

A RECOMMENDATION FRAMEWORK USING ONTOLOGICAL

USER PROFILES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞLA YAMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

SEPTEMBER 2011

Approval of the thesis:

A RECOMMENDATION FRAMEWORK USING ONTOLOGICAL USER

PROFILES

submitted by ÇAĞLA YAMAN in partial fulfillment of the requirements for the degree of

Master of Computer Science in Computer Engineering Department, Middle East Technical

University by

Prof. Dr. Canan Özgen ___________________

Dean, Graduate School of Natural and Applied Sciences, METU

Prof. Dr. Adnan Yazıcı ___________________

Head of Department, Computer Engineering Dept., METU

Prof. Dr. Nihan Kesim Çiçekli ___________________

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ferda Nur Alpaslan ___________________

Computer Engineering Dept., METU

Prof. Dr. Nihan Kesim Çiçekli ___________________

Supervisor, Computer Engineering Dept., METU

Assoc. Prof. Dr. Tolga Can ___________________

Computer Engineering Dept., METU

Asst. Prof. Dr. Pınar ġenkul ___________________

Computer Engineering Dept., METU

Asst. Prof. Dr. Tuğba TaĢkaya Temizel ___________________

Informatics Institute, METU

Date : 7/9/2011

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

ÇAĞLA YAMAN

iv

ABSTRACT

A RECOMMENDATION FRAMEWORK USING ONTOLOGICAL USER

PROFILES

Yaman, Çağla

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Nihan Kesim Çiçekli

September 2011, 67 pages

In this thesis, a content recommendation system has been developed. The system

makes recommendations based on the preferences of the users on some aspects of

the content and also preferences of similar users. The preferences of a user are

extracted from the choices of that user made in the past. Similarities between users

are defined by the similarities of their preferences. Such a system requires both

qualified content and user information. The proposed system uses semantic user

and content profiles to more effectively define the relationships between the two

and make better inferences. An ontology is defined using the existing domain

ontologies and the semi-structured data on the web. The system is implemented

mainly for the movie domain in which well-defined ontologies and user

information are easier to access.

Keywords: Recommendation, User Profiling, Ontology

v

ÖZ

ONTOLOJİK KULLANICI PROFİLLERİNE DAYANAN İÇERİK

ÖNERİMİ ÇATISI

Yaman, Çağla

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Nihan Kesim Çiçekli

Eylül 2011, 67 sayfa

Bu tez çalıĢmasında, bir içerik tavsiye sistemi oluĢturulmuĢtur. Sistem, tavsiyede

bulunurken, kullanıcının tavsiye edilecek nesne hakkındaki tercihlerini kullanır. Bu

tercihler kullanıcının daha önce oylamıĢ olduğu içeriklerin özellikleri dikkate

alınarak belirlenir. Tavsiye aĢamasında aynı zaman kullanıcıya benzer diğer

kullanıcıların da tercihlerinden yararlanılır. Bu tarz bir sistem, yeterli sayıda ve

anlamlı içerik ve kullanıcı bilgisine ihtiyaç duyar. Bu çalıĢmada önerilen tavsiye

sistemi, anlamsal kullanıcı ve nesne profilleri kullanarak, bunların aralarındaki

iliĢkilerin daha etkili olarak belirlenmesini ve daha sağlıklı çıkarımlar

yapılabilmesini sağlar. Ġçerikleri ve kullanıcıları temsil edebilmek üzere var olan

alan ontolojilerinden ve veb üzerindeki yarı yapısal verilerden yararlanılarak

sistemin kullanacağı bir ontoloji tanımlanmıĢtır. Hem yapısal ve ontolojik olarak

tanımlanmıĢ alan bilgisinin, hem de eriĢilebilir kullanıcı bilgilerinin varlığı

nedeniyle, örnek olarak, bir film tavsiye sistemi gereçkleĢtirilmiĢtir.

Anahtar kelimeler: Tavsiye Sistemleri, Kullanıcı Profili OluĢturma, Ontoloji

vi

ACKNOWLEDGEMENT

I want to thank my supervisor Prof. Dr. Nihan Kesim Çiçekli for her guidance. She

has been generous in sharing her knowledge and experience. Her patience and

efforts made this work better.

I wish to express my greatest gratitude to my mother Reyhan Yaman, my father

Ünal Yaman and my whole family. They have always supported me and guided me

during my studies and throughout my life.

Special thanks to my friend Engin Egeren for his patience, support and

encouragement throughout this work. I also want to thank Özlem Özkan who has

been great help when I needed.

Burçin Gürses, Gizem ErbaĢ, Özüm Akdere, Göze ĠĢcan and Pınar Yıldırım are

gratefully acknowledged. You are always there for me.

This work is partially supported by The Scientific and Technical Council of Turkey

Grant TUBITAK EEEAG-107E234 and my master studies are supported by the

student grant of TUBITAK.

vii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... v

ACKNOWLEDGEMENT .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... ix

CHAPTERS

1 - INTRODUCTION ... 1

2 - BACKGROUD AND RELATED WORK ... 8

HYBRID RECOMMENDATION STRATEGY .. 12

USER PROFILING .. 14

COLLABORATIVE FILTERING STRATEGY .. 17

NORMALIZATION OF USER RATINGS ... 20

3 - PROPOSED RECOMMENDATION FRAMEWORK ... 22

PROFILE GENERATOR ... 23

USER PROFILE .. 23

PROFILE BUILDER ... 26

PROFILE CLUSTERER .. 27

RECOMMENDER ENGINE .. 29

DATA GATHERER ... 30

4 - CASE STUDY – MOVIE RECOMMENDATION... 31

DATA SETS ... 31

MOVIELENS DATA SET .. 31

FREEBASE DATABASE ... 32

SYSTEM ARCHITECTURE ... 33

ONTOLOGY READER/WRITER .. 34

DATA GATHERER ... 34

GENERATING USER PROFILES .. 35

CLUSTERING USERS .. 42

PREPARING USER PROFILE VECTORS ... 42

GENERATING CLUSTER PROFILES ... 43

RECOMMENDING MOVIES ... 45

viii

5 - EVALUATION .. 47

6 - CONCLUSION .. 58

REFERENCES .. 61

APPENDICES

A – USER PROFILE ONTOLOGY .. 64

B – CLUSTER ONTOLOGY .. 66

ix

LIST OF FIGURES

FIGURES

Figure 1 – Framework architecture ... 22

Figure 2 - User profile ... 24

Figure 3 - User preferences with the same individual... 25

Figure 4 - User preference example .. 28

Figure 5 - Movie recommendation system architecture .. 33

Figure 6 - User history .. 36

Figure 7 - Weighted property .. 39

Figure 8 - User preference .. 40

Figure 9 - User profile outline example .. 41

Figure 10 - Cluster ontology example ... 44

Figure 11 - Effect of membership threshold ... 49

Figure 12 - Effect of number of profile features ... 51

Figure 13 - Effect of neighbourhood size on recommendations with collaborative via

content paradigm ... 52

Figure 14 - Effect of number of users to recommendation when the neighbourhood size is

fixed to 10 ... 53

Figure 15 - UP-CBF performance ... 54

Figure 16 - Improve in MAE of different recommendation methods 55

Figure 17 - Comparison of accuracy of recommendation strategies 56

Figure 18 - Comparison of different recommendation strategies – recall........................... 57

1

CHAPTER 1

INTRODUCTION

Recommender systems help users discover new objects or contents among a large

amount of alternatives by performing the search and decision processes on behalf

of users. With the increase of the amount and the variety of information on the

Web today, it has become difficult for the users to reach and manipulate all those

information while making a decision. Also, the decision process can be too

complicated that it would take much effort and time for a user to perform; and still,

some aspects of it might be overlooked. Users might not even be aware of all the

aspects of their decisions and the reasons behind their actions.

The recommendation task is easier to carry on with computer systems with their

ability to manipulate larger amounts of data more quickly. But of course, those

systems are adaptations of real life processes so they simulate how people make

recommendations and evaluate contents. A person may investigate contents himself

and decide what aspects of these he likes or dislikes. Then he makes a decision

whether to prefer that content or not and why. He can either ask his friends if they

liked it. He can prefer the most popular contents. As we have these options in real

life, there are recommender systems that implements one of these methods or a

combination of them.

The main recommendation methods are content-based filtering and collaborative

filtering. Content-based filtering learns the taste of the user in terms of properties

of contents and recommends contents similar to user’s taste. Collaborative filtering

2

uses the ratings given by the user to determine similar users that rated the same

contents in the same way, it then recommends contents these users have given high

ratings.

Both methods have some problems, so hybrid systems are developed to solve those

problems or at least minimise their drawbacks. Moreover, researchers have focused

on other contributions to the recommendation research area such as semantic

technologies and ontological user profiling for quite some time.

Using user profiles enables recommender systems better understand the preferences

of the user; make more specific and accurate recommendations and explain the

reasons of these recommendations. Different studies have handled the profile

generating problem with different strategies or even different points of views.

They differ in the elements and details they choose to include in profiles such as

whether to include the individual items users prefer or combination of different

preferences or the whole concept the individual is related to. For example, a person

may express in his profile that he went to a movie theatre to watch “Titanic”. From

this expression, system may infer different predictions such as “Person likes

romantic movies.”, “Person likes romantic movies starring Leonardo DiCaprio”,

“Person likes all movies starring Leonardo DiCaprio”, “Person likes all art forms

performed by Leonardo DiCaprio (in movies, in plays, as actor, as director, as

writer etc.)”, “Person may also like romantic books and music”. Each of these

would lead a recommender to different choices some of which would be very

unsuccessful. But still, none of the predictions are totally wrong. There is no exact

answer to this design problem since we, in our personal lives, don’t know the exact

motives behind our decisions.

Of course, more detailed explanations from user will help the system. But when the

system lacks that information, it has to extract it from the user’s past behaviours

known to the system. Still, in this case, more user history will help system

understand the decision pattern of the user. But, how much information do we

3

need? Actually, the more information there is, the better the recommendation gets.

However, it will bring the system huge work load and making recommendations

will be impossible or ineffective because of performance issues. System will be

very slow to answer its users’ needs or very inconsistent; even it is able to handle

the operations it will be using much effort than needed.

Also, despite the large amount of information, this information may still be useless.

