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ABSTRACT 

DETECTING AND TRACKING MOVING OBJECTS 

WITH AN ACTIVE CAMERA IN REAL TIME 

 
KARAKAŞ, Samet 

 
M.Sc., Department of Electrical and Electronics Engineering  
              Supervisor: Asst. Prof. Dr. İlkay ULUSOY 

 
September 2011, 80 pages 

 

Moving object detection techniques can be divided into two categories based on the 

type of the camera which is either static or active. Methods of static cameras can 

detect moving objects according to the variable regions on the video frame. 

However, the same method is not suitable for active cameras. The task of moving 

object detection for active cameras generally needs more complex algorithms and 

unique solutions. The aim of this thesis work is real time detection and tracking of 

moving objects with an active camera. For this purpose, feature based algorithms 

are implemented due to the computational efficiency of these kinds of algorithms 

and SURF (Speeded Up Robust Features) is mainly used for these algorithms. An 

algorithm is developed in C++ environment and OpenCV library is frequently used. 

The developed algorithm is capable of detecting and tracking moving objects by 

using a PTZ (Pan-Tilt-Zoom) camera at a frame rate of approximately 5 fps and 

with a resolution of 640x480.  

Key Words: Visual Surveillance, Real Time, Active Camera, Moving Object 

Detection, Object Tracking  
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ÖZ 

HAREKETLİ KAMERA KULLANARAK GERÇEK 

ZAMANLI HAREKETLİ NESNE ALGILAMASI VE 

TAKİBİ 

 
KARAKAŞ, Samet 

 
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 
          Tez Yöneticisi: Yrd. Doç. Dr. İlkay ULUSOY 

 
Eylül 2011, 80 sayfa 

 

Hareketli nesne algılama yöntemleri kullanılan kameraya göre sabit ve hareketli 

olmak üzere iki grupta incelenebilir. Sabit kamera kullanan yöntemler, hareketli 

nesneleri görüntü üzerinde değişim gösteren bölgeleri inceleyerek 

anlayabilmektedirler. Ancak, kameranın hareketli olması durumunda bu inceleme 

yeterli olmamaktadır. Bu sebeple hareketli kamera ile nesne algılama yöntemleri 

genel olarak daha karmaşık algoritmalar ve özgün yaklaşımlar gerektirmektedir. Bu 

tez çalışmasında, hareketli kamera ile çekilen görüntüler üzerinden hareketli 

nesnelerin gerçek zamanlı olarak algılanması ve takibi amaçlanmıştır. Bu amaç 

doğrultusunda, gerçek zaman performansı daha iyi olan öznitelik tabanlı 

algoritmaların kullanılmasına karar verilmiş ve öznitelik olarak SURF (Speeded Up 

Robust Features) seçilmiştir. C++ ortamında OpenCV kütüphanesi kullanılarak 

geliştirilen algoritma; bir PTZ (Pan-Tilt-Zoom) kamera üzerinde gerçek zamanlı 

çalışarak, yaklaşık 5fps hızında ve 640x480 çözünürlükte hareketli nesne algılama 

ve takibi işlemlerini gerçekleştirebilmektedir.  

Anahtar Kelimeler: Görsel Gözetim, Gerçek Zamanlı, Hareketli Kamera, Hareketli 

Nesne Algılama, Nesne Takibi 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Motivation 

For a few decades, surveillance is a continuously growing application area due to 

the increasing needs of the society. Surveillance equipments are important tools for 

both military and civilian applications. Border security, target tracking, target 

detection, night vision applications are just a few examples on military area. 

Security cameras on crowded areas and traffic monitoring are examples for civilian 

applications of surveillance. Moreover, improvements in camera hardware and 

reductions in prices encourage the widespread usage of surveillance tools.  

A recent survey [1] reveals that according to some human rights groups, in 2005 

there were 4 million surveillance cameras in England. It is equivalent to 1 camera 

for every 17 people in the country. According to Dee and Velastin [1], only a tiny 

fraction of these videos are ever evaluated because most of these cameras are 

operated by humans. Beside, most of the surveillance videos are even not displayed 

in a screen and just recorded to watch afterwards in case of an emergency situation. 

Human operators, can not concentrate on the screen all the time and they suffer 

boredom thus it is very possible that a human operator might miss an important 

event on a real time video. These facts strengthen the importance of automated 

visual surveillance.  
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The main goal of automated visual surveillance is to extract specific and high level 

information from the input video frames without needing human operators [2]. 

Automated visual surveillance is a general name for a group of applications in 
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computer vision. Some examples of its subjects are object detection, object 

tracking, video stabilization and human action recognition. The number of examples 

can be increased in the areas of space, military, medical, and urban security 

applications. Automated visual surveillance algorithms possess some important 

advantages with respect to human operators. By using surveillance software, 

operating costs can be decreased drastically. A robust algorithm does not suffer any 

concentration loss or boredom and can be operational 24 hours a day.   

This thesis mainly concentrates on object detection and object tracking in active 

camera. Both subjects are very popular in computer vision community and there are 

a wide variety of papers published in the literature. Object detection and tracking in 

static cameras is an older subject and relatively more effort has been expanded. Due 

to the nature of static camera, video processing is easier. A stable background is 

useful for recognizing mobile targets. However, for active cameras, moving object 

detection task is not trivial. A stable background can not be obtained since line of 

sight of the camera is continuously changing. Thus algorithmic complexity 

increases for active camera surveillance applications. Yet active cameras have an 

important advantage to be preferred. To observe a wide area, one static camera is 

not sufficient. In most cases, a few static cameras should be assembled in different 

angles in order to view the subject area completely. However with only a single pan 

tilt zoom (PTZ) camera, a wide area can be observed. Beside, the camera can focus 

and zoom on a suspicious object and more detail can be gathered compared to a 

static camera.  

1.2 Scope of the Thesis 

In this thesis, it is aimed to develop a combined autonomous detector - tracker 

system for an active camera which is capable of panning, tilting and zooming. 

Proposed algorithm is able to work real time with a video resolution of 640x480. 

The resolution value is superior to most of the current studies in the literature [3]. 

Minimum 5 Hz computation frequency is aimed. Assuming that target objects are 



far from the camera and the speed of their reflection on the image plane is slow, this 

frequency is sufficient for this thesis work. The detector is capable of detecting 

moving objects while the camera is panning, tilting and zooming as well as it is 

stable. Detected objects can be tracked with a single object tracker. The proposed 

algorithm can be divided into three main parts which is demonstrated in Figure 1-1. 

 

 

Figure 1-1 General flow diagram for the proposed algorithms 

 

The detector determines the moving objects on the input image and locates them to 

user. User enables tracking and then the tracker aims to direct the camera to the 

target object as long as the object is in the line of sight of the PTZ camera. 

Moreover during tracking, tracker is expected to zoom on the target object up to a 

distance. The detector - tracker system is designed to be robust to typical challenges 

of a computer vision system as much as possible. 

In this thesis, a small video database which consists of videos taken from a PTZ 

camera is constructed. A camera egomotion estimation algorithm is implemented 

and the algorithm is experimented with the videos in the database. Then two kinds 

of detector algorithms are implemented and compared. Finally a simple tracker 

algorithm is added to the system in order to direct the camera to a specific target. 

Some experiments are taken with the final detector – tracker system.  

1.3 Outline of the Thesis 

This thesis work consists of five chapters. The first chapter introduces the subject to 

the reader and clarifies the main aim of the thesis. The second chapter is a short 
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summary of the literature for the subject of moving object detection and tracking. 

Existing solutions for the current problem are mentioned, weak and powerful 

properties of each method are explained. In the third chapter, the egomotion 

estimation algorithms, both of the two motion detection algorithms and the tracker 

algorithm are explained in detail. All the steps of the final tracking system are 

mentioned. In the fourth chapter, the test setup, hardware and software 

combinations are presented and the experiments carried out are explained. 

Moreover the two object detector algorithms are compared in this chapter. In the 

final chapter, the thesis work and the results are summarized and, future work of 

this thesis is explained. 
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CHAPTER 2  

 

MOTION DETECTION AND TRACKING FOR ACTIVE 

CAMERA 

Motion detection and tracking has been widely studied for many years since the 

subject is intensively used both in commercial and military electronics. Therefore, 

there are a wide variety of motion detection and tracking methods in the literature. 

Some of the algorithms are well developed and have a very satisfactory 

performance; nevertheless still there are some unsolved problems in the area.  

