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ABSTRACT 

AERODYNAMIC PARAMETER ESTIMATION USING FLIGHT 

TEST DATA  

 

 

Kutluay, Ümit 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Bülent E. Platin 

Co-Supervisor: Dr. Gökmen Mahmutyazıcıoğlu 

September 2011, 205 pages 

 

 

This doctoral study aims to develop a methodology for use in 

determining aerodynamic models and parameters from actual 

flight test data for different types of autonomous flight vehicles.  

 

The stepwise regression method and equation error method are 

utilized for the aerodynamic model identification and parameter 

estimation.  

 

A closed loop aerodynamic parameter estimation approach is also 

applied in this study which can be used to fine tune the model 
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parameters. Genetic algorithm is used as the optimization kernel 

for this purpose. In the optimization scheme, an input error cost 

function is used together with a final position penalty as opposed 

to widely utilized output error cost function. 

 

Available methods in the literature are developed for and mostly 

applied to the aerodynamic system identification problem of 

piloted aircraft; a very limited number of studies on autonomous 

vehicles are available in the open literature. This doctoral study 

shows the applicability of the existing methods to aerodynamic 

model identification and parameter estimation problem of 

autonomous vehicles. Also practical considerations for the 

application of model structure determination methods to 

autonomous vehicles are not well defined in the literature and this 

study serves as a guide to these considerations. 

 

 

Keywords: System identification, parameter estimation, 

aerodynamics, aerodynamic model, equation error method, 

stepwise regression, closed loop optimization, genetic algorithm, 

flight test, flight test data.  
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ÖZ 

UÇUŞ TEST VERİLERİNİ KULLANARAK AERODİNAMİK 

PARAMETRE KESTİRİMİ 

 

Kutluay, Ümit 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi      : Prof. Dr. Bülent E. Platin 

Ortak Tez Yöneticisi: Dr. Gökmen Mahmutyazıcıoğlu 

Eylül 2011, 205 Sayfa 

 

 

Bu doktora çalışmasının amacı, otonom uçuş araçları için 

aerodinamik model belirlenmesi ve parametre kestiriminde 

kullanılacak bir yöntem ortaya koymaktır.  

 

Aerodinamik model tanılaması ve parametre kestirimi için, adımsal 

bağlanım ve denklem hatası yöntemleri kullanılmaktadır. 

 

Bu çalışmada ayrıca kapalı döngüde aerodinamik parametre 

kestirimi yapmak amaçlı bir yaklaşım da denenmiştir. Bu yaklaşım 

ile aerodinamik model parametrelerinin değerlerine ince ayar 

yapmak mümkün olacaktır. Yaklaşımın eniyileme yöntemi olarak 

genetik algoritma kullanılmaktadır. Eniyileme döngüsünde bedel 
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fonksiyonu olarak, literatürde çoğunlukla kullanılan çıktı hatası 

yerine, son konum cezası ile birlikte girdi hatası kullanılmaktadır. 

 

Literatürde halihazırda kullanılan yöntemler, pilotlu uçakların 

aerodinamik sistem tanılaması probleminin çözümü için 

geliştirilmişlerdir; otonom uçuş araçları üzerinde yapılan 

uygulamalara ilişkin açık kaynaklardaki referanslar kısıtlıdır. Bu 

doktora çalışmasında, halihazırdaki yöntemlerin otonom araçların 

aerodinamik model tanılaması ve parametre kestirimi probleminin 

çözümünde kullanılabileceği gösterilmiştir. Ayrıca, aerodinamik 

model tanılaması ve parametre kestirimi yöntemlerinin otonom 

uçuş araçlarına uygulanması konularında literatürde yeterince 

inceleme yapılmadığı görüldüğünden, bu doktora çalışması bir 

rehber olmayı amaçlamaktadır. 

 

Anahtar Kelimeler: Sistem tanılama, parametre kestirimi, 

aerodinamik, aerodinamik model, denklem hatası yöntemi, 

adımsal bağlanım, kapalı döngüde eniyileme, genetik algoritma, 

uçuş testi, uçuş test verisi. 
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CHAPTER 1 

 

AN OVERVIEW OF SYSTEM IDENTIFICATION AND 

PARAMETER ESTIMATION IN AEROSPACE APPLICATIONS 

 

It is the very basic instinct of an engineer to try to understand the 

governing laws of any phenomena that he/she faces by analyzing 

the observable outcomes. Thus, engineering is inherently based 

on the effort of solving inverse problems in order to innovate, 

improve or even avoid the phenomena faced in life. 

 

From a literal point of view, the term “system identification” (SI) 

is defined as “… a scientific discipline that provides answers to the 

age-old inverse problem of obtaining a description in some 

suitable form for a system, given its behavior as a set of 

observations.” by Hamel and Jategaonkar, [1]. Parameter 

estimation (PE) problems are, in fact, a subset of system 

identification problems, where the purpose is to obtain the 

“parameters” of the model identified. 

 

The three dimensional (3D) dynamics of any rigid flight vehicle is 

governed by six nonlinear ordinary differential equations which 
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consist of three force equations and three moment equations in 

which time appears as the independent variable. These equations 

involve the four fundamental classes of forces/moments acting on 

the body; namely, 

 Aerodynamic forces/moments 

 Inertial forces/moments 

 Gravitational forces  

 Propulsive forces 

 

It is rather easy to obtain some accurate estimates for the 

gravitational, inertial, and even propulsive forces by some 

measurements and/or calculations. However, it is neither that 

easy, nor straight forward to obtain aerodynamic forces and 

moments. Although, throughout the design cycle of a flight 

vehicle, a number of different approaches (calculations, analysis, 

tests, etc.) are used to obtain aerodynamic forces and moments, 

the final aerodynamic estimates still contain some discrepancies 

and/or errors due to the shortcomings of the methods utilized.  

 

An initial model for the aerodynamic forces and moments along 

with a database which contain the parameter values of this model 

for an air vehicle is usually generated by using either a semi-

empirical tool (like DATCOM) or an analytical tool (like Vortex 

Lattice Method) at the early stages of preliminary design. 
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Although, theoretical and empirical aerodynamics provide 

aerodynamic force and moment coefficients and stability and 

control derivatives with relatively high computational speed and 

acceptable accuracy, they fail to give satisfactory results when 

new and complex geometries are considered. 

 

As the design evolves, some higher fidelity methods such as 

computational fluid dynamics (CFD) are required and used for the 

data generation. Although the CFD methods are becoming more 

and more reliable and faster with the advances in computer 

technology, they still may fail to predict the complex dynamics 

occasionally.  

 

Wind tunnels are in use by aerospace engineers for over a 

hundred years and it is common to update aerodynamic models 

and databases using the results of wind tunnel tests once the 

design is fixed. However, they have their own limitations such as 

test section sizes, scaling requirements, model surface quality 

effects, model-sting interference effects, and so on. 

 

Aeroballistic ranges are alternatives to the wind tunnels with one 

major difference in the way the flight conditions are simulated; 

the model is accelerated to the desired flight velocities. Although 

these ranges are very useful in obtaining the aerodynamic 

parameters of air vehicles that fly through a wide range of Mach 
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numbers, such as artillery rockets or free fall bombs, they also 

have serious limitations like the Reynolds number mismatch, 

model surface quality effects and scaling requirements. However, 

the biggest limitation associated with the aeroballistic ranges is 

controlling the flight parameters such as angle of attack and angle 

of side slip.  

 

As a summary, the final aerodynamic models and databases 

obtained at the end of the design process might be, and most of 

the time are, inaccurate for at least some flight conditions likely to 

be faced by the flight vehicle throughout its life cycle. These 

inaccuracies are discovered by flight testing the actual full scale 

system on a variety of conditions that represent the entire flight 

envelope. Then, it is the flight mechanist’s job to deduce ways to 

correct the aerodynamic model and estimate the parameters using 

the flight test data in hand.  

 

1.1 Problem Definition 

As a matter of fact, there is no standard approach for deciding on 

the aerodynamic model of a flight vehicle (FV). Depending on the 

requirements and type of the flight vehicle, the aerodynamic 

model can be expressed as a linear or nonlinear function of flight 

variables and geometry parameters. Furthermore, these model 

functions can be continuous or interpolated from a look-up table. 
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Yet, the need to obtain an updated and better model stands 

regardless of the format of the aerodynamic database. 

 

The types of flight vehicles that are of interest to this study are 

autonomous, one-shot flight vehicles, with polynomial 

aerodynamic models. In contrast to the flight test data of a piloted 

aircraft, the flight test data that can be obtained from the flight 

tests of these vehicles is heavily stripped of the necessary 

information for identification and estimation purposes unless a 

special care is taken in the flight test design. Yet, it is not always 

possible to design a flight test for these one-shot autonomous 

flight vehicles, but the flight test data for SI and PE is collected as 

byproduct during the flight tests conducted for the purpose of 

performance demonstration. This poses a question on the 

applicability of the methods developed for the SI and PE of piloted 

aircraft to the autonomous flight vehicles. 

 

There are plenty of references in the literature on the 

identification of aerodynamic model and estimation of 

aerodynamic coefficients of an aircraft from its flight test data yet, 

most of the efforts spent on this subject are concentrated on the 

selection of estimation method for a known aerodynamic model. 

On the other hand, only a limited amount of literature exists for 

the SI and PE of autonomous flight vehicles. This is due to partly 

the confidentiality of the autonomous flight vehicles and partly to 

the fact that the small number of autonomous flight vehicles (and 
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therefore number of flight tests with these vehicles) as compared 

to piloted aircraft. These two issues raise the question of 

applicability of the methods developed for piloted aircraft to 

autonomous fight vehicles and define a need for a complete 

methodology for processing the flight test data for these types of 

vehicles.  

 

1.2 State of the Art in System Identification and Parameter 

Estimation for Aerospace Applications 

Although the mathematical background of system identification 

can be traced back to 18th century; its first applications in 

aerospace field were not seen until the mid 20th century [1]. 

Especially after the introduction of digital computers, many 

methods have been developed for the SI and PE purposes. 

 

The most popular PE method in the literature nowadays is the 

Equation Error Method. Also known as Least Squares Estimation, 

the method provides unbiased, efficient, and consistent estimation 

in theory, [2]. Its ease of application, which is one of the main 

reasons of the method’s popularity, comes from the simplicity of 

the algorithm in which no iterations are needed to estimate the 

parameters. The ability to merge flight test data from different 

maneuvers/sorties into one without much effort is also another 

contributing factor to its popularity. Also, the stepwise regression 

method, which is used for model identification utilizes equation 



 7 

error method to estimate the parameters of the identified models. 

However, Equation Error Method have a drawback in practice, 

since the flight test data always contain measurement errors, 

which in turn cause the estimators to be neither are as efficient, 

consistent nor unbiased. Yet, the results of the equation error 

method can be used as the feasible starting point of other 

parameter estimation methods. 

 

The other most widely applied method is the Output Error Method 

which, as the name suggests, aims to arrive at the best estimates 

of the aerodynamic parameters by minimizing the error between 

the model output and the flight test data. For this purpose 

different optimization schemes are applied, ranging from gradient 

based optimization to genetic algorithm.  

 

Other approaches to system identification include Filter Error 

Method, Kalman and Extended Kalman Filtering and Artificial 

Neural Networks. 

 

The following paragraphs cover some of the work done in the field 

of aerodynamic system identification and parameter estimation as 

a result of a literature survey performed.  
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Aksteter et. al. [3] formulated the longitudinal aerodynamics 

model of a Harrier aircraft and employed the equation error 

method to estimate the nonlinear parameters. An aerodynamic 

model was built-up using basic theoretical relations such as 

parabolic drag assumption and Prandtl Galuert rule and then was 

divided into three parts as static, dynamic, and control. Different 

segments of the flight test data were used to estimate parameters 

for these three parts (for example, static part was estimated form 

the portion of the flight test data where the vehicle was flying 

close to the trim conditions). Although this study demonstrates a 

complete estimation methodology, it lacks the aerodynamic model 

identification process. 

 

Özger [4] briefly summarized the aerodynamic model validation 

approach at EADS Military Air Systems. In that work, a correlation 

analysis for each flight test maneuver was run and as a result the 

correlated and uncorrelated parameters were discovered. Then by 

using 6dof equations, the flight test aerodynamic parameters 

(which are going to be referred as the in-flight aerodynamics 

throughout this dissertation) were gathered from the flight test 

data. This in-flight aerodynamics was later compared with the 

parameters foreseen by the existing aerodynamic model and 

linear correction model (which is going to be referred as the delta 

coefficient model throughout this dissertation) is obtained by 

calculating the difference between the two. The equation error 

method and output error method were both utilized for parameter 

estimation and results were compared. Özger’s work defines a 

nice framework for the aerodynamic model identification and 
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parameter estimation problem based on the actual flight test. The 

methodology followed in this doctoral study is in some part 

inspired from his work. 

 

Paris and Alaverdi worked on a nonlinear aerodynamic model 

extraction from the flight test data for the S-3B Viking aircraft 

using the commercial software package IDEAS (Integrated Data 

and Analysis System), [5]. They employed an equation error 

estimation technique for the early model development and an 

output error estimation technique for the final tuning. However, 

the updates to final aerodynamic model were all decided by visual 

comparison of the simulation output and calibrated flight data, 

that is, the judgment of an experienced flight mechanics engineer 

is essential for that study. 

 

Song et. al. [6] examined the estimation of a full set of 

aerodynamic coefficients (6 component aerodynamics, i.e., CD, CL, 

Cm, Cy, Cl, Cn with 30 independent coefficients of Taylor series 

expansions) for an air launched missile using extended Kalman 

filtering (EKF) method and concluded that the parameter 

identification was very useful in the improvement of the predicted 

aerodynamic coefficients of a flight vehicle, in their case from wind 

tunnel tests tabulated data. Terms less than third order in the 

Taylor series expansion were included in the first place and then 

some important terms, which were selected by employing the 
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multidimensional algebraic algorithm were added. The rate 

derivatives were also added, apparently by engineering judgment. 

 

Anderson et. al. focused on utilizing genetic algorithm and pareto 

genetic algorithm to aerodynamic parameter estimation of ballistic 

weapons ([7], [8], [9]). Yet, the aerodynamic model structures 

were not identified and selected as first order linear models.  

