
 

 

IMPLEMENTATION OF TURBULENCE MODELS ON 2D HYBRID GRIDS 

USING AN EXPLICIT/IMPLICIT MULTIGRID ALGORITHM  

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

BY 

 

 

ALĠ EMRE YILMAZ 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

AEROSPACE ENGINEERING 

 

 

 

 

SEPTEMBER 2011 



 

 

Approval of the thesis:  

 

IMPLEMENTATION OF TURBULENCE MODELS ON 2D HYBRID 

GRIDS USING AN EXPLICIT/IMPLICIT MULTIGRID ALGORITHM  

 

submitted by ALİ EMRE YILMAZ in partial fulfillment of the requirements for the 

degree of Master of Science in Aerospace Engineering Department, Middle East 

Technical University by, 

 

 

Prof. Dr. Canan ÖZGEN       ______________ 

Dean, Graduate School of Natural and Applied Sciences 

 

Prof. Dr. Ozan TEKĠNALP      ______________ 

Head of Department, Aerospace Engineering  

 

Prof. Dr. Ġsmail H. TUNCER       ______________ 

Supervisor, Aerospace Engineering Dept., METU 

 

 

Examining Committee Members: 

 

Prof. Dr. Yusuf ÖZYÖRÜK       ______________ 

Aerospace Engineering Dept., METU 

 

Prof. Dr. Ġsmail H. TUNCER       ______________ 

Aerospace Engineering Dept., METU 

 

 

Assist. Prof. Dr. D. Funda KURTULUġ     ______________ 

Aerospace Engineering Dept., METU 

 

 

Dr. Emel MAHMUTYAZICIOĞLU     ______________ 

Aerodynamics Division, TÜBĠTAK-SAGE 

 

 

Assist. Prof. Dr. Oğuz UZOL      ______________ 

Aerospace Engineering Dept., METU 

 

 

 

       Date:        16 / 09 / 2011 



 iii 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

 

 

 

   Name, Last Name : Ali Emre YILMAZ 

Signature         :  

 



 iv 

ABSTRACT 

IMPLEMENTATION OF TURBULENCE MODELS ON 2D HYBRID 

GRIDS USING AN EXPLICIT/IMPLICIT MULTIGRID ALGORITHM  

 

 

YILMAZ, Ali Emre 

M.Sc., Department of Aerospace Engineering 

Supervisor: Prof. Dr. Ġsmail H. TUNCER 

September 2011, 82 pages 

 

 

In this thesis study, implementation, numerical stability and convergence rate 

issues of turbulence modeling are explored. For this purpose, a one equation 

turbulence model, Spalart-Allmaras, and a two-equation turbulence model, SST k-

, are adapted to an explicit, cell centered, finite volume method based, structured 

/ hybrid multi grid flow solver, SENSE2D, developed at TUBITAK-SAGE. 

Governing equations for both the flow and the turbulence are solved in a loosely 

coupled manner, however, each set of equations are solved using a coupled, semi-

implicit solution algorithm. In multigrid solutions, the semi-implicit solution 

algorithm and the turbulence model equations are employed only in the finest 

level grid. As a result, stable and convergent numerical solutions are obtained. In 

order to validate the turbulence models and the semi-implicit solution algorithm 

implemented, turbulent flow solutions over a flat plate, RAE2822 airfoil and 

NLR7301 multi element airfoil are performed. The results are compared with the 

experimental data and the numerical results of the commercial CFD package 

FLUENT.  It is shown that the numerical results obtained by SENSE2D are in 

good agreement with the experimental data and the FLUENT results. In addition 

to the turbulence modeling studies, convergence rate studies are also performed 

by multigrid and semi-implicit solution methods. It is shown that, the convergence 
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rates of the semi-implicit solutions are increased about 5 times for single grid and 

35% for multigrid solutions in comparison to the explicit solutions. 

 

Keywords: Turbulence Modeling, Spalart-Allmaras Turbulence Model, SST k- 

Turbulence Model, Implicit Methods, Stability 
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ÖZ 

TÜRBÜLANS MODELLERİNİN İKİ BOYUTLU ÇOK KATMANLI 

MELEZ ÇÖZÜM AĞLARI ÜZERİNDE AÇIK/ÖRTÜLÜ ALGORİTMA 

KULLANILARAK UYGULANMASI 

 

 

 

YILMAZ, Ali Emre 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ġsmail H. TUNCER 

Eylül 2011, 82 sayfa 

 

 

Bu tez çalıĢması kapsamında, türbülans modeli uygulamaları ve uygulama 

sırasında karĢılaĢılan sayısal istikrar ve yakınsama oranı sorunları incelenmiĢtir. 

Bu amaçla, bir denklemli Spalart-Allmaras ve iki denklemli SST k- türbülans 

modelleri, TÜBĠTAK-SAGE tarafından geliĢtirilen, hücre merkezli, sonlu hacim 

yöntemi tabanlı, çok katmanlı melez çözüm ağları ile çalıĢan akıĢ çözücü 

SENSE2D‟ye adapte edilmiĢtir. AkıĢ ve türbülans denklemleri birbirlerinden ayrı 

ardıĢık biçimde çözülmekle beraber, herbir set kendi içlersinde denklemler 

birbirlerine bağımlı olacak Ģekilde, yarı-kapalı çözüm algoritması kullanılarak 

çözülmüĢtür. Çok katmanlı çözümlerde, yarı örtülü çözüm algoritması ve 

türbülans model denklemleri sadece en sıkı çözüm ağı seviyesinde kullanılmıĢtır. 

Sonuç olarak, istikrarlı ve yakınsak sayısal çözümler elde edilmiĢtir. Türbülans 

modellerini ve yarı örtülü çözüm algoritması uygulamasını doğrulamak amacıyla, 

düz levha, RAE2822 kanat profili ve NLR7301 çok elemanlı kanat profili 

üzerinde türbülanslı akıĢ çözümleri yapılmıĢtır. Çözüm sonuçları, deneysel veriler 

ve ticari bir akıĢ çözücünün, FLUENT, çıktıları ile karĢılaĢtırılmıĢtır. SENSE2D 

ile elde edilen sayısal sonuçların, deneysel veriler ve FLUENT sonuçları ile iyi bir 

uyum içinde olduğu görülmüĢtür. Tez çalıĢmaları kapsamında, türbülans 

modelleme çalıĢmalarına ek olarak, çok katmanlı ve yarı-kapalı çözüm yöntemleri 

yakınsama hızları ile ilgili çalıĢmalar da yapılmıĢtır. Açık çözümlemeler ile 
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karĢılaĢtırıldığında, yarı-kapalı çözümlemelerin tek katmanlı çözüm ağları 

üzerinde yaklaĢık 5 kat, çok katmanlı çözüm ağları üzerinde %35 daha hızlı 

yakınsadığı görülmüĢtür. 

 

Anahtar Kelimeler: Türbülans Modelleme, Spalart-Allmaras Türbülans Modeli, 

SST k- Türbülans Modeli, Kapalı Çözüm Yöntemleri, Kararlılık 
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   CHAPTER 1 

 

1.INTRODUCTION 

 

 

Flow solvers are indispensable tools of the aerodynamic design procedures. 

Today, even though the flow equations are solved with high accuracy, the 

turbulence equations keep their bottleneck position since the accuracy of the 

solution is mostly dependent on the prediction of the turbulent quantities. In 

industrial applications turbulence modeling is widely used due to its practical 

usage and numerical efficiency. 

 

Two main problems encountered with the turbulence modeling are the slow 

convergence rate and the instability. While using small time steps makes the 

solution stable, it increases the convergence time significantly. Full implicit 

algorithms are the solution to the both instability and slow convergence problem, 

however, their numerical cost are usually prohibitive. Development of 

numerically less expensive, and at the same time, fast algorithms is among the 

current research activities. 

 

The Multigrid (MG) technique is considered to be the most effective technique to 

achieve a reduction in the CPU cost of explicit flow solvers. The main restriction 

in front of the convergence rate of an explicit MG solver is the CFL condition, 

which is limited by 1. Unconditional stability of implicit algorithms can improve 

the convergence rate of an MG solver. In order not to destroy the numerical cost 

effectiveness of explicit MG solver, semi implicit algorithm can be implemented 

to the MG solver instead of implementing fully implicit scheme. Also, coupling 

flow variables improves the accuracy and convergence rate of the solution. 
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At TUBITAK–SAGE two and three dimensional, unstructured, finite volume, 

multi-grid flow solvers are currently being developed. They employ explicit 

solution algorithms and are capable of solving viscous flows on hybrid grids. 

 

The main objectives of this work are to implement turbulence models and a semi 

implicit solution algorithm to the MG flow solver developed at TUBITAK-SAGE, 

SENSE2D, and to examine the improvements on the convergence rate of turbulent 

flow solutions. For this purpose, one equation turbulence model, Spalart-

Allmaras, and two equation turbulence model, SST k- are implemented to a MG 

flow solver and explicit solution algorithm of the flow solver is replaced by a 

semi-implicit coupled solution algorithm in which flux jacobians are computed 

numerically.  

 

1.1 Turbulence Modeling 

The accurate prediction of the viscous flows, such that boundary layer separation, 

vorticity and skin friction, has primary importance in the design of the air 

vehicles. Although, inviscid and laminar flow solutions of the governing 

equations are generally straight forward and do not introduce any significant 

difficulties, in the case of turbulent flows numerical solutions may become 

problematic.  

 

There are several ways so as to predict the turbulent flows. While some of them 

are capable of resolving all the scales in the flow requiring huge computational 

resources, some of them find themselves place in the engineering applications due 

to their reasonable needs for computational resources in the expense of accuracy. 

In addition, there are also some other techniques in between these two extremities. 

In Table 1, overview of the turbulence prediction methods are presented according 

to the increasing level of simplicity. 
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Table 1 Numerical turbulence prediction methods- Modeling and simulation 

DNS Level 0 

LES Level 1 

RANS 

 

2
nd

 Order 
RST 

Level 2 
ARS 

1
st
  Order 

0-Eq. 

Level 3 1-Eq. 

2-Eq. 

 

The most accurate way of predicting the turbulence is the Direct Numerical 

Simulation (DNS). While the results of the DNS solutions are accepted to be 

exact, other prediction methods include some approximation when compared with 

DNS. For a DNS solution, number of grid points in the solution domain is 

proportional to the Re
9/4

  and CPU time is proportional to Re
3
. Therefore, in spite 

of the fast development in computational technologies, in today‟s world, the 

practical usage of DNS is only possible for only simplified problems. However, 

this does not make DNS useless. Results of DNS solutions of simplified problems 

are used in the validation and improvement of the turbulence models. 

 

Large Eddy Simulation (LES) comes after the DNS and includes first level 

approximation. Its theory is based on the universal behavior of the small scales. 

