
1

QUERY INTERFACE AND QUERY LANGUAGE FOR DOMAIN SPECIFIC WEB
SERVICE DISCOVERY SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HİLAL ÖZDİL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2011

Approval of the thesis:

QUERY INTERFACE AND QUERY LANGUAGE FOR DOMAIN SPECIFIC WEB

SERVICE DISCOVERY SYSTEM

submitted by HİLAL ÖZDİL in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assist. Prof. Dr. Pınar Şenkul
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Department, METU

Assist. Prof. Dr. Pınar Şenkul
Computer Engineering Department, METU

Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering Department, METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Assoc. Prof. Dr. Erdoğan Doğdu
Computer Engineering Department, TOBB ETU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: HİLAL ÖZDİL

Signature :

iii

ABSTRACT

QUERY INTERFACE AND QUERY LANGUAGE FOR DOMAIN SPECIFIC WEB
SERVICE DISCOVERY SYSTEM

Özdil, Hilal

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Pınar Şenkul

September 2011, 80 pages

As the number of the published web services increase, discovery of the web services with the

desired functionality and quality is becoming a challenging process. Selecting the appropriate

web services among the ones that offer the same functionality is also a challenging task. The

web service repositories like UDDI (Universal Description Discovery and Integration) support

only the syntactic searchs. Quality of service parameters for the published web services can

not be queried over these repositories. We have proposed a query language that aims to

overcome these problems. It enables its users to query the web services both syntactically

and semantically. We also allow the users to specify the quality of service criteria which the

desired web services should satisfy. We have developed a graphical query interface to assist

the users in query sentence formulation process. The proposed work is developed as a sub-

module of the Domain Specific Web Service Discovery with Semantics (DSWSD-S) System.

Aforementioned query language and the query interface are explained in detail in this thesis.

Keywords: Web Service, Query Language, Query Interface, Semantic Query, Quality of Ser-

vice

iv

ÖZ

ALANA ÖZGÜ WEB SERVİS KEŞİF SİSTEMİ İÇİN SORGULAMA ARAYÜZÜ VE
SORGULAMA DİLİ

Özdil, Hilal

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yar. Doç. Dr. Pınar Şenkul

Eylül 2011, 80 sayfa

Web servis teknolojisinin gelişmesi ve kullanımının artmasıyla birlikte yayınlanan web servisler

arasından istenilen yetenek ve kalitede servislerin bulunması problemi ortaya çıkmıştır. UDDI

(Universal Description Discovery and Integration) gibi servis depoları sadece sözdizimsel ara-

mayı desteklemektedir. Ayrıca servislerin kalite puanı bilgileri de bu gibi depolarda sorgu-

lanamamaktadır. Bu çalışmada, web servislerin hem sözdizimsel hem de anlamsal olarak

sorgulanabilmesini, ayrıca arama sırasında servis kalite puanı gibi kriterlerin belirtilebilmesini

sağlayan bir web servis sorgulama dili ve sorgulama arayüzü geliştirmeyi amaçladık. Sunulan

çalışma, DSWSD-S (Domain Specific Web Service Discovery with Semantics) adlı alana

özgü web servis keşif sisteminin bir alt parçasıdır. Geliştirilen sorgulama dili ve kullanıcı

arayüzü bu tezde detaylandırılmıştır.

Anahtar Kelimeler: Web Servis, Sorgulama Dili, Sorgulama Arayüzü, Anlamsal Sorgu, Servis

Kalitesi

v

To my lovely family

vi

ACKNOWLEDGMENTS

I would like to thank to Pınar Şenkul for her supervision and guidance through the develop-

ment of this thesis. I would like to thank to my lovely, supportive family and my friends for

their belief in me. I also would like to thank Aselsan Inc. for their support on this whole

duration and work.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Thesis Organization . 3

2 RELATED WORKS . 4

2.1 Web Service Query Languages And Structures 4

2.1.1 UDDI Query API . 4

2.1.2 Grid Operation Language (GOL) 8

2.1.3 Quality of Service Query Language (QQL) 10

2.1.4 Unified Service Query Language (USQL) 12

2.2 Graphical User Interfaces For Web Service Querying 13

2.2.1 Graphical User Interface In FRWS Approach 13

2.2.2 Graphical User Interface For QQL 15

3 OVERVIEW OF DOMAIN SPECIFIC WEB SERVICE DISCOVERY WITH
SEMANTICS SYSTEM . 18

3.1 Overall Design of DSWSD-S System 18

3.2 Domain-Specific Crawler Layer . 19

viii

3.3 Domain-Specific Service Discovery Layer 21

4 GRAPHICAL USER INTERFACE IN DSWSD-S SYSTEM 22

4.1 Introduction . 22

4.2 Search Criteria Definition Panel . 23

4.3 Result Monitoring Panel . 27

5 QUERY LANGUAGE IN DSWSD-S SYSTEM 30

5.1 Why Simplified-USQL? . 30

5.2 Simplified-USQL (S-USQL) . 31

5.2.1 Language Structure . 31

5.2.1.1 S-USQL Request 31

5.2.1.2 S-USQL Response 32

5.2.2 Language Elements . 33

5.2.2.1 Removed Elements and Structures 33

priorityLevel Attribute and tPriorityLevel Type 33

ServiceProvider Element 34

Security Element 34

tCurrency Type 34

tPriceContext Type 34

tProcessingTimeUnit Type 34

ServiceTaxonomy Element and tTaxonomyScheme
Type 35

tQoSOperator and tQoS Types 35

tOrderByOption and tOrderByDirection Types 35

tServiceType Type 35

tNetworkType Type 36

tOperation Type 36

AdditionalOperationProperties Element Group 36

5.2.2.2 Retained Elements and Structures 36

tPercentage Type 36

Error Element 36

ix

5.2.2.3 Modified and Additional Elements and Struc-
tures . 37

basicRequirementAttributes Attribute Group . 37

AdditionalServiceProperties Element Group . 37

tSyntacticOperator and tSemanticOperator Types 37

tSyntactic and tSemantic Types 38

tParameter Type 38

tWeight Type 39

ServiceName Element 39

ServiceDescription Element 40

ServiceDomain Element 40

Price Element 40

Availability Element 40

Reliability Element 41

ProcessingTime Element 41

Throughput Element 41

QoS Element 42

Operation Elements 42

Service Elements 44

Services Element 45

USQLRequest Element 45

USQLResponse Element 46

USQL Element 46

5.3 Simplified USQL (S-USQL) Parser 47

6 QUERY EXECUTION PROCESS AND INTERACTION WITH OTHER MOD-
ULES OF DSWSD-S . 50

6.1 Introduction . 50

6.2 Modules Responsible For Query Execution 50

6.2.1 Graphical User Interface Module 50

6.2.2 S-USQL Parser Module 51

6.2.3 Similarity Degree Calculator Web Service 51

x

6.2.4 Database Operations Handler Web Service 51

6.3 Query Execution Process . 52

7 CASE STUDIES AND ANALYSIS . 54

7.1 Query with Single Keyword . 54

7.2 Query with Single Keyword and Domain Specification 56

7.3 Query with Custom Quality of Service Criteria 57

7.4 Query with Default Quality of Service Criteria 59

7.5 Query with Multiple Keywords and Custom Quality of Service Criteria 61

7.6 Query Execution Time Performance Analysis 62

8 CONCLUSION . 67

REFERENCES . 69

APPENDICES

A XSD OF S-USQL . 71

B SIMILARITY DEGREE CALCULATOR WEB SERVICE 79

C DATABASE OPERATIONS HANDLER WEB SERVICE 80

xi

LIST OF TABLES

TABLES

Table 7.1 Query Execution Times for Sample Query-1 63

Table 7.2 Query Execution Times for Sample Query-2 63

Table 7.3 Query Execution Times for Sample Query-3 64

Table 7.4 Query Execution Times for Sample Query-4 64

Table 7.5 Query Execution Times for Sample Query-5 65

Table B.1 Operations Offered By Similarity Degree Calculator Web Service 79

Table C.1 Operations Offered By Database Operations Handler Web Service 80

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Relationships Between UDDI Data Structures 6

Figure 2.2 General Architecture of FRWS Approach 9

Figure 2.3 General Form Of A GOL Sentence . 10

Figure 2.4 Sample QQL Query . 11

Figure 2.5 Conceptual Model Of USQL . 12

Figure 2.6 Graphical User Interface Of Service Grid 14

Figure 2.7 Graphical User Interface Of Retrieval Result 15

Figure 2.8 First Step Of QQL Query Formulation 16

Figure 2.9 Second Step Of QQL Query Formulation 16

Figure 2.10 Third Step Of QQL Query Formulation 16

Figure 2.11 Fourth Step Of QQL Query Formulation 17

Figure 3.1 DSWSD-S System Architecture . 19

Figure 3.2 DSWSD-S Database Architecture . 20

Figure 3.3 Domain-Specific Crawler Layer Architecture 20

Figure 4.1 Interaction Between GUI Node and Crawler Nodes 23

Figure 4.2 Main Page of DSWSD-S GUI . 23

Figure 4.3 Keyword Specification Widget . 24

Figure 4.4 Matching Operator Choice Widget . 25

Figure 4.5 QoS Parameters Panel . 25

Figure 4.6 Domain Ontologies Tabs . 27

Figure 4.7 Maximum Number of Results Limitation Widget 28

xiii

Figure 4.8 User Action Widgets . 28

Figure 4.9 Results Table . 29

Figure 4.10 No Result Warning . 29

Figure 5.1 USQL Request Structure . 32

Figure 5.2 S-USQL Request Structure . 32

Figure 5.3 USQL Response Structure . 33

Figure 5.4 S-USQL Response Structure . 33

Figure 5.5 tPercentage . 36

Figure 5.6 Error . 37

Figure 5.7 basicRequirementAttributes . 37

Figure 5.8 AdditionalServiceProperties . 38

Figure 5.9 tSyntacticSemanticOperators . 38

Figure 5.10 tSyntacticSemantic . 39

Figure 5.11 tParameter . 39

Figure 5.12 tWeight . 39

Figure 5.13 ServiceName . 40

Figure 5.14 ServiceDescription . 40

Figure 5.15 ServiceDomain . 40

Figure 5.16 Price . 41

Figure 5.17 Availability . 41

Figure 5.18 Reliability . 41

Figure 5.19 ProcessingTime . 41

Figure 5.20 Throughput . 42

Figure 5.21 QoS . 42

Figure 5.22 RequestOperation . 43

Figure 5.23 ResponseOperation . 43

Figure 5.24 RequestService . 44

Figure 5.25 ResponseService . 44

xiv

Figure 5.26 ResponseServices . 45

Figure 5.27 SUSQLRequest . 45

Figure 5.28 SUSQLResponse . 46

Figure 5.29 SUSQL . 46

Figure 6.1 Interaction Between Modules . 52

Figure 7.1 Sample Query-1 . 54

Figure 7.2 Response for Sample Query-1 . 55

Figure 7.3 Screen for Sample Query-1 . 55

Figure 7.4 Sample Query-2 . 56

Figure 7.5 Response for Sample Query-2 . 56

Figure 7.6 Screen for Sample Query-2 . 57

Figure 7.7 Sample Query-3 . 57

Figure 7.8 Response for Sample Query-3 . 58

Figure 7.9 Screen for Sample Query-3 . 58

Figure 7.10 Sample Query-4 . 59

Figure 7.11 Response for Sample Query-4 . 60

Figure 7.12 Screen for Sample Query-4 . 60

Figure 7.13 Sample Query-5 . 61

Figure 7.14 Response for Sample Query-5 . 61

Figure 7.15 Screen for Sample Query-5 . 62

Figure 7.16 Query Execution Time Performance Graph 66

xv

CHAPTER 1

INTRODUCTION

As the number of the published web services increase, they become more prevalent nowa-

days. Accordingly, discovery of the web services with the desired functionality and quality is

becoming a challenging process. Selecting the appropriate web services among the ones that

offers the same functionality is also a rocky road.

