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ABSTRACT 

AUDIO EVENT DETECTION ON TV BROADCAST  

 

Ozan, Ezgi Can 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Tolga Çiloğlu 

February 2011, 65 pages 

The availability of digital media has grown tremendously with the fast-paced ever-growing 

storage and communication technologies. As a result, today, we are facing a problem in 

indexing and browsing the huge amounts of multimedia data. This amount of data is 

impossible to be indexed or browsed by hand so automatic indexing and browsing systems 

are proposed. Audio Event Detection is a research area which tries to analyse the audio data 

in a semantic and perceptual manner, to bring a conceptual solution to this problem. In this 

thesis, a method for detecting several audio events in TV broadcast is proposed. The 

proposed method includes an audio segmentation stage to detect event boundaries. 

Broadcast audio is classified into 17 classes. The feature set for each event is obtained by 

using a feature selection algorithm to select suitable features among a large set of popular 

descriptors. Support Vector Machines and Gaussian Mixture Models are used as classifiers 

and the proposed system achieved an average recall rate of 88% for 17 different audio 

events. Comparing with the results in the literature, the proposed method is promising.  

Keywords: Audio Event Detection, Audio Processing, Signal Processing, Audio 

Segmentation, Pattern Recognition. 
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ÖZ 

TELEV ĐZYON YAYINLARINDA SES OLAY TESP ĐTĐ  

 

Ozan, Ezgi Can 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Assoc. Prof. Dr. Tolga Çiloğlu 

Eylül 2011, 65 sayfa 

Gelişen teknolojiyle birlikte, görsel ve işitsel bilginin erişilebilirliği muazzam bir biçimde 

arttı. Bu artışın beraberinde getirdiği bir sonuç olarak, işitsel bilginin sınıflandırılması ve 

erişilmesi, bir sorun olarak karşımıza çıkmış bulunuyor. Bu büyüklükte bir verinin elle 

sınıflandırılması mümkün olmadığından, otomatik sistemler üzerinde çalışmalar devam 

ediyor. Đşitsel Olay Sezimi, ses bilgisini algısal ve anlamsal olarak inceleyerek, bu 

probleme kavramsal bir yaklaşımla çözüm getirmeyi amaçlar. Bu çalışmada, televizyon 

yayınlarında yer alan ses olaylarının sezimi için bir yöntem önerilmiştir. Önerilen yöntem, 

ses olay sınırlarının tespiti için bir ses bölütleme metodu içerir. Televizyon yayını verisi 17 

sınıf çerçevesinde incelenmiştir. Her ses sınıfı için uygun olan öznitelik seti, popular 

öznütelikler arasından bir öznitelik seçim algoritması kullanılarak seçilmiştir. Sınıflandırıcı 

olarak destek vektör makinaları ve  Gauss karışım modelleri kullanılmış; ve önerilen metod 

17 sınıf için ortalamada %88 lik bir doğruluk değeri elde etmiştir. Literatürdeki sonuçlarla 

karşılaştırıldığında, elde edilen sonuç ümit vericidir. 

Anahtar Kelimeler: Ses Olay Sezimi, Ses Işleme, Đşaret Đşleme, Ses Bölütleme, Örüntü 

Tanıma.  
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CHAPTER 1 

1. INTRODUCTION 

Content-based audio event detection is the problem of detecting predefined events on large 

databases of audio and it is a hot topic in the field of information retrieval, machine 

learning and pattern recognition. Audio databases may consist of isolated audio (as in 

sound effects databases) or mixed audio (as in broadcast) data. The event detection problem 

aims to find similar examples of a given audio event through a large set of audio data. 

Similarity definition depends on the aim of the problem. 

Content-based detection of audio events is an important problem in today’s world, 

considering the amount of present multimedia data. Huge databases of video and audio 

recordings are still growing, and so is the need for identifying the content and annotating 

these data for efficient classification and retrieval. Detection of audio events which are 

present in a multimedia data gives important information about the context and can be used 

in automatic annotation. Considering the amount of present data, manual annotation is 

neither possible nor feasible. Audio event detection research area aims to search through 

those databases and find out which audio events are there, giving important information 

about the context of data, and enabling annotation; and also retrieval. 

Broadcast audio databases are different from the isolated audio databases in the sense that 

they consist of many different consecutive audio events, usually independent from each 

other. For isolated data, one can try to form a semantic or content-based relationship for the 

whole recording, as one movie or clip often contains audio data relevant with each other at 

some point, just like the shot concept in videos. In broadcast audio however, the main event 

can be interrupted many irrelevant audio events. Combined audio events are also frequently 

encountered on broadcast audio recordings. Therefore these databases are much more 

complex and harder to work on. For another example, detecting silence on broadcast audio 

recordings is a much more complex issue than detecting silence on isolated audio 

recordings, or manually segmented audio clips, since the audio event rapidly changes in 

broadcast recordings independently from each other. Determining a silence threshold is a 
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tough problem compared to working on isolated recordings since audio events change in 

isolated recordings much slower and the audio events present are often related to each 

other. For the aspect of content-based audio event detection problem, one can say that 

isolated audio databases are somewhat artificial, while broadcast audio is the real 

environment for this problem.  

1.1. Scope 

This study aims to propose a solution for the problem of detecting audio events on TV 

broadcasts. Audio event detection problem can be divided into sub-problems such as the 

problem of correctly determining the boundaries of audio events on TV broadcast, the 

problem of selecting suitable descriptors for each audio event, and the problem of selecting 

a suitable classifier. This study aims to bring a solution for these sub-problems. 

The proposed solution starts with a segmentation phase, which is a preliminary step for 

detecting event boundaries, and which aims to handle the problem of boundary detection. A 

feature set is formed, which is prepared by collection of several audio descriptors that are 

most frequently used in the literature. The discriminating features for each audio event are 

determined by feature selection algorithms in order to find a solution for the problem of 

choosing suitable descriptors. Three different feature selection algorithms are tested in 

order to verify the feature selection performance. The selected descriptors are used to train 

classifiers for each event. Two different kinds of classifiers are tested for each event. The 

obtained results are compared with the given results in the literature.   

Unlike the common case in the literature, which is classifying audio events using databases 

of isolated recordings, this study aims to detect audio events on TV broadcasts. Also the 

events in TV broadcasts are analyzed in detail. The common case in literature is describing 

audio events with three major classes; speech, music and others. This study aims to analyze 

the “other” class in detail, and detect different kinds of audio events in the “other” class 

separately. 

1.2. Related Work 

In this section, a review of the literature that has been investigated is presented.  The 

literature is classified according to two main points of interest, namely, “audio 

segmentation” and “audio event detection”. 
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1.2.1. Audio Segmentation 

Mainly, there are two approaches to the audio segmentation problem. One approach aims to 

divide the audio into predefined classes such as music, speech etc... Along this path, Lu et 

al. [1] make a speech–non-speech classification, and then non-speech regions are further 

classified into music and other events using a k-NN method.  

Lu et al. [2] classify different type of audio events such as speech music and background 

sounds to compare classifiers like SVM, k-NN and GMM. They use features like MFCC, 

zero-crossing rate, short-time energy, brightness and band periodicity. SVM classifier gives 

the best classification accuracy which is near 90%.  

Lu et al. [3] inspire from the concepts of video and text segmentation and proposed a new 

method describing key audio words. They described a semantic affinity measure, which 

determines the boundary point between two audio segments. This measure is directly 

proportional to frequency of occurring of audio elements in the segment, and inversely 

proportional to the time between audio elements. Segmenting the audio data, where 

semantic affinity is above a threshold value, they decide on the boundary locations. The 

proposed method is tested on data consisting of speech, music and applause sounds, and 

their different combinations. They describe their work as promising, which results a recall 

of nearly 70% for boundary locations. 

