
1

TAG-BASED MUSIC RECOMMENDATION SYSTEMS USING SEMANTIC
RELATIONS AND MULTI-DOMAIN INFORMATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İPEK TATLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2011

Approval of the thesis:

TAG-BASED MUSIC RECOMMENDATION SYSTEMS USING SEMANTIC

RELATIONS AND MULTI-DOMAIN INFORMATION

submitted by İPEK TATLI in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Dr. Ayşenur Birtürk
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering Dept., METU

Dr. Ayşenur Birtürk
Computer Engineering Dept., METU

Assoc. Prof. Dr. Tolga Can
Computer Engineering Dept., METU

Assoc. Prof. Dr. Pınar Şenkul
Computer Engineering Dept., METU

M.Sc. Güven Fidan
AGMlab Information Technologies

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: İPEK TATLI

Signature :

iii

ABSTRACT

TAG-BASED MUSIC RECOMMENDATION SYSTEMS USING SEMANTIC
RELATIONS AND MULTI-DOMAIN INFORMATION

Tatlı, İpek

M.Sc., Department of Computer Engineering

Supervisor : Dr. Ayşenur Birtürk

September 2011, 79 pages

With the evolution of Web 2.0, most social-networking sites let their members participate in

content generation. Users can label items with tags in these websites. A tag can be anything

but it is actually a short description of the item. Because tags represent the reason why a user

likes an item, but not how much user likes it; they are better identifiers of user profiles than

ratings, which are usually numerical values assigned to items by users. Thus, the tag-based

contextual representations of music tracks are concentrated in this study.

Items are generally represented by vector space models in the content based recommenda-

tion systems. In tag-based recommendation systems, users and items are defined in terms of

weighted vectors of social tags. When there is a large amount of tags, calculation of the items

to be recommended becomes hard, because working with huge vectors is a time-consuming

job. The main objective of this thesis is to represent individual tracks (songs) in lower di-

mensional spaces. An approach is described for creating music recommendations based on

user-supplied tags that are augmented with a hierarchical structure extracted for top level gen-

res from Dbpedia. In this structure, each genre is represented by its stylistic origins, typical

instruments, derivative forms, sub genres and fusion genres. In addition to very large vec-

iv

tor space models, insufficient number of user tags is another problem in the recommendation

field. The proposed method is evaluated with different user profiling methods in case of any

insufficiency in the number of user tags. User profiles are extended with multi-domain infor-

mation. By using multi-domain information, the goal of making more successful and realistic

predictions is achieved.

Keywords: Recommendation systems, User Profiling, Social Tagging, Semantic Relations,

Dimensionality Reduction

v

ÖZ

SEMANTİK İLİŞKİ VE ÇOKLU ALAN BİLGİSİ KULLANAN ETİKET TABANLI
MÜZİK TAVSİYE SİSTEMLERİ

Tatlı, İpek

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Ayşenur Birtürk

Eylül 2011, 79 sayfa

Web 2.0 ’ın evrimleşmesiyle sosyal ağ siteleri üyelerine içerik oluşturmada olanak sağlamıştır.

Web sitelerinin çoğunda kullanıcılar içerikleri etiketleyebilmektedir. Etiket herhangi bir ke-

lime olabilir, ama aslında içerik hakkında kısa bir açıklamadır. Etiketler bir kullanıcının bir

içeriği ne kadar sevdiğini değil, neden sevdiğini gösterir. Etiketler kullanıcılar için kullanıcılar

tarafından atanan sayısal değer olan oylamadan daha iyi bir tanımlayıcıdır. Bu nedenle bu tez

çalışmasında müzik parçalarının etiket tabanlı bağlamsal temsilleri üzerinde yoğunlaşılmıştır.

İçerik tabanlı tavsiye sistemlerinde, öğeler genellikle vektör alan modellerinde temsil edilmek-

tedir. Etiket tabanlı tavsiye sistemlerinde, kullanıcılar ve öğeler, ağırlıklı sosyal etiket vektörleri

ile tanımlanır. Büyük bir miktarda etiket olduğunda, tavsiye edilecek öğeleri hesaplamak zor

olur. Çünkü büyük vektörler ile çalışmak zaman alıcı bir iştir. Bu tezin ana amacı, müzik

parçalarını düşük boyutlu alanlarda temsil etmektir. Kullanıcı tarafından sağlanan etiketlere

göre müzik önerileri oluşturmak için Dbpedia’dan üst düzey müzik türleri için çıkarılan bir

hiyerarşik yapı açıklanmaktadır. Bu yapıda her tarz; üslup kökenleri, tipik enstrumanları,

türev formları, alt türleri ve füzyon türleri tarafından temsil edilmektedir. Vektör alan mod-

ellerinin aşırı büyüklüğüne ek olarak, kullanıcı etiketi sayısının az olması da tavsiye alanında

vi

önemli bir problemdir. Olası kullanıcı etiketi azlığı problemi ihtimali nedeniyle, önerilen

matris indirgeme yöntemi farklı kullanıcı profili yöntemleri ile değerlendirilmektedir. Kul-

lanıcı profilleri çoklu alan bilgisi kullanılarak genişletilir. Çoklu alan bilgisi kullanarak, daha

başarılı ve gerçekçi tahminler yapılmaktadır.

Anahtar Kelimeler: Tavsiye Sistemleri, Kullanıcı Profilleme, Sosyal Etiketler, Semantik İlişkiler,

Matris Boyut İndirgeme

vii

To my family

viii

ACKNOWLEDGEMENTS

Firstly, I want to thank to my thesis supervisor Dr. Ayşenur Birtürk for her advices, motivation

and support during my thesis study.

I am grateful to my family -Yeter and Ahmet Tatlı- for their love and support. Without them,

I could not have completed this study. I thank to my dear friends Nihal Karagöz, Çağrı İlçe,

Çiğdem Okuyucu and Serra Tekiroğlu for their help and support whenever I needed. I would

also like to thank to Güven Fidan for giving me an opportunity to learn semantic issues in

AGMlab.

Moreover, I appreciate the contributions from my director Erdem Alptekin, my team leader

Gökhan Akca, my Latex teacher Yunus Emre Esin and other colleagues within SIEMENS

A.S.

Lastly, thanks to anonymous reviewers of eChallenges 2010, ACM RecSys 2011, IEEE ICDM

2011 Conferences; WOMRAD 2011-2nd Workshop on Music Recommendation and Dis-

covery and MMIS 2011-The Fifth International Workshop on Mining Multiple Information

Sources.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGEMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Aim of The Study . 2

1.2 Outline of The Thesis . 3

2 BACKGROUND INFORMATION AND RELATED WORK 5

2.1 Recommendation Systems . 5

2.2 Recommendation Techniques . 7

2.2.1 Content Based Recommendation Systems 7

2.2.2 Collaborative Filtering Systems 8

2.2.3 Hybrid Systems . 10

2.2.4 Semantic Recommendation Systems 13

2.3 Music Recommendation . 14

2.3.1 Music Recommendation Systems Overview 15

2.3.2 Tag-based Music Recommendation 17

2.3.2.1 CF Approaches in Tag-based Music Recom-
mendation 18

2.3.2.2 CB Approaches in Tag-based Music Recom-
mendation 23

x

2.4 Dimensionality Reduction in Recommendation Systems 25

2.4.1 Latent Semantic Analysis 27

2.4.2 Non-Negative Matrix Factorization 28

2.4.3 Independent Component Analysis 28

2.4.4 Fuzzy K-Means Clustering 29

2.5 Motivation . 29

3 PROPOSED APPROACH . 31

3.1 Overview . 31

3.2 Data Sources . 31

3.2.1 Last.fm, Music Recommendation Engine 31

3.2.2 Facebook, Social Network 33

3.2.3 Wikipedia, Dbpedia . 34

3.3 Design Issues . 35

3.3.1 Domain Description . 35

3.3.2 Data Representation . 35

3.4 System Architecture and Components 36

3.4.1 Web Crawler . 38

3.4.2 Ontology Creator . 39

3.4.3 Tag Classifier . 43

3.4.4 Track Profiler . 44

3.4.5 User Profiler . 47

3.4.6 Recommendation Generator 51

3.5 Implementation Details . 51

4 EVALUATION . 54

4.1 Data Set . 54

4.2 Methodology . 56

4.3 Evaluation Metrics . 57

4.4 Experimentation Results . 59

5 CONCLUSION AND FUTURE WORK . 65

REFERENCES . 67

xi

APPENDICES

A PUBLICATIONS . 71

B ROCK MUSIC ONTOLOGY . 72

xii

LIST OF TABLES

TABLES

Table 2.1 Content analysis in content-based approach 7

Table 2.2 Rating scales in collaborative filtering . 9

Table 3.1 System Database . 37

Table 3.2 System Database - continued . 38

Table 3.3 Distribution of Tag in Last.fm . 40

Table 3.4 Classes in the ontology . 41

Table 3.5 Instance samples in the ontology . 42

Table 3.6 Relations in the ontology . 42

Table 3.7 Concatenating the stemmed words of the instances 44

Table 4.1 Details of the Data Set (gathered from Last.fm) 55

Table 4.2 Details of the Data Set (gathered from Facebook) 55

Table 4.3 Categorization of items . 59

Table 4.4 Average results and time duration obtained by the CB approaches using LSA

with different rankings . 60

Table 4.5 Average results obtained by the CB approaches using LSA and semantic

relations . 62

Table 4.6 Comparison of Semantic Relations and LSA methods in dimensionality re-

duction . 63

Table 4.7 Comparison of the methods used in similarity 63

Table 4.8 Methods used in ”user profiling” . 64

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 AudioScrobbler of Last.fm . 10

Figure 2.2 Online Internet radios . 14

Figure 2.3 Extension of user-tag-item matrix . 19

Figure 2.4 Comparison of Traditional CF, tag-aware method and tag-based methods . 21

Figure 2.5 Top 50 Wikipedia music facets . 26

Figure 2.6 Top tags for some music facets . 27

Figure 3.1 User profile on Last.fm . 32

Figure 3.2 User profile on Facebook . 34

Figure 3.3 System architecture . 36

Figure 3.4 Rock music on Wikipedia . 41

Figure 3.5 Track-tag matrix . 44

Figure 3.6 User profiling with user’s own tags that user entered for tracks 48

Figure 3.7 User profiling with user’s friends’ tags that they entered for tracks user

listened to . 48

Figure 3.8 User profiling with the tags of all the tracks user listened to 49

Figure 3.9 User profiling with the tags of artists of all the tracks user listened to . . . 49

Figure 3.10 User profiling with the tags of extended set of artists 50

Figure 3.11 Implementation Architecture . 52

Figure 4.1 Users in the data set . 56

Figure 4.2 Description of the followed experimental methodology 57

xiv

LIST OF ABBREVIATIONS

CB Content-based

CF Collaborative Filtering

IR Information Retrieval

RS Recommendation System

TB Tag based

TBRS Tag-based Recommendation System

VSM Vector Space Model

xv

CHAPTER 1

INTRODUCTION

Social networking and communication has become trendy in the past few years. People can

easily join social networking sites like Facebook [1], Twitter[2] and MySpace[3]. Commu-

nication and maintaining their relationships with friends are the most important reasons why

users use such sites [4]. Adding friends, joining groups, attending events, sharing photos and

presenting personal interests are some of the activities in such social networking sites. There

have been some studies about how much information users share with others in these net-

works. Studies show that Facebook users share a considerable amount of information about

themselves [5]. In addition to the aforementioned activities, members indicate their favorite

movies, television series, games, books and music bands on their Facebook profiles which are

examples of explicit data collection regarding listing of preferred items [6].

Internet radios like Last.Fm[8], Pandora[9] and GrooveShark[10] are other examples of social

networking. People use these radio stations interactively in terms of specifying whether they

like/dislike the tracks; tagging bands, albums and tracks; and making comments about the

music. Most of the sites let their members participate in the content generation. For example,

users can label artists, albums and tracks with tags in Last.Fm. A tag can be anything; but it

is actually a short description about the item [11]. Because tags represent the reason why a

listener likes a song, but not how much he/she likes it [12]; they are better identifiers of the

user profiles than the ratings which are usually numeric values that users give items. Thus,

we have concentrated on the tag-based(TB) contextual representations of music tracks.

In some systems, users select tags from a list of words; but they can also enter what they

want which means that most of the time there is no limitation in tagging process. In music

domain, tags can be about genre, locale, mood, instrumentation, style, misc and personal

1

opinions as stated in [6]. It can be said that tags are mostly human-based annotations so that

they suffer from the problems of natural language processing. They may be misspelled and

misspelling causes increasing number of tags for the same tag. Using a spell checking and a

stemming algorithm may help solving this problem. Moreover, tags may be noisy and may

not provide sufficient information about the item. In addition to these problems, tags may

be used for vandalism and hacking [6]. As another problem, some bands/artists may not be

tagged enough and there may not be enough tags at track level which cause a sparsity problem.

Because of the reasons like synonymy, polysemy, subjectivity and noise; the amount of tags

to be used in recommendation systems is always huge.

In document classification, bag-of-words is a common approach in terms of representing each

text as a vector of weighted terms as stated in [13]. Same as document classification, in

recommendation systems, both users and items may also be represented as vectors of weighted

tags. When the amount of the tags is huge, calculation of the items to be recommended

is becoming hard because working with huge vectors is a time-consuming job. Moreover,

quality of the recommendations is inefficient when compared with the time consumed. Thus,

dimensionality reduction is important for faster and efficient recommendations.

In the recent studies, only one information domain (movie or book or music) has been used.

However, it is now easier to use multi-domain information about users because nowadays

most people use more than one social networking site.

1.1 Aim of The Study

In this thesis, it is aimed to provide faster and efficient recommendations in content-based

music recommendation systems. Real Last.fm data has been used. Last.fm does not provide

rating mechanism to its users. However, it provides a social tagging mechanism so that users

can enter tags for tracks, albums and artists. We have concentrated on TB representations of

tracks and users. Both tracks and users are represented by weighted vectors of social tags.

Tags are huge in size and working with such huge vectors results in slow recommendation

process. Moreover, huge vectors are mostly sparse and noisy which causes inefficient rec-

ommendations. Thus, dimensionality reduction methods are applied on huge vector spaces.