In the literature, most of the web service discovery systems collect the web services in a

central registry. As the number of the published web services increase, these registries become

overloaded and a scability issue occurres. Another drawback of these solutions is that, they

are incompatible with each other. There are heteregenous service registries like UDDI[9]

or ebXML[12] and all of them provides different specifications. Therefore, the web service

discovery work becomes more complicated for the web service consumers. The users need

to spend too much time to visit different user interfaces of different solutions. In addition,

he/she needs to understand the usage of their interface. The user is also exptected to know

or learn quickly the query language or structure that these solutions provide for web service

discovery.

UDDI (Universal Description, Discovery and Integration) and ebXML (Electronic Business

using eXtensible Markup Language) are the most popular service registries. Both of them

provide ways to publish and consume services, but their specifications are limited. These

registries have the following drawbacks:

• They only support keyword-based searches and do not have a rich query interface to

enable the user to specify his/her needs.

• They do not control the life-cycle of the services they advertised, they are disconnected

1

from them. Therefore, these registries do not know whether the services advertised are

alive or reliable to use.

• These registries do not offer quality of service information, therefore selecting the ap-

propriate service among the ones offering same functionality becomes a hard task.

To overcome these problems, a web service discovery framework is designed, namely Domain

Specific Web Service Discovery with Semantics (DSWSD-S) [7,8]. The system aims to make

the web service discovery process more efficient, faster, reliable and scalable. It consists of the

web crawlers each of which specialized on specific domains by means of ontology definitions.

The system also offers user-friendly graphical user interface to enable its users to specify their

requirements that the desired web services should satisfy.

Within the work done in this thesis, we propose the aforementioned graphical user interface.

In addition, we developed a web service query language to be used in DSWSD-S System.

1.1 Motivation

While designing the DSWSD-S System, we found that the web service discovery solutions

proposed in the literature does not consider the user factor. Therefore, the main motivation

of this thesis is to design a search interface and query language to enable the users to specify

their requirements easily. The search tools provided in the literature are not user-friendly

and they are not easy-to-use. The work proposed in this thesis, directs the users to specify

the search criteria and requirements, which the desired web services should satisfy, while

encapsulating them from the technical details of the query language used in background.

The users construct web service queries easily without any knowledge on the query language

implemented in system via the guidance provided by the graphical user interface.

1.2 Contributions

The proposed work in this thesis is developed as a part of the Domain Specific Web Service

Discovery with Semantics (DSWSD-S) System. The main contributions of this thesis are as

follows:

2

• A user-centric query interface for web service discovery is described.

• A web service query language is developed for DSWSD-S System.

• Comparison between service query languages and query mechanisms are discussed.

• The DSWSD-S System and the interaction of the proposed work with other parts of the

system is given.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 presents the related work on web service selection and web service query languages.

Chapter 3 explains the overall design of Domain Specific Web Service Discovery with Se-

mantics (DSWSD-S) System and its architectural layers.

In Chapter 4 the graphical user interface designed for DSWSD-S System is described in detail.

Chapter 5 is about the Simplified-Unified Query Language (S-USQL). The language elements

and structures are detailed in this chapter.

In Chapter 6 we explain the interactions between the proposed work and the other parts of the

DSWSD-S System in the scope of a query execution process.

Chapter 7 represents the usage of the proposed query language and the graphical user interface

with samples.

The thesis ends up in the conclusion part given in Chapter 8.

3

CHAPTER 2

RELATED WORKS

Effective web service querying topic is studied by several researchers in the literature. How-

ever, a very small part of them studied on the user-interaction in web service querying process.

In this chapter, we will explain the studies based on the web service selection and the query

languages defined for this purpose. In addition to that we will describe the studies that em-

phasized on graphical user interface designs that enable the users to search for web services.

In Section 2.1, query languages and structures defined in the literature to query the services

are described. Section 2.2 explains the graphical user interface works proposed for effiecient

service search and selection.

2.1 Web Service Query Languages And Structures

2.1.1 UDDI Query API

Universal Description, Discovery and Integration (UDDI) [9] is a standardized directory ser-

vice where businesses can publish and discover web services. UDDI is used by the service

providers to advertise the services they offer and it is used by the service consumers to dis-

cover the web services that satisfy their requirements.

With the UDDI specifications the followings are defined:

• SOAP APIs to enable the UDDI users to query and to publish web services.

• XML Schema schemata of the registry data model and the SOAP message formats.

• SOAP APIs’ WSDL definitions .

4

• UDDI registry definitions of identifiers and categories which can be used to identify

and categorize the UDDI registrations.

UDDI uses WSDL to describe interfaces to web services. Additionally, cross platform pro-

gramming features are addressed by adopting SOAP, known as XML Protocol messaging

specifications.

Conceptually, a business can publish three types of information into a UDDI repository:

1. White Pages: Contains the basic contact information about a business. It is composed

of business name, address, contact information, and unique identifiers. This informa-

tion enables requestors to find the published web services based upon the business

identification.

2. Yellow Pages: Contains the information which describes a web service using catego-

rizations in other words using taxonomies. This information enables requestors to find

the published web services based upon its categorization.

3. Green Pages: Contains the technical information which defines the behaviors and of-

fered operations of a web service. This information contains pointers to the grouping

information of the web services and where the web services are located.

As we mentioned before, UDDI defines a set of XML Schema definitions that describe the

data models and SOAP message formats used by different specification APIs. The specifica-

tions include:

• UDDI Replication

• UDDI Operators

• UDDI Programmer’s API

• UDDI Data Structures

Inside the UDDI Programmer’s API, there two different API specification: UDDI Publishing

API and the UDDI Inquiry API. UDDI Publishing API is used to create, store or update

5

information about a web service registered in a UDDI registry. UDDI Inquiry API is used to

discover and obtain the details of a web service registered in a UDDI registry.

In the scope of this thesis, we have emphasized on the UDDI Inquiry API. Before going into

details of the API, explaning the data structures briefly would be helpful to understand the

operations defined in the API. The relationships between the UDDI data structures are given

in Figure 2.1.

Figure 2.1: Relationships Between UDDI Data Structures

• businessEntity: structure composes of a business’s basic information which are business

contact information, categorization, identifiers, descriptions and relationships to other

businesses.

• publisherAssertion: structure indicates public relationships between two businessEntity

structures. A relationship between two businessEntity structures becomes visible to the

public when both businesses created the same relationship as separate publisherAsser-

tion documents.

• businessService: structure is used to represent the set of services that are offered by a

business. It is contained inside businessEntity. One businessEntity structure may con-

tain one or more businessService structures. The businessService structure is a reusable

6

structure, basically it can be used by different businessEntity structures.

• bindingTemplate: structure contains the technical descriptions and the access point

URL of a service, but it does not contain the service’s specifications. A businessService

composes of one or more bindingTemplate structures.

• tModel: structure is used to define the behavior of a serb service. A tModel contains

the needed information to interact with a web service. The tModel structure does not

provide the web service’s specification directly, it contains pointers to the locations of

the actual specifications.

The SOAP messages which are defined within UDDI Inquiry API start with the “find” word.

Below the operations that the API offers for web service discovery are given:

• find binding: This operation is used to find the bindingTemplate elements in the UDDI.

It returns a structure named bindingDetail which holds a list of the resulting bind-

ingTemplate elements.

• find business: This operation is used to find the businessEntity elements. It returns a

structure named businessLşst which holds a list of the resulting businessEntity elements.

• find relatedBusinesses: This operation is used to find businessEntity elements that have

a relationship with the businessEntity specified as parameter. It returns a structure

named relatedBusinessesList which holds a list of the resulting related businessEntity

elements.

• find service: This operation is used to find the businessService elements in the UDDI. It

returns a structure named serviceList which holds a list of the resulting businessService

elements.

• find tModel: This operation is used to find the tModel elements in the UDDI. It returns

a structure named tModelList which holds a list of the resulting tModel elements.

All of the operations listed above, retrieves some common arguments: authenticatin informa-

tion, qualifiers for the search and name. Here is the important argument is the qualifiers which

tells us the UDDI’s search capability. Some of the qualifiers which can be used in a UDDI

query are:

7

• approximateMatch

• caseInsensitiveMatch

• caseSensitiveMatch

As can be seen, the qualifiers are all defined for syntactic matching of the keywords. UDDI

does not offer semantic matching feature and related qualifiers. In addition to this, UDDI does

not offer any information about the quality of service parameters about the services registered

to it.

2.1.2 Grid Operation Language (GOL)

Hai Zhuge and Jie Liu [5] are proposed an approach and named it as Flexible Retrieval of Web

Services (FRWS). FRWS is composed of three layers: the graphical user interface that helps

the users in query sentence production, an SQL-like query language and finally the UDDI

repositories and an orthogonal service space structure over these repositories, that they call

as Service Grid. In this Service Grid space, they established the multi-valued specialization

relationships between services.

The proposed Service Grid model can be expressed in 3 dimensions: classification-type,

category and content. The classification-type dimension reflects the service classification

standards where the category dimension indicates the detail-classified hierarchy related to a

classification type. Finally, functionality of the services are indicated through the content di-

mension. The similarity degrees between services, the similarity degrees between tModels

and the multi-valued specialization relationships are kept in Service Grid structure.

There are five different specialization relationship types between tModels and between web

services. These are:

1. Identical-specialization relationship

2. Partial-specialization relationship

3. Extension-specialization relationship

4. Revision-specialization relationship

8

5. Non-specialization relationship

The details and the conditions that differ these relationships are out of the scope this the-

sis, so they will not be detailed here. The detailed formulations of the conditions for these

relationships can be found at [5].

The general architecture of the FRWS approach is given in Figure 2.2.

Figure 2.2: General Architecture of FRWS Approach

To retrieve the desired web services in FRWS approach, Hai Zhuge and Jie Liu defined an

SQL-like, XML based query language and named it as Grid Operation Language (GOL). The

general form of a GOL sentence is given in Figure 2.3.

Here, the Service-Repository element defines the registered web services. The registered

9

Figure 2.3: General Form Of A GOL Sentence

web services can be either local registered services or universal registered services. The

Condition-expressions element is a Boolean expression. It is composed of the source name,

the multi-valued specialization relationships and the similarity degree between the source and

the target.

2.1.3 Quality of Service Query Language (QQL)

In [6] Delnavaz Mobedpour, Chen Ding and Chi-Hung Chi propose a web service query lan-

guage that takes quality of service parameters in consideration. The proposed QoS Query

Language (QQL) enables its users to specify the quality of service parameters both numeri-

cally and linguistically.

According to the QQL definition a QoS query is represented as a six-tuple: qID, uID, sbTime,

timeConstraints, qosConstraints, dataSource. If we look over these fields in detail:

• qID refers to the query identifier.

• uID refers to requestor identifier.

• timeConstraints contains different constraints based on the time. These are invocation

start date, end date, duration of each usage, and frequency of usage. Invocation start

date field shows the date when the service is invoked firstly and invocation end date

field represents the date when the service invoked lastly. Duration of usage field refers

to the amount of time how long the service is used in each invocation. Finally, the

frequency of usage field is defined to show how often the service is invoked during the

period from invocation start date to invocation end date.

10

• dataSource refers to the data source from where the selection will be done.