According to the observations, only the large scales of the flow are dependent on 

the geometry and the small scales are independent of the geometry. Differing 

from the DNS, in LES only the large scale motions are solved and the small scale 

effects are approximated by the subgrid scale models. Although, LES requires less 

computational power when compared with the DNS, it is still computationally 

expensive and not practical for the engineering applications.  

 

In today‟s world, the most widely used prediction method for the turbulent flow 

solutions is the turbulence modeling. When compared with DNS and LES, 

turbulence modeling requires much less computational power in the expense of 
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high level of approximations. Although this technique houses high level 

approximations, results of numerical solutions are accurate enough for the 

engineering applications. 

 

Most commonly used technique in the development of the turbulence models is 

the decomposition of the velocity and pressure terms in the Navier-Stokes 

equations into the mean and the fluctuating parts which is called Reynolds 

Decomposition. The decomposition of the density term makes the governing 

equations much more complicated. Also it is observed that up to Mach number 5 

the turbulent characteristics of the flow are not affected by the density fluctuations 

considerably [1]. Therefore, below this limit, RANS equations are generally 

solved as if the flow is incompressible without any excessive errors. 

 

 Decomposing the flow variables and after some statistical approach, such as time 

or ensemble averaging, a new equation set similar to the Navier-Stokes equations 

is obtained. This new set of equations are called the Reynolds Averaged Navier 

Stokes equations (RANS) and presented first in 1985 by Reynolds [2]. Differing 

from the original Navier-Stokes equations, RANS equations include additional 

terms called Reynolds Stresses originating from the Reynolds decomposition. In 

its original form, the number of unknowns and the number of equations are equal 

to each other for Navier-Stokes equations. Therefore, the equation set is complete 

and can be solved for each flow variable. However, in RANS equations, although 

the number of the governing equations remains the same, the number of 

unknowns are more than the equations due to the additional unknowns, Reynolds 

stresses. In contrary to the original Navier-Stokes equations, RANS equations are 

not complete. This is called the Closure Problem. In order the RANS equations to 

be solved, additional equations must be introduced so as to complete the equation 

set. 

 

Reynolds-Stress Transport (RST) and Algebraic Reynolds-Stress (ARS) models 

are the two members of the 2
nd

 order closure models. In RST models all Reynolds 

stresses are directly evaluated by the solution of the transport equations developed 
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for Reynolds stresses. Similar to the RST model, in ARS model only the two of 

the transport equations, generally for turbulent kinetic energy and the dissipation 

rate, are solved and the remaining Reynolds stresses are calculated by some 

algebraic relations. With this form, ARS models behave like intermediate methods 

between RST and 1
st
 order models.  Detailed explanation  of the RST and ARS 

models can be found in reference [3]. 

 

Problems encountered in the implementation and solution of the RST and ARS 

models and also relatively expensive computational solution nature of the 2
nd

 

order models make 1
st
 order models more popular in engineering applications. In 

these models, Reynolds stresses are directly computed by a scalar called turbulent 

eddy viscosity which is an additive artificial viscosity for the physical laminar 

viscosity. Boussinesq is the first who related the turbulent shear stress with the 

mean strain rate in a linear expression. By this hypothesis, turbulent eddy 

viscosity is calculated from the mean flow solutions and then added to the laminar 

viscosity for turbulent flow solutions.  That is, the viscosity term in the NS 

equations are simply replaced by the sum of laminar and turbulent viscosities for 

turbulent flows solutions.   

 

         

 

The eddy viscosity term in Equation 1 is calculated by one of the turbulence 

models. Turbulence models are separated mainly into 3 categories depending on 

the number of transport equations solved in the calculation of eddy viscosity. 

These are: zero, one and multiple equation models. 

 

In zero equation models, no transport equations are solved and the eddy viscosity 

is calculated by some algebraic relations. Therefore, these models are also named 

as the algebraic models. Zero equation models are simple to implement and also 

stingy in the computational resource usage. On the other hand, due to their local 

nature, zero equation models are lack of performance in the prediction of 

separated flows. Therefore, they are not used in the industrial applications 

( Equation 1) 
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anymore. The two most popular zero equation models are Baldwin-Lomax [4]  

and Cebeci-Smith [5] models. 

 

In contrary to the zero-equation models, one and two equation models take into 

account the history by the solution of the convection and the diffusion terms in the 

transport equations. As a result, phenomena such that the boundary layer 

separation and reattachment are predicted much better than the zero equation 

models. 

 

The most popular one equation model is the Spalart-Allmaras turbulence model 

[6]. which solves one transport equation directly for the eddy viscosity. It is 

especially developed for the external aerodynamic flows. The model is 

numerically very stable and easy to implement on both structured and 

unstructured grids. It is capable of modeling the laminar to turbulent transition at a 

predefined location. Also, its performance under the adverse pressure gradient is 

also quite high. 

 

In the two equation turbulence models, two transport equations are solved for the 

two different turbulent transport variables from which the eddy viscosity is 

calculated algebraically. In most of the two equation turbulence models, one of 

the transport equations is solved for the turbulent kinetic energy, k. The other 

transport variable changes according to the turbulence model used. The most 

popular two equation turbulence models in the engineering applications are the k-

 model of Launder and Spalding [7] and the k- model of Wilcox [8]. 

 

The best aspects of the k-and the k-turbulence models are combined in the 

Shear Stress Transport k- turbulence model by Menter [9]. The new model has 

the capability of switching between the k-and the k-turbulence models by 

means of a blending function. In the near wall regions, the model employs the 

transport equations of the k-turbulence model since it does not require damping 

functions and therefore numerically much more stable than the k-turbulence 
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model. Moreover, in the logarithmic region of the turbulent boundary layer, under 

the adverse pressure gradients and in the compressible flows, k-model found to 

be superior to the k-model. However, apart from the near wall effects, in the 

high Reynolds number regions, k-model is strongly sensitive to the free stream 

value of []. Therefore, in these regions the model switches to the standard k-

model which is very accurate in the prediction of wakes, jets and mixing layers. 

 

1.2 Temporal Discretisation 

Temporal discretisation is the general name of the time integration techniques that 

are used in the solution of the Navier-Stokes (NS) equations. Basically there are 

two different approaches in the time integration of the governing equations: 

Explicit and implicit time advancement methods.  

 

In explicit schemes, the time integration of the equations is dependent on the 

already known residuals from the current time level where the residual is defined 

as the complete right hand side of the governing equations remaining only the 

time derivative term on the left hand side. Moreover, each cell in the solution 

domain is integrated in time sequentially which makes the explicit schemes very 

effective in the computer source usage. The most popular explicit time stepping 

algorithm so far is the Runge-Kutta time stepping scheme.  

 

The main restriction in front of the explicit schemes is the time step size. Explicit 

schemes are stable up to a certain step size which is dictated by the Courant-

Friedrichs-Lewi (CFL) condition [11]. According to this condition, at each 

iteration, any information in the cell must stay in the cell and not cross the 

boundaries of the cell at the end of the corresponding iteration. Due to the small 

time steps taken at each iteration, convergence of explicit methods may take 

longer times when compared with the implicit methods.  

 

Another difficulty encountered with the explicit schemes is related with the 

stiffness which can be defined as the ratio of the smallest to the largest time scale. 
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For the turbulent variables, changes take place at relatively smaller time scales 

when compared with the flow variables. In other words, time scales of turbulence 

and flow equations are different. The common time step size for the explicit 

solution of both the flow and the turbulence can be chosen according to the 

smallest time scale, but this time the convergence rate of the flow equations may 

get extremely low.  

 

A more practical approach is based on the act of separating the time step sizes of 

the flow and the turbulence. This application allows the flow equations to be 

integrated in time with larger steps than the turbulence equations, keeping the 

turbulent solutions stable. Moreover, rapid development of the mean flow triggers 

the convergence of the turbulence. On the other hand, the smallest time scale of 

turbulence is formed in a limited region of the whole flow field. Therefore, 

integrating the turbulence equations with the smallest time step size in the whole 

domain retards the convergence of the turbulent quantities in the cells in which 

the larger steps are allowed. 

 

The convergence rate of the turbulence quantities can be improved by imposing 

time steps specific to each cell. This can be obtained by the point-implicit 

treatment of large source terms of the turbulence equations[12]. By doing so, 

turbulence quantities in each cell are integrated with the maximum allowable time 

step that satisfies the stability condition.  

 

It should be kept in mind that, the point implicit method is the way of automatic 

shifting of the time step sizes in each cell and is not necessarily expected to allow 

time step sizes larger than the ones used in the explicit methods. The word „Point‟ 

in its title stands for the fact that each cell is updated with the information in itself. 

As a consequence, without receiving information from the neighboring cells, the 

algorithm works as an explicit algorithm with the maximum allowable time step 

size in each cell obeying the stability limits. As a consequence, a point implicit 

method leads to the fastest convergence rate that could be achieved by an explicit 

approach in the solution of the turbulence equations. 
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Different than the explicit time stepping methods, in implicit schemes, the time 

advancement of the variables are dependent on the unknown residuals from the 

next time level. By this application, solution stays stable up to much larger time 

step sizes when compared with its explicit counterpart. In other words, the CFL 

condition does not constitute a restrictive limit for the implicit methods. In 

addition, the stiffness problem encountered in explicit time stepping methods is 

directly alleviated by the usage of implicit schemes and it is possible to solve 

equations with different time scales without any special treatment.  

 

In implicit schemes, the values of the residuals in the next time level are obtained 

by the linearization of the residual terms which requires the flux Jacobian 

calculation. Flux Jacobians are the derivatives of the residual term with respect to 

the flow variables. On contrary to the explicit schemes, implicit time advancement 

cannot be performed sequentially. After linearizing the residuals in each cell and 

writing down the governing equations, a system of equations is obtained. The 

coefficients of this equation set, which are the flux Jacobians and the time step 

terms, constitute a large sparse matrix called the implicit operator. Solution of the 

implicit methods requires the inversion of this implicit operator which is a 

numerically expensive process.   

 

The inversion of the implicit operator can be achieved either by direct or iterative 

methods. Direct inversion methods such as Gauss elimination or other direct 

sparse matrix methods are not practical due to their excessive computer source 

requirements [13]. On the other hand, iterative methods based on either 

factorization or Krylov-subspace methods widely used in today‟s numerical 

applications. The most popular and widely used Krylov-subspace method is the 

Generalized Minimal Residual (GMRES) technique [14]. 

