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ABSTRACT 
 

 

INTEGRATED RISK MANAGEMENT APPLICATIONS IN OFFSHORE WIND FARM 

CONSTRUCTION 

 

Sümer, Tuba Pelin 

M.Sc., Department of Industrial Engineering 

Supervisor: Assist. Prof. Dr. Serhan Duran 

Co-Supervisor: Assist. Prof. Dr. Fehmi Tanrısever 

 

September 2011, 62 Pages 

 

This thesis is motivated by a construction company whose main business operation is 

foundation installations of offshore wind farm projects. Steel is the main input for most of 

the foundations. This construction company is confronted with price risk when involved in 

the procurement part of the foundations. The company receives a fixed payment for the 

project while paying variable raw material costs which depend on the steel spot price on 

the procurement date. The construction company should use financial markets to eliminate 

the price risk. However, in most wind farm projects, the steel requirement of a foundation 

is not known in advance, i.e., there is also a quantity risk. Therefore, it is not possible to 

completely eliminate the associated risk. In this thesis we analyze the hedging decisions of 

a value maximizing construction company confronted with both price and quantity risks 

under the presence of capital market imperfections. 

 

Key words: Futures markets, risk management, construction industry 
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ÖZ 

 

OFFSHORE RÜZGAR ENERJİSİ İNŞAATINDA ENTEGRE RİSK YÖNETİMİ 

UYGULAMALARI 

 

Sümer, Tuba Pelin 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Serhan Duran 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Fehmi Tanrısever 

Eylül  2011, 62 Sayfa 

Bu tez, temel operasyonu offshore rüzgar çiftliklerinin temel inşaatı olan bir inşaat 

şirketinden etkilenerek oluşturulmuştur.  Çoğu türbin temeli için çelik ana ham maddedir. 

Bu inşaat şirketi temellerin tedariğinden sorumlu olduğunda çeliğin fiyat riskine maruz 

kalmaktadır. Şirket, proje için sabit bir ödeme alırken, tedarik zamanındaki çelik fiyatına 

bağlı olan değişken ham madde maliyeti ödemektedir. İnşaat şirketi, fiyat riskini yok etmek 

için finansal marketleri kullanmalıdır. Ama, çoğu rüzgar enerjisi projesinde, bir temelde 

kullanılacak çelik miktarı önceden bilinmemektedir, yani aynı zamanda talep riski vardır. Bu 

yüzden ilişkili riski tamamen yok etmek mümkün değildir. Bu tezde, biz talep ve fiyat riskiyle 

karşı karşıya olan, firma değerini maksimize etmeye çalışan bir inşaat şirketinin riskten 

korunma kararlarını inceliyoruz. 

 

 Anahtar kelimeler : Vadeli işlemler piyasası, risk yönetimi, inşaat sektörü 
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CHAPTER 1 

 

INTRODUCTION AND MOTIVATION 

 

 

Renewable energy has started to gain more importance in the recent years with increasing 

concerns about environmental issues and security of energy supply. One of the most 

popular renewable energy sources is the offshore wind energy.  Offshore wind technology 

started to be used in Europe in 1991 with the first application in Denmark. According to 

EWEA statistics, the capacity of offshore wind farms in Europe reached to 2946 MW by the 

end of 2010, which produce 11.5 TWh of electricity. There are 3 main parts of an offshore 

wind turbine which are foundation, turbine tower and turbine. A figure of a wind turbine is 

included in Appendix A.  

This thesis is motivated by a construction company that is involved in offshore wind energy 

projects and exposed to fluctuations in steel price. Before starting to focus on the risk 

exposure of the company, it is beneficial to have a look at all parties involved in offshore 

wind energy projects to see the big picture. Important parties are wind farm developers, 

government, construction companies, turbine manufacturers, steel manufacturers and 

steel mills. These parties and their relations are shown in Figure 1.1. 
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Figure 1.1: Parties involved in offshore wind energy projects 

 

 

Wind farm developer is the party that arranges the construction of a wind farm on land or 

offshore site in order to efficiently exploit the wind energy. There are two types of wind 

farm developers; utility companies and private companies. Utility companies are 

government related and subject to tender regulations for energy sector. These utility 

companies should announce in EU newspapers that they will open a tender process for the 

specified operations and call the interested companies to perform those operations. They 

should select their subcontractors according to the already defined rules. Utility companies 

operate the wind farms after the construction is completed. However, private companies 

are not subject to tender regulations and they can select their subcontractors freely. Private 

companies may select to operate the wind farms or may sell the constructed wind farm via 

Power Purchasing Agreement (PPA).  

Government is the party which initiates the offshore wind energy demand. Governments 

try to promote the renewable energy projects via incentives, since the cost of constructing 

an offshore wind farm is higher than constructing a conventional power plant/electricity 

price. A cost comparison of conventional power plant and wind technology is included in 

Appendix B. The government wants to be sure that the wind farm will be operational in the 

targeted period in the cheapest way. Therefore, the wind farm developer that is  
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economically and technically eligible and demanding for the least incentive obtains the 

construction right of the wind farm. Wind farm developer should get the required permits 

from energy agencies and ministries to be able to get the construction right of the wind 

farm. Turbine manufacturers are the companies that manufacture the turbines and turbine 

towers. Grid connection companies are responsible for connecting offshore wind farms to 

grids by laying cables under water. Steel mills manufacture steel plates and steel 

manufacturers use those steel plates to manufacture the foundations. 

Construction companies are mainly involved in the design and installation of foundations. 

However, these companies may be involved in the procurement and manufacturing of the 

foundation in some projects as well. When a construction company is responsible from the 

procurement, the construction company becomes the party that contacts with the steel 

manufacturer. Construction company bargains the price with the steel manufacturer and 

undertakes some of the risks related to procurement. A contract that involves Engineering 

(design of foundations), Procurement (procurement and manufacturing of foundations), 

and Construction (installation of foundations) is called as an EPC contract. 

A wind farm developer may prefer an EPC contract or may demand separate project tasks 

from different subcontractors (multi-contractual case). For example, a developer may agree 

with a construction company to make the design of foundations, may agree with another 

construction company to make the installations, and may directly agree with steel 

manufacturer for the procurement in multi-contractual case. “Indeed, to reduce the costs 

of the construction process, the interfaces between the various projects steps, from 

manufacturing to commissioning, should be kept as smooth as possible. Each interface 

within this chain of project steps is associated with a number of expenses, e.g, 

documentation hand-off, inspections, insurance, damage assessment and clarification etc. “ 

POWR (2010). 

According to the European offshore wind industry key trends and statistics 2010 report, 

65% of offshore wind farm’s foundations are monopiles, 23% are gravity foundations and 8 

% are jacket type. A figure of these foundation types is included in Figure 1.2. From these 

foundation types; only the gravity based structures are mainly made up of concrete, steel is 

also started to be used for gravity based foundations. Therefore, steel is the main input for 

most foundations.   
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Figure 1.2: Foundation types 

 

 

In this thesis, we will focus on a construction company that is involved in the procurement 

of foundations. The parties in our focus system and material-demand flow between them 

are shown in Figure 1.3.  

 

 

 

 

 

Figure 1.3: Focus system 

 

 

Steel mill produces steel plates processing iron and steel manufacturer produces 

foundations based on the foundation design using these steel plates. As it is seen from 

Figure 1.3, the construction company procures foundations from steel manufacturers and 

delivers the foundations to the project area/wind farm developer. So, the construction 

company is an intermediary company between developer and steel manufacturer. When  
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the construction company is responsible from either design or installation and is also 

involved in procurement, it is easier to coordinate the project schedule and inspect the 

foundations. Therefore, developers prefer that construction companies handle the 

procurement. Then, there is no need for the developer to contact with steel manufacturer 

and to negotiate project costs, risks, project schedule. 

The developer demands from the construction company a fixed price contract for the 

procurement of steel foundations. Developers want to fix the procurement costs for two 

reasons.  The first reason is the easiness in borrowing from banks when costs are certain. 

The second reason is that the incentive granted by the government to the developer 

becomes certain before the project costs are realized. Therefore, fluctuations in project 

costs make the profit of the developer uncertain. When the developer asks for a fixed price 

contract, the construction company also asks to the subcontractors a fixed price contract 

not to take any price risk. Steel plates are produced by steel mill and the fluctuations in 

steel prices are important for the steel mill. Therefore, steel mill is the party that decides to 

offer a fixed price contract or not. When there is less than six months between contract 

sign and steel plates delivery from the steel mill, steel mill accepts to fix the price, however, 

if there is more than six months, steel mill does not want to be exposed to steel price 

fluctuations and therefore does not accept to give a fixed price. Instead, steel mill prefers 

to be paid according to the spot steel prices at plates delivery date. Steel manufacturer 

does not want to take price risk and charges the cost of buying steel plates from steel mill 

plus a profit margin to the construction company. However, construction company is paid a 

fixed price by the developer. Therefore, a price risk arises for the construction company. 

Moreover, in general, final design of the foundations is not completed at the contract sign 

which means the exact steel requirement for the foundations is not known. Generally, in 

real life projects steel requirement in final designs can change in  25 % compared to the 

requirement in draft design. Therefore, construction company is exposed to both price and 

quantity risks and should consider using the financial markets to decrease the risk 

exposure. 

The history of financial markets that trade steel is not long. Steel contracts started to be 

traded over-the-counter (OTC) in 2004. Some of the exchange markets started to trade 

steel futures after 2007. We have found 6 exchange markets that launched steel futures. 

These exchange markets are trading steel contracts that differ in steel types, delivery dates 
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and quantities. The list of exchange markets and a summary of the traded steel contracts 

are included in Appendix C.  

Steel price is volatile similar to the other metal prices. Therefore, handling fluctuations in 

steel prices is really important for the parties that will buy or sell steel. The volatility of steel 

prices is illustrated in Figure 1.4 for three different steel types; hot rolled USA, cold rolled 

USA and standard plate USA. The figures are obtained with three year steel price data and 

taken from metal prices.   

