A GENETIC ALGORITHM FOR THE RESOURCE CONSTRAINED
PROJECT SCHEDULING PROBLEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDEM OZLEYEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CIVIL ENGINEERING

OCTOBER 2011



Approval of the thesis:

A GENETIC ALGORITHM FOR THE RESOURCE CONSTRAINED
PROJECT SCHEDULING PROBLEM

Submitted by ERDEM OZLEYEN in partial fulfillment of the requirements
for the degree of Master of Science in Civil Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Giiney Ozcebe
Head of Department, Civil Engineering Dept., METU

Assoc. Prof. Dr. Rifat S6nmez
Supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Assist. Prof. Dr. Metin Arikan
Civil Engineering Dept., METU

Assoc. Prof. Dr. Rifat S6nmez
Civil Engineering Dept., METU

Prof. Dr. M. Talat Birgoniil
Civil Engineering Dept., METU

Assoc. Prof. Dr. Murat Giindiiz
Civil Engineering Dept., METU

Giilsah Fidan (M.Sc.)
Civil Engineer

Date: 10.10.2011



I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: Erdem Ozleyen

Signature

i1



ABSTRACT

A GENETIC ALGORITHM FOR THE RESOURCE CONSTRAINED
PROJECT SCHEDULING PROBLEM

Ozleyen, Erdem
M.Sc., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Rifat S6nmez

October 2011, 91 pages

The resource-constrained project scheduling problem (RCPSP) aims to find a
schedule of minimum makespan by starting each activity such that resource
constraints and precedence constraints are respected. However, as the problem
is NP-hard (Non-Deterministic Polynomial-Time Hard) in the strong sense, the
performance of exact procedures is limited and can only solve small-sized
project networks. In this study a genetic algorithm is proposed for the RCPSP.
The proposed genetic algorithm (GA) aims to find near-optimal solutions and
also overcomes the poor performance of the exact procedures for large-sized
project networks. Contrarily to a traditional GA, the proposed algorithm
employs two independent populations: left population that consist of left-
justified (forward) schedules and right population that consist of right-justified
(backward) schedules. The repeated cycle updates the left (right) population by
maintaining it with transformed right (left) individuals. By doing so, the
algorithm uses two different scheduling characteristics. Moreover, the
algorithm provides a new two-point crossover operator that selects the parents
according to their resource requirement mechanism. The algorithm also
includes a modified mutation operator which just accepts the improved

solutions.

v



Experiment results show that the suggested algorithm outperforms the well
known commercial software packages; Primavera Project Planner (P6 version
7.0) and Microsoft Project 2010 for the RCPSP. In addition, the algorithm is
tested with problems obtained from literature as well as the benchmark
PSPLIB (Project Scheduling Problem Library) problems. The proposed
algorithm obtained satisfactory results especially for the problems with 120 and
300 activities. Limitations of the proposed genetic algorithm are addressed and

possible further studies are advised.

Keywords: Project Management and Scheduling, Resource-Constraints,

Genetic Algorithms.
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KISITLI KAYNAKLI iS PROGRAMLAMASI PROBLEMININ GENETIK
ALGORITMALAR ILE COZULMESI

Ozleyen, Erdem
Yiiksek Lisans, insaat Miihendisligi Boliimii

Tez Yoneticisi: Dog. Dr. Rifat Sonmez

Ekim 2011, 91 Sayfa

Kisith kaynakli is programlamasi problemi faaliyetlerin oncelik sirasini ve
kaynak kisitlarin1 dikkate alarak miimkiin olan minimum proje siiresini
bulmay1 amaglar. Bu problem polinomsal zamanda ¢6ziilebilen bir problem
oldugu icin kesin sonucu bulmaya yonelik algoritmalar kiiciik boyutlu
projelerin ¢oziimii ile sinirhidir. Bu tezde sunulan genetik algoritma kesine
yakin sonuglar1 kiigiik projelerin yaninda kesin ¢6zliim algoritmalarinin zayif
oldugu biiyiik projeler i¢cin de bulmayr amaglamaktadir. Geleneksel genetik
algoritmalara karsin, Onerilen algoritma ileriye dogru planlama ile tiretilen ve
geriye dogru planlama ile {iretilen iki farkli popiilasyon igerir. Genetik
algoritma siirecinde ileriye (geriye) dogru planlama ile yapilan is takvimleri
geriye (ileriye) dogru planlama ile yapilan is takvimlerine doniistiiriiliir.
Boylece, her iki tiir takvimin karakteristikleri kullanilmig olur. Ayrica, sunulan
algoritma eslestirilecek bireyleri kaynaklar1 kullandigi doneme gore secerek
yeni bir ¢aprazlama operatorii sunmaktadir. Kullanilan mutasyon operatorii ise

sadece iyilesen is takvimlerini popiilasyona dahil edecek sekilde yapilmustir.

Test sonuglari, 6nerilen algoritmanin sektdrde iyi bilinen ve kisith kaynaklarla

is programlamasi yapabilen Primavera Proje Planlayicis1 (P6 versiyon 7.0) ve

vi



Microsoft Project 2010 paket programlarina gore daha iyi oldugunu
gostermektedir. Ayrica, sunulan algoritma literatiirdeki benzer caligmalarda yer
alan  problemlerin  ¢6ziimiinde ve proje  programlama  problem
kiitliphanesindeki ornek problemlerin ¢6ziimiinde basarili sonuglar elde
etmistir. Sunulan algoritma 6zellikle problem kiitiiphanesindeki 120 ve 300
aktiviteli projeler i¢in tatmin edici sonuglar vermistir. Gelistirilen algoritmanin

sinirlart ve ileride yapilabilecek iyilestirmeler ile ilgili 6neriler yapilmistir.

Anahtar Kelimeler: Proje Yonetimi ve Planlamasi, Kaynak Kisitlamalari,

Genetik Algoritmalar.
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CHAPTER 1

INTRODUCTION

Project completion within a time limit is substantial for successful project
performance, regardless of the size and complexity of the project. Each day of
delay in the completion time causes a loss in revenue that can hardly be
regained later. Project scheduling involves the construction of a plan which
specifies for each activity the precedence, resource feasible start and finish
dates, the amounts of the various resource types that will be needed during
each time period and as a result the budget. Good scheduling can obviate
problems and insures the completion of a project on time. In contrast, poor
scheduling can result in significant idle labor and equipment. Obviously,
project scheduling is an important and elaborate task in the management and

delivery of construction projects.

Construction scheduling involves the definition of activities, the estimation of
durations for individual activities, establishment of the relations between
activities, and the required resources for undertaking activities. Thus, project
management must decide which resources are going to be used for the
execution of a project, must decide on the capacity of the various resource
types and must estimate the resource requirements for the project activities.
Apparently, if these resources are adequate, then the project could be executed
to attain expected project duration. On the other hand, if these resources are
limited, then more likely there will be a delay in the project completion time.
As a matter of fact, a sufficient schedule, which integrates resources properly,

provides competitive benefit to the company during project period.



Critical Path Method (CPM) is the one of the most widely used scheduling
technique. In CPM, early start and finish dates, and late start and finish dates
are calculated for all tasks without considering any resource limitations by
carrying out forward and backward scheduling procedures. On any schedule
network, the schedule flexibility is determined by the difference between late
and early dates, and is called “total float™. Critical paths have a zero total float
and activities on a critical path are termed “critical activities” which means any
delay in these activities cause a delay in whole project duration. On the other
hand, the activities that have positive float can be regarded as flexible and these

activities can be postponed according to their float values.

Theoretically, in CPM, if precedence relations and activity durations are
defined correctly, resource allocation may not be performed. In fact, in
construction industry, resource issues are generally ignored. Therefore,
Resource Leveling Problem (RLP) and Resource Constrained Project
Scheduling Problem (RCPSP) occur where unleveled use of resources exists
throughout the project duration and the available amounts of resources does not
meet with resource requirements respectively. Thus, to prevent these, resource

utilization charts should be evaluated in detail.

In many project scheduling, resource usage throughout the project might be
much more critical than the peak usage of the schedule. The aim of Resource
Leveling Problem (RLP) is to prevent fluctuations on the resource usage
graphs. In other words, solution of RLP aims completing the project within
time with a resource utilization chart which is as balanced as possible over

project makespan.

Scheduling problems involve many types of constraints. Resource constrained
project scheduling problem (RCPSP) emerges when there are limits on the

availability of resources. Obtaining an adequate solution for the RCPSP is



crucial for scheduling and planning of construction projects. Ineffective
allocation of resources because of inappropriate scheduling of resource
constrained projects (RCP) will increase the project duration and cost
considerably. The solution of RCPSP addresses a schedule of minimum
duration by assigning a start date to each task such a way that the precedence

relations and resource constraints are satisfied.

In general concept of RCPSP, a set of activities, resources, constraints are
given and the objective is to obtain minimum project makespan by satisfying
precedence and resource constraints in the project. In order to understand the

RCPSP clearly, general assumptions of the problem outlined as follows;

e [f an activity does not have a precedence and resource constraints, that
activity must be started without any delay.

e Resources are constrained and if there is no adequate resource, the
activity must start following appropriate day when there is a necessary
resource exist.

e [Ifan activity has started, it cannot be interrupted.

e Resource requirements, resource availabilities, activity durations, and

precedence constraints are constant throughout the project horizon.

The RCPSP is one of the most difficult optimization problems. Indeed, the
RCPSP is a polynomial-time hard (NP-hard) problem, meaning the problem
cannot be solved by exact algorithms for finding exact solution in reasonable
time. Some exact methods exist only for the small projects and also they take
more than polynomial time when the project grows or extra resource
constraints are added. Therefore, most research studies have been devoted to
improve heuristic and meta-heuristic procedures to obtain near-optimal
solutions within a polynomial time. Further information on both exact and

heuristic methods is going to be introduced in the next chapter.



The objective of this study is to present a genetic algorithm which solves
RCPSP to produce near-optimal solutions within an acceptable computation
time. C++ programming language has been used and proved to conveniently
operate on different problem sets. It is an meta-heuristic method which differs
from earlier studies both in terms of the crossover operator and parent selection
mechanism. Different problem sets which include 30, 60, 120, and 300
activities are used and test results are presented for performance analysis
purposes. The study is planned as in the following: Chapter 2 focuses on
heuristic, exact, and meta-heuristic methods and also includes related literature
about RCPSP. In Chapter 3, information on the genetic algorithm is presented.
Chapter 4 includes problem formulation, information about scheduling
schemes, priority rule, and representation scheme. Chapter 5 describes the
methodology of generated genetic algorithm. Chapter 6 introduces some other
developed alternatives of the proposed algorithm and the computational results

of the algorithm. Chapter 7 presents the conclusion part of the thesis.



CHAPTER 2

LITERATURE REVIEW

The Resource Constrained Project Scheduling Problem (RCPSP) has been
widely studied in the field of scheduling, resulting in a comprehensive variety
of optimization techniques. Many solution models have been suggested and
carried out and 3 methods have been emphasized for the problem: heuristic

methods, exact methods, and meta-heuristic methods.

2.1 Heuristic, Exact and Meta-heuristic Methods

The word heuristic has arisen after the Greek word “heuriskein” meaning to
discover. Heuristic methods have been also known as seeking method in
literature. This technique searches for satisfactory (i.e. near-optimal) solutions
at an acceptable solution time without being able to ensure that the solution is
feasible or optimal. Most known heuristics are construction heuristics and
improvement heuristics. In constructive heuristics, a solution is constructed
according to some construction rules and it continues step by step and it does
not try to improve the solution. On the other hand, in improvement heuristics, a

solution is constructed and initial solution is improved as soon as possible.

Exact methods are used to find the optimal solution to the RCPSP. Due to
exploring the search space deeply exact methods are not efficient especially for
large size problems. Thus, they generally cooperate with heuristics and they are
used as a part of heuristics. Some of the popular exact methods can be listed as;
linear programming based approaches, branch-and-bound procedures, dynamic

programming etc.



Meta-heuristic methods are similar to heuristics in terms of finding not optimal
solution but meta-heuristics are more likely not to be stuck in a local optimal
solution because repetitious moves are prevented in algorithm. Some of the
popular meta-heuristic methods can be listed as; simulated annealing, genetic

algorithms, particle swarm optimization, tabu search etc.

As indicated in previous chapter, RCPSP belongs to the class of the NP-hard
problems (Blazewicz et al., 1983) which expresses that solution time for
achieving the optimal solution by using exact methods can be considerable
long. Integer programming methods and branch-and-bound procedures are the
main algorithms that are used for the RCPSPs’ exact solution. In addition,
exact methods can only solve small size problem instances with up to
approximately 60 activities in an acceptable manner. Even though, heuristic
methods and meta-heuristic methods do not guarantee optimality and find near-
optimal solution, they are accepted as practical procedures to solve RCPSP
because of their handling capacity of large size problems, adjustability, and
easy implementation. Thus, because of their capability to solve large size

projects they can reflect the reality more than exact procedures.