LSA is the most common and reliable method. However, it suffers from the lack of ”mor-

2

phology” issues. We have implemented a well-organized semantic-relations method in order

to reduce the dimensionality in the music RSs. Each track/user vector size has been reduced

to the number of music genres in the music domain. In our hierarchical structure each genre

is represented with its sub genres, fusion genres, instruments, stylistic origins and derivative

forms[61]. Our approach has performed better when compared with LSA (with a computable

ranking). If the ontology is ready, LSA is complex in terms of time and space when compared

with our dimensionality reduction method. Moreover, our method considers ”morphology”

issues whereas LSA does not.

In Last.fm, users may listen to music however they may not enter tags for tracks. Because of

the insufficient number of user tags, most of the users get poor recommendations. In order to

provide better recommendations to those who does not enter sufficient number of tags, users

have been profiled by different methods using personal tags, friends’ tags, tags of all tracks

they listened to, tags of artists of all tracks they listened to. In addition to these methods, user

profiles have been extended with the Facebook profiles.

Briefly, it is aimed to compare the content-based recommendation systems using different

dimensionality methods (semantic relations and LSA), different user profiling methods and

different similarity functions. Moreover positive effect of multi-domain information is ex-

pected. The contributions of this study are that: (1) we provide a ”semantic relations” method

for dimensionality reduction in very huge vector spaces; (2)we perform the comparison of our

method against the classical Singular Value Decomposition (SVD) method which is the base

of Latent Semantic Analysis (LSA), our method outperforms the traditional one; (3) differ-

ent user profiling methods are used for the users having insufficient number of tags; (4) user

profiles are extended with Facebook profiles.

1.2 Outline of The Thesis

The rest of this thesis is organized as follows:

Chapter 2 - Background Information and Related Work summarizes the literature on

recommendation systems, TB music recommendation systems and dimensionality reduction

methods.

3

Chapter 3 - Our Approach describes the proposed dimensionality reduction algorithm and

the user profiling methods. It also presents the user profile extension with multi-domain

information.

Chapter 4 - Evaluation states the evaluation methodology and metrics used in the system

evaluation. Comparison with the state-of-the-art method (LSA) is presented.

Chapter 5 - Conclusion provides a general overview of this thesis and draws the conclu-

sions of the study. It also suggests some possible improvement issues which can increase the

success of the studied recommendation approach.

4

CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

This chapter provides a background in the area of recommendation systems (RSs) and mu-

sic recommendation. Firstly, the recommendation problem and RSs are described. Then the

techniques used in RSs are explained. Consequently, music recommendation, TB music rec-

ommendation and dimensionality reduction methods in large vector spaces are summarized.

2.1 Recommendation Systems

Nowadays, the Internet is the main source of information which has about 15-30 million web

pages. However, all the information is heterogeneous and unstructured. Search for informa-

tion is becoming an important task. Google and Yahoo are the most popular search engines.

About 150 million searches are done through Google per day. Thus, academic and industrial

communities develop methods to index and search this large amount of information. Once a

web page is found on Google or Yahoo, users must search on it in order to verify if the infor-

mation needed is there. Search engines perform mainly 2 processes: indexing and searching.

In indexing process; it can be thought that there are cyber robots that visit every web page,

process their contents and index them by words [14]. Indexing can be done manually or in an

automated way. In automated process of indexing; methods like feature extraction, eliminat-

ing stop words, stemming, counting and mapping to concepts can be used[15].

Information filtering is the removing process of all information which is of no interest whereas

Information Retrieval (IR) is the process of finding relevant data within a large amount of

unstructured data. Web search engines, library catalogs,store catalogs, e-mail notification

engines and cookbook indexes are examples of IR systems. ”Information Storage and Re-

5

trieval” (ISAR) is another name of IR. IR is mostly about texts. However, IR of speech,

cross-language, question-answering, image retrieval and music retrieval are also becoming

popular[16].

Recommendation process can be treated as an IR problem. Both RS and IR systems deliver

information to users using a large amount of unstructured data which is not from a controlled

database. RSs also compares a history of queries, extracts relevant information and organizes

it for searching.

Today web-crawling is popular in order to perform the IR tasks in RSs. With the help of crawl-

ing, RSs gather pages from the Internet in order to index them. As an example, everybody has

a Facebook profile. In Facebook profiles, there is a large amount of information; some of the

information is useful (like birth-date, favourite movies, etc..) and some are unnecessary like

advertisements.Gathering useful information is IR, removing unuseful information is IF.

Acquiring meaningful information from Facebook is easy. Sometimes, this task may be

harder. Data collection in RSs can be done in 2 ways. Asking a user to rate an item, ask-

ing a user to rank a collection of items from favourite to least favourite, presenting two items

to a user and asking him/her to choose the best one, asking a user to create a list of items

that he/she likes are some examples of implicit data collection. On the other hand, analysing

item/user viewing times, keeping a record of the items that a user purchases on-line, for music

RSs obtaining a list of tracks that a user has listened to and for video RSs obtaining a list of

videos that a user has watched on can be given as examples of explicit data collection [6].

People make decisions every day like ’Which movie should I watch?’, ’Which city should I

visit’ or ’Which music should I listen to?’. Today, there are many choices and people have

a little time to explore them all. Recommendation booms because of this problem and helps

people make decisions in these big spaces. Simple principle of the RSs is to compare the

user interests which are acquired from their profiles. In other words, RSs are a specific type

of Information Filtering. Extracting user interests from user profiles is the IR process which

will be explained in the following section. The comparison of the acquired user profiles is the

recommendation process and can be done in 3 different ways which will also be explained in

2.3.

6

Table 2.1: Content analysis in content-based approach

Film Name Director Cast Genre Year

Ed Wood Tim Burton Johnny Depp, S. Jessica

Parker

Drama, Biography 1994

The Crow Alex Proyas Brandon Lee, Ernie Hud-

son

Action, Crime,

Fantasy

1994

Arizona

Dream

Emir Kustar-

ica

Johnny Depp, Jerry Lewis Fantasy, Drama 1993

2.2 Recommendation Techniques

RSs find new and relevant items for individuals. User or item profiling is done through the IR

process. For a RS, the next important thing is to decide what should be recommended. After

calculation of similarities between users and items, individual generation of suggestions are

performed. Thus, recommendation process can be done in a collaborative, content-based or

hybrid way.

2.2.1 Content Based Recommendation Systems

In content-based (CB) recommendation, it is assumed that users like items similar to the one

that they liked in the past. CBR deals with the content of items, it analyses the descriptions

of items. A sample of item description analysis can be seen in the Table 2.1. In this example,

each movie has some attributes like director, cast, genre and year. Data is structured and

mostly saved in the database tables. However, most of the times data is unstructured like

news texts. The best way to deal with it is to treat each word as they are different attributes.

Items are represented as attribute vectors. Each vector element is the weight of the corre-

sponding attribute. In the calculation of weights, some methods can be used. Here are some

of them:

1. Term Count Method: Each matrix entry is set to the number of occurrences of the term

in that document.

2. Binary Method: If the term is in the document, that matrix element is set to 1. Otherwise,

it is set to 0.

7

3. TF IDF Method: This is the most common technique. Each matrix entry is set to TF-IDF

value of that term. TF is computed as follows:

T F(ti) = f (ti, d)

IDF(ti) = log(
D

|d : ti ∈ d|
)

Weight(ti) = T F(ti) × IDF(ti)

Where,

• ti is the ith term.

• f (ti, d) is the frequency of term ti in document d.

• D is the total number of documents in the corpus.

Moreover log-entropy, root type and modified tf idf methods can be used [19].

In the user profiling part of the CBR systems, user profiles have a model of user preferences

and a history of user interactions [20]. Decision trees, rule induction and nearest neighbour

algorithms are used in order to find the items similar to the user profiles. CBR systems suffer

from the over-specialization problem that recommendations are very similar to the items that

were liked before. New, interesting and unexpected items could not be recommended[20].

Pandora is a very good example of CBR systems. 50 music experts are working for Pandora

such that they listen to a song each 30 minutes period and specify its properties according to

a predefined feature set. As it can be seen, this is an expensive approach. However, there are

also some feature extraction tools that can describe the audio automatically [6].

2.2.2 Collaborative Filtering Systems

In Collaborative Filtering(CF), it is assumed that users with similar tastes rate items similarly.

It does not depend on the contents or features of items. CF needs ratings for its recommenda-

8

Table 2.2: Rating scales in collaborative filtering

Rating Scale

unary ”good” or ”not know”

binary ”good” or ”bad”

integer integers:1-5 or 1-10

tion process. The most common ratings are shown in the Table 2.2[17].

For better recommendations, systems should know more about users. In fact, the more a

system knows about a user, better recommendations it generates. Rating scales plays an im-

portant role in better recommendations. If rating scale of a system is 1-100, finding similarity

of users becomes harder because users may have given 88 and 89 to an item although they

are similar in a 1-5 scale system. Moreover, explicit ratings require a dedicated time for users

in order to get efficient recommendations. Rating process may be boring for users. Thus,

implicit data collection may be more realistic. Last.fm’s AudioScrobbler, which can be seen

in Figure 2.1, is a good example of implicit data collection. With the help of this software,

Last.fm keeps a history of tracks that users are listening to.Moreover, the functionalities like

”love this track”, ”skip this track” and ”ban this track” helps in the user profiling process.

Last.Fm is the best example for the RSs that uses CF methods. It uses social tagging strategy

in order to enrich its recommendations.

If we compare CF with CB approach, CF uses ratings of users for finding user similarities

whereas CB approach uses contents and features of items in order to find item similarities.

CF assumes that similar users like similar things. On the other hand CB approach assumes

that if a person likes an item in the past, he/she likes items similar to the one that he/she liked

in the past. CF is better than CB in domains where there is not much content associated with

items. Moreover, CF suggests serendipitous items which may not be like the items that user

have liked before. In some domains with lots of items, users may have rated only a few of

them which causes sparsity. In addition to sparsity, some items which have not been rated are

not recommended.

Breese et al. classified CF algorithms as memory-based and model-based algorithms in [18].

Pure memory-based algorithms keeps users, items and rating in the memory which increases

run-time duration. Today, most of the systems uses pre-calculated model of the system

9

Figure 2.1: AudioScrobbler of Last.fm

and uses it in run-time. In [18], CF algorithms are classified into probabilistic and non-

probabilistic ones. The most common nearest neighbour algorithms, graph-based algorithms,

neural algorithms and rule-mining algorithms are non-probabilistic.

2.2.3 Hybrid Systems

There are some RSs that combine these two methods. They exploit the advantages of the

two method while avoiding their disadvantages. However, other problems rise such as the

increasing number of users and documents to be saved [21].

Fab is a good example of hybrid systems [24]. In the Fab system, users are represented by

the content analysis of the items that they rate. Then they receive items both which belong

10

to the most similar users’ profiles and when they score highly against their profiles. With

the help of content-based collaborative filtering, advantages of CB and CF approaches are

used. Moreover, such hybrid systems solve the shortcomings of both. Over-specialization

is the most important problem of CB systems that such systems recommend only the most

similar items to the previously rated/seen/ items. Any unusual (but similar) items that a user

may like are not recommended. CF solves this problem by recommending new and unusual

items. On the other hand, CF has a problem that newly added items are not rated by anyone

so they are not recommended to anyone. Hybrid systems do not have such problems. Users

are represented as vectors of the contents. In this vector space, features are the elements of

the vectors. For the movie domain; release date, type (movie or tv series), director, writer,

cast, language, country, company, genre and keywords may be the features of the movies.

In [22], recommendation techniques are classified into 5 types: CF, CB systems, Demo-

graphic, Utility-based and knowledge-based. CF and CB systems are explained in the pre-

vious sections. Demographic method uses categorization of users based on their personal

attributes like age, place, and gender etc... An early example of this type of recommendation

can be seen in the one which is designed by Rich et al [30]. It is a book RS based on the

personal information of its users. Demographic approach uses people to people similarities

like CF. It has an advantage that it does not need ratings; it deals with the demographic data of

the people. On the other hand; utility-based approach does not build a long term generaliza-

tion. System produces a utility-function. Although producing a utility-function is a problem,

utility-based approach is a good approach. For example, price is a trade-off preference after a

while and utility-based systems updates the preferences very often and produces user-specific

functions about user’s short-term needs. System relies on the information provided by users

through questionnaires and interviews. This approach may use constraint-satisfaction tech-

niques. Thirdly, knowledge-based RSs keep user profiles in knowledge-based structures.

Reasoning may be done between item profiles and user profiles. For this kind of inference

there are some frameworks that can be used such as Clips [31] and Jess[32].

Each technique has its own advantages and disadvantages. A pure CB approach has some

shortcomings. Generally a very limited analysis of certain kinds of content is provided. The

second problem is over-specialization. User is limited to see the items similar to ones that are

already voted. Finally, the last problem is to expect user feedback because it is a boring task

for users whereas it is the only factor that effects the future performance of the system. On

11

the other hand, CF has other disadvantages. If the number of users is very small relative to the

volume of information in the system, then the coverage of the ratings becomes very sparse.

As an another problem; if tasting of a user is very unusual than the others, then any nearest

neighbours will not be calculated and this leads to a poor recommendation.

The crucial problem is how best to learn about a new user because RSs knows nothing about

the new user. This is called ”the new user problem” and the system should acquire some

information about the new user. The most direct way to do is to ask for ratings for some

items. But the questions should be selected carefully. For example, a food RS should not ask

to the new user if he/she likes vanilla ice cream because most people likes it and this is not

a useful information for predicting the user’s taste. Same as vanilla ice cream, a travel RS

should not ask to a new user if she travelled and liked Burkina Faso; because he/she might not

have even heard about its name and this also does not help system predict the new user’s style.

Moreover, this rating part is boring for new users, so this should be done in a funny way while

learning enough about him/her. Thus, hybrid RSs combine two or more of these techniques

in order to prevent the aforementioned disadvantages. There are some hybridization methods

which are now explained.

Weighted method uses the scores of several recommendation techniques that are combined

together to produce a single recommendation.

Switching method switches between recommendation techniques depending on the situation.

Mixed method generates recommendations from several different RSs at the same time.

Feature combination method generates features from different recommendation data sources

which are used together in a single recommendation algorithm.

Cascade method is the one in which one recommender refines the recommendations given

by another.

In feature augmentation method; output from one technique is used as an input feature to

another.

In Meta-level method; the model learned by one recommender is used as input to another.

