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ABSTRACT

A HEURISTIC APPROACH FOR THE SINGLE MACHINE
SCHEDULING TARDINESS PROBLEMS

Ozbakir, Saffet Ilker
M.Sc., Department of Industrial Engineering

Supervisor : Prof. Dr. Omer Kirca

September 2011, 102 pages

In this thesis, we study the single machine scheduling problem. Our general aim is to
schedule a set of jobs to the machine with a goal to minimize tardiness value. The
problem is studied for two objectives: minimizing total tardiness value and

minimizing total weighted tardiness value.

Solving optimally this problem is difficult, because both of the total tardiness
problem and total weighted tardiness problem are NP-hard problems. Therefore, we
construct a heuristic procedure for this problem. Our heuristic procedure is divided to
two parts: construction part and improvement part. The construction heuristic is
based on grouping the jobs, solving these groups and then fixing some particular
number of jobs. Moreover, we used three type improvement heuristics. These are

sliding forward method, sliding backward method and pairwise interchange method.

Computational results are reported for problem size = 20, 40, 50 and 100 at total
tardiness problem and for problem size = 20 and 40 at total weighted tardiness

problem. Experiments are designed in order to investigate the effect of three factors
iv



which are problem size, tardiness factor and relative range of due dates on
computational difficulties of the problems. Computational results show that the

heuristic proposed in this thesis is robust to changes at these factors.

Keywords: Single machine, scheduling, tardiness, weighted tardiness



0z

TEK MAKINE TAKVIMLEME GECIKME PROBLEMLERI
ICIN BIiR SEZGISEL YAKLASIM

Ozbakir, Saffet Ilker
Yiksek Lisans, Endiistri Miithendisligi Bo liimii

Tez Yoneticisi : Prof. Dr. Omer Kirca

Eyliil 2011, 102 sayfa

Bu tezde tek makine takvimleme problem {izerine c¢alisildi Bu problemde genel
amag bir ig setini gecikme degerini enazlayacak sekilde makineye takvimlemektir.
Problem iki hedef igin ¢alisildi: toplam gecikme degerini enazlamak ve toplam

agirlikh gecikme degerini enazlamak.

Toplam gecikme ve agirlikli gecikme problemlerinin ikisinin de NP-zor problemler
olmalarindan dolayi, bu problemi en iyi sekilde ¢6zmek olduk¢a zor. Bu yiizden, bu
problem icin bir sezgisel yaklasim prosediirii gelistirildi. Sezgisel yaklagim
prosediirii ki bolimden olusmaktadir: yap1 kismu ve gelistirme kismi. Sezgisel
yaklagmmin yap1 kismu isleri gruplamaya, bu gruplar1 ¢6zmeye ve sonra belirli sayida
isin sabitlenmesine dayaniyor. Bununla birlikte, sezgisel yaklagimin gelistirme kismi
icin ¢ metot kullanildi. Bunlar ileriye dogru kaydirma metodu, geriye dogru

kaydirma metodu ve ikili degistirme metodudur.

Islemler sonuglar toplam gecikme probleminde problem biiyikliigii = 20, 40, 50 ve
100 i¢in; toplam agirhkh gecikme probleminde de problem biiyiikLigii = 20 ve 40
icin rapor edildi. Deneyler, ii¢ faktoriin (problem biiyiikligi, gecikme faktori ve

Vi



teslim tarihininin goreceli genisligi) problemin islemsel zorlugu iizerindeki etkilerini
arastirmak i¢in tasarland1 Islemsel sonuglar bu tezde sunulan sezgisel yaklasimin bu

faktorlerdeki degisimlere dayanikl oldugunu gosteriyor.

Anahtar Kelimeler: Tek makine, takvimleme, gecikme, agirlikl gecikme
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CHAPTER 1

INTRODUCTION

Scheduling is the process of allocating resources between a set of tasks. There are
tasks to be scheduled and there are particular resources to perform these tasks. In
production scheduling, these tasks are jobs waiting to be processed and resources are
machines. Scheduling problems can be categorized by specifying the resource
configuration. A problem may contain one machine or several machines. If it
contains one machine, jobs are likely to be single stage, while multiple-machine
problems generally involve jobs with multiple stages. In this thesis, single machine
scheduling problem is studied. In this problem, there is only one machine in order to

process jobs.

Sometimes in order to completely understand a complex system, it is necessary to
understand its parts. Single machine problem generally is a part of a larger
scheduling problem. In some situations, it may be possible to solve the imbedded
single machine problem independently and then to incorporate the result into the
larger problem. For example, there may be a bottleneck stage in multiple operation

processes and single machine analysis can be a reasonable approach to this problem.

Baker (1995) states the fact that in order to evaluate the solutions of single machine
scheduling, there are different decision-making goals. These goals can be classified
as turnaround, timeliness and throughput. Turnaround measures the completion time
of a task. Timeliness measures the conformance of a particular task’s completion to a

given due date. Finally, throughput measures the amount of work completed during a

1



fixed period of time. In this thesis, we deal with timeliness type decision-making
goal. In this thesis total tardiness and total weighted tardiness are used as
performance measures. Tardiness is based on “meeting job due dates” criteria.
Tardiness penalizes the jobs by the amount that their completion times exceed their
due dates. The difficulty of dealing with tardiness measure is the fact that tardiness is

not a linear function of completion time.

It is shown that single machine total tardiness problem (Du and Leung, 1990) and
single machine total weighted tardiness problem (Lawler, 1977 and Lenstra et al.,
1977) are NP-Hard problems. Therefore, it may not be possible to find optimal
solutions with available techniques at polynomial time. As a result of this, for
problems beyond a certain size, it might be better to use heuristic solution procedures

that have a more modest computational requirement but do not guarantee optimality.

In this thesis, a heuristic is developed to solve the single machine total tardiness and
weighted tardiness problems as close as to optimal solution. A construction heuristic
and improvement heuristic are proposed for this problem. The construction heuristic
consists of grouping the jobs, solving these groups and fixing some particular
number of jobs. These operations continue dynamically until no job to be scheduled
remains. In addition to this construction heuristic, improvement heuristic methods
are proposed in order to improve the solution of the construction heuristic. There are
three improvement heuristic methods in this thesis which are sliding forward, sliding

backward and pairwise interchange methods.
The rest of the thesis is organized as follows:

In Chapter 2, the general properties of the single machine total tardiness and
weighted tardiness problems and previous researches about these problems are
mentioned briefly. Characteristics of the problems are expressed by representing
assumptions about the single machine tardiness problem. Furthermore, notation used
in this thesis is given and the MIP (Mixed Integer Programming) models of both
problems are examined in detail in this chapter. Inaddition to these, construction and

improvement heuristics and quality of these heuristics are searched on literature.



Some studies about the application of genetic algorithms on the single machine

tardiness problem are examined in this chapter.

In Chapter 3, the heuristic procedure which is proposed for the single machine
tardiness problem in this thesis is expressed. The heuristic can be classified as
construction heuristic and improvement heuristic. In this chapter, all details of these

heuristics are mentioned step by step.

Chapter 4 reports the computational results of the heuristic for single machine total
tardiness problem with 20, 40, 50 and 100 jobs and for single machine total weighted
tardiness problem for 20 and 40 jobs. Moreover, comparison of results of the
heuristic and the other construction heuristics is given. Also the effects of the
parameters such as tardiness factor and relative range of due dates on the solution are

discussed.

Finally, in Chapter 5, main conclusions are presented and some possible extensions

are discussed.



CHAPTER 2

LITERATURE REVIEW

In this section, general properties of the single machine total tardiness and weighted

tardiness problemand previous researches about these topics are examined.

2.1 SINGLE MACHINE TOTAL TARDINESS PROBLEM

In this problem, there is only one machine and it is used to process N jobs. The
problem is to schedule a set of N jobs to the machine with a goal to minimize total

tardiness value. There are some assumptions about this problem:
1. All jobs are independent from each other.

2. Setup times of the jobs are independent of job sequence and are included in

processing times.

3. Job descriptors are deterministic and known in advance.

4. All jobs are available for processing at time 0.

5. The machine can process only one job at a time.

6. No preemption is allowed. The processing of a job cannot be interrupted.

7. The machine is continuously available.



Tardiness of a job is defined as t; = max{0,c, —d,}, where c; is the completion time
of job i and d; is the due date of job i. According to Koulamas (1994), there is no
benefit gained from the completing jobs early and the delay penalty is proportional to

the delay according to tardiness criterion.

The MIP (Mixed Integer Programming) model of the single machine tardiness

problem is given at below.

Sets:

i job

J position
Parameters:

Pi process time of job i

di due date of job i

Decision variables:

1, ifjob iis scheduled to position j

Xij =

0, ifjob i is notscheduled to position j
Cj completion time of the job which is scheduled to position j
tj tardiness value of the job which is scheduled to position j



Objective function:
N
Minimize ) _t; (2.1)
j=1

Objective is to minimize total tardiness value.

Constraints:

injzl VY (2.2)

i=1

Constraint 2.2 provides that only one job can be scheduled to a position.

2 X =1, i (2.3)

j=1

Constraint 2.3 provides that a job can be scheduled to only one position.
N -
C; :Cj—l+zxij*pi V] (2.4)
i=1

Constraint 2.4 provides that the completion time of position j depends on the
completion time of the job at previous position and the process time of the job
assigned to position j.

N

t;>c; - x;*d; , Vj (2.5)
i=1
Constraint 2.5 provides that if right hand side of the constraint is bigger than zero,
then tardiness of position j would be equal that value. Because, t; does not take a
higher value than right hand side of the constraint due to this is a minimization
problem. If R.H.S of the constraint is negative, tardiness of position j would be zero

because of the constraint 2.8.



x; {0 , Vi, j (2.6)
Constraint 2.6 provides that x values can only take value of O or 1.

c. >0, Vj (2.7)

]

Constraint 2.7 provides that completion time of position j should be higher than or

equal to zero.
t,20 , Vj (2.8)

Constraint 2.8 provides that tardiness value cannot take a negative value. It should be

at least zero.

There are a lot of studies about the single machine total tardiness problem. It was
first presented by Conway, Maxwell and Miller (1967). According to them, an
optimal solution exists for the single machine total tardiness problem in which no job
is preempted. Therefore, in order to find the optimal sequence, all combinations of
the ordering of N jobs should be tried. One of them would give the optimal result.
However, for large size problems, this is too difficult.

Many researches about the single machine total tardiness problem are about the
development of heuristic procedures to this problem. The reason of this is the fact
that single machine total tardiness problem is an NP-hard problem. This was shown
by Du and Leung (1990). They claim that the problem cannot be solved in
polynomial time. The computation time of the problem grows exponentially when
the problem size increases. Therefore, large size problems cannot be solved

optimality.

Exact algorithms for the single machine total tardiness problem are surveyed. One of
the most efficient exact algorithms for this problem is developed by Potts and Van
Wassenhove (1982). Their algorithm is developed by embedding the decomposition
principle into a branch and bound algorithm. This algorithm can solve problems with

up to 100 jobs.



There are many construction and improvement heuristic algorithms in order to solve
single machine total tardiness problem. In order to select the construction heuristics

which are used in this thesis, a general survey about the heuristics is done.

Koulamas (1994) presented a study about the total tardiness problem in all aspects.
Only single machine total tardiness part is examined because we study about this
topic. He analyzed the construction heuristics about the single machine total
tardiness problem and then evaluated them. The construction heuristics which are
examined in this study are the simplest construction heuristics which are shortest
process time (SPT) and earliest due date (EDD), Montagne heuristic, modified due
date (MDD) heuristic, cost over time (COVERT) heuristic, the apparent urgency
(AU) heuristic and Panwalker, Smith and Koulamas (PSK) heuristic. Moreover, he
analyzed some local search methods which seek improved solutions to a problem by
searching in the neighborhood of an incumbent solution. These are also examined for
our study, because while developing our improvement heuristics, these heuristics are
used as source of inspiration. The local search methods which are examined by
Koulamas (1994) are the simplest local search method which is adjacent pair-wise
interchange (API), the net benefit of relocation (NBR) heuristic and two hybrid
construction-local search heuristics which are Wilkerson-Irwin (W1) heuristic and
traffic priority index (TPI) heuristic. Moreover, Koulamas (1994) compared some of
these heuristics with each other. There is a comparison of the performance of API,
NBR, TPI, WI and PSK heuristics in this study. This comparison is shown in Table
2.1

The reason why Koulamas chose specifically PSK heuristic to compare with the
local search methods is PSK heuristic was developed by him, Panwalker and Smith
in 1993. According to Table 2.1, Koulamas (1994) claims that PSK heuristic
performs better than the other tested heuristics. It is normal that PSK heuristic has

lowest average CPU time, because it is a construction heuristic.



Table 2.1 Comparison of heuristics ( Koulamas (1994))

Heuristic | Average Maximum Number Exact ( | Average CPU
Deviation (%) | Deviation (%) | out of 125) Time (Sec.)

API 0.64 12.48 76 4.12

NBR 2.4 24.2 27 0.97

TPI 1.02 12.24 66 0.12

Wi 1.14 12.53 55 0.39

PSK 0.46 12.4 87 0.01

Russell and Holsenback (1997) presented an evaluation of leading heuristics for the
single machine tardiness problem. They generally emphasize on two heuristics which
are Panwalker, Smith and Koulamas (PSK) heuristic and the net benefit of relocation
(NBR) heuristic. They try these heuristics on problems with 50 jobs. According to
their study NBR heuristic gives better results than PSK heuristic.

Nyirenda (2001) described the relationship between the modified due date (MDD)
heuristic and Wilkerson-Irwin (WI) heuristic for the single machine total tardiness
problem. He shows that MDD heuristic and W1 heuristic are strongly related in the
sense that both are based on the same local optimality condition for a pair of adjacent
jobs. As a result of this, adjacent pair-wise interchange (API) method cannot improve
the sequence generated by these heuristics. He tries these heuristics on problems with
50 jobs and 100 jobs. In both problem sizes, these two heuristic give same tardiness

values.

Fry, Vicens, Macleod and Fernandez (1989) developed a heuristic solution procedure
to minimize mean tardiness or equivalently minimizing total tardiness on a single
machine. Their heuristic utilizes the adjacent pair-wise interchange (API) method.
According to simple APl method, beginning from the first position of the initial
solution, all adjacent jobs are switched until an improvement on tardiness occurs.
When a pair of jobs to be switched is found, the switch is made and the search for a

favorable switch begins again at the first position in sequence. However, it is high

9



possibility to obtain a local optimum solution. Therefore, they improve APl method.
There are three operation types in their heuristic. At first one, AP1 begins at the first
position in sequence and proceeds front to back. In second strategy, API begins at the
last position in sequence and proceeds back to the front. And finally, API procedure
used in third strategy evaluates all adjacent pairs of jobs before switching. The
adjacent job pair which gives the maximum improvement is identified and switched.
In all strategies, after an adjacent pair has been switched, the procedure starts again
until no improvement occurs. They compare this heuristic with Wilkerson-Irwin
(WI) heuristic. They show that their heuristic gives better tardiness values than WI

heuristic.

In addition to construction and improvement heuristics, there are some meta-
heuristics which are applied to the single machine total tardiness problem. Meta-
heuristics are used for combinatorial optimization in which an optimal solution is
sought over a discrete search-space. Some meta-heuristics are genetic algorithm,

simulated annealing, ant colony optimization and tabu search.

Bauer, Bullnheimer, Hartl and Strauss (1999) adapted ant colony optimization to the
single machine total tardiness problem. Ant colony optimization models a nature-
based, multi-agent process in order to solve hard combinatorial optimization
problems. They try this method on problems with 50 jobs. Their method gives
optimal solutions for 124 problems among 125 problems. Also, it gives optimal

solutions for 609 problems among 625 problems.

Laguna, Barnes and Glover (1990) developed tabu search methods for the single
machine total tardiness problem. Tabu search increases the performance of a local
search method by using memory structures. After a potential solution is determined,
it is marked as tabu and that solution is not visited repeatedly by the algorithm. They
adapted this method to the single machine total tardiness problem. They try the
method on the problems with 20, 25, 30 and 35 jobs. Generally, the method gives

good results.
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Despite meta-heuristics give efficient solutions for the single machine total tardiness
problem, they are not used in the heuristic proposed in this thesis because of the high

computational effort.

2.2 SINGLE MACHINE TOTAL WEIGHTED TARDINESS PROBLEM

Total weighted tardiness problem is a generalization of the total tardiness problem. It
is assumed that all weights are 1 at total tardiness problem. But at total weighted

tardiness problem, all jobs have different weights.

All assumptions which are expressed for total tardiness problem are also valid for

single machine total weighted tardiness problem. At this problem, weighted tardiness

is defined as t; = max{0,w, *(c; —d;)}. w; is the weight of job i.

MIP model of this problem is given at below. Only differences from MIP model of

single machine total tardiness problem which is given at section 2.1 are shown.
Parameters:
Wi weight of job i

Other parameters are same with model of total tardiness problem.

Decision variables:
rij tardiness value of job i which is scheduled to position j

Other decision variables are same with model of total tardiness problem.

Objective function:

N N
Minimize > > w, *r, (2.9)

i=1 j=1
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Objective is to minimize total weighted tardiness value.

Constraints:

Seven constraints of the MIP model of the total tardiness problem are also valid at
this model. In addition, there are two extra constraints for total weighted tardiness

problem.

=2t -M*1-x;) , Vi j (2.10)

ij

At this constraint, M represents a big number. Constraint 2.10 provides that if x;=0
which means job i is not scheduled to position j, rjj value must be zero. When x;;=0,

the constraint would be r; >t; —M , and because M is a big number, M has a higher

value than tj value. As a result of this, right hand side of the constraint would be
negative. rij should has a non-negative value (this situation will be shown at next
constraint). Therefore, rj; must equal to zero, because this is minimization problem
and by looking at the objective function, it can be said that r value should be as small
as possible. On the other hand, when Xx;=1, which means job i is scheduled to

position j, the constraint would be r; >t;. This means that rjj should equal to t; value

which is calculated at constraint 2.8 given at model of total tardiness problem.

r, >0 , Vij (2.11)

Constraint 2.11 provides that rj; value cannot take a negative value.

Similar to total tardiness problem, single machine total weighted tardiness problem is
also NP-hard problem. This is shown by Lawler (1977) and Lenstra, Rinooy Khan
and Brucker (1977). Therefore, there are many heuristics and algorithms to solve

total weighted tardiness problem in literature.

Potts and Van Wassenhove (1985) developed a branch and bound algorithm for the
single machine total weighted tardiness problem. This algorithm can solve problems

with up to 40 jobs optimally.

12



Volgenant and Teerhuis (1998) presented a study about the improved heuristics for
the single machine total weighted tardiness problem. First of all, they solve the
problem by using four known construction heuristics which are the apparent urgency
heuristic (AU), the earliest due date heuristic (EDD), the greedy heuristic and the
weighted shortest processing time heuristic (WSPT). Then, they improve the results
of these heuristics by applying the priority rule of Rachamadugu (1987). They
compare the results of heuristics before and after applying the priority rule for
problem size (N) = 20, 40 and 80. They test the heuristics for different tardiness
factor (TF) and range of the due dates (R) values. For the problems which process
time of jobs are generated with U(1,10), the apparent urgency heuristic gives best
results and the relative impact of the priority rule on the solutions decreases when the
tardiness factor increases. Moreover, for the problems with process times ~U(1,100),
the best solutions are given by greedy heuristic. After these tests, they comment the

heuristics according to results. According to them;
* AU heuristic shows improved results applying the priority rule.
* EDD heuristic is best for problem samples with small tardiness factor values.