2.2 Heuristic and Meta-heuristic Methods for RCPSP

2.2.1 Heuristic Methods for RCPSP

An experimental survey of heuristics for RCPSP has been published by
Kolisch and Hartmann (2006). In this study, a large number of studies that
have been proposed until 2005 have been outlined and categorized. They also
have evaluated and compared heuristics. Also, they have addressed
characteristics of good heuristics. In comparison, average deviations (%) from
optimal solutions and for unknown optimal solutions, average deviations (%)

from the well-known critical path lower bounds have been considered.



According to test results, for the J30, J60 and J120 problem sets, the top five
state-of-the-art algorithms are (Kochetov and Stolyar, 2003), (Debels et al.,
2004), (Valls et al., 2003), (Valls et al., 2005), and (Alcaraz et al., 2004).

According to these studies, features of the state-of-the-art algorithms can be

listed as follows;

Essential part in future heuristics for the RCPSP will be forward-

backward improvement.

e Both scheduling directions (forward scheduling and backward
scheduling) have been considered instead of only one direction.

e Both serial and parallel schedule generation scheme (SGS) have been
regarded instead of only one.

e State-of-the-art algorithms have considered multiple local search

operators or even multiple meta-heuristic strategies.

Another heuristic algorithm based on filter-and-fan method has been
introduced by Ranjbar (2008). The local search has been used to investigate
solution space and to produce first solution. Filter-and-fan method is a local
search process that produces moves in a three search manner. It is a compound
of a local search and filter-and-fan (F&F) search. The method has analyzed the
local optimum and searched greater area to prevent getting stuck in a local

optimum.

Seda et al. (2009) has proposed a flexible heuristic algorithm for resource-
constrained project scheduling problem. They have suggested a heuristic that
differ from classical activity shifting when the resource availability has been
surpassed. This heuristic has decided the activities that should be started as
soon as possible and the activities that should be delayed. Further

investigations have been suggested as a fuzzy variant of the problem and



application of the algorithm on a resource-constrained multi project scheduling

problem (rc-mPSP).

Anagnostopoulos and Koulinas (2011) have been proposed a Greedy
Randomized Adaptive Search Procedure (GRASP) based hyper-heuristic for
RCPSP. This algorithm consists of two steps: a creation stage and a local
search step. In creation step, feasible solutions have been produced and in
continuation, neighborhood of solutions has been analyzed to find the best
solution (local minimum) in neighborhood. During construction of candidate
solutions, each element has been selected according to their benefits to the
solution. For further research, solution representation scheme could be changed

and local search technique could be simulated annealing or tabu search.

2.2.2 Meta-heuristic Methods for RCPSP

Kochetov and Stolyar (2003) have proposed an evolutionary algorithm built on
path re-linking strategy and tabu search with variable neighborhood. Path re-
linking method has been used for crossover operator. Firstly, multiple paths
between selected solutions from the population have been built. Secondly, they
have selected one of the paths and improved it by tabu search algorithm. Then,
the enhanced solution has been added to population and the worst solution has
been eliminated. At the end of the evolution, diversification methodology has

been performed.

A new meta-heuristic to solve RCPSP has been presented by Debels et al.
(2004). This method has proved that this algorithm was capable to solve
relatively large size problems. This study is a combination of a population-
based meta-heuristic, scatter search (SS), and a heuristic method based on

electromagnetism theory.



Valls et al. (2005) have been introduced a justification technique that can be
easily integrated to different algorithms without increasing the computation
time. Justification is a simple and easily incorporable technique that boosts the
algorithm and creates better schedules. Three dissimilar algorithms which are
well-known, simple, and complex introduced by Hartmann (1998) have been
tested. In all type of algorithms, double justification has enhanced the solutions
and decreased the CPU time by 30%. They have incorporated double
justification in 22 diverse heuristic algorithms and fifteen of the new
algorithms that use double justification have outperformed seven of the best
heuristic algorithms that do not use justification Valls et al. (2005). Thus, they

have strongly recommended adding double justification to the algorithms.

Debels and Vanhoucke (2005) have proposed a genetic algorithm (GA) which
has used two different populations. They have called that study bi-population
genetic algorithm (BPGA). In this algorithm, left-justified (forward) and right-
justified (backward) scheduling methods have been operated to take advantage
of both scheduling techniques. Left-justified schedules have been used to

create right-justified schedules and vice versa.

Another meta-heuristic method to solve RCPSP has been presented by Mendes
at al. (2005). This genetic algorithm has been based on random keys in terms of
chromosome representation and they have used a heuristic priority rule in
which genetic algorithm determines priorities of the algorithms. The study has
been tested on standard examples and compared with other approaches in the

literature and considerable good results have been obtained Mendes at al.

(2005).

Tseng and Chen (2006) have presented a hybrid meta-heuristic for the RCPSP
that integrated genetic algorithm (GA), ant colony optimization (ACO), and
local search strategy. They have named this algorithm, ANGEL. In this study,



firstly, solution space has been explored and task list has been generated to
create the initial population for GA. Next, ACO pheromone sets have been
updated with the GA solutions with the condition that GA obtains a better
solution. When, GA has been completed, ACO has been started to search by
using new set. By the same way, GA and ACO have searched the solution in
the solution space until termination of GA and ACO. From this paper, it has
been remarked that local search strategy is very efficient and ANGEL is very

effective.

Debels and Vanhoucke (2006) have suggested a decomposition approach
which has divided the problem sets into smaller problems to be figured out
with an exact or heuristic algorithm and have combined the solutions from sub-
problems to obtain the solution of the problem sets. After, advanced
neighborhood search have been proposed. During decomposition process,
meta-heuristic and exact procedures from literature have been used to extend
this study. Computational results have showed that conventional meta-
heuristics have not enough time to comprehensively explore the whole solution
space and the decomposition approach has led to better results. In addition to
this, sub-problems should be large enough to find better solutions for the main

problem sets, and small enough to prevent unreasonable computation times.

Particle swarm optimization (PSO) to solve RCPSP has been proposed by
Zhang et al. (2006). In this study, particles have represented the activities
priorities, so that optimal solution can be sought from an updated population
according to particle swarm optimization method used. The tests have showed
that the PSO-based method for RCPSP capable to seek for global optima. Also,
PSO is better than GA in terms of search mechanism. Detailed consideration
on PSO parameters, application of PSO, and interface of the program have

been addressed for further researches.
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Colak et al. (2006) have suggested a hybrid neural approach (HNA) based on
bases of neural networks. Adaptive-Learning Approach (ALA) and Augmented
Neural Network (AugNN) have been used for generation of schedules. In the
adaptive-learning approach weighted operating times have been used rather
that originals. In the augmented neural network, conventional neural networks
have been improved by including task-specific knowledge. In this research,
some elaborate neural functions that integrate the strengths of priority rule-
based heuristics with neural networks’ iterative approach have been used. In
addition to this, they have integrated forward-backward improvement into this
approach. The results have showed that HNA has outperformed other
traditional meta-heuristic techniques such as simulated annealing, genetic
algorithms, tabu search. Combination of HNA with other meta-heuristics has

been suggested for further researches.

Debels and Vanhoucke (2007) have published a new Decomposition-Based
Genetic Algorithm (DBGA) for RCPSP that is able to find satisfactory near-
optimal solutions. Subparts of the schedule have been solved by using
decomposition-based feature. Standard GA and DBGA have been compared
and the computational results have showed that decomposition-based approach
improved the results of the GA, and both GA and DBGA have outperformed

all other conventional procedures.

A genetic algorithm for RCPSP has been proposed by Franco et al. (2007),
they have used serial scheduling scheme and object oriented programming has
been used to create population with their own features such as starting dates,
ending dates, makespan and also parameter tuning has been performed. Tests
have been performed with changed mutation ratios but, no important changes
have been generated in the fitness function because of being repeated
makespan values coming from different schedules. Control of generations and

chromosomes has been facilitated by means of Object-Oriented Programming
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(OOP). They have also observed that two-point crossover brought better
schedules even at solution times. As a further research, usage of this algorithm
has been proposed for multi-mode project scheduling problems and calibration
of different parameters such as size of population, number of generations,

crossover operator etc. have been suggested.

Another Hybrid Genetic Algorithm (HGA) has been proposed for the RCPSP
by Valls et al. (2008). Various changes have been made in the conventional
GA algorithm: resource-constrained project scheduling specific crossover
method; an enhancement operator for generated schedules; a new parent
selection mechanism; and a two-step approach which have allowed starting the
evolution from best schedule of the neighbor’s population. To be more
detailed, they have used the crossover operator that combines favorable parts of
the solutions instead of general crossover period that randomly selects parts of
the solutions. Double justification operator Valls et al. (2005) has been used for
schedule improvement. In addition, they have allowed the first individual in the
couple to be the best individual in the population and the other individual has
been selected randomly from the rest of the population. Therefore, they have

guaranteed that fittest individuals have been used once as parents.

Kim and Ellis (2008) have presented permutation-based elitist genetic
algorithm especially for large-sized projects. Elitist selection mechanism has
been used to keep the fittest individual in the population and SGS has been
applied to create feasible individual to the problem. In addition to these, the
one-point crossover, standard mutation operator, and a random number
generator have been used. In this study, first generation has been generated by
a random number generator that has incorporated with precedence and resource
constraints. In SGS, all precedence and resource feasible activities have been
grouped and activities have been selected one by one to generate a feasible

individual. During elitist selection, the best individual has been preserved for
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the next generation to assure that fittest solution has been kept. For further
research, they have suggested to use two-point crossover or different cross-
over operators and a hybrid-heuristic algorithm to improve the solutions, and
the tournament selection to overcome the drawback of the roulette wheel

selection.

A Genetic algorithm with simulated annealing for RCPSP has been published
by Xiaoguang et al. (2009). The algorithm has been integrated with simulated
annealing (SA) to better local searching and to encourage the progress. In each
generation, the algorithm has produced a new substitute population and for
improvement SA has been applied to every individual. For convergence’s sake,
the cooling process has been occurred at the end of each loop and advancing

speed of the algorithm has been suggested as a further research by authors.

Mobini et al. (2009) have proposed another state-of-the-art algorithm that
named as enhanced scatter search algorithm for the RCPSP. The new algorithm
has been established on a new path re-linking strategy, permutation based and
conventional two-point crossover operators Mobini et al. (2009). Scatter search
is a population-based method that has produced new individuals by associating
maintained solution. First, the initial generation has been produced by
diversification generation method. Second, the improvement method has been
performed to modify solution to improved solution. Third, the reference set
update method has collected the solutions according to their fitness and
diversity. Fourth, the subset generation method has been used to group the
solutions into subsets. Lastly, the combination method has been used that
consist of the path re-linking, permutation-based operator and traditional two-
point crossover operator Mobini et al. (2009). They have concluded that
according to CPU time and quality of the solutions their algorithm can be

considered as the second best algorithm after Valls et al. (2004).
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Bettemir (2009) has proposed another meta-heuristic algorithm that finds
optimum or near optimum solutions for the time cost trade-off, resource
leveling, and resource-constrained project scheduling problems. In the solution
of the RCPSP, the traditional genetic algorithm has been used and only the
problem sets up to 120 activities have been solved. In addition, the proposed
algorithm’s performance was not compared with commercial software

packages such as; Primavera Project Planner or Microsoft Project.

Mobini et al. (2010) have proposed an artificial immune algorithm (AIA) for
the RCPSP. Objective function and generated solution have been converted to
their equivalents in AIA which are antigen and antibody respectively. In this
algorithm generation of schedules which have lower makespan have a more
chance to be generated in the next population. In addition, serial-SGS has been
used to decode the representation and improved method has been applied to the
initial population instead of traditional randomly generated initial generation.
In this study, right-justified (backward) schedules and left-justified (forward)
schedules have been generated to improve initial generation. In addition, to
assist the convergence of AIA, point-mutation and multi-point mutation have

been used on every candidate solution.

Chen et al. (2010) have suggested an efficient hybrid algorithm that combines
ant colony methodology, scatter search, and a local search progress. First, the
algorithm has explored all possible solutions and produced activity lists to
generate first population to scatter search. Second, scatter search has improved
the solutions. Thereafter, ant colony optimization has used these improved
solutions. In addition, local search algorithm has improved the makespan of
schedules and ant colony optimization has incorporated scatter search strategy

in searching solution space.
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A new efficient genetic algorithm has been proposed by Hong et al. (2010). In
this study, selection of schedule generation scheme (SGS) has been added as a
feature to decoding progress and forward-backward improvement has been
applied to all population. In addition, elitist selection and an effective parent

selection mechanism have been used to improve the algorithm.

Torres et al. (2010) have been proposed a genetic algorithm for the RCPSP. In
this paper, object-oriented model has been used to representation of schedules.
Thereby, they have taken advantages of programming languages. The classes
have been used in object-oriented programming (OOP) for representation of
schedules. In addition, the OOP has made the progress more controllable and

flexible.

Christodoulou (2010) has proposed a methodology to RCPSP by use of ant
colony optimization artificial agents. The utility value approach has been used
to decide which activity is going to get resources first. There are features that
have composed the utility value such as the total float of the activity, the
criticality index which has been calculated from Monte Carlo simulations, a
heuristic value which has been depended on importance of the activity, and a
cost value which is activity’s cost over the project’s total cost (Christodoulou,
2010). Convergence of this study as compared with other traditional heuristics
has been occurred faster and also as a further research, performance of the

algorithm on bigger problem sets such as J120 or J300 has been suggested.