 

The inversion of the full implicit operator is numerically expensive and gets much 

more expensive as the number of elements in the solution domain grows. This 

directed the researchers to explore numerically more effective methods. One of 

the shortcuts in order to reduce the numerical effort in inverting the full implicit 
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operator is using only a specific part of the implicit operator instead of the whole 

matrix. By this application, numerical effort in solving the governing equations is 

reduced considerably in return the full benefits of implicit schemes. One of the 

most popular techniques which uses a fraction of the implicit operator in the 

numerical solutions is the semi-implicit method. In this method, as it is in explicit 

methods, every cell in the solution domain is solved sequentially. Different than 

the explicit methods, in semi-implicit methods, working variables in the cells are 

directly updated as long as it is possible. By this way, each cell uses updated 

neighbor cell values if they are available.  From a mathematical point of view, this 

application directly corresponds to the usage of the lower triangular part of the 

implicit operator in the solutions. As a consequence, with an explicit numerical 

cost, some fraction of the implicit method‟s benefits is achieved.  

 

1.3 Multigrid Strategy 

Multigrid method is one of the most powerful acceleration techniques that are 

used in the solution of the Navier-Stokes equations. It was first developed and 

used by Brandt [15] for the solution of the elliptic partial differential equations. 

After, method is used in the solution of the Euler and Navier-Stokes equations.  

 

In a classical Navier-Stokes solution without multigrid application, effects of the 

boundaries are distributed over the domain as the iterations proceed and this 

process is continued till the changes in the solution settle down. Originating from 

this fact, convergence rate of the solution can be increased by increasing the 

transfer rate of the boundary effects to the inner parts of the domain from the 

boundaries. 

 

In multigrid applications, different than the classical solution techniques, single 

grid solutions are followed by the coarse grid solutions. That is, solutions obtained 

from the fine level are distributed over the coarser grids and solved again. This 

process is repeated from fine to the coarse and then from coarse to the fine grids 

till the convergence is achieved. By this way, information is transferred from fine 

to the coarse and then from coarse to the fine solutions very rapidly which in 
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practice is equivalent to distributing the boundary effects to the inner parts of the 

domain much more faster than in the case of single grid solutions.  

 

From a mathematical point of view, accelerating effect of the multigrid 

applications can be explained as follows: 

 

1. Due to the large cell volumes, larger time step sizes can be taken in the 

integration of the governing equations of the coarse grids. This leads to a 

faster convergence. 

2. For iterative schemes, at each time step variables are updated with the 

calculated residuals. As the solution converges, changes in the flow 

variables go to zero in parallel with the decrease in the residual terms. 

Therefore, convergence rate of the solution is related with how fast the 

solver damps the residuals and makes them reach zero. 

 

In the earlier stages of the iterations, the changes in the working variables 

are high due to the large residual terms. This results in a sharp decrease in 

the residual terms that indicates high convergence rate towards the final 

solution. However, as the iterations proceed, changes in the working 

variables get smaller and smaller due to the shrinking residuals and as a 

result the convergence rate of the solution decreases. Therefore, the key 

for the high convergence rates is dealing with the large residuals. 

Multigrid techniques are applied to achieve this goal. 

 

In a multigrid solution, variables and residuals in the fine level are 

transferred to the coarse levels, that is, working variables and residuals of 

a group of fine cells are gathered in bigger cells. Summation of the small 

residuals from the fine cells results in the relatively large residual in the 

bigger cell.  Since the residual is large, changes in the working variables 

in the coarse cells are large as in the initial stages of the iterations in the 

fine level and the convergence rate is high. In other words, instead of 

dealing with each small residual in separate cells of fine level, multigrid 
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techniques combine small residuals from different cells in one bigger cell 

and damp these residuals at a time resulting in an accelerated 

convergence. 

 

The main idea behind all multigrid methods is the same and explained briefly in 

the previous paragraphs. However, in application there are two different 

approaches: Geometrical multigrid (MG) and the Algebraic Multigrid (AMG). 

 

As in the case of all other methods using grids in the discretisation of the solution 

domain, a physical fine grid is generated for both MG and AMG applications. In 

MG applications, in addition to the fine level grid, coarse level grids must be 

generated and stored to be used in the calculations. Contrary to the MG methods, 

in AMG applications which are especially developed for the implicit schemes, 

coarse level grids are not generated physically and the multigrid theory is applied 

to the implicit operator virtually. For this purpose, an implicit operator is 

constructed for the fine level solutions. For the coarse level solutions, a 

coarsening matrix is applied to the implicit operator of the fine level and the 

dimensions of the resulting implicit operator of the coarse level are rearranged 

according to the rules of the applied multigrid method.  

 

1.4 Objectives and Summary 

SENSE2D is a two-dimensional, finite volume, multigrid laminar flow solver on 

hybrid grids which is developed by TÜBĠTAK-SAGE. It employs Roe‟s upwind 

flux differencing scheme for convective fluxes and three stage Runge-Kutta 

scheme for time integration. The grid coarsening is achieved by agglomerating the 

unstructured/hybrid cells based on their localization on a quadtree data.   

 

The aim of this study is to bring SENSE2D the capability of dealing with the 

turbulent flows by means of implementing the turbulence models. For this 

purpose, two most popular one and two-equation turbulence models, namely 

Spalart-Allmaras and SST k-, are adapted. 
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At the initial stages of the study, it seemed to be easy to implement the models to 

the code since the equations are posted everywhere and there exists many 

commercial and in-house codes dealing with the turbulent flows. However, after 

many unsuccessful tries it is realized that the implementation is not 

straightforward as expected.  

 

Introduction of the turbulence model equations to SENSE2D resulted in a stiff, 

unstable algorithm. Due to the large source terms of the turbulence model 

equations, explicit time integration techniques remained inadequate in having a 

stable, convergent solution. 

 

The action taken against the instability problem is the treatment of the source 

terms of the turbulence model equations in a point implicit manner. By this 

application, solutions are able to be stabilized. 

 

Following the stabilization of the solutions, another problem encountered with the 

turbulence modeling is the slow convergence rates. The point implicit method is 

basically an explicit algorithm and stabilizes the solution by reducing the explicit 

time step size of the turbulence model equations in an automatic way.  Therefore, 

it is required to implement some sort of implicit method that associates several 

cells for the solution of the equations in order to overcome the slow convergence 

rate problem. For this purpose, a semi-implicit solution algorithm is implemented 

for both the solution of the flow and the turbulence model equations. Moreover, 

the flow and the turbulence model equation sets are solved in a loosely coupled 

manner, but, each set is solved coupled in itself.  

 

With the aid of the methods explained, stable and convergent turbulent flow 

solutions are obtained by Spalart-Allmaras and SST k- turbulence models. 

Moreover, convergence rate of the solver is increased about 5 times in the single-

grid solutions. 
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In order to complete the study, the semi-implicit solution algorithm and 

turbulence models are brought up and running for the multigrid applications. For 

this purpose, both of them are applied in the finest level grid. With the 

implementation of the semi-implicit algorithm, 35% of convergence rate increase 

is obtained in the multigrid solutions. 
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    CHAPTER 2 

 

2.METHOD 

 

 

In this chapter, CFD methodology related with the scope of this study is explained 

in detail. In addition, some other methods that are not used directly but related 

with the study are mentioned briefly or referenced so as to ensure completeness. 

 

2.1 Governing Equations 

SENSE2D is a FVM based NS solver. Application of FVM requires the division 

of the solution domain into regions with finite volumes. Then the governing 

equations are obtained by the application of the conservation law to the volumes.  

 

According to the conservation law, amount of any quantity enclosed by a finite 

volume at rest is changed depending on the net flux across the boundaries and the 

sources of that quantity in that volume. According to this description, general 

conservation law for an arbitrary quantity, W, can be expressed as  

  

 

  
     
 

       
                     

  

       
 

 

 

Where Ω is the volume of the cell, dS is the finite piece of the control surface,   
      

and        are the net convective and viscous fluxes across dS and Q is the source of 

W in the control volume. 

 

Then, governing equations of the fluid flow are derived by the application of the 

general conservation equation, Equation 2, to the mass, momentum and energy. 

  

( Equation 2) 
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Table 2 Governing Equations of the Flow 

 

Conservation of Mass 

 

  
     
 

               
  

   

Conservation of Momentum 

 

  
       
 

                  
  

        
 

           
  

            
  

 

Conservation of Energy 

 

  
        
 

                 
  

               
  

                   
 

                
  

                 
  

 

 

Governing equations of the flow are given in Table 2. In these equations, ρ is the 

density,    is the velocity vector, p is the isotropic pressure component,    is the 

viscous stress tensor,    is the body force,    is the temperature gradient, k is the 

thermal conductivity coefficient and     is the time rate of heat transfer per unit 

mass. Detailed information about the derivation of the governing fluid flow 

equations from conservation law  can be found in references [11] and [16]. 

 

2.2 Numerical Solutions of the Governing Equations 

In practice, the numerical solution of the conservation law equation, Equation 2, 

and the resulting flow governing equations requires the replacement of integral 

and differential terms with simple algebra.  

 

The solution domain is composed of a number of elements of which the volumes 

are constant and independent of time during the calculations. In addition, 

assuming a finite time increment, the corresponding change in the flow variable in 



 17 

the control volume will also be finite. Applying these assumptions to the time 

derivative term in Equation 2 the following form is obtained. 

 

 

  
     
 

   
  

  
  

 

The surface integral of the flux terms on the left hand side of Equation 2 can be 

replaced by the sum of the fluxes across the faces of the control volume. That is, 

 

     
                     

  

       
                  

  

   

 

 

where Nf is the number of the faces, k is the face index of the control volume and 

    is the area of face k. 

 

Lastly, the source term is assumed to be constant in the control volume. 

Therefore, 

 

     
 

     

 

Gathering previous three equations, one can get the suitable form of the 

conservation law equation for the numerical solutions such that, 

 

  

  
         

                  

  

   

     

 

The complete right hand side of Equation 6 is called the residual and denoted by 

R. In the governing equations of the flow the residual is equal to the net flux 

across the cell boundaries. However, in the transport equations of any turbulence 

( Equation 3) 

( Equation 4) 

( Equation 5) 

( Equation 6) 
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models, the residual term may also contain the source terms in addition to the flux 

terms. 

 

Using this final definition and rewriting Equation 6 for cell I, the most common 

form of the conservation equation is obtained as 

 

   

  
             

                  

  

   

        

 

The left and the right hand sides of Equation 7 can be solved either by 

simultaneously or sequentially. In this study, time integration is performed just 

after the calculation of the right hand side of the governing equations, which is in 

fact a sequential approach. This method is called the method of lines.  By doing 

so, depending on the case, different discretisation techniques can be applied in 

space and time in order to obtain more accurate results.  