* On average, the greedy heuristic gives best or second best schedules both before
and after the priority rule. However, it is the heuristic with the largest complexity and

computing times are largest.
* WSPT heuristic is one of the fastest heuristics, but it is also the weakest heuristic.

Huegler and Vasko (1997) presented a study about a performance comparison of
heuristics for the total weighted tardiness problem. They compare quick and dirty
heuristics (EDD, SWPT and AU), descent method with zero interchanges heuristic
(DESO) and dynamic programming based heuristic (DPBH). According to their

findings, AU is the best construction heuristic.

Rachamadugu (1987) developed a local precedence relationship among adjacent jobs

in an optimal sequence for the weighted tardiness problem. This rule;

%*[1— (dgy —t— pgy)’ j _ Wi *[1_ (A —t— pM)*J 2.12)

Pri; Prisy Pri+y Prig
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In this expression, [i] represents the index of the job in the it" position, x* denotes

max(0,x) and t is the start time for Jp;j.

In addition to these heuristics, there are studies about the applications of meta-

heuristics to total weighted tardiness problem similar to total tardiness problem.

Besten, Stiitzle and Dorigo (2000) developed an ant colony optimization system for
single machine total weighted tardiness problem. They show that ACO performs
significantly better than most other previously proposed for total weighted tardiness
problem. According to their results, ACO always finds the best-known solutions for
the 100-job samples, whereas Tabu search algorithm can find 103 of best-known

solutions among 125 problems.

Madureira (1999) presented a study about meta-heuristics for the single machine
scheduling total weighted tardiness problem. She compared the performances of
Random Local Search (RNDLS) and Tabu search algorithms. Both algorithms give

good solutions, but Tabu search method gives better solutions.

Similar to total tardiness problem, meta-heuristics are not used in our heuristic for

total weighted tardiness problem because of their computational efforts.
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CHAPTER 3

HEURISTIC PROCEDURE

In this chapter, all details of the heuristic which is developed in order to solve the
single machine total tardiness and weighted tardiness problem are presented. There is
no difference at heuristic procedure for these two problems. There are two main parts
of the heuristic procedure. First one is the construction part and the second one is

improvement part. All steps of the heuristic procedure are shown in Figure 3.1.

First of all, some construction heuristics for the single machine tardiness problem are
solved. Then, according to their tardiness value, these construction heuristics are
weighted. By using these weights, all jobs in the problem take a priority value and
jobs are ordered according to these priority values. As a result of this, a mixed
solution is obtained. This mixed solution is used as an initial sequence to the

construction heuristic proposed in this study.

The construction heuristic is based on grouping the jobs, solving these groups and
then fixing some particular number of jobs. There are two parameters should be
determined in this model. The first one is the number of jobs which are selected and
grouped from the end, which is denoted by B. The other one is the number of jobs
which are fixed to schedule after solving the group, which is denoted by b. First of
all, last B jobs of the initial solution are selected, and these jobs are grouped. Then,
this job group is solved optimally. From this optimal solution, last b jobs are selected
and fixed to the schedule. After this, again last B jobs which are not scheduled are
grouped and solved. This process continues dynamically until there is no job to be

scheduled. As a result of this, the solution of the construction heuristic is obtained.
15
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After the construction heuristic, this solution is improved by using some methods.
The improvement heuristics used in this thesis are three types. They are sliding

forward, sliding backward and pairwise interchange methods.

All details of these steps are explained at below sections.

3.1 CONSTRUCTION HEURISTIC
3.1.1 Other Construction Heuristics for the Beginning
3.1.1.1 Heuristics for total tardiness problem

At the beginning of the heuristic, some construction heuristics are used in order to
obtain a good initial ordering of the jobs. These construction heuristics are selected
taking into account their solution qualities and computational efforts. There are eight

heuristics which are used for the beginning of the total tardiness problem.

* Shortest Process Time (SPT) : This heuristic sorts the jobs according to their

process times in a non-decreasing order.

* Earliest Due Date (EDD) : This heuristic sorts the jobs according to their due

dates in a non-decreasing order. EDD heuristic gives the optimal solution when the
objective is to minimize maximum tardiness. Moreover, at total tardiness problem, if

there is at most one tardy job at EDD sequence, it is the optimal solution.

* Modified Due Date (MDD) : This heuristic was developed by Baker and Bertrand

(1982). It includes the dynamic implementation of EDD based on modified due
dates.

MDD = max(C + p,,d,) (3.1)

In this formula, C represents the completion time of the last scheduled job. At each
iteration, MDD value is computed for unscheduled jobs and the job which has
smallest MDD value is scheduled. This process continues until there is no

unscheduled job.

17



* Apparent Urgency (AU) : It was dewveloped by Morton, Rachamadugu and

Vepsalainen (1984). AU value of each job;
AU, = (1 p;) *exp{-max(0,d; — P(S) - p; 1/(k * p)} (3.2)

In this formula, |E> is the average process time of all jobs and k is the so-called look-
ahead parameter which is set according to the tightness of the due dates (Koulamas,
1994). If due dates of jobs are close together, a large k value should be used. On the
other hand, k value should be small if the range of due dates is large. Finally, P(S)

represents the total process time of jobs inside of the partial schedule S.

(P(S) = z P )

ieS
AU value is computed at each iteration, for all unscheduled jobs and then the job
with highest AU value is scheduled to next position. Also, the scheduled job
becomes a member of partial schedule S. These operations continue until there is no

unscheduled job.

* Panwalker, Smith and Koulamas (PSK) : This heuristic was developed by

Panwalker, Smith and Koulamas (1993). In this heuristic, the unscheduled jobs are
kept in SPT order. If there are jobs with same process time, they are ordered
according to EDD. The set of unscheduled jobs is named as U. Moreover, the set S
includes the scheduled jobs in the order they are scheduled and C represents the
completion time of last scheduled job in S. Steps of this heuristic are given briefly at

“Evaluation of leading heuristics for the single machine tardiness problem”, (Russell

and Holsenback , 1996):

Step 1: If U contains only one job, schedule it in the last position in S and go to step

9; else label the first job in U as the active job i
Step 2: If C+p; >=d;, go to step 8
Step 3: Select the next job in U as job j

Step 4: 1f di<=C+p;, go to step 8
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Step 5: If di<=d;, go to step 7

Step 6: Job j now becomes the active job i. If this is the last job in U, go to step 8;

else return to step 2
Step 7:1fj is the last job in U, go to step 8; else return to step 3

Step 8: Remove job i from U and put it in the last position in S, increase C by p; and

return to step 1
Step 9: Calculate total tardiness for the sequence and terminate

* Cost Over Time (COVERT) : This heuristic is developed by Carroll (1965). In

this heuristic, set S is the partial schedule with cardinality |S |and B; is the set of jobs
which should precede job i in at least one optimal sequence according to Emmons’
dominance conditions. Emmons’ dominance conditions are explained at Appendix A.
Let set E be the subset of the executable jobs such that E ={i:i¢S,B, < S}. For
each job in E, priority index I; , which estimates the probability that job i will be

tardy if not scheduled next, is computed.

’

1, if d. <P(S)+p,
_ ) P(SUE)-d, .
li= A+ e if P(S)+ p, <d, <P(SUE)
L0, if P(SUE) <d,

P(Q):Zpi for any set of jobs Q. The job which has the highest Ii/p; value is
ieQ
scheduled. These operations continue until all jobs are scheduled.

* Montagne : This heuristic is developed by Montagne (1969). Montagne heuristic

orders the jobs in non-decreasing order of p; /(Z pi —d;).
i=1
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* Hodgson’s Algorithm : Actually, Hodgson’s Algorithm is used for the minimizing

the number of tardy jobs in single machine tardiness problem. But this algorithm is
also used in this thesis. Because, minimizing the number of tardy jobs can give the
minimum total tardiness in some problems. Pinedo (2001) defines this algorithm. In

this algorithm, E represents the set of early jobs and L represents the set of late jobs.

Step 1 : At the beginning, E contains all jobs and these jobs are ordered according to
EDD. L does not have any job.

Step 2 : If no jobs in E are tardy, stop. Otherwise, identify the first tardy job in E. Let
this job be the k' job in E.

Step 3 : Identify the longest job among the first k jobs in sequence. Remove this job

from E and place in L. Revise completion times and go to step 2.
3.1.1.2 Heuristics for total weighted tardiness problem

Similar to total tardiness problem, at total weighted tardiness problem, some well-
known construction heuristics are chosen for the beginning. Solution qualities and
computational efforts of the heuristics are considered while selecting them. There are

six heuristics which are used in our heuristic for the weighted problem.

* Shortest Weighted Process Time (SWPT) : It is similar to shortest process time
(SPT) heuristic. Only difference is the fact that SWPT sorts the jobs according to

their (pi/w;) values ina non-decreasing order.

* Earliest Due Date (EDD) : It was explained at previous section.

* Weighted Earliest Due Date (WEDD) : This heuristic sorts the jobs according to

their (di/w;) values ina non-decreasing order.

* Apparent Urgency (AU) : This heuristic was explained at previous section, but

there is a small difference for total weighted tardiness problem. AU value of each job

for weighted problem;

AU, = (w; / p;)*expf-max{0,d; — P(S) - p,1/(k * p)} (3.3)
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The rest of the heuristic is same with AU which is for total tardiness problem.

* Montagne : This heuristic was also explained at previous section. For the total

weighted tardiness problem, this heuristic sorts the jobs in non-decreasing order of

pj/Wj(Zpi_dj)'
i=1

* The Greedy Heuristic : This heuristic was developed by Fadlalla, Evans and Levy

(1994) for total tardiness problem. In this thesis, the adaptation of this heuristic to
total weighted tardiness problem is used. This adaptation is expressed briefly at

“Improved heuristics for the n-job single-machine weighted tardiness problem”,
(Volgenant and Teerhuis, 1998).

M contains mj; values which are;

k k

Wi*max(O,Zpk—dij+wj*max(0,2pk—pi—djj , if i

oo , otherwise

mj; value represents the combined tardiness of jobs i and j with the pair (i,j) in the
last position. This means that job i is the last job and job j is last but one job. These

calculations are done for all combinations of n jobs.

After constructing matrix M, a binary matrix A is developed. A consists of aj; values

which are;

1 , if mj>m; and #
ajj =
0 , otherwise

;=0 means that job j should be scheduled before job i.
Steps of the heuristic;

Step O: Initialize k=n, L={1,2,...,n}, s(j)=0 and P(j)=c0 forjeL
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Step 1: Determine mj;; and a;; for i, je L

Step 2: Compute P(i)= Z aj
jeL

Step 3: Select i for which P(i) = min{P(j); j e L}
Step 4: Schedule job i, L=L\{i} and s(k)=i

Step 5: If k=1 stop; otherwise k = k-1 and go to step 1

3.1.2 Weighting the Heuristics

The construction heuristics, which are explained in previous section, have different
characteristics from each other. When one of them gives the optimal result to total
tardiness or weighted tardiness problem, the others can give results far from
optimum. Therefore, there is need to weight these heuristics for each problem.
Assigning a constant weight to each heuristic is not so meaningful. The reason of this
is that solution quality of heuristics changes for all problems. That is why an
algorithm is developed to assign weight to heuristics for each problem. The weight of

each heuristic is determined as follows;

@

Yi = . (3.4)
14+ 5 X
X

In this formula, x represents the best tardiness value, which means the smallest value
(because this is a minimization problem), among the tardiness values of construction
heuristics and X; is the tardiness value of the heuristic i. Moreover, o value means the
degree of priority of the best heuristics. If a is high, weight range between the best
heuristic and the other heuristics would be large. There are advantages and
disadvantages of this situation. High a value increases the effect of the best heuristic
and eliminates the effects of the heuristics which give bad results. However, there

would be dominance of the best heuristic with a high a value and there could be
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some critical findings of the other heuristics. High o value disregards to other
heuristics. As a result of this, some critical details could be passed over. On the other
hand, low a value can easily detect some minor details from the solutions of other
heuristics. However, in this situation, superfluous weights could be assigned to bad
heuristics and this increases the effect of the bad heuristics to main heuristic.

Therefore, a value should be adjusted by taking into account these situations.

a can take a value from 0 to co. This algorithm always assigns 1 to the best heuristic.
Ifa 1s zero, all heuristics would weight equally and all of them are assigned 1. On the
other hand, if a is oo, all heuristics except the best one would be assigned 0 and there
would be no effects of these heuristics. In order to determine the most appropriate a
value, different o values were tried. This study is shown at Appendix B. As a result
of this study, a=4 is determined the best o value. Therefore, all studies in this thesis

are done by taking a as 4.

An example for total tardiness problem can be helpful in order to understand
perfectly this weight assigning algorithm. For this, the example in Table 3.1 is used.
This problem has 40 jobs to be scheduled to single machine. Process times and due

dates of all jobs can be seen in Table 3.1.

Table 3.1 Sample problem

Job 0) R16)
1 21 418
2 7 529
3 19 460
4 37 388
5 16 360
6 33 467
7 4 465
8 14 397
9 18 363
10 5 409
11 32 330
12 40 426
13 1 399
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Table 3.1 (Continued)

14 6 376
15 10 434
16 21 364
17 37 332
18 35 366
19 20 416
20 39 327
21 24 467
22 1 436
23 11 439
24 Il 481
25 32 501
26 1 509
27 11 417
28 36 523
29 37 458
30 34 391
31 31 453
32 34 338
33 40 359
34 10 388
35 35 332
36 31 426
37 19 474
38 30 474
39 o) 396
40 21 363

Total tardiness values of solutions of eight heuristics for total tardiness problem are

shown inascending order in Table 3.2,
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Table 3.2 Total tardiness values of the heuristics for sample problem

AU 2683
MDD 2703
COVERT 2743
PSK 2938
MONTAGNE 3019
HODGSON 3135
SPT 3250
EDD 4477

In this problem, AU heuristic gives the best solution (2683). All weights will be
determined according to this value. Calculated weights for all heuristics by taking

0=4 are shown in Table 3.3.

Table 3.3 Weight of the heuristics for sample problem

AU 1

MDD 0,9707
COVERT 0,9153
PSK 0,6954
MONTAGNE 0,6237
HODGSON 0.5364
SPT 0,4644
EDD 0,1289

EDD solution is the worst solution among the heuristics and the difference between
its solution and the best solution is too big. As a result of this, the weight assigned to
EDD is the smallest (0.1289).
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3.1.3 Obtaining the Mixed Solution

In this step of the heuristic, calculated weights for the other construction heuristics in
previous section are used to compute the priority value of all the jobs. First of all, the
weights of each position in each heuristic are calculated by using the heuristic

weights. This calculation for N-job problem is done as follows for heuristic i:
1% position:  1*y;

2" position:  2*y;

n'" position:  n*y;

N™ position: N*y;

y; values are the heuristic weights which are calculated in the previous section. These
calculations are done for each heuristic separately. Calculated weights for each
position in each heuristic for the problem which is started in the previous section are

shown in Appendix C.

After this operation, job priorities are calculated by using these weights. For this, job
sequences of all heuristics are needed (Appendix D shows the job sequences for all
heuristics for the sample problem). By using these sequences and the weights,

priorities for all jobs are calculated separately according to;

Priority of job j = Z Mij=Yi (3.5)
|

In this formula, nj; represents the position of job j in heuristic i and y; represents the
weight of heuristic i, which are calculated in Section 3.1.2. How these calculations
are done is shown for one specific job (Job 1) from the sample problem in Table 3.4.

Moreover, Table 3.5 shows the calculated priorities for all jobs in sample problem.

The job with small priority value means that that job should be scheduled earlier, it

should not be scheduled to last positions. Therefore, if jobs are sorted according to
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their priority values in non-decreasing order, an efficient mixed solution would be

obtained. The obtained mixed solution for the sample problem is shown in Table 3.6.

Table 3.4 Priority calculation of Job 1 for sample problem

Nig Yi Priority (nis*yi)

MDD 30 0.9707 29121
AU 30 1 30

PSK 31 0.6954 21.557
COVERT 30 0.9153 27.459
SPT 20 0.4644 9.288
EDD 22 0.1289 2.8358
HODGSON 15 05364 8.046
MONTAGNE 21 0.6237 13.008

TOTAL PRIORITY (31, *y,) 141.6
i=1

Table 3.5 Priorities of all jobs for sample problem

Job Priority Job Priority Job Priority
1 141.6264 15 97.0140 29 205.3416
2 133.8751 16 64.7916 30 137.1909
3 127.8787 17 64.4070 31 165.8557
4 132.2416 18 96.3579 32 68.7505
5 40.1205 19 128.1978 33 85.3106
6 182.1531 20 60.0833 34 69.5620
7 103.6532 21 154.7095 35 66.1814
8 92.8701 22 81.3508 36 163.5177
9 45.4355 23 106.6743 37 136.8441

10 77.1734 24 119.1696 38 165.6701
11 35.8207 25 182.0884 39 68.8757

12 209.1452 26 116.7488 40 58.5446

13 50.5072 27 95.1606

14 49.7704 28 202.4809
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Table 3.6 Initial solution for sample problem

Position Job
1 11
2 5
3 9
4 14
5 13
6 40
7 20
8 17
9 16
10 35
11 32
12 39
13 34
14 10
15 22
16 33
17 8
18 27
19 18

20 15
21 7
22 23
23 26
24 24
25 3
26 19
27 4
28 2
29 37
30 30
31 1
32 21
33 36
34 38
35 31
36 25
37 6
38 28
39 29
40 12
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3.1.4 Solution Approach

All applications made in previous three sections are done in order to find an initial
mixed solution to heuristic. At the final part of the section 3.1.3, a mixed solution

was obtained. Now this solution is used as an initial solution to heuristic.

Solution approach developed in this thesis is based on grouping a particular number
of jobs which is denoted by B, solving these groups and fixing a particular number of
jobs, which is denoted by b. Solution algorithm is started from the end of the initial
solution. From the end, a particular number of jobs are selected and then, they are
solved in GAMS. As a result of this, an optimum solution for that group is obtained.
Based on this GAMS solution, a particular number of jobs (b) from the end of that
optimum schedule are fixed and then, a new group is developed by taking jobs that
are not fixed at previous iteration and the next jobs. These iterations continue

dynamically until there is no job to be scheduled.

In order to determine B value, efficiency and computational time of the heuristics are
considered. If B is too big, there would be much more alternative jobs to be fixed in
that iteration. Therefore, solution quality of the heuristic would increase. However, in
this situation, computation time would also increase. Much more time would be
spent to solve each group and total computational time of all groups would be too
high. On the other hand, if B is small, computational times of each iteration would be
small. However, in this situation, there would be many iterations and therefore, total
computational time of all groups would be high like the situation of big B value.
There should be a balance point for B value. In this thesis, B=10 is used for the
number of jobs to be grouped at each iteration. Moreover, a b value (number of jobs
to be fixed at each iteration) should be determined. In this thesis, for b value, half
value of B is taken. Therefore, b=5 is used for the number of the jobs to be fixed at

each iteration.
Steps of the heuristic are expressed as follows for N-job problem;

Step 1: There are three sets in the heuristic. The first one is set S which contains the
scheduled jobs in the heuristic. Initially, there is no job in S, i.e. it is empty. The

other set is I. Set | represents the jobs which will be solved in that iteration. Initially,
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set | consists of the jobs which are scheduled to last B=10 positions at the initial
solution which is found at Section 3.1.3. This means that the jobs from the (N-9)"
position to N™ position at the initial solution are inside of set I at the beginning. The
final set is U which contains the jobs which are not inside of set S or set I. At the
beginning, set U consists of the jobs which are scheduled to first (N-10) positions at
the initial solution. There is one more parameter, H. H represents the total process
time of the jobs which are inside of set U. This means that at the beginning, H equals
to summation of process times of jobs which are scheduled to between 1% position

and (N-10)" position at initial solution.

