


QUERY INTERFACE AND QUERY LANGUAGE FOR DOMAIN SPECIFIC WEB
SERVICE DISCOVERY SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HIiLAL OZDIL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

SEPTEMBER 2011



Approval of the thesis:

QUERY INTERFACE AND QUERY LANGUAGE FOR DOMAIN SPECIFIC WEB
SERVICE DISCOVERY SYSTEM

submitted by HILAL OZDIL in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Assist. Prof. Dr. Pinar Senkul
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. ismail Hakki Toroslu
Computer Engineering Department, METU

Assist. Prof. Dr. Pmar Senkul
Computer Engineering Department, METU

Prof. Dr. Nihan Kesim Cicekli
Computer Engineering Department, METU

Assoc. Prof. Dr. Halit Oguztiiziin
Computer Engineering Department, METU

Assoc. Prof. Dr. Erdogan Dogdu
Computer Engineering Department, TOBB ETU

Date:




I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: HILAL OZDIL

Signature

iii



ABSTRACT

QUERY INTERFACE AND QUERY LANGUAGE FOR DOMAIN SPECIFIC WEB
SERVICE DISCOVERY SYSTEM

Ozdil, Hilal
M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Pinar Senkul

September 2011, 80 pages

As the number of the published web services increase, discovery of the web services with the
desired functionality and quality is becoming a challenging process. Selecting the appropriate
web services among the ones that offer the same functionality is also a challenging task. The
web service repositories like UDDI (Universal Description Discovery and Integration) support
only the syntactic searchs. Quality of service parameters for the published web services can
not be queried over these repositories. We have proposed a query language that aims to
overcome these problems. It enables its users to query the web services both syntactically
and semantically. We also allow the users to specify the quality of service criteria which the
desired web services should satisfy. We have developed a graphical query interface to assist
the users in query sentence formulation process. The proposed work is developed as a sub-
module of the Domain Specific Web Service Discovery with Semantics (DSWSD-S) System.

Aforementioned query language and the query interface are explained in detail in this thesis.

Keywords: Web Service, Query Language, Query Interface, Semantic Query, Quality of Ser-

vice

v



(0Y/

ALANA OZGU WEB SERVIS KESIF SISTEMI ICIN SORGULAMA ARAYUZU VE
SORGULAMA DILI

Ozdil, Hilal
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi : Yar. Doc¢. Dr. Pinar Senkul

Eyliil 2011, 80 sayfa

Web servis teknolojisinin gelismesi ve kullaniminin artmasiyla birlikte yaymlanan web servisler
arasindan istenilen yetenek ve kalitede servislerin bulunmasi problemi ortaya ¢cikmistir. UDDI
(Universal Description Discovery and Integration) gibi servis depolari sadece sozdizimsel ara-
may1 desteklemektedir. Ayrica servislerin kalite puani bilgileri de bu gibi depolarda sorgu-
lanamamaktadir. Bu calismada, web servislerin hem sdzdizimsel hem de anlamsal olarak
sorgulanabilmesini, ayrica arama sirasinda servis kalite puani gibi kriterlerin belirtilebilmesini
saglayan bir web servis sorgulama dili ve sorgulama arayiizii gelistirmeyi amacladik. Sunulan
calisma, DSWSD-S (Domain Specific Web Service Discovery with Semantics) adli alana
0zgii web servis kesif sisteminin bir alt parcasidir. Geligtirilen sorgulama dili ve kullanici

arayiizii bu tezde detaylandirilmusgtir.

Anahtar Kelimeler: Web Servis, Sorgulama Dili, Sorgulama Arayiizii, Anlamsal Sorgu, Servis

Kalitesi



To my lovely family

vi



ACKNOWLEDGMENTS

I would like to thank to Pinar Senkul for her supervision and guidance through the develop-
ment of this thesis. I would like to thank to my lovely, supportive family and my friends for
their belief in me. I also would like to thank Aselsan Inc. for their support on this whole

duration and work.

vii



TABLE OF CONTENTS

ABSTRACT . . . . . e iv
OZ . . e \
ACKNOWLEDGMENTS . . . . . . . e e vii
TABLE OF CONTENTS . . . . . . . . e viii
LISTOFTABLES . . . . . . . s e xii
LISTOFFIGURES . . . . . . e xiii
CHAPTERS

1 INTRODUCTION . . . . . e e e e e e 1
1.1 Motivation . . . . . . . . ... e 2
1.2 Contributions . . . . . . ... oL 2
1.3 Thesis Organization . . . . . . . . . ... .. ... ... ...... 3
2 RELATED WORKS . . . . . . . 4
2.1 Web Service Query Languages And Structures . . . . . . . .. ... 4
2.1.1 UDDIQuery API . . . . ... ... ... ... .... 4
2.1.2 Grid Operation Language (GOL) . . . . . ... ... ... 8
2.1.3 Quality of Service Query Language (QQL) . . . . .. .. 10
2.14 Unified Service Query Language (USQL) . . . . . .. .. 12
2.2 Graphical User Interfaces For Web Service Querying . . . . . . .. 13
2.2.1 Graphical User Interface In FRWS Approach . . . . . .. 13
2.2.2 Graphical User Interface ForQQL . . . . . . . ... ... 15

3 OVERVIEW OF DOMAIN SPECIFIC WEB SERVICE DISCOVERY WITH
SEMANTICS SYSTEM . . . . . . . . e 18
3.1 Overall Design of DSWSD-S System . . . . .. ... ... ..... 18
32 Domain-Specific Crawler Layer . . . . . . . . ... ... ... ... 19

viii



33 Domain-Specific Service Discovery Layer . . . ... ... ... .. 21

GRAPHICAL USER INTERFACE IN DSWSD-S SYSTEM . . .. ... .. 22
4.1 Introduction . . . . . ... .. 22
4.2 Search Criteria Definition Panel . . . . . . . ... .. ... ... .. 23
4.3 Result Monitoring Panel . . . . . . . ... ... ... ........ 27
QUERY LANGUAGE INDSWSD-SSYSTEM . . . . ... .. ... .... 30
5.1 Why Simplified-USQL? . . . . .. ... ... . . 30
5.2 Simplified-USQL (S-USQL) . . . .. ... .. ... ... ..... 31
5.2.1 Language Structure . . . . . .. ... ... .. ...... 31

5.2.1.1 S-USQL Request . . . . ... ........ 31

5.2.1.2 S-USQL Response . . . . . ... ....... 32

5.2.2 Language Elements . . . . . . ... ... ......... 33

5221 Removed Elements and Structures . . . . . . 33

priorityLevel Attribute and tPriorityLevel Type 33

ServiceProvider Element . . . . .. ... .. 34
Security Element . . . .. ... ... .... 34
tCurrency Type . . . . . ... ... .. ... 34
tPriceContext Type . . . . .. .. ... ... 34
tProcessingTimeUnit Type . . . . . .. ... 34
ServiceTaxonomy Element and tTaxonomyScheme
Type . ... ... ... 35
tQoSOperator and tQoS Types . . . . . . .. 35

tOrderByOption and tOrderByDirection Types 35

tServiceType Type . . . . . . .. .. ... .. 35
tNetworkType Type . . . . . ... ... ... 36
tOperation Type . . . . . . ... . ... ... 36

AdditionalOperationProperties Element Group 36

5222 Retained Elements and Structures . . . . . . . 36
tPercentage Type . . . . . . ... ... ... 36
ErrorElement . . . . ... ... .. ..... 36

X



5223 Modified and Additional Elements and Struc-
TUIES . . . v v o e e e e e e 37

basicRequirementAttributes Attribute Group . 37
AdditionalServiceProperties Element Group . 37

tSyntacticOperator and tSemanticOperator Types 37

tSyntactic and tSemantic Types . . . . . . .. 38

tParameter Type . . . . . . . .. .. ... .. 38

tWeight Type . . . . . . . .. ... ... ... 39

ServiceName Element . . . . . . .. ... .. 39

ServiceDescription Element . . . . . . . . .. 40

ServiceDomain Element . . . . . . . ... .. 40

PriceElement . . . . ... ... ....... 40

Availability Element . . . . .. ... ... .. 40

Reliability Element . . . . .. ... ..... 41

ProcessingTime Element . . . . . ... ... 41

Throughput Element . . . . . . ... ... .. 41

QoSElement. . ... ... .......... 42

Operation Elements . . . . . .. ... .... 42

Service Elements . . . ... ... ... ... 44

Services Element . . . .. ... ... .... 45

USQLRequest Element . . . . ... .. ... 45

USQLResponse Element . . . . .. ... .. 46

USQLElement. . . . ... .. ........ 46

53 Simplified USQL (S-USQL) Parser . . . . . ... ... ....... 47
QUERY EXECUTION PROCESS AND INTERACTION WITH OTHER MOD-

ULESOFDSWSD-S . . . . . . e 50

6.1 Introduction . . . . ... ... 50

6.2 Modules Responsible For Query Execution . . . . . . .. ... ... 50

6.2.1 Graphical User Interface Module . . . . . ... ... ... 50

6.2.2 S-USQL ParserModule . . . . ... ... ......... 51

6.2.3 Similarity Degree Calculator Web Service . . . . . . . .. 51



6.2.4 Database Operations Handler Web Service . . . . . . . .. 51

6.3 Query Execution Process . . . . ... ... ... ... ... ..., 52

7  CASE STUDIES AND ANALYSIS . . .. ... ... o ... 54

7.1 Query with Single Keyword . . . . . ... ... ... ........ 54

7.2 Query with Single Keyword and Domain Specification . . . . . . . . 56

7.3 Query with Custom Quality of Service Criteria . . . . . . ... ... 57

7.4 Query with Default Quality of Service Criteria . . . . . . ... ... 59

7.5 Query with Multiple Keywords and Custom Quality of Service Criteria 61

7.6 Query Execution Time Performance Analysis . . . ... ... ... 62

8 CONCLUSION . . . . e 67

REFERENCES . . . . . e 69
APPENDICES

A XSDOFS-USQL . . . . . . e 71

B  SIMILARITY DEGREE CALCULATOR WEB SERVICE . . . . .. .. .. 79

C  DATABASE OPERATIONS HANDLER WEB SERVICE . . ... ... .. 80

X1



TABLES

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table B.1

Table C.1

LIST OF TABLES

Query Execution Times for Sample Query-1 . . . . . .. . ... ... ... 63
Query Execution Times for Sample Query-2 . . . . . ... ... ... ... 63
Query Execution Times for Sample Query-3 . . . . . ... ... ... ... 64
Query Execution Times for Sample Query-4 . . . . . . ... .. ... ... 64
Query Execution Times for Sample Query-5 . . . . . . . .. .. ... ... 65
Operations Offered By Similarity Degree Calculator Web Service . . . . . . 79
Operations Offered By Database Operations Handler Web Service . . . . . 80

Xii



LIST OF FIGURES

FIGURES

Figure 2.1 Relationships Between UDDI Data Structures . . . . . . . ... ... ... 6
Figure 2.2 General Architecture of FRWS Approach . . . . . ... ... .. ..... 9
Figure 2.3 General Form Of A GOL Sentence . . . ... ... ... ......... 10
Figure 2.4 Sample QQL Query . . . . . . . . . .. ... . ... .. 11
Figure 2.5 Conceptual Model OfUSQL . . . . . . . .. ... ... ... ... .... 12
Figure 2.6 Graphical User Interface Of Service Grid . . . . .. ... ......... 14
Figure 2.7 Graphical User Interface Of Retrieval Result . . . . . .. .. .. ... .. 15
Figure 2.8 First Step Of QQL Query Formulation . . . ... ... ... .. ..... 16
Figure 2.9 Second Step Of QQL Query Formulation . . . . .. ... ... ...... 16
Figure 2.10 Third Step Of QQL Query Formulation . . . . . .. ... ... ... ... 16
Figure 2.11 Fourth Step Of QQL Query Formulation . . . ... ... ... ... ... 17
Figure 3.1 DSWSD-S System Architecture . . . . . . ... .. ... ... ...... 19
Figure 3.2 DSWSD-S Database Architecture . . . . . . . ... ... ... ...... 20
Figure 3.3 Domain-Specific Crawler Layer Architecture . . . . . . . ... ... ... 20
Figure 4.1 Interaction Between GUI Node and Crawler Nodes . . . . . . .. ... .. 23
Figure 4.2 Main Page of DSWSD-SGUI . . . . ... ... ... .. ... . ..... 23
Figure 4.3 Keyword Specification Widget . . . . . . . ... .. ... ... ... .. 24
Figure 4.4 Matching Operator Choice Widget . . . . . . . .. ... ... ... .... 25
Figure 4.5 QoS Parameters Panel . . . . . ... ... ... ... ... ........ 25
Figure 4.6 Domain Ontologies Tabs . . . . . . . .. ... ... ... ...... 27
Figure 4.7 Maximum Number of Results Limitation Widget . . . . . . . ... .. .. 28

xiii



Figure 4.8 User Action Widgets . . . . . . . . . . . . . . . .. ..., 28

Figure 4.9 ResultsTable . . . . . . . . . . . .. ... ... ... . ... .. ..... 29
Figure 4.10 NoResult Warning . . . . . . . .. ... ... .. ... ... . 29
Figure 5.1 USQL Request Structure . . . . . . . . . .. ... ... ... ....... 32
Figure 5.2 S-USQL Request Structure . . . . . . . . . ... ... .. ... . ..... 32
Figure 5.3 USQL Response Structure . . . . . . . . .. ... ... ... ... .... 33
Figure 5.4 S-USQL Response Structure . . . . . . . .. . ... ... ... ...... 33
Figure 5.5 tPercentage . . . . . . . . . . . . ... 36
Figure 5.6 Error . . . . . . . . . . e 37
Figure 5.7 basicRequirementAttributes . . . . . . . . ... ... ... ........ 37
Figure 5.8 AdditionalServiceProperties . . . . . . . ... ... ... ... ...... 38
Figure 5.9 tSyntacticSemanticOperators . . . . . . . . .. .. ... ... . ..... 38
Figure 5.10 tSyntacticSemantic . . . . . . . . . . .. ... oo 39
Figure 5.11 tParameter . . . . . . . . . . . . . . . . . 39
Figure 5.12 tWeight . . . . . . . . . . . . 39
Figure 5.13 ServiceName . . . . . . . . . ... ... L 40
Figure 5.14 ServiceDescription . . . . . . . . . . .. .o oo 40
Figure 5.15 ServiceDomain . . . . . . . . . ... . ... ... ... ... 40
Figure 5.16 Price . . . . . . . . . . . e 41
Figure 5.17 Availability . . . . . . . . .. .. 41
Figure 5.18 Reliability . . . . . . . . ... . ... .. . . . .. 41
Figure 5.19 ProcessingTime . . . . . ... . ... ... ... ... ... ....... 41
Figure 5.20 Throughput . . . . . . . . . . . . ... 42
Figure 5.21 QoS . . . . . . . L 42
Figure 5.22 RequestOperation . . . . . . . . . . . . . . ..., 43
Figure 5.23 ResponseOperation . . . . . . . . . . . . . . oo v i vt 43
Figure 5.24 RequestService . . . . . . . . . . . ... L e 44
Figure 5.25 ResponseService . . . . . . . . . . . . o 44

X1v



Figure 5.26 ResponseServices . . . . . . . . . . . . o v i i it 45

Figure 5.27 SUSQLRequest . . . . . . . . . . . e 45
Figure 5.28 SUSQLResponse . . . . . . . . . . .. . o 46
Figure 529 SUSQL . . . . . . . o o 46
Figure 6.1 Interaction Between Modules . . . . . ... . ... ... ......... 52
Figure 7.1 Sample Query-1 . . . . . . . . . . ... . ... 54
Figure 7.2 Response for Sample Query-1 . . . . . .. ... .. ... ... ... . 55
Figure 7.3 Screen for Sample Query-1 . . . .. ... ... ... ... ........ 55
Figure 7.4 Sample Query-2 . . . . . . . ... 56
Figure 7.5 Response for Sample Query-2 . . . . . . . . . ... .. L. 56
Figure 7.6 Screen for Sample Query-2 . . . . . ... ... L. 57
Figure 7.7 Sample Query-3 . . . . . . . . L 57
Figure 7.8 Response for Sample Query-3 . . . . . . . ... .. ... ... 58
Figure 7.9 Screen for Sample Query-3 . . . . . ... ... ... ... ... ..., 58
Figure 7.10 Sample Query-4 . . . . . . . . . . ... 59
Figure 7.11 Response for Sample Query-4 . . . . . .. ... ... ... ... ..... 60
Figure 7.12 Screen for Sample Query-4 . . . . . . . ... ... oL 60
Figure 7.13 Sample Query-5 . . . . . . . . ... 61
Figure 7.14 Response for Sample Query-5 . . . . . . . ... .. ... ... ... .. 61
Figure 7.15 Screen for Sample Query-5 . . . . . . . .. .. ... ... 62
Figure 7.16 Query Execution Time Performance Graph . . . . . . .. ... ... ... 66

XV



CHAPTER 1

INTRODUCTION

As the number of the published web services increase, they become more prevalent nowa-
days. Accordingly, discovery of the web services with the desired functionality and quality is
becoming a challenging process. Selecting the appropriate web services among the ones that

offers the same functionality is also a rocky road.