For example, if the same user says he went to “Transformers” the next day, it

would not help us improve our predictions about “romantic movies” or “Leonardo

DiCaprio”. But if he watches “The Departed”, another movie by Leonardo

DiCaprio which is a thriller, we will validate the predictions “Person likes all

movies starring Leonardo DiCaprio”, “Person likes all art forms performed by

Leonardo DiCaprio” until new information comes. Quality of the information

gathered is very important in recommendation processes. However there isn’t a

way to control what comes with user histories, or controlling it is not realistic. So

we need to rely on the availability of sufficient amount of information that is much

enough to make meaningful inferences and small enough for system to work with

minimum effort.

The other aspect that different recommender systems diverge is the expression of

user’s contentment from a concept. We know that user watched “Titanic” but we

also need to know if he liked it or not or what level he liked it. In real life, our

expressions of our appreciation for something are ambiguous. In a recommender

system, the levels of interest for concepts are determined through rating values.

These values may be too sensitive between larger scales with smaller intervals or

simply binary valued “like” and “dislike”. Though, it first seems using sensitive

measurements is more advantageous, usage of both may be necessary or preferable

under different circumstances even in the same recommender system. Some

preferences may be mandatory such as preferring only the movies in English or not

watching horror movies. In these cases, the movies that do not meet these criteria

should not be recommended to user.

4

Sometimes systems may be in need of converging scaled ratings to binary ratings.

Some systems do this while detecting the weight and importance factor of

attributes of items; but all systems need to do it when deciding whether to

recommend an item at the end. The most used way of doing this is to determine a

threshold value that indicates a positive opinion. But what should that value be? Is

“average” enough to recommend a movie to a friend or should it be “good” or

“fantastic”? This decision also depends on the structure of the system and

distribution of inputs. If users of the system poorly rated the items the threshold

should be reduced; in the other case it should be higher than the average.

The question naturally arises is, can the same threshold be applied to every user? In

fact, it is generally the case; most systems use one specific threshold for every user.

What we think is that it is not realistic since the idea of a good movie is different

for everyone. One person may use “fantastic” for a movie he liked while other uses

“good” for a movie he liked better. The rating distributions of these users will

differ, so different threshold values personalized for these people should be used.

Now that we know that our user watched the movies “Titanic” and “The

Departed”, what if he liked “Titanic” and hated “The Departed”? The system that

considers only the good ratings is not able to detect this conflict. The other way, we

are not able to decide if he likes Leonardo DiCaprio or not. We can still say he

likes romantic movies and predict that he hates thrillers, but how coherent these

predictions are now? We see that it was too soon to decide with only one movie

rated. How to deal with this problem or whether to deal with it is a design issue.

Again, there is no standard solution.

If our user liked both movies, we can implicitly infer that “Person doesn’t care

about the genre of the movie, but the actor”. This is another aspect of user

preferences more affected by the amount of information available because different

examples of one attribute are needed to decide.

5

Even with all this information available there is still a question of which of these

predictions are meaningful. Does our prediction “Person may also like romantic

books and music” always make sense? Some domains may be closely related to

each other that this kind of inferences may add strengths to recommendation

process whereas for some domain it may make no sense. Even in the same domain

same rules may not be applicable. For movie and music domains, a user may like

both the movies filmed in 1960s and music from 1960s which validates the

accuracy of our prediction. On the other hand, he may like movies from 1970s but

not like the music from that time.

Recommender systems research is about dealing with these conflicting issues and

does not aim to find a general solution that is applicable to all recommendation

problems, because, people do not have one pattern for recommendation. Our

decisions and recommendations to others differ according to what we know about

the concepts, who we are with and even how we feel when we make decisions.

This is why most of the recommendation systems are specific to their domain and

the information sources they use. They try to find the most efficient solution

specific to their needs. The issues discussed above are relatively less complicated

to solve in these specific works.

The research to realize a general purpose recommendation system suffers from

these conflicting design issues. In this thesis, we suggest and implement a general

purpose recommender system and show our approach to attack these problems. In

this work, we

 investigate different aspects of design decisions and how they affect the

recommendation process,

 benefit from the ontological user profiles and ontological item descriptions

in recommendation,

6

 introduce a more effective user profile model using tastes of user and

decision criteria together,

 introduce a user profile model that can be used to describe user taste of

different type of items,

 define an easy-to-adapt recommendation framework to use as a base for

different recommendation problems of different domains.

A general purpose recommendation framework independent of the domain is

implemented. That system consists of modules that can be modified to answer the

needs of different recommendation problems. That enables the same system be

used for recommending different types of items and use different kinds of data

sources.

Proposed system is a hybrid recommendation system using content-based and

collaborative filtering. For collaborative filtering, system clusters similar users.

Different parameters and design decisions affects the performance of the clustering

phase. We investigated the effects of these issues such as number of users, number

of clusters, the number of common preferences of users in a cluster, number of

elements in a user profile. These parameters define how specific a cluster should be

to make more successful recommendations.

For content-based filtering and also as input model to collaborative filtering, user

profiles are used in the system. These user profiles consist of the history of the user

and the preferences. The criteria of the users for choosing an item may be different.

Different users may pay attention to different attributes (referred as properties) of

items. These criteria are included in the user profiles as well as the tastes of the

user.

7

To design such user profiles, a user ontology is defined and also ontological

descriptions of the items are used as input to the system. We investigated the effect

of the user profile model proposed and the use of ontologies.

User profiles are also designed to contain different preference groups independent

of each other. We name these groups domain profiles. A domain profile represents

the preferences of a user over one type of item such as movie domain profile,

music domain profile, etc. Whether to enable those profiles affect each other is a

strategic issue to be decided on. We decided to keep those domain profiles separate

because a preference in one domain may not always be meaningful or preferable in

other domains. Each domain profile should be extracted separately and can use

different types of data sources as input.

Finally, a movie recommendation system is implemented as a realization of the

framework and its performance is evaluated.

In the following chapters, the details of the work done are presented. Chapter 2

investigates the aspects of the problem and the research done so far that has

influenced the solutions found in this thesis work. The proposed general purpose

recommendation framework is introduced in Chapter 3. In Chapter 4, the

implementation of an example movie recommendation system is presented. The

performance of this system is tested and evaluated in Chapter 5. And finally,

Chapter 6 gives a brief summary of the thesis and presents the conclusions.

8

CHAPTER 2

BACKGROUD AND RELATED WORK

Recommender systems are used in many different areas with many different

degrees of complexity varying from education to entertainment. Despite their

differences, what they do is mainly to detect similar behaviours under similar

circumstances and estimate the properness of the objects of interest. Whatever the

complexity of the problem is, finding the behavioural patterns is essential. These

patterns can be argued to derive from the characteristics of the objects and the past

behaviours of a single user; or the recommendation process can be thought to be a

social act where same patterns are valid for more than one user. This duality has let

researches to two different recommendation strategies: collaborative filtering (CF)

and content-based filtering (CBF) [1].

Collaborative filtering handles the recommendation problem as a social act. People

with similar tastes are thought to be helpful for an individual’s decision. People

who like same items or evaluate same items in the same way are considered to be

similar. Users similar to a user are referred as neighbours of that user [2]. The

preferences of neighbours designate the user’s evaluations of an item. The items

that a user’s neighbours like are appropriate to recommend to that user.

Some CF systems cluster users instead of finding neighbours of each user

separately. Clustering is gathering similar users together in groups and forming

clusters that reflect the common tastes and interests of these users. In this case the

common agreement of the cluster affects a user’s evaluation of an item.

9

In content-based filtering, the properties of the items to be evaluated are important.

The preferences of a user over those properties determine the likelihood of

recommending an item to a user. The items that resemble the ones high rated by the

user are recommended.

Both methods have their strengths and weaknesses. CF requires a lot of users

voting same items for recommendations to be successful. However, this might not

always be the case. Users of the system might have evaluated different items which

makes it difficult to find similarities between users. This is called the sparsity

problem [3,4]. Cold-start problem [3] of CF systems refers to either the problem of

a new item which is not rated by any of the users yet or a new user problem who

has not rated many items so cannot be similar to any other users [4]. Also, some

users may have rare tastes and may not have rated same items in the same way as

the rest of the users. CF systems also make recommendations highly limited by the

items chosen before.

CBF suggests solutions to some of the problems that occur in CF. It is capable of

evaluating an item using its properties even if it has not been rated by any of the

users before. It still requires that the user has rated enough number of items to

understand his preferences and make good recommendations, but still, it can

evaluate an item using the limited number of information about that user. CBF does

not suffer from the sparsity problem [3].

On the other hand, the risk of CBF is that its success depends on the definition of

the items [4]. The number and the significance of the properties of items highly

affect the evaluation process. There is also a strong probability that the

recommendations made will be too similar because these systems will only

recommend items that are suitable with the preferences of the user.

A more effective approach to recommendation problem is hybrid systems [5, 6, 7,

8, 9, 10, 11] which aim to eliminate specific drawbacks of both methods by

combining them. Hybrid methods use CF and CBF together with different

10

strategies as summarized in [5] and [4]. Some hybrid systems switch between CF

and CBF under different circumstances; while some implement a staged process

and execute both filtering methods sequentially on inputs or use output of one

method as input to the other. Some use two methods interleaved, by adding CF

features into CBF or vice versa.

Besides the choice of the filtering method, researchers apply some techniques and

strategies to improve the performances of their systems. Generating user profiles or

using semantic technologies in the recommendation process help systems make

better recommendations. Many researches generate user profiles using the content-

based information of the items user has rated. Content-based user profiles give

better understanding of users’ interests and choices, and they can be used both in

CF and CBF systems. The use of semantic technologies improves the performance

of a recommendation system because they give more meaningful and compatible

information about domains, items and user profiles when used. Some researches

use only ontologies to benefit from semantics of the domain studied[12] while

some use more advanced semantic technologies like reasoning [3, 13].

In [14], they try to improve the performance of CF methods by replacing the most

widely-used user-based CF with item-based CF and using semantic knowledge.

When evaluating an item for a user, the system finds the similar items, then uses

the ratings given by the user to these similar items to predict the item’s rating. The

similarity between items is a combination of collaborative and semantic similarity.

Items that are rated similarly by some users denote collaborative similarity.

Semantic similarity can be thought of content-based similarity as it is the similarity

between the ontological descriptions of items, which indicates the properties of

them. Using semantic similarity enables the system to detect and recommend also

the items that are not rated by many users. By using semantic knowledge of items,

this work aims to eliminate the sparsity and the new item problem in CF systems.

11

[15] is another work using item based collaborative filtering. The difference from

the previous work is that it generates clusters of items considering their attributes.