H=>p (3.6)

ieU
H is used as the beginning time of the problem for that iteration.

Step 2: If the problem is total tardiness problem, solve the following MIP model

(main structure, definitions of parameters, decision variables and constraints were

given at Chapter 2):
B=10
Objective Function... Min Zt j (3.7)
j=1
10
Constraints... inj =1 | viel (3.8)
j=1
2=, v (39)
iel
Ciy=H+ z Pi * X 2 (3.10)

Ci =Cja +Z Pi¥Xj ,vizl  @11)

iel

ti2c; - di*X; | v (3.12)

icl
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x; €101}

Viel, Vj

Ifthis is weighted tardiness problem, solve the following MIP model:

Objective Function...

Constraints...

iel j=1

B=10

Min Z Zwi *T;

10
inj =1 , Viel
=)

Ciy=H +Z Pi * X ja

icl

Cy=Cra+ 2P X,

icl

t; > —Zdi *X;

icl

Fi

2t -M*(A-%;), viel, v

I € {01}

X; € {01}

j

>0
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(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



t. >0 Vj (3.26)

Step 3: If set U is empty, remove all jobs from set | and put into set S with same
order of MIP solution in step 2 and STOP.

Ifset U is not empty, remove five jobs from | which are sequenced to last 5 positions
at MIP solution in step 2 and put them into S to last five empty positions in order of
MIP solution.

Remove five jobs from end of set U and put these five jobs to set I. Update H value

according to new set U. Go to step 2.

Now, let solve the sample problem in order to understand exactly how this solution

algorithm works.

Iteration 1: Inthis problem, N=40. At the beginning, set S is empty, set | consists of
the last 10 jobs of the initial solution (Table 3.6) and set U consists of the first 30

jobs of the initial solution.
S=0
I ={1, 21, 36, 38, 31, 25, 6, 28, 29, 12}

U={11,5, 9, 14, 13, 40, 20, 17, 16, 35, 32, 39, 34, 10, 22, 33, 8, 27, 18, 15, 7, 23,
26, 24, 3,19, 4, 2, 37, 30}

H=).p, =—=> H=550

ieU

MIP solution of this iteration and jobs which are scheduled at set S are shown in
Table 3.7.
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Table 3.7 a) MIP solution at iteration 1 b) scheduled job at set S at iteration 1

Position Job Position Job
1 1 31
2 21 32
3 38 33
4 31 34
5 36 35
6 2 36 25
7 6 37 6
8 28 — 38 28
9 29 39 29
10 12 40 12
a b

Iteration 2: In this iteration, the jobs which are put into S are removed from set | and
last five jobs of set U are removed from U and they are put into set S. Updated sets

and H value;
S = {25, 6, 28, 29, 12}
1={19, 4, 2,37, 30, 1, 21, 38, 31, 36}

U={11,5,9, 14, 13, 40, 20, 17, 16, 35, 32, 39, 34, 10, 22, 33, 8, 27, 18, 15, 7, 23,
26, 24, 3}

H =433

MIP solution according to these sets and jobs which are scheduled at set S are shown
in Table 3.8.
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Table 3.8 a) MIP solution at iteration 2 b) scheduled job at set S at iteration 2

Position Job Position Job
1 19 26
2 37 27
3 1 28
4 21 29
5 2 30
6 3 31 38
7 31 32 31
8 36 — 33 36
9 30 34 30
10 4 35 4

a b

Iteration 3: Updated sets and H value;

S ={38, 31, 36, 30, 4, 25, 6, 28, 29, 12}

| = {7, 23,26, 24, 3,19, 37, 1, 21, 2}

U={11,5,9, 14, 13, 40, 20, 17, 16, 35, 32, 39, 34, 10, 22, 33, 8, 27, 18, 15}
H=2391

MIP solution according to these sets and jobs which are scheduled at set S are shown
in Table 3.9.
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Table 3.9 a) MIP solution at iteration 3 b) scheduled job at set S at iteration 3

Position Job Position Job
1 19 21
2 1 22
3 23 23
4 3 24
5 7 25
6 2 26 24
7 37 27 37
8 26 —— 28 26
9 21 29 21
10 2 30 2
a b

Iteration 4: Updated sets and H value;

S=4{24,37, 26, 21, 2, 38, 31, 36, 30, 4, 25, 6, 28, 29, 12}

| = {33, 8, 27,18, 15, 19, 1, 23, 3, 7}

U=4{11,5,9, 14, 13, 40, 20, 17, 16, 35, 32, 39, 34, 10, 22}
H=281

MIP solution according to these sets and jobs which are scheduled at set S are shown
in Table 3.10.
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Table 3.10 a) MIP solution at iteration 4 b) scheduled job at set S at iteration 4

Position Job Position Job
1 33 16
2 18 17
3 8 18
4 19 19
5 27 20
6 1 21 1
7 15 22 15
8 23  e— 23 23
9 3 24 3
10 7 25 7
a b

Iteration 5: Updated sets and H value;

S={1,15,23,3,7,24,37, 26, 21, 2, 38, 31, 36, 30, 4, 25, 6, 28, 29, 12}
| = {32, 39, 34, 10, 22, 33, 18, 8, 19, 27}

U={11,5,9, 14, 13, 40, 20, 17, 16, 35}

H =226

MIP solution according to these sets and jobs which are scheduled at set S are shown
in Table 3.11.
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Table 3.11 a) MIP solution at iteration 5 b) scheduled job at set S at iteration 5

Position Job Position Job
1 32 11
2 39 12
3 10 13
4 34 14
5 18 15
6 3 16 33
7 19 17 19
8 22 ——> 18 22
9 8 19 8
10 27 20 27
a b

Iteration 6: Updated sets and H value;

S = {33, 19, 22, 8, 27, 1, 15, 23, 3, 7, 24, 37, 26, 21, 2, 38, 31, 36, 30, 4, 25, 6, 28,
29, 12}

| = {40, 20, 17, 16, 35, 32, 39, 10, 34, 18}
U={11,5,09, 14, 13}
H=73

MIP solution according to these sets and jobs which are scheduled at set S are shown
in Table 3.12.
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Table 3.12 a) MIP solution at iteration 6 b) scheduled job at set S at iteration 6

Position Job Position Job
1 39 6
2 10 7
3 34 8
4 18 9
5 35 10
6 1 11 16
7 17 12 17
8 20 ——> 13 20
9 40 14 40
10 32 15 32

a b

Iteration 7: Updated sets and H value;

S ={16, 17, 20, 40, 32, 33, 19, 22, 8, 27, 1, 15, 23, 3, 7, 24, 37, 26, 21, 2, 38, 31, 36,
30, 4, 25, 6, 28, 29, 12}

I={11,5, 9, 14, 13, 39, 10, 34, 18, 35}

H=0

Because U is empty, all jobs in | are put into S in order of MIP solution. This is
shown in Table 3.13.
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Table 3.13 a) MIP solution at iteration 7 b) scheduled job at set S at iteration 7

Position— Job Position Job
1 18 1 18
2 35 2 35
3 13 3 13
4 14 4 14
5 34 — 5 34
6 9 6 9
7 5 7 5
8 11 8 11
9 10 9 10
10 39 10 39

a b

Iteration 7 was the final iteration, because there are no more jobs to be scheduled. All

jobs are scheduled. Final solution is shown in Table 3.14.

Table 3.14 Final solution of the construction heuristic for sample problem

Position Job p(i) d(i)
1 18 35 366
2 35 35 332
3 13 1 399
4 14 6 376
5 34 10 388
6 9 18 363
7 5 16 360
8 11 32 330
9 10 5 409

10 39 5 396
11 16 21 364
12 17 37 332
13 20 39 327
14 40 21 363
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Table 3.14 (Continued)

15 32 34 338
16 33 40 359
17 19 20 416
18 22 1 436
19 8 14 397
20 27 11 417
21 1 21 418
22 15 10 434
23 23 11 439
24 3 19 460
25 7 4 465
26 24 7 481
27 37 19 474
28 26 1 509
29 21 24 467
30 2 7 529
31 38 30 474
32 31 31 453
33 36 31 426
34 30 34 391
35 4 37 388
36 25 32 501
37 6 33 467
38 28 36 523
39 29 37 458
40 12 40 426

Total tardiness value of this final sequence is 2613. Comparison of tardiness values

of this construction heuristic with other beginning heuristics is shown in Table 3.15.
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Table 3.15 Total tardiness values of our construction heuristic and other heuristics

CONS. HEU. 2613
AU 2683
MDD 2703
COVERT 2743
PSK 2938
MONTAGNE 3019
HODGSON 3135
SPT 3250
EDD 4477

This construction heuristic gives 2.6% ((2683-2613)/2683) better solution from the
best heuristic (AU) for this sample problem.

The construction heuristic ends here. Next section explains the improvement

heuristics.

3.2 IMPROVEMENT HEURISTICS

There are three improvement heuristic methods which are applied to solution of

construction heuristic: Sliding forward, sliding backward, pairwise interchange.
3.2.1 Sliding Forward

Sliding forward method put jobs into forward positions without affecting so much
the other jobs’ positions. According to this algorithm, by considering that a<b, (a, b)
means that the job at position a is scheduled to position b and the jobs between
position a and position b are scheduled to one position back to their original

positions. The positions of other jobs do not change. A small example about sliding
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forward is shown in Table 3.16 for 5-job problem. At this example sliding forward of
the job at position 1 to position 5 is shown.

Table 3.16 Example of sliding forward

gl | W |
= O B W N

This improvement method is applied to all possible options. For N-job problem,

there are (N-1) + (N-2) +.... + 2 + 1 options. This expression equals to w

This is the number of sliding forward operations.

3.2.2 Sliding Backward

In this method, the opposite move of the sliding forward is done. Sliding backward
method put jobs into backward positions without affecting so much the other jobs’
positions. According to this algorithm, by considering that b>a, (b, a) means that the
job at position b is scheduled to position a and the jobs between position b and
position a are scheduled to one position forward to their original positions. The
positions of other jobs do not change. A small example about sliding forward is
shown in Table 3.17 for 5-job problem. At this example sliding backward of the job

at position 5 to position 1 is shown.
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Table 3.17 Example of sliding backward

a1l | W] | -~
Bl W N ] O

Like the sliding forward method, sliding backward is applied to possible

N *(N —1)
2

options.

3.2.3 Pairwise Interchange

Pairwise interchange method effects the positions of only two jobs on the contrary of
sliding forward and backward. One job goes to a forward position, the job at that
forward position goes to the empty backward position. According to this algorithm,
by considering that a<b, (a, b) means that the job at position a is scheduled to
position b and the job at position b is scheduled to position a. The positions of other
jobs do not change. A small example about pairwise interchange is shown in Table
3.18 for 5-job problem. At this example pairwise interchange of the jobs at position 5

and position 1 is shown.

Table 3.18 Example of pairwise interchange

gl Bl W] |
= B W NN o
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Like the other methods, there are

* —
w possible options at pairwise

interchange method and pairwise interchange method is applied to all these options.

3.2.4 Application of Improvement Heuristics

The improvement heuristics were defined at previous three sections. Now in this

section, the applications of these three improvement heuristics are explained.

First of all, these methods are applied to all possible options. The operations which
provide an improvement on the tardiness of the problem are collected. And then, the
operation which gives the maximum improvement is selected and applied to the
problem. Moreover, the other operations which give the improvement and

independent from the previously selected operation are applied to the problem.

After all possible improvements are applied to the problem, improvement heuristics
are applied to the new solution. This continues until there is no more improvement

and that solution is accepted as the final solution.

Now, let apply these improvement heuristics to the sample problem. The solution of
the construction heuristic was given in Table 3.14 and improvement heuristics are

applied to this solution.

All operations which improve the tardiness value are shown at below. Sliding
forward operations are shown in Table 3.19, sliding backward operations are shown

in Table 3.20 and finally, pairwise interchange operations are shown in Table 3.21.

Table 3.19 Sliding forward operations which improve the construction heuristic’s solution

No First Position Second Position Improvement Value
1 18 21 1
2 18 22 1
3 35 36 5
4 35 37 9
5 35 38 10
6 35 39 10
7 35 40 7

44



Table 3.20 Sliding backward operations which improve the construction heuristic’s solution

No First Position Second Position Improvement Value
1 36 31 3
2 36 32 5
3 36 33 6
4 37 33 2
5 36 34 7
6 37 34 4
7 36 35 5
8 37 35 3

Table 3.21 Pairwise interchange operations which improve the construction heuristic’s solution

No First Position Second Position Improvement Value
1 16 34 9
2 34 36 4
3 35 36 5
4 34 37 3
5 35 37 8
6 35 38 3

Now, the operation which has maximum improvement value is selected. There are
two sliding forward operations which decrease tardiness by 10. One of them is (35,
38) and (35, 39). Because they cannot be applied together, only one of them should
be selected. Operation (35, 38) is selected to be applied to construction heuristic
solution. From the other operations there are only three operations which are
independent from the selected operation which is sliding forward (35, 38). These are
sliding forward operations (18, 21), (18, 22) and pairwise interchange operation (16,
34). The pairwise interchange (16, 34) has the maximum improvement value (9)

among these operations. Therefore, it is also selected to be applied to construction
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heuristic solution. There are no more operations which are independent from these
two operations. These are shown briefly in Table 3.22.

Table 3.22 Operations applied to the construction heuristic’s solution

No Type First Position Second Improvement
Position Value
Sli. Forward 35 38 10
Pairwise Interchange 16 34 9

These improvement operations are applied to the construction heuristic solution. The

revised solution is given in Table 3.23.

Table 3.23 Revised solution

Position Job p(l) d(l)
1 18 35 366
2 35 35 332
3 13 1 399
4 14 6 376
5 34 10 388
6 9 18 363
7 5 16 360
8 11 32 330
9 10 5 409
10 39 5 396
11 16 21 364
12 17 37 332
13 20 39 327
14 40 21 363
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Table 3.23 (Continued)

15 32 34 338
16 30 34 391
17 19 20 416
18 22 1 436
19 8 14 397
20 27 11 417
21 1 21 418
22 15 10 434
23 23 11 439
24 3 19 460
25 7 4 465
26 24 7 481
27 37 19 474
28 26 1 509
29 21 24 467
30 2 7 529
31 38 30 474
32 31 31 453
33 36 31 426
34 33 40 359
35 25 32 501
36 6 33 467
37 28 36 523
38 4 37 388
39 29 37 458
40 12 40 426

The new tardiness value is 2613 — (10 + 9) = 2594. Now all improvement operations
are tried again on the new solution given in Table 3.23. All operations which
improve the new tardiness value are shown at below. Sliding forward operations are
shown in Table 3.24, sliding backward operations are shown in Table 3.25 and

finally, pairwise interchange operations are shown in Table 3.26.
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Table 3.24 Sliding forward operations which improve the revised solution

No First Position Second Position Improvement Value
1 26 27 2
2 26 28 1
3 34 35 8
4 34 36 15
5 34 37 19
6 34 38 22
7 34 39 25
8 34 40 25
Table 3.25 Sliding backward operations which improve the revised solution
No First Position Second Position Improvement Value
1 27 26 2
2 35 31 4
3 35 32 6
4 36 32 2
5 35 33 7
6 36 33 4
7 35 34 8
8 36 34 6
Table 3.26 Pairwise interchange operations which improve the revised solution
No First Position Second Position Improvement Value
1 26 27 2
2 34 35 8
3 34 36 14
4 34 37 12
5 34 38 12
6 34 39 15
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The maximum improvement (25) is given by two operations: sliding forward (34, 39)
and (34, 40). Only one of them should be chosen and operation (34, 39) is selected to
be applied. From the other operations there are four operations which are
independent from the selected operation which is sliding forward (34, 39). These are
sliding forward operations (26, 27), (26, 28), sliding backward operation (27, 26) and
pairwise interchange operation (26, 27). Actually, all (26, 27) operations are same.
Therefore it can be said that there are two alternatives. The (26, 27) operation gives
better improvement (2) than the other (1). Therefore, it is also selected to be applied
to revised solution. There are no more operations which are independent from these

two operations. These are shown briefly in Table 3.27.

Table 3.27 Operations applied to the revised solution

No Type First Position | Second Position Improvement
Value

1 | Sli. Forward 34 39 25

2 | Sli. Forward 26 27 2

These improvement operations are applied to solution in Table 3.23. The new revised

solution is given in Table 3.28.
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Table 3.28 New revised solution

Position Job p(i) d(i)
1 18 35 366
2 35 35 332
3 13 1 399
4 14 6 376
5 34 10 388
6 9 18 363
7 5 16 360
8 11 32 330
9 10 5 409
10 39 5 396
11 16 21 364
12 17 37 332
13 20 39 327
14 40 21 363
15 32 34 338
16 30 34 391
17 19 20 416
18 22 1 436
19 8 14 397

20 27 11 417
21 1 21 418
22 15 10 434
23 23 11 439
24 3 19 460
25 7 4 465
26 37 19 474
27 24 7 481
28 26 1 509
29 21 24 467
30 2 7 529
31 38 30 474
32 31 31 453
33 36 31 426
34 25 32 501
35 6 33 467
36 28 36 523
37 4 37 388
38 29 37 458
39 33 40 359
40 12 40 426

50




The new tardiness value obtained after these operations is 2594 — (25 + 2) = 2567.
Again, all improvement operations are tried on this new solution given in Table 3.28.
But no operation improves the tardiness value. Therefore, it can be said that this is

the final solution.

Before, the tardiness value of the construction heuristic was compared with the
solutions of the other heuristics. Now, the solution of the improvement heuristics
compares with the other solutions. Additionally, the optimum solution of this sample
problem is added to comparison in this step. When this sample problem is solved at
GAMS, the optimum solution is given as 2567. The comparison all solutions are
given in Table 3.29.

Table 3.29 Optimal value, solutions of our heuristics and other heuristics for sample problem

OPTIMUM 2567
CONS. + IMP. HEU. 2567
CONS. HEU. 2613
AU 2683
MDD 2703
COVERT 2743
PSK 2938
MONTAGNE 3019
HODGSON 3135
SPT 3250
EDD 4477

As it can be seen, at the end of the combination of the construction heuristic and the

improvement heuristics, the optimum solution is found.

The heuristic ends here. Now, the results of the heuristic will be examined in the next

chapter.
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CHAPTER 4

COMPUTATIONAL RESULTS

4.1 COMPUTATIONAL RESULTS FOR THE SINGLE MACHINE TOTAL
TARDINESS PROBLEM

4.1.1 Design of the Experiment

The construction heuristic and the improvement heuristics were developed in
previous chapter. Now, the effectiveness of the heuristic for total tardiness problem
will be evaluated in this section. For this purpose, some test problems are generated.

For each problem, there are two generated parameters for each job:
* Process time
* Due date

Process time for each job is generated from a discrete uniform distribution between 1

and N which is the size of the problem.

p ~U@LN) (4.1)

After generating the process times, the total process time (TP) is calculated in order

to generate due date values.
N
TP=>p 4.2)
i=1

Atfter this, integer due date for each job is generated from the uniform distribution;
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d ~U[TP*(1—T—§),TP*(1—T+%)] “3)

In this formula, T means the tardiness factor and R means the relative range of due
dates of the problem. These values determine the hardness of the problem. High t
and R values increase the hardness of the problem.

Number of job (N), T and R are taken three values in this thesis for total tardiness

problem:

N = {20, 40, 50, 100}
t=1{0.25,0.5,0.75}
R={0.25, 0.5, 0.75}

For each N value, there are nine sets which are developed from the combinations of
the T and R values and 10 sample problems are solved for each set. This means that
90 problems are tested for each problem size. At total, there are 360 problems to be
tested.

For each N value, results are examined separately.

