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GWAS mainly aim to identify variations associated with certain phenotypes or diseases. Recently 

the combined p-value approach is described as the next step after GWAS to map the significant 

SNPs to genes and pathways to evaluate SNP-gene-disease associations. Major bottleneck of 

standard GWAS approaches is the prioritization of statistically significant results. The connection 

between statistical analysis and biological relevance should be established to understand the 

underlying molecular mechanisms of diseases. There are few tools offered for SNP prioritization 

but these are mainly based on user-defined subjective parameters, which are hard to standardize. 

Our group has recently developed a novel AHP based SNP prioritization algorithm. Beside 

statistical association AHP based SNP prioritization algorithm scores SNPs according to their 

biological relevance in terms of genomic location, functional consequence, evolutionary 

conservation, and gene-disease association. This allows researchers to evaluate the significantly 

associated SNPs quickly and objectively. Here, we have investigated the performance of the AHP 

based prioritization as the next step in the utilization of the algorithm in comparison to the other 

available tools for SNP prioritization. The user-defined parameters for AHP based prioritization 

have been investigated and our suggestion on how to use these parameters are presented. 

Additionally, the GWAS results from the analysis of two different sets of Alzheimer Disease 

Genotyping data with the newly proposed AHP based prioritization and the integrated software, 
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METU-SNP, it was implemented, is reported and our new findings on the association of SNPs 

and genes with AD based on this analysis is discussed.   

 

Keywords: GWAS, SNP Prioritization, Biomarker Discovery, Analytic Hierarchy Process, 

Alzheimer’s Disease 
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ANALİTİK HİYERARŞİ SÜRECİNE DAYALI TEK NÜKLEOTİD POLİMORFİZMİ 
ÖNCELİKLENDİRME YAKLAŞIMI PERFORMANS PARAMETRELERİNİN ALZHEIMER 

HASTALIĞI VERİSİ İÇİN BELİRLENMESİ 
 
 
 

Kadıoğlu, Onat 

Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Assist. Prof. Dr. Yeşim Aydın Son 

 

 

Eylül 2011, 91 sayfa 

 

 

Genom boyutunda ilişkilendirme çalışmaları (GWAS) genel olarak biyolojik çeşitliliğin 

araştırılması ve çeşitli hastalıklarla ilişkilendirilmesiyle ilgilidir. GWAS den sonraki aşama 

olarak tanımlanan birleşik p değeri anlamlı olarak bulunan SNPlerin genlerdeki yerlerini 

belirlemek ve daha sonra SNP-gen-hastalık ilişkisini saptamak için kullanılabilir. İstatistiksel 

olarak anlamlı sonuçları önceliklendirmek mevcut GWAS analizlerinin başlıca eksikliklerdendir. 

Hastalıkların moleküler mekanizmalarını daha iyi anlayabilmemiz için istatistiksel analiz ve SNP 

lerin biyolojik anlamlılıkları arasındaki bağlantı daha sağlam bir şekilde kurulmalıdır. SNP 

önceliklendirmesi için geliştirilmiş az sayıdaki yazılımlar standardizasyonu güç olan kullanıcı 

tanımlı öznel paramatrelere dayalı uygulamalardan öteye geçememektedirler. AHP (Analitik 

Hiyerarşi Süreci) tabanlı yapılandırılmış SNP önceliklendirmesi için grubumuz tarafından 

geliştirilen algoritma; SNPlerin biyolojik anlamlılıklarının genomik lokasyona, fonksiyonel 

sonuçlara, evrimsel korunmaya ve gen-hastalık ilişkilendirilmesine göre skorlandırılmalarına 

dayanmaktadır. Böylece istatistiksel olarak anlamlı SNP ler araştırmacılar tarafından kolayca 

nesnel olarak değerlendirilmiş olur ve yüksek skora sahip olanlar, onaylama ve daha sonraki 

muhtemel uygulamalar için kullanılabilir. Bu çalışmada AHP tabanlı önceliklendirme 

yaklaşımının performansını, algoritmanın uygulanmasında sonraki adım olarak diğer SNP 

önceliklendirme metotlarıyla karşılaştırarak değerlendirdik. AHP tabanlı önceliklendirme için 
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kullanıcı tanımlı parametreler araştırıldı ve bu parametrelerin nasıl kullanılması gerektiği 

sunuldu. Ek olarak, iki adet Alzheimer Hastalığı (AD) Genotipleme datasının yeni oluşturulan 

AHP tabanlı önceliklendirme yaklaşımıyla ve bu yaklaşımın uygulandığı METU-SNP 

uygulaması ile yapılan analizlerinden elde edilen GWAS sonuçları sunuldu. Bu analizler ışığında 

SNPlerin ve genlerin AD ilişkisi ile ilgili yeni bulgular da ele alındı. 

 

Anahtar Kelimeler:  GWAS, SNP Önceliklendirmesi, Biyolojik Gösterge Bulma, Analitik 

Hiyerarşi Süreci, Alzheimer Hastalığı 
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PREFACE 
 
 
 

   In this research, we have tested our recently developed Single Nucleotide Polymorphism (SNP) 

prioritization system based on Analytic Hierarchy Process (AHP) on two different independent 

Alzheimer Disease genotyping data with respect to biological relevance in comparison to SPOT, 

which is one of the most widely used web-based SNP prioritization tool. Performance measures 

have been determined for the AHP based SNP prioritization approach (METU-SNP) in various 

aspects such as sensitivity, specificity and biological relevance measures.  

Thesis Organization 

This thesis is composed of four main chapters. Brief contents are given below:  

Chapter 1 presents the biological background and introduces genome wide association studies 

with an emphasis on the SNP prioritization process. 

It is composed of; 

• Biological background 

• Genome wide association studies (GWAS), GWAS bottlenecks 

• Genetic variations in the human genome 

• SNP prioritization,available tools and analytic hierarchy process (AHP) based SNP 

prioritization approach 

• Complex diseases, Alzheimer disease (AD) 

Chapter 2 provides a literature review on Alzheimer’s Disease and GWAS findings. It is 

composed of; 

• Literature review on AD 

• Previously reported GWAS results for AD 

• AD databases 

• AD associated gene list 

Chapter 3 reports our results from the analysis of two different sets of Alzheimer Disease 

Genotyping data with the newly proposed AHP based prioritization and the integrated software, 

METU-SNP. It is composed of; 

• Analysis of two independent AD genotyping data with METU-SNP and AHP based 

prioritization results 

• Comparison of AHP based prioritization with SPOT in terms of biological relevance 

Chapter 4 reports classification performance of METU-SNP in terms of specificity, sensitivity 

measures in various p-value thresholds to determine the pre-prioritization cutoff value. 
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It is composed of; 

• METU-SNP classification measures in different p-value thresholds 

Chapter 5 provides estimation of AHP score cutoff for two independent AD genotyping data 

depending on biological relevance measures. Additionally, the user-defined parameters for AHP 

based prioritization and our suggestion on how to use these parameters, and the provided AHP 

score is discussed.  

It is composed of; 

• AHP score distributions of the AD genotyping data after SNPs are AHP prioritized 

• Biological relevance measures of SNP list based on AHP score ranking 

• User defined parameters of AHP based prioritization 

• Classification performance in different AHP score ranges 

• Utilization of AHP prioritization score 

Chapter 6 Conclusion and Future Work 

• Dıscussion of findings from AD data 

• Discussion of AHP parameter and cut-off score estimation 

• Future Work 

• Conclusion
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1 Biological Background 

 The genome defines the hereditary nature of each organism. Deoxyribo nucleic acid 

(DNA) which is the building block of genome carries the genetic information. Complete set of 

this information in an organism is called its genotype. There are 4 different bases in DNA; 

Adenine (A), Tymine (T), Guanine (G) and Cytosine (C). Purine bases are A and G whereas 

pyrimidine bases are C and T. Hydrogen bonds are established between A-T and G-C forming 

the double helix structure of DNA. Those bonds can be broken and reformed which is essential in 

DNA replication. Double helix structure involves backbones at opposite edges and paired bases 

meet in the middle as visualized in Figure 1.1 [1]. 

  

    

   Figure 1.1 DNA structure [1] 

 

Central dogma of molecular biology involves transcription (RNA produced from DNA), 

RNA processing (mature RNA formation) and translation (protein coding from mature RNA) 

respectively. Gene expression process begins with transcription where RNA complementary to 

DNA sequence of the coding region is coded. Template DNA strand is utilized during 

transcription. Processing of RNA and splicing is followed by RNA production. In this step, 

coding regions are joined together for the protein synthesis. Non-coding parts (introns) are 

excised out and coding parts (exons) are combined together during processing and splicing of 

RNA. Translation is the synthesis of protein from the mature RNA. Aminoacids (building blocks 

of proteins) are coded depending on three base sequences in RNA (codons). There are twenty 

aminoacids with the exception of some modified aminoacids utilized by organisms living on 

extreme conditions. Some aminoacids are coded via multiple codons whereas some are coded by 

only one codon (methionine is coded by only AUG codon and every protein begins with 
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methionine, AUG is referred as the start codon). Moreover there are three stop codons (UAG, 

UGA and UAA) indicating the termination of translation [1]. 

The genome of eukaryotic organisms are densely packed into chromosome structures 

prior to the cell division. Each chromosome consists of a linear array of genes located at a 

particular location, referred as the genetic locus. A gene is a unique DNA sequence directing the 

production of a specific protein specialized in a specific function influencing a particular 

characteristic in an organism. Alleles of a gene can be defined as the different forms that are 

found at the corresponding locus. Diploid organisms have one paternal (inherited from father) 

and one maternal (inherited from mother) sets of chromosomes, likewise each gene has two 

copies of paternal and maternal alleles [1].  

Human genome consists of 23 pairs of chromosomes, 46 in total, where each half 

inherited maternally or paternally. The crossing over and recombination of chromosomal pairs 

that occurs during the meiotic division are the sources of  genetic variance in the production of 

egg and sperm. Egg and sperm cells are haploid and carry 23 chromosomes and zygote formation 

leads to a diploid cell production. Mitotic divisions at the zygote contribute to the development of 

the progeny.   

Human genome is around 3.3 billion base pairs in length and coding regions are only 

about 3 percent of the whole genome, and the rest is known as noncoding regions, which have no 

annotated functions yet.  

Differences in the genome sequence of species are referred as variations and there are 

various varations having impact on biological function. Mutations are much rarely observed in a 

population compared to polymorphisms, which are observed in at least 1% of a population and 

they are the major causes of variations observed among individuals. 

Mutations are stable changes in DNA sequence and their lethality is determined mostly 

by their genomic location. Mutations at coding regions are potentially more severe than 

mutations on the non-coding regions of genome. Lethal mutations are not observed frequently 

within a population since they are rarely inherited. Mostly mild mutations are observed within a 

population and contribute to disease formation under certain environmental conditions, also 

giving rise to different traits observed within a population [2]. 

Similar to mutations, genetic polymorphisms are observed when multiple genotypes at a 

locus coexist. Polymorphisms are changes in DNA sequence which are observed in more than 1 

percent of a population and usually involve milder effects compared to mutations. By definition, 

changes at single nucleotide that are observed in more than 1 percent in a population are referred 

as single nucleotide polymorphisms (SNP). The location in the genome where a SNP, copy 

number variation, insertion or deletion occur is referred to as an allele [2]. The dominant allele 

with the highest frequency within a population is called the major allele, while less frequent 
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observed ones are called the minor alleles. Therefore, the genotype of an individual is referred as 

the combined allele information for a particular locus.  

The alleles on the same chromosome tend to be inherited together rather than 

independent assortion, predicted by Mendelian laws, due the genetic linkage event  caused by the 

organization and packing of genes into chromosomes. Genetic linkage is measured by the unit of 

recombination, which is used for construction of genetic maps. Distance between mutations and 

variations in terms of recombination frequencies is determined by genetic mapping. 

Recombination frequencies do not represent the actual physical distances since frequencies can 

be distorted relative to the physical distance between sites [2]. There are some markers such as 

restriction fragment length polymorphisms (RFLPs) and SNPs which can be referred as the basis 

for linkage maps. SNPs are widely preferred for linkage studies and genetic mapping since they 

are widespread in the human genome (there is a SNP ~every 100-300 bp). Newly discovered 

disease genes and associations can be identified via locating them between the nearest SNPs. The 

frequency of polymorphism and the unique combination of SNPs or RFLPs in a specific region is 

referred as the haplotype. Figure 1.2 represents an example of a haplotype involving 3 SNPs [2]. 

  

 

Figure 1.2 Example of determination haplotype of various alleles of a genomic locus [2] 

    

The concept of a haplotype was originally introduced to describe the genetic constitution 

of the major histocompatibility locus, a region specifying proteins of importance in the immune 

system. The concept now has been extended to describe the particular combination of alleles or 

restriction sites (or any other genetic marker) present in a defined area of the genome and they 

are inherited as single haplotype blocks [3]. SNPs are conserved in a genome usually within 

haplotype blocks. If we assume that there is a gene with two SNPs and two alleles of each SNP 

(A and B) there are four possible combinations (A-A, A-B, B-A, B-B). In most cases, SNPs 

occur with a different frequency than would be expected to occur only by chance from a random 

haplotype distribution. Non-random associations of alleles at two or more loci constitute the 

phenomenon of Linkage Disequilibrium (LD). Linkage disequlibrium is defined by the allelic 

association between SNPs. High LD SNPs have higher probability to be inherited together than 
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lower LD SNP pairs. Linkage disequlibrium in a human chromosome 20 region is visualized in 

Figure 1.3, where darker regions indicate strong correlations and thus high LD among SNPs [2]. 

 

    

   Figure 1.3 Linkage disequlibrium in a region on human chromosome 20 [2] 

       

1.2 Genome Wide Association Studies (GWAS)    

 Genome wide association studies (GWAS) can be defined as genetic association studies 

in which the genetic marker density and the extent of linkage disequilibrium is sufficient to cover 

a large proportion of the common variation in the population under study [4]. The sample size of 

people provides sufficient power to detect variants of modest effect [4]. GWAS mainly focuses 

on identification of significant variations that can be associated with certain disease and 

phenotypes among individuals in population in a holistic and agnostic manner. They are 

hypothesis-free studies and thus unbiased since they focus on entire genome to find associative 

variations. SNPs are the most widely referred variations in GWAS due to their low genotyping 

cost and abundance in the genome. Resources such as the HapMap Project and the 1000 

Genomes Project provides a catalog of the SNPs in the genome [5]. 

 After DNA genotyping is performed for control and case subjects, allele frequencies are 

compared and significantly different variations between cases and controls are aimed to be 

identified. Large sample size on the order of thousands is usually preferred in GWAS to achieve 

a high statistical power (sensitivity). Statistical tests are then applied in order to identify SNPs 

that demonstrate allele frequency differences between cases and controls. Identification of 

candidate associative variations can be followed by new strategies to detect, treat and prevent the 

disease.  

 GWAS are widely referred since 2005 to discover genetic variations that contribute to 

various complex diseases, such as asthma, cancer, diabetes, heart disease and mental illnesses. 

After completion of the Human Genome Project in 2003 and the International HapMap Project in 
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2005, the number of studies aiming to identify associative genetic variations with various 

diseases have dramatically increased. Since GWAS serve as a promising strategy for the 

identification of genetic variations associated with various phenotypes, they have become a 

widely preferred approach in identifying genetic determinants and biomarkers of complex 

phenotypes and common diseases. 

 Many tools including computerized databases containing the reference human genome 

sequence helped researchers for the analysis of whole-genome samples for genetic variations. 

Since a considerable cost reduction in sequencing a human genome is being achieved via various 

next generation seuquencing platforms, in the near future patients will probably be provided with 

individualized information about their certain disease risks depending on the genetic variations 

they carry. The genetic makeup of an individual will determine the treatment strategies and even 

the doses of the drugs to be prescribed. This individualized information provides the approach of 

personalized medicine. 

 Since the first successful GWAS in 2005, over 1200 GWAS have been reported 

according to the NIH GWAS catalog as can be seen from the Figure 1.4 [6]. Chromosomes are 

visualized in the figure and circles with different colors mapped on chromosomes represent 

associative variations with different diseases and traits. 

 

 

  Figure 1.4 Published GWA studies and the mapping of associative variations [6] 
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Analysis of GWAS results depend on two major steps; statistical and biological 

approaches. The former approach involves p-value computation to find out statistically 

significant variations between control and case subjects. Allele frequencies of variations that are 

significantly different among cases than controls are referred as candidate associative variations 

for a certain disease or trait. p-value can be defined as a statistical measure that indicates the 

probability of a certain event to occur just by chance, smaller the p-value higher the significance 

of the event. In GWAS, variations that have p-values smaller than 0.05 are usually referred as 

significant and potential candidates to be associated with certain diseases or phenotypes. A 

widely used software developed by Shaun Purcell at the Center for Human Genetic Research, 

PLINK provides a toolkit involving various statistical tests for single-locus analysis, haplotype 

analysis and allelic-based interaction analysis [7]. Statistical analysis might also involve ‘second 

wave GWAS’ strategy where the combined p-values for genes can be used for identification of 

enriched genes and pathways significantly associated with disease [8]. After the detection of 

significant variations such as SNPs and their mapping to genes, “combined p-value” can be 

computed for genes via Fisher’s tests. Fisher’s combination test can be used to compute 

combined p-value for a gene, whereas Fisher’s exact test can be used to compute combined p-

value for a pathway[8]. 

Fisher’s combination test to combine p-values of all K independent SNPs within the gene is 

performed as follows; 

 

which follows a  distribution. 