Noise in images is one of the problems for a typical tracking system. In real life 

scenarios, the input video may be noisy and a robust tracking system should be 

tolerant to noise up to some extend [4]. Blurring is also a potential problem. For 

instance, in a PTZ camera, if camera moves through pan or tilt direction excessively 

fast and if the shutter speed is relatively slow, blurring may occur. In such a case, 

algorithms which rely on features like blobs or corners may fail. Desired features on 

the image might be lost due to blurring. Changes in illumination are another 

challenging situation for surveillance applications [4]. Due to the angle of the light 

source and different type of whether conditions, pixels of the same scene may 

change dramatically. Thus a robust tracking system should withstand such kinds of 

variations. 

If a tracking system aims on specific objects like cars or pedestrians, it may take 

advantage of the initial knowledge about the shape of the target object [4]. However 

in some applications there may be no priori knowledge about the target object. In 

such cases a tracking system should work on targets with various shapes. Moreover 
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the target might be a non-rigid object such that the shape of the target can change 

while moving. For instance while a pedestrian is walking, the shape of the 

pedestrian continuously changes. Thus a direct implementation of cross correlation 

will probably fail for pedestrians [4]. Repetitive sequences on the background can 

also be a problem for surveillance applications. That is because background 

information is particularly important while finding the egomotion of the camera in 

an application on active cameras.  

It is very possible that an object of interest might appear behind an obstacle in a 

video sequence. This is called occlusion in the literature. An object of interest can 

be partially or fully occluded behind another object. Kalman filters or Particle filters 

can be employed in order to solve this problem [4]. Another approach to handle 

occlusion problem is using multiple cameras and relating same objects from 

different perspectives [4].  

2.1 Motion Detection 

Motion detection algorithms can be divided into some sub categories. In case of 

computational performance, motion detection algorithms can be divided into two 

categories which are online and offline. If real time performance is a necessity 

online algorithms should be employed. A smooth detection performance can be 

obtained with an algorithm which works faster than 25 Hz because this is the 

working frequency of an ordinary human eye. However, even with 5-6 Hz, a slowly 

moving object can be detected and tracked in real time [5]. Offline algorithms work 

more slowly. They are not suitable for real time applications nevertheless; in some 

applications they can be employed on formerly recorded videos.    

In case of camera type, motion detection algorithms divide into two categories; 

algorithms for stationary cameras and algorithms for active cameras such as PTZ 

cameras [4]. 
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2.1.1 Motion Detection on Stationary Cameras 

Motion detection on stationary cameras is an older subject. It has been widely 

studied for many years and lots of improvements have been taken on the subject. 

Existing methods can be divided into three categories which are Temporal 

Differencing, Background Subtraction and Optical Flow based detection [2]. 

2.1.1.1 Temporal Differencing 

Temporal differencing is one of the most primitive motion detection methods in 

image processing. Consecutive frames are directly subtracted from each other and 

resulting pixels above a threshold are considered to belong to a moving object [2]. 

The choice of the threshold value is critical in case of the performance of the 

algorithm. Also it is a known fact that this threshold value is application and 

background dependent. Temporal Differencing is superior to any other algorithms 

in case of computational performance. However, this algorithm is vulnerable to 

illumination and angle of light changes. Moreover it cannot be applied to active 

cameras unless there is a camera motion compensation algorithm [2].  

2.1.1.2 Background Subtraction 

Background subtraction is a well known common technique for motion detection 

[2]. The scene is examined for a few frames and statistical variations are calculated 

for each pixel. Then a reference image is constructed. In the reference image, there 

exists only the stable objects of the scene and dynamic objects are eliminated [4]. 

After constructing the background, frame differencing is applied between the 

current frame and the background image in order to spot moving objects on the 

scene [2]. In Figure 2-1 [4], an implementation of background image construction 

and frame differencing is demonstrated. Frame (a) is the current frame and frame 

(b) is the calculated background image. Note that the walking man does not appear 



on the background image. Finally in frame (d) the moving object is detected and 

other parts of the scene is deleted.  

 

Figure 2-1 Background construction and foreground extraction example [4] 

 

2.1.1.3 Optical Flow Based Methods 

Optical flow based methods are an alternative solution of motion detection for both 

static and active cameras [2]. Motion vectors of the current frame are extracted. 

These motion vectors are clustered in case of their direction as well as their position 

on the image. Then moving objects are estimated based on the clustered group of 

motion vectors. 

Figure 2-2 [5] is an example implementation of optical flow. In frame (a) motion 

vectors found by Lucas Kanade algorithm [6] are demonstrated and in frame (b) the 

motion vectors are clustered into two categories. Optical Flow will be further 

mentioned in part 2.1.2.2. 
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          (a)                   (b) 

Figure 2-2 Optical flow based object detection [5] 

 

2.1.2 Motion Detection on Active Cameras 

Since PTZ (Pan Tilt Zoom) cameras became widespread in the market, the 

importance of motion detection on active cameras increased considerably. Although 

they are not as common as static camera algorithms, there are a wide variety of 

motion detection algorithms for active cameras in the literature.  

In an active camera, background subtraction can not be directly used as it is applied 

in static camera videos. For any movement of the camera, the background 

information totally changes and any frame differencing technique can not be 

employed directly [2]. In order to apply frame differencing, firstly the self 

movement of the camera should be figured out. In the literature, “Egomotion“ is 

used as another name for the self movement of the camera [5]. Egomotion 

information is used to reverse the movement of the next frame with respect to the 

previous frame. Then classical frame differencing algorithms can be employed on 

these two frames. Finally the resulting image is properly thresholded, filtered and 

also some morphological operations might be applied on the difference image to 

define the moving objects between these two frames. In Figure 2-3 an example 

procedure is given. 
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Figure 2-3 An example procedure for active camera motion detection  

 

Figure 2-4 is an example MATLAB implementation of motion detection with an 

active camera. Frame (a) is the previous frame and frame (b) is the next frame. Only 

translational movement is expected and egomotion is calculated accordingly. It is 

given that the next frame is shifted to the left by 15 pixels thus inverse shift 

operation is applied to that image. Frame (c) is the inversely mapped next frame. 

Frame differencing is applied and the resulting image in frame (d) is found. Then a 

threshold is applied to the difference image such that pixels lower than the 

threshold, are discarded and pixels higher than the threshold are kept and assigned 

to a high value.  In order to get rid of small point wise noise, median filter is 

employed in frame (e). Finally morphological opening operation is applied and 

frame (f) is obtained. 
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        (a)                                  (b) 

 

        (c)                                  (d) 

 

        (e)                                  (f) 

Figure 2-4 Matlab implementation of the example motion detection procedure 
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According to Kim [2], active camera motion detection algorithms can be divided 

into four categories in case of working mechanisms which are detection by camera 

geometrical properties, detection by optical flow, detection by background mosaic 

and detection by feature matching.  

2.1.2.1 Motion Detection by Camera Geometrical Properties 

In [7] and [8], camera geometrical parameters are employed to construct a stable 

background on PTZ camera videos. An algorithm that uses focal length data was 

proposed by Murray and Basu [7]. Together with the focal length data, Kang [8] 

uses an additional intrinsic parameter which is the size of the CCD sensor. Both 

algorithms also use pan and tilt data coming from the camera. Only translational 

movement is assumed and a background image is constructed with the help of the 

camera parameters. The reference image is subtracted from the background image 

in order to detect motion.  

Usage of camera parameters for active camera motion detection is a promising 

concept however, it has a significant disadvantage. These types of algorithms need 

very accurate measurements of camera parameters such as focal length and pan/tilt 

angle variations [2]. However, sufficient accuracy cannot be obtained from standard 

commercial cameras of today and the errors in the measurements of camera 

parameters may cause the algorithm to fail. Only pan/tilt information of the camera 

is not sufficient to estimate translational shift of the image pixels. Exact focal length 

of the camera is also obligatory [8]. Exact measurement of this parameter needs 

complex hardware solutions yet lens distortions have a negative effect on the 

measurement. Moreover any solution of this kind will be hardware dependent and 

an algorithm for a camera should be recalibrated for another camera.  

2.1.2.2 Motion Detection by Optical Flow 

Optical flow is a promising candidate as a solution for motion detection on active 

camera. Sugaya and Kanatani [9] assume pure translational movement between 
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different frames of a PTZ camera and make use of Lukas Kanade Tracker [6] in 

order to find egomotion of the camera. They [9] use not only former two frames but 

“m” recent frames and try to improve the performance of the algorithm. Then the 

reference frame is inversely mapped and background subtraction is applied. Sugaya 

and Kanatani [9] obtain some good results on movement detection however the 

algorithm is off line due to algorithmic complexity.  

