AERODYNAMIC PARAMETER ESTIMATION USING FLIGHT TEST
DATA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

UMIT KUTLUAY

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
MECHANICAL ENGINEERING

SEPTEMBER 2011



Approval of the thesis:

AERODYNAMIC PARAMETER ESTIMATION USING FLIGHT
TEST DATA

submitted by UMIT KUTLUAY in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in
Mechanical Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral
Head of Department, Mechanical Engineering

Prof. Dr. Bulent E. Platin
Supervisor, Mechanical Engineering Dept., METU

Dr. G6kmen Mahmutyazicioglu
Co-Supervisor, TUBITAK - SAGE

Examining Committee Members:

Prof. Dr. M. Kemal Ozgéren
Mechanical Engineering Dept., METU

Prof. Dr. Bulent E. Platin
Mechanical Engineering Dept., METU

Prof. Dr. Serkan Ozgen
Aerospace Engineering Dept., METU

Asst. Prof. Dr. Yakup Ozkazang

Electrical and Electronics Engineering Dept.,
Hacettepe University

Asst. Prof. Dr. Yigit Yazicioglu

Mechanical Engineering Dept., METU

Date: 16.09.2011



I hereby declare that all information in this document has
been obtained and presented in accordance with academic
rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and
referenced all material and results that are not original to
this work.

Name, Last Name: Umit KUTLUAY

Signature



ABSTRACT

AERODYNAMIC PARAMETER ESTIMATION USING FLIGHT
TEST DATA

Kutluay, Umit
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Bllent E. Platin
Co-Supervisor: Dr. Gokmen Mahmutyazicioglu

September 2011, 205 pages

This doctoral study aims to develop a methodology for use in
determining aerodynamic models and parameters from actual

flight test data for different types of autonomous flight vehicles.

The stepwise regression method and equation error method are
utilized for the aerodynamic model identification and parameter

estimation.

A closed loop aerodynamic parameter estimation approach is also
applied in this study which can be used to fine tune the model

iv



parameters. Genetic algorithm is used as the optimization kernel
for this purpose. In the optimization scheme, an input error cost
function is used together with a final position penalty as opposed

to widely utilized output error cost function.

Available methods in the literature are developed for and mostly
applied to the aerodynamic system identification problem of
piloted aircraft; a very limited number of studies on autonomous
vehicles are available in the open literature. This doctoral study
shows the applicability of the existing methods to aerodynamic
model identification and parameter estimation problem of
autonomous vehicles. Also practical considerations for the
application of model structure determination methods to
autonomous vehicles are not well defined in the literature and this

study serves as a guide to these considerations.

Keywords: System identification, @ parameter estimation,
aerodynamics, aerodynamic model, equation error method,
stepwise regression, closed loop optimization, genetic algorithm,
flight test, flight test data.
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UCUS TEST VERILERINI KULLANARAK AERODINAMIK
PARAMETRE KESTIRIMI

Kutluay, Umit
Doktora, Makina Mihendisligi Bolium
Tez YOneticisi : Prof. Dr. Bllent E. Platin
Ortak Tez Yoneticisi: Dr. Gokmen Mahmutyazicioglu
Eyltl 2011, 205 Sayfa

Bu doktora galismasinin amaci, otonom ugus araglarl igin
aerodinamik model belirlenmesi ve parametre kestiriminde

kullanilacak bir ydntem ortaya koymaktir.

Aerodinamik model tanilamasi ve parametre kestirimi igin, adimsal

baglanim ve denklem hatasi yontemleri kullaniimaktadir.

Bu calismada ayrica kapall dbéngide aerodinamik parametre
kestirimi yapmak amach bir yaklasim da denenmistir. Bu yaklasim
ile aerodinamik model parametrelerinin dederlerine ince ayar
yapmak mumkuin olacaktir. Yaklasimin eniyileme yéntemi olarak

genetik algoritma kullaniimaktadir. Eniyileme doénglsinde bedel
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fonksiyonu olarak, literatiirde cogunlukla kullanilan cikti hatasi

yerine, son konum cezasi ile birlikte girdi hatasi kullaniimaktadir.

Literatirde halihazirda kullanilan ydéntemler, pilotlu ugaklarin
aerodinamik sistem tanilamasi  probleminin  ¢ézUmU igin
gelistirilmislerdir; otonom ucus araclari (zerinde vyapilan
uygulamalara iliskin acik kaynaklardaki referanslar kisithdir. Bu
doktora calismasinda, halihazirdaki yéntemlerin otonom araglarin
aerodinamik model tanilamasi ve parametre kestirimi probleminin
¢6zimiinde kullanilabilecegi goOsterilmistir. Ayrica, aerodinamik
model tanillamasi ve parametre kestirimi yontemlerinin otonom
ucus araglarina uygulanmasi konularinda literatlirde yeterince
inceleme vyapilmadigr gorildiginden, bu doktora cgalismasi bir

rehber olmayi amaglamaktadir.

Anahtar Kelimeler: Sistem tanilama, parametre Kkestirimi,
aerodinamik, aerodinamik model, denklem hatasi ydéntemi,
adimsal baglanim, kapali donglde eniyileme, genetik algoritma,

ugus testi, ugus test verisi.
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CHAPTER 1

AN OVERVIEW OF SYSTEM IDENTIFICATION AND
PARAMETER ESTIMATION IN AEROSPACE APPLICATIONS

It is the very basic instinct of an engineer to try to understand the
governing laws of any phenomena that he/she faces by analyzing
the observable outcomes. Thus, engineering is inherently based
on the effort of solving inverse problems in order to innovate,

improve or even avoid the phenomena faced in life.

From a literal point of view, the term “system identification” (SI)
is defined as "... a scientific discipline that provides answers to the
age-old inverse problem of obtaining a description in some
suitable form for a system, given its behavior as a set of
observations.” by Hamel and Jategaonkar, [1]. Parameter
estimation (PE) problems are, in fact, a subset of system
identification problems, where the purpose is to obtain the

“parameters” of the model identified.

The three dimensional (3D) dynamics of any rigid flight vehicle is

governed by six nonlinear ordinary differential equations which



consist of three force equations and three moment equations in
which time appears as the independent variable. These equations
involve the four fundamental classes of forces/moments acting on

the body; namely,
e Aerodynamic forces/moments
e Inertial forces/moments
e Gravitational forces

e Propulsive forces

It is rather easy to obtain some accurate estimates for the
gravitational, inertial, and even propulsive forces by some
measurements and/or calculations. However, it is neither that
easy, nor straight forward to obtain aerodynamic forces and
moments. Although, throughout the design cycle of a flight
vehicle, a number of different approaches (calculations, analysis,
tests, etc.) are used to obtain aerodynamic forces and moments,
the final aerodynamic estimates still contain some discrepancies

and/or errors due to the shortcomings of the methods utilized.

An initial model for the aerodynamic forces and moments along
with a database which contain the parameter values of this model
for an air vehicle is usually generated by using either a semi-
empirical tool (like DATCOM) or an analytical tool (like Vortex

Lattice Method) at the early stages of preliminary design.



Although, theoretical and empirical aerodynamics provide
aerodynamic force and moment coefficients and stability and
control derivatives with relatively high computational speed and
acceptable accuracy, they fail to give satisfactory results when

new and complex geometries are considered.

As the design evolves, some higher fidelity methods such as
computational fluid dynamics (CFD) are required and used for the
data generation. Although the CFD methods are becoming more
and more reliable and faster with the advances in computer
technology, they still may fail to predict the complex dynamics

occasionally.

Wind tunnels are in use by aerospace engineers for over a
hundred years and it is common to update aerodynamic models
and databases using the results of wind tunnel tests once the
design is fixed. However, they have their own limitations such as
test section sizes, scaling requirements, model surface quality

effects, model-sting interference effects, and so on.

Aeroballistic ranges are alternatives to the wind tunnels with one
major difference in the way the flight conditions are simulated;
the model is accelerated to the desired flight velocities. Although
these ranges are very useful in obtaining the aerodynamic

parameters of air vehicles that fly through a wide range of Mach



numbers, such as artillery rockets or free fall bombs, they also
have serious limitations like the Reynolds number mismatch,
model surface quality effects and scaling requirements. However,
the biggest limitation associated with the aeroballistic ranges is
controlling the flight parameters such as angle of attack and angle

of side slip.

As a summary, the final aerodynamic models and databases
obtained at the end of the design process might be, and most of
the time are, inaccurate for at least some flight conditions likely to
be faced by the flight vehicle throughout its life cycle. These
inaccuracies are discovered by flight testing the actual full scale
system on a variety of conditions that represent the entire flight
envelope. Then, it is the flight mechanist’s job to deduce ways to
correct the aerodynamic model and estimate the parameters using
the flight test data in hand.

1.1 Problem Definition

As a matter of fact, there is no standard approach for deciding on
the aerodynamic model of a flight vehicle (FV). Depending on the
requirements and type of the flight vehicle, the aerodynamic
model can be expressed as a linear or nonlinear function of flight
variables and geometry parameters. Furthermore, these model

functions can be continuous or interpolated from a look-up table.



Yet, the need to obtain an updated and better model stands

regardless of the format of the aerodynamic database.

The types of flight vehicles that are of interest to this study are
autonomous, one-shot flight vehicles, with  polynomial
aerodynamic models. In contrast to the flight test data of a piloted
aircraft, the flight test data that can be obtained from the flight
tests of these vehicles is heavily stripped of the necessary
information for identification and estimation purposes unless a
special care is taken in the flight test design. Yet, it is not always
possible to design a flight test for these one-shot autonomous
flight vehicles, but the flight test data for SI and PE is collected as
byproduct during the flight tests conducted for the purpose of
performance demonstration. This poses a question on the
applicability of the methods developed for the SI and PE of piloted

aircraft to the autonomous flight vehicles.

There are plenty of references in the literature on the
identification of aerodynamic model and estimation of
aerodynamic coefficients of an aircraft from its flight test data yet,
most of the efforts spent on this subject are concentrated on the
selection of estimation method for a known aerodynamic model.
On the other hand, only a limited amount of literature exists for
the SI and PE of autonomous flight vehicles. This is due to partly
the confidentiality of the autonomous flight vehicles and partly to

the fact that the small number of autonomous flight vehicles (and



therefore number of flight tests with these vehicles) as compared
to piloted aircraft. These two issues raise the question of
applicability of the methods developed for piloted aircraft to
autonomous fight vehicles and define a need for a complete
methodology for processing the flight test data for these types of

vehicles.

1.2 State of the Art in System Identification and Parameter

Estimation for Aerospace Applications

Although the mathematical background of system identification
can be traced back to 18™ century; its first applications in
aerospace field were not seen until the mid 20" century [1].
Especially after the introduction of digital computers, many

methods have been developed for the SI and PE purposes.

The most popular PE method in the literature nowadays is the
Equation Error Method. Also known as Least Squares Estimation,
the method provides unbiased, efficient, and consistent estimation
in theory, [2]. Its ease of application, which is one of the main
reasons of the method’s popularity, comes from the simplicity of
the algorithm in which no iterations are needed to estimate the
parameters. The ability to merge flight test data from different
maneuvers/sorties into one without much effort is also another
contributing factor to its popularity. Also, the stepwise regression

method, which is used for model identification utilizes equation



error method to estimate the parameters of the identified models.
However, Equation Error Method have a drawback in practice,
since the flight test data always contain measurement errors,
which in turn cause the estimators to be neither are as efficient,
consistent nor unbiased. Yet, the results of the equation error
method can be used as the feasible starting point of other

parameter estimation methods.

The other most widely applied method is the Output Error Method
which, as the name suggests, aims to arrive at the best estimates
of the aerodynamic parameters by minimizing the error between
the model output and the flight test data. For this purpose
different optimization schemes are applied, ranging from gradient

based optimization to genetic algorithm.

Other approaches to system identification include Filter Error
Method, Kalman and Extended Kalman Filtering and Artificial

Neural Networks.

The following paragraphs cover some of the work done in the field
of aerodynamic system identification and parameter estimation as

a result of a literature survey performed.



Aksteter et. al. [3] formulated the longitudinal aerodynamics
model of a Harrier aircraft and employed the equation error
method to estimate the nonlinear parameters. An aerodynamic
model was built-up using basic theoretical relations such as
parabolic drag assumption and Prandtl Galuert rule and then was
divided into three parts as static, dynamic, and control. Different
segments of the flight test data were used to estimate parameters
for these three parts (for example, static part was estimated form
the portion of the flight test data where the vehicle was flying
close to the trim conditions). Although this study demonstrates a
complete estimation methodology, it lacks the aerodynamic model

identification process.

Ozger [4] briefly summarized the aerodynamic model validation
approach at EADS Military Air Systems. In that work, a correlation
analysis for each flight test maneuver was run and as a result the
correlated and uncorrelated parameters were discovered. Then by
using 6dof equations, the flight test aerodynamic parameters
(which are going to be referred as the in-flight aerodynamics
throughout this dissertation) were gathered from the flight test
data. This in-flight aerodynamics was later compared with the
parameters foreseen by the existing aerodynamic model and
linear correction model (which is going to be referred as the delta
coefficient model throughout this dissertation) is obtained by
calculating the difference between the two. The equation error
method and output error method were both utilized for parameter
estimation and results were compared. Ozger’s work defines a

nice framework for the aerodynamic model identification and
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parameter estimation problem based on the actual flight test. The
methodology followed in this doctoral study is in some part

inspired from his work.