 

2.2.1 Spatial Discretisation 

Spatial discretisation is a phrase used in place of the numerical approximation of 

the convective and the viscous fluxes as well as the source terms. Finite 

difference, finite element and the finite volume methods are the three spatial 

discretisation techniques that are widely used in the CFD applications. In 

SENSE2D, the governing equations of the flow are discretisized in space by FVM 

as well as the transport equations of the turbulence models‟ done. Therefore, in 

this section the attention is focused on this topic. 

 

The FVM is applied to the integral form of the NS equations, that is, its theory is 

based on the general conservation law given by Equation 2. In SENSE2D, the 

construction of the control volumes is performed by the cell centered scheme. In a 

cell centered FVM method, control volumes are the same with the grid and the 

variables are calculated at the centers of the cells.  

 

( Equation 7) 
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After constructing the control volumes in the solution domain, the next step is the 

calculation of the convective and the viscous fluxes on the faces of the control 

volumes. Since the conservative variables are located at the cell centers, accurate 

calculation of the fluxes at the faces, especially the convective ones, requires the 

interpolation of the flow variables or the fluxes which is not a straightforward 

process. 

 

Due to their stationary nature, the only way of approximating the viscous fluxes is 

employing the central schemes. Note that the central and the cell-centered 

schemes are totally different concepts. The central schemes are performed either 

by the flux or the variable averaging approaches. 

 

 

Figure 1 Calculation of the viscous fluxes by flux averaging. 

 

The first way of calculating the viscous fluxes on the surfaces of the control 

volumes is based on the direct averaging of the cell centered viscous fluxes. In 

this method, viscous fluxes are calculated at the cell centers with the use of the 

cell centered variables. After, approximate fluxes on the faces are calculated by 

the arithmetic average of the fluxes of the neighbor cells. This, method is 

illustrated in Figure 1. 
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Figure 2 Calculation of the viscous fluxes by variable averaging. 

 

The second approach used in the calculation of the viscous fluxes on the faces of 

the control volumes is based on the averaging of the variables. In this approach, 

the approximate values of the variables on the common face are obtained by 

taking the arithmetic average of the cell centered values. Then, the viscous fluxes 

on the common face are calculated by using these averaged variables. This, 

method is illustrated in Figure 2. In the calculations of SENSE2D, variable 

averaging method is used. 

 

The treatment of the convective fluxes is not as simple as in the case of the 

viscous fluxes. In the evaluation of the convective fluxes, the influence of the 

upstream and the downstream may not necessarily be the same and generally 

differentiated by one of the upwind schemes depending on the local Mach regime. 

The upwind schemes can be divided into four main groups: 

 Flux Vector Splitting, 

 Flux Difference Splitting, 

 Total Variation Diminishing (TVD), 

 Fluctuation Splitting schemes. 

The detailed information about the upwind schemes given above can be found in 

reference [17]. The Roe‟s flux difference splitting method is proved to be quite 

accurate in the computation of the boundary layers and capturing the 

discontinuities, such as shock waves. Therefore, it is used in the computation of 

the convective fluxes of the flow governing equations throughout this study. 
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Although the spatial discretisation of the flow governing equations are mostly 

performed by one of the upwind methods touched in the previous paragraph, more 

simple upwind methods, such as simple upwinding, can be used in the 

computation of the turbulent convective fluxes since the turbulent quantities can 

be defined as local. In other words, the upstream and the downstream influences 

on these quantities are expected to be similar. In this application, the convective 

fluxes of the turbulent quantities are calculated depending on the direction of the 

averaged normal velocity vector at the surface. If the averaged normal velocity 

vector is right-going, that is directed towards the right cell, the convective flux of 

the turbulence quantity at that face is calculated by using the left cell‟s variable 

and just the opposite in the case of left-going velocity vectors.  

 

The last step in the calculation of the complete residual, if exists, is the 

computation of the source terms. The source terms are generally accepted as 

constant throughout the cell and evaluated by simply multiplying the source 

magnitude with the volume of the cell. 

 

It is appropriate to finish this section with the gradient calculation method which 

is necessary for the computation of the viscous fluxes and the turbulent quantities. 

One of the widely used gradient evaluation methods is based on the Green-Gauss 

theorem. The method approximates the gradient of any scalar in a control volume 

by integrating its value over the surface of the control volume and then dividing 

the result by the volume. The Green-Gauss theorem is formulated in Equation 8. 

 

     
 

 
        

    

After the calculation of the net convective and the viscous fluxes as well as the 

source terms in the cells, the residual term can be evaluated by simply adding 

these terms. The governing equations are then ready to be advanced in time. 

 

( Equation 8) 
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2.2.2 Temporal Discretisation 

Temporal discretisation is the general name of the techniques that are used in the 

integration of the governing equations in time. At each time step, variables are 

updated by a difference,     in the form of 

 

  
       

       

 

Where     is calculated from Equation 7 after the calculation of the residual and 

the time advancement. 

 

Depending on the treatment of the residual term, temporal discretisation of the 

governing equations may have the form of explicit or implicit.   

 

2.2.2.1 Explicit Temporal Discretisation 

In explicit time stepping, residuals are calculated at the same time level with the 

flow variables. 

 

  

   
   

      
  

 

 

After the calculation of all residuals, each cell in the domain is updated separately 

by its own residual independent of already updated variables in the neighbor cells.  

In other words, solution is based only on already known residuals of the cell itself. 

 

( Equation 9) 

( Equation 10) 
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Figure 3 Unstructured mesh (left) and its explicit operator (right). 

 

In Figure 3, an arbitrary domain with 20 unstructured cells and its explicit 

operator is demonstrated. Although it is unnecessary to represent an explicit 

operator in matrix form, it has importance in seeing the big picture.  

 

Each line in the operator matrix stores the cell-neighbor relation. While the 

diagonal elements in the operator matrix represent each cell to be updated in the 

domain, the off-diagonal elements represent their neighbors. In each line, the 

marked cells correspond to the cells that are used in the update of the diagonal 

cell. In explicit time integration, the only cell needed so as to update a cell is the 

cell itself. Therefore, only the diagonal elements are marked in Figure 3. 

 

One of the most popular explicit time stepping methods so far is the Runge-Kutta 

method [18], in which the time advancement is performed in multi stages.   
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 ( Equation 11) 

         ⁞ 

  
     

    
   

   
   

    

   
  

   
     

 

 

 

In Equation 11, formulation of an m-stage Runge-Kutta time stepping is 

presented, where α terms are the stage coefficients. Different than the classical 

Runge-Kutta method, only the first and last residuals are stored in order to reduce 

memory allocations.   

 

2.2.2.2 Implicit Temporal Discretisation 

Different than the explicit schemes, in the implicit schemes residual is calculated 

in the next time level 

 

  

   
   

      
    

 

In order to solve Equation 12,    
    must be calculated. For this purpose, the term 

  
    is linearized as follows  

 

  
      

   
   

  
 
 

    

 

where the derivative term on the right hand side of Equation 13 is the flux 

Jacobian.  Evaluation of the flux Jacobian is one of the most critical aspects in the 

implicit solution algorithms.  

( Equation 12) 

( Equation 13) 
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Flux Jacobians can be obtained either by analytically or numerically. Analytical 

derivation of the flux Jacobians, especially the viscous flux Jacobians, is generally 

challenging if not impossible. Also, they must be derived for each flux 

discretisation method separately. Even if the analytical derivations of the 

Jacobians are performed by hand calculation or symbolic mathematic tools, 

numerical effectiveness of the code can be poor [19].  

 

Alternative for the analytical Jacobian is the numerical Jacobian. Numerical 

Jacobians are easy to implement but less accurate.  In this technique, Jacobians 

are calculated by using the finite-difference method with small perturbation 

technique such that, 

 

   

   
  

               

  
 

 

The step size h in the evaluation of Jacobian is in the form of [20]  

 

                                   

 

where    is the machine epsilon and         is the typical size of    which is taken 

as 1 in this study. Machine epsilons for single and double precision calculations 

are 1.19x10
-7

 and 2.2x10
-16

  [21]. 

 

In Equation 13, subscripts of all the terms except W are denoted as I indicating the 

belonging to the cell itself. In an implicit method, residual term must include at 

least the Jacobian of the cell itself. In addition, residual term may contain 

Jacobians of some or all of the neighboring cells depending on the type of implicit 

method used. Therefore, subscripts of W terms changes according to the implicit 

method. That is why the subscript regions of the W terms are remained blank. 

 

( Equation 14) 

( Equation 15) 
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Assuming a two-dimensional unstructured domain with triangular cells and 

including the effects of all neighboring cells as well as the cell itself on the 

residual term in Equation 13, the residual formulation of the full-implicit method 

is obtained as follows 

 

  
      

   
   

   
 
 

   
    

   

    
 
 

    
     

   

    
 
 

    
 

   
   

    
 
 

    
  

                                                                                       

 

where I1, I2 and I3 stand for the respective neighbors of cell I.  Substituting 

Equation 16 in Equation 12, governing equation for cell I is obtained in the form 

of 

 

 
  

   
  

   

   
 
 

    
     

   

    
 
 

    
     

   

    
 
 

    
   

                                                                      
   

    
 
 

    
      

  

 

Equation 17 includes 4 unknowns and cannot be solved without having extra 

equations. That is, differing from the explicit methods, in the full-implicit 

methods all cells in the domain are required to be solved simultaneously.  

 

( Equation 16) 

( Equation 17) 
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Figure 4 Unstructured mesh and its implicit operator (Nearest neighbor stencil) 

 

Applying Equation 17 to all cells in the domain, a large sparse matrix with a 

structure similar to the one given in Figure 4 is obtained. This matrix is called the 

implicit operator. In order to solve this linear system, inverse of the implicit 

operator must be computed.  This can be done either by the direct inversion or the 

iterative methods. Generally, direct inversion methods such as Gauss elimination 

or some direct sparse matrix methods [22] are not desired for this type of 

applications due to their high computer source requirements. Instead, iterative 

methods are used since they are more practical for this type of applications due to 

low computer source needs. Some of the most popular iterative sparse matrix 

solvers are Alternating Direction Implicit (ADI) [23], Gauss-Seidel[24], and 

GMRES[14]. 

 

In a point-implicit method, the effects of the neighboring cells are ignored and 

only the values of the cell itself are used. Updating the formulation in Equation 13 

according to this rule, the residual formulation of the point-implicit scheme is 

obtained. 

  
      

   
   

   
 
 

   
  

 

( Equation 18) 
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Substituting Equation 18 in Equation 12 and rearranging, the following point-

implicit scheme is obtained 

 

 
  

   
  

   

   
 
 

    
      

  

 

where the term in the brackets on the left hand side is the implicit operator of the 

point implicit method.  

 

  

Figure 5 Unstructured mesh (left) and its semi-implicit operator (right). 