 

Gage et. al. [10] examined the use of genetic programming for 

aerodynamic model structure determination of ballistic weapons. 

Although the trajectory of a ballistic weapon was successfully 

modeled as a result of the study, the identified model structures 

need to be worked on to become more physically relevant.  

 

Mohammadi et. al. [11] studied the aerodynamic identification 

problem for an antitank guided missile and concluded that 

Extended Kalman Filtering (EKF) method was suitable for the 

estimation of time varying aerodynamic parameters, such as the 

parameters of the antitank missile which had a flight regime 

between Mach 0.2 and 0.92. 
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1.3 Scope, Originality and Contributions of the Doctoral 

Study 

After reviewing the current state of the art for SI and PE 

applications in the field of flight mechanics, it is seen that, plenty 

studies were carried out on this subject and but especially for 

aircraft type flight vehicles. However, when it comes to the other 

types of flight vehicles such as tactical UAVs, cruise missiles, and 

guided air launched weapons, only a limited number of literature 

is found. Furthermore, in those studies, most of the effort was 

concentrated on the selection and tuning of the estimation 

algorithm and an engineering judgment was still widely utilized for 

the determination of the aerodynamic model structure. 

 

The aim of this doctoral study is set as to develop a method which 

will be used for determination of aerodynamic models and 

parameters for different types of autonomous FVs using actual 

flight test data. The devised method, is expected to identify the 

aerodynamic model structures for six aerodynamic coefficients and 

estimate the parameters with a minimum intervention from the 

user, thus it minimizes, if not eliminates, the need for the 

engineering judgment of an experienced flight mechanics 

specialist.  

 

The aerodynamic model sought should be based on the 

correlations between significant motion parameters and in-flight 
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calculated aerodynamics coefficients (or difference of in-flight 

aerodynamics from the a priori aerodynamics) using inverse six 

degrees of freedom (6 dof) equations of motion. The structures for 

each and every aerodynamic coefficient are to be obtained with a 

minimal intervention to automated model structure determination 

scheme. The model parameters are to be obtained by the 

utilization of the equation error method.  

 

The fine tuning of the model parameters is done by a closed loop 

optimization cycle, utilizing genetic algorithm. 

 

Practical considerations for the application of model structure 

determination methods to autonomous vehicles are not well 

defined in the literature and this doctoral study is expected to 

serve as a guide to these considerations. Practical considerations 

for the closed loop aerodynamic parameter estimation method will 

be defined in this study, as well. Both approaches are expected to 

be successfully applied to actual flight test data. 

 

During the course of this doctoral study, three conference papers 

have been published. Two of them, [12], [13], explain the 

practical considerations in flight test data processing of 

autonomous flight vehicles and aerodynamic model structure 

determination. The third one, [14], gives preliminary results of 

closed loop aerodynamic parameter estimation using genetic 
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algorithm for simulated flight test data of an autonomous flight 

vehicle. 

 

This thesis dissertation starts with an overview of system 

identification and parameter estimation in aerospace applications. 

The second chapter defines the concept of aerodynamic modeling. 

The methods used for aerodynamic model structure determination 

are given in the third chapter. The fourth chapter deals with 

principles of the proposed closed loop aerodynamic parameter 

estimation using genetic algorithm. Some test cases with 

simulated and actual flight test data are given in the fifth chapter 

and the dissertation is concluded with the discussions of results in 

the last chapter. 
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CHAPTER 2 

 

AERODYNAMIC MODELING 

 

The fundamental problem of science of flight mechanics is the 

determination of the relation between the aerodynamic properties 

and motion variables of a flight vehicle. This problem was stated 

by B. Melvill Jones and cited by Tobak and Schiff as follows, [15]: 

 

“Given the shape of aeroplane and the properties of air through 

which it moves the air reactions X, Y, Z, L, M, N, depend on the 

motion of aeroplane relative to air; that is to say upon six 

variables U, V, W, P, Q, R and their rates of change with respect 

to time. In practice, the principle difficulty lies in determining the 

relationships between X, Y, … and U, V, …” 

 

In the expression above, U, V, and W are used to denote the 

components of the relative velocity of the flight vehicle with 

respect to wind, resolved in body coordinate frame ( ). As 

stated by Tobak and Schiff in their lecture in AGARD LS – 114, 

[15], there are two approaches to tackle this problem. First one is 

the “straightforward” approach in which the flow-field around the 



 15 

maneuvering FV (gas dynamics equations) is solved 

simultaneously with the inertial equations that govern the motion 

of the fv (equations of motion). The shortcomings of this approach 

are obvious; not only a unique solution must be sought for each 

and every initial condition but also the computational cost of 

solving gas dynamics equations simultaneously with equations of 

motion is very high. 

 

The need to uncouple these equations results in the modeling 

efforts, through which the aim is to obtain a form of aerodynamic 

response to some characteristic motions. This approach can be 

applied to a wide range of motion variables and flight conditions, 

so that the response to arbitrary motions can be calculated 

directly. Although some computational time is still required in 

order to obtain the aerodynamic responses to the characteristic 

motions, the aerodynamic model allows the engineer to solve for 

the arbitrary initial conditions without referring to flow-field 

calculations. 

 

The foundations of the aerodynamic modeling, upon which our 

current notion still relies on, was laid by George H. Bryan, just 

eight years after the Wright Brothers’ historic flight in 1903. There 

are two primary assumptions in Bryan’s approach, [15]: 
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1. The instantaneous forces and moments acting on the FV 

only depend on the instantaneous values of motion 

variables. 

2. The aerodynamic forces and moments vary only linearly 

with motion variables. 

 

The first assumption allows defining any aerodynamic parameter 

as a function of time. For instance, the pitching moment 

coefficient can be expressed as a function of two basic motion 

variables angle of attack ( ) and pitch control surface deflection 

( ) as: 

 

  (1) 

 

The second assumption allows expanding the aerodynamic 

coefficient into a Taylor series up to the first order terms around 

some initial conditions (such as ): 

 

  (2) 
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Any of the six principle aerodynamic variables (CX – or CD, CY, CZ 

– or CL, Cl, Cm, Cn) can be written as a Taylor series expansion in 

related motion variables. The partial derivatives appearing in Eq. 

(2) are called as “dimensionless stability and control derivatives”.  

 

Referring to Tobak and Schiff [15], the obvious problem 

associated with Bryan’s first assumption was discovered in the 

following years when the researchers in flight mechanics found out 

that the response of the aircraft to a change in angle of attack was 

greatly affected by the presence of a horizontal tail, since the 

downwash generated by the wing in response to a change in angle 

of attack required some time to be convected to the tail. Thus, the 

model needed to be updated to include some time dependency. 

This problem was solved by adding a term to the model that 

reflected the contribution of time rate of change of angle of 

attack: 

 

 

 

(3) 

 

Later on, studies on the flutter phenomena and also on the 

aerodynamic responses of wings to step changes in motion 

variables (linear aerodynamic indicial responses) allowed the 

establishment of an underlying theoretical basis for including the 

time dependent term in the aerodynamic model, [15]. This 
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theoretical basis, called the indicial response concept, is basically 

expressing the aerodynamic variables in terms of linear 

functionals as opposed to functions given in Eq. (2). Then, the 

aerodynamic model includes not only the effect of the motion 

variables at the current time step, but of all the variables in all of 

the past time steps as well. 

 

Following studies showed that, for slowly varying motions, i.e., 

steady aerodynamics, the indicial response and the linear stability-

derivative approaches yielded equivalent results, [15]. As stated 

by Klein and Morelli, [16], in majority of the practical applications 

a quasi-steady flow assumption, i.e., neglecting the dependence 

on the past values of the flow variables, can be justified.  

 

Quasi-steady flow assumption is also valid for the types of the 

problems considered to be in the scope of this doctoral study. The 

types of the flight vehicles that are of interest to this study fly 

around a trim condition, which is achieved by the feedback 

controller of the onboard automatic flight control system. Also, 

these vehicles are not agile, when compared to highly 

maneuverable fighter aircraft or flexible when compared to large 

transport/cargo aircraft. That is to say, unsteady conditions are 

not likely to be encountered during the normal operating 

conditions of the FVs of interest. Then, it is anticipated that the 

linear stability derivative approach (and sometimes its extension 
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to non-linear aerodynamics) is adequate for the purposes of this 

study. 

 

Theoretical derivation of aerodynamic model is a well known 

subject and details can be found in any flight mechanics and most 

aerodynamic system identification books. Referring to [16] and 

[17], a general form for the six degrees of freedom linear 

aerodynamic model can be obtained as in Eq. (4) and Eq. (5): 

 

 

 

 

 

(4) 
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(5) 

 

It is possible to use CX and CZ instead of CD and CL as in Eq.(6). 

 

 

 

 

 

(6) 

 

Although, theoretically works perfectly, the proposed models for 

CL, CZ and Cm in Eq. (4) and (6) have identifiability problems 

associated with the  and  derivatives, since in an actual flight, 

the data recorded for these two motion variables have very similar 

time histories, [16]. So it is customary to define a merged 

derivative for these two variables as follows: 
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(7) 

 

For most of the cases, the linear model, with necessary 

augmentations, provides satisfactory results for the estimation of 

the aerodynamic response. However, in cases where there are 

large amplitude maneuvers or rapid divergences from the 

reference conditions, the aerodynamic model should be extended 

to include some nonlinear terms. According to Klein and Morelli, 

[16], there are two ways to do this. 

 

The first approach is to include the nonlinear terms of the Taylor 

series expansion and define nonlinear stability derivatives. 

Following shows the nonlinear expansion of lift coefficient for 

angle of attack and pitch rate, as taken from Klein and Morelli, 

[16]: 

 



 22 

 

 

(8) 

 

If Eq. (8) is expressed in the stability derivative format, then 

Eq.(9) is obtained: 

 

 

 

(9) 

 

The second approach, which is based on the works of Klein and 

Batterson, [18], combines the static terms and treat the dynamic 

stability and control derivatives as functions of explanatory 

variables, i.e., angle of attack, angle of side slip and Mach 

number. In the previous case of Eq.(8) and Eq.(9), the 

explanatory variable is angle of attack. Then the nonlinear model 

would be: 
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  (10) 

 

In this second approach, four basic assumptions are made. These 

are outlined by Klein and Morelli, [16], as: 

1. Aerodynamic coefficients do not vary with the airspeed in 

the subsonic region. 

2. The effect of time history (rate of change of) angle of attack 

and angle of side slip are not explicitly introduced, but their 

effects are implicitly included in the rate derivatives.  

3. Longitudinal and lateral coefficients are dependent on the 

states and the control angles as 

 

 

 

 

(11) 

 

4. The static term of the aerodynamic model includes the 

nonlinear angle of attack and angle of side slip 

dependencies. The second part of the model is linear in 

motion and control variables (p,q,r, ) but involves 

derivatives that depend nonlinearly on the angle of attack, 

angle of side slip and Mach number. 
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With the assumptions given above, the six degrees of freedom 

aerodynamic model becomes: 

 

 

 

 

 

 

 

(12) 
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(13) 

 

The first terms in Eq.(12) and Eq.(13) represent the static effects, 

i.e., the aerodynamic response with the controls are fixed and 

angular rates are zero. The dynamic stability derivatives are 

modeled as functions of angle of attack. As stated by Klein and 

Batterson, [18], this is a similar form to those used in wind tunnel 

testing. Furthermore, the models for the aerodynamic coefficients 

are valid for the entire range of motion variables.  
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The stability derivatives of Eq.(12) - (13) can be approximated as 

polynomials or polynomial splines, [16], [18]. The following is an 

example of polynomial expression for static part of the nonlinear 

pitching moment term: 

 

 

 

(14) 

 

In Eq. (14), i are called the aerodynamic parameters. 

 

According to Klein and Morelli, [16], the aerodynamic models 

given in Eq.(12) and Eq.(13) are “fairly general formulations”.  
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CHAPTER 3 

 

MODEL STRUCTURE DETERMINATION 

 

One of the most crucial points in system identification of flight 

vehicles using flight test data is the selection of an adequate 

aerodynamic model. Depending on the type of the FV, 

characteristics of the motion available in the flight test data, 

previous experience, and a priori knowledge – most probably 

through wind tunnel test or CFD runs –, the model structure as 

well as explanatory variables may vary. 

 

It is important to notice that, model structure determination 

inherently requires the utilization of an estimation method for the 

parameter estimation sub problem that it includes. 

 

A number of methods have been proposed in the past to tackle 

the problem of finding an adequate model based on some metric 

rather than pure judgment of an experienced engineer. These 

methods fall under the classification of regression methods. 
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3.1 Stepwise Regression 

The most widely used of these methods is the stepwise regression 

due it having the advantage of both forward and backward 

evaluation and selection capabilities. As explained by Klein and 

Batterson, [18], the determination of the aerodynamic model 

structure using stepwise regression includes three steps: 

1. Postulation of the terms which might enter the model. 

2. Selection of an adequate model. 

3. Verification of the model selected. 

 

Jategaonkar, [19], states that the stepwise regression problems 

encountered in flight mechanics are multivariate type problems, 

i.e., the six aerodynamic coefficients are functions of different sets 

of independent variables. He suggests that these types of 

problems are treated separately for each of the dependent 

variable (aerodynamic coefficient). Klein and Morelli, [16], share 

Jategaonkar’s point of view and further claim that it is one of the 

biggest advantages of stepwise regression method to be able to 

deal with individual aerodynamic coefficient equations one at a 

time. 

 

The stepwise regression procedure can be briefly summarized in a 

four step procedure as, [19]: 
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1. A set of possible independent variables (motion variables) is 

defined and the correlations of each of these independent 

variables with the dependent variable are sought. The 

independent variable with the highest correlation is added to 

the model. 

2. The independent variable from the remaining set with the 

highest partial correlation is added to the model. 

3. Partial “goodness of fit (F) values” for all the included 

independent variables are calculated and those found to be 

below a pre-specified threshold are excluded from the 

model. 

4. Steps 2-3 are repeated until no other independent variable 

is left. 