Fisher’s exact test is performed to combine p-values of genes within pathways. p-value of 

observing k-significant genes in the pathway is calculated as follows;  

 

where total number of genes of interest is N, number of genes that are significantly associated 

with disease according to Fisher’s combination test is S, number of genes in the pathway is m, 

and the number of significantly associated genes in the pathway is K [8]. 

Gene and pathway based analysis in a second wave GWAS involves independent p-

values of single SNPs in the gene combined into an overall p-value for the gene and independent 

p-values of a single gene in the pathway into an overall p-value for the pathway. Fisher’s method 

for combination might yield unreliable results when there are large correlations among SNPs in a 

gene. Gene and pathway-based GWAS that consider correlations among the SNP and genes 

might be an effective strategy for the second wave GWAS analysis and will probably be carried 

out in the near future [8]. The combined p-value approach for GWAS involving several disorders 
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such as bipolar disorder (BD), coronary artery disease (CAD), Crohn’s disease (CD), 

hypertension (HT), rheumatoid arthritis (RA), type I diabetes (T1D), type II diabetes (T2D), 

Parkinson’s disease (PD), age-related eye disease (AREDS) and Amyotrophic lateral sclerosis 

(ALS) identified genes that include individually significant SNPs and also new genes containing 

SNPs with small disease risks but have jointly significant effect and strong association with 

diseases [8]. 

Statistical association on its own is not adequate to identify predisposing loci or genes 

effectively due to the limited power and information it provides together with high dimensional 

data and multiple testing problems. Achievement of a reliable GWAS heavily depends on 

biological knowledge to correctly prioritize results for downstream genetic studies. Next step 

after statistical analysis is search for biological relevance where statistically significant variations 

are evaluated depending on different biological properties such as their genomic location, 

evolutionary conservation and gene association. Being the most widely referred variations in 

GWAS, SNPs have various biological features relevant to disease risks. For instance, SNPs 

located in non-synonymous coding region involve a higher probability to be associated with a 

disease than SNPs located within the intron. Moreover, some non-gene features of SNPs might 

also yield clues related to disease risk. The connection between statistical analysis and biological 

relevance for SNP biomarkers should be established more firmly to be able to understand the 

underlying molecular mechanisms of a disease. Recent studies point out that conservation, 

natural selection and microRNA binding are contributing factors to human disease susceptibility 

[9].  

GWAS involve various approaches and terms, brief definitions of those are provided in 

Appendix A [10 , 11, 12] .  

1.2.1 Current Challenges of GWAS 

 GWAS should meet three essential elements to be counted as a reliable study [13]: 

• sufficiently large sample size from a population that effectively provide genetic 

information regarding the research question 

• polymorphic alleles covering the whole genome and those alleles should be efficiently 

genotyped 

• statistically powerful analytic methods that can be utilized for the identification of the 

genetic associations in an unbiased fashion  

 GWAS failing to achieve the criteria stated above are unlikely to yield informative 

results. Moreover, traditional GWAS heavily depend on statistical analysis are inadequate to 

identify associative variations in the human genome. Since most widely investigated variations in 

GWAS are single nucleotide polymorphisms (SNPs) rather than duplications, deletions, 

insertions or copy number variations, major bottleneck of current GWAS is the prioritization of 
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statistically significant and determination of biologically relevant SNP associations after the 

statistical analysis. Small p-value choice for SNPs might not be optimal in cases when the joint 

action of multiple SNPs within a gene involves more variance than the most significant SNP. 

Small p-value choice approach might also lead to biases of favouring large extensive pathways 

and genes with greater numbers of SNPs. Another drawback of GWA studies is varying levels of 

genome coverage across samples [14]. 

 Genetic variations associated by GWAS can only explain a small proportion of the 

genetic risks associated with the complex diseases. New strategies and approaches are required to 

compansate this lack of explanation. The approach to investigate variations individually might 

lead to inadequate results. One reason for the inadequacy is that genetic variants with small 

individual effect sizes but jointly significant genetic effects would be missed by single-SNP 

analysis. Consequently, identified genetic variants involve a small fraction of heritability for 

most studied traits. GWAS that focus on discovery of biological pathways rather than prediction 

of individual risk loci associated with polygenic traits and diseases are more preferable. 

Detection of SNPs that have marginally weak but jointly strong effects is a difficult task for 

GWAS focusing on invidiual SNP analysis. Jointly analyzing SNPs within the same biological 

pathway compansates the individual SNP analysis, providing new insights to the understanding 

of complex human traits.  

A preprocess step to filter out SNPs that are unable to achieve the different threshold 

values such as Hardy-Weinberg Equilibrium, Minor Allele Frequency is essential since using all 

available SNPs per gene cause computational challenges in addition to significant amounts of 

noise into the analysis [15]. 

 Detection of associations with common SNPs becomes harder for a GWA study when 

the phenotypes are poorly or inconsistently defined, controls are poorly screened for exclusion of 

disease. Limited statistical power and inadequate environmental data might lead to disruption in 

the detection of gene–environment interactions [16]. Another strategy to increase statistical 

power is using nonrisk cases and risk controls in the study. Power increases due to enrichment of 

disease favouring alleles in nonrisk cases while risk controls are enriched for protective alleles 

[17]. 

 Limitations and bottlenecks of GWAS to detect candidate variants associated with 

complex diseases can be summarized as follows. Genetic variants that involve a insignificant risk 

of disease individually but have a considerable contribution when considered jointly with other 

variations, would be probably missed in the ‘most significant SNPs/genes’ approach. Small 

sample size is another important problem in GWAS since those variants that confer a larger 

effect may not always be tested. Complex diseases are thought to be caused by multiple risk 

genes mutually together with various environmental factors rather than most significant genes 

only. Their pathogenesis involve dysfunction of several metabolic pathways [18]. 
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1.2.2 Genetic Variations In The Human Genome 

While GWAS usually target identification of associative single nucleotide 

polymorphisms (SNPs), there are various different types of variations widespread throughout the 

human genome. Figure 1.5 and 1.6 [19,20] provide a visualization of the genetic variations. 

Copy Number Variations (CNV) 

Duplications, deletions and inversions are classified as copy number variations (CNV), 

most of them are known to be tagged by SNPs and therefore focusing on those CNVs directly is 

unlikely to identify many new variants, targeting rare CNVs and structural variants might yield 

valuable results. Structural variation has not been as deeply studied as SNPs because their 

detection is less accurate, biological confirmation is costly, and smaller copy number variants 

(<100 kb) are not very reliably detected. Genetic risks for common disorders and complex 

diseases cannot be fully explained by common SNPs. Rare variants should be investigated more 

firmly to identify further associations. As mentioned in the GWAS terms, rare variant is usually 

defined by a frequency lower than 1%. One approach to find out rare variants might be 

sequencing a chromosomal region from many people and focusing on that region only. Indeed 

some rare structural variants have already been identified as a risk factor for diseases. For 

instance, Hras-1 VNTR mini satellite rare alleles are found to be associated with various cancers 

and uncommon translocations such as t(11:22)(q23:q11) are found to be associated with breast 

cancer. Another example is DiGeorge syndrome caused by large deletions on chromosome 

22q11, and 20% of patients with this syndrome also develop schizophrenia. Therefore, structural 

variants that are individually rare but involve clustering within specific regions are valuable 

resources to identify disease associations in the human genome. Genotyping of rare variants is 

not an easy task with the existing technology however new arrays are being designed for this 

purpose. 1000 Genomes project contributes to identification of such variants. Some of the 

associations which are currently attributed to common variants might be actually caused by some 

rare variants. Next-generation sequencing technologies such as Ion Torrent, Oxford Nanopore, 

IBM Transistor, PacBio SMRT (single molecule, real time) providing affordable whole-genome 

sequencing, will lead a shift in the search for rare variants from genotyping arrays to whole-

genome sequencing [21]. 

 

 

Figure 1.5 Genetic variations in the human genome (inversion,insertion,deletion,copy number variation) 

[19] 
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Single Nucleotide Polymorphism (SNP) 

If a variation is observed in more than 1% of a population, they are referred as 

polymorphisms and the substitution of one single nucleotide for another at a homologous site in 

a population is called single nucleotide polymorphism, which are the most widely observed 

polymorphisms in the human genome (~90%). National Center for Biotechnology Information’s 

(NCBI) current SNP variation database (dbSNP build 131) holds about 30 million validated 

SNPs within the human genome. SNPs exist both within coding regions and non-coding regions 

of the entire human genome. Different types of SNPs are summarized at Table 1.1 [22]. 

 

Table 1.1 Single Nucleotide Polymorphism Types In The Human Genome [22]  

    

In GWAS, an informative SNP subset which are referred as tag SNPs, are genotyped in 

case and control individuals. After the computation of tag SNP statistics, the genomic regions 

CODING REGION 

 

Definition 

Non-synonymous results in an aminoacid change,cause of most monogenic disorders 

such as cystic fibrosis and hemophilia  

Synonymous do not lead to aminoacid change 

Frameshift causes a frameshift 

Stop loss results in loss of a stop codon 

Stop gained results in gain of a stop codon 

NON-CODING 

REGION 

 

 

Essential splice site in the first or last 2 bp of an intron 

Splice site 1-3 bps into an exon or 3-8 bps into an intron 

Upstream within 5 kb upstream of the 5’end of a transcript 

Regulatory region in regulatory region annotated by NCBI or Ensembl 

5 ‘ UTR located within 5 ‘ UTR 

Intronic located within intron 

3’UTR located within 3’UTR 

Downstream within 5 kb downstream of the 3’end of a transcript 

Intergenic more than 5 kb away from a transcript 
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that involve a linkage disequilibrium (LD) with the most significantly associated tag SNPs are 

expected to contain the causal polymorphisms [23]. 

 

 

Figure 1.6 Genetic variations in the human genome (single nucleotide polymorphism) [20] 

 

1.3 SNP Prioritization Approaches 

 GWAS yield highly promising results in terms of identifying regions associated with a 

variety of complex traits and diseases. Most of the studies point out SNPs as the likely causal 

variants that are in complete linkage disequilibrium and their prioritization is challenging since 

individually weak SNPs might involve a strong association jointly if it is in high LD with 

associative and causal SNPs. Although SNPs located at coding regions and cause a aminoacid 

change or at a regulatory region are highly potential candidates to be associated with a disease, in 

many complex diseases, the causal SNPs are found to be located within noncoding regions, 

intergenic regions which makes the prioritization of them difficult based on likely function [24]. 

Major aim of a biomarker discovery study is the identification of potentially significant 

differential variants across control and case groups. GWAS solely based on statistical analysis 

are prone to many false positive results, as simultaneous testing of hundreds of thousands of 

SNPs yields a high number of hits occurring by chance with a traditional p-value threshold of 

0.05. Linkage disequlibrium is another factor for the inadequacy of traditional statistical analysis 

in GWAS. Considering p-values alone cannot provide a reliable identification of associative 

variants due to strong physical association between certain SNPs. Biological relevance should be 

strongly involved in GWA studies to acquire reliable results and informative associations during 

SNP prioritization. There are various approaches to prioritize SNPs after GWAS such as meta 

analysis and pathway based analysis. 

1.3.1 Meta Analysis 

Pooling information from multiple GWAS to increase the statistical power and thus 

chances of finding true positives among the false positives is referred as meta analysis. 

Combining p-values via Fisher’s method and converting the test statistics into z scores via 
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referring to odds ratios together with the regression coefficients are two major meta analysis 

methods utilized in GWAS. Meta analysis approach involves combination of different GWAS 

results rather than using the original data which can be computationally demanding [13]. 

1.3.2 Pathway Based Analysis 

GWAS employing pathway based analyses are promising since they can identify many 

causal variants that cannot be identified with traditional statistical methods. Pathway based 

analysis is preferable since testing a few hundred pathways to identify the subsets of genes 

associated with diseases, eliminates the need for difficult task of huge multiple testing. For this 

reason, pathway based analysis can improve the power of GWAS, and identification of subset of 

genes in biologically relevant pathways associated with diseases or traits becomes easier. In 

addition, a gene which involves a number of SNPs with medium size effects might involve a 

increased effect after the information of SNPs are combined by the gene based score as a result of 

pathway based analysis [25].  

Pathways are tested in terms of associations with diseases or traits and variations within 

the associated pathways are said to be potential causative variants even if they cannot reach 

genome wide significance level. For instance, some of the SNPs located at genes involved in the 

axon guidance pathway are found to be causal SNPs associated with Parkinson’s Disease, even 

though none of them are found to reach the significance threshold. In pathway analysis approach, 

pathway heterogeneity is an important factor since disruptions in different pathways might lead 

to the same disorder. Moreover, the variants within those pathways are likely to differ despite 

affected individuals may share the same disrupted pathways.  

Post-GWAS studies are likely to provide a clearer picture of the true role of common 

variants in common complex disorders and there are various tools for pathway enrichment 

analysis such as the Database for Annotation, Visualization and Integrated Discovery (DAVID) 

and Protein ANalysis THrough Evolutionary Relationships (PANTHER) [13]. 

 

1.4 SNP Prioritization Tools 

There are various tools focusing on single nucleotide polymorphism prioritization 

following statistical analysis of GWAS. Biological information and functional properties of SNPs 

are integrated to the algorithms of those tools. However an adequate biological relevance level 

have not been achieved yet with those tools. In this part some of the most widely used ones will 

be introduced such as FastSNP, SNPLogic,SPOT, SNPinfo, SNPit and the recently developed 

AHP based SNP prioritization approach.  

 

1.4.1 FastSNP 

 It is a webserver providing identification and prioritization of high risk SNPs depending 

on their phenotypic risks and deleterious functional effects. Risk determination requires access to 
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various biological databases and analytical tools, FastSNP retrieves biological information via 11 

external web servers making it possible to perform updated querying. SNP prioritization based on 

phenotypic risks is essential due to the fact that only a small portion of them are causal and 

associative polymorphisms contributing to various disease phenotypes. SNPs can be cateogorized 

depending on their genomic location and corresponding functional effects like below; 

• Nonsynonymous SNPs effecting protein structures via changing single amino acids 

• SNPs located in transcription factor binding sites in promoter or enhancer regions can 

modulate transcriptional regulation 

• SNPs in splice sites may disrupt alternative splicing regulation 

 FastSNP depends on a decision tree to determine risk factors of SNPs depending on 

solely their genomic location ignoring essential biological relevance points such as evolutionary 

conservation, gene and pathway association. Table 1.2 summarizes the SNP categorization of 

FastSNP and risk factors assigned to each class of SNPs [26]. 

It utilizes a decision tree approach to assign risk rankings for SNP prioritization. The tree 

structure used for the prioritization only depends on genomic location of SNPs and lacks the 

essential information such as evolutionary conservation, gene association and biological 

pathways. Depending on the functional effects, each SNP is assigned a risk factor and ranking is 

done accordingly.  

 

Table 1.2 FastSNP Single Nucleotide Polymorphism Functional Properties And Risk Factors [26] 
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1.4.2 SNPLogic 

 It integrates SNP information from numerous sources to provide a comprehensive SNP 

selection, annotation and prioritization system. This integration provide information about; 

• the genetic context of SNPs such as chromosomal and functional locations 

• genotypic data such as allele frequencies in a population 

• coverage of commercial arrays like Affimetrix and Illumina 

• functional predictions modeled on sequence and structure  

• identified associations via biological pathways, gene ontology terms or OMIM disease 

terms 

The interface visualized at Figure 1.7 [27] involves SNP list formation  and user defined thus 

subjective scoring rules to rank those SNP lists. Ranking system is established by the users 

depending on associations, connections, annotations and functional predictions of SNPs. SNP 

lists can be generated based on genes of interest, chromosomal regions, biological pathways, 

ontology terms and disease associations, which allow grouping SNPs in biologically meaningful 

ways. The approach of user defined scoring pattern of SNPLogic might be inadequate in terms of 

biological relavance since SNP prioritization requires an objective and reliable scoring function 

which can be applied to every genome wide association study and traits of interest [27].  

 

 

Figure 1.7 SNPLogic web interface [27] 

1.4.3 SPOT 

This SNP prioritization tool involves a genomic information network (GIN) approach 

allowing users to upload a list of SNPs and GWAS p-values providing output of a prioritized list 

of SNPs.  GIN is a directed graph with nodes as features from a biological database. The GIN 

process begins with a SNP and ends in the terminal node which provides the calculation of its 

overall prioritization score S. S is determined by biological relevance obtained by combining 
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information from multiple databases. Figure 1.8 [28] represents the GIN idea for SNP 

prioritization and assignment of score [28]. 

 

 

Figure 1.8 SPOT genomic information network [28] 

1.4.4 SNPinfo 

 The web application of SNPinfo retrieves information regarding SNPs in HapMap and 

dbSNP and constructs LD relationships specific to ethnic groups from both sources. SNPs that 

were not genotyped in a GWAS, but are in LD with a SNP that was genotyped, can be screened 

by this way. Moreover, GWAS data generated in one ethnic group can be utilized to analyze 

SNPs in another ethnic groups [29]. 

 SNPinfo web server contains various different modules suitable for different kinds of 

analysis during a genome wide association study [29]; 

• Candidate Gene SNP Selection (GenePipe)  

SNP selection for candidate genes is performed dependent on GWAS results, functional 

SNP prediction and LD information. 

• GWAS Functional SNP Selection (GenomePipe) 

SNPs that are in high LD with GWAS SNPs provide a pool for the selection of 

functional SNPs 

• GWAS SNP Selection in Linkage Loci (LinkagePipe) 

User defined list of linkage regions help to select small p-value GWAS SNPs in 

candidate genomic regions like linkage loci.  

• LD Tag SNP Selection (TagSNP)  

Selection and visualization of LD tag SNP and is performed followed by formation of 

SNP list from various queries. 