Cai et al. [4] proposed an unsupervised method for dividing composite audio data into 

different events. Using spectral clustering, they divided the audio stream into classes like 

speech, music, noise, applause etc. These events are used to detect potential boundaries of 

audio segments. Then, they categorized these audio scenes in terms of audio events 

appearing in them. 

The other approach to the audio segmentation is dividing the audio signal into segments 

using similarity measures which are used to detect the context change points. Yet the 

context of these segments is not predefined, and definition of this context is not part of the 

segmentation problem, as it is in the first approach.  

Goodwin and Laroche [5] used a feature set including MFCC, zero-crossing rate and short-

time energy; and measured the similarity of audio regions to divide the sound signal into 

segments. They used linear discriminant analysis method to improve the clustering of 

features, and applied dynamic programming to obtain better boundary points for the 

clusters.  
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S.Pfeifer [6] determined audio segments at different semantic levels using the method of 

pause and relative silence detection. Defining a minimum duration for pause and a 

maximum duration for interruption, Pfeifer showed that relevant pauses play an important 

role on detecting the segment boundaries. 

J.Foote [7] proposed a method for automatically detecting the significant context changes in 

audio signals, using the self similarity of the signal, calculated by using kernel correlation 

method. Being an unsupervised method, Foote tested this algorithm on many application 

areas such as indexing and retrieval of audio data. 

Tzanetakis and Cook [8] divide the audio signals into segments using Maholonobis distance 

metric that is calculated between consecutive frames aiming to detect the sudden changes of 

audio. They used features like spectral centroid, spectral roll-off, spectral flux and zero-

crossing rate. They compared the results of the proposed algorithm with human reaction 

and show that, this reaction can be imitated using computer algorithms. 

Zubari et al. [9] used energy based unsupervised segmentation method for detecting speech 

regions in the broadcast audio. They used short-time energy changes for segment boundary 

detection and they achieved a recall rate of 96% in speech regions. 

Chen et al. [10] defined the audio segmentation problem as detecting the change points for 

speaker identity, environment or channel conditions. They modelled the audio signal as a 

Gaussian process and proposed using the Bayesian Information Criterion (BIC) to select the 

appropriate models for the given signal. BIC is used as a termination rule, so two segments 

are merged only if merging increases the BIC value. Chen et al. used the same BIC 

approach in [11] and Tritschler et al. used BIC in [12] and improved the accuracy and also 

the performance of the system.  

Cettolo and Vescovi [13] used BIC for audio segmentation on radio news. They have tested 

different implementations of this algorithm and achieved 90% F1-score for detecting the 

boundaries.   

Cheng et al. [14] proposed a “Divide-and-Conquer” algorithm for audio segmentation, 

based on the BIC. They developed a recursive algorithm that decreased the computational 

cost of BIC and also improved the accuracy. 
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1.2.2. Audio Event Detection 

Growing amount of digital audio data makes it necessary to implement algorithms that 

automatically search and index the content of this data. Indexing and annotation by hand is 

neither possible nor efficient when the present yet increasing amount of the multimedia data 

is considered. There are many studies in the literature aiming to handle this problem, and 

some of them which we find interesting are reviewed. 

Pfeiffer et al. [15] developed a framework using some basic features such as MFCC, 

spectrum centroid, spectrum flux, spectral roll-off, zero-crossing rate, fundamental 

frequency, harmonicity, etc. This framework is used in music indexing and violence 

detection. Recall rates of 81% for gunshot, 51% for cry and 93% for explosion sounds have 

been obtained on an isolated dataset. This can be regarded as one of the first studies in the 

field of audio event detection.  

Zhang and Kuo [16] developed a system for audio event classification and retrieval, which 

classifies the audio into speech, music and environmental sounds. They used statistical and 

morphological properties of energy, fundamental frequency and zero crossing rate obtained 

by the audio signal. Using these features and their statistics, they first applied a model-free 

approach at the first stage of classification. This approach used relatively more basic 

features, which are easy to compute and extract. Whenever an abrupt change appears in any 

of these features, a boundary is set. Then they have also classified environmental sounds 

into sub-classes such as rain, bird and applause sounds using Gaussian Mixture Models. 

They used perceptual features like timbre and rhythm in this stage of classification. They 

used Hidden Markov Models (HMM) for model training and classification.  As a result they 

achieved an accuracy rate of 80% on the average. 

S. Li [17] presented a method for audio event classification and retrieval using nearest 

feature lines. Nearest feature lines method combines two samples of a given class by a 

linear equation and each point on this line is a sample for that class, creating infinite 

number of samples. The classification is done by computing the minimum distance between 

this feature line and the query sample. 

Li considered most common perceptual and cepstral audio features and their combinations. 

He tested his method on a common audio database and the tests resulted with a nearly 10% 

error rate, which is significantly lower than those of the Nearest Neighbour (NN) based 

methods. 
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Li et al. [18] divided audio data into seven classes as single speaker speech, music, 

environmental noise, multiple speakers' speech, speech and music together, and speech and 

noise together. They tested 143 different features and the tests showed that cepstral features 

such as Mel-Frequency Cepstral Coefficients (MFCC) and linear prediction coefficients 

(LPC) brought better classification results compared to temporal and spectral features. They 

obtained an average 90% classification accuracy. 

Guo and Li [19] used support vector machines (SVM) for discriminating 16 different audio 

event types. Using features like MFCC, spectrum power, brightness and pitch frequency, 

they compared the results of SVM with NN and k-NN and Nearest Center (NC) methods. 

The proposed method yields an average error rate of 11% for all 16 classes. 

Wan and Lu [20] compared different features and distance measures. The features include 

MFCC, LPC, spectrum power and some other spectral/temporal and the distance measures 

include Euclidean distance, Kullback-Leibler (K-L) divergence, Mahalanobis distance and 

Bhattacharyya distance. As a result, K-L divergence and LPC are found to be the best 

distance measure and feature. 

Baillie and Jose [21] developed an audio based event detection method which is used to 

detect special events in sports broadcasts. Using MFCC, they segmented and classified the 

audio stream at the same time using HMMs. Especially using the crowd reactions for 

specific events, this method resulted pretty well in soccer broadcasts for indexing and 

summarization.  

Cai et al. [22] detected highlight sound effects in audio recordings using HMMs to model 

laughter, applause and crowd sounds. Using MFCC, energy, band power and zero crossing 

rates as features, they reported an average of 93% recall and 90% precision for those three 

audio events. 

Portelo et al. [23] focused on detecting non-speech audio events, which consist of 15 

different kinds of audio events such as jet sounds, bird sounds, vehicle sounds, telephone 

sounds, water sounds etc… They compared HMM and SVM classifiers and features like 

MFCC, PLP, spectrum power and pitch. Testing their method on movies and 

documentaries, Portela et al. demonstrated promising results, achieving a recall rate of 43% 

on the average. 
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Mesaros et al. [24] proposed a method for detecting acoustic events in real life recordings. 

They modeled each event by using MFCC features. They used HMMs as classifiers while 

segmenting the audio data at the same time. They reached an accuracy of 23% while 

classifying the real life audio recordings among 61 classes.  

Temko et al. [25] developed a method for audio event detection and tested their method in 

the CLEAR 2007. CLEAR is an evaluation workshop, which is supported by NIST. 

CLEAR database consists of audio events such as door knocking, step sounds, spoon 

clings, paper wrapping, applause and telephone sounds other than speech, music and 

silence. The method used features like frequency-filtered band energies and perceptual 

features. Using SVMs as classifier, they detected events like door knock, keyboard typing, 

laughter, steps etc. They gained 30% recall and 20% precision at the end of the tests. 

1.3. Outline 

This thesis contains six chapters. Chapter 1 is the introduction chapter, in which the scope 

of this study is presented and previous studies in the literature are reviewed. In Chapter 2 

the segmentation algorithm and the test results which verify the proposed hypothesises are 

presented. In Chapter 3, audio features that are used in the audio event detection method are 

described. The feature selection algorithms and classifiers are also presented in Chapter 3. 

