DETERMINATION OF PERFORMANCE PARAMETERS FOR AHP BASED SINGLE NUCLEOTIDE POLYMORPHISM (SNP) PRIORITIZATION APPROACH ON ALZHEIMERS'S DISEASE DATA

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF INFORMATICS OF MIDDLE EAST TECHNICAL UNIVERSITY

 $\mathbf{B}\mathbf{Y}$

ONAT KADIOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOINFORMATICS

SEPTEMBER 2011

Approval of the Graduate School of Informatics

Prof. Dr. Nazife Baykal Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Assist.Prof.Dr. Didem Gökçay Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Yeşim Aydın Son Supervisor

Examining Committee Members

Assoc. Prof. Dr. Tolga Can

Assist. Prof. Dr. Yeşim Aydın Son

Assist. Prof. Dr. Zeynep Kalaylıoğlu

Dr. Gürkan Üstünkar

(İzmir Economy University, ISE)

Assist. Prof. Dr. Tülin Yanık

(METU, BIO)_____

(METU, CENG) _____

(METU, II) _____

(METU, STAT) _____

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name : Onat Kadıoğlu

Signature :

ABSTRACT

DETERMINATION OF PERFORMANCE PARAMETERS FOR AHP BASED SINGLE NUCLEOTIDE POLYMORPHISM (SNP) PRIORITIZATION APPROACH ON ALZHEIMER'S DISEASE DATA

Kadıoğlu, Onat MSc., Bioinformatics Program Supervisor: Assist. Prof. Dr. Yeşim Aydın Son

September 2011, 91 pages

GWAS mainly aim to identify variations associated with certain phenotypes or diseases. Recently the combined p-value approach is described as the next step after GWAS to map the significant SNPs to genes and pathways to evaluate SNP-gene-disease associations. Major bottleneck of standard GWAS approaches is the prioritization of statistically significant results. The connection between statistical analysis and biological relevance should be established to understand the underlying molecular mechanisms of diseases. There are few tools offered for SNP prioritization but these are mainly based on user-defined subjective parameters, which are hard to standardize. Our group has recently developed a novel AHP based SNP prioritization algorithm. Beside statistical association AHP based SNP prioritization algorithm scores SNPs according to their biological relevance in terms of genomic location, functional consequence, evolutionary conservation, and gene-disease association. This allows researchers to evaluate the significantly associated SNPs quickly and objectively. Here, we have investigated the performance of the AHP based prioritization as the next step in the utilization of the algorithm in comparison to the other available tools for SNP prioritization. The user-defined parameters for AHP based prioritization have been investigated and our suggestion on how to use these parameters are presented. Additionally, the GWAS results from the analysis of two different sets of Alzheimer Disease Genotyping data with the newly proposed AHP based prioritization and the integrated software,

METU-SNP, it was implemented, is reported and our new findings on the association of SNPs and genes with AD based on this analysis is discussed.

Keywords: GWAS, SNP Prioritization, Biomarker Discovery, Analytic Hierarchy Process, Alzheimer's Disease

ANALİTİK HİYERARŞİ SÜRECİNE DAYALI TEK NÜKLEOTİD POLİMORFİZMİ ÖNCELİKLENDİRME YAKLAŞIMI PERFORMANS PARAMETRELERİNİN ALZHEIMER HASTALIĞI VERİSİ İÇİN BELİRLENMESİ

Kadıoğlu, Onat Yüksek Lisans, Biyoenformatik Bölümü Tez Yöneticisi: Assist. Prof. Dr. Yeşim Aydın Son

Eylül 2011, 91 sayfa

Genom boyutunda ilişkilendirme çalışmaları (GWAS) genel olarak biyolojik çeşitliliğin araştırılması ve çeşitli hastalıklarla ilişkilendirilmesiyle ilgilidir. GWAS den sonraki aşama olarak tanımlanan birleşik p değeri anlamlı olarak bulunan SNPlerin genlerdeki yerlerini belirlemek ve daha sonra SNP-gen-hastalık ilişkisini saptamak için kullanılabilir. İstatistiksel olarak anlamlı sonuçları önceliklendirmek mevcut GWAS analizlerinin başlıca eksikliklerdendir. Hastalıkların moleküler mekanizmalarını daha iyi anlayabilmemiz için istatistiksel analiz ve SNP lerin biyolojik anlamlılıkları arasındaki bağlantı daha sağlam bir şekilde kurulmalıdır. SNP önceliklendirmesi için geliştirilmiş az sayıdaki yazılımlar standardizasyonu güç olan kullanıcı tanımlı öznel paramatrelere dayalı uygulamalardan öteye geçememektedirler. AHP (Analitik Hiyerarsi Süreci) tabanlı yapılandırılmış SNP önceliklendirmesi için grubumuz tarafından geliştirilen algoritma; SNPlerin biyolojik anlamlılıklarının genomik lokasyona, fonksiyonel sonuçlara, evrimsel korunmaya ve gen-hastalık ilişkilendirilmesine göre skorlandırılmalarına dayanmaktadır. Böylece istatistiksel olarak anlamlı SNP ler araştırmacılar tarafından kolayca nesnel olarak değerlendirilmiş olur ve yüksek skora sahip olanlar, onaylama ve daha sonraki muhtemel uygulamalar için kullanılabilir. Bu çalışmada AHP tabanlı önceliklendirme yaklaşımının performansını, algoritmanın uygulanmasında sonraki adım olarak diğer SNP önceliklendirme metotlarıyla karşılaştırarak değerlendirdik. AHP tabanlı önceliklendirme için

ÖZ

kullanıcı tanımlı parametreler araştırıldı ve bu parametrelerin nasıl kullanılması gerektiği sunuldu. Ek olarak, iki adet Alzheimer Hastalığı (AD) Genotipleme datasının yeni oluşturulan AHP tabanlı önceliklendirme yaklaşımıyla ve bu yaklaşımın uygulandığı METU-SNP uygulaması ile yapılan analizlerinden elde edilen GWAS sonuçları sunuldu. Bu analizler ışığında SNPlerin ve genlerin AD ilişkisi ile ilgili yeni bulgular da ele alındı.

Anahtar Kelimeler: GWAS, SNP Önceliklendirmesi, Biyolojik Gösterge Bulma, Analitik Hiyerarşi Süreci, Alzheimer Hastalığı

To My Family

ACKNOWLEDGEMENTS

First of all, I should thank to my supervisor Assist. Prof. Dr. Yeşim Aydın Son. She is a very supporting, well intentioned and encouraging instructor that every student wants to work with. She is a role model for me while pursuing my academical career. She has supported me from the very beginning of this study. GTalk sessions also helped a lot throughout thesis preparation process. I should also thank to Dr. Gürkan Üstünkar, who has developed the METU-SNP software during his Ph.D. project at METU IS department. He answered my technical questions and directed me while using the software.

I am grateful to Assist. Prof. Dr. Alptekin Temizel and NVIDIA Cuda Teaching Center at METU for giving me chance to use NVIDIA C2070 Tesla Computer while performing AHP analysis. It helped me a lot and saved my time throughout the study.

I am also grateful to the administrative staff of METU Informatics Institute; Sibel Gülnar, Necla Işıklar, Ali Kantar and Hakan Güler for their help.

I am also grateful to my supporting family. I thank my parents for devoting their life on me.

TABLE OF CONTENTS

ABSTRACT	iv
ÖZ	vi
DEDICATION	viii
ACKNOWLEDGEMENTS	ix
TABLE OF CONTENTS	x
LIST OF TABLES	xiii
LIST OF FIGURES	xv
PREFACE	xvi

CHAPTER

1 INTRODUCTION	1
1.1 Biological Background	1
1.2 Genome Wide Association Studies (GWAS)	4
1.2.1 Current Challenges of GWAS	7
1.2.2 Genetic Variations In The Human Genome	9
1.3 SNP Prioritization Approaches	11
1.3.1 Meta Analysis	11
1.3.2 Pathway Based Analysis	12
1.4 SNP Prioritization Tools	12
1.4.1 FastSNP	12
1.4.2 SNPLogic	14
1.4.3 SPOT	14
1.4.4 SNPinfo	15
1.4.5 SNPit	16
1.4.6 Analytical Hierarchy Process Based SNP Prioritization Approach	17
1.5 Complex Diseases	20
1.5.1 Alzheimer's Disease	21

2 LITERATURE INFORMATION AND GWAS RESULTS ABOUT

ALZHEIMER'S DISEASE	24
2.1 Current Literature on AD and GWAS of Alzheimer's Disease	24
2.1.1 Overview of AD	24
2.1.2 Summary of GWAS of AD	24

2.1.3 AD Databases Online	27
2.1.4 AD Associated Gene List	28

3 GWAS RESULTS AND COMPARISON OF AHP	
WITH OTHER PRIORITIZATION APPROACHES	
ON BIOLOGICAL RELEVANCE FOR ALZHEIMER'S DISEASE	
GENOTYPING DATA SETS	2
3.1 Alzheimer's Disease Genotyping Data Sets32	2
3.1.1 ADNI AD Genotyping Data32	2
3.1.2 GenADA AD Genotyping Data32	2
3.2 GWAS	3
3.2.1 GWAS Results of ADNI (p-value associations)	3
3.2.2 GWAS Results of GenADA (p-value associations)34	4
3.3 AHP Prioritization	4
3.3.1 AHP Prioritization Results for ADNI (combined p-value and AHP scores)	34
3.3.2 AHP Prioritization Results for GenADA (combined p-value and AHP scores)3	6
3.4 SPOT	3
3.4.1 ADNI data	3
3.4.2 GenADA data38	3
3.5 Comparison of Prioritization Approaches on Biological Relevance	Э
3.5.1 ADNI data	Э
3.5.2 GenADA data4	1

4 EVALUATION OF USER DEFINED AHP

PRIORITIZATION PARAMETERS : P-VALUE THRESHOLD
OF SNPS AS A PRE-PRIORITIZATION CUTOFF45
4.1 AHP prioritization performance of METU-SNP
in different p-value thresholds for SNPs45

5 EVALUATION OF USER DEFINED AHP

PRIORITIZATION PARAMETERS : AHP SCORE THRESHOLD	
OF SNPS AS A POST-PRIORITIZATION CUTOFF	49
5.1 AHP score distribution of the AD genotyping data	
after AHP based prioritization	49
5.1.1 ADNI data	49
5.1.2 GenADA data	50
5.2 Post-priorization cutoff estimation for AD genotyping data SNPs	51
5.2.1 ADNI data	51
5.2.2 GenADA data	52
5.2.3 AHP score cutoff classification performance for ADNI data	53

6 CONCLUSION AND FUTURE WORK	55
6.1 Discussion	55
6.2 Future Work	56
6.3 Conclusions	57
REFERENCES	58
APPENDICES	
A: GWAS TERMINOLOGY	65
B: GENES AND LOCUS ON HUMAN CHROMOSOMES	
FOUND TO BE POTENTIALLY ASSOCIATED WITH AD	68
C: TOP 100 GENES DEPENDING ON THE COMBINED P-VALUES	
AND THEIR OMIM ASSOCIATIONS FOR ADNI DATA	80
D: TOP 100 GENES DEPENDING ON THE COMBINED P-VALUES	
AND THEIR OMIM ASSOCIATIONS FOR GenADA DATA	83
E: COMPARISON OF TOP 100 SNPs AFTER	
AHP PRIORITIZATION VS SPOT PRIORITIZATION	
FOR ADNI DATA IN TERMS OF BIOLOGICAL RELEVANCE	86
F: COMPARISON OF TOP 100 SNPs AFTER	
AHP PRIORITIZATION VS SPOT PRIORITIZATION	
FOR GenADA DATA IN TERMS OF BIOLOGICAL RELEVANCE	89

LIST OF TABLES

Table 1.1 Single Nucleotide Polymorphism Types In The Human Genome 10
Table 1.2 FastSNP Single Nucleotide Polymorphism Functional Properties
And Risk Factors
Table 1.3 AHP Pairwise Comparison Scale
Table 1.4 AHP Tree Nodes For SNP Prioritization And Combined Weights Of Nodes After
Pairwise Scoring Performed By 5 Specialists19
Table 1.5 Weight Order For SNPs According To AHP Scoring
Table 2.1 84 Genes Selected For AD Linked Genes List
Table 3.1 Top 20 Genes Depending On The Combined P-values And Their OMIM
Associations For ADNI Data35
Table 3.2 Top 20 SNPs After AHP Prioritization For ADNI Data35
Table 3.3 Top 20 Genes Depending On The Combined P-values And Their OMIM
Associations For GenADA Data
Table 3.4 Top 20 SNPs After AHP Prioritization For GenADA Data37
Table 3.5 Top 20 SNPs After SPOT Prioritization For ADNI Data
Table 3.6 Top 20 SNPs After SPOT Prioritization For GenADA Data
Table 3.7 Comparison Of AHP Priorization, Combined P-value Approach
And SPOT In Terms Of Biological Relevance And AD Linkage For ADNI Data
Table 3.8 AD Linked Genes That AHP Based Prioritization
Points Out For ADNI Data40
Table 3.9 Candidate AD Linked Genes That AHP Based Priorization
Points Out For ADNI Data40
Table 3.10 Comparison Of AHP Priorization, Combined P-value Approach
And SPOT In Terms Of Biological Relevance And AD Linkage For GenADA Data42
Table 3.11 AD Linked Genes That AHP Based Prioritization
Points Out For GenADA Data42
Table 3.12 Candidate AD Linked Genes That AHP Based Priorization
Points Out For GenADA Data43

Table 4.1 Number Of AHP Prioritized SNPs In Different p-value Thresholds
For ADNI Data
Table 4.2 5-fold Cross Validation Training Results For ADNI Data
(Learning Scheme : Naive Bayes, 20000 SNPs)47
Table 4.3 5-fold Cross Validation Test Results For ADNI Data
(Learning Scheme : Naive Bayes, 20000 SNPs)47
Table 4.4 5-Fold Cross Validation Training Results For ADNI Data
(Learning Scheme : SMO, 20000 SNPs)48
Table 4.5 5-Fold Cross Validation Test Results For ADNI Data
(Learning Scheme : SMO, 20000 SNPs)48
Table 5.1 AHP Score Distribution And Ratio Of SNPs Mapping To
AD Linked Genes For ADNI Data
Table 5.2 AHP Score Distribution And Ratio Of SNPs Mapping To
AD Linked Genes For GenADA Data51
Table 5.3 5-Fold Cross Validation Test Results In Different AHP Score Ranges For ADNI
Data(Learning Scheme : Naive Bayes, 20000 SNPs)54
Table 5.4 5-Fold Cross Validation Test Results In Different AHP Score Ranges For ADNI

Data(Learning Scheme : SMO, 20000 SNPs)5	54

LIST OF FIGURES

Figure 1.1 DNA structure1
Figure 1.2 Example of determination haplotype
of various alleles of a genomic locus
Figure 1.3 Linkage disequlibrium in a region on human chromosome 204
Figure 1.4 Published GWA studies and the mapping of associative variations
Figure 1.5 Genetic variations in the human genome
(inversion,insertion,deletion,copy number variation)9
Figure 1.6 Genetic variations in the human genome
(single nucleotide polymorphism)11
Figure 1.7 SNPLogic web interface14
Figure 1.8 SPOT genomic information network15
Figure 1.9 SNPit heuristic weights16
Figure 1.10 AHP level of hierarchy example17
Figure 1.11 Normal and AD brain PET scan comparison22
Figure 1.12 A β production from APP and plaque formation22
Figure 1.13 A β plaque caused by A β deposits23
Figure 1.14 Fibrillary tangles originated from tau aggregates23
Figure 2.1 Pathways and genes associated with AD26
Figure 2.2 APOE OMIM entry
Figure 3.1 ADNI AD genotyping data p-value distribution by chromosomes
Figure 3.2 GenADA AD genotyping data p-value distribution by chromosomes
Figure 5.1 AHP score distribution of ADNI genotyping data
after all 500K SNPs are prioritized50
Figure 5.2 AHP score distribution of GenADA genotyping data
after all 250K SNPs are prioritized51
Figure 5.3 AD linkage ratio of SNPs in different AHP score ranges for ADNI data52
Figure 5.4 AD linkage ratio of SNPs in different AHP score ranges for GenADA data53

PREFACE

In this research, we have tested our recently developed Single Nucleotide Polymorphism (SNP) prioritization system based on Analytic Hierarchy Process (AHP) on two different independent Alzheimer Disease genotyping data with respect to biological relevance in comparison to SPOT, which is one of the most widely used web-based SNP prioritization tool. Performance measures have been determined for the AHP based SNP prioritization approach (METU-SNP) in various aspects such as sensitivity, specificity and biological relevance measures.

Thesis Organization

This thesis is composed of four main chapters. Brief contents are given below:

Chapter 1 presents the biological background and introduces genome wide association studies with an emphasis on the SNP prioritization process.

It is composed of;

- Biological background
- Genome wide association studies (GWAS), GWAS bottlenecks
- Genetic variations in the human genome
- SNP prioritization, available tools and analytic hierarchy process (AHP) based SNP prioritization approach
- Complex diseases, Alzheimer disease (AD)

Chapter 2 provides a literature review on Alzheimer's Disease and GWAS findings. It is composed of;

- Literature review on AD
- Previously reported GWAS results for AD
- AD databases
- AD associated gene list

Chapter 3 reports our results from the analysis of two different sets of Alzheimer Disease Genotyping data with the newly proposed AHP based prioritization and the integrated software, METU-SNP. It is composed of;

- Analysis of two independent AD genotyping data with METU-SNP and AHP based prioritization results
- Comparison of AHP based prioritization with SPOT in terms of biological relevance

Chapter 4 reports classification performance of METU-SNP in terms of specificity, sensitivity measures in various p-value thresholds to determine the pre-prioritization cutoff value.

It is composed of;

• METU-SNP classification measures in different p-value thresholds

Chapter 5 provides estimation of AHP score cutoff for two independent AD genotyping data depending on biological relevance measures. Additionally, the user-defined parameters for AHP based prioritization and our suggestion on how to use these parameters, and the provided AHP score is discussed.

It is composed of;

- AHP score distributions of the AD genotyping data after SNPs are AHP prioritized
- Biological relevance measures of SNP list based on AHP score ranking
- User defined parameters of AHP based prioritization
- Classification performance in different AHP score ranges
- Utilization of AHP prioritization score

Chapter 6 Conclusion and Future Work

- Discussion of findings from AD data
- Discussion of AHP parameter and cut-off score estimation
- Future Work
- Conclusion

CHAPTER 1

INTRODUCTION

1.1 Biological Background

The genome defines the hereditary nature of each organism. Deoxyribo nucleic acid (DNA) which is the building block of genome carries the genetic information. Complete set of this information in an organism is called its genotype. There are 4 different bases in DNA; Adenine (A), Tymine (T), Guanine (G) and Cytosine (C). Purine bases are A and G whereas pyrimidine bases are C and T. Hydrogen bonds are established between A-T and G-C forming the double helix structure of DNA. Those bonds can be broken and reformed which is essential in DNA replication. Double helix structure involves backbones at opposite edges and paired bases meet in the middle as visualized in Figure 1.1 [1].

Figure 1.1 DNA structure [1]

Central dogma of molecular biology involves transcription (RNA produced from DNA), RNA processing (mature RNA formation) and translation (protein coding from mature RNA) respectively. Gene expression process begins with transcription where RNA complementary to DNA sequence of the coding region is coded. Template DNA strand is utilized during transcription. Processing of RNA and splicing is followed by RNA production. In this step, coding regions are joined together for the protein synthesis. Non-coding parts (introns) are excised out and coding parts (exons) are combined together during processing and splicing of RNA. Translation is the synthesis of protein from the mature RNA. Aminoacids (building blocks of proteins) are coded depending on three base sequences in RNA (codons). There are twenty aminoacids with the exception of some modified aminoacids utilized by organisms living on extreme conditions. Some aminoacids are coded via multiple codons whereas some are coded by only one codon (methionine is coded by only AUG codon and every protein begins with methionine, AUG is referred as the start codon). Moreover there are three stop codons (UAG, UGA and UAA) indicating the termination of translation [1].

The genome of eukaryotic organisms are densely packed into chromosome structures prior to the cell division. Each chromosome consists of a linear array of genes located at a particular location, referred as the genetic locus. A gene is a unique DNA sequence directing the production of a specific protein specialized in a specific function influencing a particular characteristic in an organism. Alleles of a gene can be defined as the different forms that are found at the corresponding locus. Diploid organisms have one paternal (inherited from father) and one maternal (inherited from mother) sets of chromosomes, likewise each gene has two copies of paternal and maternal alleles [1].

Human genome consists of 23 pairs of chromosomes, 46 in total, where each half inherited maternally or paternally. The crossing over and recombination of chromosomal pairs that occurs during the meiotic division are the sources of genetic variance in the production of egg and sperm. Egg and sperm cells are haploid and carry 23 chromosomes and zygote formation leads to a diploid cell production. Mitotic divisions at the zygote contribute to the development of the progeny.

Human genome is around 3.3 billion base pairs in length and coding regions are only about 3 percent of the whole genome, and the rest is known as noncoding regions, which have no annotated functions yet.

Differences in the genome sequence of species are referred as variations and there are various varations having impact on biological function. Mutations are much rarely observed in a population compared to polymorphisms, which are observed in at least 1% of a population and they are the major causes of variations observed among individuals.