4.1.2 Results for N=20

The advantage of N=20 is the comparing the results with the optimal solution easily.
The reason of this is that the problem is easily solved when the problem size equals
20. 10 problems from each 9 sets are solved at GAMS and the solutions of these
problems are compared with the results of the heuristic. In Table 4.1, the detailed

comparison of the heuristic with the other heuristics is given for each set.
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Table 4.1 Detailed comparison of the heuristic for N=20

CONS. | CONS. +
MDD | AU | PSK | COVERT | SPT | EDD | HODGSON | MONTAGNE | HEU. IMP.
T R opt. opt. opt. opt. opt. opt. opt. opt. opt. opt.
025 | 0.25 8 5 2 8 0 1 0 2 10 10
0.25 0.5 9 9 7 9 0 8 2 4 10 10
0.25 | 0.75 10 8 9 9 0 9 8 0 10 10
0.5 0.25 1 0 0 0 0 0 0 0 7 9
0.5 0.5 5 2 0 2 0 0 0 0 8 10
0.5 0.75 5 1 0 1 0 0 0 0 7 10
0.75 | 0.25 1 1 0 0 0 0 0 0 7 10
0.75 0.5 6 1 0 0 0 0 0 0 7
0.75 | 0.75 8 1 0 0 0 0 0 0 9
TOTAL 53 28 18 29 0 18 10 6 75 87




In Table 4.1, for each heuristic number of problems which that heuristic gives the
optimal solution is given for each set. As it can be seen in Table 4.1, the optimal
solution of 75 problems among 90 problems is found by only using the construction
heuristic. When the improvement heuristics are used addition to construction
heuristic, 12 more problems’ optimal solution is found. At the rest of the three
problems, optimal solution cannot be found. Moreover, at total, it can be said that
MDD heuristic gives the best solutions among the other construction heuristics.
MDD gives the optimum tardy value for 53 problems among 90 problems.
Generally, it can be said that the heuristics give good result when tardy factor (1) is
small. But as t increases, the efficiency of these heuristics decreases. On the other

hand, our heuristic also gives good solutions at problems with big t value.

In Table 4.2, the deviations of the construction heuristic and improvement heuristics’

results from the optimum tardy values are given for each set.

Table 4.2 Deviations from the optimal result for N=20

CONS. HEU. CONS. + IMP HEU.

T R dev. (%) dev. (%)
0.25 0.25 0.000 0.000
0.25 0.5 0.000 0.000
0.25 0.75 0.000 0.000
0.5 0.25 0.835 0.053
0.5 0.5 0.890 0.000
0.5 0.75 0.700 0.000
0.75 0.25 0.129 0.000
0.75 0.5 0.143 0.029
0.75 0.75 0.278 0.278

Average 0.331 0.040
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As it is said before, there are 3 problems which the construction heuristic + the
improvement heuristics do not give the optimal result. By looking the Table 4.2,
these 3 problems increase the average deviation from the optimal result to 0.04%.
And the average deviation of the construction heuristic is 0.331% from the optimal

results.

The improvement of the tardy values of the best of the other construction heuristics

by our heuristic is shown in Table 4.3.

Table 4.3 Improvement values for N=20

CONS. HEU. CONS. + IMP HEU.

T R imp. (%) imp. (%)
0.25 0.25 1.211 1.211
0.25 0.5 1.538 1.538
0.25 0.75 0.000 0.000
0.5 0.25 2.571 3.311
0.5 0.5 0.751 1.593
0.5 0.75 1.155 1.809
0.75 0.25 0.598 0.724
0.75 0.5 0.216 0.330
0.75 0.75 0.010 0.010

Average 0.894 1.170

As it can be seen in Table 4.3, construction heuristic improves the best of the other
construction heuristics by 0.894% by itself and construction heuristics +

improvement heuristics improve by 1.17%.

At Appendix E, all results are shown for each problem.
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4.1.3 Results for N=40

When problem size is 40, the problem becomes harder than N=20, but optimal
solutions of many problem can be obtained by using GAMS in order to compare with
the results of our heuristic. However, some problems cannot be solved when N=40.
GAMS give an approximate solution, not exact optimum solution. At total tardiness
problem, for N=40 and other problem sizes, the problem is run at most 1500 seconds
(25 minutes) at GAMS. Because, it is observed that if GAMS cannot find the
optimum solution until 25™ minute, generally GAMS cannot reach to exact optimum
solution after this time. In this situation, the optimal value is assumed the minimum
value of the approximate solution obtained from GAMS, the solutions of other
construction heuristics and the solution of our heuristic. Table 4.4 shows the detailed
results of the construction heuristic and the improvement heuristics for 90 problems
with N=40.

As it can be seen in Table 4.4, the optimal solution of 49 problems among 90
problems is found by only using the construction heuristic. When the improvement
heuristics are used addition to construction heuristic, 29 more problems’ optimal
solution is found. At total, optimal solution of 12 problems cannot be found.
Furthermore, by looking Table 4.4, it can be said that the construction heuristic can
give the optimal result by itself at problems with low t value. When t = 0.25, the
construction heuristic gives optimal result at 29 of 30 problems. However, at high t
values, the construction heuristic is not so efficient by itself. It gives optimal result at
20 of 60 problems. The improvement heuristics should be applied to these problems.
When improvement heuristic is applied to the solution of the construction heuristic,

28 more of these 60 problems are solved optimally.
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Table 4.4 Detailed comparison of the heuristic for N=40

CONS. | CONS. +

MDD | AU | PSK | COVERT | SPT | EDD | HODGSON | MONTAGNE | HEU. IMP.

T R opt. opt. opt. opt. opt. opt. opt. opt. opt. opt.
0.25 | 0.25 3 1 0 1 0 0 0 0 10 10
025 | 05 9 7 5 8 0 5 1 3 9 10
0.25 | 0.75 10 10 10 10 0 10 10 0 10 10
05 | 025 0 0 0 0 0 0 0 0 3 9
0.5 0.5 3 0 0 0 0 0 0 0 4 7
05 | 0.75 6 0 0 0 0 0 0 0 6 9
0.75 | 0.25 2 0 0 0 0 0 0 0 2 5)
0.75 | 05 3 0 0 0 0 0 0 0 1 8
0.75 | 0.75 3 1 0 0 0 0 0 0 4 10
TOTAL 39 19 15 19 0 15 11 3 49 78




In Table 4.5, the deviations of the construction heuristic and improvement heuristics’

results from the optimum tardy values are given for each set for N=40.

Table 4.5 Deviations from the optimal result for N=40

CONS. HEU. CONS. + IMP HEU.
T R dev. (%) dev. (%)

0.25 0.25 0.000 0.000
0.25 0.5 2.400 0.000
0.25 0.75 0.000 0.000
0.5 0.25 1.917 0.040
0.5 0.5 0.823 0.102
0.5 0.75 0.856 0.019
0.75 0.25 1.183 0.113
0.75 0.5 1.179 0.046
0.75 0.75 0.156 0.000

Average 0.946 0.036

According to Table 4.5, the construction heuristic gives results 0.946% far from the
optimal solution by itself. When the improvement heuristics are applied to

construction heuristic, this deviation is decreased to 0.036%.

The improvement of the tardy values of the best of the other construction heuristics

by our heuristic is shown in Table 4.6.
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Table 4.6 Improvement values for N=40

CONS. HEU. CONS. + IMP HEU.

T R imp. (%) imp. (%)
0.25 0.25 3.564 3.564
0.25 0.5 0.313 2.188
0.25 0.75 0.000 0.000
0.5 0.25 0.918 2.673
0.5 0.5 1.136 1.812
0.5 0.75 0.404 1.213
0.75 0.25 0.467 1.501
0.75 0.5 0.010 1.115
0.75 0.75 0.481 0.635

Average 0.810 1.633

As it can be seen in Table 4.6, construction heuristic improves the best of the other
construction heuristics by 0.81% by itself and construction heuristics + improvement
heuristics improve by 1.633%.

At Appendix F, each problem’s results are shown.
4.1.4 Results for N=50

When the problem size is 50, obtaining optimum results by using GAMS is more
difficult than low size problems. Therefore, like some problems with N=40, when
optimal solution cannot be obtained from GAMS, the optimal value is assumed the
minimum value of the approximate solution obtained from GAMS, the solutions of
other construction heuristics and the solution of our heuristic. Table 4.7 shows the
detailed results of the construction heuristic and the improvement heuristics for 90

problems with N=50.
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Table 4.7 Detailed comparison of the heuristic for N=50

CONS. | CONS. +

MDD | AU | PSK | COVERT | SPT | EDD | HODGSON | MONTAGNE | HEU. IMP.

T R opt. opt. | opt. opt. opt. opt. opt. opt. opt. opt.
0.25 0.25 4 1 0 1 0 0 0 0 6 10
0.25 0.5 10 6 8 10 0 8 0 3 10 10
0.25 0.75 10 10 | 10 10 0 10 10 0 10 10
0.5 0.25 0 0 0 0 0 0 0 0 1 5
0.5 0.5 4 0 0 0 0 0 0 0 5 7
0.5 0.75 3 0 0 0 0 0 0 0 4 8
0.75 0.25 0 0 0 0 0 0 0 0 1 7
0.75 0.5 2 0 0 0 0 0 0 0 2 10
0.75 0.75 4 0 0 0 0 0 0 0 3 9
TOTAL 37 17 | 18 21 0 18 10 3 42 76




As it can be seen in Table 4.7, the optimal solution of 42 problems among 90
problems is found by only using the construction heuristic. When the improvement
heuristics are used addition to construction heuristic, 34 more problems’ optimal

solution is found.

Same situation for N=40 is also valid for the problems with N=50. At low t value,
construction heuristic gives good results by itself, but at problems with high t value,

the construction heuristic should be improved by improvement heuristics.

In Table 4.8, the deviations of the construction heuristic and improvement heuristics’

results from the optimum tardy values are given for each set for N=50.

Table 4.8 Deviations from the optimal result for N=50

CONS. HEU. CONS. + IMP HEU.
T R dev. (%) dev. (%)

0.25 0.25 2.145 0.000
0.25 0.5 0.000 0.000
0.25 0.75 0.000 0.000
0.5 0.25 2.225 0.256
0.5 0.5 0.754 0.098
0.5 0.75 1.792 0.183
0.75 0.25 2.633 0.043
0.75 0.5 0.726 0.000
0.75 0.75 0.292 0.017

Average 1.174 0.066

As it can be seen from the Table 4.8, the construction heuristic gives results 1.174%
far from the optimal solution by itself. When the improvement heuristics are applied

to construction heuristic, this deviation is decreased to 0.066%.
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The improvement of the tardy values of the best of the other construction heuristics

by our heuristic for N=50 is shown in Table 4.9.

Table 4.9 Improvement values for N=50

CONS. HEU. CONS. + IMP HEU.
T R imp. (%) imp. (%)

0.25 0.25 3.478 5.401
0.25 0.5 0.000 0.000
0.25 0.75 0.000 0.000
0.5 0.25 0.333 2.223
0.5 0.5 0.501 1.135
0.5 0.75 -0.121 1.428
0.75 0.25 0.015 2.521
0.75 0.5 -0.179 0.541
0.75 0.75 -0.162 0.113

Average 0.429 1.485

According to Table 4.9, in some sets the construction heuristic does not improve the
best solution of the other construction heuristics. There is a negative improvement
value in three sets. These sets have T and R values. However, when improvement
heuristics are applied to the solution of the construction heuristic in these sets,
positive improvement values are occurred. Moreover at average, construction
heuristic improves the best of the other construction heuristics by 0.429% by itself

and construction heuristics + improvement heuristics improve by 1.485%.

All results of each problem are shown at Appendix G.
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4.1.5 Results for N=100

The problems with N=100 are so hard problems. Therefore, it is too difficult to
obtain optimal result of the problems by solving these problems at GAMS except the
problems with low T and R values. As a result of this situation, for many problems
optimal value is assumed the minimum value of the approximate solution obtained
from GAMS, the solutions of other construction heuristics and the solution of our
heuristic. In Table 4.10, the detailed comparison of the heuristic with the other

heuristics is given for N=100.

According to Table 4.10, the optimal solution of 22 problems among 90 problems is
found by only using the construction heuristic. When the improvement heuristics are
used addition to construction heuristic, 40 more problems’ optimal solution is found.

At total, optimal solution of 28 problems cannot be found.

Moreover, Table 4.10 shows that MDD heuristic gives better results than the
construction heuristic. At general, MDD finds optimal solution of 28 problems
among 90, whereas the construction heuristic finds optimal solution of 22 problems.
Therefore, it can be said that the efficiency of the construction heuristic by itself is
not so high for the problems with big size. But when improvement heuristics are
applied to the construction heuristic’s solution, 40 more problems are optimally
solved.
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Table 4.10 Detailed comparison of the heuristic for N=100

CONS. | CONS. +

MDD | AU | PSK | COVERT | SPT | EDD | HODGSON | MONTAGNE | HEU. IMP.

T R opt. opt. opt. opt. opt. opt. opt. opt. opt. opt.
0.25 | 0.25 1 0 0 0 0 0 0 0 0 3
025 | 05 9 3 8 9 0 8 0 3 10 10
0.25 | 0.75 10 10 10 10 0 10 10 0 10 10
0.5 0.25 0 0 0 0 0 0 0 0 0 1
0.5 0.5 0 0 0 0 0 0 0 0 0 9
0.5 0.75 1 0 0 0 0 0 0 0 2 9
0.75 | 0.25 0 0 0 0 0 0 0 0 0 6
0.75 | 05 2 0 0 0 0 0 0 0 0 8
0.75 | 0.75 5 0 0 0 0 0 0 0 0 6
TOTAL 28 13 18 19 0 18 10 3 22 62




In Table 4.11, the deviations of the construction heuristic and improvement

heuristics’ results from the optimum tardy values are given for each set for N=100.

Table 4.11 Deviations from the optimal result for N=100

CONS. HEU. CONS. + IMP HEU.
T R dev. (%) dev. (%)

0.25 0.25 1.768 0.847
0.25 0.5 0.000 0.000
0.25 0.75 0.000 0.000
0.5 0.25 3.107 0.464
0.5 0.5 2.656 0.009
0.5 0.75 1.950 0.094
0.75 0.25 3.129 0.090
0.75 0.5 0.516 0.011
0.75 0.75 0.261 0.028

Average 1.488 0.171

As it can be seen from the Table 4.11, the construction heuristic gives results 1.488%
far from the optimal solution by itself. When the improvement heuristics are applied

to construction heuristic, this deviation is decreased to 0.171%.

The improvement of the tardy values of the best of the other construction heuristics
by our heuristic for N=100 is shown in Table 4.12.
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Table 4.12 Improvement values for N=100

CONS. HEU. CONS. + IMP HEU.

T R imp. (%) imp. (%)
0.25 0.25 0,823 1,712
0.25 0.5 0,000 0,000
0.25 0.75 0,000 0,000
0.5 0.25 0,190 2,734
0.5 0.5 -0,132 2,435
0.5 0.75 -0,026 1,779
0.75 0.25 -0,961 2,011
0.75 0.5 -0,322 0,182
0.75 0.75 -0,202 0,031

Average -0,070 1,209

According to Table 4.12, the construction heuristic has a negative improvement
value at average for the problems with N=100. This is normal, because as explained
before MDD heuristic gives better results than the construction heuristic for N=100.
Therefore, when the results of the construction heuristic are compared with the best
solution of the other construction heuristics (naturally, MDD is the best among these
heuristics for many problems here), the construction heuristic’s results are higher.
Therefore, there is no improvement at average. However, when improvement
heuristics are applied to the construction heuristic’s solution, it improves the best of

the other construction heuristics by 1.209%.

At Appendix H, all results of each problem are shown for N=100.

All results were given for four problem sizes in this section. The summary of the

results is given in Table 4.13.
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Table 4.13 Summary of the results (total tardiness problem)

# of optimum | Ave. Deviation | Max. Deviation | Improvement of
solutionamong | fromoptimum | from optimum the best of the
90 problems result (%) result (%) other cons. heu.
(%)

N Cons. | Cons. | Cons. | Cons. Cons. | Cons. + | Cons. Cons. +
Heu. | +Imp. | Heu. | + Imp. Heu. Imp. Heu. Imp.
Heu. Heu. Heu. Heu.

20 75 87 0.331 | 0.040 | 4.814 | 2.784 0.894 1.170
40 49 78 0.946 | 0.036 | 24.000 | 0.618 0.810 1.633
50 42 76 1.174 | 0.066 | 8.591 | 1.390 0.429 1.485
100 22 62 1.488 | 0.171 | 5522 | 3.102 | -0.070 | 1.209

Finally, average computational times of our heuristic for each problem size are given
in Table 4.14.

Table 4.14 Computational times (total tardiness problem)

N Comp. Time for | Comp. Time for | Total Comp.
Cons. Heu. (min) | Imp. Heu. (min) | Time (min)

20 03:22 01:19 0441

40 0651 0222 09:13

50 08:33 03:21 1154

100 17:58 0547 2345
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4.2 COMPUTATIONAL RESULTS FOR THE SINGLE MACHINE TOTAL
WEIGHTED TARDINESS PROBLEM

4.2.1 Design of the Experiment

In order to evaluate our heuristic for the single machine total weighted tardiness
problem, problems which are generated for the single machine total tardiness
problem are used. Only weight values are added to each problem. Weight for each

job is generated from a discrete uniform distribution between 1 and 10.
w;, ~U(110) (4.4)

The heuristic is tested for the single machine total weighted tardiness problem for
problem sizes 20 and 40. Different from the total tardiness problem, the heuristic is
not tested for problem sizes 50 and 100. Because, at these numbers of jobs,
complexity of the problem is too high and therefore, reaching optimal solutions in
order to compare with our heuristic’s solution is too hard by using GAMS or any
other solver programs. Therefore, a healthy evaluation for these numbers of jobs is

impossible.
4.2.2 Results for N=20

Different from the total tardiness problem, solving total weighted tardiness problem
for N=20 is not so easy. Optimal solutions for each problem can be obtained by using
GAMS, and then these solutions were compared with the heuristic solution at total
tardiness problem for problem size equals 20. But at total weighted tardiness
problem, optimal solutions of many problems with high t value cannot be reached.
Therefore, similar to total tardiness problem, optimal value is assumed the minimum
value of the approximate solution obtained from GAMS, the solutions of other
construction heuristics and the solution of our heuristic at these problems. At total
weighted tardiness problem the problem is run at most 1800 seconds (30 minutes) at
GAMS. Because, it is observed that GAMS generally cannot reach to exact optimum
solution, unless GAMS finds the optimum solution until 30'" minute. Table 4.15
shows the detailed comparison of the construction heuristic and the improvement

heuristics with the other heuristics for 90 problems.
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Table 4.15 Detailed comparison of the heuristic for N=20 (weighted tardiness problem)

CONS. | CONS. +
AU Greedy EDD WEDD SWPT Montagne | HEU. | IMP. HEU.
T R opt. opt. opt. opt. opt. opt. opt. opt.
0.25 0.25 0 5 0 0 0 0 10 10
0.25 0.5 2 6 5 0 0 1 10 10
0.25 0.75 c o o 0 0 0 o 9
0.5 0.25 1 1 0 0 0 0 6 8
0.5 0.5 0 2 0 0 0 0 6 7
0.5 0.75 0 1 0 0 0 0 6 7
0.75 0.25 0 1 0 0 0 0 6 8
0.75 0.5 0 2 0 0 0 0 7 7
s . 0 1 0 0 0 0 8 10
TOTAL 8 27 13 0 0 1 68 76




By looking to Table 4.15, it can be seen that the optimal solutions of 68 problems
among 90 problems are found by only using the construction heuristic. Moreover,
optimal solutions of 8 more problems are acquired by adding improvement heuristics
to construction heuristic. Moreover, according to Table 4.15, Greedy heuristic gives
best results among the other construction heuristics. It finds 27 optimal solutions.
Greedy heuristic works better at problems with t=0.25 than problems with high t

values. Our heuristic gives good results at all sets.