 

Figure 5 shows the unstructured grid distribution and the related implicit operator 

for point-implicit methods. Comparing Figure 3 and Figure 5, it is seen that the 

structures of the matrix operators for the explicit and the point-implicit methods 

are exactly the same. That is, for both the explicit and the point-implicit schemes 

time advancement of the variables in a cell depends only on the properties of the 

cell itself, not its neighbors. Difference comes from the fact that, diagonal 

elements of the implicit operator of the point-implicit formulation also include the 

Jacobian terms in addition to the Ω/Δt term when compared to the diagonal 

elements of the explicit operator. Note that, Jacobian term in a point implicit 

method accompanies the time step size, therefore acts as a time-like term. It may 

increase or the decrease the effective time step size in the cells depending on the 

( Equation 19) 
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flow. Different than changing the CFL number manually, point implicit methods 

change the time step size locally and automatically.  By this method, governing 

equations, especially with stiff terms, are made more stable in time. On the other 

hand, since the update of the flow variables in a cell is dictated only by the cell 

own properties and not related with the neighbor cells, equivalent time step size, 

which is composed of the explicit time step size and the Jacobian term, must obey 

the CFL condition. Therefore, point implicit method can be defined as a kind of 

explicit method which is more stable in time compared to the classical version. 

 

There is also another method between the explicit and the full-implicit methods. 

Examining Figure 3 and Figure 4, a semi implicit operator can be constructed. 

 

  

Figure 6 Unstructured mesh and its semi-implicit operator (Nearest neighbor 

stencil) 

 

Semi-implicit operator In Figure 6 is composed of the diagonal and the lower 

diagonal elements. Although, it seems random to construct a matrix operator 

standing between the explicit and the full-implicit operators as demonstrated in 

Figure 6, in fact, there is a specific reason in using the diagonal and the lower 

diagonal elements especially. 
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Figure 7 Two Neighboring Cells ( Explanation of Semi-Implicit Method )  

 

In Figure 7 two neighboring cells are illustrated. In the first scenario, the residual 

of cell 2,   
 , is calculated by using the outdated value of cell 1,   

 . In the second 

scenario, residual of cell 2,    
 , is calculated by using the updated value of cell 

1,   
   . In cell 2, the difference between the residuals of the two scenarios 

directly arises due the change in the W variable in cell 1 from one scenario to the 

other. In other words,    
  results from the change in    

  due to the change in    

in time. Formulating, 

 

   
    

   
   

 

   
     

      
   

 

Rearranging Equation 20 

 

   
    

   
   

 

   
     

  

  

Comparing Equation 21 with Equation 16, it is seen that    
     

    with only 

lower index neighbors included. 

 

During semi-implicit solution, every cell in the domain is visited and updated 

sequentially. Differing from an explicit time stepping, the updated value of each 

cell is immediately used in the update of upcoming cells. By this way, without 

calculating any Jacobians and performing extra work, lower diagonal of full-

implicit operator is solved with a cost of an explicit scheme.  

( Equation 20) 

( Equation 21) 
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A different but related topic with this section is the coupling of the flow variables. 

Up to this point, only the influences of the neighboring cells to each other are 

discussed in the scope of the implicit algorithms. However, the influences of the 

flow variables to each other can also be taken into account in the solution of the 

NS and turbulence model equations.  

 

In the preceding paragraphs, the link between the cell and its neighbors is created 

using the Jacobians. Moreover, the Jacobians are accepted as the derivatives of the 

residual terms with respect to the conservative variables of the same kind in the 

cell itself as well as in the neighbor cells. In other words, the residual of the 

conservation of mass equation is assumed to be affected only by the changes in 

the density variable of the cell itself and the neighbor cells. As a result, the effect 

of the changes in the other conservative variables on the density residual term is 

ignored.  

 

Rewriting Equation 12 after replacing the general scalar, W, by the density 

variable, the implicit form of the conservation of mass equation is obtained. 

 

  

   
   

      
    

 

Linearizing the residual term with respect to the density term in the cell itself, the 

point implicit formulation of the conservation of mass equation is obtained. 

 

  

   
   

       
   

   

   
   

   

 

In addition, the change in the density variable can also be related with the other 

conservative variables in the form of Equation 24. 

 

 

( Equation 22) 

( Equation 23) 
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Equation 24 has four unknowns and cannot be solved without having extra 

equations. Treating the other governing equations in the same manner, the 

equation set is completed and can be solved simultaneously.  

 

Note that the method introduced so far is the point-implicit-coupled scheme, that 

is, neighbor relations are ignored. Nevertheless, it requires the simultaneous 

solution of four equations. Therefore, coupling of the flow variables in full 

implicit algorithms is numerically very expensive. 

In the semi-implicit calculations of SENSE2D, only the diagonal and the lower 

diagonal elements of the full-implicit operator are used. The effects of the 

diagonal elements are taken into account by the treatment of the residual terms in 

a point-implicit-coupled manner. Moreover, the lower-diagonal elements are 

counted in the calculations by using the updated values immediately in the 

calculations of the remaining cells. 

 

2.3 Turbulence Modeling 

In the scope of this thesis work, two popular turbulence models, Spalart-Allmaras 

and SST k-, are implemented to the Navier-Stokes solver, SENSE2D.  

 

2.3.1 Spalart-Allmaras Turbulence Model  

For the solution of the turbulent flows, one equation Spalart-Allmaras turbulence 

model [25] is implemented in its nondimensional form. The turbulent viscosity is 

nondimensionalized by the free stream viscosity,   . and directly calculated from 

the transport equation in the form of Equation 25. 

( Equation 24) 
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( Equation 25) 

In its complete form Spalart-Allmaras turbulence model has extra terms such that 

transition damping of production and transition source of turbulence. With these 

additional terms, the model has the capability of predicting the laminar to 

turbulent transition effects at the predefined transition locations. In this study, 

transition terms are omitted and the solutions are performed fully turbulent.  

 

The second term on the left hand side of Equation 25 is the convective flux and 

discretisized by simple upwinding. The terms on the right hand side are 

production, dissipation, diffusive (viscous) flux and the non-conservative 

diffusion. The production, dissipation and non-conservative diffusion terms are 
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the source terms and assumed to be constant in a cell. Similar to the convective 

flux, diffusive flux is also discretisized by the simple upwind scheme. 

 

One of the widely accepted modifications to the Spalart-Allmaras turbulence 

model is applied through the magnitude of the vorticity, S, which is a scalar 

measure of deformation. As given in the Equation 25, S term contains the effect of 

vorticity which is identical to the strain rate in rotational flows. Therefore, even if 

the vorticity is zero in regions such as stagnation lines, due to the unphysical 

production caused by finite mean strain rate, production term can be over 

predicted. In order to overshoot this problem, the effect of both the vorticity and 

the strain are included in the definition of S and given in reference [26] such that 

 

     Ω                       Ω     

 

where 

           

with the mean strain rate is defined as 

  

     
 

 
 
  

  
 

  

  
  

 

Explicit implementation of the turbulence models is generally problematic and 

needs special treatment. Large source terms of the turbulence models change the 

flow variables very rapidly and immediately cause the explicit solution diverge. 

One of the solutions to this problem is the treatment of the source terms in an 

implicit manner [27]. Applying Equation 25 to a cell with a finite volume and 

treating the source term implicitly Equation 28 is obtained. 

 

  

   
     

          
    

      

  

   

      
     

 

( Equation 26) 

( Equation 27) 

( Equation 28) 
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 Since the value of the source term, Q, is not known at time level n+1 it must be 

approximated by linearization 

 

  
       

    
  

   
 
 

 

    
   

 

Substituting Equation 29 in Equation 28 and rearranging the terms the following 

expression is obtained 

 

 
 

   
   

  

   
 
 

 

     
     

 

  
      

    
      

  

   

      
   

                                               
 

  
   

  

 

 

As it is expressed in section 2.2.2.2, the formula in Equation 30 is a point-implicit 

scheme since the implicit operator on the left hand side is only dependent on the 

values of the cell itself. Different than the flow governing equations, instead of 

linearizing the complete right hand side of Equation 30, in turbulence model 

equations only the source terms are linearized. 

 

In his original study, Spalart added the Jacobian term to the left hand side matrix 

in Equation 30 only if its contribution is positive [25]. Mathematically, this makes 

the implicit operator diagonally dominant which makes the solution more stable. 

From a physical point of view, suppose that 

 

 

        
   

 

   
   

  

   
 
 

 

  

 

where,           is the equivalent step size that the variables sense as the solution 

proceeds. Positive contribution of the Jacobian term increases the total value in 

( Equation 29) 

( Equation 30) 

( Equation 31) 
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the square brackets of Equation 31 which yields a smaller         . By this way, 

as the flow governing equation are integrated with larger time steps, turbulence 

governing equation are integrated with smaller time steps and the moderate 

changes in the source terms prevents solution from diverging.  

 

In this study, similar to the case of the flow governing equations, semi-implicit 

solution algorithm is used in the integration of turbulence governing equations. By 

this way convergence rate of the turbulent field is increased in parallel with the 

increase of the time step size that can be used in the solutions. 

 

For external flows, typical inflow boundary condition for the eddy viscosity in 

Spalart-Allmaras turbulence model is generally taken as the one tenth of the 

laminar viscosity as long as the transition is modeled. However, in this study since 

the transition terms of the Spalart-Allmaras turbulence model are omitted and 

therefore the solutions are performed fully turbulent, the inflow boundary 

condition for the turbulent viscosity is chosen between 1 and 10 [28].  At solid 

walls,    is set to zero. At outflow boundaries eddy viscosity is extrapolated from 

the interior cells. In addition, for a stable solution, turbulent field is initialized 

from the inflow boundary condition of the turbulent viscosity at the start of the 

solution. 

 

2.3.2 SST k- Turbulence Model 

In addition to the one-equation turbulence model, Spalart-Allmaras, one of the 

most popular two-equation turbulence models, SST k-, is implemented to 

SENSE2D in its non-dimensional form.  The turbulence quantities, k and , are 

non-dimensionalized by   
  and   

     respectively. The turbulent viscosity is 

calculated by Equation 32. 

 

       
 

 
 
  

 

   

    
  

 

( Equation 32) 
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where k and  are calculated by the solution of the transport equations in the form 

of Equation 33 and Equation 34. 

 

  

  
          

 

  
    

  
  

 
     

                               
 

  
        

  

  
     

 

 

  

  
          

 

  
     

  

 
    

                                
 

  
        

  

  
     

                                
 

  
           

 

 
         

 

In both transport equations the second term on the left hand side is the convective 

term. The terms on the right hand sides of the transport equations are the 

production, dissipation and the conservative diffusion terms respectively. The last 

tem of the -equation is the cross diffusion term responsible for the switching 

between the k- and the k- turbulence models by means of    term. 