Paris and Alaverdi worked on a nonlinear aerodynamic model
extraction from the flight test data for the S-3B Viking aircraft
using the commercial software package IDEAS (Integrated Data
and Analysis System), [5]. They employed an equation error
estimation technique for the early model development and an
output error estimation technique for the final tuning. However,
the updates to final aerodynamic model were all decided by visual
comparison of the simulation output and calibrated flight data,
that is, the judgment of an experienced flight mechanics engineer

is essential for that study.

Song et. al. [6] examined the estimation of a full set of
aerodynamic coefficients (6 component aerodynamics, i.e., Cp, C,
Cm, Cy, G, Cy with 30 independent coefficients of Taylor series
expansions) for an air launched missile using extended Kalman
filtering (EKF) method and concluded that the parameter
identification was very useful in the improvement of the predicted
aerodynamic coefficients of a flight vehicle, in their case from wind
tunnel tests tabulated data. Terms less than third order in the
Taylor series expansion were included in the first place and then

some important terms, which were selected by employing the



multidimensional algebraic algorithm were added. The rate

derivatives were also added, apparently by engineering judgment.

Anderson et. al. focused on utilizing genetic algorithm and pareto
genetic algorithm to aerodynamic parameter estimation of ballistic
weapons ([7], [8], [9]). Yet, the aerodynamic model structures

were not identified and selected as first order linear models.

Gage et. al. [10] examined the use of genetic programming for
aerodynamic model structure determination of ballistic weapons.
Although the trajectory of a ballistic weapon was successfully
modeled as a result of the study, the identified model structures

need to be worked on to become more physically relevant.

Mohammadi et. al. [11] studied the aerodynamic identification
problem for an antitank guided missile and concluded that
Extended Kalman Filtering (EKF) method was suitable for the
estimation of time varying aerodynamic parameters, such as the
parameters of the antitank missile which had a flight regime
between Mach 0.2 and 0.92.
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1.3 Scope, Originality and Contributions of the Doctoral
Study

After reviewing the current state of the art for SI and PE
applications in the field of flight mechanics, it is seen that, plenty
studies were carried out on this subject and but especially for
aircraft type flight vehicles. However, when it comes to the other
types of flight vehicles such as tactical UAVs, cruise missiles, and
guided air launched weapons, only a limited number of literature
is found. Furthermore, in those studies, most of the effort was
concentrated on the selection and tuning of the estimation
algorithm and an engineering judgment was still widely utilized for

the determination of the aerodynamic model structure.

The aim of this doctoral study is set as to develop a method which
will be used for determination of aerodynamic models and
parameters for different types of autonomous FVs using actual
flight test data. The devised method, is expected to identify the
aerodynamic model structures for six aerodynamic coefficients and
estimate the parameters with a minimum intervention from the
user, thus it minimizes, if not eliminates, the need for the
engineering judgment of an experienced flight mechanics

specialist.

The aerodynamic model sought should be based on the

correlations between significant motion parameters and in-flight

11



calculated aerodynamics coefficients (or difference of in-flight
aerodynamics from the a priori aerodynamics) using inverse six
degrees of freedom (6 dof) equations of motion. The structures for
each and every aerodynamic coefficient are to be obtained with a
minimal intervention to automated model structure determination
scheme. The model parameters are to be obtained by the

utilization of the equation error method.

The fine tuning of the model parameters is done by a closed loop

optimization cycle, utilizing genetic algorithm.

Practical considerations for the application of model structure
determination methods to autonomous vehicles are not well
defined in the literature and this doctoral study is expected to
serve as a guide to these considerations. Practical considerations
for the closed loop aerodynamic parameter estimation method will
be defined in this study, as well. Both approaches are expected to

be successfully applied to actual flight test data.

During the course of this doctoral study, three conference papers
have been published. Two of them, [12], [13], explain the
practical considerations in flight test data processing of
autonomous flight vehicles and aerodynamic model structure
determination. The third one, [14], gives preliminary results of

closed loop aerodynamic parameter estimation using genetic

12



algorithm for simulated flight test data of an autonomous flight

vehicle.

This thesis dissertation starts with an overview of system
identification and parameter estimation in aerospace applications.
The second chapter defines the concept of aerodynamic modeling.
The methods used for aerodynamic model structure determination
are given in the third chapter. The fourth chapter deals with
principles of the proposed closed loop aerodynamic parameter
estimation using genetic algorithm. Some test cases with
simulated and actual flight test data are given in the fifth chapter
and the dissertation is concluded with the discussions of results in

the last chapter.
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CHAPTER 2

AERODYNAMIC MODELING

The fundamental problem of science of flight mechanics is the
determination of the relation between the aerodynamic properties
and motion variables of a flight vehicle. This problem was stated
by B. Melvill Jones and cited by Tobak and Schiff as follows, [15]:

“Given the shape of aeroplane and the properties of air through
which it moves the air reactions X, Y, Z, L, M, N, depend on the
motion of aeroplane relative to air; that is to say upon six
variables U, V, W, P, Q, R and their rates of change with respect
to time. In practice, the principle difficulty lies in determining the

relationships between X, Y, ...and U, V, ..."”

In the expression above, U, V, and W are used to denote the

components of the relative velocity of the flight vehicle with
respect to wind, resolved in body coordinate frame (Vb(/bm),). As
stated by Tobak and Schiff in their lecture in AGARD LS - 114,

[15], there are two approaches to tackle this problem. First one is

the “straightforward” approach in which the flow-field around the

14



maneuvering FV (gas dynamics equations) is solved
simultaneously with the inertial equations that govern the motion
of the fv (equations of motion). The shortcomings of this approach
are obvious; not only a unique solution must be sought for each
and every initial condition but also the computational cost of
solving gas dynamics equations simultaneously with equations of

motion is very high.

The need to uncouple these equations results in the modeling
efforts, through which the aim is to obtain a form of aerodynamic
response to some characteristic motions. This approach can be
applied to a wide range of motion variables and flight conditions,
so that the response to arbitrary motions can be calculated
directly. Although some computational time is still required in
order to obtain the aerodynamic responses to the characteristic
motions, the aerodynamic model allows the engineer to solve for
the arbitrary initial conditions without referring to flow-field

calculations.

The foundations of the aerodynamic modeling, upon which our
current notion still relies on, was laid by George H. Bryan, just
eight years after the Wright Brothers’ historic flight in 1903. There

are two primary assumptions in Bryan’s approach, [15]:
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1. The instantaneous forces and moments acting on the FV
only depend on the instantaneous values of motion

variables.

2. The aerodynamic forces and moments vary only linearly

with motion variables.

The first assumption allows defining any aerodynamic parameter
as a function of time. For instance, the pitching moment
coefficient can be expressed as a function of two basic motion
variables angle of attack (a) and pitch control surface deflection
(6) as:

Cnt =Ch(0t,at) (1)

The second assumption allows expanding the aerodynamic
coefficient into a Taylor series up to the first order terms around

some initial conditions (such as a = 0,6 =0):
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Any of the six principle aerodynamic variables (CX - or CD, CY, CZ
- or CL, Cl, Cm, Cn) can be written as a Taylor series expansion in
related motion variables. The partial derivatives appearing in Eq.

(2) are called as “dimensionless stability and control derivatives”.

Referring to Tobak and Schiff [15], the obvious problem
associated with Bryan’s first assumption was discovered in the
following years when the researchers in flight mechanics found out
that the response of the aircraft to a change in angle of attack was
greatly affected by the presence of a horizontal tail, since the
downwash generated by the wing in response to a change in angle
of attack required some time to be convected to the tail. Thus, the
model needed to be updated to include some time dependency.
This problem was solved by adding a term to the model that
reflected the contribution of time rate of change of angle of
attack:

aC,, ac,,
Cmt_Cmo'i'Wat'FWé‘t (3)
+Cpat

Later on, studies on the flutter phenomena and also on the
aerodynamic responses of wings to step changes in motion
variables (linear aerodynamic indicial responses) allowed the
establishment of an underlying theoretical basis for including the

time dependent term in the aerodynamic model, [15]. This
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theoretical basis, called the indicial response concept, is basically
expressing the aerodynamic variables in terms of linear
functionals as opposed to functions given in Eq. (2). Then, the
aerodynamic model includes not only the effect of the motion
variables at the current time step, but of all the variables in all of

the past time steps as well.

Following studies showed that, for slowly varying motions, i.e.,
steady aerodynamics, the indicial response and the linear stability-
derivative approaches yielded equivalent results, [15]. As stated
by Klein and Morelli, [16], in majority of the practical applications
a quasi-steady flow assumption, i.e., neglecting the dependence

on the past values of the flow variables, can be justified.

Quasi-steady flow assumption is also valid for the types of the
problems considered to be in the scope of this doctoral study. The
types of the flight vehicles that are of interest to this study fly
around a trim condition, which is achieved by the feedback
controller of the onboard automatic flight control system. Also,
these vehicles are not agile, when compared to highly
maneuverable fighter aircraft or flexible when compared to large
transport/cargo aircraft. That is to say, unsteady conditions are
not likely to be encountered during the normal operating
conditions of the FVs of interest. Then, it is anticipated that the

linear stability derivative approach (and sometimes its extension

18



to non-linear aerodynamics) is adequate for the purposes of this

study.

Theoretical derivation of aerodynamic model is a well known
subject and details can be found in any flight mechanics and most
aerodynamic system identification books. Referring to [16] and
[17], a general form for the six degrees of freedom linear

aerodynamic model can be obtained as in Eq. (4) and Eq. (5):

AV qc
CD = CDO + CDVV_O + CDaAa + Cqu_‘/O-*_ CD5A5

AV qc
C,=Cy,+Cpy— v + C,, Aa+CLa2V +CL‘12V
0
+ CL5A6 (4)
AV ac
Cm=Cm0+CmVV + Cp, A“+Cma2V0
c. X e as
+ mq ZV + mg
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pb rb
CY == CYO + CYBAﬁ + CY]J 2_‘/0 + CYrZ_‘/O + Cy6A6

pb rb
Cl = Clo + CZBAﬁ + CZPZ_VO + CITZ_VO+ C15A6 (5)

pb rb
Cn=Cyy +C AB + Gy oo 2V, + Ch, 55 A + (A8

It is possible to use Cx and C; instead of Cp and C, as in Eq.(6).

AV qc
Cy = CXO + CXV70 + CXaACZ + CXqZ_VO + CX5A5
AV ac qc
CZ = CZO + CZV V + CZaAO! + CZ ZV + Czq ZVO
+Cz,A8 (6)
4 ac
Cn = Cmy + Cony =+ Cong Bt + Con 7
C ac Cin AS
+ mq ZV + mgs

Although, theoretically works perfectly, the proposed models for
C, Cz and C,, in Eg. (4) and (6) have identifiability problems
associated with the a and g derivatives, since in an actual flight,
the data recorded for these two motion variables have very similar
time histories, [16]. So it is customary to define a merged

derivative for these two variables as follows:
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CLq = CL(I + CLq
Cz, = Cz, + (7, (7)

Cimg = Cmg + Cim,

For most of the cases, the linear model, with necessary
augmentations, provides satisfactory results for the estimation of
the aerodynamic response. However, in cases where there are
large amplitude maneuvers or rapid divergences from the
reference conditions, the aerodynamic model should be extended
to include some nonlinear terms. According to Klein and Morelli,

[16], there are two ways to do this.

The first approach is to include the nonlinear terms of the Taylor
series expansion and define nonlinear stability derivatives.
Following shows the nonlinear expansion of lift coefficient for
angle of attack and pitch rate, as taken from Klein and Morelli,
[16]:
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¢, =c, + 2 pq 420
L™ "o 7 9a * dq
i1 o°C, A 2+262€LA
2 aaz( ) dadq @q (8)
9%c,
+aq2q +

If Eq. (8) is expressed in the stability derivative format, then
Eq.(9) is obtained:

C
CL = CLO + CLaAa + CLq ZqT
0

1 5 qc
+E CLaz(Aa) +26Laq(Aa2_‘/0) (9)

4 .
+CLq2(2V0) t

The second approach, which is based on the works of Klein and
Batterson, [18], combines the static terms and treat the dynamic
stability and control derivatives as functions of explanatory
variables, i.e., angle of attack, angle of side slip and Mach
number. In the previous case of EQ.(8) and Eq.(9), the
explanatory variable is angle of attack. Then the nonlinear model

would be:
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qc
(L= CLO(O‘)'|'CLq(05)2_V0 (10)

In this second approach, four basic assumptions are made. These

are outlined by Klein and Morelli, [16], as:

1. Aerodynamic coefficients do not vary with the airspeed in

the subsonic region.

2. The effect of time history (rate of change of) angle of attack
and angle of side slip are not explicitly introduced, but their

effects are implicitly included in the rate derivatives.

