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ABSTRACT 

 
 

EVALUATIO	 OF VISUAL QUALITY METRICS 
 
 

Ölgün, Ramazan Ferhat 
 

M.Sc., Departmant of Electrical and Electronics Engineering 
 

        Supervisor: Prof. Dr. Gözde Bozdağı Akar 
 

 
September 2011, 65 Pages 

 
 
 

The aim of this study is to work on the visual quality metrics that are widely 

accepted in literature, to evaluate them on different distortion types and to give a 

comparison of overall performances in terms of prediction accuracy, monotonicity, 

consistency and complexity. The algorithms behind the quality metrics in literature 

and parameters used for quality metric performance evaluations are studied. This 

thesis also includes the explanation of Human Visual System,  classification of visual 

quality metrics and subjective quality assessment methods. Experimental results that 

show the correlation between objective scores and human perception are taken to 

compare the eight widely accepted visual quality metrics.  

 

Keywords: quality assessment, human visual system. 
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ÖZ 

 
 

GÖRSEL KALİTE METRİKLERİ	İ	 DEĞERLE	DİRİLMESİ 
 
 

Ölgün, Ramazan Ferhat 
 

Yüksek Lisans., Departmant of Electrical and Electronics Engineering 
 

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 
 
 

Eylül 2011, 65 Sayfa 
 
 
 

Bu çalışmanın amacı literatürdeki kabul görmüş görsel kalite metrikleri üzerine 

çalışma yapmak, onları faklı tahrifatlarda değerlendirmek ve onları kestirim 

doğruluğunu, monotonluğunu, tutarlılığını ve kompleksliğini dikkate alarak  

karşılaştırmaktır. Literatürdeki kalite metriklerinin algoritmaları ve kalite metrik 

performanslarını değerlendirmek için kullanılan parametreler üzerine çalışma 

yapılmıştır. Araştırma ayrıca İnsan Görsel Sistemi, görsel kalite metrik 

sınıflandırması ve öznel kalite değerlendirme metodlarını içermektedir. Kabul 

görmüş sekiz farklı görsel kalite metriğini karşılaştırmak için nesnel sonuçlar ve 

insan algısı arasındaki ilişkiyi gösteren deneysel sonuçlar alınmıştır. 

  

Anahtar Kelimeler: kalite yargısı, insan görsel sistemi. 
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CHAPTER 1 
 
 

1 I	TRODUCTIO	 

 
 

 
 
 Digital imaging and video are increasingly used in wide variety of 

applications such as digital televisions, video conferencing, internet videos and so 

on. For all these applications, visual data may be corrupted during acquisition, 

compression, transmission, restoration and reproduction stages which degrades the 

quality observed by the end user. Methods of quantifying visual quality play an 

important role for the following applications: 

 

• Dynamically monitoring and adjusting video processing applications. 

• Optimizing algorithms of processing systems 

• Benchmarking an image or video processing systems.  

 
 The obvious method of quantifying the visual quality is to get the opinion of 

human observers. However, subjective quality evaluations are impractical for real-

time systems since they are inconvenient, expensive and time-consuming. The aim of 

the visual quality assessment research is to design quantitative measures for objective 

evaluation which is consistent with perceived subjective image quality.   

 Currently, most commonly used objective quality assessment approach is 

peak signal to noise ratio (PSNR) which is based on the intensity of distortion. 

Although it is computationally simple and widely used in video quality evaluation, it 

does not correlate well with the subjective evaluation [27]. A great deal of effort has 

been made to design objective quality assessment methods that are consistent with 

perceptual quality measures.  One of the most popular methods is based on extracting 

structural information which is used to quantify the visual fidelity [10]. Its multi-

scale and video extensions are also provided [16], [26]. The other method proposes 

to quantify the loss of image information to distortion process [11]. It approaches the 

image assessment as an information fidelity problem. Presenting a wavelet-based 
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visual signal to noise ratio is another method to quantify the visual quality [13]. It 

operates by using both the low and mid level properties of Human Visual System 

(HVS). An extensive work has also been conducted by the Video Quality Expert 

Group (VQEG), established in 1997, to collect subjective ratings for a set of test 

sequences and to evaluate the performance of different objective video quality 

assessment systems with respect to these sequences. In Phase I tests [28], VQEG 

only achieved a limited success that only the subjective tests were successfully 

completed. Then, it continued its work on Phase II tests and still could not find an 

objective quality assessment metric with sufficient accuracy [25].  

1.1 Scope of Thesis 

 The purpose of this work is to study the visual quality metrics that are widely 

accepted in literature, to evaluate them on different distortion types and to give a 

comparison of overall performances in terms of prediction accuracy, monotonicity, 

consistency and complexity. Knowing these performance evaluation criteria for each 

objective visual quality model, one can choose the most suitable one for a specific 

application to employ.  

In Chapter 2, the HVS which forms the perception of the images and videos 

will be studied. In Chapter 3, after giving classification of the objective quality 

metrics, some of the widely used ones in literature are going to be studied. Finally, 

subjective quality evaluation methods will be described in this chapter. In Chapter 4, 

experimental results will be presented for the evaluation of the performance of 

objective quality metrics. Finally, we will make conclusions about study in Chapter 

5. 
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CHAPTER 2 

 
 

2 BACKGROU	D I	FORMATIO	 

 
 
 
 

 In order to achieve better understanding in designing quality assessment 

methods, it is necessary to take into account the HVS response to the image. In this 

chapter, anatomy of human eye, some important features of HVS and HVS 

modelling are studied. 

2.1 Fundamentals of Human Vision and Vision Modelling 

2.1.1 Eye 

The human eye cross section is simply shown in Figure 2.1.1 [1].  The lens 

focuses the image on the retina surface and changes its shape under muscular control 

to perform proper focusing of near and distant objects. The iris controls the aparture 

of the lens and the amount of light entering the eye. The retina consists of an array of 

photoreceptors (cones and rodes). The cones are specialized to detect colors and 

function in bright illumination. The rods do not take part in color vision and function 

mainly in low lightining levels. The more sensitive cones are concentrated in a 

central region (the fovea) which means that high-resolution color vision is only 

achieved over a small area at the center of the field of view. Nerves connecting to  

the retina leave the eyeball through the optic nerve.  The human brain processes and 

interprets visual information based on both received information and prior learned 

responses. 
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Figure 2.1.1: Human Eye 

 

2.1.2 Color Vision 

Appearance of an object’s color results from the interaction of a light source, 

an object, and the visual system [2].  Early color perception of human is done in the 

retina, where the light-sensitive photoreceptors (cones) react to different wavelengths 

of light. Taking into account their ability to react short, medium and long 

wavelengths, these cones are called S, M and L-cones. Since these cones are 

sensitive to red, green and blue wavelenghts, the human vision is called trichromatic. 

In bright light the vision is called the photopic and the cone cells supply the color 

perception. In the low illumination levels the vision is scotopic and supplied by the 

rod cells. 

2.1.3 Light Adaptation 

The HVS is capable of adapting to a great range of light intensities [3].  There 

are three mechanisms for light adaptation to be distinguished in the HVS. 

First is the mechanical variation of the pupillary aperture which is controlled 

by the iris. The iris reacts to differences in illumination level by varying pupil 

diameter which results in a 30-fold change of the quantity of light entering the eye. 

This adaptation process happens in a matter of seconds. 

Second is the chemical processes in the photoreceptors which exist in both 

rods and cones.  When the light is bright the concentration of photochemicals and 

their sensitivity reduces. In low light levels the production of photochemicals and 
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thus the sensitivity increases. This adaptation process is rather slow that it takes up to 

an hour to adapt to a complete darkness. 

Third is an adaptation at neural level.  It involves the neurons in all layers of 

retina. By increasing or decreasing the signal output the neurons adapt to changing 

light intensities. This adaptation process is faster than the chemical adaptation in the 

photoreceptors. 

2.1.4 Spatial Vision 

The optics of the eye and the sampling of the visual scene by the retinal 

photoreceptors are two factors that need to be accounted for in the processing of 

spatial information [2]. Neural processing determines the visual response to spatial 

variation once the scene is sampled by the photoreceptors. The size and spacing of 

the retinal photoreceptors (rods and cones) determine the maximum spatial resolution 

[4]. 

Masking occurs when a stimulus cannot be detected because of the presence 

of another although it is visible by itself. Masking is strongest when the stimuli have 

similar characteristics, i.e. color, orientations or frequency. Spatial masking proves 

why similar artifacts are disturbing in certain regions of an image while they are 

hardly noticable elsewhere. 

2.1.5 Temporal Vision 

The sensitivity of the visual system to change over time and the perception of 

object motion are often linked together because the stimuli for the motion produce 

temporal variations in light intensity falling on the retina [2].  Movements of objects 

can be distinguished to rigid movements and form changes of the objects. The 

motion is detected as the transformation of spatial patterns of light entering the eye. 

Movement of all the images in the environment relative to the viewer creates a 

pattern of retinal motion named as optic flow. The object’s velocity perceived by the 

observer corresponds to its relative velocity to other objects in the visual field. 
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2.1.6 Visual Modelling 

There are two approaches to model HVS, namely, neurobiological and 

psychophysical models [2]. The neurobiological models estimate the actual low-level 

process in the eye and optical nerve. Due to their overwhelming complexity, they are 

not useful in real-world applications. 

The psychopyhsical models incorporate the aspects of human vision which 

are relevant to picture quality, such as color perception, contrast sensitivity and 

pattern masking.  These models are based on psychopyhsical experiments and are 

implemented in a sequential process as shown in Figure 2.1.2. 

 

 
 

Figure 2.1.2: Block Diagram of a HVS Model 

 
The color processing stage transforms the input signal into an acceptable 

perceptual color space. After this step the image is represented by one achromatic 

and two chromatic channels carrying color difference information.  This stage also 

models the non-linear sensitivity of HVS to light, known as luminance masking [5].   

HVS operates on multiple channels which are tuned to different spatial 

frequencies and orientations. This can be modeled by a multi-resolution filter bank or 

wavelet decomposition.  It is believed that there are also channels tuned to different 

temporal frequencies. 

The response of the HVS depends much on the local variations of luminance 

than on the absolute luminance which is a property known as Weber-Fechner law. 

Once the visual information is decomposed into channels this relative variation 

measure is used in vision model. The contrast perception also depends on the 

adaptation to a specific luminance or color level and local image content, which 

makes the precise modelling much more complex [6], [7], [8].  

The decreasing sensitivity of HVS for higher spatial frequencies is one of the 

most important issues in HVS-modelling. This is typically parameterized by the 
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contrast sensitivity function (CSF).  A separate CSF for each channel of color space 

are modelled due to separate color and pattern sensitivity assumption.  

Masking occurs when a stimulus cannot be detected because of the presence 

of another although it is visible by itself. The opposite effect of facilitation 

sometimes occurs if a stimulus can be detected due to the presence of another. 
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CHAPTER 3 
 
 

3 QUALITY ASSESSME	T 

 
 
 
 

In this chapter, objective and subjective quality assessment methods are 

studied. After a short explanation of classifications, some of the most widely used 

objective quality metrics are described. The subjective evaluation methods to 

evaluate the performance of objective quality metrics are also given. 

