErEalFIr HLAMethods
ceiadoss, oz 0.1 | ecGeBhstmRoot o <<Foldar>>
TRIGETam dETRE s [ e g0 ]
¢ 2
0.1 [ detSIbFamRoot 0.1 [ dstGIbFacmRoot
FamRootFolder FacmRootFolder
<<Folder>> <<Folder>>
name : String[0..1] name : String[0..1]
2 2 3
3 ! &

/ SetGlobalSendRecv - [FACMM2FAMM/Transformation/Start/BehavioralModelTrans/SetGlobalHlaMeths/ HLAPreWark - /FACM

2 %* FACMM2FAMM
i cL
|23 Configurations
T4l FACMM
T4 FaMM
= Global
=-Jf] GlobalClsDiagram

(%, CommonE sceptionsFolder

3, FOM
% FacmRootFolder
% FamPootFolder
% Federation
W GlobalFoot
% HLADataTypes
1 HLAMethods

= g GlobalMethzPack

14l GlobalMethods
[_ Transfarmation

Figure D.3 Global object definition in GReAT/GME
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a
]
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Figure D.4 GReAT rule showing two global objects and a library usage
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D.4 Library Usage in Models

A previously defined model could be imported and used as a library in another newly
defined model, provided that the latter model’s metamodel is a superset of the former
model’s metamodel. For example a model of HOMM can be attached as a library in a
HFMM or FAMM model. Please refer to Figure D.4 and Figure D.5 for sample library

usages in a transformation definition and in a FAM, respectively.

D.4.1 Rules for Attaching a Library

The rules listed below should be followed in attaching a library to a model:

1. Open a model in GME editor. Right click the root folder and select “Attach Library”
menu item from the context menu.

2. Select the .mga file of the library model from the opened file selector, and press OK.

3. The model is seen attached, as is, under the root folder, marked with a booklet icon.

4. Note that the library item indicated with the icon is also a (subordinate) RootFolder
type, such as the already existing, system provided, top level RootFolder.

5. In accessing the library’s child objects during model transformations, make sure to
indicate (as a pattern) the root folder coming from the library under the top level root

folder (see Figure D.4).

GME Browser * X
Aggregate |Inheritance teta
Féshd W
2 %* FAM
(3 Behavioral Madel
(23 CommonE seeptions
[ FieldartileryF ederationkd adel
(3 FieldArtileryF ederationStructureF alder
(3 HLAMethads
@ IEEE151E_Defaults
=& IMLib
|23l Caommon Exceptions
= ‘Z3 HLAMethods
+- L3 1_FM Methods
L3 2_DHM Methods
L8 3_0M methods
L3 4_0wh Methods
L8 5_TH Methods
L3 5_DOM Methods
L8 7_Suppart Services

] ]

Figure D.5 IMLib and IEEE1516_Defaults used as libraries in a FAM model
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D.4.2 Crashing of GReAT during Library Import

In the default GReAT/GME configuration, we receive a “Buffer Overrun” exception
similar to the one shown in Figure D.1 if we try to attach large libraries such as LMM into,
for example, ACMM or FAMM. We occasionally need such library updates after we
modify the underlying libraries in the models. The solution to this problem was provided by
the GReAT development team when we had reported the issue to them.

There is an add-on in GME that runs in the background when a MetaGME project, such
as ACMM or FAMM, is edited. Its role is to turn the abstract attribute of FCOs to true,
anytime an FCO is added. This add-on called MetaMAid is causing the problem. We are
advised to turn off that add-on while a project is open and then attach the library. The add-
on is turned off by selecting MetaMaid from the list provided by the File>Register
Components menu item and then pressing the Toggle (Disable since GME 11) button.
Also, the ‘systemwide’ radio button must be selected (‘For user only’ is selected by
default) in the Register radio group in order for the operation be effective. After the
library is attached, we can turn back the add-on if we want to. Future releases of GME

might solve this problem.
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