• qosConstraints contains the constraints about the quality of service choices of the re-

questor. By default, it is defined with eight properties: name, type, unit, tendency,

preference, relaxation order, weight and values. Name attribute shows the name of

the quality of service parameter. Type refers to the data type of the parameter where

Unit show the measurement unit of the quality of service parameter. Tendency refers

to the user’s choice on the parameter. If the Tendency is positive then this means the

requestor prefers a higher value and if it is negative then this means the user prefers a

lower value. Preference attribute shows the user’s choice about the order of the quality

of service parameters. If the requestor specified N quality of service parameters, then

this means there N different Preference value where 1 refers to the most preferred one.

Relaxation order refers to the relaxation order choice of the requestor. Its values are

complement of the Preference values. Basically, if a parameter is preferred mostly then

this means it should be relaxed lastly. The Weight attribute represents the preference

order. It is not specified by the requestor explicitly, instead it is calculated by normal-

Figure 2.4: Sample QQL Query

11

izing the Preference value into [0,1] range. Finally, the Values attribute represents the

user’s requirement on the attribute’s value.

A sample QQL query sentence is given in Figure 2.4.

By enabling its users to specify the quality of service criteria both numerically and linguis-

tically, the QQL language differs from the similar works in the literature with this feature.

However, QQL has some drawback too. As the UDDI Query API and GOL, QQL supports

only syntactic queries, it does not offer needed structures for semantic searches.

2.1.4 Unified Service Query Language (USQL)

Aphrodite Tsalgatidou and Michael Pantazoglou defined the Unified Service Query Language

(USQL) with the proposed work in [1,2,3]. USQL is the base language that we use and extend

in this thesis.

Figure 2.5: Conceptual Model Of USQL

USQL is an XML-based query language that allows its users to query heterogenous services

12

(web services, grid services, peer-to-peer services) syntactically and semantically. The lan-

guage offers query and response structures independent from the service type and the techni-

cal details of the service registry where the services are registered. In addition to this, USQL

language definition supports specifying the quality of service criteria.

Due to its support in querying heterogenous service types it allows to specify the service

provider information. It also allows to define the domain information in order to make se-

mantic matching. In addition to this, USQL enables its users to define input and output search

criteria for the operations for the desired services.

The specification of the USQL is based on the conceptual model given in Figure 2.5. Ac-

cording to the conceptual model, a service provider provides one or more services, which are

published on one or more registries. The registries are called as brokers in their conceptual

model. A service belongs to a classification and offers one or more capabilities. The capa-

bilities expose an interface defining the input messages they take and output messages they

return. Basically, the capability elements are used to define the functional properties of the

services.

Besides the functional properties, a service can have the non-functional properties as quality

of service parameters. Each quality of service parameter of a service has a name, that informs

of its semantics, and a value.

The specification of the USQL is given in [3]. However, the language is defined with general

usage purposes and it does not have a corresponding query interface or query parser engine.

In this thesis, we have defined a sub-set of USQL and implemented a query parser engine

for the Domain Specific Web Service Discovery with Semantics (DSWSD-S) System. The

elements and structures defined within the USQL specification are explained and compared

to the ones defined in our query language, S-USQL, in Chapter 5 in detail.

2.2 Graphical User Interfaces For Web Service Querying

2.2.1 Graphical User Interface In FRWS Approach

In [5], a graphical user interface for FRWS approach to retrieve the desired web services

is proposed. The needed source and target information, and the multi-valued specialization

13

relationship is retrieved from the user via this graphical user interface. A corresponding GOL

statement is formulated with these information. The interface for Service Grid is given in

Figure 2.6.

Figure 2.6: Graphical User Interface Of Service Grid

The web service query steps via this interface are as follows:

1. The user specifies the source type if it will be the web service or the tModel.

2. The user selects the registered service type, whether they are registered locally or uni-

versally.

3. The user specifies the source name. The interface also helps him/her to find the source

name by clicking the “Find Source” link.

4. The user chooses the desired multi-valued specialization relationship between the source

and the target.

5. The user specifies the desired similarity degree between the source and the target.

6. The user starts the execution via clicking on the “Search” button.

14

When the user clicks on the “Search” button, the inputs he/she entered are gathered to for-

mulate a GOL statement. The Service Grid searches and retrieves the desired web services or

tModels from the selected registry and lists to the user in the interface given in Figure 2.7.

Figure 2.7: Graphical User Interface Of Retrieval Result

The FRWS approach, queries the desired web services and the tModels, whose criteria are

specified as GOL statements, over the UDDI search API. As in the UDDI repositories, this

approach supports only the syntactic queries. It also does not consider the quality of service

parameters which play very important role in order to differentiate the resulting services with

the same functionality. In addition to this, the proposed graphical user interface forces users

to specify a source web service or tModel to trigger a query process. The user must specify

a source and the relationship of it with the desired target. However, this is a challenging task

for a user and makes the proposed graphical user interface a hard-to-use one.

2.2.2 Graphical User Interface For QQL

In [6], Delnavaz Mobedpour, Chen Ding and Chi-Hung Chi propose a graphical user inter-

face to enable the users to formulate QQL queries easily. They aimed to avoid putting too

much burden on the user to define the query sentences. Therefore, they prpose the graphical

15

user interface gicen in Figures 2.8, 2.9, 2.10 and 2.11 to guide the user in query sentence

production.

Figure 2.8: First Step Of QQL Query Formulation

Figure 2.9: Second Step Of QQL Query Formulation

Figure 2.10: Third Step Of QQL Query Formulation

By using the interface given in Figure 2.8, the user specifies the quality of service parameters

that he/she intended the desired web services should satisfy. For every quality of service

parameter the user chooses, a QoSContstraint element is created in the query. By using the

interface given in Figure 2.9, the user defines the data types and the values for the quality of

service parameters he/she selected in Figure 2.8. After defining their types and values, he/she

16

defines the preference by using the interface given in Figure 2.10.

After specifiying all these values, the user defines the time constraints via the interface given

in Figure 2.11.

Figure 2.11: Fourth Step Of QQL Query Formulation

The proposed user interface is designed as a user-friendly and easy-to-use interface. It guides

its users in query formulation so the user does not have to deal with the technical details of

the QQL. Basically, the graphical user interface has a user-centric design and differs from the

similar works done in the literature with this feature.

17

CHAPTER 3

OVERVIEW OF DOMAIN SPECIFIC WEB SERVICE

DISCOVERY WITH SEMANTICS SYSTEM

The graphical user interface and query language, which are presented in this thesis, are de-

veloped as a part of the Domain Specific Web Service Discovery with Semantics (DSWSD-

S) System [7,8]. In this chapter, DSWSD-S System and its architectural layers will be de-

scribed. In Section 3.1 overall design of the DSWSD-S System is given. Section 3.2 explains

the domain-specific crawler layer and Section 3.3 is about domain-specific service discovery

layer.

3.1 Overall Design of DSWSD-S System

DSWSD-S System is a web service discovery system that consists of domain-specific subsys-

tems. By saying domain-specific subsystems, we mean that the subsystems are specialized

for an ontology definition. Each domain-specific subsystem crawls over the web, discovers

the web services related to its own ontology and keeps these discovered web services in its

local database.The system aims to provide the capabilities listed below:

• Controlling the life-cycle of the web services to keep them up-to-date

• Making the search process on different registries easier by encapsulating them on a

common search interface

• Being scalable to keep up with the increasing number of web services and domains

• Providing automated quality of service calculation

18

• Providing both syntactic and semantic web service discovery queries

The DSWSD-S System is composed of two layers: the domain-specific crawler layer and the

domain-specific service discovery layer. These layers will be detailed in Sections 3.2 and 3.3.

The overall architecture of the system is given in Figure 3.1.

Figure 3.1: DSWSD-S System Architecture

3.2 Domain-Specific Crawler Layer

The main responsibility of a domain-specific crawler layer is to construct the local database,

whose arcihtecture is given in Figure 3.2, of the domain-specific subsystem. Local database

generation process starts with the acquisition of the web service addresses from the web ser-

vices’ WSDL files. After that, the content of the web service is downloaded and controlled if

it is related to the subsystem’s own ontology. If so, the crawler validates the web service by

calling its operations with appropriate parameters to see whether the web service is alive or

not. Next, the validated web service is sent to the extraction module. The extraction module

deals with the semantic annotion process. With semantic annotation, it is determined whether

the web service fulfills the capability it advertised or not. After the verification phase, veri-

fied web services are added to the crawler’s local database. The execution of domain-specific

crawler layer is given in Figure 3.3.

In order to keep the web services up-to-date, aforementioned crawling process continues in a

19

Figure 3.2: DSWSD-S Database Architecture

Figure 3.3: Domain-Specific Crawler Layer Architecture

cycle. The crawlers update their local databases by adding the newly published web services,

updating the ones’ status kept in the database and removing the web services that lost their

aliveness.

The quality of service calculation also takes place in this layer. An automated quality of ser-

vice calculation module traverses the local database in order to produce the quality scores of

the web services kept. There are five different quality of service criteria handled in DSWSD-

S System: availability, reliability, response time, throughput and price. To produce the total

quality score from these parameters, the quality calculation module uses an algorithm that

gives weights to all of these quality aspects. It also considers the age factor. The explanation

20

of the algorithm is out of the scope of this thesis, therefore we will not mention about its

details.

3.3 Domain-Specific Service Discovery Layer

The domain-specific service discovery layer enables the users to query the DSWSD-S System

by providing a graphical user interface. This graphical user interface designed in a form that it

allows the user to specify the keyword(s) he/she looks for, the domain information that he/she

is interested in and the service quality criteria that the desired services should have. The

keyword(s) and the other information gathered from the user are transformed into an S-USQL

query sentence. Then this query sentence is passed to a parser module that can interpret the

requirements in the query. The parser decides the crawler that will be searched according the

parameters specified in the query sentence. After reading the web services fulfilling the user’s

requirements from the corresponding crawler’s database, it sends the results to the graphical

user interface to be shown to the user.

This layer has a central structure. Basically, while there are more than one crawler layers,

there is only one discovery layer. The domain-specific service discovery layer knows all the

necessary information to access all the existing crawlers in the system. This layer and the

modules contained in it are the scope of this thesis. And they are explained in detail in the

following Chapters 4 and 5.

21

CHAPTER 4

GRAPHICAL USER INTERFACE IN DSWSD-S SYSTEM

4.1 Introduction

The graphical user interface is the only interaction point with the user in DSWSD-S System.

The user can find the web services that match both syntactically and semantically with the

keywords he/she entered via the graphical user interface. The user is also enabled to specify

the Quality of Service (QoS) criteria that the searched services are intended to obey.

In this thesis, we developed a user-friendly query interface, to enable the users to reach the

web services easily. It encapsulates the technical details of the query execution process from

the user while directing him/her to enter the needed information for a web service search.

As mentioned in Section 3 there are several crawler nodes in DSWSD-S System. All of these

crawler nodes run on dedicated computers. Each of the nodes has its own local database that

keeps the validated and verified web services that match the crawler’s own domain (ontology).

However in DSWSD-S System there is only one graphical user interface node. It communi-

cates with whole crawler group. The interaction between the graphical user interface node

and crawler nodes is given in Figure 4.1.

In the system’s initialization process, the graphical user interface knows only one crawler

access information. It gets this information from a configuration file. After that it commu-

nicates with this crawler node and retrieves all other crawler’s access information too. Then

it retrieves the domain information from all these nodes and shows to the user so that the

user can query the domain that he/she is interested in. The graphical user interface node also

periodically reads the crawlers’ access information to keep the query interface up-to-date.