• SNP Function Prediction (FuncPred) 

Functional predictions and ethnic specific allele frequencies of SNPs serve as a query for 

this module. 
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• SNP Information in DNA Sequence (SNPseq) 

Sequence information of SNPs is provided with this module. 

1.4.5 SNPit 

SNP Integration Tool (SNPit) tool is built upon a federated data integration system, and 

provides  current information on various SNP data sources [30]. For instance, the Human Gene 

Mutation Database (HGMD) provides information about a particular SNP location and its disease 

association depending on the gene it maps. Genomic context and location information  is 

provided by the UCSC Browser’s Genscan Gene Prediction track. Evolutionary relationships 

between the genomes are retrived from the ECR Browser. Recent positive selection within the 

human genome of certain SNPs are provided by Haplotter. SNPs affecting the protein function 

are predicted via SIFT. Linkage disequlibrium information is retrived from Genome Variation 

Server (GVS).  

SNPit helps to integrate and analyze functional significance of SNPs and thus 

contributing in understanding the GWAS results. Inference engine plug makes it possible to 

analyze additional logical inference. SNPit provides information about functional annotation of 

SNPs via going to one source for up-to-date information. Figure 1.9 depicts the rules and 

heuristic weights assigned to different SNP characteristics [30]. Weights were assigned to each 

node in the decision tree, with the score of the final node calculated by multiplying the previous 

nodes in its’ path. For example, SNPs that are in a coding region, that are non-synonymous and 

damaging, have a risk of moderate to very high; a heuristic weight of 3.375 was assigned to this 

branch of the tree. 

 

Figure 1.9 SNPit heuristic weights [30] 
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1.4.6 Analytic Hiearchy Process Based SNP Prioritization Approach 

Analytic Hierarchy Process (AHP) is a multi criteria decision making method developed 

by Prof. Thomas L. Saaty to derive ratio scales from pairwise comparisons. Input can be acquired 

from actual measurements such as weight, height, price or from subjective opinions such as 

preference, satisfactory level etc. Some inconsistencies are allowed during the judgement. 

Principal eigenvectors determine the ratio scales whereas principal eigenvalues contribute to the 

computation of consistency index [31].  

AHP provides an effective way to deal with complex decision making process via 

helping to identify and weight selection criteria. AHP involves analyzing the data collected for 

the criteria and determines the decision making process. It captures both subjective and objective 

evaluation measures, consistency of them and the alternatives are checked which lead to bias 

reduction in decision making [32]. 

There are two main steps of this process [32]; 

• The goal is decomposed into its constituent parts, progressing from the general to the 

specific involving a structure of a goal, criteria and alternatives as visualized in Figure 

1.10 [33]. Further division of alternatives into an appropriate level of detail is performed, 

the possibility that the more criteria included, the less important each individual criterion 

may become should be taken into consideration. 

 

 

Figure 1.10 AHP level of hierarchy example [33] 

• Next step is the assignment of relative weight to each criteria. Each criterion has a local 

and global priority. Global priority of a criteria represents relative importance within the 

overall model. Sum of the weights in a given parent criterion level must equal one. 

Pairwise scoring is performed for each criteria pair and this scoring is usually depending 

on the 9-point scale representes at Table 1.3. 
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Table 1.3 AHP Pairwise Comparison Scale 

Comparative 
Importance 

Definition Explanation 

1 Equally important Two decision elements equally influence 
the parent decision element. 

3 Moderately more 
important 

One decision element is moderately more 
influential than the other. 

5 Strongly more 
important 

One decision element has stronger 
influence than the other. 

7 Very strongly more 
important 

One decision element has significantly 
more influence over the other. 

9 Extremely more 
important 

The difference between influences of the 
two decision elements is extremely 

significant. 
2, 4, 6, 8 Intermediate judgement 

values 
Judgment values between equally, 

moderately, strongly, very strongly, and 
extremely 

    

After the pairwise comparisons are performed, comparison matrix and priority vector is 

constructed depending on the weights of each criteria. Table 1.4 depicts the AHP tree nodes and 

their weights for SNP prioritization. SNPs are evaluated based on the features embedded in the 

AHP tree as follows [34,35]; 

An indicator function is defined to assign the features that a particular SNP have; 

 

  1, if SNPi has the feature at leaf node k 

Ik(SNPi) =   

  0, otherwise 

 

 For instance if a SNP causes a frameshift (having the feature depicted at leaf node 

1.3.2.1), then I1.3.2.1(SNPi) = 1 for that SNP. Then, final score of a SNP is computed via S 

function such that; 

 

 

 

where n is the number of leaf nodes, m is the total number of SNPs and Wk is the weights given 

at Table 1.4. For instance a SNP that is known to map to a disease gene via LD and located at the 

5’ splice site acquires an AHP score of (0.036593+ 0.006597) = 0.04319. Table 1.5 represents the 

scoring order of leaf nodes depending on different biological features and genomic locations 

[34,35]. 
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Table 1.4 AHP Tree Nodes For SNP Prioritization And Combined Weights Of Nodes After Pairwise 

Scoring Performed By 5 Specialists [34,35] 
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Table 1.5 Weight Order For SNPs According To AHP Scoring [34,35] 

1.2.1.2 Disease Gene - Via Direct                                              0.186016  

0.2.2 Significant Gene - Via Direct                                         0.12099  

1.3.2.1 Coding - Frameshift                                                      0.103733 

0.3.2 Significant Pathway Gene - Via Direct                                0.093825  

1.2.1.3 Disease Gene - Via Pathway                                               0.081725  

0.2.3 Significant Gene - Via Pathway                                       0.053266  

0.3.3 Significant Pathway Gene - Via Pathway                              0.04738  

1.1.2.1 Mammalian - Significant Mouse ECR                                   0.04532 

1.1.1 Vertebrate                                                          0.037841 

1.2.1.1 Disease Gene - Via LD                                                0.036593  

0.1 Individual SNP                                                   0.033616  

1.3.2.3.4 Coding - CDS Non Syn – Completely Determine                                       0.024045 

1.1.2.2 Mammalian - Other Mammalian                                        0.023347 

1.2.2.1.2 Other Gene - Other Disease - Via Direct                                      0.01818 

0.2.1 Significant Gene - Via LD                                           0.01598  

0.3.1 Significant Pathway Gene - Via LD                                   0.01465  

1.2.2.1.3 Other Gene - Other Disease - Via Pathway                                  0.011161  

1.3.2.3.3 Coding - CDS Non Syn – Probably Damaging                                       0.009187 

1.3.1.7 Non-Coding - Splice 5                                                        0.006597 

1.2.2.1.1 Other Gene - Other Disease - Via LD                                      0.005756  

1.3.1.6 Non-Coding - Splice3                                                        0.005295 

1.3.2.3.2 Coding - CDS Non Syn – Possibly Damaging                       0.004713 

1.2.2.2.2 Other Gene - Neutral - Via Direct                                        0.004579  

1.2.2.2.3 Other Gene - Neutral - Via Pathway                                             0.002811  

1.3.1.5.1 Non-Coding - Near Gene 5 - CpG Island                             0.002467 

1.3.1.2.1 Non-Coding- UTR-5 - CpG Island                                  0.002017 

1.3.2.3.1 Coding - CDS Non Syn - Polyphen Benign                                      0.001997 

1.3.1.4 Non-Coding - Near Gene 3                                             0.001476 

1.2.2.2.1 Other Gene - Neutral - Via LD                                              0.00145  

1.3.1.1.1 Non-Coding- UTR-3 - MiRNA Prediction                           0.001142 

1.3.1.3 Non-Coding - Intronic                                              0.000825 

1.3.1.2.2 Non-Coding- UTR-5 - No CpG Island                               0.00063 

1.3.1.1.2 Non-Coding- UTR-3 - No MiRNA Prediction                      0.000604 

1.3.1.5.2 Non-Coding - Near Gene 5 - No CpG Island                   0.000571 

  

1.5 Complex Diseases 

 Complex diseases can be defined as disorders caused by the combined effect of various 

genes together with the contribution of environmental factors. They usually do not involve 

Mendelian characteristics. Some examples of complex diseases are obesity, diabetes, 

hypertension, Alzheimer disease, Parkinson disease and various types of cancers. They are also 

referred as polygenic diseases and they have the largest impact on the human population. For 
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instance in the Western world the the leading cause of death are known as cancer and heart 

diseases.  

Many complex disorders including heart diseases, some types of cancer and diabetes 

involve a discontinous rather than normal distribution. Their phenotypic expression is dependent 

on various effects and interactions between genetic, social, and environmental factors. The 

degree of clustering within families might yield valueable information regarding the heritability 

of the disease. This approach requires epidemiological data from large sample size or within 

affected pedigrees. For instance, recurrence risk of a disease in the siblings of affected 

individuals give information about the multifactorial nature of the disease providing a 

quantitative estimate of the effect of genes on a trait.  

Genetic influences on complex diseases can be more reliably evaluated via integrative 

studies involving bioinformatics, molecular biotechnology, and epidemiological methods to 

estimate disease risk. Moreover, those integrative studies provide a deeper understanding about 

the etiology of complex diseases and novel approaches to disease treatment and prevention [36]. 

There are three different approaches to screen biomarkers to find asosciations with 

complex diseases. Integrating data from different genetic studies and the relevant biological 

information might yield promising results at the systems biology level, SNPs being the most 

common variant among human genome serve as an important point in disease association studies. 

Second approach is the pathway based analysis on GWAS data to acquire enriched disease-causal 

information. Third approach involves integration of  disease related pathways and networks for 

complex disease studies [2]. 

1.5.1 Alzheimer’s Disease 

It is the most common neurodegenerative disease accounting for about 65% of late life 

dementia. Neurodegeneration is referred as the progressive loss of structure or function of 

neurons, including death of neurons (atrophy). Alzheimer’s disease (AD) is first described by a 

German Neurologist, Alois Alzheimer at 1906 [37].  

Clinical characterization of AD involves memory impairment whereas it is 

pathologically characterized by amyloid plaque and neurofibrillary tangle formation in brain 

neurons consequently leading to brain atrophy (tissue death) [38]. Amyloid plaques are resulted 

from aberrancy in degradation of one type of amyloid protein (beta amyloid) in brain. It is 

produced via the synthesis of amyloid precursor protein (APP). Figure 1.11 [39] is a PET 

(positron emission tomography, a neuroimaging technique) scan picture representing the 

difference between 67 years old healthy person (left) and 79 years old AD patient brains in terms 

of beta amyloid production and atrophy. Beta amyloid is visualized via Carbon-11-labelled 

Pittsburgh B (11C-PIB) compound uptake (top) and cerebral regional glucose metabolism 

(μmol/min/100 mL) is evaluated via 1⁸F-fluorodeoxyglucose compound (bottom). For the top 

part of the figure, higher intensity values imply high beta amyloid production. For the bottom 
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part of the figure, higher intensity values imply higher glucose metabolism and thus lower 

proportion of atrophy.   

 

 

Figure 1.11 Normal and AD brain PET scan comparison [39] 

Healthy brain breaks down the excessive beta amyloid and prevent plaque formation 

whereas in Alzheimer’s disease case, those proteins begin to accumulate leading to the formation 

of insoluble plaques. Figure 1.12 [39] represents the hypothetical beta amyloid production from 

APP at neurons and consequent amyloid plaque formation.  

 

 

Figure 1.12 Aβ production from APP and plaque formation [39] 

Figure 1.13 [40] represents beta amyloid plaque formation via immunofluorescence 

technique. Cortical amyloid plaque stained with anti-Ab antibody 4G8. 
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Figure 1.13 Aβ plaque caused by Aβ deposits [40] 

Neurofibrillary tangles are insoluble twisted fibers consisting of tau protein, which is 

present in microtubule structure. Microtubule plays role in transport of nutrients and other 

substances inside the nerve cell. Abnormal tau protein structure in Alzheimer’s disease cause 

neurofibrillary tangle formation. Figure 1.14 [40] represents fibrillary tangles caused by tau 

protein aggreagates. Hippocampal neurons stained with anti-phosphorylated tau antibody AT8. 

 
Figure 1.14 Fibrillary tangles originated from tau aggregates [40] 

Alzheimer’s disease have different categories depending on the onset. Early onset AD 

patients are less than 5% of the AD cases. They are diagnosed before the age of 65. More than 

13% of individuals aged 65 years or older and 30-50% of people aged 80 years and older are 

diagnosed with AD. Those cases are referred as late onset Alzheimer’s disease, most commonly 

observed type (LOAD) [41].  
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CHAPTER 2 
 
 

LITERATURE INFORMATION AND GWAS RESULTS ABOUT 
ALZHEIMER’S DISEASE 

 
 
 

 This chapter mainly focuses on GWAS Analysis and literature information about 

Alzheimer’s Disease. AD linked genes and variations are presented in this chaper.  

2.1 Current Literature on AD and GWAS of Alzheimer’s Disease 

2.1.1 Overview of AD 

 Alzheimer’s disease can be categorized into two major forms;  

(i) strong familial clustering AD usually showing Mendelian disease transmission and early 

(before 65 years) or very early (before 50 years) age of onset  

(ii) no familial aggregation AD occurring after 65 years of age (late onset AD, LOAD) 

 A 2009 review regarding GWAS in AD mentions that rare and usually highly penetrant 

mutations in three genes (amyloid precursor protein-APP, presenilin 1-PSEN1 and presenilin 2-

PSEN2) contribute to aberration in beta amyloid (Aβ) production leading to plaque formation. 

Those mutations are thought to be the major cause of the early onset AD [42]. Various other 

associative genes remain to be identified for early onset AD, which accounts for less than 5% of 

all AD cases [42].  

 

2.1.2 Summary of GWAS of AD 

APOE (apolipoprotein E) is found to consistently influence disease risk since significant 

association with AD is observed in various GWAS. In addition, CLU (clusterin, also known as 

apolipoprotein J) gene involves an associative SNP which resides at the intronic region with no 

known function [43]. According to another study [44], that intronic SNP is in strong LD with a 

synonymous SNP located at exon 5 of the CLU gene (rs7982; His315His), which is thought to 

affect alternative splicing or expressional regulation of the transcript.  

Clusterin protein is predicted to bind soluble Aβ transporting it from plasma across the 

blood brain barrier [45]. APOE is predicted to transport Aβ in the opposite direction [46]. 

Clusterin together with APOE probably involve considerable roles in the regulation of cerebral 

Aβ levels and its transportation across the brain [42]. 
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A 2010 review points out that the identification of APP, PSEN1 and PSEN2 associations 

with early onset AD provide a clear overview of the pathopysiology of AD. Moreover, APOE is 

mentioned to be universally accepted risk factor for late onset AD. It is a component of senile 

plaques and binds Aβ. APOE is thought to play role in Aβ clearance and deposition in the brain. 

In addition, some other functions that are not related to Aβ are suggested for APOE such as 

isoform specific synaptogenesis and cognition, neurotoxicity, tau hyperphosphorylation, neuro- 

inflammation, and brain metabolism [47].  

Aβ is first cleaved from APP by β-secretase, followed by cleavage via γ-secretase 

complex. Presenilin is an essential component of the γ-secretase complex [47]. Amyloid cascade 

hypothesis which is mentioned briefly at Figure 1.8 involves contribution from elevated  

Aβ42/Aβ40 ratio or fibrillogenesis [48]. Aβ42 is referred as the toxic form of beta amyloid and 

its elevation influences inflammation, synaptic loss, ionic imbalance, and abnormal 

phosphorylation of proteins such as tau consequently leading to cell death and underlying clinical 

dementia [47].  

There are alternative hypotheses such that tau [49] or dominant negative loss of 

presenilin function [50] might involve additional pathophysiologic mechanisms underlying AD.  

A 2011 paper introduces a novel ‘endophenotype ’approach coupled with gene 

expression analysis for identification of associative genes with AD. Endophenotype concept was 

first introduced in 1966 for Drosophila to define phenotypes that are microscopic and internal 

[51]. Various genetic studies involving gene expression level endophenotypes related with 

disease risk suggest that this combined approach contribute to increase in power for gene 

discovery and understanding of their mode of action [51]. For a feature to be referred as an 

endophenotype, it should involve an association with the disease in the general population. 

Moreover, endophenotypes should influence detectable changes in the clinically unaffected but at 

risk subjects such as family members of patients [51]. For instance Aβ can be used as an effective 

endophenotype for a linkage study of LOAD. 

 Endophenotype approach is promising since there can be several disease associative 

variants that cause changes in gene expression levels. Such variants might be identified by 

combining gene expression endophenotypes with existing disease GWAS to; 

• identify novel disease genes and pathways  

• validate potentially valuable results from disease GWAS  

• estimate the mechanism of action of newly discovered disease genes  

With their high potential in associative variant studies, gene expression endophenotypes are 

expected to be preferred for neurodegenerative diseases in the years to come [51]. 

 Another 2011 paper points out three SNPs (rs744373, rs12989701 and rs7561528) at 

BIN1 (bridging integrator 1) locus  to be strongly associated with AD [38]. Moreover, Gleevec 

pathway is suggested to be candidate associative pathway linked with AD progression. Gleevec 
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is a cancer drug approved for the treatment of chronic myeloid leukemia. It was recently shown 

to reduce γ-secretase cleavage for APP [52] and to bind to a γ-secretase modulator [53]. Gleevec 

linked studies can yield valuable results if further validated about the potential mechanism and 

mode of action involved in AD [38].  

 A replication study of two GWAS [54, 55] confirmed the association of CLU (p = 8.5 × 

10−10), PICALM (phosphatidylinositol binding clathrin assembly protein) (p = 1.3 × 10−9) and 

CR1 (complement component (3b/4b) receptor 1 (Knops blood group)) loci (p = 3.7 × 10−9) [37]. 