A brief summary of heuristic based methods for the solution of resource

constrained scheduling problem in this section can be seen in Table 2.1.
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Table 2.1 — Heuristic and Meta-heuristic Methods for RCPSP

Heuristic (H) and Meta-heuristic (M-H) Methods

Year of
Author(s) Notes
Publication
2003 Kochetov and Stolyar Path re-linking strategy, tabu search, and diversification methodology has
been used. (M-H)
2004 Debels, Reyck, Leus, and Based on population-based meta-heuristic, scatter search (SS), and an
Vanhoucke electromagnetism theory. (M-H)
2005 Valls, Ballestin, and Quintanilla | poyble justification technique has been introduced. (M-H)
2005 Debels and Vanhoucke Left-justified and Right-justified schedules have been used in GA. (M-H)
2005 Mendes, Gongalves, and Resende | A different chromosome representation and priority rules have been used.
(M-H)
2006 Tseng and Chen Ant colony optimization (ACO), and local search strategy has been applied.
(M-H)
2006 Debels and Vanhoucke A decomposition approach where the solutions have been combined from
sub-problems to obtain the solution of the problem sets. (M-H)
2006 Kolisch and Hartmann Heuristics for resource-constrained project scheduling have been

investigated. (H)
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Table 2.1 — Heuristic and Meta-heuristic Methods for RCPSP (Continued)

Heuristic (H) and Meta-heuristic (M-H) Methods

Year of
Author(s) Notes
Publication

2006 Zhang, Li, and Tam Particle swarm optimization has been used to solve RSPSP. (M-H)

2006 Colak, Agarwal, and Erenguc | A hybrid neural approach (HNA) based on bases of neural networks has
been applied. (M-H)

2007 Debels and Vanhoucke A new Decomposition-Based GA has been suggested. (M-H)

2007 Franco, Zurita, and Delgadillo | Opject Oriented Programming (OOP) has been used. (M-H)

2008 Valls, Ballestin, and Quintanilla A new crossover method, an enhancement operator and an original
parent selection mechanism have been proposed. (M-H)

2008 Kim and Ellis Permutation-based elitist genetic algorithm has been applied. (M-H)

2008 Ranjbar A new heuristic algorithm based on filter-and-fan (F&F) method has
been used. (H)

Seda, Matousek, Osmera,
2009

Pivonka, and Sandera

Different activity shifting method has been proposed. (H)
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Table 2.1 — Heuristic and Meta-heuristic Methods for RCPSP (Continued)

Heuristic (H) and Meta-heuristic (M-H) Methods

Year of
Author(s) Notes
Publication
2009 Xiaoguang, Dechen, Lanshun, Simulated Annealing integrated GA has been used to solve RSPSP. (M-
and Xiaofei H)
2009 Mobini, Rabbani, Amalnik, Enhanced scatter search algorithm for the RCPSP has been proposed.
Razmi, and Rahimi-Vahed (M-H)
2010 Mahdi Mobini, Zahra Mobini An artificial immune algorithm (AIA) for the RCPSP has been applied.
and Rabbani (M-H)
2010 Chen, Shi, Teng, Lan, and Hu | Ant colony methodology, scatter search, and a local search progress
have been harmonized. (M-H)
2010 Hong, Tongling, and Dan Selection of schedule generation scheme (SGS) has been added to GA.
(M-H)
2010 Torres, Franco, and Mayorga | Class feature of object-oriented model has been used to solve RCPSP.
(M-H)
2010 Christodoulou Ant colony optimization artificial agents have been proposed. (M-H)
2011 Anagnostopoulos and Koulinas

Greedy Randomized Adaptive Search Procedure has been applied. (H)




CHAPTER 3

GENETIC ALGORITHMS

The first development in the field of Genetic Algorithms appeared in 1960s.
Impact of genetic algorithms has outshone other techniques, such as Tabu
Search (TS) or Simulated Annealing (SA). Fitness measurement of every
individual and selection of potential solutions to reproduce are the main
advantages of GA. Moreover, there is a recombination of different individuals
that allow genetic variation. Especially, for the NP-hard problems which are
very complex problems as mentioned before concept of evolution diversity is

an archetype.

3.1 Research Method

In this thesis, in addition to the traditional GA, a unique crossover operator and
parent selection mechanism are going to be presented. The PSPLIB problem
sets are going to be solved by Primavera and proposed algorithm. Moreover,
some problems from literature are going to be solved and the solutions are

going to be compared.

3.2 Basics of the Genetic Algorithm

The GA has arisen from the similarity between the representations of complex
structure and the genetic structure of a chromosome. In nature, for example,
offspring are sought which are persistent in terms of chromosome combination.
In a same way, during solution of complex structure, the individuals from

existing solutions are combined to get better individuals.
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In common sense, the chromosomes are usually represented by simple string of
Os and 1s and several genetic operators have been recognized for controlling
these chromosomes, the most frequently used operators are crossover and
mutation. In other words, the changing feature is exchange of piece of the

chromosomes and a local adjustment of a variable in a chromosome.

For a NP-hard problem, such as resource-constrained project scheduling
problem, the genetic algorithm works by managing a population of potential
parents whose fitness (appropriateness) values have been computed. Each
chromosome encrypts a solution to the problem, and its fitness value depends
on the value of objective function for that solution. Traditional GA selects the
one parent depends on its fitness value (the bigger fitness value, the more
chance to being chosen) and the other parent is selected randomly from all
population. Then, crossover and mutation operator are performed and lastly,

the population are updated with new individuals, given in Figure 3.1.

Population
1 g (chromosomes)
Genetic Operators Y
) Y Fitness Evoulation
(Crossover and Mutation) Parents
7y
A
Selection
< (Mating Pool) < y

Figure 3.1 — Flowchart of a Basic GA
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3.2.1 Initial Population

Generating random individuals for initial population is the first step of genetic
algorithm. The main idea of population size is always of a trade-off between
effectiveness and efficiency. Small populations would cause the risk of not
exploring the solution space, while too large populations would cause impaired

efficient computation.

It is generally assumed that initial population should be generated randomly;
however, this approach doesn’t cover the solution space systematically when
compared with complex statistical methods. On the other hand, there is a
possibility of feeding the initial population with high-quality solutions,
obtained from other techniques. This approach would find the final solution in

less time. However, immature convergence risk would exist.

3.2.2 Fitness Calculation

Fitness evoulation is the second step after the generation of initial population.
Fitness values emphasize the quality of individuals (chromosomes) in the
population. The objective function is used to calculate fitness values and it is
simply to use objective function associated with each individual. However,
convergence to similar individuals, and premature convergence to a local
optimum because of being only a few good individuals in the population

should be considered.

3.2.3 Selection

The main idea behind the selection is that the selection should be related to
fitness value of the individuals (chromosomes), where better solutions are more
likely to be parent. Most of the objective functions are designed to select fittest

solutions more frequently (fitness-proportionate selection). This idea provides
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the diversity and prevents premature convergence on bad solutions. There are
lots of other generation selection types, such as roulette wheel selection,
scaling selection, tournament selection, rank selection, generational selection,

steady-state selection, and hierarchical selection.

3.2.4 Crossover

In many genetic algorithms, the crossover operator has been proved as a highly
effective. In crossover, selected parents are recombined in some way. It is a
matter of exchanging the part of the individuals (chromosomes). The concept
behind the crossover is that the child (a new individual after crossover) has a
chance to be better than parents. For example there are 2 individuals, and each

consisting of 10 variables in Figure 3.2.

Parent 1

[1[oJogtJoftJrfoJrfo]

Crossover Points
Parent 2

L1fr]reofJofrjojoJrjt]

Child 1

[1]JofofJoJof[1]oJof[1]1

N

Child 2 Exchanged Parts

[1]1[r]Jr]Jofr]1r]of1]o

Figure 3.2 — Crossover Operator
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In general, crossover point is selected randomly but this randomization may
restraint the swap of information between parents. Thus some different
crossover operators have been proposed, such as multi-point crossover,
uniform crossover, arithmetic crossover, and heuristic crossover. Moreover, the
crossover point should be selected very carefully to be ensured that generated
child differs from the parents. To illustrate, it can be easily seen that there is a

point which cannot produce different child in Figure 3.3.

Parent 1

[1@O0foJtJojrjrjojtjo]

Crossover Points

/

[1@t[tJoJoJrjojojtfrl]

Parent 2

Child 1

L1 [1fofofrfofo]1]1

N

Child 2 Exchanged Parts

[1JoJo]J1]JoJ1]1]of[1]oO

Figure 3.3 — Non-efficient Crossover Operator

Whenever the crossover points are selected efficiently, the crossover operator
produces largely modified individuals when compared with other operators and
the crossover operator is the only operator that gathers two parents. However,
there is no guarantee that children (generated individuals after crossover) will

be better from parents in terms of fitness value.
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Crossover operator is applied to only some amount of population. So, there is a
crossover probability rate. That parameter decides the percentage of crossover
operator applied individuals in population. Too high crossover rate may cause
premature convergence to local optimum and too low crossover rate blocks the

diversity in the population which is very important component of GA.

3.2.5 Mutation

As a second common operator the mutation operator takes places after
crossover in traditional genetic algorithm. In mutation, the subset of individuals
which selected randomly is changed as in Figure 3.4. As a supporting operator,
the mutation operator, helps to maintain the diversity of the population. This
diversity is very important to avoid the risk of finding the local-optimal
solutions. In addition, there is no general rule about the balance between

crossover and mutation and this balance is mostly problem-specific.

As mentioned in crossover, there is a mutation rate. That parameter determines
the percentage of mutation operator applied individuals in population. During
genetic algorithm this rate could be changed according to diversity in the
population. Too high mutation rate may cause to loss of satisfying solutions
and on the other hand, too low mutation rate may lead to genetic drift which is

the change in the individual variant frequency.

Individual

[1JofoJrjoftJrjofrfo]

Randomly Selected Subset

Mutation Applied Individual

[1]ofoJoJoftrJrjofrfo]

Figure 3.4 — Mutation Operator
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3.2.6 Replacement

After crossover and mutation operators, the new individuals should be
implemented to population in some way. There are lots of ways in literature
about replacement of offspring (children). Some of them are introduced as

follows:

e Selection, crossover, and mutation operator can be applied to a
population until a new population has been produced and after, the
same loop starts with this new population (Holland’s original GA).

e During replacement of population with the new population, the best
individual(s) can be preserved directly and replacing can be applied for
the rest of the population (Elitist Strategy).

e Only the some part of the population can be replaced by new
individuals at each generation (Population overlaps).

e Only the parents can be replaced by their children (Incremental
reproduction).

e The worst part of the population can be deleted and the children can be
imported to the population, although this may lead the population to

loss of diversity.

3.2.7 Termination

In practice, the GA needs a criterion for termination of algorithm; the common
approaches are to limit on the number of schedules, to limit the computation
time, to define a minimum criteria for solution which is reasonable, to define a
number of generations, to stop when there is no better solutions are produced in
successive iterations, or the combination of these. To sum up the outline of the

genetic algorithms, the main outline of GA has been introduced in Figure 3.5.
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[Start] Generation of random initial population
(appropriate solutions for the problem).

[Fitness] Evaulation of the fitness of every
individual in the population.

[New Population] Producing a new generation
by repeating following steps;

[Selection] Selection of parents from population
based on their fitness.

[Crossover] With a crossover rate, parents are
recombined by crossover operator to form a new
individuals.

[Mutation] With a mutation rate, parents are
mutated by mutation operator to create a new
individuals.

[Replace] Use the new produced individuals for
a further loop of the algorithm.

[Termination] Checking the termination criteria
and if the termination condition is satisfied stop.

Figure 3.5 — Outline of the Basic GA
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CHAPTER 4

RESOURCE CONSTRAINED PROJECT SCHEDULING
PROBLEM

The resource constrained project scheduling problem (RCPSP) deals with
limited resources and tasks of known resource demands and durations, linked
by successor and precedence relations. The objective is to minimize the project
makespan by defining a start time to activities such that resource capacity and

the precedence relations are considered.

4.1 Problem Formulation

Resource constrained project scheduling problem can be formed conceptually

in the following way:

min f,
Subject to
fi<fj—d, for all (i,j) € A

f1=0

Y ri<a,  for k=1,...,m and t=1,...,f,
i€s,

In this formulation, dummy start (f;) and finish activities has been considered.
The variables f; mean the finish times of the tasks, while the d; express the
duration of the tasks, ay denote the k™ resource’s availability, rj the resource

demand of the activity i for resource &, S, denotes the group of activities that
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are proceeding at time ¢, m is the number of resource types in the project, and

lastly, the j is the next activity in the chain.

To illustrate, a simple resource-constrained project scheduling problem that

consist of 10 activities and 2 renewable resources will be introduced in Table

4.1.