In the literature, most of the web service discovery systems collect the web services in a
central registry. As the number of the published web services increase, these registries become
overloaded and a scability issue occurres. Another drawback of these solutions is that, they
are incompatible with each other. There are heteregenous service registries like UDDI[9]
or ebXML[12] and all of them provides different specifications. Therefore, the web service
discovery work becomes more complicated for the web service consumers. The users need
to spend too much time to visit different user interfaces of different solutions. In addition,
he/she needs to understand the usage of their interface. The user is also exptected to know
or learn quickly the query language or structure that these solutions provide for web service

discovery.

UDDI (Universal Description, Discovery and Integration) and ebXML (Electronic Business
using eXtensible Markup Language) are the most popular service registries. Both of them
provide ways to publish and consume services, but their specifications are limited. These

registries have the following drawbacks:

e They only support keyword-based searches and do not have a rich query interface to

enable the user to specify his/her needs.

o They do not control the life-cycle of the services they advertised, they are disconnected



from them. Therefore, these registries do not know whether the services advertised are

alive or reliable to use.

o These registries do not offer quality of service information, therefore selecting the ap-

propriate service among the ones offering same functionality becomes a hard task.

To overcome these problems, a web service discovery framework is designed, namely Domain
Specific Web Service Discovery with Semantics (DSWSD-S) [7,8]. The system aims to make
the web service discovery process more efficient, faster, reliable and scalable. It consists of the
web crawlers each of which specialized on specific domains by means of ontology definitions.
The system also offers user-friendly graphical user interface to enable its users to specify their

requirements that the desired web services should satisfy.

Within the work done in this thesis, we propose the aforementioned graphical user interface.

In addition, we developed a web service query language to be used in DSWSD-S System.

1.1 Motivation

While designing the DSWSD-S System, we found that the web service discovery solutions
proposed in the literature does not consider the user factor. Therefore, the main motivation
of this thesis is to design a search interface and query language to enable the users to specify
their requirements easily. The search tools provided in the literature are not user-friendly
and they are not easy-to-use. The work proposed in this thesis, directs the users to specify
the search criteria and requirements, which the desired web services should satisfy, while
encapsulating them from the technical details of the query language used in background.
The users construct web service queries easily without any knowledge on the query language

implemented in system via the guidance provided by the graphical user interface.

1.2 Contributions

The proposed work in this thesis is developed as a part of the Domain Specific Web Service
Discovery with Semantics (DSWSD-S) System. The main contributions of this thesis are as

follows:



e A user-centric query interface for web service discovery is described.

e A web service query language is developed for DSWSD-S System.

Comparison between service query languages and query mechanisms are discussed.

The DSWSD-S System and the interaction of the proposed work with other parts of the

system is given.

1.3 Thesis Organization

This thesis is organized as follows:
Chapter 2 presents the related work on web service selection and web service query languages.

Chapter 3 explains the overall design of Domain Specific Web Service Discovery with Se-

mantics (DSWSD-S) System and its architectural layers.
In Chapter 4 the graphical user interface designed for DSWSD-S System is described in detail.

Chapter 5 is about the Simplified-Unified Query Language (S-USQL). The language elements

and structures are detailed in this chapter.

In Chapter 6 we explain the interactions between the proposed work and the other parts of the

DSWSD-S System in the scope of a query execution process.

Chapter 7 represents the usage of the proposed query language and the graphical user interface

with samples.

The thesis ends up in the conclusion part given in Chapter 8.



CHAPTER 2

RELATED WORKS

Effective web service querying topic is studied by several researchers in the literature. How-
ever, a very small part of them studied on the user-interaction in web service querying process.
In this chapter, we will explain the studies based on the web service selection and the query
languages defined for this purpose. In addition to that we will describe the studies that em-
phasized on graphical user interface designs that enable the users to search for web services.
In Section 2.1, query languages and structures defined in the literature to query the services
are described. Section 2.2 explains the graphical user interface works proposed for effiecient

service search and selection.

2.1 Web Service Query Languages And Structures

2.1.1 UDDI Query API

Universal Description, Discovery and Integration (UDDI) [9] is a standardized directory ser-
vice where businesses can publish and discover web services. UDDI is used by the service
providers to advertise the services they offer and it is used by the service consumers to dis-

cover the web services that satisfy their requirements.

With the UDDI specifications the followings are defined:

e SOAP APIs to enable the UDDI users to query and to publish web services.
e XML Schema schemata of the registry data model and the SOAP message formats.

e SOAP APIs’ WSDL definitions .



e UDDI registry definitions of identifiers and categories which can be used to identify

and categorize the UDDI registrations.

UDDI uses WSDL to describe interfaces to web services. Additionally, cross platform pro-
gramming features are addressed by adopting SOAP, known as XML Protocol messaging

specifications.

Conceptually, a business can publish three types of information into a UDDI repository:

1. White Pages: Contains the basic contact information about a business. It is composed
of business name, address, contact information, and unique identifiers. This informa-
tion enables requestors to find the published web services based upon the business

identification.

2. Yellow Pages: Contains the information which describes a web service using catego-
rizations in other words using taxonomies. This information enables requestors to find

the published web services based upon its categorization.

3. Green Pages: Contains the technical information which defines the behaviors and of-
fered operations of a web service. This information contains pointers to the grouping

information of the web services and where the web services are located.

As we mentioned before, UDDI defines a set of XML Schema definitions that describe the
data models and SOAP message formats used by different specification APIs. The specifica-

tions include:

UDDI Replication

UDDI Operators

UDDI Programmer’s API

UDDI Data Structures

Inside the UDDI Programmer’s API, there two different API specification: UDDI Publishing
API and the UDDI Inquiry API. UDDI Publishing API is used to create, store or update



information about a web service registered in a UDDI registry. UDDI Inquiry API is used to

discover and obtain the details of a web service registered in a UDDI registry.

In the scope of this thesis, we have emphasized on the UDDI Inquiry API. Before going into
details of the API, explaning the data structures briefly would be helpful to understand the
operations defined in the API. The relationships between the UDDI data structures are given

in Figure 2.1.

<hbusinessEntity= <publisher Azzertion:=
*  MName, contact, description » Relationships betweesn two
+ |dentifiers and categories COMpanies

<husinessservioes

* Grouping of logical services

=hindingTemplate: <thiodel:=

» Techincal information of 3 » Specification implementsd
single web service by web service

* URLaccess points for service » URLpointers to specification

Figure 2.1: Relationships Between UDDI Data Structures

o businessEntity: structure composes of a business’s basic information which are business
contact information, categorization, identifiers, descriptions and relationships to other

businesses.

o publisherAssertion: structure indicates public relationships between two businessEntity
structures. A relationship between two businessEntity structures becomes visible to the
public when both businesses created the same relationship as separate publisherAsser-

tion documents.

e businessService: structure is used to represent the set of services that are offered by a
business. It is contained inside businessEntity. One businessEntity structure may con-

tain one or more businessService structures. The businessService structure is a reusable



structure, basically it can be used by different businessEntity structures.

e bindingTemplate: structure contains the technical descriptions and the access point
URL of a service, but it does not contain the service’s specifications. A businessService

composes of one or more bindingTemplate structures.

o tModel: structure is used to define the behavior of a serb service. A tModel contains
the needed information to interact with a web service. The tModel structure does not
provide the web service’s specification directly, it contains pointers to the locations of

the actual specifications.

The SOAP messages which are defined within UDDI Inquiry API start with the “find” word.

Below the operations that the API offers for web service discovery are given:

o find_binding: This operation is used to find the bindingTemplate elements in the UDDI.
It returns a structure named bindingDetail which holds a list of the resulting bind-

ingTemplate elements.

o find_business: This operation is used to find the businessEntity elements. It returns a

structure named businessLsst which holds a list of the resulting businessEntity elements.

o find_relatedBusinesses: This operation is used to find businessEntity elements that have
a relationship with the businessEntity specified as parameter. It returns a structure
named relatedBusinessesList which holds a list of the resulting related businessEntity

elements.

o find_service: This operation is used to find the businessService elements in the UDDI. It
returns a structure named serviceList which holds a list of the resulting businessService

elements.

o find_tModel: This operation is used to find the tModel elements in the UDDI. It returns

a structure named tModelList which holds a list of the resulting tModel elements.

All of the operations listed above, retrieves some common arguments: authenticatin informa-
tion, qualifiers for the search and name. Here is the important argument is the qualifiers which
tells us the UDDI’s search capability. Some of the qualifiers which can be used in a UDDI

query are:



e approximateMatch
e caselnsensitiveMatch

e caseSensitiveMatch

As can be seen, the qualifiers are all defined for syntactic matching of the keywords. UDDI
does not offer semantic matching feature and related qualifiers. In addition to this, UDDI does
not offer any information about the quality of service parameters about the services registered

to it.

2.1.2 Grid Operation Language (GOL)

Hai Zhuge and Jie Liu [5] are proposed an approach and named it as Flexible Retrieval of Web
Services (FRWS). FRWS is composed of three layers: the graphical user interface that helps
the users in query sentence production, an SQL-like query language and finally the UDDI
repositories and an orthogonal service space structure over these repositories, that they call
as Service Grid. In this Service Grid space, they established the multi-valued specialization

relationships between services.

The proposed Service Grid model can be expressed in 3 dimensions: classification-type,
category and content. The classification-type dimension reflects the service classification
standards where the category dimension indicates the detail-classified hierarchy related to a
classification type. Finally, functionality of the services are indicated through the content di-
mension. The similarity degrees between services, the similarity degrees between tModels

and the multi-valued specialization relationships are kept in Service Grid structure.

There are five different specialization relationship types between tModels and between web

services. These are:

1. Identical-specialization relationship
2. Partial-specialization relationship
3. Extension-specialization relationship

4. Revision-specialization relationship



5. Non-specialization relationship

The details and the conditions that differ these relationships are out of the scope this the-
sis, so they will not be detailed here. The detailed formulations of the conditions for these

relationships can be found at [5].

The general architecture of the FRWS approach is given in Figure 2.2.

| application Developers | | End Lisers |
Develop Lse
9 ¥
| &0L ‘ | =] |
Y 1
Source Target Source Targst
¥ ¥
Service Grid

| Heuristic Rules |

| Service Relationships | | thodel Relationships |

______________ I I U

SErVice REpostory thModel Repository

S04aF

1
]
LL DDl Repositories

Figure 2.2: General Architecture of FRWS Approach

To retrieve the desired web services in FRWS approach, Hai Zhuge and Jie Liu defined an
SQL-like, XML based query language and named it as Grid Operation Language (GOL). The

general form of a GOL sentence is given in Figure 2.3.

Here, the Service-Repository element defines the registered web services. The registered



<GOL Statement>:: =Get [ALL | DISTINCT]<Target Service=>
FROM<=Service-Repository=

[WHERE<Condition-Expressions=)

[GROUP BY <Element>] [HAVING<Condition-Expressions=|

[SORT BY <Element=]|[ASC | DESC];
<Target Service=:: = Web Service | tModel
<Service-Repository>::= Local | Universal
<Condition-Expressions=>:: = <Condition-Expression>AND | OR <Condition-Expression=>
<Condition-Expression=>:: = #§; — name = <name-expressions> | WS —— WS, | WS| —5— W5, | WS —p— WS, | W5
—R» VS, | Sy — S, |sd (S, WS:) > B

Figure 2.3: General Form Of A GOL Sentence

web services can be either local registered services or universal registered services. The
Condition-expressions element is a Boolean expression. It is composed of the source name,
the multi-valued specialization relationships and the similarity degree between the source and

the target.

2.1.3 Quality of Service Query Language (QQL)

In [6] Delnavaz Mobedpour, Chen Ding and Chi-Hung Chi propose a web service query lan-
guage that takes quality of service parameters in consideration. The proposed QoS Query
Language (QQL) enables its users to specify the quality of service parameters both numeri-

cally and linguistically.

According to the QQL definition a QoS query is represented as a six-tuple: gID, ulD, sbTime,

timeConstraints, gqosConstraints, dataSource. If we look over these fields in detail:

e ¢ID refers to the query identifier.

o ulD refers to requestor identifier.

o timeConstraints contains different constraints based on the time. These are invocation
start date, end date, duration of each usage, and frequency of usage. Invocation start
date field shows the date when the service is invoked firstly and invocation end date
field represents the date when the service invoked lastly. Duration of usage field refers
to the amount of time how long the service is used in each invocation. Finally, the
frequency of usage field is defined to show how often the service is invoked during the

period from invocation start date to invocation end date.

10



o dataSource refers to the data source from where the selection will be done.

e gosConstraints contains the constraints about the quality of service choices of the re-
questor. By default, it is defined with eight properties: name, type, unit, tendency,
preference, relaxation order, weight and values. Name attribute shows the name of
the quality of service parameter. Type refers to the data type of the parameter where
Unit show the measurement unit of the quality of service parameter. Tendency refers
to the user’s choice on the parameter. If the Tendency is positive then this means the
requestor prefers a higher value and if it is negative then this means the user prefers a
lower value. Preference attribute shows the user’s choice about the order of the quality
of service parameters. If the requestor specified N quality of service parameters, then
this means there N different Preference value where [ refers to the most preferred one.
Relaxation order refers to the relaxation order choice of the requestor. Its values are
complement of the Preference values. Basically, if a parameter is preferred mostly then
this means it should be relaxed lastly. The Weight attribute represents the preference

order. It is not specified by the requestor explicitly, instead it is calculated by normal-

<?xml wversion="1.0" encoding="untf-8"7>
<QoS{mery:>
<gID>1</qlD>
<ulD>10</ull>
<sbTime>01/10/2010 16:40:40 ET</sbTime>
<timeConstraints>
<startDate>02/17/2010</startDate>
<endDate>07/17/2010</endDate>
<frequency0flUsage:>
<value>»3</value>
<unitrweek</unit>
</ frequencyCfUsage>
<durationCiUsage>
<value»2</value>
<unit>hours</unit>
</durationOfUsage>
</timeConstraints>
<QoSConstraints>
<QoSConstraint>
<name>price</name>
<typernumeric</type>
<unit>US dollar</unit>
<tendencyrnegative</tendency>
<preference»2</preference>
<relaxationOrder>0</relaxationCrder>
<weight>0.3</weight>
<walues type="range">
<from>100</from>
<to>150</tox>
</values>
</Qo5Constraint>
</QoSConstraintss>
<dataSourcerprovider</ dataSource >
</QoSQuery>

Figure 2.4: Sample QQL Query

11



izing the Preference value into [0,1] range. Finally, the Values attribute represents the

user’s requirement on the attribute’s value.

A sample QQL query sentence is given in Figure 2.4.

By enabling its users to specify the quality of service criteria both numerically and linguis-
tically, the QQL language differs from the similar works in the literature with this feature.
However, QQL has some drawback too. As the UDDI Query API and GOL, QQL supports

only syntactic queries, it does not offer needed structures for semantic searches.

2.1.4 Unified Service Query Language (USQL)

Aphrodite Tsalgatidou and Michael Pantazoglou defined the Unified Service Query Language
(USQL) with the proposed work in [1,2,3]. USQL is the base language that we use and extend

in this thesis.

pP— —— -

ServiceClassification ServiceBroker ot AccessProperty

scheme : String n St - > name : String

name : String ype - =tring value - String

0.1 accessProperties
\""H.._\_H_ 1.
classification
e et
\h.\"“--\_ 0.
p— - = -
ServiceProvider . -, Service 0.t QoSProperty ot Qualifier
name : String = type - Sting . ~>Iname : String - = name : String
. . 1 S ; R .
description [0..1] : String Qog |¥alue - anySimpleType qualifiers | Value : anySimpleType
capahilines\ n 1%
InvocationProperty 1. Capability Resource
. R
name : String 4| description [0..1] : String 0.. 0.1 description [0..1] : String
value : String . - . ontReference [0..1] : anyURI ontReference [0..1] : anyURI
invocationDetails
exposes X
resourceProperties | 1.*
K

Interface ResourceProperty

description [0..1] : String
ontReference [0..1] : anyURI

input 0.1 0.4 output
A 3

Message

description [0..1] : String
ontReference [0..1] : anyURI

]

elements | 0.*

K
MessageElement . DataType
description [0..1] : String namespace : String

ontReference [0..1] : anyURI name : String

Figure 2.5: Conceptual Model Of USQL

USQL is an XML-based query language that allows its users to query heterogenous services

12



(web services, grid services, peer-to-peer services) syntactically and semantically. The lan-
guage offers query and response structures independent from the service type and the techni-
cal details of the service registry where the services are registered. In addition to this, USQL

language definition supports specifying the quality of service criteria.

Due to its support in querying heterogenous service types it allows to specify the service
provider information. It also allows to define the domain information in order to make se-
mantic matching. In addition to this, USQL enables its users to define input and output search

criteria for the operations for the desired services.

The specification of the USQL is based on the conceptual model given in Figure 2.5. Ac-
cording to the conceptual model, a service provider provides one or more services, which are
published on one or more registries. The registries are called as brokers in their conceptual
model. A service belongs to a classification and offers one or more capabilities. The capa-
bilities expose an interface defining the input messages they take and output messages they
return. Basically, the capability elements are used to define the functional properties of the

services.

Besides the functional properties, a service can have the non-functional properties as quality
of service parameters. Each quality of service parameter of a service has a name, that informs

of its semantics, and a value.

The specification of the USQL is given in [3]. However, the language is defined with general
usage purposes and it does not have a corresponding query interface or query parser engine.
In this thesis, we have defined a sub-set of USQL and implemented a query parser engine
for the Domain Specific Web Service Discovery with Semantics (DSWSD-S) System. The
elements and structures defined within the USQL specification are explained and compared

to the ones defined in our query language, S-USQL, in Chapter 5 in detail.