ABCA7 (ATP-binding cassette transporter), MS4A (membrane spanning 4 domains subfamily 

A), CD2AP (CD2 associated protein), CD33(sialic acid binding immunoglobulin like lectin) and 

EPHA1 (ephrin receptor A1) are confirmed to be associated with LOAD via two GWA studies 

[56, 57]. The significant SNPs found and mapped to genes are represented below;  

• ABCA7 (rs3764650) (p = 5.0 × 10−21).  

• MS4A (rs4938933) (p = 8.2 × 10-12) 

• CD2AP (rs9349407) (p = 8.6 × 10-9) 

• EPHA1 (rs11767557) (p = 6.0 × 10-10) 

• CD33 (rs3865444) (p = 1.6 × 10-9) 

Those identified loci together with the new implicated pathways are summarized at Figure 2.1 

[58] and below; 

• Immune system function – CLU, CR1, ABCA7, MS4A, CD33, and EPHA1 

• Cholesterol metabolism – APOE, CLU and ABCA7 

• Aβ metabolism – APOE, CLU and ABCA7 

• Synaptic dysfunction and cell membrane processes – PICALM, BIN1, CD33, CD2AP 

and EPHA1 [58]. 

 Aβ might involve a modulatory effect on these new pathways as indicated by the blue 

arrows; 

 

 Figure 2.1 Pathways and genes associated with AD [58] 
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2.1.3 AD Databases Online 

AlzGene is a widely referred database for genome wide association study findings 

regarding Alzheimer’s disease [59]. It is a regularly updated database that provides a 

comprehensive and unbiased information regarding Alzheimer’s Disease genetic association 

studies and thus it serves as a valuable source to identify AD linked genes.  Meta-analyses are 

also available for all eligible polymorphisms with sufficient data. 

Appendix B provides all the genes and locus on human chromosomes found to be 

potentially associated with AD [59]. AD linkage regions on chromosomes are marked with red 

whereas ‘Top Results Gene’ with yellow. Top Results Gene list involves genes or loci having at 

least one variant representing a nominally significant summary odds ratio (OR) in the analysis of 

all studies, or those limited to samples of a specific ethnicity. There is a ranking system such that 

genes are ranked depending on the genetic variant with the best ‘overall HuGENet/Venice grade’ 

[59]. HuGENet/Venice grade can be summarized with three main categories for meta-analyzed 

associations in AlzGene database[59]; amount of evidence, replication consistency and protection 

from bias. 

 Ranking for the first category (amount of evidence) depends on the total number of 

minor alleles of cases and controls combined in the meta analysis. 

• ‘A’ grade is assigned when the total number > 1,000 

• ‘B’ grade is assigned when the total number is between 100 and 1,000 

• ‘C’ grade is assigned when the total number < 100 

 Ranking for the second category (replication consistency) depends on a inconsistency 

measure (I2) which describes the percentage of total variation across studies that is due to 

heterogeneity rather than chance, higher values imply higher inconsistency. 

• ‘A’ grade is assigned if I2 < 25% 

• ‘B’ grade is assigned if I2 is between 25–50% 

• ‘C’ grade is assigned if I2  > 50% 

 Ranking for the third category (protection from bias) depends on various potential 

sources of bias potentially affecting the association. Errors in phenotypes, genotypes, 

confounding (population stratification) and errors or biases at the meta-analysis level (publication 

and other selection biases) are examples for biases. 

• ‘A’ grade implies that there is probably no bias 

• ‘B’ grade that there is no demonstrable bias but important information is missing for its 

reliable prediction 

• ’C’ grade that there is evidence for potential or clear bias 
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For genes with identical grades, ranking is based on p-value, if their p-values are also identical 

then ranking is based on effect size (odds ratio) [59]. 

 AlzGenes is another database that depends on catalogue information from National 

Human Genome Research Institute (NHGRI) [6,60]. AD linked genes are classified into 6 

categories;  

• Cholesterol and lipoprotein-related 

• Cytokines 

• Oxidative stress 

• Nuclear receptor and related 

• Proteases 

• Miscellaneous 

    

 OMIM and GeneRIF are databases that involve valuable information about disease 

associations and genomic variations. They are also referred to acquire information about AD 

linked genes. 

2.1.4 AD Associated Gene List 

 After referring to various databases, a list that involves AD linked genes should be 

decided to objectively evaluate the results in terms of biological relevance while performing 

comparisons between METU-SNP and SPOT. Firstly, OMIM (Online Mendelian Inheritance in 

Man) entries are investigated and a gene is said to be AD linked if phenotype information is 

observed to involve Alzheimer’s Disease at the corresponding OMIM entry thus located at AD 

loci. Figure 2.2 represents the corresponding OMIM entry for a AD linked gene, APOE [61]. 

 

Figure 2.2 APOE OMIM entry [61] 
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 Final list of AD linked genes are retrieved from OMIM genes that involve AD 

phenotype entry (26 genes) together with the genes observed at AlzGenes and AlzGene databases 

(58 genes). Table 2.1 depicts the genes in AD loci and thus the AD linked genes list depending 

on 3 different databases. 

Table 2.1 84 Genes Selected For AD Linked Genes List 

Gene Symbol Gene Name 

A2M ALPHA-2-MACROGLOBULIN 

ABCA1 ATP-BINDING CASSETTE, SUB-FAMILY A (ABC1), MEMBER 1 

ACE ANGIOTENSIN I-CONVERTING ENZYME 

AD5 ALZHEIMER DISEASE, FAMILIAL 5 

AD6 ALZHEIMER DISEASE, FAMILIAL 6 

AD7 ALZHEIMER DISEASE, FAMILIAL 7 

AD8 ALZHEIMER DISEASE, FAMILIAL 8 

AD9 
 

ALZHEIMER DISEASE, FAMILIAL 9 

AD10 ALZHEIMER DISEASE, FAMILIAL 10 

AD11 ALZHEIMER DISEASE, FAMILIAL 11 

AD12 ALZHEIMER DISEASE, FAMILIAL 12 

AD13 ALZHEIMER DISEASE, FAMILIAL 13 

AD14 
 

ALZHEIMER DISEASE, FAMILIAL 14 

AD15 ALZHEIMER DISEASE, FAMILIAL 15 

AD16 ALZHEIMER DISEASE, FAMILIAL 16 

AGER ADVANCED GLYCOSYLATION END PRODUCT-SPECIFIC RECEPTOR 

ALDH2 ALDEHYDE DEHYDROGENASE 2 

APBB2 
AMYLOID BETA A4 PRECURSOR PROTEIN-BINDING, FAMILY B, 

MEMBER 2 

APOA1 APOLIPOPROTEIN A-I 

APOA4 APOLIPOPROTEIN A-IV 

APOC1 APOLIPOPROTEIN C-I 

APOC2 APOLIPOPROTEIN C-II 

APOC3 APOLIPOPROTEIN C-III 

APOE APOLIPOPROTEIN E 

APP AMYLOID BETA A4 PRECURSOR PROTEIN 

BIN1 BRIDGING INTEGRATOR 1 

BCHE BUTYRYLCHOLINESTERASE 

BLMH BLEOMYCIN HYDROLASE 

CBS CYSTATHIONINE BETA-SYNTHASE 

CCL2 CHEMOKINE, CC MOTIF, LIGAND 2 

CCR2 CHEMOKINE, CC MOTIF, RECEPTOR 2 
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Table 2.1 (cont.) 84 Genes Selected For AD Linked Genes List 

Gene Symbol Gene Name 

CD14 MONOCYTE DIFFERENTIATION ANTIGEN CD14 

CD36 CD36 ANTIGEN 

CETP CHOLESTERYL ESTER TRANSFER PROTEIN, PLASMA 

CFH COMPLEMENT FACTOR H 

CHRNA7 
CHOLINERGIC RECEPTOR, NEURONAL NICOTINIC, ALPHA 

POLYPEPTIDE 7 

CLU CLUSTERIN 

CR1 COMPLEMENT COMPONENT RECEPTOR 1 

CRP C-REACTIVE PROTEIN, PENTRAXIN-RELATED 

CST3 CYSTATIN 3 

CYP19A1 CYTOCHROME P450, FAMILY 19, SUBFAMILY A, POLYPEPTIDE 1 

ESR1 ESTROGEN RECEPTOR 1 

GNB3 GUANINE NUCLEOTIDE-BINDING PROTEIN, BETA-3 

GSTM1 GLUTATHIONE S-TRANSFERASE, MU-1 

GSTT1 GLUTATHIONE S-TRANSFERASE, THETA-1 

HFE HEMOCHROMATOSIS, HFE GENE 

HLA-A2 MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS I, A2 

HMGCR 3-HYDROXY-3-METHYLGLUTARYL-CoA REDUCTASE 

HMOX1 HEME OXYGENASE 1 

HTR6 5-@HYDROXYTRYPTAMINE RECEPTOR 6 

ICAM1 INTERCELLULAR ADHESION MOLECULE 1 

IL18 INTERLEUKIN 18 

IL1B INTERLEUKIN 1-BETA 

IL1RN INTERLEUKIN 1 RECEPTOR ANTAGONIST 

IL6 INTERLEUKIN 6 

LDLR LOW DENSITY LIPOPROTEIN RECEPTOR 

LIPA LIPASE A, LYSOSOMAL ACID 

LPA APOLIPOPROTEIN A 

LPL LIPOPROTEIN LIPASE 

LRP1 LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 1 

LRP6 LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 6 

MEF2A MADS BOX TRANSCRIPTION ENHANCER FACTOR 2, POLYPEPTIDE A 

MMP1 MATRIX METALLOPROTEINASE 1 

MMP3 MATRIX METALLOPROTEINASE 3 

MPO MYELOPEROXIDASE 

MTHFR 5,10-METHYLENETETRAHYDROFOLATE REDUCTASE 

NGB NEUROGLOBIN 
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Table 2.1 (cont.) 84 Genes Selected For AD Linked Genes List 

Gene Symbol Gene Name 

NOS3 NITRIC OXIDE SYNTHASE 3 

OLR1 LOW DENSITY LIPOPROTEIN, OXIDIZED, RECEPTOR 1 

PAXIP1 
PAX TRANSCRIPTION ACTIVATION DOMAIN-INTERACTING 

PROTEIN 1 

PICALM PHOSPHATIDYLINOSITOL-BINDING CLATHRIN ASSEMBLY PROTEIN 

PLAU PLASMINOGEN ACTIVATOR, URINARY 

PON1 PARAOXONASE 1 

PON2 PARAOXONASE 2 

PPARA PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-ALPHA 

PSEN1 PRESENILIN 1 

PSEN2 PRESENILIN 2 

PTGS2 PROSTAGLANDIN-ENDOPEROXIDE SYNTHASE 2 

SERPINE1 SERPIN PEPTIDASE INHIBITOR, CLADE E MEMBER 1 

SORL1 SORTILIN-RELATED RECEPTOR 

SREBF1 
STEROL REGULATORY ELEMENT-BINDING TRANSCRIPTION 

FACTOR 1 

TGFB1 TRANSFORMING GROWTH FACTOR, BETA-1 

TLR4 TOLL-LIKE RECEPTOR 4 

TNF TUMOR NECROSIS FACTOR 
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CHAPTER 3 
 
 

GWAS RESULTS AND COMPARISON OF AHP WITH OTHER 
PRIORITIZATION APPROACHES ON BIOLOGICAL 

RELEVANCE FOR ALZHEIMER’S DISEASE GENOTYPING 
DATA SETS 

 
 

3.1 Alzheimer’s Disease Genotyping Data Sets 

3.1.1 ADNI AD Genotyping Data 

 Whole genome association data for Alzheimer’s disease with the below properties was 

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [62];   

 

•  149 AD cases and 182 controls  

•  555.850 SNP-genotype fields from the Illumina 610Quad chip 

 

 The performance of our AHP based SNP prioritization system in terms of biological 

relevance is evaluated via comparison with SPOT. 

 

3.1.2 GenADA AD Genotyping Data 

 GenADA is a multi-site collaborative study with the contribution of GlaxoSmithKline 

Inc and nine medical centres in Canada aiming to associate variations in candidate genes with 

Alzheimer's disease phenotypes. Both patients with an existing diagnosis of AD and newly 

diagnosed patients are enrolled in this study. For that reason, clinical data was retrospectively or 

prospectively obtained on Day 1 of entry. Data is retrieved from the database of Genotypes and 

Phenotypes (dbGAP) in National Center for Biotechnology Information (NCBI) [63]. GenADA 

whole genome association data for Alzheimer’s disease involve the below properties; 

   

•  852 AD cases and 866 controls  

• 262264 SNP-genotype fields from the Affymetrix Mapping 250K chip 

 The performance of our AHP based SNP prioritization system is tested and compared 

with SPOT in terms of biological relevance. 
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3.2 GWAS 

3.2.1 GWAS Results of ADNI (p-value associations)  

 Initial quality control based filtering and preprocessing was performed by using the 

default thresholds of the system;  

 

• Minor Allele Frequency = 0.05 

• SNP Missingness Rate = 0.1 

• Individual Missingness Rate = 0.1 

• Hardy Weinberg Equilibrium = 0.001     

 

 After the quality control based filtering and preprocessing, GWAS is performed. As can 

be seen from Figure 3.1, p-value distribution of ADNI data involves a dispersed pattern with 

respect to chromosomes with SNPs rs4795895 and rs1233651 mapping to chromosome 17 and 

rs12457258 mapping to chromosome 18 having lowest p-values. 

 

Figure 3.1 ADNI AD genotyping data p-value distribution by chromosomes 
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3.2.2 GWAS Results of GenADA (p-value associations)  

 Initial quality control based filtering and preprocessing was performed by using the 

default thresholds of the system;  

• Minor Allele Frequency = 0.05 

• SNP Missingness Rate = 0.1 

• Individual Missingness Rate = 0.1 

• Hardy Weinberg Equilibrium = 0.001 

 After the quality control based filtering and preprocessing, GWAS is performed with a p-

value threshold of 0.05. As can be seen from Figure 3.2, p-value distribution of GenADA data 

involves a dispersed pattern with respect to chromosomes with SNPs  rs6980733 mapping to 

chromosome 8 and  rs17123958 mapping to chromosome 14 having lowest p-values. 

 

Figure 3.2 GenADA AD genotyping data p-value distribution by chromosomes 

3.3 AHP Prioritization 

3.3.1 AHP Prioritization Results for ADNI (combined p-value and AHP scores) 

 Combined p-value for genes and pathways were computed by using 0.05 p-value 

threshold for both Fisher’s combination test (genes) and Fisher’s exact test (pathways) to find 

significant genes and pathways [64]. AHP based prioritization for 500K SNPs was performed 

within 4 hours via HCP Tesla in which NVIDIA C2070 is installed.  

• 6 Gb GDDR5 RAM  

• 1.5 GHz Memory Speed  

• 144 Gb/sec Memory Bandwith 

 Table 3.1 depicts the outputs after combined p-value for genes are computed. Below is 

the Top 20 genes depending on their combined p-values and their OMIM associations are 
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represented. As can be seen from Table 3.1, 13 genes are OMIM associated. When combined p-

value approach is applied after GWAS, it does not detect any AD linked gene in its Top 100 gene 

list as can be seen from Appendix C. 

Table 3.1 Top 20 Genes Depending On The Combined p-values And Their OMIM Associations For ADNI 

Data 

Ranking Gene Combined p-value 
OMIM 

association 

1 SLC16A9 ~0.0 
 

2 RBFOX1 ~0.0 
 

3 CNTN5 ~0.0 Yes 

4 C6orf10 ~0.0 
 

5 KDM4C ~0.0 Yes 

6 RBMS3 ~0.0 Yes 

7 SLC9A7 ~0.0 Yes 

8 DSCAM ~0.0 Yes 

9 FHIT ~0.0 Yes 

10 LRP1B ~0.0 Yes 

11 ANKRD44 ~0.0 
 

12 DACH1 ~0.0 Yes 

13 SNX25 ~0.0 
 

14 FAM188B ~0.0 
 

15 CSMD1 ~0.0 Yes 

16 HS3ST4 ~0.0 Yes 

17 FER1L6 ~0.0 
 

18 NELL1 ~0.0 Yes 
19 ALDH1A2 ~0.0 Yes 
20 SUCLG2 ~0.0 Yes 

    

 Table 3.2 represents Top 20 SNP list after METU-SNP AHP based prioritization, their 

AHP scores and the AD linked genes they map. As can be seen from Table 3.2, 5 SNPs map to 

AD linked genes SORL1, ABCA1 and LDLR. 

Table 3.2 Top 20 SNPs After AHP Prioritization For ADNI Data 

Ranking SNP ID 
AHP 
score AD linked gene 

1 rs4651138 0.789991 

2 rs2070045 0.789166 SORL1 

3 rs2230806 0.757547 ABCA1 

4 rs4652769 0.75215 

5 rs3779870 0.737535 

6 rs10808738 0.728803 

7 rs4395923 0.728803 

8 rs4936637 0.728803 SORL1 

9 rs6424883 0.728803 

10 rs10752893 0.728803 
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Table 3.2 (cont.) Top 20 SNPs After AHP Prioritization 

For ADNI Data 

Ranking SNP ID 
AHP 
score AD linked gene 

11 rs9832203 0.728803 

12 rs895286 0.728803 

13 rs4358067 0.718534 

14 rs10857526 0.718534 

15 rs603634 0.718534 

16 rs10934675 0.715562 

17 rs1800464 0.714737 

18 rs13390226 0.703919 

19 rs1799898 0.703094 LDLR 

20 rs688 0.703094 LDLR 
 

3.3.2 AHP Prioritization Results for GenADA (combined p-value and AHP scores) 

 Combined p-value for genes and pathways were computed by using 0.05 p-value 

threshold for both Fisher’s combination test (genes) and Fisher’s exact test (pathways) to find 

significant genes and pathways [64]. AHP based prioritization for 250K SNPs was performed 

within 2 hours via HCP Tesla in which NVIDIA C2070 is installed. 