With this periodical polling mechanism, addition or deletion of a domain-specific crawler is

22

Figure 4.1: Interaction Between GUI Node and Crawler Nodes

reflected to the query interface immediately.

Figure 4.2: Main Page of DSWSD-S GUI

When the user enters the DSWSD-S System, he/she is presented with the screen given in

Figure 4.2. The left panel is designed to retrieve the parameters and criteria from user, which

will be used in query production. The right one is the panel where the user can monitor the

search results. These panels will be explained in detail in the following sections.

4.2 Search Criteria Definition Panel

The left panel in the graphical user interface is the search criteria and parameters definition

panel. If we examine this panel in detail, as shown in Figure 4.3, there is a text box widget at

the upper part of the panel in order to allow the user to enter the keywords he/she searches for

23

in a web service’s name.

Figure 4.3: Keyword Specification Widget

Just below this keyword box, there is a choice widget to enable the user to specify the opera-

tion used in matching process as shown in Figure 4.4. By using this widget user can specify

if he/she wants his/her keyword should be matched syntactically or semantically or in both

way. If the user does not choose any choice from this widget, the keyword will be matched

both syntactically and semantically.

Just below this keyword box, there is an “Advanced Search” link. Whenever the user clicks

this link, a hidden panel, quality of service parameters panel, is opened. In Figure 4.5, this

QoS panel is shown.

By using this panel, the user can choose whether to use the default QoS parameter values or

to specify his/her custom values. There are five different quality of service criteria handled in

DSWSD-S System: availability, reliability, response time, throughput and price.

Availability of a web service represents the accessibility of it. Basically, it refers to whether

a web service is ready for use or not at the invocation time. In case of a call, if it returns any

response this means that the web service is available. If does not return any response or raises

24

Figure 4.4: Matching Operator Choice Widget

Figure 4.5: QoS Parameters Panel

any exception then it means that the invoked service is unavailable.

Reliability is the quality of service parameter of a web service that represents the stability of

the web service. If it returns the same result when invoked with the same parameter at different

time periods then it means the web service is reliable. If it responses with different results

25

every time for the same parameter than it means the web service is not reliable. Reliability of

a service can be thought as the consistency of its quality.

Response Time of a web service represents the desired processing time of the operations that

the web service offers. Meanly, it is the amount of the delay between times the service is

invoked and it returns response.

Throughput of a web service represents the total number of calls that the web service can

handle concurrently.

Finally the price of a web service refers to the desired cost that should be paid for calling it.

Actually, the price is not a real quality of service parameter, but it is also used to filter the web

services found. Therefore its value is retrieved from the user by using the same panel with the

quality of service parameters mentioned above.

Except from the price parameter, all other parameters are defined in the range [0-100]. There-

fore, the user is allowed to give the parameter values in these ranges by using scale type

widgets in graphical user interface. The parameter values are used as weights of them in

quality of service score calculation algorithm. As mentioned before, the user is enabled to

use whether default weights for these parameters or to define his/her own weights. If the user

chooses to use the default weights, then all of the parameters’ weights are considered to be

equal as having the value 50. In cases where the user did not click on “Advanced Search”

link, means does not intend to specify quality of service parameters, the weights are set to

their default values again.

Just below the quality of service parameters definition panel, which becomes visible by press-

ing “Advanced Search” link, the domains (ontologies) associated with the crawler nodes in

the system are pointed out as tabs as shown in Figure 4.6.

Neither the keyword specification nor the ontology choice is mandatory. If the user specifies

both the keyword and the domain information, then the matching degree between the keyword

and the domain ontology is calculated. The web services that belong to the selected domain

and that satisfy the calculated matching degree are retrieved from the database and presented

to the user. If he/she does not specify the keyword but chooses the domain ontology, then all

of the web services kept in local database of the crawler node are retrieved and presented to

the user. The third option is that he/she enters the keyword but does not specify the domain

26

Figure 4.6: Domain Ontologies Tabs

ontology to search for. In this case, the keyword is matched to all existing crawler nodes’

domain ontologies, and the crawler node whose domain ontology has the highest matching

degree is selected for searching. Actually there is one more option as neither keyword nor

domain ontology selection is done. As can be guessed, in this case no search is done.

The user can limit the maximum number of best matching results to be shown by using the

widget at the lower part of the left panel given in Figure 4.7. However if he/she limits the

maximum number of results as 0, then the system interprets this as “bring all the services

found”.

At the bottom of the left panel, buttons for the actions that the user can trigger are located as

shown in Figure 4.8. When the user clicks on the “Search” button at the bottom part of the

left panel, the query execution is triggered with all the parameters he/she entered. And if the

user clicks on the “Clear” button, all the parameters and criteria he/she entered is cleared.

4.3 Result Monitoring Panel

The results that are found after a query exeution are shown to the user at the right panel of

the graphical user interface. Table-type widget is thought to be more appropriate and chosen

to present the resulting web services. The web service name, web service URL, the web

service description information and the mathing degree of the keyword and the found web

27

Figure 4.7: Maximum Number of Results Limitation Widget

Figure 4.8: User Action Widgets

28

service (relevance of the keyword with the web service) are presented to the user in the related

columns of the table as shown in Figure 4.9.

Figure 4.9: Results Table

If no result web service can be found after a query execution, then the user is informed about

the situation via a warning text as given in Figure 4.10.

Figure 4.10: No Result Warning

29

CHAPTER 5

QUERY LANGUAGE IN DSWSD-S SYSTEM

5.1 Why Simplified-USQL?

In the literature there are several web service query languages as mentioned in Chapter 2.

However, all of them have some certain drawbacks. Some of them do not support semantic

searches while some of them do not offer quality of service criteria specification. In order to

overcome these problems and satisfy the needs of the DSWSD-S System, we have developed

the Simplified-USQL (S-USQL) language.

The reasons why we have developed a USQL-based [1,2,3] new language is as follows:

• USQL is defined for general usage purposes and it does not have a corresponding lan-

guage parser engine.

• USQL aims to discover different types of services like web services, grid services and

peer-to-peer services, but in DSWSD-S System we are only interested in discovery of

web services.

• In DSWSD-S System, some of the informations which can be specified in a USQL

query is not provided. Therefore, we have defined a sub-set of the USQL language.

By defining S-USQL language, we also aimed:

• To make the graphical query interface, that is offered within the DSWSD-S System, re-

placable with another graphical user interface that complies with the defined language.

• To make the web service crawler engines interoperable with a standard query language.

30

• To make the DSWSD-S System scalable. The graphical user interface makes queries

and receives reponses with the defined language, therefore another system that complies

with the S-USQL can be easily integrated to DSWSD-S System.

5.2 Simplified-USQL (S-USQL)

Simplified-USQL, briefly S-USQL, is a subset of the USQL language, which is mentioned

in Section 2.1.4. Actually, it is a specialized subset to satisfy the needs of the DSWSD-S

System. Like its super-set USQL, S-USQL is an XML-based language definition. All of the

language elements are defined via an XSD file.

While creating the S-USQL language, some of the element definitions from USQL, which

are not taken into consideration in DSWSD-S System, are removed from the language spec-

ification. In addition to this, some new elements are also added, like new quality of service

parameters.

5.2.1 Language Structure

S-USQL is used for producing queries and responses in a web service discovery process. The

information specified by the requestor of the web services are transformed into related struc-

tures defined in S-USQL. This information, consists of the search criteria and the parameters

that the resulting web services should satisfy. S-USQL Request element is used for the formu-

lation of the queries and the S-USQL Response element is used for representing the resulting

web services. The structures of these elements are explained in the following sections.

5.2.1.1 S-USQL Request

The specification of USQL Request message abstract model is given as Figure 5.1.

As seen in the Figure 5.1, the USQL Request message comprises two parts: projection and

criteria parts. Projection part enables the requestor to specify the information that he/she

wants to see in the resulting services. The criteria part enables him/her to specify the search

criteria and parameters that will be applied in a query process.

31

Figure 5.1: USQL Request Structure

In S-USQL, criteria part is taken into language definition while the projection part is removed.

Due to the static representation in DSWSD-S System, the user can not tell the system which

fields he/she wants to display in resulting web services. The fields to be shown to the user

from the result web services are pre-defined. So the abstract model of the S-USQL Request

element is structured as in Figure 5.2.

Figure 5.2: S-USQL Request Structure

5.2.1.2 S-USQL Response

The specification of USQL Response message abstract model is given as Figure 5.3.

As seen in the Figure 5.3, the USQL Response message comprises two parts: resulting ser-

vices or error parts. These two parts are alternative to each other. An USQL Response mes-

sage can contain only one of them at the same time. Resulting services part is the part con-

veying all the result services found in respective query process. The error part is the one that

is used when the query is not completed successfully.

32

Figure 5.3: USQL Response Structure

In S-USQL, both of these part definitions are covered. Therefore, the S-USQL Response is

structured as in Figure 5.4.

Figure 5.4: S-USQL Response Structure

5.2.2 Language Elements

In this section, we will explain the S-USQL language elements and structures in detail. We

will also discuss how these elements are combined to produce query sentences and their corre-

sponding responses. When constructing a sub-set of the USQL language as S-USQL, some of

the element and attribute definitions that are not handled in DSWSD-S System are removed.

We will firstly explain these elements and attributes and give the reasons of the removal. After

that we will explain the retained and newly added elements.

5.2.2.1 Removed Elements and Structures

priorityLevel Attribute and tPriorityLevel Type priorityLevel attribute is used to indicate

the priority of an element in USQL. It is defined in the type tPriorityLevel. This type contains

two values as low and high. Due to the fact that we do not prioritize any search criteria in

33

DSWSD-S System, priorityLevel element and corresponding tPriorityLevel type definitions

are not contained in S-USQL definition.

ServiceProvider Element ServiceProvider element is used to allow the users to specify the

provider of the services he/she looks for in USQL. However, in DSWSD-S System crawler

nodes’ local databases, service provider information is not kept. Therefore, the user is not

enabled to specify such a search criteria in a web service query. Because of this reason

ServiceProvider element’s definition is removed from S-USQL language.

Security Element Security element is used to specify the desired security protocol for the

requested service in USQL. However, in DSWSD-S System security protocol information is

not taken into consideration while searching and extracting the web services. Therefore the

Security element’s definition is removed from S-USQL language.

tCurrency Type tCurrency type is used to specify the desired currency of the price of the

requested service in USQL. However, the currency information of the web services is not

kept in DSWSD-S System crawler nodes local databases. Therefore, tCurrency type is not

included in S-USQL definition.

tPriceContext Type tPriceContext type is used to indicate the amount of the time that the

price should be paid for the service in USQL. Actually, it is an enumeration that consists

of per call, per day, per week, per month and per year values. In DSWSD-S System we

do not take this context information into consideration and removed the type definition from

S-USQL language.

tProcessingTimeUnit Type tProcessingTimeUnit type is used to specify the unit of the de-

sired response time of the requested web service in USQL. However, in DSWSD-S System

we always use the milliseconds unit. In addition to this, instead of retrieving a concrete re-

sponse time value from the user, we retrieve a weight value for the response time parameter.

We use this weight in quality of service score calculation. Therefore, tProcessingTimeUnit

type definition is not included in S-USQL language.