2.2 Graphical User Interfaces For Web Service Querying

2.2.1 Graphical User Interface In FRWS Approach

In [5], a graphical user interface for FRWS approach to retrieve the desired web services

is proposed. The needed source and target information, and the multi-valued specialization

13



relationship is retrieved from the user via this graphical user interface. A corresponding GOL
statement is formulated with these information. The interface for Service Grid is given in

Figure 2.6.

Service Operations

A point in
Service Space

Got eparation:
Plescs choose snd then click the serwice geid ths! yoo wa

By MAMICH 1997
5y MewCategory
m ST 1987

B VA Web Benice Search Catega| |

[ealendar]iChart ing|[Collaborat

maunication|Data

Dialup Encryption|Faile]Financzal]Graphics]
| i3]
] L]

J

User Requixcmcnt GET * Wsb Service C tModsl  FRONM  ©local O Universal
5 |4 WHERE Source Hame: [EN Dook Price Find Source
Description AND Target iz @ Identical-specialization(-I-3)of Sourcs
P IC et oy v pic b 1 i A =D Help users to
" Partial-specialization(-P-})of
£ Boviston-specializatio (-R-5) of find source
T more Generalfd) then
T nors Spacialis) than 1 rma’ 1
ARD  Similarity(Source,Target) @3 ¢ =0 info tion
EPni it s ettt I

Figure 2.6: Graphical User Interface Of Service Grid

The web service query steps via this interface are as follows:

1. The user specifies the source type if it will be the web service or the tModel.

2. The user selects the registered service type, whether they are registered locally or uni-

versally.

3. The user specifies the source name. The interface also helps him/her to find the source

name by clicking the “Find Source” link.

4. The user chooses the desired multi-valued specialization relationship between the source

and the target.
5. The user specifies the desired similarity degree between the source and the target.

6. The user starts the execution via clicking on the “Search” button.

14



When the user clicks on the “Search” button, the inputs he/she entered are gathered to for-
mulate a GOL statement. The Service Grid searches and retrieves the desired web services or

tModels from the selected registry and lists to the user in the interface given in Figure 2.7.

TR Enowlcdge Grid Site - Microsaft Internct Explarer

THE WD WE HES  TAD e [ o |

SRR o @[ G BE s e O o R e e
kb [ e ifr e, 222 =] owH |ﬂ. ]
» Homa (eI (NPIR (BreisE) (BEleten (Updste) (Evesien (IGReRN (SN Admin
Please choose and then clicd the service grid Chat pou want to Get |
You will Get | | |
wse I - e
BR, MACE 1007 | [.“_ | |
BR Hewcslegon | = | i
R sioear i __l
TR V5 Web Senico Boarch O oo, | | |
[Calendar ‘..'.:-_r'._'.:E Lollehoration '.L-n:'ur_:r-u:n."ff_ atn !i.' ..‘_l_"._fi.'r'..'L'-.. ‘1;-|||."1 | Financialjfraphics t
] 3
= (BN Book Fi ) -Identical> 1 L AND il Ly O 0 =
. Source( ook Frice) -ldentical> Target AND Similarity Degese
Retrieval Result
Catefjorytag
\\SeiviceKey ServiceName [Doscripion Businesskey ((BindingKeyBindinaD esp.AccossPointModolKey) ([ 40"
10 d e K ay)
I (GBI 17k B 300 s 1 2D BB 0RIGET , MRl N (e
[ TmEn e : ’
[tbdacat  |aCamens ook [aCampus Boek (S0 19RE1E0E jolies Dunely i
e reausans || hEeime PRI La0naefIesE  |UUIGSTONI0EES ST 0B IATA00 OMET 10
i
(70 s ARG % SN T1393 3 i AT E2iA Mook e
Do T P b
B | oo s Hinimen 3o (recese zese: |0 CU —t
ada- Price Sere: e
chadazisied e Beree Lamnsuosm [ L 7 b
£
(4 0 5 217 D585 - a A D470k N Dok Price. Hidn
[ease 0Zace 130400, =
med 14555 gy Boak Price DK Book Piics a4d5-0883 e At e g |
WMM o et _sesvice. asprstr=InformatlorFets| - ] l_ﬁ‘hwnlt

Figure 2.7: Graphical User Interface Of Retrieval Result

The FRWS approach, queries the desired web services and the tModels, whose criteria are
specified as GOL statements, over the UDDI search API. As in the UDDI repositories, this
approach supports only the syntactic queries. It also does not consider the quality of service
parameters which play very important role in order to differentiate the resulting services with
the same functionality. In addition to this, the proposed graphical user interface forces users
to specify a source web service or tModel to trigger a query process. The user must specify
a source and the relationship of it with the desired target. However, this is a challenging task

for a user and makes the proposed graphical user interface a hard-to-use one.

2.2.2 Graphical User Interface For QQL

In [6], Delnavaz Mobedpour, Chen Ding and Chi-Hung Chi propose a graphical user inter-
face to enable the users to formulate QQL queries easily. They aimed to avoid putting too

much burden on the user to define the query sentences. Therefore, they prpose the graphical

15



user interface gicen in Figures 2.8, 2.9, 2.10 and 2.11 to guide the user in query sentence

production.

Step 1- selecting QoS attributes

— ~] [Add]

Avataniy price 00

Response Time reponse time @ €@

Price

Reliabity relizbility 00
thentication

Stabley authentication @ @

[ Reset Next

Figure 2.8: First Step Of QQL Query Formulation

VB
0 Ranga valus
[ 100

<[] price |<[=] 160

- o

Fuzzy vaue

[ [=] responseTime | <-[=] 5

unie | masecona ]

© Fusty vlue

0 Fuzzy value

best avabable ® good ) medum ) poor

|z
©

Figure 2.9: Second Step Of QQL Query Formulation

- Pref and Relaxations.

Priority
Flrrice |2
ZlResponse Time |1
“lreliability

Authentication |

{[¥ order of Relayation

Priority
[Cprice |
[Response Time |
(¥ reliability |1

[4l Authentication |2

[ Resat [(Pravious ] [Nexi]

Figure 2.10: Third Step Of QQL Query Formulation

By using the interface given in Figure 2.8, the user specifies the quality of service parameters
that he/she intended the desired web services should satisfy. For every quality of service
parameter the user chooses, a QoSContstraint element is created in the query. By using the
interface given in Figure 2.9, the user defines the data types and the values for the quality of

service parameters he/she selected in Figure 2.8. After defining their types and values, he/she

16



defines the preference by using the interface given in Figure 2.10.

After specifiying all these values, the user defines the time constraints via the interface given

in Figure 2.11.

Step4 - defining time constraints
Vg O

[¥start Date 02/17/2010 ¥lEnd pate 07/17/2010

[#Ipuration of usage (2 []  [hous[¥] per invocation

[@rrequency of usage [3 [7] times per |week [<]

[ Reset [ Previous ] [Submit]

Figure 2.11: Fourth Step Of QQL Query Formulation

The proposed user interface is designed as a user-friendly and easy-to-use interface. It guides
its users in query formulation so the user does not have to deal with the technical details of
the QQL. Basically, the graphical user interface has a user-centric design and differs from the

similar works done in the literature with this feature.

17



CHAPTER 3

OVERVIEW OF DOMAIN SPECIFIC WEB SERVICE
DISCOVERY WITH SEMANTICS SYSTEM

The graphical user interface and query language, which are presented in this thesis, are de-
veloped as a part of the Domain Specific Web Service Discovery with Semantics (DSWSD-
S) System [7,8]. In this chapter, DSWSD-S System and its architectural layers will be de-
scribed. In Section 3.1 overall design of the DSWSD-S System is given. Section 3.2 explains
the domain-specific crawler layer and Section 3.3 is about domain-specific service discovery

layer.

3.1 Overall Design of DSWSD-S System

DSWSD-S System is a web service discovery system that consists of domain-specific subsys-
tems. By saying domain-specific subsystems, we mean that the subsystems are specialized
for an ontology definition. Each domain-specific subsystem crawls over the web, discovers
the web services related to its own ontology and keeps these discovered web services in its

local database.The system aims to provide the capabilities listed below:

Controlling the life-cycle of the web services to keep them up-to-date

Making the search process on different registries easier by encapsulating them on a

common search interface

Being scalable to keep up with the increasing number of web services and domains

Providing automated quality of service calculation

18



e Providing both syntactic and semantic web service discovery queries

The DSWSD-S System is composed of two layers: the domain-specific crawler layer and the
domain-specific service discovery layer. These layers will be detailed in Sections 3.2 and 3.3.

The overall architecture of the system is given in Figure 3.1.

(e e e« e e S e |
1 Specialized Web Service Discovery System

Search Clients Domain Specific Discovery Layer

I
I
|
I
! 1
! 1
R e | oo |
| Ontology |
I Domain Specific Crawler Layer 1
]
- :
! 1
|

Unregistered
Web Services

Figure 3.1: DSWSD-S System Architecture

3.2 Domain-Specific Crawler Layer

The main responsibility of a domain-specific crawler layer is to construct the local database,
whose arcihtecture is given in Figure 3.2, of the domain-specific subsystem. Local database
generation process starts with the acquisition of the web service addresses from the web ser-
vices’ WSDL files. After that, the content of the web service is downloaded and controlled if
it is related to the subsystem’s own ontology. If so, the crawler validates the web service by
calling its operations with appropriate parameters to see whether the web service is alive or
not. Next, the validated web service is sent to the extraction module. The extraction module
deals with the semantic annotion process. With semantic annotation, it is determined whether
the web service fulfills the capability it advertised or not. After the verification phase, veri-
fied web services are added to the crawler’s local database. The execution of domain-specific

crawler layer is given in Figure 3.3.
In order to keep the web services up-to-date, aforementioned crawling process continues in a

19



Ontology URLs
PK |ID PK |ID
OrtologyName ServiceURL
A ' 3
QOsInformations
CnitologyDescription Service Descriptions
PK |ID PK | ID FK1 Servicel')es;luintionlD
i ResponsaTime
FK1 |ontologyD FK1 | URLID = Throughput
Parent SaniceDescription Reliability
OntclogyTerm SernviceName :I?;gab'my
Relation
4 A DataTime
A
QOSResults
FK1 | SenviceDescriptioniD
MatchingDagrees QOSResult
PK |ID ServiceResponses
OntologyTerm P |10
Paramatertame _ .
MatchingDegree FK1 | ServiceDescriptionID
FK1 |ServiceDescription|D Response

Figure 3.2: DSWSD-S Database Architecture

Figure 3.3: Domain-Specific Crawler Layer Architecture

cycle. The crawlers update their local databases by adding the newly published web services,
updating the ones’ status kept in the database and removing the web services that lost their

aliveness.

The quality of service calculation also takes place in this layer. An automated quality of ser-
vice calculation module traverses the local database in order to produce the quality scores of
the web services kept. There are five different quality of service criteria handled in DSWSD-
S System: availability, reliability, response time, throughput and price. To produce the total
quality score from these parameters, the quality calculation module uses an algorithm that

gives weights to all of these quality aspects. It also considers the age factor. The explanation

20



of the algorithm is out of the scope of this thesis, therefore we will not mention about its

details.

3.3 Domain-Specific Service Discovery Layer

The domain-specific service discovery layer enables the users to query the DSWSD-S System
by providing a graphical user interface. This graphical user interface designed in a form that it
allows the user to specify the keyword(s) he/she looks for, the domain information that he/she
is interested in and the service quality criteria that the desired services should have. The
keyword(s) and the other information gathered from the user are transformed into an S-USQL
query sentence. Then this query sentence is passed to a parser module that can interpret the
requirements in the query. The parser decides the crawler that will be searched according the
parameters specified in the query sentence. After reading the web services fulfilling the user’s
requirements from the corresponding crawler’s database, it sends the results to the graphical

user interface to be shown to the user.

This layer has a central structure. Basically, while there are more than one crawler layers,
there is only one discovery layer. The domain-specific service discovery layer knows all the
necessary information to access all the existing crawlers in the system. This layer and the
modules contained in it are the scope of this thesis. And they are explained in detail in the

following Chapters 4 and 5.

21



CHAPTER 4

GRAPHICAL USER INTERFACE IN DSWSD-S SYSTEM

4.1 Introduction

The graphical user interface is the only interaction point with the user in DSWSD-S System.
The user can find the web services that match both syntactically and semantically with the
keywords he/she entered via the graphical user interface. The user is also enabled to specify

the Quality of Service (QoS) criteria that the searched services are intended to obey.

In this thesis, we developed a user-friendly query interface, to enable the users to reach the
web services easily. It encapsulates the technical details of the query execution process from

the user while directing him/her to enter the needed information for a web service search.

As mentioned in Section 3 there are several crawler nodes in DSWSD-S System. All of these
crawler nodes run on dedicated computers. Each of the nodes has its own local database that
keeps the validated and verified web services that match the crawler’s own domain (ontology).
However in DSWSD-S System there is only one graphical user interface node. It communi-
cates with whole crawler group. The interaction between the graphical user interface node

and crawler nodes is given in Figure 4.1.

In the system’s initialization process, the graphical user interface knows only one crawler
access information. It gets this information from a configuration file. After that it commu-
nicates with this crawler node and retrieves all other crawler’s access information too. Then
it retrieves the domain information from all these nodes and shows to the user so that the
user can query the domain that he/she is interested in. The graphical user interface node also
periodically reads the crawlers’ access information to keep the query interface up-to-date.

With this periodical polling mechanism, addition or deletion of a domain-specific crawler is

22



wwwwww

ol
devices wdsvices dsvioss
Device 2 Devics 3 Device 4

Crawier Hode 1 = rawier Hode 3

Figure 4.1: Interaction Between GUI Node and Crawler Nodes

reflected to the query interface immediately.

File v Help

[Domain Specific web Service Discoverer

— [#  Service Name Service URL Relevance |Service Description

sdvonced serch

Ontoiogy

6

Figure 4.2: Main Page of DSWSD-S GUI

When the user enters the DSWSD-S System, he/she is presented with the screen given in

Figure 4.2. The left panel is designed to retrieve the parameters and criteria from user, which

will be used in query production. The right one is the panel where the user can monitor the

search results. These panels will be explained in detail in the following sections.

4.2 Search Criteria Definition Panel

The left panel in the graphical user interface is the search criteria and parameters definition

panel. If we examine this panel in detail, as shown in Figure 4.3, there is a text box widget at

the upper part of the panel in order to allow the user to enter the keywords he/she searches for

23



in a web service’s name.

ge zywords

Advanced Search

Ontology carl

Max. Number of Results: | §

| Search | | Grear |

Figure 4.3: Keyword Specification Widget

Just below this keyword box, there is a choice widget to enable the user to specify the opera-
tion used in matching process as shown in Figure 4.4. By using this widget user can specify
if he/she wants his/her keyword should be matched syntactically or semantically or in both
way. If the user does not choose any choice from this widget, the keyword will be matched

both syntactically and semantically.

Just below this keyword box, there is an “Advanced Search” link. Whenever the user clicks
this link, a hidden panel, quality of service parameters panel, is opened. In Figure 4.5, this

QoS panel is shown.

By using this panel, the user can choose whether to use the default QoS parameter values or
to specify his/her custom values. There are five different quality of service criteria handled in

DSWSD-S System: availability, reliability, response time, throughput and price.

Availability of a web service represents the accessibility of it. Basically, it refers to whether
a web service is ready for use or not at the invocation time. In case of a call, if it returns any

response this means that the web service is available. If does not return any response or raises

24



Keywords : |

Ontology :

Max. Number of Results: | ¢

Figure 4.4: Matching Operator Choice Widget

Figure 4.5: QoS Parameters Panel

any exception then it means that the invoked service is unavailable.

Reliability is the quality of service parameter of a web service that represents the stability of
the web service. If it returns the same result when invoked with the same parameter at different

time periods then it means the web service is reliable. If it responses with different results

25



every time for the same parameter than it means the web service is not reliable. Reliability of

a service can be thought as the consistency of its quality.

Response Time of a web service represents the desired processing time of the operations that
the web service offers. Meanly, it is the amount of the delay between times the service is

invoked and it returns response.

Throughput of a web service represents the total number of calls that the web service can

handle concurrently.

Finally the price of a web service refers to the desired cost that should be paid for calling it.
Actually, the price is not a real quality of service parameter, but it is also used to filter the web
services found. Therefore its value is retrieved from the user by using the same panel with the

quality of service parameters mentioned above.

Except from the price parameter, all other parameters are defined in the range [0-100]. There-
fore, the user is allowed to give the parameter values in these ranges by using scale type
widgets in graphical user interface. The parameter values are used as weights of them in
quality of service score calculation algorithm. As mentioned before, the user is enabled to
use whether default weights for these parameters or to define his/her own weights. If the user
chooses to use the default weights, then all of the parameters’ weights are considered to be
equal as having the value 50. In cases where the user did not click on “Advanced Search”
link, means does not intend to specify quality of service parameters, the weights are set to

their default values again.

Just below the quality of service parameters definition panel, which becomes visible by press-
ing “Advanced Search” link, the domains (ontologies) associated with the crawler nodes in

the system are pointed out as tabs as shown in Figure 4.6.

Neither the keyword specification nor the ontology choice is mandatory. If the user specifies
both the keyword and the domain information, then the matching degree between the keyword
and the domain ontology is calculated. The web services that belong to the selected domain
and that satisfy the calculated matching degree are retrieved from the database and presented
to the user. If he/she does not specify the keyword but chooses the domain ontology, then all
of the web services kept in local database of the crawler node are retrieved and presented to

the user. The third option is that he/she enters the keyword but does not specify the domain

26



Ontology :

Figure 4.6: Domain Ontologies Tabs

ontology to search for. In this case, the keyword is matched to all existing crawler nodes’
domain ontologies, and the crawler node whose domain ontology has the highest matching
degree is selected for searching. Actually there is one more option as neither keyword nor

domain ontology selection is done. As can be guessed, in this case no search is done.