 Table 3.3 depicts the outputs after combined p-value for genes are computed. Below is 

the Top 20 genes depending on their combined p-values and their OMIM associations are 

represented. As can be seen from Table 3.3, 15 genes are OMIM associated.When combined p-

value approach is applied after GWAS, it detect only one AD linked gene (CD36) in its Top 100 

gene list marked in bold and can be seen at Appendix D. 

Table 3.3 Top 20 Genes Depending On The Combined P-values And Their OMIM Associations  

For GenADA Data 

 
Ranking Gene 

Combined p-
value OMIM association 

1 AGAP11 1,089181E-08 
2 C4orf18  1,187423E-08 
3 CPT2 2,232619E-08 Yes 
4 OR1L1 1,773873E-07 
5 NACC2 1,974952E-07 
6 MCPH1 2,484007E-07 Yes 
7 C9orf150 4,419189E-07 
8 PRSS1 4,765822E-07 Yes 
9 ESR2 7,396964E-07 Yes 
10 ARHGEF19 8,743196E-07 Yes 
11 STC1 8,987053E-07 Yes 
12 SMURF1 1,272100E-06 Yes 
13 CPZ 1,276079E-06 Yes 
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Table 3.3 (cont.) Top 20 Genes Depending On The Combined P-values And 

Their OMIM Associations For GenADA Data 

 
Ranking Gene 

Combined p-
value OMIM association 

14 MYPN 1,451700E-06 Yes 
15 

IFI30 1,649066E-06 Yes 
16 

DAP 1,937083E-06 Yes 
17 

GNAZ 1,997541E-06 Yes 
18 MRPS10 2,519949E-06 Yes 
19 PPT1 2,546921E-06 Yes 
20 HNRNPU 2,780977E-06 Yes 

    

 Table 3.4 represents Top 20 SNP list after METU-SNP AHP based prioritization, their 

AHP scores and the AD linked genes they map. As can be seen from Table 3.2, 5 SNPs map to 

AD linked genes MPO, APP and A2M. 

Table 3.4 Top 20 SNPs After AHP Prioritization For GenADA Data 

Ranking SNP ID 
AHP 
score AD linked gene 

1 rs7229 0.717355 

2 rs14531 0.715879 

3 rs4947 0.703094 

4 rs2759 0.683118 MPO 

5 rs6304 0.683118 

6 rs6324 0.681121 

7 rs6323 0.681121 

8 rs6305 0.681121 

9 rs13136 0.679514 

10 rs6314 0.669966 

11 rs6308 0.66725 

12 rs6313 0.665253 

13 rs3010 0.655025 

14 rs8951 0.654691 

15 rs1146 0.654374 APP 

16 rs761388 0.654374 

17 rs15966 0.654374 

18 rs669 0.645277 A2M 

19 rs12222 0.644756 

20 rs3761 0.644756 
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3.4 SPOT 

3.4.1 ADNI data 

 Table 3.5 represents Top 20 SNP list after SPOT prioritization for ADNI data, their 

AHP scores and the AD linked genes they map. As can be seen from Table 3.5, only one SNP 

map to an AD linked gene GNB3. 

Table 3.5 Top 20 SNPs After SPOT Prioritization For ADNI Data 

Ranking SNP ID AD linked gene 
1 rs4795895 
2 rs17365991 
3 rs3795263 
4 rs4426564 
5 rs2075650 
6 rs12605132 
7 rs9268368 
8 rs10941091 
9 rs667782 

10 rs885691 
11 rs1233651 
12 rs5442 GNB3 
13 rs12489170 
14 rs6729218 
15 rs13006848 
16 rs12457258 
17 rs6020624 
18 rs4935801 
19 rs3735080 
20 rs3862683 

 

3.4.2 GenADA data 

 Table 3.6 represents Top 20 SNP list after SPOT prioritization for GenADA data, their 

AHP scores and the AD linked genes they map. As can be seen from Table 3.5, none of the SNPs 

map to an AD linked gene. 

Table 3.6 Top 20 SNPs After SPOT Prioritization For GenADA Data 

Ranking SNP ID AD linked gene 
 

1 rs1062683 
2 rs3733472 
3 rs10252253 
4 rs11166412 
5 rs3812205 
6 rs17074644 
7 rs3739407 
8 rs6746030 
9 rs4687319 

10 rs3742261 
11 rs17593271 

12 rs1065035 
13 rs560659 
14 rs16966703 
15 rs4545143 
16 rs304230 
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Table 3.6 (cont.) Top 20 SNPs After SPOT 
Prioritization For GenADA Data 

 
Ranking SNP ID AD linked gene 

17 rs572846 
18 rs8041254 
19 rs6677080 
20 rs17067596 

 

3.5 Comparison of Prioritization Approaches on Biological Relevance 

3.5.1 ADNI data 

 Top 100 SNP list after METU-SNP analysis and AHP based prioritization of ADNI 

data, Top 100 SNP list after SPOT based prioritization, and the AD linked genes that they are 

mapped to are presented at Appendix E. The genes on the previously described AD linked genes 

list are marked in bold. Table 3.7 represents the comparison of AHP based prioritization, 

combined p-value approach and SPOT prioritization tool depicting the gene associations of Top 

100 SNP lists of them. For AHP based prioritization, SNPs are ranked depending on their AHP 

score and the resulting first 100 SNPs were analyzed based on their biological relevance and AD 

association. All Top 100 SNPs at the AHP list mapped to an OMIM associated gene at the 

Pubmed database and as can be seen from the Table 3.8, 18 out of 100 SNPs are found to be 

mapped to 6 AD linked genes (SORL1, ABCA1, CHRNA7, LDLR, APP and IL1A). 

 SPOT yields only 58 SNPs mapping to OMIM associated genes in the Top 100 SNP 

list after prioritization. There are 15 SNPs that do not even map to a gene. One gene is found to 

be AD linked in SPOT’s Top 100 list; it can detect only GNB3.  

 Combined p-value for genes Top 100 gene list involves 73 genes to be OMIM 

associated. This approach cannot identify any AD linked gene in its Top 100 gene list. 

 Consequently, both combined p-value and AHP integration in METU-SNP 

considerably increased the biological relevance of SNP prioritization compared to SPOT. Our 

AHP based prioritization algorithm pinpoints the Alzheimer Disease associated genes SORL1, 

ABCA1, CHRNA7, LDLR, APP and IL1A successfully as can be seen from the Table 3.8 and 

outperforms SPOT in biological relevance in terms of SNP prioritization for AD. 

Table 3.7 Comparison Of AHP Priorization, Combined P-value Approach And SPOT In Terms Of 

Biological Relevance And AD Linkage For ADNI Data 

Genes that AHP 
prioritized Top 100 SNPs 

mapped 

Top 100 genes according to 
combined p-value approach 

Genes that SPOT 
prioritized Top 100 

SNPs mapped  

OMIM 
gene 

AD loci OMIM gene AD loci OMIM gene AD 
loci 

100 18 73 - 58 1 
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Table 3.8 AD Linked Genes That AHP Based Prioritization Points Out For ADNI Data 

List of Genes on AD 
Loci within Top 100 

AHP prioritized  SNPs 

# of Associated SNPs 
on the Gene  

SORL1  6  

ABCA1 5  

CHRNA7  3  

LDLR  2  

APP  1  

IL1A  1  

       

 The remaining 82 SNPs at the Top 100 SNP list of AHP priorization was analyzed in 

terms of biological relevance further and discovered that 66 of them are mapped to candidate AD 

linked genes as the literature involves various studies regarding their association and possible 

linkage with AD. Table 3.9 represents the candidate AD linked genes that AHP prioritized Top 

100 SNPs mapped and the brief relevant literature information supporting their potential AD 

association. 

Table 3.9 Candidate AD Linked Genes That AHP Based Priorization Points Out For ADNI Data 

List of Genes 
linked to AD 

within Top 100 
AHP prioritized  

SNPs 

# of 
Associated 

SNPs on the 
Gene  

Relevant literature 

KALRN  23  predominantly expressed in hippocampus,involved in 
neuronal stability and growth,underexpressed in AD 
hippocampus  
[65]  

ERBB4  23  expressed by reactive astrocytes and microglia 
surrounding neuritic plaques in AD subjects,controls 
involve ERBB4 expression in distinct cellular 
compartments of hippocampal neurons [66]  

CTNNA3 8 located at the AD6 region which is associated with 
LOAD [67]. 2 intronic SNPs are found to be in high 
LD with Aβ42 levels in 10 extended LOAD families 
[68] 

CYP7B1 6  involved in 27-hydroxycholesterol metabolism and 
thus prevention of neurodegenerative accumulations. 
[69,70] Its expression is significantly lower in dentate 
neurons from AD [71]  

FGF1  2  elevated concentrations in the CSF of AD 
patients,which can be caused by increased generation 
of glial cells producing FGF-1. FGF-1 expression can 
represent an active response to neurodegeneration [72]  
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List of Genes 
linked to AD 

within Top 100 
AHP prioritized  

SNPs 

# of 
Associated 

SNPs on the 
Gene 

Relevant literature 

MME 2 significant decrease in mRNA levels in cerebral cortex 
of AD individuals compared to controls [73].  

MAOA  1  involved in the pathogenesis of mood disorders and 
AD. Its activity and gene expression are upregulated in 
different brain areas of AD patients. MAOA-VNTR 
polymorphism is associated with depression and AD 
[74]  

MRE11A  1  a DNA repair enzyme, expression reduced in AD 
cortex neurons, loss of the Mre11 complex may be 
associated with the AD pathogenesis. MRE11A 
underexpression might lead to neuronal depletion [75]  

 

 The biological relevance comparison with SPOT and METU-SNP outputs in terms of 

AD linked genes for the ADNI data can be summarized as follows; 

• AHP based prioritization performs better than only combined p-value approach and 

SPOT prioritization. 

• ~20% of AHP prioritized SNPs associated with AD loci and also >50% of AHP 

prioritized SNPs map to potential AD linked genes. 

• AHP prioritization identifies many potentially AD linked genes in addition to 6 AD 

linked genes in the Top 100 SNP gene association list after the prioritization of 555.850 

SNPs. KALRN, ERBB4, CTNNA3, CYP7B1,FGF1, MME, MAOA and MRE11A are 

hot candidate genes to be linked with AD as the literature involves several studies about 

their possible association with AD.  

• AHP prioritization of GWAS SNPs will be helpful to identify disease associated genes 

for downstream analysis. 

 

3.5.2 GenADA data 

Top 100 SNP list after METU-SNP analysis and AHP based prioritization of GenADA 

data, Top 100 SNP list after SPOT based prioritization, and the AD linked genes that they are 

mapped to are presented at Appendix F. The genes on the previously described AD linked genes 

list are marked in bold. 

 Table 3.10 represents the comparison of AHP based prioritization, combined p-value 

approach and SPOT prioritization tool depicting the gene associations of Top 100 SNP lists of 

them. For AHP based prioritization, SNPs are ranked depending on their AHP score and the 

resulting first 100 SNPs were analyzed based on their biological relevance and AD association. 

All Top 100 SNPs at the AHP list mapped to an OMIM associated gene at the PubMed database 

Table 3.9 (cont.) Candidate AD Linked Genes That AHP Based Priorization Points Out For  

ADNI Data 
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and as can be seen from the Table 3.10, 37 out of 100 SNPs are found to be mapped to 8 AD 

linked genes (APP, A2M, ACE, PTGS2, APOA1, LDLR, LPL and MPO). 

 SPOT yields only 75 SNPs mapping to OMIM associated genes in the Top 100 SNP 

list after prioritization. Moreover, 4 SNPs do not even map to a gene. The only AD linked gene 

that SPOT can detect in its Top 100 list is BIN1.  

 Combined p-value for genes Top 100 gene list involves 75 SNPs mapping to OMIM 

associated genes. This approach identify only CD36 as an AD linked gene in its Top 100 gene 

list. 

 Consequently, both combined p-value and AHP integration in METU-SNP 

considerably increased the biological relevance of SNP prioritization compared to SPOT for this 

AD genotyping data. Our AHP based prioritization algorithm pinpoints the Alzheimer Disease 

associated genes APP, A2M, ACE, PTGS2, APOA1, LDLR, LPL and MPO successfully as can 

be seen from the Table 3.11 and outperforms SPOT in biological relevance in terms of SNP 

prioritization for AD. 

Table 3.10 Comparison Of AHP Priorization, Combined P-value Approach And SPOT In Terms Of 

Biological Relevance And AD Linkage For GenADA Data 

Genes that AHP prioritized 
Top 100 SNPs mapped 

Top 100 genes according to 
combined p-value approach 

Genes that SPOT 
prioritized Top 100 SNPs 

mapped  

OMIM gene AD loci OMIM gene AD loci OMIM gene AD loci 

100 37 75 1 75 1 

 

Table 3.11 AD Linked Genes That AHP Based Prioritization Points Out For GenADA Data 

List of Genes on 
AD Loci within 
Top 100 AHP 

prioritized  SNPs 

# of Associated 
SNPs on the 

Gene  

APP 18 

A2M 7 

ACE 4 

PTGS2 3 

APOA1 2 

LDLR 1 

LPL 1 

MPO 1 

    

 The remaining 63 SNPs at the Top 100 SNP list of AHP priorization was analyzed in 

terms of biological relevance further and discovered that 10 of them are mapped to candidate AD 
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linked genes as the literature involves various studies regarding their association and possible 

linkage with AD. Table 3.12 represents the candidate AD linked genes that AHP prioritized Top 

100 SNPs mapped and the brief relevant literature information supporting their potential AD 

association. 

Table 3.12 Candidate AD Linked Genes That AHP Based Priorization Points Out For GenADA Data 

List of Genes 
linked to AD 
within Top 
100 AHP 

prioritized  
SNPs 

# of 
Associated 
SNPs on 
the Gene  

Relevant literature 

ESR2  3  Two SNPs (rs1271573 and s1256043) with T/T allele are more 
frequent in AD women compared to control woman subjects. 
(p-values are 0.012 and 0.016, respectively). Moreover, ESR2 
rs1271573 T/T and the s1256043 T/T genotypes involve a 
nearly 1.9–fold increase in the risk of AD in women [76]. 
 

UBB  3  A dinucleotide deletion in UBB leads to formation of 
polyubiquitin causing neuritic beading, impairment of 
mitochondrial movements, mitochondrial stress and neuronal 
degeneration in primary neurons. The polyubiquitin-linked 
clogging of mitochondria in neurites might contribute to axon 
injury and neuropathology in AD [77]. 
 

EEF2 2 EEF2 levels are significantly lower in AD subjects compared 
to controls. The decrease of total eEF2 is found to be 
significantly correlated with the progression of neurofibrillary 
degeneration [78]. 
 

MAOA  2  It is involved in the pathogenesis of mood disorders and AD. 
Its activity and gene expression are upregulated in different 
brain areas of AD patients. MAOA-VNTR polymorphism is 
associated with depression and AD [74]  

 

 The biological relevance comparison with SPOT and METU-SNP outputs in terms of 

AD linked genes for the GenADA data can be summarized as follows; 

• AHP based prioritization performs better than only combined p-value approach and 

SPOT prioritization. 

• ~40% of AHP prioritized SNPs associated with AD loci. 

• AHP prioritization identifies 8 AD linked genes (APP, A2M, ACE, PTGS2, APOA1, 

LDLR, LPL and MPO) in the Top 100 SNP gene association list after the prioritization 

of 262264 SNPs. Widely accepted AD marker gene APP is the most frequently observed 

gene in the Top 100 list as 18 SNPs are mapped, which further supports the strength of 

AHP based SNP prioritization in terms of biological relevance. 
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• 10 SNPs in the Top 100 list are mapped to potentially AD linked genes (ESR2, UBB, 

EEF2 and MAOA) as the literature involves various studies regarding their linkage and 

association with AD. 

 

 Glycolysis and gluconeogenesis, leukocyte  migration, axon guidance, actin filament 

polymerization, cell adhesion, DNA fragmentation during apoptosis, fatty acid metabolism and 

negative regulation of cell proliferation are common pathways residing at Top 100 pathways 

according to combined p-value for pathways that are observed in GWAS results of both data sets. 

 GWAS of both data with METU-SNP software and AHP based prioritization confirms 

the literature for Alzheimer Disease associated genes; A2M, ABCA1, ACE, APOA1, APP, 

CHRNA7, IL1A, LDLR, LPL, MPO, PTGS2, SORL1.  rs3781835 at SORL1, rs4343 and rs4351 

at ACE1 are SNPs with high AHP scores are also listed to be AD associated at PharmGKB 

database. Moreover, rs6313 has a high AHP ranking and maps to HTR2A gene.  CT and TT 

genotype of rs6313 indicates resistance to the treatment with antipsychotic drugs for AD patients 

presenting delusional symptoms. 

 The candidate novel AD linked genes proposed after the analysis of both data are; 

CTNNA3, CYP7B1, EEF2, ERBB4, ESR2, FGF1, KALRN, MAOA, MME, MRE11A and 

UBB. They are investigated in terms of their expression localization in Genatlas database [79]. 

All of the proposed genes involve expression in brain except MME, MAOA, UBB and EEF2. 