Cucchiara [5] suggests a pyramidal implementation of KLT algorithm in order to 

improve performance in case of computational time. Pure translational movement is 

assumed and two direction histograms for pan and tilt angles of a PTZ camera are 

constructed. Then a Gaussian filter is applied on the histograms and only the 

dominant angles of the histograms remain. These angles indicate the egomotion of 

the camera. Similar to other algorithms, reference image is inversely mapped with 

the egomotion and background subtraction is applied. It is stated that [5] frame 

differencing is not adequate to obtain a resulting image of pure motion without 

noise. Morphological operations are necessary to eliminate noise and some 

connected component labeling operations are applied to obtain the complete 

silhouette of the moving object. Cucchiara [5] claims that his algorithm can work 

real time such that average 5 or 6 frames per second can be processed.  

2.1.2.3 Motion Detection by Mosaic Imaging 

Bevilacqua and Azzari [3] define that “A mosaic is a compound image built through 

properly composing (aligning) a high number of frames and warping them into a 

common reference coordinate system, both spatial and tonal.” In order to apply the 

classical background subtraction method, [3] and [10] construct mosaic image of 

the scene. Bevilacqua and Azzari [3] extract corner points on successive frames and 

match them. They try to eliminate inconsistent matches. Enough number of matches 

are evaluated and a model for camera egomotion is constructed. The model contains 

scaling, rotation, translation and perspective changes so as to construct a better 

model for camera egomotion. Finally successive frames are aligned with respect to 



the camera egomotion and the mosaic image of the scene is obtained. Motion 

detection is performed by applying frame differencing between the related part of 

the mosaic image and the reference image. Figure 2-5 [3], is an example of mosaic 

image which is constructed by combining a number of consecutive frames.   

 

 

Figure 2-5 An example mosaic image [3] 

 

2.1.2.4 Motion Detection by Feature Matching 

Feature based algorithms are one of the most promising type of solutions to active 

camera motion detection problem. Matching operation is carried out only on limited 

number of feature points. Thus these kinds of algorithms are generally superior to 

optical flow based algorithms in case of computational performance. However the 

choice of feature type is critical. The selected feature type should have a good 

performance in case of repeatability, robustness and computational efficiency. Also 

rotation, scale and affine invariant features probably achieve a better performance. 
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Harris and Hessian based detectors are former examples of feature detectors and 

they achieve lower performance with respect to the criterions which is mentioned 

above.  SIFT [11], SUSAN [12] and SURF [13] are more recent algorithms and 

these algorithms generally achieve better performance. Tuytelaars and Mikolajczyk 

[14] compare algorithms for some performance criterions and create Table 2-1. 

They [14] claim that SURF is one of the best candidate feature trackers for real time 

applications. Juan and Gwun [15] also compare three feature trackers and claim that 

SURF is a good feature type in robustness and it is one of the best in the literature in 

case of computational performance. 

Table 2-1 Performance comparison of features [14] 

 

 

Foresti and Micheloni [16] select features based on the eigenvalues of a 2 by 2 

matrix which consists of partial derivatives on a window W on the image. The 

features on successive frames are matched and inconsistent matches are eliminated. 

Consistent matches are examined and translational camera egomotion is estimated. 

Reference frame is inversely mapped and frame differencing is applied. As an 

innovation, Shi and Tomasi [17] employ dissimilarity to eliminate wrongly matched 

features. The cross correlation in pixel intensities is calculated and dissimilar pairs 

are eliminated.  

Zhou [18] employs SIFT features for object detection. The suitable matches 

between consecutive frames are determined and a validation process based on 

RANSAC [19] is applied on these matches in order to eliminate inconvenient pairs. 

15 

 



Suitable matches are evaluated with Affine Transformation Model. This model is 

able to identify background motions including scaling, rotation and translation. 

Affine Transformation model is formulated in (2-1) by [20]. 
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xd  and  represent the translational movement in the corresponding direction. yd θ  

represents rotation and S  represents scaling on the image. Having the egomotion, 

Zhou [18] inverts the movement of the camera on the current frame and applies 

classical frame differencing. Finally some morphological operations are carried out 

so as to filter out the remaining noise and locate moving objects on the image. 

2.2 Tracking 

Tracking is one of the most popular subjects on image processing. Due to 

widespread usage on commercial and military applications, there are a wide variety 

of solutions for this task in the literature. On the other hand, for this thesis, a simple 

implementation of tracking will be sufficient because most of the challenges of this 

thesis are on the motion detection part. Thus the subject of tracking will not be 

explained deep in detail instead a brief summary of the subject will be mentioned.  

Kim [2] defines the purpose of tracking as “The goal of object tracking is to find a 

moving object detected in motion detection stage from one frame to another in an 

image sequence” According to object representation method, Kim [2] classifies 

tracking into three categories which are point tracking, kernel tracking, and contour 

tracking. In Figure 2-6, taken from Yılmaz [4], some examples of object 

representations are demonstrated.  
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Figure 2-6 Different target object representations [4] 

 

2.2.1 Point Tracking 

In point tracking, target is represented by a point or a set of points detected on the 

image. A few examples are given on Figure 2-6 (a) and (b) [4]. Points on the target 

can be determined by one of the point detectors formerly mentioned in this thesis. 

Moreover the success of the tracker is mainly based on the chosen point detector 

and the detectors robustness performance on possible variations in an image [14].  

2.2.2 Kernel Tracking 

In kernel tracking, target is represented by a primitive geometrical shape like 

rectangular or ellipse such as given in Figure 2-6 (c) and (d) [4]. The motion of 

kernel which represents the target is generally modeled by translational or affine 

and route of the target can be calculated by this model. Kim [2] asserts that kernel 

based tracking is one of the most widely used method due to its performance and 

robustness. 

2.2.3 Contour Tracking  

In Contour Tracking, target is represented by an outline contour. Figure 2-6 (e) [4] 

is an example for Contour tracking. An initial contour is constructed from the first 
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image, and this initial contour is evolved between consecutive frames. Contour 

Tracking generally outperforms other methods for targets with complex shape 

changes. However, the success of the tracker is very bounded to the initial contour. 

Moreover according to [2], contour based trackers may fail on noisy, blurred and 

low contrast images.  
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CHAPTER 3  

 

IMPLEMENTATION OF REAL TIME OBJECT 

DETECTION AND TRACKING ON ACTIVE CAMERA  

As mentioned in chapter 2, there are four different kinds of motion detection 

algorithms for active cameras. Methods by camera geometrical properties are not 

chosen in order to avoid a hardware dependent solution. In this thesis it was aimed 

to use only image data to perform motion detection and tracking. Thus the proposed 

algorithm will be easily adaptable to all kinds of PTZ cameras. Optical flow based 

methods are not also implemented because real time performance is desired. 

Generally, Optical flow based methods are computationally more loaded thus they 

are unsuitable for real time applications.  

In this thesis, two variants of feature based detection algorithms are implemented. 

The first variant can be defined as “Feature based egomotion estimation and frame 

differencing”. The second variant is a quite different approach to the current 

problem. On egomotion estimation step, a common approach is such that the outlier 

features are eliminated and motion is estimated from the remaining (inlier) features. 

Afterwards outlier features are not evaluated and simply disregarded [18], [16] and 

[17]. Contrarily, as well as inlier features, outlier features might contain valuable 

information. Thus the second algorithm tries to detect moving objects based on the 

outlier features on the image. Outlier based object detection is a known technique 

and has some examples like [21]. Pejcic [21] uses outlier blocks on the stable video 

to detect motion. The second variant algorithm can be defined as “Motion detection 



and tracking based on outlier features”. In this thesis, these two algorithms will be 

compared in case of detection and tracking performance.  

Egomotion estimation step is identical for both variations of algorithms. In order to 

clarify the egomotion estimation step, the feature selection criteria and the selected 

feature SURF should be explained further.   

3.1 Feature Type Selection 

Feature type selection is one of the most important decisions for a feature based 

image processing algorithm. Surveys from Juan and Gwun [15] and Tuytelaars and 

Mikolajczyk [14] were examined for that purpose. Both surveys agree that SURF 

[13] is one of the most efficient and yet robust feature detectors in the literature. 

According to [15], SURF outperforms another well-known feature detector SIFT up 

to 1000 times with respect to computational time. Yet this is enough to choose 

SURF for a real time implementation. SURF features are scale and rotation 

invariant.  Moreover they have a remarkable performance in case of repeatability 

and robustness. SURF is a relatively new method since it was proposed in 2006 yet 

SURF detectors were employed in lots of papers in the literature like [22], [23] and 

[24]. 