Mutations are stable changes in DNA sequence and their lethality is determined mostly by their genomic location. Mutations at coding regions are potentially more severe than mutations on the non-coding regions of genome. Lethal mutations are not observed frequently within a population since they are rarely inherited. Mostly mild mutations are observed within a population and contribute to disease formation under certain environmental conditions, also giving rise to different traits observed within a population [2].

Similar to mutations, genetic polymorphisms are observed when multiple genotypes at a locus coexist. Polymorphisms are changes in DNA sequence which are observed in more than 1 percent of a population and usually involve milder effects compared to mutations. By definition, changes at single nucleotide that are observed in more than 1 percent in a population are referred as single nucleotide polymorphisms (SNP). The location in the genome where a SNP, copy number variation, insertion or deletion occur is referred to as an allele [2]. The dominant allele with the highest frequency within a population is called the major allele, while less frequent

observed ones are called the minor alleles. Therefore, the genotype of an individual is referred as the combined allele information for a particular locus.

The alleles on the same chromosome tend to be inherited together rather than independent assortion, predicted by Mendelian laws, due the genetic linkage event caused by the organization and packing of genes into chromosomes. Genetic linkage is measured by the unit of recombination, which is used for construction of genetic maps. Distance between mutations and variations in terms of recombination frequencies is determined by genetic mapping. Recombination frequencies do not represent the actual physical distances since frequencies can be distorted relative to the physical distance between sites [2]. There are some markers such as restriction fragment length polymorphisms (RFLPs) and SNPs which can be referred as the basis for linkage maps. SNPs are widely preferred for linkage studies and genetic mapping since they are widespread in the human genome (there is a SNP ~every 100-300 bp). Newly discovered disease genes and associations can be identified via locating them between the nearest SNPs. The frequency of polymorphism and the unique combination of SNPs or RFLPs in a specific region is referred as the **haplotype**. Figure 1.2 represents an example of a haplotype involving 3 SNPs [2].

Figure 1.2 Example of determination haplotype of various alleles of a genomic locus [2]

The concept of a haplotype was originally introduced to describe the genetic constitution of the major histocompatibility locus, a region specifying proteins of importance in the immune system. The concept now has been extended to describe the particular combination of alleles or restriction sites (or any other genetic marker) present in a defined area of the genome and they are inherited as single haplotype blocks [3]. SNPs are conserved in a genome usually within haplotype blocks. If we assume that there is a gene with two SNPs and two alleles of each SNP (A and B) there are four possible combinations (A-A, A-B, B-A, B-B). In most cases, SNPs occur with a different frequency than would be expected to occur only by chance from a random haplotype distribution. Non-random associations of alleles at two or more loci constitute the phenomenon of Linkage Disequilibrium (LD). Linkage disequilibrium is defined by the allelic association between SNPs. High LD SNPs have higher probability to be inherited together than lower LD SNP pairs. Linkage disequibrium in a human chromosome 20 region is visualized in Figure 1.3, where darker regions indicate strong correlations and thus high LD among SNPs [2].

Figure 1.3 Linkage disequilbrium in a region on human chromosome 20 [2]

1.2 Genome Wide Association Studies (GWAS)

Genome wide association studies (GWAS) can be defined as genetic association studies in which the genetic marker density and the extent of linkage disequilibrium is sufficient to cover a large proportion of the common variation in the population under study [4]. The sample size of people provides sufficient power to detect variants of modest effect [4]. GWAS mainly focuses on identification of significant variations that can be associated with certain disease and phenotypes among individuals in population in a holistic and agnostic manner. They are hypothesis-free studies and thus unbiased since they focus on entire genome to find associative variations. SNPs are the most widely referred variations in GWAS due to their low genotyping cost and abundance in the genome. Resources such as the HapMap Project and the 1000 Genomes Project provides a catalog of the SNPs in the genome [5].

After DNA genotyping is performed for control and case subjects, allele frequencies are compared and significantly different variations between cases and controls are aimed to be identified. Large sample size on the order of thousands is usually preferred in GWAS to achieve a high statistical power (sensitivity). Statistical tests are then applied in order to identify SNPs that demonstrate allele frequency differences between cases and controls. Identification of candidate associative variations can be followed by new strategies to detect, treat and prevent the disease.

GWAS are widely referred since 2005 to discover genetic variations that contribute to various complex diseases, such as asthma, cancer, diabetes, heart disease and mental illnesses. After completion of the Human Genome Project in 2003 and the International HapMap Project in

2005, the number of studies aiming to identify associative genetic variations with various diseases have dramatically increased. Since GWAS serve as a promising strategy for the identification of genetic variations associated with various phenotypes, they have become a widely preferred approach in identifying genetic determinants and biomarkers of complex phenotypes and common diseases.

Many tools including computerized databases containing the reference human genome sequence helped researchers for the analysis of whole-genome samples for genetic variations. Since a considerable cost reduction in sequencing a human genome is being achieved via various next generation seuquencing platforms, in the near future patients will probably be provided with individualized information about their certain disease risks depending on the genetic variations they carry. The genetic makeup of an individual will determine the treatment strategies and even the doses of the drugs to be prescribed. This individualized information provides the approach of personalized medicine.

Since the first successful GWAS in 2005, over 1200 GWAS have been reported according to the NIH GWAS catalog as can be seen from the Figure 1.4 [6]. Chromosomes are visualized in the figure and circles with different colors mapped on chromosomes represent associative variations with different diseases and traits.

Figure 1.4 Published GWA studies and the mapping of associative variations [6]

Analysis of GWAS results depend on two major steps; statistical and biological approaches. The former approach involves p-value computation to find out statistically significant variations between control and case subjects. Allele frequencies of variations that are significantly different among cases than controls are referred as candidate associative variations for a certain disease or trait. p-value can be defined as a statistical measure that indicates the probability of a certain event to occur just by chance, smaller the p-value higher the significance of the event. In GWAS, variations that have p-values smaller than 0.05 are usually referred as significant and potential candidates to be associated with certain diseases or phenotypes. A widely used software developed by Shaun Purcell at the Center for Human Genetic Research, **PLINK** provides a toolkit involving various statistical tests for single-locus analysis, haplotype analysis and allelic-based interaction analysis [7]. Statistical analysis might also involve 'second wave GWAS' strategy where the combined p-values for genes can be used for identification of enriched genes and pathways significantly associated with disease [8]. After the detection of significant variations such as SNPs and their mapping to genes, "combined p-value" can be computed for genes via Fisher's tests. Fisher's combination test can be used to compute combined p-value for a gene, whereas Fisher's exact test can be used to compute combined pvalue for a pathway[8].

Fisher's combination test to combine p-values of all K independent SNPs within the gene is performed as follows;

$$Z_F = -2\sum_{i=1}^K \log P_i$$

which follows a $\chi^{2}(2K)$ distribution.

Fisher's exact test is performed to combine p-values of genes within pathways. p-value of observing k-significant genes in the pathway is calculated as follows;

$$P = 1 - \sum_{i=0}^{K} \frac{\binom{S}{i}\binom{N-S}{m-i}}{\binom{N}{m}}$$

where total number of genes of interest is N, number of genes that are significantly associated with disease according to Fisher's combination test is S, number of genes in the pathway is m, and the number of significantly associated genes in the pathway is K [8].

Gene and pathway based analysis in a second wave GWAS involves independent pvalues of single SNPs in the gene combined into an overall p-value for the gene and independent p-values of a single gene in the pathway into an overall p-value for the pathway. Fisher's method for combination might yield unreliable results when there are large correlations among SNPs in a gene. Gene and pathway-based GWAS that consider correlations among the SNP and genes might be an effective strategy for the second wave GWAS analysis and will probably be carried out in the near future [8]. The combined p-value approach for GWAS involving several disorders such as bipolar disorder (BD), coronary artery disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type I diabetes (T1D), type II diabetes (T2D), Parkinson's disease (PD), age-related eye disease (AREDS) and Amyotrophic lateral sclerosis (ALS) identified genes that include individually significant SNPs and also new genes containing SNPs with small disease risks but have jointly significant effect and strong association with diseases [8].

Statistical association on its own is not adequate to identify predisposing loci or genes effectively due to the limited power and information it provides together with high dimensional data and multiple testing problems. Achievement of a reliable GWAS heavily depends on biological knowledge to correctly prioritize results for downstream genetic studies. Next step after statistical analysis is search for biological relevance where statistically significant variations are evaluated depending on different biological properties such as their genomic location, evolutionary conservation and gene association. Being the most widely referred variations in GWAS, SNPs have various biological features relevant to disease risks. For instance, SNPs located in non-synonymous coding region involve a higher probability to be associated with a disease than SNPs located within the intron. Moreover, some non-gene features of SNPs might also yield clues related to disease risk. The connection between statistical analysis and biological relevance for SNP biomarkers should be established more firmly to be able to understand the underlying molecular mechanisms of a disease. Recent studies point out that conservation, natural selection and microRNA binding are contributing factors to human disease susceptibility [9].

GWAS involve various approaches and terms, brief definitions of those are provided in Appendix A [10, 11, 12].

1.2.1 Current Challenges of GWAS

GWAS should meet three essential elements to be counted as a reliable study [13]:

- sufficiently large sample size from a population that effectively provide genetic information regarding the research question
- polymorphic alleles covering the whole genome and those alleles should be efficiently genotyped
- statistically powerful analytic methods that can be utilized for the identification of the genetic associations in an unbiased fashion

GWAS failing to achieve the criteria stated above are unlikely to yield informative results. Moreover, traditional GWAS heavily depend on statistical analysis are inadequate to identify associative variations in the human genome. Since most widely investigated variations in GWAS are single nucleotide polymorphisms (SNPs) rather than duplications, deletions, insertions or copy number variations, major bottleneck of current GWAS is the prioritization of statistically significant and determination of biologically relevant SNP associations after the statistical analysis. Small p-value choice for SNPs might not be optimal in cases when the joint action of multiple SNPs within a gene involves more variance than the most significant SNP. Small p-value choice approach might also lead to biases of favouring large extensive pathways and genes with greater numbers of SNPs. Another drawback of GWA studies is varying levels of genome coverage across samples [14].

Genetic variations associated by GWAS can only explain a small proportion of the genetic risks associated with the complex diseases. New strategies and approaches are required to compansate this lack of explanation. The approach to investigate variations individually might lead to inadequate results. One reason for the inadequacy is that genetic variants with small individual effect sizes but jointly significant genetic effects would be missed by single-SNP analysis. Consequently, identified genetic variants involve a small fraction of heritability for most studied traits. GWAS that focus on discovery of biological pathways rather than prediction of individual risk loci associated with polygenic traits and diseases are more preferable. Detection of SNPs that have marginally weak but jointly strong effects is a difficult task for GWAS focusing on invidiual SNP analysis. Jointly analyzing SNPs within the same biological pathway compansates the individual SNP analysis, providing new insights to the understanding of complex human traits.

A preprocess step to filter out SNPs that are unable to achieve the different threshold values such as Hardy-Weinberg Equilibrium, Minor Allele Frequency is essential since using all available SNPs per gene cause computational challenges in addition to significant amounts of noise into the analysis [15].

Detection of associations with common SNPs becomes harder for a GWA study when the phenotypes are poorly or inconsistently defined, controls are poorly screened for exclusion of disease. Limited statistical power and inadequate environmental data might lead to disruption in the detection of gene–environment interactions [16]. Another strategy to increase statistical power is using nonrisk cases and risk controls in the study. Power increases due to enrichment of disease favouring alleles in nonrisk cases while risk controls are enriched for protective alleles [17].

Limitations and bottlenecks of GWAS to detect candidate variants associated with complex diseases can be summarized as follows. Genetic variants that involve a insignificant risk of disease individually but have a considerable contribution when considered jointly with other variations, would be probably missed in the 'most significant SNPs/genes' approach. Small sample size is another important problem in GWAS since those variants that confer a larger effect may not always be tested. Complex diseases are thought to be caused by multiple risk genes mutually together with various environmental factors rather than most significant genes only. Their pathogenesis involve dysfunction of several metabolic pathways [18].

1.2.2 Genetic Variations In The Human Genome

While GWAS usually target identification of associative single nucleotide polymorphisms (SNPs), there are various different types of variations widespread throughout the human genome. Figure 1.5 and 1.6 [19,20] provide a visualization of the genetic variations. *Copy Number Variations (CNV)*

Duplications, deletions and inversions are classified as copy number variations (CNV), most of them are known to be tagged by SNPs and therefore focusing on those CNVs directly is unlikely to identify many new variants, targeting rare CNVs and structural variants might yield valuable results. Structural variation has not been as deeply studied as SNPs because their detection is less accurate, biological confirmation is costly, and smaller copy number variants (<100 kb) are not very reliably detected. Genetic risks for common disorders and complex diseases cannot be fully explained by common SNPs. Rare variants should be investigated more firmly to identify further associations. As mentioned in the GWAS terms, rare variant is usually defined by a frequency lower than 1%. One approach to find out rare variants might be sequencing a chromosomal region from many people and focusing on that region only. Indeed some rare structural variants have already been identified as a risk factor for diseases. For instance, Hras-1 VNTR mini satellite rare alleles are found to be associated with various cancers and uncommon translocations such as t(11:22)(q23:q11) are found to be associated with breast cancer. Another example is DiGeorge syndrome caused by large deletions on chromosome 22q11, and 20% of patients with this syndrome also develop schizophrenia. Therefore, structural variants that are individually rare but involve clustering within specific regions are valuable resources to identify disease associations in the human genome. Genotyping of rare variants is not an easy task with the existing technology however new arrays are being designed for this purpose. 1000 Genomes project contributes to identification of such variants. Some of the associations which are currently attributed to common variants might be actually caused by some rare variants. Next-generation sequencing technologies such as Ion Torrent, Oxford Nanopore, IBM Transistor, PacBio SMRT (single molecule, real time) providing affordable whole-genome sequencing, will lead a shift in the search for rare variants from genotyping arrays to wholegenome sequencing [21].

Figure 1.5 Genetic variations in the human genome (inversion,insertion,deletion,copy number variation) [19]

Single Nucleotide Polymorphism (SNP)

If a variation is observed in more than 1% of a population, they are referred as **polymorphisms** and the substitution of one single nucleotide for another at a homologous site in a population is called **single nucleotide** polymorphism, which are the most widely observed polymorphisms in the human genome (~90%). National Center for Biotechnology Information's (NCBI) current SNP variation database (dbSNP build 131) holds about 30 million validated SNPs within the human genome. SNPs exist both within coding regions and non-coding regions of the entire human genome. Different types of SNPs are summarized at Table 1.1 [22].

CODING REGION	Definition				
Non-synonymous	results in an aminoacid change cause of most monogenic disorders				
	such as cystic fibrosis and hemophilia				
	such as cystic norosis and nemoprina				
Synonymous	do not lead to aminoacid change				
Frameshift	causes a frameshift				
Stop loss	results in loss of a stop codon				
Stop agined	monstrain agin of a stan aging				
stop gainea	results in gain of a stop codon				
NON-CODING					
REGION					
Essential splice site	in the first or last 2 hp of an intron				
Essential splice site					
Splice site	1-3 bps into an exon or 3-8 bps into an intron				
Upstream	within 5 kb upstream of the 5'end of a transcript				
Deculatory notion	in regulatory ragion annotated by NCDL or Encombl				
Regulatory region	in regulatory region annotated by NCBI or Ensembl				
5 ' LITP	located within 5 ' LITP				
JUIK	located within 5 01K				
Intronic	located within intron				
3'UTR	located within 3'UTR				
D					
Downstream	within 5 kb downstream of the 3'end of a transcript				
Intergenic	more than 5 kb away from a transcript				

 Table 1.1 Single Nucleotide Polymorphism Types In The Human Genome [22]

In GWAS, an informative SNP subset which are referred as tag SNPs, are genotyped in case and control individuals. After the computation of tag SNP statistics, the genomic regions

that involve a linkage disequilibrium (LD) with the most significantly associated tag SNPs are expected to contain the causal polymorphisms [23].

Figure 1.6 Genetic variations in the human genome (single nucleotide polymorphism) [20]

1.3 SNP Prioritization Approaches

GWAS yield highly promising results in terms of identifying regions associated with a variety of complex traits and diseases. Most of the studies point out SNPs as the likely causal variants that are in complete linkage disequilibrium and their prioritization is challenging since individually weak SNPs might involve a strong association jointly if it is in high LD with associative and causal SNPs. Although SNPs located at coding regions and cause a aminoacid change or at a regulatory region are highly potential candidates to be associated with a disease, in many complex diseases, the causal SNPs are found to be located within noncoding regions, intergenic regions which makes the prioritization of them difficult based on likely function [24].

Major aim of a biomarker discovery study is the identification of potentially significant differential variants across control and case groups. GWAS solely based on statistical analysis are prone to many false positive results, as simultaneous testing of hundreds of thousands of SNPs yields a high number of hits occurring by chance with a traditional p-value threshold of 0.05. Linkage disequilibrium is another factor for the inadequacy of traditional statistical analysis in GWAS. Considering p-values alone cannot provide a reliable identification of associative variants due to strong physical association between certain SNPs. Biological relevance should be strongly involved in GWA studies to acquire reliable results and informative associations during SNP prioritization. There are various approaches to prioritize SNPs after GWAS such as **meta analysis** and **pathway based analysis**.

1.3.1 Meta Analysis

Pooling information from multiple GWAS to increase the statistical power and thus chances of finding true positives among the false positives is referred as meta analysis. Combining p-values via Fisher's method and converting the test statistics into z scores via

referring to odds ratios together with the regression coefficients are two major meta analysis methods utilized in GWAS. Meta analysis approach involves combination of different GWAS results rather than using the original data which can be computationally demanding [13].

1.3.2 Pathway Based Analysis

GWAS employing pathway based analyses are promising since they can identify many causal variants that cannot be identified with traditional statistical methods. Pathway based analysis is preferable since testing a few hundred pathways to identify the subsets of genes associated with diseases, eliminates the need for difficult task of huge multiple testing. For this reason, pathway based analysis can improve the power of GWAS, and identification of subset of genes in biologically relevant pathways associated with diseases or traits becomes easier. In addition, a gene which involves a number of SNPs with medium size effects might involve a increased effect after the information of SNPs are combined by the gene based score as a result of pathway based analysis [25].

Pathways are tested in terms of associations with diseases or traits and variations within the associated pathways are said to be potential causative variants even if they cannot reach genome wide significance level. For instance, some of the SNPs located at genes involved in the axon guidance pathway are found to be causal SNPs associated with Parkinson's Disease, even though none of them are found to reach the significance threshold. In pathway analysis approach, pathway heterogeneity is an important factor since disruptions in different pathways might lead to the same disorder. Moreover, the variants within those pathways are likely to differ despite affected individuals may share the same disrupted pathways.

Post-GWAS studies are likely to provide a clearer picture of the true role of common variants in common complex disorders and there are various tools for pathway enrichment analysis such as the Database for Annotation, Visualization and Integrated Discovery (DAVID) and Protein ANalysis THrough Evolutionary Relationships (PANTHER) [13].

1.4 SNP Prioritization Tools

There are various tools focusing on single nucleotide polymorphism prioritization following statistical analysis of GWAS. Biological information and functional properties of SNPs are integrated to the algorithms of those tools. However an adequate biological relevance level have not been achieved yet with those tools. In this part some of the most widely used ones will be introduced such as FastSNP, SNPLogic,SPOT, SNPinfo, SNPit and the recently developed AHP based SNP prioritization approach.

1.4.1 FastSNP

It is a webserver providing identification and prioritization of high risk SNPs depending on their phenotypic risks and deleterious functional effects. Risk determination requires access to various biological databases and analytical tools, FastSNP retrieves biological information via 11 external web servers making it possible to perform updated querying. SNP prioritization based on phenotypic risks is essential due to the fact that only a small portion of them are causal and associative polymorphisms contributing to various disease phenotypes. SNPs can be cateogorized depending on their genomic location and corresponding functional effects like below;

- Nonsynonymous SNPs effecting protein structures via changing single amino acids
- SNPs located in transcription factor binding sites in promoter or enhancer regions can modulate transcriptional regulation
- SNPs in splice sites may disrupt alternative splicing regulation

FastSNP depends on a decision tree to determine risk factors of SNPs depending on solely their genomic location ignoring essential biological relevance points such as evolutionary conservation, gene and pathway association. Table 1.2 summarizes the SNP categorization of FastSNP and risk factors assigned to each class of SNPs [26].

It utilizes a decision tree approach to assign risk rankings for SNP prioritization. The tree structure used for the prioritization only depends on genomic location of SNPs and lacks the essential information such as evolutionary conservation, gene association and biological pathways. Depending on the functional effects, each SNP is assigned a risk factor and ranking is done accordingly.