3.1 Objective Quality Assessment 

 

3.1.1 Classification of Objective Quality Metrics 

 
Reference Information: 

According to the information needed about the reference video, objective 

quality metrics can be divided into three categories [9].  The first category is the 

Full-Reference (FR) metrics which need the entire refence video in order to compare 

with test video frame-by-frame. The other type of metric is No-Reference (NR) 

metrics which only use video under test without the need of reference video.  The 

third and the inbetween metric type in terms of the availability of reference 

information is Reduced-Reference (RR) metrics. They use some features extracted 

from the reference video and the comparison is done using those features. 

Data Metrics: 

Data metrics are based on byte-by-byte comparison between the reference 

and test videos. These type of metrics were designed to assess the fidelity of the data 

without considering the actual content. Data metrics are distortion-agnostic. The 

different types of distortions which are perceived differently by HVS would be rated 

the same by a data metric. Data metrics are also content-agnostic. The distortions 

affecting different parts of the image and are perceived differently by HVS would be 

rated the same by a data metric. 
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Although these type of metrics have no close relationship with the video 

quality perception of human observers, they are quite popular due to their 

computation simplicity. 

Picture Metrics: 

Picture metrics are used when the effects of distortion and content on visual 

quality perception wanted to be taken into account. There are two approaches in 

picture metrics category: the vision modelling and engineering approaches [9]. 

In vision modelling approach, metric design is based on modelling the HVS. 

They are incorporating the aspects of human vision such as color perception, contrast 

sensitivity and pattern masking obtained from psychophysical experiments. 

In engineering approach, metric design is based on the extraction and analysis 

of certain features or artifacts. These can be the artifacts that are specifically 

introduced by such as encoders or structural elements such as contours. Then overall 

quality is estimated by looking for the strength of these features.  

Packet- and Bitsream-based Metrics: 

Packet- and Bitstream- based metrics are based on the parameters that can be 

obtained from the transported video stream over IP networks.  Since these metrics 

need no or little decoding they require much lower processing requirements 

compared to the ones that examine fully decoded videos. Thus it is possible to assess 

more than one video parallely using these metrics. 

3.1.2 PS	R 

 
PSNR is a simple full-reference data metric that is widely used in video 

quality evaluation. PSNR as an engineering term is the ratio between the maximum 

possible power of a signal and the corrupting noise. In video quality evaluation, the 

signal is the original image data and the noise is the error introduced to the data in 

compression.  

PSNR is derived by the mean squared error (MSE) which is formally given 

by 

 
1 1

2

0 0

1
|| ( , ) ( , ) ||

.

m n

i j

MSE I i j Î i j
n m

− −

= =

= −∑ ∑  (3.1.1) 
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where I(i, j)  is the original frame at pixel position (i,j). Î (i, j) is the distorted frame at 

pixel position (i,j). m is the picture width and n is the picture height.  

By setting the MSE in relation to the maximum pixel value in the frame 

which is 255 when the pixels are represented using 8-bits, PSNR is defined as 

 [ ]
2

10

255
10 log ,PS�R dB

MSE

 
=  

 
 (3.1.2) 

The result gives an idea of how strong the noise effected the original data. If 

the two images are identical PSNR calculation is undefined due to division by zero, 

on the other hand if the image is compeletely distorted  it has 0 value.  

Although it is computationally simple and widely used in video quality 

evaluation, it does not correlate well with the subjective evaluation since it is 

distortion- and content- agnostic. Two videos with quantitatively the same PSNR 

values can have different subjective scores. 

3.1.3 SSIM 

 
SSIM (Structural Similarity) is a full-reference engineering approach which is 

popular for quality assessment of still images. SSIM is introduced to incorporate the 

structural information in quality assessment based on the assumption that HVS is 

highy sensitive to structural distortions [10].  

The quality assessment system using SSIM is made up of easy to compute 

statistics of luminance comparison, contrast comparison and structure comparison as 

shown in Figure 3.1.1. 

 

Figure 3.1.1 : Diagram of SSIM system  
(adapted from [10]) 
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X and Y are supposed to be the two nonnegative discrete image signals that 

have been aligned with each other and one of which is considered to be the perfect 

quality signal. For the luminance comparison of the image signals mean intensity 

estimation is used as a local statistic given by 

 
1

1 �

x i
i

x
�

µ
=

= ∑  (3.1.3) 

For the contrast comparison of the signals standard deviation estimation is 

used as in the below definition. 

 
1

2
2

1

1
( )

1

�

x i x
i

x
�

σ µ
=

 
= − − 

∑  
(3.1.4) 

For the structure comparison normalized signals of  ( ) /x xx µ σ−  and 

( ) /y yy µ σ−  are used. 

Then the similarity measure is defined as 

 ( , ) ( ( , ), ( , ), ( , ))S x y f l x y c x y s x y=  (3.1.5) 

where ( , )l x y , ( , )c x y  and ( , )s x y  are comparison functions and f (.) is the 

combination function needed to be defined. As stated in [10] similarity measure 

( , )S x y  has to satisfy the following conditions: 

1) Symetry ( , )S x y = ( , )S y x  

2) Boundedness: ( , ) 1S x y ≤  

3) Unique maximum: ( , ) 1S x y =  if and only if ( , )x y  (in discrete represenatation 

i ix y=  for all i =1, 2, ..., N) 

The luminance comparison function is defined as 

 1

2 2
1

2
( , ) x y

x y

C
l x y

C

µ µ

µ µ

+
=

+ +
 (3.1.6) 

where 1C  is added to avoid instability when 2 2
x yµ µ+  is very close to zero. In [10] it 

is choosen as 

 
2

1 1( )C K L=  

 
(3.1.7) 

where L  defined as the maximum pixel value, 255 if pixels are represented using 8-

bits, and 1 1K <<  is a small constant. 

The contrast comparison function is defined similarly as  
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 2

2 2
2

2
( , ) x y

x y

C
c x y

C

σ σ

σ σ

+
=

+ +
 (3.1.8)  

where  2
2 2( )C K L=  with 2 1K <<  is added to avoid instability when 2 2

x yσ σ+   is 

very close to zero. 

The structure comparison function is defined as 

 3

3

( , ) xy

x y

C
s x y

C

σ

σ σ

+
=

+
 (3.1.9) 

where 3C  is added similar to luminance and contrast measures. In addition 

correlation ( xyσ ) is defined as 

 
1

1
( )( )

1

�

xy i x i y
i

x y
�

σ µ µ
=

= − −
− ∑  (3.1.10) 

Finally the combination of  ( , )l x y , ( , )c x y  and ( , )s x y  results in the SSIM 

index between the signals X and Y 

 ( , ) [ ( , )] .[ ( , )] .[ ( , )]SSIM x y l x y c x y s x yα β γ=  (3.1.11) 

where 0α > , 0β >  and 0γ >  are parameters to adjust importance of the 

comparison functions. It is easy to show that comparison functions and the overal 

SSIM index all satisfies the three conditions given above. After simplifying the 

expression by setting 1α β γ= = =  and 2
3 2

C
C =  [10]  it takes the form 

 1 2

2 2 2 2
1 2

(2 )(2 )
( , )

( )( )
x y xy

x y x y

C C
SSIM x y

C C

µ µ σ

µ µ σ σ

+ +
=

+ + + +
 (3.1.12) 

While appliying SSIM index for image quality assessment, the local statistics 

xµ , xσ  and xyσ  and SSIM index are calculated within a local 8x8 window over the 

entire image. In order to prevent  blocking artifacts caused by this windowing 

approach, an 11x11 circular-symetric Gaussian weighting function is used. Then the 

local statistics xµ , xσ  and xyσ  takes the below form 

 
1

�

x i i
i

w xµ
=

=∑  (3.1.13) 

 
1

2
2

1

( )
�

x i i x
i

w xσ µ
=

 
= − 
 
∑  

(3.1.14) 

 
1

( )( )
�

xy i i x i y
i

w x yσ µ µ
=

= − −∑  (3.1.15) 
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SSIM measure in this thesis uses the parameter values of 255L = , 1 0.01K =  

and 2 0.03K =  where 1K  and 2K  are rather arbitrary and taken according to the [10].  

Overall SSIM quality index of the entire image is calculated taking the mean SSIM.  

 
1

1
( , ) ( , )

M

j j
j

MeanSSIM X Y SSIM x y
M =

= ∑  (3.1.16) 

where X  and Y  are the original and the processed image signals; jx  and jy  are the 

image contents at jth local window; and M  is the number of local windows of the 

entire image.  

3.1.4 VIF 

 
VIF (Visual Information Fidelity) is a full-reference vision modelling 

approach based on the relationship between image information and visual quality. 

VIF, as an image quality assessment method, combines the two quantities which are 

the information in the reference image and how much of this reference information 

can be derived from the test image.   

In VIF measure proposed in [11], reference image is modeled as the output of 

a stochastic “natural” source which passes through the HVS channel and then 

processed by the brain. The information content of the original image is quantified as 

the mutual information between the input and output of HVS channel (between C 

and E). In the presence of an image distortion channel the same measure (between C 

and F) is quantified and the information of the test image extracted by the human 

brain is obtained.  The Figure 3.1.2 shows the relation pictorially. 

 

Figure 3.1.2 : Source, distortion and human visual system model relationship 

 

The components of the proposed model are given below: 
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Source Model: 

Natural scenes are classified as the images and videos that are captured using 

high quality capture devices operating in the visual spectrum. In VIF measure 

approach, natural images are modeled in the wavelet domain using Gaussian scale 

mixtures (GSMs). A GSM is a random field (RF) expressed as a product of two 

independent RFs [12].  Natural image source model output C is defined as, 

 . { . : }iC SU SU i I= = ∈
���

 (3.1.17) 

where  

{ : }iC C i I= ∈
���

 I  denotes the set of spatial indices for RF. 

{ : }iS S i I= ∈  is a RF of positive scalars. 

{ : }iU U i I= ∈
���

 is a Gaussian vector RF with zero mean and covariance UC . 

Distortion Model: 

In real world, distortion types are approximated locally as a combination of 

blur and additive noise considering their perceptual annoyance. VIF measure also 

uses a signal attenuation and additive noise distortion model in the wavelet domain  

 { . : }i i iD GC V g C V i I= + = + ∈
��� ��

 (3.1.18) 

where 

{ : }iD D i I= ∈
���

 is a RF from the subband in the test image. 

{ : }iG g i I= ∈  is a deterministic scalar gain field. 

C  is a RF from a subband in the reference image. 

{ : }iV V i I= ∈
��

 is a stationary additive zero-mean white Gaussian noise RF with 

variance  2
V VC Iσ= . 

Human Visual System Model: 

In VIF metric, HVS model is described in the wavelet domain as a “distortion 

channel” that limits the information passing through it.  The purpose of HVS model 

in VIF metric measurement is to quantifiy the uncertainity that HVS adds to the 

signal. This uncertainity is stated as an additive noise and modeled using stationary, 

zero mean, additive white Gaussian noise in the wavelet domain.  

 E C �= +  (3.1.19) 
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 IF D �= +  (3.1.20) 

where { : }i� � i I= ∈
���

 and { : }I I
i� � i I= ∈

����

 are stationary RFs with covariance 

2
I� n�

C C Iσ= =  where 2
nσ  is an HVS model parameter. 

E  and F  are the visual signals at the output of HVS model from the reference and 

test images in one subband. 

Visual Information Fidelity Criterion 

After defining the source, distortion and HVS models, the VIF criterion can 

be derived. It is stated in [11] that visual quality relates well to the amount of 

information that human could perceive from the test image relative to the amount of 

information that human could perceive from the reference image.  The information 

that could be ideally perceived by the subject from a particular subband in the 

reference and the test images are represented as ( ; | )
� � �I C E s
�� ��

 and ( ; | )
� � �I C F s
�� ��

.        