3.2 SURF: Speeded Up Robust Features 

Speeded up robust features (SURF) is proposed by Bay [13] in 2006. SURF detects 

blob like structures and SURF features are translation, scale and rotation invariant. 

Fundamentally it relies on determinant of the Hessian Matrix.  SURF feature 

detector is specially designed for computational performance. Thus some 

approximations and shortcuts are employed.  

SURF interest points are found by calculating an interest point criteria ( )yxR ,  

which is the blobness value of a pixel on the image.  is the blobness function f
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which takes intensity value of image pixels as input parameter. R can be formulated 

as follows  

       ( ) ( )( )yxIfyxR ,, =                                              (3.1) 

For the sake of robustness to scale changes, any input image is considered as an 

image stack which is a collection of the input image in different scales. According 

to that approach,  becomes a 3D data which is ( yxI , ) ( )σ,, yxI , which can be 

referred to as “image pyramid” in some cases. σ  refers to scale parameter. Thus 

interest point criteria  becomes R

    ( ) ( )( )σσ ,,,, yxIfyxR =                                   (3.2) 

As mentioned earlier, interest point criteria  of SURF features are the determinant 

of the Hessian Matrix. Given image

R

I , Hessian Matrix is defined as equation (3.3).  
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Here ( σ,, yxLxx  refers to the convolution of second order derivative Gaussian 

( )σ
ϑ
ϑ g
x2

2

  with the image I  in point ( )yx, . ( )σ,, yxLyy  and ( )σ,, yxLxy  have 

similar meanings such that only the direction of the second order derivation differs.  

Interest point criteria  finally becomes as follows R

        ( ) ( )( )σσ ,,det,, yxHyxR =                                 (3.4) 

Calculating second order derivatives for all pixels on an image is a time consuming 

process. Thus Bay [13] suggests an approximation for the second order Gaussian 

derivative kernels. Instead of a discretised Gaussian kernel, Bay [13] suggests 

proper box filter kernels. It is claimed that such an approximation for the kernels 

does not dramatically affect the performance of the algorithm but results a boost in 

the speed of the algorithm together with the implementation of integral image which 

is explained in the further chapters. Discretised Gaussian Kernels and related box 
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filters are given in Figure 3-1 [13]. On the left are the Gaussian kernels and on the 

right are the corresponding box filter kernels. 

 

 
Figure 3-1 Exact and approximated Gaussian kernels [13] 

 
In order to clarify the advantage of box filters more clearly, the subject of integral 

image should be explained further. 

3.2.1 Integral Image Concept 

Integral image  of an image ( yxI ,Σ ) ( )yxI ,   is defined as follows [13]: 

                                      (3.5) 
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=
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In other words, the intensity value at any location ( )yx,  in the integral image 

, is the sum of all intensity values of all pixels inside the rectangular region 

with the top left corner (  and bottom right corner 

( yxI ,Σ )
)0,0 ( )yx,  on the original image 

I . Integral image (on the left) of the famous Lena image (on the right) is given in 

Figure 3-2. 
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Figure 3-2 Lena image and the corresponding (normalized) integral image  

 

The most important property of integral image concept is the easiness of calculating 

the summation of the pixel intensities in a rectangular area on the image. Figure 3-3 

is an example. Consider image ( )yxI ,  in the Figure. For normal operation, we 

should make ( )  number of summations in order to calculate the 

summation of the pixels in the region

( BAxDB −− )
Σ . Assume the integral image ( )yxI ,Σ  

corresponding to the image ( )yxI , ;  

    ( ) Σ+++=Σ 321 AAAAI                                         (3.6) 

           ( ) 21 AABI +=Σ                                                (3.7) 

           ( ) 31 AACI +=Σ                                                (3.8) 

     ( ) 1ADI =Σ                                                  (3.9) 

(Desired formula)             ( ) ( ) ( ) ( )CIBIDIAI ΣΣΣΣ −−+=Σ                             (3.10) 

(Validation)  ( ) ( ) ( )31211321 AAAAAAAA +−+−+Σ+++=Σ          (3.11) 

       Σ=Σ                                                       (3.12) 

Note that Σ can be calculated with only 3 summations (or subtractions) for integral 

image case by using the equation (3.10).  
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Figure 3-3 Box filtering example 

 

3.2.2 Approximated Hessian Matrix Determinant Calculation 

Let’s reconsider to the smallest kernel (9x9) of box filter in Figure 3-4. For normal 

convolution operation, 81 multiplication and 80 addition operations are needed. For 

convolution operation with integral image concept, just 9 addition operations are 

enough. 
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Figure 3-4 Smallest kernel for box filtering 

 

The determinant of the approximated Hessian matrix is defined in (3.13). Note the 

constant multiplier 0.9. It is necessary to normalize the error caused by the 

approximation. ,  and  are the approximations on the related direction. xxL yyL xyL

    ( )29.0)det( xyyyxxapprox LLLH −=                            (3.13) 

Another advantage of box filtering is the fact that computation time is identical for 

all kernel sizes. On the other hand, for normal convolution, computation time 

increases proportional to the square of the filter dimension. Thus, any kernel size 

filters can easily be applied on Integral images. While calculating SURF features, 

Hessian determinant is applied with different size kernels (9x9, 15x15, 21x21, 

27x27). Each kernel size represents a layer or a scale on the image pyramid.  

3.2.3 Non-maxima Suppression and Interpolation 

Approximated hessian determinant values are thresholded through the image in all 

scales and candidate interest features are found. Final step to obtain SURF features 

is “Non-maxima Suppression”. A blob on image may give blobness response on 

more than one scale or more than one point on the coordinate plane. It is obvious 

that an elimination step is necessary. A candidate point is chosen as SURF feature if 
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its blobness response is greater than its entire 3x3x3 neighborhood in x, y, σ 

dimensions. Figure 3-5 [11] consists the visualization of this phenomenon.     

SURF features can be localized in sub pixel resolutions in x, y and σ domain. By 

interpolating neighboring points of a feature, a continuous interest point criteria 

plane is constructed. Local maxima on these plane corresponds to exact sub pixel 

resolution coordinates of selected SURF feature.  

 

Figure 3-5 Non-maxima suppression for candidate SURF features [11] 

 

3.2.4 SURF Descriptors 

So far, SURF interest points on an image are founded. A descriptor calculation step 

for each features are necessary. Descriptors are used for the inter frame feature 

matching step. They are like IDs for SURF features and any two SURF features can 

be matched if their descriptors are similar in case of some measuring criterion. Haar 

wavelets are employed during descriptor calculation step. Haar wavelets in Figure 

3-6 [13] are simple filters for gradient calculations but they are computationally 

very efficient due to the integral image concept. SURF descriptor calculation 

consists of two steps which are orientation assignment and calculation of descriptor 

components.  
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Figure 3-6 Haar Wavelets [13] 

 
In the first part a repeatable and robust orientation is assigned for each SURF 

feature. This concept also ensures the rotational invariance of SURF features. The 

descriptors are calculated based on this orientation. In an area of radius 6σ, Haar 

wavelets of size 4σ are calculated. Here σ refers to the scale at which the current 

interest point was detected. Since the SURF features can be extracted in any 

allowed size, the descriptors should also be calculated in that specific size. Then, 

the calculated wavelet responses are weighted with a Gaussian which is centered at 

the location of interest point and of size 2σ. The Haar Wavelet responses are 

positioned in the X-Y plane and a dominant direction is chosen on the plane. The 

dominant direction forms the orientation of the related feature. Figure 3-7 which is 

taken from the original SURF [13] paper, demonstrates the orientation assignment 

step.  

27 

 



 

Figure 3-7 Orientation assignment for SURF features [13] 

 
The second step consists of the calculation of the descriptor components. Based on 

the orientation which is calculated before, a square region of size 20σ is allocated. 

The square area is divided into equal sized 16 sub regions. Then these sub regions 

are also divided into 5x5 sub regions and Haar wavelet responses are calculated. For 

each 16 sub regions, 4 descriptor values are calculated. Two of the descriptor values 

are the summation of Haar wavelet responses in the direction of x and y, and the 

remaining two descriptors are the summation of the absolute value of Haar wavelet 

responses in the direction of x and y. 