 

Eq. (14) can be written in a more general form as Eq. (15), where 

y is the aerodynamic coefficient, xi’s are the independent variables 

(in typical applications flight parameters such as angle of attack, 

angle of side slip, Mach number and control surface deflections) 

and i’s are the aerodynamic parameters: 

 

  (15) 

 

In Eq. (15), xi’s are called as the regressors and they can be 

defined as valid combinations of n flight variables up to pth power, 

selected from a set (F) of r flight variables, Eq. (16): 
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(16) 

 

The stepwise regression method starts with only the static term, 

 and other terms are added one by one. According to the 

procedure explained above, the correlation coefficients are found 

from the following formula, [19], where the subscript i denotes 

the ith independent variable,  and  are the mean values and N is 

the number of data samples: 

 

 

 

 

 

(17) 

 

The correlation coefficient of Eq.(17) ranges between -1 and 1 and 

shows the statistical dependence of y on the independent variable 

xi.  
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The partial correlation determines the correlation between any of 

the two variables if the other variables are held constant. For the 

case of three variables, the calculation of partial correlation is 

fairly simple as given by the following equation, [19]: 

 

 

 

 

(18) 

 

However, when there are more than two terms in the 

aerodynamic model, i.e., more than two independent variables, 

the calculation is not as straight-forward as Eq.(18). First of all, 

residuals after fitting the dependent variable with the proposed 

model (n independent variables) are calculated. Next, the 

residuals after fitting the independent variable, xj (n+1st variable), 

with the same set of independent variables are calculated. Then, 

correlation between these two residuals gives the desired partial 

correlation, [19]. Jategoankar, [19], defined this procedure 

mathematically as follows, where e denoting the fit error: 

 

 
 

 

(19) 
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To access the “quality” of the model, some statistical metrics are 

employed. The first one that comes in mind is the goodness of fit, 

defined as Eq.(20), [19], for two independent variables case. If 

more than two independent variables are present then the partial 

correlation expression given in Eq.(19) should be employed. 

 

 
 

 

(20) 

 

The coefficient of determination, R2, is another useful metric to 

assess the goodness of fit. However, R2, which varies between 0 

and 1, can be sometimes misleading, because its value increases 

with the increasing total number of independent variables in the 

model. So, an adjusted version is also in use, which does not 

necessarily increase with the increasing number of terms. 

Equations for R2 and adjusted R2 are provided as follows: 
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(21) 

 

Predicted square error (PSE) is also an important statistical metric 

used in stepwise regression. PSE is defined as given in Eq. (22), 

where p is the number of terms in the model, N is the total 

number of data points. As shown by Klein and Morelli, [16], PSE 

metric always have a single global minimum value, thus it is 

another good indicator for stopping the stepwise regression. 

 

 

 

 

(22) 

 

Although the stepwise regression method is highly promising in 

theory, it has some major deficiencies in practice. According to 

Jategaonkar, [19], for complex problems with large number of 

independent variables and complex relations, some skill and 

judgment are required to obtain the final model. Jategaonkar 

counts the most important difficulties of stepwise regression as: 

 If some of the independent variables are correlated with the 

others, i.e., a data collinearity exists, then, the variable 
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selection process is inefficient and inconsistent. However, 

both Jategaonkar, [19], and Klein,[16], state that there are 

some methods to deal with the data collinearity (see Sec. 

3.4.1). 

 The threshold values required to eliminate some of the 

independent variables are case specific. 

 

Klein and Morelli, [16], point out that the stepwise regression is 

mostly suitable to wind tunnel testing where the response 

variables are measured directly and there is only measurement 

noise. Although the method is not suitable to flight test data based 

on these aspects, still it is preferred due to being easy to 

implement and its ability to tackle both linear and nonlinear 

problems. Jategaonkar, [19], notes that, based on the deficiencies 

of the stepwise regression method, it is preferred to use a more 

general approach to modeling of aerodynamics with the a priori 

knowledge about modes of aircraft motion, aerodynamic effects 

and associated model structure. Also he suggests implementing 

more powerful estimation methods like output error method. 

 

3.2 Equation Error Method 

Parameter estimation methods that are not based on probability 

theory but rely on the laws of statistics are generally termed as 

the equation error methods, since they minimize a cost function 
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defined directly in terms of an input-output relationship, [19]. The 

most widely used subset of equation error methods is the least 

squares estimation, which allows the calculation of estimates in a 

one-shot procedure using matrix algebra.  

 

The technique originates back to the end of 18th century, when 

C.F. Gauss invented and applied it in order to describe the 

planetary motion. The first great success of the technique was 

achieved when the asteroid Ceres was relocated precisely several 

months after its last observation, [19]. Today, the technique is 

widely applied to the aerodynamic parameter estimation problem. 

 

There is an extensive literature available on the least squares 

estimation problem. Yet, a brief overview of the theory is given in 

this dissertation based on the work of Jategaonkar, [19]. 

 

Given N discrete data samples of a dependent variable, y, and nq 

independent variables, a linear combination can be defined at 

each time step k as, [19]: 

 

  (23) 
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In Eq. (23), ’s are the unknown parameters and  is the equation 

error representing the model discrepancies and/or noise in the 

dependent variable y. The form of the Eq. (23) is the same as Eq. 

(15), i.e., the x vector contains the motion variables such as angle 

of attack and control surface deflections, where ’s are the 

aerodynamic parameters. Notice that the values of ’s are not 

dependent on time, they are constants. 

 

Eq.(23) can be rewritten in matrix format as follows: 

 

  (24) 

 

The errors defined in Eq.(24) are called the residuals. It is obvious 

that, the difference between the dependent variable y, the 

“observation” and the model consisting of the independent 

variables x, the “regressors” or the “explanatory variables”, and 

unknown parameters should be zero for a perfect model. Thus, to 

obtain the best estimates of the unknown parameters, the 

residuals should be minimized. This is accomplished via 

minimizing the following cost function: 
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(25) 

 

The sum of the square errors cost function of Eq.(25) is 

differentiated with respect to  so that its minimum can be found: 

 

  (26) 

 

Least squares estimates of the unknown parameters, , can be 

found by equating Eq.(26) to zero and solving for : 

 

  (27) 

 

where (XTX)-1XT is often referred to as pseudo inverse. 

 

3.3 Delta Coefficient Approach to Model Structure 

Determination 

For every flight vehicle, an aerodynamic model already exists 

before proceeding to flight tests. Depending on the effort spent on 
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preparing this model and utilized methods, it can be high or low 

fidelity in one or more motion parameters. Nevertheless, this a 

priori information about the flight mechanics characteristics of the 

vehicle without doubt costs a lot of money and time to obtain and 

should be taken into consideration while dealing with model 

structure determination. 

 

To apply the stepwise regression, the in-flight aerodynamics must 

be gathered in the first place. In an actual flight testing a number 

of sensor measurements are taken from the FV. These 

measurements include but not limited to the linear accelerations, 

angular rates and atmospheric conditions. If the vehicle is a 

powered one, a thrust measurement is not directly available most 

of the time, but the required information about the thrust is 

gathered from the engine model using the recorded flight 

conditions. Then, an inverse six degrees of freedom equation of 

motion can be solved to obtain the aerodynamic coefficients that 

lead the actual flight test behavior. These equations are pretty 

straight forward and detailed derivations can be found in any flight 

mechanics text book. The following equations for the forces and 

moments acting at the center of mass location are taken from 

Jategaonkar, [19]. 

 

  (28) 
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Using in-flight measured motion parameters (flight angles, body 

angular rates, Mach number and control surface deflections), the 

response of the a priori aerodynamic model can be obtained. A 

priori aerodynamic model is an important and valuable source of 

information, since most of the time a considerable amount of work 

is done (and money is spent) to obtain it. Then, it is desirable to 

use the existing model as a baseline aerodynamics and design the 

aerodynamic parameter estimation flight tests to tune this existing 

model. 

 

If the difference between the in-flight aerodynamics and 

aerodynamics foreseen by the existing aerodynamic model is fed 

into the model structure algorithm, a delta coefficient model is 
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obtained as given in Eq. (29), where  stands for the identified 

aerodynamic model for discrepancy: 

 

  (29) 

 

3.4 Practical Considerations for Model Structure 

Determination of Autonomous Flight Vehicles 

3.4.1 Flight Test Data Processing and Dealing with Low 

Quality Flight Test Data 

As a general practice, the flight test data (FTD) is recorded at a 

much higher rate than the highest natural frequency of the flight 

mechanics modes of the vehicle. Basically, the flight vehicles have 

two longitudinal and three lateral modes; namely the short period 

and phugoid in longitudinal, rolling, spiral and Dutch roll in lateral. 

All of these modes, have their natural frequencies. The well known 

Nyquist-Shannon sampling theorem states that the sampling rate 

must be at least twice the maximum frequency of interest. Thus, 

the sampling rate at which the FTD is recorded should be selected 

based on the a priori information of these modes. 

 

However, since the aerodynamic database contain some 

discrepancies before the flight test, so does the natural 

frequencies of the flight vehicle. Thus, a sample rate, which is 
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higher than the one foreseen by the a priori information, is 

selected for data recording. However, this higher sample rate 

could lead to large number of samples, which in turn requires 

more computational power than necessary.  

 

A direct approach to overcome this oversampling is to examine 

the power spectral density estimates of the FTD, so that a 

resampling can be performed before the estimation process. The 

power spectral density (PSD) estimation, which gives information 

about how the time series is distributed with frequency, is a very 

common procedure and based on the results of PSD, a proper 

resampling frequency can be selected. 

 

Although the resampling approach is very effective in saving the 

computational power, it does not provide a solution to another 

fundamental problem associated with the FTD of autonomous 

flight vehicles. For this type of flight vehicles, it is not always 

possible to obtain a full set of measurements and perform flight 

test maneuvers specially designed for system 

identification/parameter estimation. Thus, sometimes the data 

recorded during the flight test which are not designed for 

estimation have to be used. Also for autonomous flight vehicles, 

the recorded data is almost stripped of the vehicles inherent 

dynamics (for example, FTD of a guided gliding flight vehicle 

shows that the spectral powers of the modes associated with 

pitching and rolling motions are very low - down to order of 10-7 
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Watts/Hz, Figure 1 and Figure 2). As a result, the phenomenon 

known as data collinearity is encountered. 
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Data collinearity is defined as ”any situation where regressors are 

correlated at a high enough level to cause problems in the 

parameter estimation”, [16]. The main cause of data collinearity is 

the near-linear dependence of regressors. There are a number of 

possible sources of data collinearity: 

1. Improper design of flight test maneuvers leads to data 

collinearity either due to insufficient excitation of FV modes, 

or changing the data of two or more regressors 

proportionally. 

2. Constraints of the FV such as feedback control system lead 

to data collinearity. As Jategaonkar stated, [19], “the 

controller reacts to the motion and suppresses the 

oscillatory and transient motion… it is detrimental to 

parameter estimation, because it drastically reduces the 

information contents required for estimating parameters”. 

Also the control allocation algorithm of the flight vehicle may 

cause the collinearity, since some of the control surfaces are 

deflected proportionally based on some control mixing 

strategy hard coded to onboard flight computer. 

3. Regressors that are small in magnitude can also cause data 

collinearity. If a regressor is small, then all the higher order 

regressors derived from it will be very small. Thus, they will 

be almost the same regressor, which will have an effect on 

the results as data collinearity. 
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System identification and parameter estimation of flight vehicles 

originally started with the need to identify the aerodynamic 

characteristics of the airplanes. Thus, almost all methods that are 

used in practice today were developed for identification of airplane 

problems. Figure 3 shows a typical airplane flight test maneuver 

history of Mach number, angle of attack, pitch rate, stabilator, 

leading edge and trailing edge deflections, [20]. Compared to FTD 

of an autonomous flight vehicle in Figure 4, the differences in the 

behaviors of the data sets are worth noticing. First of all, the FTD 

for the aircraft starts from a trim condition and throughout the 

maneuver, the flight parameters oscillate about the trim condition. 

Also notice the frequency of the oscillations; carefully designed 

inputs provide necessary excitation of the aircraft modes 

(longitudinal modes for the case of Figure 3). 

 

 

Figure 3. Typical flight test maneuver data, [20]. 
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On the other hand, for the FTD from 4 different shots shown in 

Figure 4, the vehicle is always in trimmed flight, which is assured 

by the onboard automatic flight control system (AFCS).  
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Then, if the FTD of the autonomous flight vehicle can be made 

similar to an aircraft flight test data, the methods developed for 

aircraft can be applied. The easiest way to do this is to design 

flight test missions of the autonomous FVs to include some SI and 

PE maneuvers as well. Yet, this alone may not be enough since, 

the flight test maneuver design is based on a priori aerodynamics 

information and there is risk of under exciting the FV, which will 

result in low quality FTD or over exciting the FV, which might 

cause a loss of mission and the vehicle. 

 

The stepwise regression method, which utilizes equation error 

method for parameter estimation, does not require the dynamics 

of the actual maneuver to be matched, that is it treats each data 

point separately. Thus, the FTD can be conditioned to look like an 

aircraft flight test maneuver data.  

 

The FTD of Figure 4 inherently causes data collinearity where as 

this problem is solved with the conditioned FTD (Figure 5), which 

is obtained by trimming the original FTD (Figure 4), [12], [13]. 
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3.4.1.1 Global Fourier Smoother 

The equation of motion of any flight vehicle includes terms of 

angular accelerations. However, the onboard sensors measure the 

angular rates of the vehicle; thus the angular accelerations must 

be derived from the rates, unless opposite coupled accelerometer 

pairs are utilized. This causes a problem in numerical derivative 

operation, when the rate measurements are noisy. Similarly, time 

derivatives of flight angles ( , ) must be gathered from the flight 

angle measurements, and then the same problem is faced once 

again. In fact, regardless of whether the derivative of a signal is 

required or not, it is always preferred to work with noise free 

signals.  

 

The common practice to get rid of signals is to utilize digital filters. 