Thus, genes marked in bold are candidate novel AD linked genes that AHP based SNP 

prioritization points out.   
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CHAPTER 4 
 
 

EVALUATION OF USER DEFINED AHP PRIORITIZATION 
PARAMETERS : P-VALUE THRESHOLD OF SNPS AS A PRE-

PRIORITIZATION CUTOFF 
 
 
 

4.1 AHP prioritization performance of METU-SNP in different p-value thresholds for SNPs 

 METU-SNP is an integrative complex disease association analysis tool that allows 

analysis of a genotyping data in various aspects. In the METU-SNP workflow for genome-wide 

association study, statistical analysis and thus p-value computation via PLINK software is 

followed by combined p-value computation for genes and pathways. AHP prioritization is the 

next step contributing to biological relevance for GWAS. User can set the p-value threshold for 

SNPs to be selected for AHP prioritization, SNPs having p-values larger than the threshold is not 

AHP prioritized. After AHP based prioritization, performance of the selected SNP subset can be 

evaluated via k-fold cross validation provided at the ‘Performance’ tab of METU-SNP. WEKA 

(Waikato Environment for Knowledge Analysis) is implemented in METU-SNP for this 

performance and classification purposes. WEKA is a tool that provides machine learning 

algorithms implemented in Java. Various learning schemes such as decision trees, instance-based 

classifiers, support vector machines, Bayesian decision schemes are involved. Moreover, 

evaluation methods such as cross-validation, bootstrapping and attribute selection methods are 

also implemented in WEKA [80]. 

Below are some basic terms about machine learning; 

• Instance is an object at a space of fixed dimension 

• Each dimension is the attribute of an object, attributes are usually nominal, numerical or 

strings 

• A class attribute determines the appurtenance of the instance  

• Set of instances make up a dataset 

• Training set is used to build a classifier.Classifier building involves learning from 

instances to predict the class attribute of new ones. 

• Test set is used to evaluate a classifier 
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 Different p-value thresholds are selected to compare the performance of the AHP based 

prioritization. Depending on the accuracy measures, the pre-prioritization cutoff value is the 

optimal p-value that yields the best performance measures. 

 Prediction and classification performances of AHP based SNP lists are evaluated via k-

fold Cross Validation (CV) run using Naive Bayes and SMO (sequential minimal optimization) 

classifiers as the supervised learning scheme for the ADNI data. The following measures are used 

to estimate the prediction performances:  

• Specificity = TN / (FP + TN)  

• Sensitivity = TP / (TP + FN) 

• Accuracy = (TP + TN) / (P + N)  

• Negative Predictive Value (NPV) = TN / (TN + FN) 

• Precision = TP / (TP + FP) 

where TP denotes True Positive, TN denotes True Negative, FP denotes False Positive and FN 

denotes False Negative for a 2x2 confusion matrix. Table 4.1 represent the number of SNPs 

selected for AHP prioritization with respect to different p-value thresholds. The p-value threshold 

can be considered as maximum allowed false positive rate.  

Different p-value thresholds are used for SNP prioritization, then Top 20000 SNPs are 

chosen for cross validation tests to compare AHP based prioritization in terms of performance 

and classification measures in various p-value thresholds. 

    

Table 4.1 Number Of AHP Prioritized SNPs In Different p-value Thresholds For ADNI Data 

p-value threshold # of AHP prioritized SNPs 

0.05 24578 

0.1 50453 

0.2 101122 

0.3 152782 

0.4 205794 

0.5 256730 

0.6 308288 

0.7 359928 

0.8 412358 

0.9 465213 

1.0 516893 
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Table 4.2 depicts the 5-fold cross validation training results for different p-value 

threshold of SNPs with Naive Bayes as the supervised learning scheme and Table 4.3 represents 

the corresponding test results when 20000 SNPs are used. 

 

Table 4.2 5-fold Cross Validation Training Results For ADNI Data(Learning Scheme:Naive Bayes, 20000 SNPs) 

Correct classification (%) 

AHP (p-value threshold:0.05) 99.1416 

AHP (p-value threshold:0.1) 99.1416 

AHP (p-value threshold:0.2) 99.1416 

AHP (p-value threshold:0.3) 99.1416 

AHP (p-value threshold:0.4) 98.2833 

AHP (p-value threshold:0.5) 96.9957 

AHP (p-value threshold:0.6) 94.4206 

AHP (p-value threshold:0.7) 94.4206 

AHP (p-value threshold:0.8) 93.9914 

AHP (p-value threshold:0.9) 93.9914 

AHP (p-value threshold:1.0) 92.7039 
    

Table 4.3 5-fold Cross Validation Test Results For ADNI Data(Learning Scheme:Naive Bayes, 20000 SNPs) 

 
Specificity Sensitivity Accuracy NPV Precision 

AHP (p-value threshold:0.05) 0.0769231 0.8695652 0.44898 0.4 0.454545 

AHP (p-value threshold:0.1) 0.0769231 0.8695652 0.44898 0.4 0.454545 

AHP (p-value threshold:0.2) 0.0769231 0.8695652 0.44898 0.4 0.454545 

AHP (p-value threshold:0.3) 0.1153846 0.9565217 0.510204 0.75 0.488889 

AHP (p-value threshold:0.4) 0.0769231 0.9130435 0.469388 0.5 0.466667 

AHP (p-value threshold:0.5) 0.1923077 0.8695652 0.510204 0.63 0.487805 

AHP (p-value threshold:0.6) 0.1923077 0.826087 0.489796 0.56 0.475 

AHP (p-value threshold:0.7) 0.153846154 0.826086957 0.469387755 0.5 0.463415 

AHP (p-value threshold:0.8) 0.1538462 0.8695652 0.489796 0.57 0.47619 

AHP (p-value threshold:0.9) 0.1538462 0.8695652 0.489796 0.57 0.47619 

AHP (p-value threshold:1.0) 0.1923077 0.826087 0.489796 0.56 0.475 

 

Another supervised learning scheme, SMO(sequential minimal optimization) is used for 

cross validation tests. Table 4.4 represents the 5-fold cross validation training results for different 

p-value threshold of SNPs with SMO as the supervised learning scheme when 20000 SNPs are 

used. Table 4.5 summarizes the corresponding test results.  
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Table 4.4 5-Fold Cross Validation Training Results For ADNI Data(Learning Scheme:SMO, 20000 SNPs) 

Correct classification (%) 

AHP (p-value threshold:0.05) 100 

AHP (p-value threshold:0.1) 100 

AHP (p-value threshold:0.2) 100 

AHP (p-value threshold:0.3) 99.1416 

AHP (p-value threshold:0.4) 98.7124 

AHP (p-value threshold:0.5) 97.8541 

AHP (p-value threshold:0.6) 96.1373 

AHP (p-value threshold:0.7) 96.1373 

AHP (p-value threshold:0.8) 96.1373 

AHP (p-value threshold:0.9) 95.7082 

AHP (p-value threshold:1.0) 95.279 
 

Table 4.5 5-Fold Cross Validation Test Results For ADNI Data(Learning Scheme:SMO, 20000 SNPs) 

Specificity Sensitivity Accuracy NPV Precision 

AHP (p-value threshold:0.05) 0.0769231 1.0 0.510204 1.0 0.489362 

AHP (p-value threshold:0.1) 0.0769231 1.0 0.510204 1.0 0.489362 

AHP (p-value threshold:0.2) 0.0769231 1.0 0.510204 1.0 0.489362 

AHP (p-value threshold:0.3) 0.1153846 1.0 0.530612 1.0 0.5 

AHP (p-value threshold:0.4) 0.1923077 0.9565217 0.55102 0.83 0.511628 

AHP (p-value threshold:0.5) 0.2692308 0.9130435 0.571429 0.78 0.525 

AHP (p-value threshold:0.6) 0.2692308 0.9130435 0.571429 0.78 0.525 

AHP (p-value threshold:0.7) 0.2692307 0.9130435 0.571428 0.777 0.525 

AHP (p-value threshold:0.8) 0.3076923 0.9130435 0.591837 0.8 0.538462 

AHP (p-value threshold:0.9) 0.2692308 0.9130435 0.571429 0.78 0.525 

AHP (p-value threshold:1.0) 0.3076923 0.8695652 0.571429 0.73 0.526316 
 

For both Naive Bayes and SMO cross validation tests, various p-value thresholds are 

applied,  our analysis results are presented in Table 4.3 and 4.5. As expected lower the p-value of 

SNPs considered for the analysis, higher the classification measures.  

A guideline for the users on how to choose p-value parameter before prioritization 

depending on the goal of their study is discussed in Chapter 6. 
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CHAPTER 5 
 
 

EVALUATION OF USER DEFINED AHP PRIORITIZATION 
PARAMETERS : AHP SCORE THRESHOLD OF SNPS AS A 

POST-PRIORITIZATION CUTOFF 
 
 
 

This chapter is mainly composed of AHP score cutoff estimation for two AD genotyping 

data depending on biological relevance measures. AHP score distribution of the SNPs after AHP 

prioritization is determined and as a post-prioritization cutoff value, AHP score threshold is 

decided depending on biological relevance measures of SNP list based on AHP score ranking. 

 

5.1 AHP score distribution of the AD genotyping data after AHP based prioritization 

As mentioned in Chapter 3, two genotyping data are used for this study. ADNI 

genotyping data is a relatively small dataset with 149 AD cases and 182 controls whereas 

GenADA data is a quite large dataset with 852 AD cases and 866 controls. The former study 

involves ~500K SNPs while the latter involves ~250K SNPs. After AHP prioritization is 

performed for all SNPs in the datasets, AHP score distribution of SNPs are determined and AD 

linkage ratios are investigated as the most pronounced biological relevance indicator. AD linkage 

ratio is the ratio of SNPs mapping to AD linked genes to the total number of SNPs at a specific 

AHP score range. For instance if there are 10 SNPs mapping to AD linked genes out of 100 

SNPs, the AD linkage ratio is said to be 0.1. Depending on AD linkage ratio, AHP score cutoff is 

estimated for those genotyping data as post-prioritization cutoff value, implying that after this 

cutoff value AD linkage ratio and thus biological relevance representation of SNPs significantly 

decrease. 

 

5.1.1 ADNI data  

AHP prioritization is performed for all the SNPs in the data via choosing the p-value 

threshold as 1.0. Table 5.1 represents the AHP score distribution and AD linkage ratio after all 

500K SNPs are AHP prioritized. AHP scores of SNPs range between 0.0 and 0.8. 
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Table 5.1 AHP Score Distribution And Ratio Of SNPs Mapping To AD Linked Genes For ADNI Data 

AHP score range # of SNPs # of SNPs mapped to AD linked genes AD linkage ratio 

AHP>0.7 21 5 0.2380952 

0.6<AHP<0.7 1181 295 0.2497883 

0.5<AHP<0.6 1429 101 0.0706788 

0.4<AHP<0.5 50800 199 0.003917323 

0.3<AHP<0.4 48856 34 0.0006959227 

0.2<AHP<0.3 48152 5 0.0001038378 

0.1<AHP<0.2 44007 0 0.0 

0.0<AHP<0.1 359486 0 0.0 

 

As can be seen from Figure 5.1, the AHP score distribution for the ADNI data involves 

an accumulation in AHP score range between 0.0 and 0.1.  

 

 

Figure 5.1 AHP score distribution of ADNI genotyping data after all 500K SNPs are prioritized 

 

5.1.2 GenADA data 

 AHP prioritization is performed for all the SNPs in the data via choosing the p-value 

threshold as 1.0. Table 5.2 represents the AHP score distribution and AD linkage ratio after all 

250K SNPs are AHP prioritized. AHP scores of SNPs range between 0.0 and 0.7.  
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Table 5.2 AHP Score Distribution And Ratio Of SNPs Mapping To AD Linked Genes For GenADA Data 

AHP score range # of SNPs # of SNPs mapped to AD linked genes AD linkage ratio 

AHP>0.6 66 26 0.393939394 

0.5<AHP<0.6 432 141 0.326388889 

0.4<AHP<0.5 2094 143 0.068290353 

0.3<AHP<0.4 8471 64 0.007555188 

0.2<AHP<0.3 10315 5 0.000484731 

0.1<AHP<0.2 8515 0 0 

0.0<AHP<0.1 232371 0 0 

 

As can be seen from Figure 5.2, the AHP score distribution for the ADNI data involves 

an accumulation in AHP score range between 0.0 and 0.1. 

 

 

Figure 5.2 AHP score distribution of GenADA genotyping data after all 250K SNPs are prioritized 

 

5.2 Post-priorization cutoff estimation for AD genotyping data SNPs 

5.2.1 ADNI data 

AD linkage ratio is considerably high for SNPs having AHP score higher than 0.6 as can 

be seen clearly from Figure 5.3. After an AHP score of 0.5, AD linked gene frequency for SNPs 

significantly lowers and eventually becomes 0.0. AHP score cutoff as a post-prioritization cutoff 

value for this data can be said to be 0.5. SNPs having AHP score higher than 0.5 are potential 
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associative SNPs since considerable percentage of them map to AD linked genes thus for this 

dataset, SNPs residing at the AHP score range higher than 0.5 can be interpreted as biologically 

relevant and meaningful SNPs.         

 

 
Figure 5.3 AD linkage ratio of SNPs in different AHP score ranges for ADNI data 

 

5.2.2 GenADA data 

For this dataset, AD linkage ratio is considerably high for SNPs with AHP scores higher 

than 0.5. Figure 5.4 depicts the AD linkage ratio for SNPs in different AHP score ranges. AHP 

score cutoff as a post-prioritization cutoff value for this data can be said to be 0.4 since AD 

linked gene frequency for SNPs significantly lowers after AHP score of 0.4. Considerable 

percentage of SNPs having AHP score higher than 0.4 map to AD linked genes. For GenADA 

data, SNPs having AHP score higher than 0.4 can be interpreted as biologically relevant and 

meaningful SNPs. 

ADNI data AD linkage ratio of SNPs 
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Figure 5.4 AD linkage ratio of SNPs in different AHP score ranges for GenADA data 

 
5.2.3 AHP score cutoff classification performance for ADNI data 

Classification performances in different AHP score ranges are also investigated for 

ADNI data after AHP prioritization to further estimate the post-prioritization cutoff value. Four 

AHP score ranges are determined as high, medium, low, very low and 5-fold cross validation 

tests are performed in those ranges by using 20000 SNPs. In order to perform classification 

comparison in equal conditions, AHP score increments of 0.1 are taken into account and the Top 

20.000 SNP in each AHP score range is considered for the cross validation tests. For the high 

AHP score range, SNPs having AHP scores between 0.4 and 0.5, for the medium AHP score 

range SNPs having AHP scores between 0.3 and 0.4,  for the low AHP score range SNPs having 

AHP scores between 0.2 and 0.3, for the very low AHP score range SNPs having AHP scores 

between 0.1 and 0.2 are considered. Table 5.3 depicts the test results in which Naive Bayes is 

used as the learning scheme whereas Table 5.4 depicts the test results in which SMO is used as 

the learning scheme. Both results imply that high AHP score range yields better performance 

measures. Thus, AHP score cutoff in the range of 0.4 and 0.5 is further supported for the ADNI 

data. 

 

 

 

 

  

GenADA data AD linkage ratio of SNPs 
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Table 5.3 5-Fold Cross Validation Test Results In Different AHP Score Ranges For ADNI Data(Learning 

Scheme:Naive Bayes, 20000 SNPs) 

Specificity Sensitivity Accuracy NPV Precision 

High AHP score (0.4<AHP<0.5) 0.7692308 1.0 0.877551 1.0 0.793103 
 
Medium AHP score (0.3<AHP<0.4) 0.3846154 0.9130435 0.632653 0.83 0.567568 
 
Low AHP score (0.2<AHP<0.3) 0.1923077 0.8695652 0.510204 0.63 0.487805 
 
Very Low AHP score (0.1<AHP<0.2) 0.3846154 0.8695652 0.612245 0.77 0.555556 

 
Table 5.4 5-Fold Cross Validation Test Results In Different AHP Score Ranges For ADNI Data(Learning 

Scheme:SMO, 20000 SNPs) 

Specificity Sensitivity Accuracy NPV Precision 

High AHP score (0.4<AHP<0.5) 0.6923077 1.0 0.836735 1.0 0.741935 
 
Medium AHP score (0.3<AHP<0.4) 0.4230769 0.9565217 0.673469 0.92 0.594595 
 
Low AHP score (0.2<AHP<0.3) 0.1153846 0.8695652 0.469388 0.5 0.465116 
 
Very Low AHP score (0.1<AHP<0.2) 0.3461538 0.826087 0.571429 0.69 0.527778 
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CHAPTER 6 
 
 

CONCLUSION AND FUTURE WORK 
 
 
 

6.1 Discussion 

 Our main focus in this study was the evaluation of  recently introduced AHP based SNP 

prioritization software in terms of biological relevance and performance measures by comparing 

its outputs with that of another SNP prioritization tool, SPOT. Two Alzheimer’ s Disease (AD) 

genotyping data, ADNI and GenADA,  are used in this study. Major aim of the AHP based SNP 

prioritization approach is to establish a strong connection between statistical analysis and 

biological relevance for a GWA study.  

Chapter 1 begins with a brief biological background followed by genome wide 

association studies and SNP prioritization terms and tools. Major drawback of a GWA study is 

that it does not provide considerable biological relevance, it mainly focuses on statistical analysis 

and thus p-value computations. Widely used SNP prioritization tools are highly dependent on 

statistical analysis side rather than biological relevance. It is thus essential to eliminate this 

bottleneck of GWAS by boosting importance to biological relevance. Final part of this chapter 

focuses on the literature review of the AD.  