12

2.2.4 Semantic Recommendation Systems

Apart from these types of recommender systems, semantic RSs are very popular nowadays.

Vocabulary or ontology based systems, trust network based systems and context-adaptable

systems are said to be the main types of semantic RSs [22]. Most accurate and most inter-

esting recommendations are done by using artwork features and their semantic relations in

Cultural Heritage Information Personalization(CHIP) project [23]. Although it seems that

using semantic relations affect the recommendation process positively, determining which

relations are interesting for users is important.

Wang and Kong have designed a system which uses categorical information of items [25].

Similarity of user pairs are calculated with the help of these measures: the similarity of user

evaluation histories; the similarity of these user’s demographic data; and the users similarity

in interest or preference based on the semantic similarities of the items retrieved and/or eval-

uated. Farsani et al. suggest a system which classifies the products and customers with OWL

for product-client similarity[26]. Another system in the field of e-commerce is designed by

Ziegler et al.[27]. The system is uses the collaborative-recommender paradigm through con-

tent using a product taxonomy from which the user profiles are defined. Jung et al. propose a

RS based on personal information in terms of Semantic Web[28]. The system stores user pro-

files and web services in RDF files and extracts the most relevant RDF objects in accordance

with the user profile. Another example is the system of Cantador et al[29]. Their system uses

a multi-layer semantic framework. It generates user profiles with the help of ontological con-

cepts and classifies people in terms of their preferences. Using these classes, system generates

different semantic levels. It finds implicit social networks which may help in recommendation

process.

Here are the advantages of semantic relations usage in RSs[22]:

1- Inter-operatibility of system reources

2- Homogeneity of item/ user representations, improvement of these representations

3- Dynamic contextualization

4- Better performance in CF systems and social networks

5- Handling the cold-start problem by completing missing parts of the profiles

13

6- Improvement of the system with pre-defined rules

7- Ability to extend profiles semantically

8- Generation of descriptions enriched by web services

2.3 Music Recommendation

People listen to music, but listening to the same tracks and singers may be boring most of

the time. Poeple may get suggestions from their friends in order to find new and relevant

tracks; they may find out new music in some radio stations, on social networks (like Facebook,

Youtube, MySpace), the movies thay have watched and in shopping stores. However, finding

new music is mostly on-line. Thus, internet radios are becoming popular that people may find

relevant music with the help of recommendations of the internet radios. Online internet radios

can be seen in the Fiure 2.2.

Figure 2.2: Online Internet radios

14

2.3.1 Music Recommendation Systems Overview

In the past, people listen to music on their walkmans, radios or CD-players.However, today

they prefer on-line music sources; because with the growth of Internet, everything including

music is available to everyone. In today’s world, thousands of albums are arriving to music

market every week and the music domain becomes bigger. Music recommendation gains

more and more importance because finding new and similar music is hard in this big space.

FM radios, TV programs, friends, shopping stores, clubs, bars, advertisements, movies, inter-

net radios, websites and fan pages are sources of new music. According to a survey mentioned

in study [6], 86 percent of the people uses on-line sites in order to get suggestions for new and

relevant music.

Music recommendation can be thought as a prediction problem. Main task of a recommenda-

tion engine is to predict items (songs, albums, artists) that a user may be interested in. There

are some use-cases mentioned in [6].

1- Find good: RSs aiming to ”find good” provides a ranked list of items some of which may

be novel.

2- Find all good items: RSs aiming to find all good items must have a low false positive rate.

3- Recommend sequence: RSs aiming to recommend sequence provides an ordered sequence

as a whole (ex: play-lists).

4- Just browsing: Some RSs are for just browsing and searching items.

5- Improve profile: Improving profiles is important for RSs having a strong community com-

ponent.

6- Express self: This is important in social networking sites such that people communicate

and interact with each other according to common interests.

7- Influence others: This is important in social networking sites such that some people may

want to influence others about his/her interests.

Users can be described in a demographic way; with their age, gender, language, education,

family status and income. In addition to demographic profiling, users can be described ac-

15

cording to their geographic location. Moreover, users can be described in a psychological

way; with their general interests, hobbies, music preferences etc.. This can be done explic-

itly through lists of preferred/hated artists/song or users’ ratings/reviews/opinions. Tracking

listening habits and keeping a history of pages/blogs visited are some ways of implicit psy-

chological user description. Explicit one is not always reliable because:

1- People do not bother.

2- Explicit ratings/opinions/reviews provide only a partial information about the user. Or

people may even lie.

3- If people tell the truth about themselves, they often fail to update their information over

time.

There are some representations for user descriptions. As the complexity grows, expressive-

ness of the representations also grow. Thus GUMO is the most complex bur expressive one.

1- UMIRL (User Modelling for Information Retrieval Language): UMIRL can be thought as

an XML-file. Users are described in terms of their demographic and geological information.

Their music background and music preferences are kept. With these information, rules like

”while having a special dinner with girlfriend, a romantic piece has a slow tempo, lyrics are

related with love, and has a soft intensity can be ” are created in XML.

2- MPEG-7: MPEG-7 is a standard for multimedia content description. It has an XML

schema. It keeps the user preferences for content-filtering and browsing.

3- FOAF (Friend of a Friend): It is a huge ontology of users and their social networks.

4- GUMO (General User Model Ontology): It is the top level user ontology. In addition to

basic user dimensions,personality (talkative, quiet, shy, kind, helpful...) and characteristic

(extrovert, introvert, optimistic, pessimistic...) information are also kept.

In music RSs, tracks can be profiled in terms of their audio contents (like rhythm, timbre,

tonality, instrumentation). In addition to audio descriptions, tracks can be profiled in terms

of their text descriptions like their metadata, reviews mined from various blogs, lyrics and

tags [6]. Metadata information is mostly applied by experts. Artist name, album name, genre,

duration and year are some attributes in the metadata information. Attributes are global de-

16

scriptions of items and are same to all users whereas tags are local descriptors and might

change from user to user [33]. In our study, we focus on the text descriptions, namely tags in

track profiling.

2.3.2 Tag-based Music Recommendation

Tags are associated with Web 2.0. Since they are in natural language, they suffer from the

problems of natural language processing. Thus,they may be misspelled. Misspelling causes

increasing number of tags for the same tag. Using a spell checking and a stemming algo-

rithm may help solving this problem. Stemming is a technique to convert similar words to

a common base form. This base form does not have to have a meaning from a linguistic

point of view (such as reducing synonyms to a single word, or finding the root of the word).

Various stemming algorithms exist for English language. With the help of stemming, similar

words (which has the same roots) can be found and number of attributes in the item set can

be decreased. The other problems in social tags are:

Polysemy: Some tags may have more than 1 meaning. Ex: progressive, love

Synonymy: People may enter different words for the same tag. Ex: hip-hop, hiphop, rap

Personal tags: Some tags are about users’ own experiences and opinions. Ex: seen live, I

own it

Noise: Some tags are meaningless. Ex: x, whoa

Sparsity of data: New bands/albums/tracks may not have enough tags.

Hacking and vandalism: Some people may enter irrelevant tags for tracks/albums/artists.

Ex: death metal for Paris Hilton

Users are now content-generator rather than content-reader because they help the generation

of contents on the web. In the music domain, tags can be entered for songs, albums and

artists. Most of the existing previous works are about recommendation of tags. Because social

tagging is getting more and more important, tag-based recommendation systems (TBRSs)

systems are becoming a new research topic for academicians. Most of the current music RSs

use CF technique with 2- dimensional data:

17

1- user - tag

2- item - tag

3- user - item

A 3-dimensional data (user-item-tag) should be thought in TBRSs. Data is mostly very sparse

in these systems because each user generally tags a small amount of items. In [34], a 3-order-

tensor framework is represented.Each ’user-item-tag’ data is a tensor in this study. With

this framework, data sparsity problem is handled because a Higher Order Singular Value

Decomposition (HOSVD) method is applied on this 3-dimensional matrix. Their method

outperforms the traditional algorithms.

RSs either predict ratings for unseen items or predict items that can be liked. Most of the social

we-sites like Last.fm does not have a rating mechanism. Instead of explicit ratings, today’s

RSs use implicit ratings (user’s listening habit, user’s purchase history etc.). Thus rating scale

in implicit rating mechanisms is 0-1. Tags can be used in rating-based CF systems with the

help of implicit rating mechanism [33]. If the tag is used by the user, its rating is 1; otherwise

its rating is 0. In most of the previous studies, 2-dimensional spaces in music space are taken

into consideration (item-user or user-tag or item-tag). User-tag and item-tag relations can be

used in order to extend the rating data [33].

2.3.2.1 CF Approaches in Tag-based Music Recommendation

In [33], user-item matrix is extended by including user tags as items. They also extend user-

tag matrix by including item tags as users. Details can be seen in Figure 2.3. After extension

with tags, they use a fusion method on traditional CF algorithm which captures users, items

and tags. With this approach, 3-dimensional relation <user,item, tag >is held unlike global

attributes which only have a 2 dimensional relation <item, attribute >. This is known as

tag-aware method.

On the other hand, the three 2-dimensional relations among users, tags and items are used

in a new similarity measure generation which outperforms the traditional item-based and

user-based CF methods [35]. In this approach, neighbourhood generation is done through

the similarity of users’ tags, similarity of users’ items and the similarity of user’s tag-item

18

Figure 2.3: Extension of user-tag-item matrix

relationships.

UT sim(ui, u j): The similarity of users’ tags, which is measured by the percentage of common

tags used by the two users:

UT sim(ui, u j) =
|Tui ∩ Tu j |

max(|Tuk |)

UPsim(ui, u j): the similarity of user’s items, which is measured by the percentage of common

items tagged by the two users:

UPsim(ui, u j) =
|Pui ∩ Pu j |

max(|Puk |)

UT Psim(ui, u j): the similarity of the users’ tag-item relationship, which is measured by the

percentage of common relations shared by the two users:

19

UT Psim(ui, u j) =
|T Pi ∩ T P j|

max(|T Pk|)

Thus, the overall similarity measure of two users is defined as below:

S imu(ui, u j) = wUT · UT sim(ui, u j) + wUP · UPsim(ui, u j) + wUT P · UT Psim(ui, u j)

Where,

• wUT + wUP + wUT P = 1.

• wUT , wUP and wUT P are the weights to the three similarity measures,respectively.

In addition to user similarities; item similarities are calculated with common tags, common

users and common tag-item relationships.

PT sim(pi, p j): The similarity of two items based on the percentage of being put in the same

tag.

PT sim(pi, p j) =
|Tpi ∩ Tp j |

max(|Tpk |)

PUsim(pi, p j): the similarity of two items based on the percentage of being tagged by the

same user.

PUsim(pi, p j) =
|Upi ∩ Up j |

max(|Upk |)

PUT sim(pi, p j): the similarity of the two items based on the percentage of common tag-item

relationship.

PUT sim(pi, p j) =
|UPi ∩ UP j|

max(|UPk|)

S imp(pi, p j) = wPU · PUsim(pi, p j) + wPT · sim(pi, p j) + wPUT · PUT sim(pi, p j)

20

Where,

• wPU , wPT wPUT are the weights.

• Their sum is also 1.

This 2 methods outperforms the tag-aware method. Traditional CF, tag-aware method and this

TB method is compared in Figure 2.4. First one is user-based, the second one is item-based.

Figure 2.4: Comparison of Traditional CF, tag-aware method and tag-based methods

In [12], search-based algorithms are applied on TB profiles. A query is created. Tags in the

current user’s profile are added to the query. Then the tracks which are tagged with the tags in

the query are searched. The cosine similarity between the resulting tracks and the query are

calculated. The most similar tracks are recommended. This search-based method outperforms

the classical TB CF methods.

In most of the previous studies, user profiling is done in 4 ways:

1- Collecting all the data and descriptions in the user profiles.

2- Using only the tags specified by user.

3- Using the tags used by friends.

4- Using the tags associated with the user’s social media reflecting his/her interests and activ-

ities.

In [43], users are profiled by his/her own tags as well as the tags specified by his/her social

21

contacts. Moreover, semantic relations between tags are found via a tag to tag(T2T) matrix.

Semantic relations between tags are calculated with the following formula:

T2T [uti][ct j] =
P(uti) ∩ P(ct j)

P(uti)

Thus the value of T2T [uti][ct j] is the proportion of the people with both tags i and j within

the people with tag i. Users are represented with vectors of their personal and social tags. For

each tag, its semantically related tags are selected in the T2T matrix and these tags are also

added to the user profile. Their relationship degree affects the weight of the tag in the user

vector. This method does not provide a good precision (about 2,7 percent with the last.fm

dataset). However, it is good in accuracy.

Tags are user-annotated free texts. Users are free to enter tags whichever item he/she wants

which causes an uncontrolled of tag redundancy. Using all these tags in vector spaces is

mostly time-consuming. Moreover the vector space is sparse. Tags can be clustered according

to their similarities and these clusters improve the personalized recommendations [36]. Clus-

tering is one method to reduce the dimensionality, the other method is the usage of semantic

relations between tags. This is done with some pre-defined ontologies in CHIP project [23].

This solves the cold-start problem in CB RSs. When there are a few items, recommender uses

semantic relations to find similar items. Moreover, it helps the over-specialization problem.

It sometimes finds interesting and surprising items by combining feature relations.

In addition to tags, web-mined texts are also used instead of tags. In MusicSun, a web-based

similarity between artists is used in [41]. A query like ”<artist name >+ review” is entered

on Google, top 50 pages are retrieved, each page is parsed into words and lastly each artist is

represented as a word vector. Similar artists are found with vector distance techniques. [40]

compares top ten tags of Last.fm and top ten web-mined texts for the music group Portishead

and observes that web-mined texts are very unlikely in the music domain. However, this is

a good solution for artists/bands which are not tagged in Last.fm-like specialized sites. [42]

propagates the artist tags with the help of Wikipedia abstracts. It addresses the solution to

cold-start problems of artists.