3. Longitudinal and lateral coefficients are dependent on the

states and the control angles as

Clongitudinal = Clongitudinal a, ,8, q, 66
(11)

Ciaterat = Ciateral @ B,0,7, 04, 6y

4. The static term of the aerodynamic model includes the
nonlinear angle of attack and angle of side slip
dependencies. The second part of the model is linear in
motion and control variables (p,q,r,8) but involves
derivatives that depend nonlinearly on the angle of attack,

angle of side slip and Mach number.
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With the assumptions given above, the six degrees of freedom

aerodynamic model becomes:

qc
CX = CXo(anB'M)q=5=0 + CXq(aiﬁrM) 2V
0

+ Cxs(a, B, M)6

qc
CD = CDO((X, ﬁr M)q=(5=0 + CDq(a,B, M)Z_VO

+ Cp, (@, B, M)8

qc
CZ = CZo(arﬁJM)q=5=0+CZq(alﬁ'M)2_VO ( )
12

+ Cz,, (0, B, M),

qc

C,=Cp(a,B,M)gp=0 + CLq(a;ﬁ:M) oV
0

+ Cy, (@, B, M) S,

qc
Cm = Cmo(a'ﬁ'M)q=5=0 + Cmq(aug'M)z_Vo

+ Cmg, (@, B, M),
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pb
CY = CYO(a;ﬁ; M)p=r=§=0 + Cyp(a,B,M)Z—]/O

rb
+ CYT(Q’B’M)W
0

+ Cy,, (a8, M)8,
+ CYgr(ar ,8, M)ar

pb
Cl = Clo(a;ﬁ; M)p=r=§=0 + Clp(a,ﬁ,M)Z—VO

rb
+Clr(a’B’M)2_VO (13)

+ Gy, (0, B, M)5,
+Cy (a0, 8, M)S,

pb
CTl = Cno(a:ﬁ; M)p:r:é‘:() + Cnp(a,ﬁ, M)Z_]/O

rb
2V,

+ Cng, (@, B, M)6,

+ Cp, (@, B, M)

+ Coy (@, B, M)S,

The first terms in Eq.(12) and Eq.(13) represent the static effects,
i.e., the aerodynamic response with the controls are fixed and
angular rates are zero. The dynamic stability derivatives are
modeled as functions of angle of attack. As stated by Klein and
Batterson, [18], this is a similar form to those used in wind tunnel
testing. Furthermore, the models for the aerodynamic coefficients

are valid for the entire range of motion variables.
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The stability derivatives of Eq.(12) - (13) can be approximated as
polynomials or polynomial splines, [16], [18]. The following is an

example of polynomial expression for static part of the nonlinear
pitching moment term:

Cmo(a;ﬁ)qmﬁ:o
=6y + 0y, + 0y, + Byz?
0 01 028 03 (14)
+ 64 B% + BpsaB + Oge® + 6783
+ gogazﬁ + Qogaﬁz +

In Eq. (14), 0; are called the aerodynamic parameters.

According to Klein and Morelli, [16], the aerodynamic models

given in Eq.(12) and Eqg.(13) are “fairly general formulations”.
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CHAPTER 3

MODEL STRUCTURE DETERMINATION

One of the most crucial points in system identification of flight
vehicles using flight test data is the selection of an adequate
aerodynamic model. Depending on the type of the FV,
characteristics of the motion available in the flight test data,
previous experience, and a priori knowledge - most probably
through wind tunnel test or CFD runs -, the model structure as

well as explanatory variables may vary.

It is important to notice that, model structure determination
inherently requires the utilization of an estimation method for the

parameter estimation sub problem that it includes.

A number of methods have been proposed in the past to tackle
the problem of finding an adequate model based on some metric
rather than pure judgment of an experienced engineer. These

methods fall under the classification of regression methods.
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3.1 Stepwise Regression

The most widely used of these methods is the stepwise regression
due it having the advantage of both forward and backward
evaluation and selection capabilities. As explained by Klein and
Batterson, [18], the determination of the aerodynamic model

structure using stepwise regression includes three steps:
1. Postulation of the terms which might enter the model.
2. Selection of an adequate model.

3. Verification of the model selected.

Jategaonkar, [19], states that the stepwise regression problems
encountered in flight mechanics are multivariate type problems,
i.e., the six aerodynamic coefficients are functions of different sets
of independent variables. He suggests that these types of
problems are treated separately for each of the dependent
variable (aerodynamic coefficient). Klein and Morelli, [16], share
Jategaonkar’s point of view and further claim that it is one of the
biggest advantages of stepwise regression method to be able to
deal with individual aerodynamic coefficient equations one at a

time.

The stepwise regression procedure can be briefly summarized in a

four step procedure as, [19]:
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. A set of possible independent variables (motion variables) is
defined and the correlations of each of these independent
variables with the dependent variable are sought. The
independent variable with the highest correlation is added to

the model.

. The independent variable from the remaining set with the

highest partial correlation is added to the model.

. Partial “goodness of fit (F) values” for all the included
independent variables are calculated and those found to be
below a pre-specified threshold are excluded from the

model.

. Steps 2-3 are repeated until no other independent variable

is left.

Eq. (14) can be written in a more general form as Eq. (15), where

y is the aerodynamic coefficient, x;’s are the independent variables

(in typical applications flight parameters such as angle of attack,

angle of side slip, Mach number and control surface deflections)

and 0;'s are the aerodynamic parameters:

y=90+91x1+"'+9nqan (15)

In Eq. (15), xi's are called as the regressors and they can be

defined as valid combinations of n flight variables up to p power,

selected from a set (F) of r flight variables, Eq. (16):
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jEL £ jlL.=12..71 (16)

The stepwise regression method starts with only the static term,
0, and other terms are added one by one. According to the
procedure explained above, the correlation coefficients are found
from the following formula, [19], where the subscript i denotes
the i independent variable, y and x; are the mean values and N is

the number of data samples:

Pi = Tyx; =

The correlation coefficient of Eq.(17) ranges between -1 and 1 and
shows the statistical dependence of y on the independent variable

Xj.
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The partial correlation determines the correlation between any of
the two variables if the other variables are held constant. For the
case of three variables, the calculation of partial correlation is

fairly simple as given by the following equation, [19]:

Tyx; — Tyxj rxixj

VXi*xxXj

1 _rysz 1 _rxisz (18)

However, when there are more than two terms in the
aerodynamic model, i.e., more than two independent variables,
the calculation is not as straight-forward as Eq.(18). First of all,
residuals after fitting the dependent variable with the proposed
model (n independent variables) are calculated. Next, the
residuals after fitting the independent variable, x; (n+1°% variable),
with the same set of independent variables are calculated. Then,
correlation between these two residuals gives the desired partial
correlation, [19]. Jategoankar, [19], defined this procedure

mathematically as follows, where e denoting the fit error:

y_j = 91x1 k +"‘+9j_1x]‘_1 k
+ 9]+1x]+1 k + cee anan k (19)
x] = lel k + ct + Hj_lxj_l k + 0j+1xj+1 k

+ o OpgXng k
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ryxj*(x1,...,xj_l,xj+1,...,an)

N ieY-i k —eYeh e¥ k —e*

N oY — eV 2 N o | _ g% 2
k=1 € 7k —e¥en s etk —eti
N
yep = > Yn (k)
e’ ")) = — e’ (=]
N
k=1

1
e = N e*i(k)
k=1

To access the “quality” of the model, some statistical metrics are
employed. The first one that comes in mind is the goodness of fit,
defined as EQ.(20), [19], for two independent variables case. If
more than two independent variables are present then the partial

correlation expression given in EqQ.(19) should be employed.

F ryxi*xj N — nq

B (1 - ryxi*xj) nq -1 (20)

The coefficient of determination, R?, is another useful metric to
assess the goodness of fit. However, R?, which varies between 0
and 1, can be sometimes misleading, because its value increases
with the increasing total number of independent variables in the
model. So, an adjusted version is also in use, which does not
necessarily increase with the increasing number of terms.

Equations for R? and adjusted R? are provided as follows:
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g=1yk _yz

g=1yk —-y?
N-1

Ade2=1—(1—R2)N_—

nq—l

R? =

(21)

Predicted square error (PSE) is also an important statistical metric
used in stepwise regression. PSE is defined as given in Eq. (22),
where p is the number of terms in the model, N is the total
number of data points. As shown by Klein and Morelli, [16], PSE
metric always have a single global minimum value, thus it is

another good indicator for stopping the stepwise regression.

1 p
PSE =% y—vy Ty—y +O-72naxﬁ
N (22)
Gr%laxzﬁ yk _yz
k=1

Although the stepwise regression method is highly promising in
theory, it has some major deficiencies in practice. According to
Jategaonkar, [19], for complex problems with large number of
independent variables and complex relations, some skill and
judgment are required to obtain the final model. Jategaonkar

counts the most important difficulties of stepwise regression as:

e If some of the independent variables are correlated with the

others, i.e., a data collinearity exists, then, the variable
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selection process is inefficient and inconsistent. However,
both Jategaonkar, [19], and Klein,[16], state that there are
some methods to deal with the data collinearity (see Sec.
3.4.1).

e The threshold values required to eliminate some of the

independent variables are case specific.

Klein and Morelli, [16], point out that the stepwise regression is
mostly suitable to wind tunnel testing where the response
variables are measured directly and there is only measurement
noise. Although the method is not suitable to flight test data based
on these aspects, still it is preferred due to being easy to
implement and its ability to tackle both linear and nonlinear
problems. Jategaonkar, [19], notes that, based on the deficiencies
of the stepwise regression method, it is preferred to use a more
general approach to modeling of aerodynamics with the a priori
knowledge about modes of aircraft motion, aerodynamic effects
and associated model structure. Also he suggests implementing

more powerful estimation methods like output error method.

3.2 Equation Error Method
Parameter estimation methods that are not based on probability
theory but rely on the laws of statistics are generally termed as

the equation error methods, since they minimize a cost function
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defined directly in terms of an input-output relationship, [19]. The
most widely used subset of equation error methods is the least
squares estimation, which allows the calculation of estimates in a

one-shot procedure using matrix algebra.

The technique originates back to the end of 18™ century, when
C.F. Gauss invented and applied it in order to describe the
planetary motion. The first great success of the technique was
achieved when the asteroid Ceres was relocated precisely several
months after its last observation, [19]. Today, the technique is

widely applied to the aerodynamic parameter estimation problem.

There is an extensive literature available on the least squares
estimation problem. Yet, a brief overview of the theory is given in

this dissertation based on the work of Jategaonkar, [19].

Given N discrete data samples of a dependent variable, y, and nq
independent variables, a linear combination can be defined at

each time step k as, [19]:

yk =0:1x3 k ++0, x,, k +e(k) (23)
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In Eq. (23), 6;'s are the unknown parameters and ¢ is the equation
error representing the model discrepancies and/or noise in the
dependent variable y. The form of the Eq. (23) is the same as Eq.
(15), i.e., the x vector contains the motion variables such as angle
of attack and control surface deflections, where 6;,'s are the
aerodynamic parameters. Notice that the values of 6;'s are not

dependent on time, they are constants.

Eq.(23) can be rewritten in matrix format as follows:

e=Y k —X6 (24)

The errors defined in Eq.(24) are called the residuals. It is obvious
that, the difference between the dependent variable vy, the
“observation” and the model consisting of the independent
variables x, the “regressors” or the “explanatory variables”, and
unknown parameters should be zero for a perfect model. Thus, to
obtain the best estimates of the unknown parameters, the
residuals should be minimized. This is accomplished via

minimizing the following cost function:
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k=1 (25)

The sum of the square errors cost function of Eq.(25) is

differentiated with respect to 6 so that its minimum can be found:

9] 0

—~  — _yT T T 26
S5~ =YX +6" X'X (26)

Least squares estimates of the unknown parameters, 6, can be

found by equating Eq.(26) to zero and solving for 6:

9= X"x XY (27)

where (X™X)*X" is often referred to as pseudo inverse.

3.3 Delta Coefficient Approach to Model Structure

Determination

For every flight vehicle, an aerodynamic model already exists

before proceeding to flight tests. Depending on the effort spent on
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preparing this model and utilized methods, it can be high or low
fidelity in one or more motion parameters. Nevertheless, this a
priori information about the flight mechanics characteristics of the
vehicle without doubt costs a lot of money and time to obtain and
should be taken into consideration while dealing with model

structure determination.

To apply the stepwise regression, the in-flight aerodynamics must
be gathered in the first place. In an actual flight testing a number
of sensor measurements are taken from the FV. These
measurements include but not limited to the linear accelerations,
angular rates and atmospheric conditions. If the vehicle is a
powered one, a thrust measurement is not directly available most
of the time, but the required information about the thrust is
gathered from the engine model using the recorded flight
conditions. Then, an inverse six degrees of freedom equation of
motion can be solved to obtain the aerodynamic coefficients that
lead the actual flight test behavior. These equations are pretty
straight forward and detailed derivations can be found in any flight
mechanics text book. The following equations for the forces and
moments acting at the center of mass location are taken from

Jategaonkar, [19].

ma, — Tcos(0r)

Cy =

(28)
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Using in-flight measured motion parameters (flight angles, body
angular rates, Mach number and control surface deflections), the
response of the a priori aerodynamic model can be obtained. A
priori aerodynamic model is an important and valuable source of
information, since most of the time a considerable amount of work
is done (and money is spent) to obtain it. Then, it is desirable to
use the existing model as a baseline aerodynamics and design the
aerodynamic parameter estimation flight tests to tune this existing

model.

If the difference between the in-flight aerodynamics and
aerodynamics foreseen by the existing aerodynamic model is fed

into the model structure algorithm, a delta coefficient model is
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obtained as given in Eq. (29), where A stands for the identified

aerodynamic model for discrepancy:

Caero = Cdatabase + ACL'd(—zntified model (29)

3.4 Practical Considerations for Model Structure

Determination of Autonomous Flight Vehicles

3.4.1Flight Test Data Processing and Dealing with Low
Quality Flight Test Data

As a general practice, the flight test data (FTD) is recorded at a
much higher rate than the highest natural frequency of the flight
mechanics modes of the vehicle. Basically, the flight vehicles have
two longitudinal and three lateral modes; namely the short period
and phugoid in longitudinal, rolling, spiral and Dutch roll in lateral.
All of these modes, have their natural frequencies. The well known
Nyquist-Shannon sampling theorem states that the sampling rate
must be at least twice the maximum frequency of interest. Thus,
the sampling rate at which the FTD is recorded should be selected

based on the a priori information of these modes.