 

The constants in the transport equations are calculated from         

         where     are the constants. The auxiliary constants in the calculation 

of the   terms are given in Equation 35. 

 

 

 

( Equation 33) 

( Equation 34) 
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The SST k-  turbulence model is also implemented in a semi-implicit manner 

due to the stability considerations explained in sub-section 2.3.1. The method used 

in the implementation of the SST k-  turbulence model is almost the same with 

the Spalart-Allmaras‟ and therefore is not repeated here. The only difference 

comes from the coupling of the k and the  equations which is not applicable for 

the one-equation Spalart-Allmaras turbulence model. The resulting 2 by 2 system 

is solved simultaneously by Kramer‟s rule. 

 

The no-slip wall boundary condition for the turbulent kinetic energy is equal to 

zero since the mean and the fluctuating components of the velocity vector vanish 

at the solid walls. The wall boundary condition for   is given in Equation 36. 

 

      
      

    
 

 

The freestream values of the k and    are taken from the reference [29] and 

applied to the inflow boundaries.  

( Equation 35) 

( Equation 36) 
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At the outflow boundaries k and   are extrapolated from the interior cells. In 

addition, for a stable solution, turbulent field is initialized from the inflow 

boundary conditions of k and    at the start of the solution. 

 

2.4 Multigrid Methodology 

A basic geometric multigrid application consists of three main steps: 

 

 Generation of the coarse cells 

 Transfer of the fine level solutions to the coarse levels and obtaining 

solution in the coarse levels 

 Transfer of the coarse level solutions to the fine level and obtaining 

solution in the fine level 

 

 The first step in the application of the multigrid methods is the generation of the 

coarse level grids. One of the most effective coarsening methods is so called the 

agglomeration technique and introduced in references [30] and [31] in detail. 

“The New Grid Coarsening Method Based on Quadtree / Octree Data Structure” 

is used in the MG applications of this study. The grid coarsening with 

agglomeration method is illustrated in Figure 8. The details of the method are 

given in reference [32]. 

 

The next step after the grid coarsening in multigrid solutions is the transfer of the 

fine level solutions to the coarser levels which is named as “restriction”. In 

restriction step, both the flow variables and the residual terms are transferred to 

the coarse level. 

 

( Equation 37) 
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Level 1 (Fine Grid) 

  

Level 2 Level 3 

  

Level 4 Level 5 

Figure 8 Grid Coarsening by the Agglomeration Method 
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Figure 9 Transfer of Flow Variables and Residuals from Fine to Coarse Levels 

 

In Figure 9, transfer of the flow variables from the fine to the coarse level is 

illustrated. The value of the flow variable at the center of the coarse grid is simply 

calculated by the area weighted averaging of the fine level values, that is: 

 

 

    
               

             

 

 

Different than the flow variables, residuals are transferred from the fine to the 

coarse level by direct summation, that is: 

 

                

 

In the coarse level grids, before integrating in time a corrective step must be 

applied to the flow variables,   , due to the error introduced by the area weighted 

averaging during the variable transfer from the fine to the coarse level grid.   

 

 

Figure 10 Two Different Residuals in a Coarse Grid 

 

In Figure 10, a coarse grid is illustrated just after the variable and residual transfer 

from the fine level.    is the residual transferred from the fine level and calculated 

( Equation 38)  

( Equation 39) 
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by Equation 39. Besides that,         is the residual directly calculated in the 

coarse level by the use of transferred variables,   . If the value of the transferred 

variable is able to be predicted exactly, then    and         are expected to be the 

same. However, averaging of the flow variables always introduces some error 

proportional to the difference between    and         and therefore transferred 

variable needs correction in the form of Equation 40.  

 

         

  
              

 

In Equation 40,     is the corrected variable in the coarse level after transferred 

from the fine level. The right hand side of Equation 40 is named as the forcing 

function which is the difference between the transferred residual from the fine 

level grid and the calculated residual in the coarse level grid. After the correction 

of the working variables in the coarse level grid, one of the temporal discretisation 

techniques is applied so as to update the variables.  This type of multigrid 

applications is called the Full Approximation Storage (FAS) method. FAS 

methods are quite effective in the solution of the non-linear equations since the 

nonlinearities in the system are directly carried to the coarse level grids by 

restriction step.  

 

Instead of applying the correction and update steps separately, both calculations 

can be performed in a single step. Assuming a simple euler integration in the 

coarse level grid, the resulting relation is in the form of Equation 41. 

 

             

  
                               

 

In Equation 41, it is seen that the first iteration in the coarse level grid is directly 

dependent on the residual transferred from the fine level grid. As a result, the 

accuracy of the fine level is retained in the coarse level grid calculations. 

( Equation 40) 

( Equation 41) 
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After performing several time-integrations in the coarse level grids, the solution of 

the coarse level grids are transferred back to the fine level grids by various 

interpolation techniques. This process is named as the prolongation which can be 

seen as the inverse of the restriction.  

 

The multigrid solution is obtained after the successive application of the 

restriction and the prolongation steps until a converged solution is obtained.  

 

One of the problems encountered in the application of the multigrid methods is 

the implementation of the turbulence models. Today most of the turbulence 

models use the wall distance as the key parameter in the calculation of the 

production and the dissipation terms of the turbulence quantities. Moreover, in 

order to have a stable solution with accurate results, the boundary layer has to be 

resolved sufficiently. Although the usage of the wall functions decreases the need 

for the fine meshes in the near wall regions, the wall distance of the large, 

agglomerated cells used in the multigrid methods is still beyond the applicability 

limit of the wall functions.  Therefore, it is hard to employ turbulence models in 

the coarse grid levels. 

 

One of the solutions introduced to this problem is employing the turbulence 

models in the finest level grid only. Then only the flow variables are worked 

during the multigrid processes. By doing this, the turbulence quantities are 

included in the multigrid calculations by means of the flow variables. However, it 

is still required that the grid is capable of resolving the turbulent boundary layer in 

the finest level. 

 

A similar approach is followed in the implementation of the semi-implicit solution 

algorithm to the code. The flow and the turbulence variables are solved implicitly 

in the finest grid level only. Then the variables and the residuals are carried to the 

coarse levels by means of the flow variables. A schematic of the process is 

presented in Figure 11. 
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Figure 11 Multigrid Solutions-A Simple Flow Chart 

 

Since the time advancement methods may differ between the finest and the coarse 

grid levels, a simple correction must be applied before transferring the residual 

terms from the finest to the coarse grid level in implicit solutions. Employing 

implicit time integration in the finest grid level, the solution ends up with a 

residual term in the next time level, R
n+1

. However, in the coarse grid levels only 

the explicit Runge-Kutta time stepping is performed. Therefore, direct transfer of 

the implicit residuals from the finest to the coarse level grid results in an explicit 

scheme with an implicit residual term on the right hand side. However, this is 

inconsistent with the Runge-Kutta approach. In order to overcome this 

discrepancy, three stage Runge-Kutta time integration is performed one time 

before each restriction step in the finest level grid.   
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CHAPTER 3 

 

3.RESULTS AND DISCUSSION 

 

 

In this chapter, the numerical results obtained by SENSE2D are presented and 

discussed. For this purpose, turbulent flow solutions are obtained over a flat plate, 

RAE2822 airfoil and NLR7301 multi-element airfoil.  The studies performed can 

be summarized in three steps. 

 

Firstly, implemented semi-implicit algorithm is verified by the comparison of the 

turbulent velocity profiles over a flat plate obtained separately by the explicit and 

the semi-implicit time advancement methods. Moreover, the improvement in the 

convergence rate of the turbulent flow solutions on a single grid is investigated in 

the same case with the comparison of the convergence times of the explicit and 

the semi-implicit solutions.  

 

Secondly, in multigrid solutions, a study is performed in order to find the 

optimum number of iterations in the fine and the coarse level grids for the fastest 

convergence rate. For this purpose a solution matrix with different number of 

iterations in the fine and the coarse level grids is constructed and solved using the 

explicit and the implicit multigrid algorithms separately.  At the end of this study, 

the performance of the semi-implicit algorithm in the multigrid applications is 

investigated by comparing the fastest convergence rates obtained by the explicit 

and the implicit multigrid solutions. 

 

Finally, for the validation of the implemented Spalart-Allmaras and SST k- 

turbulence models aerodynamic coefficients such as Cl, Cd, Cp, and the velocity 

profiles are compared with the commercial CFD code FLUENT results and the 
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experimental data as long as they are available. Also, various contour plots are 

presented where required.  
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3.1 Turbulent Flow Solution over a Flat Plate 

In this case, two dimensional turbulent flow solutions over a flat plate are studied 

on single grid. The free stream conditions for the case are given in Table 3. 

 

Table 3 Free Stream Conditions - Flat Plate Solution 

 

Mach Number Re Number Angle of Attack 

0.2 12E+6 0
0 

 

For the turbulent flow solutions over a flat plate, a rectangular solution domain is 

discretized with a hybrid grid (Figure 12). The flat plate is placed at the middle of 

the bottom edge which is defined as a no-slip wall. The rest of the bottom edge is 

defined as the symmetry plane. The outer edges are treated as the inflow-outflow 

boundary depending on the direction of the flow. Grid and boundary types are 

shown in Figure 12. The computational grid consists of 8181 nodes and 9320 

cells. The distance from the first layer to the nearest wall is a 2E-6 unit.  

 

 

Figure 12 Solution Domain – Flat Plate 

 

As an initial assessment, turbulent flow solutions over a flat plate are performed 

by explicit and semi-implicit methods using Spalart-Allmaras turbulence model. 

The CFL number in the explicit solution algorithm is limited by 0.95. In semi-

implicit solution, the CFL number is increased up to 8 maintaining the stability. 

L2-norm of the flow residuals and the turbulent viscosity residual histories of the 

explicit and the semi-implicit methods are shown in Figure 13. 
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Figure 13 Residual History (Flat Plate, SA) 

 

For a five order drop in the L2-norm of the flow residuals, with respect to the 

CPU time, it takes explicit solution approximately six times longer in comparison 

to the semi-implicit solution. This ratio grows as the residuals drop further. 

Similarly, a considerable acceleration in the convergence of the turbulent variable 

is seen in Figure 13. 
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Figure 14 Turbulent Velocity Profiles (Flat Plate, SA) 
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In Figure 14, turbulent velocity profiles obtained numerically by Spalart-Allmaras 

turbulence model are compared with the experimental ones by Patel, Rodi, and 

Scheuerer [33] at four different sections. In all sections explicit and semi-implicit 

solutions are in exact agreement with each other and similar to the experimental 

data. 

 

In the numerical solution of the turbulent flow over a flat plate, SST k- 

turbulence model is also performed with semi-implicit time integration. The 

computational domain and the free stream conditions are the same with the 

Spalart-Allmaras solutions. In Figure 15, convergence history of the turbulent 

flow solution over a flat plate is given in terms of the flow and turbulence quantity 

residuals.  