The user can limit the maximum number of best matching results to be shown by using the
widget at the lower part of the left panel given in Figure 4.7. However if he/she limits the
maximum number of results as 0, then the system interprets this as “bring all the services

found”.

At the bottom of the left panel, buttons for the actions that the user can trigger are located as
shown in Figure 4.8. When the user clicks on the “Search” button at the bottom part of the
left panel, the query execution is triggered with all the parameters he/she entered. And if the

user clicks on the “Clear” button, all the parameters and criteria he/she entered is cleared.

4.3 Result Monitoring Panel

The results that are found after a query exeution are shown to the user at the right panel of
the graphical user interface. Table-type widget is thought to be more appropriate and chosen
to present the resulting web services. The web service name, web service URL, the web

service description information and the mathing degree of the keyword and the found web

27



Keywards :

Advanced Search

Qnrology : arl

@ax. Number of Results © | 0 - ]

Figure 4.7: Maximum Number of Results Limitation Widget

Keywords :

Advanced Search

Ontology carl

Max. Number of Results: | @

Figure 4.8: User Action Widgets

28



service (relevance of the keyword with the web service) are presented to the user in the related

columns of the table as shown in Figure 4.9.

Relevance

# Service Name Service URL

1 showSearchFormbData LEES
2 GarTyrelheelsize irdsav) izeServic | 0835
2 GetWheelWheelSize o
2 e
H GenyvorersRoll LES
] geti¥heelsByPlussize tpfrwg corpronenwri com/rools asmi 0335
7 getiheelSearchSiring i LEE
H showltheelPods [
s ¢ KitFinder/TH e
Y < KitFinder, T Kitservi sss
n C KitFinger, TK_Kitservi sss
2 getiWheel_rimWidth ag
2 getithee! o
14 ¢ KitFinder/TK | e
15 showsearchForm e
15 getvenicieszarenData sss
7 getheelsByVehicle tp/rwg.carpronetwark.com/ ools asmx LEE
] getiheslsByBrandName g frwg.carpronetwark.com/ ools asmx ag
13 CastyoteByRolliD i e
) GemmeaiMageiList et fmhee(spees.com WhaelModisls asmx. asss
a3 Insert Recard ttpigis hepidlerg/UT. Connection/Servies asmx 0835
2 ShowlvhesiSearchinfa webservic m LEES
2z getiheelSearchSiring LEE
il S —— o — —

Service Description
System.Object showSearchFormDatajString searchy &
- [

G

Wheel[] getiheeisyVehicieAndTire(String Usernar
System XmiXmiNode GeyvatersAoli{String User!
Wheel]] getnesisByPlusSize(String Username. St
System.Sring gedWheeiSearchString(String BrandN|
System.Otiect show\WheelPods(User thisUser, Deale
=

CascadingDropDownNameValue[] GetFrontwhesisi

e

‘ebayDrapdown]] getiheel rimWidth{Swing rimDiai

BelleWnee! getWheel(Int32 dealeriD, Int32 geckiin:

e
System Otyjeer showsearchForm|Deaer thisDeater, |
System.Otjeer gervizhicteSearchDarafString searehTy
Wheel]] getWnesisByVehicie(String Username, Strir
Wheell] getesisByBrandName(Swing Username,
Int32 CastVateByRolliD{String UserName, Siring Pa
System String[] GerwheelModellist(string prefixTer.
System String Insert Record(String id String input o
System String ShowlheelSearchinfo(User thistiser.

System.Sring getWheelSearchSuing(Suing BrandN,

If no result web service can be found after a query execution, then the user is informed about

Figure 4.9: Results Table

the situation via a warning text as given in Figure 4.10.

Keywards :

Ontology -

| wherl

|.¢hmacﬂ' on A

Advanced Search

[~ eperation

utomobile
passenger
- way

Max. Number of Results: | 0 =

{ o resutrs foundt )

Figure 4.10: No Result Warning

29



CHAPTER 5

QUERY LANGUAGE IN DSWSD-S SYSTEM

5. Why Simplified-USQL?

In the literature there are several web service query languages as mentioned in Chapter 2.
However, all of them have some certain drawbacks. Some of them do not support semantic
searches while some of them do not offer quality of service criteria specification. In order to
overcome these problems and satisfy the needs of the DSWSD-S System, we have developed
the Simplified-USQL (S-USQL) language.

The reasons why we have developed a USQL-based [1,2,3] new language is as follows:

e USQL is defined for general usage purposes and it does not have a corresponding lan-

guage parser engine.

e USQL aims to discover different types of services like web services, grid services and
peer-to-peer services, but in DSWSD-S System we are only interested in discovery of

web services.
e In DSWSD-S System, some of the informations which can be specified in a USQL
query is not provided. Therefore, we have defined a sub-set of the USQL language.
By defining S-USQL language, we also aimed:
o To make the graphical query interface, that is offered within the DSWSD-S System, re-
placable with another graphical user interface that complies with the defined language.

o To make the web service crawler engines interoperable with a standard query language.

30



e To make the DSWSD-S System scalable. The graphical user interface makes queries
and receives reponses with the defined language, therefore another system that complies

with the S-USQL can be easily integrated to DSWSD-S System.

5.2 Simplified-USQL (S-USQL)

Simplified-USQL, briefly S-USQL, is a subset of the USQL language, which is mentioned
in Section 2.1.4. Actually, it is a specialized subset to satisfy the needs of the DSWSD-S
System. Like its super-set USQL, S-USQL is an XML-based language definition. All of the

language elements are defined via an XSD file.

While creating the S-USQL language, some of the element definitions from USQL, which
are not taken into consideration in DSWSD-S System, are removed from the language spec-
ification. In addition to this, some new elements are also added, like new quality of service

parameters.

5.2.1 Language Structure

S-USQL is used for producing queries and responses in a web service discovery process. The
information specified by the requestor of the web services are transformed into related struc-
tures defined in S-USQL. This information, consists of the search criteria and the parameters
that the resulting web services should satisfy. S-USQL Request element is used for the formu-
lation of the queries and the S-USQL Response element is used for representing the resulting

web services. The structures of these elements are explained in the following sections.

5.2.1.1 S-USQL Request

The specification of USQL Request message abstract model is given as Figure 5.1.

As seen in the Figure 5.1, the USQL Request message comprises two parts: projection and
criteria parts. Projection part enables the requestor to specify the information that he/she
wants to see in the resulting services. The criteria part enables him/her to specify the search

criteria and parameters that will be applied in a query process.

31



Projection US@LRequest Criteria

0.1

VAN LN\

ViewAdditionalProperties OrderBy From Wihere

Figure 5.1: USQL Request Structure

In S-USQL, criteria part is taken into language definition while the projection part is removed.
Due to the static representation in DSWSD-S System, the user can not tell the system which
fields he/she wants to display in resulting web services. The fields to be shown to the user
from the result web services are pre-defined. So the abstract model of the S-USQL Request

element is structured as in Figure 5.2.

5U5Ql Request Criteria

Where

Figure 5.2: S-USQL Request Structure

5.2.1.2 S-USQL Response

The specification of USQL Response message abstract model is given as Figure 5.3.

As seen in the Figure 5.3, the USQL Response message comprises two parts: resulting ser-
vices or error parts. These two parts are alternative to each other. An USQL Response mes-
sage can contain only one of them at the same time. Resulting services part is the part con-
veying all the result services found in respective query process. The error part is the one that

is used when the query is not completed successfully.

32



USQLResponse

/m \

Service Services Error

Figure 5.3: USQL Response Structure

In S-USQL, both of these part definitions are covered. Therefore, the S-USQL Response is

structured as in Figure 5.4.

SUSQLResponse

Response Service. Response Services Error

Figure 5.4: S-USQL Response Structure

5.2.2 Language Elements

In this section, we will explain the S-USQL language elements and structures in detail. We
will also discuss how these elements are combined to produce query sentences and their corre-
sponding responses. When constructing a sub-set of the USQL language as S-USQL, some of
the element and attribute definitions that are not handled in DSWSD-S System are removed.
We will firstly explain these elements and attributes and give the reasons of the removal. After

that we will explain the retained and newly added elements.

5.2.2.1 Removed Elements and Structures

priorityLevel Attribute and ¢PriorityLevel Type priorityLevel attribute is used to indicate
the priority of an element in USQL. It is defined in the type ¢PriorityLevel. This type contains

two values as low and high. Due to the fact that we do not prioritize any search criteria in

33



DSWSD-S System, priorityLevel element and corresponding tPriorityLevel type definitions

are not contained in S-USQL definition.

ServiceProvider Element ServiceProvider element is used to allow the users to specify the
provider of the services he/she looks for in USQL. However, in DSWSD-S System crawler
nodes’ local databases, service provider information is not kept. Therefore, the user is not
enabled to specify such a search criteria in a web service query. Because of this reason

ServiceProvider element’s definition is removed from S-USQL language.

Security Element Security element is used to specify the desired security protocol for the
requested service in USQL. However, in DSWSD-S System security protocol information is
not taken into consideration while searching and extracting the web services. Therefore the

Security element’s definition is removed from S-USQL language.

tCurrency Type tCurrency type is used to specify the desired currency of the price of the
requested service in USQL. However, the currency information of the web services is not
kept in DSWSD-S System crawler nodes local databases. Therefore, tCurrency type is not
included in S-USQL definition.

tPriceContext Type tPriceContext type is used to indicate the amount of the time that the
price should be paid for the service in USQL. Actually, it is an enumeration that consists
of per call, per day, per week, per month and per year values. In DSWSD-S System we
do not take this context information into consideration and removed the type definition from

S-USQL language.

tProcessingTimeUnit Type tProcessingTimeUnit type is used to specify the unit of the de-
sired response time of the requested web service in USQL. However, in DSWSD-S System
we always use the milliseconds unit. In addition to this, instead of retrieving a concrete re-
sponse time value from the user, we retrieve a weight value for the response time parameter.
We use this weight in quality of service score calculation. Therefore, tProcessingTimeUnit

type definition is not included in S-USQL language.

34



ServiceTaxonomy Element and tTaxonomyScheme Type ServiceTlaxonomy element is used
to enable the users to specify the taxonomies for the requested services in USQL. tTaxono-
myScheme type keeps the taxonomies that can be speicified in USQL. The type definition is
an enumeration that consists of North American Industry Classification System 1997 Release,
North American Industry Classification System 2002 Release, United Nations Standard Prod-
ucts and Service Code System Version 7.3, United Nations Standard Products and Service
Code System Version 6.0501 and United Nations Standard Products and Service Code System
Version 3.1 values. In DSWSD-S System crawler nodes’ local databases, service taxonomy
information is not kept. Therefore, the user is not allowed to specify such a search criteria
in a web service query. Because of this reason ServiceTaxonomy element and corresponding

tTaxonomyScheme type definitions are not kept in S-USQL language.

tQoSOperator and tQoS Types (QoSOperator is used to specify the operator that will be
used for quality of service parameter values. It is defined as an enumeration also and consists
of equal, not equal, greater, less,equal or greater and equal or less values. However, in
DSWSD-S System quality of service calculation algorithm is designed to work with equal
operator. Therefore, retrieving the operator choice from the user is not meaningful in our
system. Due to this reason, tQoSOperator operator type definition is removed from S-USQL
definition. QoS type is used to define generic quality of service parameters. It contains
the attributes that have the tQoSOperator operator values mentioned. Due to the operator’s

removal, this parameter type definition is also removed from S-USQL language.

tOrderByOption and tOrderByDirection Types The user is allowed to specify the desired
ordering of the resulting services via using tOrderByOption and tOrderByDirection types in
USQL definition. Butin DSWSD-S System, we present the resulting services in a descending
order of their relevance with the keywords searched. Therefore, this ordering type definitions

are not contained in S-USQL language.

tServiceType Type The user is enabled to specify the desired service type by using zSer-
viceType type in USQL definition. The type is defined as an enumeration and consists of
WebService, GridService and P2PService values. DSWSD-S System is designed to find only

the web services, it does not support different service types. Therefore, we excluded this type

35



definition from S-USQL language.

tNetworkType Type tNetworkType type is designed to list the different peer-to-peer network
types in USQL definition. In current version of it, it only enumerates the JXTA network. As
mentioned in previous paragraph, different service types and their corresponding network
types are not considered in DSWSD-S System. Therefore, this type definition is removed
from S-USQL language.

tOperation Type In USQL, tOperation type is defined to indicate a response operation’s
type. It contains the name element and the degreeOfMatch attributes. In S-USQL, we have
removed this type and contained these fields directly in the ResponseOperation element that

will be explained in following paragraphs.

AdditionalOperationProperties Element Group AdditionalOperationProperties is an ele-
ment group to indicate a response operation’s additional properties. It composes of Price,
Availability, Realiability, ProcessingTime and Security elements. However, in DSWSD-S
System, we do not offer such an information to the user. Therefore, this element group defi-

nition is removed from S-USQL definition.

5.2.2.2 Retained Elements and Structures

tPercentage Type tPercentage is a generic simple type definition for defining percentages.
This type definition is included in S-USQL without any modification. The structure of the

type is given in Figure 5.5.

<xs5:5impleType name="tPercentage">
<xs:restriction base="xs:float">
<xz:minInclusive value="0" />
<x3:maxInclusive value="1" />
</xs:restriction>
</®s:simpleType>

Figure 5.5: tPercentage

36



Error Element Error element is used to declare the erronous situations in a query process.
In USQL definition, it contains code and desc attributes where the former represents the error
code and the latter one represents the error description. We use this element in S-USQL

without any modification. The Error element definition is given in Figure 5.6.

<xz:element name="Error">
<xs:complexTypes
<X3:sequencer
«<xs:element name="code" Type="Xs:string" />
<xs:element name="desc" type="xs:string" />
</x®s:sequence>
</xz:complexType>
</xs:element>

Figure 5.6: Error

5.2.2.3 Modified and Additional Elements and Structures

basicRequirementAttributes Attribute Group basicRequirementAttributes is an attribute
group that composes of the common attributes in elements used to define the search criteria.
In USQL definition, it contains the nullAccepted, minDegreeOfMatch and priorityLevel at-
tributes. Depending on the deletion of the priorityLevel attribute, it is modified in S-USQL

and constructed as given in Figure 5.7.

<xXs:attributeGroup name="basicRequirementAttributes":>
<xs:attribute name="nullAccepted" type="xs:boolean" use="optional" default="false" />
<xs:attribute name="minDegree0fMatch" type="tns:tPercentage" use="optional" default="1.0" />
</xs:attributeGroup>

Figure 5.7: basicRequirementAttributes

AdditionalServiceProperties Element Group AdditionalServiceProperties is an element
group that comprises the additional properties that can be contained in a response service.
In USQL definition, it comprises the removed ServiceProvider and Security elements in ad-
dition to ServiceDescription, Price, Availability and Reliability elements. Due to the removal
of ServiceProvider and Security elements and existence of an element named QoS that groups
Price, Availability and Reliability and some other quality of service elements, the Addition-

alServiceProperties element definition is modified as given in Figure 5.8.

37



<xs:group name="AdditionalServiceProperties">
<HS:sequencer
<xs:element ref="tns:ServiceDescription" minfccurs="0" />
<xs:element ref="tn=:Qo%" mindccurs="0" />
</®s:3equence>
</ X3 :group>

Figure 5.8: AdditionalServiceProperties

tSyntacticOperator and tSemanticOperator Types In USQL definition, there are two dif-
ferent operator type definitions for parameters: tSyntacticOperator and tSemanticOperator.
tSyntacticOperator is used to specify the operator type whenever the syntactic matching will
be used. It is an enumeration that consists of equal, contain, not equal and not contain val-
ues. tSemanticOperator is used to specify the operator type whenever the semantic matching
will be used. It is an enumeration that consists of exact, abstraction, extension and sibling
values. In S-USQL we have combined these two operator types in one type named tSyntac-
ticSemanticOperators. It is defined as an enumaration consisting of all of the values listed for
tSyntacticOperator and tSemanticOperator. After this combination, our tSyntacticSemantic-

Operators type is constructed as given in Figure 5.9.

<xs5:s5impleType name="tSyntacticSemanticOperators":>
<Xs:restriction base="xs:string">
<xs:enumeration value="eqmal"/>
<xs:enumeration value="contain"/>
<Xs:enumeration value="exact"/>
<Xs:enumeration value="abstraction"/>
<xs:enumeration value="extension"/>
<xs:enumeration value="sibling"/>
</xs:restriction>
</x=:sinpleType>

Figure 5.9: tSyntacticSemanticOperators

tSyntactic and tSemantic Types tSyntactic and tSemantic types are generic parameter types
defined in USQL and used to indicate whether a parameter will be matched syntactically or
semantically. In USQL, some elements as ServiceName or ServiceDescription is defined in
the type tSyntactic. However, in DSWSD-S System, we match these elements both syntac-
tically and semantically. Therefore, we have combined these two types in a one and named
it as tSyntacticSemantic. This is also the reason of the operator combination explanined in

previous paragraph. The type definition of tSyntacticSemantic is given in Figure 5.10.