However, filtering, if not applied correctly, can distort the system 

identification process since the phase and magnitude of the data 

are affected. Among a number of filtering methods, Global Fourier 

Smoothing is mostly preferred for applications of system 

identification with equation error method. The method is originally 

proposed by Morelli, [21], and application procedure can be found 

in Klein and Morelli, [16]. The Global Fourier Smoothing relies on 

the assumption that the noise signal has constant power over a 

wide frequency range; i.e., it is incoherent in contrast to the signal 

that contains the actual dynamics of the flight vehicle. Thus, the 

Fourier sine series coefficients associated with the noise signal will 

be almost constant throughout the frequency of interest where as 
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the Fourier sine series coefficients of the coherent signal (i.e., the 

actual dynamics of the FV) will rapidly decrease to zero. If, the 

Fourier sine series coefficients are plotted versus frequency, it is 

possible to discriminate between the noise and signal visually and 

select the cut-off frequency (Figure 6). 

 

 

Figure 6. Fourier sine series coefficients plotted versus frequency  

 

Once the cut-off frequency is determined, a digital filter can be 

designed to filter out noise. For this purpose, the Wiener filter, 

which was originally proposed by Norbert Wiener in 1949, is used, 

which is near unity at low frequencies, thus passes the Fourier 
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sine series components of the coherent signal and is near zero at 

cut-off frequency, thus removing the Fourier sine series 

components of the noise. Since the Fourier coefficients near the 

cut-off frequency is small by definition, the Wiener filter tolerates 

the small errors that might be done during the visual selection of 

the cut-off frequency. However, it is a wise idea to plot the 

magnitude of Fourier sine series coefficients in logarithmic scale to 

make the visual discrimination between signal and noise easier. 

Figure 7 shows an example of noisy signal, noise free signal and 

noise estimate. 
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3.4.1.2 Partitioning Flight Test Data Based on the 

Ranges of Independent Flight Variables 

Another important decision that affects the quality of the model 

and the accuracy of the parameter estimates is the partitioning of 

the FTD. For a time series with large variances in angle of attack, 

angle of side slip, and Mach number, it is a good idea to apply the 

partitioning. Although, there is no strict rule to follow, 

commonsense dictates that the partitions should be large enough 

to allow the demonstration of the underlying physics associated 

with motion, but short enough to allow easy correlation with the 

CFD or wind tunnel databases, if a priori information exists.  

 

One straightforward approach to partitioning is to use the nodes of 

the a priori CFD or wind tunnel database. An update to databases 

is very easy for this case. However, this approach has a major 

drawback that, the size of the partitions are not controlled; that is 

there might be very large or small partitions depending on the 

selection of the nodes.  

 

3.4.2 Complexity of the Model, Selection and Automated 

Generation of Regressors/Parameters 

Maybe the most important question that needs to be asked is the 

following: “What should the maximum order of the model be?”. In 

fact, this is not an easy question to answer. The order of the 
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aerodynamic model may change with the flight vehicle type, 

symmetricity of the model, and flight regime. 

 

Yet, it is a wise idea to use a-priori information while deciding on 

the model order. The preflight aerodynamic model, no doubt, 

covers at least some of the main effects of the independent 

variables. Whether a delta coefficient approach or a full model 

estimation approach is preferred, the complexity (maximum 

order) of the candidate models (pool of regressors/parameters) 

should at least be equal to the complexity of the preflight 

aerodynamic model. Based on the aerodynamic discussions of 

CHAPTER 2, an adequate pool of regressors can be assembled. 

Following table shows the aerodynamic coefficients and flight 

variables associated with them. 

 

Table 1. Aerodynamic coefficients and associated flight variables 

Coefficient Associated Flight Parameters 

CX M, , ,  

CY M, , , a, r, p, r 

CZ M, , , e, q 

Cl M, , , a, r, p, r 
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Coefficient Associated Flight Parameters 

Cm M, , , e, q 

Cn M, , , a, r, p, r 

 

Notice in Table 1, CX is associated with a coupled flight variable, . 

As shown in Eq. (30),  is a combination of control commands ( a, 

e and r). The reason for the definition of a new flight parameter 

is the behavior of axial force with the control commands for an 

automated flight vehicle.  

 

  (30) 

 

Once the decision on the model complexity is reached, the 

regressors themselves must be generated. This requires the 

utilization of an adequate combination algorithm.  

 

A brief literature survey revealed the use of combinadic concept, 

which is basically a binary indexing system for combinations 

generated from a finite set. However, combinadic is not the cure, 

since not only first order combinations from a finite set are 

needed, but higher orders are necessary for the automated 

regressor generation as well.  
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Dr. Morelli’s SIDPAC, [16], which is an open source collection of 

Matlab® scripts designed for flight test data processing, system 

identification and parameter estimation, utilizes an indexing 

system which is not binary, so that powers of every term that 

make up a regressor can be kept as a list. However, it is seen 

that, this approach to automatic regressor generation might fail to 

prevail when the size of the flight parameters is larger than 7, due 

to computational issues. 

 

Then, a new regressor generation algorithm is devised. In this 

new approach, the first step is to generate the powers of 

independent variables. Then, the combinations of the independent 

variables and their powers are generated. An important step is 

checking for validity: A regressor is valid if its power is smaller 

than the maximum allowed power. The devised algorithm utilizes 

a two step validation check: Obviously invalid combinations are 

not generated in the first step and the validity of generated 

regressors is checked in the second step. For example, if 

combinations up to power 4 are sought, the combinations 

including more than 4 terms are not generated, since even their 

first order combinations have cumulative power more than 4. This 

algorithm (Figure 8) is tested against SIDPAC’s algorithm for 

speed, and is almost twice faster. 
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Figure 8. Flow chart of automated regressor generation 

 

3.4.3 Selection of Run Parameters and Stopping Rules 

As aforementioned in Section 1.3, one of the goals of this doctoral 

study is to devise a procedure that identifies the model structures 

and estimates the parameters with minimum intervention. From 

this sentence, the need for an automated selection routine for 

stepwise regression method is obvious. 

 

The selection criteria given in Section 3.1 are straightforward: 

First select the regressor with higher correlation then add the 

regressor with the highest partial correlation until the stopping 

criterion is achieved. Yet, there are some methods to be employed 

in order to obtain good models.  

Define associated 

flight variables for 

the current aero 

coeff.

Generate the 

names of the 

associated flight 

variables

Assign indices the 

associated flight 

variables 

Generate the 

powers of indices

Generate the 

combinations and 

powers of 

combinations of 

indices

Generate 

regressor names 

based on indices

Check the validity  of the 

generated combinations

Assemble 

regressors
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First method is to add some physics into pure mathematics of the 

stepwise regression. From an engineering point of view, it is 

always preferred to work with simple models; i.e., a higher model 

complexity is not desired. Yet, it is not uncommon for stepwise 

regression to go for complex models if the selection criteria are 

left as explained before. For example, a case where the regressor 

with the highest partial correlation is of order 4, where as a first 

order regressor with slightly smaller partial correlation can exist, 

then the algorithm will go for the higher order one. 

 

To employ this method and introduce physical insight into the 

selection scheme, it is decided to use a search window of variable 

height which starts from the highest correlation/partial correlation 

regressor and stretches downward. The height of the window 

shrinks, if the highest correlation/partial correlation is close to 1 

and eventually it becomes zero at 1. Once the height of the 

window is selected, all the regressors that have correlation/partial 

correlations within this window are selected and sorted in 

ascending order with respect to their complexity. Then the 

regressor with the least complexity (minimum order) is selected 

and added to the model and the stepwise regression algorithm 

continues to the next step. 

 

Different approaches can be followed in determination of the 

search window height. The straightforward approach is to use a 
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linear mapping function for this purpose. Eq. (31) shows the form 

of such linear mapping function, where WH denotes window 

height, LCL is the lowest partial correlation that is allowed in 

model, SF is the scale factor of the mapping and HC is the highest 

partial correlation in the current step of the stepwise regression: 

 

 
 

(31) 

 

After some trials with linear mapping, it is found out that a 

function which provides bigger search window sizes when the 

correlations are close to 1 is needed. Then, a function form, which 

rapidly expands the size of the search window near 1, but then 

gradually increases it for lower correlations is sought. The 

transformation functions in the form of Eq. (32) provide such a 

mapping, where PW is the power as integer. 

 

  (32) 

 

After some trials with the simulated and actual flight test data, a 

scale factor of 20 and power of 0.25 is selected as the search 

window sizing function, which provides sizes close to 0.5 scale 

factored linear mapping for low correlations and bigger window 
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sizes close to 1. Figure 9 shows the comparison of different 

window sizing functions. 

 

 

 

Figure 9. Comparison of different search window selecting 

functions and scale factors 

 

Another method is to factor out cross correlated regressors from 

the selection pool. At every selection step of the stepwise 

regression algorithm, the parameter correlation matrix is searched 

for correlated regressors. If there exist some correlations between 

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2

Se
ar

ch
 W

in
d

o
w

 W
id

th

Partial Correlation

0.2

0.5

0.75

1

2

Exponential



 63 

regressors in the model, then this shows up as large elements of 

parameter correlation matrix. As a rule of thumb, Klein and 

Morelli, [16], suggested that any value larger than 0.9 is a sign of 

strong correlation between parameters (regressors) of the model. 

If this is encountered, then the regressor causing the correlation; 

i.e., the one added latest, is removed from the model and deleted 

from the pool of candidate regressors. Since the algorithm selects 

the parameters of the model from the pool of regressors based on 

their correlation/partial correlation metric, the deletion of a 

regressor does not introduce any complications to the estimation 

algorithm; parameters with higher importance have already been 

included! Then, the algorithm carries on searching for other 

regressors which might be included in the model without causing 

correlation with the parameters already in the model. 

 

Although a lower limit is suggested by Klein and Morelli, [16], a 

value over 0.95 for parameter-to-parameter correlation limit can 

be used for autonomous flight vehicles of interest. 

 

There are two fundamental stopping conditions for the stepwise 

regression method: The partial correlation and F-ratio limits. That 

is, during the stepwise regression run, if the partial correlations of 

the regressors outside the model are below the specified partial 

correlation lower limit and at the same time the F-ratios of the 

regressors inside the model are above the F-ratio lower limit then 
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the algorithm stops. Yet, these two conditions are not enough 

alone.  

 

The first additional stopping condition is the predicted square error 

(PSE). The algorithm can carry on, as long as PSE decreases. Yet, 

at one stage, before the fundamental stopping criterion kicks in, 

PSE may start growing. This indicates that the model is becoming 

over parameterized; meaning that the prediction capability of the 

model is decreasing. So, the automated stepwise regression 

algorithm stops, whenever PSE starts growing. 

 

Two other additional stopping rules are related with the goodness 

of fit criteria. First, a limit on goodness of fit (R2) improvement is 

used. Although a limit of 1% is recommended for goodness of fit 

improvement in the literature as a rule of thumb, it is found that a 

lower limit can lead to better estimates provided that parameter-

to-parameter correlations are not allowed in the model. The 

second stopping condition is the monotonic increase criteria for 

adjusted goodness of fit metric. As opposed to PSE, if the adjusted 

R2 metric starts to decrease, the algorithm stops. 

 

Finally, a convergence time limit is used as a safeguard. On rare 

occasions, the stepwise regression algorithm may stick in a cycle; 

i.e., the regressor added in the previous step is excluded in the 

current step and added in the next step. If such a loop occurs; 
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i.e., if the stepwise regression routine is not completed within the 

allowed convergence time limit, the automatic decision routine 

stops the stepwise regression algorithm. After experimenting with 

different desktop PC’s and workstations, it is decided that 300 

seconds is a reasonable convergence time limit. 

 

Following flow chart summarizes the flow of the model structure 

determination and parameter estimation algorithm with 

implemented rules. 
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3.4.4 Compensating for Non-Standard Conditions of Flight 

Test  

In a sense, the atmosphere itself is the most correlated regressor 

of all, since it has the biggest effect on aerodynamic forces and 

moments. However, the atmosphere is very hard to predict and is 

a major error source for a flight vehicle which is not equipped with 

an onboard air data computer.  

 

There are a number of different models to predict the behavior of 

atmosphere, and also different means of measurement to gather 

real time data. However, each has its own limitation. For example, 

flying meteorological balloons to obtain real-time density, 

pressure and wind information is a common practice for artillery 

battalions. With a relative ease of operation and low cost, this 

method provides a valuable information but has a limited 

applicability, since the motion of the balloon is not controlled and 

it is a matter of minutes before the balloon drifts away from the 

probable trajectory of the artillery shell.  

 

It is not feasible to obtain meteorological conditions on the 

probable/actual trajectory (of artillery shells or any type of flight 

vehicles) via measurement, but still it is needed to apply 

corrections to incorporate the effects of non-standard conditions; 

i.e., deviations from the standard atmosphere. This is 

accomplished by the utilization of meteorological models. 
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One of the most preferred prediction models is the Fifth-

Generation NCAR / Penn State Mesoscale Model (MM5). In Turkey, 

General Administration of Meteorology provides weather forecasts 

based on MM5. Every day, starting at 00 hours UTC, weather 

forecasts are run and published via internet every six hours, which 

are valid for a duration of 48 hours. Nevertheless they are most 

accurate only for the first 6 hours. However, due to run time of 

weather forecast code, delays occur between start of run and 

publishing of forecast. It is possible to obtain meteorological 

report for a desired region within whole Turkey based on MM5 

data. 

 

The meteorological forecast data is required at a number of points 

located on a uniform or non-uniform grid about the trajectory of 

the flight vehicle. For each grid point, the temperature, pressure 

density, wind direction, and wind speed were forecasted as a 

function of the height above sea level and time (in UTC).  

 

As first step to obtain predicted meteorological conditions on a 

trajectory, the computer meteorological report at each grid node 

must be interpolated in time to obtain meteorological conditions at 

the time of flight test at each node. It is assumed that, 

meteorological conditions vary linearly within an hour time. 
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At the second step of the algorithm, it is necessary to perform an 

interpolation in spatial dimensions. The meteorological data is 

provided as uniform planes above sea level, so that it is possible 

to interpolate them on height. A linear interpolation is performed 

at every met node with flight vehicle’s height from sea level as 

input. It is suggested that, pressure does not vary linearly but its 

logarithm, [22]. However, it is noticed that, density also exhibits a 

similar behavior, so a linear interpolation is performed for the 

logarithms of these two variables and then inverse logarithms are 

taken. 

 

Next, for every point of flight vehicles trajectory, a 2D (planar) 

distance calculation is performed to obtain distances between met 

nodes and trajectory. These distances are normalized, so that 

their sum is equal to 1 and the smallest distance has the biggest 

weighting coefficient. Next, a weighted sum approach is followed 

to find the forecasted meteorological conditions on the trajectory. 