Coding type	Function type	Possible effects	Risk (ranking)
Coding	Non-sense	Causes premature termination of an amino-acid sequence	Very high (5)
·	Splicing regulation (abolishing protein domain)	Breaks the exonic splicing enhancer/silencer binding site in a coding sequence, leading to abolished protein domain	Moderate to high (3~4)
	Splicing regulation	Breaks the exonic splicing enhancer/silencer binding site in a coding sequence containing the same protein domains	Low to moderate (2~3)
	Mis-sense (non-conservative change)	Alters an amino acid in a protein to one with different structure characteristics	Moderate to high (3~4)
	Mis-sense (conservative change)	Alters an amino acid in a protein to one with similar structure characteristics	Low to moderate (2~3)
	Sense/synonymous	Does not alter an amino acid in a sequence	Very low (1)
Non-coding	Downstream with no known effect	No known effect	No known effect (0)
	Upstream with no known effect	No known effect	No known effect (0)
	Splicing site	Breaks a consensus splicing site sequence	Moderate to high $(3 \sim 4)$
	Promoter/regulatory region	Does not alter an amino acid, but can affect the level, location or timing of a gene expression	Very low to moderate (1~3)
	Intronic enhancer	Alters a binding site of a transcription factor in an intronic region	Very low to low $(1 \sim 2)$
	Untranslated	Changes an UTR in a sequence	No known effect to very low $(0 \sim 1)$
	3'utr post-transcriptional regulation	Breaks motifs likely to be involved in post-transcriptional regulation	Very low to moderate (1~3)

Table 1.2 FastSNP Single Nucleotide Polymorphism Functional Properties And Risk Factors [26]

1.4.2 SNPLogic

It integrates SNP information from numerous sources to provide a comprehensive SNP selection, annotation and prioritization system. This integration provide information about;

- the genetic context of SNPs such as chromosomal and functional locations
- genotypic data such as allele frequencies in a population
- coverage of commercial arrays like Affimetrix and Illumina
- functional predictions modeled on sequence and structure
- identified associations via biological pathways, gene ontology terms or OMIM disease terms

The interface visualized at Figure 1.7 [27] involves SNP list formation and user defined thus subjective scoring rules to rank those SNP lists. Ranking system is established by the users depending on associations, connections, annotations and functional predictions of SNPs. SNP lists can be generated based on genes of interest, chromosomal regions, biological pathways, ontology terms and disease associations, which allow grouping SNPs in biologically meaningful ways. The approach of user defined scoring pattern of SNPLogic might be inadequate in terms of biological relavance since SNP prioritization requires an objective and reliable scoring function which can be applied to every genome wide association study and traits of interest [27].

Figure 1.7 SNPLogic web interface [27]

1.4.3 SPOT

This SNP prioritization tool involves a genomic information network (GIN) approach allowing users to upload a list of SNPs and GWAS p-values providing output of a prioritized list of SNPs. GIN is a directed graph with nodes as features from a biological database. The GIN process begins with a SNP and ends in the terminal node which provides the calculation of its overall prioritization score S. S is determined by biological relevance obtained by combining information from multiple databases. Figure 1.8 [28] represents the GIN idea for SNP prioritization and assignment of score [28].

Figure 1.8 SPOT genomic information network [28]

1.4.4 SNPinfo

The web application of SNPinfo retrieves information regarding SNPs in HapMap and dbSNP and constructs LD relationships specific to ethnic groups from both sources. SNPs that were not genotyped in a GWAS, but are in LD with a SNP that was genotyped, can be screened by this way. Moreover, GWAS data generated in one ethnic group can be utilized to analyze SNPs in another ethnic groups [29].

SNPinfo web server contains various different modules suitable for different kinds of analysis during a genome wide association study [29];

- Candidate Gene SNP Selection (GenePipe)
 SNP selection for candidate genes is performed dependent on GWAS results, functional SNP prediction and LD information.
- GWAS Functional SNP Selection (GenomePipe)
 SNPs that are in high LD with GWAS SNPs provide a pool for the selection of functional SNPs
- GWAS SNP Selection in Linkage Loci (LinkagePipe)
 User defined list of linkage regions help to select small p-value GWAS SNPs in candidate genomic regions like linkage loci.
- LD Tag SNP Selection (TagSNP) Selection and visualization of LD tag SNP and is performed followed by formation of SNP list from various queries.
- SNP Function Prediction (FuncPred)
 Functional predictions and ethnic specific allele frequencies of SNPs serve as a query for this module.

• SNP Information in DNA Sequence (SNPseq)

Sequence information of SNPs is provided with this module.

1.4.5 SNPit

SNP Integration Tool (SNPit) tool is built upon a federated data integration system, and provides current information on various SNP data sources [30]. For instance, the Human Gene Mutation Database (HGMD) provides information about a particular SNP location and its disease association depending on the gene it maps. Genomic context and location information is provided by the UCSC Browser's Genscan Gene Prediction track. Evolutionary relationships between the genomes are retrived from the ECR Browser. Recent positive selection within the human genome of certain SNPs are provided by Haplotter. SNPs affecting the protein function are predicted via SIFT. Linkage disequilibrium information is retrived from Genome Variation Server (GVS).

SNPit helps to integrate and analyze functional significance of SNPs and thus contributing in understanding the GWAS results. Inference engine plug makes it possible to analyze additional logical inference. SNPit provides information about functional annotation of SNPs via going to one source for up-to-date information. Figure 1.9 depicts the rules and heuristic weights assigned to different SNP characteristics [30]. Weights were assigned to each node in the decision tree, with the score of the final node calculated by multiplying the previous nodes in its' path. For example, SNPs that are in a coding region, that are non-synonymous and damaging, have a risk of moderate to very high; a heuristic weight of 3.375 was assigned to this branch of the tree.

Figure 1.9 SNPit heuristic weights [30]

1.4.6 Analytic Hiearchy Process Based SNP Prioritization Approach

Analytic Hierarchy Process (AHP) is a multi criteria decision making method developed by Prof. Thomas L. Saaty to derive ratio scales from pairwise comparisons. Input can be acquired from actual measurements such as weight, height, price or from subjective opinions such as preference, satisfactory level etc. Some inconsistencies are allowed during the judgement. Principal eigenvectors determine the ratio scales whereas principal eigenvalues contribute to the computation of consistency index [31].

AHP provides an effective way to deal with complex decision making process via helping to identify and weight selection criteria. AHP involves analyzing the data collected for the criteria and determines the decision making process. It captures both subjective and objective evaluation measures, consistency of them and the alternatives are checked which lead to bias reduction in decision making [32].

There are two main steps of this process [32];

• The goal is decomposed into its constituent parts, progressing from the general to the specific involving a structure of a goal, criteria and alternatives as visualized in Figure 1.10 [33]. Further division of alternatives into an appropriate level of detail is performed, the possibility that the more criteria included, the less important each individual criterion may become should be taken into consideration.

Figure 1.10 AHP level of hierarchy example [33]

• Next step is the assignment of relative weight to each criteria. Each criterion has a local and global priority. Global priority of a criteria represents relative importance within the overall model. Sum of the weights in a given parent criterion level must equal one. Pairwise scoring is performed for each criteria pair and this scoring is usually depending on the 9-point scale representes at Table 1.3.

Table 1.3 AHP Pairwise Comparison Scale

Comparative Importance	Definition	Explanation
1	Equally important	Two decision elements equally influence the parent decision element.
3	Moderately more important	One decision element is moderately more influential than the other.
5	Strongly more important	One decision element has stronger influence than the other.
7	Very strongly more important	One decision element has significantly more influence over the other.
9	Extremely more important	The difference between influences of the two decision elements is extremely significant.
2, 4, 6, 8	Intermediate judgement values	Judgment values between equally, moderately, strongly, very strongly, and extremely

After the pairwise comparisons are performed, comparison matrix and priority vector is constructed depending on the weights of each criteria. Table 1.4 depicts the AHP tree nodes and their weights for SNP prioritization. SNPs are evaluated based on the features embedded in the AHP tree as follows [34,35];

An indicator function is defined to assign the features that a particular SNP have;

 $I_{k}(SNP_{i}) = \begin{cases} 1, \text{ if } SNP_{i} \text{ has the feature at leaf node } k \\\\0, \text{ otherwise} \end{cases}$

For instance if a SNP causes a frameshift (having the feature depicted at leaf node 1.3.2.1), then $I_{1,3,2,1}(SNP_i) = 1$ for that SNP. Then, final score of a SNP is computed via S function such that;

$$S(SNP_i) = \sum_{k=1}^{n} I_k(SNP_i) W_k$$
 for $i = 1, ..., m$

where n is the number of leaf nodes, m is the total number of SNPs and W_k is the weights given at Table 1.4. For instance a SNP that is known to map to a disease gene via LD and located at the 5' splice site acquires an AHP score of (0.036593+ 0.006597) = 0.04319. Table 1.5 represents the scoring order of leaf nodes depending on different biological features and genomic locations [34,35].

GWAS Related Criteria			Genetic Criteria		
Leaf	Description	Score	Leaf	Description	Score
0.1	Individual SNP	0.033616	1.1.1	Vertebrate	0.037841
0.2.1	Significant Gene - Via LD	0.01598	1.1.2.1	Mammalian - Significant Mouse ECR	0.04532
0.2.2	Significant Gene - Via Direct	0.12099	1.1.2.2	Mammalian - Other Mammalian	0.023347
0.2.3	Significant Gene - Via Pathway	0.053266	1.3.1.1.1	Non-Coding- UTR-3 - MiRNA Prediction	0.001142
0.3.1	Significant Pathway Gene - Via LD	0.01465	1.3.1.1.2	Non-Coding- UTR-3 - No MIRNA Prediction	0.000604
0.3.2	Significant Pathway Gene - Via Direct	0.093825	1.3.1.2.1	Non-Coding- UTR-5 - CpG Island	0.002017
0.3.3	Significant Pathway Gene - Via Pathway	0.04738	1.3.1.2.2	Non-Coding- UTR-5 - No CpG Island	0.00063
1.2.1.1	Disease Gene - Via LD	0.036593	1.3.1.3	Non-Coding - Intronic	0.000825
1.2.1.2	Disease Gene - Via Direct	0.186016	1.3.1.4	Non-Coding - Near Gene 3	0.001476
1.2.1.3	Disease Gene - Via Pathway	0.081725	1.3.1.5.1	Non-Coding - Near Gene 5 - CpG Island	0.002467
1.2.2.1.1	Other Gene - Other Disease - Via LD	0.005756	1.3.1.5.2	Island	0.000571
1.2.2.1.2	Other Gene - Other Disease - Via Direct	0.01818	1.3.1.6	Non-Coding - Splice3	0.005295
1.2.2.1.3	Other Gene - Other Disease - Via Pathway	0.011161	1.3.1.7	Non-Coding - Splice 5	0.006597
1.2.2.2.1	Other Gene - Neutral - Via LD	0.00145	1.3.2.1	Coding - Frameshift	0.103733
1.2.2.2.2	Other Gene - Neutral - Via Direct	0.004579	1.3.2.3.1	Coding - CDS Non Syn - Polyphen Benign	0.001997
1.2.2.2.3	Other Gene - Neutral - Via Pathway	0.002811	1.3.2.3.2	Damaging Coding - CDS Non Syn - Probably	0.004713
			1.3.2.3.3	Damaging Coding - CDS Non Syn - Completely	0.009187
			1.3.2.3.4	Determine	0.024045

 Table 1.4 AHP Tree Nodes For SNP Prioritization And Combined Weights Of Nodes After Pairwise

 Scoring Performed By 5 Specialists [34,35]
1.2.1.2 Disease Gene - Via Direct	0.186016
0.2.2 Significant Gene - Via Direct	0.12099
1.3.2.1 Coding - Frameshift	0.103733
0.3.2 Significant Pathway Gene - Via Direct	0.093825
1.2.1.3 Disease Gene - Via Pathway	0.081725
0.2.3 Significant Gene - Via Pathway	0.053266
0.3.3 Significant Pathway Gene - Via Pathway	0.04738
1.1.2.1 Mammalian - Significant Mouse ECR	0.04532
1.1.1 Vertebrate	0.037841
1.2.1.1 Disease Gene - Via LD	0.036593
0.1 Individual SNP	0.033616
1.3.2.3.4 Coding - CDS Non Syn – Completely Determine	0.024045
1.1.2.2 Mammalian - Other Mammalian	0.023347
1.2.2.1.2 Other Gene - Other Disease - Via Direct	0.01818
0.2.1 Significant Gene - Via LD	0.01598
0.3.1 Significant Pathway Gene - Via LD	0.01465
1.2.2.1.3 Other Gene - Other Disease - Via Pathway	0.011161
1.3.2.3.3 Coding - CDS Non Syn – Probably Damaging	0.009187
1.3.1.7 Non-Coding - Splice 5	0.006597
1.2.2.1.1 Other Gene - Other Disease - Via LD	0.005756
1.3.1.6 Non-Coding - Splice3	0.005295
1.3.2.3.2 Coding - CDS Non Syn – Possibly Damaging	0.004713
1.2.2.2.2 Other Gene - Neutral - Via Direct	0.004579
1.2.2.3 Other Gene - Neutral - Via Pathway	0.002811
1.3.1.5.1 Non-Coding - Near Gene 5 - CpG Island	0.002467
1.3.1.2.1 Non-Coding- UTR-5 - CpG Island	0.002017
1.3.2.3.1 Coding - CDS Non Syn - Polyphen Benign	0.001997
1.3.1.4 Non-Coding - Near Gene 3	0.001476
1.2.2.2.1 Other Gene - Neutral - Via LD	0.00145
1.3.1.1.1 Non-Coding- UTR-3 - MiRNA Prediction	0.001142
1.3.1.3 Non-Coding - Intronic	0.000825
1.3.1.2.2 Non-Coding- UTR-5 - No CpG Island	0.00063
1.3.1.1.2 Non-Coding- UTR-3 - No MiRNA Prediction	0.000604
1.3.1.5.2 Non-Coding - Near Gene 5 - No CpG Island	0.000571

Table 1.5 Weight Order For SNPs According To AHP Scoring [34,35]

1.5 Complex Diseases

Complex diseases can be defined as disorders caused by the combined effect of various genes together with the contribution of environmental factors. They usually do not involve Mendelian characteristics. Some examples of complex diseases are obesity, diabetes, hypertension, Alzheimer disease, Parkinson disease and various types of cancers. They are also referred as polygenic diseases and they have the largest impact on the human population. For

instance in the Western world the the leading cause of death are known as cancer and heart diseases.

Many complex disorders including heart diseases, some types of cancer and diabetes involve a discontinous rather than normal distribution. Their phenotypic expression is dependent on various effects and interactions between genetic, social, and environmental factors. The degree of clustering within families might yield valueable information regarding the heritability of the disease. This approach requires epidemiological data from large sample size or within affected pedigrees. For instance, recurrence risk of a disease in the siblings of affected individuals give information about the multifactorial nature of the disease providing a quantitative estimate of the effect of genes on a trait.

Genetic influences on complex diseases can be more reliably evaluated via integrative studies involving bioinformatics, molecular biotechnology, and epidemiological methods to estimate disease risk. Moreover, those integrative studies provide a deeper understanding about the etiology of complex diseases and novel approaches to disease treatment and prevention [36].

There are three different approaches to screen biomarkers to find asosciations with complex diseases. Integrating data from different genetic studies and the relevant biological information might yield promising results at the systems biology level, SNPs being the most common variant among human genome serve as an important point in disease association studies. Second approach is the pathway based analysis on GWAS data to acquire enriched disease-causal information. Third approach involves integration of disease related pathways and networks for complex disease studies [2].

1.5.1 Alzheimer's Disease

It is the most common neurodegenerative disease accounting for about 65% of late life dementia. Neurodegeneration is referred as the progressive loss of structure or function of neurons, including death of neurons (**atrophy**). Alzheimer's disease (AD) is first described by a German Neurologist, Alois Alzheimer at 1906 [37].

Clinical characterization of AD involves **memory impairment** whereas it is pathologically characterized by **amyloid plaque** and **neurofibrillary tangle** formation in brain neurons consequently leading to brain atrophy (tissue death) [38]. Amyloid plaques are resulted from aberrancy in degradation of one type of amyloid protein (**beta amyloid**) in brain. It is produced via the synthesis of amyloid precursor protein (APP). Figure 1.11 [39] is a PET (positron emission tomography, a neuroimaging technique) scan picture representing the difference between 67 years old healthy person (left) and 79 years old AD patient brains in terms of beta amyloid production and atrophy. Beta amyloid is visualized via Carbon-11-labelled Pittsburgh B (11C-PIB) compound uptake (top) and cerebral regional glucose metabolism (μ mol/min/100 mL) is evaluated via 1^sF-fluorodeoxyglucose compound (bottom). For the top part of the figure, higher intensity values imply high beta amyloid production. For the bottom part of the figure, higher intensity values imply higher glucose metabolism and thus lower proportion of atrophy.

Figure 1.11 Normal and AD brain PET scan comparison [39]

Healthy brain breaks down the excessive beta amyloid and prevent plaque formation whereas in Alzheimer's disease case, those proteins begin to accumulate leading to the formation of insoluble plaques. Figure 1.12 [39] represents the hypothetical beta amyloid production from APP at neurons and consequent amyloid plaque formation.

Figure 1.13 [40] represents beta amyloid plaque formation via immunofluorescence technique. Cortical amyloid plaque stained with anti-Ab antibody 4G8.

Figure 1.13 Aβ plaque caused by Aβ deposits [40]

Neurofibrillary tangles are insoluble twisted fibers consisting of **tau** protein, which is present in microtubule structure. Microtubule plays role in transport of nutrients and other substances inside the nerve cell. Abnormal tau protein structure in Alzheimer's disease cause neurofibrillary tangle formation. Figure 1.14 [40] represents fibrillary tangles caused by tau protein aggregates. Hippocampal neurons stained with anti-phosphorylated tau antibody AT8.

Figure 1.14 Fibrillary tangles originated from tau aggregates [40]

Alzheimer's disease have different categories depending on the onset. Early onset AD patients are less than 5% of the AD cases. They are diagnosed before the age of 65. More than 13% of individuals aged 65 years or older and 30-50% of people aged 80 years and older are diagnosed with AD. Those cases are referred as late onset Alzheimer's disease, most commonly observed type (LOAD) [41].

CHAPTER 2

LITERATURE INFORMATION AND GWAS RESULTS ABOUT ALZHEIMER'S DISEASE

This chapter mainly focuses on GWAS Analysis and literature information about Alzheimer's Disease. AD linked genes and variations are presented in this chaper.

2.1 Current Literature on AD and GWAS of Alzheimer's Disease

2.1.1 Overview of AD

Alzheimer's disease can be categorized into two major forms;

- (i) strong familial clustering AD usually showing Mendelian disease transmission and early (before 65 years) or very early (before 50 years) age of onset
- (ii) no familial aggregation AD occurring after 65 years of age (late onset AD, LOAD)

A 2009 review regarding GWAS in AD mentions that rare and usually highly penetrant mutations in three genes (amyloid precursor protein-**APP**, presenilin 1-**PSEN1** and presenilin 2-**PSEN2**) contribute to aberration in beta amyloid (A β) production leading to plaque formation. Those mutations are thought to be the major cause of the early onset AD [42]. Various other associative genes remain to be identified for early onset AD, which accounts for less than 5% of all AD cases [42].

2.1.2 Summary of GWAS of AD

APOE (apolipoprotein E) is found to consistently influence disease risk since significant association with AD is observed in various GWAS. In addition, **CLU** (clusterin, also known as apolipoprotein J) gene involves an associative SNP which resides at the intronic region with no known function [43]. According to another study [44], that intronic SNP is in strong LD with a synonymous SNP located at exon 5 of the CLU gene (rs7982; His315His), which is thought to affect alternative splicing or expressional regulation of the transcript.

Clusterin protein is predicted to bind soluble A β transporting it from plasma across the blood brain barrier [45]. APOE is predicted to transport A β in the opposite direction [46]. Clusterin together with APOE probably involve considerable roles in the regulation of cerebral A β levels and its transportation across the brain [42].

A 2010 review points out that the identification of APP, PSEN1 and PSEN2 associations with early onset AD provide a clear overview of the pathopysiology of AD. Moreover, APOE is mentioned to be universally accepted risk factor for late onset AD. It is a component of senile plaques and binds A β . APOE is thought to play role in A β clearance and deposition in the brain. In addition, some other functions that are not related to A β are suggested for APOE such as isoform specific synaptogenesis and cognition, neurotoxicity, **tau** hyperphosphorylation, neuro-inflammation, and brain metabolism [47].

A β is first cleaved from APP by β -secretase, followed by cleavage via γ -secretase complex. Presenilin is an essential component of the γ -secretase complex [47]. Amyloid cascade hypothesis which is mentioned briefly at Figure 1.8 involves contribution from elevated A β 42/A β 40 ratio or fibrillogenesis [48]. A β 42 is referred as the toxic form of beta amyloid and its elevation influences inflammation, synaptic loss, ionic imbalance, and abnormal phosphorylation of proteins such as tau consequently leading to cell death and underlying clinical dementia [47].

There are alternative hypotheses such that tau [49] or dominant negative loss of presenilin function [50] might involve additional pathophysiologic mechanisms underlying AD.

A 2011 paper introduces a novel 'endophenotype 'approach coupled with gene expression analysis for identification of associative genes with AD. Endophenotype concept was first introduced in 1966 for Drosophila to define phenotypes that are microscopic and internal [51]. Various genetic studies involving gene expression level endophenotypes related with disease risk suggest that this combined approach contribute to increase in power for gene discovery and understanding of their mode of action [51]. For a feature to be referred as an endophenotype, it should involve an association with the disease in the general population. Moreover, endophenotypes should influence detectable changes in the clinically unaffected but at risk subjects such as family members of patients [51]. For instance $A\beta$ can be used as an effective endophenotype for a linkage study of LOAD.