 

 

 

Figure 1.4: Steel prices 

 

 

In this research, we analyze the hedging decisions of a construction company which is 

exposed to price and quantity risks. The construction company is paid a fixed price by the 

developer, however, is exposed to variable costs. The construction company prefers to use 

financial markets to decrease the exposure to fluctuations in input prices; however, since 

quantity is not known at the contract sign, it is not possible to eliminate all the associated 

risk. Moreover, the construction company will be exposed to financial distress cost if the 

company does not have enough cash. We use a two-period framework to model the 

hedging decisions of the company. We consider three real life scenarios with different 

assumptions about the accumulation of margin calls. Under these scenarios we analyze the 

optimal hedging decision of the construction company in the futures market.  
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The rest of the thesis is organized as follows. In Chapter 2, we give a brief introduction to 

the financial derivatives and their working mechanism. In Chapter 3, the related literature 

on financial hedging is summarized. In Chapter 4, our mathematical model is introduced 

and the hedging behavior of the construction company under three business cases is 

discussed. In Chapter 5, an extension of the mathematical model is included. In Chapter 6, 

numerical analysis for the optimal hedging behavior of the company is included. Finally, a 

summary of the thesis is given in Chapter 7. 
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CHAPTER 2 

 

INTRODUCTION TO FINANCIAL DERIVATIVES 

  

 

Derivative is a financial instrument whose payoffs depend on or derives from the values of 

other more basic underlying variables. Underlying variables can be commodities (gold, oil, 

gas, steel, wheat, etc.), financial assets (stocks, bonds, etc.), another derivative (e.g. options 

on futures), index, interest rate, temperature at a given day, and wind at a specific location. 

Three kinds of agents use financial derivatives with different objectives: hedgers, 

speculators and arbitrageurs. Hedgers want to reduce the uncertainty about future price 

movements they will face via using financial instruments. For example, a flour miller who is 

already committed to sell flour at a fixed price in the future takes a long position in wheat 

futures. Speculators want to make money by betting on the movements of the market. For 

example, Fortis Bank takes a long position in oil futures anticipating that oil prices will 

increase. Arbitrageurs want to make riskless profits by participating in two or more markets 

and using the price differences in these markets. 

Some commonly traded financial derivatives include futures contracts, forward contracts, 

options and swaps. Explanations for only forward contracts and futures contracts are 

included since they are similar and futures contracts are used in the hedging decisions of 

the firm and in our mathematical model. 

2.1 Forward contracts 
 

A forward contract is defined as “an agreement to buy or sell an asset at a certain future 

time for a certain price” (Hull, 2006). Forward contracts are traded on the over- the-counter 

(OTC) market which is a telephone and computer linked network of dealers. In OTC 

markets, the contracts are not standardized and the dealers can agree to buy/sell any asset 
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in any quantity/quality, which is a great advantage to the dealers. However, one 

disadvantage of forward contracts is any party can cancel the contract when they want;

default risk. There are two parties involved in a forward contract. The party who agrees to 

buy the asset takes a long position and the party who agrees to sell the asset takes a short 

position. When we denote the price of the asset at time t as St and the agreed priced at 

time 0 with a delivery at time t as F0,t (forward price), then the payoff to the party that 

takes long position is (St – F0,t) and the payoff to the party that takes short position is 

 (F0,t –St ). This means that if the asset price at the delivery date is higher than forward price, 

the party that has a long position will have a positive payoff and the party that has a short 

position will have a negative payoff. However since forward contract is a zero-sum game, 

the payoff to the short position party and the payoff to the long position party will cancel 

each other. 

2.2 Futures contracts 
 

Similar to the forward contracts, a future contract is an agreement to buy or sell an asset at 

a certain future time for a certain price. Futures contracts are traded on an exchange such 

as Chicago Mercantile Exchange (CME). Standardized contracts are traded on exchange 

markets, which mean only certain type of an asset in defined quality and quantity and with 

a specific maturity can be traded. By daily marking to market, exchange markets eliminate 

the default risk.  

How hedging using futures contracts eliminates all price risk and fix the price is shown via 

an example. Suppose that a steel manufacturer needs to buy 100 tons of steel at t=1 and 

the quoted t=1 futures price of steel is 900 $/ton. The spot price at t=1 is not known in 

advance. Two possible cases are considered.  In the first one, the spot price at t=1 is 

950$/ton, i.e., higher than futures price. The cash flows in this case are shown in Table 2.1. 

In the second one, the spot price at t=1 is 850$/ton, i.e., lower than futures price. The cash 

flows in this case are shown in Table 2.2. 
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Table 2.1: Cash flows when spot price is larger than futures price 

Strategies t=0 Cash flow t=1 Cash flow 

Long a futures contract for 100 ton of  
steel at t=0 for t=1 

0 (950-900)*100 =  $ 5000 

Pay for steel delivery at t=1 0 -950*100 = $-95000 

TOTAL 0 $ -90000 

 

Table 2.2: Cash flows when spot price is smaller than futures price 

Strategies t=0 Cash flow t=1 Cash flow 

Long a futures contract for 100 ton of 
steel at t=0 for t=1 

0 (850-900)*100 = - $ 5000 

Pay for steel delivery at t=1 0 -850*100 = $-85000 

TOTAL 0 $ -90000 

            

 

 

As it is seen from the tables, whether the spot price at t=1 is high or low, hedging fixes the 

purchase price to futures price.  

Generally forward contracts are held until maturity and then physically settled, i.e., physical 

delivery is realized. However, majority of futures contracts are not held until maturity. 

Futures contracts are generally closed out before delivery by entering into the opposite 

type of trade from the original one (Hull, 2006). 

As mentioned before, futures contracts are marked to market daily to prevent the default 

risk. Marking to market functions as follows; when the contract is entered into, some 

amount of money is deposited which is known as initial margin. Some fraction of initial 

margin is known as maintenance margin. At the end of each trading day, margin account of 

the dealer is updated to reflect the gain/loss which is resulted from price movements. If the 

margin account of the dealer is below the maintenance margin, then dealer receives a 

margin call to deposit some more money to top up the margin account to the initial margin 

level. So, the futures contracts are cash settled every day. Marking to market is illustrated 

with an example. 
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Suppose that an investor enters into a long steel futures position at 7th of July for 1st of 

September with a futures price of 100 $/oz (F7July,1September =100 $/oz). Contract size is 100 oz. 

Assume the initial margin per contract as $4000 and maintenance margin as $3000. How 

marking to market functions and the margin account of the firm is updated is shown in 

Table 2.3. 

 

 

Table 2.3: Operations of margins 

Day Futures Price 

($) 

Daily Gain 
(Loss) ($) 

Cumulative Gain 
(Loss) ($) 

Margin Account 
Balance ($) 

Margin call 

($) 

 100   4000  

8-July 97 (300) (300) 3700 0 

9-July 98 100 (200) 3800 0 

10-July 88 (1000) (1200) 2800 1200 

11-July 92 400 (800) 4400 0 

 

 

 

The first column shows the futures price of a steel contract between 7-11 July. The second 

column shows the daily gain/loss from the futures position. On 8th of July, the futures price 

is 97 $/oz (F8July,1September=97 $/oz), which means the futures price has decreased by $ 3. 

Since the contract size is 100 oz, daily loss is 3*100=$300.  Every day, margin account of the 

dealer is updated. If margin account of the dealer decreases below maintanence margin, 

the dealer receives a margin call. For example, the dealer receives a margin call of $ 1200 

on 10-July, since margin account is $2800 on that day. By depositing margin call, the dealer 

should increase margin account to initial margin level. In the end of 11th July, the 

cumulative loss of the dealer from the futures position is (100-92)*100=$ 800.   
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Eliminating all price risk, i.e., perfect hedging is not usually possible in real life. There are 

three reasons of imperfect hedging. The first reason is the possible mismatch between the 

expiration date of the futures and the actual selling date of the asset. For example, the 

available steel futures contracts may be monthly and the payments to a steel mill may be 

bi-weekly.  The second reason is the possible difference between the asset whose price to 

be hedged and the asset underlying the futures contract. The third reason is the 

uncertainty on the exact date when the asset will be bought or sold. Under these 

conditions, the spot price of the asset, and the futures price, may not converge on the 

expiration date of the future. The amount by which the two quantities differ measures the 

value of the basis risk.  In our motivating example, we assume that there is no basis risk. In 

this thesis, we assume that there are available futures contracts with a maturity matching 

with steel delivery. Moreover, we assume that the steel traded on exchange markets are 

same with the steel used for foundations. Finally, we assume that the steel delivery date is 

known when contract is signed and there is not any delay in the project. 
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CHAPTER 3 

 

LITERATURE REVIEW 

 

 

Firms can reduce the volatility of their future cash flows via hedging using financial 

instruments such as futures, forwards, options etc.  The literature on hedging practices of 

firms is immense. There are mainly two types of objectives used in these articles, namely 

maximization of expected utility and maximization of firm value.    

The literature using expected utility framework focuses on risk averse firms who use 

financial markets to reduce the variability of their cash flows. Although expected utility 

framework is a useful basis for hedging operations of individual proprietorships and closely 

held corporations, it is not applicable to widely held corporations. This is because of 

establishing a common utility function for all owners, stockholders and bondholders is not 

easy. 

Value maximization means the maximization of total discounted value of expected cash 

flows of a company. In our analysis, we will use a value maximization framework since our 

motivating company is a widely held corporation. Since the seminal work of Modigliani and 

Miller (1958), under perfect and complete markets, it is well known that financial hedging 

does not add any value to the firm.  Smith and Stulz (1985) show that for hedging to add 

value to a value maximizing firm, there should be market imperfections. Under market 

imperfections, there are different cost rates for different cash flow streams. Therefore, 

decreasing the volatility of cash flows is important in reducing the expected costs for a firm. 