 

Figure 11 shows the met nodes, trajectory of a flight vehicle and 

interpolated wind information during one of the test runs. 
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When meteorological conditions on every point of the flight test 

trajectory are known, it is possible to correct the following 

variables for the effects of non-standard conditions: 

 Body linear rates (Vnorth, Veast, Vdown, u, v, w) 

 Flight angles ( , ) 

 Mach number (M) 

 Dynamic pressure (q) 

 

Figure 12 through Figure 15 show the measured/calculated values 

of some flight parameters versus their corrected values for the 

forecasted meteorological conditions.  
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CHAPTER 4 

 

CLOSED LOOP AERODYNAMIC PARAMETER ESTIMATION 

USING GENETIC ALGORITHM 

 

The equation error method explained in CHAPTER 3 is a powerful 

tool to determine the model structure. Yet, as stated by Morelli 

and Klein [2], the parameter estimates of the equation error 

method for an actual flight test data are not as efficient and 

consistent as the theory states. Then, the estimates of the 

equation error method serve as the starting point of more 

complex parameter estimation methods.  

 

This chapter deals with the optimization based parameter 

estimation methods and proposes a new approach to the 

aerodynamic parameter estimation problem using flight test data. 

 

4.1 Output Error Method 

One of the most widely used methods in practice is the output 

error method (OEM). It basically minimizes the error between the 
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actual (measured) vehicle variables and simulated ones. This is 

performed in an iterative manner, by employing optimization 

techniques. Yet, there are a number of different approaches to the 

output error method, which vary mostly on the method of 

optimization used. 

 

As Jategaonkar states [19], the theoretical foundations of the 

method rely on the maximum likelihood principle. The method has 

been in practice since 1960s and successfully applied to many 

identification problems of different flight vehicles. The name 

maximum likelihood (ML) comes from the fact that the method 

produces the estimates for the parameters for which the 

measured data is most likely to occur. In its general form, the ML 

method can be used for the parameter estimation of both linear 

and nonlinear dynamic systems with some measurement noise. It 

is an advantage of the method that it assumes some known inputs 

and noisy measured aircraft motion variables, which are 

consistent with typical flight test measurements. If the model for 

which the parameters are sought is free of errors, then the 

parameter estimates of ML are “consistent, unbiased, and 

efficient”, [2]. 

 

The OEM method relies on a number of assumptions as listed 

below. However, as Dr. Jategaonkar states, the basic rule of 

system identification/parameter estimation is still valid: “If it is 

not in the data, it cannot be estimated”, [19]: 
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1. The input sequence is independent of FV response. 

2. The measurement errors at different discrete time points are 

statistically independent and distributed with zero mean. 

3. The FV response is corrupted by measurement noise only. 

Yet, if the vehicle encounters turbulence or wind gusts 

during the flight, then there will be additional disturbances 

on the measurements. However, if such a situation occurs 

during the flight tests, the data collected is discarded and 

not used for estimation. 

4. Control inputs are sufficiently and adequately (in both 

magnitude and frequency) varied to excite dynamic modes 

of the FV. 

 

Although the flow chart of the method is straightforward (Figure 

16), the implementation varies especially in the selected 

optimization routine.  
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Figure 16. Flowchart of Output Error Method 

 

The classical implementation of OEM has some shortcomings in 

practice. These shortcomings are mostly associated with the 

simulation model. If the starting aerodynamic model is not 

adequate enough, or the parameters are not close enough to 

actual values, or the parameters are not physically relevant (as 

might be encountered if the optimization routine is selected as 

genetic algorithm), there is a risk of crashing the simulation run. 

To avoid this problem, a common practice is to move along in time 

during optimization: The optimization starts with a small segment 

of the data. As the convergence is achieved the segment grows 

until it covers the entire range of the FTD. Although this 

workaround is successfully realized, it lengthens the 

computational time. 
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4.2 Closed Loop Optimization to Minimize Control Input 

Errors 

Another workaround to potential simulation crashing problem is 

providing some robustness in the simulation model. This can be 

obtained if the simulation is run in a closed loop manner, thus 

utilizing the actual guidance law and autopilot in simulation model.  

 

This process is known as “closed loop system identification” in the 

literature and as stated by Whorton, [23], [24], it is “the 

identification of the open-loop plant given closed-loop response 

data and knowledge of the compensator dynamics”. In the 

literature, the closed loop system identification is mostly used for 

controller design and tuning, [25], [26], [27], and when it is used 

for plant model identification, the output error is used as the cost 

function, [24], [28], [29]. 

 

In an application of closed loop system identification (which will be 

termed as closed loop optimization from here on) approach to 

aerodynamic parameter estimation, as an alternative to using the 

error in response of the actual FV and simulated FV (error in 

output), the error in actual control input and simulated control 

input can also be used. This proposed input error approach has an 

advantage over the traditional OEM: Control inputs can be 

obtained free of measurement errors during the flight test, since 

they are the outputs from the onboard digital computer, where as 
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the actual flight vehicle responses are measured with noise or 

calculated from noisy measurements. 

 

 

Figure 17. Flowchart of the Proposed Estimation Method 

 

Yet, in the closed loop optimization, not only the use of actual 

guidance law and autopilot is necessary but it is also crucial to 

implement a realistic fin actuation system (FAS) model. However, 
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parameters; otherwise, errors due to inaccurate modeling of FAS 

will also be compensated by aerodynamic parameters. 

 

Of many different optimization algorithms used for aerodynamic 

parameter estimation,[16],[23],[19], genetic algorithm is selected 

for use with the proposed closed loop optimization with input error 

approach.  

 

The main reason behind this choice is the major advantage of 

genetic algorithms over the traditional optimization algorithms: 

Genetic algorithms do not require feasible initial estimates to 

reach a global extremum of the solution, thus the optimality of the 

solution is guaranteed. However, the time required to reach the 

solution is longer than the traditional methods. 

 

The genetic algorithms and their applications are hot topics in 

engineering and many references as well as textbooks are 

available in the literature. Yet, very briefly summarizing, genetic 

algorithms are mathematical methods for global search and 

optimization that are based on the mechanics of natural selection 

and science of genetics. According to the Darwinian theory of 

evolution, the members of a population that have the best 

characteristics to survive prevail, while the rest are eliminated. 

This is known as the survival of the fittest. Genetic algorithms 

work on the following basic principle: The members with best 
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scores with respect to some cost function prevail and given 

enough time a best member is obtained.  

 

A genetic algorithm starts by creating an initial population. The 

fitness value for each individual of the population is calculated and 

the individuals with the best fitness values, called as elites, are 

carried on to the next generation. The rest of the next generation 

is generated via mutation of a single parent or crossover of two 

parents from the initial population. The procedure is repeated until 

the stopping criteria are reached.  

 

The mechanisms of biological and computational steps of natural 

selection are explained in detail by Whorton [23],[24] and 

practical considerations for application can be found in Matlab® 

Optimization Toolbox Manual, [30]. 

 

4.3 Run Parameters and Cost Function 

The genetic algorithm selected to use is a readily available 

software package from Mathworks, which is built-in to Matlab® via 

the (Global) Optimization Toolbox. The parameters that should be 

tuned in a genetic algorithm run of Matlab® to obtain good results 

are listed, [30], with their proposed values as follows: 
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 Initial Range: Diversity is the average distance between the 

individuals. Despite a widespread information genetic 

algorithm cannot find the global minimum if the population 

is not diverse enough. On the other hand if it is too diverse 

it takes a lot of time to converge. Diversity is not directly 

controlled but based on the initial range used to generate 

the initial population and amount of mutation. That is, the 

initial range is a crucial parameter for the convergence and 

success of Matlab’s genetic algorithm. A very large initial 

range will prevent the algorithm from converging, while a 

small range has the risk of missing the optimal point. For 

the aerodynamic estimation problem in hand, the initial 

population range should be selected based on the prior 

knowledge, either from CFD analyses or wind tunnel test 

results or equation error method estimations. 

 Population Size: Population size is the number of individuals 

present in each generation of the genetic algorithm run. The 

larger the population size is, the more available search 

points are, thus better the final result is. However, as the 

population size gets larger, the computational time grows. 

Thus, a fine balance must be maintained between the run 

time and population size. The minimum requirement is that, 

the population size must not be smaller than the number of 

parameters. However, based on many runs with simulated 

and actual flight test data during the course of this doctoral 

study, it is observed that a population size of at least three 

times the number of parameters is required for aerodynamic 

parameter estimation. 
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 Maximum Number of Generations: Maximum number of 

generations is another important parameter of the algorithm 

which affects the outcome directly. Selecting a small number 

for the maximum number of generations causes the genetic 

algorithm to terminate prematurely, while a big number is 

inefficient way of spending computational time. However, 

the decision on the maximum number of generations should 

be made together with the method of mutation. 

 Hybrid Function: The genetic algorithm takes quite long (run 

times of about 15 days on desktop PC’s (Intel Core2 Quad 

and alike) and workstations (AMD Opteron 128 and alike) 

are typical for a flight test data of 60 seconds) to converge, 

and as the population gets closer to the optimal point, the 

rate of improvement decays. Then, it is a wise idea to utilize 

classical gradient based optimization to obtain the final 

parameters, once the genetic algorithm converges around 

the optimal. This approach unites the bests of both worlds; 

a global optimum in a relatively short time. The Matlab® 

Optimization Toolbox, [31], provides useful gradient based 

built-in optimization functions which can be used as hybrid 

functions. The aerodynamic parameter estimation problem is 

a constrained type optimization problem, since the 

parameters are bounded around an initial estimate (prior 

information based). Then the selected hybrid function for 

this purpose is the fmincon, constrained minimization 

function of Matlab® Optimization Toolbox. 

 Mutation Function: In any population, there are three ways 

for the reproduction. First the elites are passed on the next 
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generation. The second mechanism is the crossover, which 

is the mating of two individuals in the current generation in 

order to obtain a child. Thus, genes from different 

individuals are combined into a new individual. Then, the 

remaining children are generated by the mechanism which is 

called the mutation. Mutation is randomly changing an 

individual’s parameters in the current generation to obtain a 

child. Thus, mutation adds to the diversity of a population 

and increases the likelihood that the algorithm will generate 

individuals with better fitness values. Matlab® genetic 

algorithm has two different ways of generating mutation. 

The default is called the Gaussian mutation, which is adding 

a random number, chosen from a Gaussian distribution, to 

each entry of the parent vector. The alternative is to use 

adaptive feasible mutation, which randomly generates 

directions that are adaptive with respect to the last 

successful or unsuccessful generation. Based on genetic 

algorithm runs with simulated and actual flight test data 

during the course of this doctoral study, it is advised that 

the minimum number of generations must be at least 100 

for mutation function adaptive feasible and 150 for 

Gaussian, in order to obtain feasible start points for hybrid 

function run. Yet, it is safe to run with more than 150 and 

200 generations respectively. Also, if the shrink parameter, 

which is a control flag for rate of decay of mutation as the 

population evolves through generations, is set to zero, then 

the minimum number of generations must be higher than 

250. Because of this situation, the duration advantage of 

Gaussian mutation over adaptive feasible diminishes 
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(Gaussian mutation ignores bounds on the optimization 

states, where as adaptive feasible regards them, thus 

optimization with Gaussian mutation evolves faster than 

optimization with Adaptive Feasible). 

 Cost function: The proposed methodology is based on 

minimizing the error in the input. Thus, the cost function 

should be constructed such that, it minimizes the error 

between the actual in-flight recorded control inputs and 

simulated ones in a least squares sense, Eq. (33): 

 

  (33) 

 

Yet, the cost function definition given in Eq. (33) is itself is 

not sufficient for a stable optimization. Since, there is no 

constraint on the number of data samples (that is the length 

of simulated trajectory), the generation evolves to physically 

meaningless parameters that tend to terminate the 

trajectory in relatively short times, rather than following the 

actual flight test trajectory. 

 

To overcome this problem, two alternative approaches are 

possible. In the first approach, a final position penalty is 

included in the cost function. Thus, the simulation runs that 

terminate farther away from the actual hit point receive 
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higher penalties, which in turn force the evolution towards 

the parameters that result trajectories closer to the actual 

flight test run. Eq. (34), shows the updated (and equally 

weighted) cost function with such a final position penalty. 

Notice that, to avoid the dominancy of any objective over 

the other, the fin deflections are scaled with their maximum 

and minimum values that occur in the flight to 0-1 range 

and the final position penalty is scaled such that the 

individual trajectories that terminate within 500 meters of 

actual trajectory end point receive penalties less than 1. 

 

 

 

(34) 

 

An alternative approach for implementing a final position 

penalty is to force the simulation to run longer, by scaling 

the data length in the cost function, Eq. (35). If the 

trajectory terminates in a short time, the data length of the 

simulated fin deflection will be a small number, thus the cost 

function will be a higher value; and if the trajectory 

terminates in a longer time vice a versa. 
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(35) 

 

The two cost functions are compared with a number of 

optimization runs on simulated and actual flight test data. It 

is seen that final position penalty (coupled with Adaptation 

Feasible type of mutation) gives better results. 
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CHAPTER 5 

 

TEST CASES 

 

The methods defined in the previous chapters are applied to flight 

test data of two different air launched flight vehicles. The first 

vehicle is an autonomous (onboard closed loop feedback 

controlled) flight vehicle, where as the second vehicle is a freefall 

separation model (uncontrolled). 