Table 4.16 shows the deviations of the construction heuristic and improvement

heuristics’ results from the optimum tardy values for each set for N=20.

Table 4.16 Deviations from the optimal result for N=20 (weighted tardiness problem)

CONS. HEU. CONS. + IMP HEU.
T R dev. (%) dev. (%)

0.25 0.25 0.000 0.000
0.25 0.5 0.000 0.000
0.25 0.75 0.606 0.606
0.5 0.25 0.995 0.218
0.5 0.5 2.635 2.449
0.5 0.75 2.594 2.456
0.75 0.25 0.911 0.177
0.75 0.5 0.313 0.313
0.75 0.75 0.129 0.000

Average 0.909 0.691

As it can be seen from the Table 4.16, the construction heuristic gives results 0.909%
far from the optimal solution by itself. When the improvement heuristics are applied

to construction heuristic, this deviation is decreased to 0.691%.
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The improvement of the tardy values of the best of the other construction heuristics
by our heuristic for N=20 can be seen in Table 4.17.

Table 4.17 Improvement values for N=20 (weighted tardiness problem)

CONS. HEU. CONS. + IMP HEU.
T R imp. (%) imp. (%)

0.25 0.25 4.368 4.368
0.25 0.5 7.000 7.000
0.25 0.75 2.000 2.000
0.5 0.25 3.060 3.821
0.5 0.5 2.260 2.432
0.5 0.75 9.809 9.942
0.75 0.25 0.420 1.141
0.75 0.5 0.743 0.743
0.75 0.75 2.981 3.102

Average 3.627 3.839

Table 4.17 shows that construction heuristic improves the best of the other
construction heuristics by 3.627% by itself and construction heuristics +

Improvement heuristics improve by 3.839%.

At Appendix [, each problem’s results are shown.

4.2.3 Results for N=40

Table 4.18 shows the detailed results for the total weighted tardiness problem when

problem size equals 40.
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Table 4.18 Detailed comparison of the heuristic for N=40 (weighted tardiness problem)

CONS. | CONS. +
AU Greedy EDD WEDD SWPT Montagne | HEU. | IMP. HEU.
T R opt. opt. opt. opt. opt. opt. opt. opt.
0.25 0.25 0 0 0 0 0 0 4 7
0.25 0.5 0 7 2 0 0 0 9 9
0.25 0.75 10 10 10 0 0 0 10 10
0.5 0.25 0 0 0 0 0 0 1 9
0.5 0.5 0 0 0 0 0 0 2 8
0.5 0.75 0 0 0 0 0 0 4 8
0.75 0.25 1 0 0 0 0 0 0 6
0.75 0.5 1 0 0 0 0 0 3 9
s . 0 3 0 0 0 0 5 10
TOTAL 12 20 12 0 0 0 38 76




According to Table 4.18, the construction heuristic finds optimal solution of 38
problems among 90 problems itself. This is approximately half of the findings of the
construction heuristic for N=20, which is 68. The efficiency of the construction
heuristic itself decreases as the problem size increases. On the other hand, when
improvement heuristics are applied to the solution of the construction heuristic, 38
more problems’ optimal solutions are found. There are totally 14 problems which our
heuristic cannot find the optimal result. This number is same with N=20. Therefore,
it can be said that when our construction heuristic and improvement heuristics works
together, they are not affected so much from the problem size. But of course, this is
valid only these numbers of problem size. Furthermore, Table 4.18 shows that the
other construction heuristics do not give so good results. The best heuristic is Greedy
heuristic, similar to N=20. It finds optimal solutions of 20 problems among 90. Our
heuristic works good at all sets. The worst results are at problems with ==0.75 and

R=0.25. At that set, our heuristic finds 6 optimal solutions among 10.

The deviations of the construction heuristic and improvement heuristics’ results from

the optimum tardy values for each set for N=40 are shown in Table 4.19.

Table 4.19 Deviations from the optimal result for N=40 (weighted tardiness problem)

CONS. HEU. CONS. + IMP HEU,
T R dev. (%) dev. (%)
0.25 0.5 4.405 3.036
0.25 0.75 0.000 0.000
0.5 0.25 5.462 0.125
0.5 0.5 5.690 0.121
0.5 0.75 5.475 1.335
0.75 0.25 1215 0.327
0.75 0.5 0.953 0.004
0.75 0.75 0.257 0.000
Average 3.654 0.816
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Table 4.19 shows that the construction heuristic gives results 3.654% far from the
optimal solution by itself. When the improvement heuristics are applied to

construction heuristic, this deviation is decreased to 0.816%.

The improvement of the tardy values of the best of the other construction heuristics
by our heuristic for N=40 can be seen in Table 4.20.

Table 4.20 Improvement values for N=40 (weighted tardiness problem)

CONS. HEU. CONS. + IMP HEU,
T R imp. (%) imp. (%)

0.25 0.25 6.761 12.352
0.25 0.5 6.246 7.234
0.25 0.75 0.000 0.000
0.5 0.25 2.865 7.633
0.5 0.5 5.227 10.043
0.5 0.75 6.857 10.348
0.75 0.25 0.591 1.455
0.75 0.5 0.222 1.157
0.75 0.75 0.705 0.957

Average 3.275 5.687

Table 4.20 shows that construction heuristic improves the best of the other
construction heuristics by 3.275% by itself and construction heuristics +

improvement heuristics improve by 5.687%.

At Appendix J, all results of each problem are shown for weighted tardiness problem
with N=40.
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All results were given for two problem sizes at total weighted tardiness problem in

this section. The summary of the results is given in Table 4.21.

Table 4.21 Summary of the results (weighted tardiness problem)

# of optimum

Ave. Deviation

Max. Deviation

Improvement of

solution from optimum from optimum the best of the
among 90 result (%) result (%) other cons. heu.
problems (%)

N | Cons. | Conrs. | Cons. | Cons. Cors. Cons. + Cons. | Cons. +
Heu. | + Imp. | Heu. | + Imp. Heu. Imp. Heu. Imp.
Heu. Heu. Heu. Heu.
20 68 76 0.909 | 0.691 | 14.452 | 14.452 3.627 3.839
40 38 76 3.654 | 0.816 | 44.047 | 30.357 3.275 5.687

Finally, average computational times of our heuristic for total weighted tardiness
problemand each problemsize are given in Table 4.22.

Table 4.22 Computational times (weighted tardiness problem)

N Comp. Time for | Comp. Time for | Total Comp.
Cons. Heu. (min) | Imp. Heu. (min) | Time (min)

20 03:34 01:14 04:48

40 0720 0258 10:18
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CHAPTER 5

CONCLUSION

In this section, main conclusions of this thesis and possible extensions for future

works are explained.

In this thesis, single machine total tardiness and weighted tardiness problems are
studied. First of all, general properties and assumptions of the single machine
tardiness problem are discussed. Because both single machine total tardiness problem
and weighted tardiness problem are NP-hard problems, heuristic solution procedures
are used. In order to solve these scheduling problems, a heuristic is proposed in this

thesis.

The heuristic has same procedure for both total tardiness and weighted tardiness
problems. Initially, some simple, well-known construction heuristics are solved and
an initial schedule is obtained by combining the solutions of these heuristics. After
this, a part of this solution is solved optimally by using a solver (GAMS). For this,
initially last 10 jobs from the schedule are taken, and the optimal sequence of these
jobs are found by taking the starting time as the summation of process times of the
previous jobs. Then, from the optimal solution of these 10 jobs, last 5 jobs are taken
and they are fixed. After this operation, the next 10 jobs which are not fixed 5 jobs
from previous solution and last 5 jobs from the initial schedule which are not solved
at previous sub-problem are taken, these jobs are solved optimally and again last 5
jobs of this optimal sequence are fixed. These operations continue dynamically until
there is no job not scheduled. This part is the construction part of our heuristic. Also

some improvement heuristics are proposed to get better the solution of the
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construction heuristic. These improvement heuristic methods are sliding forward,
sliding backward and pairwise interchange methods. At sliding forward method, a
job is placed to a next position in the schedule and the jobs between the previous
position and the present position of that job are scheduled to one position down.
Sliding backward method is opposite of the sliding forward method. At this method,
a selected job is placed to a previous position in the schedule and the jobs between
the previous position and the present position of that job are scheduled to one
position up. Finally, at pairwise interchange method, positions of selected two jobs
are changed. These methods are applied to all jobs. The operation which gives
maximum improvement at tardiness value is selected and this is applied to the
solution. Then, all methods are applied to revised solution again. This continues until
there is no more improvement. These steps were defined step by step and also a

sample problem was used as a numerical example.

The heuristic is tested for several problem sizes (N), tardy factors (t) and due date
ranges (R). For total tardiness problem, the heuristic is tested for N=20, 40, 50 and
100. But for weighted tardiness problem, N=20 and 40 are used. The reason of this is
the fact that for large size problems, finding optimal solution or a close solution to
optimal is too difficult. In order to compare our heuristic’s solution, optimal solution
of all problem or if finding exact optimum solution is not possible, near optimal
solution of that problem are used. At total tardiness problem, when only our
construction heuristic is run, from 90 problems, 75 problems’ optimal solution is
found for N=20; 49 problems’ optimal solution is found for N=40; 42 problems’
optimal solution is found for N=50; 22 problems’ optimal solution is found for
N=100. When improvement heuristics are run with the construction heuristic, 87
problems’ optimal solution is found for N=20; 78 problems’ optimal solution is
found for N=40; 76 problems’ optimal solution is found for N=50; 62 problems’
optimal solution is found for N=100 at total tardiness problem. As it can be seen,
construction heuristic is not so efficient for large size problems itself. However,
when improvement and construction heuristic are run together, it also finds good
results for large size problems. Moreover, the efficiency of the construction heuristic
decreases when tardy factor increases. But when improvement and construction
heuristic are run together, the heuristic is more robust to changes in tardy factor
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value. At weighted tardiness problem, our construction heuristic itself finds 68
problems’ optimal solution for N=20 and 38 problem’s optimal solution for N=40
among 90 problems. When improvement and construction heuristic are performed
together, it finds 76 problems’ optimal solution for both N=20 and N=40. The
performance of the construction heuristic itself slightly decreases when problem size
is increased from 20 to 40. However, when improvement and construction heuristic
are run together, the performance does not change. Finally, it can be said that when
our heuristic is compared with other heuristics, it gives much better results than the

others.

Finally, the study in this thesis can be extended with several ways for future works.
For example, in this thesis when a particular number of jobs (B) are grouped from
the initial solution, this value is taken as 10. Also when a particular number of jobs
(b) are fixed from the sub-solution, 5 is taken for b. At future works different
combinations for B and b values can be tried. Moreover, some optimal algorithms
such as dynamic programming and branch and bound methods can be used in order
to solve groups optimally. Sometimes, finding optimal solution with GAMS takes a
lot of time. Another extension can be the application of Emmons’ Dominance
Properties to the problem before solving it. This can provide a better start for the
heuristic. Furthermore, this heuristic can be adapted to different scheduling problems
such as single machine problem with jobs with different release times, single
machine problem with jobs which have precedence constraints, one-stage parallel

machines problem, flow shop problem or job shop problem at future researches.
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APPENDIX A

EMMONS’ DOMINANCE CONDITIONS

Emmons (1969) developed dominance conditions for the single machine tardiness
problem. These conditions establish the relative order in which pairs of jobs are

processed in an optimal schedule. At below two theorems of Emmons are given.

Some notations used by Emmons;

B, = set of jobs sequenced before job i (J;)
A, = set of jobs sequenced after Ji

Ail ={Ji 1A}

Emmons’ First Theorem:

For any two jobs J; and Jj, if;
a) P = P;

b) d; <max( > p, +p;.d)),

keB;

then J precedes Jj (J; <= J;) inat least one optimal schedule. This means that i € B,

and j € A.. Emmons’ first theorem gives us conditions under which a shorter job can

be said to precede a longer one.
83



Emmons’ Second Theorem:

For any two jobs J; and Jj, if;

a) P; = p;

b) d; >max( > p,+p;.d;)

kij

C)di+pizzpk,

keA'j

then Jj precedes Ji (J; < J;) in at least one optimal schedule. This means that
jeBjand i€ A;. Emmons’ second theorem gives necessary conditions for a longer

job to precede a shorter one in an optimal schedule.
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APPENDIX B

DETERMINING ALFA VALUE

A weight formula (Equation 3.4) is mentioned for the construction heuristics in
section 3.1.2. According to this formula, the best heuristic which gives the smallest
tardiness value takes the highest weight. o value in this formula determines the range
between the maximum weight and minimum weight. When o = 0, all construction
heuristics take same weight, 1. On the other hand, when a = oo, the best heuristic
takes value of 1 and all the other heuristics take value of 0. In order to determine the
best a value, different a. values are tried on the total tardiness problems with 20 jobs.
This number of jobs is selected, because the problems are solved easier than the other

problems with higher number of jobs.

For the total tardiness problems with 20 jobs different o values which are 0.5, 1, 2, 3,
4 and 5 are tried. Too big o values are not considered, because the solution depends
more on only one heuristic when o increases. Therefore, the biggest a value tried is
5. These a values are tried on 90 sample problems with 20 jobs. Table B.1 shows the
results for these o values. In Table B.1, number of problems which that a value gives

the lowest tardiness value among all a values is given.
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Table B.1 Number of problems which that o value gives the best result among all o. values

A

0.5 1 2 3 4 5

84 87 87 89 90 89

According to Table B.1, for all 90 problems, results of our heuristic with o =4 gives
best solution among the other solutions of our heuristic with different o values.
Actually, other a values do not give bad solutions but o = 4 seems the best.

Therefore, in this thesis, for our heuristic oo =4 is used.
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APPENDIX C

WEIGHTS FOR EACH POSITION IN EACH HEURISTIC FOR
SAMPLE PROBLEM

Table C.1 Weights for each position in each heuristic for sample problem

Position | MDD | AU | PSK | COVERT | SPT | EDD | HODGSON | MONTAGNE
1 09707 | 1 | 06955 | 09153 | 04645 | 0.1200 0.5365 0.6238
2 19415 | 2 | 13000 | 18307 | 09289 | 0.2580 1.0729 1.2476
3 20122 | 3 | 20864 | 27460 | 13934 | 0.3870 1.6094 18713
4 38820 | * | 27819 | 36613 | 18578 | 05150 2.1458 2.4951
5 48537 | ° | 34773 | 45767 | 23223 | 0.6449 2.6823 3.1189
6 58244 | © | 41728 | 54020 | 27868 | 0.7739 3.2187 3.7427
! 67951 | ! | 48683 | 6.4073 | 32512 | 0.9029 3.7552 4.3664
8 77658 | © | 55637 | 73227 | 3.7157 | 1.0319 4.2916 4.9902
o 87366 | ° | 6.2592 | 82380 | 4.1801 | 1.1609 4.8281 5.6140
10 07073 | 10 | 69547 | 91533 | 46446 | 1.2808 5.3645 6.2378
11 | 106780 | M | 76501 | 10.0687 | 51001 | 1.4188 5.9010 6.8616
12| 116488 | 12 | 83456 | 10.9840 | 55735 | 1.5478 6.4374 7.4853
13 | 126195 | 3 | 00411 | 118993 | 6.0380 | 1.6768 6.9739 8.1001
14 | 135002 | M | 97365 | 128147 | 65025 | 1.8058 7.5104 8.7329
15 145610 | 15 | 104320 | 137300 | 6.9669 | 1.9348 8.0468 9.3567
16 | 1585317 | 16 | 111274 | 146453 | 7.4314 | 2.0637 8.5833 9.9805
17 | 165024 | 17 | 11.8220 | 155607 | 7.8958 | 2.1927 9.1197 10.6042
18 V1747310 | 8 | 125184 | 164760 | 83603 | 2.3217 9.6562 11.2280
19 | 184430 | ¥ | 132138 | 17.3013 | 8.8248 | 2.4507 101926 11.8518
20 | 194146 | 20 | 139093 | 183067 | 9.2892 | 2.5797 10.7291 12.4756
21| 203853 | 21 | 146048 | 19.2220 | 9.7537 | 2.7087 11.2655 13.0993
22 | p13561 | %2 | 153002 | 20.1373 | 10.2181 | 2.8376 11.8020 13.7231
23 | 22328 | 2 | 159957 | 210527 | 10.6826 | 2.9666 12.3384 14.3469
24| 230975 | %* | 166912 | 21.9680 | 11.1471 | 3.0956 12,8749 14.9707
2 | 242683 | % | 17.3866 | 228833 | 11.6115 | 3.2246 13.4114 155945
26 | 252300 | %6 | 180821 | 23.7987 | 12.0760 | 3.3536 13.9478 16.2182
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Table C.1 (Continued)

201 962007 | 27 | 187776 | 247140 | 12.5404 | 3.4826 14.4843 16.8420
28 | 971804 | % | 104730 | 256203 | 13.0049 | 3.6115 15.0207 17.4658
2 | 281512 | 2 | 201685 | 265447 | 134694 | 3.7405 155572 18.0896
80 | 291219 | 30 | 208640 | 27.4600 | 13.9338 | 3.8695 16.0936 18.7133
81 1300026 | 3! | 215504 | 283753 | 14.3983 | 3.9985 16.6301 19.3371
32 | 310634 | 32 | 220549 | 29.2007 | 14.8628 | 4.1275 17.1665 19.9609
33 | 320341 | 33 | 220504 | 302060 | 15.3272 | 4.2565 17.7030 205847
34 | 330048 | 34 | 236458 | 311213 | 157917 | 4.3854 18.2394 21.2085
85 | 330756 | 3 | 243413 | 320367 | 162561 | 45144 18.7759 21.8322
36 | 340463 | 3 | 250368 | 329520 | 16.7206 | 4.6434 193123 22.4560
37 | 350170 | 37 | 257322 | 338673 | 17.851 | 47724 19.8488 23.0798
38 | 358877 | 38 | 264277 | 347827 | 17.6495 | 4.9014 20.3853 23.7036
39 | 378585 | 3 | 27.1232 | 356980 | 18.1140 | 5.0304 20.9217 24,3274
40 | 388202 | 40 | 27.8186 | 36.6133 | 185784 | 5.1593 21.4582 24,9511
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APPENDIX D

JOB SEQUENCES OF THE HEURISTIC FOR SAMPLE

PROBLEM

Table D.1 Job sequences of the heuristics for sample problem

Position MDD AU PSK | COVERT SPT EDD HODGSON | MONTAGNE
1 20 20 20 5 13 20 11 13
2 11 11 11 9 22 11 5 22
3 17 17 35 11 26 17 9 26
4 35 35 17 20 7 35 40 7
5 32 13 32 17 10 32 16 39
6 33 32 33 32 39 33 14 10
7 5 14 5 35 14 5 34 14
8 9 33 9 33 2 9 30 24
9 40 5 40 40 24 40 39 2
10 16 9 16 13 15 16 8 34
11 18 40 18 14 34 18 13 15
12 14 16 14 16 23 14 10 27
13 4 18 34 18 27 4 19 23
14 34 39 4 4 8 34 27 8
15 39 22 30 34 30 1
16 13 34 13 39 39 36
17 8 10 10 10 3 8 15 40
18 10 30 39 22 37 13 22 16
19 27 8 15 27 19 10 23 19
20 15 27 22 8 1 19 31 3
21 22 15 23 15 16 27 3
22 23 23 27 7 40 1 7 37
23 19 7 8 23 21 12 6 11
24 7 26 7 26 38 36 21 21
25 24 3 24 24 31 15 37 32
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Table D.1 (Continued
3 36