Finally by applying the above procedure, for each SURF feature, a descriptor array 

of size 64 (16 x 4) is constructed. Similarity of any two features can be determined 

by calculating the Euclidean distance between their descriptors. Figure 3-8 [25] 

visualizes the descriptor concept as well as the descriptor formulation. 
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Figure 3-8 SURF descriptor calculation [25] 

 

3.3 Egomotion Estimation 

Egomotion estimation is a common step for most of the active camera motion 

detection algorithms. [3], [10], [5], [16], [7], [8], [9] and [18], all initially estimates 

the camera egomotion before attempting to object detection.  Background is not 

stable though moving objects cannot be recognized by simple methods like frame 

differencing. Objects can be recognized by moving pixels whose direction is 

distinct from the remaining portions of the video frame. That is the main reason 

why egomotion estimation step is necessary.  

One basic assumption should be taken such that the moving object consists only a 

small portion of the video and the background covers most of the portions of the 

video frame. This assumption is essential if there is not any priory information 

about the existence and the position of the objects. In case of feature based 

29 

 



30 

 

algorithms, this assumption evolves such that most of the features are on the 

background and only a small portion of the features are on moving objects.  

In this thesis, egomotion is found by using only the input video frames and using 

internal camera parameters like pan and tilt information is avoided. SURF features 

are employed in order to estimate the camera motion. In most cases feature based 

egomotion estimation is computationally more efficient compared to Optical flow 

based methods. The main reason is Optical flow based methods works on pixel 

domain and some loaded calculations are applied to all pixels on the image. On the 

other hand, egomotion can be calculated by examining a few hundred features. In 

the proposed algorithm 100 SURF features are usually enough to estimate the 

egomotion. The critical point here is that the feature extraction step itself should not 

consume too much processing time. That is the main reason why SURF features are 

chosen.  

In this thesis egomotion is modeled with three different ways which are 

translational RANSAC, translational K-MEANS and linear RANSAC. Affine 

transformations are able to handle translation, rotation and zooming actions of the 

image however due to the hardware used in this thesis rotation movement is not 

expected so affine model is not chosen. Thus only translational and linear models 

are employed in this thesis. Estimated egomotion is accepted only if more than 30 

percent of the features strictly agree on the same motion model. Based on taken 

experiments, this ratio is often sufficient for robust motion estimation. Flow 

diagram of the motion estimation algorithm is given in Figure 3-9. 

 



 

Figure 3-9 Flow diagram of motion estimation  

 

3.3.1 Feature Extraction and Initial Feature Matching 

Initially, input images should be deinterlaced. The camera used in this thesis 

produces PAL video. Videos in PAL standard are interlaced such that sequentially 

at each frame, only the odd lines or even lines are sent to the receiver. Human eye 

usually cannot catch that event and interlacing effect is sensed as doubling the 

frame rate. However interlacing has an unwanted effect for active cameras. When 

the camera is moving, odd and even fields of a frame are snapped at different time 

instants. Especially at lower frame rates like 5 FPS, this causes deviation and 

blurring on the image. The simplest solution for this problem is deleting the even 

lines and copying the odd lines on to the even lines. Although resolution of the 

image is reduced, this does not have an important effect on the SURF feature 

extractor. Additionally this solution is computationally efficient. Figure 3-10 

demonstrates the effect of the deinterlacer algorithm. Frame (a) is taken from 

interlaced video while the camera is moving and Frame (b) is the corresponding 

deinterlaced video part. Note the general blurring on the left image. The effect of  

interlacing is obvious by observing the pole on the left. 
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  (a)       (b) 

Figure 3-10 The effect of deinterlacing  

 

SURF features of frame n and frame n+1 are found as shown in  

Figure 3-9. In order to gain processing time, SURF descriptors may not be 

calculated as applied by Nguyen [22]. Only the feature orientations are calculated in 

the proposed algorithm. Then between frame n and frame n+1 feature matching is 

performed for the first time. It is trivial to assume that blob type (white or black 

blob) cannot be changed between consecutive video frames. Moreover, by the 

fundamental assumption of tracking, features can only make small motions between 

successive frames. Thus a pair of SURF features is matched only if their type, size, 

location and orientation values are close to each other up to some predefined 

thresholds. Pseudo code for feature matching is given in Figure 3-11. The order of 

condition checks are specially designed such that computationally more loaded 

checks, location and orientation are handled at the end of the nested conditions 

block. 
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Figure 3-11 Pseudo code for feature matching procedure 

 

3.3.2 Egomotion Pre-estimation 

After the matching step, an array of motion vectors is obtained. It is assumed that 

most of these motion vectors belong to the background so they each contain the 

egomotion information. However there are some outlier features inside the motion 

vector array. Outlier features can be on a moving object or they might be 

erroneously matched pairs. A process is necessary to filter out these outlier features 
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and to estimate the global motion of the camera. Egomotion estimation is 

implemented with three different ways in this thesis work.  

3.3.2.1 Translational RANSAC Based Modeling 

Ransac [19] is the abbreviation of “Random Sample Concencus”. It is a 

probabilistic and iterative method to estimate parameters of a mathematical model 

from a set of observed data which contains some misleading and erroneous data 

samples. It is widely used in computer vision for motion estimation applications 

[22], [23], [18]. Assuming that inliers in the data set are larger in number, RANSAC 

chooses a small number of samples randomly and assume that they are inliers 

(correct). Then a model is constructed with these samples. Constructed model is 

simply the average vector of the chosen inlier features. The whole set is reexamined 

with this model and inlier set is updated. Then estimated model is recalculated with 

the updated inlier set. The algorithm iteratively continues until a large number of 

samples fit to the constructed model. Otherwise if sufficient number of inliers 

cannot be obtained, the whole process is repeated until a valid model is found or an 

iteration limit is reached. 

In the developed algorithm, initially 5 features are selected as inliers and an average 

translational movement is calculated based on the selected inlier set. Then the 

algorithm is iterated to enlarge the inlier set as described before. A model is 

accepted whenever 30 percent of the features fit to the estimated model. The same 

method is repeatedly performed until a model is obtained or the iteration count 

reaches to 20. 

3.3.2.2 Translational K-means Based Modeling 

K-means is an iterative clustering method frequently used in computer vision for 

segmentation purposes. The algorithm aims to divide the input data set to K distinct 

clusters [26]. For egomotion estimation, a single, intense cluster consists of at least 

a predefined number of samples are searched. After matching step, each motion 



vectors of the matched features are located in the X-Y plane. Initial guess “P” is the 

average of the motion vectors. Motion vectors inside a circle of radius R and center 

P are selected as potentially inlier features and a new average is calculated with 

these features. The algorithm iteratively continues until convergence. R value is 

decreased in each iteration thus at the end of the iterations, an intense point in the 

vector plane might be reached. 

 Figure 3-12 demonstrates the procedure. Red dots are the input samples. Blue dot 1 

is the initial center of mass (average) of the samples. A circle or radius R is 

positioned and a new center is obtained by using the points inside the initial circle. 

The algorithm iteratively runs and finally it converges at point 5.  

 

 

Figure 3-12 K-means based egomotion estimation 

 

K-means based egomotion estimation has a considerable advantage such that it is 

not probabilistic. Ransac relies on an initial subset which is assumed as inlier. If 
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initial set contains corrupted samples then Ransac fails. However K-means based 

egomotion estimation does not need an initial randomly chosen subset instead it 

needs an initial starting point for search. This initial starting point is given as the 

average value of all the sample vectors which is also a deterministic value. Thus the 

algorithm may fail only if the ratio of outlier features rises to a very high level in 

which Ransac has already failed. Such high outlier ratios are not frequently 

encountered if the initial assumption is valid. High ratios might be encountered only 

if a moving object of very large size appears on the screen. However this is a 

contradiction to the main egomotion assumption. Nevertheless, a precaution is taken 

for that kind of situations in the proposed algorithm. While calculating egomotion 

on frame n+1, the features on an area which belongs to a formerly detected object, 

is not counted thus some of known outlier features are eliminated before the 

egomotion modeling algorithm. It is observed that this precaution causes a 

distinctive improvement on the robustness of egomotion estimation algorithms.  

3.3.2.3 Linear RANSAC Based Modeling 

Former two models assume only translational movement. However, the camera 

used in this thesis has zoom capability and this function can be beneficial when the 

target object is too far or too close. A linear transformation model is implemented 

thus the egomotion of the camera can be modeled when the camera is zooming as 

well as translating. Deterministic K-means based modeling can not be used with 

linear model because movement vectors cannot be located on a 2D plane when 

scale changes are also possible. Thus only RANSAC is used for this case. 