However, since the aerodynamic database contain some
discrepancies before the flight test, so does the natural

frequencies of the flight vehicle. Thus, a sample rate, which is
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higher than the one foreseen by the a priori information, is
selected for data recording. However, this higher sample rate
could lead to large number of samples, which in turn requires

more computational power than necessary.

A direct approach to overcome this oversampling is to examine
the power spectral density estimates of the FTD, so that a
resampling can be performed before the estimation process. The
power spectral density (PSD) estimation, which gives information
about how the time series is distributed with frequency, is a very
common procedure and based on the results of PSD, a proper

resampling frequency can be selected.

Although the resampling approach is very effective in saving the
computational power, it does not provide a solution to another
fundamental problem associated with the FTD of autonomous
flight vehicles. For this type of flight vehicles, it is not always
possible to obtain a full set of measurements and perform flight
test maneuvers specially designed for system
identification/parameter estimation. Thus, sometimes the data
recorded during the flight test which are not designed for
estimation have to be used. Also for autonomous flight vehicles,
the recorded data is almost stripped of the vehicles inherent
dynamics (for example, FTD of a guided gliding flight vehicle
shows that the spectral powers of the modes associated with

pitching and rolling motions are very low - down to order of 10-7
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Watts/Hz, Figure 1 and Figure 2). As a result, the phenomenon

known as data collinearity is encountered.
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Data collinearity is defined as "any situation where regressors are
correlated at a high enough level to cause problems in the
parameter estimation”, [16]. The main cause of data collinearity is
the near-linear dependence of regressors. There are a number of

possible sources of data collinearity:

1. Improper design of flight test maneuvers leads to data
collinearity either due to insufficient excitation of FV modes,
or changing the data of two or more regressors

proportionally.

2. Constraints of the FV such as feedback control system lead
to data collinearity. As Jategaonkar stated, [19], “the
controller reacts to the motion and suppresses the
oscillatory and transient motion... it is detrimental to
parameter estimation, because it drastically reduces the
information contents required for estimating parameters”.
Also the control allocation algorithm of the flight vehicle may
cause the collinearity, since some of the control surfaces are
deflected proportionally based on some control mixing

strategy hard coded to onboard flight computer.

3. Regressors that are small in magnitude can also cause data
collinearity. If a regressor is small, then all the higher order
regressors derived from it will be very small. Thus, they will
be almost the same regressor, which will have an effect on

the results as data collinearity.
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System identification and parameter estimation of flight vehicles
originally started with the need to identify the aerodynamic
characteristics of the airplanes. Thus, almost all methods that are
used in practice today were developed for identification of airplane
problems. Figure 3 shows a typical airplane flight test maneuver
history of Mach number, angle of attack, pitch rate, stabilator,
leading edge and trailing edge deflections, [20]. Compared to FTD
of an autonomous flight vehicle in Figure 4, the differences in the
behaviors of the data sets are worth noticing. First of all, the FTD
for the aircraft starts from a trim condition and throughout the
maneuver, the flight parameters oscillate about the trim condition.
Also notice the frequency of the oscillations; carefully designed
inputs provide necessary excitation of the aircraft modes

(longitudinal modes for the case of Figure 3).

L= =1

ha (deg)

il
=]
=

=+ Sk o —

stb (deg)

raf — = e —

JEy MEp—

of (deg)
L

1
1
|
b
2

time (sec) time (sec)

Figure 3. Typical flight test maneuver data, [20].
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On the other hand, for the FTD from 4 different shots shown in
Figure 4, the vehicle is always in trimmed flight, which is assured

by the onboard automatic flight control system (AFCS).
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Then, if the FTD of the autonomous flight vehicle can be made
similar to an aircraft flight test data, the methods developed for
aircraft can be applied. The easiest way to do this is to design
flight test missions of the autonomous FVs to include some SI and
PE maneuvers as well. Yet, this alone may not be enough since,
the flight test maneuver design is based on a priori aerodynamics
information and there is risk of under exciting the FV, which will
result in low quality FTD or over exciting the FV, which might

cause a loss of mission and the vehicle.

The stepwise regression method, which utilizes equation error
method for parameter estimation, does not require the dynamics
of the actual maneuver to be matched, that is it treats each data
point separately. Thus, the FTD can be conditioned to look like an

aircraft flight test maneuver data.

The FTD of Figure 4 inherently causes data collinearity where as
this problem is solved with the conditioned FTD (Figure 5), which
is obtained by trimming the original FTD (Figure 4), [12], [13].
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3.4.1.1 Global Fourier Smoother

The equation of motion of any flight vehicle includes terms of
angular accelerations. However, the onboard sensors measure the
angular rates of the vehicle; thus the angular accelerations must
be derived from the rates, unless opposite coupled accelerometer
pairs are utilized. This causes a problem in numerical derivative
operation, when the rate measurements are noisy. Similarly, time
derivatives of flight angles (o, p) must be gathered from the flight
angle measurements, and then the same problem is faced once
again. In fact, regardless of whether the derivative of a signal is
required or not, it is always preferred to work with noise free

signals.

The common practice to get rid of signals is to utilize digital filters.
However, filtering, if not applied correctly, can distort the system
identification process since the phase and magnitude of the data
are affected. Among a number of filtering methods, Global Fourier
Smoothing is mostly preferred for applications of system
identification with equation error method. The method is originally
proposed by Morelli, [21], and application procedure can be found
in Klein and Morelli, [16]. The Global Fourier Smoothing relies on
the assumption that the noise signal has constant power over a
wide frequency range; i.e., it is incoherent in contrast to the signal
that contains the actual dynamics of the flight vehicle. Thus, the
Fourier sine series coefficients associated with the noise signal will

be almost constant throughout the frequency of interest where as
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the Fourier sine series coefficients of the coherent signal (i.e., the
actual dynamics of the FV) will rapidly decrease to zero. If, the
Fourier sine series coefficients are plotted versus frequency, it is
possible to discriminate between the noise and signal visually and
select the cut-off frequency (Figure 6).

o
10

NOISE

Y

1
10

|
I hh

H
o,

Fourier Sine Series Coefficients

10° V | A

10" L

Figure 6. Fourier sine series coefficients plotted versus frequency

Once the cut-off frequency is determined, a digital filter can be
designed to filter out noise. For this purpose, the Wiener filter,
which was originally proposed by Norbert Wiener in 1949, is used,

which is near unity at low frequencies, thus passes the Fourier

52
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sine series components of the coherent signal and is near zero at
cut-off frequency, thus removing the Fourier sine series
components of the noise. Since the Fourier coefficients near the
cut-off frequency is small by definition, the Wiener filter tolerates
the small errors that might be done during the visual selection of
the cut-off frequency. However, it is a wise idea to plot the
magnitude of Fourier sine series coefficients in logarithmic scale to
make the visual discrimination between signal and noise easier.
Figure 7 shows an example of noisy signal, noise free signal and

noise estimate.
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3.4.1.2 Partitioning Flight Test Data Based on the
Ranges of Independent Flight Variables

Another important decision that affects the quality of the model
and the accuracy of the parameter estimates is the partitioning of
the FTD. For a time series with large variances in angle of attack,
angle of side slip, and Mach number, it is a good idea to apply the
partitioning. Although, there is no strict rule to follow,
commonsense dictates that the partitions should be large enough
to allow the demonstration of the underlying physics associated
with motion, but short enough to allow easy correlation with the

CFD or wind tunnel databases, if a priori information exists.

One straightforward approach to partitioning is to use the nodes of
the a priori CFD or wind tunnel database. An update to databases
is very easy for this case. However, this approach has a major
drawback that, the size of the partitions are not controlled; that is
there might be very large or small partitions depending on the

selection of the nodes.

3.4.2 Complexity of the Model, Selection and Automated

Generation of Regressors/Parameters

Maybe the most important question that needs to be asked is the
following: “What should the maximum order of the model be?”. In

fact, this is not an easy question to answer. The order of the
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aerodynamic model may change with the flight vehicle type,

symmetricity of the model, and flight regime.

Yet, it is a wise idea to use a-priori information while deciding on
the model order. The preflight aerodynamic model, no doubt,
covers at least some of the main effects of the independent
variables. Whether a delta coefficient approach or a full model
estimation approach is preferred, the complexity (maximum
order) of the candidate models (pool of regressors/parameters)
should at least be equal to the complexity of the preflight
aerodynamic model. Based on the aerodynamic discussions of
CHAPTER 2, an adequate pool of regressors can be assembled.
Following table shows the aerodynamic coefficients and flight

variables associated with them.

Table 1. Aerodynamic coefficients and associated flight variables

Coefficient | Associated Flight Parameters
Cx M, o, B, d
Cy M, o, B, 8a, O, P, ¥
Cy M, o, B, %, Q
G M, o, B, 8a, O, P, T

56



Coefficient | Associated Flight Parameters

Cm MI o, BI 86/ q

Cn MI o, BI 8al 6!’/ pl r

Notice in Table 1, Cyx is associated with a coupled flight variable, 3.
As shown in Eq. (30), 8 is a combination of control commands (5,,
de and &;). The reason for the definition of a new flight parameter
is the behavior of axial force with the control commands for an

automated flight vehicle.

82 =6,2+6,"+6,° (30)

Once the decision on the model complexity is reached, the
regressors themselves must be generated. This requires the

utilization of an adequate combination algorithm.

A brief literature survey revealed the use of combinadic concept,
which is basically a binary indexing system for combinations
generated from a finite set. However, combinadic is not the cure,
since not only first order combinations from a finite set are
needed, but higher orders are necessary for the automated

regressor generation as well.
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Dr. Morelli's SIDPAC, [16], which is an open source collection of
Matlab® scripts designed for flight test data processing, system
identification and parameter estimation, utilizes an indexing
system which is not binary, so that powers of every term that
make up a regressor can be kept as a list. However, it is seen
that, this approach to automatic regressor generation might fail to
prevail when the size of the flight parameters is larger than 7, due

to computational issues.

Then, a new regressor generation algorithm is devised. In this
new approach, the first step is to generate the powers of
independent variables. Then, the combinations of the independent
variables and their powers are generated. An important step is
checking for validity: A regressor is valid if its power is smaller
than the maximum allowed power. The devised algorithm utilizes
a two step validation check: Obviously invalid combinations are
not generated in the first step and the validity of generated
regressors is checked in the second step. For example, if
combinations up to power 4 are sought, the combinations
including more than 4 terms are not generated, since even their
first order combinations have cumulative power more than 4. This
algorithm (Figure 8) is tested against SIDPAC’s algorithm for

speed, and is almost twice faster.
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Figure 8. Flow chart of automated regressor generation

3.4.3 Selection of Run Parameters and Stopping Rules

As aforementioned in Section 1.3, one of the goals of this doctoral
study is to devise a procedure that identifies the model structures
and estimates the parameters with minimum intervention. From

this sentence, the need for an automated selection routine for

stepwise regression method is obvious.

The selection criteria given in Section 3.1 are straightforward:
First select the regressor with higher correlation then add the
regressor with the highest partial correlation until the stopping
criterion is achieved. Yet, there are some methods to be employed

in order to obtain good models.
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First method is to add some physics into pure mathematics of the
stepwise regression. From an engineering point of view, it is
always preferred to work with simple models; i.e., a higher model
complexity is not desired. Yet, it is not uncommon for stepwise
regression to go for complex models if the selection criteria are
left as explained before. For example, a case where the regressor
with the highest partial correlation is of order 4, where as a first
order regressor with slightly smaller partial correlation can exist,

then the algorithm will go for the higher order one.

To employ this method and introduce physical insight into the
selection scheme, it is decided to use a search window of variable
height which starts from the highest correlation/partial correlation
regressor and stretches downward. The height of the window
shrinks, if the highest correlation/partial correlation is close to 1
and eventually it becomes zero at 1. Once the height of the
window is selected, all the regressors that have correlation/partial
correlations within this window are selected and sorted in
ascending order with respect to their complexity. Then the
regressor with the least complexity (minimum order) is selected
and added to the model and the stepwise regression algorithm

continues to the next step.

Different approaches can be followed in determination of the

search window height. The straightforward approach is to use a
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linear mapping function for this purpose. Eq. (31) shows the form
of such linear mapping function, where WH denotes window
height, LCL is the lowest partial correlation that is allowed in
model, SF is the scale factor of the mapping and HC is the highest

partial correlation in the current step of the stepwise regression:

WH = SF xLCL+ HC —LCL

(31)
x 0—SF«LCL)/(1— LCL

After some trials with linear mapping, it is found out that a
function which provides bigger search window sizes when the
correlations are close to 1 is needed. Then, a function form, which
rapidly expands the size of the search window near 1, but then
gradually increases it for lower correlations is sought. The
transformation functions in the form of Eq. (32) provide such a

mapping, where PW is the power as integer.

1
1-HC pPw
- (32)
i SF

After some trials with the simulated and actual flight test data, a
scale factor of 20 and power of 0.25 is selected as the search
window sizing function, which provides sizes close to 0.5 scale

factored linear mapping for low correlations and bigger window
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sizes close to 1. Figure 9 shows the comparison of different

window sizing functions.