38



<xs:complexType name="tSyntacticSemantic":>»
<xs:simpleContent
<xs:extension base="xs:string">
<x=:attributeGroup ref="tns:basicRequirementAttributes"/>
<Xs:attribute name="valuels" type="tns:tSyntacticSemanticOperators" use="optional" default="eqmal"/>
</xs:extension>
</xs:simpleContent>

</xs:complexType>

Figure 5.10: tSyntacticSemantic

tParameter Type tParameter type is used to define the parameter types of the operations. In
USQL definition, it comprises three attributes and an attribute group: name, type, semantics
attributes and basicRequirementAttributes attribute group. Here name and type attributes have
the modified type tSemantic and semantics has the modified type tSemantic. Therefore, name
and type attributes’ types are turned to tSyntacticSemantic and semantics attribute is removed.
After these modifications tParameter type definition turned out to the one given in Figure

5.11.

<xs:complexType name="tParameter":>
<XS:sequencer
<xs:element name="name" type="tns:tSyntacticSemantic" minlOccurs="0"/>
<xs:element name="type" type="tns:tSyntacticSemantic" minlccurs="0"/>
</x=:=zequence>
<xs:attributeGroup ref="tns:basicRequirementAttributes"/>
</x3:complexType>

Figure 5.11: tParameter

tWeight Type In DSWSD-S System, the quality of service calculation algorithm uses weights,
values in range [0-100], for the quality parameters. To specify the weights in S-USQL we de-
fine a tWeight type. All of the quality of service elements in S-USQL are defined in this type.
The type definition is given in Figure 5.12.

<«xz:simpleType name="tWeight">
<xs:restriction base="xs:int">
<xs:minInclusive value="0" />
<xs:maxInclusive value="100" />
</xs:restriction>
</xs:simpleType>

Figure 5.12: tWeight

39



ServiceName Element ServiceName element is used to specify the search criteria related
to the desired service name. In USQL definition, it is defined in the modified type tSyntactic.
So we define it in type tSyntacticSemantic and match it both syntactically and semantically.

After this modification, the element is defined as given in Figure 5.13.

<xs:element name="ServiceName" type="tns:tSyntacticSemantic" />

Figure 5.13: ServiceName

ServiceDescription Element ServiceDescription element is used to specify the search crite-
ria related to the desired service description. In USQL definition, it is defined in the modified
type tSyntactic. We changed its type to tSyntacticSemantic. After this modification, the ele-

ment is defined as given in Figure 5.14.

<xs:element name="ServiceDescription" type="tSyntacticSemantic" />

Figure 5.14: ServiceDescription

ServiceDomain Element ServiceDomain element is used to allow the users to specify the
domain of the requested services. In USQL definition, it is defined in the modified type
tSemantic. We changed its type to tSyntacticSemantic. After this modification, the element

definition turned out to the one given in Figure 5.15.

<xs:element name="ServiceDomain" type="tSyntacticSemantic" />

Figure 5.15: ServiceDomain

Price Element Price element is used to enable the users to specify the desired price of the
requested service. In USQL definition, it is defined as a complex type, but we prefer to define
it as a simple type element. According to the USQL definition of Price element, it comprises
removed tCurrency and tPriceContext typed attributes. But as we said before, we do not take
into consideration these information. Therefore, we narrowed its definition as given in Figure

5.16.

40



<xg:element name="Price" type="xs:float" />

Figure 5.16: Price

Availability Element Availability element is used to enable the users to specify the availabil-
ity status of the requested service. According to the USQL definition of Availability element,
it comprises an attribute typed rQoS. Instead of the QoS type we defined a new type namely
tWeight. Therefore, the Availability element definition is turned out to the one given in Figure

5.17.

<xz:element name="Availability" tvpe="tns:tWeight" />

Figure 5.17: Availability

Reliability Element Reliability element is used to allow the users to specify the reliability
status of the requested service. According to the USQL definition of Reliability element, it
comprises an attribute typed tQoS. Again we changed the type to tWeight. Therefore, the

element is defined as given in Figure 5.18.

<xs:element name="Reliability" type="tns:tWeight" />

Figure 5.18: Reliability

ProcessingTime Element ProcessingTime element is used to define the desired processing
time of a requested service. In USQL definition, it consists of two attributes. One of them is
typed QoS and other one is typed tProcessingTimeUnit. None of these type definitions are
included in S-USQL definition. So, ProcessingTime element is defined in type tWeight. After

the modifications, the element is defined as given in Figure 5.19.

<x3:element name="ProcessingTime" type="tns:tWeight" />

Figure 5.19: ProcessingTime

41



Throughput Element In DSWSD-S System, we handle five different quality of service pa-
rameters: availability, reliability, response time, price and throughput. The former four was
already defined in USQL. On the other hand, it does not have an element that corresponds
to throughput. Therefore, to meet our system’s needs we define the Throughput element in

S-USQL language as given in Figure 5.20.

<xs:element name="Throughput" type="tns:tWeight" />

Figure 5.20: Throughput

QoS Element QoS element is defined as a container for other quality of service elements
in USQL. It composes of the Price, Availability, Reliability, ProcessingTime and Security
elements. As mentioned before, security protocols are not handled in DSWSD-S System,
therefore we took out the Security element from the definition. In addition to this, we added a
new quality of service element to here Throughput and a new attribute indicating the quality
score of the service gosScore, which will be explained in the following sections. After these

changes, the QoS element definition is formed as given in Figure 5.21.

<xs:element name="QoS">
<xz:complexType>
<XS:sequencex
<xsielement ref="tns:Price" minOccurs="0" />
<xs:element ref="tns:Availability" minOccurs="0" />
<xs:element ref="tns:Reliability" minOccurs="0" />
<xs:element ref="tns:ProcessingTime" minOccurs="0" />
<xs:element ref="tns:Throughput" minCccurs="0" />
«<xXs:element name="gosScore" Type="xs:double"/>
<Xs:any namespace="##other” minOccurs="0" processContents="skip" maxCccurs="unbounded" />
</x3:sequence>
</x=:complexType>
</xs:element>

Figure 5.21: QoS

Operation Elements There are two different Operation element definitions in USQL, one
for requested services’ operations and one for response services’ operations. These two same-
named element is defined is separate XSD files. But we defined the S-USQL in a single XSD
file. Therefore, to avoid the conflicts between the names, we renamed these Operation ele-
ments as RequestOperation and ResponseOperation. The request Operation element in USQL

is designed to enable the users to specify the search criteria based on the operations that the

42



requested services offer. It contains the Name, Capability, Inputs, Outputs elements and min-
DegreeOfMatch, priorityLevel attributes according to the USQL definition. Name is defined
in the modified type tSynfactic, so we use tSyntacticSemantic type instead. And Capability
is defined in modified type tSemantic, it also changed to tSyntacticSemantic. Inputs and Out-
puts elements are contained in S-USQL without any modification. Finally, the priorityLevel
attribute is taken out as it has been removed from S-USQL language. After all these, our

RequestOperation element is formed as given in Figure 5.22.

<xs:element name="RecmestOperation">
<xs:complexType>
<X3:sequence>
<xs:any namespace="##other" processContents="skip" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="Name" type="tSyntacticSemantic" minOccurs="0" />

<x3:element name="Capability" type="tSyntacticSemantic" minOccurs="0" />
<xs:element name="Inputs" minlccurs="0":>
<xs:conplexTypes
<XS:sequence
<xs:element name="input" type="tns:tParameter"” minCccurs="0" maxCccurs="unbounded" />
</Xxs:sequence>
<xs:attributeGroup ref="tns:basicRequirementAttributes" />
</xz:complexType>
</xs:element>
<xs:element name="0Ountputsz" minOccurs="0">
<xs:complexTyper
<XS:sequencex
<xs:element name="ocutput" type="tns:tParameter" minOccurs="0" maxCccurs="unbounded" />
</x®s:sequence>
<%=:attributeGroup ref="tns:basicRequirementAttributes" />
</xz:complexType>
</xs:element>
<xs:element ref="tns:Qo5" minOccurs="0" />
</XsS:seguence>
<®s:attribute name="minDegree0fMatch" type="tns:tPercentages"
use="optional" default="1.0" />
</xz:complexType>

</xs:element>

Figure 5.22: RequestOperation

The response Operation element in USQL is designed to show the operations that complies
with the user’s search criteria. It contains the removed element group AdditionalOpera-
tionProperties. To indicate the name of the operation an attribute name with type xs:string
is added and to indicate the degree of the match another attribute named degreeOfMatch is
added. After these modifications, the structure of our ResponseOperation element is turned

out to the one given in Figure 5.23.

Service Elements Like the aforementioned Operation elements, there are two different Ser-
vice element definitions in USQL, one for requested services and one for resulting services.
Again we needed a refactor in these elements’ names, and changed them as RequestService

and ResponseService. The request Service element is designed as a container for the search

43



<xs:element name="ResponseOperation">
<®s:complexTyper
<xz:attribute name="name" type="xs:string"/>
<x3:attribute name="degreeOfMatch" type="tns:tPercentage" use="required" />
</xs:complexType>
</®s:element>

Figure 5.23: ResponseOperation

criteria elements. In USQL definition, it contains the ServiceName, ServiceDescription, Servi-
ceProvider, ServiceTaxonomy, ServiceDomain, QoS, Operation elements and minDegreeOf-
Match attribute. However, we excluded the ServiceProvider and ServiceTaxonomy elements
while constructing the S-USQL. Therefore, the our RequestService is defined as given in Fig-

ure 5.24.

<xs:element name="RegmnestService">
<x3:complexType>
<HS:Sequencer
<xs:any namespace="##other" processContents="skip" minlccurs="0"
maxOccurs="unbounded" />
<xz:element ref="tns:ServiceName" minOccurs="0D" />

Cccurs="0" />
ngn g

<xs:element ref="tns:ServiceDescription”
<xs:element ref="tns:ServiceDomain" minlccur
a" f>

<xs:element ref="tns:RegqumestOperation" minfccurs="0"

m

<xs:element ref="tns:QoS" minCccurs

maxOccurs="unbounded" />
</x=:=zequence>
<xz:attribute name="minDegree0fMatch" type="tns:tPercentage" use="optional" default="1" />
</xs:complexType>
</®s:element>

Figure 5.24: RequestService

<®xs:element name="ResponseService">
<xs:complexTyper
<HS!sequence>
<%=:any namespace="##other" processContents="skip" minlccurs="0" maxOccurs="unbounded" />
<xs:element ref="tns:ServiceName" />
<x=2:element name="descriptionDocUrl" type="xs:anyURI"/>
<®s:group ref="tns:AdditionalServiceProperties" />
<xs:element name="interface" minOccurs="0" maxOccurs="unbounded">
<xs:complexTyper
<XS8:sequence>
<%s:element ref="tns:Responselperation”" maxOccurs="unbounded" />
</XE8:sequence>
<xs:attribute name="name" Type="Xs:string" use="required" />
</xs:conplexType>
«/xs:element>
</x=:=zequence>
<%3:attribute name="degreeOfMatch" type="tns:tPercentage" use="required" />
</zxs:complexType>
</®s:element>

Figure 5.25: ResponseService

And the response Service element is used to indicate the services found after a query process.

In USQL definition, it composes of name, descriptionDocUrl, resourcelnstance, Addition-

44



alServiceProperties, interface elements and ServiceAttributes, type, networkType attributes.
Here interface element is a list of the Operation elements. In DSWSD-S System, we do
not keep the resource information related to services. And the networkType element is not
meaningful in our system, because we do not interested in the service types (like grid or
peer-to-peer) other than web services. After the modifications, our ResponseService element

definition is done as given in Figure 5.25.

Services Element In USQL definition Services element is a container element that keeps
the list of response type Service elements. In S-USQL, we renamed this element as Re-
sponseServices to make its name compatible with the ResponseService elements it keeps.

ResponseServices element definition is given in Figure 5.26.

<x3:element name="ResponseServices">»
<xs:complexType>
<HS!sequencer
<xs:element ref="tns:ResponseService" minlccurs="0" maxCccurs="unbounded" />
</x=:sequence>
</xs:complexType>
</Rs:element>

Figure 5.26: ResponseServices

<xs:element name="SUSQLReguest">
<xs:complexType>
<XS:sequencex
<xs:element name="Where">
<xXs:conplexTypel>
<X3:sequence>
<xz:element ref="tns:RequestService" maxOccursz="unbounded" />
</®3:sequence>
<xs:actribute name="numberOfResults" type="xXs:int"></xXs:attribute>
</xs:complexType>
</®s:element>
</x3:=sequence>
</x=:complexType>
</xs:element>

Figure 5.27: SUSQLRequest

USQLRequest Element As mentioned in Section 5.2.1.1, USQLRequest element is com-
posed of projection and criteria parts in USQL definition and we do not include the projec-
tion part in our SUSQLRequest element definition. In USQL specification, ViewAdditional-
Properties element corresponds to the projection part. From, Where and OrderBy elements
coreespond to critera part. We include the criteria part but with some changes. We do not

enable the users to make their search on specific registries. In addition, we have removed the

45



aforementioned ordering types from SUSQL. In USQL definition, there is not a structure that
enabling the user to limit the number of the results, so we add an attribute numberOfResult-
sAfter to element definition. After these modifications, our SUSQLRequest element is formed

as given in Figure 5.27.

USQLResponse Element USQLResponse contains the services found, which meet the re-
quirements specified in a SUSQLRequest, after a query process. As mentioned in Section
5.2.1.2 it contains two parts: resulting services list (represented with Services element) or
error part (represented with Error element). These parts are alternative for each other. At the
same time a USQLResponse can not contain both of them. We add this element definition
to our S-USQL definition with a change in its name as SUSQLResponse. The definition of

SUSQLResponse is given in Figure 5.28.

<xs:element name="SUSQLResponse">
<xs:complexType
<xs:choice>
<xs:element ref="tns:ResponseServices" />
<xa:element name="Error">
<xs:complexTvper
<XS!Sequence
<xs:element name="code" type="xs:string" />
<x3:element name="desc" type="xs:string" />
</x=:sequence>
</xz:complexType>
</ms:element>
</®s:choicex
</xs:complexType>
</xs:element

Figure 5.28: SUSQLResponse

<xs:element name="SUSQL">
<xs:complexTypes
<xsz:choice>
<xs:element ref="tns:SUSQLRequest" />
<xs:element ref="tns:S5USQLResponse" />
</xs:choicexr
<xs:attribute name="version" type="xs:float" use="required" fixed="1.0" />
</x=:complexType>
</xs:element

Figure 5.29: SUSQL

USQL Element USQL element is the root element in USQL specification. It contains the
USQLRequest, USQLResponse elements and an attribute showing the version of the USQL.
Here, the root element can contain only one of the elements listed at the same time. Meanly,

the request and the response elements are alternative to each other in use. We also define a

46



root element containing our own request and response elements. Our root element is named

SUSQL and the structure of it is given in Figure 5.29.

5.3 Simplified USQL (S-USQL) Parser

In DSWSD-S System, the crawler nodes does not know the S-USQL language, therefore
they can not interpret the S-USQL queries. To achieve the interoperability between the S-
USQL requestor (graphical interface) and the responder (crawler nodes’ local databases) we
design a middleware parser. This parser module, parses the SUSQLRequest queries coming
from requestors and transforms the information parsed to the input parameters of the web
service operations that are handling the crawler nodes’ local database issues. The parser also

transforms the web service responses to the structures needed to produce a SUSQLResponse.

As in the graphical user interface module, the parser module also interacts with all the existing
crawler nodes in DSWSD-S System. It uses the ServiceDomain element in the SUSQLRequest

in order to decide the crawler node to be searched.

The first thing the parser does when it receives a SUSQL containing a SUSQLRequest is
extracting the ServiceName and the ServiceDomain elements. ServiceName element corre-
sponds to the keywords that are searched for. The ServiceDomain corresponds to the domain
that the user specifically intends to search for. After that, it extracts the operator information

that indicates whether the matching will be done syntactically or semantically.

If the operator type is Equal or Contain, the parser interprets this as do syntactic matching.
After deciding syntactic matching, there are three options for the parser to continue with

according to the existence of the keyword and domain information.

If the keyword is not specified, then the parser does not make any search on the crawler nodes.
The parser creates a SUSQL containing a SUSQLResponse and puts an Error element into it.
In the desc attribute of the Error element, it explains the reason why the search can not be

done.

If the keyword is specified but the domain information is empty, then the parser matches this
keyword to all the existing crawler nodes’ domain information and decides the most suitable

crawler node by ranking them on their matching degree with the keyword. After that, if the

47



selected operator type is Equal, the parser searches for an ontology term that is same with
the keyword and retrieves the web services from crawler node’s local database related to this
ontology term. However, if the operator type is specified as Contain, then the parser looks
for the ontology terms that contains the keyword as a substring. After that, it retrieves the
web services from crawler node’s local database related to the ontology terms containing the

keyword.

Finally, if the keyword and the domain information are both specified, then the parser exe-
cutes the same process mentioned in the previous paragraph from the point where the domain

related to the keyword is decided.

If the operator type is Exact, Abstraction, Extension or Sibling, the parser interprets this as do
semantic matching. After deciding semantic matching, there are four options for the parser to

continue with according to the existence of the keyword and domain information.

If both of them are empty, then the parser again creates a SUSQL containing a SUSQLRe-
sponse and puts an Error element into it. In the desc attribute of the Error element, it explains

the reason why the search can not be done.

In the case where the keyword is empty but the domain information is not, the parser retrieves

all the web services kept in corresponding crawler node.