22

2.3.2.2 CB Approaches in Tag-based Music Recommendation

TB profiles are not used only in CF approaches, but also in CB approaches. [39] evaluates the

performance of CB profiles in different domains (Last.fm and Delicious[46]). They propose

5 different CB recommendation algorithms:

1- TF-based similarity:

User’s usage of tags appearing int he item profile is utilised. Scales are normalized.

g(um, in) = t fu(um, in) =

∑
l

t fum(tl)

max(t fu(t))

g(um, in) = t fi(um, in) =

∑
l

t fin(tl)

max(t fi(t))

2- TF-cosine based similarity:

Both user and item profiles are represented by a list of weighted items. Weights are calculated

using Tf method. Cosine similarity measure is used to compute the similarity between user

and item.

g(um, in) = cost f (um, in) =

∑
l

t fum(tl) · t fin(tl)√∑
l

(t fum(tl))2 ·

√∑
l

(t fin(tl))2

3- TF-IDF cosine based similarity:

Both user an item profiles are represented by a list of weighted items. Weights are calculated

using Tf-idf method. Cosine similarity measure is used to compute the similarity between

user and item.

g(um, in) = cost f−id f (um, in) =

∑
l

t fum(tl) · iu f (tl) · t fin(tl) · ii f (tl)√∑
l

(t fum(tl) · iu f (tl))2 ·

√∑
l

(t fin(tl) · ii f (tl))2

23

4- Okapi BM25 based similarity:

The similarity between user and item is calculated using Okapi-BM25 method.

g(um, in) = bm25u(um, in) =
∑

l

bm25um(tl)

g(um, in) = bm25i(um, in) =
∑

l

bm25in(tl)

5- Okapi BM25 cosine-based similarity:

Both user an item profiles are represented by a list of weighted items. Weights are calculated

using Okapi-BM25 method. Cosine similarity measure is used to compute the similarity

between user and item.

g(um, in) = cosbm25(um, in) =

∑
l

bm25um(tl) · bm25in(tl)√∑
l

(bm25um(tl))2 ·

√∑
l

(bm25in(tl))2

Okapi-BM25 is a probabilistic ranking method used in IR in search engines. The okapi-bm25

weighting function is given below [48].

Okapi − bm25(qi) =
(k1 + 1) · f (qi,D) · IDF(qi)

f (qi,D) + k1 · (1 − b + b · |D|avgdl)

Where,

• qi is the ith term of query q.

• f (qi,D) is the frequency of term qi in document D.

• |D| is the length of document D.

• avgdl is the average document length (in words) in the corpus.

• k1 and b are the parameters that are usually chosen as k1 = 2.0 and b = 0.75.

• IDF(qi)is the Inverse Document Frequency of qi.

24

IDF(qi) = log(
N − DF(qi) + 0.5

DF(qi) + 0.5
)

Where,

• DF(qi) is the number of documents containing qi.

• N is the total number of documents.

cosbm25 method outperforms cost f−id f method considering Last.fm data-set if CB approach is

used[47].

In [49], heterogeneity in music recommendations is explained. Tags, track listenings and

social contacts are said to be the source of information in music recommendations. Tags

are proved to be the most valuable source of information. Tags provides effective coverage.

On the other hand, friends provide diversity in recommendation and track listenings provide

novelty.

Up to our knowledge, a study very similar to our study focuses on the top 50 music facets

extracted from Wikipedia and assigns Last.fm tags to these facets [42]. The main object of

study [42] is to provide an automatic method for uncovering the music facets and to classify

tags according to these facets. The extracted music facets can be seen in the Figure 2.5. And

the assigned tags to the facets can be shown in the Figure 2.6. The researchers of the study did

not evaluate the usefulness of their approach in music recommendation. The just categorized

the tags using Wikipedia.

2.4 Dimensionality Reduction in Recommendation Systems

As explained before, TBRSs are similar to the document-query structures in IR. Documents

and queries are represented as a weighted list of terms in IR systems. Similarly, tracks and

users are represented as a weighted list of tags in RSs. Thus, Vector Space Model is the

standard representation for both document-term and track-tag representations. Text and image

domains may have a large amount of attributes (terms or tags) which causes noise effects,

25

Figure 2.5: Top 50 Wikipedia music facets

ambiguities and redundancies. In order to remove the noise and reduce the complexity, some

unsupervised dimensionality reduction methods are enhanced [52].

When the dimensionality of data increases;

1- performance of the query decreases,

2- time and space complexity increases,

3- efficiency for data indexing decreases,

4- computation becomes slower,

5- noise increases, and

6- semantic gap problem arises.

Aim in the dimensionality reduction is to compute faster with a reasonable accuracy. LSI

(Latent Semantic Indexing) is the oldest technique in the solution to this problem. However,

alternative matrix decomposition methods are enhanced because of the time and space com-

plexity of LSI.

26

Figure 2.6: Top tags for some music facets

In [52], researchers evaluate 4 different dimensionality reduction methods in terms of com-

plexity, approximation error and quality of the retrieval. The compared methods are explained

below.

2.4.1 Latent Semantic Analysis

Latent Semantic Analysis is a common approach in document categorization and text sum-

marization. In our case, we treat tracks as a list of tags just like that documents are a list

of words. LSA is an intelligent technique that it finds the semantic relations between docu-

ments by using the information about the usage of words in the context. It finds the similar

documents by knowing the common words between the documents. Basically, LSA uses a

term-document matrix which has the counts of terms in each document as the matrix element.

Most of the time, the matrix is sparse and in the columns there are documents and in the rows

there are terms. The methods which can be used in the construction of the matrix may vary.

Term Frequency, binary, TF-IDF, log-entropy, root type and modified tf-idf methods can be

used in the matrix construction[19]. After the construction of term-document matrix, LSA

finds a low-rank approximation in order to achieve its basic goals. Firstly, it reduces the di-

mensionality for easier computation. Secondly, it eliminates the anecdotal instances of terms

in order to get a denoisified matrix. Lastly, synonymy is taken into account that similar words

to the words of a document are added to the representation of the document. Besides; there

are some limitations of LSA. It uses only its inputs (terms and documents); not the world

knowledge. It does not use morphology and word order, either. Singular Value Decomposi-

tion (SVD) is the base of LSA. It models the relationship between terms and documents. In

27

SVD, the term-document matrix is thought to be created from 3 matrices. Mathematically,

A = U · S · VT

Where,

• A is the m ∗ n term-document matrix.

• U is a m ∗ m unitary matrix.

• S is a m ∗ n diagonal matrix.

• V is a n ∗ n unitary matrix.

The diagonal entries (S i) are known as the singular values of A. The m columns of U and the

n columns of V are called the left singular vectors and right singular vectors of A, respectively.

The approximated matrix Ak is the rank-k-approximation of the original matrix and is defined

as

Ak = Uk · S k · VT
k

2.4.2 Non-Negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is another method which is successful in reducing

the dimensionality of matrices with non-negative components[52]. In the NMF, each docu-

ment is represented as a combination of base topics and each axis in the space stores the base

topic. For a matrix A with size t × d, NMF factorizes A as

A = W · H

Where, W is t × k and H is k × d and k ≤ d. The columns of W contain the basis vectors and

the columns of H contain the weights. NMF does not need to be orthogonal. Moreover, each

document takes only non-negative values.

2.4.3 Independent Component Analysis

Independent Component Analysis (ICA) transforms the original matrix into its independent

components [52]. ICA assumes that the original matrix is linear or non-linear mixtures of

28

some latent variable with some coefficients. The latent variables are called the independent

components of the matrix. The aim is to find the most independent components. For a matrix

A of size t × d ICA decomposes A as

A = C · F

Where C is the mixing matrix of size t × k and F is the matrix of independent components

with size k × d.

2.4.4 Fuzzy K-Means Clustering

The technique which uses clustering in matrix decompositions is called Concept Indexing

[52]. Concept index represents the linear combinations of centroids of clusters. CI requires

less memory than LSA. An improved version of the CI uses Fuzzy K-means algorithm. In

FKM clustering, objects can belong to multiple clusters, and clusters are fuzzy sets.

In [52], 4 different datasets are used in order to compare the 4 methods. LSA performs the

best in retrieving. Quality of its retrieval is the best. NMF and ICA methods gives poor results

when compared with FKM and LSA. LSA is more complex than FKM in terms of time and

space, but best approximation is achieved by LSA.

2.5 Motivation

Recommendation is a hot topic in both data mining and artificial intelligence areas. Most

of the previous studies had focused on movie domain. Music is a a less studied domain for

IR and recommendation. With the emergence of Internet radios like Last.fm, GrooveShark

and Pandora, music recommendation gained more importance. There are some differences

between movie recommendation and music recommendation:

1- People watch a movie in 1-2 hours whereas they listen to a music track in 5-6 minutes.

Thus, people need more music recommendation than movie recommendation.

2- The amount of the items(tracks) in the music domain is much more than the amount of

items(movies) in movie domain.

29

3- It is easy to keep history of listened to tracks with some software like Last.fm’s Audio-

scrobbler; however there is not such a software for keeping a log of watched movies.

4- Movie recommendations mostly rely on ratings whereas music recommendations rely on

listening habits.

5- False positives in music recommendations is not as annoying as false positives in movie

recommendations. People does not mind when an irrelevant track is recommended, because

it takes only 5 minutes. On the other hand, getting irrelevant movie recommendations annoys

people, because it takes 2 hours.

6- People listen to music while travelling, coding, studying, reading, even sleeping. People

go to concerts, join to festivals and watch live performances. Music is everywhere including

movies. Movies are watched only once whereas soundtrack albums are listened more than

once.

The history of musical interests of the members are kept well in Last.fm. Thus, the profiles on

Last.fm constitute a good resource for user profiling in music recommendation. Last.fm does

not provide its users a rating mechanism. However, it provides social tagging mechanism.

Users can enter tags for artists, tracks and albums. Thus, rather than rating-based recommen-

dation, TB recommendation is focused in this thesis study. The vector space model used in

such systems is large in size. Moreover, it is sparse and noisy. Thus a dimensionality reduc-

tion method should be used in order to produce more efficient and faster recommendations.

In TB user profiling, tags which users entered for tracks are used. If a user is an active listener

but does not label any tracks with tags; that user will not be able to get recommendations due

to the lack of tags. Thus, this kind of users should be profiled by different methods other than

using only user’s own tags.

Facebook is another popular social networking site that people of any age have already reg-

istered. Everybody uses Facebook actively. A small research has been done on Facebook

profiles of friends and it has been seen that most of the users had already specified their

favourite movies, music bands, games, sports, books and TV programs on their Facebook

profiles. Thus extending user profiles with their Facebook interests seems to improve the

performance of the recommender.

30

CHAPTER 3

PROPOSED APPROACH

This chapter presents a novel dimensionality reduction method for large vector spaces. First,

an overview of the system is presented. Then the data sources are explained. Data represen-

tation is described. Finally system architecture and each component is discussed in detail.

3.1 Overview

The task of our system is to recommend tracks to users considering their personal interests

acquired from their Last.fm and Facebook profiles. Our system creates a music ontology

with the help of Dbpedia. Then it uses this ontology in order to reduce the dimensionality

of the VSM (track-tag, user-tag). It creates TB user and track profiles using 5 different

user profiling methods. It generates rules from Facebook profiles (rules like ”if a person

like the movie ’Godfather’, he/she may also like the band ’Pink Floyd’”). Then it extends

user profiles by inferring the rules generated from Facebook. Finally it generates personal

recommendations.

3.2 Data Sources

3.2.1 Last.fm, Music Recommendation Engine

Last.fm is founded in U.K, in 2002 [44]. Today it has about 40 million of users from about

190 countries. Last.fm provides an Audioscrobbler to keep the history of songs users listened

to. Moreover, it provides applications for iphone, ipad and some other devices.

31

Figure 3.1: User profile on Last.fm

As it can be seen in Figure 3.1; there are mainly profile, library, charts, events, friends, neigh-

bours, groups, journal and tags tabs on a Last.fm user page.

On profile tab; recently listened tracks, recent activities, user’s archive, popular tracks, pop-

ular artists are seen.

On library tab; users can see their most listened artists, loved tracks and created playlists.

On Charts tab; statistics about listened tracks, albums and artists are shown.

On Events tab; users can see their joined events and friends’ events.

On Friends tab; friends and friend requests are seen.

On Neighbours tab; weekly calculated neighbours are shown. Users can listen to their neigh-

32

bour’s radio stations.

On Groups tab; joined and created groups are seen.

On Journal tab; users can write diaries and use their Last.fm profiles as blogs.

On Tags tab; user can see his/her tags.

Last.fm is a social networking site as well as being the most popular Internet radio. Users can

add friends. They can leave notes (shout mechanism on Last.fm) on their friend’s profiles.

They can send private messages to each other. They can join to groups or events. Moreover,

they are involved in the content-generation like adding photographs to fan pages or entering

tags for artists/albums/songs. This process is called social tagging.

When a user is registered to Last.fm, a musical profile is created either by his/her tracks on

the computer with Audioscrobbler or the tracks that are listened on the Internet radio. Au-

dioscrobbler keeps a log of listened tracks. This process is called scrobbling. Scrobbling

helps Last.fm to calculate similar users and users can see their neighbours on their own pro-

files. Neighbours are being calculated every week on Sundays. In addition to neighbour

recommendation, Last.fm recommends artists that individuals may like. Users can see their

recommendations on their own profiles.

Last.fm does not explain its recommendation method. However it is obvious that Last.fm

uses CF methods. It uses user-based CF for neighbour recommendation and item-based CF

for artist recommendation. It enriches the CF methods with social tagging mechanism. In

other words meta data, audio information and tags are used in Last.fm’s CF algorithm. More-

over, user profiles are enriched with the tags they entered and the comments they made on

the friends’, artists’, albums’ and tracks’ profiles. Evaluating is done with ”love/ban/skip”

mechanism.

3.2.2 Facebook, Social Network

Facebook is one of the most popular social networking sites. It was founded in 2004 by

Mark Zuckerberg from Harvard University. It was thought to be used by the students of only

Harvard University. Then it was expanded to all over the world. Today, Facebook has more

than 750 million users [45].

33

Figure 3.2: User profile on Facebook

Users add friends, send private messages, join to groups, add photos, share videos and write

comments on Facebook. The inspiring part of Facebook for my study is that users specify their

interests (favourite movies, favourite music bands, favourite books, favourite TV programs)

on their profiles. It is an advantage for a recommender to know what people like in different

domains.

3.2.3 Wikipedia, Dbpedia

Wikipedia was founded in 2001 by Jimmy Wales and Larry Sanger [63]. Wikipedia was just

the next generationof Nupedia which was a free online English encyclopedia project. Articles

in Nupedia had been written by experts and they had been reviewed under a formal process.