Then, each user is included in a cluster according to their previously rated items.

In [16] the proposed system uses semantic technologies to improve its CBF

method. It defines users’ preferences of the item attributes ontologically also

including the complex preferences which reflect conditional preferences

representing more than one attribute affecting each other. The candidate items are

evaluated using these profiles.

AVATAR [7] is a hybrid multimedia content recommender that switches between

two different filtering methods. It uses OWL
1
 ontologies for representing items and

benefits from semantic inference. When evaluating an item, it first executes CBF

strategy. It uses the ratings of items already rated by the user which show some

semantic similarities with the item to be evaluated. It considers hierarchical

semantic similarities and inferential semantic similarities. Hierarchical

relationships are ancestor-descendant relationships between concepts that are

explicitly defined in OWL ontologies. Inferential similarities are detected by

applying inferential rules and refer to shared semantic characters such as sharing

common features or having related features. If the system cannot find enough

similarity and make a decision by CBF, it switches to its CF strategy where it finds

the neighbours of the user and applies the former strategy to this set of users. The

neighbours’ ratings of items that show similarities to the unrated item are used to

estimate its rating.

In [5], a hybrid recommendation system using user profiling and semantic

technologies such as ontologies and semantic spreading is implemented. User

profiles consist of areas of interest which correspond to preferred concepts of

domain together with their related concepts extracted by semantic spreading. The

system clusters users according to their common areas of interests producing

1
 http://www.w3.org/2004/OWL/

http://www.w3.org/2004/OWL/

12

communities of interest and recommend items using opinions of these

communities.

Hybrid recommendation models suggested in [9], [10] and [11] generate weighted

user profiles representing the preferences over the values of attributes of items.

Recommendations are done using both opinions of similar users and these

individual user profiles.

The hybrid system suggested in this thesis adds CBF features into CF stage and

uses the output of the CF as input to the CBF stage as the recommendation

strategy. Adding CBF features in CF stage is done by generating content-based

user profiles and clustering users using these profiles while defining similarities

between them. We define items and user profiles ontologically which gives us the

opportunity to better understand the preferences of the users. In the following, we

investigate the recommendation systems that show similarities with ours in more

detail and discuss how they have affected our designs decisions.

HYBRID RECOMMENDATION STRATEGY

As we mentioned, there are different strategies to combine collaborative and

content-based filtering. While investigating different aspects of recommender

systems we are influenced from, we will first talk about these strategies and the

CBF methods. We leave the details of profile generating and CF mechanisms to

later chapters to discuss in more detail.

A hybrid recommendation model following the “collaborative via content”

paradigm is implemented in [5] and [9]. This paradigm is used to indicate the

model benefits from content-based user profiles in collaborative filtering. System

first extracts users profiles from the content-based descriptions of the concepts

preferred by users. Then it passes these profiles to a clustering mechanism. The

clusters generated are used in CF.

13

In [10], content-based user profiles are generated considering the most

characteristic preferences of users over the attributes of items. When making

recommendations, users with most similar profiles are detected and used in CF.

All of these three systems generate their user profiles using CBF. Then they use

these profiles in CF. With these characteristics, these works are meta-level hybrid

recommenders. Meta-level hybrid recommenders use the model generated by first

filtering method as input to the second one. The user profiles generated are the

model resulting from CBF and are used as input to the CF mechanism.

Our work follows this approach too, and therefore is a meta-level hybrid

recommender. But it also applies CBF over CF results, which is a characteristic of

hybrid recommenders based on feature augmentation. This kind of recommenders

implements a staged process where the outputs of one filtering methods are

improved by applying the other method without changing the filtering methods. In

our work we simply find the items that can be recommended to a user by the other

users in the same cluster and evaluate the items according to the user’s profile to

improve the results.

Work in [11] also uses CBF in generating user profiles. But its difference is that it

doesn’t use these profiles in CF. Instead, it clusters items by their common

attributes hierarchically, from general groups that contain different features and

more items to more specific groups that contain more mutual features and fewer

items. From these clusters, it finds candidate items to recommend to user simply

choosing the cluster containing already rated items of the user. Then it applies

content based filtering to candidates to determine their similarity degree with the

user profile. The similarity degree is calculated by summing the weights of the

matching attributes of items and user profile. Using this similarity degree and

community’s average rating to candidate items, it makes recommendations to user.

This system uses CBF as its base recommendation method but benefits from the

collaborative information such as the average ratings of items.

14

Our system resembles this system in a way that they both filter candidates with

user profiles. Of course, the candidate lists are generated with different strategies,

since we use CF in determining candidates. Our system also implicitly uses

similarity degrees of candidates. Different from this system, in ours, the similarity

degree of each attribute is considered separately and may also infer negative

opinion depending on the values of matching attributes. Instead of using

community’s ratings to items, we use individual user’s rating to values of

attributes.

USER PROFILING

Recommender systems using user profiles aim to better understand the reasons of

the preferences of the users and make better recommendations. However what they

present in the user profiles and how they extract those profiles differ. Different

systems give importance to different aspects of users’ choices and domain

properties. Their representations of user profiles are also different. Some represent

profiles with vectors, some in databases, and some as ontologies.

The work in [10] generates user profiles using the features appearing in the rated

items of users (user history). It counts the number of times a feature is seen in each

user’s history. After feature frequencies are extracted for all users, it applies

feature-frequency and inverse-user-frequency to these and forms the final user

profiles consisting of feature weights. Feature-frequency shows how effective a

feature is for a user’s preferences while inverse-user-frequency helps eliminate the

common preferences of all users which does not indicate a personal choice and is

not useful in recommendation. Items are evaluated by calculating the weights of

their features using the frequencies of these features among the user’s neighbours.

15

Since this work does not consider the importance of different attributes of items

and threats the values of every attribute as plain features in the same category, it

falls behind in understanding the preferences of the users in detail.

In [11], a different strategy is followed by generating user profiles consisting of

only the preferences of the user about the attributes of items (such as actor,

director, genre in movie domain) and these attributes’ weights. The weights are the

importance factors of each attribute according to the highest frequencies of the

values these attributes have among the items that the user rated. This work

considers only the importance factors of attributes. When evaluating candidates, it

compares the values of attributes of the item and the user profile. If it finds

matching values, it concludes the item is similar to user profile by means of the

attributes these values belong to. Then, it uses the weights of the matched attributes

to calculate the rating of the item.

In this thesis, we also use weighted attributes. We define these weights using the

frequencies of the individual values of properties in the items user prefers (highly

rated). Different from the work mentioned, we also include the ratings of the

individual values in our user profiles. Using weighted properties enables the system

consider the importance factor of an attribute in users’ choices. The individual

ratings enable user profiles to reflect the taste of the user (what he likes and

dislikes). This enables system consider both the reasons of user’s preferences and

the taste of the user. We also use weights of attributes using frequencies of their

values, but together with ratings of the individual values of the attribute.

The system in [9] generates user profiles consisting of items rated by the user and

property vectors each corresponds to one attribute of the items. In each property

vector in a profile, there are weights of individual values this attributes can have.

Those weights are calculated using the ratings of that user has given to items. For

example, when recommending movies, the attributes of a movie can be genre,

director and actor. Therefore, the user profile generated by the system will contain

16

the ratings of the movies and three property vectors. The system first detects the

movies with ratings above some threshold defined. For those movies, it finds the

values of each attribute and the frequency of these values. For genre aspect, it puts

the genres of the movies in “genre” vector and calculates the weight of each

according to how many movies have that genre.

Our system also contains item ratings and user preferences together in user profiles.

Our user preferences correspond to property vectors suggested in this work. The

difference is that we not only give weights to values of attributes but also to the

attributes themselves as the previous work does. Furthermore, we consider the

items above a threshold value only while calculating the weights of the attributes.

When calculating the ratings of the individual values of attributes, we take into

account all the items rated by the user, in order to represent both positive and

negative opinion about them.

In [5], semantic technologies are used. The profiles are represented as ontologies

and divided into areas of interest of users. The system first detects the concepts in

the domain ontology and relationships between them. Using the definitions of

items high rated by a user and concepts in domain, it generates a layered user

profile where each layer defines the preferences of the user about one concept or a

few related concepts.

This approach is especially beneficial when lots of attributes and individuals exist

that are related to each other with various kinds of relationships. They give the

example when photographs are examined by users and interests of people are

extracted with the help of the objects inside them. But when this approach is

applied to the movie domain, a limited number of attributes and individual types

are used and it is concluded that the system does not benefit much from its layered

structure. We have also designed our profile ontology to be able to include more

than one domain to represent users’ preferences over different item sets when

needed.

17

COLLABORATIVE FILTERING STRATEGY

Recommender systems also differ in how and when they use the CF mechanism.

While CBF methods are pretty straightforward, there are different approaches to

using collaborative properties of a system.

As mentioned earlier, [11] uses collaborative rating of the items as a supporting

factor to its CBF while [14] and [15] adds basic content-based features to their base

CF mechanism. And the work in [7] switches to CF when CBF is not successful.

Here, we discuss systems that follow collaborative via content paradigm. This is

the method we use in our system in which we use content based user profiles in

collaborative filtering.

[5] and [9] cluster users after generating user profiles. Clustering is grouping the

users that show similar tastes and decision patterns together to form a community.

It is a popular idea that recommendation is a group work; people’s preferences are

affected by not just individuals around him but the community they belong to.

Beside that arguable assumption, clustering is effective in the means of

computation. Instead of finding the neighbours of each user at runtime every time

the system makes recommendations, it detects similar users and keeps them in a

group. Furthermore, with the help of user profiling, because systems are able to

better understand users, they are able to create more meaningful communities. For

these reasons, we have found clustering of user profiles more efficient. After

clusters are generated, the individuals in that group or the properties of the group

itself can be used to evaluate items.

The work in [9] follows the latter approach. After generating user profiles, the

system clusters users and creates group profiles. A group profile represents the

rating patterns of its members. Recommendations are made to a user using both his

18

profile and the group profile. When testing a candidate against group profiles, the

user’s and candidate’s similarity to that profile is taken into consideration.

A work following the former approach [5] uses a different clustering mechanism as

a result of its different user profile structure. The system generates layered user

profiles. Each layer corresponds to user’s preferences over some related concepts

of the domain. The purpose of this layered structure is to allow people get opinions

of the other that they are similar in the means of these concepts. Two people may

not be similar in all areas, but their similarities in some are not omitted. To provide

this, users are grouped in concept clusters and each user is a member of these

clusters at some degree of similarity. While evaluating an item on behalf of a user,

the system uses the membership of the user and the item to each cluster, and the

ratings of the other users in these clusters proportional to their membership

degrees.