 

 

Figure 15 Residual History (Flat Plate, SST k-) 

 

From Figure 15, it is seen that the residual drop of the flow and the turbulence 

quantities are sufficient to be converged. Comparing the L2-norms of the flow 

residuals from Figure 13 and Figure 15, it can be concluded that the convergence 

rates of the Spalart-Allmaras and the SST k- turbulence models are identical to 

each other. 
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Figure 16 Turbulent Velocity Profiles (Flat Plate, SST k-) 
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In Figure 16, the non-dimensional turbulent velocity profiles over a flat plate, 

obtained by SST k- turbulence model, are compared with the numerical and the 

experimental data given in Figure 14. In the viscous sublayer, the profiles 

obtained by the Spalart-Allmaras and the SST k- turbulence models are exactly 

the same. However, in the fully turbulent logarithmic region, SST k- turbulence 

model slightly underpredicts the velocities. 

 

3.2 Turbulent Flow Solution over RAE2822 Airfoil 

In this case, two dimensional, turbulent, high subsonic flow over RAE2822 airfoil 

case is studied with multigrid application. The free stream conditions for the case 

are presented in Table 4. 

 

Table 4 Free Stream Conditions- RAE2822 Solution 

 

Mach Number Re Number Angle of Attack 

0.6 6.3E+6 2.57
0 

   

For the solution of the turbulent flow over RAE2822 airfoil, O-type solution 

domain with hybrid meshes is created in GAMBIT 2.4.6 version. The chord 

length of the RAE2822 airfoil is taken as 1 unit while the smaller and larger radii 

of the elliptical domain are taken as 10 and 20 units. Solution domain consists of 

8746 nodes and 12871 face elements. The distance from the first layer of the 

boundary layer to the nearest wall is 5E-6 units.  
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Figure 17 Solution Domain – RAE2822 Airfoil 

 

In the current study the CFL number on the coarse level grids is kept at 0.95. In 

explicit solutions the maximum CFL number at the fine grid level is 0.95. 

Whereas in the semi-implicit solution the maximum CFL number with a stable 

and convergent solution is limited at 3.5. 

 

Before comparing the convergence rates of the explicit and the implicit MG 

solution algorithms, a set of solutions are performed in order to optimize the 

number of iterations at the fine and the coarse grid levels for the best convergence 

rate. For this purpose, a five order drop in the L2-Norm of the flow residuals is 

taken as the convergence criterion which mostly provides converged aerodynamic 

loads. The solution matrix and the related CPU times in seconds for the 

convergence are given in Table 5 and Table 6 respectively for the explicit and the 
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implicit multigrid solutions. The F# and C# terms are used in place of the number 

of iterations at the fine and the coarse level grids while X‟s and O‟s stand for the 

divergent and non-convergent solutions respectively. The convergence rate 

studies are performed using the Spalart-Allmaras turbulence model. 

 

Table 5 Convergence times (RAE2822, explicit-MG, SA) 

 

 C1 C3 C5 C7 C10 C20 

F1 O X X X X X 

F3 1490 O O X X X 

F5 1344 O O O X X 

F7 1285 O O O X X 

F10 1148 1290 O O X X 

F20 1175 1183 O O O X 

 

Table 6 Convergence times (RAE2822, implicit-MG, SA) 

 

 C1 C3 C5 C7 C10 C20 

F1 855 O X X X X 

F3 605 O O X X X 

F5 546 639 O X X X 

F7 518 584 O O X X 

F10 475 519 569 O X X 

F20 513 479 490 512 546 X 

 

From Table 5 and Table 6, it is seen that the fastest convergence for both the 

explicit-MG and implicit-MG methods is obtained by iterating 10 times in the fine 

and 1 time in the coarse grid levels. Optimum input parameters for each method is 

summarized in Table 7.  
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Table 7 Optimized Parameters List- RAE2822 Airfoil Solutions 

 

 CFL 

(Coarse) 

CFL 

(Fine) 

# of Iterations 

(Coarse) 

# of Iterations 

(Fine) 

Explicit - 0.95 - - 

Explicit-MG 0.95 0.95 1 10 

Implicit - 3.5 - - 

Implicit-MG 0.95 3.5 1 10 

 

The complete residual histories of the fastest solutions obtained by the explicit 

and the implicit multigrid algorithms are presented in Figure 18. 

  

 

 

Figure 18 Residual History (RAE2822, SA) 

 

For a five order drop in the L2-Norm of the flow residuals, implicit-MG method is 

found to be 2.4 times faster than the explicit-MG method.  
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Figure 19 Loads History (RAE2822, SA) 

 

In Figure 19, the lift and the drag coefficients‟ convergence histories are 

presented. Similar to the residual case, implicit-MG method is observed to be 1.5-

2 times faster than the explicit-MG method in lift convergence.  The drag 

coefficient convergence rates of the implicit-MG and explicit-MG methods are 

similar. Being the fastest algorithm, results of the implicit-MG solutions will be 

presented from this point on. The solutions obtained by the SA turbulence model 

will be presented first. After, the results of the SST k- turbulence model will be 

presented in a similar manner. 
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a) SENSE2D Solution 

  

b) FLUENT Solution 

Figure 20 Mach Number & Turbulent Viscosity Ratio Fields (RAE2822, SA) 

 

The Mach number and the turbulent viscosity ratio fields of the turbulent flow 

over RAE2822 airfoil obtained by SENSE2D are compared with the same fields 

by FLUENT in Figure 20. The views of the fields from both solutions are similar 

to each other both qualitatively and quantitatively.  
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Figure 21 Turbulent Velocity Profiles (RAE2822, SA) 
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In Figure 21, velocity profiles at four different sections of the upper surface of the 

RAE2822 airfoil are given and compared with the FLUENT solutions. All the 

profiles are in good agreement. 

 

 

Figure 22 Pressure Coefficient Distribution (RAE2822, SA) 

 

The pressure coefficient distribution over the RAE 2822 airfoil is given in Figure 

22. In parallel to the good agreement between the boundary layer velocity 

profiles, the pressure distributions predicted by FLUENT and SENSE2D agree 

quite well. 

 

Except the convergence rate study, all the solutions performed with the SA 

turbulence model are repeated with the SST k- turbulence model for validation 

purposes. 
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a) SENSE2D Solution 

  

b) FLUENT Solution 

Figure 23 Mach Number & Turbulent Viscosity Ratio Fields(RAE2822,SST k- 

 

The Mach number and the turbulent viscosity ratio fields of SENSE2D and 

FLUENT solutions are presented in Figure 23. Mach contours of both solvers are 

in good agreement both qualitatively and quantitatively. However, although the 

fields of turbulent viscosity ratio look similar, SENSE2D overpredicts the field in 

some regions when compared with FLUENT results.  
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Figure 24 Turbulent Velocity Profiles (RAE2822, SST k-) 
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In Figure 24, turbulent velocity profiles obtained by SENSE2D are compared to 

the FLUENT results. Although the velocity profiles from each solver are almost 

on top of each other, it observed that the turbulent velocity profiles obtained by 

the SST k- turbulence model are not as smooth as the ones obtained by SA 

turbulence model. 

 

 

Figure 25 Pressure Coefficient Distribution (RAE2822, SST k-) 

 

The pressure coefficient distribution obtained by the SST k- model is given in 

Figure 25 and compared with FLUENT results and experimental data. All three 

data sets are quite similar to each other. Moreover, in the suction region of the 

airfoil, SENSE2D is in better agreement with the experimental data than FLUENT 

is. 

 

Table 8 Aerodynamic Coefficients (RAE2822, SA, SST k-) 

 

 Spalart-Allmaras SST k- 

Coefficients SENSE2D FLUENT SENSE2D FLUENT 

Cl 0.535 0.547 0.529 0.538 

Cd 0.0289 0.0290 0.0284 0.0286 

 



 63 

Aerodynamic load coefficients of the RAE2822 airfoil are given in Table 8. The 

values obtained from the SENSE2D and the FLUENT solvers are almost the same 

as a result of the accurately predicted velocity profiles and the pressure 

distribution.  

 

The pointed, sharp trailing edges of the airfoils can cause highly skew meshes in 

wedge type boundary layers which are also used in this study. Therefore, instead 

of using the original airfoil geometries, a small portion of the sharp trailing edges 

of the airfoils are cut resulting in a bump trailing edge without affecting the 

overall results (Figure 17). As a result, high quality meshes with small skewness 

values are obtain in these problematic regions. However, in Figure 23, it is seen 

that the turbulent viscosity ratio values in the trailing edge region are 

overpredicted by SENSE2D when compared to the results of FLUENT using SST 

k- turbulence model. Although the same meshes are used in the SENSE2D and 

the FLUENT solutions, in order to be sure that the difference is not arising from 

the bump trailing edges, the same case is repeated with original RAE2822 airfoil 

geometry with a pointed, sharp trailing edge. Moreover, a fully structured mesh is 

used in the solutions so as to avoid skew meshes on the trailing edge. The solution 

domain is given in Figure 26. 

 

  

Figure 26 Solution Domain – RAE2822 Airfoil (Sharp Trailing Edge) 
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The flow conditions for this case are the same with the previous RAE2822 

solutions and given in Table 4. In order to investigate the effect of the trailing 

edge cut, turbulent viscosity ratio fields from two solutions are compared to each 

other. 

 

  

Figure 27 Comparison of Sharp and Bump Trailing Edges 

   

In Figure 27, two solutions obtained by SENSE2D solver with SST k- 

turbulence model are compared to each other. The left hand side field belongs to 

the results of the flow solutions over RAE2822 airfoil with bump trailing edge. 

On the other hand, the right hand side field belongs to the results of the flow 

solutions over the same airfoil with pointed and sharp trailing edge. As it is clear 

from the figures that the cut of the sharp trailing edges of the airfoils due to the 

meshing considerations does not affect the overall result at all as long as the size 

of the cut is small when compared with the overall chord of the airfoil. As a result, 

the overprediction of the turbulent viscosity ratio field is not originating from this 

treatment. 

 

3.3 Turbulent Flow Solution over NLR7301 Two Element Airfoil 

In this subsection, two dimensional turbulent flow over NLR7301 two element 

airfoil case is studied with multigrid application. The free stream conditions for 

the case are presented in Table 9. 
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Table 9 Free Stream Conditions- NLR7301 Solution 

 

Mach Number Re Number Angle of Attack 

0.185 2.51E+6 6
0 

   

For the solution of the turbulent flow over NLR7301 airfoil, O-type solution 

domain with hybrid meshes is created in GAMBIT 2.4.6 version. The chord 

length of the airfoil is taken as 0.95 units for the main part and 1.2 for the whole 

airfoil while the smaller and larger radii of the elliptical domain are taken as 10 

and 20 units. Solution domain consists of 17415 nodes and 20213 face elements. 