 

5.1 Test Cases for Model Structure Determination 

The methods for model structure determination are tested on four 

different test cases. The first two of these cases are simulated 

flight test data of the guided FV, which are obtained through a 

high fidelity 6 dof simulation. The third test case is the actual 

flight test data of the guided FV, which was gathered during 

performance demonstration flight tests of the FV. Thus, the data 

for the third test case is not specifically designed for system 

identification/parameter estimation purposes, yet, it is the only 

set of actual flight test data for guided FV available. This flight test 

data includes measurements for: 
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 Altitude 

 Velocities 

 Body angular rates 

 Body linear accelerations 

 Control surface deflections 

 

Using these parameters, the following are calculated during post 

processing the data: 

 Angle of attack 

 Angle of side slip 

 Mach number 

 

The fourth test case is the actual flight test data of the freefall 

separation model. Only two sets of measurements are included in 

the actual flight test data; namely linear accelerations and angular 

rates. Using these measurements, the following are calculated 

during post processing of the data (thus the data is prone to 

possible integration errors in the post process): 

 Angle of attack 

 Angle of side slip 

 Mach number 
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5.1.1 Simulated Flight Test Data for Guided FV 

The first test case is a standard trajectory for the autonomous 

flight vehicle. No specific care is taken for maneuver design, i.e, 

excitation of modes of the vehicle for system identification 

purposes is not performed. As can be seen from the time history 

of the flight data in Figure 18 and Figure 19, the vehicle rapidly 

suppresses the effects of the initial conditions (initial angular rates 

are assumed on the vehicle to simulate the effects of separation 

from the parent aircraft) and smoothly flies the rest of the 

trajectory until the desired final point.  
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The original aerodynamic model of the flight vehicle is given in 

Table 2 and Table 3. 

 

Table 2. Original aerodynamic model of the guided FV (forces) 

 

 

Table 3. Original aerodynamic model of the guided FV (moments) 

 

 

Coefficients

Static Term 2.0445 Static Term -0.0009 Static Term 0.0169

alpha2 -4.3192 beta3 -40.3350 alpha3 -35.7140

beta4 11.5640 beta2 0.0058 alpha2 0.0590

beta3 -0.0457 beta -6.0397 alpha -6.1664

beta2 -1.1341 r -17.1996 beta 0.1425

beta 0.0300 Machr 31.6010 q 17.1996

Mach2 1.5909 dr 5.0365 Machq -31.6010

Mach -3.8605 alpha2dr -2.4669 de 5.0365

alphadr 0.0433 beta2de -2.4669

Machdr -1.5251 betade 0.0433

Machde -1.5251

M
o
d

e
l 
P

a
ra

m
e
te

rs

CX CY CZ

Coefficients

Static Term 0.0015 Static Term 0.0564 Static Term -0.0144

alpha -0.0328 alpha3 -33.1320 beta3 33.5710

beta3 -0.3315 alpha2 0.3809 beta2 1.0681

beta2 0.2492 alpha -5.2489 beta 4.6446

beta 0.0416 q 119.4666 r 119.4666

p -0.4586 Machq -157.6500 Machr -157.6500

Machp -0.8159 de 20.4878 dr -20.4878

da 9.9776 beta2de -12.6650 alpha2dr 12.6650

alpha2da 1.9753 betade 0.3407 alphadr -0.3407

beta2da 4.1906 Machde -5.5976 Machdr 5.5976

betada 0.1166

Mach3da -9.3903

Mach2da 28.1970

Machda -27.5090

Cn

M
o
d

e
l 
P

a
ra

m
e
te

rs

Cl Cm
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Table 4 - Table 8 show the identified models and parameter 

estimates (with predicted errors). Figure 20 through Figure 24 

show the response of the estimated model and residuals for each 

aerodynamic coefficient. Although most of the identified model 

responses seem to agree well with the simulated flight test data, a 

comparison of parameters between the original aerodynamic 

models and the identified ones reveals that the obtained models 

are not relevant. For example, a dependency on the control 

surface deflections is identified in axial force, where as the original 

model is independent of deflections. Also, a model for the pitching 

moment coefficient (Cm) could not be identified. Of all the 

identified models for the five aerodynamic coefficients, only the 

model for the side force coefficient (CY) seems to capture the 

dominant parameters and their values acceptably, yet there are 

still unrelated parameters such as the square of rudder deflection 

in the identified model. Then, it is without a doubt that at first 

attempt, the model structure identification algorithms failed to 

identify adequate models for the guided FV. The main reason 

behind this failure is the insufficient information content of the 

simulated FTD: The simulation did not include any maneuvers for 

system identification and the atmospheric conditions were perfect 

(no winds, standard day temperatures and pressures). Under 

these circumstances, the autopilot did a pretty job and suppressed 

the vehicles dynamical responses, thus, not enough valuable 

information left in the FTD for the model identification algorithms 

to succeed. 
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Table 4. Identified model and parameter estimates for CX 

 

 

Table 5. Identified model and parameter estimates for CY 

 

 

Table 6. Identified model and parameter estimates for CZ 

 

 

CX
Parameter

Estimate

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

Mach -0.6380 0.0596 9.3500 -0.7573 -0.5187

delta -1.2430 0.1399 11.2516 -1.5227 -0.9633

alpha3 -8.5061 0.9898 11.6358 -10.4857 -6.5266

static term 0.4222 0.0600 14.2008 0.3023 0.5421

CY
Parameter

Estimate

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

beta -5.8169 0.0432 0.7418 -5.9032 -5.7306

dr 3.1463 0.0707 2.2473 3.0049 3.2878

dr2 48.4342 2.0228 4.1764 44.3886 52.4799

static term -0.0019 0.0011 57.7392 -0.0040 0.0003

CZ
Parameter

Estimate

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

de -13.5862 0.1207 0.8886 -13.8276 -13.3447

static term -0.0570 0.0108 18.9173 -0.0786 -0.0354
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Table 7. Identified model and parameter estimates for Cl 

 

 

Table 8. Identified model and parameter estimates for Cn 

 

 

Cl
Parameter

Estimate

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

dap -4591.1438 113.5047 2.4723 -4818.1532 -4364.1344

static term 0.0001 0.0001 66.6298 0.0000 0.0003

Cn
Parameter

Estimate

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

betap -10540.6233 2031.0955 19.2692 -14602.8144 -6478.4322

drp 42641.0939 3925.5223 9.2060 34790.0494 50492.1385

drda2 -8607.9217 548.4078 6.3710 -9704.7372 -7511.1062

static term -0.0063 0.0021 33.3606 -0.0104 -0.0021
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5.1.2 Simulated Flight Test Data for Guided FV with 

Maneuvers 

Although the simulated flight test data of test case 1 is free of any 

measurement errors and biases, which almost never is the case 

for an actual flight test data, the model structure algorithms failed 

to identify adequate and acceptable models. To test the famous 

saying “If it is not in the data, it cannot be estimated”, two 

additional flight simulations are carried out, each with different set 

of maneuvers. The optimal flight test maneuver design is a broad 

subject, and not included in the scope of these thesis. Yet, a very 

basic approach is taken in maneuver design: The maneuvers are 

selected to excite the modes of the flight vehicle by disturbing the 

autopilot commands to fin actuation system. These maneuvers are 

constant frequency sine inputs (frequencies of inputs for aileron, 

elevator and rudder inputs are selected based on longitudinal and 

lateral mode frequencies of the vehicle) and square waves. Figure 

25 and Figure 26 show the time history of simulated flight test 

data for test case 2. 
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Once again, aerodynamic model structure identification followed 

by parameter estimation is performed using stepwise regression 

and equation error methods on the simulated flight test data. 

Table 9 - Table 14 show the identified models and parameter 

estimates (with predicted errors) and Figure 27 through Figure 32 

show the response of the estimated model and residuals for each 

aerodynamic coefficient. The identified model responses seem to 

agree well with the simulated flight test data. A comparison of 

parameters between the original aerodynamic models and the 

identified ones reveals that the obtained models (especially for 

forces) are adequate and they capture the dominant parameters 

(and their values) acceptably. Yet, there are some unrelated 

terms in the identified models for moments. Also, some high 

residual values can be seen in the responses. Nevertheless, the 

test case 2 proves that, given an adequate flight test data, i.e., a 

flight test data that is rich enough in frequency content, the model 

structure determination and equation error based parameter 

estimation algorithms have the potential to identify adequate 

aerodynamic models. Yet, the phrase “if it is not in the data, it 

cannot be estimated” is validated, i.e., the success of the 

identification and estimation algorithms depend on the flight test 

maneuver design. 
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Table 9. Identified model and parameter estimates for CX 

 

 

Table 10. Identified model and parameter estimates for CY 

 

 

Table 11. Identified model and parameter estimates for CZ 

 

 

Table 12. Identified model and parameter estimates for Cl 

 

CX
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

Mach -0.6902 0.0110 1.5945 -0.7122 -0.6682

alpha2 -4.3041 0.0131 0.3034 -4.3302 -4.2780

beta2 -1.1689 0.0515 4.4028 -1.2718 -1.0660

static term 0.4676 0.0110 2.3488 0.4456 0.4896

CY
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

beta -6.0821 0.0078 0.1285 -6.0977 -6.0664

dr 3.4046 0.0078 0.2302 3.3889 3.4203

beta3 -39.9475 0.4078 1.0209 -40.7631 -39.1318

static term -0.0003 0.0002 80.8718 -0.0008 0.0002

CZ
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

alpha -5.9290 0.1305 2.2015 -6.1901 -5.6680

de 3.1745 0.1327 4.1806 2.9091 3.4399

alpha3 -37.1918 1.1341 3.0493 -39.4600 -34.9236

static term 0.0251 0.0096 38.1037 0.0060 0.0442

Cl
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

da 1.2249 0.0589 4.8055 1.1072 1.3427

static term -0.0043 0.0003 7.6287 -0.0050 -0.0037
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Table 13. Identified model and parameter estimates for Cm 

 

 

Table 14. Identified model and parameter estimates for Cn 

 

 

Cm
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

alpha -4.3669 0.1811 4.1468 -4.7290 -4.0047

de 12.6085 0.4306 3.4149 11.7473 13.4696

de2 17.1554 5.5337 32.2565 6.0879 28.2229

alpha3 -35.7358 1.5871 4.4411 -38.9100 -32.5617

de3 -79.3177 24.2586 30.5841 -127.8349 -30.8005

static term 0.0550 0.0124 22.4825 0.0302 0.0797

Cn
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

beta 4.2991 0.0389 0.9044 4.2213 4.3768

dr -13.6642 0.0756 0.5535 -13.8154 -13.5129

beta2 -5.1522 0.2358 4.5763 -5.6238 -4.6807

static term -0.0121 0.0008 6.4588 -0.0137 -0.0106
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5.1.3 Actual Flight Test Data for Guided FV 

The third test case is the actual flight test data of an autonomous 

flight vehicle. The data is collected from four different test runs 

each with different initial conditions. Using the data processing 

methods explained in Section 3.4, the data is conditioned and 

trimmed yielding the result shown in Figure 33 and Figure 34. 

 

The differences between the in-flight aerodynamics and the a 

priori aerodynamic model are shown in Figure 35 and Figure 36. 

Except for the axial force coefficient, the a priori aerodynamic 

model seems to catch the actual dynamics well for the small angle 

of attack and side slip cases. However, there are considerable 

differences between the in-flight and a priori aerodynamics in 

flight conditions for which the angle of attack and side slip are 

above 10° and below -10°. 
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The power spectral density estimates for the in-flight 

aerodynamics and the obtained delta aerodynamics are shown in 

Figure 37 and Figure 38. 
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In contrast to what is expected, calculating a delta aerodynamics 

does not reduce the power of spectral density estimates, but 

amplify them for this flight vehicle. The reason behind this 

opposite behavior is the flight regime of the vehicle. As seen from 

Figure 33, the vehicle mostly flies in the high angle of attack and 

angle of side slip range. Since the database is quite erroneous for 

that flight regime, using the difference of the in-flight calculated 

and a-priori aerodynamics introduce additional power in the 

spectral estimates. 

 

The aerodynamic model structure determination algorithm is run 

for 6 aerodynamic coefficients and as can be seen in Table 15 

through Table 20. Some adequate models are obtained for all 

coefficients but the axial force coefficient. The model responses 

and the residuals are given in Figure 39 through Figure 44. The 

best agreements between the identified model and the actual data 

are obtained for lateral parameters. This is because of the content 

of the flight test data: During two of the runs, the flight vehicle 

encountered severe side wind, which caused a build-up in side slip 

angle. The autopilot responded, yet due the low fidelity of the 

aerodynamic database in the high angle of side slip flight 

condition, the control commands in lateral plane were 

miscalculated, causing the vehicle to start oscillating. Thus, the 

vehicle was excited in the lateral plane with the help of rudder 

input, which, unintentionally, allowed better model identification 

and parameter estimates in turn. 
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Table 15. Identified model and parameter estimates for CX 

 

 

Table 16. Identified model and parameter estimates for CY 

 

 

Table 17. Identified model and parameter estimates for CZ 

 

 

CX
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

alpha 0.8812 0.7548 85.6529 -0.6284 2.3908

static term 0.0057 0.1781 3119.4359 -0.3505 0.3620

CY
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

beta 3.4721 0.1746 5.0276 3.1230 3.8213

Mach 0.6578 0.0790 12.0083 0.4998 0.8158

da 1.7743 0.3304 18.6203 1.1136 2.4351

r -273.5335 22.0325 8.0548 -317.5985 -229.4684

dr2 -9.0039 1.3683 15.1966 -11.7404 -6.2673

alphabeta2 57.2829 3.5531 6.2028 50.1766 64.3892

static term -0.6012 0.0789 13.1219 -0.7590 -0.4434

CZ
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

alpha -5.1026 1.8611 36.4730 -8.8247 -1.3805

Mach -1.1907 0.1633 13.7173 -1.5174 -0.8640

q 803.0082 88.1220 10.9740 626.7642 979.2522

alpha5 469.6795 148.7196 31.6641 172.2403 767.1186

static term 2.0763 0.3264 15.7217 1.4235 2.7292
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Table 18. Identified model and parameter estimates for Cl 

 

 

Table 19. Identified model and parameter estimates for Cm 

 

 

Table 20. Identified model and parameter estimates for Cn 

 

 

Cl
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

da -1.1995 0.0294 2.4485 -1.2583 -1.1408

beta2 -0.4627 0.0225 4.8602 -0.5077 -0.4177

static term 0.0056 0.0003 5.2972 0.0050 0.0062

Cm
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

alpha 6.1754 0.3545 5.7407 5.4664 6.8844

beta 0.3372 0.0695 20.6154 0.1982 0.4763

Mach -1.2404 0.1211 9.7596 -1.4826 -0.9983

de -8.2683 0.4976 6.0187 -9.2636 -7.2730

static term 0.8754 0.1566 17.8939 0.5621 1.1887

Cn
Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence LB

95%

Confidence UB

beta -5.5715 0.3893 6.9866 -6.3500 -4.7930

Mach 0.9859 0.2122 21.5252 0.5615 1.4103

da -2.6391 0.6494 24.6085 -3.9379 -1.3402

dr 7.1326 0.3591 5.0341 6.4145 7.8507

beta2 -9.5507 1.1260 11.7897 -11.8027 -7.2987

static term -0.8946 0.2042 22.8299 -1.3031 -0.4861
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5.1.4 Actual Flight Test Data for Freefall Separation Model  

To further test the model structure determination and equation 

error based parameter estimation algorithms, a fourth test case is 

selected as the low fidelity flight test data of an free fall separation 

model. A complete 6dof trajectory information is not available in 

the flight test data since only limited measurements (body linear 

accelerations and body angular rates) were taken with a relatively 

low accuracy IMU. The atmospheric conditions were gathered by 

onboard data acquisition systems of the parent aircraft and a post 

test trajectory reconstruction was carried out to obtain the 

required variables. Figure 45 and Figure 46 show the time history 

of simulated flight test data for test case 4. 
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The aerodynamic model structure determination algorithm is run 

for 6 aerodynamic coefficients. It can be seen from Table 21 

through Table 26 that, some reasonable models are obtained for 

all coefficients. Yet, for some of the parameters, the predicted 

errors are quite high, and for some parameters they are 

unacceptable. Model responses and the residuals are given in 

Figure 47 through Figure 52. As can be seen from the plots, 

identified models represent almost all dynamics of the vehicle, but 

there are considerably large residuals left over. That is, the model 

structures are adequate, but the parameter estimates need to be 

refined. 