Chapter 4 presents the experiments and the results for the audio event detection method. 

Comments about the obtained results are also presented. Finally in Chapter 5, the study is 

summarized and possible future works are presented.  
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CHAPTER 2 

2. AUDIO SEGMENTATION 

Audio segmentation is a preliminary step for audio event detection and retrieval on 

broadcast audio streams. In audio segmentation, it is desired to locate the boundaries on the 

audio stream where a single audio event is present in between. For some problems, these 

boundaries are speaker change points [26,27], for some problems they are phone change 

points [11]  and for some problems like audio event detection, these boundaries are the 

audio event change points [28,29]. Audio segmentation aims to divide the audio signal into 

smaller regions, transforming the problem of detecting audio events on broadcast data to 

the problem of detecting audio events on an isolated dataset. The main purpose of an audio 

segmentation algorithm is to obtain small pieces of audio consisting of a single audio event 

and to determine the boundaries of event changes with high precision. The desired audio 

segmentation algorithm should not yield more than one audio event in a single segment, 

and should not divide a single audio event unnecessarily. 

Finding the event change boundaries on a continuous broadcast stream is still a common 

and actual problem in audio pattern recognition area. There are many approaches to this 

problem in the literature [3,5,8-14,27,30,31]. One of the most commonly used methods is 

Bayesian Information Criterion. There are several approaches in the implementation of this 

method [10-14]. The most common approach is the divide and conquer algorithm in [14]. 

The details of this algorithm are given in Section 2.2. In this study, BIC algorithm is 

compared with Unsupervised Energy-Based Segmentation [9], and a combination of two 

algorithms is proposed. The proposed algorithm uses energy based segmentation to locate 

the segment boundary locations and BIC method to merge over-divided segments and 

increase the precision of segmentation.  
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2.1. Unsupervised Energy Segmentation Method 

Unsupervised Energy Segmentation (UES) is a method for audio segmentation using short-

time energy of consecutive audio frames [9]. UES method aims to detect segment boundary 

points, dividing the audio stream into “homogenous” regions.  

2.1.1. Definition of Homogeneity 

A homogenous region can be defined as a small part of audio, in which the type of the 

audio event does not change. The audio event present at the beginning of a homogenous 

segment is also the event at the end. For example, a segment is homogenous if it consists of 

speech only. Likewise, if a segment consists of speech and music together, it is a 

homogenous segment if the speech and music events are present within the segment from 

the beginning until the end of the segment, continuously and simultaneously. Detecting 

these homogeneous regions assures that, every short-time feature, extracted between these 

boundary points, belongs to the same audio event class. Whether these audio classes consist 

of one or more types of audio, we have the general assumption that every feature extracted 

from the frames in that segment are “close” to each other, provided that the right type of 

feature is selected. 

2.1.2. Short-Time Energy 

Short-time energy (STE) is the main feature used in UES. STE is the energy of an audio 

frame. STE is computed from frames of 10ms length and no overlap as   

������ � � 	�

�

���

 1 

 

2.1.3. Detection of Segment Boundaries 

The pseudo-code of the segment boundary detection algorithm is given in Figure 1. Firstly, 

two consecutive windows of 20-frames each are constructed. The powers of these windows 

are calculated. Then the greater power is divided by the lesser power to obtain a power ratio 

value. The windows slide one frame and the power ratios are computed at every step, 

generating a sequence. The local maxima points of this sequence, which are above a certain 

threshold value, are selected as segment boundaries.  
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Begin 

// EnergySequence: Energy frame sequence for audio data. 

// RatioSequence: Sequence of calculated power ratios 

 

EnergySequence: {f1, f2 …., fN} 

for each fi in EnergySequence 

{ 

W1:{fi … fi+19} 

W2:{fi+20 … fi+39} 

PowerRatio �  ∑��

∑��
   

if (PowerRatio<1) 

PowerRatio �  1PowerRatio 
 

if (PowerRatio>PThreshold) 

RatioSequence ← PowerRatio 

else 

RatioSequence ← 0 

} 

 

RatioSequence: {rs1, rs2,…rsN} 

for each rsi in RatioSequence 

{ 

if(rsi > rsi+1 and rsi > rsi-1) 

SegmentBoundaries ← i 

} 

End 

Figure 1: Segment Boundary Detection Pseudo-Code 

 

2.1.4. Parameter Selection 

Energy based segmentation algorithm has two parameters to adjust. One of them is the 

window length, which determines how many energy frames are used to calculate the 

window power. A window with more frames is more robust to sudden energy changes, 

which decreases the frequency of over-segmentation. But window with a greater size is less 

likely to detect segments with small durations, especially segments shorter than the window 

size, which leads to missing segment boundaries. 

The second parameter of UES is the threshold which determines a local maximum point on 

the power ratio sequence is a segment boundary or not. Higher threshold values requires 
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sharper power changes on the signal, which may lead to under-segmentation in some cases, 

and lower threshold values are more sensitive to less sharp power changes, leading to over-

segmentation. 

To determine those two parameters, two performance measures are proposed. The first one 

is the “success rate” (SR) which evaluates the success of the localization of the determined 

segment boundaries. SR is defined as the total duration of segments which are found to be 

homogeneous divided by the total duration of the test set. The expression is given by 

Equation 2. 


� �  ∑ �����	
���∑ �  

D: Duration of segments 
DHomogenous: Duration of homogenous segments 

2 

 

The second performance measure is the “average duration” (AD) of the segments. The 

average duration is given by Equation 3.  

�� �  ����� �������� �� 
������������ ������ �� 
�������  3 

Based on these two performance measures, a cost function is proposed to be minimized to 

select the parameters giving the best segmentation results, given in Equation 4. 

���� �  100 �  1 ! 
�" !  4 � �� $ 1 
4 

Using this function, tests have been performed to obtain the parameter values. The error 

rate, (1-SR), is given 25 times more weight than the average duration (AD) value. 1 is 

added to make sure the cost value is positive, for visualization purposes only. The change 

of cost function, success rate and average segment duration with respect to each other is 

given in  Figure 2-7.  

The tests have been performed on a 1 hour dataset annotated manually. The test data have 

been collected from 6 different TV channels, each having duration of 10 minutes. The 

broadcast types of channels have been selected different from each other in order to 

represent general TV broadcasting. Program types like commercials, movies, series, news 

and various are all represented in the collected data. 
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 Figure 2: SR vs Window Length (vs Threshold)  

 

Figure 3 : AD vs Window Length (vs Threshold) 
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Figure 4: Cost vs Window Length (vs Threshold) 

 

Figure 5: SR vs Threshold (vs Window Length) 
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Figure 6: AD vs Threshold (vs Window Length) 

 

Figure 7: Cost vs Threshold (vs Window Length) 
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2.2. Bayesian Information Criterion Based Segmentation 

The main idea in BIC based segmentation is to divide the data into segments considering a 

cost function using BIC [14]. This approach aims to select the best model for a given 

dataset. For every model Mi, and dataset Z, the BIC cost function is given in Equation 5. 

BIC M�, Z" �  log p Z | Θ�"  ! 1/2 λ # M�" log n 
5 

Here, Θi is the maximum likelihood estimate of parameters of Mi and #(Mi) is the number 

of parameters of Mi (in the given case, number of mixtures of the model) n is the dimension 

of the feature vector and λ is the penalty factor. The model corresponding to the highest 

BIC value is the most suitable model for the given dataset. 

In BIC based segmentation, for every change point candidate, the hypothesis given in 

Equation 6 is tested with the function given in Equation 7. 