These market imperfections are taxes, costs of financial distress, bankruptcy, and 

managerial risk aversion. 

 When firms are exposed to a convex tax function, hedging the volatility of cash flows may 

decrease the expected tax costs (Smith and Stulz (1985)). Financial distress is defined as a 
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low cash-flow state of the firm in which it incurs deadweight losses without being insolvent. 

“There are three important sources of deadweight losses from financial distress. First, a

financially distressed firm may lose customers, valuable suppliers and key employees. 

Secondly, a financially distressed firm is more likely to violate its debt covenants or miss 

coupon/principal payments without being insolvent. These violations impose deadweight 

losses in the form of financial penalties, accelerated debt-repayment, operational 

inflexibility and managerial time and resources spent on negotiations with the lenders. 

Finally, a financially distressed firm may have to forego positive NPV projects due to costly 

external financing” (Purnanandam, 2008). Hedging lowers the probability of facing 

bankruptcy by reducing the volatility of cash flows, which decreases the expected costs of 

bankruptcy.  

In this thesis, we will use value maximization objective under financial distress cost. The 

construction companies first rely on their own cash balance and cash inflows to fulfill the 

cash outflows as operating expenses. If the internally generated cash is not enough to 

satisfy the cash outflows, then the foundation installers face financial distress cost and use 

costly external funds. 

There is a set of papers that consider financial and operational decisions of the firms 

together as Archibald et al. (2002) and Babich and Sobel (2004). Archibald et al. (2002) 

consider a start-up firm that aims to maximize survival. The firm will survive if the capital 

plus earnings can meet the cash outflow in each period. They investigate the optimal 

inventory management framework of the firm under survival maximization. Babich and 

Sobel (2004) consider a startup firm that wants to avoid bankruptcy. The firm aims to 

maximize the expected value of initial public offerings (IPO) with integrating production and 

capacity increase decisions of the firm with the loan size decision.   

In our motivating example, we consider that the company is confronted with both price and 

quantity risks. The literature which has analyzed the hedging decisions of the firms under 

price and quantity risk generally uses a utility maximization framework. Rolfo (1980) 

analyzes the optimal hedge ratio of cocoa producers under price and quantity risk. In this 

paper the individual preferences are modeled via logarithmic and quadratic utility function 

where risk parameter is less than 0.0001. They find that unlike traditional hedging where 

the optimal hedge ratio is unity, under price and quantity risk, optimal hedge ratio is well 

below unity. Moreover, they find that when the correlation between price and quantity is  
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low, optimal hedge ratios are higher. Similarly Losq (1982) investigates the optimal hedge in 

forward market using a concave utility function when confronted with both price and 

quantity risks. He shows that the optimal hedge is less than expected output when price 

and quantity are independent. Ho (1984) analyzes the hedging behavior of a farmer that is 

exposed to both price and quantity risks in a continuous time framework. Hedging decision 

of the farmer is modeled using a exponential utility function. He shows that it is not 

possible to eliminate all risks with the use of futures contracts. In general, the hedge ratio is 

less than unity and falls with the longer the time to harvest. Xing and Pietola (2005) figure 

out optimal hedge ratios of a wheat producer under quantity and price risk using a mean-

variance and expected utility framework. They suggest that the correlation between price 

and quantity is important in the determination of the optimal hedge ratio. Their results 

suggest that price and quantity are negatively correlated which creates a natural hedge. 

They show that when there is natural hedge, the optimal hedge is always less than the 

expected quantity. Moreover, they suggest that hedging effectiveness decreases as 

quantity uncertainty increases.  

Although there is a large literature dealing with both price and quantity under utility 

maximization, there is not much literature that uses value maximization framework. Two 

exceptions are Maes (2011) and Tanrisever and Gutierrez (2011). Moreover, Goel and 

Tanrisever (2011), Goel and Gutierrez (2009) and Goel and Gutierrez (2011) use value 

maximization for different purposes. Goel and Tanrisever (2011) consider a firm that 

procures, processes and distributes a commodity. The firm can procure the commodity 

from forward/options markets or from spot markets. The transportation cost paid for spot 

market is higher than forward/options market. They model the tradeoff between 

procurement in spot market and forward/options market in a multi-period framework. Goel 

and Gutierrez (2009) model how the change in price of futures and spot price can be used 

on the inventory management decisions of a firm. Similarly, Goel and Gutierrez (2011) 

investigate the additional value created in procurement via the use of commodity markets.   

Maes (2011) uses value maximization framework to analyze the hedging decisions of a 

wheat miller that is confronted with price, quantity and blend risks. He uses forward 

contracts as financial instrument and incorporates logistical frictions, which means the 

differences in logistical costs depending on how much in advance the delivery of a contract 

is arranged. He shows that increase in the uncertainty leads to a lower optimal hedge ratio.  
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He compares the optimal results found with a complete hedge and concludes that optimal 

solution gives a higher expected profit and higher variation in profits than a complete 

hedge. Tanrisever and Gutierrez (2011) examine the operating and financial hedging 

decisions of a value maximizing flour miller under financial distress cost. They show that 

hedging adds value to the firm and increases the production level. In MTO (make-to-order) 

situation, where there is only price risk, all risk can be eliminated via hedging when hedging 

quantity equals to the production amount. However, in MTS (make-to-stock) situation, 

where both price and quantity risks are present, it is not possible to eliminate all the 

associated risk. 

Different from the discussed articles, we also want to capture the effect of margin calls on 

the hedging decisions of companies. However, there is not any article that deals with 

margin risk management except Tanrisever and Levij (2011). They consider the hedging 

decision of a value maximizing electricity trading firm that is confronted with margin risks 

(price risk). They model the tradeoff between acquiring put options to decrease the margin 

risk and the cost of acquiring put options in a two period framework. Different from the 

discussed articles, we analyze the hedging behavior of a construction company that is 

confronted with both price and quantity risk by incorporating margin calls into our model. 

We use a value maximization framework under financial distress cost.  To the best of our 

knowledge, this is the first time this topic is studied in literature. 

 

 

 

 

 

 

 

 

 



 

17 
  

 

CHAPTER 4 

 

MATHEMATICAL MODEL 

 

 

 

In this thesis, we use maximization of firm value as the objective which is defined as the 

total discounted value of expected cash flows. We use a two period framework to model 

the hedging decisions of the company. The important times/events in an offshore wind 

farm construction project are shown in Figure 4.1. 

 

 

 

 

 

 

Figure 4.1: Important milestones over the event timeline 

 

 

At t=1, contract is signed between the developer and the construction company. The 

developer wants to fix the project cost at t=1.  Therefore, the developer and foundation 

installer agrees on a fixed price per quantity at t=1. This fixed unit price is denoted as p and 

paid to the construction company when steel is delivered at t=3. Simultaneously, the 

construction company signs contract with steel manufacturer and steel manufacturer with 

the steel mill at t=1. In our motivating example, there is more than 6 months between t=1 

and t=3, thus steel mill does not accept to fix the price. Therefore, construction company is

t=1 t=2 t=3 

Contract sign 
Final design 
completed 

Delivery of steel 
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exposed to fluctuations in steel price. This is a realistic case since in large wind farm 

projects generally there is 1 to 2 years between t=1 and t=3. Generally, final design of the 

foundations is completed after contract sign, which means the exact steel quantity 

requirement is not known at t=1. At t=2, when final design is completed, exact steel 

requirement is observed. In our models, we consider different cases. If steel quantity 

requirement is deterministic in a model, it is denoted as , if it is stochastic , it is denoted 

as .Probability density function of steel quantity requirement is denoted as (.) when it is 

stochastic. At t=3, steel plates are delivered from steel mill to steel manufacturer. Since the 

steel mill does not fix the steel price, the construction company is exposed to the steel price 

at t=3. The spot price of steel at time t is denoted as ts . The payment by the construction 

company to the steel manufacturer is done when steel is delivered to steel manufacturer 

and is denoted as ( )ts  where denotes the profit margin of steel manufacturer.  

The construction company will use the financial markets to decrease the risk exposure. In 

general, the amount of long futures contracts bought at time k for time t is denoted as
, .t kx

At t=1, construction company will long futures contracts with a delivery at t=3, which is 

denoted as 
1,3.x  The construction company may prefer to update his hedging quantity at 

t=2 when exact steel quantity is known. Then, the new hedging quantity of the company is 

denoted as 
2,3.x The futures price of steel at time t for time k is denoted as 

, .t kF The 

construction company has a cash reserve ty and cash outflow t  at time t. If the cash 

reserve of the company is negative at any time, then the company will face financial 

distress cost and will use costly external financing. Financial distress premium will be 

denoted with a constant rate denoted as r. We have assumed that there is no basis risk.  In 

addition to the defined notation above, risk neutral probability density function of futures 

price at t=2, F2,3 , is denoted as (.)Q

F and risk neutral probability density function of S3 is 

denoted as (.)Q

S .  A detailed list of notation is included in the beginning of the thesis. 

In real life gain/loss from the futures position is realized daily. For ease of modeling in a two 

period framework, we make an assumption about the accumulation of gain/loss from 

futures position. This assumption is illustrated with Table 4.1. 
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Table 4.1: Margins 

Day 
Futures Price 

($) 
Daily Gain (Loss) 

($) 
Cumulative Gain 

(Loss) ($) 

t=1 100   

- 97 (300) (300) 

- 98 100 (200) 

- 88 (1000) (1200) 

t=2 92 400 (800) 

- 95 300 (500) 

t=3 94 (100) (600) 

 

 

 

For example, on the first date $ 300 loss, on the second day $ 100 gain is realized from the 

futures position. In our models, we assume that gain/loss is realized at the end of a period, 

which is at t=2 and t=3.  When it is stated that there is not margin call between periods in a 

model that will be explained later, it means that the company’s margin is updated only at 

t=3. For example, the company only realizes a loss of $ 600 at t=3; which is the sum of daily 

gain/loss between t=1 and t=3. When it is stated that there is margin call between periods, 

it means that the company’s margin is updated both at t=2 and at t=3. For example, the 

company loses $ 800 at t=2; which is the sum of daily gain/loss between t=1 and t=2 and 

gains $ 200 at t=3; which is the sum of daily gain/loss between t=2 and t=3.  