34

ServiceTaxonomy Element and tTaxonomyScheme Type ServiceTaxonomy element is used

to enable the users to specify the taxonomies for the requested services in USQL. tTaxono-

myScheme type keeps the taxonomies that can be speicified in USQL. The type definition is

an enumeration that consists of North American Industry Classification System 1997 Release,

North American Industry Classification System 2002 Release, United Nations Standard Prod-

ucts and Service Code System Version 7.3, United Nations Standard Products and Service

Code System Version 6.0501 and United Nations Standard Products and Service Code System

Version 3.1 values. In DSWSD-S System crawler nodes’ local databases, service taxonomy

information is not kept. Therefore, the user is not allowed to specify such a search criteria

in a web service query. Because of this reason ServiceTaxonomy element and corresponding

tTaxonomyScheme type definitions are not kept in S-USQL language.

tQoSOperator and tQoS Types tQoSOperator is used to specify the operator that will be

used for quality of service parameter values. It is defined as an enumeration also and consists

of equal, not equal, greater, less,equal or greater and equal or less values. However, in

DSWSD-S System quality of service calculation algorithm is designed to work with equal

operator. Therefore, retrieving the operator choice from the user is not meaningful in our

system. Due to this reason, tQoSOperator operator type definition is removed from S-USQL

definition. tQoS type is used to define generic quality of service parameters. It contains

the attributes that have the tQoSOperator operator values mentioned. Due to the operator’s

removal, this parameter type definition is also removed from S-USQL language.

tOrderByOption and tOrderByDirection Types The user is allowed to specify the desired

ordering of the resulting services via using tOrderByOption and tOrderByDirection types in

USQL definition. But in DSWSD-S System, we present the resulting services in a descending

order of their relevance with the keywords searched. Therefore, this ordering type definitions

are not contained in S-USQL language.

tServiceType Type The user is enabled to specify the desired service type by using tSer-

viceType type in USQL definition. The type is defined as an enumeration and consists of

WebService, GridService and P2PService values. DSWSD-S System is designed to find only

the web services, it does not support different service types. Therefore, we excluded this type

35

definition from S-USQL language.

tNetworkType Type tNetworkType type is designed to list the different peer-to-peer network

types in USQL definition. In current version of it, it only enumerates the JXTA network. As

mentioned in previous paragraph, different service types and their corresponding network

types are not considered in DSWSD-S System. Therefore, this type definition is removed

from S-USQL language.

tOperation Type In USQL, tOperation type is defined to indicate a response operation’s

type. It contains the name element and the degreeOfMatch attributes. In S-USQL, we have

removed this type and contained these fields directly in the ResponseOperation element that

will be explained in following paragraphs.

AdditionalOperationProperties Element Group AdditionalOperationProperties is an ele-

ment group to indicate a response operation’s additional properties. It composes of Price,

Availability, Realiability, ProcessingTime and Security elements. However, in DSWSD-S

System, we do not offer such an information to the user. Therefore, this element group defi-

nition is removed from S-USQL definition.

5.2.2.2 Retained Elements and Structures

tPercentage Type tPercentage is a generic simple type definition for defining percentages.

This type definition is included in S-USQL without any modification. The structure of the

type is given in Figure 5.5.

Figure 5.5: tPercentage

36

Error Element Error element is used to declare the erronous situations in a query process.

In USQL definition, it contains code and desc attributes where the former represents the error

code and the latter one represents the error description. We use this element in S-USQL

without any modification. The Error element definition is given in Figure 5.6.

Figure 5.6: Error

5.2.2.3 Modified and Additional Elements and Structures

basicRequirementAttributes Attribute Group basicRequirementAttributes is an attribute

group that composes of the common attributes in elements used to define the search criteria.

In USQL definition, it contains the nullAccepted, minDegreeOfMatch and priorityLevel at-

tributes. Depending on the deletion of the priorityLevel attribute, it is modified in S-USQL

and constructed as given in Figure 5.7.

Figure 5.7: basicRequirementAttributes

AdditionalServiceProperties Element Group AdditionalServiceProperties is an element

group that comprises the additional properties that can be contained in a response service.

In USQL definition, it comprises the removed ServiceProvider and Security elements in ad-

dition to ServiceDescription, Price, Availability and Reliability elements. Due to the removal

of ServiceProvider and Security elements and existence of an element named QoS that groups

Price, Availability and Reliability and some other quality of service elements, the Addition-

alServiceProperties element definition is modified as given in Figure 5.8.

37

Figure 5.8: AdditionalServiceProperties

tSyntacticOperator and tSemanticOperator Types In USQL definition, there are two dif-

ferent operator type definitions for parameters: tSyntacticOperator and tSemanticOperator.

tSyntacticOperator is used to specify the operator type whenever the syntactic matching will

be used. It is an enumeration that consists of equal, contain, not equal and not contain val-

ues. tSemanticOperator is used to specify the operator type whenever the semantic matching

will be used. It is an enumeration that consists of exact, abstraction, extension and sibling

values. In S-USQL we have combined these two operator types in one type named tSyntac-

ticSemanticOperators. It is defined as an enumaration consisting of all of the values listed for

tSyntacticOperator and tSemanticOperator. After this combination, our tSyntacticSemantic-

Operators type is constructed as given in Figure 5.9.

Figure 5.9: tSyntacticSemanticOperators

tSyntactic and tSemantic Types tSyntactic and tSemantic types are generic parameter types

defined in USQL and used to indicate whether a parameter will be matched syntactically or

semantically. In USQL, some elements as ServiceName or ServiceDescription is defined in

the type tSyntactic. However, in DSWSD-S System, we match these elements both syntac-

tically and semantically. Therefore, we have combined these two types in a one and named

it as tSyntacticSemantic. This is also the reason of the operator combination explanined in

previous paragraph. The type definition of tSyntacticSemantic is given in Figure 5.10.

38

Figure 5.10: tSyntacticSemantic

tParameter Type tParameter type is used to define the parameter types of the operations. In

USQL definition, it comprises three attributes and an attribute group: name, type, semantics

attributes and basicRequirementAttributes attribute group. Here name and type attributes have

the modified type tSemantic and semantics has the modified type tSemantic. Therefore, name

and type attributes’ types are turned to tSyntacticSemantic and semantics attribute is removed.

After these modifications tParameter type definition turned out to the one given in Figure

5.11.

Figure 5.11: tParameter

tWeight Type In DSWSD-S System, the quality of service calculation algorithm uses weights,

values in range [0-100], for the quality parameters. To specify the weights in S-USQL we de-

fine a tWeight type. All of the quality of service elements in S-USQL are defined in this type.

The type definition is given in Figure 5.12.

Figure 5.12: tWeight

39

ServiceName Element ServiceName element is used to specify the search criteria related

to the desired service name. In USQL definition, it is defined in the modified type tSyntactic.

So we define it in type tSyntacticSemantic and match it both syntactically and semantically.

After this modification, the element is defined as given in Figure 5.13.

Figure 5.13: ServiceName

ServiceDescription Element ServiceDescription element is used to specify the search crite-

ria related to the desired service description. In USQL definition, it is defined in the modified

type tSyntactic. We changed its type to tSyntacticSemantic. After this modification, the ele-

ment is defined as given in Figure 5.14.

Figure 5.14: ServiceDescription

ServiceDomain Element ServiceDomain element is used to allow the users to specify the

domain of the requested services. In USQL definition, it is defined in the modified type

tSemantic. We changed its type to tSyntacticSemantic. After this modification, the element

definition turned out to the one given in Figure 5.15.

Figure 5.15: ServiceDomain

Price Element Price element is used to enable the users to specify the desired price of the

requested service. In USQL definition, it is defined as a complex type, but we prefer to define

it as a simple type element. According to the USQL definition of Price element, it comprises

removed tCurrency and tPriceContext typed attributes. But as we said before, we do not take

into consideration these information. Therefore, we narrowed its definition as given in Figure

5.16.

40

Figure 5.16: Price

Availability Element Availability element is used to enable the users to specify the availabil-

ity status of the requested service. According to the USQL definition of Availability element,

it comprises an attribute typed tQoS. Instead of the tQoS type we defined a new type namely

tWeight. Therefore, the Availability element definition is turned out to the one given in Figure

5.17.

Figure 5.17: Availability

Reliability Element Reliability element is used to allow the users to specify the reliability

status of the requested service. According to the USQL definition of Reliability element, it

comprises an attribute typed tQoS. Again we changed the type to tWeight. Therefore, the

element is defined as given in Figure 5.18.

Figure 5.18: Reliability

ProcessingTime Element ProcessingTime element is used to define the desired processing

time of a requested service. In USQL definition, it consists of two attributes. One of them is

typed tQoS and other one is typed tProcessingTimeUnit. None of these type definitions are

included in S-USQL definition. So, ProcessingTime element is defined in type tWeight. After

the modifications, the element is defined as given in Figure 5.19.

Figure 5.19: ProcessingTime

41

Throughput Element In DSWSD-S System, we handle five different quality of service pa-

rameters: availability, reliability, response time, price and throughput. The former four was

already defined in USQL. On the other hand, it does not have an element that corresponds

to throughput. Therefore, to meet our system’s needs we define the Throughput element in

S-USQL language as given in Figure 5.20.

Figure 5.20: Throughput

QoS Element QoS element is defined as a container for other quality of service elements

in USQL. It composes of the Price, Availability, Reliability, ProcessingTime and Security

elements. As mentioned before, security protocols are not handled in DSWSD-S System,

therefore we took out the Security element from the definition. In addition to this, we added a

new quality of service element to here Throughput and a new attribute indicating the quality

score of the service qosScore, which will be explained in the following sections. After these

changes, the QoS element definition is formed as given in Figure 5.21.

Figure 5.21: QoS

Operation Elements There are two different Operation element definitions in USQL, one

for requested services’ operations and one for response services’ operations. These two same-

named element is defined is separate XSD files. But we defined the S-USQL in a single XSD

file. Therefore, to avoid the conflicts between the names, we renamed these Operation ele-

ments as RequestOperation and ResponseOperation. The request Operation element in USQL

is designed to enable the users to specify the search criteria based on the operations that the

42

requested services offer. It contains the Name, Capability, Inputs, Outputs elements and min-

DegreeOfMatch, priorityLevel attributes according to the USQL definition. Name is defined

in the modified type tSyntactic, so we use tSyntacticSemantic type instead. And Capability

is defined in modified type tSemantic, it also changed to tSyntacticSemantic. Inputs and Out-

puts elements are contained in S-USQL without any modification. Finally, the priorityLevel

attribute is taken out as it has been removed from S-USQL language. After all these, our

RequestOperation element is formed as given in Figure 5.22.

Figure 5.22: RequestOperation

The response Operation element in USQL is designed to show the operations that complies

with the user’s search criteria. It contains the removed element group AdditionalOpera-

tionProperties. To indicate the name of the operation an attribute name with type xs:string

is added and to indicate the degree of the match another attribute named degreeOfMatch is

added. After these modifications, the structure of our ResponseOperation element is turned

out to the one given in Figure 5.23.

Service Elements Like the aforementioned Operation elements, there are two different Ser-

vice element definitions in USQL, one for requested services and one for resulting services.

Again we needed a refactor in these elements’ names, and changed them as RequestService

and ResponseService. The request Service element is designed as a container for the search

43

Figure 5.23: ResponseOperation

criteria elements. In USQL definition, it contains the ServiceName, ServiceDescription, Servi-

ceProvider, ServiceTaxonomy, ServiceDomain, QoS, Operation elements and minDegreeOf-

Match attribute. However, we excluded the ServiceProvider and ServiceTaxonomy elements

while constructing the S-USQL. Therefore, the our RequestService is defined as given in Fig-

ure 5.24.

Figure 5.24: RequestService

Figure 5.25: ResponseService

And the response Service element is used to indicate the services found after a query process.