0.25

0.2

=

B

s 015 ——0.2

3

.§ == 0.5

S —=0.75

S

£ 0.1 —— ]

L7}

2 -2
=== Exponential

0.05

1.2

Partial Correlation

Figure 9. Comparison of different search window selecting

functions and scale factors

Another method is to factor out cross correlated regressors from
the selection pool. At every selection step of the stepwise
regression algorithm, the parameter correlation matrix is searched

for correlated regressors. If there exist some correlations between
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regressors in the model, then this shows up as large elements of
parameter correlation matrix. As a rule of thumb, Klein and
Morelli, [16], suggested that any value larger than 0.9 is a sign of
strong correlation between parameters (regressors) of the model.
If this is encountered, then the regressor causing the correlation;
i.e., the one added latest, is removed from the model and deleted
from the pool of candidate regressors. Since the algorithm selects
the parameters of the model from the pool of regressors based on
their correlation/partial correlation metric, the deletion of a
regressor does not introduce any complications to the estimation
algorithm; parameters with higher importance have already been
included! Then, the algorithm carries on searching for other
regressors which might be included in the model without causing

correlation with the parameters already in the model.

Although a lower limit is suggested by Klein and Morelli, [16], a
value over 0.95 for parameter-to-parameter correlation limit can

be used for autonomous flight vehicles of interest.

There are two fundamental stopping conditions for the stepwise
regression method: The partial correlation and F-ratio limits. That
is, during the stepwise regression run, if the partial correlations of
the regressors outside the model are below the specified partial
correlation lower limit and at the same time the F-ratios of the

regressors inside the model are above the F-ratio lower limit then
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the algorithm stops. Yet, these two conditions are not enough

alone.

The first additional stopping condition is the predicted square error
(PSE). The algorithm can carry on, as long as PSE decreases. Yet,
at one stage, before the fundamental stopping criterion kicks in,
PSE may start growing. This indicates that the model is becoming
over parameterized; meaning that the prediction capability of the
model is decreasing. So, the automated stepwise regression

algorithm stops, whenever PSE starts growing.

Two other additional stopping rules are related with the goodness
of fit criteria. First, a limit on goodness of fit (R?) improvement is
used. Although a limit of 1% is recommended for goodness of fit
improvement in the literature as a rule of thumb, it is found that a
lower limit can lead to better estimates provided that parameter-
to-parameter correlations are not allowed in the model. The
second stopping condition is the monotonic increase criteria for
adjusted goodness of fit metric. As opposed to PSE, if the adjusted

R? metric starts to decrease, the algorithm stops.

Finally, a convergence time limit is used as a safeguard. On rare
occasions, the stepwise regression algorithm may stick in a cycle;
i.e., the regressor added in the previous step is excluded in the

current step and added in the next step. If such a loop occurs;
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i.e., if the stepwise regression routine is not completed within the
allowed convergence time limit, the automatic decision routine
stops the stepwise regression algorithm. After experimenting with
different desktop PC’s and workstations, it is decided that 300

seconds is a reasonable convergence time limit.

Following flow chart summarizes the flow of the model structure
determination and parameter estimation algorithm  with

implemented rules.
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3.4.4 Compensating for Non-Standard Conditions of Flight
Test

In a sense, the atmosphere itself is the most correlated regressor
of all, since it has the biggest effect on aerodynamic forces and
moments. However, the atmosphere is very hard to predict and is
a major error source for a flight vehicle which is not equipped with

an onboard air data computer.

There are a number of different models to predict the behavior of
atmosphere, and also different means of measurement to gather
real time data. However, each has its own limitation. For example,
flying meteorological balloons to obtain real-time density,
pressure and wind information is a common practice for artillery
battalions. With a relative ease of operation and low cost, this
method provides a valuable information but has a limited
applicability, since the motion of the balloon is not controlled and
it is a matter of minutes before the balloon drifts away from the

probable trajectory of the artillery shell.

It is not feasible to obtain meteorological conditions on the
probable/actual trajectory (of artillery shells or any type of flight
vehicles) via measurement, but still it is needed to apply
corrections to incorporate the effects of non-standard conditions;
i.e., deviations from the standard atmosphere. This s

accomplished by the utilization of meteorological models.
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One of the most preferred prediction models is the Fifth-
Generation NCAR / Penn State Mesoscale Model (MM5). In Turkey,
General Administration of Meteorology provides weather forecasts
based on MM5. Every day, starting at 00 hours UTC, weather
forecasts are run and published via internet every six hours, which
are valid for a duration of 48 hours. Nevertheless they are most
accurate only for the first 6 hours. However, due to run time of
weather forecast code, delays occur between start of run and
publishing of forecast. It is possible to obtain meteorological
report for a desired region within whole Turkey based on MM5
data.

The meteorological forecast data is required at a number of points
located on a uniform or non-uniform grid about the trajectory of
the flight vehicle. For each grid point, the temperature, pressure
density, wind direction, and wind speed were forecasted as a

function of the height above sea level and time (in UTC).

As first step to obtain predicted meteorological conditions on a
trajectory, the computer meteorological report at each grid node
must be interpolated in time to obtain meteorological conditions at
the time of flight test at each node. It is assumed that,

meteorological conditions vary linearly within an hour time.
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At the second step of the algorithm, it is necessary to perform an
interpolation in spatial dimensions. The meteorological data is
provided as uniform planes above sea level, so that it is possible
to interpolate them on height. A linear interpolation is performed
at every met node with flight vehicle’s height from sea level as
input. It is suggested that, pressure does not vary linearly but its
logarithm, [22]. However, it is noticed that, density also exhibits a
similar behavior, so a linear interpolation is performed for the
logarithms of these two variables and then inverse logarithms are

taken.

Next, for every point of flight vehicles trajectory, a 2D (planar)
distance calculation is performed to obtain distances between met
nodes and trajectory. These distances are normalized, so that
their sum is equal to 1 and the smallest distance has the biggest
weighting coefficient. Next, a weighted sum approach is followed

to find the forecasted meteorological conditions on the trajectory.

Figure 11 shows the met nodes, trajectory of a flight vehicle and

interpolated wind information during one of the test runs.
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Interpolated Wind Directions and Velocities During Test Run of H3458 2 at 1342 (using MM5 Meteorological Report Data)
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When meteorological conditions on every point of the flight test
trajectory are known, it is possible to correct the following

variables for the effects of nhon-standard conditions:
e Body linear rates (Vnorth, Veast, Vdown, U, V, W)
e Flight angles («, B)
e Mach number (M)

e Dynamic pressure (q)

Figure 12 through Figure 15 show the measured/calculated values
of some flight parameters versus their corrected values for the

forecasted meteorological conditions.
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CHAPTER 4

CLOSED LOOP AERODYNAMIC PARAMETER ESTIMATION
USING GENETIC ALGORITHM

The equation error method explained in CHAPTER 3 is a powerful
tool to determine the model structure. Yet, as stated by Morelli
and Klein [2], the parameter estimates of the equation error
method for an actual flight test data are not as efficient and
consistent as the theory states. Then, the estimates of the
equation error method serve as the starting point of more

complex parameter estimation methods.

This chapter deals with the optimization based parameter
estimation methods and proposes a new approach to the

aerodynamic parameter estimation problem using flight test data.

4.1 Output Error Method

One of the most widely used methods in practice is the output

error method (OEM). It basically minimizes the error between the
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actual (measured) vehicle variables and simulated ones. This is
performed in an iterative manner, by employing optimization
techniques. Yet, there are a number of different approaches to the
output error method, which vary mostly on the method of

optimization used.

As Jategaonkar states [19], the theoretical foundations of the
method rely on the maximum likelihood principle. The method has
been in practice since 1960s and successfully applied to many
identification problems of different flight vehicles. The name
maximum likelihood (ML) comes from the fact that the method
produces the estimates for the parameters for which the
measured data is most likely to occur. In its general form, the ML
method can be used for the parameter estimation of both linear
and nonlinear dynamic systems with some measurement noise. It
is an advantage of the method that it assumes some known inputs
and noisy measured aircraft motion variables, which are
consistent with typical flight test measurements. If the model for
which the parameters are sought is free of errors, then the
parameter estimates of ML are “consistent, unbiased, and
efficient”, [2].

The OEM method relies on a number of assumptions as listed
below. However, as Dr. Jategaonkar states, the basic rule of
system identification/parameter estimation is still valid: “If it is

not in the data, it cannot be estimated”, [19]:
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1. The input sequence is independent of FV response.

2. The measurement errors at different discrete time points are

statistically independent and distributed with zero mean.

3. The FV response is corrupted by measurement noise only.
Yet, if the vehicle encounters turbulence or wind gusts
during the flight, then there will be additional disturbances
on the measurements. However, if such a situation occurs
during the flight tests, the data collected is discarded and

not used for estimation.

4. Control inputs are sufficiently and adequately (in both
magnitude and frequency) varied to excite dynamic modes
of the FV.

Although the flow chart of the method is straightforward (Figure
16), the implementation varies especially in the selected

optimization routine.
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Figure 16. Flowchart of Output Error Method

The classical implementation of OEM has some shortcomings in
practice. These shortcomings are mostly associated with the
simulation model. If the starting aerodynamic model is not
adequate enough, or the parameters are not close enough to
actual values, or the parameters are not physically relevant (as
might be encountered if the optimization routine is selected as
genetic algorithm), there is a risk of crashing the simulation run.
To avoid this problem, a common practice is to move along in time
during optimization: The optimization starts with a small segment
of the data. As the convergence is achieved the segment grows
until it covers the entire range of the FTD. Although this
workaround is  successfully realized, it lengthens the

computational time.
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4.2 Closed Loop Optimization to Minimize Control Input

Errors

Another workaround to potential simulation crashing problem is
providing some robustness in the simulation model. This can be
obtained if the simulation is run in a closed loop manner, thus

utilizing the actual guidance law and autopilot in simulation model.

This process is known as “closed loop system identification” in the
literature and as stated by Whorton, [23], [24], it is “the
identification of the open-loop plant given closed-loop response
data and knowledge of the compensator dynamics”. In the
literature, the closed loop system identification is mostly used for
controller design and tuning, [25], [26], [27], and when it is used
for plant model identification, the output error is used as the cost
function, [24], [28], [29].

In an application of closed loop system identification (which will be
termed as closed loop optimization from here on) approach to
aerodynamic parameter estimation, as an alternative to using the
error in response of the actual FV and simulated FV (error in
output), the error in actual control input and simulated control
input can also be used. This proposed input error approach has an
advantage over the traditional OEM: Control inputs can be
obtained free of measurement errors during the flight test, since

they are the outputs from the onboard digital computer, where as
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the actual flight vehicle responses are measured with noise or

calculated from noisy measurements.

Measured FV Respor

Measurement Noise

+
Guidance / Virtual Fin Actuation Actual FV

Autopilot Control Input System 760mr0||npul" Flight Vehicle Response  +

A,

Real World

b 4 Optimization —
Aerodynamic
Iy Parameter Update

A

Slmulatlgfn Model simulated Actual S\mulall;)fn Model

EAS Control Input Fv

Guidance / Simulated Virtual_ |
Autopilot Control Input

Simulated FV Respon:

Simulation World

Figure 17. Flowchart of the Proposed Estimation Method

Yet, in the closed loop optimization, not only the use of actual
guidance law and autopilot is necessary but it is also crucial to
implement a realistic fin actuation system (FAS) model. However,
the FAS model might itself contain some modeling errors. This
might be overcome by applying an estimation run on the FAS

model before the actual estimation run for aerodynamic
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parameters; otherwise, errors due to inaccurate modeling of FAS

will also be compensated by aerodynamic parameters.

Of many different optimization algorithms used for aerodynamic
parameter estimation,[16],[23],[19], genetic algorithm is selected
for use with the proposed closed loop optimization with input error

approach.

The main reason behind this choice is the major advantage of
genetic algorithms over the traditional optimization algorithms:
Genetic algorithms do not require feasible initial estimates to
reach a global extremum of the solution, thus the optimality of the
solution is guaranteed. However, the time required to reach the

solution is longer than the traditional methods.

The genetic algorithms and their applications are hot topics in
engineering and many references as well as textbooks are
available in the literature. Yet, very briefly summarizing, genetic
algorithms are mathematical methods for global search and
optimization that are based on the mechanics of natural selection
and science of genetics. According to the Darwinian theory of
evolution, the members of a population that have the best
characteristics to survive prevail, while the rest are eliminated.
This is known as the survival of the fittest. Genetic algorithms

work on the following basic principle: The members with best
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scores with respect to some cost function prevail and given

enough time a best member is obtained.

A genetic algorithm starts by creating an initial population. The
fitness value for each individual of the population is calculated and
the individuals with the best fitness values, called as elites, are
carried on to the next generation. The rest of the next generation
is generated via mutation of a single parent or crossover of two
parents from the initial population. The procedure is repeated until

the stopping criteria are reached.

The mechanisms of biological and computational steps of natural
selection are explained in detail by Whorton [23],[24] and
practical considerations for application can be found in Matlab®

Optimization Toolbox Manual, [30].