If the keyword is set but the domain information is empty, then the parser matches this key-
word to all the existing crawler nodes’ domain information and decides the most suitable
crawler node by ranking them on their matching degree with the keyword. After that, if the
operator type is Exact, the parser searches for the ontology terms whose matching degree with
the keyword is 1.00. The parser retrieves the web services from the crawler’s local database
related to this ontology terms. However, if the operator type is Abstraction, Extension or Sib-
ling, then the parser calculates the matching degree between the keyword and all the ontology
terms related to the selected domain by using the operator type. Then it filters these ontology
terms according to their matching degree with the keyword. If the matching degree is greater

than 0.5 threshold, then the parser retrieves the web services related to these ontology terms.

Finally, if both the parameters are set, then the parser executes the same process mentioned in

the previous paragraph from the point where the domain related to the keyword is decided.

48



After retrieving the candidate web services from related crawler node’s local database, the
parser applies the quality of service criteria on them, if they are specified in the query. After
this quality of service filtering, the parser constitutes the resulting web service list. For every
web service found, it creates a corresponding ResponseService element to be contained in the

SUSQLResponse that will be returned to the requestor of the web services.

49



CHAPTER 6

QUERY EXECUTION PROCESS AND INTERACTION WITH
OTHER MODULES OF DSWSD-S

6.1 Introduction

In order to respond to a user’s web service discovery request in DSWSD-S System, there are
different modules that should interact with each other. Some of the modules are responsible
for getting the user requests, some of them are parsing these queries and some of them are
finding the desired web services. In the following sections, the modules that take place in a

web service query process and the interactions between these modules will be explained.

6.2 Modules Responsible For Query Execution

There are four modules that take part in a web service query process: the graphical user
interface module, the S-USQL parser module, the similarity degree calculator web service

and the web service that handles a crawler node’s database operations.

6.2.1 Graphical User Interface Module

The graphical user interface module is the one where the web service query process is trig-

gered. It is explained in Chapter 4 in detail.

50



6.2.2 S-USQL Parser Module

The S-USQL parser module is the one where the mapping between the S-USQL elements and
the database operations handler web service method parameters are done. It is explained in

Section 5.3.

6.2.3 Similarity Degree Calculator Web Service

The similarity degree calculator web service basically calculates the similarity degree be-
tween two different texts. Actually, it is a wrapper for the similarity degree calculation library
developed within DSWSD-S System on top of a third party library, WordNet’s similarity cal-
culation library. The library was developed in a programming environment that is different
and incompatible with the one we use. Therefore, an interoperability problem is raised. To
overcome this problem we design a web service that wraps the similarity calculation opera-
tions. This web service runs on the same machine with the graphical user interface and the
S-USQL parser modules. The list of the operations offered by this web service is given in

Appendix B

6.2.4 Database Operations Handler Web Service

The database operations handler web service is the one that allows to reach the crawler node’s
local databases and retrieve web services from there. There are different modules that need to
access to the crawler node’s databases in DSWSD-S System: graphical user interface module,
quality of service calculator module and the web service verifier module. To supply the
needs of these different modules on the databases, this web service is designed. It offers
operations that enables its requestors to retrieve the web services, their descriptions, domain
ontologies corresponds to the crawler nodes’ domains...etc. It also offers operations to update
the information kept in the databases. The list of the operations offered by this web service
is given in Appendix C. For every crawler node existing in DSWSD-S System, there is a
corresponding database operation handler web service instance. Basically, on every crawler

node machine, one instance of this web service runs.

51



6.3 Query Execution Process

As aforementioned in Section 6.2.1 the graphical user interface is the trigger point for a web
service query. The user enters the criteria that he/she wants the desired web service should
comply with and then starts the process via clicking on the Search button on the graphical
user interface as shown in Figure fig:guiButtonWidgets. After the user entered the necessary
information and clicked on the button, the graphical user interface module constructs an S-

USQL request and sends this request to the S-USQL parser module.

Graphical User Interface and Query Module Crawler Module

Similarity Degree Galculation
{keyword, ontalogy)

Database Crawler Engine

Graphical User S-USQL Request ’
Interface SirsQr By Similarity Degree Operations Handler

Similarity Degree Ca\l:;le\atnr Web Web Service |
rvice

Web Sarvice
Addition snd Updste

Web Service Queries (Methed Call)

Web Service Queries
Resulting Web Services (saty

S-USGL Response

Local Database:

Resulting Web Services

Figure 6.1: Interaction Between Modules

The S-USQL parser module, parses the S-USQL request. As explained in Section 5.3, it
extracts the keyword and domain ontology information from the request. After extraction, it
reads the selected domain ontology description from the crawler node via calling the database
operation handler web service. Then it needs to calculate the matching degree between the
keyword and the ontology terms contained in the selected domain ontology. To achieve this,
the parser module calls the similarity degree calculator web service. It passes the keyword
and the ontology term to the web service as parameters. The similarity degree calculator web
service calculates the matching degree and returns the value to the parser module. For the
ontology terms whose matching degree with the keyword is greater then 0.5 threshold, the
parser module calls the database operation handler web service again. This time, it requests
the web services that are related with the ontology term. After this step, the parser module
extracts the quality of service parameters from the request, if they have been specified. And
sends the resulting web service list and the quality of service parameters to the database
operation handler web service for the last time. The returned web service list is the final result

set that will be presented to the user in the graphical user interface. To send the resulting web

52



services to graphical user interface, the parser module creates an S-USQL response and lists

all the web services found in it as response services.

The graphical user interface uses the information came in the S-USQL response, and shows

them on the result table shown in Figure 4.9 to the user.

The query process mentioned is given in Figure 6.1.

53



CHAPTER 7

CASE STUDIES AND ANALYSIS

In this chapter, we show some query samples and respective results to explain the usage of
S-USQL language. In addition to this, we made a query execution time performance analysis

with the given sample queries.

7.1 Query with Single Keyword

<?xml verzion="1.0" encoding="UTF-8" standalone="yes"?>
<5USQL =mlns="urn:dswsd:SUSQL" version="1.0">
<5USQLRequest
<Where numberOfResults="0">
<RequestService minDegree0fMatch="0.25":>
<ServiceName valueIsz="all">wheel</ServiceName>
<ServiceDomain></ServiceDomain>
</RequestService>
</Where>
</5USQLRequesty>
</SUSQL>

Figure 7.1: Sample Query-1

In the query given in Figure 7.1, the web services whose name contains the word “wheel”
are requested. Depending on the absence of domain ontology specification, the word will be
matched to all the existing crawler nodes’s domain ontologies. After this matching the crawler

node whose ontology matches with the highest degree will be selected to be searched.

In this example there are two crawler nodes in the DSWSD-S System, one is interested in
the “Car” domain and the other one is interested in “Aviation” domain. After matching with
both these domains, it is found out that the word “wheel” is more relevant to “Car” domain.
Therefore the web service query is directed to the corresponding crawler node. The crawler

node finds 4297 web services and it returns all of them because no limit on the result number

54



is specified in the query. Some part of the response document containing the resulting web

services is given in Figure 7.2.

<2xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SUSQL xmlns=rurn:dswsd:SUSQL" version="1.0">
<SUSQLResponse>
<ResponseServices>
<ResponseService degreeOfMatch="0.895">
<ServiceNamerDeredden Auto</ServiceNames
<descriptionDocUrl>http://voservices.net/spectrom/spectrumws_v3.1.0/util.asmx</descriptionDocUrls>

<ServiceDescription: Deredden_Auto (. spec)</ServiceDescription>
</ResponseService>
<ResponseService degree0fMatch="0.895">
<ServiceNamerUpdateCarResults</Servicelamey
<descriptionDocUrl>http: //www.msn. momondo . com/Momondo . asmx</descriptionDoclrly>
<ServiceDescription>System.String UpdateCarResults()</ServiceDescription>
</ResponseService>
<ResponseService degreeOfMatch="0.895">
<ServiceName>StartCarSearch</ServiceName>
<descriptionDocUrl>http://www.msn. momondo . com/Momondo . asmx</descriptionDoclrl>
<ServiceDescriprion>Void StartCarSearch()</ServiceDescription>
</ResponsesService>
<ResponseService degreeOfMatch="0.895">
<ServiceName>GetSubFamiliasCuidadosAuto</ServiceName>
<descriptionDocUrl>http://www.galpenergia.com/PT/_layouts/GalpPublicWebService. asmx</descriptionDoclrls
<ServiceDescription>System.String GetSubFamiliasCuidadosAuto(String currentFamilia)</ServiceDescription>
</ResponsesService>

<ResponseService degreeOfMatch="0.895">
<Servicelame>PagesList</ServiceName>
<descriptionDocUrlzhttp://www. thrifty.com.an/SimpleWebService.asmi</descriptionDoclrly
<ServiceDescription>System.String PagesList(String sCarCode)</ServiceDescriptions

</ResponseService>
</ResponseServices>
</SUSQLResponse>
</SUSQL>

Figure 7.2: Response for Sample Query-1

The resulting web services are presented to the user in the result table. The screenshot respec-

tive to this query and its response is given in Figure 7.3.

File Help +

[Domain Specific Web Service Discoverer
Keywards el |E3 Service Name Service URL Relevance |Service Description

Deredden_Auto http://voservices net/spectrum/specirumws_u310/utiLasmx o895 Spectrum Deredden_Auto(Spectrum spec)

svonces searen H UpdateCarResults itpy//wwwmsn momendocom/Momenda asmx o895 SystemString UpdateCarResults()
StartCarSearch itpy//wwwmsn momendocom/Momenda asmx agos Void StartCarSearch()
Ontolagy
. UidodosAuto d ebService as o895 SystemString GetSubFamiliosCuidadosAutofString ¢
FagftemList it hrifty.com.cu/SimpleWe bService asmx agos SystemString FogitemList{String sCarGode;

- aperation 5 Bagestist it v hrifty.com.cu/SimplelWe bSe vice asmx o895 SystemString PogesListfstring sCarCode}
auromotite 7 ElencoBreseFormitore 17.230.149-62 serverde etse el 0895 System.String ElencoPreseFornitore(String company.
passenger
way 8 SociConRichiests hostl7-230-149-82 serverdedi etservi elc| 0895 System.String SociConfichissts(String codsoci, Scring

3 ichiestefsocio host17.230-148-62 serverded ebservic elc 0835 System String RichiesteAsociofString codsocio, String
10 RichiesteAConsarzio host17.230-148-62 serverded ebservic elc 0835 System String RichiesteAConsorziofString dbid, Suin
1 ElencoPresesacio hostl7-230-149-62serverdedicat.ar ebservic elc 0895 System.Suing ElencoPreseSocio(String company; St
b2 encaPreseConsarzio hostl7-230-149-62serverdedicat ebservic el 0895 System.Suing ElencoPreseCansarziofString compan)
3 VehiclelocationsXX e wwwnthrifty.com. u,Sim plelWe bService.sm o8os System.Suing VehicleLocationsXX{String s Car Cods
2] etAutpCompletionList z 1 es/PA JobBoard o WebServiceasmy | 0835 System.Suingll fo_GeutoComplesionListString pre
5 Test ScheduleReplace er asmzx o8os echodResulr Test ScheduleReplace(String poiC
16 est ScheduleCalculare er asmzx oges Test ScheduleCalculare(String poi
7 KitabeviAutoComplate i febMeth o8os beviAutaComplate(Siring prefix
b GerMororCarFuelType iz bimapost.com,ws PrivareCar oges CascadingDropDownNameValug(] GetMororCarFusl
19 AutoExtendercP3 essoer £\ £l eas ages System.Swingll AutoExtenderCP3{Sring prefixText |
20 Autoxtenderchs essosr £EL £l 2as os9s System.Stringl] AutoEstenderCPA{String prefixText. |
a2 Autogxenderpes: essoer £EL £l 2as ages System.Stringll AutoExtenderPesquisalsting prefix]
Maz. Number of Results - | 0 4 2 CanesiDemana it firesws arvalphh fr/servieelasmi 0895 System String CancslDemandString parmeriD, Stir
z OperationDetaits it firesws arvalphh fr/servieel.asmx System String OperationDetails(String partmeriD. 5o
< - - [— ;- o

Figure 7.3: Screen for Sample Query-1

55



7.2 Query with Single Keyword and Domain Specification

<?xml wversion="1.0" encoding="UTF-8" standalone="yes"?2>
<SUSQL zmlns="urn:dsw=d:SUSQL" version="1.0">
<SUSQLReguest:
<Where numberOfResults="0">
<RequestService minDegreeOfMatch="0.25">
<ServiceName valueIs="all">flight</ServiceName>
<ServiceDomainraviation</ServiceDomain
</RequestService>
</Where>
</5USQLRequest>
</ 5USQL>

Figure 7.4: Sample Query-2

With the query given in Figure 7.4, the user requests the web services that match with the word
“flight” and are related to the domain “Aviation”. Due to the absence of the matching type, the
keyword is matched with all the ontology terms in the “Aviation” ontology both syntactically
and semantically. The terms whose matching degree is greater then the threshold is extracted.
After that, the web services related to these ontology terms are retrieved. 1878 resulting
web services are found in this query. Again due to the absence of limitation in total result
number in the query, all the web services are presented to the user. Some part of the response

document where the resulting web services are contained is given in Figure 7.5.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
(<SUSQL mlns="urn:dswsd:SUSQL" version="1.0">
<SUSQLResponse>
<ResponseServices>
<ResponseService degreeQ0fMatch="0.99">
<ServiceName>CheckAirTempAvaidStation</ServiceName>

<descriptionDocUrl>http://gsserver.ceegs.ohio-state.edn/website/gangews/WSService. asmx<,/descriptionDocUrls>
<ServiceDescription>Boolean CheckAirTempAvai4Station(String Date, Inventory StInvInfo)</ServiceDescription>

</ResponseService>

<ResponseService degreeQfMatch="0.93">
<ServiceNamerStrategyHATCampbell</ServiceName:>
<descriptionDocUrl>http://agsys.cra-cin.it/webservices/fairtemperature/airtemperature. asmx</descriptionlocUrlz:|
<ServiceDescription>Double[] StrategyHATCampbell (Double CapbellTimingVariation,
Double AirTemperatureMax, Double AirTemperatureMin)</ServiceDescription>

</ResponseService>

<ResponseService degreeOfMatch="0.98">
<ServiceNamerFlightPlans</ServiceName>
<descriptionDocUrlrhttps://flightwise.com/ws/PlaneXMlLbetad.asmx</descriptionDocUrls>
<ServiceDescription>FlightPlan[] FlightPlans (String gmery)</ServiceDescription>

</ResponseService>

<ResponseService degreeOfMatch="0.98">
<ServiceName>FlightStatus</ServiceName>
<descriptionDocUrlrhttps://flightwise.com/ws/PlaneXMlLbetad.asmx</descriptionDocUrls>
<ServiceDescription>FIDynamic FlightStatus(String ident)</ServiceDescription>

</ResponseService>

<ResponseService degreeOfMatch="0.98">
<ServiceName>FlightPath</ServiceName>
<descriptionDocUrlrhttps://flightwise.com/ws/PlaneXMlLbetad.asmx</descriptionDocUrls>
<ServiceDescriptionradsPosition[] FlightPath(String ident)</ServiceDescription>

</ResponseService>

</ResponseServicess>
«/5USQLResponse>
[«/SUSQL>

Figure 7.5: Response for Sample Query-2

56



The screenshot respective to this query and its response is given in Figure 7.6.