In USQL definition, it composes of name, descriptionDocUrl, resourceInstance, Addition-

44

alServiceProperties, interface elements and ServiceAttributes, type, networkType attributes.

Here interface element is a list of the Operation elements. In DSWSD-S System, we do

not keep the resource information related to services. And the networkType element is not

meaningful in our system, because we do not interested in the service types (like grid or

peer-to-peer) other than web services. After the modifications, our ResponseService element

definition is done as given in Figure 5.25.

Services Element In USQL definition Services element is a container element that keeps

the list of response type Service elements. In S-USQL, we renamed this element as Re-

sponseServices to make its name compatible with the ResponseService elements it keeps.

ResponseServices element definition is given in Figure 5.26.

Figure 5.26: ResponseServices

Figure 5.27: SUSQLRequest

USQLRequest Element As mentioned in Section 5.2.1.1, USQLRequest element is com-

posed of projection and criteria parts in USQL definition and we do not include the projec-

tion part in our SUSQLRequest element definition. In USQL specification, ViewAdditional-

Properties element corresponds to the projection part. From, Where and OrderBy elements

coreespond to critera part. We include the criteria part but with some changes. We do not

enable the users to make their search on specific registries. In addition, we have removed the

45

aforementioned ordering types from SUSQL. In USQL definition, there is not a structure that

enabling the user to limit the number of the results, so we add an attribute numberOfResult-

sAfter to element definition. After these modifications, our SUSQLRequest element is formed

as given in Figure 5.27.

USQLResponse Element USQLResponse contains the services found, which meet the re-

quirements specified in a SUSQLRequest, after a query process. As mentioned in Section

5.2.1.2 it contains two parts: resulting services list (represented with Services element) or

error part (represented with Error element). These parts are alternative for each other. At the

same time a USQLResponse can not contain both of them. We add this element definition

to our S-USQL definition with a change in its name as SUSQLResponse. The definition of

SUSQLResponse is given in Figure 5.28.

Figure 5.28: SUSQLResponse

Figure 5.29: SUSQL

USQL Element USQL element is the root element in USQL specification. It contains the

USQLRequest, USQLResponse elements and an attribute showing the version of the USQL.

Here, the root element can contain only one of the elements listed at the same time. Meanly,

the request and the response elements are alternative to each other in use. We also define a

46

root element containing our own request and response elements. Our root element is named

SUSQL and the structure of it is given in Figure 5.29.

5.3 Simplified USQL (S-USQL) Parser

In DSWSD-S System, the crawler nodes does not know the S-USQL language, therefore

they can not interpret the S-USQL queries. To achieve the interoperability between the S-

USQL requestor (graphical interface) and the responder (crawler nodes’ local databases) we

design a middleware parser. This parser module, parses the SUSQLRequest queries coming

from requestors and transforms the information parsed to the input parameters of the web

service operations that are handling the crawler nodes’ local database issues. The parser also

transforms the web service responses to the structures needed to produce a SUSQLResponse.

As in the graphical user interface module, the parser module also interacts with all the existing

crawler nodes in DSWSD-S System. It uses the ServiceDomain element in the SUSQLRequest

in order to decide the crawler node to be searched.

The first thing the parser does when it receives a SUSQL containing a SUSQLRequest is

extracting the ServiceName and the ServiceDomain elements. ServiceName element corre-

sponds to the keywords that are searched for. The ServiceDomain corresponds to the domain

that the user specifically intends to search for. After that, it extracts the operator information

that indicates whether the matching will be done syntactically or semantically.

If the operator type is Equal or Contain, the parser interprets this as do syntactic matching.

After deciding syntactic matching, there are three options for the parser to continue with

according to the existence of the keyword and domain information.

If the keyword is not specified, then the parser does not make any search on the crawler nodes.

The parser creates a SUSQL containing a SUSQLResponse and puts an Error element into it.

In the desc attribute of the Error element, it explains the reason why the search can not be

done.

If the keyword is specified but the domain information is empty, then the parser matches this

keyword to all the existing crawler nodes’ domain information and decides the most suitable

crawler node by ranking them on their matching degree with the keyword. After that, if the

47

selected operator type is Equal, the parser searches for an ontology term that is same with

the keyword and retrieves the web services from crawler node’s local database related to this

ontology term. However, if the operator type is specified as Contain, then the parser looks

for the ontology terms that contains the keyword as a substring. After that, it retrieves the

web services from crawler node’s local database related to the ontology terms containing the

keyword.

Finally, if the keyword and the domain information are both specified, then the parser exe-

cutes the same process mentioned in the previous paragraph from the point where the domain

related to the keyword is decided.

If the operator type is Exact, Abstraction, Extension or Sibling, the parser interprets this as do

semantic matching. After deciding semantic matching, there are four options for the parser to

continue with according to the existence of the keyword and domain information.

If both of them are empty, then the parser again creates a SUSQL containing a SUSQLRe-

sponse and puts an Error element into it. In the desc attribute of the Error element, it explains

the reason why the search can not be done.

In the case where the keyword is empty but the domain information is not, the parser retrieves

all the web services kept in corresponding crawler node.

If the keyword is set but the domain information is empty, then the parser matches this key-

word to all the existing crawler nodes’ domain information and decides the most suitable

crawler node by ranking them on their matching degree with the keyword. After that, if the

operator type is Exact, the parser searches for the ontology terms whose matching degree with

the keyword is 1.00. The parser retrieves the web services from the crawler’s local database

related to this ontology terms. However, if the operator type is Abstraction, Extension or Sib-

ling, then the parser calculates the matching degree between the keyword and all the ontology

terms related to the selected domain by using the operator type. Then it filters these ontology

terms according to their matching degree with the keyword. If the matching degree is greater

than 0.5 threshold, then the parser retrieves the web services related to these ontology terms.

Finally, if both the parameters are set, then the parser executes the same process mentioned in

the previous paragraph from the point where the domain related to the keyword is decided.

48

After retrieving the candidate web services from related crawler node’s local database, the

parser applies the quality of service criteria on them, if they are specified in the query. After

this quality of service filtering, the parser constitutes the resulting web service list. For every

web service found, it creates a corresponding ResponseService element to be contained in the

SUSQLResponse that will be returned to the requestor of the web services.

49

CHAPTER 6

QUERY EXECUTION PROCESS AND INTERACTION WITH

OTHER MODULES OF DSWSD-S

6.1 Introduction

In order to respond to a user’s web service discovery request in DSWSD-S System, there are

different modules that should interact with each other. Some of the modules are responsible

for getting the user requests, some of them are parsing these queries and some of them are

finding the desired web services. In the following sections, the modules that take place in a

web service query process and the interactions between these modules will be explained.

6.2 Modules Responsible For Query Execution

There are four modules that take part in a web service query process: the graphical user

interface module, the S-USQL parser module, the similarity degree calculator web service

and the web service that handles a crawler node’s database operations.

6.2.1 Graphical User Interface Module

The graphical user interface module is the one where the web service query process is trig-

gered. It is explained in Chapter 4 in detail.

50

6.2.2 S-USQL Parser Module

The S-USQL parser module is the one where the mapping between the S-USQL elements and

the database operations handler web service method parameters are done. It is explained in

Section 5.3.

6.2.3 Similarity Degree Calculator Web Service

The similarity degree calculator web service basically calculates the similarity degree be-

tween two different texts. Actually, it is a wrapper for the similarity degree calculation library

developed within DSWSD-S System on top of a third party library, WordNet’s similarity cal-

culation library. The library was developed in a programming environment that is different

and incompatible with the one we use. Therefore, an interoperability problem is raised. To

overcome this problem we design a web service that wraps the similarity calculation opera-

tions. This web service runs on the same machine with the graphical user interface and the

S-USQL parser modules. The list of the operations offered by this web service is given in

Appendix B

6.2.4 Database Operations Handler Web Service

The database operations handler web service is the one that allows to reach the crawler node’s

local databases and retrieve web services from there. There are different modules that need to

access to the crawler node’s databases in DSWSD-S System: graphical user interface module,

quality of service calculator module and the web service verifier module. To supply the

needs of these different modules on the databases, this web service is designed. It offers

operations that enables its requestors to retrieve the web services, their descriptions, domain

ontologies corresponds to the crawler nodes’ domains...etc. It also offers operations to update

the information kept in the databases. The list of the operations offered by this web service

is given in Appendix C. For every crawler node existing in DSWSD-S System, there is a

corresponding database operation handler web service instance. Basically, on every crawler

node machine, one instance of this web service runs.

51

6.3 Query Execution Process

As aforementioned in Section 6.2.1 the graphical user interface is the trigger point for a web

service query. The user enters the criteria that he/she wants the desired web service should

comply with and then starts the process via clicking on the Search button on the graphical

user interface as shown in Figure fig:guiButtonWidgets. After the user entered the necessary

information and clicked on the button, the graphical user interface module constructs an S-

USQL request and sends this request to the S-USQL parser module.

Figure 6.1: Interaction Between Modules

The S-USQL parser module, parses the S-USQL request. As explained in Section 5.3, it

extracts the keyword and domain ontology information from the request. After extraction, it

reads the selected domain ontology description from the crawler node via calling the database

operation handler web service. Then it needs to calculate the matching degree between the

keyword and the ontology terms contained in the selected domain ontology. To achieve this,

the parser module calls the similarity degree calculator web service. It passes the keyword

and the ontology term to the web service as parameters. The similarity degree calculator web

service calculates the matching degree and returns the value to the parser module. For the

ontology terms whose matching degree with the keyword is greater then 0.5 threshold, the

parser module calls the database operation handler web service again. This time, it requests

the web services that are related with the ontology term. After this step, the parser module

extracts the quality of service parameters from the request, if they have been specified. And

sends the resulting web service list and the quality of service parameters to the database

operation handler web service for the last time. The returned web service list is the final result

set that will be presented to the user in the graphical user interface. To send the resulting web

52

services to graphical user interface, the parser module creates an S-USQL response and lists

all the web services found in it as response services.

The graphical user interface uses the information came in the S-USQL response, and shows

them on the result table shown in Figure 4.9 to the user.

The query process mentioned is given in Figure 6.1.

53

CHAPTER 7

CASE STUDIES AND ANALYSIS

In this chapter, we show some query samples and respective results to explain the usage of

S-USQL language. In addition to this, we made a query execution time performance analysis

with the given sample queries.

7.1 Query with Single Keyword

Figure 7.1: Sample Query-1

In the query given in Figure 7.1, the web services whose name contains the word “wheel”

are requested. Depending on the absence of domain ontology specification, the word will be

matched to all the existing crawler nodes’s domain ontologies. After this matching the crawler

node whose ontology matches with the highest degree will be selected to be searched.

In this example there are two crawler nodes in the DSWSD-S System, one is interested in

the “Car” domain and the other one is interested in “Aviation” domain. After matching with

both these domains, it is found out that the word “wheel” is more relevant to “Car” domain.

Therefore the web service query is directed to the corresponding crawler node. The crawler

node finds 4297 web services and it returns all of them because no limit on the result number

54

is specified in the query. Some part of the response document containing the resulting web

services is given in Figure 7.2.

Figure 7.2: Response for Sample Query-1

The resulting web services are presented to the user in the result table. The screenshot respec-

tive to this query and its response is given in Figure 7.3.

Figure 7.3: Screen for Sample Query-1

55

7.2 Query with Single Keyword and Domain Specification

Figure 7.4: Sample Query-2

With the query given in Figure 7.4, the user requests the web services that match with the word

“flight” and are related to the domain “Aviation”. Due to the absence of the matching type, the

keyword is matched with all the ontology terms in the “Aviation” ontology both syntactically

and semantically. The terms whose matching degree is greater then the threshold is extracted.