In this thesis, we observe and compare the hedging decisions of the construction company 

under three real life business cases. In the first case, we investigate the hedging decision of 

the company under deterministic quantity with no margin calls between the periods. In the 

second case, we investigate the hedging decision of the company under deterministic 

quantity and with margin calls between the periods. In the third case, we investigate the 

hedging decision of the company under stochastic quantity and with margin calls between 

the periods. 
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4.1 Deterministic Quantity with no Margin Call 
 

In this case, we assume that there is no quantity uncertainty at t=2. There is only steel price 

risk at t=3. The construction company longs steel futures contracts at t=1 maturing at t=3, 

in amount of
1,3x units and with a futures price of 1,3F , to decrease the exposure to 

fluctuations in steel prices. We have assumed that the firm’s margin account is updated 

only at t=3. That is like in a forward contract, the firm does not receive margin calls as the 

steel price fluctuates. The firm will face financial distress cost (FDC) if the firm has a 

negative net cash balance at t=3.  Our aim is to find the optimal amount of futures 

contracts to be longed at t=1, i.e., x1,3 value that maximizes the firm value. The events are 

summarized in the following table. 

 

 

Table 4.2: Summary of events for deterministic quantity with no margin call case 

t= 1 t=3 

Observe: S1 and F1,3 

 
Action:  
 Long x1,3 units of futures contract 

Observe: S3 

 

Cash Flows: Receive revenues from developer : p  

                       Cost paid to steel manuf.: 3( )s    

                       Cash from futures position: 3 1,3 1,3( )s F x  

                       Pay FDC premium if y3 is negative :  3r y


 

 
 

 
 
 
 
Then, the problem can be formulated as follows: 

 

3 1( )V y denotes the value of the company at t=3 with the initial value of cash reserve y1 and 

the decision of the optimal futures to be long. The first term in the value function is the  

 
3

1,3

3 1 3 3 1,3 1,3 3

3 1 3 3 1,3 1,3 2 3

( ) max [( ) ( ) ]

       . .  ( ) ( ) .                                             (1)

Q

s
x

V y E p s s F x r y

s t y y p s s F x

 

   


     

       
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profit/loss of the construction company from the procurement operation. If the steel price 

at t=3 (
3s ) is high, then the profit is low; if steel price at t=3 is low, then the profit is high. 

The second term is the gain/loss from the futures position. If the steel price increases above 

the futures price ( 3 1,3s F ), the company gains from futures contracts and vice versa. The 

last term is the financial distress cost. If the net cash of the firm at t=3 is negative, i.e.,

3 0y  ; then the company pays a premium proportional to the deficit. The construction 

company aims to maximize the firm value by deciding on the optimal 1,3x value. We use a 

risk neutral measure when taking the expectations. Under a risk neutral measure, a 

derivative’s price is the discounted expected value of the future payoff. Therefore, price of 

a futures contract maturing at time k equals to the risk neutral expected value of spot price 

at time k, i.e. , ( )Q

t k kF E s . The constraint shows the net cash of the firm at t=3, which 

equals the net cash reserve at t=1 plus profit from procurement plus gain/loss from futures 

position and minus the cash outflow at t=3.  The known parameters at t=1 are

1 1,3 3 2, , , , , ,y F p    , which are denoted as set K. 

Since 3 1,3( )QE s F ; the problem can be shown to reduce to a financial distress cost (FDC) 

minimization as the follows: 

3

1,3 1,3

3

1 3 3 1,3 1,3 3 2 1,3

0

1,3

1 3 3 1,3 1,3 3 2 1,3

1,3 1,3 3 2 1

1,3

( ( ) ( ) ) ( )  if x

min ( | ) min

( ( ) ( ) ) ( )   if x  

;

( )
.  

( )

a

Q

s

s

x x

Q

s

s a

r y p s s F x s ds

J x K

r y p s s F x s ds

where

F x p y
a

x
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






        


 


        



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







                                                                                       (2)

 

J(.|.) denotes the FDC term at t=3. The Equation (2) means that if the steel price at t=3 ( 3s ) 

is smaller than a and hedging quantity is larger than steel quantity requirement, then the 

firm will face FDC. Similarly, when the steel price at t=3 is larger than a and hedging 

quantity is smaller than steel quantity requirement, then the firm will face FDC. 

Theorem 1: The optimization problem in (2) is convex and the optimal futures position at 

 t = 1 is given by: 
1,3x   
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When there is no quantity uncertainty; it is possible to hedge perfectly and eliminate all 

price risk. Hence, a complete hedge which removes all the price risk in the cash flows is 

optimal. The proofs of all theorems are included in Appendix D.  

4.2 Deterministic Quantity with Margin Call 
 

In this business case, we assume that there is no quantity uncertainty at t=2. For ease of 

exposition, we assume that the margin calls are received at the end of each period, i.e., at 

t=2 and at t=3. Then, there is steel price risk at t=2 because of futures position and at t=3 

because of raw material cost variability and futures position. The construction company will 

long steel futures contracts at t=1 with maturing at t=3 in
1,3x units with a futures price of

1,3F , to decrease the exposure to fluctuations in steel price. The firm updates the hedging 

decision at t=2 when the gain/loss from futures position is realized. The firm closes the 

futures position of
1,3x amounts at t=2 and buys new futures contracts maturing at t=3 with 

a futures price of 2,3F .  The new hedging quantity of the firm is denoted as
2,3x .  The firm 

will face FDC if the firm has a negative net cash balance at t=2and at t=3. Our aim is to find 

the optimal x1,3 and x2,3 values that maximize the firm value. The scenario is summarized in 

Table 4.3. 

 

 

Table 4.3: Summary of events for deterministic quantity with margin call case 

t=1 t=2 t=3 

Observe: S1 and F1,3 

 

Action: 
 Long x1,3 units of 
futures contracts 

Observe:  F2,3 

 

Actions:  
Close contracts longed at t=1 
Long x2,3 units of contracts 

Cash Flows: 
Cash from futures position: 

2,3 1,3 1,3( )F F x  

Pay FDC premium if y2 is 

negative :  2r y


 

 

Observe: S3 

 
Cash Flows: 

Revenues from developer : p  
Cost paid to steel manuf.: 

3( )s    

 Cash from futures position: 

3 2,3 2,3( )s F x  

 Pay FDC premium if y3 is 

negative :  3r y

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Then, the problem can be formulated as follows: 

 

2 1( )V y denotes the value of the firm at t=2 with the initial value of y1 and the decision of 

the optimal futures to be long at t=1.  The first term is the gain/loss from futures position. 

The second term is the FDC premium which will be realized if the net cash reserve of the 

firm is negative at t=2. The last term is the discounted value of the cash flows at t=3. The 

constraint shows the net cash of the firm at t=2, which equals the net cash reserve at t=1 

plus gain/loss from futures position and minus the cash outflow at t=2.  

3 2( )V y denotes the value of the firm at t=3 with the initial value of y2 and the decision of 

the optimal futures to be long at t=2. The first term is the gain/loss from futures position. 

The second term is the profit/loss of the construction company from the procurement 

operation. The last term is the FDC premium which will be realized if the net cash reserve of 

the firm is negative at t=3. The constraint shows the net cash of the firm at t=3. We aim to 

maximize the firm value by deciding on the optimal 1,3x and 2,3x values.
    

 

 

Lemma 1: The solution to the second period is given by 2,3x  .  

This result follows from Theorem 1. Since there is no quantity risk at t=2, the firm will prefer 

a perfect hedge which removes all price risk. 

Considering Lemma 1 and 2,3 1,3( )QE F F , the two-period problem in (3) reduces to the 

following financial distress cost minimization problem. 
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The equation means that when the optimal first period position, i.e., 1,3x  is larger than steel 

quantity requirement and 2,3F is smaller than b, the firm will face FDC at t=3. If 2,3F is 

smaller than c, the firm will face FDC at t=2. Similarly, when the optimal first period 

position, i.e., 1,3x  is smaller than steel quantity requirement and 2,3F is larger than b, the 

firm will face FDC at t=3.  If 2,3F is smaller than c, the firm will face FDC at t=2. 

 

Theorem 2: The optimization problem in (4) is convex and the optimal hedging decision of 

the firm at t=1, x13*, is described by: 

2,3 2,3

1,3 2,3 1,3 2,3

0 0

* *

1,3 1,3 3 2 1 1,3 1,3 2 1
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Further, *

1,3x  , i.e. ,the optimal first period futures position is to underhedge.  

 
The only difference between this business case and the previous one is that the firm 

receives margin calls at t=2 in this case. Therefore, there is an extra price risk at t=2. If the 

steel price decrease at t=2, then the firm will lose money from the futures position and may 

face FDC. It is shown in Theorem 1 that when the firm does not receive any margin calls 

until t=3, it is optimal to hedge as steel quantity requirement. However, when the firm 

receives the accumulated margin updates between t=1 and t=2 at t=2, then the firm prefers 

to underhedge at t=1 to decrease the exposure to the margin calls at t=2. 
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4.3 Stochastic Quantity with Margin Call 
 

In this business case, quantity uncertainty is resolved at t = 2. Similar to the previous case, 

we assume that the margin calls are received at the end of each period, i.e., at t=2 and t=3. 

Therefore, the construction company is confronted with both price and quantity risks. The 

company will long steel futures contracts at t=1 maturing at t=3, which is denoted as
1,3x , to 

decrease the exposure to fluctuations in steel price under stochastic demand. The firm may 

prefer to update its futures position after observing the demand at t=2. The firm closes the 

futures position of
1,3x amounts at t=2 and buys new futures contracts maturing at t=3 with 

a futures price of 2,3F . The firm’s new hedging position at t=2 is denoted as 
2,3  .x As in 

previous cases, the firm faces FDC if the firm has a negative net cash balance at t=2 and at 

t=3. Our aim is to find the optimal x1,3 and x2,3 values that maximize the firm value. The 

events are summarized in Table 4.4. 