Table 4.1 — Project Information for Problem Formulation

Ao | A1 | A [As| Ay [As| Ag[A7| Ag| Ag|Ajo|A

—
—_

Duration o611 12(3]15(6]3[2(4]0
Resource 1 Usagel O | 2 | 1| 3|21 [23|1f[1[1]fO
Resource2 Usagel O | 1 | Of 1 ]JOf1]1]Of2]2|1]¢O

* These activities are project’s start and finish milestones, respectively.

In project, the availability of resource 1 is 7 and availability of resource 2 is 4

and the precedence relationships have been displayed in Figure 4.1.

Figure 4.1 — Activity-on-Node Relationship Graph for Problem Formulation
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A schedule of minimum project duration, makespan=12, is introduced in
Figure 4.2 as the horizontal axis expresses the time, whereas on the vertical

axis represents the renewable resource requirements.

Resource Usage

7
6 A, fs A;
RI 5 As | A
4
3 As | Ag |
2
A
1] A Ao Time
o 1 2| 3| 4| 5| 6| 7 8| 9| 1o| 1] 12
Resource Usage
4 | Ag
R2 3 A A
2 AS 9 8
1| As Ay Ay Time
o 1 2| 3| 4| 5| 6| 7 8| 9| 10| 11] 12

Figure 4.2 — Schedule of Minimum Project Duration for Problem Formulation

4.2 Heuristic Procedures

Most of the time, the computation time to solve the resource constrained
project scheduling problem might be too long, especially in large projects. For
this reason project managers willing to achieve an acceptable project schedules
that are accomplished within short computation times and this can be obtained

by executing good heuristic algorithms.
The heuristic procedures can be grouped into two categories which are

constructive heuristics and improvement heuristics. These differ in starting

stage of heuristic algorithms.
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Constructive heuristics add activities in sequence within precedence and
resource constrains. This heuristics fill the empty schedules and obtain feasible
schedules. The sequence during adding activities one by one is based one
priority orders of the activities that will be mentioned later in this chapter.
Some constructive heuristics are nearest neighbor (NN) heuristic, insertion

heuristics, savings heuristic and etc.

On the other hand, Improvement heuristics start from appropriate schedule that
is obtained from constructive heuristic. The procedure is applied on a schedule
which modifies a solution into improved schedule in terms of project
makespan. These operations are carried out until local optimal solution is
reached. Some improvement heuristics are descent approaches which are
steepest descent, fastest descent, and iterated descent, meta-heuristic
approaches which are tabu search, simulated annealing, and genetic algorithms,
truncated branch-and-bound methods, disjunctive arc based methods, integer

programming based methods, and block structure based methods and etc.

4.2.1 Scheduling Schemes

In order to illustrate the diverse scheduling schemes a problem example will be
used which has mentioned below. In addition, the priority list <1, 2, 6, 5, 7, 4,
8, 3, 9> will be used during scheduling. Obtaining this priority list will be

introduced later in this chapter.

Table 4.2 — Project Information for Scheduling Scheme

Ap | A | As | Ag| As| Ag| A7 [ Ag|Ag
Duration O11{214(3|15(3]60
Resource Usage [ O [ 1 | 22|22 1]2]0

* These activities are project’s start and finish milestones, respectively.
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In project, the availability of resource is 5 and the precedence relationships

have been displayed in Figure 4.3.

Figure 4.3 — Schedule of Minimum Project Duration for Scheduling Scheme

4.2.1.1 The Serial Scheduling Schemes

In serial scheduling, the activities are added sequentially to the schedule until an
appropriate schedule is created. In every repetition, the next task in priority list
is selected and this activity is started at first possible starting time such that the

precedence and resource constraints are not violated.

Forward Scheduling Scheme

When the forward serial scheduling scheme is applied to the priority list <1, 2,
6,5, 7,4, 8,3, 9> the feasible schedule in Figure 4.4 with a project makespan
of 8 is obtained. The activities 1, 2, 6, 5, and 7 are started at their first possible
starting times, based on their precedence constraints. The activity 4 can be

started at time 0, but the lack of resources will be appeared at time 2. Thus, the
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activity 4 is started at time 2 and similarly, activities 8 and 3 are started at time

3 and 6 respectively.

Resource Usage

5 8 3

S = N W B W
\S}
3

Time

1|2|34|5|67|8

Figure 4.4 — Solution Obtained by Forward Serial Scheduling Scheme

Backward Scheduling

In forward scheduling, the traditional direction which starts with dummy start
task and ends with dummy finish task is applied. However, in backward
scheduling, the reverse time direction takes part. In backward scheduling, the
scheduling starts with finish milestone and sequentially all activities are
assigned a starting time until start milestone is assigned. This procedure can
easily be applied by reversing priority list and precedence relations. Also, in
backward scheduling, there is an ambiguity about project makespan. Thus,
working backward from random project makespan is needed and after starting

time can be adjusted such that the starting time of the start milestone equals 0.

To illustrate the backward scheduling the priority list <1, 2, 3, 6, 5, 4, 8, 7, 9>
will be used for the same problem in scheduling schemes part in Figure 4.5. To
start backward scheduling, a random project finish time of 10 is assigned and

in addition, the priority list should be reversed as <9, 7, 8, 4, 5, 6, 3, 2, 1>
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Resource Usage

7

123|456|7|8|9|1oTime

S = N W A W
[\

Figure 4.5 — Solution Obtained by Backward Serial Scheduling Scheme

It can be noticed that the project makespan is 8 (10-2) which is equal the

makespan obtained from forward serial scheduling scheme.

4.2.1.2 Priority Rule

In the serial scheduling schemes section, the main theme of schemes has been
explained. These are mainly based on priority lists which can be categorized in
5 groups as follows, activity based priority rules, network based priority rules,
critical path based priority rules, resource based priority rules, and composite
priority rules. The ones used in this thesis are activity based priority rule during

crossover and network based priority rule during creation of first population.

In activity based priority rule, the priorities are given based on activities
duration. For example, the activities can be sequenced in priority list according
to their processing time, start time or different information that is related to

activity.

In network based priority rule, the priorities are given based on precedence
constraints between activities. For instance, the activities can be sequenced in
priority list according to their number of successors, number of predecessors,

or in another way.
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4.2.1.3 Representation Scheme

There are commonly known 5 representation schemes available which are
priority list representation, priority rule representation, random key
representation, shift vector representation, and schedule scheme representation.

In this thesis, the priority list representation is used.
In priority list representation, there are ordered activities in priority list, based

on precedence relations between activities, so this guarantees that no task can

be started in that list before one of its predecessors.
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CHAPTER S

CHARACTERISTICS OF THE DEVELOPED GENETIC
ALGORITHM

The genetic algorithm introduced in this thesis has been coded in C++
computer programming language. Microsoft Visual Studio 2010 Ultimate

Edition has been used in compiling and debugging process.

In proposed genetic algorithm, the data has been read from problem files and
structures, vectors, and other data structures have been defined to store data of
the problem which are number of activities, number of renewable resources,
resource availabilities (constraints), duration of activities, resource usage of
each activity, number of successors of each activity, number of predecessors of

each activity, predecessors of each activity and successors of each activity.

In this genetic algorithm, contrary to traditional genetic algorithms, the initial
population consists of 2 parts, left population that involves left-justified
(forward) schedules and right population that contains right-justified
(backward) schedules. Basically, the GA is based on application of fitness
calculation process, selection process, crossover operator, mutation operator,

and replacement process to initial populations.

The termination criterion in this study is the number of schedules created
during the algorithm, such as the first created left-justified and right-justified
schedules and the produced schedules after crossover and mutation. Generally,
1000 schedules and in some problems 5000 schedules have been generated in

this study.
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Throughout the algorithm, at the end of every GA cycle the right population is
updated by using left-justified schedules and left population is updated by
using right-justified schedules. Therefore, right (left)-justified schedules have
been converted to left (right)-justified schedules. By doing so, advantages of
repetitive forward and backward scheduling have been used. The pseudo-code

is given in the following Figure 5.1.

Procedure of Genetic Algorithm

Step 1 Build an initial right and left population
Step 2 Revise number of schedules

Step 3 Calculate fitness of individuals

Step 4 Find the best individual

For [=1,number of schedules]
Updating right-population

Step 5 Select 1st Parent from left-population
Step 6 Find the best partner for 1st Parent
Step 7 Apply crossover operator
Step 8 Replace right-population by children
Revise number of schedules
Step 9 Apply mutation operator
Revise number of schedules
Step 10 Find the best individual

Updating left-population

Step 5 Select 1st Parent from right-population
Step 6 Find the best partner for 1st Parent
Step 7 Apply crossover operator
Step 8 Replace left-population by children
Revise number of schedules
Step 9 Apply mutation operator
Revise number of schedules
Step 10 Find the best individual

Check if number of schedules has been exceeded

Figure 5.1 — Pseudo-Code of Proposed Genetic Algorithm
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5.1 Reading the Data from the Problem File

First of all, all data of the example problems such as successors, durations,

resource demands, and resource constraints are taken from the file. The Figure

5.2 shows how the source problem file looks.

_iaix]
File Edit Format Miew Help

32 4 Mumber of activities and MNumber of renewahle resources “
15 13 4 17 Resource Consirainis Successors J
0 4] 0 0 0 3 2 3 4

a8 4 0 0 0 3 3] 11 15

4 10 0 0 0 3 7 a8 13

5] 0 0 0 3 3 5 = 10

3 3 0 0 0 1 20

B 0] 0] 0 B 1 30

5 4 0 0 0 1 27

G 4] 1 0 0 3 12 15 27

2 3] 0 0 0 1 14

7 4] 0 0 1 2 16 25

G 4] g 0 0 2 20 28

2 4] 7 0 0 1 14

5] E 4 0 0 0 2 17 18

3 m 0] B 0 0] 1 17

EN RS 3 0 0 0 1 25

10 ﬁ 0 0 0 5 2 21 22

B | 4] 0 0 S 1 22

5 |= 4] 0 0 7 2 20 22

3 % 4] 1 0 0 2 24 25

= 4] 10 0 0 2 23 24

2B 0 0 0 5] 1 28

7 E 2 0 0 0 1 23

2 3 0] 0 0] 1 24

3= 0 G 0 0 1 30

3 4 0 0 0 1 30

7 4] 0 4 0 1 31

a8 4] 0 0 7 1 28

3 4] a8 0 0 1 31

7 4] 7 0 0 1 32

2 0 7 0 0 1 32

2 0] 0] 2 0] 1 32

0] 0] 0] 0 0] O]

- RESOTRCEDEMANDS MNumber of Successors -
1| v 2

Figure 5.2 — Example Problem File

As seen on Figure 5.2, this is example problem with 32 activities (with start

and finish milestones). In all example problems that are taken from PSPLIB

website have 4 renewable resources. The second line introduces the resource

availabilities of each activity and each row expresses an activity. The first

column describes the duration of activities, for example, start milestone (1*
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activity) and finish milestone (last activity) have duration of 0 and similarly the
resource consumptions are 0 too. There are 4 resources so that there are 4
columns for resource demands. Moreover, numbers of successors are
introduced in next column after resource demands and following the successors
of activities are mentioned. For instance, the activity 3 has duration of 4 and
resource constraints for resources are 12, 13, 4, 12 and the activity uses 10, 0,
0, and 0 respectively. In addition the activity 3 have 3 successors which are 7,

8, and 13.

The algorithm has solved 480 example problems with 30 activities, 480
example problems with 60 activities, 600 example problems with 120
activities, and 480 example problems with 300 activities. The following
procedure describes the problems sequentially, and writing the results to files,
such as makespan, problem name, solution file, starting order of activities, start

times, and finish times of the activities.

5.2 Building the Initial Population

Firstly, before starting to create first population the number of successors and
successors are converted to number of predecessors and predecessors in order

to follow the left population creation procedure in Table 5.1.

Secondly, left (right) population that is created by using forward (backward)
scheduling. The left (right) population is produced randomly where the
activities with a 0 number of predecessors (successors) are put to the selection
pool and one activity is selected. After this, the numbers of predecessors
(successors) of other activities are recalculated and again the activities with a 0
number of predecessors (successors) are put to the selection pool and one
activity is selected. This cycle is repeated until the finish (start) mile stone has

been started and finally a feasible starting order of activities is found.

38



The first steps of creation of the left and right population are illustrated in

Table 5.2 and 5.3.