 

Table 21. Identified model and parameter estimates for CX 

 

 

CX

Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence 

LB

95%

Confidence 

UB

alpha 0.2239 0.0419 18.6993 0.1401 0.3076

Mach -0.4840 0.2195 45.3427 -0.9229 -0.0451

alpha3 -0.8905 0.2726 30.6072 -1.4357 -0.3454

static term 0.3066 0.1634 53.3047 -0.0203 0.6334
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Table 22. Identified model and parameter estimates for CY 

 

 

Table 23. Identified model and parameter estimates for CZ 

 

 

CY

Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence 

LB

95%

Confidence 

UB

beta 5.6930 0.3976 6.9849 4.8977 6.4883

r 339.6378 132.0473 38.8789 75.5432 603.7325

betaalpha2 77.0894 3.8767 5.0288 69.3361 84.8427

static term 0.0789 0.0719 91.0980 -0.0648 0.2226

CZ

Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence 

LB

95%

Confidence 

UB

alpha -19.2292 8.4252 43.8145 -36.0796 -2.3788

alpha2 -3.1140 1.0966 35.2160 -5.3073 -0.9208

beta2 5.7542 1.5341 26.6600 2.6861 8.8224

alphaMach 39.6169 11.0064 27.7821 17.6041 61.6297

alphabeta2 34.1308 4.4333 12.9892 25.2641 42.9974

static term 0.8274 0.0902 10.8980 0.6471 1.0078
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Table 24. Identified model and parameter estimates for Cl 

 

 

Table 25. Identified model and parameter estimates for Cm 

 

 

Cl

Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence 

LB

95%

Confidence 

UB

alpha -0.0366 0.0395 107.8804 -0.1156 0.0424

beta 0.5030 0.0924 18.3672 0.3182 0.6878

p -8.6068 4.3013 49.9754 -17.2093 -0.0042

r -40.9471 18.1190 44.2498 -77.1852 -4.7091

beta3 49.9358 15.8466 31.7338 18.2427 81.6289

alphabeta 5.9892 0.5268 8.7957 4.9356 7.0428

betar -363.9586 138.1934 37.9695 -640.3455 -87.5718

betaalpha2 6.5807 0.7707 11.7121 5.0392 8.1222

Machbeta3 -63.6458 19.5885 30.7773 -102.8227 -24.4688

alphabetap 412.0724 137.9240 33.4708 136.2244 687.9204

static term 0.0056 0.0126 223.7977 -0.0196 0.0309

Cm

Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence 

LB

95%

Confidence 

UB

alpha 5.8877 0.4540 7.7119 4.9796 6.7958

alpha3 -24.8083 2.4082 9.7071 -29.6247 -19.9920

alphabeta2 -28.8968 4.1181 14.2510 -37.1330 -20.6606

static term 0.3856 0.0342 8.8562 0.3173 0.4540
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Table 26. Identified model and parameter estimates for Cn 

 

 

Cn

Parameter

Estimates

Standard

Error

Percent

Error

95%

Confidence 

LB

95%

Confidence 

UB

beta -4.5061 0.2904 6.4449 -5.0870 -3.9253

beta3 42.3738 2.7912 6.5872 36.7913 47.9563

alphabeta -3.5593 0.7908 22.2185 -5.1410 -1.9777

static term 0.0108 0.0130 120.8272 -0.0153 0.0368
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5.2 Test Cases for Closed Loop Parameter Estimation 

The closed loop parameter estimation method is tested with two 

different set of flight test data. The first set is the simulated flight 

test data of the guided FV, and the second set is the actual flight 

test data of the guided FV. Once again, the actual flight test data 

was gathered during performance demonstration flight tests of the 

FV and is not specifically designed for system identification/ 

parameter estimation purposes.  

 

5.2.1 Simulated Flight Test Data for Guided FV 

The first test case has the identical flight test data of Section 

5.1.1: a standard trajectory for the autonomous flight vehicle 

(Figure 18 and Figure 19) 

 

The closed loop aerodynamic parameter estimation converged in 

about two weeks of run time on a quad core AMD Opteron 280 

workstation with 7.83 GB of RAM. The final value of the cost 

function was 3.718 at the end of the genetic algorithm run and 

this value was reduced to 0.595 after a hybrid run. The following 

plots show the response of the estimated model parameters with 

the actual data. 
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The estimated parameter values are shown in Figure 56 through 

Figure 61. The estimation errors range between 0.1 – 20% for CX, 

0.2 – 24% for CY, 0.5 – 22% for CZ, 2.2 – 46% for Cl, 0.2 – 35% 

for Cm, 0.8 – 38 % for Cn. It is worth noting that, the dominant 

terms for each coefficient (for example 2 for CX and  for Cn) are 

estimated with smaller errors than those with less importance (for 

example higher order parameters such as 2
r). Also, almost all 

parameters including rate terms have higher estimation errors 

when compared to others. This is due to the flight profile, since 

the vehicle is almost continuously in trimmed flight. As a 

consequence of this, the rates do not build up, and thus the 

estimation algorithm makes higher errors in converging for those 

terms. 
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5.2.2 Simulated Flight Test Data for Guided FV with 

Maneuvers 

The simulated flight test data includes a basic set of system 

identification maneuvers: Constant frequency sine inputs on 

aileron, elevator, and rudder commands. Figure 62 through Figure 

63 show the time history of simulated flight test data for test case 

2. 
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The closed loop aerodynamic parameter estimation converged in 

about four weeks of run time on a quad core AMD Opteron 280 

workstation with 7.83 GB of RAM. The final value of the cost 

function was 6.725 at the end of the genetic algorithm run and 

this value was reduced to 0.494 after a hybrid run. The following 

plots show the response of the estimated model parameters 

together with the actual data. 
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The estimated parameter values are shown in Figure 68 through 

Figure 73. The estimation errors range between 6 – 24% for CX, 

0.2 – 21% for CY, 5 – 25% for CZ, 2 – 50% for Cl, 0.5 – 46% for 

Cm, 2 – 46 % for Cn. The rate derivatives are much better 

estimated this time, when compared to the results of test case -1. 

Once again, the dominant terms for each coefficient are estimated 

with smaller errors than those with less importance.  

 



 166 

 

F
ig

u
re

 6
8
. 

E
s
ti
m

a
ti
o
n
 r

e
s
u
lt
 f
o
r 

C
X
 –

 t
e
s
t 

c
a
s
e
 2

 

 

 

s
ta

ti
c

a
lp

h
a
2

b
e
ta

4
b
e
ta

3
b
e
ta

2
b
e
ta

M
a
c
h
2

M
a
c
h

-6-4-202468

1
0

1
2

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
X
 A

c
tu

a
l

s
ta

ti
c

a
lp

h
a
2

b
e
ta

4
b
e
ta

3
b
e
ta

2
b
e
ta

M
a
c
h
2

M
a
c
h

-505

1
0

1
5

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
X
 E

s
ti
m

a
te

d

s
ta

ti
c

a
lp

h
a
2

b
e
ta

4
b
e
ta

3
b
e
ta

2
b
e
ta

M
a
c
h
2

M
a
c
h

-3

-2
.5-2

-1
.5-1

-0
.50

0
.51

M
o
d
e
l 
P

a
ra

m
e
te

r

Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n

s
ta

ti
c

a
lp

h
a
2

b
e
ta

4
b
e
ta

3
b
e
ta

2
b
e
ta

M
a
c
h
2

M
a
c
h

05

1
0

1
5

2
0

2
5

M
o
d
e
l 
P

a
ra

m
e
te

r

% Absolute Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n



 167 

 

F
ig

u
re

 6
9
. 

E
s
ti
m

a
ti
o
n
 r

e
s
u
lt
 f
o
r 

C
Y
 –

 t
e
s
t 

c
a
s
e
 2

 

 

 

s
ta

ti
c

b
e
ta

3
b
e
ta

2
b
e
ta

r
M

r
d
r

a
lp

h
a
2
d
ra

lp
h
a
d
r

M
a
c
h
d
r

-5
0

-4
0

-3
0

-2
0

-1
00

1
0

2
0

3
0

4
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
Y

 A
c
tu

a
l

s
ta

ti
c

b
e
ta

3
b
e
ta

2
b
e
ta

r
M

r
d
r

a
lp

h
a
2
d
ra

lp
h
a
d
r

M
a
c
h
d
r

-5
0

-4
0

-3
0

-2
0

-1
00

1
0

2
0

3
0

4
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
Y

 E
s
ti
m

a
te

d

s
ta

ti
c

b
e
ta

3
b
e
ta

2
b
e
ta

r
M

r
d
r

a
lp

h
a
2
d
ra

lp
h
a
d
r

M
a
c
h
d
r

-3-2-10123456

M
o
d
e
l 
P

a
ra

m
e
te

r

Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n

s
ta

ti
c

b
e
ta

3
b
e
ta

2
b
e
ta

r
M

r
d
r

a
lp

h
a
2
d
ra

lp
h
a
d
r

M
a
c
h
d
r

05

1
0

1
5

2
0

2
5

M
o
d
e
l 
P

a
ra

m
e
te

r

% Absolute Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n



 168 

 

F
ig

u
re

 7
0
. 

E
s
ti
m

a
ti
o
n
 r

e
s
u
lt
 f
o
r 

C
Z
 –

 t
e
s
t 

c
a
s
e
 2

 

 

 

s
ta

ti
c

a
lp

h
a
3

a
lp

h
a
2

a
lp

h
a

b
e
ta

q
q
M

d
e

b
e
ta

2
d
e

b
e
ta

d
e

M
a
c
h
d
e

-4
0

-3
0

-2
0

-1
00

1
0

2
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
Z
 A

c
tu

a
l

s
ta

ti
c

a
lp

h
a
3

a
lp

h
a
2

a
lp

h
a

b
e
ta

q
q
M

d
e

b
e
ta

2
d
e

b
e
ta

d
e

M
a
c
h
d
e

-4
0

-3
0

-2
0

-1
00

1
0

2
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
Z
 E

s
ti
m

a
te

d

s
ta

ti
c

a
lp

h
a
3

a
lp

h
a
2

a
lp

h
a

b
e
ta

q
q
M

d
e

b
e
ta

2
d
e

b
e
ta

d
e

M
a
c
h
d
e

-8-7-6-5-4-3-2-1012

M
o
d
e
l 
P

a
ra

m
e
te

r

Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n

s
ta

ti
c

a
lp

h
a
3

a
lp

h
a
2

a
lp

h
a

b
e
ta

q
q
M

d
e

b
e
ta

2
d
e

b
e
ta

d
e

M
a
c
h
d
e

05

1
0

1
5

2
0

2
5

M
o
d
e
l 
P

a
ra

m
e
te

r

% Absolute Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n



 169 

 

F
ig

u
re

 7
1
. 

E
s
ti
m

a
ti
o
n
 r

e
s
u
lt
 f
o
r 

C
l 
–
 t

e
s
t 

c
a
s
e
 2

 

 

 

s
ta

ti
c

a
lp

h
a

b
e
ta

3
b
e
ta

2
b
e
ta

p
p
M

d
a

a
lp

h
a
2
d
a

b
e
ta

2
d
a

b
e
ta

d
a

M
a
c
h
3
d
aM

a
c
h
2
d
a
M

a
c
h
d
a

-3
0

-2
0

-1
00

1
0

2
0

3
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
l 
A

c
tu

a
l

s
ta

ti
c

a
lp

h
a

b
e
ta

3
b
e
ta

2
b
e
ta

p
p
M

d
a

a
lp

h
a
2
d
a

b
e
ta

2
d
a

b
e
ta

d
a

M
a
c
h
3
d
a
M

a
c
h
2
d
a

M
a
c
h
d
a

-4
0

-3
0

-2
0

-1
00

1
0

2
0

3
0

4
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
l 
E

s
ti
m

a
te

d

s
ta

ti
c

a
lp

h
a

b
e
ta

3
b
e
ta

2
b
e
ta

p
p
M

d
a

a
lp

h
a
2
d
a

b
e
ta

2
d
a

b
e
ta

d
a

M
a
c
h
3
d
a
M

a
c
h
2
d
a
M

a
c
h
d
a

-505

1
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n

s
ta

ti
c

a
lp

h
a

b
e
ta

3
b
e
ta

2
b
e
ta

p
p
M

d
a

a
lp

h
a
2
d
a

b
e
ta

2
d
a

b
e
ta

d
a

M
a
c
h
3
d
a
M

a
c
h
2
d
a

M
a
c
h
d
a

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

M
o
d
e
l 
P

a
ra

m
e
te

r
% Absolute Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n



 170 

 

F
ig

u
re

 7
2
. 