 

 

Table 4.4: Summary of events for stochastic quantity with margin call case 

t=1 t=2 t=3 

Observe: S1 and F1,3 

Action:  

Long x1,3 units of 
futures contracts 

Observe: 2,3  and F   

Action:  
Close contracts longed at t=1 
Long x2,3 units of contracts 

Cash Flows:  
Cash from futures position: 

2,3 1,3 1,3( )F F x  

FDC premium if y2 is negative: 

 2r y


 

 

Observe: S3 

 
Cash flows: 

Revenues from developer : p  

Paid to steel manuf.: 3( )s    

 Cash from futures position: 

3 2,3 2,3( )s F x  

 FDC premium if y3 is negative : 

 3r y

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The two-stage problem can be written as follows: 

 

 

2,3
1,3

3
2,3

2 1 2,3 1,3 1,3 2 3 2

2 1 2,3 1,3 1,3 2

3 2 3 2,3 2,3 3 3

3 2 3 2,3

( ) max [( ) ( , )]

       . .  ( )

 1/ (1 ) and 

( , ) max [( ) ( ) ]

       . .  ( )

Q Q

Fx

f

Q

s
x

V y E F F x r y E V y

s t y y F F x

where r

V y E s F x p s r y

s t y y s F


 





  





   

   

 

     

   2,3 3 3( )  .                                                 (6)x p s      

 

The explanation of the model is similar to deterministic quantity with margin call case. The 

only difference is that there is quantity uncertainty in this case. The known parameters at 

t=1 are; 1 2 3 1,3, , , , ,y p F   which are denoted as set L. 

 

Lemma 2: The solution to the second period is given by 2,3x  .  

This result follows from Theorem 1. Since there is no quantity risk at t=2, the firm will prefer 

a perfect hedge which removes all price risk. 

Considering Lemma 2 and 2,3 1,3( )QE F F , the two-period problem in (6) reduces to the 

following financial distress cost minimization problem. 

 

1 2,3 1,3 1,3 2 2,3 3

1,3

1 2,3 1,3 1,3 2

( ) ( )
min ( | ) min .      (7)

( )

Q
r y F F x p F

J x L E

r y F F x

    







          
 
       

 

Theorem 3: The optimization problem in (7) is convex and the optimal hedging decision of 

the firm at t=1 , x13*, is described by: 

*
1,3

*
2,3 2,31,3

2,3

1,3 2,3 1,3 2,3

0 0

1,3 2,3

0

* *

1,3 1,3 3 2 1 1,3 1,3 2 1

**

1,31,3

( ) ( ) ( ) ( ) ( )

( ) ( ) 0

( )
,   .            

( )

x b

Q Q

F F

F F bx

c

Q

F

F

F F F dF d F F F dF d

F F F dF

F x P y F x y
where b c

xx

 

 

        



    



 

  



  

  

      
 



   



                    (8)

 

The equation in Theorem 3 provides the necessary and sufficient optimality condition. The 

first and third integrals in Equation (8) always take positive values and the second integral 
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always takes negative values. The discussion about the behavior of integrals is included in  

Appendix D. Next we explore the optimal solution as a function of the key problem 

parameters including:  

1) 1 2( )y     : the net cash reserve of the firm at t=2. 

2) 
3 : Cash outflow of the firm at t=3. 

3) 1,3( ) :P F     Expected profit of the firm which equals to the multiplication of 

expected profit margin and expected demand.  

 

Theorem 4:  If 0  ; then the firm prefers not to take any futures position at t=1; i.e. ,

*

1,3 0x  . However, if 0  ; then the firm prefers to long futures contracts at t=1, i.e., 

*

1,3 0x  . 

If the firm has zero net cash reserve at t=2 ( 0  ) and longs futures contracts at t=1, and if 

the steel prices decrease at t=2, then the firm will be exposed to financial distress at t=2. 

Therefore, to avoid financial distress at t=2, the firm prefers not to take any futures position 

at t=1, i.e., *

1,3 0x  . However, increase in net cash reserve at t=2, i.e., increase in  ; gives a 

flexibility to the firm. By increasing the hedging position above 0, the firm can decrease the 

steel price risk at t=3. Similarly, when the firm has a negative net cash reserve at t=2, i.e., 

0  ; the firm knows that whether the firm takes any futures position or not , the firm 

will face a FDC at t=2. If the firm takes a futures position at t=1and steel prices increase, the 

firm will decrease the FDC exposure at t=2. Moreover, by longing futures contracts at t=1, 

the firm can decrease the price risk at t=3. Therefore, when 0  , the firm prefers to long 

futures contracts, i.e., *

1,3 0x  .  

 

Theorem 5: When the net cash reserve of the firm at t=2 is approaching to minus/positive 

infinity, i.e.,     ;  the hedging becomes a value-neutral proposition.  

Suppose that the firm has a lot of net cash reserve at t=2. If the steel prices decrease at t=2, 

then taking any futures position will not cause any FDC risk at t=2 or t=3. Therefore, the 

firm is indifferent about the hedging position. Similarly, suppose that the firm has a large 

negative cash reserve at t=2.  Even if the steel prices increase at t=2, taking any futures 

position will not eliminate the FDC risk at t=2. In these extreme cases, hedging has no effect 

on the firm value. 
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Theorem 6: The firm prefers to hedge as expected steel quantity requirement, i.e., 

*

1,3  ,x  if 1,3F    and 3 .    

The first condition means that the firm has enough cash to cover the margin calls of 

contracts in expected steel quantity requirement size under worst F2,3 scenario. The second 

condition means that the expected cash reserve and cash outflow of the firm at t=3 are 

equal. If the firm has enough cash to cover the margin calls at t=2 of the hedged amount, 

then there will not be any expected risk of FDC at t=3 if the hedged amount equals to 

expected quantity. Therefore, the firm chooses to hedge about expected quantity to 

decrease the FDC risk at t=3 without causing any risk at t=2.  

 

Theorem 7: When 
2,3  and F   have symmetric distributions, if 1,3F   and 3   , 

then the firm prefers to overhedge, i.e., *

1,3x  .  

The first condition means that the firm has enough cash to cover the FDC of hedged 

contracts under worst case F2,3 scenario. The second condition means that the expected 

cash reserve of the firm at t=3 is less than cash outflow at t=3. When the firm has enough 

cash to cover margin calls of hedged amount, and there is a certain expected risk of FDC at 

t=3; which means the net cash outflow is higher than cash reserve; then the firm prefers to 

overhedge. By overhedging the firm wants to eliminate the FDC risk at t=3. If steel prices 

increase at t=3, then the firm will profit from the futures position, so by overhedging the 

firm can eliminate the cash deficit. 

Theorem 8: When 
2,3  and F   have symmetric distributions, if 1,3(0 F    and 

3)   or 3     , the firm prefers to underhedge. 

In the first case, the first condition means that the firm has a positive net cash reserve at 

t=2, however this cash reserve is not enough to cover the FDC of contracts in expected steel 

quantity requirement size under worst F2,3 scenario. Therefore, the company can face FDC 

at t=2 if the steel price decreases. The second condition means that the expected cash 

reserve and cash outflow of the firm at t=3 are equal. Under these conditions, the firm 

knows that the firm does not have any cash surplus at t=3. The firm may choose to hedge as 

expected quantity to eliminate the FDC risk at t=3 under expected conditions. However, 

when the steel prices decrease as in worst price scenario, this will cause a FDC risk at t=2 
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since the firm has not enough cash, so the firm prefers to hedge less than expected 

quantity.  

In the second case, the condition means that the expected cash reserve of the firm at t=3 is 

larger than cash outflow at t=3. The firm knows that there will be a cash surplus at t=3 

under expected conditions. If the firm hedges less than expected quantity and steel prices 

increase so much, the firm can compensate the losses by the positive cash surplus. 

Therefore, to decrease the FDC risk at t=2, the firm prefers to underhedge.  

 

Theorem 9: When 
2,3  and F   have symmetric distributions, if 

1,30  F    and 

3   or 0  and 3   , the firm may prefer to underhedge or overhedge. 

In the first case , under these conditions, the firm knows that under expected conditions, 

they will have a cash deficit at t=3, since cash outflow is higher than expected cash reserve. 

However, the firm also does not have enough cash to cover the margin updates under 

worst price scenario at t=2 when the firm hedges as expected quantity. Under these 

conditions, the firm may prefer to overhedge or underhedge depending on the tradeoff of 

FDC at t=2 and FDC at t=3. If the cash deficit at t=3 is not so large, the firm may prefer to 

overhedge to decrease the FDC risk at t=3. However, if the cash deficit is large at t=3, the 

firm prefers to underhedge. 

 

In the second case, the first condition means that the firm has a negative net cash reserve 

at t=2. The second condition means that the expected cash reserve of the firm at t=3 is less 

than cash outflow at t=3. Similar to the first case, the firm will have a cash deficit at t=3. 

Moreover, the firm has a negative net cash reserve at t=2. The firm may prefer to 

overhedge or underhedge depending on how large the cash deficit and the negative net 

cash reserve are.   

 Theorem 10: When 2,3F and   have symmetric distributions and 0  and 3 0  ; as the 

profit margin increases, the optimal first period position; i.e., 
*

1,3x decreases.  

As the profitability increases, price risk at t=3 decreases. Since the price risk at t=3 

decreases, the firm prefers to hedge less. The summary of the theorems for stochastic 

quantity with margin call case when 2,3F and  have symmetric distributions is illustrated in 
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Table 4.5. This table makes the theorems and the relations of parameters clearer. For 

example, we can easily see the effect of an increase in cash outflow at t=3. 