Table 5.1 — Conversion of Successor to Predecessor of the Problem

Activity Number | # of Predecessors [Predecessors
Start Milestone 1 0
2 1 1
3 1 1
4 1 1
5 1 4
6 1 2
7 1 3
8 1 3
9 1 4
10 1 4
11 1 2
12 1 8
13 1 3
14 2 9112
15 1 2
16 1 10
17 2 13] 14
18 1 13
19 1 8
20 3 5111[18
21 1 16
22 2 16] 18
23 2 20122
24 2 19123
25 3 10| 15] 20
26 1 11
27 2 718
28 2 21127
29 1 19
30 3 612425
31 2 2628
Finish Milestone 32 3 29(30] 31
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Table 5.2 — Generation Procedure of Left-Justified Schedules

Activity Number | # of Predecessors [Predecessors|

Start Milestone 1 0

2 1 1

3 1 1

4 1 1

5 1 4

6 1 2

7 1 3

8 1 3

9 1 4

10 1 4

11 1 2

12 1 8

13 1 3

14 2 9112

15 1 2

16 1 10

17 2 13| 14

18 1 13

19 1 8

20 3 5(11]18

21 1 16

22 2 16| 18

23 2 20|22

24 2 1923

25 3 1015120

26 1 11

27 2 718

28 2 21127

29 1 19

30 3 6 |24]25

31 2 26|28
Finish Milestone 32 3 291301 31

Selection Pool
1
Randomly Selected Activity
1
Starting Order of Activities
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Table 5.2 — Generation Procedure of Left-Justified Schedules (Continued)

Activity Number | # of Predecessors [Predecessors

Start Milestone | 1 (Selected) 0

2 0

3 0

4 0

5 1 4

6 1 2

7 1 3

8 1 3

9 1 4

10 1 4

11 1 2

12 1 8

13 1 3

14 2 9112

15 1 2

16 1 10

17 2 13] 14

18 1 13

19 1 8

20 3 11]18

21 1 16

22 2 16|18

23 2 20|22

24 2 19123

25 3 101 15]20

26 1 11

27 2 718

28 2 21127

29 1 19

30 3 612425

31 2 261 28
Finish Milestone 32 3 29130( 31

Selection Pool
2,3,4
Randomly Selected Activity
3
Starting Order of Activities

JElNEEEEEEEEEEEEEEEEEE N .
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Table 5.2 — Generation Procedure of Left-Justified Schedules (Continued)

Activity Number | # of Predecessors [Predecessors
Start Milestone | 1 (Selected) 0
2 0
3 (Selected) 0
4 0
5 1 4
6 1 2
7 0
8 0
9 1 4
10 1 4
11 1 2
12 1 8
13 0
14 2 9112
15 1 2
16 1 10
17 2 13] 14
18 1 13
19 1 8
20 3 511118
21 1 16
22 2 16|18
23 2 20|22
24 2 19123
25 3 101 15]20
26 1 11
27 2 718
28 2 21127
29 1 19
30 3 612425
31 2 261 28
Finish Milestone 32 3 29130( 31
Selection Pool
2,4,7,813
Randomly Selected Activity
8
Starting Order of Activities

JEOEEEEEEEEEEEEEEEEEE N .
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Table 5.3 — Generation Procedure of Right-Justified Schedules

Activity Number | # of Successors | Successors
Start Milestone 1 3 21314
2 3 6 1115
3 3 718113
4 3 519110
5 1 20
6 1 30
7 1 27
8 3 1219127
9 1 14
10 2 1625
11 2 20126
12 1 14
13 2 1718
14 1 17
15 1 25
16 2 21122
17 1 22
18 2 2022
19 2 24129
20 2 23125
21 1 28
22 1 23
23 1 24
24 1 30
25 1 30
26 1 31
27 1 28
28 1 31
29 1 32
30 1 32
31 1 32
Finish Milestone 32 0
Selection Pool
32
Randomly Selected Activity
32
Starting Order of Activities
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Table 5.3 — Generation Procedure of Right-Justified Schedules (Continued)

Activity Number | # of Successors | Successors

Start Milestone 1 3 2134

2 3 6 |11]15

3 3 718113

4 3 519110

5 1 20

6 1 30

7 1 27

8 3 12119127

9 1 14

10 2 1625

11 2 20| 26

12 1 14

13 2 1718

14 1 17

15 1 25

16 2 21122

17 1 22

18 2 20| 22

19 2 24129

20 2 2325

21 1 28

22 1 23

23 1 24

24 1 30

25 1 30

26 1 31

27 1 28

28 1 31

29 0

30 0

31 0
Finish Milestone| 32 (Selected) 0

Selection Pool

29, 30, 31
Randomly Selected Activity
29
Starting Order of Activities

ol TP PP PP P T PP PP PP PP PPl
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Table 5.3 — Generation Procedure of Right-Justified Schedules (Continued)

Activity Number | # of Successors | Successors
Start Milestone 1 3 2134

2 3 6 |11]15
3 3 718113
4 3 519110
5 1 20
6 1 30
7 1 27
8 3 12119127
9 1 14
10 2 1625
11 2 20| 26
12 1 14
13 2 1718
14 1 17
15 1 25
16 2 21122
17 1 22
18 2 20 (22

19 (Updated) 1 24
20 2 2325
21 1 28
22 1 23
23 1 24
24 1 30
25 1 30
26 1 31
27 1 28
28 1 31

29 (Selected) 0
30 0
31 0

Finish Milestone| 32 (Selected) 0

Selection Pool
30, 31
Randomly Selected Activity
31

Starting Order of Activities

o] [ L PP PP P PP T PP TP PP TPl [T ]
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As demonstrated in Tables 5.2 and 5.3, 50 left and right populations are
produced. The complete example schedules of previous tables are introduced in

Tables 5.4 and 5.5.

Table 5.4 — Completed Left-Justified Example Schedule

Starting Order of Activities
1]3]8]7[27]2]4]5]12] 6 [11] 9 ]10]26]15]13]18]16]21]19]14[22]20]17]28]25[31]23]24]30]29]32

Table 5.5 — Completed Right-Justified Example Schedule

Starting Order of Activities
32|29|31|28|30|24|26|25|21|23|19[27|20|15|11[ 6 | 5 |22|17|16|18|13|14[10|12| 9 | 8 | 7 | 3 | 2 | 4 | 1

After creating the starting order, the activities’ start time and finish time can be
calculated. The activities are started by following starting order at first feasible
time according to their resource usage and the resource constraints in the

project.

For the left population, the start milestone can start immediately because it
doesn’t have any predecessor and the activity’s resource requirement is 0.
Therefore, the next activity in starting order is activity 3. The activity 3 has a
predecessor of start milestone and the start milestone is started and finished at
time of 0 and the activity 3 needs a 1% resource of 10. So, the activity 3 can
start at time of 0 and finish at time of 4. Next, in the starting order list, there is
an activity 8. The activity 8 has a predecessor of 3, so the activity 8 can start
after the activity 3 has finished. In addition the activity 8 requires a 2™
resource of 1 and the activity 8 can start at time of 4 and finish at time of 13
which is the activity’s duration and the activity’s start time. Next in the starting
order list there is an activity 7, the activity 7 has a predecessor of 3, so the
activity 7 can start after the activity 3 has finished. In addition the activity 7
requires a 1% resource of 4 and the activity 7 can start at time of 4 and finish at
time of 9 which is the activity’s duration (5) and the activity’s start time (4) as

illustrated in Figure 5.3.
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Figure 5.3 — Assigning the Left-Justified Schedule Start Time
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Figure 5.3 — Assigning the Left-Justified Schedule Start Time (Continued)

During assignment of activities start time and finish time, the precedence
relations and resource usages should be considered. The activity should start
immediately after its precedence is finished if there is an enough resource
throughout the activity’s duration. On the other hand, if the activity has no
predecessor but the resource is inadequate or the resource is available only for

a few days, the activity can be started first resource available day in Figure 5.4.
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Figure 5.4 — Completed Left-Justified Schedule of Example Problem
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Figure 5.4 — Completed Left-Justified Schedule of Example Problem (Continued)
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Figure 5.4 — Completed Left-Justified Schedule of Example Problem (Continued)
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Figure 5.4 — Completed Left-Justified Schedule of Example Problem (Continued)
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5.3 Parent Selection and Crossover Procedure

After producing 50 left individuals and 50 right individuals, the number of
schedules is revised and the next step is calculation of individuals’ fitness
values to guarantee that the algorithm finds appropriate matches. The fitness

values are calculated with following basic formula.

Fitness Value = 1/individual’s makespan

So, the bigger makespan means lower fitness value and that shows the
individual (schedule) is not good in terms of project makespan because the

objective of the problem is minimizing the project makespan.

After calculating the fitness values of individuals, the population is sorted
according to their fitness values and the bigger fitness value is positioned at the

top of the population as shown in Figure 5.5.

Current Population

TOP 10% (5 Schedules)
w
(0]
R
S
T 25 Schedules are
Selected Randomly
AV 4

Figure 5.5 — Sorting Mechanism of the Algorithm
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The top part of the population (5 best schedules) and the randomly selected 25
schedules from the non-top part of the population are put in a parent selection

pool in Figure 5.6.

Parent Selection Pool

Copy Top 5 Schedules

Randomly Selected 25
Schedules

Figure 5.6 — Parent Selection Pool

The first parent (called father in GA) is selected randomly from this parent
selection pool. After, the best match (called mother in GA) for that father is
found for crossover by calculating the resource utilization ratio (RUR) and

total resource utilization (TRU).

Resource utilization ratio (RUR), specifies the resource usage at time ¢ and

calculated as:

K

RUR (t,S)=(1/K) * Y > i/ ay
j € active (t,S) k=1

In the above formulation, the active (¢, S) expresses the set of activities in
schedule S at time 7. K represents the number of resources, k represents the
resource type, the rj represents the activity ;s resource requirement of

resource type k, and lastly ay is the availability of resource type k.
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After calculating RUR, the intervals where the resource usages are high and the
intervals where the resource utilization is low will be exposed. In this thesis, ¢;
and ¢, are identified as the crossover points where the TRU is maximal between
these points. To that aim, the length of the peak, / is chosen randomly between
(1/4) of makespan and (3/4) of makespan and the total resource utilization of

an interval with a start time ¢ and length / is calculated as:

T+-1
TRU (t,1,S) = > RUR (time, S)

time =t
The crossover point ¢, is set to ¢t where ¢ € [0, makespan-/] for which TRU (t, [,
S) is maximal and the second point ¢, is set to #,+/. For the rest of the intervals

the average RUR will be low.

After defining the crossover points according to father, for the remaining
intervals where the RUR is low, the best mother which has a high TRU in
intervals [0, #;] and [#,, makespan] will be found through the parent selection

pool.

Then, two-point crossover operator is applied by using random key (RK)
values of activities. The random key values are used to define the priority list
based on activity information, such as start time or finish time. For left-justified
schedules, the RK takes the value of the finish time of the activity and on the
other hand, in right-justified schedules, the RK takes the value of start time of
the activity and for the child there are 3 cases; in case 1, if mother’s RK<t;, the
child’s RK is mother’s RK-200, in case 2, t;< mother’s RK< t,, the child’s RK
is father’s RK, and in case 3, if mother’s RK> t,, the child’s RK is mother’s
RK+200.
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To prevent the ambiguous in priority structure the large constant 200 is used.
Thus, the usage of mother’s best part in terms of resource usage will be

guaranteed.

The example project is taken from (Debels and Vanhoucke, 2007) and the
information, the precedence relations, example schedules of father and mother,
the RUR and TRU profiles, crossover calculations, and the child schedule are
illustrated at Table 5.6, Figure 5.7, 5.8, 5.9, 5.10, Table 5.7, and Figure 5.11,

respectively.

Table 5.6 — Example Project Information for Crossover Operator

Al* Ag| A3 | Ag| As| Ag | A7 | Ag | Ag [AjofAr1|Araf|Ars[ArafArs|Ars|Ar|Ars|Aro|Aso|Asi
Duration O[2]5(8]1]10/9]|2]|3|8]6]16]|9]2]|8]6]|10]5]38
ResourceUsage | O | 2| 2| 6| 5|53 [4|7|3[|2|4|4|4]|4(1[1]3]2[3][6O0

* These activities are project’s start and finish milestones, respectively.

The resource availability is 10 for this example project. The colored activities
express the activities which belong to case 2, and hence priority values of

father are same with child’s. In this example, the large constant is taken 50.

Figure 5.7 — Precedence Chart of Example Project for Crossover Operator
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Figure 5.8 — The Schedule of Father for Crossover
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RURC(t, Father)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

L

TRU(11, 19, Father) = 16.8

0|1 |z | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10|11 12|13|14|15|16|17|18|l9|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46 47|48|Time
Figure 5.10 — RUR Profile of Father
)
O
Table 5.7 — Random Key Values of the Crossover Operator
Activity 1 2 3 4.5 6 7 8.9 10 11 12 13 14 15 16 17 18 19 20 21
RKofFather | O | 2 | 5|11 312120 2 (241293014338 7 (32|38|17]137(46]| 41| 46
RKofMother | O 2 | 5| 8 | 19|18 17| 7 |30(27136(43139(19]|27(36]129(34147|37]|47
RK of Child [-50]-48-45(-42 3 | 21|20(-43]24]129|86]193|89| 7 |132|86]|17|84197|87|97
Chid StartTme| O | 4 | 1 | O] 8 | 9 10| 6 | 1919323827 8 |22[30]26|36]|36|41] 44
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Figure 5.11 — The Schedule of Child



As shown in Table 5.7, the random key values are activities’ finish time
because father and mother schedules are left-justified schedules. In addition, in
this example, the length of the peak, / is chosen 19, which should be between
(1/4) of makespan which is 11.5 and (3/4) of makespan which is 34.5.
Moreover, the maximum TRU, which is 16.8, is found between 11 and 30 as

seen on Figure 5.10.

Finally, the child schedule is produced. Father and mother schedules were left-
justified schedules, so that the child schedule is right-justified schedule and its
random key values are start time of activities. After crossover operator, the
crossover applied schedules are replaced with randomly selected individuals

from non-top part of the population.