26 3 24 3 22 38 35
27 37 37 37 37 11 23 24 17
28 26 19 26 2 25 31 25 18
29 2 2 2 19 6 29 26 36
30 1 19 1 30 3 2 30
31 21 21 1 21 32 7 20 20
32 38 38 21 38 18 6 17 31
33 31 31 38 36 35 21 35 38
34 36 36 31 31 28 37 32 4

35 25 25 36 25 4 38 33 33
36 6 6 25 6 17 24 18 6

37 30 28 6 30 29 25 4 25
38 28 4 28 28 20 26 12 29
39 29 29 29 29 12 28 29 12
40 12 12 12 12 33 2 28 28
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APPENDIX E

EXPERIMENTS FOR TOTAL TARDINESS PROBLEM (N=20)

Table E.1 Experiments for total tardiness problem (N=20)

No| = R Opt | Cons. | Cons. | Mdd [ Au | Psk [ Cov- | Spt | Edd | Hod- | Mon-
Heu. + ert Gson | tag-
Imp. ne
Heu.
1| 025] 0,25 51 51 51 53 54 53 54 153 53 124 56
2 | 025]025] 55 55 55 55 55 55 55 117 55 132 55
3 1025]025] 39 39 39 39 39 39 39 56 41 54 39
4 | 025)025| 56 56 56 56 56 67 56 106 71 112 65
5] 025]025] 43 43 43 43 46 60 43 93 60 89 53
6 | 025) 025 51 51 51 51 51 55 51 111 68 114 69
7 | 025)025| 49 49 49 49 67 58 49 171 58 138 83
8 | 025] 0,25 58 58 58 58 60 62 58 115 90 65 86
9 | 025] 0,25 60 60 60 60 60 74 60 126 80 89 76
10 | 025|025 | 44 44 44 56 49 56 48 105 81 86 51
11 | 025 05 3 3 3 3 3 3 3 315 3 127 3
12 | 025 05 2 2 2 2 2 2 2 101 2 2 2
13 ] 025 05 18 18 18 18 18 32 18 151 18 18 19
14 | 025 05 4 4 4 4 4 4 4 119 4 48 4
15| 025 05 13 13 13 13 13 15 13 127 15 36 34
16 | 025 05 9 9 9 9 9 9 9 227 9 128 15
17 | 025 05 8 8 8 8 8 8 8 161 8 92 12
18 | 025 05 2 2 2 2 2 2 2 105 2 28 2
19 | 025 05 22 22 22 26 26 26 26 132 26 101 41
20 | 025 | 05 6 6 6 6 6 6 6 79 6 22 8
21 [ 025 0,75 0 0 0 0 0 0 0 155 0 0 23
22 [ 025[075| 40 40 40 40 41 41 46 327 48 145 76
23 [ 025 0,75 0 0 0 0 0 0 0 169 0 0 114
24 | 0,25 | 0,75 0 0 0 0 0 0 0 156 0 0 27
25 | 0,25 | 0,75 0 0 0 0 0 0 0 164 0 0 23
26 | 025 0,75 0 0 0 0 0 0 0 42 0 0 21
27 [ 025 0,75 3 3 3 3 4 3 3 325 3 86 109
28 | 0,25 | 0,75 0 0 0 0 0 0 0 274 0 0 36
29 | 0,25 | 0,75 0 0 0 0 0 0 0 100 0 0 3
30 [ 025 0,75 0 0 0 0 0 0 0 93 0 0 40
31 [ o5 [ 025] 252 252 252 252 254 | 300 254 | 311 | 497 293 303
32 05 | 025]| 393 393 393 401 418 450 404 507 704 466 468
33 05 | 025 | 348 359 348 418 409 426 374 428 607 409 428
34 o5 [ 025] 275 275 275 320 325 | 337 335 | 315 | 519 307 309
35| 05 [ 025] 404 404 404 406 | 407 | 428 407 | 493 | 553 451 470
36 | 05 | 025 | 236 247 236 247 253 267 249 281 364 291 266
37 [ 05 [ 025] 345 345 345 348 348 | 384 346 | 400 [ 410 387 381
38| 05 [ 025| 228 228 228 233 229 | 262 231 | 278 | 348 270 255
39 [ 05 [ 025] 379 381 381 382 383 | 410 389 | 466 | 513 453 421
40 [ 05 | 0,25 | 319 319 319 346 346 347 346 371 408 386 359
41| 05 | 05 | 298 298 298 301 301 | 344 302 | 495 | 396 335 402

91




Table E.1 (Continued)

42 ] 05 | 05 | 165 | 165 165 | 187 | 189 | 194 | 172 | 276 | 261 | 208 219
a3 | 05 | 05 | 317 | 317 317 | 317 | 340 | 356 | 330 | 434 | 557 | 401 359
a4 | 05 | 05 | 281 | 281 281 | 281 | 284 | 306 | 294 | 415 | 450 | 354 352
45| 05 | 05 | 223 | 223 223 | 223 | 224 | 287 | 237 | 389 | 425 | 298 333
46 | 05 | 05 | 206 | 206 206 | 206 | 206 | 242 | 206 | 407 | 303 | 307 328
47| 05 | 05 | 242 | 242 242 | 242 | 242 | 281 | 263 | 373 | 375 | 269 318
48| 05 | 05 | 113 | 113 113 | 119 | 115 | 119 | 113 | 226 | 179 | 177 19
49| 05 | 05 | 294 | 306 294 | 313 | 313 | 354 | 346 | 500 | 476 | 406 412
50| 05 | 05 | 457 | 479 457 | 480 | 483 | 499 | 493 | 68 | 779 | 546 619
51| 05 | 0,75| 66 66 66 66 71 71 66 | 273 | 71 | 199 113
52| 05 | 075 313 | 319 313 | 320 | 331 | 328 | 340 | 484 | 514 | 395 409
53| 05 | 075 186 | 186 186 | 186 | 208 | 245 | 199 | 340 | 333 | 220 254
54 | 05 | 0,75 71 71 71 71 77 87 72 | 245 | 101 | 204 121
55| 05 | 075 125 | 125 125 | 134 | 143 | 145 | 126 | 402 | 176 | 210 224
56 | 05 | 075| 228 | 228 228 | 228 | 232 | 279 | 232 | 447 | 313 | 250 340
57| 05 | 075 113 | 113 113 | 113 | 113 | 150 | 114 | 324 | 172 | 185 261
58 | 05 | 0,75 | 87 87 87 91 94 | 102 94 | 443 | 122 | 219 169
59 | 05 | 075 418 | 422 418 | 422 | 454 | 483 | 426 | 628 | 693 | 524 552
60 | 05 | 075 194 | 202 194 | 215 | 215 | 238 | 228 | 433 | 321 | 317 354
61 | 0,75 | 025 | 844 | 844 844 | 868 | 845 | 899 | 1013 | 894 | 1233 | 922 896
62 | 0,75 025 534 | 534 534 | 538 | 541 | 589 | 547 | 575 | 892 | 558 569
63| 075 | 025 | 772 | 777 772 | 801 | 801 | 904 | 818 | 808 | 1448 | 882 809
64 | 0,75 | 025 | 620 | 620 620 | 625 | 630 | 715 | 666 | 640 | 866 | 714 649
65 | 075 | 025 559 | 559 559 | 584 | 562 | 648 | 595 | 623 | 1153 | 646 617
66 | 0,75 | 025 801 | 802 801 | 807 | 891 | 926 | 941 | 845 | 1325 | 940 851
67 | 0,75 | 025 | 771 | 775 771 | 775 | 783 | 79 | 790 | 811 | 1049 | 808 821
68 | 075 | 025 799 | 799 799 | 801 | 799 | 813 | 804 | 895 | 1250 | 948 873
69 | 075 | 025 599 | 599 599 | 625 | 600 | 631 | 627 | 655 | 892 | 69 654
70 | 0,75 | 025 | 841 | 84l 841 | 841 | 849 | 901 | 928 | 922 | 1465 | 951 925
71| 075 05 | 699 | 701 700 | 701 | 703 | 729 | 712 | 828 | 1159 | 802 810
72| 075| 05 | 506 | 506 506 | 506 | 506 | 534 | 511 | 612 | 768 | 59 613
73| 075| 05 | 634 | 634 630 | 634 | 717 | 737 | 733 | 730 | 941 | 732 675
74 | 0,75 | 05 | 940 | 940 940 | 940 | 944 | 965 | 962 | 1050 | 1163 | 1092 | 1037
75 | 075 | 05 | 734 | 734 734 | 734 | 735 | 793 | 747 | 826 | 1397 | 848 795
76 | 075 | 05 | 958 | 968 958 | 959 | 959 | 1012 | 1041 | 1074 | 1663 | 1097 | 1102
77 | 075 | 05 | 991 | 992 991 | 1011 | 1011 | 1026 | 1026 | 1164 | 1353 | 1175 | 1179
78 | 075 | 05 | 653 | 653 653 | 653 | 654 | 691 | 659 | 786 | 1220 | 742 788
79 [ 075 05 | 650 | 650 650 | 658 | 682 | 699 | 668 | 737 | 1114 | 728 751
80 | 0,75| 05 | 555 | 555 555 | 555 | 558 | 573 | 558 | 634 | 933 | 617 591
81| 075|075 431 | 443 443 | 443 | 448 | 465 | 453 | 539 | 705 | 797 535
82 075|075 742 | 742 742 | 742 | 743 | 750 | 772 | 894 | 1100 [ 1039 | 857
83 | 0,75 | 0,75 | 791 | 791 791 | 791 | 791 | 824 | 841 | 971 | 1136 | 1009 | 887
84 | 075 | 075 | 948 | 948 948 | 948 | 949 | 966 | 958 | 1004 | 1458 | 1136 | 1000
85 | 075 | 075 | 478 | 478 478 | 478 | 479 | 529 | 547 | 680 | 733 | 640 614
86 | 0,75 | 0,75 | 1321 | 1321 | 1321 | 1321 | 1323 | 1323 | 1330 | 1457 | 1531 | 1404 | 1436
87| 075|075 779 | 779 779 | 779 | 780 | 79 | 891 | 871 | 1128 | 1076 | 877
88 | 075 | 0,75 | 419 | 419 419 | 419 | 423 | 465 | 437 | 509 | 666 | 491 473
89 | 075 | 075 | 823 | 823 823 | 823 | 825 | 853 | 833 | 1004 | 1187 | 1575 | 898
90 | 0,75 | 0,75 | 1005 | 1005 | 1005 | 1006 | 1006 | 1010 | 1014 | 1189 | 1402 | 1314 | 1160
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APPENDIX F

EXPERIMENTS FOR TOTAL TARDINESS PROBLEM (N=40)

Table F.1 Experiments for total tardiness problem (N=40)

No| = R Opt | Cons. | Cons. | Mdd [ Au | Psk | Cov- | Spt | Edd | Hod- | Mon-
Heu. + ert Gson | tag-
Imp. ne
Heu.
1 | 025 025]| 208 208 208 242 242 | 242 | 233 | 392 304 390 275
2 | 025] 025]| 407 407 407 416 | 428 | 425 | 454 | 860 709 749 517
3 1025]025] 256 256 256 263 270 | 350 | 270 | 398 369 344 330
4 | 025] 025 260 260 260 260 267 264 265 779 330 617 394
5 | 025] 025]| 218 218 218 218 218 | 222 | 218 | 507 | 426 396 264
6 | 025] 025] 233 233 233 233 252 | 281 | 237 | 685 359 415 358
7 | 025] 025 228 228 228 249 240 | 251 | 253 | 595 403 466 298
8 | 025] 0,25 | 245 245 245 260 246 267 261 507 399 289 286
9 | 025] 025 322 322 322 370 370 | 372 | 370 | 792 392 536 401
10 | 025 025 | 173 173 173 176 176 | 186 | 176 | 398 217 285 183
11 | 025 05 1 1 1 1 1 1 1 783 1 192 1
12 1 025 05 10 10 10 10 10 10 10 1377 10 422 10
13 | 025 05 0 0 0 0 0 0 0 1342 0 0 0
14 | 025 05 56 56 56 56 64 61 64 877 61 113 129
15| 025 05 66 66 66 66 66 76 66 [ 1035 91 373 96
16 | 025 05 8 8 8 8 8 8 8 1217 8 395 12
17 | 025 05 63 63 63 63 63 70 63 788 70 414 69
18 | 025 | 05 | 100 124 100 128 135 | 156 | 133 | 800 226 229 184
19 | 025 05 39 39 39 39 39 70 39 770 76 292 47
20| 0,25 | 05 9 9 9 9 19 9 9 626 9 329 19
21| 0,25 ] 0,75 0 0 0 0 0 0 0 1514 0 0 98
22 [ 025 0,75 0 0 0 0 0 0 0 1682 0 0 1692
23 [ 025[ 0,75 0 0 0 0 0 0 0 1170 0 0 250
24 | 0,25 | 0,75 0 0 0 0 0 0 0 255 0 0 9
25 [ 0,25 0,75 0 0 0 0 0 0 0 2115 0 0 92
26 | 025 0,75 0 0 0 0 0 0 0 395 0 0 397
27 [ 025 0,75 0 0 0 0 0 0 0 545 0 0 308
28 | 0,25 | 0,75 0 0 0 0 0 0 0 1316 0 0 760
29 [ 0,25 0,75 0 0 0 0 0 0 0 1549 0 0 327
30 [ 025 0,75 0 0 0 0 0 0 0 783 0 0 214
31 05 [ 025 2728 | 2739 | 2739 | 2786 | 2787 | 2829 | 2777 | 3257 | 3761 | 3134 | 3144
32 05 | 0,25 | 1766 | 1807 1766 1809 | 1824 | 1873 | 1832 | 2089 | 3091 2020 2109
33 [ 05 [ 025| 2009 | 2009 | 2009 [ 2033 | 2015 | 2086 | 2045 | 2611 | 3112 | 2593 | 2248
34| 05 [ 025] 1622 | 1629 | 1622 | 1689 | 1711 | 1839 | 1678 | 2045 | 3294 | 1939 | 2019
35 [ 05 [ 025] 2083 | 2180 | 2083 [ 2218 | 2239 | 2251 | 2239 | 2567 | 3269 | 2546 | 2392
36 | 05 | 025 2372 | 2372 2372 2399 | 2384 | 2399 | 2434 | 3114 | 2954 | 3002 2833
37 05 | 025| 1197 | 1310 | 1197 | 1310 | 1338 | 1383 | 1369 | 1541 | 2776 | 1450 | 1467
38 [ 05 [ 025 2125 | 2125 | 2125 | 2235 | 2150 | 2277 | 2189 | 2668 | 3009 | 2371 | 2671
39 [ 05 [025] 2567 | 2613 | 2567 [ 2703 | 2641 | 2938 | 2743 | 3250 | 4477 | 3135 | 3019
40 [ 05 | 0,25 | 2341 | 2344 2341 2396 | 2345 | 2449 | 2359 [ 3030 | 3450 2838 2651
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Table F.1 (Continued)

41| 05 | 05 | 1830 | 1834 | 1830 | 1898 | 1903 | 1916 | 1896 | 2995 | 2983 | 2443 | 2564
42 | 05 | 05 | 1405 | 1405 | 1405 | 1405 | 1425 | 1438 | 1409 | 2993 | 1985 | 2059 | 1794
43 | 05 | 05 | 1539 | 1631 | 1539 | 1648 | 1649 | 1650 | 1689 | 2794 | 2186 | 2182 | 2334
a4 | 05 | 05 | 1283 | 1283 | 1283 | 1283 | 1373 | 1415 | 1329 | 2468 | 2468 | 1659 | 2055
45 | 05 | 05 | 1577 | 1593 | 1577 | 1663 | 1666 | 1707 | 1684 | 3223 | 2587 | 2597 | 2477
46 | 05 | 05 | 1329 | 1330 | 1330 | 1345 | 1428 | 1496 | 1438 | 2102 | 2633 | 1724 | 1962
47 | 05 | 05 | 1276 | 1282 | 1282 | 1282 | 1285 | 1354 | 1331 | 2546 | 2009 | 1889 | 1997
48 | 05 | 05 | 1256 | 1262 | 1262 | 1267 | 1281 | 1394 | 1328 | 2431 | 2164 | 1854 | 1853
49 | 05 | 05 | 1688 | 1688 | 1688 | 1711 | 1719 | 1809 | 1784 | 3180 | 3134 | 1965 | 2382
50 | 05 | 05 | 1435 | 1435 | 1435 | 1435 | 1460 | 1534 | 1488 | 2485 | 2037 | 2176 | 1916
51| 05 | 0,75| 924 | 924 924 | 924 | 983 | 999 | 963 | 3709 | 1388 | 1836 | 1909
52 | 05 | 0,75| 353 | 353 353 | 353 | 386 | 426 | 396 | 1743 | 664 | 708 662

53 | 05 | 0,/5| 706 | 718 706 | 719 | 745 | 786 | 744 | 2865 | 1151 | 1242 | 1538
54 | 05| 075| 901 | 897 897 | 897 | 1009 | 1095 | 939 | 3645 | 1423 | 1903 | 1846
55 | 05 | 0,75 | 1987 | 1985 | 1980 | 2028 | 2040 | 2189 | 2040 | 4245 | 2753 | 2893 | 2816
56 | 05 | 0,75 | 1864 | 1937 | 1864 | 1927 | 1929 | 2030 | 2061 | 3800 | 3614 | 2183 | 2875
57 | 05 | 0,75 | 1076 | 1105 | 1078 | 1142 | 1150 | 1177 | 1131 | 3169 | 1607 | 1947 | 2115
58 | 05 | 0,75| 826 | 826 826 | 826 | 828 | 893 | 877 | 2155 | 1254 | 1018 | 1136
59 | 05 | 0,75| 546 | 546 546 | 546 | 615 | 659 | 552 | 2075 | 893 | 938 | 1197
60 | 05 | 0,75 | 474 | 474 474 | 474 | 482 | 508 | 475 | 2020 | 596 | 1135 | 924