File Help ~

[Domain Specific Web Se Discoverer

Keywords [igne | [# Service Name Service URL Relevance |Service Description
1 Chedk 0.950 Boolean CheckAirTempAvaidStatian(Swring Dare, In *

voneed Search 2 StraregyHATCampbell 550 trategyHATCampbell

£ FiightPlans ass0
Ontology

ass0
B ass0
g ass0
7 ass0
H ass0
s e/ /owvjetabroad ca.nz/W ass0
10 ez fowjetabroad canz/W as50
e/ foajetabroad. o5

e/ foanjerabroad. o5 sNameString er

13 et/ jenabroad com au 0980 tring email. String fi

e/ o jenabroad com au o5 rByClassName(string er

e/ jerabroad cauk/W 0980 tring email. String fi

1 e/ o jerabroad cak/W 0980 rByClassName(string er

rood com/ 0980 tring email. String fi
rood com ehSe 0980
13 o5
Ed e/ o 950222 com i asmy 0980
2 enerateCabinPri it/ o 950222 corm i i iz o580

5
H

2 UpdareFlightfouts http/ s 350222 com# s

5
H

= UpdateFlightRouteProfit e/ o 850222 com /i -

Figure 7.6: Screen for Sample Query-2

7.3 Query with Custom Quality of Service Criteria

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<5USQL zmlns="urn:dsw=ad:SUSQL" version="1.0">
<5USQLRequest>
<Where numberOfResults="0">
<RequestService minDegreelfMatch="0,25">
<ServiceName wvaluelsz="all">trip</ServiceName>
<ServiceDomain>ecar</ServiceDomain>
<QoS>
<Avallability>D</Availability>
<Reliability>»80</Reliabilitcy>
<ProcessingTime>20</ProcessingTime>
<Throughput>0</Throughput>
<gos5core>0.0</gosScore>
</QoS>»
</RequestService
</Where>
</5USQLRequest>
</ SUSQL>

Figure 7.7: Sample Query-3

With the query given in Figure 7.7, the user requests the web services that match with the
word “trip” and are related to the domain “Car”. Due to the absence of the matching type, the

keyword is matched with all the ontology terms in the “Car” ontology both syntactically and

57



[<?xml wversiomn
<SUSQL =xmlns=

'1.0" encoding="UTF-8" standalone="yes"?2>
urn:dswsd: SUSQL" version="1.0">

<5USQLResponse>

<ResponseServices>
<ResponseService degreelfMatch="0.7">
<ServiceName>GetCarModels</ServiceName>

<descriptionDocUrl>http: f/www.dotzmycar.com/ (5 (h45zbb550sp371454kpp0145) )

/TyreSizeService.asmx</descriptionDocUrls>
<Servicelescription>CascadingDropDownNameValue[]

GetCarModels (String knownCategoryValues, String category)</ServiceDescription>

</ResponseService>
<ResponseService degreeCfMatch="0.7">
<ServiceName>rGetCarBrands</ServiceName>

<descriptionDocUrlrhttp: //www.dotzmycar . com/TyreSizeService . asmx</descriptionDocUrl>

<ServiceDescription»CascadingDropDownNameValuoe[]

GetCarBrands (String knownCategoryValues, String category)</ServiceDescription>

</ResponseService>
<ResponseService degreeCfMatch="0.7">
<ServiceNamerGetCarYears</ServiceName:>

<descriptionDocUrl>»http: ffwww.dotzmycar. com/TyreSizeService . asmx</descriptionDocUrl>

<ServicelescriptionrCascadingDropDownNameValnoe[]

GetCarYears (String knownCategoryValues, String category)</ServiceDescription>

</ResponseService>

<ResponseService degreelfMatch="0.5735622">
<ServiceNamerGetDiameterClearance</ServiceName>

<descriptionDocUrl>http: //www. 4wheelparts.com/aux incl/ajax/wheelService.asmx</descriptionDocUrls|

<ServicelDescription»CascadingDropDownNameValoe [ ]

GetDiameterClearance (String knownCategoryValues, String category)</ServiceDescription>

</ResponseService>
«</ResponseServices>

</ 5USQLResponse
</SUSQL>
Figure 7.8: Response for Sample Query-3
File + Help ~

[Domain Specific Web Service Discoverer

Service Description

Keywords : [z ] [# Service Name

Gercariodels

Advonced Search

Retiobility

Ontology

Max. Number of Results

Service URL

hezp o datzmy
hetps://raves.newblims.com/Rare:

et/ dotzmyear.com,Tyre:

et/ carbau com/CorService asmx.

n

Figure 7.9: Screen for Sample Query-3

58

Relevance
ano

CascadingDrapBonnName!

Carinfo GetCarinfo(Int32 bodySty.

CascagingDrapDownName!

CascagingDrapDownNar

System Stringl] Getsea

CascagingDrapDownName

CoscadingDrapBamhia:
System String Demand(String pas
CoscadingDrapDanmtams
CoscadingDrapDanmhia

CascadingDrapDonnName!

CarShoptist getCarShops)

CascadingDrapDonnName!




semantically. In addition to these, he/she specifies some quality of service parameters. The
user wants the reliability parameter’s weight to be 80% and the response time parameter’s
weight to be 20%. After matching the “trip” word with the “Car” ontology, 835 candidate
web services are found. Then a quality of service filtering is applied to these services, and
found out that 673 web services complies with the quality of service criteria specified in
the query. Due to the absence of limitation in total result number in the query, all the web
services are presented to the user. Some part of the response document where the resulting

web services are contained is given in Figure 7.8.

The screenshot respective to this query and its response is given in Figure 7.9.

7.4 Query with Default Quality of Service Criteria

<?xml wversion="1.0" encoding="UTF-8" standalone="yes"?2>
<BUSQL zmlns="unrn:dsw=d:SUSQL" version="1.0">

<SUSQLEeguest:
<Where numberOfResults="0">
<RequestService minDegreeQfMatch="0.25">

<ServiceName valueIs="all">trip</ServiceName>

<ServiceDomain>ecar</ServiceDomain>

<QoS>
<Availability>50</Availability>
<Reliability>50</Reliability>
<ProcessingTime>50</ProcessingTime>
<Throughput>50</Throughput>
<gosScore>0.0</gosScore>

</Qo5>

</RequestService>
</Where>
</5USQLRequest>
</ SUSQL>

Figure 7.10: Sample Query-4

With the query given in Figure 7.10, the user requests the web services that match with the
word “trip” and are related to the domain “Car” as in Sample Query-3. Due to the absence
of the matching type, the keyword is matched with all the ontology terms in the “Car” on-
tology both syntactically and semantically. In this query, the user specifies quality of service
parameters and chooses to use their default weights. As known from the previous query, after
matching the “frip” word with the “Car” ontology, 835 candidate web services are found.
Then a quality of service filtering is applied to these services, and found out that 723 web ser-
vices complies with the quality of service criteria specified in the query. Due to the absence
of limitation in total result number in the query, all the web services are presented to the user.

Some part of the response document where the resulting web services are contained is given

59



«2xml wersion="1.0" encoding="UTF-8" standalone="yes"?3>
<SUSQL xmlns="unrn:dsw=d:SUSQL" version="1.0">
<5USQLResponse>
<ResponseServices>
<ResponseService degreelfMatch

="0.7">
<5erviceNaHe}Vhlidate_SporeCarRegHD(fServiceName}
<descriptionDocUrl>http: [/ /www.softwaremaker.net/webservices/
swm/validator/validator.asmx</descriptionDocUrl>
<ServiceDescription>Intlé WValidate SporeCarRegNo
(String ps_InputNo)</ServiceDescription>

</ResponseServicex

<ResponseService degreelfMatch="0.T">
<ServiceName>GetCarModels</Servicelame>
<descriptionDocUrl>https: //rates.newblims. com/
RateService.asmx</dezcriptionDoclUrl>
<ServiceDescription>CascadingDropDownNameValue[]
GetCarModels (5tring knownCategoryValues, S5tring category)
</5erviceDescription>

</ResponseService>

<ResponseService degreelfMatch="0.58B4875">
<ServiceNamerGetLinks</ServiceName:>
<descriptionDocUrlxhttp: //www.haitirewired.org/WebServiolunteersRewired/
Service.asmx</descriptionDocUrls>
<ServiceDescription>System.¥ml .¥mlElement OCetlinks()</ServiceDescription>

</ResponseService>

</ResponseServices>
</8USQLEResponse>
</ 5USQL>

Figure 7.11: Response for Sample Query-4

in Figure 7.11.

File + Help ~

[Domain Specific Web Service Discoverer

Keywords : [z ] [# Service Name Service URL Relevance Service Description
o |82 addNarranveText ezt Vold addNarratveTextszring sCu
Acvonces searen &2 gowerevoumey oss¢ Newstory gotwPrerlourney Sring
872 es/l webService.ass 0694 Vioid removelourney(String sRef)
- — 74 . Jezikas (inc/wesse eoservicePas oses RetumDara GetpollResulrifv
() Use efauis Semings () Use Custam Serings & http://reach er studydog com/ws/admin.asmx 0654 System.String getNumberOfi
G &6 Newpage hitp:/magfive. realityaigital net/Pagesen oes1 System String NewPage(String ne
Ao &7 | WSSurveyUpdarestmus hitp/desropvaviccom/EFT o815 Vol WSSurveyUpdareStaus(int,
030 00 0000000 &% wssurveycer hitp/deskropvovic.com/EFMVH o815 System String WSSurveyGetined:
e &9 | wsEdmblesurveyGer hitp/desropvaviccom/EFT o815 System String WSEditsbl=Surveyt
00 00 cuduo oo &0 | Gertierstns ene 2 o7 Userstatus Gettserstotus(String |
L a1 CustomerStanusGer hitp/api edgecast com/ v Administration. asmx o7es INEl8 CustomerStanssGer(Sing s
T 82 Cusomersurustpdars it/ edgecastcom /L Admnisiation s ozes Int16 CustomsrStarustpdars ri
N 63 geDocstanises - 078 System Stringf] getDacstaruses)
84 | removelrg htta/feacher studydog com/iws/admin asmi 0s24 rawOrginfo removeCrg(Siring or
85 RomapoRemovesudents http:/frsach r stucydog com/ws/admin csm 0s14 rowStudentlise] RamepoRemoe
Ontology emovedge http:/fest iodeme.com/fodeme asm as14 Soolean RemoveigentiffSing o
o removeUser it teach s studydog com /i cimin csm: as14 rowlJserinfo removeUser{Siring
85 removeStudent it reach s studydog com /i cimin csm as14 rowStudntino removeStudent(s
9 | removellUserDai e/ wetse as14 Veid removeAllUserData(String s
&0 | removeAllUserDaz e/ wetse as14 Veid removeAllUserData(String s
831 Gettinks . asas System XimXimlElement Getlink
Max. Number of Results : | @ 2 892 GetDiameterCisare ee i 0574 CascadingDrapDovwn Name Value]]
83 GetDiometerClear g as7 CoscadingDrapDanmams Val.

< n,

Figure 7.12: Screen for Sample Query-4

60




The screenshot respective to this query and its response is given in Figure 7.12.

7.5 Query with Multiple Keywords and Custom Quality of Service Criteria

<?xml wersion="1.0" encoding="UTF-8" standalone="yes"?2>
<5USQL zmlns="urn:dsw=d: SUSQL" version="1.0">
<SUSQLRequesty
<Where numberOfResults="0">
<RequestService minDegreelfMatch="0.25">
<ServiceName valuelz="all">hub cap</ServiceName>
<ServiceDomain>ecar</ServiceDomain>
<QoS>
<Avallability>0</Avallability>
<Reliability>»50</Reliabilicy>
<ProcessingTime>0</ProcessingTimes>
<Throughput>0</Throughput>
<gos5core>0.0</gosScores>
</QoS»
</RequestService>
</Wnere>
</5USQLRequest>
</ 5USQL>

Figure 7.13: Sample Query-5

<?xml vers ="1.0" encoding="UTF-8" standalone="yes"?2>
<5USQL =zmlns="urn:dswsd: SUSQL" version="1.0">
<BUSQLResponse>

<ResponseServices>

<ResponseService degreeCfMatch="0.T72">
<ServiceName>AntoSuggestSuburb</Servicelame>
<descriptionDocUrlrhttp: //www.nationalcarservice.com.an/Components
/SuburbSuggest.asmx</descriptionDocUrl>
<BerviceDescription>System.String[]
AntoSuggestSuburb (String prefixText, Int32 count, String contextRey)</ServiceDescription>
</ResponszeService>
<ResponseService degreeCfMatch="0.T72">
<ServiceNamerGetCarBrands</ServiceName>
<descriptionDocUrl>http: //www.dotzmycar.com/ (S (h45zbb550sp3j1454kpp0145) )
/TyreSizeService.asmx</descriptionDocUrls>
<Servicelescription>CascadingDropDownNameValuel[]
GetCarBrands (String knownCategoryValues, String category)</ServiceDescription>
</ResponzeService>

<ResponseService degreeCfMatch="0.6097548">
<ServiceNane>WSAnalysisGetChart</ServiceName>
<descriptionDocUrl>http: f/desktop.vovici.com
JEFMWebTopSve. asmx</descriptionDoclUrl>
<ServiceDescription>WsChartImageInfo
WSAnalysi=GetChart (Int32 editableSurveyId, String wsbld,
Int32 chartWidth, Int32 chartHeight)</ServiceDescriprtion>

</ResponseServices

</ResponseServices>
</5USQLRe=sponse>
</ 5US0L>

Figure 7.14: Response for Sample Query-5

In the query given in Figure 7.13, the web services whose name contains the “hub cap” words
and related to the “Car” domain are requested. Here, the reliability weight of the desired

services are intended to be 50%. After matching the “hub cap” word with the “Car” ontology,

61



1128 candidate web services are found. Then a quality of service filtering is applies to these
services, and found out that 452 web services complies with the quality of service criteria
specified in the query. But not all of them is shown to the user. Because as seen the Figure
7.13, the total number of results are limited to 40. Therefore, the 452 resulting services are
sorted in a descending order according to their matching degrees and top 40 of them are
represented to the user. Some part of the response document containing the resulting 40 web

services is given in Figure 7.14.

The screenshot respective to this query and its response is given in Figure 7.15.

File Help +

[Domain Specific Web Service Discoverer

Service Name Service URL Relevance  Service Description

Spectrum Deredden_Auto[Spectru *

Keywards [pub o ||#

Deredden_Auto

System String UpdateCar

Advanced searen

Void StartCarSs

momondacom/Mormonda asmx

hepi//nestl

haga/wwchrify.com.au/

System String Soc

System St

System St
System St
System Suring

System Swing |

dules/PA JobBoard o WebService.os

inasm

inasms

hetp//simapest com wiPrivareCar.asmx CascadingDropDownNameValuel]

System Suringl] AutoExtenderCP3

20 AutoErendercPq System Suingl] AutaErenderCP4

a AutoErtenderPesquisa System.Stringl] AutaEstenderPest

System Swring CancelDemand(Ser.

> 2

Max Number of Results - | 40 OperationDeraits System String OperationDetais(s

[‘searen [ ciear | P Demana 0720 Syseem tring Demonatsing por | _

Figure 7.15: Screen for Sample Query-5

7.6 Query Execution Time Performance Analysis

To analyze the performance of different query cases, we have taken some measurements about
the query execution times. All the measurements are taken at 25th of August, 2011, at times

15.00, 16.00, 17.00, 18.00 and 19.00.

In following Tables 7.1, 7.2, 7.3, 7.4, 7.5 the measurements taken for sample queries are

given.

62



Table 7.1: Query Execution Times for Sample Query-1

Duration in | Time: Time: Time: Time: Time: Average
ms 15.00 16.00 17.00 18.00 19.00

Formulate 312 300 291 311 341 311
Query

Parse 2964 3456 3153 3282 4496 3470.2
Query

Retrieve 30093 25055 28595 27025 31767 28507
Services
Evaluate 0 0 0 0 0 0
QoS on
Services
Formulate 6 6 6 7 7 6.4
Response
Retrieved 4297 candidate web services
WS Count
QoS Fil- 4297 resulting web services
tered WS
Count

Table 7.2: Query Execution Times for Sample Query-2

Duration in | Time: Time: Time: Time: Time: Average
ms 15.00 16.00 17.00 18.00 19.00

Formulate 311 299 306 315 303 306.8
Query

Parse 2 1 1 1 1 1.2
Query

Retrieve 7526 6650 7082 8257 11326 8168.2
Services

Evaluate 0 0 0 0 0 0

QoS on

Services

Formulate 3 2 3 2 3 2.6
Response

Retrieved 1878 candidate web services

WS Count

QoS Fil- 1878 resulting web services

tered WS

Count

As can be seen from the tables, the duration for parsing the sample query-1 takes much more

longer than other three queries. The reason of this is that, the user does not specify a domain

63



Table 7.3: Query Execution Times for Sample Query-3

Duration in | Time: Time: Time: Time: Time: Average
ms 15.00 16.00 17.00 18.00 19.00

Formulate 303 321 308 312 308 3104
Query

Parse 2 1 1 1 1 1.2
Query

Retrieve 3378 3120 2945 4094 2760 32594
Services

Evaluate 13470 14533 12415 15522 12404 13668.8
QoS on

Services

Formulate 1 2 2 1 1 1.4
Response

Retrieved 835 candidate web services

WS Count

QoS Fil- 673 resulting web services

tered WS

Count

Table 7.4: Query Execution Times for Sample Query-4

Duration in | Time: Time: Time: Time: Time: Average
ms 15.00 16.00 17.00 18.00 19.00

Formulate 296 285 292 302 280 291
Query

Parse 1 1 1 1 1 1
Query

Retrieve 3168 3349 2967 3990 2870 3268.8
Services

Evaluate 6370 7255 7110 7855 6210 6960
QoS on

Services

Formulate 1 2 2 1 1 1.4
Response

Retrieved 835 candidate web services

WS Count

QoS Fil- 723 resulting web services

tered WS

Count

information in sample query-1. Therefore, the parser tries to find the most appropriate domain

for the keyword by matching it with all the existing crawler nodes’ domain ontologies in

64



Table 7.5: Query Execution Times for Sample Query-5

Duration in | Time: Time: Time: Time: Time: Average
ms 15.00 16.00 17.00 18.00 19.00

Formulate 347 309 315 325 306 320.4
Query

Parse 1 1 1 1 1 1
Query

Retrieve 9243 4006 3542 3532 4048 4874.2
Services

Evaluate 24738 21307 16590 15531 18049 19243
QoS on

Services

Formulate 1 1 2 2 1 1.4
Response

Retrieved 1128 candidate web services

WS Count

QoS Fil- 452 resulting web services

tered WS

Count

DSWSD-S System. As a result of this matching an increase in the parsing process time

occurs.

If we look over the service retrieval times in detail, it can be seen that the retrieval time

increases in direct proportion to the number of resulting web services.

In the first two sample queries, the quality of service parameters evaluation time is zero.
Actually, this result is the one that is expected, because in these queries the user does not
specify any quality of service criteria. However, in sample query-3, sample query-4 and sam-
ple query-5, these parameters specified and it takes longer to evaluate the quality of service
parameters in sample query-5 due to the number of the resulting web services found. Again,
the quality of service evaluation time increases in direct proportion to the number of the web
services on whom the quality of service filtering is intended to be done. The choice of the
user about the quality of service specification, custom or default weight usage, also effects the
quality of service evalution time as can be seen from the tables. In the sample query-3 and
sample query-4, the user searches the same keyword on the same domain. However, he/she
prefers to defines his/her own quality of service parameters in sample query-3, while he/she

prefers to use the defaults in sample query-4. Whenever the user specifies his/her custom

65



weights, the total quality score of the candidate web services are recalculated and this causes

an increase in the quality of service evalution time.