The mutual information ( ; | )
� � �I C E s
�� ��

 quantifies the amount of information that can 

be perceived by human when the reference image is being viewed. The �s  denotes a 

realization of �S  that could be thought as “model parameters” for a specific 

reference image to tune the natural scene model for that particular image. 

Incorporating multiple subbands the VIF measure is given by 

 

, , ,

, , ,

( ; | )

( ; | )

� j � j � j

j subbands

� j � j � j

j subbands

I C F s

VIF
I C E s

∈

∈

=
∑

∑

�� ��

�� ��

 (3.1.21) 

where it is summed over the subbands of interest and 
,� j

C
��

  represents �  elements 

of the RF jC  which describes the coefficients from subband j . 

There are some features obtained from equation 3.1.21. First, VIF is bounded 

below by zero. When all the information is lost in the distortion channel, VIF is 

calculated as zero ( ( ; | ) 0
� � �I C F s =
�� ��

). Second, when there is no information loss 

between reference and test image VIF is calculated as unity 

( ( ; | ) ( ; | )
� � � �� �I C F s I C E s=
�� �� �� ��

). Third, an enhancement of linear contrast of the 

original image  results in a VIF value larger that unity. This feature makes VIF 
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different from traditional QA methods by capturing the improvement in visual 

quality. 

3.1.5 VS	R 

 
VSNR (Visual Signal to Noise Ratio) is a full-reference vision modelling 

approach based on near-threshold and suprathreshold properties of HVS.  VSNR is 

introduced to present a wavelet-based visual signal-to-noise ratio for quantifying the 

visual fidelity for natural images. This metric proposes two stages which use low-

level and mid-level properties of HVS [13].  In the first stage, in order to determine if 

the distortions in the test image are visible, low-level HVS properties of contrast 

sensitivity and visual masking are used via wavelet based models. If the distortions 

in the test image are not visible,  the test image is supposed to be of perfect visual 

fidelity. If the distortions are suprathreshold, as a second stage, the low-level HVS 

property of perceived contrast and mid-level HVS property of global precedence are 

used. These two HVS properties are  then modeled and summed linearly to calculate 

VSNR metric.  

Given the original image I and test image Î, the steps taken to calculate VSNR 

metric are given below in detail. 

Preprocessing: 

In order to take into account the viewing conditions and approximate the 

cortical decomposition performed by the HVS, a preprocessing process is performed. 

Below are the steps to be taken: 

a) Compute the distortions  contained in the test image via 

 E Î I= −  (3.1.22) 

b) Perform M-level discrete wavelet transforms (DWTs) of  I and E  to obtain 

subbands { }Is  and { }Es . 

c) Compute the vector of spatial frequencies 1 2[ , ,..., ]Mf f f f=  via 

 2 tan( )
180

m
mf rv

π−=  (3.1.23) 

where 1,2,...,m M= ,  r is the display resolution in pixels per unit distance.  v  is the 

viewing distance expressed in the same unit. 
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Assessing the Detectability of the Distortion: 

In order to determine if the distortions in the test image are visible, contrast 

thresholds are compared with the actual contrasts of the distortions for each fm in f. 

If  the distortions are below the threshold, the test image Î is supposed to be of 

perfect visual fidelity. Then no further analysis is required. Below are the steps to be 

taken: 

a) For each mf  in f , compute the contrast detection threshold ( | )
mf

CT E I  via 

 
2 1ln( )

0

( ) ( )
( | ) f f

f a f athr
f

C I C I
CT E I

CS�R a f += =  (3.1.24) 

b) For each mf  in f , measure the actual distortion contrast ( )
mf

C E  via 

 
1

( )

( )
2 ( )mf m

L I I

k
C E

b k γ

γ
µ µ −≈

+
 (3.1.25) 

 2 2 2
( , ) ( , ) ( , )[ ] [ ] [ ]E m LH E m HL E m HHs s sσ σ σ× + +   

where 2
( , )[ ]E ms θσ  denotes the standard deviation of the subband of E  at mth level of 

decomposition with orientation , ,LH HLθ =  or HH . 

c) If  ( ) ( | ),
m mf fC E CT E I<  mf f∀ ∈ , the test image Î is supposed to be of perfect 

visual fidelity then no need to continue VSNR calculation (VS�R = ∞ ). 

Computation of the Visual S	R: 

In order to compute the finite VSNR metric following steps are taken: 

a) Compute the perceived contrast of the distortions approximated by the total RMS 

distortion contrast [14]  ( )pcd C E=  via 

 2 1/2
( )

0( )

1 1
( ) ( [ ( ) ] )

I

�

i I L E
iL I

C E L E
� µµ µ

µ +
=

= + −∑  (3.1.26) 

where ( ) ( )L P b kP γ= +  is physical luminance. b represents black-level offset, k  the 

pixel-to voltage-scaling factor and γ  the gamma of the display monitor. 

b) Compute the disruption of global precedence via  

 * 2 1/2

1

( [ ( ) ( )] )
m m

M

gp f f
m

d C E C E
=

= −∑  (3.1.27) 

c) Compute VSNR 
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2

10 102

( ) ( )
10 log ( ) 20log ( )

(1 )
2

gp
pc

C I C I
VS�R

dVD
dα α

= =
+ −

 (3.1.28) 

3.1.6 	QM 

 
NQM (Noise Quality Measure) is a full reference vision modelling approach 

based on the degradation model. NQM models the degradation on image as a 

combination of linear frequency distortion and additive noise injection [15]. This 

metric proposes two complementary quality measures. First is the Distortion 

Measure (DM) for linear frequency distortion. Second is the NQM for the additive 

noise.  

Distortion Measure (DM): 

Distortion Measure is computed in three steps. First, the frequency distortion 

is found by comparing the model restored image and the restored image. Second, the 

deviation of this frequency distortion from allpass response of unity gain is 

computed. Third, the deviation is weighted by a lowpass CSF and integrated over the 

visible frequency range.  

 max

0
[1 ( )] ( )

f
r

r r
�

f
DM DTF CSF f df

f
= −∫  (3.1.29) 

where DTF (Distortion Transfer Function) is a model for the blurring in restoration 

algorithms. rf  is the radial frequency 
2 2

r x yf f f= +  where xf  and yf  are the 

horizontal and vertical frequencies. �f  is the Nyquist frequency and maxf  is the 

maximum radial frequency included in DM. 

	oise Quality Measure (	QM): 

NQM is computed in two steps. First, original and model restored images are 

separately processed to simulate the appearance of them to an observer through a 

contrast pyramid.  The contrast pyramid by Peli [6] is used to measure 

1) effects of distance, image dimesions and spatial frequency to the variation in 

contrast sensitivity 

2) variation in the local luminance mean 

3) contrast interaction between spatial frequencies 

4) contrast masking effects 
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Second, the NQM is calculated by computing the SNR of model restored image 

and the restored image by 

 

2

10 2

( , )

( ) 10log ( )
( ( , ) ( , ))

s
x y

s s
x y

O x y

�QM dB
O x y I x y

=
−

∑∑

∑∑
 (3.1.30) 

where ( , )sO x y  and ( , )sI x y  denote the simulated versions of the model restored 

image and the restored image, respectively. 

3.1.7 MSSIM 

 
MSSIM (Multi-Scale Structural Similarity) is a multi-scale extension of a 

SSIM metric explained in section 3.1.3.  MSSIM [16] is introduced to incorporate 

the variations of viewing conditions to the previous single-scale SSIM measure.  

Display resolution and viewing distance are two conditions that are taken into 

account by moving to a multi-scale approach.  

The quality assessment system using MSSIM is given in Figure 3.1.3. 

 
 

Figure 3.1.3 : Multi-scale structural similarity measurement system 

 

The system takes the reference and distorted images and applies low-pass 

filter and downsamples the filtered images by 2 iteratively.  The scaling is done from 

Scale 1 to Scale M and at the j-th scale the contrast and structure comparisons are 

calculated as ( , )jc x y  and ( , )js x y .  The limunance comparison ( , )Ml x y  is 

calculated only at Scale M. By combining the measurements at different scales, an 

overall SSIM index is obtained as below 

 
1

( , ) [ ( , )] . [ ( , )] .[ ( , )]j jM

M

M j j
j

SSIM x y l x y c x y s x y
β γα

=

= ∏  (3.1.31) 
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where Mα , jβ  and jγ  are the parameters to adjust importance of the comparison 

functions.  

For the simplicity of parameter selection  it is taken as j j jα β γ= =  for all 

j ’s. In addition a normalization is done by 
1

1
M

j
j

γ
=

=∑ . This normalization makes 

parameter settings comparable.  In order to determine the relative values across 

different scales, an image synthesis approach is used. The resulting parameters 

obtained are 1 1 0.0448β γ= = ,  2 2 0.2856β γ= = , 3 3 0.3001β γ= = ,  

4 4 0.2363β γ= =  and  5 5 5 0.1333α β γ= = = . 

3.1.8 VSSIM 

 
VSSIM (Video Structural Similarity) is a video extension of a SSIM metric 

explained in section 3.1.3.  VSSIM is introduced to incorporate the temporal and 

spatio-temporal correlations between the adjacent frames of the videos [26]. In 

VSSIM, two methods are employed to weight the SSIM index. First, dark regions 

that do not usually attract fixations are used. Second, the regions in adjacent frames 

where large global motion occur are taken into account. The quality assessment 

system proposed by VSSIM is shown in Figure 3.1.4. 

 

Figure 3.1.4 : Video quality assessment system 

 
First, local sampling areas with sampling density of Rs per video frame are 

extracted. Then SSIM index is calculated for each sampling areas by 

 Y Cb Cr
ij Y ij Cb ij Cr ijSSIM W SSIM W SSIM W SSIM= + +  (3.1.32) 
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where Y
ijSSIM , Cb

ijSSIM  and Cr
ijSSIM  denote the SSIM index of Y, Cb and Cr 

components of the j-th sampling window and i-th video frame. Weights are fixed and 

taken as 0.8YW = , 0.1CbW =  and 0.1CrW = . 

 Second, a frame-level quality index is calculated by combining the local 

quality values. 

 1

1

s

s

R

ij ij
j

i R

ij
j

w SSIM

Q

w

=

=

=
∑

∑
 (3.1.33) 

where iQ  is the quality index of the i-th frame and ijw  is the weighting value given 

to j-th sampling window in the i-th frame. 

 Third and the final overall quality of the video sequence is given by 

 1

1

F

i i
i
F

i
i

WQ
Q

W

=

=

=
∑

∑
 (3.1.34) 

where F is the frame number and iW  is the weighting value given to i-th frame. 

 Local weighting adjustment method is based on the fact that dark regions in a 

frame of a video sequence usually do not draw much attention. These regions should 

be assigned smaller weighting values.  

 
0

( 40) /10

1
ij xw µ


= −


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x
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µ

µ

µ

≤

< ≤

>

 (3.1.35) 

where xµ  is used as a local luminance estimation. 

 Frame weighing adjustment method is based on the fact that some type of 

distortions may not be as important  in frames with large global motion. These 

frames should be assigned smaller weighting values. 