First contributors of Wikipedia were from Nupedia, Slashdot postings, and web search engine

indexing. Wikipedia had been having about 20000 articles in 18 different languages at the

end of 2001. By 2002, it had been having 26 language editions, 46 by the end of 2003, and

161 by the final days of 2004. English Wikipedia had been having about two million articles

in 2007 which makes it the largest encyclopedia.

34

Wikipedia is a free, web-based, multilingual encyclopaedia. For the data mining tasks, it is

not appropriate. Instead of its unstructured content, Dbpedia can be used. Dbpedia was started

by Free University of Berlin, the University of Leipzig and OpenLink Software [64]. The first

datasets were published in 2007. There are more than 3,5 million entries in Dbpedia and half

of them belong to a consistent ontology with links to related data sets.

3.3 Design Issues

3.3.1 Domain Description

The main aim of this study is to reduce the dimensionality of the vector space in our system.

We use the semantic relations between the tags in the music domain. In order to create a

well-organized semantic relations structure, we use Dbpedia information of our mainstream

music genres.

We use the music domain in order to apply the proposed approach in a CB system. Tracks are

appropriate for the TBRSs because their top tags can be gathered through Last.fm API.

Moreover; in order to find the relation between movies and artists, we use users’ interests

(favourite movies, TV shows and music bands) acquired from their Facebook profiles. Thus,

we extend the user profiles with the artists that users may like according to their favourite

movies.

3.3.2 Data Representation

Data used in our RS is crawled from Last.fm, Dbpedia and Facebook.

1- Track, artist, tag, singer and mainstream genre information and the mapping between each

are collected from Last.fm.

2- For each mainstream genre specified in Last.fm; ontology classes (instrumentation, fusion

genres, subgenres, derivative forms and stylistic origins) and the mapping between main-

stream genre and the classes are gathered from Dbpedia.

3- Movie, TV-program and music band information for each user are collected from Face-

35

book.

More details about the system database tables are shown in Table 3.1 and Table 3.2.

3.4 System Architecture and Components

System functionality is achieved by six main components. Processes performed in our system

can be seen in Figure 3.4. Circles are the phases performed.

Figure 3.3: System architecture

1. Web Crawler: Crawls Last.fm and Facebook profiles and inserts the extracted data to

database tables.

36

Table 3.1: System Database

Table Columns Description

users user id, user lastfm name Keeps user data

tracks track id, track name Keeps track data

singers singer id, singer name Keeps singer data

tags tag id, tag name, tag count Keeps tag data

track singer track id, singer id Keeps singers of tracks

track tag track id, tag id Keeps tags of tracks

singer tag singer id, tag id Keeps tags of singers

user track user id, track id Keeps tracks of users

user track tags user id, track id, tag id, tag count Keeps users own tags

friend track tags user id, track id, tag id, tag count Keeps users friends tags

mainstream genres genre id, genre name Keeps mainstream genres

instrumentation class instrument id, instrument name Keeps instrumentation data

subgenre class subgenre id, subgenre name Keeps subgenre data

fusiongenre class fusiongenre id, fusiongenre name Keeps fusion genre data

derivativeForm class derForm id, derForm name Keeps derivative form data

stylisticOrigins class stylisticOrigins id, stylOrig name Keeps stylistic origin data

genre instrument genre id, instrument id Keeps instruments of genre

genre subgenre genre id, subGenre id Keeps subgenres of genre

genre fusionGenre genre id, fusionGenre id Keeps fusion genres of genre

genre derForm genre id, derForm id derivative forms of genre

genre stylisticOrg genre id, stylisticOrg id stylistic origins of genre

tag genre tag id, genre id mapping between tag and

genres

tag instrument tag id, instrument id mapping between tag and in-

struments

tag subgenre tag id, subGenre id mapping between tag and

subgenres

tag fusionGenre tag id, fusionGenre id mapping between tag and fu-

sion genres

tag derForm tag id, derForm id mapping between tag and

derivative forms

tag stylisticOrg tag id, stylisticOrg id mapping between tag and

stylistic origins

37

Table 3.2: System Database - continued

Table Columns Description

FB movies movie id, movie name Keeps movie and TV-program

data

FB artists artist id, artist name Keeps artist data

FB user movie user id, movie id Keeps favourite movies and TV-

programs of users

FB user artist user id, artist id Keeps favourite artists of users

FB rules movie id, artist id Keeps the mapping between

movies and artists

2. Ontology Creator: Crawls the Dbpedia pages of music genres and creates a hierarchical

structure.

3. Tag classifier: Classifies tags using the hierarchical structure.

4. Track Profiler: Creates track-tag vectors.

5. User Profiler: Creates user-tag vectors.

6. Recommendation Generator: Calculates the relevant tracks for users.

3.4.1 Web Crawler

Users listen to music and enter tags for tracks in their Last.fm profiles. In the web crawling

phase of the system, our data set is generated. Details of the data set are given in Chapter 4.

Real Last.fm data is used in this thesis study. In order not to use similar users and in order to

achieve diversity, 50 users are selected from an application named ”join Last.fm”[58]. In this

group, members of the group share their Last.fm nicknames. Moreover, 19 friends who use

both Last.fm and Facebook are also added to the data set. Last.fm profiles of the users in the

data set are crawled with the help of Last.fm API [50]. This number of users is acceptable for

content-based approaches.

Firstly for each user, 300 top tracks are gathered. Top tracks are stored in tracks table in the

38

database.

APImethod : user.gettoptracks

Then their ’loved’ tracks are extracted. Loved tracks are also stored in tracks table in the

database.

APImethod : user.getlovedtracks

For each track, the artist names, tags and tag counts are crawled. Artists are stored in singers

table in the database, the mapping between artist and track is kept in track singer table. Tags

and tag counts are kept in tags table. Mapping between track and tag is stored in track tag

table. Mapping between singer and tag is stored in singer tag matrix.

method = track.gettoptags

Finally for each user their tags entered for tracks and their friends’ tags entered for tracks are

gathered. Users’ own tags are kept in user − track − tag table, and users’ friends’ tags are

kept in f riend track tag table.

APImethod : user.get f riends

APImethod : user.gettoptags

APImethod : user.getpersonaltags(f ortracks)

In addition to Last.fm profiles, Facebook profiles of the users are also crawled using Facebook

Graph API. Their favourite movies, tv-series and music artists are gathered. Movies and tv-

series are kept in FB movies table, and music bands are saved in FB artists table. The

mapping between 400 users and movies/tv-series are stored in FB user movie. The mapping

between users and artists are kept in FB user artist table. Generated rules are stored in

FB rules table.

3.4.2 Ontology Creator

Tags may be about genre, location, moods, personal opinions, instrumentation, styles and

artists’ names [6]. The distribution of tags in Last.fm can be seen in Table 3.3. For example,

two users of Last.fm tagged some songs as follows: the first one loved listening to ”The Wall”

from ”Pink Floyd” and tagged the track with the words ”energetic” and ”seen live”. The

39

Table 3.3: Distribution of Tag in Last.fm

Type Frquency Examples

Genre 68% Heavy metal, punk

Locale 12% French, Seattle

Mood 5% Chill, party

Opinion 4% Love, favorite

Instrumentation 4% Piano, female vocal

Style 3% Political, humor

Misc 3% Coldplay, composers

Personal 1% Seen live, I own it

second one loved ”Only Girl” from ”Rihanna” and tagged ”Only Girl” also with the words

”energetic” and ”seen live”. Thus both ”Only Girl” and ”The Wall” have the same tags.

According to the recommendation’s similarity function, they appear as very similar tracks,

although in most other ways (genre, instrumentation for instance) they are not. Because of

such reasons, subjective tags like personal opinions and moods are ignored in the track and

user representation. Genre, instrumentation, sub-genre, fusion genre, derivative form and

style are used in the track and user representation. In [40], 14 mainstream genres (country,

folk, jazz, blues, r and b, heavy metal, alternative/indie, punk, rap, electro, reggae, classical,

rock and pop) are used. These genres are enriched with Last.fm’s mainstream genres, which

can be reached on the left frame of the page http://www.last.fm/music. The main genres used

in the system are as follows:

acoustic, ambient, blues, classical, country, electronic, emo, folk, hardcore, hip hop, indie,

jazz, Latin, metal, pop, pop punk, punk, reggae, r and b, rock, soul, world.

The mainstream genres are kept in ”mainstream genres” table in the database. Having iden-

tified the mainstream genres, for each main genre Wikipedia is crawled but then Dbpedia is

crawled since it is more structured for web-crawling. The obtained information for ”rock

music” is illustrated in Figure 3.5.

In ontology-creation phase, we created an ontology-like structure with the help of the data

crawled from the Dbpedia. Classes of the ontology can be seen in Table 3.4. Instance samples

are illustrated in Table 3.5. Lastly, relations in the ontology can be seen in Table 3.6. The

40

Figure 3.4: Rock music on Wikipedia

complete ontology for the ”rock genre” can be found in Appendix B.

Instrument classes are kept in instrument class table, subgenre classes are kept in sbgnre clss

table, fusion genre classes are kept in f usionGenre class table, derivative form classes are

kept in derivativeFrom class table and stylistic origins are kept in stylisticOrigin class table

in the database. The corresponding mappings are kept in genre instrument, genre subgenre,

genre f usionGenre, genre DerForm and genre S tylisticOrg tables.

Table 3.4: Classes in the ontology

Class name

Genre

StylisticOrigin

Instrument

DerivativeForm

SubGenre

FusionGenre

41

Table 3.5: Instance samples in the ontology

Classes Instances

StylisticOrigin Rock and roll, electric blues, folk music, country,

blues, rhythm and blues, soul music

Instrument Vocals, electric guitar, bass guitar, acoustic guitar,

drums, synthesizer, keyboards

DerivativeForm New Age Music, Synthpop

SubGenre Alternative rock ,Art rock ,Baroque pop ,Beat mu-

sic ,Britpop ,Emo ,Experimental rock ,Garage rock

,Glam rock ,Grindcore ,Group Sounds ,Grunge

,Hard rock ,Heartland rock ,Heavy metal ,Instru-

mental rock ,Indie rock ,Jangle pop ,Krautrock

,Madchester ,Post-Britpop ,Power pop ,Progressive

rock ,Protopunk ,Psychedelia ,Punk rock ,Rock noir

,Soft rock ,Southern rock ,Surf ,Symphonic rock

FusionGenre Aboriginal rock ,Afro-rock ,Anatolian rock

,Bhangra rock ,Blues-rock ,Country rock

,Flamenco-rock ,Folk rock ,Funk rock ,Glam

punk ,Indo-rock ,Industrial rock ,Jazz fusion ,Pop

rock ,Punta rock ,Raga rock ,RaÃ¯ rock ,Rap rock

,Rockabilly ,Rockoson ,Samba-rock ,Space rock

,Stoner rock ,Sufi rock

Table 3.6: Relations in the ontology

hasStylisticOrigins Genre and Stylistic Origins

hasInstruments Genre and TypicalInstrumentation

hasDerivativeForms Genre and Derivative Forms

hasSubGenres Genre and Sub Genres

hasFusionGenres Genre and Fusion Genres

42

3.4.3 Tag Classifier

The reason why we classify the tags is to reach their mappings faster. In order not to differen-

tiate ”electronic” from ”electronica”, a stemming algorithm is applied to tags. Stemming is a

technique to convert similar words to a common base form. This base form does not have to

have a meaning from a linguistic point of view (such as reducing synonyms to a single word,

or finding the root of the word). Various stemming algorithms exist for the English language.

The Porter Stemmer[51] which is a classical stemming algorithm is used in this study. By us-

ing a stemming algorithm, morphology, which LSA does not use, is taken into consideration

in our approach. Below is the pseudo code of the tag classifying algorithm:

for i = 1 to number of instances in ontology do

instance← getinstance at position(i)

instance = trim(instance)

word array = split(” ”,instance)

new instance = ”%”

for j = 1 to size of word array do

word ← getword at position(j)

word = stem(word)

new instance = concatenate (new instance, word, ”%”)

end for

for k = 1 to size of tags in dataset do

if is like(new instance) then

insert into tag instance table(tag idk, instance idi)

end if

end for

end for

In the algorithm above, each instance in the ontology is parsed into single words. The stem-

ming algorithm is applied to each single word. The stemmed roots are concatenated with ”%”

in order to consider ”morphology” that LSA does not use. LSA applied on document-term

matrices does not consider ”morphology”. Some examples of the stemming results can be

seen in Table 3.7. All the tags in our dataset are saved in the tags table. The reason why

we use ”%” in the new version of instances is that we use the new versions of the instances

43

Table 3.7: Concatenating the stemmed words of the instances

Tag before stemming Tag after stemming

electric blues %eletr%blu%

Aboriginal rock %Aborigin%rock%

in our SQL statements. We use the newer instances in SQL statements like ”select * from

tags where tag name like ’%Aborigin%rock%’ ”. With this usage, we are using about 80000

tags out of 160000 tags in track representation. The corresponding mappings between tags

and instances are kept in tag instrument, tag subgenre, tag f usionGenre, tag DerForm and

tag S tylisticOrg tables.

Each term in the document-term matrix(used by LSA) is a single word whereas each term in

the track-tag matrix may be a group of words (like ”electro blues”) mapped to a genre.

3.4.4 Track Profiler

Figure 3.5: Track-tag matrix

In track profiling phase, size of a track vector is the size of mainstream genres (22 in our

case). Last.fm provides integer percentages (between 0 and 100) relative to the most used

tags per track. We updated these percentages by adding 1 to each percentage value in order

not to discard any having 0 percentage. Each entry in the vector is calculated as follows:

44

Term −Count(g(i, j)) =
∑

k

hasInstrumentation(i, j) +
∑

k

hasS tylisticOrigins(i, j)+

∑
k

hasDerivativeForms(i, j) +
∑

k

hasS ubGenres(i, j) +
∑

k

hasFusionGenres(i, j)

Where,

• g(i, j) is the ith term (genre) in jth track.

•
∑

k

hasInstrumentation(i, j) is the total percentage (between 1 and 101) of the tags of

the jth track which are found to be similar to the new instance versions of the instru-

mentation class of ith genre (with the help of the aforementioned SQL statements).