Endophenotype approach is promising since there can be several disease associative variants that cause changes in gene expression levels. Such variants might be identified by combining gene expression endophenotypes with existing disease GWAS to;

- identify novel disease genes and pathways
- validate potentially valuable results from disease GWAS
- estimate the mechanism of action of newly discovered disease genes

With their high potential in associative variant studies, gene expression endophenotypes are expected to be preferred for neurodegenerative diseases in the years to come [51].

Another 2011 paper points out three SNPs (rs744373, rs12989701 and rs7561528) at **BIN1** (bridging integrator 1) locus to be strongly associated with AD [38]. Moreover, Gleevec pathway is suggested to be candidate associative pathway linked with AD progression. Gleevec

is a cancer drug approved for the treatment of chronic myeloid leukemia. It was recently shown to reduce γ -secretase cleavage for APP [52] and to bind to a γ -secretase modulator [53]. Gleevec linked studies can yield valuable results if further validated about the potential mechanism and mode of action involved in AD [38].

A replication study of two GWAS [54, 55] confirmed the association of CLU ($p = 8.5 \times 10^{-10}$), **PICALM** (phosphatidylinositol binding clathrin assembly protein) ($p = 1.3 \times 10^{-9}$) and **CR1** (complement component (3b/4b) receptor 1 (Knops blood group)) loci ($p = 3.7 \times 10^{-9}$) [37]. **ABCA7** (ATP-binding cassette transporter), **MS4A** (membrane spanning 4 domains subfamily A), **CD2AP** (CD2 associated protein), **CD33**(sialic acid binding immunoglobulin like lectin) and **EPHA1** (ephrin receptor A1) are confirmed to be associated with LOAD via two GWA studies [56, 57]. The significant SNPs found and mapped to genes are represented below;

- ABCA7 (rs3764650) (p = 5.0×10^{-21}).
- MS4A (rs4938933) (p = 8.2×10^{-12})
- CD2AP (rs9349407) (p = 8.6 × 10⁻⁹)
- EPHA1 (rs11767557) (p = 6.0 × 10⁻¹⁰)
- CD33 (rs3865444) (p = 1.6×10^{-9})

Those identified loci together with the new implicated pathways are summarized at Figure 2.1 [58] and below;

- Immune system function CLU, CR1, ABCA7, MS4A, CD33, and EPHA1
- Cholesterol metabolism APOE, CLU and ABCA7
- $A\beta$ metabolism APOE, CLU and ABCA7
- Synaptic dysfunction and cell membrane processes PICALM, BIN1, CD33, CD2AP and EPHA1 [58].

 $A\beta$ might involve a modulatory effect on these new pathways as indicated by the blue arrows;

Figure 2.1 Pathways and genes associated with AD [58]

2.1.3 AD Databases Online

AlzGene is a widely referred database for genome wide association study findings regarding Alzheimer's disease [59]. It is a regularly updated database that provides a comprehensive and unbiased information regarding Alzheimer's Disease genetic association studies and thus it serves as a valuable source to identify AD linked genes. Meta-analyses are also available for all eligible polymorphisms with sufficient data.

Appendix B provides all the genes and locus on human chromosomes found to be potentially associated with AD [59]. AD linkage regions on chromosomes are marked with red whereas '*Top Results Gene*' with yellow. Top Results Gene list involves genes or loci having at least one variant representing a nominally significant summary odds ratio (OR) in the analysis of all studies, or those limited to samples of a specific ethnicity. There is a ranking system such that genes are ranked depending on the genetic variant with the best '*overall HuGENet/Venice grade*' [59]. HuGENet/Venice grade can be summarized with three main categories for meta-analyzed associations in AlzGene database[59]; *amount of evidence, replication consistency* and *protection from bias*.

Ranking for the first category (amount of evidence) depends on the total number of minor alleles of cases and controls combined in the meta analysis.

- 'A' grade is assigned when the total number > 1,000
- 'B' grade is assigned when the total number is between 100 and 1,000
- 'C' grade is assigned when the total number < 100

Ranking for the second category (replication consistency) depends on a inconsistency measure (I^2) which describes the percentage of total variation across studies that is due to heterogeneity rather than chance, higher values imply higher inconsistency.

- 'A' grade is assigned if $I^2 < 25\%$
- 'B' grade is assigned if I^2 is between 25–50%
- 'C' grade is assigned if $I^2 > 50\%$

Ranking for the third category (protection from bias) depends on various potential sources of bias potentially affecting the association. Errors in phenotypes, genotypes, confounding (population stratification) and errors or biases at the meta-analysis level (publication and other selection biases) are examples for biases.

- 'A' grade implies that there is probably no bias
- 'B' grade that there is no demonstrable bias but important information is missing for its reliable prediction
- 'C' grade that there is evidence for potential or clear bias

For genes with identical grades, ranking is based on p-value, if their p-values are also identical then ranking is based on effect size (odds ratio) [59].

AlzGenes is another database that depends on catalogue information from National Human Genome Research Institute (NHGRI) [6,60]. AD linked genes are classified into 6 categories;

- Cholesterol and lipoprotein-related
- Cytokines
- Oxidative stress
- Nuclear receptor and related
- Proteases
- Miscellaneous

OMIM and **GeneRIF** are databases that involve valuable information about disease associations and genomic variations. They are also referred to acquire information about AD linked genes.

2.1.4 AD Associated Gene List

After referring to various databases, a list that involves AD linked genes should be decided to objectively evaluate the results in terms of biological relevance while performing comparisons between METU-SNP and SPOT. Firstly, **OMIM** (Online Mendelian Inheritance in Man) entries are investigated and a gene is said to be AD linked if phenotype information is observed to involve Alzheimer's Disease at the corresponding OMIM entry thus located at AD loci. Figure 2.2 represents the corresponding OMIM entry for a AD linked gene, APOE [61].

IGNC A	oproved Gene Symbol: APOE	
Cytogene	tic location: 19q13.2	
Genomic	coordinates (GRCh37): 19:45,409,0	038 - 45,412,649
rom NCBI)		
Gene Pho	enotype Relationships	
Gene Pho Location	Phenotype	Phenotype MIM number
Gene Pho Location 19q13.2	Phenotype Alzheimer disease-2	Phenotype MIM number 104310
Gene Pho Location 19q13.2	Phenotype Relationships Phenotype Alzheimer disease-2 Hyperlipoproteinemia, type III	Phenotype MIM number 104310
Gene Pho Location 19q13.2	Phenotype Relationships Phenotype Alzheimer disease-2 Hyperlipoproteinemia, type III Lipoprotein glomerulopathy	Phenotype MIM number 104310 611771
Gene Pho Location 19q13.2	Phenotype Alzheimer disease-2 Hyperlipoproteinemia, type III Lipoprotein glomerulopathy Sea-blue histiocyte disease	Phenotype MIM number 104310 611771 269600
Gene Pho Location 19q13.2	Phenotype Alzheimer disease-2 Hyperlipoproteinemia, type III Lipoprotein glomerulopathy Sea-blue histiocyte disease {Macular degeneration, age-related}	Phenotype MIM number 104310 611771 269600 603075

Figure 2.2 APOE OMIM entry [61]

Final list of AD linked genes are retrieved from OMIM genes that involve AD phenotype entry (26 genes) together with the genes observed at AlzGenes and AlzGene databases (58 genes). Table 2.1 depicts the genes in AD loci and thus the AD linked genes list depending on 3 different databases.

Gene Symbol	Gene Name				
A2M	ALPHA-2-MACROGLOBULIN				
ABCA1	ATP-BINDING CASSETTE, SUB-FAMILY A (ABC1), MEMBER 1				
ACE	ANGIOTENSIN I-CONVERTING ENZYME				
AD5	ALZHEIMER DISEASE, FAMILIAL 5				
AD6	ALZHEIMER DISEASE, FAMILIAL 6				
AD7	ALZHEIMER DISEASE, FAMILIAL 7				
AD8	ALZHEIMER DISEASE, FAMILIAL 8				
AD9	ALZHEIMER DISEASE, FAMILIAL 9				
AD10	ALZHEIMER DISEASE, FAMILIAL 10				
AD11	ALZHEIMER DISEASE, FAMILIAL 11				
AD12	ALZHEIMER DISEASE, FAMILIAL 12				
AD13	ALZHEIMER DISEASE, FAMILIAL 13				
AD14	ALZHEIMER DISEASE, FAMILIAL 14				
AD15	ALZHEIMER DISEASE, FAMILIAL 15				
AD16	ALZHEIMER DISEASE, FAMILIAL 16				
AGER	ADVANCED GLYCOSYLATION END PRODUCT-SPECIFIC RECEPTOR				
ALDH2	ALDEHYDE DEHYDROGENASE 2				
APBB2	AMYLOID BETA A4 PRECURSOR PROTEIN-BINDING, FAMILY B, MEMBER 2				
APOA1	APOLIPOPROTEIN A-I				
APOA4	APOLIPOPROTEIN A-IV				
APOC1	APOLIPOPROTEIN C-I				
APOC2	APOLIPOPROTEIN C-II				
APOC3	APOLIPOPROTEIN C-III				
APOE	APOLIPOPROTEIN E				
APP	AMYLOID BETA A4 PRECURSOR PROTEIN				
BIN1	BRIDGING INTEGRATOR 1				
BCHE	BUTYRYLCHOLINESTERASE				
BLMH	BLEOMYCIN HYDROLASE				
CBS	CYSTATHIONINE BETA-SYNTHASE				
CCL2	CHEMOKINE, CC MOTIF, LIGAND 2				
CCR2	CHEMOKINE, CC MOTIF, RECEPTOR 2				

Table 2.1	84 Genes	Selected	For AD	Linked	Genes List
-----------	----------	----------	--------	--------	------------

Gene Symbol	ne Symbol Gene Name	
CD14	MONOCYTE DIFFERENTIATION ANTIGEN CD14	
CD36	CD36 ANTIGEN	
СЕТР	CHOLESTERYL ESTER TRANSFER PROTEIN, PLASMA	
CFH	COMPLEMENT FACTOR H	
CHRNA7	CHOLINERGIC RECEPTOR, NEURONAL NICOTINIC, ALPHA POLYPEPTIDE 7	
CLU	CLUSTERIN	
CR1	COMPLEMENT COMPONENT RECEPTOR 1	
CRP	C-REACTIVE PROTEIN, PENTRAXIN-RELATED	
CST3	CYSTATIN 3	
CYP19A1	CYTOCHROME P450, FAMILY 19, SUBFAMILY A, POLYPEPTIDE 1	
ESR1	ESTROGEN RECEPTOR 1	
GNB3	GUANINE NUCLEOTIDE-BINDING PROTEIN, BETA-3	
GSTM1	GLUTATHIONE S-TRANSFERASE, MU-1	
GSTT1	GLUTATHIONE S-TRANSFERASE, THETA-1	
HFE	HEMOCHROMATOSIS, HFE GENE	
HLA-A2	MAJOR HISTOCOMPATIBILITY COMPLEX, CLASS I, A2	
HMGCR	3-HYDROXY-3-METHYLGLUTARYL-CoA REDUCTASE	
HMOX1	HEME OXYGENASE 1	
HTR6	5-@HYDROXYTRYPTAMINE RECEPTOR 6	
ICAM1	INTERCELLULAR ADHESION MOLECULE 1	
IL18	INTERLEUKIN 18	
IL1B	INTERLEUKIN 1-BETA	
IL1RN	INTERLEUKIN 1 RECEPTOR ANTAGONIST	
IL6	INTERLEUKIN 6	
LDLR	LOW DENSITY LIPOPROTEIN RECEPTOR	
LIPA	LIPASE A, LYSOSOMAL ACID	
LPA	APOLIPOPROTEIN A	
LPL	LIPOPROTEIN LIPASE	
LRP1	LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 1	
LRP6	LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 6	
MEF2A	MADS BOX TRANSCRIPTION ENHANCER FACTOR 2, POLYPEPTIDE A	
MMP1	MATRIX METALLOPROTEINASE 1	
MMP3	MATRIX METALLOPROTEINASE 3	
МРО	MYELOPEROXIDASE	
MTHFR	5,10-METHYLENETETRAHYDROFOLATE REDUCTASE	
NGB	NEUROGLOBIN	

Table 2.1 (cont.) 84 Genes Selected For AD Linked Genes List

Gene Symbol	Gene Name		
NOS3	NITRIC OXIDE SYNTHASE 3		
OLR1	LOW DENSITY LIPOPROTEIN, OXIDIZED, RECEPTOR 1		
PAXIP1	PAX TRANSCRIPTION ACTIVATION DOMAIN-INTERACTING PROTEIN 1		
PICALM	PHOSPHATIDYLINOSITOL-BINDING CLATHRIN ASSEMBLY PROTEIN		
PLAU	PLASMINOGEN ACTIVATOR, URINARY		
PON1	PARAOXONASE 1		
PON2	PARAOXONASE 2		
PPARA	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-ALPHA		
PSEN1	PRESENILIN 1		
PSEN2	PRESENILIN 2		
PTGS2	PROSTAGLANDIN-ENDOPEROXIDE SYNTHASE 2		
SERPINE1	SERPIN PEPTIDASE INHIBITOR, CLADE E MEMBER 1		
SORL1	SORTILIN-RELATED RECEPTOR		
SREBF1	STEROL REGULATORY ELEMENT-BINDING TRANSCRIPTION FACTOR 1		
TGFB1	TRANSFORMING GROWTH FACTOR, BETA-1		
TLR4	TOLL-LIKE RECEPTOR 4		
TNF	TUMOR NECROSIS FACTOR		

Table 2.1 (cont.) 84 Genes Selected For AD Linked Genes List

CHAPTER 3

GWAS RESULTS AND COMPARISON OF AHP WITH OTHER PRIORITIZATION APPROACHES ON BIOLOGICAL RELEVANCE FOR ALZHEIMER'S DISEASE GENOTYPING DATA SETS

3.1 Alzheimer's Disease Genotyping Data Sets

3.1.1 ADNI AD Genotyping Data

Whole genome association data for Alzheimer's disease with the below properties was obtained from the Alzheimer's Disease Neuroimaging Initiative (*ADNI*) database [62];

- 149 AD cases and 182 controls
- 555.850 SNP-genotype fields from the Illumina 610Quad chip

The performance of our AHP based SNP prioritization system in terms of biological relevance is evaluated via comparison with SPOT.

3.1.2 GenADA AD Genotyping Data

GenADA is a multi-site collaborative study with the contribution of GlaxoSmithKline Inc and nine medical centres in Canada aiming to associate variations in candidate genes with Alzheimer's disease phenotypes. Both patients with an existing diagnosis of AD and newly diagnosed patients are enrolled in this study. For that reason, clinical data was retrospectively or prospectively obtained on Day 1 of entry. Data is retrieved from the database of Genotypes and Phenotypes (dbGAP) in National Center for Biotechnology Information (NCBI) [63]. GenADA whole genome association data for Alzheimer's disease involve the below properties;

- 852 AD cases and 866 controls
- 262264 SNP-genotype fields from the Affymetrix Mapping 250K chip

The performance of our AHP based SNP prioritization system is tested and compared with SPOT in terms of biological relevance.

3.2 GWAS

3.2.1 GWAS Results of ADNI (p-value associations)

Initial quality control based filtering and preprocessing was performed by using the default thresholds of the system;

- Minor Allele Frequency = 0.05
- SNP Missingness Rate = 0.1
- Individual Missingness Rate = 0.1
- Hardy Weinberg Equilibrium = 0.001

After the quality control based filtering and preprocessing, GWAS is performed. As can be seen from Figure 3.1, p-value distribution of ADNI data involves a dispersed pattern with respect to chromosomes with SNPs rs4795895 and rs1233651 mapping to chromosome 17 and rs12457258 mapping to chromosome 18 having lowest p-values.

Figure 3.1 ADNI AD genotyping data p-value distribution by chromosomes

3.2.2 GWAS Results of GenADA (p-value associations)

Initial quality control based filtering and preprocessing was performed by using the default thresholds of the system;

- Minor Allele Frequency = 0.05
- SNP Missingness Rate = 0.1
- Individual Missingness Rate = 0.1
- Hardy Weinberg Equilibrium = 0.001

After the quality control based filtering and preprocessing, GWAS is performed with a pvalue threshold of 0.05. As can be seen from Figure 3.2, p-value distribution of GenADA data involves a dispersed pattern with respect to chromosomes with SNPs rs6980733 mapping to chromosome 8 and rs17123958 mapping to chromosome 14 having lowest p-values.

Figure 3.2 GenADA AD genotyping data p-value distribution by chromosomes

3.3 AHP Prioritization

3.3.1 AHP Prioritization Results for ADNI (combined p-value and AHP scores)

Combined p-value for genes and pathways were computed by using 0.05 p-value threshold for both Fisher's combination test (genes) and Fisher's exact test (pathways) to find significant genes and pathways [64]. AHP based prioritization for 500K SNPs was performed within 4 hours via HCP Tesla in which NVIDIA C2070 is installed.

- 6 Gb GDDR5 RAM
- 1.5 GHz Memory Speed
- 144 Gb/sec Memory Bandwith

Table 3.1 depicts the outputs after combined p-value for genes are computed. Below is the Top 20 genes depending on their combined p-values and their OMIM associations are

represented. As can be seen from Table 3.1, 13 genes are OMIM associated. When combined p-value approach is applied after GWAS, it does not detect any AD linked gene in its Top 100 gene list as can be seen from Appendix C.

 Table 3.1 Top 20 Genes Depending On The Combined p-values And Their OMIM Associations For ADNI

 Data

Ranking	Gene	Combined p-value	OMIM association
1	SLC16A9	~0.0	
2	RBFOX1	~0.0	
3	CNTN5	~0.0	Yes
4	C6orf10	~0.0	
5	KDM4C	~0.0	Yes
6	RBMS3	~0.0	Yes
7	SLC9A7	~0.0	Yes
8	DSCAM	~0.0	Yes
9	FHIT	~0.0	Yes
10	LRP1B	~0.0	Yes
11	ANKRD44	~0.0	
12	DACH1	~0.0	Yes
13	SNX25	~0.0	
14	FAM188B	~0.0	
15	CSMD1	~0.0	Yes
16	HS3ST4	~0.0	Yes
17	FER1L6	~0.0	
18	NELL1	~0.0	Yes
19	ALDH1A2	~0.0	Yes
20	SUCLG2	~0.0	Yes

Table 3.2 represents Top 20 SNP list after METU-SNP AHP based prioritization, their AHP scores and the AD linked genes they map. As can be seen from Table 3.2, 5 SNPs map to AD linked genes SORL1, ABCA1 and LDLR.

		AHP	
Ranking	SNP ID	score	AD linked gene
1	rs4651138	0.789991	
2	rs2070045	0.789166	SORL1
3	rs2230806	0.757547	ABCA1
4	rs4652769	0.75215	
5	rs3779870	0.737535	
6	rs10808738	0.728803	
7	rs4395923	0.728803	
8	rs4936637	0.728803	SORL1
9	rs6424883	0.728803	
10	rs10752893	0.728803	

Table 3.2 Top 20 SNPs After AHP Prioritization For ADNI Data

	101	ADIA Data	
Ranking	SNP ID	AHP score	AD linked gene
11	rs9832203	0.728803	
12	rs895286	0.728803	
13	rs4358067	0.718534	
14	rs10857526	0.718534	
15	rs603634	0.718534	
16	rs10934675	0.715562	
17	rs1800464	0.714737	
18	rs13390226	0.703919	
19	rs1799898	0.703094	LDLR
20	rs688	0.703094	LDLR

Table 3.2 (cont.) Top 20 SNPs After AHP Prioritization For ADNI Data

3.3.2 AHP Prioritization Results for GenADA (combined p-value and AHP scores)

Combined p-value for genes and pathways were computed by using 0.05 p-value threshold for both Fisher's combination test (genes) and Fisher's exact test (pathways) to find significant genes and pathways [64]. AHP based prioritization for 250K SNPs was performed within 2 hours via HCP Tesla in which NVIDIA C2070 is installed.

Table 3.3 depicts the outputs after combined p-value for genes are computed. Below is the Top 20 genes depending on their combined p-values and their OMIM associations are represented. As can be seen from Table 3.3, 15 genes are OMIM associated. When combined p-value approach is applied after GWAS, it detect only one AD linked gene (CD36) in its Top 100 gene list marked in bold and can be seen at Appendix D.

Ranking	Gene	Combined p- value	OMIM association
1	AGAP11	1,089181E-08	
2	C4orf18	1,187423E-08	
3	CPT2	2,232619E-08	Yes
4	OR1L1	1,773873E-07	
5	NACC2	1,974952E-07	
6	MCPH1	2,484007E-07	Yes
7	C9orf150	4,419189E-07	
8	PRSS1	4,765822E-07	Yes
9	ESR2	7,396964E-07	Yes
10	ARHGEF19	8,743196E-07	Yes
11	STC1	8,987053E-07	Yes
12	SMURF1	1,272100E-06	Yes
13	CPZ	1,276079E-06	Yes

Table 3.3 Top 20 Genes Depending On The Combined P-values And Their OMIM Associations

For GenADA Data

Ranking	Gene	Combined p- value	OMIM association
14	MYPN	1,451700E-06	Yes
15	IFI30	1,649066E-06	Yes
16	DAP	1,937083E-06	Yes
17	GNAZ	1,997541E-06	Yes
18	MRPS10	2,519949E-06	Yes
19	PPT1	2,546921E-06	Yes
20	HNRNPU	2,780977E-06	Yes

 Table 3.3 (cont.) Top 20 Genes Depending On The Combined P-values And

 Their OMIM Associations For GenADA Data

Table 3.4 represents Top 20 SNP list after METU-SNP AHP based prioritization, their AHP scores and the AD linked genes they map. As can be seen from Table 3.2, 5 SNPs map to AD linked genes MPO, APP and A2M.