E
s
ti
m

a
ti
o
n
 r

e
s
u
lt
 f
o
r 

C
m
 –

 t
e
s
t 

c
a
s
e
 2

 

 

 

s
ta

ti
c

a
lp

h
a
3

a
lp

h
a
2

a
lp

h
a

q
q
M

d
e

b
e
ta

2
d
e

b
e
ta

d
e

M
a
c
h
d
e

-2
0
0

-1
5
0

-1
0
0

-5
00

5
0

1
0
0

1
5
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
m

 A
c
tu

a
l

s
ta

ti
c

a
lp

h
a
3

a
lp

h
a
2

a
lp

h
a

q
q
M

d
e

b
e
ta

2
d
e

b
e
ta

d
e

M
a
c
h
d
e

-2
0
0

-1
5
0

-1
0
0

-5
00

5
0

1
0
0

1
5
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
m

 E
s
ti
m

a
te

d

s
ta

ti
c

a
lp

h
a
3

a
lp

h
a
2

a
lp

h
a

q
q
M

d
e

b
e
ta

2
d
e

b
e
ta

d
e

M
a
c
h
d
e

-4-202468

1
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n

s
ta

ti
c

a
lp

h
a
3

a
lp

h
a
2

a
lp

h
a

q
q
M

d
e

b
e
ta

2
d
e

b
e
ta

d
e

M
a
c
h
d
e

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

M
o
d
e
l 
P

a
ra

m
e
te

r

% Absolute Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n



 171 

 

F
ig

u
re

 7
3
. 

E
s
ti
m

a
ti
o
n
 r

e
s
u
lt
 f
o
r 

C
n
 –

 t
e
s
t 

c
a
s
e
 2

 

 

 

s
ta

ti
c

b
e
ta

3
b
e
ta

2
b
e
ta

r
rM

d
r

a
lp

h
a
2
d
r
a
lp

h
a
d
r

M
a
c
h
d
r

-2
0
0

-1
5
0

-1
0
0

-5
00

5
0

1
0
0

1
5
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
n
 A

c
tu

a
l

s
ta

ti
c

b
e
ta

3
b
e
ta

2
b
e
ta

r
rM

d
r

a
lp

h
a
2
d
r
a
lp

h
a
d
r

M
a
c
h
d
r

-2
0
0

-1
5
0

-1
0
0

-5
00

5
0

1
0
0

1
5
0

2
0
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Parameter Value

C
n
 E

s
ti
m

a
te

d

s
ta

ti
c

b
e
ta

3
b
e
ta

2
b
e
ta

r
rM

d
r

a
lp

h
a
2
d
r
a
lp

h
a
d
r

M
a
c
h
d
r

-4
0

-3
0

-2
0

-1
00

1
0

2
0

3
0

4
0

M
o
d
e
l 
P

a
ra

m
e
te

r

Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n

s
ta

ti
c

b
e
ta

3
b
e
ta

2
b
e
ta

r
rM

d
r

a
lp

h
a
2
d
r
a
lp

h
a
d
r

M
a
c
h
d
r

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

M
o
d
e
l 
P

a
ra

m
e
te

r

% Absolute Error

M
o
d
e
l 
- 

E
s
ti
m

a
ti
o
n



 172 

5.2.3 Actual Flight Test Data for Guided FV 

The third and final test case for the closed loop parameter 

estimation method is the actual flight test data of the guided flight 

vehicle.  

 

In the first attempt to estimate aerodynamic model parameters, 

the closed loop estimation algorithm was run on a quad core AMD 

Opteron 128 workstation with 7.83 GB of RAM for about 13 days. 

The genetic algorithm was terminated with a final cost value of 

17.150, which was later reduced to 16.696 by the hybrid run. 

Following figures show the response of the estimated model with 

the actual flight test data. The selected cost function included final 

position penalty and the selected mutation method was the 

adaptation feasible mutation. 
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The response of the estimated model starts oscillating towards the 

end of the trajectory. There, the guidance law tries to compensate 

for the final position error and match the final attitude constraints 

on the trajectory (such as final dive angle and angle of attack). 

Thus, the autopilot gives harsh commands to the fins. Since the 

model response deviates from the actual flight test data, there 

might be two different explanations for the cause of these 

oscillations in the model response. First, some oscillations occur 

for a small portion of the trajectory, that is, it takes the 

optimization algorithm too long to compensate for these 

oscillations. The genetic algorithm run was terminated at reaching 

the 200th generation and the hybrid run was also terminated 

before reaching the optimal value (at the maximum function 

evaluation limit). Then, allowing the runs to carry on longer might 

solve this oscillation problem. Yet, they might also be caused by 

the model error; if the model is short of representing the some 

dynamics of the vehicle, these oscillations can occur. 

 

Nevertheless, Figure 78 through Figure 83 show the contribution 

of individual parameters to the coefficient value during the 

simulation with the final model parameters: Higher the relative 

value of the parameter, more dominant the parameter is. As can 

be seen, some parameters are obviously having less importance 

on the overall coefficient values (at least for the conditions of the 

flight test). 
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This situation suggests that, better parameter estimates can be 

obtained if the number of parameters to be estimated is reduced 

so that the parameter estimation algorithm focuses on dominant 

terms. This is realized by defining an aerodynamic model for 

which the only dominant parameters are estimated, while the less 

dominants are fixed at some a priori values. In contrast to 81 

parameters of the previous model, this reduced model includes 

only 34 parameters to be estimated. Table 27 shows the selected 

parameters for estimation. 

 

Table 27. Selected dominant parameters for attempt 2 

 

 

Once again, the closed loop estimation algorithm was run on a 

quad core AMD Opteron 128 workstation with 7.83 GB of RAM. 

This time the results obtain in about 5 days (almost 60% shorter 

than attempt 1). The genetic algorithm was terminated with a 

final cost value of 17.090, which later was reduced to 17.030 by 

the hybrid run. Following figures show the response of the 

estimated model with the actual flight test data. The selected cost 

function included final position penalty and the selected mutation 
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alpha2 beta3 alpha3 alpha alpha3 beta3

Mach2 beta alpha da alpha beta2

Mach dr beta alpha2da de beta

alpha2dr de Mach3da beta2de dr

Machdr beta2de Mach2da betade alpha2dr

Machde Machda Machde Machdr

M
o
d

e
l

P
a
ra

m
e
te

rs



 185 

method was the adaptation feasible mutation, the same as 

attempt 1. 
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When Figure 74 through Figure 77 and Figure 84 through Figure 

87 are compared, it is seen that the responses of the both models 

are close. Table 28 through Table 33 show the estimated 

parameter values for the dominant terms in each case.  

 

Table 28. Estimated values for dominant parameters CX 

 

 

Table 29. Estimated values for dominant parameters CY 

 

 

CX
Attempt 1

value 

Attempt 2

value

%

Difference

Static Term 2.5547 1.7754 30.5

alpha2 -4.5582 -2.1848 52.1

Mach2 1.7396 1.3343 23.3

Mach -4.7575 -3.6335 23.6

CY
Attempt 1

value 

Attempt 2

value

%

Difference

Static Term -0.0011 -0.0012 9.1

beta3 -30.3538 -42.7200 40.7

beta -7.3629 -7.6874 4.4

dr 3.7774 4.6233 22.4

alpha2dr -3.0820 -3.4697 12.6

Machdr -1.6944 -1.5666 7.5
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Table 30. Estimated values for dominant parameters CZ 

 

 

Table 31. Estimated values for dominant parameters Cl 

 

 

CZ
Attempt 1

value 

Attempt 2

value

%

Difference

Static Term 0.2986 0.2917 2.3

alpha3 -36.6254 -41.2270 12.6

alpha -7.6275 -8.2602 8.3

beta 0.1083 0.1073 0.9

de 5.1912 6.9567 34.0

beta2de -2.9351 -1.6404 44.1

Machde -1.8991 -2.2301 17.4

Cl
Attempt 1

value 

Attempt 2

value

%

Difference

Static Term -0.0018 -0.0010 44.4

alpha -0.0390 -0.0275 29.5

da 12.4932 10.6670 14.6

alpha2da 1.3938 1.1796 15.4

Mach3da -8.6646 -7.6543 11.7

Mach2da 19.3724 19.3333 0.2

Machda -21.6548 -21.6370 0.1
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Table 32. Estimated values for dominant parameters Cm 

 

 

Table 33. Estimated values for dominant parameters Cn 

 

 

The percent differences in Table 28 through Table 33 confirm the 

relation of parameter estimation with parameter dominancy: The 

values for most dominant parameters are estimated with small 

differences in two different model runs. 

 

  

Cm
Attempt 1

value 

Attempt 2

value

%

Difference

Static Term 1.1504 0.9665 16.0

alpha3 -23.3502 -47.2120 102.2

alpha -1.8269 -2.3939 31.0

de 19.3917 24.1500 24.5

beta2de -6.5630 -13.5200 106.0

betade 0.4971 0.3486 29.9

Machde -8.3964 -7.9114 5.8

Cn
Attempt 1

value 

Attempt 2

value

%

Difference

Static Term -0.0217 -0.0207 4.6

beta3 33.5934 20.9890 37.5

beta2 0.8333 0.9708 16.5

beta -0.4474 -0.4139 7.5

dr -18.9279 -16.9240 10.6

alpha2dr 18.9451 17.7560 6.3

Machdr 2.7988 6.1914 121.2
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CHAPTER 6 

 

DISCUSSION, CONCLUSION AND FUTURE WORK 

 

This study aimed to devise a methodology that can be used for 

the identification of aerodynamic models and estimation of 

parameters for different types of autonomous flight vehicles using 

actual flight test data.  

 

To obtain an adequate aerodynamic model, a stepwise regression 

method is utilized. The method is based on selecting relevant 

parameters for the aerodynamic model based on their correlations 

with the aerodynamic behavior of the flight vehicle under 

consideration. The aerodynamic behavior of the flight vehicle is 

gathered from the inverse solution of six degrees of freedom force 

and moment equations using with actual flight conditions. If an 

existing a priori aerodynamic model is provided, then the 

information contained in that model is used and the aerodynamic 

behavior that is not foreseen by the a priori model is identified.  

 

The objective of determining the model structure with a minimal 

intervention from the user is fulfilled by the utilization of 
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automated regressor generation algorithms and imposed run and 

stopping rules. In fact, practical considerations for the application 

of model structure determination methods to autonomous vehicles 

are not well defined in the literature and this doctoral study serves 

as a guide to these considerations.  

 

Aside from the model structure determination, a closed loop 

optimization approach is also proposed for aerodynamic parameter 

estimation utilizing genetic algorithm as the kernel. Practical 

considerations and recommendations for the closed loop 

aerodynamic parameter estimation approach are given for 

autonomous flight vehicles. 

 

Both methods are tested on different test cases of simulated and 

actual fight test data. The initial application of the stepwise 

regression/equation error method to the simulated flight test data 

of a guided flight vehicle demonstrated the inability of the 

identification algorithms to converge to relevant and adequate 

models, if low – quality flight test data, i.e., flight test data which 

lacks necessary and sufficient information about the dynamics of 

the vehicle, is supplied. However, when - even non-optimal - 

maneuver designs are implemented in simulations, the algorithms 

converged successfully.  
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This study also focused on the flight test data processing. 

Considerations on conditioning the actual flight test data for 

identification include decimating a higher sample rate data to save 

valuable time, filtering out noise using Global Fourier Smoother, 

and trimming data from different test runs into one to obtain a 

global aerodynamic model.  

 

When the model identification algorithms are applied to the 

conditioned actual flight test data of the guided flight vehicle some 

reasonable models are obtained for all coefficients, except the 

axial force coefficient, even for a flight test data which was not 

designed for system identification purposes.  

 

For the closed loop aerodynamic estimation algorithm, the trials 

with simulated flight test data once again demonstrated that the 

success of identification and estimation heavily relies on the 

content of the flight test data supplied. When the simulated data 

with no specific maneuvers is supplied, some of the parameters 

are estimated with large errors. However, adding even non-

optimal maneuvers improved the parameter estimates. 

 

When the closed loop estimation algorithm is tested on an actual 

flight test data of the guided vehicle, it is seen that the success of 

estimation is lower when compared to the simulated test data. 

Trying to estimate the parameters of a reduced model yielded 
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acceptable results and also speeded up the process since the 

method takes quite long to converge, even on fast computers. 

Unfortunately, the only flight test data in hand (for a guided flight 

vehicle) was not designed for system identification/parameter 

estimation purposes, so it was not possible to test the methods on 

high quality data. 

 

During the course of this study, three conference papers have 

been published. Two of them, [12], [13], explain the practical 

considerations in flight test data processing of autonomous flight 

vehicles and aerodynamic model structure determination. The last 

one gives the results of closed loop aerodynamic parameter 

estimation using genetic algorithm for simulated flight test data of 

an autonomous flight vehicle, [14]. 

 

As follow-on studies, an effort should be directed on the validation 

of identified models and estimated parameters, trials with 

different optimization methods and comparisons of results with 

different estimation methods.  

 

Validation is an important subject, since the results of the 

identification and estimation runs must be validated before they 

can be implemented on the aerodynamic models of actual flying 

vehicles. 
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Although the genetic algorithm has some advantages over the 

conventional gradient based optimization algorithms, the 

convergence takes quite so long for optimization using the flight 

test data. During this study, some run times up to 1 month were 

encountered, which are not acceptable during an actual flight test 

program. So, the utilization of different optimization algorithms 

can be tried to shorten the convergence time. 

 

Another future work should be the comparison of the results of the 

closed loop aerodynamic parameter estimation method with other 

popular methods such as the output error method. Yet, to do this 

a high quality flight test data is required. 

 

One of the most important results of this study is the 

understanding the importance of the quality of the flight test data. 

Any method in practice cannot succeed, unless a flight test data 

with sufficient information about the flight vehicle is supplied. 

This, in fact, shows that the system identification and parameter 

estimation starts before the actual flight test, with the design of 

maneuvers. The maneuver design was not in the scope of this 

study, however, it is shown that maneuver design is crucial for 

identification and estimation. Thus, it is recommended that the 

future work should focus on maneuver design and optimization, 

since: 

“If it is not in the data, it cannot be estimated.”, [19]. 
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