 22 

      

1

1

((1.2 ) / 0.4)

0

s

s

R

ij
j

R

i i ij
j

w

W M w

=

=





= −





∑

∑   

0.8

0.8 1.2

1.2

i

i

i

M

M

M

≤

< ≤

>

 (3.1.36) 

Where iM  is the motion level of the i-th frame and calculated as 

 
1

( ) /
sR

ij s
j

i
M

m R

M
K

==
∑

 
(3.1.37) 

Where ijm  is the motion vector lenght of the j-th sampling window in the i-th frame. 

MK is a normalization factor and taken as 16MK = .  

3.1.9 VQM 

 
VQM (Video Quality Metric) is a general term given to all objective quality 

metrics evaluated in VQEG Phase II Full Reference Television tests [25]. In this 

thesis, only the General Model which was considered to be the most accurate among 

all is chosen to be used [31].  It was metric H in [25] and standardized by the 

American National Standards Institute (ANSI).  

The General Model is a reduced-reference metric which utilizes features that 

are extracted from the original and processed video streams. The objective video 

quality measurement system is shown in Figure 3.1.5. 

 

Figure 3.1.5 : VQM measurement system 
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The calibration of original and processed video streams includes spatial 

alignment, valid region estimation, gain & level offset calculation, and temporal 

alignment. The General Model measure is constructed by extracting perception-

based features, computing video quality parameters, and combining parameters. 

The quality feature is defined as a quantity of information extracted from a 

spatial-temporal sub-region of original and processed video streams. The quality 

parameters are indicative of perceptual changes in video quality that can be 

computed by comparing features extracted from the calibrated processed video with 

features extracted from original video. Seven independent General Model parameters 

are described as below. 

• si_loss : The parameter detects a decrease or loss of spatial information (e.g. 

blurring). 

• hv_loss : The parameter detects a shift of edges from horizontal & vertical 

orientation to diagonal orientation. 

• hv_gain : The parameter detects a shift of edges from diagonal to horizontal 

& vertical. 

• chroma_spread : The parameter detects changes in the spread of the 

distribution of two-dimensional color samples. 

• si_gain : The parameter detects improvements to quality which result from 

edge sharpening or enhancement. 

• ct_ati_gain : The parameter detects interactions between the amount of 

motion and spatial impairments. It also detects the interactions between the 

perceptibility of temporal impairments and the amount of spatial details. 

• chroma_extreme : The parameter detects strong localized color impairments, 

such as those produced by digital transmission errors.   

 

The General Model is constructed by linearly combining the video quality 

parameters as below:  
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VQM     =  - 0.2097 * si_loss 

+0.5969 * hv_loss 

+0.2483 * hv_gain 

+0.0192 * chroma_spread 

 -2.3416 * si_gain 

+0.0431 * ct_ati_gain 

+0.0076 * chroma_extreme  

 

(3.1.38) 

 
The General Model output values range from zero (no perceived impairment) 

to approximately one (maximum perceived impairment). 

 

3.2 Subjective Quality Assessment 

 
In this section subjective quality assessment methods to evaluate the video 

quality perceived by a human observer is presented.  Recommendations [17] and [18] 

describe the methods and general features which is used to select from different 

options available those that best fits the objectives and circumstances of assesment 

problems. 

The illimunation, viewing distance from observer to display and display 

properties are three factors that must be considered when conducting the subjective 

tests. Selection of test material is also an important issue to be considered. As stated 

in [18], in order to avoid boring the observers and to achieve a minimum reliability 

of the results, at least four different types of scenes should be chosen for the 

sequences. Observers’ specifications are another important items in subjective 

quality assesments. As stated in [17], at least 15 observers should be used and they 

should be non-expert, in the sense that they are not directly concerned with television 

picture as part of their nominal work.  Prior to subjective tests, the observers should 

be subjected to visual acuity and colour vision tests in order to produce reliable 

results. As stated in [17], a subjective assesment session should last up to half an 

hour. In addition, at the beginning of the first session , about five “dummy 

presentations” whose results are not be taken into account should be introduced to 
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stabilize the observers’ opinion.  Observers should also be introduced adequately 

about the method before the subjective quality assessment session starts. 

The subjective quality assessment methods proposed by the 

Recommendations [17] and [18] are depicted as below: 

3.2.1 DSIS 

 
The Double-Stimulus Impairment Scale (DSIS) method is used to check the 

degredation level of the test picture or sequence with respect to the reference picture 

or sequence.  This method is also called as Degradation Category Rating (DCR) in 

[18].  The video sequences are presented in pairs: the first is the source reference and 

the second is the same source presented through the systems under test. Following 

the impaired sequence the observer is asked to vote on the second, keeping in mind 

the first.  There are two variants to the structure of video sequences presentation:  

• variant I : each video sequences are presented once 

• variant II: each video sequences are presented twice 

 

 

Figure 3.2.1 : Presentation structure of DSIS, variant 1 

 
 

Figure 3.2.2 : Presentation structure of DSIS, variant 2 
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In order to rate the impairment of the test sequence five-level scale should be 

used:  

• Imperceptible (5) 

• Perceptible but not annoying (4) 

• Slightly annoying (3) 

• Annoying (2) 

• Very annoying (1) 

3.2.2 DSCQS 

 
The Double-Stimulus Continuous Quality-Scale (DSCQS)  method is 

especially useful when it is not possible to provide test stimulus test conditions that 

exhibit the full range of quality, stated in [17] . The video sequences are presented in 

pairs with randomized order of the reference and the test picture or sequences. 

Following the second sequence the observer is asked to vote on the both sequences. 

There are two variants to the structure of video sequences presentation:  

• variant I : the observer, who is normally alone, is allowed to switch between 

the reference and test sequences until he establish his opinion of each. 

• variant II: the multiple observers are shown the reference and test sequences 

twice to establish their opinion of each. 

 
Figure 3.2.3 : Presentation structure of DSCQS 

 
In order to rate the quality of both presentations the double vertical scale 

should be used.  The scales are divided into five equal lenghts which correspond to 

quality scales as shown in the Figure 3.2.4.  After the evaluation process, the pairs of 

assesments are converted to normalized scores in the range 0 to 100. Then the 
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differences between normalized scores of reference and test sequences are calculated 

for each pair. 

 
Figure 3.2.4 : Quality-rating form 

 

3.2.3 SSCQE 

 
The Single Stimulus Continuous Qualty Evaluation (SSCQE) method is 

useful to assess digitally coded video which have scene-dependent and time-varying 

impairments.  In this method video sequences without a source reference are 

presented only once to the observer. Observers are continuosly assess the video 

sequence along the time on a linear scale by an electronic recording handset 

connected to a computer.  Derivation of a single quality rating from the continuous 

quality results is currently under study as stated in [17]. 

3.2.4 SDSCE 

 
The Simultaneous Double Stimulus for Continuous Evaluation (SDSCE) 

method is suitable where fidelity of visual information affected by time-varying 

degradation has to be evaluated, stated in [17].  In this method video sequences are 

presented in pairs that reference and impaired sequences are displayed side by side in 

the same time. According to the [18], the subjects are asked to check the differences 

between the two sequences and to assess the fidelity of the video information along 

the time on a linear scale by an electronic recording handset connected to a 

computer. The subjects are aware of the reference and test sequences during 

assessment session. After the assessment session, data collected from the tests carried 

out can be processed to obtain a level of impairment. 
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CHAPTER 4 
 
 

4 EXPERIME	TAL RESULTS 

 
 
 
 

In this chapter quantitative performance evaluation of the objective quality 

metrics studied in Chapter 3 will be discussed. In order to evaluate the performance 

of objective quality metrics, it is necessary to obtain databases of test images or 

sequences from which the subjective quality scores have been experimentally 

collected. Two of the publicly-available databases downloaded and used during 

evaluations are Tampere Image Database 2008 (TID2008) and LIVE Video Quality 

Assessment Database. The reasons for the selection of these databases are due to 

their wide range of distortion types, variety of scenes and availability of subjective 

scores. In the subsequent sections, first, databases used during experiments are 

described. Second, the objective data analysis methods to evaluate the performance 

of objective quality metrics are discussed. Finally, the results of each objective 

quality metric are interpreted for each database. 

4.1 Description of Databases 

4.1.1 Tampere Image Database 2008 

 
TID2008 is used to evaluate the FR objective image quality metrics [19], 

[20], [21]. TID2008 makes it possible to estimate a given metric correspondance to 

human perception. 

The TID2008 contains a total of 1700 distorted images obtained from 25 

reference images by applying 17 types of distortion with 4 level. All images are 

saved in database in 512x 384 24 bit format without any compression. Types of 

distortion with their correspondence to practical situation and accounted HVS 

properties are given in Table 4.1.1. 
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Table 4.1.1 : Tampere Image Database 2008 Distortion Types 

 

	o Distortion 
Correspondence to  
practical situation 

Accounted HVS 
property 

1 Additive Gaussian noise Image acquisition Adaptivity 

2 

Additive noise in color component 
is more intensive than additive 
noise in the luminance 
component 

Image acquisition Color sensitivity 

3 Spatially correlated noise Digital photography 
Spatial frequency 
sensitivity 

4 Masked noise 
Image compression, 
watermarking 

Local contrast sensitivity 

5 High frequency noise 
Image compression, 
watermarking 

Spatial frequency 
sensitiviy 

6 Impulse noise Image acquisition Robustness 

7 Quantization noise 
Image registration, 
gamma correction 

Color, local contrast, 
spatial frequency 

8 Gaussian blur Image registration 
Spatial frequency 
sensitivity 

9 Image denoising Image denoising 
Spatial frequency, local 
contrast 

10 JPEG compression JPEG compression 
Color, spatial frequency 
sensitivity 

11 JPEG2000 compression JPEG2000 compression 
Spatial frequency 
sensitivity 

12 JPEG transmission errors Data transmission Eccentricity 

13 JPEG2000 transmission errors Data transmission Eccentricity 

14 Non eccentricity pattern noise 
Image compression, 
watermarking 

Eccentricity 

15 Local block-wise distortions Inpainting, image 
acquisition 

Evenness of distortion 

16 Mean shift (intensity shift) Image acquisition Light level sensitivity 

17 Contrast change 
Image acquisition, gama 
correction 

Light level, local contrast 
sensitivity 

 

As seen in Table 4.1.1, TID2008 contains at least one distortion type for each 

HVS feature. White Gaussian noise was choosen as a model for additive zero-mean 

noise. Distortion type 2 was added in order to evaluate the objective metric 

correlation to HVS property to not equally perceive distortions in luminance and 

chrominance components. In order to test the metric correspondence to spatial 

frequency and local contrast sensitivity of HVS, spatially correlated noise, masked 

noise and high frequency noise were added as distortion types. These distortion types 

are typical for lossy image compression. Distortion type 6 is an impulse noise caused 

by coding/decoding errors in data transmission. The presence of this distortion might 
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assist to evaluate the effectiveness of impulse noise removal methods. Image filtering 

is an important type of distortions for which it is crucial to have a suitable tool to 

assess visual quality of filtered image. In TID2008, a filter based on 3D Discrete 

Cosine Transform was used for filtering images corrupted by Gaussian noise. The 

images compressed by JPEG and JPEG2000 and decoded with errors in data 

transmission channels were also included in database. Such distortions are almost 

invisible since distorted fragments might occur to be similar to original texture and 

color of surrounding fragments. A specific type of distortion modeled by TID2008 

group is non-eccentricity pattern noise. In this distortion type, a window of 15x15 

pixels has been randomly taken from an original image and copied to few pixels 

nearby located fragment. Since it is difficult to identify such compact distortions, it 

shows that HVS is not sensitive to non-eccentric type of distortions. Another specific 

type of distortion was named as local block-wise distortion. It was modeled in such a 

way that 32x32 pixels of blocks with random colors were randomly copied to the 

different parts of image. Mean shift and contrast change of images were modeled as 

changes to two smaller and two larger values of the original image. 