5.4 Mutation Procedure

After crossover operator, the mutation procedure takes place, in proposed
algorithm the mutation rate is %2 which means, just one individual is chosen
from the population. First, one of the schedules is selected randomly from
entire population. Second, one of the activities is selected randomly from the
schedule except start and finish milestones because they are not allowed to
modify. Third, the selected activity’s predecessors’ and successors’ positions
are detected to guarantee that there will be no improper precedence relationship
between activities in the schedule. After, without changing the relations, the
randomly selected activity is shifted with another randomly selected activity.
Then, the makespan of the new schedule is found and the mutation is accepted
if the new makespan is better that previous makespan of the schedule. The
accepted schedule is replaced with the previous schedule. Finally, the schedule

is accepted or not the number of schedules is revised.
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The previous example will be used to illustrate the mutation operator in Figure

5.12.

Activity Starting Order
1]2[5]3[6]4]7]8]14]9[11]12][10]15[16]13[19]17[18]20[21

Randomly Selected Activity
13

Successors of Activity 13
19

Predecessors of Activity 13
9 and 10

The Appropriate Activities to be Replaced with Activity 13
16

Figure 5.12 — Application of Mutation Operator

In the example schedule, the randomly selected activity is 13 and it has a
successor of 19 and the predecessors of 9 and 10. In terms of activity 13’s
precedence constraints, in starting order list, the activities between 10 and 19
are appropriate to replaced with. On the other hand, in terms of activity 15’s
precedence constraints, activity 16 is the successor of activity 15, if this
replacement occurs the activity 15 will be successor of the activity 16 which is

not possible. So, there is only choice to replace activity 13 with activity 16.
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CHAPTER 6

COMPUTATIONAL RESULTS

6.1 Computational Results

Throughout the development of this algorithm, some minor changes have been
made in the algorithm and these modified alternatives have been tested on 48
problems with 300 activities. Some of the modifications have outperformed the

first developed algorithm and some of them have a very little effect on GA.

In original algorithm, the father was selected from top population and the
mother was selected from entire population by using the two-tournament
selection where the nominees are chosen randomly from whole population, and

the individual with better (lower) makespan is selected.

In first alternative, 3 schedules have been produced from crossover and other 2
has been added later to the population. In second alternative (final algorithm),
the best mother has been selected thorough 30 individuals. In third alternative,
the top population has not been kept, so the all 30 individuals have been
selected randomly, and in the last alternative, simulated annealing has been

applied during mutation. Results of algorithms are proposed in Table 6.1.

The algorithm’s performance is tested on 480 example problems with 30
activities, 480 example problems with 60 activities, 600 example problems
with 120 activities, and 480 example problems with 300 activities. These
problems can be found on PSPLIB website (http://129.187.106.231/psplib). All
tests have been accomplished by a PC with 12 GB RAM and an Intel Core 17

3.06GH Processing Unit. The computer’s operating system was Windows 7
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Professional (64 bit) operating system. The results are showed in Table 6.2.
The upper bounds (UB) are the best found solution ever, and lower bounds

(LB) are the CPM durations (without any resource constraints).

Table 6.1 — Computational Results Other Alternatives

Algorithm Testing Criteria Number of Schedules
1000
Oricinal Avg.Dev.Ub 5.26%
e Avg Dev.Lb 877.19%
Lt Avg.Dev.Ub 5.20%
Avg.Dev.Lb 875.95%
Avg.Dev.Ub 4.80%
2nd (final
nd (fmal) Avg Dev.Lb 871.74%
ard Avg.Dev.Ub 5.21%
Avg.Dev.Lb 875.37%
Ath Avg.Dev.Ub 5.00%
Avg.Dev.Lb 873.36%

Table 6.2 — Computational Results of PSPLIB Problems

Number of Activities Testing Criteria Number l(z)f()%chedules

30 Avg.Dev.Ub 1.42%
Avg.Dev.Lb 15.35%

60 Avg.Dev.Ub 3.06%
Avg.Dev.Lb 14.65%

120 Avg.Dev.Ub 8.87%
Avg.Dev.Lb 42.62%

300 Avg.Dev.Ub 4.96%
Avg.Dev.Lb 860.25%
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6.2 Comparison with Primavera Results

Randomly selected 40 problems; 10 problems from each problem sets with 30,
60, 120, and 300 activities have been tested by the algorithm. The selected
problem sets have been also tested by Primavera Project Planner (P6 version
7.0) for comparison. The problems’ CPM lower bounds and upper bounds (best

known solutions) have been known.

The activities are entered to the software with their resource requirements,
durations, and the relations with other activities and scheduled according to
five different algorithms; Activity ID, Total Float, Late Finish, Early Start, and
Free Float. The algorithms are used in both ascending and descending order,
therefore in total 10 algorithms are compared with final algorithm in Table 6.3

and Table 6.4.

According to Primavera results, the Avg. Dev. L.B. and Avg. Dev. U.B. have
been calculated for comparison in Table 6.5, Table 6.6, Table 6.7, and Table
6.8. As seen on tables, in 30 activities, the best solution of Primavera has an
Avg. Dev. L.B. of 84.90% in late finish ascending algorithm while the final
algorithm has an Avg. Dev. L.B. of 64.37%. In 60 activities, the best solution
of Primavera has an Avg. Dev. L.B. of 90.89% in late finish ascending
algorithm while the final algorithm has an Avg. Dev. L.B. of 66.06%. In 120
activities, the best solution of Primavera has an Avg. Dev. L.B. of 155.63% in
late finish ascending algorithm while the final algorithm has an Avg. Dev. L.B.
of 128.79%. In 300 activities, the best solution of Primavera has an Avg. Dev.
L.B. of 1261.82% in late finish ascending algorithm while the final algorithm
has an Avg. Dev. L.B. of 1231.23%. The final algorithm has obviously

outperformed the Primavera Project Planner software.
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The MS Project software uses the same algorithms with Primavera’s Total
Float (Ascending) and Activity ID algorithms. Hence, the MS Project 2010

software has not been tested.

The best five Primavera algorithms for solving the RCPSPs with 30 activities
are; Late Finish (Ascending), Total Float (Ascending), Early Start (Ascending),
Free Float (Ascending), and Early Start (Descending), respectively. The best
five Primavera algorithms for solving the RCPSPs with 60 activities are; Late
Finish (Ascending), Early Start (Ascending), Total Float (Ascending), Free
Float (Ascending), and Activity ID (Ascending), respectively. The best five
Primavera algorithms for solving the RCPSPs with 120 activities are; Late
Finish (Ascending), Early Start (Ascending), Total Float (Ascending), Free
Float (Ascending), and Activity ID (Ascending), respectively. The best five
Primavera algorithms for solving the RCPSPs with 300 activities are; Late
Finish (Ascending), Early Start (Ascending), Total Float (Ascending), Free
Float (Ascending), and Activity ID (Ascending), respectively.

According to the results, the best algorithm is same for all type of problems
with 30, 60, 120, and 300 activities. Late Finish (Ascending) algorithm
outperforms all other algorithms in Primavera. In addition, among the other
heuristic algorithms in Primavera, the Early Start (Ascending) and Total Float

(Ascending) algorithms perform relatively well.
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Table 6.3 —Comparison of Makespans (30 and 60 activities)

€9

ActivityNurdber | Set CPML.E[UE. [t ID (Asc) [Act ID (Des )| TF (Asc )| TF (Des)|LF (hsc J[LF (Des )|ES (fsc )|ES (Des |FF {hsc J[FF (Des)| Fonl Alzoittm
0 1 51 |7 24 o2 53 101 g6 05 02 £5 T 26 72
2 70 | 129 148 158 148 159 147 164 | 142 162 | 152 | 158 120
3 65 | 103 107 119 116 126 111 126 | 111 111 117 | 118 103
4 34 | 58 3 27 0 28 &6 23 3 75 71 6 61
5 45 | 1% o3 102 108 110 &7 110 03 04 | 110 03 21
é 43 | &7 95 52 79 106 g1 106 81 £l 9g o4 10
7 44 | 64 o3 &3 73 g8 74 &7 83 75 20 51 66
g 44 | 7% 106 28 85 123 02 105 07 o9 23 105 73
g 62 | a3 109 111 102 110 102 110 | 107 w3 | 102 | 108 27
10 s0 | a0 113 119 05 126 o1 124 09 120 | 101 117 g5
60 1 69 [112 145 155 145 165 142 170 | 143 144 | 142 [ 157 119
2 65 | 12 108 86 73 150 52 130 23 105 04 111 72
3 g5 | 110 155 142 132 176 132 174 | 148 155 | 144 | 152 112
4 20 | 144 127 205 13 109 170 195 | 169 | 218 | 165 | 195 153
5 74 | 109 157 137 135 175 137 178 | 136 183 | 143 | 144 118
f 75 | 112 130 160 152 163 139 174 | 143 151 160 | 136 119
7 67 |115 162 161 160 181 142 171 130 164 | 156 | 170 121
g 78 [144 174 197 197 186 175 193 | 172 186 | 178 | 181 156
9 79 [129 174 173 160 191 151 189 | 160 162 | 164 | 178 157
10 73 [123 1358 165 151 161 146 170 | 152 161 152 [ 158 133




Table 6.4 — Comparison of Makespans (120 and 300 activities)

125

ActivityNurdber | Set CPML. E[UE. [t ID (Asc) [Act ID (Des )| TF (Asc )[TF (Des)|LF (&sc J[LF (Des [ES (fsc)|ES (Des |FF fhsc J[FF (Des)|  Foal dlgrit
120 1 0z | 213 256 257 260 332 259 30 | 263 | 287 | 269 | 304 737
2 07 |z34| 311 327 207 540 293 542 | 295 | 317 | 308 | 32 261
3 0o | 289 06 387 377 449 356 M7 | 346 | 416 | 375 | 405 324
4 103 | 147 200 220 207 266 106 250 | 200 | 233 | 217 | 218 162
5 104|215 285 337 285 327 256 352 | 281 305 | 306 | 302 245
é o1 [144 154 154 197 230 181 20 [ 195 19d | 197 [ 198 161
7 05 [237 311 315 289 5340 292 351 | 204 | 341 | =09 [ S0 264
g 117|230 370 407 370 300 356 405 | 352 | 4ot | ma7 | 376 310
g 120|200 275 277 260 205 230 224 | 244 | 274 | 271 [ 273 217
10 | 121 [167 228 230 215 265 197 267 | 213 | 240 | 27 [ 237 182
300 1 41 |18 216 228 203 2720 204 | 240 [ 208 | w2 | 204 [ 219 154
2 42 [s31 0g2 o4 oop | 1065 | EsR oté | ooz | oese | sz [ 101s 261
3 N EANEE 1002 043 | 1069 | 511 | 1004 | 929 | 1006 | 960 | 1017 270
4 a0 |1512] 1570 1603 1571 | 1563 | 1529 | 1605 | 1558 | 1582 | 1572 | 1s8s 1531
5 61 | 758 0% 501 g62 | 1110 | @62 | 1110 | &5 | 928 | &78 | 1o0l B0
6 | 142 [1a12] 1457 1456 1468 | 1510 | 1455 | 1503 | 1458 | 1464 | 1475 | 1513 1438
7 | 1069 |1162] 1203 1247 1200 | 1260 | 1195 | 1257 | 1201 | 1220 | 1206 | 1260 1167
g | 1111 [1576] 1577 1576 1576 | 1579 | 1577 | 1577 | 1577 | 1577 | 157 | 1579 1576
9 sg [a4] 437 477 445 457 428 ait [ azs | aew | 483 [ 457 420
10 64 [1526] 1592 1617 1602 | 1622 [ 1563 | et | 1600 [ 1616 [ 1578 | 1629 1544
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Table 6.5 — Comparison of Deviations from L.B. (30 and 60 activities)

Dev. LB. (%)
Artivity Nuber | Set |CPML. BJUB. [Act ID {Asc )[dct 1D (Des. )| TF (dsc )| TF {Des |LF {&sc J|LF (Des.)[ES (&se |ES (Des )|FF (fsc J[FF (Des)|  Fonl Alzoritim

30 1 51 1 64.71 £0.30 6275 | ve0d | 63 | 2627 | 2039 | e667 | 7451 | 6863 4L15

2 0 (1] 114 12571 [ 11143 | 12704 | 1000 | 13420 | 10236 | 15143 | 11704 [ 12570 £4.20

3 65 | 103 | 6462 53.02 7846 | 0385 | 7077 | 9385 | 7097 | 0.7 | 2000 | 2154 5546

4 34 [ 52 [ 11471 15588 | 10532 [ 1582 | o412 [ 14412 [ 11471 [ 12050 | 132 | 12353 70.41

5 45 [ 76 [ 106s7 12667 | 14000 | 1444 | 9333 | 14444 | 10667 [ 15000 | 14444 | 10667 £0.00

é 45 | 67| 12093 00.70 8572 | 14651 | 8837 | 14651 | 8837 | 8837 | 12791 | 11860 6279