The distance from the first layer of the boundary layer to the nearest wall is 4E-6 

units.  

 

  

  

Figure 28 Solution Domain – NLR7301 Airfoil 
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In the current study the CFL number on the coarse grid levels is kept at 0.65. In 

explicit solutions the maximum CFL number at the fine grid level is 0.95. 

Whereas in the semi-implicit solution the maximum CFL number with a stable 

and convergent solution is limited at 8. 

 

Before comparing the convergence rates of the explicit and the implicit multigrid 

solution algorithms, a study similar to the one performed in RAE2822 case is 

repeated here in order to optimize the number of iterations at the fine and the 

coarse grid levels for the best convergence rate. For this purpose SA is used as the 

turbulence model.  A five order drop in L2-Norm of the flow residuals is taken as 

the convergence criterion which mostly provides converged aerodynamic loads. 

The solution matrix and the related CPU times in seconds for the convergence are 

given in Table 10 and Table 11.  

 

Table 10 Convergence times (NLR7301, explicit-MG, SA) 

 

 C1 C3 C5 C7 C10 C20 

F1 X 3463 4776 6136 X X 

F3 O 1940 2327 2743 3549 X 

F5 O 1712 2000 2223 2581 X 

F7 2017 1804 1877 1995 2227 X 

F10 2255 1900 1775 1900 2029 X 

F20 3061 2617 2345 2185 2119 X 
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Table 11 Convergence times (NLR7301, implicit-MG, SA) 

 

 C1 C3 C5 C7 C10 C20 

F1 X X X 1426 X X 

F3 X 1511 1769 2005 2214 X 

F5 O 1341 1422 1545 1647 X 

F7 1291 1277 1366 1438 1498 X 

F10 1292 1192 1238 1309 1321 X 

F20 1416 1350 1293 1273 1252 X 

 

From Table 10 and Table 11, it is seen that the fastest convergence for the 

explicit-MG method is obtained by iterating 5 times in the fine and 3 times in the 

coarse grid levels. Whereas for the implicit-MG case the fastest convergence is 

obtained by iterating 10 times in the fine and 3 times in the coarse grid levels. 

Note that these parameters are not the same with the ones obtained in the 

RAE2822 case. The optimum input parameters for each method is summarized in 

Table 12.  

 

Table 12 Optimized Parameter List- NLR7301 Two Element Airfoil Solutions 

 CFL 

(Coarse) 

CFL 

(Fine) 

# of Iterations 

(Coarse) 

# of Iterations 

(Fine) 

Explicit - 0.95 - - 

Explicit-MG 0.65 0.95 3 5 

Implicit - 8 - - 

Implicit-MG 0.65 8 3 10 

 

The complete residual histories of the fastest solutions obtained by the explicit 

and the implicit multigrid algorithms are presented in Figure 29.  
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Figure 29 Residual Histories (NLR7301) 

 

For a five order drop in the L2-Norm of the flow residuals, implicit-MG method is 

found to be 35% faster than the explicit-MG method. 
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Figure 30 Load Convergence Histories (NLR7301,SA) 

 

In Figure 30, the lift and the drag coefficients‟ convergence histories are 

presented. Similar to the residual case, the implicit-MG method is observed to be 

1.3-1.5 times faster than the explicit-MG method in both lift and drag 

convergences. Being the fastest algorithm, results of the implicit-MG solutions 

will be presented from this point on.  
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a) SENSE2D 

  

b) FLUENT 

Figure 31 Mach Number & Turbulent Viscosity Ratio Fields (NLR7301,SA) 

 

In Figure 31, the Mach number and the turbulent viscosity ratio fields of 

SENSE2D and FLUENT solutions are presented. The views of the fields from 

both solutions are in good agreement with each other.  
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Figure 32 Turbulent Velocity Profiles (NLR7301, SA) 
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In Figure 32, turbulent velocity profiles obtained by SENSE2D are compared to 

the FLUENT results. The velocity profiles from each solver are on top of each 

other, even in the gap between the main wing and the flap where the boundary 

layers of two elements are overlapping. 

 

 

 

Figure 33 Pressure Coefficient Distribution (NLR7301, SA) 

 

As a final accuracy assessment for SA turbulence model, the pressure coefficient 

distribution over the NLR 7301 multi element airfoil is given in Figure 33. Similar 

to the boundary layer velocity profiles, the pressure distributions predicted by 

SENSE2D and FLUENT agree quite well. However, they both underpredict the 

suction pressure at the leading edge of the main airfoil slightly due to the first 

order solutions. The spikes in the pressure coefficient at the trailing edges of the 

main wing and the flap are attributed to the cut trailing edges employed in the 

present study for the generation of O-type boundary layer grids. 

 

Except the convergence rate study, all the solutions performed with the SA 

turbulence model are repeated with the SST k- turbulence model for validation 

purposes. 
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a) SENSE2D 

 
 

b) FLUENT 

Figure 34 Mach Number & Turbulent Viscosity Ratio Fields(NLR7301,SST k-) 

 

In Figure 34, the Mach number and the turbulent viscosity ratio fields of 

SENSE2D and FLUENT solutions are presented. The Mach contour fields from 

both solutions are in good agreement with each other. On the other hand, 

SENSE2D is overpredicting the turbulent viscosity ratio field when compared to 

the FLUENT results. 
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Figure 35 Turbulent Velocity Profiles (NLR7301, SST k-) 
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In Figure 35, turbulent velocity profiles obtained by SENSE2D are compared to 

the FLUENT results. The turbulent velocity profiles from each solver are quite 

similar. 

 

 

Figure 36 Pressure Coefficient Distribution (NLR7301, SST k-) 

 

In Figure 36, pressure coefficient distribution over NLR7301 airfoil is presented. 

In parallel with the similar velocity field predictions, pressure distributions from 

SENSE2D and FLUENT solvers are also on top of each other. Moreover, both 

solutions agree with the experimental data except for the suction peak region 

where higher order spatial discretisation methods are required. 

 

Table 13 Aerodynamic Coefficients (NLR7301, SA, SST k-) 

 

 Spalart-Allmaras SST k- 

Coefficients SENSE2D FLUENT SENSE2D FLUENT 

Cl 1.97 1.99 1.99 2.02 

Cd 0.1785 0.1932 0.132 0.136 

 

Aerodynamic load coefficients of the NLR7301 airfoil are given in Table 13. The 

values obtained from SENSE2D and FLUENT are quite close to each other.  
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 CHAPTER 4 

 

CONCLUSIONS 

 

 

In this study, the one and the two-equation turbulence models, namely Spalart-

Allmaras and SST k-are implemented to the multigrid NS solver, SENSE2D. 

Understanding the whole algorithm lying behind the solver in detail and 

implementing the turbulence model equations to this solver with robust and stable 

methods are the challenging aspects of this study.  

 

Pure explicit treatment of the turbulence model equations generally results in 

instable solutions and it is proper to treat the large turbulence source terms at least 

point implicitly so as to stabilize the solutions. However, although the point 

implicit treatment of the source terms of turbulence model equations is a solution 

for the stability problem, convergence rates remain low with this application due 

to the small time scale of the turbulence. Therefore, more advanced implicit 

methods that accounts for the relationship between the neighboring cells is better 

to use so as to improve the convergence rates. The implementation of the full-

implicit methods is the direct solution for both the stability and the slow 

convergence problem. However, it is hard to implement to a multigrid solver and 

can be appreciated as another research topic.  Instead, multigrid flow solutions 

with explicit-like implicit time integration methods, such as semi-implicit method, 

are good alternatives of the full-implicit algorithms. The semi-implicit algorithms 

are found to be 5-10 times faster than their explicit counter parts with respect to 

the residual convergence rates. In addition, it improved the convergence rate of 

the explicit multigrid solver 35% in price of an explicit solver. As a result, as long 

as the time accuracy is not the primary objective, it is better to use semi-implicit 

methods instead of the explicit time stepping methods, such as Runge-Kutta, with 

regard to the improved stability and the convergence rate. 
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From the numerical point of view, the Spalart-Allmaras turbulence model has 

found to be easier to implement since it requires less correlations in the 

calculation of the turbulent viscosity and can be integrated through the whole 

domain. Moreover, at the near wall regions where the other two equation 

turbulence models suffer from instability, due to its well defined, unique boundary 

condition, Spalart-Allmaras turbulence model is very stable so that in most of the 

applications it results in convergent solutions without any limitations. The SST k-

turbulence model can also be classified as stable. It can also be integrated in the 

whole domain including the boundary layer thanks to its well defined algebraic 

solutions in the near wall regions. Limiting the turbulence quantity k, by means of 

preserving its positivity, in the early stages of the solutions it is possible to have 

satisfactory results.  

 

During this thesis study, the author also spent so much time in implementing the 

low-Reynolds-number k- and the various two-layer k- turbulence models, but, 

was not able to obtain any results with the semi-implicit method applied in this 

study. In addition, application of the strang-splitting method, which is also used in 

the solution of the highly stiff chemically reacting flows, did not ended up with 

satisfactory results either.  

 

Being verified with the numerical and the experimental data of flow over flat plate 

and two different airfoils, implementation of Spalart-Allmaras and SST k- 

turbulence models to SENSE2D has completed successfully. As future works, one 

of the primary objectives is the repetition of the work performed in the scope of 

this study for the three-dimensional NS solver, SENSE3D. Moreover, 

implementation of the semi-implicit algorithm to the coarse level grids is expected 

to improve the convergence rate further.  Spalart-Allmaras and SST k-are the 

two most popular turbulence models thanks to their superior accuracy. Therefore, 

there is no need to attempt more in order to implement other one and two equation 

turbulence models.  Instead, beyond the modeling, simulation based turbulence 

prediction methods, such as Detached Eddy Simulation (DES) or Large Eddy 
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Simulation (LES), can be considered as near future works. Between these two, 

especially DES is becoming an industrial standard in between the turbulence 

prediction methods in parallel with the developments in the computer power and 

most probably will replace the turbulence modeling in the next five years.  Also, it 

stands in between the turbulence modeling and the LES. Therefore, it can be seen 

as the next step just after gaining experience with turbulence modeling. 

 

To conclude, during this study the author get detailed knowledge about the 

physics of turbulence and its modeling and also brought an in-house flow solver 

the capability of dealing with the turbulent flows. However, the most important 

return of the study to the author is the experience gained in the CFD field beyond 

turbulence modeling. Working with an in-house code, the author had a detailed 

knowledge about the whole theory lying behind an NS solver and created 

necessary background for working on the more advanced topics in CFD.   
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