4.3 Run Parameters and Cost Function

The genetic algorithm selected to use is a readily available
software package from Mathworks, which is built-in to Matlab® via
the (Global) Optimization Toolbox. The parameters that should be
tuned in a genetic algorithm run of Matlab® to obtain good results

are listed, [30], with their proposed values as follows:
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Initial Range: Diversity is the average distance between the
individuals. Despite a widespread information genetic
algorithm cannot find the global minimum if the population
is not diverse enough. On the other hand if it is too diverse
it takes a lot of time to converge. Diversity is not directly
controlled but based on the initial range used to generate
the initial population and amount of mutation. That is, the
initial range is a crucial parameter for the convergence and
success of Matlab’s genetic algorithm. A very large initial
range will prevent the algorithm from converging, while a
small range has the risk of missing the optimal point. For
the aerodynamic estimation problem in hand, the initial
population range should be selected based on the prior
knowledge, either from CFD analyses or wind tunnel test

results or equation error method estimations.

Population Size: Population size is the number of individuals
present in each generation of the genetic algorithm run. The
larger the population size is, the more available search
points are, thus better the final result is. However, as the
population size gets larger, the computational time grows.
Thus, a fine balance must be maintained between the run
time and population size. The minimum requirement is that,
the population size must not be smaller than the number of
parameters. However, based on many runs with simulated
and actual flight test data during the course of this doctoral
study, it is observed that a population size of at least three
times the number of parameters is required for aerodynamic

parameter estimation.
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Maximum Number of Generations: Maximum number of
generations is another important parameter of the algorithm
which affects the outcome directly. Selecting a small number
for the maximum number of generations causes the genetic
algorithm to terminate prematurely, while a big number is
inefficient way of spending computational time. However,
the decision on the maximum number of generations should

be made together with the method of mutation.

Hybrid Function: The genetic algorithm takes quite long (run
times of about 15 days on desktop PC’s (Intel Core2 Quad
and alike) and workstations (AMD Opteron 128 and alike)
are typical for a flight test data of 60 seconds) to converge,
and as the population gets closer to the optimal point, the
rate of improvement decays. Then, it is a wise idea to utilize
classical gradient based optimization to obtain the final
parameters, once the genetic algorithm converges around
the optimal. This approach unites the bests of both worlds;
a global optimum in a relatively short time. The Matlab®
Optimization Toolbox, [31], provides useful gradient based
built-in optimization functions which can be used as hybrid
functions. The aerodynamic parameter estimation problem is
a constrained type optimization problem, since the
parameters are bounded around an initial estimate (prior
information based). Then the selected hybrid function for
this purpose is the fmincon, constrained minimization

function of Matlab® Optimization Toolbox.

Mutation Function: In any population, there are three ways

for the reproduction. First the elites are passed on the next
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generation. The second mechanism is the crossover, which
is the mating of two individuals in the current generation in
order to obtain a child. Thus, genes from different
individuals are combined into a new individual. Then, the
remaining children are generated by the mechanism which is
called the mutation. Mutation is randomly changing an
individual’s parameters in the current generation to obtain a
child. Thus, mutation adds to the diversity of a population
and increases the likelihood that the algorithm will generate
individuals with better fitness values. Matlab® genetic
algorithm has two different ways of generating mutation.
The default is called the Gaussian mutation, which is adding
a random number, chosen from a Gaussian distribution, to
each entry of the parent vector. The alternative is to use
adaptive feasible mutation, which randomly generates
directions that are adaptive with respect to the Ilast
successful or unsuccessful generation. Based on genetic
algorithm runs with simulated and actual flight test data
during the course of this doctoral study, it is advised that
the minimum number of generations must be at least 100
for mutation function adaptive feasible and 150 for
Gaussian, in order to obtain feasible start points for hybrid
function run. Yet, it is safe to run with more than 150 and
200 generations respectively. Also, if the shrink parameter,
which is a control flag for rate of decay of mutation as the
population evolves through generations, is set to zero, then
the minimum number of generations must be higher than
250. Because of this situation, the duration advantage of

Gaussian mutation over adaptive feasible diminishes
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(Gaussian mutation ignores bounds on the optimization
states, where as adaptive feasible regards them, thus
optimization with Gaussian mutation evolves faster than

optimization with Adaptive Feasible).

Cost function: The proposed methodology is based on
minimizing the error in the input. Thus, the cost function
should be constructed such that, it minimizes the error
between the actual in-flight recorded control inputs and

simulated ones in a least squares sense, Eq. (33):

tf 4

2
f0bj = 6iflight (t) - 6i5im (t) (33)

t=0i=1

Yet, the cost function definition given in Eq. (33) is itself is
not sufficient for a stable optimization. Since, there is no
constraint on the number of data samples (that is the length
of simulated trajectory), the generation evolves to physically
meaningless parameters that tend to terminate the
trajectory in relatively short times, rather than following the

actual flight test trajectory.

To overcome this problem, two alternative approaches are
possible. In the first approach, a final position penalty is
included in the cost function. Thus, the simulation runs that

terminate farther away from the actual hit point receive
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higher penalties, which in turn force the evolution towards
the parameters that result trajectories closer to the actual
flight test run. Eq. (34), shows the updated (and equally
weighted) cost function with such a final position penalty.
Notice that, to avoid the dominancy of any objective over
the other, the fin deflections are scaled with their maximum
and minimum values that occur in the flight to 0-1 range
and the final position penalty is scaled such that the
individual trajectories that terminate within 500 meters of

actual trajectory end point receive penalties less than 1.

fobj
tr 4

2
= Siiigne () = Bigypn (8)
oz (34)

2 2
2
Xflight — Xsim + YVriight — Ysim + (Zflight - Zsim)

+ 500

An alternative approach for implementing a final position
penalty is to force the simulation to run longer, by scaling
the data length in the cost function, Eq. (35). If the
trajectory terminates in a short time, the data length of the
simulated fin deflection will be a small humber, thus the cost
function will be a higher value; and if the trajectory

terminates in a longer time vice a versa.
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tr 4 2
t=0 i=1 Siflight (t) - 6isim (t)

length(s, ) (35)
%1000

The two cost functions are compared with a number of
optimization runs on simulated and actual flight test data. It

is seen that final position penalty (coupled with Adaptation
Feasible type of mutation) gives better results.
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CHAPTER 5

TEST CASES

The methods defined in the previous chapters are applied to flight
test data of two different air launched flight vehicles. The first
vehicle is an autonomous (onboard closed loop feedback
controlled) flight vehicle, where as the second vehicle is a freefall

separation model (uncontrolled).

5.1 Test Cases for Model Structure Determination

The methods for model structure determination are tested on four
different test cases. The first two of these cases are simulated
flight test data of the guided FV, which are obtained through a
high fidelity 6 dof simulation. The third test case is the actual
flight test data of the guided FV, which was gathered during
performance demonstration flight tests of the FV. Thus, the data
for the third test case is not specifically designed for system
identification/parameter estimation purposes, yet, it is the only
set of actual flight test data for guided FV available. This flight test

data includes measurements for:
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e Altitude

e Velocities

e Body angular rates

e Body linear accelerations

e Control surface deflections

Using these parameters, the following are calculated during post

processing the data:
e Angle of attack
e Angle of side slip

¢ Mach number

The fourth test case is the actual flight test data of the freefall
separation model. Only two sets of measurements are included in
the actual flight test data; namely linear accelerations and angular
rates. Using these measurements, the following are calculated
during post processing of the data (thus the data is prone to

possible integration errors in the post process):
e Angle of attack
e Angle of side slip

e Mach number
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5.1.1 Simulated Flight Test Data for Guided FV

The first test case is a standard trajectory for the autonomous
flight vehicle. No specific care is taken for maneuver design, i.e,
excitation of modes of the vehicle for system identification
purposes is not performed. As can be seen from the time history
of the flight data in Figure 18 and Figure 19, the vehicle rapidly
suppresses the effects of the initial conditions (initial angular rates
are assumed on the vehicle to simulate the effects of separation
from the parent aircraft) and smoothly flies the rest of the

trajectory until the desired final point.
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The original aerodynamic model of the flight vehicle is given in

Table 2 and Table 3.

Table 2. Original aerodynamic model of the guided FV (forces)

Coefficients Cx Cy C;
Static Term| 2.0445 | Static Term -0.0009 Static Term| 0.0169
) alpha2 -4.3192 beta3 -40.3350 alpha3 -35.7140
9 beta4 11.5640 beta2 0.0058 alpha2 0.0590
Q beta3 -0.0457 beta -6.0397 alpha -6.1664
E beta2 -1.1341 r -17.1996 beta 0.1425
& beta 0.0300 Machr 31.6010 q 17.1996
E Mach2 1.5909 dr 5.0365 Machg -31.6010
% Mach -3.8605 alpha2dr -2.4669 de 5.0365
g alphadr 0.0433 beta2de -2.4669
Machdr -1.5251 betade 0.0433
Machde -1.5251

Table 3. Original aerodynamic model of the guided FV (moments)

Coefficients C, Cn C,
Static Term 0.0015 Static Term 0.0564 Static Term| -0.0144
alpha -0.0328 alpha3 -33.1320 beta3 33.5710
beta3 -0.3315 alpha2 0.3809 beta2 1.0681
g beta2 0.2492 alpha -5.2489 beta 4.6446
o beta 0.0416 q 119.4666 r 119.4666
£ p -0.4586 Machq -157.6500 Machr -157.6500
o Machp -0.8159 de 20.4878 dr -20.4878
2 da 9.9776 beta2de -12.6650 alpha2dr 12.6650
] alpha2da 1.9753 betade 0.3407 alphadr -0.3407
'g beta2da 4.1906 Machde -5.5976 Machdr 5.5976
= betada 0.1166
Mach3da -9.3903
Mach2da 28.1970
Machda -27.5090
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Table 4 - Table 8 show the identified models and parameter
estimates (with predicted errors). Figure 20 through Figure 24
show the response of the estimated model and residuals for each
aerodynamic coefficient. Although most of the identified model
responses seem to agree well with the simulated flight test data, a
comparison of parameters between the original aerodynamic
models and the identified ones reveals that the obtained models
are not relevant. For example, a dependency on the control
surface deflections is identified in axial force, where as the original
model is independent of deflections. Also, a model for the pitching
moment coefficient (C,) could not be identified. Of all the
identified models for the five aerodynamic coefficients, only the
model for the side force coefficient (CY) seems to capture the
dominant parameters and their values acceptably, yet there are
still unrelated parameters such as the square of rudder deflection
in the identified model. Then, it is without a doubt that at first
attempt, the model structure identification algorithms failed to
identify adequate models for the guided FV. The main reason
behind this failure is the insufficient information content of the
simulated FTD: The simulation did not include any maneuvers for
system identification and the atmospheric conditions were perfect
(no winds, standard day temperatures and pressures). Under
these circumstances, the autopilot did a pretty job and suppressed
the vehicles dynamical responses, thus, not enough valuable
information left in the FTD for the model identification algorithms

to succeed.
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Table 4. Identified model and parameter estimates for Cx

cX Parameter | Standard | Percent 95% 95%
Estimate Error Error |Confidence LB | Confidence UB
Mach -0.6380 0.0596 9.3500 -0.7573 -0.5187
delta -1.2430 0.1399 |11.2516 -1.5227 -0.9633
alpha3 -8.5061 0.9898 |11.6358 -10.4857 -6.5266
static term 0.4222 0.0600 [14.2008 0.3023 0.5421

Table 5. Identified model and parameter estimates for Cy

cy Parameter | Standard | Percent 959% 959%
Estimate Error Error |Confidence LB | Confidence UB
beta -5.8169 0.0432 0.7418 -5.9032 -5.7306
dr 3.1463 0.0707 2.2473 3.0049 3.2878
dr2 48.4342 2.0228 4.1764 44.3886 52.4799
static term -0.0019 0.0011 |57.7392 -0.0040 0.0003

Table 6. Identified model and parameter estimates for Cz

cz Parameter | Standard | Percent 959% 95%
Estimate Error Error |Confidence LB | Confidence UB
de -13.5862 0.1207 0.8886 -13.8276 -13.3447
static term -0.0570 0.0108 [18.9173 -0.0786 -0.0354
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Table 7. Identified model and parameter estimates for C

cl Parameter | Standard | Percent 959% 95%
Estimate Error Error |Confidence LB | Confidence UB
dap -4591.1438 | 113.5047 | 2.4723 -4818.1532 -4364.1344
static term 0.0001 0.0001 [66.6298 0.0000 0.0003

Table 8. Identified model and parameter estimates for C,

cn Parameter | Standard | Percent 95% 95%
Estimate Error Error |Confidence LB | Confidence UB
betap -10540.6233|2031.0955(19.2692| -14602.8144 -6478.4322
drp 42641.0939 | 3925.5223( 9.2060 | 34790.0494 50492.1385
drda2 -8607.9217 | 548.4078 | 6.3710 | -9704.7372 -7511.1062
static term -0.0063 0.0021 [33.3606 -0.0104 -0.0021
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5.1.2 Simulated Flight Test Data for Guided FV with