H0 7  z�, z�,9 9 9 , z� ~ N µ, Σ" 

H1 7  z�, z�,9 9 9 , z� ~ N µ�, Σ�" and z���, z���, … , z� ~ N µ�, Σ�"  6 

 

ΔBIC i" � BIC H�, Z" ! BIC H�, Z", i �  1,9 9 9 , n 
7 

In Equation 6, Hypothesis 0 assumes that, all the given samples, from z1 to zn belong to a 

single model. On the contrary, Hypothesis 1 states that given samples belong to two 

separate models. Samples from z1 to zi belong to model with the distribution  N µ�, Σ�" and 

samples from zi+1 to zn belong to model with distribution  N µ�, Σ�" . Therefore ΔBIC i" is 

the difference between two BIC values computed with these two different assumptions. 

If ΔBIC i"  C  0, then i is selected to be a change point. Here BIC H�, Z" is the BIC cost of 

modeling the dataset as a single model, and BIC H�, Z" is the BIC cost which is calculated 

at a segment change point in i. So if modeling the given dataset in a single model is more 

costly then dividing into two segments, the point i is selected as a change point. In Equation 

5, the term λ plays an important role on determining the cost of segmentation of the dataset. 
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The BIC based segmentation algorithm used in this study is based on the algorithm given in 

[14]. Accordingly, a sliding window approach is followed to detect the segment boundaries 

on the audio stream. This window has an initial length Nini and increased by Ng until a 

segment change point is found or the window length reaches a termination value of Nmax. If 

a change point is found, the window is reset to Nini value; and the algorithm goes on from 

the last found change point. If no change point is found, the starting index is increased by 

Ns and the same operations above are applied.  

Tests on BIC based segmentation method have been performed on the same dataset with 

UES. Three different kinds of audio features are used to represent the audio data. The 

features used are Mel-Frequency Cepstral Coefficients (MFCC), Spectrum Band Power 

(SBP) and Perceptive Linear Prediction Coefficients (PLP) respectively. The detailed 

descriptions of these features are given in Section 3. These features are selected considering 

their ability to model the spectral behavior of audio signals. These features are also widely 

used in the literature on segmentation problems [2,8,14,18,20,23,30,32-34]. Obtained test 

results are given in Figure 8 to Figure 10. The λ value, which determines the cost of 

segmentation in a given dataset, is also tested for different values and the best λ for each 

feature value is determined. The cost function in Equation 8 is used to select the best 

parameter for this segmentation method.  

 

Figure 8: Success Rate vs λ 
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Figure 9: Average Duration vs λ 

 

Figure 10: Cost vs λ 
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BIC is applied, a hybrid method can be proposed. This method has the advantages of both 

algorithms. Using UES as the boundary location selector, the major changes in the energy 

levels have been detected and segment homogeneity is satisfied with a fast algorithm. 

Combining these segments with BIC method brings the spectral information into 

segmentation problem, yielding a result of greater average duration values. Also predefined 

segments, located by UES algorithm, provides an isolated dataset for the BIC algorithm to 

decide on segmentation, to increase the success rate of BIC algorithm.  

The proposed algorithm, which consists of the combination of UES and BIC methods, is 

given as a pseudo-code in Figure 11. In the proposed algorithm, first UES algorithm is run 

over the audio data, to determine the segment location candidates. Then two consecutive 

segments are given to BIC algorithm as one whole dataset, checking the boundary between 

them using the BIC cost function. If the calculated BIC cost is greater than zero, that point 

is selected as a segment boundary. Else, the segments are merged, and the algorithm goes 

on, accepting these two segments as one and computing the BIC cost value with the next 

segment.  

Begin 

// EnergySegments: Segment candidates obtained by energy 

segmentation method. 

// BICSegments: Final segments after BIC merging. 

 

EnergySegments : {s0,s1….sn}  

for each si in EnergySegments  

if( BIC(si,si+1) ≤ 0 ) 

 si ← si  si+1 

i = i - 1 

else 

BICSegments ← si 

End 

 

Figure 11: UES and BIC Combination Pseudo-Code 

Tests have been performed on this method to compare with the two previously defined 

methods. Same cost functions are used to compare the results obtained from these tests. The 

comparative results obtained from the tests are given in Figure 12 to Figure 14. The best 

parameters obtained in both UES-only and BIC-only methods have been used in the 

combination of those two methods. The window size of UES is selected to be 150ms; the 
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threshold is selected as 1.1. The feature for BIC method is selected to be PLP and the 

corresponding λ value is 9. 

 

Figure 12: Average Duration of Methods 

 

 

Figure 13: Success Rates of Methods 
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Figure 14: Costs of Methods 

 

Figure 15: Computation Times of Methods 
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2.4. Activity/Non-Activity Region Detection 

2.4.1. Definition of Activity / Non-Activity Regions 

Audio data can be divided into two different kinds of regions as Activity and Non-Activity. 

Non-Activity regions can be defined as the regions that do not carry any significant aural 

information. Most of the non-activity regions are silence. Other than silence, background 

noise can be accepted as non-activity region. Since the context of noisy background areas 

are not easy to discriminate, and since those areas consist of very different sorts of sounds, 

elimination of these areas is expected to increase the precision of any audio event detection 

system.  The background noises between the words of a conversation that is recorded 

outdoors, or the background music in a movie scene can also be accepted as non-activity 

regions. Any other region that is carrying significant aural information belonging to any 

audio event is called an activity region. 

There are many different silence/background noise detection methods in the literature 

[1,2,6,9,16,18,27,30,35]. Most of them rely on a predefined or trained threshold value, or 

adaptive threshold values computed from the audio stream that is being examined. Because 

of the fast changing and dynamic nature of broadcast audio, it is usually not possible to 

determine a unique threshold, which can be accepted as a universal value. Even in the same 

audio recording, silence and background noise energy thresholds may vary because of the 

changing scene and broadcasting types. An adaptive method is selected to determine the 

activity and non-activity regions on the broadcast audio [9]. In this method, activity and 

non-activity transitions are modelled by using normalized power values of segments and 

according to this model, an adaptive decision mechanism is constructed to give activity and 

non-activity decision for segments.  

2.4.2. Detection of Activity/Non-Activity Regions 

Silence is defined as the lack of audible sound [36], and it is a relative definition because of 

the term “audible”. The audibility of a sound is relative to the general energy level of a 

recording. If a recording consists of generally high energy regions, the audibility of 

relatively lower energy regions can be in question. On the contrary, if a recording consists 

of generally low energy regions, this time the discrimination between audible and inaudible 

is harder to make. These are all because of the relativity of human nature and adaptability 

of human ear to different kinds of environments. In loud and noisy environments, human 

ear focuses on the loud sounds, which makes relatively less loud sounds inaudible. In silent, 
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quiet environments, human ear is adapted to hear sounds with less energy values, so former 

inaudible sounds are now audible. The definition and decision of a sound by the means of 

audibility is only meaningful by observing the whole environment, in the case of this study, 

considering the whole recording. 

The inconsistency of energy levels of different broadcast recordings forces one to use an 

adaptive algorithm, which uses the energy information of consecutive segments. Since the 

energy levels may change between different recordings and different scenes, a silence 

threshold value which is universally applicable is not possible to find. The definition of 

silence is only meaningful with non-silent areas around, one should define both silence and 

non-silence, in other words, activity and non-activity regions together. Using this idea, a 

detection algorithm is proposed. 

The flowchart of the Activity / Non-activity detection algorithm is given in Figure 16. First 

audio data is segmented into homogeneous segments using the segmentation algorithm. 

Then power of each segment is calculated. These power values are concatenated to obtain a 

feature vector of five dimensions. For each segment, the power of that segment, powers of 

two successors and two predecessors are concatenated, and Gaussian Mixture Models of 

activity and non-activity regions are trained using these feature vectors. Activity / Non-

Activity models obtained are then used to decide whether a segment belongs to an activity 

or non-activity region.  

 

Figure 16: Activity / Non-Activity Detection Algorithm 

The tests and obtained results of Activity/Non-Activity region detection are given in Figure 

17-11. Different mixture numbers and different feature vector dimensions have been tested. 