In TID2008, MOS was collected from the observers of three countries: 

Ukraine, Italy, and Finland. A total of 256428 comparisons of visual quality of 

distorted images  have been performed by 838 observers. 

Higher value of MOS (0 - minimum, 9 - maximum) corresponds to higher 

visual quality of the image. 

4.1.2 LIVE Video Quality Assessment Database 

 
LIVE Video Quality Database is intended to develop a database of videos that 

will be used to evaluate visual quality assessment methods [22], [23], [24]. 

 The LIVE Video Quality Database is obtained from 10 uncompressed videos 

as reference videos with a wide variety of content. All video files have planar YUV 

4:2:0 format and do not contain any headers. The spatial resolution of all videos is 

768x432 pixels. The first 331776 bytes of each file correspond to the 8-bit Y 

component of the first frame, followed by 82944 bytes corresponding to the 8-bit U 
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component of the first frame, followed by 82944 bytes corresponding to the 8-bit V 

component of the first frame. Frames are concatenated to form sequence files. 

 A total of 150 distorted videos were obtained from 10 reference videos using 

four different distortion types shown in Table 4.1.2. 

Table 4.1.2 : LIVE Video Quality Assessment Database Distortion Types 

 

	o Distortion 
Correspondence to  
practical situation 

Accounted HVS 
property 

1 Wireless distortions Data transmission Eccentricity 

2 IP distortions Data transmission Eccentricity 

3 H.264 compression H.264 compression 
Spatial and temporal 
frequency sensitivity 

4 MPEG2 compression MPEG2 compression 
Spatial and temporal 
frequency sensitivity 

 

As seen in Table 4.1.2, LIVE Video Quality Database includes distortion types 

which are representative of present generation encoding and communication systems. 

IP and wireless distortions were created by simulating losses sustained by an H.264 

compressed video over an IP network and wireless environment. The H.264 video 

streams were created using JM reference software and compression rates were 

choosen between 0.5-7 Mbps. For IP error, paterns supplied by the Video Coding 

Experts Group (VCEG), with loss rates of 3%, 5%, 10% and 20% were used. In 

Wireless type of distortion this error rates varied between 0.5-10%. Wireless 

channels are subjected to attenuation, shadowing and fading where a single bit error 

even causes a packet loss. Therefore, shorter packet sizes are used by encoding 

multiple slice per frame, where each packet contained a slice. In distortion type 3, 

H.264 compression was employed with compression rates varied from 200 Kbps to 5 

Mbps. The MPEG2 video streams were created using reference software available 

from the International Organization for Standardization (ISO) and the compression 

rate was taken between 700 Kbps and 4 Mbps.  

Each of the four distortion types in LIVE Video Quality Database is shown in 

Figure 4.1.1. The frames were taken from a video which was called “Pedestrian 

Area”. Notice that the blocking artifact in H.264 compressed frame is less than 

MPEG2. In addition, a wireless loss simulated frame exhibits errors that are 

restricted to smaller regions of frame than IP loss simulated. 
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MPEG2 compressed frame H.264 compressed frame 

  
IP loss simulated frame Wireless loss simulated frame 

Figure 4.1.1 : Frames of Pedestrian Area corrupted by each of the four distortion types in LIVE Video 
Quality Database 

 
A single stimulus method is used to assess each video in the LIVE Video 

Quality Database. A total of 38 observers are asked to vote each video in a 

continuous quality scale. Difference Mean Opinion Scores (DMOS) which are 

collected from the subjects for original and distorted videos are available in the 

database. 

 
reference distortedDMOS MOS MOS= −  (4.1.1) 

4.2 Objective Data Analysis 

In order to provide quantitative performance evaluation of the objective quality 

metrics, methods provided in Video Quality Expert Group (VQEG) Phase II Final 

Report [25] are used. The outputs of objective quality metrics (the Video Quality 

Rating, VQR) and the observer Mean Opinion Scores (MOS) should be correlated in 

predictable and repeatable fashion. In order to remove any nonlinearity because of 

the subjective evaluation process and to compare the objective models in a common 

space, a nonlinear regression between the objective quality metrics and MOS values 

is used. The below logistic function is taken to fit to the data [MOS, VQR].  

 
1 2 3/ (1 exp( ( )))pMOS b b VQR b= + − −  (4.2.1) 
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This function is implemented by using MATLAB Curve Fitting Toolbox 

[29]. This nonlinear logistic function transforms the data set of VQR to a set of 

predicted MOS values. Then these predicted MOS values are compared with the 

MOS values taken from the subjective tests to evaluate objective metrics with respect 

to three aspects of their ability to estimate subjective assessments. 

Prediction accuracy: 

It is the ability to predict the subjective quality ratings with low error. The 

Pearson linear correlation coefficient  between MOS and MOSp are calculated as a 

measure. It is obtained by dividing the covariance of two variables by the product of 

standard deviations as in Equation 4.2.2. 

 
,

cov( , )
( , )X Y

X Y
pearson corr X Y

x yσ σ
= =  (4.2.2) 

 Root-mean-square error (RMSE) is an another common metric to measure 

the avarage error.  

 2[( ) ]RMSE E X Y= −  (4.2.3) 

where X and Y are the paramaters that the correlation between them are to be 

calculated. For the objective quality analysis these are the MOS and MOSp values. 

 

  
Figure 4.2.1 : Models showing the higher accuracy (left image) and lower accuracy (right image)  

 

Prediction monotonicity: 

It is the degree to which the model’s predictions agree with the relative 

magnitudes of subjective quality ratings. The Spearman correlation coefficient 

between MOS and MOSp are calculated as a measure. Spearman correlation is 

defined as the Pearson correlation between the ranked variables.  
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where X and Y are the paramaters that the correlation between them are to be 

calculated. For the objective quality analysis these are the MOS and MOSp values. 

 

  
Figure 4.2.2 : Models with more monotonicity (left image)  and less monotonicity (right image) 

 

Prediction consistency: 

It is the degree to which the model maintains prediction accuracy over the 

range of test sequences.  The Outlier ratio is used to quantify the prediction 

consistency.  

 Outlier Ratio = (total number of outliers)/N (4.2.5) 

where outlier point is a point for which  

 | [ ] | 2Qerror i > ×MOS_Standard_Error (4.2.6) 

where Qerror  is the difference between the MOS and pMOS values for a given 

objective quality score and twice the MOS Standard Error is used as a threshold for 

defining outliers.  

  
Figure 4.2.3 : Models with large outlier ratio (left image) and small outlier ratio (right image) 



 35 

4.3 Performance of Objective Quality Metrics 

 
In order to evaluate the performances of objective quality metrics, outputs of 

each metric are calculated separately for the impaired images and videos. Then, the 

correlation of these output values with the HVS are examined. All the metrics’ 

outputs except VSSIM are calculated by using Metrix MUX Matlab package (see 

Appendix-A). The VSSIM metric is implemented by using C++ language. 

For example, Table 4.3.1 presents the objective quality metrics’ outputs for 

each distortion types of an image in TID2008 which is shown in Figure 4.3.1.  

Table 4.3.1 : Objective quality metrics' outputs of images in Figure 4.3.1 

 

Distortion PS	R SSIM VIF VS	R 	QM MSSIM 

Additive Gaussian noise 24.4 0.58 0.39 21.1 23.3 0.91 

Additive noise in color component  30.4 0.79 0.61 28.9 28.5 0.96 

Spatially correlated noise 24.4 0.60 0.25 13.1 14.2 0.82 

Masked noise 24.2 0.77 0.68 31.2 27.5 0.97 

High frequency noise 18.5 0.34 0.34 18.8 21.0 0.85 

Impulse noise 24.4 0.61 0.38 18.1 20.3 0.91 

Quantization noise 23.9 0.77 0.33 14.9 11.5 0.89 

Gaussian blur 22.6 0.55 0.13 10.3 9.60 0.77 

Image denoising 23.7 0.70 0.17 12.1 10.7 0.83 

JPEG compression 24.9 0.73 0.18 14.6 14.1 0.88 

JPEG2000 compression 21.6 0.52 0.04 8.84 7.09 0.66 

JPEG transmission errors 20.9 0.50 0.19 8.83 9.39 0.73 

JPEG2000 transmission errors 21.2 0.46 0.16 8.31 8.75 0.69 

Non eccentricity pattern noise 25.3 0.90 0.54 12.4 11.1 0.92 

Local block-wise distortions 24.7 0.92 0.75 10.8 8.7 0.88 

Mean shift (intensity shift) 16.2 0.84 0.88 34.3 21.8 0.98 

Contrast change 22.1 0.86 0.64 10.2 6.34 0.84 
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Reference Image Additive Gaussian noise Additive noise in color component 

Spatially correlated noise Masked noise High frequency noise 

Impulse noise Quantization noise Gaussian blur 

Image denoising JPEG compression JPEG2000 compression 

JPEG transmission errors JPEG2000 transmission errors Non eccentricity pattern noise 

Local block-wise distortions Mean shift (intensity shift) Contrast change 
Figure 4.3.1 : Distortion Types in Tampere Image Database 2008 
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4.3.1 PS	R 

Table 4.3.2 : Performance of PSNR on Tampere Image Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Additive Gaussian noise 0.9345 0.9129 0.01 0.2208 

Additive noise in color component  0.9241 0.9060 0.03 0.1985 

Spatially correlated noise 0.9526 0.9190 0 0.1934 

Masked noise 0.8729 0.8489 0.04 0.2952 

High frequency noise 0.9714 0.9298 0 0.2312 

Impulse noise 0.8578 0.8726 0.06 0.2672 

Quantization noise 0.8760 0.8709 0.02 0.4048 

Gaussian blur 0.8569 0.8698 0.03 0.6142 

Image denoising 0.9462 0.9421 0 0.5263 

JPEG compression 0.8684 0.8725 0.02 0.8575 

JPEG2000 compression 0.8643 0.8139 0.01 1.897 

JPEG transmission errors 0.7576 0.7509 0.06 0.8649 

JPEG2000 transmission errors 0.8539 0.8322 0.05 0.4253 

Non eccentricity pattern noise 0.5859 0.5813 0.22 0.8587 

Local block-wise distortions 0.6383 0.6199 0.13 0.5177 

Mean shift (intensity shift) 0.7084 0.6973 0.10 0.4124 

Contrast change 0.6033 0.5875 0.11 0.9908 

All Images 0.5274 0.5531 0.17 1.141 
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Figure 4.3.2 : Scatter plot of MOS versus PSNR on Tampere Image Database  

(b1=23.04, b2=0.19, b3=7.25) 
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Table 4.3.2 contains PSNR results for all images in TID2008 classified by the 

type of distortion. As shown in table, PSNR has poor overall performance (pearson 

correlation factor for all images is 0.5274). When considering the distortion types 

seperately, the correlation values increases. Since PSNR assumes that the distortion 

is caused by additive signal-independent noise, it performs better for such additive 

noise based distortions.  As can be seen, distortion type of non-eccentricity pattern 

noise gives the lowest correlation with human perception. Considering the prediction 

consistency, for all types of distortion the outlier ratio is between 0 and 0.22. 