The rest of the formula is constituted in the same logical way. The calculated term counts

are used in the term-weighting. There are several ways of term weighting in IR systems. In

VSMs, terms are weighted in contrast to Boolean Model spaces. It provides partial matching

so that it provides better matching. In this model, term weights are calculated by several

methods like TF*IDF and Okapi-bm25 [53]. In this thesis, TF*IDF and Okapi-bm25 are used

in the track and user profiling.

Tag counts are usually normalized to prevent a bias towards longer documents. Term Fre-

quency value gives local information of a tag. An inverse document frequency value is calcu-

lated for each different tag in training set. This is calculated by diving total number of tracks

by the number of tracks that reference to that feature. IDF value gives global information of a

tag. The intuition behind this weighting schema is to assign higher weights to tags that occur

frequently in a document (high TF), and rarely in the data set (high IDF). This prevents the

effect of assigning high weights to tags that are most frequent in the data set.

Okapi bm-25 is yet another term-weighting method used in IR. It has been shown to perform

well in search tasks over web data so that BM stands for ”best match”. BM25 is the combina-

tion of BM11 and BM15 which are one of the oldest weighting schemas[54]. BM25 is proved

to be successful in content-based recommendations[49]. It uses TF and IDF in the core. In

addition to TF and IDF, there are some constants and track length normalisation. When a track

profile is dense, and it may be selected as similar to many of the users by default. Thus, length

45

of the tracks are normalized in this function. Briefly, okapi-bm25 is a combined version of

TF-IDF method.

Tracks in our dataset are represented as a weighted list of genres. Semantically related tags

are counted as the same genre in this representation. The weights of the genres are calculated

with TF*IDF and Okapi-bm25. Formulations are given below:

T F(qi) = f (qi, t)

IDF(qi) = log(
T

|t : qi ∈ t|
)

Weight(qi) = T F(qi) × IDF(qi)

Where,

• qi is the ith genre in the vector.

• f (qi, t) is the frequency of genre qi in track t.

• T is the total number of tracks.

The okapi-bm25 weighting function is given below[55]:

Okapi − bm25(qi) =
(k1 + 1) · f (qi, t) · IDF(qi)

f (qi, t) + k1 · (1 − b + b · |t|avgtl)

Where,

• qi is the ith genre in the vector.

• f (qi, t) is the frequency of genre qi in track t.

• |t| is the length of track t.

• avgtl is the average track length (in words) in the corpus.

46

• k1 and b are the parameters that are usually chosen as k1 = 2.0 and b = 0.75.

• IDF(qi)is the Inverse Document Frequency of qi.

IDF(qi) = log(
N − DF(qi) + 0.5

DF(qi) + 0.5
)

Where,

• DF(qi) is the number of tracks containing qi.

• N is the total number of tracks.

3.4.5 User Profiler

In the user-profiling phase, classical recommenders use tags that users assign to tracks. Most

of the time, users do not enter tags for the tracks. Thus a very sparse user-tag matrix is created

which results in poor recommendations. In order to handle this problem, we create user-tag

matrix in 5 different ways. User-tag matrices are created by

1- using the users’ own tags (personal tags) that they entered for tracks (Figure 3.6),

2- using the users’ friends’ tags (friends’ tags) that friends entered for users’ tracks (Figure

3.7),

3- using all the tags of the tracks (social tags) that they listened to (Figure 3.8),

4- using all the tags of the artists of tracks that they listened to (Figure 3.9),

5- using all the tags of the artists of tracks that they listened to and all the tags of the artists

that are inferred from the rules generated from their Facebook profiles (Figure 3.10).

In the first method, users are profiled with their own tags which they entered for tracks. In the

second method, users are profiled with their friends’ tags which their friends entered for tracks

the user listened to. Semantic relations are used in user profiling method-1 and method-2, just

the same as in track profiling.

47

Figure 3.6: User profiling with user’s own tags that user entered for tracks

Figure 3.7: User profiling with user’s friends’ tags that they entered for tracks user listened to

The main problem in the user-profiling is that most of the users do not enter tags for the

artists/albums or tracks they listened to. Because of the lack of the personal tags, method-3,

method-4 and method-5 are used in user profiling. In the third method, users are profiled with

all the tags of the tracks that they listened to. As explained before, tracks are profiled by the

use of semantic relations. Thus the user vectors are calculated as follows:

Uk =
∑

j

Track pro f iles(k, j)

Where
∑

j

Track pro f iles(k, j) is the sum of the track profiles that the user k listened to.

In the forth method, users are profiled with all the tags of the artists of the tracks that they

48

Figure 3.8: User profiling with the tags of all the tracks user listened to

Figure 3.9: User profiling with the tags of artists of all the tracks user listened to

listened to. For this representation, artists are profiled just the same as tracks. So the users are

profiled as follows:

Uk =
∑

j

Artist pro f iles(k, j)

Where
∑

j

Artist pro f iles(k, j) is the sum of the artist profiles that the user k listened to.

In order to take the advantage of multi-domain information, we have generated rules like ”if

a person like the movie ’Godfather’, he/she may also like the band ’Pink Floyd’” using about

400 Facebook profiles. Facebook provides a Graph API which helps developers to get any

information about the people in the developers’ friend lists. We gathered the favourite movies,

TV-programs and music bands of the people in our friend lists and the people in the dataset

used in the scope of this study.

49

Figure 3.10: User profiling with the tags of extended set of artists

Some of the rules can be seen below:

• The users who loves ”Fight Club” most probably also like ”Radiohead”.

• The users who loves ”Fight Club” most probably also like ”Muse”.

• The users who loves ”Eternal Sunshine of the Spotless Mind Red” most probably also

like ”Hot Chili Peppers”.

• The users who loves ”Back to the Future Trilogy” most probably also like ”Queen”.

• The users who loves ”Slumdog Millionaire” most probably also like ”Farid Farjad”.

In the fifth method, artist set of each user is extended with the artists which are inferred from

the rules generated from the Facebook profiles. In addition to the artists that the user listened

to, the possible artists inferred from the rules are also used in the creation of the user profiles.

Users are profiled as follows:

Uk =
∑

j

Extended Artist pro f iles(k, j)

50

Where
∑

j

Extended Artist pro f iles(k, j) is the sum of the artist profiles that the user k likes

and may like according to the generated rules.

In the user vectors, the weights of the tags are also calculated with TF*IDF and Okapi-bm25.

TF is calculated for each user and the IDF, which has been calculated in the track profiling, is

used as the IDF value. The main goal after creating a user profile from the training set, is to

recommend the items in the test set is the main goal.

3.4.6 Recommendation Generator

In the recommendation phase, the common cosine similarity with TF-IDF and cosine simi-

larity with Okapi bm25 are used because of their success in CB recommenders. The most

similar items to the user profile are found. The cosine similarity formula is given below:

Cos sim =
user vector · track vector
|user vector||track vector|

Jaccard index, correlation, Manhattan distance and hamming distance are some of the other

methods available for finding the similarities, but we find out that cosine similarity gave the

best results in our study, in producing items that were more similar to those of the user profile.

3.5 Implementation Details

Music ontology has been created at the beginning of the study because Java would have been

used. Then we switched to PHP because of its simplicity and faster implementation. Thus,

LAMP (Linux, Apache, Mysql, Php) is used in the web-crawling. The combined components

of LAMP are as follows:

1- Linux is an open-source operating system,

2- Apache is a web server,

3- MySQL is a database,

4- PHP is a scripting language.

51

Figure 3.11: Implementation Architecture

Choosing LAMP seems to be the best way for the system for complete control. Moreover, it

is easy to install. Its performance, security and reliability are considered to be the best archi-

tecture. Moreover, PHP has a simple web integration and Apache is known for its security

features.

Because tracks vectors are huge in size, MATLAB is used for the track and user profiling

phases. MATLAB performs well for big matrices. For the recommendation system using LSA

in dimensionality reduction; HPC (high performance computing) machines in Department of

Computer Engineering (METU) are used because of the parallel MATLAB utility[59]. Paral-

lel MATLAB eases our work in TF*IDF and Okapi-bm25 weighting , however SVD function

(base of LSA) in MATLAB cannot be fastened. The most time-consuming part of the im-

52

plementation is the SVD with an optimal ranking in MATLAB. Instead of MATLAB’s svds()

function, we have used a ”Sparse Matrix SVD” function [62] which is faster and consumes

less memory than the original svds() function.

53

CHAPTER 4

EVALUATION

This chapter provides the evaluation of the proposed method. Firstly, the details of the data

set are given. The evaluation methodology and evaluation metrics are explained. Then the

evaluation results are discussed.

4.1 Data Set

Real Last.fm data is used in this thesis study. As explained before in the ”Web Crawler”

section of Chapter 3, in order not to use similar users and in order to achieve diversity, 50 users

are selected from an application named ”join Last.fm”. In this group, members of the group

share their Last.fm nicknames. Moreover, 19 friends who use both Last.fm and Facebook are

also added to the data set. Last.fm profiles of the users in the data set are crawled with the help

of Last.fm API [50]. Since our approach is not collaborative but content-based, this number

of users is acceptable. User selection process is shown in Figure 4.1.

Table 4.1 demonstrates the data crawled from Last.fm profiles of the aforementioned 69 users.

For each user, 300 top tracks, ’loved’ tracks and friends are gathered. Moreover, tags and tag

counts that the users and their friends assigned to tracks are extracted. For each track; artist,

tag and tag counts are crawled. For each artist; tag and tag counts are extracted.

In addition to Last.fm profiles, Facebook profiles of the users are also crawled. Their favourite

movies, tv-series and music bands are gathered. This information is used in rule generation

process which was explained in Chapter 3. Details are given in Table 4.2.

54

Table 4.1: Details of the Data Set (gathered from Last.fm)

of users 69

of tracks 13312

of tags 169174

of artists 4253

Average # of tracks per user 527

Average # of tags per track 45

Average # of tags per artist 70

of users having own tags 4

Average # of tags per user 18

Average # of friend tags per user 37

Table 4.2: Details of the Data Set (gathered from Facebook)

of users 400

of artists (by 171 users) 986

of movies (by 131 users) 519

of tv-series (by 146 users) 269

Average # of movies per user 11

Average # of tv-series per user 10

Average # of bands per track 9

55

Figure 4.1: Users in the data set

4.2 Methodology

RSs can be evaluated in many different ways. The most common one is to get the user feed-

backs. Because getting user feedbacks is an expensive process, multi-fold validations are used

in order to simulate the recommendation environment [56]. For each user, we performed a

4-fold-cross validation in which the training data size was 75% of the listened tracks and the

test data was 25% of the listened tracks. User profiles were created using the training set and

the task of our RS was to predict the correct items in the test set. This process was repeated 4

times with every test and training sets; and at the end, results are averaged. Figure 4.2 depicts

the methodology we followed:

56

Figure 4.2: Description of the followed experimental methodology

4.3 Evaluation Metrics

Most popular metrics used in RSs are explained below [57]:

• Predictive accuracy metrics are used to find the closeness between predicted ratings

and actual user ratings. MAE (mean absolute error) which is an average of absolute

errors is an example for the predictive accuracy metrics.

• Classification accuracy metrics: are used to find the ratio of relevant items to all

items/all recommended items (namely recall and precision).

• Ranks accuracy metrics: measure the ability of a RS to produce the correct order of

items.

57

• Prediction-rating correlation: is the correlation between the variance of the recom-

mender’s result and the actual user’s result.

In this study we used the most common classification accuracy metrics precision and recall.

Precision is the ratio of relevant tracks recommended correctly to the number of tracks rec-

ommended. Specifically, we are interested in the top N ranked results (P@N).

Precision =
NT P

NT P + NFP

Where,

• NT P is the total number of true positives namely, total number of items recommended

correctly.

• NFP is the total number of false positives namely, total number of items recommended

incorrectly.

• NT P + NFP is the sum number of true positives and false positives namely, total number

of all items recommended.

Recall is the ratio of relevant tracks recommended correctly to the number of tracks user

listened to.

Recall =
NT P

NT P + NFN

Where,

• NT P is the total number of true positives namely, total number of items recommended

correctly.

• NFN is the total number of false negatives namely, total number of items not recom-

mended incorrectly.

• NT P +NFN is the sum number of true positives and false negatives namely, total number

of all items available.

58

Table 4.3: Categorization of items

Actual positive Actual negative

Predicted as positive TP FP

Predicted as negative FN TN

Recall is said to be impractical [57]. For an actual recall calculation, the system should know

all items are whether liked or disliked by all users. This is impractical for very large music

recommendation systems.

Break even point is also used in the evaluation of the system in long term. Break even point

is the point at which the system’s recall rate matches its precision rate.

4.4 Experimentation Results

In Last.fm, although users listen to music, they rarely enter tags for the tracks that they like.

Thus, user profiles in Last.fm are smaller than in other social tagging sites, so that the perfor-

mance of the pure CB recommendation is not satisfying [39].

In Table 4.5; two recommenders using LSA with an optimized parameter -k- and our method

in dimensionality reduction are compared in terms of recommending the corresponding tracks

in the test set. LSA is applied to the track-tag matrix whose size is 13312*169174 (13312

tracks, 169174 tags). On the other hand, the recommender using semantic relations method

decreases the matrix size to 13312 * 22 (13312 tracks, 22 genres). In this recommender,

each genre is semantically related to instruments, stylistic origins, subgenres, fusion genres

and derivative forms. Thus, semantically related tags are counted as the same genre in this

representation.

The aforementioned 2 recommenders are evaluated with using different user profiling meth-

ods explained in Chapter 3. Track-tag matrix used in LSA is very huge in size so that we

have used HPC (High Performance Computing)[59] facility of METU Computer Engineering

Department. Even though we ran the MATLAB codes on this machines using parallel pro-

gramming, LSA for big rankings takes more than 5 hours which is not optimal for real-time

RSs. Elapsed time for track profiling and recommendation process using LSA (with ranking

22,100,1000 and 5000) is shown in Table 4.4.

59

Table 4.4: Average results and time duration obtained by the CB approaches using LSA with

different rankings

User profiling

method

ranking k duration P@5 P@10 P@20 B.E.P.

All tracks 22 11 min.s 0.036 0.043 0.042 0.037

All tracks 100 48 min.s 0.058 0.053 0.050 0.040

All tracks 1000 307 min.s 0.077 0.076 0.070 0.052

All tracks 5000 721 min.s 0.079 0.077 0.071 0.055

As seen in the Table 4.5, it is obvious that the recommender using semantic relations outper-

forms the recommender using LSA in dimensionality reduction. In this comparison; ranking

for LSA is chosen to be the optimal one in terms of both optimal time and optimal space. The

comparison between LSA and semantic-relations are given in Table 4.6.