		AHP	
Ranking	SNP ID	score	AD linked gene
1	rs7229	0.717355	
2	rs14531	0.715879	
3	rs4947	0.703094	
4	rs2759	0.683118	MPO
5	rs6304	0.683118	
6	rs6324	0.681121	
7	rs6323	0.681121	
8	rs6305	0.681121	
9	rs13136	0.679514	
10	rs6314	0.669966	
11	rs6308	0.66725	
12	rs6313	0.665253	
13	rs3010	0.655025	
14	rs8951	0.654691	
15	rs1146	0.654374	APP
16	rs761388	0.654374	
17	rs15966	0.654374	
18	rs669	0.645277	A2M
19	rs12222	0.644756	
20	rs3761	0.644756	

Table 3.4 Top 20 SNPs After AHP Prioritization For GenADA Data

3.4 SPOT

3.4.1 ADNI data

Table 3.5 represents Top 20 SNP list after SPOT prioritization for ADNI data, their AHP scores and the AD linked genes they map. As can be seen from Table 3.5, only one SNP map to an AD linked gene GNB3.

Ranking	SNP ID	AD linked gene
1	rs4795895	
2	rs17365991	
3	rs3795263	
4	rs4426564	
5	rs2075650	
6	rs12605132	
7	rs9268368	
8	rs10941091	
9	rs667782	
10	rs885691	
11	rs1233651	
12	rs5442	GNB3
13	rs12489170	
14	rs6729218	
15	rs13006848	
16	rs12457258	
17	rs6020624	
18	rs4935801	
19	rs3735080	
20	rs3862683	

Table 3.5 Top 20 SNPs After SPOT Prioritization For ADNI Data

3.4.2 GenADA data

Table 3.6 represents Top 20 SNP list after SPOT prioritization for GenADA data, their AHP scores and the AD linked genes they map. As can be seen from Table 3.5, none of the SNPs map to an AD linked gene.

Table 3.6 Top 20 SNPs After SPOT Prioritization For GenADA Data

Ranking	SNP ID	AD linked gene
1		
1	rs1002083	
2	rs3733472	
3	rs10252253	
4	rs11166412	
5	rs3812205	
6	rs17074644	
7	rs3739407	
8	rs6746030	
9	rs4687319	
10	rs3742261	
11	rs17593271	
12	rs1065035	
13	rs560659	
14	rs16966703	
15	rs4545143	
16	rs304230	

Ranking	SNP ID	AD linked gene
17	rs572846	
18	rs8041254	
19	rs6677080	
20	rs17067596	

Table 3.6 (cont.) Top 20 SNPs After SPOT Prioritization For GenADA Data

3.5 Comparison of Prioritization Approaches on Biological Relevance 3.5.1 ADNI data

Top 100 SNP list after METU-SNP analysis and AHP based prioritization of ADNI data, Top 100 SNP list after SPOT based prioritization, and the AD linked genes that they are mapped to are presented at Appendix E. The genes on the previously described AD linked genes list are marked in bold. Table 3.7 represents the comparison of AHP based prioritization, combined p-value approach and SPOT prioritization tool depicting the gene associations of Top 100 SNP lists of them. For AHP based prioritization, SNPs are ranked depending on their AHP score and the resulting first 100 SNPs were analyzed based on their biological relevance and AD association. All Top 100 SNPs at the AHP list mapped to an OMIM associated gene at the Pubmed database and as can be seen from the Table 3.8, 18 out of 100 SNPs are found to be mapped to 6 AD linked genes (**SORL1, ABCA1, CHRNA7, LDLR, APP** and **IL1A**).

SPOT yields only 58 SNPs mapping to OMIM associated genes in the Top 100 SNP list after prioritization. There are 15 SNPs that do not even map to a gene. One gene is found to be AD linked in SPOT's Top 100 list; it can detect only **GNB3**.

Combined p-value for genes Top 100 gene list involves 73 genes to be OMIM associated. This approach cannot identify any AD linked gene in its Top 100 gene list.

Consequently, both combined p-value and AHP integration in METU-SNP considerably increased the biological relevance of SNP prioritization compared to SPOT. Our AHP based prioritization algorithm pinpoints the Alzheimer Disease associated genes SORL1, ABCA1, CHRNA7, LDLR, APP and IL1A successfully as can be seen from the Table 3.8 and outperforms SPOT in biological relevance in terms of SNP prioritization for AD.

Table 3.7 Comparison Of AHP Priorization, Combined P-value Approach And SPOT In Terms OfBiological Relevance And AD Linkage For ADNI Data

Genes that AHP prioritized Top 100 SNPs mapped		Top 100 genes according to combined p-value approach		Genes that SPOT prioritized Top 100 SNPs mapped	
OMIM gene	AD loci	OMIM gene	AD loci	OMIM gene	AD loci
100	18	73	-	58	1

List of Genes on AD Loci within Top 100 AHP prioritized SNPs	# of Associated SNPs on the Gene
SORL1	6
ABCA1	5
CHRNA7	3
LDLR	2
APP	1
IL1A	1

Table 3.8 AD Linked Genes That AHP Based Prioritization Points Out For ADNI Data

The remaining 82 SNPs at the Top 100 SNP list of AHP priorization was analyzed in terms of biological relevance further and discovered that 66 of them are mapped to candidate AD linked genes as the literature involves various studies regarding their association and possible linkage with AD. Table 3.9 represents the candidate AD linked genes that AHP prioritized Top 100 SNPs mapped and the brief relevant literature information supporting their potential AD association.

List of Genes linked to AD within Top 100 AHP prioritized SNPs	# of Associated SNPs on the Gene	Relevant literature
KALRN	23	predominantly expressed in hippocampus, involved in neuronal stability and growth, underexpressed in AD hippocampus [65]
ERBB4	23	expressed by reactive astrocytes and microglia surrounding neuritic plaques in AD subjects,controls involve ERBB4 expression in distinct cellular compartments of hippocampal neurons [66]
CTNNA3	8	located at the AD6 region which is associated with LOAD [67]. 2 intronic SNPs are found to be in high LD with A β 42 levels in 10 extended LOAD families [68]
CYP7B1	6	involved in 27-hydroxycholesterol metabolism and thus prevention of neurodegenerative accumulations. [69,70] Its expression is significantly lower in dentate neurons from AD [71]
FGF1	2	elevated concentrations in the CSF of AD patients, which can be caused by increased generation of glial cells producing FGF-1. FGF-1 expression can represent an active response to neurodegeneration [72]

Table 3.9 Candidate AD Linked Genes That AHP Based Priorization Points Out For ADNI Data

 Table 3.9 (cont.) Candidate AD Linked Genes That AHP Based Priorization Points Out For

 ADNI Data

MME	2	significant decrease in mRNA levels in cerebral cortex of AD individuals compared to controls [73].
MAOA	1	involved in the pathogenesis of mood disorders and AD. Its activity and gene expression are upregulated in different brain areas of AD patients. MAOA-VNTR polymorphism is associated with depression and AD [74]
MRE11A	1	a DNA repair enzyme, expression reduced in AD cortex neurons, loss of the Mre11 complex may be associated with the AD pathogenesis. MRE11A underexpression might lead to neuronal depletion [75]

The biological relevance comparison with SPOT and METU-SNP outputs in terms of AD linked genes for the ADNI data can be summarized as follows;

- AHP based prioritization performs better than only combined p-value approach and SPOT prioritization.
- ~20% of AHP prioritized SNPs associated with AD loci and also >50% of AHP prioritized SNPs map to potential AD linked genes.
- AHP prioritization identifies many potentially AD linked genes in addition to 6 AD linked genes in the Top 100 SNP gene association list after the prioritization of 555.850 SNPs. KALRN, ERBB4, CTNNA3, CYP7B1,FGF1, MME, MAOA and MRE11A are hot candidate genes to be linked with AD as the literature involves several studies about their possible association with AD.
- AHP prioritization of GWAS SNPs will be helpful to identify disease associated genes for downstream analysis.

3.5.2 GenADA data

Top 100 SNP list after METU-SNP analysis and AHP based prioritization of GenADA data, Top 100 SNP list after SPOT based prioritization, and the AD linked genes that they are mapped to are presented at Appendix F. The genes on the previously described AD linked genes list are marked in bold.

Table 3.10 represents the comparison of AHP based prioritization, combined p-value approach and SPOT prioritization tool depicting the gene associations of Top 100 SNP lists of them. For AHP based prioritization, SNPs are ranked depending on their AHP score and the resulting first 100 SNPs were analyzed based on their biological relevance and AD association. All Top 100 SNPs at the AHP list mapped to an OMIM associated gene at the PubMed database

and as can be seen from the Table 3.10, 37 out of 100 SNPs are found to be mapped to 8 AD linked genes (APP, A2M, ACE, PTGS2, APOA1, LDLR, LPL and MPO).

SPOT yields only 75 SNPs mapping to OMIM associated genes in the Top 100 SNP list after prioritization. Moreover, 4 SNPs do not even map to a gene. The only AD linked gene that SPOT can detect in its Top 100 list is **BIN1**.

Combined p-value for genes Top 100 gene list involves 75 SNPs mapping to OMIM associated genes. This approach identify only **CD36** as an AD linked gene in its Top 100 gene list.

Consequently, both combined p-value and AHP integration in METU-SNP considerably increased the biological relevance of SNP prioritization compared to SPOT for this AD genotyping data. Our AHP based prioritization algorithm pinpoints the Alzheimer Disease associated genes APP, A2M, ACE, PTGS2, APOA1, LDLR, LPL and MPO successfully as can be seen from the Table 3.11 and outperforms SPOT in biological relevance in terms of SNP prioritization for AD.

Table 3.10 Comparison Of AHP Priorization, Combined P-value Approach And SPOT In Terms OfBiological Relevance And AD Linkage For GenADA Data

Genes that AHP prioritized Top 100 SNPs mapped		Top 100 genes according to combined p-value approach		Genes that SPOT prioritized Top 100 SNPs mapped	
OMIM gene	AD loci	OMIM gene	AD loci	OMIM gene	AD loci
100	37	75	1	75	1

List of Genes on AD Loci within Top 100 AHP prioritized SNPs	# of Associated SNPs on the Gene
APP	18
A2M	7
ACE	4
PTGS2	3
APOA1	2
LDLR	1
LPL	1
МРО	1

Table 3.11 AD Linked Genes That AHP Based Prioritization Points Out For GenADA Data

The remaining 63 SNPs at the Top 100 SNP list of AHP priorization was analyzed in terms of biological relevance further and discovered that 10 of them are mapped to candidate AD

linked genes as the literature involves various studies regarding their association and possible linkage with AD. Table 3.12 represents the candidate AD linked genes that AHP prioritized Top 100 SNPs mapped and the brief relevant literature information supporting their potential AD association.

List of Genes linked to AD within Top 100 AHP prioritized SNPs	# of Associated SNPs on the Gene	Relevant literature
ESR2	3	Two SNPs (rs1271573 and s1256043) with T/T allele are more frequent in AD women compared to control woman subjects. (p-values are 0.012 and 0.016, respectively). Moreover, ESR2 rs1271573 T/T and the s1256043 T/T genotypes involve a nearly 1.9–fold increase in the risk of AD in women [76].
UBB	3	A dinucleotide deletion in UBB leads to formation of polyubiquitin causing neuritic beading, impairment of mitochondrial movements, mitochondrial stress and neuronal degeneration in primary neurons. The polyubiquitin-linked clogging of mitochondria in neurites might contribute to axon injury and neuropathology in AD [77].
EEF2	2	EEF2 levels are significantly lower in AD subjects compared to controls. The decrease of total eEF2 is found to be significantly correlated with the progression of neurofibrillary degeneration [78].
МАОА	2	It is involved in the pathogenesis of mood disorders and AD. Its activity and gene expression are upregulated in different brain areas of AD patients. MAOA-VNTR polymorphism is associated with depression and AD [74]

The biological relevance comparison with SPOT and METU-SNP outputs in terms of AD linked genes for the GenADA data can be summarized as follows;

- AHP based prioritization performs better than only combined p-value approach and SPOT prioritization.
- ~40% of AHP prioritized SNPs associated with AD loci.
- AHP prioritization identifies 8 AD linked genes (APP, A2M, ACE, PTGS2, APOA1, LDLR, LPL and MPO) in the Top 100 SNP gene association list after the prioritization of 262264 SNPs. Widely accepted AD marker gene APP is the most frequently observed gene in the Top 100 list as 18 SNPs are mapped, which further supports the strength of AHP based SNP prioritization in terms of biological relevance.

• 10 SNPs in the Top 100 list are mapped to potentially AD linked genes (ESR2, UBB, EEF2 and MAOA) as the literature involves various studies regarding their linkage and association with AD.

Glycolysis and gluconeogenesis, leukocyte migration, axon guidance, actin filament polymerization, cell adhesion, DNA fragmentation during apoptosis, fatty acid metabolism and negative regulation of cell proliferation are common pathways residing at Top 100 pathways according to combined p-value for pathways that are observed in GWAS results of both data sets.

GWAS of both data with METU-SNP software and AHP based prioritization confirms the literature for Alzheimer Disease associated genes; A2M, ABCA1, ACE, APOA1, APP, CHRNA7, IL1A, LDLR, LPL, MPO, PTGS2, SORL1. rs3781835 at SORL1, rs4343 and rs4351 at ACE1 are SNPs with high AHP scores are also listed to be AD associated at PharmGKB database. Moreover, rs6313 has a high AHP ranking and maps to HTR2A gene. CT and TT genotype of rs6313 indicates resistance to the treatment with antipsychotic drugs for AD patients presenting delusional symptoms.

The candidate novel AD linked genes proposed after the analysis of both data are; **CTNNA3**, **CYP7B1**, EEF2, **ERBB4**, **ESR2**, **FGF1**, **KALRN**, MAOA, MME, **MRE11A** and UBB. They are investigated in terms of their expression localization in Genatlas database [79]. All of the proposed genes involve expression in brain except MME, MAOA, UBB and EEF2. Thus, genes marked in bold are candidate novel AD linked genes that AHP based SNP prioritization points out.

CHAPTER 4

EVALUATION OF USER DEFINED AHP PRIORITIZATION PARAMETERS : P-VALUE THRESHOLD OF SNPS AS A PRE-PRIORITIZATION CUTOFF

4.1 AHP prioritization performance of METU-SNP in different p-value thresholds for SNPs METU-SNP is an integrative complex disease association analysis tool that allows analysis of a genotyping data in various aspects. In the METU-SNP workflow for genome-wide association study, statistical analysis and thus p-value computation via PLINK software is followed by combined p-value computation for genes and pathways. AHP prioritization is the next step contributing to biological relevance for GWAS. User can set the p-value threshold for SNPs to be selected for AHP prioritization, SNPs having p-values larger than the threshold is not AHP prioritized. After AHP based prioritization, performance of the selected SNP subset can be evaluated via k-fold cross validation provided at the 'Performance' tab of METU-SNP. WEKA (Waikato Environment for Knowledge Analysis) is implemented in METU-SNP for this performance and classification purposes. WEKA is a tool that provides machine learning algorithms implemented in Java. Various learning schemes such as decision trees, instance-based classifiers, support vector machines, Bayesian decision schemes are involved. Moreover, evaluation methods such as cross-validation, bootstrapping and attribute selection methods are also implemented in WEKA [80].

Below are some basic terms about machine learning;

- *Instance* is an object at a space of fixed dimension
- Each dimension is the *attribute* of an object, attributes are usually nominal, numerical or strings
- A *class attribute* determines the appurtenance of the instance
- Set of instances make up a *dataset*
- *Training set* is used to build a classifier.Classifier building involves learning from instances to predict the class attribute of new ones.
- *Test set* is used to evaluate a classifier

Different p-value thresholds are selected to compare the performance of the AHP based prioritization. Depending on the accuracy measures, the pre-prioritization cutoff value is the optimal p-value that yields the best performance measures.

Prediction and classification performances of AHP based SNP lists are evaluated via kfold Cross Validation (CV) run using Naive Bayes and SMO (sequential minimal optimization) classifiers as the supervised learning scheme for the ADNI data. The following measures are used to estimate the prediction performances:

- Specificity = TN / (FP + TN)
- Sensitivity = TP / (TP + FN)
- Accuracy = (TP + TN) / (P + N)
- Negative Predictive Value (NPV) = TN / (TN + FN)
- Precision = TP / (TP + FP)

where TP denotes True Positive, TN denotes True Negative, FP denotes False Positive and FN denotes False Negative for a 2x2 confusion matrix. Table 4.1 represent the number of SNPs selected for AHP prioritization with respect to different p-value thresholds. The p-value threshold can be considered as maximum allowed false positive rate.

Different p-value thresholds are used for SNP prioritization, then Top 20000 SNPs are chosen for cross validation tests to compare AHP based prioritization in terms of performance and classification measures in various p-value thresholds.

p-value threshold	# of AHP prioritized SNPs
0.05	24578
0.1	50453
0.2	101122
0.3	152782
0.4	205794
0.5	256730
0.6	308288
0.7	359928
0.8	412358
0.9	465213
1.0	516893

Table 4.1 Number Of AHP Prioritized SNPs In Different p-value Thresholds For ADNI Data

Table 4.2 depicts the 5-fold cross validation training results for different p-value threshold of SNPs with Naive Bayes as the supervised learning scheme and Table 4.3 represents the corresponding test results when 20000 SNPs are used.

	Correct classification (%)
AHP (p-value threshold:0.05)	99.1416
AHP (p-value threshold:0.1)	99.1416
AHP (p-value threshold:0.2)	99.1416
AHP (p-value threshold:0.3)	99.1416
AHP (p-value threshold:0.4)	98.2833
AHP (p-value threshold:0.5)	96.9957
AHP (p-value threshold:0.6)	94.4206
AHP (p-value threshold:0.7)	94.4206
AHP (p-value threshold:0.8)	93.9914
AHP (p-value threshold:0.9)	93.9914
AHP (p-value threshold:1.0)	92.7039

Table 4.2 5-fold Cross Validation Training Results For ADNI Data(Learning Scheme:Naive Bayes, 20000 SNPs)

Table 4.3 5-fold Cross Validation Test Results For ADNI Data(Learning Scheme:Naive Bayes, 20000 SNPs)

	Specificity	Sensitivity	Accuracy	NPV	Precision
AHP (p-value threshold:0.05)	0.0769231	0.8695652	0.44898	0.4	0.454545
AHP (p-value threshold:0.1)	0.0769231	0.8695652	0.44898	0.4	0.454545
AHP (p-value threshold:0.2)	0.0769231	0.8695652	0.44898	0.4	0.454545
AHP (p-value threshold:0.3)	0.1153846	0.9565217	0.510204	0.75	0.488889
AHP (p-value threshold:0.4)	0.0769231	0.9130435	0.469388	0.5	0.466667
AHP (p-value threshold:0.5)	0.1923077	0.8695652	0.510204	0.63	0.487805
AHP (p-value threshold:0.6)	0.1923077	0.826087	0.489796	0.56	0.475
AHP (p-value threshold:0.7)	0.153846154	0.826086957	0.469387755	0.5	0.463415
AHP (p-value threshold:0.8)	0.1538462	0.8695652	0.489796	0.57	0.47619
AHP (p-value threshold:0.9)	0.1538462	0.8695652	0.489796	0.57	0.47619
AHP (p-value threshold:1.0)	0.1923077	0.826087	0.489796	0.56	0.475

Another supervised learning scheme, SMO(sequential minimal optimization) is used for cross validation tests. Table 4.4 represents the 5-fold cross validation training results for different p-value threshold of SNPs with SMO as the supervised learning scheme when 20000 SNPs are used. Table 4.5 summarizes the corresponding test results.

	Correct classification (%)
AHP (p-value threshold:0.05)	100
AHP (p-value threshold:0.1)	100
AHP (p-value threshold:0.2)	100
AHP (p-value threshold:0.3)	99.1416
AHP (p-value threshold:0.4)	98.7124
AHP (p-value threshold:0.5)	97.8541
AHP (p-value threshold:0.6)	96.1373
AHP (p-value threshold:0.7)	96.1373
AHP (p-value threshold:0.8)	96.1373
AHP (p-value threshold:0.9)	95.7082
AHP (p-value threshold:1.0)	95.279

Table 4.4 5-Fold Cross Validation Training Results For ADNI Data(Learning Scheme:SMO, 20000 SNPs)

Table 4.5 5-Fold Cross Validation Test Results For ADNI Data(Learning Scheme:SMO, 20000 SNPs)

	Specificity	Sensitivity	Accuracy	NPV	Precision
AHP (p-value threshold:0.05)	0.0769231	1.0	0.510204	1.0	0.489362
AHP (p-value threshold:0.1)	0.0769231	1.0	0.510204	1.0	0.489362
AHP (p-value threshold:0.2)	0.0769231	1.0	0.510204	1.0	0.489362
AHP (p-value threshold:0.3)	0.1153846	1.0	0.530612	1.0	0.5
AHP (p-value threshold:0.4)	0.1923077	0.9565217	0.55102	0.83	0.511628
AHP (p-value threshold:0.5)	0.2692308	0.9130435	0.571429	0.78	0.525
AHP (p-value threshold:0.6)	0.2692308	0.9130435	0.571429	0.78	0.525
AHP (p-value threshold:0.7)	0.2692307	0.9130435	0.571428	0.777	0.525
AHP (p-value threshold:0.8)	0.3076923	0.9130435	0.591837	0.8	0.538462
AHP (p-value threshold:0.9)	0.2692308	0.9130435	0.571429	0.78	0.525
AHP (p-value threshold:1.0)	0.3076923	0.8695652	0.571429	0.73	0.526316

For both Naive Bayes and SMO cross validation tests, various p-value thresholds are applied, our analysis results are presented in Table 4.3 and 4.5. As expected lower the p-value of SNPs considered for the analysis, higher the classification measures.