Maneuvers

Although the simulated flight test data of test case 1 is free of any
measurement errors and biases, which almost never is the case
for an actual flight test data, the model structure algorithms failed
to identify adequate and acceptable models. To test the famous
saying “If it is not in the data, it cannot be estimated”, two
additional flight simulations are carried out, each with different set
of maneuvers. The optimal flight test maneuver design is a broad
subject, and not included in the scope of these thesis. Yet, a very
basic approach is taken in maneuver design: The maneuvers are
selected to excite the modes of the flight vehicle by disturbing the
autopilot commands to fin actuation system. These maneuvers are
constant frequency sine inputs (frequencies of inputs for aileron,
elevator and rudder inputs are selected based on longitudinal and
lateral mode frequencies of the vehicle) and square waves. Figure
25 and Figure 26 show the time history of simulated flight test

data for test case 2.
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Once again, aerodynamic model structure identification followed
by parameter estimation is performed using stepwise regression
and equation error methods on the simulated flight test data.
Table 9 - Table 14 show the identified models and parameter
estimates (with predicted errors) and Figure 27 through Figure 32
show the response of the estimated model and residuals for each
aerodynamic coefficient. The identified model responses seem to
agree well with the simulated flight test data. A comparison of
parameters between the original aerodynamic models and the
identified ones reveals that the obtained models (especially for
forces) are adequate and they capture the dominant parameters
(and their values) acceptably. Yet, there are some unrelated
terms in the identified models for moments. Also, some high
residual values can be seen in the responses. Nevertheless, the
test case 2 proves that, given an adequate flight test data, i.e., a
flight test data that is rich enough in frequency content, the model
structure determination and equation error based parameter
estimation algorithms have the potential to identify adequate
aerodynamic models. Yet, the phrase “if it is not in the data, it
cannot be estimated” is validated, i.e., the success of the
identification and estimation algorithms depend on the flight test

maneuver design.
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Table 9. Identified model and parameter estimates for Cyx

cx Parameter Standard Percent 95¢% 95%
Estimates Error Error Confidence LB Confidence UB
Mach -0.6902 0.0110 1.5945 -0.7122 -0.6682
alpha2 -4.3041 0.0131 0.3034 -4.3302 -4.2780
beta2 -1.1689 0.0515 4.4028 -1.2718 -1.0660
static term 0.4676 0.0110 2.3488 0.4456 0.4896

Table 10. Identified model and parameter estimates for Cy

Parameter

cy Standard Percent 959% 95%
Estimates Error Error Confidence LB Confidence UB
beta -6.0821 0.0078 0.1285 -6.0977 -6.0664
dr 3.4046 0.0078 0.2302 3.3889 3.4203
beta3 -39.9475 0.4078 1.0209 -40.7631 -39.1318
static term -0.0003 0.0002 80.8718 -0.0008 0.0002

Table 11. Identified model and parameter estimates for Cz

cz Parameter Standard Percent 959% 95%
Estimates Error Error Confidence LB Confidence UB
alpha -5.9290 0.1305 2.2015 -6.1901 -5.6680
de 3.1745 0.1327 4.1806 2.9091 3.4399
alpha3 -37.1918 1.1341 3.0493 -39.4600 -34.9236
static term 0.0251 0.0096 38.1037 0.0060 0.0442

Table 12. Identified model and parameter estimates for C

cl Parameter Standard Percent 95% 95%
Estimates Error Error Confidence LB Confidence UB
da 1.2249 0.0589 4.8055 1.1072 1.3427
static term -0.0043 0.0003 7.6287 -0.0050 -0.0037
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Table 13. Identified model and parameter estimates for Cr,

cm Parameter Standard Percent 95% 959%
Estimates Error Error Confidence LB Confidence UB
alpha -4.3669 0.1811 4.1468 -4.7290 -4.0047
de 12.6085 0.4306 3.4149 11.7473 13.4696
de2 17.1554 5.5337 32.2565 6.0879 28.2229
alpha3 -35.7358 1.5871 4.4411 -38.9100 -32.5617
de3 -79.3177 24.2586 30.5841 -127.8349 -30.8005
static term 0.0550 0.0124 22.4825 0.0302 0.0797

Table 14. Identified model and parameter estimates for C,

cn Parameter Standard Percent 959% 959%
Estimates Error Error Confidence LB Confidence UB
beta 4.2991 0.0389 0.9044 4.2213 4.3768
dr -13.6642 0.0756 0.5535 -13.8154 -13.5129
beta2 -5.1522 0.2358 4.5763 -5.6238 -4.6807
static term -0.0121 0.0008 6.4588 -0.0137 -0.0106
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5.1.3 Actual Flight Test Data for Guided FV

The third test case is the actual flight test data of an autonomous
flight vehicle. The data is collected from four different test runs
each with different initial conditions. Using the data processing
methods explained in Section 3.4, the data is conditioned and

trimmed yielding the result shown in Figure 33 and Figure 34.

The differences between the in-flight aerodynamics and the a
priori aerodynamic model are shown in Figure 35 and Figure 36.
Except for the axial force coefficient, the a priori aerodynamic
model seems to catch the actual dynamics well for the small angle
of attack and side slip cases. However, there are considerable
differences between the in-flight and a priori aerodynamics in
flight conditions for which the angle of attack and side slip are

above 10° and below -10°.
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The power spectral density estimates for the in-flight
aerodynamics and the obtained delta aerodynamics are shown in

Figure 37 and Figure 38.
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In contrast to what is expected, calculating a delta aerodynamics
does not reduce the power of spectral density estimates, but
amplify them for this flight vehicle. The reason behind this
opposite behavior is the flight regime of the vehicle. As seen from
Figure 33, the vehicle mostly flies in the high angle of attack and
angle of side slip range. Since the database is quite erroneous for
that flight regime, using the difference of the in-flight calculated
and a-priori aerodynamics introduce additional power in the

spectral estimates.

The aerodynamic model structure determination algorithm is run
for 6 aerodynamic coefficients and as can be seen in Table 15
through Table 20. Some adequate models are obtained for all
coefficients but the axial force coefficient. The model responses
and the residuals are given in Figure 39 through Figure 44. The
best agreements between the identified model and the actual data
are obtained for lateral parameters. This is because of the content
of the flight test data: During two of the runs, the flight vehicle
encountered severe side wind, which caused a build-up in side slip
angle. The autopilot responded, yet due the low fidelity of the
aerodynamic database in the high angle of side slip flight
condition, the control commands in lateral plane were
miscalculated, causing the vehicle to start oscillating. Thus, the
vehicle was excited in the lateral plane with the help of rudder
input, which, unintentionally, allowed better model identification

and parameter estimates in turn.
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Table 15. Identified model and parameter estimates for Cx

CX Parameter |Standard| Percent 95% 959%
Estimates Error Error Confidence LB | Confidence UB

alpha 0.8812 0.7548 85.6529 -0.6284 2.3908

static term| 0.0057 0.1781 [3119.4359 -0.3505 0.3620

Table 16. Identified model and parameter estimates for Cy

cy Parameter|Standard| Percent 95% 959%
Estimates Error Error Confidence LB | Confidence UB

beta 3.4721 0.1746 5.0276 3.1230 3.8213
Mach 0.6578 0.0790 12.0083 0.4998 0.8158
da 1.7743 0.3304 18.6203 1.1136 2.4351

r -273.5335 | 22.0325 8.0548 -317.5985 -229.4684

dr2 -9.0039 1.3683 15.1966 -11.7404 -6.2673
alphabeta2| 57.2829 3.5531 6.2028 50.1766 64.3892
static term| -0.6012 0.0789 13.1219 -0.7590 -0.4434

Table 17. Identified model and parameter estimates for Cz

cz Parameter|Standard| Percent 95% 95%
Estimates Error Error Confidence LB | Confidence UB
alpha -5.1026 1.8611 36.4730 -8.8247 -1.3805
Mach -1.1907 0.1633 13.7173 -1.5174 -0.8640
q 803.0082 | 88.1220 | 10.9740 626.7642 979.2522
alpha5s 469.6795 |148.7196| 31.6641 172.2403 767.1186
static term 2.0763 0.3264 15.7217 1.4235 2.7292
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Table 18. Identified model and parameter estimates for C

cl Parameter |Standard| Percent 95% 95%
Estimates Error Error Confidence LB | Confidence UB
da -1.1995 0.0294 2.4485 -1.2583 -1.1408
beta2 -0.4627 0.0225 4.8602 -0.5077 -0.4177
static term| 0.0056 0.0003 5.2972 0.0050 0.0062

Table 19. Identified model and parameter estimates for C,

Ccm Parameter|Standard| Percent 95% 95%
Estimates Error Error Confidence LB | Confidence UB
alpha 6.1754 0.3545 5.7407 5.4664 6.8844
beta 0.3372 0.0695 20.6154 0.1982 0.4763
Mach -1.2404 0.1211 9.7596 -1.4826 -0.9983
de -8.2683 0.4976 6.0187 -9.2636 -7.2730
static term| 0.8754 0.1566 17.8939 0.5621 1.1887

Table 20. Identified model and parameter estimates for C,

cn Parameter |Standard| Percent 959% 95%
Estimates Error Error Confidence LB | Confidence UB

beta -5.5715 0.3893 6.9866 -6.3500 -4.7930
Mach 0.9859 0.2122 21.5252 0.5615 1.4103
da -2.6391 0.6494 24.6085 -3.9379 -1.3402

dr 7.1326 0.3591 5.0341 6.4145 7.8507
beta2 -9.5507 1.1260 11.7897 -11.8027 -7.2987
static term| -0.8946 0.2042 22.8299 -1.3031 -0.4861
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5.1.4 Actual Flight Test Data for Freefall Separation Model

To further test the model structure determination and equation
error based parameter estimation algorithms, a fourth test case is
selected as the low fidelity flight test data of an free fall separation
model. A complete 6dof trajectory information is not available in
the flight test data since only limited measurements (body linear
accelerations and body angular rates) were taken with a relatively
low accuracy IMU. The atmospheric conditions were gathered by
onboard data acquisition systems of the parent aircraft and a post
test trajectory reconstruction was carried out to obtain the
required variables. Figure 45 and Figure 46 show the time history

of simulated flight test data for test case 4.
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The aerodynamic model structure determination algorithm is run
for 6 aerodynamic coefficients. It can be seen from Table 21
through Table 26 that, some reasonable models are obtained for
all coefficients. Yet, for some of the parameters, the predicted
errors are quite high, and for some parameters they are
unacceptable. Model responses and the residuals are given in
Figure 47 through Figure 52. As can be seen from the plots,
identified models represent almost all dynamics of the vehicle, but
there are considerably large residuals left over. That is, the model
structures are adequate, but the parameter estimates need to be
refined.

Table 21. Identified model and parameter estimates for Cx

959 95%
Parameter [Standard |Percent |Confidence |Confidence
CX Estimates |Error Error LB UB
alpha 0.2239 0.0419| 18.6993 0.1401 0.3076
Mach -0.4840 0.2195| 45.3427 -0.9229 -0.0451
alpha3 -0.8905 0.2726| 30.6072 -1.4357 -0.3454
static term 0.3066 0.1634| 53.3047 -0.0203 0.6334
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Table 22. Identified model and parameter estimates for Cy

959 959%
Parameter |Standard |Percent |Confidence |Confidence
CYy Estimates |Error Error LB UB
beta 5.6930 0.3976 6.9849 4.8977 6.4883
r 339.6378|132.0473| 38.8789 75.5432| 603.7325
betaalpha2 77.0894 3.8767 5.0288 69.3361 84.8427
static term 0.0789 0.0719] 91.0980 -0.0648 0.2226

Table 23. Identified model and parameter estimates for Cz

95% 959%

Parameter [Standard |Percent |Confidence |Confidence
Cz Estimates |Error Error LB UB
alpha -19.2292 8.4252| 43.8145 -36.0796 -2.3788
alpha?2 -3.1140 1.0966| 35.2160 -5.3073 -0.9208
beta2 5.7542 1.5341| 26.6600 2.6861 8.8224
alphaMach 39.6169| 11.0064| 27.7821 17.6041 61.6297
alphabeta?2 34.1308 4.4333| 12.9892 25.2641 42.9974
static term 0.8274 0.0902| 10.8980 0.6471 1.0078
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Table 24. Identified model and parameter estimates for C

95% 95%

Parameter [Standard | Percent |Confidence |Confidence
Cl Estimates |[Error Error LB UB
alpha -0.0366| 0.0395/107.8804 -0.1156 0.0424
beta 0.5030[ 0.0924| 18.3672 0.3182 0.6878
p -8.6068| 4.3013| 49.9754| -17.2093 -0.0042
r -40.9471| 18.1190| 44.2498| -77.1852 -4.7091
beta3 49.9358| 15.8466| 31.7338 18.2427 81.6289
alphabeta 5.9892| 0.5268| 8.7957 4.9356 7.0428
betar -363.9586|138.1934| 37.9695| -640.3455| -87.5718
betaalpha2 6.5807| 0.7707] 11.7121 5.0392 8.1222
Machbeta3 -63.6458| 19.5885| 30.7773| -102.8227| -24.4688
alphabetap 412.0724|137.9240| 33.4708| 136.2244| 687.9204
static term 0.0056] 0.0126]223.7977 -0.0196 0.0309

Table 25. Identified model and parameter estimates for C,
95% 95%

Parameter [Standard [Percent |Confidence |[Confidence
Cm Estimates |Error Error LB UB
alpha 5.8877 0.4540 7.7119 4.9796 6.7958
alpha3 -24.8083| 2.4082| 9.7071| -29.6247| -19.9920
alphabeta2 -28.8968| 4.1181| 14.2510| -37.1330| -20.6606
static term 0.3856] 0.0342] 8.8562 0.3173 0.4540
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Table 26. Identified model and parameter estimates for C,

959 959%
Parameter |Standard |Percent |Confidence |Confidence
Cn Estimates |Error Error LB UB
beta -4.5061 0.2904 6.4449 -5.0870 -3.9253
beta3 42.3738 2.7912 6.5872 36.7913 47.9563
alphabeta -3.5593 0.7908| 22.2185 -5.1410 -1.9777
static term 0.0108 0.0130]/120.8272 -0.0153 0.0368
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5.2 Test Cases for Closed Loop Parameter Estimation

The closed loop parameter estimation method is tested with two
different set of flight test data. The first set is the simulated flight
test data of the guided FV, and the second set is the actual flight
test data of the guided FV. Once again, the actual flight test data
was gathered during performance demonstration flight tests of the
FV and is not specifically designed for system identification/

parameter estimation purposes.