The precision and break-even points for the recommendation systems seems to be low. In the

movie domain, recommenders generally has more than 70 % precision. On the other hand,

in the music domain precision values are lower because of the huge number of the tracks.

Recommending exactly the same item with the items in the test set results in lower precision

values. To get higher precision values; similar tracks to the tracks in the test set may be

assumed as ”true positives”. As an assumption; all the tracks of an artist can be assumed as

similar tracks.

As it is obvious in Table 4.5, top-5 recommended items are the most successful ones. Thus

precision values for top-5 items are greater than precision values of top-10 items. Same as,

precision values of top-20 items are smaller than precision values of top-10 items.

CosBM25 outperformed Cost f−id f while using LSA in dimensionality reduction. On the other

hand, Cost f−id f is more successful than CosBM25 while using semantic-relations in dimen-

sionality reduction. In general, CosBM25 is better than Cost f−id f because B.E.P. with CosBM25

is always higher than B.E.P. with Cost f−id f . Details are given in Table 4.7.

Personal tags are the best identifiers for users; however insufficient number of personal tags

result in poor recommendations. Friend tags have been thought to perform well at the be-

ginning of the study. However, it is seen that friends have not entered tags for user’s tracks.

The recommender using all social tags in the user profiling seems to provide the best results

60

because it handles the semantic gap problem in social tagging. When all the tags of the artists

of the tracks that user listened to are used, quality of the recommendation increases. It can

be said that tags of artists are better identifiers than tags of tracks for the user profiles. On

the other hand, using multi-domain information in user profiling provides better recommen-

dations. Comparison of the user profiling methods are given in Table 4.8.

61

Table 4.5: Average results obtained by the CB approaches using LSA and semantic relations

Dimensionality

reduction method

User profil-

ing method

Similarity

method

P@5 P@10 P@20 Break

Even

Point

Semantic Relations User Tags cost f−id f 0.000 0.100 0.175 0.064

Semantic Relations Friend Tags cost f−id f 0.000 0.000 0.000 0.000

Semantic Relations All tracks cost f−id f 0.178 0.168 0.134 0.050

Semantic Relations All artists cost f−id f 0.200 0.184 0.163 0.053

Semantic Relations All extended

artists

cost f−id f 0.231 0.196 0.168 0.052

Semantic Relations User Tags cosbm25 0.000 0.000 0.000 0.000

Semantic Relations Friend Tags cosbm25 0.000 0.000 0.000 0.000

Semantic Relations All tracks cosbm25 0.126 0.110 0.121 0.056

Semantic Relations All artists cosbm25 0.115 0.110 0.102 0.052

Semantic Relations All extended

artists

cosbm25 0.136 0.121 0.113 0.053

LSA (with optimal k) User Tags cost f−id f 0.000 0.065 0.081 0.057

LSA (with optimal k) Friend Tags cost f−id f 0.000 0.000 0.016 0.011

LSA (with optimal k) All tracks cost f−id f 0.079 0.077 0.071 0.055

LSA (with optimal k) All artists cost f−id f 0.081 0.076 0.074 0.055

LSA (with optimal k) All extended

artists

cost f−id f 0.084 0.086 0.079 0.054

LSA (with optimal k) User Tags cosbm25 0.000 0.107 0.085 0.059

LSA (with optimal k) Friend Tags cosbm25 0.000 0.000 0.015 0.011

LSA (with optimal k) All tracks cosbm25 0.083 0.081 0.075 0.064

LSA (with optimal k) All artists cosbm25 0.082 0.079 0.077 0.064

LSA (with optimal k) All extended

artists

cosbm25 0.086 0.085 0.081 0.065

62

Table 4.6: Comparison of Semantic Relations and LSA methods in dimensionality reduction

Semantic Relations Method LSA

(+)

• Once created,faster

• Uses lower memory-spaces

• Performs better (compared to

SVD with a computable rank-

ing)

• Handles ”morphology” prob-

lem (uses stemming algo-

rithm)

• Reliable

• Common method, used for

years

• Easy to implement

(-)

• Creating ontology takes a bit

long time (crawling Dbpedia)

• High time and space com-

plexity

• ”Morphology” problems

Table 4.7: Comparison of the methods used in similarity

CosineBM25 Method CosineT F−IDF Method

• more successful while using LSA in

dimensionality reduction

• provides better break-even points

• more successful while using

semantic-relations in dimen-

sionality reduction

63

Table 4.8: Methods used in ”user profiling”

User Profiling Method Properties

Using user’s own tags

user entered for tracks • Best identifiers for users

• Generally, user profiles suffer from the lack of

tags (insufficient number of tags)

Using friends’ tags they

entered for user’s tracks • Maybe better recommendations than users’s own

tags if there is a higher number of tags per track

• Crawling friends’ tags for the user’s tracks takes

too long

Using tags of tracks user

listened to • No extra implementation, uses the track vectors

• Better than using friends’ tags for the tracks that

user listened to; however worse than using tags

of artists of the tracks user listened to

Using tags of artists of

tracks user listened to • Better than using tags of tracks that user listened

to; however worse than using tags of extended

artist set

• Extra implementation for singer profiles

Extending the set of user’s

artists with Facebook pro-

files

• Better recommendations than using only the

artists of tracks user listened to

• Uses multi-domain information

• Extra effort for the rule creation

64

CHAPTER 5

CONCLUSION AND FUTURE WORK

User annotated texts, tags in our case, are huge in size, but the representation matrix is very

sparse. Using such giant matrices in calculations is a time- and resource- consuming job. For

the document categorization and text summarization, LSA has been used for years because

it is easy to use and reliable. As an alternative, with the help of Dbpedia, we created an

ontology-like semantic relations structure for the music domain. Within this thesis study, an

ontology-based dimensionality reduction method for large vector spaces has been presented.

We have compared two recommenders; one using our method and the other using Latent Se-

mantic Analysis (LSA) in dimensionality reduction. The recommenders have been evaluated

with different user profiling methods and similarity functions. Our method has the advantage

of using ”morphology” with respect to LSA.

In addition to our novel dimensionality reduction method, we have proposed different methods

for user profiling. Most of the time, users do not enter tags for the tracks they listen to. Thus

users’ own tags are insufficient for the construction of user profiles. Users have been profiled

in 5 different methods using personal tags that they entered to tracks, using friends’ tags that

friends entered to tracks, using tags of all tracks they listened to and using tags of artists of

all tracks they listened to. By using the information crawled from Facebook profiles, we have

generated rules like ”if a person likes movie-M, than he/she may also like artist-A”. We have

extended the user profiles with the artists they may like according to the rules. The rules can

be extended with the demographic data of the users such as similar schools, locations and

ages.

Creation of data set and ontology took a long time. As a future work, ready data sets may be

used. Moreover, created ontology can be extended with cultural origins and regional scenes

65

specified in Dbpedia. Now about 80000 out of 170000 tags are assigned to the ontology.

By the extension with cultural origins and regional scenes, less number of tags can be dis-

carded. This work can be extended assigning different weights for different relations. For

instance, hasInstrumentation and hasSubgenres may have different weights in the track pro-

filing. Moreover, the generated rules may also have different weights such that if 5 users

loving movie-M also loves artist-A and 12 users loving movie-M also loves artist-B then tags

of artist-B and artist-A may have different weights in the user profiling. In addition to these

improvements, the system can be evaluated more number of users and tracks.

66

REFERENCES

[1] Facebook, http://www.facebook.com, Last accessed on 8th September 2011.

[2] Twitter, http://twitter.com, Last accessed on 8th September 2011.

[3] MySpace, http://www.myspace.com, Last accessed on 8th September 2011.

[4] Dwyer C.; Hiltz S. R., Passerini K., 2007. Trust and Privacy Concern Within Social
Networking Sites: A Comparison of Facebook and MySpace. In Proceedings of the Thir-
teenth Americas Conference on Information Systems (Keystone, Colorado, 2007).

[5] Acquisti A., Gross R., 2006. Imagined Communities: Awareness, Information Sharing,
and Privacy on the Facebook. In Proceedings of 6th Workshop on Privacy Enhancing
Technologies (Cambridge, United Kingdom, 2006).

[6] Celma, O., Lamere, P., (2007). Music Recommendation Tutorial. In Proceedings of 8th
International Conference on Music Information Retrieval (Vienna, Austria, 2007).

[7] The Internet Movie Database, http://www.imdb.com, Last accessed on 8th September
2011.

[8] Last.fm, http://www.last.fm, Last accessed on 8th September 2011.

[9] Pandora, http://www.pandora.com, Last accessed on 8th September 2011.

[10] Grooveshark, http://grooveshark.com, Last accessed on 8th September 2011.

[11] Schedl M., Knees P., 2009. Context-based Music Similarity Estimation. In Proceedings
of the 3rd International Workshop on Learning the Semantics of Audio Signals (Graz,
Austria, 2009).

[12] Firan C., Nejdl W., 2007. The Benefit of Using Tag based Profiles. In Proceedings of
LAWEB 2007 (Santiago, Chile, 2007).

[13] Wolf F., Poggio T. and Sinha P., 2006. Human Document Classification Using Bags of
Words. Technical Report.

[14] J. Silva, 2008. Information Filtering and Information Retrieval with the Web Filtering
Toolbar. Electronic Notes in Theoretical Computer Science, vol. 235, pages 125-136,
2008.

[15] Soergel D., 1985. Information Retrieval The Scope of IR. On
http://www.dsoergel.com/NewPublications/HCIEncyclopediaIRShortEForDS.pdf,
Last accessed on 8th September 2011.

[16] Costa A, Roda F., 2011. Recommender systems by means of information retrieval. In
Proceedings of WIMS, pages 57:1-57:5. ACM, 2011.

67

[17] Schafer B., Frankowski D., Herlocker J., Sen S., 2007. Collaborative Filtering Recom-
mender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive Web:
Methods and Strategies of Web Personalization. Lecture Notes in Computer Science,
Vol. 4321. Springer-Verlag, Berlin Heidelberg New York (2007)

[18] Breese J. S., Heckerman D., Kadie C., 1998. Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the Fourteenth Annual Conference on Un-
certainty in Artificial Intelligence,pages 43-52, July 1998.

[19] Ozsoy M., Cicekli I., Alpaslan F., 2010. Text Summarization of Turkish Texts using La-
tent Semantic Analysis. In Proceedings of of the 23rd International Conference on Com-
putational Linguistics (Beijing, China, 2010).

[20] Pazzani M. J., Billsus D., 2007. Content-Based Recommendation Systems. Lecture Notes
in Computer Science. (4321), 325-341.

[21] Burke R., 2002. Hybrid Recommender Systems:Survey and Experiments. In Proceedings
of Journal of User Model. UserAdapt. Interact., 12(4):331370,(2002)

[22] Peis E., Castello J.M.M., DelgadoLopez J.A., 2008. Semantic Recommender Systems:
analysis of the state of the topic. In Hypertext, (2008).

[23] Wang Y., Stash N., Aroyo L., Hollink L., Schreiber G., 2009. Semantic Relations in
Content-based Recommender Systems. In Proceedings of the Workshop on Ontology
Patterns (WOP) at ISWC (Chantilly, U.S.A., 2009).

[24] Balabanovic M.S.Y., 1997. Fab: content-based, collaborative recommendation.In Com-
munications of the ACM, v. 40, pp. 66-72.

[25] Wang R.Q., Kong F.S., 2007. Semantic-Enhanced Personalized Recommender System.In
Machine Learning and Cybernetics: Proc. of the Int. Conference on Machine Learning
and Cybernetics , v. 7 (19-22), pp. 4069-4074.

[26] Farsani H.K., Nematbakhsh M.A., 2006. A Semantic Recommendation Procedure for
Electronic Product Catalog. In International Journal of Applied Mathematics and Com-
puter Sciences, v. 3, pp. 86-91.

[27] Ziegler N., 2004. Semantic Web Recommender Systems. In Proceedings of the joint
ICDE/EDBT Workshop.

[28] Jung K., 2005. RDF Triple Processing Methodology for the Recommendation System
Using Personal Information. In Proceedings Of the Int. Conference on Next Generation
Web Services Practices, pp. 241-247.

[29] Cantador I., Castells P., 2006. Multi-layered Semantic Social Network Modelling by
Ontology-Based User Profiles Clustering: Application to Collaborative Filtering. In
Managing Knowledge in a World of Networks, pp. 334-349.

[30] Rich E., 1979. User Modelling via Stereotypes. In Cognitive Science 3, 329-354.

[31] CLIPS: A Tool for Building Expert Systems, http://clipsrules.sourceforge.net/, Last ac-
cessed on 8th September 2011

[32] JESS, http://www.jessrules.com/jess/download.shtml, Last accessed on 8th September
2011

68

[33] Tso-Sutter K.L.H., Marinho L.B., Schmidt-Thieme L., 2008. Tag-aware Recommender
Systems by Fusion of Collaborative Filtering Algorithms. In Proceedings of the 2008
ACM Symposium on Applied Computing (Ceara, Brazil, 2008).

[34] Symeonidis P., Ruxanda M., Nanopoulos A., Manolopoulos Y., 2008. Ternary seman-
tic analysis of social tags for personalized music recommendation. In Proceedings of
ISMIR (Philadelphia, Pennsylvania, USA, 2008).

[35] Liang H., Xu Y., Li Y., Nayak R., 2008. Collaborative Filtering Recommender Systems
Using Tag Information. In Proceedings of IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology (Sydney, Australia, 2008), pp.
59-62.

[36] Shepitsen A., Gemmell J., Mobasher B., Burke R., 2008. Personalized recommenda-
tion in social tagging systems using hierarchical clustering. In Proceedings of the ACM
Conference on Recommender systems (Lausanne, Switzerland, 2008).

[37] Peis E., Castello J.M.M., Delgado Lopez J.A., 2008. Semantic Recommender Systems:
analysis of the state of the topic. In Hypertext (2008).

[38] Wang Y., Stash N., Aroyo L., Hollink L., Schreiber G., 2009. Semantic Relations in
Content-based Recommender Systems. In Proceedings of the Workshop on Ontology
Patterns (Chantilly, U.S.A., 2009).