A guideline for the users on how to choose p-value parameter before prioritization depending on the goal of their study is discussed in Chapter 6.

CHAPTER 5

EVALUATION OF USER DEFINED AHP PRIORITIZATION PARAMETERS : AHP SCORE THRESHOLD OF SNPS AS A POST-PRIORITIZATION CUTOFF

This chapter is mainly composed of AHP score cutoff estimation for two AD genotyping data depending on biological relevance measures. AHP score distribution of the SNPs after AHP prioritization is determined and as a post-prioritization cutoff value, AHP score threshold is decided depending on biological relevance measures of SNP list based on AHP score ranking.

5.1 AHP score distribution of the AD genotyping data after AHP based prioritization

As mentioned in Chapter 3, two genotyping data are used for this study. ADNI genotyping data is a relatively small dataset with 149 AD cases and 182 controls whereas GenADA data is a quite large dataset with 852 AD cases and 866 controls. The former study involves ~500K SNPs while the latter involves ~250K SNPs. After AHP prioritization is performed for all SNPs in the datasets, AHP score distribution of SNPs are determined and AD linkage ratios are investigated as the most pronounced biological relevance indicator. AD linkage ratio is the ratio of SNPs mapping to AD linked genes to the total number of SNPs at a specific AHP score range. For instance if there are 10 SNPs mapping to AD linkage ratio, AHP score cutoff is estimated for those genotyping data as post-prioritization cutoff value, implying that after this cutoff value AD linkage ratio and thus biological relevance representation of SNPs significantly decrease.

5.1.1 ADNI data

AHP prioritization is performed for all the SNPs in the data via choosing the p-value threshold as 1.0. Table 5.1 represents the AHP score distribution and AD linkage ratio after all 500K SNPs are AHP prioritized. AHP scores of SNPs range between 0.0 and 0.8.

AHP score range	# of SNPs	# of SNPs mapped to AD linked genes	AD linkage ratio
AHP>0.7	21	5	0.2380952
0.6 <ahp<0.7< td=""><td>1181</td><td>295</td><td>0.2497883</td></ahp<0.7<>	1181	295	0.2497883
0.5 <ahp<0.6< td=""><td>1429</td><td>101</td><td>0.0706788</td></ahp<0.6<>	1429	101	0.0706788
0.4 <ahp<0.5< td=""><td>50800</td><td>199</td><td>0.003917323</td></ahp<0.5<>	50800	199	0.003917323
0.3 <ahp<0.4< td=""><td>48856</td><td>34</td><td>0.0006959227</td></ahp<0.4<>	48856	34	0.0006959227
0.2 <ahp<0.3< td=""><td>48152</td><td>5</td><td>0.0001038378</td></ahp<0.3<>	48152	5	0.0001038378
0.1 <ahp<0.2< td=""><td>44007</td><td>0</td><td>0.0</td></ahp<0.2<>	44007	0	0.0
0.0 <ahp<0.1< td=""><td>359486</td><td>0</td><td>0.0</td></ahp<0.1<>	359486	0	0.0

Table 5.1 AHP Score Distribution And Ratio Of SNPs Mapping To AD Linked Genes For ADNI Data

As can be seen from Figure 5.1, the AHP score distribution for the ADNI data involves an accumulation in AHP score range between 0.0 and 0.1.

Figure 5.1 AHP score distribution of ADNI genotyping data after all 500K SNPs are prioritized

5.1.2 GenADA data

AHP prioritization is performed for all the SNPs in the data via choosing the p-value threshold as 1.0. Table 5.2 represents the AHP score distribution and AD linkage ratio after all 250K SNPs are AHP prioritized. AHP scores of SNPs range between 0.0 and 0.7.

AHP score range	# of SNPs	# of SNPs mapped to AD linked genes	AD linkage ratio
AHP>0.6	66	26	0.393939394
0.5 <ahp<0.6< td=""><td>432</td><td>141</td><td>0.326388889</td></ahp<0.6<>	432	141	0.326388889
0.4 <ahp<0.5< td=""><td>2094</td><td>143</td><td>0.068290353</td></ahp<0.5<>	2094	143	0.068290353
0.3 <ahp<0.4< td=""><td>8471</td><td>64</td><td>0.007555188</td></ahp<0.4<>	8471	64	0.007555188
0.2 <ahp<0.3< td=""><td>10315</td><td>5</td><td>0.000484731</td></ahp<0.3<>	10315	5	0.000484731
0.1 <ahp<0.2< td=""><td>8515</td><td>0</td><td>0</td></ahp<0.2<>	8515	0	0
0.0 <ahp<0.1< td=""><td>232371</td><td>0</td><td>0</td></ahp<0.1<>	232371	0	0

Table 5.2 AHP Score Distribution And Ratio Of SNPs Mapping To AD Linked Genes For GenADA Data

As can be seen from Figure 5.2, the AHP score distribution for the ADNI data involves an accumulation in AHP score range between 0.0 and 0.1.

Figure 5.2 AHP score distribution of GenADA genotyping data after all 250K SNPs are prioritized

5.2 Post-priorization cutoff estimation for AD genotyping data SNPs

5.2.1 ADNI data

AD linkage ratio is considerably high for SNPs having AHP score higher than 0.6 as can be seen clearly from Figure 5.3. After an AHP score of 0.5, AD linked gene frequency for SNPs significantly lowers and eventually becomes 0.0. AHP score cutoff as a post-prioritization cutoff value for this data can be said to be 0.5. SNPs having AHP score higher than 0.5 are potential associative SNPs since considerable percentage of them map to AD linked genes thus for this dataset, SNPs residing at the AHP score range higher than 0.5 can be interpreted as biologically relevant and meaningful SNPs.

Figure 5.3 AD linkage ratio of SNPs in different AHP score ranges for ADNI data

5.2.2 GenADA data

For this dataset, AD linkage ratio is considerably high for SNPs with AHP scores higher than 0.5. Figure 5.4 depicts the AD linkage ratio for SNPs in different AHP score ranges. AHP score cutoff as a post-prioritization cutoff value for this data can be said to be 0.4 since AD linked gene frequency for SNPs significantly lowers after AHP score of 0.4. Considerable percentage of SNPs having AHP score higher than 0.4 map to AD linked genes. For GenADA data, SNPs having AHP score higher than 0.4 can be interpreted as biologically relevant and meaningful SNPs.

Figure 5.4 AD linkage ratio of SNPs in different AHP score ranges for GenADA data

5.2.3 AHP score cutoff classification performance for ADNI data

Classification performances in different AHP score ranges are also investigated for ADNI data after AHP prioritization to further estimate the post-prioritization cutoff value. Four AHP score ranges are determined as high, medium, low, very low and 5-fold cross validation tests are performed in those ranges by using 20000 SNPs. In order to perform classification comparison in equal conditions, AHP score increments of 0.1 are taken into account and the Top 20.000 SNP in each AHP score range is considered for the cross validation tests. For the high AHP score range, SNPs having AHP scores between 0.4 and 0.5, for the medium AHP score range SNPs having AHP scores between 0.3 and 0.4, for the low AHP score range SNPs having AHP scores between 0.1 and 0.2 are considered. Table 5.3 depicts the test results in which Naive Bayes is used as the learning scheme whereas Table 5.4 depicts the test results in which SMO is used as the learning scheme. Both results imply that high AHP score range yields better performance measures. Thus, AHP score cutoff in the range of 0.4 and 0.5 is further supported for the ADNI data.

	2	,			
	Specificity	Sensitivity	Accuracy	NPV	Precision
High AHP score (0.4 <ahp<0.5)< th=""><th>0.7692308</th><th>1.0</th><th>0.877551</th><th>1.0</th><th>0.793103</th></ahp<0.5)<>	0.7692308	1.0	0.877551	1.0	0.793103
Medium AHP score (0.3 <ahp<0.4)< th=""><th>0.3846154</th><th>0.9130435</th><th>0.632653</th><th>0.83</th><th>0.567568</th></ahp<0.4)<>	0.3846154	0.9130435	0.632653	0.83	0.567568
Low AHP score (0.2 <ahp<0.3)< th=""><th>0.1923077</th><th>0.8695652</th><th>0.510204</th><th>0.63</th><th>0.487805</th></ahp<0.3)<>	0.1923077	0.8695652	0.510204	0.63	0.487805
Very Low AHP score (0.1 <ahp<0.2)< th=""><th>0.3846154</th><th>0.8695652</th><th>0.612245</th><th>0.77</th><th>0.555556</th></ahp<0.2)<>	0.3846154	0.8695652	0.612245	0.77	0.555556

 Table 5.3 5-Fold Cross Validation Test Results In Different AHP Score Ranges For ADNI Data(Learning Scheme:Naive Bayes, 20000 SNPs)

 Table 5.4 5-Fold Cross Validation Test Results In Different AHP Score Ranges For ADNI Data(Learning Scheme:SMO, 20000 SNPs)

High AHP score (0.4 <ahp<0.5)< th=""><th>Specificity 0.6923077</th><th>Sensitivity 1.0</th><th>Accuracy 0.836735</th><th>NPV 1.0</th><th>Precision 0.741935</th></ahp<0.5)<>	Specificity 0.6923077	Sensitivity 1.0	Accuracy 0.836735	NPV 1.0	Precision 0.741935
Medium AHP score (0.3 <ahp<0.4)< th=""><th>0.4230769</th><th>0.9565217</th><th>0.673469</th><th>0.92</th><th>0.594595</th></ahp<0.4)<>	0.4230769	0.9565217	0.673469	0.92	0.594595
Low AHP score (0.2 <ahp<0.3)< th=""><th>0.1153846</th><th>0.8695652</th><th>0.469388</th><th>0.5</th><th>0.465116</th></ahp<0.3)<>	0.1153846	0.8695652	0.469388	0.5	0.465116
Very Low AHP score (0.1 <ahp<0.2)< th=""><th>0.3461538</th><th>0.826087</th><th>0.571429</th><th>0.69</th><th>0.527778</th></ahp<0.2)<>	0.3461538	0.826087	0.571429	0.69	0.527778

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Discussion

Our main focus in this study was the evaluation of recently introduced AHP based SNP prioritization software in terms of biological relevance and performance measures by comparing its outputs with that of another SNP prioritization tool, SPOT. Two Alzheimer's Disease (AD) genotyping data, ADNI and GenADA, are used in this study. Major aim of the AHP based SNP prioritization approach is to establish a strong connection between statistical analysis and biological relevance for a GWA study.

Chapter 1 begins with a brief biological background followed by genome wide association studies and SNP prioritization terms and tools. Major drawback of a GWA study is that it does not provide considerable biological relevance, it mainly focuses on statistical analysis and thus p-value computations. Widely used SNP prioritization tools are highly dependent on statistical analysis side rather than biological relevance. It is thus essential to eliminate this bottleneck of GWAS by boosting importance to biological relevance. Final part of this chapter focuses on the literature review of the AD.

Chapter 2 mainly involves GWA studies regarding Alzheimer's Disease and relevant literature information. Various genes and loci are found out to be associated with AD, those are clearly presented at Chapter 2 and selection of AD linked genes for the comparision list is described. Literature screening is performed and various databases are investigated to provide a reliable AD linked gene list We have build a unique AD linked gene list by integrating data from OMIM, AlzGene and AlzGenes databases. Utilizing this list allowed us to evaluate the biological relevance of the AHP prioritization results , independently from the GeneRIF data for SNP-genedisease associations, AHP algorithm based on.

Chapter 3 focuses on AHP based SNP prioritization comparison with SPOT in terms of biological relevance with the GWAS results from both AD genotyping data. It is shown in Chapter 3 that, recently introduced AHP based SNP prioritization outperforms SPOT for both AD genotyping data in terms of biological relevance. Top 100 SNPs of the AHP list yield a much higher AD linkage ratio than that of the state of the art competitor application SPOT.
Next two chapters describes the determination of user defined performance parameters for AHP based SNP prioritization by using two approaches; pre-prioritization cutoff value (pvalue threshold) estimation and post-prioritization cutoff value (AHP score threshold) estimations. Chapter 4 focuses on the former. p-value threshold determines ratio of SNPs to be selected for prioritization. Various p-value thresholds are tested and classification measures such as sensitivity, specificity, NPV and accuracy are compared at each p-value level for AHP based prioritization. Depending on our experience gained during these analysis we can suggest a guide for reserchers on how to choose appropriate p-value threshold depending on the goal of their experiment. Conservative p-value choice are suggested for focused targeted biomarker identification research, whereas moderate to less conservative p-values are suggested for larger scale association studies to investigate gene- pathway association results and building biological networks in order to reveal underlying etiology and novel association for the disease under study.

Chapter 5 involves AHP score cutoff value estimation as a post-prioritization cutoff. After AHP based prioritization is performed, SNPs are checked in terms of the genes they mapped. After a certain AHP score, AD linkage ratio of SNPs begins to decline significantly. Cutoff is defined in where a sharp decline in the AD linkage ratio occurs. Post-prioritization cutoff values are proposed for both AD genotyping data depending on our observations. AD linkage ratio of SNPs, which is the ratio of SNPs mapping to AD linked genes to the total number of SNPs in a certain AHP score range determines the AHP score cutoff value. AHP score distribution and the ratio of SNPs mapping to AD linked genes are investigated for two AD genotyping data. ADNI data yields 0.5 AHP score as the cutoff value whereas GenADA data yields 0.4 AHP score as the cutoff value since the AD linkage ratio sharply decline at AHP scores lower than those values. Moreover, classification performances are investigated in various AHP score ranges for ADNI data and the results further support the AHP score cutoff proposed since high AHP score range yields the best classification performance. For both data, the top \sim 2500 SNPs at the AHP ranking seem to carry the majority of the biological relevance. Researchers focusing on those data should put emphasis on the top 2500 SNPs to identify potential associative SNPs with AD.

6.2 Future Work

AHP score cutoff as the post-prioritization cutoff value should be investigated on other genotyping data sets to validate the findings at Chapter 5. AHP score of 0.5 seems as the common AHP score cutoff value for both datasets and a generalization for this suggestion can be defined after application of the AHP score cutoff value estimation strategy described in Chapter 5 on other data sets. Immediate candidate studies that are already under examination by other researchers in our group are GWS 16 RA data, HÜTF JIA, szhoprenia data.

The integrated METU-SNP database involves SNP information back in 2008. It is build on dbSNP 128, where today NCBI supports the newer version build db132. Our group is developing the iSNP, which will be an Integrated, Automatically Updated SNP Database Server Over Web and it is scheduled to be finalized by December 2011. Analysis of the both AD Genotying dataset with METU-SNP and AHP prioritization approach that runs on the up-to-date iSNP database can confirm the finding of this study and might exploit new and novel SNP-genedisease associations for AD.

In this study we have suggested association of various SNPs that map to AD linked genes or potential candidate genes supported by the literature. Most promising SNP sets should be selected for further experimental validation to prove these associations of the corresponding genes with AD, which can then be utilized as SNP biomarker for the prediction or early diagnosis of AD. Additionally new experimental studies should be designed to be able to validate the association of novel SNP-gene and pathways suggested in our study with AD and to exploit the biological networks and underlying etiology of AD.

6.3 Conclusions

In this study, two independent Alzheimer's Disease genotyping data are used and AHP based SNP prioritization approach is tested on them. The integrated system called METU-SNP presents a firm linkage between statistical analysis and biological relevance as proven by the corresponding comparisons to the most widely referred SNP prioritization tool, SPOT.

Performance parameters for AHP based prioritization are investigated as preprioritization (p-value cutoff) and post-prioritization (AHP score cutoff). Potential users of METU-SNP studying on those data are provided guidelines on p-value selection and AHP score cutoff value determination in order to define the biologically most relevant SNPs with AHP scores above the cutoff for both AD Genotyping data sets.

As presented here METU-SNP is a powerful tool for GWAS of SNP Genotyping data with a novel AHP based prioritization algorithm implemented, which can lead to discovery of new associations at SNP, gene and pathway level. In near future, we expect that these new associations described through GWAS here and in other studies will lead to development of personalized medicine approaches with application in pharmacogenomics and psychopharmacology.

REFERENCES

- [1] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, and Walter P. *Molecular Biology of the Cell*, 4th ed. Garland Science; 2002.
- [2] Azuaje F. Bioinformatics and Biomarker Discovery, 1st ed. Wiley-Blackwell; 2010.
- [3] Lewin B. Genes VIII, 1st ed. Benjamin Cummings; 2004.
- [4] http://gwas.nih.gov/01faq2.html#f1
- [5] Kostem E, Lozano JA, Eskin E. Increasing Power of Genome-wide Association Studies by Collecting Additional SNPs Follow-up SNP Selection. *Science*. 2011:1-32.
- [6] Hindorff LA, Junkins HA, Hall PN, Mehta JP, and Manolio TA. A Catalog of Published Genome-Wide Association Studies
- [7] Yang C, Wan X, Yang Q, Xue H, Tang NL, Yu W. A hidden two-locus disease association pattern in genome wide association studies. *BMC bioinformatics*. 2011;12(1):156.
- [8] Peng G, Luo L, Siu H, Zhu Y, Hu P, Hong S, Zhao J, Zhou X, Reveille JD, Jin L, Amos CI, Xiong M. Gene and pathway-based second-wave analysis of genome-wide association studies. *European journal of human genetics : EJHG*. 2010;18(1):111-7.
- [9] Li M-X, Sham PC, Cherny SS, Song Y-Q. A knowledge-based weighting framework to boost the power of genome-wide association studies. *PloS one*. 2010;5(12):e14480.
- [10] McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. *Nature reviews. Genetics.* 2008;9(5):356-69.
- [11] http://gwas.nih.gov/09glossary.html
- [12] Casto AM, Feldman MW. Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations? *PLoS genetics*. 2011;7(1):e1001266.
- [13] Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: A review of statistical methods and recommendations for their application. *American journal of human genetics*. 2010;86(1):6-22.
- [14] Almeida M a a, Oliveira PSL, Pereira TV, Krieger JE, Pereira AC. An empirical evaluation of imputation accuracy for association statistics reveals increased type-I error rates in genome-wide associations. *BMC genetics*. 2011;12:10.

- [15] Weng L, Macciardi F, Subramanian A, Guffanti G, Potkin SG, Yu Z, Xie X. SNP-based pathway enrichment analysis for genome-wide association studies. *BMC bioinformatics*. 2011;12(1):99.
- [16] Galvan A, Ioannidis JP a, Dragani T a. Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer. *Trends in genetics : TIG*. 2010;26(3):132-41.
- [17] Oexle K, Meitinger T. Sampling GWAS subjects from risk populations. *Genetic epidemiology*. 2011;35(3):148-53.
- [18] Chen L, Zhang L, Zhao Y, Xu L, Shang Y, Wang Q, Li W, Wang H, Li X. Prioritizing risk pathways: a novel association approach to searching for disease pathways fusing SNPs and pathways. *Bioinformatics (Oxford, England)*. 2009;25(2):237-42.
- [19] http://www.sciencemag.org/content/318/5858/1842.full.pdf
- [20] http://www.dailymail.co.uk/news/article-1355898/New-gene-based-tests-explain-childrens disabilities--highlight-cases-incest.html
- [21] Hosking FJ, Dobbins SE, Houlston RS. Genome-wide association studies for detecting cancer susceptibility. *British medical bulletin*. 2011;97(1):27-46.
- [22] http://bioinfo.cnio.es/files/training/Genome_Browsing_Course/variations.pdf
- [23] Psychiatric GWAS Consortium Coordinating Committee, Cichon S, Craddock N, Daly M, Faraone SV, Gejman PV, Kelsoe J, Lehner T, Levinson DF, Moran A, Sklar P, Sullivan PF. Genomewide association studies: history, rationale, and prospects for psychiatric disorders. *The American journal of psychiatry*. 2009;166(5):540-56.
- [24] Martin P, Barton A, Eyre S. ASSIMILATOR: a new tool to inform selection of associated genetic variants for functional studies. *Bioinformatics (Oxford, England)*. 2011;27(1):144-6.
- [25] Zhao J, Gupta S, Seielstad M, Liu J, Thalamuthu A. Pathway-based analysis using reduced gene subsets in genome-wide association studies. *BMC bioinformatics*. 2011;12(1):17.
- [26] Yuan H-Y, Chiou J-J, Tseng W-H, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. *Nucleic acids research*. 2006;34(Web Server issue):W635-41.
- [27] Pico AR, Smirnov IV, Chang JS, Yeh RF, Wiemels JL, Wiencke JK, Tihan T, Conklin BR, Wrensch M. SNPLogic: an interactive single nucleotide polymorphism selection, annotation, and prioritization system. *Nucleic acids research*. 2009;37(Database issue):D803-9.
- [28] Saccone SF, Bolze R, Thomas P, Quan J, Mehta G, Deelman E, Tischfield JA, Rice JP. SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome wide association study. *Nucleic acids research*. 2010;38:201-209.
- [29] Xu Z, Taylor J a. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. *Nucleic acids research*. 2009;37(Web Server issue):W600-5.
- [30] Terry H S, Christopher S C, and Tarczy-Hornoch P. SNPit: a federated data integration

system for the purpose of functional SNP annotation. *Comput Methods Programs Biomed*. 2009; 95(2): 181–189.