After that, the web services related to these ontology terms are retrieved. 1878 resulting

web services are found in this query. Again due to the absence of limitation in total result

number in the query, all the web services are presented to the user. Some part of the response

document where the resulting web services are contained is given in Figure 7.5.

Figure 7.5: Response for Sample Query-2

56

The screenshot respective to this query and its response is given in Figure 7.6.

Figure 7.6: Screen for Sample Query-2

7.3 Query with Custom Quality of Service Criteria

Figure 7.7: Sample Query-3

With the query given in Figure 7.7, the user requests the web services that match with the

word “trip” and are related to the domain “Car”. Due to the absence of the matching type, the

keyword is matched with all the ontology terms in the “Car” ontology both syntactically and

57

Figure 7.8: Response for Sample Query-3

Figure 7.9: Screen for Sample Query-3

58

semantically. In addition to these, he/she specifies some quality of service parameters. The

user wants the reliability parameter’s weight to be 80% and the response time parameter’s

weight to be 20%. After matching the “trip” word with the “Car” ontology, 835 candidate

web services are found. Then a quality of service filtering is applied to these services, and

found out that 673 web services complies with the quality of service criteria specified in

the query. Due to the absence of limitation in total result number in the query, all the web

services are presented to the user. Some part of the response document where the resulting

web services are contained is given in Figure 7.8.

The screenshot respective to this query and its response is given in Figure 7.9.

7.4 Query with Default Quality of Service Criteria

Figure 7.10: Sample Query-4

With the query given in Figure 7.10, the user requests the web services that match with the

word “trip” and are related to the domain “Car” as in Sample Query-3. Due to the absence

of the matching type, the keyword is matched with all the ontology terms in the “Car” on-

tology both syntactically and semantically. In this query, the user specifies quality of service

parameters and chooses to use their default weights. As known from the previous query, after

matching the “trip” word with the “Car” ontology, 835 candidate web services are found.

Then a quality of service filtering is applied to these services, and found out that 723 web ser-

vices complies with the quality of service criteria specified in the query. Due to the absence

of limitation in total result number in the query, all the web services are presented to the user.

Some part of the response document where the resulting web services are contained is given

59

Figure 7.11: Response for Sample Query-4

in Figure 7.11.

Figure 7.12: Screen for Sample Query-4

60

The screenshot respective to this query and its response is given in Figure 7.12.

7.5 Query with Multiple Keywords and Custom Quality of Service Criteria

Figure 7.13: Sample Query-5

Figure 7.14: Response for Sample Query-5

In the query given in Figure 7.13, the web services whose name contains the “hub cap” words

and related to the “Car” domain are requested. Here, the reliability weight of the desired

services are intended to be 50%. After matching the “hub cap” word with the “Car” ontology,

61

1128 candidate web services are found. Then a quality of service filtering is applies to these

services, and found out that 452 web services complies with the quality of service criteria

specified in the query. But not all of them is shown to the user. Because as seen the Figure

7.13, the total number of results are limited to 40. Therefore, the 452 resulting services are

sorted in a descending order according to their matching degrees and top 40 of them are

represented to the user. Some part of the response document containing the resulting 40 web

services is given in Figure 7.14.

The screenshot respective to this query and its response is given in Figure 7.15.

Figure 7.15: Screen for Sample Query-5

7.6 Query Execution Time Performance Analysis

To analyze the performance of different query cases, we have taken some measurements about

the query execution times. All the measurements are taken at 25th of August, 2011, at times

15.00, 16.00, 17.00, 18.00 and 19.00.

In following Tables 7.1, 7.2, 7.3, 7.4, 7.5 the measurements taken for sample queries are

given.

62

Table 7.1: Query Execution Times for Sample Query-1

Duration in
ms

Time:
15.00

Time:
16.00

Time:
17.00

Time:
18.00

Time:
19.00

Average

Formulate
Query

312 300 291 311 341 311

Parse
Query

2964 3456 3153 3282 4496 3470.2

Retrieve
Services

30093 25055 28595 27025 31767 28507

Evaluate
QoS on
Services

0 0 0 0 0 0

Formulate
Response

6 6 6 7 7 6.4

Retrieved
WS Count

4297 candidate web services

QoS Fil-
tered WS
Count

4297 resulting web services

Table 7.2: Query Execution Times for Sample Query-2

Duration in
ms

Time:
15.00

Time:
16.00

Time:
17.00

Time:
18.00

Time:
19.00

Average

Formulate
Query

311 299 306 315 303 306.8

Parse
Query

2 1 1 1 1 1.2

Retrieve
Services

7526 6650 7082 8257 11326 8168.2

Evaluate
QoS on
Services

0 0 0 0 0 0

Formulate
Response

3 2 3 2 3 2.6

Retrieved
WS Count

1878 candidate web services

QoS Fil-
tered WS
Count

1878 resulting web services

As can be seen from the tables, the duration for parsing the sample query-1 takes much more

longer than other three queries. The reason of this is that, the user does not specify a domain

63

Table 7.3: Query Execution Times for Sample Query-3

Duration in
ms

Time:
15.00

Time:
16.00

Time:
17.00

Time:
18.00

Time:
19.00

Average

Formulate
Query

303 321 308 312 308 310.4

Parse
Query

2 1 1 1 1 1.2

Retrieve
Services

3378 3120 2945 4094 2760 3259.4

Evaluate
QoS on
Services

13470 14533 12415 15522 12404 13668.8

Formulate
Response

1 2 2 1 1 1.4

Retrieved
WS Count

835 candidate web services

QoS Fil-
tered WS
Count

673 resulting web services

Table 7.4: Query Execution Times for Sample Query-4

Duration in
ms

Time:
15.00

Time:
16.00

Time:
17.00

Time:
18.00

Time:
19.00

Average

Formulate
Query

296 285 292 302 280 291

Parse
Query

1 1 1 1 1 1

Retrieve
Services

3168 3349 2967 3990 2870 3268.8

Evaluate
QoS on
Services

6370 7255 7110 7855 6210 6960

Formulate
Response

1 2 2 1 1 1.4

Retrieved
WS Count

835 candidate web services

QoS Fil-
tered WS
Count

723 resulting web services

information in sample query-1. Therefore, the parser tries to find the most appropriate domain

for the keyword by matching it with all the existing crawler nodes’ domain ontologies in

64

Table 7.5: Query Execution Times for Sample Query-5

Duration in
ms

Time:
15.00

Time:
16.00

Time:
17.00

Time:
18.00

Time:
19.00

Average

Formulate
Query

347 309 315 325 306 320.4

Parse
Query

1 1 1 1 1 1

Retrieve
Services

9243 4006 3542 3532 4048 4874.2

Evaluate
QoS on
Services

24738 21307 16590 15531 18049 19243

Formulate
Response

1 1 2 2 1 1.4

Retrieved
WS Count

1128 candidate web services

QoS Fil-
tered WS
Count

452 resulting web services

DSWSD-S System. As a result of this matching an increase in the parsing process time

occurs.

If we look over the service retrieval times in detail, it can be seen that the retrieval time

increases in direct proportion to the number of resulting web services.

In the first two sample queries, the quality of service parameters evaluation time is zero.

Actually, this result is the one that is expected, because in these queries the user does not

specify any quality of service criteria. However, in sample query-3, sample query-4 and sam-

ple query-5, these parameters specified and it takes longer to evaluate the quality of service

parameters in sample query-5 due to the number of the resulting web services found. Again,

the quality of service evaluation time increases in direct proportion to the number of the web

services on whom the quality of service filtering is intended to be done. The choice of the

user about the quality of service specification, custom or default weight usage, also effects the

quality of service evalution time as can be seen from the tables. In the sample query-3 and

sample query-4, the user searches the same keyword on the same domain. However, he/she

prefers to defines his/her own quality of service parameters in sample query-3, while he/she

prefers to use the defaults in sample query-4. Whenever the user specifies his/her custom

65

weights, the total quality score of the candidate web services are recalculated and this causes

an increase in the quality of service evalution time.

We calculated the average times for each step fot the sample queries and produced the overall

performance graph given in Figure 7.16.

Figure 7.16: Query Execution Time Performance Graph

66

CHAPTER 8

CONCLUSION

In this thesis, we have developed a sub-module of the DSWSD-S System that takes place in

domain-specific service discovery process. The main idea of the work proposed is to design

and implement a supportive graphical user interface that enables the users to find the desired

web services satisfying the user’s needs. In addition to this, with the S-USQL query language

we have defined in this work, we aimed to make the DSWSD-S System comply with the

standards in the literature and as a result of this make it a scalable, interoperable and flexible

system.

The proposed works about the graphical query interfaces in the literature are not developed

based on the user-interaction. Therefore, the web service consumers are expected to know

the technical details of the query structures. This makes the web service discovery process a

challenging task for the end-users. The graphical user interface that is proposed within this

thesis stands out with its user-friendly and supportive design. It guides the user to specify

the search criteria and the parameters in an easy way that the users are encapsulated from the

technical details of the query language, S-USQL, used in the DSWSD-S System.

In the future, proposed graphical user interface can be extended with new search criteria

specification widgets. New widgets can be added to the interface for retrieving the input and

output parameters for the desired web service operations, which can already be specified via

S-USQL, from the user.

In addition to this, both the graphical user interface and the query language can be extended

with the fuzzy quality of service parameters. By saying fuzzy quality of service parameters,

we mean specifying the quality of service parameters linguistically instead of specifying them

numerically. Because expressing the needs in a linguistic way can be more meaningful and

67

easy for the users. These new fuzzy parameter types can be “low”, “medium”, “’high’ and so

on. S-USQL can also be extended to allow formulating more complex query sentences that

mix both the numerical and fuzzy parameter specifications. For example the user can specify

the availability parameter’s weight as 50 while specifying the reliability parameter as “high”

within the same query sentence.

68

REFERENCES

[1] Aphrodite Tsalgatidou, Michael Pantazoglou. The Unified Service Query Language
Technical Report. http://www.s3lab.com/usql-tr.pdf, Last accessed on July 18, 2011.

[2] Aphrodite Tsalgatidou, Thomi Pilioura. Unified Publication and Discovery of Semantic
Web Services. ACM Transactions on the Web (TWEB), vol. 3 Issue 3, June 2009.

[3] A. Tsalgatidou, M. Pantazoglou, G. Athanasopoulos. Specification of the Unified Service
Query Language v1.0(USQL). EU Sixth Framework Programme - SODIUM Project.
http://www.atc.gr/sodium/upload/publications/D8-Specification%20of%20USQL.zip,
Last accessed on July 18, 2011.

[4] M. Tian, A. Gramm, H. Ritter, J. Schiller. Efficient Selection and Monitoring of QoS-
aware Web services with the WS-QoS Framework. Proc. Of IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, 2004.

[5] Hai Zhuge, Jie Liu. Flexible Retrieval of Web Services. Elsevier Journal of Systems and
Software, vol. 70, no. 1- 2, Pages 107-116, 2004.

[6] Delnavaz Mobedpour, Chen Ding, and Chi-Hung Chi. A QoS Query Language for User-
Centric Web Service Selection. IEEE International Conference on Services Computing,
1:1-8, 2010.

[7] Deniz Cantürk and Pınar Şenkul. Using Semantic Information for Distributed Web Ser-
vice Discovery. International journal of Web Science, in press.

[8] Deniz Cantürk and Pınar Şenkul. Service Acquisition and Validation in a Distributed
Service Discovery System Consisting of Domain-Specific Sub-Systems. Proc. Of ICEIS,
1:93-99, 2010.