[39] Cantador I., Bellogin A., Vallet D., 2010. Content-based Recommendation Systems in
Social Tagging Systems. In Proceedings of the fourth ACM conference on Recommender
systems (Barcelona, Spain, 2010).

[40] Levy M., Sandler M., 2008. Learning Latent Semantic Models For Music From Social
Tags. In Proceedings of Journal of New Music Research (2008), pages 137-150.

[41] Pampalk E., Goto M., 2007. Musicsun: A new approach to artist recommendation. In
Proceedings of International Conference on Music Information Retrieval, pages 101-
104,(2007).

[42] Sarmento L., Gouyon F., Oliveira E., 2009. Music Artist Tag propagation with Wikipedia
abstracts. In ECIR-WIRSN,(2009)

[43] Hung C.C., Huang Y.C., Hsu J.Y., Wu D.K.C., 2008,. Tag-Based User Profiling for
Social Media Recommendation. Workshop onIntelligent Techniques for Web Personal-
ization and Recommender Systems, AAAI 2008.

[44] Last.fm on Wikipedia, http://en.wikipedia.org/wiki/Last.fm, Last accessed on 8th
September 2011

[45] Facebook on Wikipedia, http://en.wikipedia.org/wiki/Facebook, Last accessed on 8th
September 2011

[46] Delicious, http://www.delicious.com/, Last accessed on 8th September 2011

[47] Sordo M., Gouyon F., Sarmento L.,2010. A Method for Obtaining Semantic Facets of
Music Tags. Workshop on Music Recommendation and Discovery, ACM Conference on
Recommender Systems. (Barcelona, Spain, 2010).

69

[48] Okapi-bm25 tutorial, http://www.miislita.com/information-retrieval-tutorial/okapi-
bm25-tutorial.pdf, Last accessed on 8th September 2011.

[49] Bellogin A., Cantador I., Castells P., 2010. A Study of Heterogeneity in Recommenda-
tions for a Social Music Service. HetRec Workshop at RecSys 2010 (Barcelona, Spain,
2010).

[50] Last.fm API, http://last.fm/api, Last accessed on 8th September 2011

[51] Porter M., 2001. Snowball: A language for stemming algorithms. On
http://snowball.tartarus.org/texts/introduction.html., Last accessed on 8th Septem-
ber 2011

[52] Kumar C.A., 2009. Analysis of Unsupervised Dimensionality Reduction Techniques.
Comput. Sci. Inf. Syst., vol. 6, no. 2, Dec. 2009, pp. 217-227.

[53] Baeza-Yates, R., Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison Wes-
ley.

[54] Sparck-Jones, K., Walker, S., Robertson, S. E. 2000. A Probabilistic Model of Informa-
tion Retrieval: Development and Comparative Experiments (parts 1 and 2). Information
Processing and Management, 36(6):779-840

[55] TRANS: Transportation Research Analysis using NLP TechniqueS,
https://wiki.cs.umd.edu/cmsc734 09/images/6/62/Trans-finalreport.pdf, Last accessed
on 8th September 2011.

[56] Fournier F., 2010. Recommender Systems Technical Report and Literature Review. On
http://knol.google.com/k/recommender-systems#, Last accessed on 8th September 2011

[57] Herlocker J. L., Konstan J. A., Terveen L. G., Riedl, J. T., 2004. Evaluating col-
laborative filtering recommender systems. In ACM Trans. Inf. Syst. 22 (1): 5-53,
doi:10.1145963770.963772.

[58] ”join last.fm” application, http://www.facebook.com/#!/group.php?gid=2246697136,
Last accessed on 8th September 2010.

[59] High performance computing, http://hpc.ceng.metu.edu.tr/, Last access on 8th Septem-
ber 2011

[60] Dbpedia, http://dbpedia.org/ontology/MusicGenre, Last access on 8th September 2011

[61] Tatli I., Birturk A., 2011. Using Semantic Relations in Context-based Music Recom-
mendations. Workshop on Music Recommendation and Discovery, ACM Conference
on Recommender Systems. (Chicago,IL, USA, 2011).

[62] Sparse Matrix SVD, on http://www.mcs.anl.gov/ jiechen/software.html#Sparse

[63] Wikipedia on Wikipedia, http://en.wikipedia.org/wiki/Wikipedia, Last access on 8th
September 2011

[64] Dbpedia on Wikipedia, http://en.wikipedia.org/wiki/DBpedia, Last access on 8th
September 2011

70

APPENDIX A

PUBLICATIONS

İpek Tatlı, Ayşenur Birtürk,A Content-based Recommendation System for Music Domain

based on Tags, The eChallenges e-2010 Conference, 27-29 October 2010, Warsaw, Poland.

(withdrawn paper, since not registered)

İpek Tatlı, Ayşenur Birtürk, Using Semantic Relations in Context-based Music Recommenda-

tions, Workshop on Music Recommendation and Discovery 2011 (WOMRAD, in conjunction

with ACM RecSys), 23-27 October 2011, Chicago, Illinois, USA.

İpek Tatlı, Ayşenur Birtürk, A Tag-based Hybrid Music Recommendation System Using Se-

mantic Relations and Multi-domain Information, The Fifth International Workshop on Mining

Multiple Information Sources (MMIS-11, in conjunction with The IEEE International Con-

ference on Data Mining (ICDM-11)), 10 December 2011, Vancouver, Canada, USA.

71

APPENDIX B

ROCK MUSIC ONTOLOGY

<Ontology xmlns=”http://www.w3.org/2002/07/owl#”

xml:base=”http://www.semanticweb.org/ontologies/2011/7/

Ontology1314790268281.owl”

xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:xml=”http://www.w3.org/XML/1998/namespace”

ontologyIRI=”http://www.semanticweb.org/ontologies/2011/7/

Ontology1314790268281.owl” >

<Prefix name=”xsd” IRI=”http://www.w3.org/2001/XMLSchema#”/ >

<Prefix name=”owl” IRI=”http://www.w3.org/2002/07/owl#”/ >

<Prefix name=”” IRI=”http://www.w3.org/2002/07/owl#”/ >

<Prefix name=”rdf” IRI=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”/ >

<Prefix name=”rdfs” IRI=”http://www.w3.org/2000/01/rdf-schema#”/ >

<owl:Class rdf:ID=”Genre” >

</owl:Class >

72

<owl:Class rdf:ID=”Instrumentation” >

<rdfs:subClassOf rdf:resource=”#Genre”/ >

<owl:disjointWith rdf:resource=”#SubGenre”/ >

<owl:disjointWith rdf:resource=”#FusionGenre”/ >

<owl:disjointWith rdf:resource=”#StylisticOrigins”/ >

<owl:disjointWith rdf:resource=”#DerivativeForms”/ >

</owl:Class >

<owl:Class rdf:ID=”SubGenre” >

<rdfs:subClassOf rdf:resource=”#Genre”/ >

<owl:disjointWith rdf:resource=”#Instrumentation”/ >

<owl:disjointWith rdf:resource=”#FusionGenre”/ >

<owl:disjointWith rdf:resource=”#StylisticOrigins”/ >

<owl:disjointWith rdf:resource=”#DerivativeForms”/ >

</owl:Class >

<owl:Class rdf:ID=”FusionGenre” >

<rdfs:subClassOf rdf:resource=”#Genre”/ >

<owl:disjointWith rdf:resource=”#Instrumentation”/ >

<owl:disjointWith rdf:resource=”#SubGenre”/ >

<owl:disjointWith rdf:resource=”#StylisticOrigins”/ >

<owl:disjointWith rdf:resource=”#DerivativeForms”/ >

</owl:Class >

<owl:Class rdf:ID=”StylisticOrigins” >

73

<rdfs:subClassOf rdf:resource=”#Genre”/ >

<owl:disjointWith rdf:resource=”#Instrumentation”/ >

<owl:disjointWith rdf:resource=”#SubGenre”/ >

<owl:disjointWith rdf:resource=”#FusionGenre”/ >

<owl:disjointWith rdf:resource=”#DerivativeForms”/ >

</owl:Class >

<owl:Class rdf:ID=”DerivativeForms” >

<rdfs:subClassOf rdf:resource=”#Genre”/ >

<owl:disjointWith rdf:resource=”#Instrumentation”/ >

<owl:disjointWith rdf:resource=”#SubGenre”/ >

<owl:disjointWith rdf:resource=”#FusionGenre”/ >

<owl:disjointWith rdf:resource=”#StylisticOrigins”/ >

</owl:Class >

<owl:ObjectProperty rdf:ID=”hasInstrumentation” >

<rdfs:domain rdf:resource=”#Genre”/ >

<rdfs:range rdf:resource=”#Instrumentation”/ >

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID=”hasSubGenre” >

<rdfs:domain rdf:resource=”#Genre”/ >

<rdfs:range rdf:resource=”#SubGenre”/ >

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID=”hasFusionGenre” >

74

<rdfs:domain rdf:resource=”#Genre”/ >

<rdfs:range rdf:resource=”#FusionGenre”/ >

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID=”hasDerivativeForms” >

<rdfs:domain rdf:resource=”#Genre”/ >

<rdfs:range rdf:resource=”#DerivativeForms”/ >

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID=”hasStlisticOrigins” >

<rdfs:domain rdf:resource=”#Genre”/ >

<rdfs:range rdf:resource=”#StlisticOrigins”/ >

</owl:ObjectProperty >

<owl:Class rdf:ID=”Rock” >

<owl:onProperty rdf:resource=”#hasInstrumentation” / >

<owl:someValuesFrom rdf:parseType=”Collection” >

<owl:Thing rdf:about=”#Vocals” / >

<owl:Thing rdf:about=”#Electric guitar” / >

<owl:Thing rdf:about=”#Bass guitar” / >

<owl:Thing rdf:about=”#Drums” / >

<owl:Thing rdf:about=”#Synthesizer” / >

<owl:Thing rdf:about=”#Keyboards” / >

</owl:someValuesFrom >

<owl:onProperty rdf:resource=”#hasStylisticOrigins” / >

75

<owl:someValuesFrom rdf:parseType=”Collection” >

<owl:Thing rdf:about=”#rock n roll” / >

<owl:Thing rdf:about=”#Electric blues” / >

<owl:Thing rdf:about=”#Folk music” / >

<owl:Thing rdf:about=”#Country” / >

<owl:Thing rdf:about=”#Blues” / >

</owl:someValuesFrom >

<owl:onProperty rdf:resource=”#hasDerivativeForms” / >

<owl:someValuesFrom rdf:parseType=”Collection” >

<owl:Thing rdf:about=”#new age music” / >

<owl:Thing rdf:about=”#synthpop” / >

</owl:someValuesFrom >

<owl:onProperty rdf:resource=”#hasSubGenres” / >

<owl:someValuesFrom rdf:parseType=”Collection” >

<owl:Thing rdf:about=”#Alternative rock” / >

<owl:Thing rdf:about=”#Art rock” / >

<owl:Thing rdf:about=”#Baroque pop” / >

<owl:Thing rdf:about=”#Beat music” / >

<owl:Thing rdf:about=”#Britpop” / >

<owl:Thing rdf:about=”#Emo” / >

<owl:Thing rdf:about=”#Experimental rock” / >

<owl:Thing rdf:about=”#Garage rock” / >

76

<owl:Thing rdf:about=”#Glam rock” / >

<owl:Thing rdf:about=”#Grindcore” / >

<owl:Thing rdf:about=”#Group Sounds” / >

<owl:Thing rdf:about=”#Grunge” / >

<owl:Thing rdf:about=”#Hard rock” / >

<owl:Thing rdf:about=”#Heartland rock” / >

<owl:Thing rdf:about=”#Heavy metal” / >

<owl:Thing rdf:about=”#Instrumental rock” / >

<owl:Thing rdf:about=”#Indie rock” / >

<owl:Thing rdf:about=”#Jangle pop” / >

<owl:Thing rdf:about=”#Krautrock” / >

<owl:Thing rdf:about=”#Madchester” / >

<owl:Thing rdf:about=”#Post Britpop” / >

<owl:Thing rdf:about=”#Power pop” / >

<owl:Thing rdf:about=”#Progressive rock” / >

<owl:Thing rdf:about=”#Protopunk” / >

<owl:Thing rdf:about=”#Psychedelia” / >

<owl:Thing rdf:about=”#Punk rock” / >

<owl:Thing rdf:about=”#Rock noir” / >

<owl:Thing rdf:about=”#Soft rock” / >

<owl:Thing rdf:about=”#Southern rock” / >

<owl:Thing rdf:about=”#Surf” / >

77

<owl:Thing rdf:about=”#Symphonic rock” / >

</owl:someValuesFrom >

<owl:onProperty rdf:resource=”#hasFusionGenre” / >

<owl:someValuesFrom rdf:parseType=”Collection” >

<owl:Thing rdf:about=”#Aboriginal rock” / >

<owl:Thing rdf:about=”#Afro rock” / >

<owl:Thing rdf:about=”#Anatolian rock” / >

<owl:Thing rdf:about=”#Bhangra rock” / >

<owl:Thing rdf:about=”#Blues rock” / >

<owl:Thing rdf:about=”#Country rock” / >

<owl:Thing rdf:about=”#Flamenco rock” / >

<owl:Thing rdf:about=”#Folk rock” / >

<owl:Thing rdf:about=”#Funk rock” / >

<owl:Thing rdf:about=”#Glam punk” / >

<owl:Thing rdf:about=”#Indo-rock” / >

<owl:Thing rdf:about=”#Industrial rock” / >

<owl:Thing rdf:about=”#Jazz fusion” / >

<owl:Thing rdf:about=”#Pop rock” / >

<owl:Thing rdf:about=”#Punta rock” / >

<owl:Thing rdf:about=”#Raga rock” / >

<owl:Thing rdf:about=”#Rai rock” / >

<owl:Thing rdf:about=”#Rap rock” / >

78

<owl:Thing rdf:about=”#Rockabilly” / >

<owl:Thing rdf:about=”#Rockoson” / >

<owl:Thing rdf:about=”#Samba rock” / >

<owl:Thing rdf:about=”#Space rock” / >

<owl:Thing rdf:about=”#Stoner rock” / >

<owl:Thing rdf:about=”#Sufi rock” / >

</owl:someValuesFrom >

</owl:Class >

</Ontology >

<!– Generated by the OWL API (version 3.2.3.1824) http://owlapi.sourceforge.net – >

79