- [31] http://people.revoledu.com/kardi/tutorial/AHP/AHP.htm
- [32] http://thequalityportal.com/q_ahp.htm
- [33] http://en.wikipedia.org/wiki/Analytic_Hierarchy_Process
- [34] Üstünkar, G., 2011. An Integrative Approach to Structured SNP Prioritization and Representative SNP Selection for Genome-Wide Association Studies. Ph.D Thesis, Middle East Technical University.
- [35] Üstünkar, G., Aydın Son, Y. METU-SNP: An Integrated Software System for SNP Complex Disease Association Analysis. *Journal of Integrative Bioinformatics* invited the paper to special Translational Bioinformatics Workshop Issue.
- [36] Sensen C.W. Essentials of Genornics and Bioinformatics, 1st ed. Wiley-VCH; 2002.
- [37] Burns LC, Minster RL, Demirci FY, Barmada MM, Ganguli M, Lopez OL, DeKosky ST, Kamboh MI. Replication study of genome-wide associated SNPs with late-onset Alzheimer's disease. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics. 2011;156B(4):507-12.
- [38] Hu X, Pickering E, Liu YC, Hall S, Fournier H, Katz E, Dechairo B, John S, Van Eerdewegh P, Soares H; Alzheimer's Disease Neuroimaging Initiative. Meta-Analysis for Genome-Wide Association Study Identifies Multiple Variants at the BIN1 Locus Associated with Late-Onset Alzheimer's Disease Bush A, ed. *PLoS ONE*. 2011;6(2):e16616.
- [39] Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. *Lancet*. 2011;377(9770):1019-31.
- [40] Ghiso J, Frangione B. Amyloidosis and Alzheimer's disease. *Advanced Drug Delivery Reviews*. 2002;54(12):1539-1551.
- [41] Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kave JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Ouinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub

S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. *Nature Genetics*. 2011; 43(5):436-41.

- [42] Bertram L, Tanzi RE. Genome-wide association studies in Alzheimer's disease. *Human molecular genetics*. 2009;18(R2):R137-45.
- [43] Amouyel, P., Lambert, J.C. and the GWALZ Investigators. Genome wide association analysis of Alzheimer's disease. In 2009 International Conference on Alzheimer's Disease, 2009; Vol. S5-03-05, Alzheimer's Association, Vienna, Austria.
- [44] Williams, J. Genome wide studies of Alzheimer's disease: the bigger the better. In 2009 International Conference on Alzheimer's Disease, Vol. PL-05.Plenary 5, Alzheimer's Association, Vienna, Austria.
- [45] Zlokovic, B.V., Martel, C.L., Matsubara, E., McComb, J.G., Zheng, G., McCluskey, R.T., Frangione, B. and Ghiso, J. Glycoprotein 330/ megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc. Natl. Acad. Sci. USA, 1996;93, 4229–4234.
- [46] Tanzi, R.E., Moir, R.D. and Wagner, S.L. Clearance of Alzheimer's Abeta peptide: the many roads to perdition. *Neuron*, 2004; 43, 605–608.
- [47] Ertekin-Taner N. Genetics of Alzheimer disease in the pre- and post-GWAS era. *Alzheimer's research & therapy*. 2010;2(1):3.
- [48] Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. *Science* 2002; 297:353-356.
- [49] Small SA, Duff K: Linking Abeta and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. *Neuron* 2008, 60:534-542.
- [50] Shen J, Kelleher RJ 3rd: The presenilin hypothesis of Alzheimer's disease: evidence for a loss-of-function pathogenic mechanism. *Proc Natl Acad Sci USA* 2007; 104:403-409.
- [51] Ertekin-Taner N. Gene expression endophenotypes: a novel approach for gene discovery in Alzheimer's disease. *Molecular neurodegeneration*. 2011;6:31.
- [52] Netzer WJ, Dou F, Cai D, Veach D, Jean S, Li Y, Bornmann WG, Clarkson B, Xu H, Greengard P. Gleevec inhibits beta- amyloid production but not Notch cleavage. *Proc Natl Acad Sci USA* 2003; 100: 12444–12449.
- [53] He G, Luo W, Li P, Remmers C, Netzer WJ, Hendrick J, Bettayeb K, Flajolet M, Gorelick F, Wennogle LP, Greengard P. Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease. *Nature* 2010; 467: 95–98.
- [54] Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M,

Collinge J, Maier W, Jessen F, Schürmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. *Nature Genetics* 2009; 41:1088–1093.

- [55] Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fiévet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O; European Alzheimer's Disease Initiative Investigators, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanché H, Dartigues JF, Tzourio C, Gut I, Van Broeckhoven C, Alpérovitch A, Lathrop M, Amouyel P. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. *Nature Genetics* 2009; 41:1094-1099.
- [56] Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Rüther E, Schürmann B, Heun R, Kölsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Gallacher J, Hüll M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC; Alzheimer's Disease Neuroimaging Initiative, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S; CHARGE consortium, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alpérovitch A, Lathrop M; EADI1 consortium, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Björnsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossù P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O'Donovan M, Amouyel P, Williams J. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Naure. Genetics. 2011; doi:10.1038/ng.803.
- [57] Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber

R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics 2011; doi:10.1038/ng.801.

- [58] Morgan K. Commentary: The three new pathways leading to Alzheimer's disease. *Neuropathology and applied neurobiology*. 2011.
- [59] Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. "Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database." *Nature Genetics* 2007; 39(1): 17-23.
- [60] http://www.polygenicpathways.co.uk/alzpolys.html
- [61] http://omim.org/entry/107741
- [62] http://adni.loni.ucla.edu
- [63] http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000219.v1.p1
- [64] Peng G, Luo L, Siu H, Zhu Y, Hu P, Hong S, Zhao J, Zhou X, Reveille JD, Jin L, Amos CI, Xiong M. "Gene and pathway-based second-wave analysis of genome-wide association studies." *European Journal of Human Genetics: EJHG*, 2010; vol. 18, no. 1, pp. 111-117.
- [65] Youn H, Jeoung M, Koo Y, Ji H, Markesbery WR, Ji I, Ji TH. "Kalirin is under-expressed in Alzheimer's disease hippocampus." *Journal of Alzheimer's Disease* 2007; 11(3): 385-397.
- [66] Chaudhury AR, Gerecke KM, Wyss JM, Morgan DG, Gordon MN, Carroll SL. "Neuregulin-1 and erbB4 immunoreactivity is associated with neuritic plaques in Alzheimer disease brain and in a transgenic model of Alzheimer disease." *J Neuropathol Exp Neurol* 2003;62(1):42-54.
- [67] Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M, Adamson J, Ronald J, Blangero J, Hutton M, Younkin SG. Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer's disease pedigrees. *Science* (*New York, N.Y.*). 2000;290(5500):2303-4.
- [68] Ertekin-Taner N, Ronald J, Asahara H, Younkin L, Hella M, Jain S, Gnida E, Younkin S,

Fadale D, Ohyagi Y, Singleton A, Scanlin L, de Andrade M, Petersen R, Graff-Radford N, Hutton M, Younkin S. Fine mapping of the α -T catenin gene to a quantitative trait locus on chromosome 10 in late-onset Alzheimer's disease pedigrees. *Human Molecular Genetics*. 2003;12(23): 3133–3143.

- [69] Shafaati M, Marutle A, Pettersson H, Lövgren-Sandblom A, Olin M, Pikuleva I, Winblad B, Nordberg A, Björkhem I. Marked accumulation of 27-hydroxycholesterol in the brain of Alzheimer patients with the Swedish APP 670 / 671 mutation. *Laboratory Medicine*.1-27.
- [70] Leoni V., and Caccia C. Oxysterols as biomarkers in neurodegenerative diseases. *Chem. Phys. Lipids* 2011 doi:10.1016/j.chemphyslip.2011.04.002.
- [71] Yau JL, Rasmuson S, Andrew R, Graham M, Noble J, Olsson T, Fuchs E, Lathe R, Seckl JR. "Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer's disease." *Neuroscience* 2003;121(2):307-14.
- [72] Mashayekhi F, Hadavi M, Vaziri HR, Naji M. "Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with Alzheimer's disease." *J Clin Neurosci.* 2010; 17(3):357-9.
- [73] Russo, R., Borghi, R., Markesbery, W., Tabaton, M., Piccini, A. Neprylisin (sic) decreases uniformly in Alzheimer's disease and in normal aging. *FEBS Letters* 2005; 579: 6027-6030.
- [74] Wu Y-H, Fischer DF, Swaab DF. A promoter polymorphism in the monoamine oxidase A gene is associated with the pineal MAOA activity in Alzheimer's disease patients. *Brain research*. 2007;1167:13-9.
- [75] Jacobsen E, Beach T, Shen Y, Li R, Chang Y. Deficiency of the Mre11 DNA repair complex in Alzheimer's disease brains. *Brain research. Molecular brain research*. 2004;128(1):1-7.
- [76] Pirskanen M, Hiltunen M, Mannermaa A, Helisalmi S, Lehtovirta M, Hänninen T, Soininen H. Estrogen receptor beta gene variants are associated with increased risk of Alzheimer's disease in women. *European journal of human genetics : EJHG*. 2005;13(9):1000-6.
- [77] Tan Z, Sun X, Hou F-S, Oh HW, Hilgenberg LG, Hol EM, van Leeuwen FW, Smith MA, O'Dowd DK, Schreiber SS. Mutant ubiquitin found in Alzheimer's disease causes neuritic beading of mitochondria in association with neuronal degeneration. *Cell death and differentiation*. 2007;14(10):1721-32.
- [78] Li X, Alafuzoff I, Soininen H, Winblad B, Pei J-J. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer's disease brain. *The FEBS journal*. 2005;272(16):4211-20.
- [79] http://www.genatlas.org/
- [80] Feld M, Kipp M, Ndiaye A, Heckmann D. Weka : Practical machine learning tools and techniques with Java implementations. *Seminar*. 2007.

APPENDICES

APPENDIX A: GWAS TERMINOLOGY

Bayes' factors: Alternative approach for hypothesis testing similar to likelihood ratio tests: prior and posterior probabilites are involved, strength of the evidence is measured in favour of one model rather than the other.

Case–control design: Primary comparison is performed between case and control subjects, former are observed to involve the phenotype of interest and predicted to have a high prevalence of susceptibility alleles for that trait, latter do not have the phenotype of interest and considered to have a lower prevalence of susceptibility alleles.

Cochran–Armitage test: A genotype-based contingency-table test for association suitable for the detection of trends across ordinal genotypes. It aims to assess for the presence of an association between a variable with two categories and a variable with k categories. It is often used as a genotype-based test for case-control genetic association studies.

Common SNPs: They involve a frequency greater than or equal to 5%. There are approximately 10 million common SNPs in the human genome and approximately 2.8 million on the current HapMap. Common SNPs are the main targets of GWA studies.

Common variant-common disease hypothesis: Common SNPs contribution of genetic risk to the formation and predisposition of diseases.

Complex disease: It occurs due to various genetic and environmental factors. Interaction of multiple factors is involved.

Copy number variant (CNV): A type of a variation in a genome in which the result is a departure from the expected diploid makeup of a DNA sequence. Deletion or duplication in a chromosomal segment indicates a copy number variation. Other structural variants are inversions and translocations.

Cryptic relatedness: The residual degrees of relatedness among GWAS samples can violate the independence assumptions of standard statistical techniques.

DNA pooling approaches: Estimates of allele frequencies originated from pools of DNA acquired from multiple subjects rather than individual DNA samples are used in this approach.

False-positive report probability: The probability that a reported association between a trait of interest and a genetic variant is not true.

Family-based association methods: Association studies is performed within families, this approach provides a protection from population substructure with a cost of reduced sensitivity.

Frequentist: This approach uses p-values and combines them with hypothesis testing to make statistical inferences. It aims to draw conclusions from statistical samples.

Genome-wide association studies: Genetic markers capturing a substantial proportion of common variation is typed in a set of DNA samples that are informative for a trait or disease of interest. Major aim is to map susceptibility variants through the associations between genotype frequency and trait status.

Global allele frequency: Its distribution is essential for GWAS for two main reasons. First, the frequency of a trait-associated allele determines the degree it can contribute to variability in its phenotype in a given population. This is particularly true for SNPs that contribute directly to phenotypic variation rather than tagging causative variants. Second, large allele frequency differences between populations for trait-associated SNPs may indicate that selection has acted upon the trait.

Haplotype: a set of SNPs on a single chromatid that are statistically associated

Haplotype-based methods: They rely on the relationship between the distribution of estimated haplotype and trait status.

Hardy–Weinberg equilibrium (HWE): It represents the relationship between genotype and allele frequencies dependent on random mating in a stable population in the absence of selection, new mutations and gene flow.Departures from equilibrium can emphasize genotyping errors.

Heritability: It can be defined as the proportion of the phenotype variance that is due to genes, estimated from risks to twins and other relatives.

Imputation methods: They focus on filling in missing genotype data using a sparse set of genotypes and a scaffold of linkage disequilibrium relationships. Imputation involves the use of additional information to predict missing values in a sample.

Informative missingness: Nonrandom missing data pattern with repsect to both genotype and trait status might lead to misleading associations in the analysis of the available genotypes.

Linkage disequilibrium (LD): Alleles at nearby variants might be allocated to individual chromosomes which can be caused by recent mutation, genetic drift or selection, leading to correlations between genotypes at closely linked markers. Some combinations of SNP alleles occur more or less frequently in a population than would be expected from a random formation of haplotypes. SNPs that are in high LD with their neighbors tag larger regions than do SNPs that are not in LD with surrounding variants. The former are more likely to mark a genomic region contaning a causative variant for a particular trait.

Mendelian disease: Type of disease that is caused by a usually rare mutation in DNA sequence on one (dominant) or both (recessive) of an individual's pair of chromosomes.

Mendelian randomization: It makes it possible to test for a causal relationship between two phenotypes involving observational associations, but are subject to confounding. Random

segregation of susceptibility alleles at meiosis is used to explore causality in a model that is freed from most sources of confounding.

Minor allele frequency: It is the frequency of the less common allele. SNPs with MAF greater than 5% are the targets of HapMap project. Trait-SNP associations that involve SNPs with high MAF are more prone to be detected by GWA studies.

Misclassification bias: It is due to incorrectly assignment of individuals to the relevant group in a case-control study. For instance, some individuals in the control group might meet the criterias to be case subjects or vice versa.

Multiple rare variant hypothesis: Some of the rare SNPs might involve genetic risk to diseases, especially if they are located in protein coding or gene regulatory regions.

Pleiotropy: A single allele might affect several distinct aspects of the phenotype of an organism, often traits not previously thought to be related.

Population stratification: Different ancestral and demographic histories among the samples might lead to a misclassification that, markers which are informative for them might be confounded with disease status and lead to artificial associations.

Quantile-quantile plot (Q-Q plot): A diagnostic plot comparing the distribution of observed test statistics with the distribution expected under the null.

Rare SNPs: They are in a frequency of less than 1%. The ones at the coding regions are more harmful than those at the other regions of the genome.

Selection bias: It arises due to the fact that the samples ascertained for the study, particularly controls might not represent the wider population that they are expected to represent.

Signal intensity (cluster) plots: Raw intensity data plots for individual variants generated by the genotyping platform. They provide a useful visual diagnostic to estimate the data quality of the genotyping data since those plots represent the extent to which the various genotypes can be discriminated.

SNP: Specific position on the genome where chromosomes carry different nucleic acids. There are approximately 15 million SNPs with frequency $\geq 1\%$. HapMap project involves about 4 million of them.

APPPENDIX B: GENES AND LOCUS ON HUMAN CHROMOSOMES FOUND TO BE POTENTIALLY ASSOCIATED WITH AD

Published AD candidate genes and locus (chromosomes 1 and 2)

Published AD candidate genes and locus (chromosomes 3 and 4)

Published AD candidate genes and locus (chromosomes 5 and 6)

Published AD candidate genes and locus (chromosomes 7 and 8)

Published AD candidate genes and locus (chromosomes 9 and 10)

Published AD candidate genes and locus (chromosomes 11 and 12)

Published AD candidate genes and locus (chromosomes 13 and 14)

Published AD candidate genes and locus (chromosomes 15 and 16)

Published AD candidate genes and locus (chromosomes 17 and 18)

Published AD candidate genes and locus (chromosomes 19 and 20)

Published AD candidate genes and locus (chromosomes 21 and 22)

Published AD candidate genes and locus (chromosome X)

APPENDIX C: TOP 100 GENES DEPENDING ON THE COMBINED P-VALUES AND THEIR OMIM ASSOCIATIONS FOR ADNI DATA

Ranking	Gene	Combined p-value	OMIM association
1	SLC16A9	~0.0	
2	RBFOX1	~0.0	
3	CNTN5	~0.0	Yes
4	C6orf10	~0.0	
5	KDM4C	~0.0	Yes
6	RBMS3	~0.0	Yes
7	SLC9A7	~0.0	Yes
8	DSCAM	~0.0	Yes
9	FHIT	~0.0	Yes
10	LRP1B	~0.0	Yes
11	ANKRD44	~0.0	
12	DACH1	~0.0	Yes
13	SNX25	~0.0	
14	FAM188B	~0.0	
15	CSMD1	~0.0	Yes
16	HS3ST4	~0.0	Yes
17	FER1L6	~0.0	
18	NELL1	~0.0	Yes
19	ALDH1A2	~0.0	Yes
20	SUCLG2	~0.0	Yes
21	LINGO2	~0.0	Yes
22	KHDRBS2	~0.0	Yes
23	ADAMTS12	~0.0	Yes
24	MYO16	1.0559729726876105E-13	
25	PSD3	1.1478770545894033E-13	
26	NAALADL2	2.8086915382032135E-13	Yes
27	KCNC2	5.097764790237947E-13	Yes
28	SYT16	5.635802661215643E-13	Yes
29	ODZ4	8.235055126059465E-13	Yes
30	UBE2F	9.52179225019045E-13	
31	THSD7B	1.220787352428633E-12	
32	IL2RA	1.7212225243400452E-12	Yes
33	SLC9A11	2.295709207450806E-12	
34	C6orf105	2.3931693941333888E-12	
35	PTGDR	2.5250913485194445E-12	Yes

36	MDGA2	2.8231664353972757E-12	Yes
37	CYP7B1	2.9844193338157977E-12	Yes
38	WDR70	5.677298720896958E-12	
39	DCC	5.712138177223898E-12	Yes
40	SPOCK3	7.429956512262358E-12	Yes
41	UBASH3B	9.016076010394048E-12	Yes
42	CEP350	1.3695540446557348E-11	
43	LRRC16A	1.4549263666909511E-11	Yes
44	MSI2	1.8786553402355918E-11	Yes
45	HECW1	2.086217427143857E-11	Yes
46	CDH13	2.1040073589353478E-11	Yes
47	ARMCX4	2.271542742004075E-11	
48	DLC1	5.016841702736779E-11	Yes
49	PTGER3	5.4892373319763484E-11	Yes
50	NKAIN3	6.147873394576069E-11	Yes
51	ATRN	7.307505066989754E-11	Yes
52	KDM2B	1.426071364037515E-10	Yes
53	STXBP6	1.4839718820136236E-10	Yes
54	ETV1	1.8723044307087347E-10	Yes
55	HNRNPA1P4	1.892663136483239E-10	
56	ZNF804B	1.8961181441612422E-10	
57	PDZRN4	3.8780411444008007E-10	Yes
58	TRHDE	4.933298594402748E-10	Yes
59	BANK1	5.85007022672771E-10	Yes
60	SDK1	6.401213279486818E-10	Yes
61	CADM2	8.31451862930459E-10	Yes
62	IL1RAP	8.917987290688169E-10	Yes
63	ADRA1A	9.574293099790778E-10	Yes
64	DLG2	1.4783508070275882E-9	Yes
65	SMC6	1.4989003339035996E-9	Yes
66	ZNF385D	1.6180339125834562E-9	
67	PLB1	1.6730178379192263E-9	Yes
68	SLC44A4	1.7779500384792024E-9	Yes
69	ABCA4	1.7805123088534963E-9	Yes
70	PDZD2	1.852501676202066E-9	Yes
71	SCLY	2.0998204078561198E-9	Yes
72	SMYD3	2.355594164391871E-9	Yes
73	SLC8A1	2.46402357928276E-9	Yes
74	IFT140	2.835825071094462E-9	
75	MYO3B	3.115662085606353E-9	Yes