7 4 [ea | 11138 g264 | 6501 | 1000 | e=1g | 9773 | 2844 | 7727 | 2132 [ 10682 50.00

g 4 [ 76 [ 14091 10000 | 9318 [ 1755 [ 10009 | 13264 | 12045 [ 12500 [ 10000 | 13864 7727

o 62 | 85 | 7581 75.03 6452 | 1742 | 6452 | 7742 | 7258 | 6615 | 6452 | 7410 4052

10 0 [s0 [ 12400 13800 | o000 | 15200 | e200 | 1400 | s=oo0 [ 1ssoo | to2oo | 13400 0.00

v Dev. LB (%) 103.71 0631 | 2058 | 12778 | 8400 | 12013 | 9434 [ 10353 | 10012 | 10783 6437

&0 1 69 |112] 11014 12464 | 11014 | 139.13 | 10580 | 14638 | 10725 | 10870 | 105.80 | 127.54 T2.46

2 65 |72 | 6A.lS 32.31 1231 [ 1077 [ 2615 [ 13077 | 2760 [ 6154 [ 4462 | 7077 10.77

3 g5 (10| 8335 67.06 6235 | 10706 | 5520 10471 | 7412 | 2235 | eo41 | 7832 3176

4 20 [ 144 13375 15625 | 12875 | 148.75 | 12375 | 14375 | 11125 | 17250 | 10625 | 143.75 0125

5 74 109 11216 8514 | #2243 | 14054 | 8514 [ 14054 | 8378 [ 14730 | 9324 | 9459 59.46

6 75 |nz| 8533 11333 | 10267 | 12400 | 8533 | 13200 | s067 | 10033 | 11333 | 8133 SE6T

7 61 | 115| 14179 14030 | 13881 | 17015 | 11194 | 15522 | 10746 | 14478 | 152384 | 153.73 2060

E T8 |14 17308 15256 | 15456 | 138.46 | 12436 | 14744 | 12051 | 13846 | 12521 | 13205 100.00

g 19 129 12035 11599 [ 10253 | 14077 | 914 | 13924 [ 10253 [ 11392 | 10759 | 12532 7342

10 T3 | 123] 11644 12603 | 10685 | 120.55 | 10000 | 13288 | 10822 | 12055 | 1822 | 11644 5219

bve Dev. LB (%) 109.15 11166 | 0904 | 1312 | 9080 | 13729 | 9335 | 11914 | 10095 | 11243 66.06
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Table 6.6 — Comparison of Deviations from L.B. (120 and 300 activities)

Dev. LB. (%)
artivity Mudber | Set |CPML. BJUE. [Act 1D {Asc )[dct. ID (Des. )| TF (dsc )| TF (Des JLF {dsc )|LF (Des.)[ES (dsc |ES (Des |FF (fsc |FF (Des)|  Frul Alzwitm
120 1 og | 213] 19184 19286 | 17449 | 778 [ 16429 | 73673 | 16837 [ 19286 | 17449 | 21020 141 84
2 o7 [234] 22042 23711 | 20619 | 2%0.79 | 20206 | 25258 [ 20206 | 22680 | 20753 [ 23003 16007
3 00 289 30000 20091 | 28081 | 353.54 | 250.60 | 35152 | 249.49 | 32020 | 278.79 | 309.00 2127
4 03 [147] 10291 12233 [ 10097 | 1525 [ 9020 | 15146 | 9407 [ 12620 | 11063 | 11165 63.11
5 4 [215] 17404 22404 | 17404 | 21442 [ 17500 | 23846 [ 17049 | 19327 | 10423 [ 19038 135.58
é ol (144 11319 11310 | 11648 | 15275 | 9800 | 14176 | 11429 | 11310 | 11648 | 11758 76.02
7 05 [237] 27747 23158 | 20421 | 25730 | 20737 | 26947 [ 20047 | 25205 | 22526 [ 22632 17789
g 117 [ze0] 21624 24786 | 21624 | 24105 | 20427 [ 24615 [ 20085 | 24274 | 19658 [ 22137 164.96
o 120 200 12917 13083 | 11667 | 145.85 | 9167 | 13667 | 10333 | 12833 | 12583 | 12750 B0.E3
| 12t [1e7] seam 00.02 7760 | 11901 | 6281 | 12066 | 7603 | 9835 | 7934 | 9537 50.41
v Dev. LB (%) 176,38 18808 | 16672 | 21415 [ 15563 | 21455 | 15883 [ 10000 | 17192 | 18400 12879
300 1 A 188 42683 456,10 | 39512 | 4%.59 | 39756 | 485.37 | 407.32 | 417.07 | 397.56 | 434.15 37317
2 42 |31 zz3s10 | 219524 [2064.29] 248571 [2014.20 (222381 (2047 62 | 225238 | 206100 [ 231667 19150.00
3 M [z32] 234634 | 235854 2000000250732 212195 (234878 [ 216585 ] 235366 | 2241 46 [ 238049 2043.90
4 40 [1512| 383500 | 3907.50 | 3827.50| 3807.50 | 3722.50 | 3912.50 | 3795.00 | 3855.00 | 3845.00 | 3862.50 372750
5 61 [ 752 tasa10 | 137705 (151301171967 (151501 [1719.67 [ 130328 | 1421 51 [ 1559.34 [ 154098 1216.39
6 | 1142 [1a412] 2758 531.00 2555 | 3222 | 2741 [ 3161 | 2767 | 2820 | 2016 | 3240 2552
T | 1069 |1162] 12.54 16,65 1225 | 1787 | 1179 | 1759 | 1235 | 1413 | 1282 | 1787 017
g | 1111 [1576] 4194 4133 185 | 4212 | 4194 | 41904 | 4194 | 4194 | 4185 | 4212 ALE5
g 59 |[a14] sanes 10247 | 654.24 | 67458 | 62542 | 69831 [ 62034 | 69492 | 68475 [ 67458 611 86
10 64 |1526] 238750 | 242656 | 2403.13| 28438 234210 |2417.19 | 240000 | 242500 | 236563 | 2445 31 231250
bve Dev. LB (%) 134006 | 135190 | 1294.00] 1410.80 | 126182 | 138968 | 1282 14] 135036 | 1301.95 | 1374.72 123123




Table 6.7 — Comparison of Deviations from U.B. (30 and 60 activities)

L9

Dev, TLB. (%)
Lotivity Muber | Set |CPRMIL. B [UER. |Act ID{tee )| Act ID (Des) | TF {Lae )|TF (Des)|LF (Aac )L Des)|ES (Asc )|ES (Des)|FF (fec )[FF (Des ) Final Alzorittm

30 1 ] T 15.31 2958 1690 | 4235 | 2113 | 3380 | 2058 | 1992 | 2535 | 2113 1.41

2 70 129 1473 2348 1473 | 2338 | 1305 | 2713 | 1008 | 2558 | 1783 | 2248 0.00

3 65 103 328 15.53 1262 | 2333 Ny 2333 Ay Ny 1359 | 1454 0.00

4 34 58 25.86 50.00 2069 | 5172 ) 1379 | 4310 | 2584 | D31 | 2241 | 3103 217

] 45 16 22.37 344 4211 | 4474 | 1447 | 4474 | 2237 | 334 | 4474 | 2237 658

f 43 67 41.79 232.39 1701 | 5831 | 2000 | 5831 | 2090 | 2090 | 4437 | 4030 4.4

T 44 £ 45.31 20.69 1406 | 3750 | 1563 | 35094 | 2040 | 2128 | 2500 | 4219 313

a 44 16 39.47 1579 1134 | 6134 | 2105 | 3516 | 27643 | 3024 | 1579 | 3514 263

o 62 25 28.24 30.59 2000 | 2941 | 2000 | 2941 | 2588 | 2118 | 2000 | 2704 235

10 S0 20 41.25 45705 1875 | 5750 | 1375 | 5500 | 2375 | 6135 | 2635 | 4435 .25

Lovg, D LB (%0 2512 29.90 1596 | 4288 | 1624 | 3578 | 2335 | 047 | 25702 | 3055 3.20
a0 1 69 112 2946 35.39 2046 | 4732 | 2609 | 5109 | 2748 | ABST | 2609 | 4018 .25

2 65 T 50.00 19.44 139 | 10833 [ 1389 | 10833 | 15328 | 4583 [ 3056 | 5417 0.00

3 25 110 40.M 20.09 2545 | a000 | 2000 | 5518 | 3455 | 4091 | 3091 | 351E 1.:3

4 a0 144 29.86 42.36 27058 | 3519 | 2431 | 3542 | 1734 | 5139 | 1458 | 3542 .25

] 4 109 44.04 25.69 2385 | 6330 | 25649 | 6330 [ 2477 | &78F | 3118 [ 3211 226

] 15 112 2411 4326 3571 | S000 | 2411 | 5536 | ATAE | 3483 | 4384 | 2143 .25

T 67 115 40.87 40.00 3013 | 5739 ) 234 | 45770 | 208T | LAl | 3545 | 4T 222

a Ta 144 20.83 36.51 3681 | 2907 | 2153 | 3403 | 1944 | 21T | 2341 | 2549 833

o ™ 129 3488 341 2403 | 4808 | 17.05 | 4651 | 2403 | 3101 | 2713 | 3708 .20

10 = 123 2546 34.15 22706 | 3029 | 18 | 381 | A35E | WED | I35 | JEAA 213

Lovg, D LB (%0 34.34 34.29 2057 | 5337 | 2155 | 55398 [ 2535Y | 4031 | 2EA9 | 3614 587




Table 6.8 — Comparison of Deviations from U.B. (120 and 300 activities)

89

Dev, TLB. (%)
Lty Mmber | Set |CPML B UBR. &t ID (bse ) | Set TD(Des. ) [TF (fae )(TF (Des )T F (far JIF (Des)|ES (Asc j|ES (Des FF (fsc )FF(Des )|  Fiwl Alzorithm
120 1 ga 213 34.27 3474 26029 | S58Y | 2140 | 5493 | 2347 | M4 | 2639 | 4272 11.27
2 o7 234 320 3074 2600 | 40015 | 253 | 4615 | 2531 | 3547 | 3142 | 3T1E 11.54
3 o9 220 37.02 33m 3045 | 5536 | 2318 | 5447 [ 1874 | 404 | 2074 | 4014 12.11
4 103 147 4218 5578 4082 | B085 | 3333 | 7619 | 3605 | 3850 | 4742 | 4530 1429
] 104 215 32.56 S6.74 3256 | SE09 | 3302 | 4372 | 3070 | M B4 | 4233 | 4047 1395
f o0 144 34.72 34.72 3621 | 5902 | 2540 | SR | 3542 | 3472 | 3481 | 3750 11.81
T 05 237 3.2 32m 2194 | 4348 | 2331 | 4510 | 2405 | LEE | 3038 | 3020 11.39
a 117 280 32.14 45.36 3214 | 4250 | 2714 | 4444 | 2571 | 4321 | 2393 | 3429 10.71
o 120 200 37.50 38.50 3000 | 4750 | 1500 | 4200 | 2200 | 3700 | 3550 | 3450 250
10 141 167 36.53 3102 28704 | SEEE | 1704 | S0EE | AY54 | 471 | 2004 | 41092 208
Lovg, D LB (%0 a5 41.01 3067 | 5453 | 2454 | 5431 | 2699 | 4171 | 3542 | 3598 11.44
300 1 4 155 1459 21.28 198 17.02 2.5l 2766 | 1064 | 12707 a.51 1649 3.19
2 432 231 18.17 16.00 030 4214 6.3 17.45 2.54 12 50 o 2214 3.41
3 41 232 20.55 .15 1334 | 2549 0.x 2067 [ 11466 | 2091 | 1538 | 2224 285
4 40 1512 334 .02 3.50 337 112 6.15 3.04 443 437 4.83 124
] 61 153 25.07 15.87 1372 | 4644 | 1372 | 4644 | 1293 | D243 | 1583 | 32048 294
] 1144 11413 3.19 505 307 6.94 3.05 .44 324 368 4.44 115 1.24
T 1068|1142 353 131 i 243 234 218 3368 4099 379 243 0.43
a 1111 1574 0.04 0.00 0.00 n1g 0.6 0.0a 0.06 004 0.00 0.1% 0.00
o 59 414 5.56 1533 749 10.39 3% 1377 2.66 1320 | 1184 | 1039 1.45
10 64 1526 433 5.96 4.9% 6.20 2.4 557 425 500 341 6.5 1.1%
Lovg, D LB (%0 .52 11.78 .20 15.57 515 1524 | é.10 10775 TAE 1307 245




6.2.1 T-Test for Controlling the Statistical Significance

The t-test is the most commonly used process for hypothesis control that examines
if the means of two data sets are statistically different from each other. Thus, the
differences between best Primavera algorithm and final algorithm can be checked
easily if the difference is significant or not. The best Primavera algorithm in terms

of Avg. Dev. From L.B. (Late Finish (Ascending)) is selected as a control data in

Table 6.9. The t-test results are showed in Table 6.10.

Table 6.9 — T Test

T-Test for Avg. Dev. From L.B.