Therefore it can be stated that the results are consistent for all types of distortions.  

Figure 4.3.2 shows the relationship between MOS and PSNR pictorially in a scatter 

plot. 

Table 4.3.3 : Performance of PSNR on LIVE Video Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Wireless 0.6574 0.6204 0 8.095 

IP 0.4853 0.4718 0.1 8.644 

H.264 0.5439 0.4729 0.2 10.27 

MPEG2 0.4006 0.3831 0.15 9.083 

All Videos 0.5433 0.5233 0.0666 9.433 
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Figure 4.3.3 : Scatter plot of DMOS versus PSNR on LIVE Video Database  

(b1=1022, b2=-0.089 , b3=-32.56) 
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Table 4.3.3 contains the PSNR results for all videos in LIVE Video Database 

classified by the distortion type. As in the TID2008, PSNR performs weak also in 

this database (pearson correlation factor for all videos is 0.5433). Considering PSNR 

model correlation with human perception for each distortion types, the best 

correlation is obtained in wireless distortion. On the contrary, the worst correlation is 

in MPEG2 compression type of distortion.  For the prediction consistency, outlier 

ratio for all types of distortion is between 0 and 0.2. It can be concluded that the 

results are consistent. Figure 4.3.3 shows the relation of subjective scores with PSNR 

for all the videos in LIVE Video database as a visual illustration.  Since subjective 

scores are given in DMOS, the higher the PSNR values the lower the DMOS. 

4.3.2 SSIM 

Table 4.3.4 : Performance of SSIM on Tampere Image Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Additive Gaussian noise 0.7676 0.7891 0.0100 0.3995 

Additive noise in color component  0.7905 0.7929 0 0.3185 

Spatially correlated noise 0.7934 0.8129 0 0.405 

Masked noise 0.8005 0.8043 0 0.3639 

High frequency noise 0.8483 0.8389 0 0.5149 

Impulse noise 0.6819 0.7161 0.07 0.3845 

Quantization noise 0.7542 0.7988 0.07 0.5445 

Gaussian blur 0.9327 0.9388 0 0.433 

Image denoising 0.9382 0.9393 0 0.563 

JPEG compression 0.9114 0.8930 0 0.7119 

JPEG2000 compression 0.9263 0.9278 0 0.7475 

JPEG transmission errors 0.8419 0.8402 0 0.9856 

JPEG2000 transmission errors 0.8231 0.8407 0.01 0.4729 

Non eccentricity pattern noise 0.6772 0.6957 0.02 0.7774 

Local block-wise distortions 0.8861 0.8808 0.19 0.5169 

Mean shift (intensity shift) 0.6918 0.7168 0.01 0.4225 

Contrast change 0.4968 0.5134 0.01 1.079 

All Images 0.6449 0.6459 0.0188 1.028 
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Figure 4.3.4 : Scatter plot of MOS versus SSIM on Tampere Image Database  

(b1=368.7, b2=0.207, b3=21.26) 

 

Results in Table 4.3.4 show the performance of SSIM metric on TID2008 for 

each distortion type. As it can be observed from this table, SSIM has fair overall 

performance (pearson correlation factor is 0.6449).  The better correlations between 

SSIM and subjective results are obtained in image denoising and gaussian blur 

distortion types. The worst performance to predict the subjective quality ratings is in 

contrast change distortion. Since SSIM is sensitive to distortions that corrupt spatial 

correlation such as block compression, blur and noise and insensitive to contrast and 

mean changes, the results are not suprising. In terms of consistency criteria, outlier 

ratio is between 0 and 0.19, and it can be concluded that the results are consistent. 

Figure 4.3.4 shows the relationship between MOS and SSIM pictorially in a scatter 

plot. 
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Table 4.3.5 : Performancce of SSIM on LIVE Video Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Wireless 0.5277 0.5221 0.05 9.114 

IP 0.5369 0.4700 0 8.324 

H.264 0.6705 0.6561 0.025 8.374 

MPEG2 0.3759 0.5583 0.3 8.107 

All Videos 0.5413 0.5251 0.0466 9.324 
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Figure 4.3.5 : Scatter plot of DMOS versus SSIM on LIVE Video Database  

(b1=61.94, b2=-1.104, b3=1.953) 

 

Table 4.3.5 presents the results of SSIM metric for LIVE video database. As 

seen in the table, SSIM performs poor in LIVE video database (pearson correlation 

factor is 0.5413). Regarding the distortion types, SSIM is more correlated with 

subjective scores in H.264 than MPEG2 compression type of distortions. Possible 

explanation of this result is the reduced blockiness in H.264 due to deblocking 

filtering. Since SSIM is sensitive to block compression artifacts, it is not suprising to 

have better correlation for H.264 type of distortion. In addition, SSIM performs 

almost the same in IP and wireless distortion types. Considering the prediction 

consistency, for all types of distortion the outlier ratio is between 0 and 0.3, thus the 

results can be stated as consistent. Figure 4.3.5 shows the relationship between 

DMOS and SSIM pictorially in a scatter plot. 
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4.3.3 VIF 

Table 4.3.6 : Performance of VIF on Tampere Image Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Additive Gaussian noise 0.8674 0.8799 0 0.3087 

Additive noise in color component  0.8955 0.8785 0 0.2312 

Spatially correlated noise 0.8616 0.8702 0 0.3226 

Masked noise 0.8922 0.8698 0 0.2732 

High frequency noise 0.9457 0.9075 0 0.3163 

Impulse noise 0.8161 0.8331 0 0.3004 

Quantization noise 0.7893 0.7956 0.01 0.5155 

Gaussian blur 0.9384 0.9546 0 0.4118 

Image denoising 0.9296 0.9189 0 0.5995 

JPEG compression 0.9538 0.9170 0 0.5197 

JPEG2000 compression 0.9579 0.9713 0 0.573 

JPEG transmission errors 0.8760 0.8582 0 0.6389 

JPEG2000 transmission errors 0.8352 0.8509 0.01 0.4494 

Non eccentricity pattern noise 0.7441 0.7608 0 0.7079 

Local block-wise distortions 0.8403 0.8320 0 0.3663 

Mean shift (intensity shift) 0.5936 0.5132 0.14 0.5022 

Contrast change 0.8869 0.8190 0 0.5738 

All Images 0.7982 0.7496 0.0159 0.8092 
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Figure 4.3.6 : Scatter plot of MOS versus VIF on Tampere Image Database  

(b1=5.788, b2=4.435, b3=0.229) 
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Table 4.3.6 contains VIF results for all images in TID2008 classified by the 

type of distortion. As shown in table, VIF has good overall performance (pearson 

correlation factor for all images is 0.7982). Considering the distortion types 

seperately, correlation values increases. Since VIF uses a signal attenuation and 

additive noise distortion model, it performs better for such distortions that the model 

should be able to synthesize images whose perceptual annoyance is close to actual 

distortion. As can be seen, VIF performs good in JPEG and JPEG2000 compressions, 

gaussian blur and image denoising types of distortion that can successfully be 

modelled.  Considering the prediction consistency, for all types of distortion the 

outlier ratio is between 0 and 0.14. Therefore it can be stated that the results are 

consistent. Figure 4.3.6 shows the relationship between MOS and VIF  pictorially in 

a scatter plot. 

Table 4.3.7 : Performance of VIF on LIVE Video Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Wireless 0.5517 0.5317 0.05 8.949 

IP 0.5917 0.5506 0 7.97 

H.264 0.6497 0.6349 0.025 8.58 

MPEG2 0.6299 0.6331 0.25 8.959 

All Videos 0.5541 0.5541 0.02 9.231 
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Figure 4.3.7 : Scatter plot of DMOS versus VIF on LIVE Video Database  

(b1=72.77,  b2=-0.43, b3=2.38) 

 
Table 4.3.7 presents the results of VIF metric for LIVE video database. As 

seen in the table, VIF performs poor in LIVE video database (pearson correlation 

factor is 0.5541). Regarding the distortion types, VIF is more correlated with 

subjective scores in H.264 than MPEG2 compression type of distortions. In addition, 

VIF performs better in IP distortion than in wireless distortion type. Considering the 

prediction consistency,  for all types of distortion the outlier ratio is between 0 and 

0.25, thus the results can be stated as consistent. Figure 4.3.7 shows the relationship 

between DMOS and VIF  pictorially in a scatter plot. 
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4.3.4 VS	R 

Table 4.3.8 : Performance of VSNR on Tampere Image Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Additive Gaussian noise 0.7495 0.7278 0.11 0.4106 

Additive noise in color component  0.7761 0.7793 0.06 0.3276 

Spatially correlated noise 0.7557 0.7665 0.09 0.4162 

Masked noise 0.7543 0.7295 0.11 0.3972 

High frequency noise 0.8902 0.8811 0.01 0.4435 

Impulse noise 0.6268 0.6472 0.23 0.4052 

Quantization noise 0.8158 0.8269 0.07 0.4855 

Gaussian blur 0.9246 0.9330 0.02 0.4538 

Image denoising 0.9423 0.9286 0 0.5447 

JPEG compression 0.9345 0.9174 0 0.6158 

JPEG2000 compression 0.9467 0.9515 0 0.6411 

JPEG transmission errors 0.8085 0.8055 0.04 0.7799 

JPEG2000 transmission errors 0.7682 0.7909 0.06 0.5232 

Non eccentricity pattern noise 0.5727 0.5716 0.14 0.8687 

Local block-wise distortions 0.2748 0.1926 0.36 0.657 

Mean shift (intensity shift) 0.3760 0.3696 0.31 0.5423 

Contrast change 0.4305 0.4239 0.23 1.121 

All Images 0.6819 0.7046 0.1112 0.9824 
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Figure 4.3.8 : Scatter plot of MOS versus VSNR on Tampere Image Database  

(b1=6.54, b2=0.07 ,b3=13.61) 
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Results in Table 4.3.8 show the performance of VSNR metric on TID2008 for 

each distortion type. As it can be observed from this table, VSNR has fair overall 

performance (pearson correlation factor is 0.6819).  The better correlations between 

VSNR and subjective results are obtained in image denoising, JPEG and JPEG2000 

compression distortion types. On the other hand, VSNR performs bad especially in 

localized distortions such as local block-wise distortion. One possible explanation of 

this result is the fact that VSNR metric does not take into account the spatial 

localization of distortion. In terms of consistency criteria, outlier ratio is between 0 

and 0.36, and it can be concluded that the results are not consistent for all types of 

distortions. Figure 4.3.8 shows the relationship between MOS and VSNR pictorially 

in a scatter plot. 

Table 4.3.9 : Performance of VSNR on LIVE Video Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Wireless 0.6975 0.6951 0 7.688 

IP 0.7370 0.6929 0.033 6.914 

H.264 0.6499 0.6405 0.025 8.577 

MPEG2 0.5906 0.5874 0.025 8 

All Videos 0.6883 0.6725 0.0133 8.043 
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Figure 4.3.9 : Scatter plot of DMOS versus VSNR on LIVE Video Database  

(b1=105.3, b2=-0.29, b3=0.07) 
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Table 4.3.9 contains the VSNR results for all videos in LIVE Video Database 

classified by the distortion type. As in the TID2008, VSNR performs fair also in this 

database (pearson correlation factor for all videos is 0.6883). Considering VSNR 

model correlation with human perception for each distortion types, the best 

correlation is obtained in IP distortion. The worst correlation is in MPEG2 

compression type of distortion.  For the prediction consistency, outlier ratio for all 

types of distortion is between 0 and 0.033. It can be concluded that the results are 

consistent. Figure 4.3.9 shows the relation of subjective scores with VSNR for all the 

videos in LIVE Video database as a visual illustration.  