We also use clustering in our collaborative filtering strategy. We put the users that

have common concepts in their profiles together. These common concepts generate

cluster profiles. But we do not define membership thresholds to every cluster. We

put a user to one cluster that his profile shows most similarity with. The

comparison with the work in [5] also affirms the success of this design principle of

ours. Evaluations of items using only the most similar cluster to a user are more

successful than the other case.

To improve the accuracy of clustering phase and the performance of the system, we

used some mechanisms to reduce sparsity and the space needed for the

calculations. We generated profile vectors in order to use only the most relevant

attributes of user profiles in clustering. This reduces the memory used by the

system. We also define cluster profiles as attribute vectors. A cluster profile

consists of only the most popular attributes shared by most of the users in that

cluster. This reduces the sparsity problem. The strategies for improving the

performance are explained below.

19

To improve the recommendation performance, Amazon uses item-oriented

similarity [17, 18] instead of user-oriented similarity. It generates an item similarity

table to determine the most similar items. Two types of tables are generated. The

first one contains the items rated by each user. The second one contains the items

purchased by the users. The items that are purchased by a high number of users are

determined to be popular. The popular items are put in item similarity table. This

table contains similarity degrees of items. The similarity degree between two items

is determined by the number of users that purchased both items. To make a

recommendation to a user, it finds the similar items to the ones the user liked

before. Then, the items are filtered by their similarity degrees and the most similar

items are recommended to the user.

The strategy of eliminating unpopular items reduces the number of items used in

neighbourhood, reducing the space required. It also assures that the similarity

matrix is not sparse, so it gives more accurate neighbourhood relationships.

In our work, similarities are detected between users and not the items. But, since

we use the content-based user profiles, attributes of the items affects the user-user

similarity. To eliminate the unpopular attributes during clustering, we use a

threshold value. The threshold value is the percentage of the number of users that

give high ratings to the same attribute. The attributes that are preferred by the high

percentage of the users in that cluster are put into the cluster profile. Then, when

the clusters are updated, the similarity of a user to the clusters is determined using

these reduced set of cluster profiles.

Matrix factorization [19] is a way to determine similarity degrees of contents

efficiently, even in sparse data sets. It can be used to calculate the rating of an item

for a user or to determine similarities between items, between users and between

items and users. To detect item-to-item similarities, first, all items (or users) are

defined using attribute (factor) vectors. Then two different attribute vectors are

defined as axes of the matrix. Then each item is placed on a spot on the matrix

20

according to the relevance of their attribute vectors to the axes. The items placed in

the same areas are considered to be similar.

The important factor in this method is the separation of attributes to axes and their

order on each axis. The attributes on one axis should be divergent and the item

should belong to one attribute more than the others on the same axis. The item

should also have an attribute placed in another axis so that it can be placed on the

correct spot in the matrix. Furthermore, an attribute should be related to the other

attributes on its left and right on the same axis, because the closeness of the items

on the matrix indicates the similarity degree between those items.

In this thesis, we also generated profile vectors consisting of the attributes that are

preferred by users and the cluster profiles. Cluster profiles are also attribute vectors

consisting of the most popular attributes among the users in that cluster. Each user

is included in the cluster his profile vector is most similar to. Different from matrix

factorization that defines two dimensional matrix and place the user profiles in it,

we use two dimensional user and cluster profiles and let the attribute groups be

formed at runtime of the clustering algorithm. In this way, we do not need to

consider relationships between attributes to organize them in axes before

clustering; but our clustering phase requires iterations to make cluster profiles more

accurate.

NORMALIZATION OF USER RATINGS

Since each user’s rating habits and tolerance to things are different, it is sometimes

misleading to evaluate the eligibility of items to all users with a simple rating

threshold. The users’ tolerance is one of the important factors that determines the

coherence of the user profiling, clustering and recommendation processes. Rating

normalization methods are used to handle this tolerance differences. In [20], a work

21

that investigates two of the rating normalization techniques is presented: Gaussian

normalization method and decoupling normalization method.

In Gaussian normalization method two main issues are pointed. One of them is the

shift of average rating, which means that different users may give different ratings

to the items they like. The second issue, different rating scales, indicates the

difference in sensitivities of users ratings. A user may use three different rating

values in the ten-scale rating system while the other may use ten of them.

In decoupling normalization method ratings are reduced to values to represent a

good opinion or a bad opinion.

We used both of these normalization approaches for different purposes. Decoupling

method is used in determining the popular items or properties of the items. We

defined the threshold as the average of the ratings of the user and assumed the

rating above that threshold indicates a positive opinion. The weights of the

properties are affected directly by these popularities.

For calculating the rating of individuals that appear in items, we considered the

issues pointed in Gaussian method. We eliminated the ratings that are radical from

the rating pattern of the user and also used different rating thresholds to indicate

positive opinion for different users.

22

CHAPTER 3

PROPOSED RECOMMENDATION FRAMEWORK

In this thesis, a content recommendation system using user profiles has been

developed. In order to get more effective results, content based filtering and

collaborative filtering are used together. The system implements three

functionalities which are generating the user profiles, clustering users and

recommending contents. Figure 1 shows the architecture of the proposed

framework whose components are explained in detail in the following sections.

Figure 1 – Framework architecture

23

In this thesis work, a content recommendation system using user profiles is

developed. To get a more efficient result, content based filtering and collaborative

filtering are used together. System realizes three functions such as generating the

user profiles, clustering users and recommending contents. Figure 1 shows the

architecture of proposed framework and below, the components of the framework

are introduced.

PROFILE GENERATOR

A user profile is generated by defining the preferences of the user over the contents

to be recommended depending on the past behaviour of the user such as ratings of

the items the user has evaluated before.

Profile Generator component consists of two main modules: Profile Builder which

extracts profiles from the user history and Profile Clusterer which groups the users

according to similarities of their profiles.

User Profile

A user profile defines the parameters that affect the user’s choices. It shows which

properties of a given concept the user takes into account while making decisions,

how much those properties effect his choices, what he likes or may like about the

item and how much.

24

Figure 2 - User profile

Figure 2 shows the entities of a user profile. A user profile consists of the items the

user has rated before and the ratings given, as well as the preferences of the user.

The items and their ratings form the user history. User preferences indicate what

the user’s criteria are for choosing the items they like and what properties of those

items they like at what level. User’s taste of different properties is defined by the

ratings they give to the items that have those properties. The properties that have

the same individual values in highly rated items are considered to have high

influence over the choices of the user. That is called the weight of a property. For

example if “Brad Pitt” is an actor of most of the movies the user liked, we can

conclude that the user has chosen the movies according to their actors. Therefore,

the weight of the actor property is high for that user.

25

What defines the liking of the individual values of the properties are directly the

ratings of all the items they belong to. And each individual together with the

property is a user preference and user preferences have ratings. The reason of not

giving a rating to an individual itself is, the content that individual appears in may

affect the liking of that individual for a user. For example a user may like the books

written about 60’s, while he doesn’t like the books written in 60’s. So there is a

need to separate these two concepts. In Figure 3, you see that the rating is given to

“written in 60’s” and “written about 60’s” preferences instead of individual “60’s”

because it has different ratings depending on the concept.

Figure 3 - User preferences with the same individual

We design the user profile consisting of several domain profiles. Since the user’s

choices of even the same items or properties may vary according to the domain

they appear in, we gathered the information about the same kind of items under the

related domain profile of the user. Although, in this work, we studied

recommendation in only one selected domain, this profile ontology allows a user to

have different profiles for different domains. The user profile ontology schema is

included in APPENDIX A.

26

Profile Builder

Profile Builder is responsible for extracting the user’s preferences. To extract this

information it takes the ratings of the user from the Data Gatherer component.

Then, it examines the properties of the items that the user has rated.

For each property, it counts the number of times an individual value is repeated

among the high rated items. The individual with the highest count is the most

popular individual for that property. Most popular individual defines the

importance factor so the properties can be scaled according to their effects to user’s

choices. If an individual value appears in most of the items preferred by the user,

the property in which this individual takes place is an important point for that user.

The importance factor is represented as the weight of the property. The sum of the

weights of all properties is 1. The rating of the item is calculating by adding up the

ratings the item collects from its properties. The rating collected from a property is

the average rating of the individual values of that property multiplied by its weight

The profile builder then calculates the ratings of user’s preferences. In order to

calculate the rating of a preference, first the items that preference appears in are

listed. The average of the rating these items gives the rating of the preference.

Then, normalization is applied to this rating. The ratings that are too low or too

high than the average rating calculated are omitted. If the ratings of items a

preference appears in vary too much, this changes in rating are probably not related

to this preference but other ones. After eliminating irregular ratings, system checks

if there is enough information to rate the preference. If the preference appears in

only one item it is not included in the profile; because one rating does not give

enough information to rate a preference.

27

Profile Clusterer

Profile Clusterer groups similar user profiles together. It uses an adaptation of k-

means clustering algorithm. Initial clusters are created by choosing random data

points as cluster centroids but after the first iteration, clusters have centroids on

their own. Profile vectors are used as data points and cluster centroids.

Clusters can be generated based on either the user’s preferences over the content

properties or the history of the user. These two methods differ in the generation of

the user vectors. The rest of the clustering process is the same.

A profile vector based on user preferences is generated by selecting the most

valued properties. First, properties are filtered by their weights to assure that only

the preferences over the properties which take an important role in the user’s

decision making are represented in the profile vector. Then, the preferences are

filtered by their ratings so that the vector represents what the user likes. The latter

however, contains only the rated items that have a high rating from the user. The

individual values of selected properties that exceeds user’s rating threshold are

included in user profile vector.

In Figure 4, a very small subset of a user profile is shown. Assume only the two

most important properties are included in the profile vector, and the threshold for

the user is 4. Then, the preferences “directed by” and “starring” is chosen because

they are more important for the user. “hasGenre Comedy” preference is

automatically not included in the profile vector regardless of its rating, which

exceeds the threshold. Among other preferences, “Directed by George Clooney” is

left out of the profile vector because of its low rating. In this example, the profile

vector consists of “Directed by Stanley Kubrick” and “Starrign Geoprge Clooney”

preferences.