[9] Universal Desription, Discovery and Integration (UDDI). http://uddi.xml.org/, Last ac-
cessed on July 18, 2011.

[10] Extensible Markup Language (XML) v1.0. http://www.w3.org/TR/2008/REC-xml-
20081126/, Last accessed on July 18, 2011.

[11] XML Schema Definition (XSD). http://www.w3.org/XML/Schema, Last accessed on
July 18, 2011.

[12] Electronic Business using eXtensible Markup Language (ebXML).
http://www.ebxml.org/, Last accessed on July 18, 2011.

[13] Eyhab Al-Masri and Qusay H. Mahmoud. WSCE: A Crawler Engine for Large-Scale
Discovery of Web Services. IEEE International Conference on Web Services (ICWS),
2007.

[14] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating Web Services on the World Wide
Web. Proceeding of the 17th international conference on World Wide Web, 2008.

69

[15] Eyhab Al-Masri and Qusay H. Mahmoud. Crawling Multiple UDDI Business Registries.
Proceedings of the 16th international conference on World Wide Web, 2007.

[16] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller. A Concept for QoS Integration
in Web Services. Proceedings of the Fourth International Conference on Web Informa-
tion Systems Engineering Workshops, 2003.

[17] Stefan Schulte, Melanie Siebenhaar, Julian Eckert, Ralf Steinmetz. Query Languages for
Semantic Web Services. ftp://ftp.kom.tu-darmstadt.de/papers/SSES10.pdf, Last accessed
on July 18, 2011.

[18] A. Soydan Bilgin and Munindar P. Singh. A DAML-Based Repository for QoS-Aware
Semantic Web Service Selection. Proceedings of the IEEE International Conference on
Web Services, 2004.

[19] Hai Wang and Sheping Zhai. Query for SemanticWeb Services Using SPARQL-DL. Sec-
ond International Symposium on Knowledge Acquisition and Modeling (KAM), 2009.

[20] Kashif Iqbal, Marco Luca Sbodio, Vassilios Peristeras and Giovanni Giuliani. Semantic
Service Discovery using SAWSDL and SPARQL. Fourth International Conference on
Semantics, Knowledge and Grid (SKG), 2008.

[21] Tanu Malik Alex, S. Szalay, Tamas Budavari and Ani R. Thakar. SkyQuery: A Web
Service Approach to Federate Databases. Proceedings of the First Biennial Conference
on Innovative Data Systems Research (CIDR), VLDB Endowment, 2003.

[22] Sebastian Günther, Claus Rautenstrauch and Niko Zenker. Service-Oriented Architec-
ture: Introducing a Query Language. Multikonferenz Wirtschaftsinformatik , 2008.

[23] Weilong Ding, Jing Cheng, Kaiyuan Qi, Yan Li, Zhuofeng Zhao and Jun Fang. A
Domain-specific Query Language for Information Services Mash-up. IEEE Congress
on Services - Part I, 2008.

[24] Min Liu, Weiming Shen, Qi Hao and Junwei Yan. An Weighted Ontology-Based Seman-
tic Similarity Algorithm For Web Service. Journal of Expert Systems with Applications:
An International Journal Archive, Volume 36 Issue 10, December 2009.

[25] Glen Dobson, Russell Lock and Ian Sommerville. QoSOnt: a QoS Ontology for Service-
Centric Systems. 31st EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, 2005.

[26] Wolfgang Hoschek. The Web Service Discovery Architecture. Proceedings of the 2002
ACM/IEEE conference on Supercomputing.

[27] Vladimir Tosic, Kruti Patel and Bernard Pagurek. WSOL - Web Service Offerings Lan-
guage. Proceedings of the International Workshop on Web Services, E-Business, and
the Semantic Web, 2002.

[28] Don Chamberlin, Jonathan Robie and Daniela Florescu. Quilt: An XML Query Lan-
guage for Heterogeneous Data Sources. International Workshop on the Web and
Databases (WebDB) , pp. 53-62, 2000.

[29] WSExpress: A QoS-Aware Search Engine for Web Services. IEEE International Confer-
ence on Web Services (ICWS), 2010.

70

APPENDIX A

XSD OF S-USQL

This appendix contains the formal XML Schema Definition (XSD) of the Simplified - Unified

Service Query Language (S-USQL), version 1.0.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:dswsd:SUSQL"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="urn:dswsd:SUSQL" xmlns="urn:dswsd:SUSQL"

elementFormDefault="qualified">

<!-- Simplified Unified Service Query Language (S-USQL) version 1.0 -->

<xs:attributeGroup name="basicRequirementAttributes">

<xs:attribute name="nullAccepted" type="xs:boolean"

use="optional" default="false" />

<xs:attribute name="minDegreeOfMatch" type="tns:tPercentage"

use="optional" default="1.0" />

</xs:attributeGroup>

<xs:group name="AdditionalServiceProperties">

<xs:sequence>

<xs:element ref="tns:ServiceDescription" minOccurs="0" />

<xs:element ref="tns:QoS" minOccurs="0" />

</xs:sequence>

</xs:group>

71

<xs:simpleType name="tPercentage">

<xs:restriction base="xs:float">

<xs:minInclusive value="0" />

<xs:maxInclusive value="1" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="tWeight">

<xs:restriction base="xs:int">

<xs:minInclusive value="0" />

<xs:maxInclusive value="100" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="tSyntacticSemanticOperators">

<xs:restriction base="xs:string">

<xs:enumeration value="equal"/>

<xs:enumeration value="contain"/>

<xs:enumeration value="exact"/>

<xs:enumeration value="abstraction"/>

<xs:enumeration value="extension"/>

<xs:enumeration value="sibling"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="tSyntacticSemantic">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attributeGroup ref="tns:basicRequirementAttributes"/>

<xs:attribute name="valueIs" type="tns:tSyntacticSemanticOperators"

use="optional" default="equal"/>

</xs:extension>

72

</xs:simpleContent>

</xs:complexType>

<xs:element name="ServiceName" type="tns:tSyntacticSemantic" />

<xs:element name="ServiceDescription" type="tSyntacticSemantic" />

<xs:element name="ServiceDomain" type="tSyntacticSemantic" />

<xs:element name="Price" type="xs:float" />

<xs:element name="Availability" type="tns:tWeight" />

<xs:element name="Reliability" type="tns:tWeight" />

<xs:element name="ProcessingTime" type="tns:tWeight" />

,

<xs:element name="Throughput" type="tns:tWeight" />

<xs:element name="QoS">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:Price" minOccurs="0" />

<xs:element ref="tns:Availability" minOccurs="0" />

<xs:element ref="tns:Reliability" minOccurs="0" />

<xs:element ref="tns:ProcessingTime" minOccurs="0" />

<xs:element ref="tns:Throughput" minOccurs="0" />

<xs:element name="qosScore" type="xs:double"/>

<xs:any namespace="##other" minOccurs="0"

processContents="skip" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

73

<xs:element name="RequestOperation">

<xs:complexType>

<xs:sequence>

<xs:any namespace="##other" processContents="skip" minOccurs="0"

maxOccurs="unbounded" />

<xs:element name="Name" type="tSyntacticSemantic" minOccurs="0" />

<xs:element name="Capability" type="tSyntacticSemantic" minOccurs="0" />

<xs:element name="Inputs" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="input" type="tns:tParameter"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attributeGroup ref="tns:basicRequirementAttributes" />

</xs:complexType>

</xs:element>

<xs:element name="Outputs" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="output" type="tns:tParameter"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attributeGroup ref="tns:basicRequirementAttributes" />

</xs:complexType>

</xs:element>

<xs:element ref="tns:QoS" minOccurs="0" />

</xs:sequence>

<xs:attribute name="minDegreeOfMatch" type="tns:tPercentage"

use="optional" default="1.0" />

</xs:complexType>

</xs:element>

74

<xs:complexType name="tParameter">

<xs:sequence>

<xs:element name="name" type="tns:tSyntacticSemantic" minOccurs="0"/>

<xs:element name="type" type="tns:tSyntacticSemantic" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="tns:basicRequirementAttributes"/>

</xs:complexType>

<xs:element name="RequestService">

<xs:complexType>

<xs:sequence>

<xs:any namespace="##other" processContents="skip" minOccurs="0"

maxOccurs="unbounded" />

<xs:element ref="tns:ServiceName" minOccurs="0" />

<xs:element ref="tns:ServiceDescription" minOccurs="0" />

<xs:element ref="tns:ServiceDomain" minOccurs="0" />

<xs:element ref="tns:QoS" minOccurs="0" />

<xs:element ref="tns:RequestOperation" minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="minDegreeOfMatch" type="tns:tPercentage"

use="optional" default="1" />

</xs:complexType>

</xs:element>

<xs:element name="ResponseOperation">

<xs:complexType>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="degreeOfMatch" type="tns:tPercentage"

use="required" />

</xs:complexType>

</xs:element>

75

<xs:element name="ResponseService">

<xs:complexType>

<xs:sequence>

<xs:any namespace="##other" processContents="skip" minOccurs="0"

maxOccurs="unbounded" />

<xs:element ref="tns:ServiceName" />

<xs:element name="descriptionDocUrl" type="xs:anyURI"/>

<xs:group ref="tns:AdditionalServiceProperties" />

<xs:element name="interface" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:ResponseOperation" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="degreeOfMatch" type="tns:tPercentage"

use="required" />

</xs:complexType>

</xs:element>

<xs:element name="ResponseServices">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:ResponseService" minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="SUSQLRequest">

<xs:complexType>

76

<xs:sequence>

<xs:element name="Where">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:RequestService" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="numberOfResults" type="xs:int" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="SUSQLResponse">

<xs:complexType>

<xs:choice>

<xs:element ref="tns:ResponseServices" />

<xs:element name="Error">

<xs:complexType>

<xs:sequence>

<xs:element name="code" type="xs:string" />

<xs:element name="desc" type="xs:string" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="SUSQL">

<xs:complexType>

<xs:choice>

<xs:element ref="tns:SUSQLRequest" />

77

<xs:element ref="tns:SUSQLResponse" />

</xs:choice>

<xs:attribute name="version" type="xs:float" use="required"

fixed="1.0" />

</xs:complexType>

</xs:element>

</xs:schema>

78

APPENDIX B

SIMILARITY DEGREE CALCULATOR WEB SERVICE

This appendix lists the operations which are offered by the Similarity Degree Calculator Web

Service.

Table B.1: Operations Offered By Similarity Degree Calculator Web Service

Operation Name Operation Summary
GetSimilarity Calculates the similarity degree between

given two sentences
GetSimilarityUsingStrategy Calculates the similarity degree between

given two sentences according to the given
strategy

79

APPENDIX C

DATABASE OPERATIONS HANDLER WEB SERVICE

This appendix lists the operations which are offered by the Database Operations Handler Web

Service.

Table C.1: Operations Offered By Database Operations Handler Web Service

Operation Name Operation Summary
createDatabases Constructs the crawler engine local database
sortServicesbyQOS Sorts the resulting web services by their QoS

score
getServiceDescriptionAndMathcingDegree Returns the web service and the matching de-

gree
getAllURLsFromServiceDescriptionTable Returns the web service URLs
getOntologies Returns the all the domain ontologies’ root el-

ements
getOntology Returns the details of a selected ontology
insertURL Inserts a web service URL
insertServiceResponse Inserts the response of a web service
insertServiceDescription Inserts a web service description
insertQOSInformation Inserts a web service QoS information
insertMatchingDegree Inserts the matching degree of a web service

with the domain ontology
getMatchingDegreesofServices Returns the matching degree of web services

with the domain ontology

80