Assume x and y are the initial coordinates and x’ and y’ are the corresponding 

points after the transformation. dx and dy are the translation and S is the scale 

parameters of the linear mapping. Transformation formula is given in (3.14); 
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Note that there are three unknowns and so two points (thus four equations) are 

enough to model the egomotion. Initially two matched points are chosen as inliers 

and four equations are obtained. Three of the equations are used to calculate the 

model and the fourth equation is used to verify the estimated model. Then the 

initially verified model is applied to all the features. The model is accepted if 30 

percent of all the features obey the model. The whole process is repeated if the 

model is not verified or an iteration limit is reached. Figure 3-13 demonstrates an 

example instant, where egomotion is estimated based on the linear model. The 

camera is translating left down and zooming out at that instant. 

 

 

Figure 3-13 Linear RANSAC based egomotion estimation.  
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3.3.3 Feature Matching Correction and Final Motion Estimation 

In order to improve the performance of the egomotion estimation step, feature 

matching and motion estimation parts are repeated once more but with some slight 

changes. In the first matching step, candidate features are searched inside a larger 

circular area without any priory knowledge about the motion of the entire video. 

However after the initial motion estimation step, an initial guess for camera 

egomotion is obtained. Thus in the matching correction step, candidate feature 

search process is repeated such that, new candidates are searched inside a smaller 

area based on the estimated motion of the camera. Formerly matched pairs are not 

updated unless a new match is found inside the new smaller area. This algorithm is 

demonstrated in Figure 3-14.  

 

Figure 3-14 Feature matching correction 
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For feature F, a candidate SURF feature is searched through a circular area of radius 

R in the first matching step. Assumed that egomotion is estimated as vector V in the 

first motion estimation step. Thus a better candidate is searched through the smaller 

circular area of radius r in the match correction step. If a candidate is found, the 

match for feature F is updated and F becomes an inlier.  

Feature matching correction step, eliminates some of the wrongly matched pairs. 

Thus egomotion estimation algorithm is repeated and the final egomotion is 

calculated. Repetition of the algorithm is useful in cases where the initial estimation 

algorithm fails to converge due to high ratio of wrong matches. 

3.4 Moving Object Detection 

Moving object detection is the next step of the main algorithm. As mentioned 

earlier, two variants of object detection algorithm are implemented and compared in 

this thesis. 

3.4.1 Feature Based Egomotion Estimation and Frame Differencing 

This algorithm mainly inspires from the classical detection approach used with 

static cameras. Background modeling and frame differencing is a promising way for 

static camera case. Similarly the same method is applied with active cameras 

however with an important modification. Camera motion is calculated first and the 

current frame is inversely shifted. Then background subtraction is applied. 

Reference papers [3], [10], [5], [16], [7], [8], [9] all rely on the same principle with 

some variations on other parts of the algorithms. The same idea is implemented in 

this thesis. The flow diagram of the algorithm is given in Figure 3-15.  



 

Figure 3-15 Flow diagram for moving object detection by frame differencing 

 

3.4.1.1 Frame Aligning and Frame Differencing 

Relative shift due to the camera motion is known thus the current frame n+1 is 

inversely shifted according to the estimated egomotion. Consecutive frames are 

aligned now and frame differencing can be applied. Indeed an exact image shifting 

operation is not implemented. Instead a function called “subtractImage” is designed 

such that it takes egomotion as one of its inputs and applies pixel by pixel alignment 

and subtraction. After subtraction, pixels lower then a threshold are discarded and 

other nonzero pixels are kept thus a binary difference image is obtained. 

3.4.1.2 Morphological Opening 

Even with a perfect egomotion model, frame differencing may result some 

corruptions on the difference image. Especially on the edges, thin lines may occur 

as seen in Figure 3-17 (d). Morphological operations are well suited in order to 

overcome such kind of malfunctions. A square kernel of size 2 is used and 

morphological opening operation is applied in the developed algorithm. 
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3.4.1.3 Connected Component Search 

Assuming that the binary difference image consists only the moving objects, a 

group of nonzero pixels should correspond to a moving object. Figure 3-17 (e) is a 

good example. A connected component labeling operation is necessary to separate 

and label the location which consists of nonzero pixels. In order to determine the 

location, a segmentation algorithm called Camshift [27] "Continuously Adaptive 

Mean Shift" is used. Camshift algorithm can locate the nonzero pixels and 

determine the size of the segment. However the algorithm needs an initial search 

location. Connected Component Search procedure is necessary to find this initial 

search location which is necessary for Camshift.  

Connected Component Search procedure is demonstrated in Figure 3-16. The image 

is divided into squares of size 80x80 pixels. The segments on the edges which are 

shown with gray on Figure 3-15 are omitted. Four lines and totally 24 segments are 

obtained inside the image. By considering real time working requirement, at each 

frame only one line which consists of six segments are analyzed. Nonzero pixels on 

each segment are counted and if there are more than a defined threshold, then a 

moving object is assumed at that location. The segment area is used as the initial 

search location for Camshift tracker. Note that this process is necessary only at first 

detection of the object. After the first detection, search location can be obtained 

from the track result of Camshift and the preceding speed of the object.   



 

Figure 3-16 Subdivisions of the screen during moving object detection. 

 

3.4.1.4 Camshift Tracker 

Camshift [27] algorithm is based on Meanshift [28] algorithm followed by target 

size and orientation estimation. Meanshift algorithm is mainly used for 

segmentation purposes. It is an iterative color based procedure aims to locate the 

maxima of a density function by using the discrete data sampled from that function 

[29]. Camshift is a well known algorithm which is used for tracking purposes as 

well as image segmentation. In the literature there are a lot of successful examples 

in which Camshift is used for object tracking [30], [31] and [32]. Moreover a proper 

implementation of the algorithm is available in OpenCV library. 

In the developed algorithm, Camshift works on binary image. As demonstrated in 

Figure 3-17 (e), the moving object forms a white segment surrounded by black 

pixels. In such a frame, Camshift successfully estimates the location and size of the 

object as seen on Figure 3-17 (f). At each frame, the object location, size and speed 

is updated and the initial search location for the next frame is estimated.   
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           (a)          (b) 

 

           (c)          (d) 

 

           (e)          (f) 

Figure 3-17 Implementation steps of moving object detection 
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Intermediate steps of the algorithm are demonstrated in Figure 3-17. Frame (a) and 

frame (b) are consecutive frames. Camera makes a small motion through left and 

down. Egomotion is estimated by K-means. In order to clarify the idea, the current 

frame is shifted through the opposite direction and frame (c) is constructed. Frame 

differencing is applied and frame (d) is obtained. Note the thin lines on the edges. 

This is due to motion estimation errors and digitization errors of video input 

devices. These unwanted thin lines and other small sized errors are filtered out by 

morphological opening operation. A kernel of block size 2 is used thus lines thinner 

than 4 pixels are deleted. Final moving object is demonstrated in frame (e) and it is 

located in frame (f). 

3.4.2 Motion Detection and Tracking Based on Outlier Features 

The first implemented method estimates the egomotion of the camera based on 

SURF features. Then moving object detection step is carried out based on image 

pixels. Instead of working on image pixels, already calculated SURF features can be 

employed to detect moving objects. This idea seems to be superior in terms of 

computational time for two reasons. The first reason is that operations on image 

pixels are generally time consuming because any process should be repeated for 

approximately 300000 times (640 x 480 = 307200). The second reason is that 

necessary SURF features are already calculated for egomotion estimation phase and 

there is no need to consume effort for recalculation. The flow diagram of the 

proposed algorithm is given in Figure 3-18. 

 

 

Figure 3-18 The flow diagram of outliers based object detection  
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The main motivation of the algorithm is as follows. It is assumed that a group of 

inconsistent features correspond to a moving object if their positions on the image 

are close and their motion vectors have approximately the same directions. Once an 

object is detected, object location and speed are recorded and the same object is 

searched through an approximate location based on the former location and speed of 

the object.  

3.4.2.1 Outlier Feature Detection 

Algorithm starts with detection of the outlier features. All matched SURF features 

are compared with the camera egomotion regardless of the location of the features. 

Features whose motion vectors deviate from the egomotion, are counted as outlier 

and they are added to a vector which consists of all the outlier SURF features of the 

current frame. The subsequent parts of the algorithm works on this outlier vector 

array.  

Figure 3-19 demonstrates the procedure. The image is the 147. frame of the input 

video. 367 SURF features are found and 317 of them are matched with features of 

the former frame. White line or dots demonstrates the motion of an inlier feature at 

the exact location. It is seen that there are no white lines but there exists white dots 

and that means that inlier features are steady. Thus the camera is steady at the 

moment.  