The number of mixtures is tested in the range 2-256. Three different dimension values have 

been tested; 2, 3 and 5. 2 dimensional vector, consisting of the powers of each segment 

itself and its successor; 3 dimensional vector, consisting of the powers of each segment 
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itself, its one successor and one predecessor; and 5 dimensional vector consisting of the 

powers of each segment itself, its two successors and two predecessors. The test results 

show that best parameters for Activity/Non-Activity Region detection are 5 dimensional 

vectors trained with a GMM of 64 mixtures. The best parameters are selected according to 

the cost function given by Equation 8. The values minimizing the cost function are selected 

as optimum parameters.  
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8 

 

The cost function in Equation 8 is determined considering the expected performance of the 

segmentation method. Precision and recall of the given system is calculated using the 

formula given in Equation 8, and the better precision and recall, the better the performance. 

So multiplication of those two values is used. To achieve the best performance, where the 

cost function is at minimum, the inverse of the multiplication of precision and recall is 

selected as the cost function.  

 

Figure 17: Recall vs #Mixture (vs Feature Dimension) 
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Figure 18: Precision vs #Mixture (vs Feature Dimension) 

 

Figure 19: Cost vs #Mixture (vs Feature Dimension) 
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equivalent power regions aims to improve the performance of Activity/Non-Activity 

detection algorithm. 

Definition of Equivalent Power Regions 

An Equivalent Power Region (EPR) can be defined as a part of an audio recording, in 

which the recording energy level can be considered as constant. The boundaries of these 

EPR regions are detected using the algorithm in [9]. 

Detection of Equivalent Power Regions 

EPR boundaries are detected using an algorithm described in Figure 20. In this algorithm 

audio data is divided into homogeneous segments using UES, then activity/non-activity 

region detection algorithm is applied, assuming that the whole recording consists of a single 

EPR. Then an algorithm which is similar to the UES is applied. Two sliding windows 

consisting of “a number of non-activity segments” is formed and traversed among the 

whole recording. The reason to use only the non-activity segments while calculating the 

powers of sliding windows is the difference of the variances of the powers of different 

types of segments in an EPR. The variance of the powers of non-activity segments in an 

EPR is observed to be much less than the variance of the powers of activity segments, so 

powers of non-activity segments is selected as a discriminating property between two 

consecutive EPRs [9]. The powers inside these windows are calculated and again as in UES 

algorithm, the greater power is divided by the lesser power, obtaining a sequence of power 

ratios. Detection of local maximum points on this sequence above a selected threshold 

value gives the boundaries of EPR regions. Then the powers of each segment inside an EPR 

are recalculated and normalized by the average power value of the corresponding EPR. 

Obtained power values are used to recreate features of Activity/Non-Activity detection 

algorithm and Activity/Non-Activity region boundaries are corrected. 
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Figure 20: EPR Detection Algorithm 

Tests on EPRs show that normalization of segment energies according to EPRs improved 

both recall and precision of activity regions. Also the cost function described in Equation 8 

shows that, EPR normalization improved the test results. 

There are two different parameters tested on EPR detection method similar to the UES 

method. The first one is the length of the sliding windows and the second parameter is the 

threshold value filtering the local maximum values. The change of precision, recall and cost 

function with respect to window size and threshold value is given in Figure 21-18. 

According to the tests, the window length is determined as 5, and the threshold value is 1.5.  

The comparison of best recall precision and cost function values between applying and not 

applying the EPR detection method is given in Figure 27.   
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Figure 21: Recall vs Window Size (vs Threshold) 

 

Figure 22: Precision vs Window Size (vs Threshold) 
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Figure 23: Cost vs Window Size (vs Threshold) 

 

Figure 24 Recall vs Threshold (vs Window Size) 
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Figure 25: Precision vs Threshold (vs Window) 

 

Figure 26: Cost vs Threshold (vs Window) 
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Figure 27: Comparison of Region Detection with EPR and without EPR 
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CHAPTER 3 

3. FEATURES, FEATURE SELECTION METHODS AND 

CLASSIFIERS 

There are numerous different features in the literature, which are used for different audio 

pattern recognition operations. In this study, commonly used audio features in the area of 

audio event detection are selected. All features are extracted using a frame length of 25ms 

and a frame slide of 10ms. The features and their abbreviations used in the rest of this study 

are given in Table 1.  

Table 1: List of Features and Abbreviations 

Mel Frequency Cepstral Coefficients (MFCC) 

Perceptual Linear Prediction (PLP) 

Spectrum Band Power (SBP) 

Spectral Flow Direction (SFD) 

Band Harmonicty (HRM) 

Spectral Roll-off (SRO) 

Zero Crossing Rate 

Spectrum Flatness 

Spectrum Centroid 

(ZCR) 

(SRF) 

(SRC) 
 

  

3.1. Audio Features 

In this section, the audio features given in Table 1 are described.  

3.1.1. Mel Frequency Cepstral Coefficients (MFCC) 

Mel-Frequency Cepstral Coefficients are widely used in audio pattern recognition area. 

Several examples in the literature for the usage of MFCCs in audio event detection problem 

can be found [9,18,20,33,35,37-40]. The flow diagram of MFCC extraction process is given 

in Figure 28.  
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Figure 28: MFCC Flow Diagram  

The audio signal is divided into short-time frames, to satisfy stationarity property. Then 

each audio frame is transformed to frequency domain using Fast Fourier Transform (FFT). 

The amplitudes of the complex outputs of FFT are calculated and their logarithm is taken. 

The resulting signal is scaled into Mel-Frequency band. Since human hearing and 

perception of sounds is non-linear, mel-frequency scale is used to model the human 

perception on audio signals. Mel-frequency scale is expressed as  

F�� �" � G � � H 1000 IJ
2595 � log 1 $ �700" � N 1000 IJO 9 

 

Figure 29 shows the mapping from linear frequency band to the mel-frequency band. 

 

Figure 29: Frequency to Mel-Frequency Mapping 
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Finally, log-Mel-spectrum signal is converted using Discrete Cosine Transform (DCT). The 

magnitudes of 13 coefficients of DCT are used as MFCC. The number “13” here is 

variable, and 13 is the commonly used value in the literature. 

3.1.2. Perceptual Linear Prediction (PLP) 

PLP parameters aim to model the perceptually relevant parts of the audio signal [23,31-

33,41,42]. For this reason, the audio signal is first filtered and pre-emphasized using 

“perceptual filters”. The flow diagram of the extraction of PLP values is given in Figure 30. 

 

Figure 30: PLP Flow Diagram 

The signal is transformed into frequency domain and pre-processing operations are applied. 

The first operation is the “critical band filtering”, where the signal is passed through a non-

linear band-pass filter, to model the non-linear frequency warping property of human 

hearing. Then a pre-emphasizing process is applied and followed by intensity to loudness 

compression, which models the non-linear human loudness perception. After that the signal 

is transformed back to the time domain and linear prediction analysis is performed. The 

coefficients of the all-pole linear prediction model are the PLP values.  
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3.1.3. Spectrum Band Power (SBP) 

SBP describes the powers of signal at different bands of the spectrum. Figure 31 shows the 

flow diagram of SBP extraction procedure.  

 

Figure 31: SBP Flow Diagram 

The audio frame is transformed into frequency domain by using FFT. Then the signal is 

passed through several different band-pass filters and the powers of the resulting signals are 

computed. In this study, the spectrum is divided into 16 bands between the frequencies of 

50 Hz and 4000 Hz. 

3.1.4. Spectral Flow Direction (SFD) 

SFD [9] describes the temporal behaviour of spectrogram in terms of the direction of 

energy flow in time at the peaks of the spectrum. The maximum point of the cross-

correlation between the spectra of two consecutive frames is the SFD value corresponding 

to the first frame. SFD is calculated as  
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N: FFT Length 

l: Amount of lag 

s(n,i): Energy at frequency frame n of bin i. 