 

 

Table 4.5 : Summary of theorems 

                                              3  

3    
3    

3    

 

             

        0   Underhedge Underhedge Under/Overhedge 

0   0 0 0 

1,30 F     Underhedge Underhedge Under/Overhedge 

1,3F    Underhedge Fullhedge Overhedge 

 

 

 

The optimal results for three business cases are summarized in Table 4.6. Case 1 

corresponds to “Deterministic quantity without margin call” case, Case 2 corresponds to 

“Deterministic quantity with margin call” case, Case 3 corresponds to “Stochastic quantity 

with margin call” case. The optimal second period futures position for all business cases is 

same, which is a full hedge since the settings for the second period decision is same. The 

difference of Case 1 and Case 2 is the extra price risk at t=2. The difference of case 3 from 

case 2 is the quantity uncertainty. Although in deterministic case, underhedging is always 

optimal, in stochastic case, the company can prefer to overhedge, fullhedge or underhedge 

depending on expected profit, net cash reserve at t=2 and cash outflow at t=3. 

 

 

 



 

31 
  

Table 4.6: Summary of results for three business cases 

 Optimal first period futures position Optimal second period futures position 

Case 1 Fullhedge Fullhedge 

Case 2 Underhedge Fullhedge 

Case 3 Overhedge/Fullhedge/Underhedge Fullhedge 
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CHAPTER 5 

 

EXTENSIONS 
 

 

 

In this part, we extend our research with a new scenario. In this scenario, we change the 

timeline of events. Quantity uncertainty is resolved at t=3 instead of t=2.  

5.1 Stochastic Quantity with no Margin Call 
 

In a two period model, suppose that there is demand (quantity) uncertainty that will be 

resolved at t=3. Moreover, there is a price risk at t=3 because of uncertainty in raw material 

costs. The firm longs futures contracts at t=1 with a delivery at t=3, which is denoted as 1,3x , 

for protection against price and quantity risk. The margin updates of the firm between t=1 

and t=3 are accumulated at t=3. The events in this scenario are summarized in Table 5.1. 

 

 

 

Table 5.1: Summary of events for stochastic quantity with no margin call case 

t=1 t=3 
Observe: F1,3 

Action:  
Long x1,3 units of futures contracts 

Observe: 3  and s   

 
Cash flows: 

Revenue from developer : p  

Cost paid to steel manuf.: 3( )s    

 Cash flows from futures position: 3 1,3 1,3( )s F x  

 FDC premium if y3 is negative :  3r y

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The problem can be formulated as follows: 

 

The explanation of the model is similar to the previous cases. 

Since 3 1,3( )QE s F ; the problem reduces to a financial distress cost minimization problem. 

 
1,3

3

1,3 3

1,3 1 3 3 1,3 1,3 3

1 3 3 1,3 1,3 3

0 0

1,3

1 3 3 1,3 1,3 3
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( ( ) ( ) ) ( )
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( ( ) ( ) ) ( )
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x b
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
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
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

 

 

1,3 1,3 3 2 1
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;

( )
 .                                                                       (10)

( )
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F x p y
b

x

   






 
 
 
 



    




 

Equation (10) means that when realized quantity is less than hedging quantity and steel 

price at t=3( 3s ) is less than b, and then the firm faces FDC. Similarly, when steel quantity is 

higher than hedging quantity and steel price at t=3 is larger than b,  then the firm faces FDC.  

Theorem 11: The optimization problem in (10) is convex and the optimal hedging decision of 

the firm, x13*, is given by: 

*
1,3

*
3 31,3

1,3

1,3 3 1,3 3

1,3 0 0

*

1,3 1,3 3 2 1

*

1,3

( | )
( ) ( ) ( ) ( ) ( ) 0

;

( )
.                                                           

( )

x b

Q Q

s s

s s bx

J x L
F s s ds d F s s ds d

x

where

F x p y
b

x

 

 

      

   



 

  


    



    




   

             (11)
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3

1,3

3 1 3 3 1,3 1,3 3

3 1 2 3 3 1,3 1,3 3

( , ) max [( ) ( ) ]

       . .  ( ) ( )  .                                           (9)
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Theorem 12: If
3   ;  then the optimal first period futures position equals to expected 

steel quantity, i.e., *

1,3x  . 

When the firm knows that under expected price and quantity conditions, expected cash 

reserve at t=3 will equal to the cash outflows, then the firm can eliminate all risk under 

expected conditions with a full hedge. 

Theorem 13: When 2,3  and F  have symmetric distributions, if 3    then 

underhedging, i.e., 1,3x   is optimal. If 
3   ,  overhedging ,i.e. , 1,3x    is optimal. 

If the expected cash reserve of the firm at t=3 is larger than the cash outflow, then the firm 

knows that there will be a cash surplus at t=3 under expected conditions, so prefers to 

underhedge. If the realized steel quantity is less than hedging quantity and steel price 

increased above futures price, then the firm can compensate the loss with the cash surplus. 

When, there is a certain cash deficit risk at t=3 under expected conditions, then the firm 

prefers to overhedge. By overhedging, the firm tries to eliminate FDC risk at t=3 if steel 

price increases. 
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CHAPTER 6 

 

COMPUTATIONAL RESULTS 
 

 

 

In this section, we aim to analyze the hedging behavior of the company that we could not 

capture analytically. Moreover, we want to illustrate how the hedging decisions change 

when price distribution changes. Therefore, numerical analysis is performed with a 

normally distributed quantity and normally and lognormally distributed price distribution. 

We have investigated how the optimal first period futures position ( *

1,3x ) changes as the 

parameters listed changes. 

  : Net cash reserve at t=2. 

 3 : Cash outflow at t=3. 

  : Profit margin 

6.1 Stochastic Quantity with Margin Call Case 

6.1.1 Symmetric Price Distribution 

 

In this part, numerical analysis is performed with a normally distributed price and quantity. 

We have used C++ for the numerical analysis. 100,000 random variables are generated for 

price and quantity with the following distribution parameters, 2

2,3 ~  (10,2 )F N and

2~  (100,25 )N . According to the generated  2,3  and F   values, 2,3 9.99507F  and  

99.9761  is realized. We have assumed that 0.95 and r = 0.1   
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a) 
 30 and 0    

In this part, we consider the case where the company has a positive net cash reserve at t=2 

and does not have any cash outflow at t=3. Optimal first period futures position (x1,3 ) for 

the changing   values are given in Figure 6.1.

 

Figure 6.1: x1,3 versus    

 

 

As it is mentioned in Theorem 5, when the net cash reserve at t=2 ( ) is so large or so 

small, hedging becomes a value-neutral proposition. Therefore, we consider moderate 

levels of  in the analysis. As it is seen in the figure, as   increases, the optimal first period 

position, i.e. ,x1,3 increases. Margin shows the profit margin of the company.  margin=1 

equals to an approximate profit of 100.  For the considered range of   and profit margins, 

underhedging is optimal. This figure is also a visualization for the second case of Theorem 8.  

If 3 0 and >0   , then 3   so, underhedging is optimal. As it is stated in Theorem 

10, we see that as the profit margin increases optimal first period position decreases. 

b) 30 and 0    

In this part, we perform the numerical analysis for the case where the company has a 

positive cash reserve at t=2 and a positive cash outflow at t=3. We investigate three  
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scenarios considering different margin levels. In Figure 6.2, a smaller value of delta , in 

Figure 6.3 a moderate level of delta and in Figure 6.4 a larger level of delta is considered. In 

the generated price data, minimum F2,3 is realized as 1.65925.  Therefore, delta that can 

cover the FDC of futures contracts under worst price scenario equals to 833.   

min

*

1,3 2,3

*

( )

(9.99507 1.65925)99.9761 833.

F F   

     

 

 

 

Figure 6. 2: x1,3 versus n3 when  =100 

 

 

 

In Figure 6.2, always underhedging is optimal. The hedging patterns in Figure 6.2 and 6.3 

are similar. For a fixed net cash reserve at t=2 ( ), as 3 increases, *

1,3x first increases but 

then starts to decrease. As 3 increases, the price risk at t=3 increases, so the firm prefers 

to increase the optimal first period futures position. However, as 
*

1,3x  increases, the price 

risk at t=2 also increases, so after a while *

1,3x  starts to decrease. In Figure 6.2, the maximum 

*

1,3x is realized when 3 184  and margin=1 and the maximum *

1,3x
 

is realized when 

3 272   and margin=2. When margin increases, the price risk at t=3 decreases so, the 

firm can tolerate higher cash outflows at t=3. One of the differences in Figure 6.2 and 6.3 is 

that maximum
*

1,3x  value that can be realized when delta=500 is higher than delta=100 case, 

0

20

40

60

80

1

3
5

6
9

1
0

3

1
3

7

1
7

1

2
0

5

2
3

9

2
7

3

3
0

7

3
4

1

3
7

5

4
0

9

4
4

3

4
7

7

5
1

1

5
4

5

5
7

9

x 1
,3

 

n3 

margin=1

margin=2

margin=3



 

38 
  

since the increase in delta increases the flexibility of the company, thus the company can 

hedge in a higher amount. 

 

 

 

Figure 6.3: x1,3 versus n3 when  =500 

 

 

As it is seen from the Figure 6.3, underhedging and overhedging are both possible. This case 

is a visualization for Theorem 8 and 9. When the cash outflow at t=3, i.e., 3  is slightly 

higher than the sum of expected profit and net cash reserve, i.e., 3   overhedging is 

optimal, however for the larger values of 3 ,underhedging is optimal. As it is stated in 

Theorem 8, when 3   , underhedging is optimal since   is not large enough. 

 

 

 

Figure 6. 4: x1,3 versus n3 when  =900 
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In Figure 6.4, numerical analysis for a higher level of delta which equals to 900 is shown. 