 

4.3.5 	QM 

Table 4.3.10 : Performance of NQM on Tampere Image Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Additive Gaussian noise 0.7461 0.7679 0.11 0.413 

Additive noise in color component  0.7486 0.7490 0.08 0.3444 

Spatially correlated noise 0.7584 0.7720 0.14 0.4142 

Masked noise 0.7104 0.7067 0.14 0.4258 

High frequency noise 0.9226 0.9014 0.01 0.3755 

Impulse noise 0.7495 0.7616 0.1 0.3442 

Quantization noise 0.8104 0.8209 0.11 0.4918 

Gaussian blur 0.8789 0.8845 0.02 0.5684 

Image denoising 0.9579 0.9449 0 0.4668 

JPEG compression 0.9359 0.9074 0 0.6095 

JPEG2000 compression 0.9409 0.9532 0.27 1.601 

JPEG transmission errors 0.7320 0.7372 0.13 0.9026 

JPEG2000 transmission errors 0.7339 0.7262 0.12 0.555 

Non eccentricity pattern noise 0.6830 0.6799 0.17 0.7739 

Local block-wise distortions 0.2185 0.2347 0.35 0.657 

Mean shift (intensity shift) 0.5295 0.5245 0.2 0.4957 

Contrast change 0.6817 0.6191 0.04 0.9091 

All Images 0.6085 0.6243 0.1611 1.066 
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Figure 4.3.10 : Scatter plot of MOS versus NQM on Tampere Image Database  

(b1=10.67, b2=0.04 ,b3=30.6) 

 
Table 4.3.10 shows NQM results for all images in TID2008 classified by the 

type of distortion. As shown in table, NQM has fair overall performance (pearson 

correlation factor for all images is 0.6085). Considering the distortion types 

seperately, correlation values increases. Since NQM models the distortion on image 

as a combination of linear frequency distortion and additive noise injection, it 

performs better for such distortions.  As seen in Table 4.3.10, NQM performs good 

in distortion types of JPEG and JPEG2000 compressions, and image denoising which 

can successfully be modelled. Considering the prediction consistency, for almost all 

types of distortion the outlier ratio is small except in local block-wise distortion. 

Therefore it can be stated that the results are consistent for almost all types of 

distortions.  Figure 4.3.10 shows the relationship between MOS and NQM pictorially 

in a scatter plot. 
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Table 4.3.11 : Performance of NQM on LIVE Video Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Wireless 0.6564 0.6459 0.025 8.094 

IP 0.6703 0.6667 0.0333 7.322 

H.264 0.5884 0.5810 0.075 9.126 

MPEG2 0.6704 0.6346 0.075 7.356 

All Videos 0.6659 0.6448 0.02 8.272 
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Figure 4.3.11 : Scatter plot of DMOS versus NQM on LIVE Video Database  

(b1=73.16 , b2=-0.55, b3=1.89) 

 

Table 4.3.11 presents the results of NQM metric for LIVE video database. As 

seen in the table, NQM performs fair in LIVE video database (pearson correlation 

factor is 0.6659). Regarding the distortion types, NQM is more correlated with 

subjective scores in MPEG2 than H.264 compression type of distortions. In addition, 

VIF performs better in IP distortion than in wireless distortion type. Considering the 

prediction consistency,  for all types of distortion the outlier ratio is between 0 and 

0.075, thus the results can be stated as consistent. Figure 4.3.11 shows the 

relationship between DMOS and NQM pictorially in a scatter plot. 
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4.3.6 MSSIM 

Table 4.3.12 : Performance of MSSIM on Tampere Image Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Additive Gaussian noise 0.7567 0.8094 0.05 0.4361 

Additive noise in color component  0.7867 0.8064 0.02 0.3217 

Spatially correlated noise 0.7794 0.8195 0.01 0.4014 

Masked noise 0.8072 0.8155 0 0.378 

High frequency noise 0.8475 0.8685 0.01 0.5166 

Impulse noise 0.6352 0.6868 0.02 0.4024 

Quantization noise 0.7889 0.8537 0.02 0.521 

Gaussian blur 0.9040 0.9607 0.05 0.683 

Image denoising 0.9308 0.9571 0.05 1.223 

JPEG compression 0.9584 0.9348 0 0.4954 

JPEG2000 compression 0.9742 0.9736 0 0.4477 

JPEG transmission errors 0.8607 0.8736 0 0.6803 

JPEG2000 transmission errors 0.8174 0.8525 0.02 0.4708 

Non eccentricity pattern noise 0.6881 0.7336 0 0.7689 

Local block-wise distortions 0.7968 0.7617 0 0.4063 

Mean shift (intensity shift) 0.6877 0.7374 0.02 0.4248 

Contrast change 0.7688 0.6399 0 0.7944 

All Images 0.8247 0.8527 0.0076 0.7636 
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Figure 4.3.12 : Scatter plot of MOS versus MSSIM on Tampere Image Database  

(b1=327.7, b2=0.29, b3=14.73) 
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Results in Table 4.3.12 show the performance of MSSIM metric on TID2008 

for each distortion type. As seen in the table, MSSIM has good overall performance 

(pearson correlation factor is 0.8247). The better correlations between MSSIM and 

HVS perception are obtained in JPEG and JPEG2000 compression distortion types. 

Since JPEG and JPEG2000 encode fine-scale details of image to a much higher 

degree than coarse-scale structures, HVS perceives better when evaluating at larger 

scales. This explains the better correlation after incorporating multiple scales.  As 

seen in the table, the results are consistent by looking at the outlier ratio values which 

are between 0 and 0.05. Figure 4.3.12 shows the relationship between MOS and 

MSSIM pictorially in a scatter plot. 

Table 4.3.13 : Performance of MSSIM on LIVE Video Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Wireless 0.7103 0.7291 0.025 7.552 

IP 0.7233 0.6418 0 6.813 

H.264 0.7321 0.7259 0.025 7.688 

MPEG2 0.6781 0.6705 0 7.286 

All Videos 0.7379 0.7322 0.0133 7.483 
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Figure 4.3.13 : Scatter plot of DMOS versus MSSIM on LIVE Video Database  

(b1=66.53, b2=-1.17, b3=1.46) 
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Table 4.3.13 presents the results of MSSIM metric for LIVE video database. 

As seen in the table, MSSIM performs good in LIVE video database (pearson 

correlation factor is 0.7379). Regarding the distortion types, MSSIM is more 

correlated with subjective scores in H.264 than MPEG2 compression type of 

distortions. In addition, SSIM performs almost the same in IP and wireless distortion 

types. Considering the prediction consistency,  for all types of distortion the outlier 

ratio is between 0 and 0.025, thus the results can be stated as consistent. Figure 

4.3.13 shows the relationship between DMOS and MSSIM pictorially in a scatter 

plot. 

4.3.7 VSSIM 

Table 4.3.14 : Performance of VSSIM on LIVE Video Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Wireless 0.5497 0.5502 0.05 10.73 

IP 0.5712 0.4847 0.1 8.098 

H.264 0.6918 0.6827 0.025 8.149 

MPEG2 0.6067 0.5922 0 7.88 

All Videos 0.5661 0.5485 0.046 9.14 
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Figure 4.3.14 : Scatter plot of DMOS versus VSSIM on LIVE Video Database 

(b1=61.74, b2=-1.20, b3=1.86) 
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Table 4.3.14 shows the results of VSSIM metric for LIVE video database. As seen in 

the table, it performs poor in LIVE video database (pearson correlation factor is 

0.5661). Regarding the distortion types, VSSIM performs better in H.264 than 

MPEG2 compression type of distortions. In addition, VSSIM is more correlated with 

HVS in IP type of distortions than in wireless. Considering the prediction 

consistency,  for all types of distortion the outlier ratio is between 0 and 0.1, thus the 

results can be stated as consistent. Figure 4.3.14 shows the relationship between 

DMOS and VSSIM pictorially in a scatter plot. 

4.3.8 VQM 

Table 4.3.15 : Performance of VQM on LIVE Video Database for each distortion type 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

Wireless 0.8194 0.8009 0 6.149 

IP 0.7086 0.7196 0 6.961 

H.264 0.7392 0.7427 0.025 7.601 

MPEG2 0.7349 0.7936 0.3 6.426 

All Videos 0.7665 0.7553 0.0066 7.121 
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Figure 4.3.15 : Scatter plot of DMOS versus VQM on LIVE Video Database 

(b1=73.91, b2=4.953, b3=0.05343) 
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Table 4.3.15 presents the results of VQM metric-H, The General Model, for 

LIVE video database. As seen in the table, VQM performs good in LIVE video 

database (pearson correlation factor is 0.7665). Regarding the distortion types, VQM 

is more correlated with subjective scores in Wireless distortion than in IP type of 

distortions. In addition, SSIM performs almost the same in H.264 and MPEG2 

compression distortion types. Considering the prediction consistency,  for all types of 

distortion the outlier ratio is between 0 and 0.3, thus the results can be stated as 

consistent. Figure 4.3.15 shows the relationship between DMOS and VQM 

pictorially in a scatter plot.  

4.3.9 Discussion of Results 

Table 4.3.16 : Performance comparison of objective quality metrics on Tampere Image Database 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

PSNR 0.5274 0.5531 0.17 1.141 

SSIM 0.6449 0.6459 0.0188 1.028 

VIF 0.7982 0.7496 0.0159 0.8092 

VSNR 
 

0.6819 0.7046 0.1112 0.9824 

NQM 0.6085 0.6243 0.1611 1.066 

MSSIM 0.8247 0.8527 0.0076 0.7636 

 
Table 4.3.16 presents the performance of objective quality metrics on 

TID2008 for all images in terms of prediction accuracy, monotonicity and 

consistency.  Comparison of objective model correlations with respect to the HVS is 

given as  

 PS�R �QM SSIM VS�R VIF MSSIM< < < < <   

The results show that PSNR is the worst predictor of visual fidelity that it is 

not very well matched to perceived visual quality by human observer. All other 

objective quality assessment algorithms improve upon PSNR. Among all six 

algorithms the best performance is obtained in MSSIM. By this result, the notion that 

using multi-scale methodology can improve performance of the assessing algorithm 

is validated. In terms of prediction consistency, PSNR has the greater outlier ratio 

than all other objective quality metrics that the results are not so consistent. MSSIM 
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has the smaller outlier ratio among all the metrics. Figure 4.3.16 shows the scatter 

plots of each objective quality metric versus MOS values. 
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Figure 4.3.16 : Scatter plots of MOS versus objective quality metrics on Tampere Image Database 

 

Table 4.3.17 shows the performance of objective quality metrics on LIVE 

video database for all videos. All the metrics except VSSIM and VQM were 

computed as the average of the frame level quality scores. VSSIM and VQM model 

the visual motion perception. Model comparison in terms of correlation to subjective 

results is given as 

 PS�R SSIM VIF VSSIM �QM VS�R MSSIM VQM≈ < < < < < <   
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Table 4.3.17 : Performance comparison of objective quality metrics on LIVE Video Database 

 

Distortion 
Pearson 
Corr. 