3.1.5. Band Harmonicity (HRM) 

HRM [9] describes the harmonic content of the given audio frame. Unlike the common 

harmonicity measures [18,34,35,43,44], Band Harmonicty does not require fundamental 

frequency detection. HRM assumes that, for a perfectly harmonic signal, the magnitude of 

the frequency transform is also periodic with the fundamental frequency and therefore; FFT 

of the FFT magnitude of a harmonic signal has a maximum point at the fundamental 

frequency value.  Band Harmonicity can be computed over multiple bands, which allows 

computing different harmonicity values for different bands. Considering the difference of 

the bandwidths of different audio signals, band-wise harmonicity is a discriminating 

property. The flow diagram of HRM computation is given in Figure 32. 

 

Figure 32: Band Harmonicity Flow Diagram 

3.1.6. Spectral Roll-Off 

The SRO is the frequency up to which 90% of the signal energy is contained. SRO is 

calculated as 
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where x(i) represents the samples in a frame. 

3.1.7. Zero-Crossing Rate 

ZCR is the number of zero-crossings in time domain, for an audio frame. ZCR is 

normalized by dividing the number of zero-crossings by the number of samples in an audio 

frame. ZCR is calculated as 
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3.1.8. Spectral Flatness (SRF) 

Spectral Flatness is a measure of tonal strength of the sound [34,45,46]. A sound with a 

spectrum of more distinct peaks is said to be more tonal than a sound with a white-noise 

like, flat spectrum. Like SBP, SRF is also extracted band-wise. The flowchart of SRF 

extraction method is given in Figure 33. The calculation of spectral flatness is done using 

the formula given in Equation 13.  

 

Figure 33: SRF Flow Diagram 
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3.1.9. Spectrum Centroid (SRC) 

Spectrum Centroid is the center of mass of the spectrum. It describes the brightness of the 

sound. Sounds with higher SRC values are said to be brighter than sounds with lower SRC 

values. The calculation of SRC is done using the formula given in Equation 14.  


�� �  ∑ �	 �"�
���∑ 	 �"�
���

 14 

 

3.2. Feature Statistics 

In this study, audio segments are accepted as the smallest unit of audio events, such that 

audio event detection on broadcast recordings is based on decisions given per segment. 

Every segment, having different spectral and temporal characteristics, is described by 

various audio features. However, these features themselves are not sufficient to describe the 

whole segment, since each feature is extracted from an audio frame, and segments consist 

of varying number of frames. For this reason, frame based audio features are used to 

compute some statistics for each frame, and these statistics are used as new descriptors for 

the segment itself. 

The list of feature statistics used in this study is given in Table 2. These statistics are the 

most frequently used statistics in the literature for audio event detection and retrieval 

[17,19,24,43,45,47,49-54]. 

Table 2: List of Feature Statistics 

1. Mean 

2. Minimum & Maximum 

3. Median 

4. Variance 

5. Skewness 

6. Kurtosis 

  

3.2.1. Mean 

Mean of the feature vectors in a segment is the feature vector, having dimensions calculated 

by taking the average of feature vectors in the segment for that dimension. Mean is 
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calculated using the formula given in Equation 15. Mean is a vector which coarsely 

represents all of the vectors in the segment.  

F��� �" �  1� � ��

�

���

 �" 15 

N: Number of frames in a segment. 
fn: Feature vector corresponding to the frame n. 
i: Feature vector dimension index. 
 

3.2.2. Minimum & Maximum 

Minimum and maximum of the feature vectors in a segment is the vector that consists of 

minimum and maximum feature values of the corresponding dimensions. Minimum and 

maximum vectors represent the range of the values in a segment, expressing the extreme 

cases. Minimum and maximum vectors are calculated as  

F������ �" � ���� �, 0" �" 

F�	���� �" � ���� �, �" �" 
16 

3.2.3. Median 

Median of the feature vectors in a segment is the vector that consists of feature values of the 

corresponding dimensions which are in the middle when they are ordered. The formula 

used to calculate median vector is given in Equation 17. Median vector represents the 

values in the middle, making again a coarse estimation for each vector in the segment, yet 

making sure of the given value is observed, unlike the mean vector. 

F�T��� �" � ���� U�, �2V  �" 17 

3.2.4. Variance 

Variance of the feature vectors in a segment is the vector that consists of the variance 

values of the corresponding dimensions. The formula used to compute the variance is given 

in Equation 18. Variance vector represents how far the samples inside a segment are from 

the mean. The greater the variance, the less similar feature vectors are. 
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3.2.5. Skewness 

Skewness of the feature vectors in a segment is the vector that consists of the skewness 

values of the corresponding dimensions. The formula used to compute the skewness is 

given in Equation 19. Skewness is the measure of the asymmetry of the probability 

distribution of given values. 
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3.2.6. Kurtosis 

Kurtosis of the feature vectors in a segment is the vector that consists of the kurtosis values 

of the corresponding dimensions. The formula used to compute the kurtosis is given in 

Equation 20. Kurtosis measures how “peaked” is the probability distribution of given 

values. 
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3.3. Feature Selection Algorithms 

In this chapter, the feature selection algorithms, which are used and compared in this study, 

are mentioned. 

3.3.1. Principal Component Analysis 

Principal Component Analysis (PCA) is a basic statistical tool that is used in many 

applications in pattern recognition area. It is an orthogonal transformation of the possibly 

correlated feature space onto a new one, where the new features are uncorrelated and with 

reduced dimensions.  

The “principal components” are obtained to deal with the linear dependency among the 

feature variables [53].  Each principal component is a linear combination of feature 

variables. The linear combination can be formulated as given in Equation 21. 
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X: feature vector 

A: linear factors vector 

21 

 

In PCA, the linear factors for obtaining the principal component are chosen such that the 

resulting feature variables have maximized variance. Since covariance matrix obtained by 

the original dataset represents the variance of the variables, eigenvectors of the covariance 

matrix are computed to form the transformation matrix. The eigenvector with greater 

eigenvalues tells us that the data set has more variance in that dimension than others. In 

PCA, the eigenvectors are sorted according to their eigenvalues, and dimensions with small 

variances (eigenvalues) can be omitted. Since smaller variance in a dimension refers to less 

information provided by that dimension, the information loss after dimension reduction is 

minimized.  

The computational flow diagram of PCA is given in Figure 34. Firstly the covariance 

matrix of given variables are computed using the whole dataset without any class labels. 

Then the eigenvectors and corresponding eigenvalues are computed. Eigenvectors are 

sorted by the corresponding eigenvalues, and a transformation matrix is formed using the 

selected eigenvectors. First M eigenvectors are selected, where M is the number of 

dimensions of the new feature vectors. M is calculated with the formula given in Equation 

22.   

min
"

a∑ b�
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c C 0.95 

N: number of original dimensions 

M: number of reduced dimensions 
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Figure 34: PCA Flow Diagram 

3.3.2. Information Gain Ranking 

Information Gain (IGR) is another feature selection method that is highly popular in pattern 

recognition areas [20,54,55]. “Information Gain” (aka Kullback-Leibler divergence) is used 

to measure the similarity between two distributions. IG can be described as the change of 

two entropies H(C), the entropy of class C, and H(C|X), the entropy of class C when the 

sample X is given. The decrease observed in the entropy after the sample X is given is 

perceived as the information provided by the sample X. The formula used to calculate IG is 

given as 

I �" �  ! � e X" log� e X"
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IG can also be defined as a measure showing how well a variable discriminates between 

two classes. IGR is the method of selecting features sorted by their information gain. 

Higher IG value corresponds to more information.  