When 900 833   , the firm knows that under worst price scenario, the firm will not face 

FDC at t=2 if hedges as expected steel quantity. As 
3 increases, *

1,3x  first increases. After a 

threshold value, *

1,3x  becomes nearly steady. This case is a visualization for Theorem 7. 

When 
3    and delta is large enough, overhedging is optimal. 

c) 
30 and 0    

In this part, we consider that the firm has a negative cash reserve and a cash outflow at 

t=3. The results are shown in Figures 6.5 and 6.6.  

 

 

 

Figure 6.5: x1,3 versus n3 when  = -100 

 

 

Figure 6.6: x1,3 versus n3 when  = -450 
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As stated in the theorems, hedging quantity depends on the level of delta and cash reserve 

cash outflow relation at t=3. If delta is not so negative as in Figure 6.6, the firm prefers to 

underhedg since the FDC cost faced at t=2 is small and the firm does not want to increase 

this risk via increasing hedging position. If steel price increases a little at t=2, the firm may 

avoid FDC. However, when delta is as negative as in Figure 6.7, the firm may prefer to 

overhedge.  

6.1.2 Asymmetrical Price Distribution 

 

In this case we try to capture how the hedging behavior changes when price does not have 

a symmetric distribution and standard deviation of price distribution changes. We have 

generated 100,000 rvs for F2,3 with the following parameters, 2

2,3 ~ (10,2 )F LogN and 

2

2,3 ~ (10,4 )F LogN . 

 

 

 

Figure 6.7: x1,3 versus   for three distributions when margin=1 
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mean 10 and standard deviation 2; “lognormal small var.” means that F2,3 has a lognormal 

distribution with mean 10 and standard deviation 2; “lognormal high var.” means that F2,3 

has a lognormal distribution with mean 10 and standard deviation 4. We can conclude that 
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lognormally, optimal hedging quantity increases since under lognormal distribution the 

steel price is more probable to have higher values so the risk at t=2 decreases. Therefore 

the company prefers to hedge more. Another conclusion is that, under the same mean and 

distribution if variance increases, optimal hedging quantity decreases.  

 

 

 

 

Figure 6.8: x1,3 versus n3 for three distributions when margin=1 
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variance, we see that there is not much difference in hedging quantities. 

6.2 Deterministic Quantity with Margin Call Case 
 

6.2.1 Symmetric Price Distribution 

 

In this part, numerical analysis is performed with a normally distributed price. To have 

comparable results, we have used the same distribution with the previous case, which is
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Figure 6.9: x1,3 versus n3 when  =100 

 

 

Hedging behavior when  =100 is shown in Figure 6.9 for different profit margins. It is 

stated in Theorem 1 that when quantity is deterministic and there is no margin call 

between the periods, then hedging as expected demand is optimal. This is also included in 

the figure as the purple line to highlight the effect of margin call risk on hedging. As it is 

stated in Theorem 2, when there is margin call risk between periods under deterministic 

demand, underhedging is optimal. This result can be seen in Figure 6.9. Maximum hedging 

quantity, which equals to steel quantity requirement, is realized when 3   . 

6.2.2 Asymmetrical Price Distribution 

 

In this section, we want to investigate hedging decisions of the company when price has a 

lognormal distribution; we use the same distribution as in the previous case which is;

2

2,3 ~ (10,2 )F LogN and 2

2,3 ~ (10,4 )F LogN  

 

Figure 6.10: x1,3 versus n3 when  =100 for lognormal distribution 
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The results are shown in Figure 6.10. We see that hedging patterns are same even if 

standard deviation of the price changes. As 
3 increases, *

1,3x first increases, reaches 

maximum when 3   and then decreases. Another conclusion is that hedging 

quantity decreases, if standard deviation of price increases. If we compare the results in 

Figures 6.9 and 6.10, we see that under the same mean and standard deviation if price 

turns out to be lognormally distributed, optimal hedging quantity does not differ so much.  
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CHAPTER 7 

 

CONCLUSION AND FUTURE RESEARCH 
 

 

 

7.1 Conclusion 
 

In this thesis, we consider a construction company that is confronted with both price and 

quantity risks. Different from the related literature, we investigate the hedging decisions of 

the value maximizing company by incorporating margin calls and financial distress cost in a 

two period framework. We consider three business cases. In the first case, we observe the 

hedging behavior of the company under deterministic demand without any margin call and 

we see that a complete hedge is optimal. In the second case, we incorporate margin call 

risk between periods under deterministic demand and see that the firm prefers to 

underhedge. In the last case, we consider stochastic demand with margin call risk between 

periods. We conclude that optimal hedging quantity depends on the expected profits, net 

cash reserve and cash outflow. The company may prefer to overhedge or underhedge 

depending on the values of these parameters. We extend our mathematical model with 

varying timeline of events. By computational results, we investigate the hedging behavior in 

a more detailed way. We see that under same distribution and mean, if the standard 

deviation of the price increases, the firm becomes more conservative and hedges less.  

7.2 Future Research 
 

In this thesis, we consider the hedging behavior of the construction company in a two 

period framework. We assume that margin calls can be received only at the end of these 

two periods. However, in real life margin calls are received every day. As a future research, 

hedging behavior of the company can be investigated within a multi-period framework 

(more than two). Moreover, we provide a research on the optimal financial decisions of the 
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company under only price and quantity risks. However, in real life construction industry has 

other risks. For example, the projects are subject to delays. Indeed, a construction company 

should update the hedging position as the steel delivery date changes. Moreover, we 

assume that there is not any basis risk. However, in real life there may be basis risk. For 

example, the steel that is used in foundations may not be the same with the steel that is 

traded on exchange markets. As a future research, investigating the hedging behaviors 

under different combinations of these risks would be interesting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

46 
  

 
 

REFERENCES 
 

 

Archibald, T. W., L. C. Thomas, J. M. Betts, and R. B. Johnston (2002). Should startup 
companies be cautious? Inventory policies which maximize survival 
probabilities.Management Science 48, 1161-1174. 

Babich, V. and M. J. Sobel (2004).Pre-IPO operational and financial decisions.Management 
Science 50, 935-948. 

POWR (2010).Gerdes G., A. Tiedemann and S. Zeelenberg. Case Study: European Offshore 
Wind Farms- A survey to analyse experiences and lessons learnt by developers of offshore 
wind farms.  

EWEA (2009).Krohn S., P.E. Morthorst, S. Awerbuch. The Economics of Wind Energy 

EWEA statistics. http://www.ewea.org. 23/04/2011. 

Goel, A. and G. Gutierrez (2009).Integrating Commodity Markets in the Optimal 
Procurement Policies of a Stochastic Inventory System.Working paper, University of Texas-
Austin. 

Goel, A. and G. Gutierrez (2011).Procurement and Distribution Policies in a Distributive 
Supply Chain in the Presence of Commodity Markets.Accepted Management Science. 

Ho, T.S.Y. (1984). Intertemporal commodity futures hedging and the production 
decision.Journal of Finance 34, 351–376. 

J. Hull. Options, futures and other derivatives.Pearson Prentice Hall, 6th edition, 2006. 

Losq, E. (1982). Hedging with price and output uncertainty.Economic Letters 10, 65-70. 

Maes, S.P. (2011). Integrated operational and financial risk management: a flour milling 
case. Master of science in operations management and logistics. Eindhoven University of 
Technology.75p. 

Metal prices. www.metalprices.com. 26/09/2011.  

Modigliani, F. and M.H. Miller (1958). The cost of capital, corporation finance, and the 
theory of investment. American Economic Review 48, 261-297. 

Purnanandam, A. (2008). Financial distress and corporate risk management: Theory and 
evidence. Journal of Financial Economics 87,706-739.  

Rolfo, J. (1980). Optimal hedging under price and quantity uncertainty: The case of a cocoa 
producer. Journal of Political Economy 88, 100-116. 

http://www.ewea.org/
http://www.metalprices.com/


 

47 
  

Smith, C. and R. Stulz (1985).The determinants of firms' hedging policies. Journal of 
Financial and Quantitative Analysis 20, 391-405. 

Tanrisever, F. and G.J. Gutierrez. (2011). An Integrated Approach to Commodity Risk 
Management. Working paper, University of Texas-Austin. 

Tanrisever, F. and L. Levij.Electricity Trading Risk Management. (2011). Working paper, 
TechnischeUniversiteit Eindhoven. 
 
Xing, L. and K. Pietola (2005).Forward hedging under price and production risk of wheat. 
Agricultural and Food Science 14(2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

48 
  

APPENDIX A 

 

PARTS OF A TURBINE 
 

 

 

 

 

 

 

 

 

 

Figure A.1: Turbine 

 

 

There are mainly three parts of a wind turbine, which are turbine, turbine tower and 

foundation. These parts are shown in Figure A.1.  
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APPENDIX B 

 

COST COMPARISON OF DIFFERENT ELECTRICITY GENERATION 

TECHNOLOGIES 
 

 

 

 

Figure B.1: Costs of different technologies 

 

 

This figure is taken from a report written by European Wind Energy Association, The 

Economics of Wind Energy. EWEA (2009). The figure shows that according to 2010 prices, 

cost of electricity generation via offshore windfarm is about % 35 higher than cost of 

electricity generation via conventional plants. The cost of conventional electricity 

generation depends on four factors, which are fuel prices, O&M costs, cost of CO2 

emissions and capital costs. Crude oil price is taken as $59/barrel, coal price as €1.6/GJ and 

natural gas price as €6.05/GJ in 2010 (constant terms). Since power plants that use coal and 

natural gas are not clean energy, they should pay CO2 price that is determined in ETS 

markets. The CO2 price is around 25 €/t. Regulation costs which is indicated in the figure 

means the balancing costs of wind power. 
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APPENDIX C 

 

EXCHANGE MARKETS 
 

 

 

The exchange markets that have launched steel futures contracts are listed as; 

 London Metal Exchange (LME):LME is trading steel billet futures actively. The available 

contracts are daily from spot to 3 months, weekly from 3 months to 6 months and, monthly 

from 7 months to 15 months.   