28

Figure 4 - User preference example

Clusters are created by choosing random profile vectors as centroids. Then all the

profile vectors are added to the clusters that they have the most similarity with. The

similarity is the ratio of mutual and diverging elements between the user vector and

the cluster’s centroid. After all users are added to clusters, the elements of the

profile vectors (which are user preferences) are investigated. The most repeated

elements among the vectors in a cluster are considered to form the profile vector

that reflects the mutual taste of the users in that cluster and assigned as the new

cluster centroid. This produces a less sparse vector by eliminating the individuals

that is not rated by most of the users. The cluster centroid is updated in each

iteration, and at the end of clustering, they show the characteristics of the clusters.

The items that are highly rated by the users in the cluster are added to the cluster

profile. The final cluster profile consists of a profile vector, users in this cluster and

items that those users like.

29

The final products of the Profile Generator component are the user profile and user

cluster ontologies as shown in APPENDIX B. Those are used by the Recommender

Engine as inputs.

RECOMMENDER ENGINE

The recommender engine makes decisions about contents on behalf of the user. It

recommends items to the users using their profiles and the clusters they belong to.

First, it finds candidate items to recommend to the user. Candidates are the high

rated items of the cluster that the user is a member of. Then, it compares the

properties of each candidate with the user’s preferences in the profile and estimates

the ratings of these candidates. The rating of a candidate is the sum of ratings it

gets from its each property. The rating gathered from each property should be a

positive function of the ratings of individuals of that property appearing in the

candidate item and the weight of that property for the user. In our implementation

we used the average of the individual ratings multiplied by the weight of the

property.

Algorithm: Evaluating a candidate

Extract the properties of the candidate c

For each property pc of the candidate c

Find the property in the user profile pu

For each value pind of pc

 Find the rating rind of pind in pu

 Calculate the rating of this property by a function of pu and all pinds

Add up the ratings of all properties

30

After finding the ratings of the candidates, the Recommender Engine applies a

filter to them and recommends the ones that the user is expected to like. The filter

we used is a rating threshold that is thought to be the lowest rating a user gives to

the movies he likes.

DATA GATHERER

Data Gatherer is the component implementation which depends on the data sets

and ontologies used. Data Gatherer collects the data needed by the system to

generate user profiles, such as ratings of the user and contents of the domain

studied.

It consists of modules that retrieves information from data sources and provides

user ratings and item profiles to Profile Generator. It may consist of different

modules such as ontology dictionaries and query interfaces. The main task of the

component is to invert any data of any kind to ontologies the system uses.

The details of this component are explained in Chapter 4.

31

CHAPTER 4

A CASE STUDY – MOVIE RECOMMENDATION

In order to realize a recommendations system which is capable of understanding

the intentions of users, reasons behind their choices and help them in their decision

making, a well-defined domain and a sufficient amount of qualified user

information is needed more than anything else. However, ready to use information

either does not exist or is not accessible at that detail level. Therefore, we have

used whatever the available information is and modified it to serve our purposes.

We have chosen the movie domain, since it is one of the ontologically well-defined

domains with a relatively good amount of information and detail. It is also one of

the most studied domains in research on recommendation so far. This allows us to

learn and compare different kinds of strategies.

DATA SETS

MovieLens Data Set

We used MovieLens
2
 datasets as the resource for user rating of the movies.

MovieLens offers different data sets consisting of different numbers of users. In

each data set, there is a file containing the users’ ratings to movies and a file where

the movie names are written. In ratings file, movies that users voted are represented

2
 http://www.movielens.org/

http://www.movielens.org/

32

by their number, so they can be mapped to their names on the movies file.

MovieLens uses a rating system of ten scales. Ratings vary between 0 and 5

including the halves.

However this data set does not include any further detail about movies except the

genres. The names of the movies and the genres are same with the ones in IMDB.

But since IMDB contains semi-structured data and does not have an ontological

description of its contents; we wanted to search for another data set that has such

properties.

Freebase Database

Freebase
3
 is an open database of entities. It keeps structured data as a huge graph of

connected contents and things called entities and their properties. In Freebase,

every item is unique and has its own id but at the same time they can be instances

of different types and can have different properties according to their roles. It gives

the opportunity to view entities as RDF and provides a schema for its contents.

This perfectly fits to our needs in implementing our recommendation system. It

benefits from DBPedia
4
 which is one of the biggest linked data sources on the web

today. The reason for not using DBPedia but Freebase is that it contains more

matching movies to the ones in MovieLens dataset. It also has an easier to use

query api. Freebase is queried by the Metaweb Query Language
5
 (MQL) which is

similar to SPARQL
6
 used for querying RDF.

3
 http://www.freebase.com/

4
 http://www.dbpedia.org/

5
 http://mql.freebaseapps.com/

6
 http://www.w3.org/TR/rdf-sparql-query/

http://www.freebase.com/
http://www.dbpedia.org/
http://mql.freebaseapps.com/
http://www.w3.org/TR/rdf-sparql-query/

33

SYSTEM ARCHITECTURE

The architecture proposed in Figure 1 is used for movie recommendation with

some adaptations of modules for the movie domain. The final architecture is shown

in Figure 5. Also, more details about the components and basic data flow are

shown. The Profile Generator and Recommender Engine are remained unmodified

and perform their standard tasks. The Data Gatherer and Ontology Reader/Writer

components, which are the components that perform domain dependent tasks, are

adapted to the data sources and the domain used. So, we give details of these two

components in this chapter and discuss the details of others while we explain the

functionalities of the system.

Figure 5 - Movie recommendation system architecture

34

Ontology Reader/Writer

Ontology Reader/Writer contains dictionaries of the concepts in the ontologies

used by the system. Freebase Ontology Dictionary maps the properties of the

movies requested by the system to their Freebase descriptions (URLs in Freebase

database). Not all the concepts in Freebase movie content are used. We chose the

properties we most benefit from in the recommendation process. The ones which

play or expected to play more important roles in users’ choices are included in the

dictionary. These properties are “genre”, “director”, “actor”, “character”, “writer”,

“location”, “composer”, “subject”. The properties like “language” or “country of

origin” are excluded because they are common for most of the movies therefore

they do not provide valuable information for understanding users’ tastes.

The profile ontology dictionary helps the Profile Builder generate user profiles

according to the profile ontology scheme given in APPENDIX A. And Cluster

Ontology Dictionary helps Profile Clusterer generate cluster ontologies based on

the ontology scheme given in APPENDIX B.

Data Gatherer

Data Gatherer extracts information needed from the external data sources. Rating

Extractor extracts ratings of the movies by basically reading sequential files

provided by MovieLens. Movie Extractor is responsible for finding the movies in

Freebase by their names. Property Extractor finds the properties of the requested

movie by querying Freebase. Both Movie Extractor and Property Extractor uses

MQL query interface and Freebase Ontology Dictionary. MQL Query Interface is

responsible for preparing and executing queries. According to the requested

information, this component prepares the needed query in MQL syntax using

relevant concepts from Freebase Ontology Dictionary and sends requests to

Freebase.

35

The final product of the data gatherer is the set of movie profiles matched with the

ratings a user has given. Profile Builder gets these profiles to generate the user’s

profile.

GENERATING USER PROFILES

The process of generating a user profile consists of gathering the existing

information about the user, determining the reasons of the user’s choices and

finally defining user’s taste. Profile Builder is responsible for this task and it

conducts the process.

Profile Builder requests the rated movies of the user from Data Gatherer. In Data

Gatherer, ratings from MovieLens are combined with their corresponding movie

concepts in Freebase by matching the names of the movies. Although it doesn’t

seem to be an accurate way of finding the corresponding movie because of the

possible differences in representing the movie names in different sources; with

some combination of different queries, we found the results of this matching quite

accurate. Those rated movie profiles form the user history. There is an example of

user history with two rated movies in Figure 6.

36

<profile:UserHistory>

<profile:hasRatedContent>

<profile:RatedContent>

<profile:rating rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

>2.0</profile:rating>

<profile:item rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://rdf.freebase.com/ns/en/waterworld</profile:item>

</profile:RatedContent>

</profile:hasRatedContent>

<profile:hasRatedContent>

<profile:RatedContent>

<profile:rating rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

>4.0</profile:rating>

<profile:item rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://rdf.freebase.com/ns/en/disclosure</profile:item>

</profile:RatedContent>

</profile:hasRatedContent>

</profile:UserHistory>

Figure 6 - User history

After movie profiles are gathered, Profile Builder starts to analyse the taste of the

user and to determine his preferences. First, it requests the properties of the movies

from Data Gatherer. Then, weights of the features of the domain and the ratings of

each individual appearing in the movies user rated are calculated. While calculating

the rating of an individual, all movies that individual appears in is taken into

account whereas while calculating the weight of a property, only the movies that

are highly rated by the user are used. In this example, movies with ratings higher

than or equal to 4 are considered highly rated. We give an example of building a

user profile of a user that has watched and rated the movies in Table 1 and Table 2.

37

Table 1 - Rated movies

Movie No Movie Name Rating

1 WaterWorld 2

2 Disclosure 4

3 Braveheart 5

4 Die Hard: With a

Vengeance

4

5 The Net 4

6 A Perfect World 3

Table 2 - Properties of the rated movies

For each property, how many movies an individual appears in and how many of

them are high rated are determined. Using Table 1 and Table 2, we can generate

Table 3 for the individuals of “genre” property of the movies rated. The genres

Movie

No

1 2 3 4 5 6

Directed

by

Kevin

Reynolds,

Kevin

Costner

Barry

Levinson

Mel Gibson John

McTiernan

Irwin

Winkler

Clint

Eastwood

Starring Kevin

Costner,

Jeanne

Tripplehorn

Michael

Douglas,

Demi

Moore,

Dennis

Miller

Mel

Gibson,

Sophie

Marceau,

Patrick

McGoohan,

Bruce

Willis,

Samuel L.

Jackson,

Jeremy

Irons,

Sandra

Bullock,

Jeremy

Northam,

Dennis

Miller,

Kevin

Costner,

Clint

Eastwood,

Laura

Dern

Genre Science

fiction,

Adventure

Drama,

War,

Action,

Adventure,

Drama

War,

Period

piece,

Adventure

Thriller,

Action,

Crime

fiction

Drama,

Action,

Thriller

Drama,

Crime

fiction

Music

by

Mark

Isham,

James

Newton

Howard

Ennio

Morricone

James

Horner

Michael

Kamen

Mark

Isham,

Jeff

Rona

Lennie

Niehaus

38

“drama”, “action” and “thriller” are the most popular ones with the popularity of 3.