3.3.3. Chi-Square Ranking 

Chi-Square distribution with k degree of freedom can be defined as the distribution of the 

sum of squares of k independent standard normal Gaussian random variables [56-58]. Chi-
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Square Ranking method measures the Chi-Square statistics of each variable, and sorts them 

according to these measures. Chi-Square statistics measure can be calculated using the 

formula given in Equation 24.  

h� � � � ��,) ! ���)����)�
"
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m: number of intervals 

Ri: number of features in the interval i. 

Cj: number of features in the class j. 

Aij: number of features in the interval i, class j. 

N: total number of patterns. 
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In statistics, chi-square method is used to test the independence of two events. In the case of 

feature selection, these two events can be replaced with the occurrence of the sample and 

the class. Since chi-square measures the deviation of expected counts from observed 

counts, a high value of chi-square indicates that the events of the occurrence of the sample 

and occurrence of the class are dependent. So if these two events are dependent, one can 

say that occurrence of the sample makes the occurrence of the event more likely [58].  

 

3.4. Classifiers 

In this chapter, the classifiers, which are used and compared in this study, are mentioned. 

3.4.1. Gaussian Mixture Models 

Gaussian Mixture Models (GMMs) are widely used in audio pattern recognition area 

[1,2,9,16,22-27,32,40,55,59-61]. GMM is not a classifier itself, yet it can be defined as a 

probabilistic model tool, which uses one or more Gaussians to form a probabilistic model 

using the information given with the feature vectors. GMMs can be used as a classifier by 

selecting the most suitable class model for a given sample.  

Gaussian Density Function 

In GMM, data samples are assumed to be distributed with a Gaussian distribution. Samples 

belonging to a class do not have to form a single Gaussian, but may have a distribution 

obtained by a weighted sum of multiple Gaussians. Gaussian density function formula is 

given in Equation 25. In this case Gaussians are assumed to be multivariate.  
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For multivariate GMMs, the unknown parameters are the mixture weights, mean vectors 

and covariance matrices corresponding to each mixture. These parameters have to be 

estimated in order to create a probabilistic model using the given data samples. This 

estimation is done by an algorithm called expectation maximization (EM) [61]. EM 

algorithm is used to find the parameters of GMM, which are weights, mean vectors and 

covariance matrices for each mixture model that satisfies the maximum likelihood 

assumption. EM is an iterative algorithm that consists of two steps, expectation and 

maximization. In the expectation step, initial model parameters are tested with given data 

samples and a posterior probability is computed. And with the posterior probability values 

obtained in the expectation step, new parameter values are calculated in the maximization 

step. This iteration continues until the parameters converge. In GMM classification, for 

each model obtained, a likelihood value is computed by each sample. The class with greater 

likelihood value is selected.  

3.4.2. Support Vector Machines 

Support Vector Machine (SVM) is the second type of classifier that is used in this study. 

SVMs also have a wide range of application area in pattern recognition 

[2,19,23,25,35,48,54,62-68]. SVMs can be used for binary or multi-class classification and 

regression applications. In this study SVMs are used as binary classifiers. 

SVM classifier aims to define a linear discriminant function that separates two classes with 

a maximized margin. This margin can be defined as the minimum distance between the 

separating hyper-plane and the nearest sample. The relation between hyper-plane and 

feature vectors can be improved by mapping the feature vectors to a new vector space non-

linearly. This mapping requires the calculation of dot-products of the new feature vectors, 

which can be computationally expensive. Instead, “kernel” functions are used to calculate 

these dot-products, and obtain non-linear hyper-plane functions. In this study, radial basis 

kernel function (RBF) given in Equation 26 is used.  
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CHAPTER 4 

4. EXPERIMENTS 

The proposed method in this study is supported with experiments, providing the results for 

the given algorithm. In these experiments, a large set of audio data is collected, using the 

TV broadcast recordings. The most frequent events in these recordings are selected as the 

events to be detected. The features and dimension reduction algorithms which are 

mentioned above are tested and best feature sets are selected for each audio event class. The 

proposed algorithm is run with different classifiers which are also mentioned in previous 

chapter, and the results of these tests are given comparatively. In this chapter, first; 

information about the training and test dataset is given. Then the methodology of the 

experiments is explained and finally the results of each experiment are presented. 

4.1. The Data Set 

The Data Set used in the experiments part of this study consists of samples collected from 

TV broadcasts within the scope of the KAVTAN, a project for the semantic classification 

of mass broadcast media, which is developed for RTUK (Radio and Television Supreme 

Council). The whole data is manually annotated by using the software Praat [69]. A total of 

4 hour-long data is annotated by hand and used in training and a total of 18 hours of data is 

used in test steps of this study. The details of the data set are given in Table 3.  
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Table 3: Test Set Properties 

 Training Test 

 Duration (Sec) # samples Duration (Sec) # samples 

Applause 936,26 2004 50,06 60 

Bird 339,02 960 534,55 581 

Brake 392,17 752 96,99 71 

Cat 281,58 670 45,66 76 

Crowd 231,28 270 2203,76 1531 

Cry 834,51 2410 183,75 234 

Dog 352,65 1128 67,48 106 

Explosion 912,66 1458 671,76 833 

Gun 985,74 2303 122,30 165 

Laughter 430,76 1137 147,70 211 

Music 863,85 1913 28338,30 37096 

Other NA NA 14198,40 11090 

Scream 857,55 1910 424,18 508 

Sex 704,69 1955 54,31 86 

Sing 235,64 640 2530,59 1743 

Siren 1249,48 2431 213,22 173 

Speech 1072,97 748 13790,90 19785 

Water 1112,92 1272 705,93 1018 

Total 11793,73 23961 64379,84 75367 
 

 

17 events given in Table 3 are the most frequent audio events which are observed in the 

data set. The “Other” event in the test set represents unclassified events including silence 

and noise. Some of these events like speech and music are highly popular in audio event 

detection studies, whereas cat, dog or sexual sounds are rare to observe. In these 

experiments, it is aimed to show that, the proposed method for event detection on TV 

broadcasts is successful for a wide selection of events. 

Waveform and spectrogram examples for these events are given from Figure 35 to Figure 

40. 
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Figure 35: Applause, Bird and Brake Sounds 

   

Figure 36: Cat, Crowd and Cry Sounds 
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Figure 37: Dog, Explosion and Gun Sounds 

   

Figure 38: Laughter, Music and Scream Sounds 
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Figure 39: Sex, Singing and Siren Sounds 

 
 

Figure 40: Speech and Water Sounds 
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In the spectrograms above, given audio events are shown to have a different characteristic 

and these characteristics are aimed to be represented using various audio features 

mentioned in section 3. Just looking at the waveforms and spectrograms one can divide 

those events into two sub classes. Considering harmonicity; music, speech, singing and 

siren sounds can be thought of audio events with high harmonicity, while explosion, gun-

shot and water sounds are harmonic. Gun-shots, cry and sex sounds are shown to be 

impulsive sounds, where music and scream sounds do not change in time very fast. Scream 

and bird sounds are shown to have strong components of high frequencies, while explosion 

and dog sounds have a lower centre frequency value. 

4.2. Experiment Methodology 

In this study, the best feature set and the best classifier, which discriminates each audio 

event class, presenting the best performance measure, is aimed to be discovered. The 

performance of the classification is measured using the two measures which are most 

frequently used in the literature; the recall and the precision. The definitions and 

formulations of these measures are given below.  
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Two sets of data are formed for each event, first consisting of the event samples and the 

second consisting of the samples of other events, which is called the negative set. For each 

audio event class, a negative event class is formed, randomly mixing the samples of the 

remaining audio event classes. Considering the unbalanced distribution of the audio events 

in broadcast, this method is chosen to satisfy the balance in the test sets. Since the precision 

and recall measures both depend on the number of samples that is being evaluated, the 

number of samples which belong to an audio event must be in the same order, preferably 

equal to the number of samples that does not belong to that audio event.  