We calculated the average times for each step fot the sample queries and produced the overall

performance graph given in Figure 7.16.

34000
33000
32000 $ + +
31000 ,’
30000 f
28000 ,
28000
27000 /
26000 I
25000 l
24000 l’ /‘;
23000
22000 " /
21000 " /
20000 II //
19000 / 7
18000
17000 / / .
16000 I / /
15000 / / /
14000 I , /
13000 '! / /
12000 I / /
11000 / / /
10000 I , /
5000 / / / e
2000 / = ]
2000 / S S
6000 / VAR a4
=000 / VAR 4
2000 / S
3000 = A 4
2000 — T
1000 =/ é/

0 T T

Formulate Query Parse Query Retrieve Services Evaluate QoS on Services Formulate Response

=—f=ueryl
=—Query2
=de=Query3
i QLI TY &
=pe=CQuery 5

Figure 7.16: Query Execution Time Performance Graph

66




CHAPTER 8

CONCLUSION

In this thesis, we have developed a sub-module of the DSWSD-S System that takes place in
domain-specific service discovery process. The main idea of the work proposed is to design
and implement a supportive graphical user interface that enables the users to find the desired
web services satisfying the user’s needs. In addition to this, with the S-USQL query language
we have defined in this work, we aimed to make the DSWSD-S System comply with the
standards in the literature and as a result of this make it a scalable, interoperable and flexible

system.

The proposed works about the graphical query interfaces in the literature are not developed
based on the user-interaction. Therefore, the web service consumers are expected to know
the technical details of the query structures. This makes the web service discovery process a
challenging task for the end-users. The graphical user interface that is proposed within this
thesis stands out with its user-friendly and supportive design. It guides the user to specify
the search criteria and the parameters in an easy way that the users are encapsulated from the

technical details of the query language, S-USQL, used in the DSWSD-S System.

In the future, proposed graphical user interface can be extended with new search criteria
specification widgets. New widgets can be added to the interface for retrieving the input and
output parameters for the desired web service operations, which can already be specified via

S-USQL, from the user.

In addition to this, both the graphical user interface and the query language can be extended
with the fuzzy quality of service parameters. By saying fuzzy quality of service parameters,
we mean specifying the quality of service parameters linguistically instead of specifying them

numerically. Because expressing the needs in a linguistic way can be more meaningful and

67



LR N3

easy for the users. These new fuzzy parameter types can be “low”, “medium”, “’high’ and so
on. S-USQL can also be extended to allow formulating more complex query sentences that
mix both the numerical and fuzzy parameter specifications. For example the user can specify
the availability parameter’s weight as 50 while specifying the reliability parameter as “high”

within the same query sentence.

68



REFERENCES

[1] Aphrodite Tsalgatidou, Michael Pantazoglou. The Unified Service Query Language
Technical Report. http://www.s3lab.com/usql-tr.pdf, Last accessed on July 18, 2011.

[2] Aphrodite Tsalgatidou, Thomi Pilioura. Unified Publication and Discovery of Semantic
Web Services. ACM Transactions on the Web (TWEB), vol. 3 Issue 3, June 2009.

[3] A. Tsalgatidou, M. Pantazoglou, G. Athanasopoulos. Specification of the Unified Service
Query Language vI.0(USQL). EU Sixth Framework Programme - SODIUM Project.
http://www.atc.gr/sodium/upload/publications/D8-Specification%200f%20USQL.zip,
Last accessed on July 18, 2011.

[4] M. Tian, A. Gramm, H. Ritter, J. Schiller. Efficient Selection and Monitoring of QoS-
aware Web services with the WS-QoS Framework. Proc. Of IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, 2004.

[5] Hai Zhuge, Jie Liu. Flexible Retrieval of Web Services. Elsevier Journal of Systems and
Software, vol. 70, no. 1- 2, Pages 107-116, 2004.

[6] Delnavaz Mobedpour, Chen Ding, and Chi-Hung Chi. A QoS Query Language for User-
Centric Web Service Selection. IEEE International Conference on Services Computing,
1:1-8, 2010.

[7] Deniz Cantiirk and Pinar Senkul. Using Semantic Information for Distributed Web Ser-
vice Discovery. International journal of Web Science, in press.

[8] Deniz Cantiirk and Pinar Senkul. Service Acquisition and Validation in a Distributed
Service Discovery System Consisting of Domain-Specific Sub-Systems. Proc. Of ICEIS,
1:93-99, 2010.

[9] Universal Desription, Discovery and Integration (UDDI). http://uddi.xml.org/, Last ac-
cessed on July 18, 2011.

[10] Extensible Markup Language (XML) v1.0. http://www.w3.org/TR/2008/REC-xml-
20081126/, Last accessed on July 18, 2011.

[11] XML Schema Definition (XSD). http://www.w3.org/XML/Schema, Last accessed on
July 18, 2011.

[12] Electronic  Business  using  eXtensible = Markup  Language  (ebXML).
http://www.ebxml.org/, Last accessed on July 18, 2011.

[13] Eyhab Al-Masri and Qusay H. Mahmoud. WSCE: A Crawler Engine for Large-Scale
Discovery of Web Services. IEEE International Conference on Web Services ICWS),
2007.

[14] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating Web Services on the World Wide
Web. Proceeding of the 17th international conference on World Wide Web, 2008.

69



[15] Eyhab Al-Masri and Qusay H. Mahmoud. Crawling Multiple UDDI Business Registries.
Proceedings of the 16th international conference on World Wide Web, 2007.

[16] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller. A Concept for QoS Integration
in Web Services. Proceedings of the Fourth International Conference on Web Informa-
tion Systems Engineering Workshops, 2003.

[17] Stefan Schulte, Melanie Siebenhaar, Julian Eckert, Ralf Steinmetz. Query Languages for
Semantic Web Services. ftp://ftp.kom.tu-darmstadt.de/papers/SSES10.pdf, Last accessed
on July 18, 2011.

[18] A. Soydan Bilgin and Munindar P. Singh. A DAML-Based Repository for QoS-Aware
Semantic Web Service Selection. Proceedings of the IEEE International Conference on
Web Services, 2004.

[19] Hai Wang and Sheping Zhai. Query for SemanticWeb Services Using SPARQL-DL. Sec-
ond International Symposium on Knowledge Acquisition and Modeling (KAM), 2009.

[20] Kashif Igbal, Marco Luca Sbodio, Vassilios Peristeras and Giovanni Giuliani. Semantic
Service Discovery using SAWSDL and SPARQL. Fourth International Conference on
Semantics, Knowledge and Grid (SKG), 2008.

[21] Tanu Malik Alex, S. Szalay, Tamas Budavari and Ani R. Thakar. SkyQuery: A Web
Service Approach to Federate Databases. Proceedings of the First Biennial Conference
on Innovative Data Systems Research (CIDR), VLDB Endowment, 2003.

[22] Sebastian Giinther, Claus Rautenstrauch and Niko Zenker. Service-Oriented Architec-
ture: Introducing a Query Language. Multikonferenz Wirtschaftsinformatik , 2008.

[23] Weilong Ding, Jing Cheng, Kaiyuan Qi, Yan Li, Zhuofeng Zhao and Jun Fang. A
Domain-specific Query Language for Information Services Mash-up. IEEE Congress
on Services - Part I, 2008.

[24] Min Liu, Weiming Shen, Qi Hao and Junwei Yan. An Weighted Ontology-Based Seman-
tic Similarity Algorithm For Web Service. Journal of Expert Systems with Applications:
An International Journal Archive, Volume 36 Issue 10, December 2009.

[25] Glen Dobson, Russell Lock and Ian Sommerville. QoSOnt: a QoS Ontology for Service-
Centric Systems. 31st EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, 2005.

[26] Wolfgang Hoschek. The Web Service Discovery Architecture. Proceedings of the 2002
ACM/IEEE conference on Supercomputing.

[27] Vladimir Tosic, Kruti Patel and Bernard Pagurek. WSOL - Web Service Offerings Lan-
guage. Proceedings of the International Workshop on Web Services, E-Business, and
the Semantic Web, 2002.

[28] Don Chamberlin, Jonathan Robie and Daniela Florescu. Quilt: An XML Query Lan-
guage for Heterogeneous Data Sources. International Workshop on the Web and
Databases (WebDB) , pp. 53-62, 2000.

[29] WSExpress: A QoS-Aware Search Engine for Web Services. IEEE International Confer-
ence on Web Services ICWS), 2010.

70



APPENDIX A

XSD OF S-USQL

This appendix contains the formal XML Schema Definition (XSD) of the Simplified - Unified

Service Query Language (S-USQL), version 1.0.

<?xml version="1.0" encoding="UTF-8"7>

<xs:schema targetNamespace="urn:dswsd:SUSQL"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="urn:dswsd:SUSQL" xmlns="urn:dswsd:SUSQL"

elementFormDefault="qualified">

<!-- Simplified Unified Service Query Language (S-USQL) version 1.0 -->

<xs:attributeGroup name="basicRequirementAttributes'">
<xs:attribute name="nullAccepted" type="xs:boolean"
use="optional" default="false" />

<xs:attribute name="minDegreeOfMatch" type="tns:tPercentage"
use="optional" default="1.0" />

</xs:attributeGroup>

<xs:group name="AdditionalServiceProperties">
<Xs:sequence>

<xs:element ref="tns:ServiceDescription" minOccurs="0" />
<xs:element ref="tns:QoS" minOccurs="0" />

</Xs:sequence>

</Xs:group>

71



<xs:simpleType name="tPercentage'>
<xs:restriction base="xs:float">
<xs:minInclusive value="0" />
<xs:maxInclusive value="1" />
</Xs:restriction>

</xs:simpleType>

<xs:simpleType name="tWeight">
<xs:restriction base="xs:int">
<xs:minInclusive value="0" />
<xs:maxInclusive value="100" />
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="tSyntacticSemanticOperators">
<xs:restriction base="xs:string">
<xs:enumeration value="equal"/>
<xs:enumeration value="contain"/>
<xs:enumeration value="exact"/>
<xs:enumeration value="abstraction"/>
<xs:enumeration value="extension"/>
<xs:enumeration value="sibling"/>
</Xs:restriction>

</xs:simpleType>

<xs:complexType name="tSyntacticSemantic">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attributeGroup ref="tns:basicRequirementAttributes"/>
<xs:attribute name="valueIs" type="tns:tSyntacticSemanticOperators"
use="optional" default="equal"/>

</Xs:extension>

72



</xs:simpleContent>

</xs:complexType>

<Xs

<Xs

<XS:

<Xs:

<Xs:

<XS:

<Xs:

<Xs:

<Xs

<Xs:

<Xs:

<Xs:

<Xs:

<Xs:

<Xs:

<XSs

<Xs:

<Xs

:element name="ServiceName" type="tns:tSyntacticSemantic" />

:element name="ServiceDescription" type="tSyntacticSemantic" />

element name="ServiceDomain" type="tSyntacticSemantic" />

element name="Price" type="xs:float" />

element name="Availability" type="tns:tWeight" />

element name="Reliability" type="tns:tWeight" />

element name="ProcessingTime" type="tns:tWeight" />

element name="Throughput" type="tns:tWeight" />

:element name="QoS">

complexType>

sequence>

element ref="tns:Price" minOccurs="0" />
element ref="tns:Availability" minOccurs="0" />
element ref="tns:Reliability" minOccurs="0" />

element ref="tns:ProcessingTime" minOccurs="0" />

:element ref="tns:Throughput" minOccurs="0" />

element name="qosScore" type="xs:double"/>

:any namespace="##other" minOccurs="0"

processContents="skip" maxOccurs="unbounded" />

</Xs:sequence>

</xs:complexType>

</xs:element>

73



<xs:element name="RequestOperation">

<xs:complexType>

<XS:sequence>

<xs:any namespace="##other" processContents="skip" minOccurs="0"
maxOccurs="unbounded" />

<xs:element name="Name" type="tSyntacticSemantic" minOccurs="0" />
<xs:element name="Capability" type="tSyntacticSemantic" minOccurs="0" />
<xs:element name="Inputs" minOccurs="0">

<xs:complexType>

<XS:sequence>

<xs:element name="input" type="tns:tParameter"

minOccurs="0" maxOccurs="unbounded" />

</Xs:sequence>

<xs:attributeGroup ref="tns:basicRequirementAttributes" />
</xs:complexType>

</xs:element>

<xs:element name="Outputs" minOccurs="0">

<xs:complexType>

<XS:sequence>

<xs:element name="output" type="tns:tParameter"

minOccurs="0" maxOccurs="unbounded" />

</Xs:sequence>

<xs:attributeGroup ref="tns:basicRequirementAttributes"” />
</xs:complexType>

</xs:element>

<xs:element ref="tns:QoS" minOccurs="0" />

</Xs:sequence>

<xs:attribute name="minDegreeOfMatch" type="tns:tPercentage"
use="optional" default="1.0" />

</xs:complexType>

</xs:element>

74



<xs:complexType name="tParameter'>
<XS:sequence>
<xs:element name="name" type="tns:tSyntacticSemantic" minOccurs="0"/>
<xs:element name="type" type="tns:tSyntacticSemantic" minOccurs="0"/>
</Xs:sequence>

<xs:attributeGroup ref="tns:basicRequirementAttributes" />

</xs:complexType>

<xs:element name="RequestService">

<xs:complexType>

<XS:sequence>

<xs:any namespace="##other" processContents="skip" minOccurs="0"
maxOccurs="unbounded" />

<xs:element ref="tns:ServiceName" minOccurs="0" />
<xs:element ref="tns:ServiceDescription" minOccurs="0" />
<xs:element ref="tns:ServiceDomain" minOccurs="0" />
<xs:element ref="tns:QoS" minOccurs="0" />

<xs:element ref="tns:RequestOperation" minOccurs="0"
maxOccurs="unbounded" />

</Xs:sequence>

<xs:attribute name="minDegreeOfMatch" type="tns:tPercentage"
use="optional" default="1" />

</xs:complexType>

</xs:element>

<xs:element name="ResponseOperation">

<xs:complexType>

<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="degreeOfMatch" type="tns:tPercentage"
use="required" />

</xs:complexType>

</xs:element>

75



<xs:element name="ResponseService'>

<xs:complexType>

<XS:sequence>

<xs:any namespace="##other" processContents="skip" minOccurs="0"
maxOccurs="unbounded" />

<xs:element ref="tns:ServiceName" />

<xs:element name="descriptionDocUrl" type="xs:anyURI"/>
<xs:group ref="tns:AdditionalServiceProperties" />

<xs:element name="interface" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<XS:sequence>

<xs:element ref="tns:ResponseOperation" maxOccurs="unbounded" />
</Xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>

</xs:element>

</Xs:sequence>

<xs:attribute name="degreeOfMatch" type="tns:tPercentage"
use="required" />

</xs:complexType>

</xs:element>

<xs:element name="ResponseServices'>
<xs:complexType>

<Xs:sequence>

<xs:element ref="tns:ResponseService" minOccurs="0"
maxOccurs="unbounded" />

</Xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="SUSQLRequest">

<xs:complexType>

76



<Xs:sequence>

<xs:element name="Where">

<xs:complexType>

<XSs:sequence>

<xs:element ref="tns:RequestService" maxOccurs="unbounded" />
</Xs:sequence>

<xs:attribute name="numberOfResults" type="xs:int" />
</xs:complexType>

</xs:element>

</Xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="SUSQLResponse">
<xs:complexType>

<xs:choice>

<xs:element ref="tns:ResponseServices" />
<xs:element name="Error">

<xs:complexType>

<Xs:sequence>

<xs:element name="code" type="xs:string" />
<xs:element name="desc" type="xs:string" />
</Xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="SUSQL">
<xs:complexType>
<xs:choice>

<xs:element ref="tns:SUSQLRequest" />

77



<xs:element ref="tns:SUSQLResponse" />

</xs:choice>

<xs:attribute name="version" type="xs:float" use="required"
fixed="1.0" />

</xs:complexType>

</xs:element>

</xs:schema>

78



APPENDIX B

SIMILARITY DEGREE CALCULATOR WEB SERVICE

This appendix lists the operations which are offered by the Similarity Degree Calculator Web

Service.

Table B.1: Operations Offered By Similarity Degree Calculator Web Service

Operation Name Operation Summary

GetSimilarity Calculates the similarity degree between
given two sentences
GetSimilarityUsingStrategy | Calculates the similarity degree between
given two sentences according to the given
strategy

79



APPENDIX C

DATABASE OPERATIONS HANDLER WEB SERVICE

This appendix lists the operations which are offered by the Database Operations Handler Web

Service.

Table C.1: Operations Offered By Database Operations Handler Web Service

Operation Name

Operation Summary

createDatabases

Constructs the crawler engine local database

sortServicesbyQOS

Sorts the resulting web services by their QoS
score

getServiceDescriptionAndMathcingDegree

Returns the web service and the matching de-
gree

getAlIURLsFromServiceDescriptionTable

Returns the web service URLs

getOntologies

Returns the all the domain ontologies’ root el-
ements

getOntology

Returns the details of a selected ontology

insertURL

Inserts a web service URL

insertServiceResponse

Inserts the response of a web service

insertServiceDescription

Inserts a web service description

insertQOSInformation

Inserts a web service QoS information

insertMatchingDegree

Inserts the matching degree of a web service
with the domain ontology

getMatchingDegreesofServices

Returns the matching degree of web services
with the domain ontology

80