This popularity is used as a coefficient while calculating the weights. Using these

coefficients, the weight of each property is calculated provided that the sum of all

weights is 1. Table 4 shows coefficients and the calculated final weights. We can

say that, music composer and the director don’t affect user’s choices while genre

has the largest impact on the user’s taste.

Table 3 - Popularity of individuals

Table 4 - Coefficients of properties

Genre Movies Popularity

Science fiction 1 0

Adventure 1, 2 1

Drama 2, 3, 5, 6 3

 War 2 1

Action 2, 4, 5 3

Thriller 3, 4, 5 3

Film adaptation 3 1

Crime fiction 4 1

Property Coefficient Weight

Directed by 1 0,14

Starring 2 0,3

Genre 3 0,43

Music by 1 0,14

39

The weighted properties are represented in the user profile ontology as in Figure 7.

“movie:hasGenre” is a subproperty of “profile:hasWeightedProperty” property in

the user profile ontology in and only used in user profiles of movie domain. A

weighted property node also includes the corresponding uri of the property in

Freebase ontology.

<movie:hasGenre>

<profile:WeightedProperty>

<profile:property

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://rdf.freebase.com/ns/film/f

ilm/genre</profile:property>

<profile:weight

rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.43</profile:weight>

</profile:WeightedProperty>

</movie:hasGenre>

Figure 7 - Weighted property

An individual belonging to a property together with its rating is referred as the user

preference. Rating of a preference is the average rating of the movies that

preference appears in. For example; the rating of “Kevin Costner” as “actor” of the

movie is 2,5 since he acts in movies 1 and 6 which gets 2 and 3 from the user.

Notice that, we don’t give rating to the individual alone but together with the

property it belongs to. This enables us distinguish between how much the user likes

“Kevin Costner” as an actor and as a director. You can see the preferences for

“Kevin Costner” in different weighted properties in Figure 8.

40

<movie:starring>

<profile:WeightedProperty>

<profile:property

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://rdf.freebase.com/ns/film/

film/actor</profile:property>

<profile:weight

rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.3</profile:weight>

<profile:hasPreference>

 <profile:Preference>

 <profile:rating rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

 >2.5</profile:rating>

 <profile:individual rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://movie_ont/Movie#starring/en/kevin_costner</profile:individual>

 <profile:item rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://rdf.freebase.com/ns/en/kevin_costner</profile:item>

 </profile:Preference>

</profile:hasPreference>

....

</profile:WeightedProperty>

</movie:starring>

<movie:directedBy>

<profile:WeightedProperty>

<profile:property

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://rdf.freebase.com/ns/film/

film/directed_by</profile:property>

<profile:weight

rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.14</profile:weight>

<profile:hasPreference>

 <profile:Preference>

 <profile:rating rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

 >2.0</profile:rating>

 <profile:individual rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://movie_ont/Movie#directedBy/en/kevin_costner</profile:individual>

 <profile:item rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://rdf.freebase.com/ns/en/kevin_costner</profile:item>

 </profile:Preference>

</profile:hasPreference>

....

</profile:WeightedProperty>

</movie:directedBy>

Figure 8 - User preference

After the extraction of the user history, weights of the properties and the users’

preferences, the process of building the user profile finishes. Figure 9 illustrates

how a user profile ontology basically looks like.

41

<profile:UserProfile rdf:about="http://userProfile/item#User3262">

 <profile:hasDomainProfile>

 <profile:DomainProfile>

 <profile:hasUserPreferences>

 <profile:UserPreferences>

<movie:hasGenre>

</movie:hasGenre>

<movie:starring>

</movie:starring>

....

 </profile:UserPreferences>

 </profile:hasUserPreferences>

 <profile:UserHistory>

<profile:hasRatedContent>

</profile:hasRatedContent>

....

 </profile:UserHistory>

 </profile:DomainProfile>

 </profile:hasDomainProfile>

</profile:UserProfile>

Figure 9 - User profile outline example

We used a fixed threshold value in our example, but the system calculates the

threshold for each user at runtime if a threshold is not defined from outside. The

threshold calculated is the average of the rating of the user to the items in user

history. While defining weights of the properties only the items that have rating

above the threshold is considered. While calculating the the ratings of individuals

the average rating of the movies they appear in is the threshold. This threshold is

used to detect radical ratings. The ratings that are too low or too high from the

rating threshold are considered to be radical. These radical ratings are not used in

calculation of the rating of the individual. We determined the radical ratings as the

ratings that exceed the limits of -2 and +2 of the threshold.

42

CLUSTERING USERS

Our system uses collaborative filtering in determining the candidate movies to

recommend to user. For this, adaptation of k-means clustering algorithm is used

with two different strategies. One of them is to cluster users according directly to

the movies they watched. Users who highly rated same movies are gathered in the

same clusters. This is the pure collaborative strategy and does not use the user

profiles except for the user history. This strategy can be followed by filtering the

candidate movies by the user profile to provide a hybrid recommendation

mechanism.

The other strategy is to cluster users according to their preferences in the user

profile. This one allows us to add content-based properties to collaborative filtering

as in “collaborative via content” paradigm. This strategy can also be followed by

filtering the movies again by the user profile.

In both strategies, the clustering mechanism works the same way. Clustering is

done by extracting a common characteristic profile of the similar users and

grouping them around this profile, which is represented by profile vectors in our

system. First, profile vectors of the users are generated. A user’s profile vector is

the vector of top rated movies for the pure collaborative strategy. For

“collaborative via content” strategy user’s preferences are filtered to form the

profile vector that represents the user’s preferences in a simple form.

Preparing User Profile Vectors

Since it would be misleading to consider every preference as the characteristic of

the user, we need to design a profile vector that reflects the reasons of the user’s

preferences and the taste of the user. So, the preferences of the user are filtered first

by the weights of the properties and later by the ratings of the preferences. Top

rated preferences in the highest weighted properties are taken to form the profile

43

vector. The filter might be either a constant threshold value or determined

specifically for each user automatically by the system according to the weights of

the properties and ratings of the user. The ratings the users give to the movies they

like may vary, so it may be inconvenient to determine a threshold that indicates the

user’s high rating. A user may give 4 points to an average movie whereas another

user may give 3 to the movies he most likes.

For our user represented in Table 1, we may simply say 4 is a good rating and

shows us the user likes the movie. And the properties “genre” and “starring” should

be considered while creating the profile vector because they are the properties that

affect the user’s taste. Therefore, the preferences of these two properties that have a

minimum rating of 4 are put in the profile vector of this user.

Generating Cluster Profiles

After profile vectors of the users are generated, the users that have similar vectors

are grouped together and their most common preferences form the characteristics

of the cluster. This characteristic is represented as the profile vector of the cluster.

Later, possible candidate movies are added to the cluster’s profile. Those candidate

movies are movies that are watched and highly rated by the several numbers of

members of the cluster. This number may be determined according to the wanted

number of candidate movies. If one wishes to recommend more candidates, the

limit number can be kept low; else it can be increased. Figure 10 shows an example

ontology of a cluster.

44

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:profile="http://userProfile#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:cluster="http://cluster#">

 <cluster:Cluster>

 <cluster:clusterID rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</cluster:clusterID>

 <cluster:item rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://rdf.freebase.com/ns/en/se7en</cluster:item>

 <cluster:item rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://rdf.freebase.com/ns/en/flirting_with_disaster</cluster:item>

 <cluster:hasDataPoint>

 <profile:UserProfile rdf:about="http://userProfile/item#User148">

 <profile:profileFile rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >C:\UserProfiles\freebase\train\UserProfile148.owl</profile:profileFile>

 <profile:userID rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >148</profile:userID>

 </profile:UserProfile>

 </cluster:hasDataPoint>

 <cluster:hasMean>

 <cluster:Mean>

 <cluster:hasIndividual rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://movie_ont/Movie#starring/en/kevin_spacey</cluster:hasIndividual>

 <cluster:hasIndividual rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://movie_ont/Movie#starring/en/pete_postlethwaite</cluster:hasIndividual>

 <cluster:hasIndividual rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://movie_ont/Movie#hasGenre/en/indie</cluster:hasIndividual>

 <cluster:hasIndividual rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

 >http://movie_ont/Movie#starring/en/r_lee_ermey</cluster:hasIndividual>

 </cluster:Mean>

 </cluster:hasMean>

 </cluster:Cluster>

</rdf:RDF>

Figure 10 - Cluster ontology example

45

RECOMMENDING MOVIES

For recommending movies to a user, Recommender Engine first determines

candidates; then evaluate the candidate movies to check if they really fit the user’s

taste. Candidate movies are simply the movies that certain number of members of

the cluster the user belongs to gave high rating. Since the tastes of the users in the

same cluster and their reasons for liking a movie are similar, these candidates are

mostly expected to be successful recommendations. However, to make a better

recommendation, we filter the results by the user profile and rate each candidate

movie on behalf of user, and then recommend them if their rating exceeds the high

rating threshold of the user.

Assume we are trying to decide if we can recommend our user the movie “Dances

with Wolves”, the profile of which is shown in Table 5.

Table 5 - Profile of Dances with Wolves

Dances with Wolves

Directed by Kevin Costner

Starring Kevin Costner, Mary McDonnell, Graham Greene

Genre Western, Epic, Drama, War, Film adaptation, Adventure

Music by John Barry

First, we find the individuals of each property of the film in user profile and get

their rating. If the individual doesn’t exist in users profile, user may either like it or

dislike it. So, if we assume that the high rating threshold for our user is 4, we give 4

to the individuals that the user have not evaluated yet. This way, unrated

individuals don’t decrease the estimated rating of the movie, but still don’t indicate

positive rating. So, if we compare the movie profile with the user profile as in

46

Table 6, we give “Dances with Wolves” 3,66, which is below the threshold value.

Finally, we don’t recommend the movie to the user.

Table 6 - Rating of Dances with Wolves

Directed by 0,14 Kevin Costner = 2 0,14 x 2 = 0, 28

Starring 0,3 Kevin Costner = 2,5, Mary

McDonnell = 4, Graham

Greene = 4

0,3 x (2,5 + 4 + 4) / 3

=1,05

Genre 0,43 Western = 4, Epic = 4, Drama

= 4, War = 4, Film adaptation

= 5 , Adventure = 3,7

0,43 x (4 + 4 + 4 + 4 +

5 + 3,7) / 6 ≈1,77

Music by 0,14 John Barry = 4 0,14 x 4 =0,56

Total 3,66

If the candidate movie is “In Love and War” shown in Table 7, this movie is

recommended to the user with rating 4,169, which exceeds the threshold.