Spearman 
Corr. 

Outlier 
Ratio 

RMSE 

PSNR 0.5433 0.5233 0.0666 9.433 

SSIM 0.5413 0.5251 0.0466 9.324 

VIF 0.5541 0.5541 0.02 9.231 

VSNR 
 

0.6883 0.6725 0.0133 8.043 

NQM 0.6659 0.6448 0.02 8.272 

MSSIM 0.7379 0.7322 0.0133 7.483 

VSSIM 0.5661 0.5485 0.046 9.14 

VQM 0.7665 0.7553 0.0066 7.121 

 
In assessing the video quality PSNR and SSIM have almost the same 

correlation which is poor. The best correlation performance amongst the ones in the 

study is achieved by VQM. Better performance of VSSIM upon SSIM illustrates the 

success of the visual motion perception inclusion to the algorithm. Scatter plots of all 

the quality metrics with respect to subjective scores are shown in Figure 4.3.17. 

Performance of objective quality assessment algorithms with respect to 

computational efficiency is measured by taking the average time elapsed for the 

calculation of a frame of  a video in LIVE database. Using C++ implementation for 

VSSIM and MATLAB for all others on 2.20 GHz Intel Core2 Duo machine, average 

time elapsed per frame for each metric is given in Table 4.3.18.  

Table 4.3.18: Computational performance information of the quality metrics 

 

Distortion Time (sec) 

PSNR 0.21 

SSIM 0.62 

VIF 7.22 

VSNR 
 

1.38 

NQM 3.12 

MSSIM 1.10 

VQM 1.52 

 

As seen in Table 4.3.18 the computational complexity of visual quality 

metrics can be given as 

 PS�R SSIM MSSIM VS�R VQM �QM VIF< < < < < <   
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VSSIM is excluded from the above comparison since it is implemented in 

different environment from all others. Although PSNR performs poor to match the 

perceived visual quality in both image and video databases, it is the simplest metric 

to calculate. Among all algorithms, VIF is the most complex one. VQM which is the 

best performing visual quality algorithm in video database has a permissible 

computational complexity. 
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Figure 4.3.17 : Scatter plots of DMOS versus objective quality metrics on LIVE Video Database 
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CHAPTER 5 
 
 

5 CO	CLUSIO	 

 
 
 
 

Throughout the study, the objective visual quality metrics that are widely 

accepted in literature are evaluated on a wide range of distortion types and 

comparison of overall performances in terms of prediction accuracy, monotonicity, 

consistency and computational complexity is given.  

In this thesis, eight widely accepted and publicly-available objective visual 

quality methods are studied. Among all six metrics, VSSIM and VQM are 

specialized for video quality. An image and a video database which include wide 

variety of distortion types are downloaded and used in the evaluation of these 

methods. The output of the models to the databases are fitted by a logistic function to 

account for non-linearities in the models. Then, in order to provide quantitative 

performance evaluation of the objective quality metrics, methods provided in VQEG 

Phase II Final Report [25] are used.   

The results that we obtained show that although PSNR is computationaly 

simple it performs very poorly against human perception when all types of distortion 

are taken into account at the same time. However, since PSNR assumes that the 

distortion is caused by additive signal-independent noise it can be useful to quantify 

the visual quality in such distortions. 

Among all the objective quality metrics involved in the study, VQM is the 

best performing one in video quality evaluation. This result shows the importance of 

incorporating the wide range of perception based spatial-temporal features to an 

objective quality metric model. Taking into account also the computational 

complexity, VQM is an applicable metric to be employed for real world applications. 

The results obtained in this study correlates well with the studies conducted 

before to compare performance of different visual quality metrics [19], [20], [22], 

[23]. A distinguishing feature of this study is the evaluation of each objective quality 

metrics for a wide variety of distortion types separately. 
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In order to evaluate the visual quality in specific applications in which the 

original video is partially or not available, RR and NR video quality metrics should 

be implemented. For future work, these type of objective metrics should be 

evaluated. In addition, as image and video applications continue to evolve, the 

distortion types that should be taken into account while designing objective metrics 

will increase. For example, 3D imaging has recently been widely studied. There are 

so many 3D applications ranging from entertainment to medical. Image quality will 

show the performance of these 3D systems and research on quality assessment 

becomes an important task. Since depth perception and stereoscopic distortions are 

not taken into account in 2D visual quality metrics, new objective assessment 

methods should be developed.  

 



 61 

6 REFERE	CES 

 
 
 

 

[1] Jae Jeong Hwang, Hong Ren Wu and K.R. Rao “Human Visual Systems”, in 
H.R. Wu and K.R. Rao, eds. “Digital video image quality and perceptual coding”, ch. 
1.6, CRC press, 2006.  
 
 
[2] E. Montag and M. Fairchild “Fundamentals of Human Vision and Vision 
Modelling”, in H.R. Wu and K.R. Rao, eds. “Digital video image quality and 
perceptual coding”, ch. 2, CRC press, 2006. 
 
 
[3] S. Winkler, Digital Video Quality – Vision Models and Metrics, John Wiley & 
Sons, 2005. 
 
 
[4] Atanas Boev, Maija Poikela, Atanas Gotchev, and Anil Aksay, “Modelling of 
stereoscopic HVS”, Mobile3DTV Technical report, Available:  
http://mobile3dtv.eu/results/, last visited on September 2011. 
 
 
[5] W. Schreiber, “Fundamentals of Electronic Imaging Systems”, New York, 
Springel, 1993. 
 
 
[6] E. Peli, “Contrast in complex images,” J. Opt. Soc. Amer. A, vol. 7, Oct. 1990,  
pp. 2032–2039. 
 
 
[7] E. Peli, “In search of a contrast metric: Matching the perceived contrast of Gabor 
patches at different phases and bandwidths”. Vision Research, 37 (23), 1997.  
 
 
[8] S. Winkler and P. Vandergheynst, “Computing isotropic local contrast from 
oriented pyramid decompositions”, in Proc. of ICIP, 4:420-424, Kobe, Japan, Oct, 
1999.  
 
 
[9] S. Winkler, “Perceptual video quality metrics – a review,” in H.R. Wu and K.R. 
Rao, eds. “Digital video image quality and perceptual coding”, ch. 5, CRC press, 
2006. 
 
 



 62 

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality 
assessment: From error visibility to structural similarity," IEEE Transactions on 
Image Processing, vol. 13, no. 4, Apr. 2004,  pp. 600-612. 
 
 
[11] H.R. Sheikh.and A.C. Bovik, "Image information and visual quality," IEEE 
Transactions on Image Processing, vol.15, no.2, 2006, pp. 430-444.  
 
 
[12] M. J. Wainwright, E. P. Simoncelli, and A. S. Wilsky, “Random cascades 
on wavelet trees and their use in analyzing and modeling natural images,” Appl. 
Comput. Harmon. Anal., vol. 11,  2001,  pp. 89–123. 
 
 
[13] D.M. Chandler, S.S. Hemami, "VSNR: A Wavelet-Based Visual Signal-to-
Noise Ratio for Natural Images", IEEE Transactions on Image Processing, vol. 16,  
no. 9, 2007, pp. 2284-2298.  
 
 
[14] P. J. Bex and W. Makous, “Spatial frequency, phase, and the contrast of natural 
images,” J. Opt. Soc. Amer. A, vol. 19, 2002, pp. 1096–1106. 
 
 
[15] Damera-Venkata N., Kite T., Geisler W., Evans B. and Bovik A. "Image      
Quality Assessment Based on a Degradation Model", IEEE Trans. on Image      
Processing, vol. 9, 2000, pp. 636-650. 
 
 
[16] Z. Wang and E. P. Simoncelli and A. Bovik, “Multi-scale Structural Similarity 
for Image Quality Assessment”, in Proc. of 37th IEEE Asilomar Conference on 
Signals, Systems and Computers, Nov. 2003.  
 
 
[17] ITU-R BT. 500-9, “Methodology for the subjective assessment of the quality of 
television pictures”, 1998. 
 
 
[18] ITU-T P.910, “Subjective video quality assessment methods for multimedia 
applications”, 1999. 
 
 
[19] N. Ponomarenko, M. Carli, V. Lukin, K. Egiazarian, J. Astola, F. Battisti "Color 
Image Database for Evaluation of Image Quality Metrics", Proceedings of 
International Workshop on Multimedia Signal Processing, Australia, Oct. 2008, pp. 
403-408. 
 
 



 63 

[20] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, F. Battisti, 
"TID2008 - A Database for Evaluation of Full-Reference Visual Quality Assessment 
Metrics", Advances of Modern Radioelectronics, vol. 10, pp. 30-45, 2009. 
 
 
[21] Tampere Image Database 2008 v.1.0. Available:  http://www.ponomarenko.info 
/tid2008.htm, last visited on September 2011. 
 
 
[22] K. Seshadrinathan, R. Soundararajan, A. C. Bovik and L. K. Cormack, "Study 
of Subjective and Objective Quality Assessment of Video", IEEE Transactions on 
Image Processing, vol.19, no.6, pp.1427-1441, June 2010.  
 
 
[23] K. Seshadrinathan, R. Soundararajan, A. C. Bovik and L. K. Cormack, "A 
Subjective Study to Evaluate Video Quality Assessment Algorithms", SPIE 
Proceedings Human Vision and Electronic Imaging, Jan. 2010.  
 
 
[24] LIVE Video Quality Database. Available: http://live.ece.utexas.edu/research/ 
quality/live_video.html, last visited on September 2011. 
 
 
[25] Final report from the Video Quality Expetrs Group on the validation of 
objective models of video quality assessment, Phase II, VQEG, August 2003.  
 
 
[26] Z. Wang, L. Lu, and A. C. Bovik, "Video quality assessment based on structural 
distortion measurement," Signal Processing: Image Communication, special issue on 
“Objective video quality metrics”, vol. 19, no. 2, Feb. 2004,  pp. 121-132.  
 
 
[27] B. Girod, “What’s wrong with mean-squared error,” in Digital Images and 
Human Vision, A. B. Watson, Ed. Cambridge, MA: MIT Press, 1993, pp. 207–220. 
 
 
[28] Final report from the Video Quality Expetrs Group on the validation of 
objective models of video quality assessment, VQEG, March 2000 . 
 
 
[29] Curve Fitting Toolbox for MATLAB, Available:   
http://www.mathworks.com/products/curvefitting/index.html, last visited on 
September 2011. 
 
 
[30] Metrix Mux Visual Quality Assessment Package, Available:   
http://foulard.ece.cornell.edu/gaubatz/metrix_mux/, last visited on September 2011. 



 64 

[31] M. Pinson and S. Wolf. “A New Standardized Method for Objectively 
Measuring Video Quality,” IEEE Transactions on Broadcasting, vol. 50, no. 3, 
September, 2004, pp. 312-322. 
 

 

 

 

 

 

 



 65 

APPE	DIX-A 
 
 

A SOFTWARE TOOLS 

 
 
 

A.1 Metrix MUX 

MeTriX MuX is a Matlab package that implements wrapper code for a variety 

of visual quality assessment algorithms. The algorithms currently supported by the 

package are listed below: 

• MSE 

• PSNR 

• SSIM 

• MSSIM 

• VSNR 

• VIF 

• VIFP 

• UQI 

• IFC 

• NQM 

 

The package is publicly-available to download [30] and all the instructions and 

information are included in it. 

 