Chapter 2 mainly involves GWA studies regarding Alzheimer’s Disease and relevant 

literature information. Various genes and loci are found out to be associated  with AD, those are 

clearly presented at Chapter 2 and selection of AD linked genes for the comparision list is 

described. Literature screening is performed and various databases are investigated to provide a 

reliable AD linked gene list We have build a unique AD linked gene list by integrating data from 

OMIM, AlzGene and AlzGenes databases. Utilizing this list allowed us to evaluate the biological 

relevance of the AHP prioritization results , independently from the GeneRIF data for SNP-gene-

disease associations, AHP algorithm based on. 

Chapter 3 focuses on AHP based SNP prioritization comparison with SPOT in terms of 

biological relevance with the GWAS results from both AD genotyping data. It is shown in 

Chapter 3 that, recently introduced AHP based SNP prioritization outperforms SPOT for both 

AD genotyping data in terms of biological relevance. Top 100 SNPs of the AHP list yield a much 

higher AD linkage ratio than that of the state of the art competitor application SPOT.  
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Next two chapters describes the  determination of user defined performance parameters 

for AHP based SNP prioritization by using two approaches; pre-prioritization cutoff value (p-

value threshold) estimation and post-prioritization cutoff value (AHP score threshold) 

estimations. Chapter 4 focuses on the former. p-value threshold determines ratio of SNPs to be 

selected for prioritization. Various p-value thresholds are tested and classification measures such 

as sensitivity, specificity, NPV and accuracy are compared at each p-value level for AHP based 

prioritization. Depending on our experience gained during these analysis we can suggest a guide 

for reserchers on how to choose appropriate p-value threshold depending on the goal of their 

experiment. Conservative p-value choice are suggested for focused targeted biomarker 

identification research, whereas moderate to less conservative  p-values are suggested for larger 

scale association studies to investigate gene- pathway association results and building biological 

networks in order to reveal underlying etiology and novel association for the disease under study.  

Chapter 5 involves AHP score cutoff  value estimation as a post-prioritization cutoff. 

After AHP based prioritization is performed, SNPs are checked in terms of the genes they 

mapped. After a certain AHP score, AD linkage ratio of SNPs begins to decline significantly. 

Cutoff is defined in where a sharp decline in the AD linkage ratio occurs. Post-prioritization 

cutoff values are proposed for both AD genotyping data depending on our observations.  AD 

linkage ratio of SNPs, which is the ratio of SNPs mapping to AD linked genes to the total number 

of SNPs in a certain AHP score range determines the AHP score cutoff value. AHP score 

distribution and the ratio of SNPs mapping to AD linked genes are investigated for two AD 

genotyping data. ADNI data yields 0.5 AHP score as the cutoff value whereas GenADA data 

yields 0.4 AHP score as the cutoff value since the AD linkage ratio sharply decline at AHP 

scores lower than those values. Moreover, classification performances are investigated in various 

AHP score ranges for ADNI data and the results further support the AHP score cutoff proposed 

since high AHP score range yields the best classification performance. For both data, the top 

~2500 SNPs at the AHP ranking seem to carry the majority of the biological relevance. 

Researchers focusing on those data should put emphasis on the top 2500 SNPs to identify 

potential associative SNPs with AD.  

6.2 Future Work 

 AHP score cutoff as the post-prioritization cutoff value should be investigated on other 

genotyping data sets to validate the findings at Chapter 5. AHP score of 0.5 seems as the 

common AHP score cutoff value for both datasets and a generalization for this suggestion can be 

defined after application of the AHP score cutoff value estimation strategy described in Chapter 5 

on other data sets. Immediate candidate studies that are already under examination by other 

researchers in our group are GWS 16 RA data, HÜTF JIA, szhoprenia data.  

 The integrated METU-SNP database involves SNP information back in 2008. It is build 

on dbSNP 128, where today NCBI supports the newer version build db132. Our group is 
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developing the iSNP, which will be an Integrated, Automatically Updated SNP Database Server 

Over Web and it is scheduled to be finalized by December 2011. Analysis of the both AD 

Genotying dataset with METU-SNP and AHP prioritization approach that runs on the up-to-date 

iSNP database can confirm the finding of this study and might exploit new and novel SNP-gene-

disease associations for AD.   

 In this study we have suggested association of various SNPs that map to AD linked 

genes or potential candidate genes supported by the literature. Most promising SNP sets should 

be selected for further experimental validation to prove these associations of the corresponding 

genes with AD, which can then be utilized as SNP biomarker for the prediction or early diagnosis 

of AD.  Additionally new experimental  studies should be designed to be able to validate the 

association of novel SNP-gene and pathways suggested in our study with AD and to exploit the 

biological networks and underlying etiology of AD.  

6.3 Conclusions 

 In this study, two independent Alzheimer’s Disease genotyping data are used and AHP 

based SNP prioritization approach is tested on them. The integrated system called METU-SNP 

presents a firm linkage between statistical analysis and biological relevance as proven by the 

corresponding comparisons to the most widely referred SNP prioritization tool, SPOT. 

Performance parameters for AHP based prioritization are investigated as pre-

prioritization (p-value cutoff) and post-prioritization (AHP score cutoff). Potential users of 

METU-SNP studying on those data are provided guidelines on  p-value selection and  AHP score 

cutoff value determination in order to define the biologically most relevant SNPs with AHP 

scores above the cutoff for both AD Genotyping data sets. 

As presented here METU-SNP is a powerful tool for GWAS of SNP Genotyping data 

with a novel AHP based prioritization algorithm implemented, which can lead to discovery of 

new associations at SNP, gene and pathway level. In near future, we expect that these new 

associations described through GWAS here and in other studies will lead to development of 

personalized medicine approaches with application in pharmacogenomics and 

psychopharmacology. 
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APPENDICES 

 

APPENDIX A: GWAS TERMINOLOGY 

 

 

Bayes’ factors: Alternative approach for hypothesis testing similar to likelihood ratio tests: prior 

and posterior probabilites are involved, strength of the evidence is measured in favour of one 

model rather than the other. 

Case–control design: Primary comparison is performed between case and control subjects, 

former are observed to involve the phenotype of interest and predicted to have a high prevalence 

of susceptibility alleles for that trait, latter do not have the phenotype of interest and considered 

to have a lower prevalence of susceptibility alleles. 

Cochran–Armitage test: A genotype-based contingency-table test for association suitable for the 

detection of trends across ordinal genotypes. It aims to assess for the presence of an association 

between a variable with two categories and a variable with k categories. It is often used as a 

genotype-based test for case-control genetic association studies. 

Common SNPs: They involve a frequency greater than or equal to 5%. There are approximately 

10 million common SNPs in the human genome and approximately 2.8 million on the current 

HapMap. Common SNPs are the main targets of GWA studies. 

Common variant-common disease hypothesis: Common SNPs contribution of genetic risk to the 

formation and predisposition of diseases. 

Complex disease: It occurs due to various genetic and environmental factors. Interaction of 

multiple factors is involved. 

Copy number variant (CNV): A type of a variation in a genome in which the result is a departure 

from the expected diploid makeup of a DNA sequence. Deletion or duplication in a chromosomal 

segment indicates a copy number variation. Other structural variants are inversions and 

translocations. 

Cryptic relatedness: The residual degrees of relatedness among GWAS samples can violate the 

independence assumptions of standard statistical techniques. 

DNA pooling approaches: Estimates of allele frequencies originated from pools of DNA 

acquired from multiple subjects rather than individual DNA samples are used in this approach. 
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False-positive report probability: The probability that a reported association between a trait of 

interest and a genetic variant is not true. 

Family-based association methods: Association studies is performed within families, this 

approach provides a protection from population substructure with a cost of reduced sensitivity. 

Frequentist: This approach uses p-values and combines them with hypothesis testing to make 

statistical inferences. It aims to draw conclusions from statistical samples. 

Genome-wide association studies: Genetic markers capturing a substantial proportion of 

common variation is typed in a set of DNA samples that are informative for a trait or disease of 

interest. Major aim is to map susceptibility variants through the associations between genotype 

frequency and trait status. 

Global allele frequency: Its distribution is essential for GWAS for two main reasons. First, the 

frequency of a trait-associated allele determines the degree it can contribute to variability in its 

phenotype in a given population. This is particularly true for SNPs that contribute directly to 

phenotypic variation rather than tagging causative variants. Second, large allele frequency 

differences between populations for trait-associated SNPs may indicate that selection has acted 

upon the trait.  

Haplotype: a set of SNPs on a single chromatid that are statistically associated 

Haplotype-based methods: They rely on the relationship between the distribution of estimated 

haplotype and trait status. 

Hardy–Weinberg equilibrium (HWE): It represents the relationship between genotype and allele 

frequencies dependent on random mating in a stable population in the absence of selection, new 

mutations and gene flow.Departures from equilibrium can emphasize genotyping errors. 

Heritability: It can be defined as the proportion of the phenotype variance that is due to genes, 

estimated from risks to twins and other relatives. 

Imputation methods: They focus on filling in missing genotype data using a sparse set of 

genotypes and a scaffold of linkage disequilibrium relationships. Imputation involves the use of 

additional information to predict missing values in a sample. 

Informative missingness: Nonrandom missing data pattern with repsect to both genotype and 

trait status might lead to misleading associations in the analysis of the available genotypes. 

Linkage disequilibrium (LD): Alleles at nearby variants might be allocated to individual 

chromosomes which can be caused by recent mutation, genetic drift or selection, leading to 

correlations between genotypes at closely linked markers. Some combinations of SNP alleles 

occur more or less frequently in a population than would be expected from a random formation 

of haplotypes. SNPs that are in high LD with their neighbors tag larger regions than do SNPs that 

are not in LD with surrounding variants. The former are more likely to mark a genomic region 

contaning a causative variant for a particular trait. 



67 
 

Mendelian disease: Type of disease that is caused by a usually rare mutation in DNA sequence 

on one (dominant) or both (recessive) of an individual’s pair of chromosomes. 

Mendelian randomization: It makes it possible to test for a causal relationship between two 

phenotypes involving observational associations, but are subject to confounding. Random 

segregation of susceptibility alleles at meiosis is used to explore causality in a model that is freed 

from most sources of confounding. 

Minor allele frequency: It is the frequency of the less common allele. SNPs with MAF greater 

than 5% are the targets of HapMap project. Trait-SNP associations that involve SNPs with high 

MAF are more prone to be detected by GWA studies. 

Misclassification bias: It is due to incorrectly assignment of individuals to the relevant group in a 

case-control study. For instance, some individuals in the control group might meet the criterias to 

be case subjects or vice versa. 

Multiple rare variant hypothesis: Some of the rare SNPs might involve genetic risk to diseases, 

especially if they are located in protein coding or gene regulatory regions. 

Pleiotropy: A single allele might affect several distinct aspects of the phenotype of an organism, 

often traits not previously thought to be related. 

Population stratification: Different ancestral and demographic histories among the samples 

might lead to a misclassification that, markers which are informative for them might be 

confounded with disease status and lead to artificial associations. 

Quantile-quantile plot (Q-Q plot): A diagnostic plot comparing the distribution of observed test 

statistics with the distribution expected under the null. 

Rare SNPs: They are in a frequency of less than 1%. The ones at the coding regions are more 

harmful than those at the other regions of the genome. 

Selection bias: It arises due to the fact that the samples ascertained for the study, particularly 

controls might not represent the wider population that they are expected to represent. 

Signal intensity (cluster) plots: Raw intensity data plots for individual variants generated by the 

genotyping platform. They provide a useful visual diagnostic to estimate the data quality of the 

genotyping data since those plots represent the extent to which the various genotypes can be 

discriminated. 

SNP: Specific position on the genome where chromosomes carry different nucleic acids. There 

are approximately 15 million SNPs with frequency ≥1%. HapMap project involves about 4 

million of them. 
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APPPENDIX B: GENES AND LOCUS ON HUMAN 
CHROMOSOMES FOUND TO BE POTENTIALLY 
ASSOCIATED WITH AD 
 
 
 

  

Published AD candidate genes and locus (chromosomes 1 and 2) 
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Published AD candidate genes and locus (chromosomes 3 and 4) 
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Published AD candidate genes and locus (chromosomes 5 and 6) 
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Published AD candidate genes and locus (chromosomes 7 and 8) 
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Published AD candidate genes and locus (chromosomes 9 and 10) 
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Published AD candidate genes and locus (chromosomes 11 and 12) 
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Published AD candidate genes and locus (chromosomes 13 and 14) 
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Published AD candidate genes and locus (chromosomes 15 and 16) 
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Published AD candidate genes and locus (chromosomes 17 and 18) 



77 
 

 
Published AD candidate genes and locus (chromosomes 19 and 20) 
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 Published AD candidate genes and locus (chromosomes 21 and 22) 
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Published AD candidate genes and locus (chromosome X) 
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APPENDIX C: TOP 100 GENES DEPENDING ON THE 

COMBINED P-VALUES AND THEIR OMIM ASSOCIATIONS 

FOR ADNI DATA 

 

Ranking Gene Combined p-value 
OMIM 

association 

1 SLC16A9 ~0.0 
 

2 RBFOX1 ~0.0 
 

3 CNTN5 ~0.0 Yes 

4 C6orf10 ~0.0 
 

5 KDM4C ~0.0 Yes 

6 RBMS3 ~0.0 Yes 

7 SLC9A7 ~0.0 Yes 

8 DSCAM ~0.0 Yes 

9 FHIT ~0.0 Yes 

10 LRP1B ~0.0 Yes 

11 ANKRD44 ~0.0 
 

12 DACH1 ~0.0 Yes 

13 SNX25 ~0.0 
 

14 FAM188B ~0.0 
 

15 CSMD1 ~0.0 Yes 

 
16 

HS3ST4 ~0.0 Yes 

17 FER1L6 ~0.0 
 

18 NELL1 ~0.0 Yes 

19 ALDH1A2 ~0.0 Yes 

20 SUCLG2 ~0.0 Yes 

21 LINGO2 ~0.0 Yes 
22 KHDRBS2 ~0.0 Yes 
23 ADAMTS12 ~0.0 Yes 

24 MYO16 1.0559729726876105E-13 
 

25 PSD3 1.1478770545894033E-13 
 

26 NAALADL2 2.8086915382032135E-13 Yes 

27 KCNC2 5.097764790237947E-13 Yes 

28 SYT16 5.635802661215643E-13 Yes 

29 ODZ4 8.235055126059465E-13 Yes 

30 UBE2F 9.52179225019045E-13 
 

31 THSD7B 1.220787352428633E-12 
 

32 IL2RA 1.7212225243400452E-12 Yes 

33 SLC9A11 2.295709207450806E-12 
 

34 C6orf105 2.3931693941333888E-12 
 

35 PTGDR 2.5250913485194445E-12 Yes 
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36 MDGA2 2.8231664353972757E-12 Yes 

37 CYP7B1 2.9844193338157977E-12 Yes 

38 WDR70 5.677298720896958E-12 
 

39 DCC 5.712138177223898E-12 Yes 

40 SPOCK3 7.429956512262358E-12 Yes 

41 UBASH3B 9.016076010394048E-12 Yes 

42 CEP350 1.3695540446557348E-11 
 

43 LRRC16A 1.4549263666909511E-11 Yes 

44 MSI2 1.8786553402355918E-11 Yes 

45 HECW1 2.086217427143857E-11 Yes 

46 CDH13 2.1040073589353478E-11 Yes 

47 ARMCX4 2.271542742004075E-11 
 

48 DLC1 5.016841702736779E-11 Yes 

49 PTGER3 5.4892373319763484E-11 Yes 

50 NKAIN3 6.147873394576069E-11 Yes 

51 ATRN 7.307505066989754E-11 Yes 

52 KDM2B 1.426071364037515E-10 Yes 

53 STXBP6 1.4839718820136236E-10 Yes 

54 ETV1 1.8723044307087347E-10 Yes 

55 HNRNPA1P4 1.892663136483239E-10 
 

56 ZNF804B 1.8961181441612422E-10 
 

57 PDZRN4 3.8780411444008007E-10 Yes 

58 TRHDE 4.933298594402748E-10 Yes 

59 BANK1 5.85007022672771E-10 Yes 

60 SDK1 6.401213279486818E-10 Yes 

61 CADM2 8.31451862930459E-10 Yes 

62 IL1RAP 8.917987290688169E-10 Yes 

63 ADRA1A 9.574293099790778E-10 Yes 

64 DLG2 1.4783508070275882E-9 Yes 

65 SMC6 1.4989003339035996E-9 Yes 

66 ZNF385D 1.6180339125834562E-9 
 

67 PLB1 1.6730178379192263E-9 Yes 

68 SLC44A4 1.7779500384792024E-9 Yes 

69 ABCA4 1.7805123088534963E-9 Yes 

70 PDZD2 1.852501676202066E-9 Yes 

71 SCLY 2.0998204078561198E-9 Yes 

72 SMYD3 2.355594164391871E-9 Yes 

73 SLC8A1 2.46402357928276E-9 Yes 

74 IFT140 2.835825071094462E-9 
 

75 MYO3B 3.115662085606353E-9 Yes 
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76 TNR 3.5111797911669363E-9 Yes 

77 P2RY12 4.824727258543983E-9 Yes 

78 TMEM132D 5.439923406189135E-9 Yes 

79 KIAA1328 5.85506142710832E-9 
 

80 NSUN6 6.77429694563221E-9 
 

81 ALK 7.471823757149835E-9 Yes 

82 KAZN 7.678629411879916E-9 
 

83 CLEC16A 8.362899841095292E-9 Yes 

84 LRPPRC 8.631067530760875E-9 Yes 

85 NINL 8.687370370675846E-9 Yes 

86 PDE4B 9.752840005719736E-9 Yes 

87 SPAG16 1.008547610587095E-8 Yes 

88 ROCK2 1.0753607555369714E-8 Yes 

89 BACE1 1.0807974976229822E-8 Yes 

90 NT5E 1.0918997077251672E-8 Yes 

91 BTBD9 1.1375441188542542E-8 Yes 

92 MCTP1 1.3326185274486867E-8 
 

93 GEN1 1.4688014332860152E-8 Yes 

94 SEL1L2 1.5040966592610165E-8 
 

95 AGAP1 1.5743466936395407E-8 Yes 

96 FRMD1 1.6442845925245657E-8 
 

97 COG3 1.6865028111553102E-8 Yes 

98 GCOM1 1.7491279078454985E-8 
 

99 C2CD3 1.9331230510838086E-8 
 

100 FERMT2 2.0835665975214104E-8 Yes 
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APPENDIX D: TOP 100 GENES DEPENDING ON THE 