76	TNR	3.5111797911669363E-9	Yes
77	P2RY12	4.824727258543983E-9	Yes
78	TMEM132D	5.439923406189135E-9	Yes
79	KIAA1328	5.85506142710832E-9	
80	NSUN6	6.77429694563221E-9	
81	ALK	7.471823757149835E-9	Yes
82	KAZN	7.678629411879916E-9	
83	CLEC16A	8.362899841095292E-9	Yes
84	LRPPRC	8.631067530760875E-9	Yes
85	NINL	8.687370370675846E-9	Yes
86	PDE4B	9.752840005719736E-9	Yes
87	SPAG16	1.008547610587095E-8	Yes
88	ROCK2	1.0753607555369714E-8	Yes
89	BACE1	1.0807974976229822E-8	Yes
90	NT5E	1.0918997077251672E-8	Yes
91	BTBD9	1.1375441188542542E-8	Yes
92	MCTP1	1.3326185274486867E-8	
93	GEN1	1.4688014332860152E-8	Yes
94	SEL1L2	1.5040966592610165E-8	
95	AGAP1	1.5743466936395407E-8	Yes
96	FRMD1	1.6442845925245657E-8	
97	COG3	1.6865028111553102E-8	Yes
98	GCOM1	1.7491279078454985E-8	
99	C2CD3	1.9331230510838086E-8	
100	FERMT2	2.0835665975214104E-8	Yes

APPENDIX D: TOP 100 GENES DEPENDING ON THE COMBINED P-VALUES AND THEIR OMIM ASSOCIATIONS FOR GenADA DATA

Ranking	Gene	Combined p- value	OMIM association
1	AGAP11	1,089181E-08	
2	C4orf18	1,187423E-08	
3	CPT2	2,232619E-08	Yes
4	OR1L1	1,773873E-07	
5	NACC2	1,974952E-07	
6	MCPH1	2,484007E-07	Yes
7	C9orf150	4,419189E-07	
8	PRSS1	4,765822E-07	Yes
9	ESR2	7,396964E-07	Yes
10	ARHGEF19	8,743196E-07	Yes
11	STC1	8,987053E-07	Yes
12	SMURF1	1,272100E-06	Yes
13	CPZ	1,276079E-06	Yes
14	MYPN	1,451700E-06	Yes
15	IFI30	1,649066E-06	Yes
16	DAP	1,937083E-06	Yes
17	GNAZ	1,997541E-06	Yes
18	MRPS10	2,519949E-06	Yes
19	PPT1	2,546921E-06	Yes
20	HNRNPU	2,780977E-06	Yes
21	SEMA3E	2,933871E-06	Yes
22	EZH1	3,297509E-06	Yes
23	SCCPDH	3,529015E-06	
24	MPDZ	5,170320E-06	Yes
25	CYP11A1	5,383462E-06	Yes
26	CD46	6,608089E-06	Yes
27	AEBP1	8,547281E-06	Yes
28	SLC27A6	1,133377E-05	Yes
29	PITHD1	1,276816E-05	
30	OR51E2	1,395784E-05	Yes
31	JAZF1	1,661085E-05	Yes
32	BCO2	1,985933E-05	Yes
33	FAM160B2	2,082886E-05	
34	SUN1	2,532301E-05	Yes
35	GAB2	2,658490E-05	Yes
36	ACVR1B	2,826451E-05	Yes

37 MGC2752 2,837561E-05 38 DHPS 2,885398E-05 Yes 39 CD59 3,050824E-05 Yes 40 NFATC4 3,272083E-05 Yes 41 GPATCH4 3,284696E-05 Yes 41 GPATCH4 3,284696E-05 Yes 43 EAPP 3,699946E-05 Yes 44 SC4MOL 4,189537E-05 Yes 45 DMPK 4,263547E-05 Yes 46 RPL9P25 4,506857E-05 Yes 47 NUP54 5,543072E-05 Yes 48 WSB1 5,782227E-05 Yes 49 LOC649930 6,378632E-05 Yes 51 C20orf111 7,225648E-05 Yes 52 TUBB2C 7,510362E-05 Yes 53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes <				
38 DHPS 2,885398E-05 Yes 39 CD59 3,050824E-05 Yes 40 NFATC4 3,272083E-05 Yes 41 GPATCH4 3,284696E-05	37	MGC2752	2,837561E-05	
39 CD59 3,050824E-05 Yes 40 NFATC4 3,272083E-05 Yes 41 GPATCH4 3,284696E-05	38	DHPS	2,885398E-05	Yes
40 NFATC4 3,272083E-05 Yes 41 GPATCH4 3,284696E-05	39	CD59	3,050824E-05	Yes
41 GPATCH4 3,284696E-05 42 SLC20A2 3,579173E-05 Yes 43 EAPP 3,699946E-05 Yes 44 SC4MOL 4,189537E-05 Yes 45 DMPK 4,263547E-05 Yes 46 RPL9P25 4,506857E-05 Yes 46 RPL9P25 4,506857E-05 Yes 47 NUP54 5,543072E-05 Yes 48 WSB1 5,782227E-05 Yes 49 LOC649930 6,378632E-05 50 LOC727744 6,505067E-05 51 C20orf111 7,225648E-05 52 TUBB2C 7,510362E-05 Yes 53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes	40	NFATC4	3,272083E-05	Yes
42 SLC20A2 3,579173E-05 Yes 43 EAPP 3,699946E-05 Yes 44 SC4MOL 4,189537E-05 Yes 45 DMPK 4,263547E-05 Yes 46 RPL9P25 4,506857E-05 Yes 46 RPL9P25 4,506857E-05 Yes 47 NUP54 5,543072E-05 Yes 48 WSB1 5,782227E-05 Yes 49 LOC649930 6,378632E-05 Secontrain the the the the the the the the the the	41	GPATCH4	3,284696E-05	
43 EAPP 3,699946E-05 Yes 44 SC4MOL 4,189537E-05 Yes 45 DMPK 4,263547E-05 Yes 46 RPL9P25 4,506857E-05 Yes 47 NUP54 5,543072E-05 Yes 48 WSB1 5,782227E-05 Yes 49 LOC649930 6,378632E-05 Some 50 LOC727744 6,505067E-05 Some 51 C20orf111 7,225648E-05 Yes 53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes	42	SLC20A2	3,579173E-05	Yes
44 SC4MOL 4,189537E-05 Yes 45 DMPK 4,263547E-05 Yes 46 RPL9P25 4,506857E-05 Yes 47 NUP54 5,543072E-05 Yes 48 WSB1 5,782227E-05 Yes 49 LOC649930 6,378632E-05 50 LOC727744 6,505067E-05 51 C20orf111 7,225648E-05 52 TUBB2C 7,510362E-05 Yes 53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes	43	EAPP	3,699946E-05	Yes
45 DMPK 4,263547E-05 Yes 46 RPL9P25 4,506857E-05	44	SC4MOL	4,189537E-05	Yes
46 RPL9P25 4,506857E-05 47 NUP54 5,543072E-05 Yes 48 WSB1 5,782227E-05 Yes 49 LOC649930 6,378632E-05	45	DMPK	4,263547E-05	Yes
47 NUP54 5,543072E-05 Yes 48 WSB1 5,782227E-05 Yes 49 LOC649930 6,378632E-05	46	RPL9P25	4,506857E-05	
48 WSB1 5,782227E-05 Yes 49 LOC649930 6,378632E-05	47	NUP54	5,543072E-05	Yes
49 LOC649930 6,378632E-05 50 LOC727744 6,505067E-05 51 C20orf111 7,225648E-05 52 TUBB2C 7,510362E-05 Yes 53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 66 ATMIN 1,593690E-04 Yes 66 ATMIN <	48	WSB1	5,782227E-05	Yes
50 LOC727744 6,505067E-05 51 C20orf111 7,225648E-05 52 TUBB2C 7,510362E-05 Yes 53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC	49	LOC649930	6,378632E-05	
51 C20orf111 7,225648E-05 52 TUBB2C 7,510362E-05 Yes 53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 69 LMCD1 1,720101E-04 Yes 70	50	LOC727744	6,505067E-05	
52 TUBB2C 7,510362E-05 Yes 53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes <tr< td=""><td>51</td><td>C20orf111</td><td>7,225648E-05</td><td></td></tr<>	51	C20orf111	7,225648E-05	
53 CCBL1 7,860632E-05 Yes 54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 63 SH3BP5 1,402876E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 66 ATMIN 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes <td>52</td> <td>TUBB2C</td> <td>7,510362E-05</td> <td>Yes</td>	52	TUBB2C	7,510362E-05	Yes
54 FN3KRP 8,217669E-05 Yes 55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	53	CCBL1	7,860632E-05	Yes
55 PPL 8,296717E-05 Yes 56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	54	FN3KRP	8,217669E-05	Yes
56 USP21 8,574191E-05 Yes 57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	55	PPL	8,296717E-05	Yes
57 SH3GL1 9,594797E-05 Yes 58 VWF 9,761645E-05 Yes 59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	56	USP21	8,574191E-05	Yes
58 VWF 9,761645E-05 Yes 59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 70 CTR9 1,803722E-04 Yes	57	SH3GL1	9,594797E-05	Yes
59 CTSH 1,176471E-04 Yes 60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 70 CTR9 1,803722E-04 Yes	58	VWF	9,761645E-05	Yes
60 TRAK1 1,241100E-04 Yes 61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 70 CTR9 1,803722E-04 Yes	59	CTSH	1,176471E-04	Yes
61 DHCR7 1,274716E-04 Yes 62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 70 CTR9 1,803722E-04 Yes	60	TRAK1	1,241100E-04	Yes
62 SDHA 1,301780E-04 Yes 63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 70 CTR9 1,803722E-04 Yes	61	DHCR7	1,274716E-04	Yes
63 SH3BP5 1,402876E-04 Yes 64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 70 CTR9 1,803722E-04 Yes	62	SDHA	1,301780E-04	Yes
64 PKN1 1,432841E-04 Yes 65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 Yes 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 Yes 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	63	SH3BP5	1,402876E-04	Yes
65 C1QTNF3 1,582540E-04 Yes 66 ATMIN 1,593690E-04 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	64	PKN1	1,432841E-04	Yes
66 ATMIN 1,593690E-04 67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	65	C1QTNF3	1,582540E-04	Yes
67 SETD8 1,625813E-04 Yes 68 LOC731709 1,657844E-04 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	66	ATMIN	1,593690E-04	
68 LOC731709 1,657844E-04 69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes	67	SETD8	1,625813E-04	Yes
69 LMCD1 1,720101E-04 Yes 70 CTR9 1,803722E-04 Yes 71 CD24 1 825270E 04 Yes	68	LOC731709	1,657844E-04	
70 CTR9 1,803722E-04 Yes 71 CD2(1.825270E.04 Yes	69	LMCD1	1,720101E-04	Yes
71 (D)($1.925270E.04$ Vac	70	CTR9	1,803722E-04	Yes
71 CD30 1,823279E-04 188	71	CD36	1,825279E-04	Yes
72 KCTD15 1,880624E-04 Yes	72	KCTD15	1,880624E-04	Yes
73 ATP6V0E1 1,946420E-04 Yes	73	ATP6V0E1	1,946420E-04	Yes
74 CITED2 2,024721E-04 Yes	74	CITED2	2,024721E-04	Yes
75 EBNA1BP2 2,212395E-04	75	EBNA1BP2	2,212395E-04	
76 COPS7A 2,360458E-04	76	COPS7A	2,360458E-04	

77	KLHDC8B	2,650786E-04	Yes
78	DDOST	2,698274E-04	Yes
79	SDF2L1	2,718846E-04	Yes
80	AKR1A1	2,735476E-04	Yes
81	SMAD1	2,895042E-04	Yes
82	LOC389458	3,163264E-04	
83	CLDN4	3,167976E-04	Yes
84	LUM	3,220273E-04	Yes
85	RAB7A	3,354747E-04	
86	WNT2	3,390472E-04	Yes
87	CPPED1	3,414755E-04	
88	PALLD	3,462945E-04	Yes
89	HEBP1	3,522131E-04	Yes
90	TBCK	3,539400E-04	
91	CDK6	3,717210E-04	Yes
92	LOC400499	3,746483E-04	
93	ATP2A3	3,889549E-04	Yes
94	DERL2	4,042802E-04	Yes
95	LGMN	4,044587E-04	Yes
96	LOC644538	4,110027E-04	
97	IGF2R	4,125967E-04	Yes
98	CHD1L	4,397654E-04	Yes
99	SEP15	4,493724E-04	Yes
100	FAM19A4	4,669621E-04	

APPENDIX E: COMPARISON OF TOP 100 SNPs AFTER AHP PRIORITIZATION VS SPOT PRIORITIZATION FOR ADNI DATA IN TERMS OF BIOLOGICAL RELEVANCE

METU-S	NP				SPOT
Ranking	SNP ID	AD linked gene	Ranking	SNP ID	AD linked gene
1	rs4651138		1	rs4795895	
2	rs2070045	SORL1	2	rs17365991	
3	rs2230806	ABCA1	3	rs3795263	
4	rs4652769		4	rs4426564	
5	rs3779870		5	rs2075650	
6	rs10808738		6	rs12605132	
7	rs4395923		7	rs9268368	
8	rs4936637	SORL1	8	rs10941091	
9	rs6424883		9	rs667782	
10	rs10752893		10	rs885691	
11	rs9832203		11	rs1233651	
12	rs895286		12	rs5442	GNB3
13	rs4358067		13	rs12489170	
14	rs10857526		14	rs6729218	
15	rs603634		15	rs13006848	
16	rs10934675		16	rs12457258	
17	rs1800464		17	rs6020624	
18	rs13390226		18	rs4935801	
19	rs1799898	LDLR	19	rs3735080	
20	rs688	LDLR	20	rs3862683	
21	rs4234221		21	rs1055207	
22	rs8027035	CHRNA7	22	rs2548032	
23	rs644511		23	rs2235573	
24	rs1355920	CHRNA7	24	rs756847	
25	rs333309		25	rs2228527	
26	rs10932400		26	rs10941100	
27	rs12621088		27	rs2302674	
28	rs1917810		28	rs1542604	
29	rs589663		29	rs1043261	
30	rs13012677		30	rs2199619	
31	rs11892696		31	rs1801591	
32	rs12618478		32	rs9935113	
33	rs10932398		33	rs4814111	
34	rs1373928		34	rs2286472	
35	rs9813330		35	rs2121473	
36	rs4634050		36	rs2326007	
37	rs1373930		37	rs2280511	
38	rs1606659	CHRNA7	38	rs2484180	
39	rs10997263		39	rs6505403	
40	rs7904053		40	rs3849994	
41	rs4746654		41	rs11606296	

42	rs7074696		42	rs4757268	
43	rs7099157		43	rs652888	
44	rs6480128		44	rs17488241	
45	rs2619656		45	rs821480	
46	rs8178990		46	rs2262425	
47	rs20563		47	rs2297781	
48	rs2071421		48	rs7443549	
49	rs2298813	SORL1	49	rs6671527	
50	rs2066718	ABCA1	50	rs2304977	
51	rs4912868		51	rs7911085	
52	rs17416172		52	rs1060242	
53	rs3773892		53	rs2969	
54	rs7419259		54	rs2257906	
55	rs895061		55	rs6138650	
56	rs9840301		56	rs9790	
57	rs3772744		57	rs4891524	
58	rs1857796		58	rs1461707	
59	rs10497953		59	rs972984	
60	rs6706010		60	rs536141	
61	rs7626419		61	rs2045191	
62	rs13071977		62	rs1044730	
63	rs921001		63	rs4851287	
64	rs17259208		64	rs17831682	
65	rs1427281		65	rs12125245	
66	rs535801		66	rs13360277	
67	rs2043888		67	rs1254929	
68	rs6772915		68	rs6713132	
69	rs10207020		69	rs473210	
70	rs17347530		70	rs1048101	
71	rs1357139		71	rs17055498	
72	rs2204853		72	rs4899065	
73	rs16846100		73	rs1073276	
74	rs2777799	ABCA1	74	rs4862792	
75	rs12695438		75	rs10498817	
76	rs1950091		76	rs16900602	
77	rs3793791		77	rs2063979	
78	rs3793792		78	rs7615865	
79	rs6757140		79	rs2387976	
80	rs12995889		80	rs6076364	
81	rs4073245		81	rs11685766	
82	rs6779362		82	rs2305397	
83	rs1699102	SORL1	83	rs676210	
84	rs2289837		84	rs3826007	
85	rs8178992		85	rs2235197	
86	rs1800977	ABCA1	86	rs2537830	
87	rs2289839		87	rs11660401	
88	rs2274873	ABCA1	88	rs815470	
89	rs17561	IL1A	89	rs2273816	
90	rs2280294		90	rs681751	
91	rs1986181		91	rs2403088	
92	rs9881879		92	rs3811515	
93	rs1010158	SORL1	93	rs1928565	

04	ma2820052		04	mp 0260	
94	182850052	AFF	94	188502	
95	rs839519		95	rs11071341	
96	rs9843963		96	rs5951332	
97	rs4486246		97	rs6471482	
98	rs1620003	SORL1	98	rs2634974	
99	rs2271446		99	rs11948306	
100	rs4327886		100	rs35195	

APPENDIX F: COMPARISON OF TOP 100 SNPs AFTER AHP PRIORITIZATION VS SPOT PRIORITIZATION FOR GenADA DATA IN TERMS OF BIOLOGICAL RELEVANCE

METU-SNP SPOT						SPOT
Ranking	SNP ID	AD linked gene		Ranking	SNP ID	AD linked gene
1	rs7229			1	rs1062683	
2	rs14531			2	rs3733472	
3	rs4947			3	rs10252253	
4	rs2759	MPO		4	rs11166412	
5	rs6304			5	rs3812205	
6	rs6324			6	rs17074644	
0	rs6323			0	rs3739407	
0	180303			0	180740030	
9	1813130			9	184087319	
10	rs6314			10	rs3/42261	
11	rs6313			11	rs1065035	
12	rs3010			12	rs560659	
13	rs8951			13	rs16966703	
15	rs1146	АРР		15	rs4545143	
16	rs761388			16	rs304230	
17	rs15966			17	rs572846	
18	rs669	A2M		18	rs8041254	
19	rs12222			19	rs6677080	
20	rs3761			20	rs17067596	
21	rs216779	APP		21	rs4310078	
22	rs191962	APP		22	rs1476970	
23	rs57126	APP		23	rs12090877	
24	rs214493	APP		24	rs4756055	
25	rs928902	APP		25	rs14976	
26	rs184200	APP		26	rs602668	
27	rs15486			27	rs8014810	
28	rs6307			28	rs1032471	
29	rs8077			29	rs17752628	
30	rs3125			30	rs7206841	
31	rs7049			31	rs352222	
32	rs920812			32	rs2978023	
33	rs3991	APP		33	rs2150820	
34	rs1145	APP		34	rs17804446	
35	rs622337			35	rs10132580	
36	rs4175	APP		36	rs17793957	

37	rs621494		37	rs12456284	
38	rs469420	APP	38	rs17116710	
39	rs13396		39	rs936160	
40	rs214494	APP	40	rs7518943	
41	rs216767	APP	41	rs10031148	
42	rs216758	APP	42	rs10132954	
43	rs867442		43	rs11810899	
44	rs434844		44	rs1060743	
45	rs912127		45	rs3825569	
46	rs226407	A2M	46	rs429419	BIN1
47	rs2477	A2M	47	rs10775471	
48	rs226402	A2M	48	rs16893388	
49	rs226403	A2M	49	rs11206955	
50	rs169963	APP	50	rs3813487	
51	rs979605		51	rs3793511	
52	rs448116		52	rs4735627	
53	rs226389	A2M	53	rs3802428	
54	rs944047		54	rs10142154	
55	rs216769	APP	55	rs10024098	
56	rs985933		56	rs1886811	
57	rs768040	APP	57	rs1201559	
58	rs216765	APP	58	rs10736889	
59	rs226384	A2M	59	rs10489622	
60	rs6317		60	rs16949276	
61	rs6310		61	rs3829799	
62	rs6309		62	rs7210713	
63	rs13558		63	rs6571727	
64	rs14660		64	rs839511	
65	rs706149		65	rs7614	
66	rs6174		66	rs2999061	
67	rs5272	PTGS2	67	rs2955091	
68	rs5273	PTGS2	68	rs52911	
69	rs268	LPL	69	rs1808529	
70	rs6265		70	rs1653586	
71	rs12505		71	rs17377379	
72	rs622397		72	rs8026464	
73	rs238740		73	rs606114	
74	rs7330		74	rs3795685	
75	rs10237		75	rs6573270	
76	rs16942		76	rs714705	
77	rs15997		77	rs1451392	
78	rs7720		78	rs10084692	

79	rs12515		79	rs2742424	
80	rs14261		80	rs12503735	
81	rs16339		81	rs9357738	
82	rs180515		82	rs12146894	
83	rs385981		83	rs2227127	
84	rs551115		84	rs2230742	
85	rs5274	PTGS2	85	rs17732290	
86	rs2953		86	rs7825723	
87	rs688	LDLR	87	rs4905897	
88	rs5224		88	rs12432214	
89	rs4902		89	rs2999081	
90	rs36526		90	rs6582406	
91	rs36527		91	rs2722278	
92	rs16940		92	rs2057116	
93	rs5077	APOA1	93	rs4706990	
94	rs4882	APOA1	94	rs2567982	
95	rs20558		95	rs13382811	
96	rs4977	ACE	96	rs1045493	
97	rs4314	ACE	97	rs2415306	
98	rs4981	ACE	98	rs4789161	
99	rs4976	ACE	99	rs2234971	
100	rs5388		100	rs10183045	