Table 7 - Profile of In Love and War

Directed by 0,14 Richard Attenborough = 4 0,14 x 4 = 0,56

Starring 0,3 Mackenzie Astin = 4, Chris

O'Donnell = 4, Margot

Steinberg=4, Sandra Bullock

=4

0,3 x (4 + 4 + 4 + 4) / 4

= 1,2

Genre 0,43 Drama = 4,

Romance = 4,

War =4,5,

Period piece = 5,

Biography = 4

0,43 x (4 + 4 + 4,5 + 5

+ 4) / 5 = 1,849

Music by 0,14 George Fenton = 4 0,14 x 4 =0,56

Total 4,169

47

CHAPTER 5

EVALUATION

We tested our movie recommendation system to determine the effects of different

parameters on the recommendation success. Then we compared different

recommendation methods and discuss how our approach affects recommendations.

We used MovieLens ratings and Freebase ontologies in our tests. We extracted the

histories of the first 500 users from MovieLens data and movie profiles from

Freebase. We divided the ratings into train and test datasets. Our training data

contains maximum 30 ratings per user and test data contains 10 ratings per user.

The training and test data for a user are generated by choosing random movies

rated by the users from MoviLens data.

Four different filtering strategies that are used in evaluation are:

 Pure Collaborative (CF) : Only the ratings of the users in MovieLens dataset is

used. The clusters are formed by grouping users that rated common movies. The

movies rated by other users in that cluster that are not seen by the user are

recommended.

 Collaborative + content-based staged process (CFCB) : The clusters formed by CF

as mentioned above are used. But, the user profiles are also generated. The movies

in the cluster are chosen as candidates. These candidates are filtered by the

eligibility to the user profile.

 User profile based collaborative (UP-CF): The users with similar preferences are

clustered together and the movies in their clusters are recommended to the users.

48

 User profile based collaborative + content-based staged process (UP-CFCB) : The

candidates are chosen from the clusters formed by UP-CF, as mentioned above.

Then they are filtered by the user profiles.

Below, we define some parameters we used to evaluate our results.

 Recall: The ratio of matched items recommended by the system that also exist in

test data to the number of items in test data.

 Precision: The ratio of successful recommendations to all recommendations.

 MAE (Mean Absolute Error): The average difference of the ratings calculated by

the system and real ratings. This difference is always positive.

 F1: Recall and precision can be conflicting parameters. Recall usually increases as

the number of recommended movies increases, because there is a better chance of

finding the movies in test data among larger movie set. If system makes more

unsuccessful recommendations than successful recommendations, the precision

decreases. The aim is to maximize these two. So, we used a formula defined in

[10] that includes both precision and recall.

We applied the same rules to calculate recall, precision and F1 for unsuccessful

recommendations as well. The “s/u” code used in the graphs indicates the ratio of

the related evaluation parameter of successful recommendations to unsuccessful

recommendations.

Our hybrid recommendation strategy first clusters user profiles, then determines

candidate movies using the cluster profiles. Finally, it filters results against users’

profiles and the filtered movies are recommended. The recommendation

49

performance is highly affected by the clustering procedure. So, we investigated the

effects of different clustering parameters to the success of the system. We made

tests using different user groups. We included the results of one of these tests with

100 users grouped into 10 clusters. These results reflect the common finding of the

tests done unless mentioned otherwise.

Figure 11 - Effect of membership threshold

50

One of the parameters that determine the cluster profiles is the membership

threshold. It is a manually defined threshold value that indicates the popularity of a

preference in a cluster. This popularity of a preference is the percentage of the

users that includes that preference in their profile. The preferences whose

popularity exceeds that threshold is included in the cluster. As seen in Figure 11,

low or high values decrease the performance of the system. The best value is 0,5.

This means that the common taste shared by half of the community is proper to

reflect the opinions of this community.

For clustering profiles, profile vectors are created first. These profile vectors can be

created using different features in user profiles. We chose the features with highest

weights. Below, in Figure 12, we show how the number of features in profile

vectors affects the recommendation success.

51

Figure 12 - Effect of number of profile features

We ran the test with different numbers of users and different numbers of clusters.

There is not an exact trend of this parameter. The result for 100 users and 10

clusters is shown in Figure 12. The total number of features we extracted from

freebase per person is 8 and when 4 of them per each user are used, system shows

high performance by means of MAE and recall; however, number of unsuccessful

recommendations also increases compared to when 1 or 2 features are used. It is

because when 4 features are in user profiles, the features that are less important for

a person is taken into consideration. A cluster contains people with different

priorities. So the system may conclude that some features are more important than

52

they really are which would lead it to make more unsuccessful recommendations.

On the other hand, because it clusters users using more preferences, it groups more

similar users together increasing the recall.

Figure 13 - Effect of neighbourhood size on recommendations with collaborative via content

paradigm

Another aspect that affects the performance of the system is the number of clusters.

This parameter may also be interpreted as the neighbourhood size of a user or size

of the community. As the number of clusters increases, the number of neighbours

decreases. The results are seen in Figure 13. We ran this test with different

numbers of users and clusters. As the number of neighbours increases, system is

53

more successful in finding the movies in test data and makes more accurate

evaluations. However, the precision decreases because there is larger number of

candidate movies. The accuracy of recommendations – rates of successful and

unsuccessful recommendations – on the other hand, doesn’t show a regular trend

but tends to be increasing with the neighbourhood size.

The neighbourhood size affects the performance of the pure collaborative filtering

algorithm too. We tested four different recommendation methods and observed the

same effect on performance. There are conflicting results, recall and MAE improve

by the neighbourhood size while precision decreases, so the decision about this

parameter can be made considering also the non-functional requirements of the

system. As the neighbourhood size increases the number of candidate movies and

the elements in cluster profiles increases. Therefore, it takes more time and space to

cluster users and evaluate movies.

Figure 14 - Effect of number of users to recommendation when the neighbourhood size is fixed

to 10

When the neighbourhood size is fixed, total number of users affects the

performance as seen in Figure 14. It improves the recall and MAE regardless of the

54

number of features in profile vector. However, it does not have a big effect on

precision.

We evaluated our pure content-based filtering strategy using MAE, recall and

precision. For each user, we got candidate movies from test data and evaluated

them. The results for the first 500 users in MovieLens dataset are shown in Figure

15. Total MAE is the error in rating of all candidate movies. Recommendation

MAE is the error in rating of movies recommended by the system.

Precision Recall Total MAE
Recommendation

MAE

0,85832 0,97786 0,65846 0,530693

Figure 15 - UP-CBF performance

The hybrid filtering method used in this system shows better improvement over

pure content-based filtering in terms of MAE than the related work [5] it was most

influenced from. In [5], system shows approximately %15 of improvement in MAE

when 100 users are used with %75 of them in training data and %25 in test data.

Under these conditions, we showed in Figure 16 that our system shows up to %52

improvement, and %25 in the chosen case of 100 users with 10 clusters.

We compared the effect of hybrid strategy against pure content-based filtering as

shown in Figure 16. The change in MAE between 100 and 500 user datasets using

CBF does not point to any design issues; it is caused by the use of different user

profiles. The improvement in MAEs for different recommendation techniques and

different datasets are shown by the percentage values. UP-CFCB performs better

than pure CBF and CFCB. We observe the best MAE results when smaller

55

numbers of clusters are used, forming clusters with more users. But, as we

mentioned before, this also reduces the precision.

We observe that, as the input user dataset gets bigger (more user is used), the

performance of the system increases and CFCB begins to show closer performance

to UP-CFCB. Therefore, we can conclude that the negative effect of the sparsity is

reduced.

 CBF

100 users

CFCB

100 users

10 clusters

UP-CFCB

100 users

10 clusters

UP-CFCB

100 users

2 clusters

Recommendation

MAE

0,40619

0,379515

%6,5

0,305016

%25

0,196906

%52

 CBF

500 users

CFCB

500 users

50 clusters

UP_CFCB

500 users

50 clusters

UP-CFCB

500 users

5 clusters

Recommendation

MAE

0,530693 0,379435

%28

0,348087

%34

0,177864

%66

Figure 16 - Improve in MAE of different recommendation methods

Finally, we applied different filtering strategies and observed the difference our

proposed strategy makes. In tests of each recommendation model with each

number of users, the neighbourhood size for clusters is fixed to 10. UP-CF and UP-

CBF, the membership threshold is %50, number of profile features is 2.

The graph in Figure 17 shows the accuracies of different recommendation

strategies with different numbers of users. It shows the rate of the recall value of

successful recommendations to the recall value of unsuccessful recommendations.

56

It is observed that applying collaborative filtering as a second filtering method

improves accuracy. However, it decreases the recall as seen in Figure 18, because it

reduces the number of recommended movies by applying a second filter. User

profiling, on the other hand, improves the recall.

Figure 17 - Comparison of accuracy of recommendation strategies

57

Figure 18 - Comparison of different recommendation strategies – recall

58

CHAPTER 6

CONCLUSION

In this thesis, different aspects of recommendation, different kinds of

recommendation methods and the contributions of user profiling are investigated.

The other aim of this work is to propose a general-purpose recommendation system

that can be applicable to different problems.

A framework for hybrid recommendation systems is proposed. The framework

consists of modules for user profiling, clustering and a recommendation engine,

implementations of which can be directly used in realizing different

recommendation systems. It also defines interfaces for adopting different domains

and ontologies to the system. Therefore, the proposed system is a general purpose

recommendation system.

The other characteristic of the work is the user profile structure. The generated user

profiles reflect both the taste of the user and the aspects of the domain they give

importance to. This improves the accuracy of the recommendations made and gives

the power to explain the reasons of them.

As a case study, a movie recommendation system is implemented using the

framework proposed. MovieLens ratings and Freebase movie onotologies are used

as data sources. There is not a standard criterion to evaluate and compare

recommendation systems that is available for every work done; but most of the

researches use MAE to express the performance of their methods. Our hybrid

59

recommendation system makes better improvement in MAE over content-based

filtering than the work it was most influenced from [5].

We tested our system to understand the effects of design decisions we made. The

clustering phase has a great impact on the recommendation performance.

Generating not too specific cluster profiles but including the common preferences

of a majority of the users in them results better clustering. Using larger datasets as

input – greater number of users and greater number of ratings per user – improves

the recommendation performance.

We observed that user profiling shows positive effect on recommendation. It

eliminates the wrong suggestions and improves the accuracy when user profiling is

used in collaborative filtering or after collaborative filtering as the second filtering

method.