61 | 0,75 | 025 | 4635 | 4691 | 4637 | 4639 | 4681 | 4766 | 4743 | 5085 | 8610 | 5085 | 4939
62 | 0,75 | 025 | 4579 | 4579 | 4579 | 4579 | 4603 | 4623 | 4717 | 4971 | 6639 | 5018 | 4953
63 | 0,75 | 0,25 | 6515 | 6542 | 6540 | 6683 | 6612 | 6709 | 6592 | 7064 | 9338 | 7155 | 7007
64 | 0,75 | 025 | 3440 | 3440 | 3440 | 3440 | 3457 | 3672 | 3531 | 3924 | 5052 | 3770 | 3862
65 | 0,75 | 025 | 6067 | 6158 | 6071 | 6358 | 6213 | 6470 | 6259 | 6546 | 10137 | 6692 | 6586
66 | 0,75 | 0,25 | 6428 | 6721 | 6428 | 6826 | 6833 | 7142 | 6816 | 6918 | 10657 | 7110 | 6917
67 | 0,75 | 025 | 5192 | 5259 | 5192 | 5442 | 5248 | 5450 | 5312 | 5602 | 7922 | 6004 | 5545
68 | 0,75 | 0,25 | 5354 | 5362 | 5354 | 5441 | 5400 | 5466 | 5415 | 5848 | 8697 | 5885 | 5794
69 | 0,75 | 0,25 | 5893 | 6003 | 5894 | 6065 | 6094 | 6450 | 6131 | 6316 | 8949 | 6482 | 6283
70 | 0,75 | 0,25 | 6626 | 6682 | 6667 | 6766 | 6838 | 6883 | 6825 | 7134 | 10883 | 7105 | 7142
71| 0,75| 05 | 5389 | 5493 | 5382 | 5590 | 5593 | 5661 | 5564 | 6388 | 9214 | 5976 | 6400
72 | 0,75| 05 | 5905 | 5900 | 5894 | 5933 | 5936 | 6287 | 6301 | 6676 | 8534 | 6587 | 6643
73 | 0,75| 05 | 5133 | 5140 | 5133 | 5150 | 5242 | 5338 | 5378 | 6287 | 8698 | 5835 | 5995
74 | 075 05 | 5144 | 5143 | 5143 | 5153 | 5164 | 5251 | 5448 | 6120 | 9260 | 5727 | 6077
75 | 0,75| 05 | 5278 | 5512 | 5292 | 5535 | 5539 | 5580 | 5682 | 6352 | 9135 | 6332 | 5971
76 | 0,75 | 05 | 4644 | 4668 | 4644 | 4644 | 4652 | 5066 | 5086 | 5469 | 7820 | 5604 | 5186
77 | 075 | 05 | 4461 | 4475 | 4461 | 4565 | 4570 | 4756 | 4548 | 4997 | 7723 | 5289 | 4998
78 | 0,75| 05 | 5573 | 5622 | 5570 | 5559 | 5739 | 5848 | 5925 | 6718 | 9948 | 6058 | 6601
79 | 0,75 | 05 | 4382 | 4480 | 4368 | 4368 | 4616 | 4656 | 4680 | 5387 | 9027 | 5060 | 5033
80 | 0,75| 05 | 5734 | 5735 | 5705 | 5739 | 5747 | 6028 | 6239 | 6696 | 9249 | 6265 | 6472
81 | 0,75 | 0,75 | 6245 | 6220 | 6207 | 6276 | 6280 | 6345 | 6944 | 7557 | 10117 | 10626 | 7181
82 | 0,75 | 0,75 | 3390 | 3363 | 3353 | 3468 | 3472 | 3551 | 4969 | 4578 | 6636 | 4714 | 4322
83 | 0,75 | 0,75 | 5318 | 5304 | 5304 | 5306 | 5306 | 5355 | 5726 | 6376 | 8354 | 7142 | 6048
84 | 0,75 | 0,75 | 4486 | 4476 | 4472 | 4529 | 4539 | 4630 | 4904 | 5575 | 7484 | 5460 | 5233
85 | 0,75 | 0,75 | 5340 | 5323 | 5321 | 5321 | 5351 | 5518 | 5756 | 6471 | 8465 | 7090 | 6046
86 | 0,75 | 0,75 | 5396 | 5432 | 5386 | 5386 | 5414 | 5517 | 5501 | 6660 | 8448 | 7413 | 6257
87 | 0,75 | 0,75 | 2945 | 2921 | 2919 | 2934 | 2982 | 3166 | 3095 | 3745 | 5918 | 394 | 3584
88 | 0,75 | 0,75 | 5806 | 5799 | 5799 | 5803 | 5831 | 5918 | 5869 | 7439 | 8639 | 8172 | 6474
89 | 0,75 | 0,75 | 5066 | 5034 | 5034 | 5034 | 5034 | 5216 | 5268 | 6693 | 7605 | 7385 | 6023
90 | 0,75 | 0,75 | 5155 | 5132 | 5132 | 5135 | 5161 | 5219 | 5530 | 6213 | 7909 | 8724 | 5874

* Values written bold in the column of optimal value are not exact optimum.
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APPENDIX G

EXPERIMENTS FOR TOTAL TARDINESS PROBLEM (N=50)

Table G.1 Experiments for total tardiness problem (N=50)

No| = R Opt [ Cons. | Cons. [ Mdd | Au Psk | Cov- | Spt | Edd | Hod- [ Mon-
Heu. + ert Gson | tag-
Imp. ne
Heu.
1 0,25 0,25 641 676 641 708 757 860 754 1257 1634 1012 905
2 0,25 0,25 504 504 504 504 517 526 530 755 658 715 539
3 0,25 0,25 538 539 538 635 627 666 627 1229 944 1034 649
4 0,25 0,25 570 570 570 570 570 640 585 1341 896 1087 654
5 0,25 0,25 359 359 359 373 375 510 367 985 644 783 609
6 0,25 0,25 453 453 453 453 457 494 453 1271 618 1051 483
7 0,25 0,25 536 536 536 589 578 613 584 1480 940 882 631
8 0,25 0,25 430 461 430 473 485 503 474 1195 726 907 534
9 0,25 0,25 582 632 582 681 660 703 675 1732 976 1316 918
10 0,25 0,25 587 587 587 587 603 631 592 1743 897 1123 843
11 0,25 0,5 12 12 12 12 12 12 12 2465 12 609 39
12 0,25 0,5 4 4 4 4 32 4 4 1103 4 567 70
13 0,25 0,5 9 9 9 9 19 9 9 1657 9 491 15
14 0,25 0,5 143 143 143 143 164 205 143 2555 205 1244 191
15 0,25 0,5 30 30 30 30 30 30 30 1821 30 476 32
16 0,25 0,5 29 29 29 29 29 29 29 1508 29 473 29
17 0,25 0,5 22 22 22 22 24 29 22 1545 29 338 34
18 0,25 0,5 15 15 15 15 15 15 15 959 15 227 70
19 0,25 0,5 1 1 1 1 1 1 1 2021 1 605 1
20 0,25 0,5 4 4 4 4 4 4 4 1918 4 452 4
21 0,25 0,75 0 0 0 0 0 0 0 3011 0 0 1474
22 0,25 0,75 0 0 0 0 0 0 0 1759 0 0 70
23 0,25 0,75 0 0 0 0 0 0 0 2026 0 0 272
24 0,25 0,75 0 0 0 0 0 0 0 1432 0 0 313
25 0,25 0,75 0 0 0 0 0 0 0 2951 0 0 892
26 0,25 0,75 0 0 0 0 0 0 0 4448 0 0 412
27 0,25 0,75 0 0 0 0 0 0 0 1115 0 0 736
28 0,25 0,75 0 0 0 0 0 0 0 1884 0 0 3
29 0,25 0,75 0 0 0 0 0 0 0 1248 0 0 1768
30 0,25 0,75 0 0 0 0 0 0 0 2990 0 0 207
31 0,5 0,25 3550 3796 3550 3771 3786 3886 3834 4412 8432 4033 4199
32 0,5 0,25 4718 4849 4718 4829 4847 5056 4929 5695 6550 5457 5366
33 0,5 0,25 3881 3898 3881 4043 4059 4148 3918 5160 5824 5042 4931
3 | 05 | 025 | 3846 3846 3846 3981 3906 | 4227 3951 | 4829 | 6397 4653 4448
35 0,5 0,25 4689 4698 4689 4911 4756 5000 4766 5816 7130 5620 5472
36 | 05 | 025 | 3864 4005 3873 3993 3996 | 4102 4055 | 4929 | 5110 4853 4695
37 0,5 0,25 3732 3757 3739 3773 3787 3807 3777 4818 5314 4484 4288
38 | 05 | 025 | 4702 4750 4750 4784 4759 | 4866 4837 | 5916 | 8247 5461 5669
39 0,5 0,25 3947 4049 3951 4046 4070 4331 4187 4854 7849 4535 4772
40 | o5 | 0,25 | 4336 4509 4380 4621 4654 | 5127 4550 | 5577 | 7266 5069 5360
41 0,5 0,5 2212 2216 2216 2212 2218 2364 2294 4519 3316 3097 3265
42 0,5 0,5 2811 2908 2809 2918 2935 3024 2960 5947 4262 4266 3913
43 0,5 0,5 2926 2976 2923 3067 3073 3132 3048 6881 4241 4674 4594
44 0,5 0,5 2006 2019 2019 2049 2040 2053 2080 3992 3411 3188 2843
45 0,5 0,5 3558 3554 3554 3586 3604 3636 3974 5326 5903 4274 4876
46 0,5 0,5 2467 2467 2467 2467 2471 2598 2633 4870 4340 3081 3922
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Table G.1 (Continued)

47 0,5 0,5 3861 3914 3867 3901 3914 4105 3980 6400 7053 5093 5431
48 0,5 0,5 3300 3300 3300 3330 3331 3413 3415 6165 4388 5241 5185
49 0,5 0,5 2767 2767 2767 2767 2771 2947 2824 4562 3865 3367 3573
50 0,5 0,5 2244 2244 2244 2244 2251 2552 2380 5325 3919 3070 3777
51 0,5 0,75 3346 3288 3288 3362 3416 3602 3516 7699 6424 3823 5352
52 0,5 0,75 1145 1145 1145 1149 1194 1219 1187 5885 1609 2828 2546
53 0,5 0,75 1606 1685 1606 1676 1687 1718 1804 5238 2511 2658 3213
54 0,5 0,75 1330 1289 1270 1281 1305 1353 1355 6077 2042 3087 3174
55 0,5 0,75 2067 2060 2042 2014 2131 2297 2239 6023 3679 3342 3934
56 0,5 0,75 1177 1247 1176 1258 1262 1362 1236 5152 1916 1916 2711
57 0,5 0,75 1932 1751 1751 1751 1949 2012 2023 9252 2787 3785 4059
58 0,5 0,75 3431 3532 3446 3559 3594 3715 3714 8535 5281 4587 5547
59 0,5 0,75 1836 1818 1818 1819 1855 2061 1952 7983 2827 3317 4017
60 0,5 0,75 2089 2094 2089 2089 2123 2197 2301 5592 3225 2694 4009
61 0,75 0,25 9291 9427 9291 9455 9474 9932 9994 9995 14102 | 10256 9954
62 0,75 0,25 11736 12227 11736 12192 12222 | 12270 | 12328 | 12816 | 19039 | 13244 12759
63 0,75 0,25 11299 11299 11299 11573 11591 | 11618 | 11443 | 12201 | 16358 | 12380 12067
64 0,75 0,25 9441 9610 9463 9610 9719 9949 9735 10233 | 15690 | 10574 10266
65 0,75 0,25 12248 12251 12248 12438 12380 | 12513 | 12495 | 13326 | 21328 | 13269 13362
66 0,75 0,25 8993 9340 8987 9544 9469 9654 9365 9696 17665 | 10231 9676
67 0,75 0,25 11090 11619 11097 11539 11541 | 11693 | 11538 | 12180 | 19143 12100 12279
68 0,75 0,25 9149 9457 9161 9413 9327 9887 9443 9979 16768 | 10220 9995
69 0,75 0,25 9677 10101 9677 10101 10055 | 10393 | 10658 | 10573 | 16237 | 10901 10443
70 0,75 0,25 10901 11165 10901 11489 11426 | 11596 | 11179 | 11702 | 17746 | 12117 11752
71 0,75 0,5 10186 10162 10162 10213 10216 | 10446 | 10429 | 12470 | 16815 | 11945 11877
72 0,75 0,5 9281 9259 9237 9247 9257 9690 9676 11019 | 16972 9981 10694
73 0,75 0,5 9077 9214 9068 9090 9335 9493 9496 10914 | 14243 | 10116 10642
74 0,75 0,5 8425 8507 8364 8412 8414 8729 8774 10445 | 15473 9939 10056
75 0,75 0,5 10352 10376 10348 10399 10432 | 10750 | 10739 | 12380 | 19221 | 11683 12195
76 0,75 0,5 9145 9112 9088 9121 9122 9320 9208 10888 | 15874 | 11018 10632
77 0,75 0,5 10120 10069 10035 10035 10048 | 10304 | 10562 | 12177 | 19824 | 10900 12165
78 0,75 0,5 11692 11866 11645 11924 11930 | 12084 | 12011 | 13390 | 20710 | 12750 13385
79 0,75 0,5 8966 8954 8871 8942 9005 9411 9366 11095 | 14963 | 10264 10616
80 0,75 0,5 8235 8201 8201 8201 8224 8530 8365 9577 15553 9369 9531
81 0,75 0,75 8614 8533 8533 8560 8624 8757 8819 11034 | 15978 | 11961 10447
82 0,75 0,75 8701 8620 8611 8611 8671 8831 9015 11024 | 14420 | 11928 10555
83 0,75 0,75 | 11322 11346 11285 11292 11292 | 11483 | 11677 | 13311 | 16320 | 16820 12895
84 0,75 0,75 | 13890 13871 13871 13847 13850 | 14071 | 14122 | 16634 | 21253 16370 15829
85 0,75 0,75 8289 8360 8213 8217 8423 8553 8619 11198 | 14491 | 13200 10368
86 0,75 0,75 9938 9770 9767 9784 9821 10033 9955 13471 | 14364 | 14215 11818
87 0,75 0,75 | 12357 12050 12017 12050 12072 | 12294 | 12477 | 15537 | 18695 | 17130 14190
88 0,75 0,75 | 11524 11417 11417 11417 11484 | 11579 | 12034 | 14040 | 17412 | 19846 12800
89 0,75 0,75 9058 8916 8915 8915 8994 9083 9300 11491 | 15905 [ 13841 10657
90 0,75 0,75 | 11503 11187 11187 11235 11243 | 11274 | 11512 | 14758 | 16342 | 15743 12718

* Values written bold in the column of optimal value are not exact optimum.

96




APPENDIX H

EXPERIMENTS FOR TOTAL TARDINESS PROBLEM (N=100)

Table H.1 Experiments for total tardiness problem (N=100)

No| = R | Opt | Cons. | Cons. | Mdd | Au Psk | Cov- Spt Edd | Hod- | Mon-
Heu. + ert gson | tag-
Imp. ne
Heu.
1 0,25 0,25 3288 3305 3300 3625 3491 4245 3373 8767 5867 6989 5119
2 0,25 0,25 3402 3424 3402 3613 3590 3791 3465 8163 6729 6034 4390
3 0,25 0,25 3166 3203 3203 3267 3207 3443 3203 9096 4855 5743 4058
4 0,25 0,25 4882 5090 4985 4992 5131 5235 5103 14937 7720 11666 5591
5 0,25 0,25 4931 5152 5084 5355 5264 5459 5370 13313 8309 8553 6704
6 0,25 0,25 3930 3947 3944 4077 4164 4106 4036 10342 6288 6715 5121
7 0,25 0,25 4108 4144 4108 4401 4166 4504 4283 10809 6058 8372 5085
8 0,25 0,25 3481 3530 3517 3481 3768 3576 3571 10555 5876 8180 4598
9 0,25 0,25 3821 3952 3821 4006 4136 4092 4067 9121 6380 6728 4990
10 0,25 0,25 3020 3034 3030 3208 3179 3372 3102 9703 6150 6752 3961
11 0,25 0,5 6 6 6 6 7 6 6 6779 6 1770 7
12 0,25 0,5 12 12 12 12 12 12 12 9062 12 461 12
13 0,25 0,5 23 23 23 23 103 23 23 7758 23 777 55
14 0,25 0,5 2 2 2 2 28 2 2 12551 2 1957 10
15 0,25 0,5 136 136 136 136 169 167 151 10737 170 311 193
16 0,25 0,5 37 37 37 37 73 37 37 9249 37 695 41
17 0,25 0,5 28 28 28 28 33 28 28 8740 28 2024 33
18 0,25 0,5 3 3 3 3 3 3 3 12999 3 1999 3
19 0,25 0,5 15 15 15 15 15 15 15 11822 15 347 15
20 0,25 0,5 123 123 123 125 329 125 123 14585 135 763 648
21 0,25 0,75 0 0 0 0 0 0 0 17096 0 0 1332
22 0,25 0,75 0 0 0 0 0 0 0 11815 0 0 1837
23 0,25 0,75 0 0 0 0 0 0 0 8478 0 0 29
24 0,25 0,75 0 0 0 0 0 0 0 13451 0 0 1832
25 0,25 0,75 0 0 0 0 0 0 0 21018 0 0 1632
26 0,25 0,75 0 0 0 0 0 0 0 9584 0 0 539
27 0,25 0,75 0 0 0 0 0 0 0 17271 0 0 2970
28 0,25 0,75 0 0 0 0 0 0 0 17877 0 0 3202
29 0,25 0,75 0 0 0 0 0 0 0 12497 0 0 2181
30 0,25 0,75 0 0 0 0 0 0 0 20970 0 0 4741
31 0,5 0,25 30114 31322 30114 32185 31436 32836 31595 37960 45052 36110 36333
32 0,5 0,25 26947 27972 27279 28218 27992 28560 28199 34019 46506 30981 32221
33 0,5 0,25 36834 37638 37018 38291 37826 39267 38244 47645 59217 42896 43042
34 0,5 0,25 29610 29953 29724 30380 30037 30489 30218 38297 48209 35130 36393
35 0,5 0,25 28917 30166 28986 30780 30230 31107 30492 35949 50754 33487 33909
36 0,5 0,25 29974 30124 30109 30631 30561 31332 30725 39146 56668 35470 37264
37 0,5 0,25 27144 28250 27280 28376 28252 28669 28628 33964 45837 30752 32092
38 0,5 0,25 35112 36089 35372 35870 36064 35966 36169 46375 51842 42166 42108
39 0,5 0,25 33872 34797 33961 35177 34780 36432 35060 40646 54689 38696 39639
40 0,5 0,25 30211 31875 30310 31911 32057 33230 31781 37967 56679 34948 35072
41 0,5 0,5 20433 21536 20409 20967 21040 21564 22209 45671 33868 25208 34041
42 0,5 0,5 16150 16192 16149 16483 16294 16630 16803 34648 25592 22362 23185
43 0,5 0,5 19486 20036 19483 20035 20153 20302 20383 43804 31065 28572 30974
a4 0,5 0,5 18152 18833 18136 18727 18983 19145 18954 42715 28358 29034 28304
45 0,5 0,5 21390 22221 21382 22629 22385 22811 22617 40191 38522 26489 31790
46 0,5 0,5 20877 21426 20825 21403 21584 21837 21641 38286 34627 28539 30767
a7 0,5 0,5 20189 20282 20108 20444 20549 21205 21371 40843 35757 25089 31394
48 0,5 0,5 19016 19413 19034 19666 19476 19986 20107 41306 30008 25415 29756
49 0,5 0,5 21252 21302 21218 21261 21546 22078 21777 39848 38286 27577 32679
50 0,5 0,5 18357 19067 18345 19170 19028 19546 19280 33562 30117 27534 27374
51 0,5 0,75 12680 12570 12272 12618 12626 13576 12887 54608 20320 21024 29218
52 0,5 0,75 11198 11171 10975 11239 11287 11652 11667 45616 20460 18087 23918
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Table H.1 (Continued)
53 0,5 0,75 6488 6549 6549 6550 6643 7116 6952 42907 10428 16402 18049
54 0,5 0,75 10087 10078 9802 10045 10108 10331 11099 45421 14550 17227 23377
55 0,5 0,75 14689 13523 13523 13527 13594 14423 14419 45629 23516 20464 27975
56 0,5 0,75 5330 5280 5280 5280 5321 5677 5498 36285 8968 14979 15154
57 0,5 0,75 21590 20569 20090 20584 20690 21309 22255 55428 37435 28319 35281
58 0,5 0,75 14199 13490 13209 13257 13574 14807 14794 52682 23859 20277 28552
59 0,5 0,75 17346 17183 16674 17294 17361 18351 18821 55439 27043 26052 33589
60 0,5 0,75 12930 13413 12902 13424 13471 13756 13946 53290 20780 21684 26340
61 0,75 0,25 73055 75547 73032 75937 75066 76108 74769 78919 123583 80136 78259
62 0,75 0,25 82819 85708 83036 85769 86200 87269 86087 89237 137147 91533 89489
63 0,75 0,25 80984 84007 80975 83307 83627 84506 85327 89868 128793 91672 88506
64 0,75 0,25 87261 90599 87655 91254 89834 91667 91734 93559 140303 94617 93134
65 0,75 0,25 79533 81796 79512 81472 81411 82478 82837 87435 132529 87830 87160
66 0,75 0,25 85277 87021 85427 86556 86866 87259 88953 94233 136040 92458 94262
67 0,75 0,25 69914 72519 69903 72311 70606 72898 72822 77086 125504 77722 75857
68 0,75 0,25 88260 89500 88270 89407 89548 90014 90028 97560 139836 97015 96117
69 0,75 0,25 94676 96439 94671 95830 96142 96364 96425 105972 152681 105085 104313
70 0,75 0,25 91970 96435 91970 96423 94094 98621 96691 96573 142650 100187 96946
71 0,75 0,5 78150 77209 77034 77238 77203 77898 78647 91891 137483 83264 87800
72 0,75 0,5 67860 68065 67634 67959 68046 68519 69313 83006 108197 75211 78340
73 0,75 0,5 83213 82185 81965 82024 82124 82905 82988 101115 132058 94911 96213
74 0,75 0,5 62253 61247 61020 61120 61199 62080 62822 78276 107505 68553 74758
75 0,75 0,5 64592 64005 63911 64027 64087 64901 64346 80247 122109 74232 76747
76 0,75 0,5 76500 76189 75598 75742 75773 76974 78820 89223 130760 82555 88524
77 0,75 0,5 72069 71295 71258 71250 71308 71925 72865 91046 123700 79628 88105
78 0,75 0,5 54003 53952 53290 53605 54035 54769 55476 66839 104356 62056 64610
79 0,75 0,5 79638 79269 78744 78670 78744 80850 80643 97406 130418 86758 94222
80 0,75 0,5 68561 68218 67771 67794 67887 69388 69905 81986 112084 74917 78640
81 0,75 0,75 85302 82447 82292 82316 82437 82981 83191 102096 139820 106512 96867
82 0,75 0,75 86045 82052 81940 81907 82067 82780 82992 104856 140246 109101 97740
83 0,75 0,75 55093 54019 53843 53750 53816 55030 55355 73106 78807 80550 67448
84 0,75 | 0,75 | 94265 90102 89719 89703 89879 | 90436 93037 119591 | 146423 111332 109489
85 0,75 0,75 72843 70003 69994 70080 70211 70843 71038 97141 115667 92131 87277
86 0,75 0,75 64809 61843 61600 61710 61815 62526 63142 82016 116939 79553 76982
87 0,75 0,75 92252 89056 88938 88938 88967 89584 90619 109830 137238 114952 100723
88 0,75 0,75 80488 77597 77402 77367 77485 78093 80388 98224 136186 104544 91007
89 0,75 0,75 76653 74058 73919 73958 74019 74542 75743 94779 125265 96797 87694
90 0,75 0,75 79912 76029 75819 75974 76212 76783 77076 100623 129191 103078 91703