 



 

Figure 3-19 Inlier and outlier features on frame 147 of video1 

 
There are 18 outlier features. Blue circles correspond to black blobs and red circles 

correspond to white blobs. Black lines inside the circle show the motion of the 

feature. The center of the circle shows the current location of the feature and the 

other end of the black line shows the old location of the feature. Note that the 

motion of SURF features on the moving car is generally parallel. There are a few 

wrongly matched outliers on the fences and on some other locations of the image 

but they do not ensure the object detection principle thus they are simply ignored. 

However the features on the car are close to each other and their motion is parallel 

thus the car can be detected as a moving object by the main object detection 

principle. 
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3.4.2.2 New Object Search 

Chronologically new object search is handled after pre-defined object update. 

However in order to clarify the subject, firstly new object search procedure will be 

explained. A group of adjacent outliers might refer to an object on the image thus 

special attention is taken on adjacent outlier groups. The flow diagram of the 

procedure is given in Figure 3-20. 

 

Validation checkCandidate Group 
Search

Not ObjectObject

Valid Not Valid

Outlier Array

 

Figure 3-20 Flow diagram of new object search 

 
 The algorithm starts with the candidate group search. For all outlier features, 

adjacent neighbor features are determined and close features are gathered in a 

group. A group should contain at least a predefined number of features. This limit is 

set to three in this thesis. 

A validation operation is needed to classify real moving objects and false 

detections. This validation operation decides whether a group of outlier feature 

corresponds to an object or not. Validation mechanism consists of two rules. In the 

first rule, existence of at least one feature is demanded. In the second rule, parallel 

motion is desired. Object is validated if there exists at least three outlier features 

whose last motions are consistent with each other. It is assumed that if both rules 
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are ensured, then features correspond to a moving object and the object motion 

vector is determined as the consistent motion of the three outliers. Candidate groups 

which are not validated are simply ignored. 

Two example images are given in order to clarify the subject. In Figure 3-21, some 

incorrect matches are found on the building and a candidate group is constructed 

with these outlier features. However this candidate group violates rule 2 such that 

there is not a common motion vector for at least three features. All features have 

distinct motion directions thus it is concluded that this candidate group does not 

correspond to a moving object. In Figure 3-22, a group of outlier features are 

detected on the moving van. Note that most of the features indicate the same 

direction and both two rules are ensured. Thus the candidate group of outliers is 

validated as an object.  

 

Figure 3-21 Outlier features due to wrong matches 
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Figure 3-22 Outlier features on a moving vehicle 

 

3.4.2.3 Pre-Defined Object Update 

Once a moving object is detected in the image, its location and motion information 

is updated at each frame of the video. Kalman filter is employed for group object 

update process in order not to loose the object with momentary variations. Group 

update procedure consists of the steps demonstrated in Figure 3-23.  

 

 

Figure 3-23 Object update procedure 
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The algorithm starts with Kalman Prediction phase. Object location in the current 

frame are predicted based on the last validated location and the motion of the 

object. Next, outlier SURF features are searched inside the predicted object location 

and found features are added to vector array for further observation. Based on the 

determined features, a new object location is obtained thus the predicted object 

location is corrected. This step corresponds to correction phase of Kalman filter 

Note that if the size of the object decreases, it can be realized in the correction 

phase. However an increment on the size of the object cannot be noticed with the 

above procedure. In order to detect object size increment, a similar propagation 

phase is added in group update step. Close features are added to the group and 

object size is updated. 

Some constraints are added to the propagation phase to increase the robustness of 

the algorithm. Object size cannot change rapidly. Similarly object cannot jump 

directly to a new location far away from the object initial location. Final constraint 

is that the object speed can not change rapidly but expected to change with a limited 

acceleration. These constraints limit the search area and increase the robustness of 

the algorithm.  

Validation step is exactly the same. At the end of this step two validation 

parameters are found based on rule 1 and rule 2. However, when an object is not 

validated, the object is not directly deleted. Instead consecutive none valid cases are 

counted. Different limits are determined for the two rules. As a result of trial and 

errors, limits are arranged such that an object is deleted if rule 1 is not validated for 

consecutive 3 frames or rule 2 is not validated for consecutive 6 frames. Whenever 

a group of outliers is validated, the object location and object speed parameters are 

updated and non-valid counters are set to zero.  

As mentioned, while using a translational egomotion estimation technique, scale 

changes can not be modeled. Thus the algorithm cannot estimate egomotion while 

the camera is zooming. When egomotion cannot be estimated, the outlier features 

are not reliable thus new objects cannot be detected. However a formerly detected 



object can still be followed because features on the object remain even at the zoom 

instants due to the fact that SURF features are tolerant to scale changes. Figure 3-24 

demonstrates the incident. Figure 3-24 (a), (b), (c) and (d) are taken at different time 

instances while the camera is zooming out. The car is detected formerly and the 

detector does not loose it during the zoom out period. Besides, note that any new 

object is not detected even though lots of outliers exist in the images.  

 

 

           (a)          (b) 

 

           (c)          (d) 

Figure 3-24 Target detection while the camera is zooming out. Note the unreliable 

outlier features 
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For comparison, the same frames are evaluated with linear egomotion model in 

Figure 3-25. The camera motion is estimated as pure zooming out. Note that outlier 

features are very limited in this case compared to the translational model. Outlier 

features are still reliable in this model so new object search process is applicable at 

the moment.  

 

 

           (a)          (b) 

 

           (c)          (d) 

Figure 3-25 Target detection while the camera is zooming out. Note that outlier 

features are still reliable at the moment. 
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CHAPTER 4  

 

IMPLEMENTATION RESULTS AND COMPARISONS 

The main aim of this thesis is to construct real time object detection and tracking 

system with an active camera. For that purpose, EVI D100P [33] which is a PTZ 

camera produced by SONY, is used. The camera produces PAL analog video 

output. It has a serial port thus pan, tilt and zoom parameters can be adjusted. The 

camera is operated at 640*480 resolutions. Analog PAL video is taken to the 

computer by DIGITUS DA-VC211 video grabber. The computer that is used for 

this thesis is a standard laptop which has Core2 Duo 2.4 GHz CPU and 3 GB RAM.  

Microsoft Visual Studio 2005 is selected as the development environment and C++ 

language is used. OpenCV library (OPENCV 2.0) is frequently employed. There is 

a SURF implementation in OpenCV however an open source library called 

OpenSURF [25] is used instead, due to its superior performance.  

 

 

Figure 4-1 SONY EVID100P PTZ camera 
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In order to develop the algorithms and make comparison, a small dataset containing 

outdoor surveillance videos is constructed. The surveillance videos include pan, tilt 

and zoom action of the camera. Day and night videos are included and single or 

multiple moving objects are occurring in the videos. 

Before starting to discuss the results, the symbology on the videos will be 

explained. Figure 4-2 is a snapshot including the symbology. On the top left, FPS 

(frame per second) information of the software is written. On the top line of the 

frame, the number 95 is the frame number of the input video. 312 and 195 are 

respectively the total number of SURF features on frame 95 and the total number of 

matched features. In the second line, the first number is the ratio of the frames in 

which the egomotion can be successfully estimated. The character “D” indicates 

that the object detection algorithm is active and the character “T” indicates that the 

tracking algorithm is active so that the camera is automatically directed to the target 

object by the software. The white square over the car refers to a detected moving 

object. Final symbology is the egomotion indicator located in the middle of the 

image. The small filled green circle indicates that a motion model is successfully 

found by egomotion estimator. If this circle is red, that means camera motion 

cannot be modeled in this frame. The black circle indicates that the camera is 

zooming out. The radius of the black circle is proportional to zooming speed of the 

camera. The circle is white if the camera is zooming in and simply there is not any 

such circle if the camera does not zoom. Finally any translational movement is 

represented by a line starting from the center of the image. If there is a small black 

dot instead of a line then that means the camera is stable and simply it is not making 

any translational movement. 



 

Figure 4-2 Symbology on images 

 

The implementation results can be examined under three chapters which are 

egomotion estimation results, motion detection results and tracking results. During 

the experiments 6 videos from the dataset which are video1, video5, video11, 

video19, video24 and video25 are used. In the videos, the camera is sometimes 

stable, sometimes rotating and sometimes zooming. 

Video1 is a day video and consists of both translational and zooming variations of 

the camera. A mobile car is seen on the video. This video is used to test the 

egomotion estimation algorithms. Video5 is a day video and consist of a walking 

pedestrian. Pedestrian is a harder target for a tracker since its size is smaller 

compared to a car and its shape is continuously changing unlike a car. Moreover, 

feature number decreases at some instants in this video. Video9 is a night video. At 
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first a car appears and then a walking pedestrian passes. Video19 is a day video and 

consists of only translational variations of the camera. Cars are moving on the way. 