For example, considering an event A with a frequency of 1sn per minute, meaning this 

event is encountered for 1 second every minute on the average, an audio stream consists of 
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samples belonging to class A for 1 minute and the stream has samples not belonging to 

class A for 59 minutes. Assuming that the classifier in hand has an error rate of 1 sample 

per 58 samples, which can be considered very successful, this classifier is going to yield to 

a precision rate of 50% which can be considered as almost random. To avoid these kinds of 

deceptive results, two data sets; one for positive and one for negative samples, are formed 

and the tests are performed on these datasets. These datasets have exactly the same number 

of samples, satisfying the condition that the tests are balanced and recall and precision 

measures are meaningful to determine the success of a classification.  

4.3. Experimental Results 

The experimental results presented below are obtained using the data set given in Table 3, 

and best results are selected according to the performance metric F1, given in 29.  

Q1 �  2 � ��X��� � E��X����� ��X��� $ E��X�����  29 

 

The best recall, precision and F1 scores for each class are given in Table 4. Figure 41 shows 

the change of F1 among classes, Figure 42 shows the change of recall and Figure 43 shows 

the change of precision. 
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Table 4: Best Results 

Event Feature Classifier Recall Precision F1 

Applause ig svm 0,890 0,783 0,833 

Bird ig svm 0,921 0,962 0,940 

Brake chi gmm 0,798 0,853 0,825 

Cat chi svm 0,838 0,990 0,907 

Crowd ig gmm 0,850 0,877 0,863 

Cry chi svm 0,911 0,669 0,772 

Dog ig svm 0,901 0,950 0,925 

Explosion ig svm 0,936 0,973 0,954 

Gun chi svm 0,852 0,688 0,761 

Laughter chi gmm 0,822 0,752 0,785 

Music chi svm 0,933 0,810 0,867 

Scream chi svm 0,910 0,715 0,800 

Sex pca svm 0,876 0,763 0,816 

Sing pca gmm 0,742 0,925 0,823 

Siren ig gmm 0,957 0,685 0,798 

Speech ig svm 0,971 0,991 0,980 

Water ig svm 0,906 0,976 0,939 
 

 

 

Figure 41: F1 Scores for Each Class 
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Figure 42:  Recall Values for Each Class 

 

Figure 43: Precision Values for Each Class 

As it is shown on these figures, the proposed method has a stable success rate for all 

different audio events, changing in a range of a maximum F1 of 98% and minimum F1 of 

76%. The change of F1 scores, between the most and the least successful events, is found to 

be 22%. The event with the minimum recall has a value of 74% and the event with the 
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minimum precision has a value of 67%. Comparing these results with the results given in 

the literature, the proposed method is fairly successful.  

The feature selection and dimension reduction methods are compared and the results are 

presented in Figure 44.  

  

  

  

  

0,828
0,83

0,832
0,834

ig chi pca

F
1

Applause

0,93
0,935
0,94

0,945

ig chi pca

F
1

Bird

0,8
0,81
0,82
0,83

chi ig pca

F
1

Brake

0,88
0,89
0,9

0,91

chi ig pca

F
1

Cat

0,82
0,84
0,86
0,88

ig chi pca

F
1

Crowd

0,771
0,7715
0,772

0,7725

chi pca ig

F
1

Cry

0,91
0,915
0,92

0,925
0,93

ig chi pca

F
1 

Dog

0,952
0,953
0,954
0,955
0,956

ig chi pca

F
1

Explosion



 
 

54 

  

  

  

  

 

Figure 44: Feature Selection Method Performances for Each Event 
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As it is shown on the figure above, the performance of the feature selection methods differ 

very slightly, which indicates the features are eliminated according to the best possible 

discriminating way. Either feature selection method supplies the very best set of features, 

which is sufficient to classify these audio events. 

Two tested classifiers are also compared and result for each event is given in Figure 45. 
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Figure 45: Classifier Performances for Each Event 
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proposed UES method has a cost twice lower than current BIC method, and the 

combination of these two methods even increases the performance. The complexity of 

proposed algorithm is shown to be lower than current BIC method, which decreases the 

computation time. The computation times of two methods and their combination are given 

in Figure 15. 

Comparing the results of audio event detection algorithm with the results in literature, the 

proposed method is quite promising. Pfeiffer et al. [15] achieved recall rates of 81% for 

gunshot, 51% for cry and 93% for explosion sounds. Comparing with the results of the 

proposed method, the proposed method achieves a recall rate of 94% for explosion, 85% 

for gun-shots, and 91% for cry sounds. Considering that Pfeiffer used isolated data, this 

result is promising. 

Cai et al. [22] achieved a recall value around 90% for crowd, applause and laughter sounds. 

The proposed method achieved a recall of 87% on the average, which is a comparable. 

Portleo et al. [23] tested bird, vehicle, sirens and water sounds, achieving average recall rate 

of 45%. The result of the proposed method is quite better than those, with a minimum recall 

of %79.  

In [16], an average recall rate of 80% is achieved for speech, music and environmental 

sounds. In [18], Li et al. tested for music, speech and speech and music together, achieving 

a result of 90% on the average. Comparing with this result, the proposed method has a 

recall rate of 89% for speech music and singing on the average. In [19], 16 different audio 

events, similar to the ones used in this study, are tested with an average recall rate of 89%. 

The proposed method uses a collection of features and feature statistics that are widely used 

in the literature, and using feature selection algorithms, adaptation of the feature set for 

many different kinds of events is performed automatically. Different feature selection 

algorithms resulting with similar precision and recall rates for different events also verify 

that the proposed solution is valid and the selected features describes the selected events 

successfully. 

 

 



 
 

58 

CHAPTER 5 

5. CONCLUSION 

This chapter begins with a summary of the work presented in this thesis. The final section 

provides a discussion of possible improvements to the methods presented. 

5.1. Summary 

This thesis presents a method for detecting different audio events which are most frequently 

observed in audio broadcast. The method involves an audio segmentation stage which 

divides the audio data into small “homogeneous” segments and enables the detection of 

event boundaries. These segments are also classified as “Activity” and “Non-Activity” 

regions, in order to filter out the regions without any aural information. In the event 

detection stage, remaining segments are classified into several predefined classes by 

combining many different features and their statistical properties. Using feature selection 

and dimension reduction methods, this feature set is reduced to a suitable dimension for 

classifiers. Three different kinds of feature selection and dimension reduction algorithms 

are tested and compared; and the best results obtained for each audio class is presented. 

SVMs and GMMs, which are the two most common preferred classifiers in the literature, 

are used as classifiers in these tests. The proposed system achieved an average recall rate of 

88% for 17 different audio events. Compared with the results in the literature, the proposed 

method has a promising success.  

5.2. Future Work 

In this study, an “audio segmentation + detection” approach is followed. This idea seems 

advantageous compared with the methods which segment and classify audio at the same 

time, such as methods based on Hidden Markov Models, since the segment boundaries are 

predefined. However, no performance comparisons are given in this study. As a future 

work, the proposed method can be compared with HMM-based methods.  

In the proposed method, audio segments are presented with a single feature vector, which is 

computed using the statistics of a feature set which is computed over this segment. Another 
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future work is to use HMMs to classify the whole segment instead of feature statistics. The 

temporal behaviour of audio signal within a segment, if modelled successfully, can increase 

the obtained performance. 

Observing the given events and their distribution among the whole data, one can say that 

the existence of some events is correlated with each other. For example, it is much likely to 

find an explosion segment near a gun-shot segment, or music segments tend to appear 

consecutively, a single music segment among other kinds of events is rare. If exists and 

taken into account, these temporal distribution properties and correlation of events with 

each other can increase the detection performance.  

Finally in this study, events are aimed to be modelled using a positive training set 

consisting of samples belonging to that event and a negative training set consisting of 

samples which do not belong to that event. As a future work, negative set can be divided 

into sub-classes and classification can be done by using a combination of sub-classifiers, in 

order to describe the feature space better.  
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