COMBINED P-VALUES AND THEIR OMIM ASSOCIATIONS 

FOR GenADA DATA 

Ranking Gene 
Combined p-

value 
OMIM association 

1 AGAP11 1,089181E-08 
 

2 C4orf18  1,187423E-08 
 

3 CPT2 2,232619E-08 Yes 

4 OR1L1 1,773873E-07 
 

5 NACC2 1,974952E-07 
 

6 MCPH1 2,484007E-07 Yes 

7 C9orf150 4,419189E-07 
 

8 PRSS1 4,765822E-07 Yes 

9 ESR2 7,396964E-07 Yes 

10 ARHGEF19 8,743196E-07 Yes 

11 STC1 8,987053E-07 Yes 

12 SMURF1 1,272100E-06 Yes 

13 CPZ 1,276079E-06 Yes 

14 MYPN 1,451700E-06 Yes 

15 IFI30 1,649066E-06 Yes 

16 DAP 1,937083E-06 Yes 

17 GNAZ 1,997541E-06 Yes 

18 MRPS10 2,519949E-06 Yes 

19 PPT1 2,546921E-06 Yes 

20 HNRNPU 2,780977E-06 Yes 

21 SEMA3E 2,933871E-06 Yes 
22 EZH1 3,297509E-06 Yes 
23 SCCPDH 3,529015E-06 

 
24 MPDZ 5,170320E-06 Yes 

25 CYP11A1 5,383462E-06 Yes 

26 CD46 6,608089E-06 Yes 

27 AEBP1 8,547281E-06 Yes 

28 SLC27A6 1,133377E-05 Yes 

29 PITHD1 1,276816E-05 
 

30 OR51E2 1,395784E-05 Yes 

31 JAZF1 1,661085E-05 Yes 

32 BCO2 1,985933E-05 Yes 

33 FAM160B2 2,082886E-05 
 

34 SUN1 2,532301E-05 Yes 

35 GAB2 2,658490E-05 Yes 

36 ACVR1B 2,826451E-05 Yes 
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37 MGC2752 2,837561E-05 
 

38 DHPS 2,885398E-05 Yes 

39 CD59 3,050824E-05 Yes 

40 NFATC4 3,272083E-05 Yes 

41 GPATCH4 3,284696E-05 
 

42 SLC20A2 3,579173E-05 Yes 

43 EAPP 3,699946E-05 Yes 

44 SC4MOL 4,189537E-05 Yes 

45 DMPK 4,263547E-05 Yes 

46 RPL9P25 4,506857E-05 
 

47 NUP54 5,543072E-05 Yes 

48 WSB1 5,782227E-05 Yes 

49 LOC649930 6,378632E-05 
 

50 LOC727744 6,505067E-05 
 

51 C20orf111 7,225648E-05 
 

52 TUBB2C 7,510362E-05 Yes 

53 CCBL1 7,860632E-05 Yes 

54 FN3KRP 8,217669E-05 Yes 

55 PPL 8,296717E-05 Yes 

56 USP21 8,574191E-05 Yes 

57 SH3GL1 9,594797E-05 Yes 

58 VWF 9,761645E-05 Yes 

59 CTSH 1,176471E-04 Yes 

60 TRAK1 1,241100E-04 Yes 

61 DHCR7 1,274716E-04 Yes 

62 SDHA 1,301780E-04 Yes 

63 SH3BP5 1,402876E-04 Yes 

64 PKN1 1,432841E-04 Yes 

65 C1QTNF3 1,582540E-04 Yes 

66 ATMIN 1,593690E-04 
 

67 SETD8 1,625813E-04 Yes 

68 LOC731709 1,657844E-04 
 

69 LMCD1 1,720101E-04 Yes 

70 CTR9 1,803722E-04 Yes 

71 CD36 1,825279E-04 Yes 

72 KCTD15 1,880624E-04 Yes 

73 ATP6V0E1 1,946420E-04 Yes 

74 CITED2 2,024721E-04 Yes 

75 EBNA1BP2 2,212395E-04 
 

76 COPS7A 2,360458E-04 
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77 KLHDC8B 2,650786E-04 Yes 

78 DDOST 2,698274E-04 Yes 

79 SDF2L1 2,718846E-04 Yes 

80 AKR1A1 2,735476E-04 Yes 

81 SMAD1 2,895042E-04 Yes 

82 LOC389458 3,163264E-04 
 

83 CLDN4 3,167976E-04 Yes 

84 LUM 3,220273E-04 Yes 

85 RAB7A 3,354747E-04 
 

86 WNT2 3,390472E-04 Yes 

87 CPPED1 3,414755E-04 
 

88 PALLD 3,462945E-04 Yes 

89 HEBP1 3,522131E-04 Yes 

90 TBCK 3,539400E-04 
 

91 CDK6 3,717210E-04 Yes 

92 LOC400499 3,746483E-04 
 

93 ATP2A3 3,889549E-04 Yes 

94 DERL2 4,042802E-04 Yes 

95 LGMN 4,044587E-04 Yes 

96 LOC644538 4,110027E-04 
 

97 IGF2R 4,125967E-04 Yes 

98 CHD1L 4,397654E-04 Yes 

99 SEP15 4,493724E-04 Yes 

100 FAM19A4 4,669621E-04 
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APPENDIX E: COMPARISON OF TOP 100 SNPs AFTER AHP 

PRIORITIZATION VS SPOT PRIORITIZATION FOR ADNI 

DATA IN TERMS OF BIOLOGICAL RELEVANCE 

 

METU-SNP                                                                                                                             SPOT 

Ranking SNP ID AD linked gene 
 

Ranking SNP ID AD linked gene 

1 rs4651138 
  

1 rs4795895 
 

2 rs2070045 SORL1 
 

2 rs17365991 
 

3 rs2230806 ABCA1 
 

3 rs3795263 
 

4 rs4652769 
  

4 rs4426564 
 

5 rs3779870 
  

5 rs2075650 
 

6 rs10808738 
  

6 rs12605132 
 

7 rs4395923 
  

7 rs9268368 
 

8 rs4936637 SORL1 
 

8 rs10941091 
 

9 rs6424883 
  

9 rs667782 
 

10 rs10752893 
  

10 rs885691 
 

11 rs9832203 
  

11 rs1233651 
 

12 rs895286 
  

12 rs5442 GNB3 
13 rs4358067 

  
13 rs12489170 

 
14 rs10857526 

  
14 rs6729218 

 
15 rs603634 

  
15 rs13006848 

 
16 rs10934675 

  
16 rs12457258 

 
17 rs1800464 

  
17 rs6020624 

 
18 rs13390226 

  
18 rs4935801 

 
19 rs1799898 LDLR 

 
19 rs3735080 

 
20 rs688 LDLR 

 
20 rs3862683 

 
21 rs4234221 

  
21 rs1055207 

 
22 rs8027035 CHRNA7 

 
22 rs2548032 

 
23 rs644511 

  
23 rs2235573 

 
24 rs1355920 CHRNA7 

 
24 rs756847 

 
25 rs333309 

  
25 rs2228527 

 
26 rs10932400 

  
26 rs10941100 

 
27 rs12621088 

  
27 rs2302674 

 
28 rs1917810 

  
28 rs1542604 

 
29 rs589663 

  
29 rs1043261 

 
30 rs13012677 

  
30 rs2199619 

 
31 rs11892696 

  
31 rs1801591 

 
32 rs12618478 

  
32 rs9935113 

 
33 rs10932398 

  
33 rs4814111 

 
34 rs1373928 

  
34 rs2286472 

 
35 rs9813330 

  
35 rs2121473 

 
36 rs4634050 

  
36 rs2326007 

 
37 rs1373930 

  
37 rs2280511 

 
38 rs1606659 CHRNA7 

 
38 rs2484180 

 
39 rs10997263 

  
39 rs6505403 

 
40 rs7904053 

  
40 rs3849994 

 
41 rs4746654 

  
41 rs11606296 
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42 rs7074696 
  

42 rs4757268 
 

43 rs7099157 
  

43 rs652888 
 

44 rs6480128 
  

44 rs17488241 
 

45 rs2619656 
  

45 rs821480 
 

46 rs8178990 
  

46 rs2262425 
 

47 rs20563 
  

47 rs2297781 
 

48 rs2071421 
  

48 rs7443549 
 

49 rs2298813 SORL1 
 

49 rs6671527 
 

50 rs2066718 ABCA1 
 

50 rs2304977 
 

51 rs4912868 
  

51 rs7911085 
 

52 rs17416172 
  

52 rs1060242 
 

53 rs3773892 
  

53 rs2969 
 

54 rs7419259 
  

54 rs2257906 
 

55 rs895061 
  

55 rs6138650 
 

56 rs9840301 
  

56 rs9790 
 

57 rs3772744 
  

57 rs4891524 
 

58 rs1857796 
  

58 rs1461707 
 

59 rs10497953 
  

59 rs972984 
 

60 rs6706010 
  

60 rs536141 
 

61 rs7626419 
  

61 rs2045191 
 

62 rs13071977 
  

62 rs1044730 
 

63 rs921001 
  

63 rs4851287 
 

64 rs17259208 
  

64 rs17831682 
 

65 rs1427281 
  

65 rs12125245 
 

66 rs535801 
  

66 rs13360277 
 

67 rs2043888 
  

67 rs1254929 
 

68 rs6772915 
  

68 rs6713132 
 

69 rs10207020 
  

69 rs473210 
 

70 rs17347530 
  

70 rs1048101 
 

71 rs1357139 
  

71 rs17055498 
 

72 rs2204853 
  

72 rs4899065 
 

73 rs16846100 
  

73 rs1073276 
 

74 rs2777799 ABCA1 
 

74 rs4862792 
 

75 rs12695438 
  

75 rs10498817 
 

76 rs1950091 
  

76 rs16900602 
 

77 rs3793791 
  

77 rs2063979 
 

78 rs3793792 
  

78 rs7615865 
 

79 rs6757140 
  

79 rs2387976 
 

80 rs12995889 
  

80 rs6076364 
 

81 rs4073245 
  

81 rs11685766 
 

82 rs6779362 
  

82 rs2305397 
 

83 rs1699102 SORL1 
 

83 rs676210 
 

84 rs2289837 
  

84 rs3826007 
 

85 rs8178992 
  

85 rs2235197 
 

86 rs1800977 ABCA1 
 

86 rs2537830 
 

87 rs2289839 
  

87 rs11660401 
 

88 rs2274873 ABCA1 
 

88 rs815470 
 

89 rs17561 IL1A 
 

89 rs2273816 
 

90 rs2280294 
  

90 rs681751 
 

91 rs1986181 
  

91 rs2403088 
 

92 rs9881879 
  

92 rs3811515 
 

93 rs1010158 SORL1 
 

93 rs1928565 
 



88 
 

94 rs2830052 APP 
 

94 rs8362 
 

95 rs839519 
  

95 rs11071341 
 

96 rs9843963 
  

96 rs5951332 
 

97 rs4486246 
  

97 rs6471482 
 

98 rs1620003 SORL1 
 

98 rs2634974 
 

99 rs2271446 
  

99 rs11948306 
 

100 rs4327886 
  

100 rs35195 
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APPENDIX F: COMPARISON OF TOP 100 SNPs AFTER AHP 

PRIORITIZATION VS SPOT PRIORITIZATION FOR GenADA 

DATA IN TERMS OF BIOLOGICAL RELEVANCE 

 
METU-SNP                                                                                                                                SPOT 

Ranking SNP ID 
AD linked 

gene  
Ranking SNP ID 

AD linked 
gene 

1 rs7229 
  

1 rs1062683 
 

2 rs14531 
  

2 rs3733472 
 

3 rs4947 
  

3 rs10252253 
 

4 rs2759 MPO 
 

4 rs11166412 
 

5 rs6304 
  

5 rs3812205 
 

6 rs6324 
  

6 rs17074644 
 

7 rs6323 
  

7 rs3739407 
 

8 rs6305 
  

8 rs6746030 
 

9 rs13136 
  

9 rs4687319 
 

10 rs6314 
  

10 rs3742261 
 

11 rs6308 
  

11 rs17593271 
 

12 rs6313 
  

12 rs1065035 
 

13 rs3010 
  

13 rs560659 
 

14 rs8951 
  

14 rs16966703 
 

15 rs1146 APP 
 

15 rs4545143 
 

16 rs761388 
  

16 rs304230 
 

17 rs15966 
  

17 rs572846 
 

18 rs669 A2M 
 

18 rs8041254 
 

19 rs12222 
  

19 rs6677080 
 

20 rs3761 
  

20 rs17067596 
 

21 rs216779 APP 
 

21 rs4310078 
 

22 rs191962 APP 
 

22 rs1476970 
 

23 rs57126 APP 
 

23 rs12090877 
 

24 rs214493 APP 
 

24 rs4756055 
 

25 rs928902 APP 
 

25 rs14976 
 

26 rs184200 APP 
 

26 rs602668 
 

27 rs15486 
  

27 rs8014810 
 

28 rs6307 
  

28 rs1032471 
 

29 rs8077 
  

29 rs17752628 
 

30 rs3125 
  

30 rs7206841 
 

31 rs7049 
  

31 rs352222 
 

32 rs920812 
  

32 rs2978023 
 

33 rs3991 APP 
 

33 rs2150820 
 

34 rs1145 APP 
 

34 rs17804446 
 

35 rs622337 
  

35 rs10132580 
 

36 rs4175 APP 
 

36 rs17793957 
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37 rs621494 
  

37 rs12456284 
 

38 rs469420 APP 
 

38 rs17116710 
 

39 rs13396 
  

39 rs936160 
 

40 rs214494 APP 
 

40 rs7518943 
 

41 rs216767 APP 
 

41 rs10031148 
 

42 rs216758 APP 
 

42 rs10132954 
 

43 rs867442 
  

43 rs11810899 
 

44 rs434844 
  

44 rs1060743 
 

45 rs912127 
  

45 rs3825569 
 

46 rs226407 A2M 
 

46 rs429419 BIN1 

47 rs2477 A2M 
 

47 rs10775471 
 

48 rs226402 A2M 
 

48 rs16893388 
 

49 rs226403 A2M 
 

49 rs11206955 
 

50 rs169963 APP 
 

50 rs3813487 
 

51 rs979605 
  

51 rs3793511 
 

52 rs448116 
  

52 rs4735627 
 

53 rs226389 A2M 
 

53 rs3802428 
 

54 rs944047 
  

54 rs10142154 
 

55 rs216769 APP 
 

55 rs10024098 
 

56 rs985933 
  

56 rs1886811 
 

57 rs768040 APP 
 

57 rs1201559 
 

58 rs216765 APP 
 

58 rs10736889 
 

59 rs226384 A2M 
 

59 rs10489622 
 

60 rs6317 
  

60 rs16949276 
 

61 rs6310 
  

61 rs3829799 
 

62 rs6309 
  

62 rs7210713 
 

63 rs13558 
  

63 rs6571727 
 

64 rs14660 
  

64 rs839511 
 

65 rs706149 
  

65 rs7614 
 

66 rs6174 
  

66 rs2999061 
 

67 rs5272 PTGS2 
 

67 rs2955091 
 

68 rs5273 PTGS2 
 

68 rs52911 
 

69 rs268 LPL 
 

69 rs1808529 
 

70 rs6265 
  

70 rs1653586 
 

71 rs12505 
  

71 rs17377379 
 

72 rs622397 
  

72 rs8026464 
 

73 rs238740 
  

73 rs606114 
 

74 rs7330 
  

74 rs3795685 
 

75 rs10237 
  

75 rs6573270 
 

76 rs16942 
  

76 rs714705 
 

77 rs15997 
  

77 rs1451392 
 

78 rs7720 
  

78 rs10084692 
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79 rs12515 
  

79 rs2742424 
 

80 rs14261 
  

80 rs12503735 
 

81 rs16339 
  

81 rs9357738 
 

82 rs180515 
  

82 rs12146894 
 

83 rs385981 
  

83 rs2227127 
 

84 rs551115 
  

84 rs2230742 
 

85 rs5274 PTGS2 
 

85 rs17732290 
 

86 rs2953 
  

86 rs7825723 
 

87 rs688 LDLR 
 

87 rs4905897 
 

88 rs5224 
  

88 rs12432214 
 

89 rs4902 
  

89 rs2999081 
 

90 rs36526 
  

90 rs6582406 
 

91 rs36527 
  

91 rs2722278 
 

92 rs16940 
  

92 rs2057116 
 

93 rs5077 APOA1 
 

93 rs4706990 
 

94 rs4882 APOA1 
 

94 rs2567982 
 

95 rs20558 
  

95 rs13382811 
 

96 rs4977 ACE 
 

96 rs1045493 
 

97 rs4314 ACE 
 

97 rs2415306 
 

98 rs4981 ACE 
 

98 rs4789161 
 

99 rs4976 ACE 
 

99 rs2234971 
 

100 rs5388 
  

100 rs10183045 
 

 
 

 