* Values written bold in the column of optimal value are not exact optimum.
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EXPERIMENTS FOR TOTAL WEIGHTED TARDINESS

APPENDIX |

PROBLEM (N=20)

Table 1.1 Experiments for total weighted tardiness problem (N=20)

No T R Opt | Cons. | Cons. Au Greedy [ Edd [ WEdd | Swpt | Mont-
Heu. + Agne
Imp.
Heu.
1 025 | 025 190 190 190 235 190 470 369 400 307
2 0,25 | 0,25 165 165 165 167 169 221 258 371 173
3 025 | 0,25 112 112 112 129 129 239 288 253 200
4 025 | 025 170 170 170 189 178 477 375 319 186
5 0,25 | 025 174 174 174 194 218 452 252 263 237
6 0,25 | 0,25 283 283 283 340 331 470 784 694 474
7 025 | 0,25 66 66 66 126 66 143 181 192 147
8 025 | 0,25 172 172 172 187 172 441 297 353 187
9 025 | 025 96 96 96 132 96 498 262 216 196
10 025 | 0,25 48 48 48 72 48 433 99 126 90
11 025 | 05 9 9 9 25 9 9 131 553 12
12 025 | 05 14 14 14 30 14 14 71 136 14
13 025 | 05 29 29 29 33 29 162 144 190 93
14 025 | 05 20 20 20 20 20 24 122 212 36
15 025 | 05 54 54 54 108 128 117 243 357 182
16 025 | 05 27 27 27 89 74 27 601 1386 187
17 025 | 05 24 24 24 54 24 24 679 691 168
18 025 | 05 8 8 8 31 28 10 142 124 13
19 025 | 05 53 53 53 53 53 72 164 268 61
20 025 | 05 12 12 12 35 35 12 189 57 22
21 025 | 0,75 0 0 0 8 0 0 251 381 94
22 025 | 0,75 66 70 70 85 70 254 344 862 316
23 025 | 0,75 0 0 0 0 0 0 256 608 337
24 025 | 0,75 0 0 0 0 0 0 398 596 231
25 025 | 0,75 0 0 0 0 0 0 604 926 262
26 025 | 0,75 0 0 0 0 0 0 331 601 220
27 0,25 | 0,75 12 12 12 32 200 15 768 1227 418
28 025 | 0,75 0 0 0 72 0 0 458 649 351
29 025 | 0,75 0 0 0 0 0 0 23 279 93
30 025 | 0,75 0 0 0 7 0 0 326 376 159
31 05 | 025 839 839 839 884 839 3711 1357 965 965
32 05 [ 025 1124 1124 1124 1204 1204 4358 1650 1509 1522
33 05 | 025 668 668 668 742 774 2811 952 864 798
34 05 | 025 986 986 986 1073 1169 2699 1313 1344 1226
35 05 [ 025] 1595 1620 1620 1698 1736 3355 2236 1778 1730
36 05 | 025 | 1038 1038 1038 1038 1078 1920 1547 1276 1250
37 05 | 025 750 765 750 775 775 2461 902 846 835
38 05 | 025 644 648 648 648 652 2136 811 735 670
39 05 [025] 1820 1925 1820 1852 2079 3069 2999 2277 2188
40 05 | 025 707 707 707 760 736 2384 939 798 804
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Table 1.1 (Continued)

a1 05 | 05 548 548 548 576 561 1946 918 1127 962
42 05 | 05 276 315 315 319 315 1064 523 683 470
a3 05 | 05 | 1099 | 1099 | 1099 | 1142 1116 2944 | 1495 1550 | 1210
a4 05 | 05 939 957 957 967 968 2897 | 2080 1707 | 1300
45 05 | 05 610 610 610 707 610 2374 | 1159 992 900
46 05 | 05 655 655 655 882 655 1680 | 1043 1095 | 1032
a7 05 | 05 | 1223 | 1223 | 1223 | 1317 1353 2996 | 2375 2177 | 1598
a8 05 | 05 213 231 231 253 231 464 551 640 414
49 05 | 05 863 879 863 1051 930 2040 | 1334 1498 | 1131
50 05 | 05 | 1542 | 1542 | 1542 | 1625 1639 4118 | 1934 2282 | 1938
51 05 | 075 | 174 174 174 213 221 459 461 1116 375
52 05 | 075 | 897 897 897 999 897 2888 | 1552 2070 | 1570
53 05 | 0,75 | 558 558 558 597 569 1770 829 1155 970
54 05 | 075 | 429 491 491 530 585 841 1434 1830 734
55 05 | 075 | 442 442 442 491 751 986 1192 1244 919
56 05 | 075 | 461 498 498 644 598 1541 | 1282 1431 911
57 05 | 0,75 | 29 295 295 403 370 803 865 1170 849
58 05 | 075 | 227 227 227 282 431 608 1036 1647 553
59 05 | 075 | 2537 | 2572 | 2537 | 2625 2774 4802 | 4127 4212 | 3614
60 05 | 0,75 | 384 392 392 498 400 1866 831 1413 | 1012
61 0,75 | 025 | 3346 | 3447 | 3343 | 3388 3466 6214 | 4303 3643 | 3620
62 075 | 025 | 2223 | 2223 | 2223 | 2229 2471 4699 | 3584 2511 | 2529
63 0,75 | 0,25 | 3119 | 3251 | 3119 | 3190 3280 7708 | 4707 3375 | 3361
64 0,75 | 025 | 2180 | 2180 | 2180 | 2220 2220 4462 | 2854 2408 | 2408
65 0,75 | 025 | 2159 | 2159 | 2159 | 2175 2355 6952 | 3056 2523 | 2498
66 0,75 | 0,25 | 3068 | 3105 | 3105 | 3112 3105 7554 | 4105 3309 | 3264
67 0,75 | 025 | 3191 | 3209 | 3209 | 3270 3338 5644 | 4035 3519 | 3457
68 0,75 | 025 | 3455 | 3455 | 3455 | 3585 3560 7554 | 4754 | 4073 | 3950
69 0,75 | 025 | 2509 | 2509 | 2509 | 2541 2509 5424 | 3753 2695 | 2701
70 075 | 025 | 3402 | 3402 | 3402 | 3410 3508 7201 | 4615 3607 | 3615
71 075 | 05 | 3094 | 3094 | 3094 | 3221 3094 7114 | 5322 3957 | 3505
72 075 | 05 | 3217 | 3222 | 3222 | 3262 3282 5343 | 5046 | 3930 | 3773
73 0,75 | 05 | 2170 | 2230 | 2230 | 2182 2325 3931 | 2901 2548 | 2468
74 075 | 05 | 3655 | 3663 | 3663 | 3767 3712 7715 | 5389 4233 | 4188
75 075 | 05 | 4028 | 4011 | 4011 | 4132 4071 8821 | 7850 | 4367 | 4460
76 0,75 | 05 | 2813 | 2813 | 2813 | 2862 2813 7941 | 4563 3538 | 3472
77 075 | 05 | 4288 | 4288 | 4288 | 4381 4345 7312 | 5490 | 5320 | 4988
78 075 | 05 | 1821 | 1821 | 1821 | 1999 1833 5726 | 3101 2477 | 2444
79 075 | 05 | 2116 | 2116 | 2116 | 2186 2186 6873 | 2663 2883 | 2509
80 075 | 05 | 2654 | 2654 | 2654 | 2719 2666 5430 | 5151 3114 | 2823
81 0,75 | 0,75 | 1251 | 1228 | 1220 | 1268 1277 3669 | 1780 1906 | 1781
82 0,75 | 0,75 | 1172 | 1172 | 1172 | 1338 1293 5357 | 2473 1957 | 1705
83 0,75 | 0,75 | 2551 | 2547 | 2547 | 2565 2708 5092 | 4179 3194 | 2968
84 0,75 | 0,75 | 3506 | 3506 | 3506 | 3620 3506 7647 | 6488 | 3860 | 3743
85 0,75 | 0,75 | 1892 | 1895 | 1883 | 2076 2070 4860 | 3141 2993 | 2661
86 075 | 075 | 3792 | 3792 | 3792 | 3950 3837 7514 | 5553 5114 | 4559
87 0,75 | 0,75 | 5097 | 5097 | 5097 | 5161 5168 7781 | 7140 | 5989 | 5959
88 0,75 | 0,75 | 2030 | 2030 | 2030 | 2150 2080 3177 | 2853 2370 | 2256
89 0,75 | 0,75 | 3606 | 3606 | 3606 | 3671 3713 7231 | 4918 | 4703 | 4157
90 075 | 075 | 5995 | 5995 | 5995 | 6090 6130 9751 | 891 7341 | 6690

* Values written bold in the column of optimal value are not exact optimum.
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EXPERIMENTS FOR TOTAL WEIGHTED TARDINESS

APPENDIXJ

PROBLEM (N=40)

Table J.1 Experiments for total weighted tardiness problem (N=40)

No T R Opt | Cons. | Cons. Au Greedy [ Edd [ WEdd | Swpt | Mont-
Heu. + Agne
Imp.
Heu.
1 0,25 | 0,25 356 359 359 401 359 1498 673 607 608
2 025 | 025 | 1314 1399 1274 1314 1990 4332 3077 2405 2280
3 025 | 0,25 604 665 665 686 665 2723 1704 1837 1101
4 025 | 0,25 508 718 508 913 718 2181 1760 1246 928
5 0,25 | 0,25 571 571 571 800 769 2842 1655 1409 793
6 0,25 | 0,25 582 582 582 700 756 2478 1567 1334 900
7 025 | 0,25 371 442 371 414 442 1614 1071 995 863
8 025 | 025 | 1024 1024 1024 1269 1627 1749 2774 1671 1268
9 0,25 | 0,25 659 745 745 798 863 2629 1618 1437 1148
10 025 | 0,25 795 795 795 933 1118 1680 2636 1816 907
11 025 | 05 8 8 8 60 8 8 2292 2342 185
12 025 | 05 25 25 25 84 77 50 3098 5156 421
13 025 | 05 0 0 0 15 0 0 3130 4033 247
14 025 | 05 168 242 219 233 242 379 772 1127 792
15 025 | 05 252 252 252 412 252 597 3282 2664 1088
16 025 | 05 22 22 22 40 22 24 1739 2132 475
17 025 [ 05 123 123 123 147 295 282 1234 1169 202
18 025 | 05 256 256 256 406 256 1570 1797 2986 1268
19 025 | 05 47 47 47 124 47 200 1140 830 333
20 025 | 05 31 31 31 44 31 32 1496 2692 141
21 025 | 0,75 0 0 0 0 0 0 1279 1967 1006
22 0,25 | 0,75 0 0 0 0 0 0 1240 3190 2654
23 025 | 0,75 0 0 0 0 0 0 2115 3849 1302
24 025 | 0,75 0 0 0 0 0 0 738 929 164
25 025 | 0,75 0 0 0 0 0 0 3399 5781 1614
26 025 | 0,75 0 0 0 0 0 0 1309 1698 1270
27 025 | 0,75 0 0 0 0 0 0 933 1132 1017
28 025 | 0,75 0 0 0 0 0 0 464 2655 3476
29 0,25 | 0,75 0 0 0 0 0 0 1846 3098 1795
30 025 | 0,75 0 0 0 0 0 0 1811 3716 1644
31 05 | 0,25 | 10288 | 10350 | 10288 | 10645 | 11165 24330 | 16092 | 13116 | 12197
32 05 [ 025 | 5899 6231 5854 6487 6231 18088 [ 9917 7188 7025
33 05 | 025 | 4188 3968 3968 4008 4583 14607 | 6957 5502 5186
34 05 [ 025 | 5640 5942 5603 5970 6174 19709 | 9045 7098 6821
35 05 [ 025 | 4493 4684 4549 5169 4753 14740 | 6570 5537 5107
36 05 | 025 | 6100 6389 6100 7202 6769 16676 | 9638 7890 7003
37 05 | 025 | 4017 3996 3961 4351 4153 12984 | 7308 4989 4955
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Table J.1 (Continued)

38 0,5 0,25 6357 6836 6327 8073 7398 19214 11950 9060 8039
39 0,5 0,25 6028 6487 5830 7455 7185 21585 9546 8176 7586
40 0,5 0,25 4822 5397 4804 5202 5539 21371 9174 8000 6385
41 0,5 0,5 10070 10196 10167 11734 11242 19732 17430 15904 13103
42 0,5 0,5 2945 2977 2700 3563 3076 11860 7358 10095 5778
43 0,5 0,5 3772 3833 3772 3860 4180 10090 6572 8440 6768
44 0,5 0,5 2593 2779 2584 2949 3452 13191 7296 8038 5271
45 0,5 0,5 5686 5802 5656 6771 8539 16921 12179 12481 8806
46 0,5 0,5 4450 4993 4280 5034 5597 17732 10145 9452 6912
47 0,5 0,5 3319 3811 3265 4547 3800 12091 7111 8560 6249
48 0,5 0,5 2412 2348 2348 2552 3364 12131 5216 5819 4657
49 0,5 0,5 6374 6055 6055 7322 6376 18848 12290 14750 9788
50 0,5 0,5 4912 4925 4924 5239 5207 11904 7513 10066 7143
51 0,5 0,75 2987 3134 2937 3610 3390 7973 7860 14208 7624
52 0,5 0,75 697 686 686 793 1305 2924 3141 4691 2878
53 0,5 0,75 1488 1654 1476 1964 1663 7415 4235 6946 4550
54 0,5 0,75 2949 2691 2691 3195 4042 8941 11429 15560 8905
55 0,5 0,75 3592 3207 3193 3526 3512 13355 8480 14250 7539
56 0,5 0,75 6274 6448 6377 6975 7179 20468 12199 15219 10051
57 0,5 0,75 2768 3187 3092 4010 3092 9787 8258 7678 5145
58 0,5 0,75 1925 1909 1909 2305 1925 7643 5666 9799 4067
59 0,5 0,75 2381 2575 2189 2775 3016 5485 6773 8062 5266
60 0,5 0,75 1534 1530 1530 1700 2843 3020 6170 8567 4829
61 0,75 | 0,25 | 15527 15440 15426 15682 15677 43837 21813 17289 17014
62 0,75 | 0,25 | 22860 | 23148 22860 | 22836 25029 42230 29960 26543 25086
63 0,75 | 0,25 | 31584 | 32016 31592 31807 32476 58723 41973 36608 35544
64 0,75 | 0,25 | 13282 13331 13282 13349 13697 28079 19701 15585 15435
65 0,75 | 0,25 | 17687 17907 17648 18698 18491 44853 25615 20798 20382
66 0,75 | 0,25 | 26181 26374 26261 26461 26661 55393 33563 27412 27503
67 0,75 | 0,25 | 19892 20315 19892 21929 21161 46333 28642 22712 22179
68 0,75 | 0,25 | 20718 | 20645 20615 20931 20922 50411 27177 23333 21325
69 0,75 | 0,25 | 19772 20366 20332 19836 20753 44727 26734 22465 22042
70 0,75 | 0,25 | 27932 28080 27671 28121 28396 61100 37144 31602 31107
71 0,75 0,5 15797 16128 15751 15745 17691 54667 28736 20585 19736
72 0,75 0,5 21406 | 21375 21375 21697 22479 52410 35985 26898 26381
73 0,75 0,5 19392 19470 19296 19785 19519 43943 27055 25427 23804
74 0,75 0,5 22788 | 22740 22737 23012 23851 50067 38580 27089 26014
75 0,75 0,5 22761 22659 22638 23184 22696 53091 38242 28355 27371
76 0,75 0,5 20500 | 20291 20291 20553 20440 40471 29813 24857 23054
77 0,75 0,5 19231 20120 19152 19578 20643 53887 36378 23209 22845
78 0,75 0,5 25482 25410 25154 | 25786 26333 53728 39601 30778 29790
79 0,75 0,5 13056 12909 12909 13154 13020 39583 23264 15944 15226
80 0,75 0,5 20380 19489 19485 19746 19910 49494 27394 26666 24104
81 0,75 | 0,75 | 23784 | 23418 23418 23834 23535 53055 47340 30501 27511
82 0,75 | 0,75 | 12208 12292 12024 12250 12320 34597 25509 18826 16420
83 0,75 | 0,75 | 20012 19655 19645 19941 19804 45411 34844 25695 23051
84 0,75 | 0,75 | 20356 | 20204 20184 | 20446 20184 43649 36174 26816 23507
85 0,75 | 0,75 | 22748 | 22645 22640 | 22893 22640 50608 39688 29719 25976
86 0,75 | 0,75 | 14364 14328 14328 14892 14717 43106 28273 19859 18452
87 0,75 | 0,75 7297 7195 7195 7640 7325 29992 11241 12230 10617
88 0,75 | 0,75 | 26266 | 26174 26131 26472 29157 51200 37342 38027 30352
89 0,75 | 0,75 | 18912 18700 18700 18852 18700 38849 28323 25465 23260
90 0,75 | 0,75 | 22151 22079 22079 22359 22239 44758 35762 28441 25901

* Values written bold in the column of optimal value are not exact optimum.
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