Activity Number| Set | LF (Asc.) |Proposed Algorithm
30 1 68.63 41.18
2 110.00 84.29
3 70.77 58.46
4 94.12 79.41
5 93.33 80.00
6 88.37 62.79
7 68.18 50.00
8 109.09 77.27
9 64.52 40.32
10 82.00 70.00
60 1 105.80 72.46
2 26.15 10.77
3 55.29 31.76
4 123.75 91.25
5 85.14 59.46
6 85.33 58.67
7 111.94 80.60
8 124.36 100.00
9 91.14 73.42
10 100.00 82.19
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Table 6.9 — T Test (Continued)

120 1 164.29 141.84
2 202.06 169.07
3 259.60 227.27
4 90.29 63.11
5 175.00 135.58
6 98.90 76.92
7 207.37 177.89
8 204.27 164.96
9 91.67 80.83
10 62.81 50.41

300 1 397.56 373.17
2 2014.29 1950.00
3 2121.95 2043.90
4 3722.50 3727.50
5 1313.11 1216.39
6 27.41 25.92
7 11.79 9.17
8 41.94 41.85
9 625.42 611.86
10 2342.19 2312.50

Table 6.10 — T Test Results

T-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 378.22661 | 352.6437162
Variance 583663.51| 575861.3443
Observations 43 43
Pearson Correlation| 0.9997309
Hypothesized Mean 0
df 42
t Stat 9.1204633
P(T<=t) one-tail 8.136E-12
t Critical one-tail 1.6819524
P(T<=t) two-tail 1.627E-11
t Critical two-tail 2.0180817
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In Table 6.10, the one-tail values will be considered because the final algorithm
outperforms almost all the Primavera results. The t Stat value is found by dividing
the mean of the differences of compared data to standard error. T critical one-tail
is the value is used to decide the significance of differences. As seen on Table
6.10, t Stat value is bigger than t critical one-tail value which means the difference
between Avg. Dev. from L.B. is significant and the small P one-tail value
expresses how critical is it. The P value is very small which shows the significance
is very big between these two data sets. Hence, the final algorithm is significantly

better than the best algorithm of Primavera for the RCPSP.

6.3 Comparison with Published Articles

This final algorithm has been also tested on a few problems in published articles.
The following two problems are taken from (Anagnostopoulos K. and Koulinas

G., 2011).

In first case, there are 15 activities with a resource constraint of 14 and the CPM
solution is 34 days. The MS Project software extends the duration to 71 days and
the proposed algorithm in the (Anagnostopoulos K. and Koulinas G., 2011) and
the final algorithm in this thesis reduces the duration to 54 days, expresses the
23.9% improvement on MS Project’s solution. The network data of the problem,
the initial gantt chart, the best found schedule by their algorithm and the best
found schedule by final algorithm in this thesis are showed in Table 6.11, Figure
6.1, Figure 6.2, and Table 6.12, respectively.
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Table 6.11 — The Network Data of 1% Case

Activity Name| Duration [Predecessors|Resource Demand

A 17 3

B 18 3

C 17 9

D 8 A, C 9

E 5 4

F 6 2

G 7 1

H 9 B,D,G 1

I 11 B, F 6

J 18 E 4

K 13 B 4

L 3 A 7

M 12 A 3

N 12 6

o 11 2

PI‘O‘]e'Ct 34
Duration
.................. SRR ROROORUROUOHOROUTOONID .- 2., 4 SOOI U OO OO
ACtI\.I'It}f Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

A | |
B | |
c | |
D |
E 1
F .
G EEEEEE
H |
| | |
J I |
K I |
- |
M |
N | |
0o | |

Figure 6.1 — The Initial Gantt Chart for 1* Case
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) 10 15 20 29 30 3o 40 45 o0 54
Project duration

Figure 6.2 — The Best Found Schedule by Published Article for 1% Case

Table 6.12 — The Best Found Schedule by Final Algorithm for 1% Case

Activity  [Start Time|Finish Time
12 41 54
14 42 54
10 43 54
9 45 54
11 25 43
13 37 40
15 25 37
5 17 25
3 23 41

18 23
16 7 18
4 0 17
2 0 17
8 30 37
7 1 7
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In second case, there are 17 activities with a resource constraint of 6 and the CPM
solution is 126 days. The MS Project software extends the duration to 154 days
and the proposed algorithm in (Anagnostopoulos K. and Koulinas G., 2011) and
the final algorithm in this thesis reduces the duration to 133 days, expresses the
13.63% improvement on MS Project’s solution. The network data of the problem,
the initial gantt chart, the best found schedule by their algorithm and the best
found schedule by final algorithm in this thesis are showed in Table 6.13, Figure
6.3, Figure 6.4, and Table 6.14, respectively.

Table 6.13 — The Network Data of 2™ Case

Activity Name| Duration [Predecessors|Resource Demand
0-8 70 1 1
0-5 33 1 1
0-2 20 1 1
1-5 37 1 1
1-3 40 1 1
1-6 56 4 1
2-7 67 4 1
2-9 78 4 1
2-8 59 6 1
3-9 54 6 1
3-8 54 1 1
4-6 43 1 1
4-5 29 1 1
5-7 37 14,5,3 1
6-9 29 7,13 1
7-9 11 15,8 1
8-9 32 2,12, 10 1

PI‘O]C.Ct 126
Duration
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Activily Name |1 7 13 19 25 3 37 43 40 55 61 67 73 79 85 91 97 103 109 115 121 127 133
08 | [
0-5 T
0-2
15 I
13 |
16 |
2.7 I
29 [ |
28 | |
39 ]
2s | [
4.6 ]
45 /)
57 [ ]
6-9
7 —
-9 | |
Figure 6.3 — The Best Found Schedule by Published Article for 2" Case

Table 6.14 — The Best Found Schedule by Final Algorithm for 2" Case

Activity  |Start Time|Finish Time
8-9 55 133
4-5 101 133
6-9 122 133
5-7 79 133
7-9 55 122
3-9 85 122
3-8 42 101
2-8 47 101
4-6 104 133
0-5 56 85
0-8 9 79
1-3 0 56
0-2 22 55
2-9 11 54
1-6 7 47
2-7 5 42
1-5 2 22
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In another article (Zhang et al., 2006), the permutation-based PSO is proposed to
solve RCPSP and the suggested algorithms are tested in 3 different projects and
the projects networks are presented in Figure 6.4, Figure 6.5, and Figure 6.6,

respectively.

L1 1,12

Figure 6.5 — Project Network for the 2™ Project
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Figure 6.6 — Project Network for the 31 Project

As seen on previous figures the networks type is activity-on-node and the number
above the node expresses the duration and the numbers below the node are the
resource requirements (usages) of the activities. The resource constraints are

presented in Table 6.15.

Table 6.15 — The Resource Constraints of the Projects

Project 1 Project 2 Project 3
Type
Resource type I 2 1 2 3 I 2 3
Resource amount + - 6 6 6 6 6 6

The minimal project durations from different approaches are presented in Table
6.16 and the solution of the projects obtained from the final algorithm in this thesis
are presented in Table 6.17, Table 6.18, and Table 6.19.
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Table 6.16 — The Project Makespans from Different Approaches

Project MINAS SAD MILF1 GA PSO
Project 1 16 18 18 14 14
Project 2 24 23 22 22 22
Project 3 71 68 64 61 61

In Table 6.16, the MINAS represent the minimum activity slack (give priority to
one with minimum activity slack, which is computed without considering resource
constraints), the SAD represent the shortest activity duration (give priority to one
with shortest duration), the MILFT represent the minimum late finish time (give
priority to one with minimum late finish time), the GA represents a permutation-
based GA, and the PSO represents the permutation-based particle swarm

optimization (Zhang et al., 2006).

Table 6.17 — The Best Found Schedule by Final Algorithm for 1% Project

Activity  [Start Time|Finish Time
8 9 15
4 10 15
7 4 10
3 6 9
5 2 6
6 2 4
2 0 2

In the first project, the best found solution is 15 days in final algorithm in this
thesis. On the other hand, (Zhang et al., 2006) claimed that they obtained the
makespan of 14 days. Thus, the problem is tested again in RESCON software
which provides the exact solution for the RCPSP. The software found the solution
of 15 days too. Therefore, there is an error in (Zhang et al., 2006) in terms of
project makespan. In addition, for the second project our algorithm found the same
solution of 22 with the algorithm in (Zhang et al., 2006), and for the third project
our algorithm found 62 days instead of 61 days that found by (Zhang et al., 2006).
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Table 6.18 — The Best Found Schedule by Final Algorithm for 2™ Project

Activity |Start Time|Finish Time
2 0 3
3 0 5
5 5 7
7 7 13
6 7 10
8 10 14
9 14 19
10 13 17
11 17 19
7 19 22
12 19 22

Table 6.19 — The Best Found Schedule by Final Algorithm for 31 Project

Activity  |Start Time|Finish Time
2 2 5
3 5 9
4 9 12
8 12 16
7 16 17
5 17 21
10 21 22
15 22 28
12 22 25
6 25 27
16 28 32
18 32 35
9 32 38
11 35 38
20 38 39
14 39 42
19 42 46
23 46 47
24 46 52
13 47 50
17 52 55
21 55 59
22 55 59
26 59 62
25 59 62
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As a result, the final algorithm has found the same result with compared
algorithms; (Anagnostopoulos K. and Koulinas G., 2011) and (Zhang et al., 2006)
in 4 problems. In addition, the final algorithm has found the project duration, one

day more than the solution presented in (Zhang et al., 2006).
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CHAPTER 7

SUMMARY AND CONCLUSION

In this study, a genetic algorithm for solving resource-constrained project
scheduling problem is proposed. The presented algorithm is capable of solving the
RCPSPs with 30, 60, 120, and 300 activities with 4 different resources. The
algorithm considers constrained resources and activity relationships at the same

time.

In contrast to traditional genetic algorithms, two different initial population are
used, the left population that is produced by forward scheduling and the right
population that is produced by backward scheduling. In doing so, maintaining the
diversity, which is essential part of evolutionary algorithms, has been achieved. In
addition, the probability of crossing over similar population has been disappeared
and the advantages of both forward and backward scheduling have been

harmonized.

Furthermore, modified crossover operator, which is suggested for the first time,
has been used. Advantages of iterative forward/backward scheduling have been
exploited by feeding the left (right)-justified schedules with right (left)-justified
schedules. During this feeding, before crossing over, the population has been
sequenced according to their fitness values and best %10 of the population has
been directly passed to the next generation. In crossover, the parent has been

selected randomly from the parent selection pool and the best partner for the
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selected parent has been found by using resource utilization ratio and total
resource utilization parameter. The partner schedule is selected according to its
resource utilization. There are two crossover points, so the project makespan has
been divided into three parts. The maximum resource utilization part of the father
has been found and this schedule has been matched with the mother with the
maximum resource utilization in terms of other two parts of the schedule.
Therefore, the father has been paired with the best fit mother in terms of resource

utilization.

After crossing over, lastly, the mutation operator has been used to add entirely new
individual to the population. By accepting the only individuals which have been
improved after mutation, the population is prevented from being worse population.
These processes; crossing over, mutation, and updating the population have been

applied until the maximum number of schedules has been achieved.

Efficiency of the developed algorithm is validated, by comparing the Primavera
results with the results of the final algorithm. 10 problems from each problem sets
with 30, 60, 120, and 300 activities have been solved by both Primavera and final
algorithm. Notwithstanding the number of the activities, the final algorithm is
better than Primavera in the solution of RSPSPs. Moreover, the t-test has been
performed for checking; the differences between Primavera results and the final
algorithm results are significant enough. The t-test result has showed that there is a
considerable difference between solutions. In addition, when the Primavera’s
solutions are compared with the final algorithm, the performance of Primavera is

observed unsatisfactory to solve resource-constrained project scheduling problems.

The performance of the algorithm is also tested by solving resource constrained

project scheduling problems in the literature. Results achieved by the final
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algorithm are analyzed and compared with the solutions of other researchers. 5
different problems have been solved. Final algorithm solved these problems and
found the reasonably well solutions. In this manner, the capability of the final

algorithm has been proved for these problems.

The performance of the algorithm has been tested using PSPLIB instances. 480
example problems with 30 activities, 480 example problems with 60 activities, 600
example problems with 120 activities, and 480 example problems with 300
activities have been used. The deviations of the algorithm from the best known
solutions are about %1.4 to %8.9. Hence, the final algorithm provided adequate

results.

Within the context of this study, two essential contributions to the existing
researches are made. Firstly, a unique crossover operator has been presented and
used. With the new crossover operator, especially in large projects, the
performance improvement has been observed when compared to conventional
GAs. Secondly, the Primavera software has been tested on small and large projects
with number of activities of 30, 60, 120, and 300 and compared with the final
algorithm. Thus, the performance of developed algorithm has been clearly
observed. In addition to these, the best Primavera algorithm for the RCPSP has

been observed as Late Finish (Ascending) algorithm.

As computational outcomes show, to find better solutions, more CPU time is
required, especially in large-sized projects. Being an iterative algorithm, better
solutions can be reached by using more processing units. Therefore, the
computational performance can be easily increased by using supercomputers,

parallel computing, or graphic based processing units. In addition to the using new
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technologies, changing code architecture or combining the genetic algorithm with

other meta-heuristic methods can increase the performance of existing study.
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