 New York Mercantile Exchange (NYMEX): NYMEX launched Hot rolled US steel coil 

futures. The available contracts are monthly with at most 24 months forward. NYMEX is the 

only exchange market that has financially settled contracts; not physically settled.  

 Dubai Gold and Commodities Exchange (DGCX): DGCX launched steel rebar futures 

contracts. The available contracts are monthly with at most 4 months forward. However, 

the traded volumes for these contracts are 0 which makes DGCX steel market illiquid. 

 Shangai Futures Exchange (SFE): SFE is trading steel wire rod and rebar futures 

contracts actively. The available contracts are monthly with at most 12 months forward. 

 Multicommodity exchange of India (MCX): MCX is trading mild steel ingot/billets 

futures contracts actively. The available contracts are monthly with at most 3 months 

forward.  

 National Commodity and Derivatives Exchange (NCDEX): NCDEX is trading mild steel 

ingot futures actively. The available contracts are monthly with at most 5 months forward.  

 

From these exchange markets the contracts of LME, SFE and NYMEX can be considered 

since contracts with maturity date longer than 6 months can be found from these exchange 

markets.  
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APPENDIX D 

 

PROOFS 
 

 

 

D.1) Proof of Theorem 1: 

By using the Leibniz rule, first derivative of the function in (2) is given as; 
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The second derivative of the function in (2) is; 
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s means replacing 3s in density function with a 

Since second derivative is positive for both cases,  (    | )             and the optimality 
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Since, 
1,3

1,3

1,3

( | )
| 0x

J x K

x



  , the optimal hedging decision is 

1,3 .x 
 

D.2) Proof of Lemma 1:  

Proof is similar to the proof of Theorem 1. 

D.3) Proof of Theorem 2: 

By using the Leibniz rule, the first derivative of the function in (4) is given as; 
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(F')Q

F means replacing 2,3F in density function with b. 

Since second derivative is positive for both cases,  (    | )             and the optimality 

condition is; 
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When 
1,3x  , both integrals take positive values, so the optimal 

1,3x  , which means 

the firm prefers underhedging. 
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D.4) Proof of Theorem 3: 
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By using the Leibniz rule, first derivative of the function is given as; 
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The second derivative is; 
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where ( ')F means replacing 2,3F in density function with 1,3x . ( '')F means replacing  

2,3F in density function with c.  

Since all terms in the second derivative equation are positive, second derivative is positive, 

so   (    | )             and the optimality condition is; 
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F F F dF d

x
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


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
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Similarly, the optimality condition can be expressed in the following way. 

1,3

2,3

1,3 2,3 2,3

1,3

1,3 2,3

1,3 0 0

1,3 2,3 1,3 2,3

0 0

( | )
( ) ( ) ( )

( ) ( ) ( ) ( ) 0

x b

Q

F

F
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Q Q

F F

x F F

J x L
F F F dF d

x

F F F dF d F F F dF









    

    

 



  


 



    

 

  

 

D.5) Behavior of the integrals in equation (8) 

    In Figure F.1 and F.2, representative integrals for a normally distributed F2,3 are given.  

  

 Figure D.1 : Representative integral 1 

 

Figure D.2: Representative integral 2 

The first figure is a representative for the first and third integrals in the general FOC 

equation. The second figure is a representative for the second integral in the general FOC 

equation. As it is seen from the figures, the integral in the first figure always takes positive 

values and reaches its largest value when a=F1,3. The integral in the second figure always 

takes negative values and reaches its smallest value when a = F1,3. 

D.6) Proof of Theorem 4: 

When 0   and
1,3( )P F     where   is a positive number showing the profit 

margin, 
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3
1,3 1,3

1,3

 and 
( )

c F b F
x

 




  


 

Then, the general FOC equation becomes; 

3
1,3

1,3 1,3

2,3

1,3
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2,3 1,3

1,3
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1,3 2,3
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1,3 2,3 1,3 2,3

0
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( ) ( ) ( )
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x
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
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




 

 

 
 




  



  

 

  

3
1,3

1,3

2,3 2,3

1,3

1,3

1,3 2,3 1,3 2,3

1,3 0 0 0

 0;

( | )
( ) ( ) ( ) ( ) ( ) 0

F
F

Q Q

F F

F F

If x

J x L
F F F dF d F F F dF

x










     

 


  




     

   

 Since the function is convex, increase in 1,3x  will increase the total FDC, so *

1,3 0x   when 

0  . 

3
1,3 1,3

1,3 1,3

When 0,

 and 
( )

b F c F
x x

 



 

  
   



 

When 1,3 0x  , the general FOC equation becomes, 

2,3

1,3

1,3 2,3

1,3 0

( | .)
( ) ( ) ( ) 0Q

F

F b

J x
F F F dF d

x


   
 

 


     

Since the function is convex, *

1,3 0x  . 

D.7) Proof of Theorem 5: 

In the general FOC equation in (8), 

As ;     and 

As ;     and 

b c

b c

  

  
 

In either case; the general FOC equation equals to 0; without depending on the value of x1,3; 

so the firm is indifferent about the hedging quantity. 
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D.8) Proof of Theorem 6:  

3

1,3 1,3 1,3

1,3

1,3 1,3

If  *  , then

( ) *
 and 
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F x F
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1,3 1,3If ;  then    

So;

x b F   
 

1,3 1,3
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1,3 0 0
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( | .)
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x F
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F F
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x

F F F dF d F F F dF

F
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


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



    

     
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


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



  


 

   


    

 

  

1,3

1,3 *

1,3

1,3

m has enough cash

( | .)
| 0  so,  the optimal 
x

J x
x

x






 

 

D.9) Proof of Theorem 7: 

It is easier to prove that theorem by discretizing the integrals in equation (8). 

A double integral can be simplified to a single integral as follows if x is normally distributed 

and when x can only take integer values; 

( ) ( )

0 0

( , ) ( ) ( , )

h x h xx b x b

i

x ax a y y

f x y dydx P x x f x y dy

 

  

 
  

  
    

where ( )iP x x is the probability of x taking xi value 

( ) ( ) ( 1)

0 0 0

( )

0

( , ) ( ) ( , ) ( 1) ( , )

... ( ) ( , )

h x h x a h x ax b

x a y y y

h x b

y

f x y dxdy P x a f x y dxdy P x a f x y dxdy

P x b f x y dxdy

  

   





     

 

   



 
This discretizing approach is a realistic approach since quantity can take only integer values. 
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Using that discretizing approach, the theorem can be proved as follows: 

*

3 3

*

3 3

*

1,3 1,3 1,3 3

1,3

1,3 1,3

If  and ;

then,  where >0
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For ease of notation, we make the following abbreviation;  

1,3 1,3

2,3 2,3

( ) ( )

1,3 2,3
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( ) ( ) ..
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 
 
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min max

Since ( ) ( ) ;...........; ( ) ( ) 
( ) ( )

F F F FF F F F
   

   
     

           
 

1st integral -2nd integral)   0. 

Moreover, when 1,3 *

1,3

( ) 0
x

F F


   ; i.e.;  1,3F   which means the firm has enough 

cash. Then, 
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1,3

1,3 *

1,3

1,3

( | .)
| 0,  so xx

J x

x 





   

In this approach, we assume that minimum price is 0 and maximum price is infinity. 

Moreover, we assume that this assumption does not violate the symmetricity of price. 

D.10) Proof of Theorem 8: 

 

Proof of first case: 

The proof is similar to the proof of Theorem 6. 
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Proof of second case:

 

1,3

1,3 1,3

 x ;

 c=F
( )

If

b F






  




   

  

1,3
1,3

1,3

2,3

1,3 1,3

1,3 2,3 2,3

( )

1,3

1,3 2,3

1,3 0 0

( )

1,3 2,3 1,3 2,3

0 0

( | .)
| ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

F
x

Q

x F

F

F F

Q Q

F F

x F F

J x
F F F dF d

x

F F F dF d F F F dF






 








  





   

     



 


 


  



  


 

   

 

  
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By using the discretizing approach, 
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(1st integral-2nd integral)   0. Since 3rd integral is nonnegative,  
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D.11) Proof of Theorem 9:

 The proof is similar to the proof of Theorem 7.
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D.12) Proof of Theorem 10: 

1,3

1,3

1,3

1,3 ' '

2 2

1,3 1,30

2,3

( | .)
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

where ( ') means replacing  with  in density function

x

x

J x

x
F d F d

x x

F F b

 

   
       

  





 


  

  
     

The derivative of the equation in (8) wrt to  is positive since 1,3x  . So, as  increases,  

the equation in (8) increases, which means the optimal x1,3 should decrease. 

 

D.13) Proof of Theorem 11: 

By using the Leibniz rule, first derivative of the function is given as; 

1,3

3 1,3 3

1,3

1,3 3 1,3 3

1,3 0 0
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x b
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s s

s x s b
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    

 The second derivative is; 

 
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2
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where ( ')F means replacing 
3s in density function with 1,3x , ( '')F means replacing 

3s in 

density function with c.  

Since all terms in the second derivative equation are positive, second derivative is positive,   

so   (    | )             and the optimality condition is; 

1,3

3 1,3 3

1,3

1,3 3 1,3 3

1,3 0 0

( | )
( ) ( ) ( ) ( ) ( ) 0

x b

Q Q

s s
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 

      
 
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
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The optimality condition can be expressed also as; 
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D.14) Proof of Theorem 12: 
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D.15) Proof of Theorem 13: 

3
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By using the discretizing approach,  
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1,3 1,3 1,3
min

1,3

2,3 2,3 2,3

1,31,3
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st nd

1,3 *
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Since ( ) ( ) ;...........; ( ) ( ) 
( ) ( )

(1 integral-2 integral) 0

( | )
So,  | 0,  so 

F F F F

x

F F F F

J x L
x
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   

     




             
 




 

Proof of the other case is similar. 

 