5.2.1Simulated Flight Test Data for Guided FV

The first test case has the identical flight test data of Section
5.1.1: a standard trajectory for the autonomous flight vehicle
(Figure 18 and Figure 19)

The closed loop aerodynamic parameter estimation converged in
about two weeks of run time on a quad core AMD Opteron 280
workstation with 7.83 GB of RAM. The final value of the cost
function was 3.718 at the end of the genetic algorithm run and
this value was reduced to 0.595 after a hybrid run. The following
plots show the response of the estimated model parameters with

the actual data.
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The estimated parameter values are shown in Figure 56 through
Figure 61. The estimation errors range between 0.1 - 20% for Cy,
0.2 - 24% for Cy, 0.5 - 22% for Cz, 2.2 - 46% for C;, 0.2 - 35%
for Cm, 0.8 - 38 % for C,. It is worth noting that, the dominant
terms for each coefficient (for example o for Cx and B for C,) are
estimated with smaller errors than those with less importance (for
example higher order parameters such as B25;). Also, almost all
parameters including rate terms have higher estimation errors
when compared to others. This is due to the flight profile, since
the vehicle is almost continuously in trimmed flight. As a
consequence of this, the rates do not build up, and thus the
estimation algorithm makes higher errors in converging for those

terms.
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5.2.2 Simulated Flight Test Data for Guided FV with

Maneuvers

The simulated flight test data includes a basic set of system
identification maneuvers: Constant frequency sine inputs on
aileron, elevator, and rudder commands. Figure 62 through Figure
63 show the time history of simulated flight test data for test case
2.
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The closed loop aerodynamic parameter estimation converged in
about four weeks of run time on a quad core AMD Opteron 280
workstation with 7.83 GB of RAM. The final value of the cost
function was 6.725 at the end of the genetic algorithm run and
this value was reduced to 0.494 after a hybrid run. The following
plots show the response of the estimated model parameters

together with the actual data.
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The estimated parameter values are shown in Figure 68 through
Figure 73. The estimation errors range between 6 - 24% for Cy,
0.2 - 21% for Cy, 5 —= 25% for Cz, 2 - 50% for C;, 0.5 - 46% for
Cm, 2 - 46 % for C,. The rate derivatives are much better
estimated this time, when compared to the results of test case -1.
Once again, the dominant terms for each coefficient are estimated

with smaller errors than those with less importance.
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5.2.3 Actual Flight Test Data for Guided FV

The third and final test case for the closed loop parameter
estimation method is the actual flight test data of the guided flight

vehicle.

In the first attempt to estimate aerodynamic model parameters,
the closed loop estimation algorithm was run on a quad core AMD
Opteron 128 workstation with 7.83 GB of RAM for about 13 days.
The genetic algorithm was terminated with a final cost value of
17.150, which was later reduced to 16.696 by the hybrid run.
Following figures show the response of the estimated model with
the actual flight test data. The selected cost function included final
position penalty and the selected mutation method was the

adaptation feasible mutation.
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The response of the estimated model starts oscillating towards the
end of the trajectory. There, the guidance law tries to compensate
for the final position error and match the final attitude constraints
on the trajectory (such as final dive angle and angle of attack).
Thus, the autopilot gives harsh commands to the fins. Since the
model response deviates from the actual flight test data, there
might be two different explanations for the cause of these
oscillations in the model response. First, some oscillations occur
for a small portion of the trajectory, that is, it takes the
optimization algorithm too long to compensate for these
oscillations. The genetic algorithm run was terminated at reaching
the 200™ generation and the hybrid run was also terminated
before reaching the optimal value (at the maximum function
evaluation limit). Then, allowing the runs to carry on longer might
solve this oscillation problem. Yet, they might also be caused by
the model error; if the model is short of representing the some

dynamics of the vehicle, these oscillations can occur.

Nevertheless, Figure 78 through Figure 83 show the contribution
of individual parameters to the coefficient value during the
simulation with the final model parameters: Higher the relative
value of the parameter, more dominant the parameter is. As can
be seen, some parameters are obviously having less importance
on the overall coefficient values (at least for the conditions of the
flight test).
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This situation suggests that, better parameter estimates can be
obtained if the number of parameters to be estimated is reduced
so that the parameter estimation algorithm focuses on dominant
terms. This is realized by defining an aerodynamic model for
which the only dominant parameters are estimated, while the less
dominants are fixed at some a priori values. In contrast to 81
parameters of the previous model, this reduced model includes
only 34 parameters to be estimated. Table 27 shows the selected

parameters for estimation.

Table 27. Selected dominant parameters for attempt 2

Coefficients Cx Cy C, C, Cn C,
Iy Static Term | Static Term [ Static Term | Static Term | Static Term [ Static Term
_ E alpha2 beta3 alpha3 alpha alpha3 beta3
g ] Mach?2 beta alpha da alpha beta2
o g Mach dr beta alpha2da de beta
£ H alpha2dr de Mach3da beta2de dr
o Machdr beta2de Mach2da betade alpha2dr
Machde Machda Machde Machdr

Once again, the closed loop estimation algorithm was run on a
quad core AMD Opteron 128 workstation with 7.83 GB of RAM.
This time the results obtain in about 5 days (almost 60% shorter
than attempt 1). The genetic algorithm was terminated with a
final cost value of 17.090, which later was reduced to 17.030 by
the hybrid run. Following figures show the response of the
estimated model with the actual flight test data. The selected cost

function included final position penalty and the selected mutation
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method was the adaptation feasible mutation, the same as

attempt 1.
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When Figure 74 through Figure 77 and Figure 84 through Figure
87 are compared, it is seen that the responses of the both models
are close. Table 28 through Table 33 show the estimated

parameter values for the dominant terms in each case.

Table 28. Estimated values for dominant parameters Cyx

Attempt 1 |Attempt 2 %
CX .
value value Difference
Static Term| 2.5547 1.7754 30.5
alpha2 -4.,5582 -2.1848 52.1
Mach2 1.7396 1.3343 23.3
Mach -4.7575 -3.6335 23.6

Table 29. Estimated values for dominant parameters Cy

Attempt 1 |Attempt 2 %

CYy .

value value Difference

Static Term| -0.0011 -0.0012 9.1
beta3 -30.3538 | -42.7200 40.7
beta -7.3629 -7.6874 4.4
dr 3.7774 4.6233 22.4
alpha2dr -3.0820 -3.4697 12.6
Machdr -1.6944 -1.5666 7.5
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Table 30. Estimated values for dominant parameters C;

Py Attempt 1 |Attempt 2 %
value value Difference

Static Term| 0.2986 0.2917 2.3

alpha3 -36.6254 | -41.2270 12.6

alpha -7.6275 -8.2602 8.3

beta 0.1083 0.1073 0.9

de 5.1912 6.9567 34.0

beta2de -2.9351 -1.6404 44 .1

Machde -1.8991 -2.2301 17.4

Table 31. Estimated values for dominant parameters C,

cl Attempt 1 |Attempt 2 %
value value Difference

Static Term| -0.0018 -0.0010 44 .4
alpha -0.0390 -0.0275 29.5

da 12.4932 10.6670 14.6
alpha2da 1.3938 1.1796 15.4
Mach3da -8.6646 -7.6543 11.7
Mach2da 19.3724 19.3333 0.2
Machda -21.6548 | -21.6370 0.1
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Table 32. Estimated values for dominant parameters Cp,

C Attempt 1 | Attempt 2 %
m .
value value Difference
Static Term 1.1504 0.9665 16.0
alpha3 -23.3502 | -47.2120 102.2
alpha -1.8269 -2.3939 31.0
de 19.3917 24.1500 24.5
beta2de -6.5630 -13.5200 106.0
betade 0.4971 0.3486 29.9
Machde -8.3964 -7.9114 5.8

Table 33. Estimated values for dominant parameters C,

C Attempt 1 |Attempt 2 %
n .
value value Difference
Static Term| -0.0217 -0.0207 4.6
beta3 33.5934 20.9890 37.5
beta2 0.8333 0.9708 16.5
beta -0.4474 -0.4139 7.5
dr -18.9279 | -16.9240 10.6
alpha2dr 18.9451 17.7560 6.3
Machdr 2.7988 6.1914 121.2

The percent differences in Table 28 through Table 33 confirm the
relation of parameter estimation with parameter dominancy: The
values for most dominant parameters are estimated with small

differences in two different model runs.
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CHAPTER 6

DISCUSSION, CONCLUSION AND FUTURE WORK

This study aimed to devise a methodology that can be used for
the identification of aerodynamic models and estimation of
parameters for different types of autonomous flight vehicles using

actual flight test data.

To obtain an adequate aerodynamic model, a stepwise regression
method is utilized. The method is based on selecting relevant
parameters for the aerodynamic model based on their correlations
with the aerodynamic behavior of the flight vehicle under
consideration. The aerodynamic behavior of the flight vehicle is
gathered from the inverse solution of six degrees of freedom force
and moment equations using with actual flight conditions. If an
existing a priori aerodynamic model is provided, then the
information contained in that model is used and the aerodynamic

behavior that is not foreseen by the a priori model is identified.

The objective of determining the model structure with a minimal

intervention from the user is fulfiled by the utilization of
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automated regressor generation algorithms and imposed run and
stopping rules. In fact, practical considerations for the application
of model structure determination methods to autonomous vehicles
are not well defined in the literature and this doctoral study serves

as a guide to these considerations.

Aside from the model structure determination, a closed loop
optimization approach is also proposed for aerodynamic parameter
estimation utilizing genetic algorithm as the kernel. Practical
considerations and recommendations for the closed loop
aerodynamic parameter estimation approach are given for

autonomous flight vehicles.

Both methods are tested on different test cases of simulated and
actual fight test data. The initial application of the stepwise
regression/equation error method to the simulated flight test data
of a guided flight vehicle demonstrated the inability of the
identification algorithms to converge to relevant and adequate
models, if low - quality flight test data, i.e., flight test data which
lacks necessary and sufficient information about the dynamics of
the vehicle, is supplied. However, when - even non-optimal -
maneuver designs are implemented in simulations, the algorithms

converged successfully.
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This study also focused on the flight test data processing.
Considerations on conditioning the actual flight test data for
identification include decimating a higher sample rate data to save
valuable time, filtering out noise using Global Fourier Smoother,
and trimming data from different test runs into one to obtain a

global aerodynamic model.

When the model identification algorithms are applied to the
conditioned actual flight test data of the guided flight vehicle some
reasonable models are obtained for all coefficients, except the
axial force coefficient, even for a flight test data which was not

designed for system identification purposes.

For the closed loop aerodynamic estimation algorithm, the trials
with simulated flight test data once again demonstrated that the
success of identification and estimation heavily relies on the
content of the flight test data supplied. When the simulated data
with no specific maneuvers is supplied, some of the parameters
are estimated with large errors. However, adding even non-

optimal maneuvers improved the parameter estimates.

When the closed loop estimation algorithm is tested on an actual
flight test data of the guided vehicle, it is seen that the success of
estimation is lower when compared to the simulated test data.

Trying to estimate the parameters of a reduced model yielded
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acceptable results and also speeded up the process since the
method takes quite long to converge, even on fast computers.
Unfortunately, the only flight test data in hand (for a guided flight
vehicle) was not designed for system identification/parameter
estimation purposes, so it was not possible to test the methods on

high quality data.

During the course of this study, three conference papers have
been published. Two of them, [12], [13], explain the practical
considerations in flight test data processing of autonomous flight
vehicles and aerodynamic model structure determination. The last
one gives the results of closed loop aerodynamic parameter
estimation using genetic algorithm for simulated flight test data of

an autonomous flight vehicle, [14].

As follow-on studies, an effort should be directed on the validation
of identified models and estimated parameters, trials with
different optimization methods and comparisons of results with

different estimation methods.

Validation is an important subject, since the results of the
identification and estimation runs must be validated before they
can be implemented on the aerodynamic models of actual flying

vehicles.
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Although the genetic algorithm has some advantages over the
conventional gradient based optimization algorithms, the
convergence takes quite so long for optimization using the flight
test data. During this study, some run times up to 1 month were
encountered, which are not acceptable during an actual flight test
program. So, the utilization of different optimization algorithms

can be tried to shorten the convergence time.

Another future work should be the comparison of the results of the
closed loop aerodynamic parameter estimation method with other
popular methods such as the output error method. Yet, to do this

a high quality flight test data is required.

One of the most important results of this study is the
understanding the importance of the quality of the flight test data.
Any method in practice cannot succeed, unless a flight test data
with sufficient information about the flight vehicle is supplied.
This, in fact, shows that the system identification and parameter
estimation starts before the actual flight test, with the design of
maneuvers. The maneuver design was not in the scope of this
study, however, it is shown that maneuver design is crucial for
identification and estimation. Thus, it is recommended that the
future work should focus on maneuver design and optimization,

since:

“If it is not in the data, it cannot be estimated.”, [19].
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