This system can be improved by adding mechanisms for more complex inferences

and benefiting from semantic technologies such as semantic spreading. Semantic

spreading will enable system discover new relationships between objects. Using

these relationships system will be able to produce similar preferences to the ones in

user profiles. When more individuals and preferences are included in the user

profile, its ability to evaluate items accurately is expected to increase.

User profile based collaborative filtering method may be improved by adding a

mechanism to include the content-based evaluations by the neighbours of the user.

Neighbours can evaluate the item itself or its attributes separately to help

recommendation process.

Matrix factorization methods [19] can be used for the clustering phase. This may

reduce the time spent for clustering; because the clustering may be done in one

iteration instead of k-means algorithm which is done in several iterations. The

semantic power of the ontologies may be used for separating the attributes to axes

and ordering attributes on the same axis. The drawback is that, matrix factorization

60

is more effective when one aspect of an item type is used for defining similarities.

Preferences over different attributes may be independent from each other and

representing them in the same matrix may not be meaningful.

Implementing different recommendation systems using different data sources based

on the proposed framework, will test its flexibility and modularity. By modifying

the Data Gatherer component, the system can be used for recommending different

types of items in different domains. New ontology dictionaries can be written and

attached to the system. The system can use any data that are defined in meta-level.

The user profiles can be enriched by adding different domain profiles. By default,

the system will treat these profiles as if they are totally independent from each

other. But, there may be some cases these profiles can benefit from some or all of

the preferences defined in each other. The strategies for detecting these properties

and using them in cross-domain recommendations are expected to increase the

performance of the system.

61

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, "Toward the Next Generation of

Recommender Systems : A Survey of the State-of-the-Art and Possible

Extensions," Knowledge Creation Diffusion Utilization, vol. 17, 2005, pp.

734-749.

[2] E. Vozalis and K.G. Margaritis, "Analysis of Recommender Systems’

Algorithms," HERCMA (Hellenic European Research on Computer

Mathematics & Its Applications), Athens, Greece, 2003, pp. 732-745..

[3] Yolanda Blanco-Fernandez, José J. Pazos-Arias, Alberto Gil-Solla, Manuel

Ramos-Cabrer, Martín López-Nores, Jorge García-Duque, Ana Fernández-

Vilas, and Rebeca P. Díaz-Redondo, "Exploiting synergies between

semantic reasoning and personalization strategies in intelligent

recommender systems: A case study," Journal of Systems and Software, vol.

81, 2008, pp. 2371-2385.

[4] R. Burke, "Hybrid recommender systems: Survey and experiments," User

Modeling and User-Adapted Interaction, vol. 12, 2002, p. 331–370.

[5] I. Cantador, A. Bellogín, and P. Castells, "A multilayer ontology-based

hybrid recommendation model," AI Communications, vol. 21, 2008, p. 203–

210.

[6] S. Spiegel, J. Kunegis, and F. Li, "Hydra: A Hybrid Recommender

System," CIKM (Conference on Information and Knowledge Management)

Workshop CNIKM (Complex Networks in Information & Knowledge

Management), 2009, pp. 75-80.

[7] Y.B. Fernández, J.J. Arias, M.L. Nores, A.G. Solla, and M.R. Cabrer,

"AVATAR : An Improved Solution for Personalized TV based on Semantic

Inference," IEEE Transactions on Consumer Electronics, Feb.2006,

52(1):223–231.

http://www.cikm.org/

62

[8] N. Good, J.B. Schafer, J.A. Konstan, A. Borchers, B.M. Sarwar, J.

Herlocker, and J.T. Riedl, "Combining collaborative filtering with personal

agents for better recommendations," in Conference of the American

Association of Artifical Intelligence AAAI-99, pp. 439-446.

[9] Q. Li and B.M. Kim, "Constructing User Profiles for Collaborative

Recommender System," In Proc. of Sixth Asia Pacific Web Conf., 2004, pp.

100 - 110.

[10] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, "Feature-Weighted

User Model for Recommender Systems," Proceedings of 11th International

Conference on User Modelling (UM 2007), Volume 4511, pages 97-106.

[11] X. Li and T. Murata, "A Knowledge-based Recommendation Model

Utilizing Formal Concept Analysis and Association," Proceedings of

ICCAE2010 (The second IEEEInternational Conference on Computer and

Automation Engeneering), 2010

[12] Y. Wang, N. Stash, L. Aroyo12, L. Hollink, and G. Schreiber, "Using

Semantic Relations for Content-based Recommender Systems in Cultural

Heritage," Workshop on Ontology Patterns, 2009, p. 16.

[13] P. Heim, S. Lohmann, and T. Stegemann, "Interactive Relationship

Discovery via the Semantic Web," 7th Extended Semantic Web Conference

(ESWC2010), 2010.

[14] B. Mobasher, X. Jin, and Y. Zhou, "Semantically Enhanced Collaborative

Filtering on the Web," Lecture Notes in Computer Science, 2004.

[15] P. Mylonas, G. Andreou, and K. Karpouzis, "A Collaborative Filtering

Approach to Personalized Interactive Entertainment using MPEG-21,"

Proceeding of the 2007 Conference on Emerging Artificial intelligence

Applications in Computer Engineering: Real Word AI Systems with

Applications in Ehealth, Hci, information Retrieval and Pervasive

Technologies I. Maglogiannis, K. Karpouzis, M. Wallace, vol. 160, 2007, pp.

173-191.

[16] D. Weiß, J. Scheuerer, M. Wenleder, A. Erk, M. Gülbahar, and C.

Linnhoff-popien, "A User Profile-based Personalization System for Digital

Multimedia Content," In Proceedings of DIMEA (Digital Interactive Media

in Entertainment and Arts), 2008, pp.281-288.

63

[17] G. Linden J. Jacobi and E. Benson, "Collaborative Recommendations Using

Item-to-Item Similarity Mappings," US Patent 6,266,649 (to Amazon.com),

Patent and Trademark Office, Washington, D.C., 2001

 [18] G. Linden, B. Smith, and J. York, "Amazon.com recommendations: item-

to-item collaborative filtering," IEEE Internet Computing, vol. 7, 2003, pp.

76-80.

[19] Y. Koren, R. Bell, and C. Volinsky, "Matrix Factorization Techniques for

Recommender Systems," IEEE Computer, vol. 42, 2009, pp. 30-37.

[20] R. Jin and L. Si, "A study of methods for normalizing user ratings in

collaborative filtering," Proceedings of the 27th Annual International ACM

SIGIR (Special Interest Group of Information Retrieval) '04, 2004, p. 568.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=6,266,649.PN.&OS=PN/6,266,649&RS=PN/6,266,649
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=6,266,649.PN.&OS=PN/6,266,649&RS=PN/6,266,649

64

APPENDIX A

USER PROFILE ONTOLOGY

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns ="http://userProfile#"

xml:base ="http://userProfile#"

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

<owl:Class rdf:ID="UserProfile"/>

<owl:Class rdf:ID="DomainProfile"/>

<owl:Class rdf:ID="UserHistory"/>

<owl:Class rdf:ID="RatedContent"/>

<owl:Class rdf:ID="UserPreferences"/>

<owl:Class rdf:ID="WeightedProperty"/>

<owl:Class rdf:ID="Preference"/>

<owl:ObjectProperty rdf:ID="hasDomainProfile">

<rdfs:domain rdf:resource="#UserProfile" />

<rdfs:range rdf:resource="#UserDomainProfile" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasUserHistory">

<rdfs:domain rdf:resource="#UserDomainProfile" />

<rdfs:range rdf:resource="#UserHistory" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasRatedContent">

<rdfs:domain rdf:resource="#UserHistory" />

<rdfs:domain rdf:resource="#Preference" />

<rdfs:range rdf:resource="#RatedContent" />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="item">

<rdfs:domain rdf:resource="#RatedContent" />

<rdfs:range rdf:resource="xsd:anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="rating">

<rdfs:domain rdf:resource="#RatedContent" />

<rdfs:domain rdf:resource="#Preference" />

65

<rdfs:range rdf:resource="xsd:float"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="weight">

<rdfs:domain rdf:resource="#WeightedProperty" />

<rdfs:range rdf:resource="xsd:float"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasUserPreferences">

<rdfs:domain rdf:resource="#UserDomainProfile" />

<rdfs:range rdf:resource="#UserPreferences" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasWeightedProperty">

<rdfs:domain rdf:resource="#UserPreferences" />

<rdfs:range rdf:resource="#WeightedProperty" />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="property">

<rdfs:domain rdf:resource="#WeightedProperty" />

<rdfs:range rdf:resource="xsd:anyURI"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasPreference">

<rdfs:domain rdf:resource="#WeightedProperty" />

<rdfs:range rdf:resource="#Preference" />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="individual">

<rdfs:domain rdf:resource="#Preference" />

<rdfs:range rdf:resource="xsd:anyURI"/>

</owl:DatatypeProperty>

</rdf:RDF>

66

APPENDIX B

CLUSTER ONTOLOGY

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns ="http://cluster#"

xml:base ="http://cluster#"

xmlns:profile ="http://userProfile#"

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

<owl:Class rdf:ID="Cluster"/>

<owl:Class rdf:ID="Mean"/>

<owl:Class rdf:ID="profile:UserProfile"/>

<owl:DatatypeProperty rdf:ID="isInCluster">

<rdfs:domain rdf:resource="profile:UserProfile" />

<rdfs:range rdf:resource="xsd:anyUri" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="userID">

<rdfs:domain rdf:resource="#profile:UserProfile" />

<rdfs:range rdf:resource="xsd:int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="profileFile">

<rdfs:domain rdf:resource="#profile:UserProfile" />

<rdfs:range rdf:resource="xsd:string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="clusterID">

<rdfs:domain rdf:resource="#Cluster" />

<rdfs:range rdf:resource="xsd:int"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasMean">

<rdfs:domain rdf:resource="#Cluster" />

<rdfs:range rdf:resource="#Mean" />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="item">

<rdfs:domain rdf:resource="#Cluster" />

67

<rdfs:range rdf:resource="xsd:anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasIndividual">

<rdfs:domain rdf:resource="#Mean" />

<rdfs:range rdf:resource="xsd:anyURI"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasDataPoint">

<rdfs:domain rdf:resource="#Cluster" />

<rdfs:range rdf:resource="profile:UserProfile"/>

</owl:ObjectProperty>

</rdf:RDF>