It is a relatively easy video for target detection. Video24 and video25 are evaluated 

for measuring the performance of the egomotion estimation algorithms. There is not 

any significant moving object inside these videos. One example frame from each 

video is given in Figure 4-3. Table 4-1 includes the total frame numbers of the 

video, the number of frames while the camera is stable, the number of frames while 

camera is moving translational only and the number of frames while the camera is 

zooming in or out.  

Table 4-1 Test videos table 

 Day/ 

night 

Target 

Objects 

Total 

Frame 

Number 

Stable 

Frames 

Translati

onal 

Frames 

Zooming 

Frames 

Video1 Day Gray car 294 102 121 71 

Video5 Day Walking 

woman 

750 406 284 59 

Video9 Night Car and 

pedestrian 

332 73 219 40 

Video19 Day Two cars 468 284 184 0 

Video24 Day No object 622 95 404 123 

Video25 Day No object 490 82 408 0 

 



 
           (a)          (b) 

 
           (c)          (d) 

 
           (e)          (f) 

Figure 4-3 The videos which are used for performance evaluation. (a) is video1, (b) 

is video5, (c) is video9, (d) is video19, (e) is video 24 and (f) is video 25 
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4.1 Egomotion Estimation Results 

In this thesis camera egomotion is estimated by using only the image data. Three 

different methods are implemented and their performances are examined. Video 

frames are categorized as stable, shifting, zooming and three different methods are 

evaluated at each of these categories. Obviously Translational RANSAC and 

Translational K-means methods are not evaluated at instances when the camera is 

zooming because scale changes cannot be modeled with these two methods.  

In order to evaluate the results of the algorithms, determining the exact egomotion 

of the camera for all the frames in the test videos is an inconvenient way. Instead, 

another procedure is followed based on the initial assumption and remaining 

nonzero pixels in the difference image. 

The initial assumption asserts that the majority of the features appear on the 

background and thus a model which is obeyed by the majority should be the 

egomotion of the camera. Based on taken experiments, it is concluded that a model 

which is validated by 30 percent of all the features, mostly represents the egomotion 

of the camera. Due to the initial assumption, a group of consistent features on a 

moving object cannot reach up to this ratio. All the three egomotion estimation 

methods applied in this thesis, obey this ratio. Performance comparison is applied 

by checking whether a motion model which is validated by 30 percent of the 

features, is found or not.  

A second method is used to validate the estimated egomotion, together with the 

initial assumption. A function called “countNonzero” is designed for verifying the 

estimated egomotion. The test videos “video24” and “video25” are specially 

recorded such that there are no apparent moving objects on these videos while the 

camera is moving at the same time. Frames are aligned based on the estimated 

motion. Then frame differencing is applied between the two images. Since there are 

no moving objects on the videos, if estimated egomotion is correct, then frame 

differencing on these videos should result images whose pixel values are zero often. 
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Considering the momentary variations on the pixels intensities, a threshold is 

applied such that pixels whose value is smaller than 10 is deleted. Remaining 

nonzero pixels are counted and the estimated egomotion is validated only if the 

ratio of nonzero pixels is smaller than 5 percent.  

Experiments are taken with video24, video25 and video1. Details of these videos 

are given in Table 4-1. “video24” and “video25” do not contain moving object so 

that both validation methods are employed. “video1” contains a mobile car and it is 

specially selected to test egomotion algorithms while outlier feature ratio is higher. 

Since there is a moving object on the video, the second validation criteria cannot be 

directly applied. Instead, nonzero pixels due to the moving car are discarded and the 

remaining nonzero pixels are counted in order to check the estimated egomotion. 

RANSAC is a probabilistic algorithm so RANSAC based methods are repeated for 

three times. Results for these algorithms are calculated based on the three 

repetitions. 

Results for video24 are given in Table 4-2. In order to emphasize the motion, only 

the odd frames of the video are used. Totally 622 frames are processed. The camera 

is stable in 95 frames, it is panning or tilting in 404 frames and in 123 frames, the 

camera motion involves zooming. In the table, the “Test” lines give the number of 

successful egomotion estimations for corresponding algorithm and the “Result” line 

contains the success ratios. In the “Total” column, success ratio of algorithms 

through the entire video is given. The values inside the parenthesis are the success 

ratio at frames where the camera is not zooming. For K-means and Translational 

RANSAC, this value is more acceptable since these two methods did not operate at 

zooming frames as mentioned before. The performance of K-means and 

Translational RANSAC is almost the same and Linear RANSAC has a slightly 

fewer performance. However it works well at zoom instances unlike the other two 

methods. 



60 

 

Table 4-2 Test results for video24 

Static Shifting Zooming Total 
Video24 

95 404 123 622 

Test 1 95 402 0 497 

Test 2 95 402 0 497 

Test 3 95 401 0 496 

Tr
an

sl
at

io
na

l R
A

N
SA

C
 

Result %100 %99,4 %0 %80(%99,5) 

Test 95 402 0 497 

K
-m

ea
ns

 

Result %100 %99,5 %0 %80(%99,6) 

Test 1 95 397 122 614 

Test 2 93 398 123 614 

Test 3 95 400 122 617 

Li
ne

ar
 R

A
N

SA
C

 

Result %99,2 %98,6 %99,4 %98,8(%98,7)
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Table 4-3 Test results for video25 

Static Shifting Zooming Total 
Video25 

82 408 0 490 

Test 1 82 408 - 490 

Test 2 82 408 - 490 

Test 3 82 408 - 490 

Tr
an

sl
at

io
na

l R
A

N
SA

C
 

Result %100 %100 - %100 

Test 82 408 - 490 

K
-m

ea
ns

 

Result %100 %100 - %100 

Test 1 80 397 - 477 

Test 2 81 391 - 472 

Test 3 80 394 - 474 

Li
ne

ar
 R

A
N

SA
C

 

Result %97,9 %96,5 - %96,8 
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Table 4-4 Test results for video1 

Static Shifting Zooming Total 
Video1 

103 120 71 294 

Test 1 103 76 0 179 

Test 2 103 78 0 181 

Test 3 103 80 0 183 

Tr
an

sl
at

io
na

l R
A

N
SA

C
 

Result %100 %65 %0 %61,5(%81,2)

Test 103 86 0 189 

K
-m

ea
ns

 

Result %100 %71,6 %0 %64,2(84,7) 

Test 1 103 72 41 216 

Test 2 103 72 37 212 

Test 3 103 72 43 218 

Li
ne

ar
 R

A
N

SA
C

 

Result %100 %60 %56,8 %73,2(%78,4)

 

Table 4-3 includes the performance evaluations on video25 and Table 4-4 includes 

the performance evaluations on video1. It is observed that success ratio is higher 

while the camera is stable. While camera is rotating or zooming, blurring occurs on 

the video frames. Blurring due to interlaced video standard is partially solved by 

simple deinterlacing implementation however blurring due to camera internal 

mechanism still remains. This is less effective compared to the first one 

nevertheless, this blurring decreases the number of SURF features thus the 

performance of the algorithm decreases. The second reason is that with a slight 
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movement of the camera, pixel intensities on a SURF feature might change 

significantly. Thus, a feature might not be matched on consecutive frames.    

It is also observed that the performance of Linear RANSAC is very similar while 

the camera is rotating or zooming. Zooming action of the camera does not cause an 

extra reduction on the performance of the algorithm.  

The performances of the three algorithms are compared with static and shifting 

frames. In “video24” and “video25” the performance of the translational models are 

very close to 100 percent. The performance of Linear RANSAC method is 

approximately %97. These two videos are relatively easy for egomotion estimation 

task since there are no moving objects. This means that erroneous features are very 

limited. However “video1” is a harder case since there is a moving car on the video 

and at some instants, outlier feature ratio ascends to 50 percent. Therefore 

performances are decreased at “video1”. 

In “video1”, best success ratio is belongs to K-means (%84.7), Translational 

RANSAC (%81.2) and Linear RANSAC (%78.4) are following it. Translational 

RANSAC and linear RANSAC have the same principal mechanism however, their 

performances differ. There is one main reason for this consequence. Linear 

RANSAC tries to fit a three parameters model on the other hand; Translational 

RANSAC has a two parameters model. Model fitting is easier if a less parameter 

model is employed. There is a trade off here such that two parameters models can 

possess a higher performance for translational frames however they can not operate 

while the camera is zooming. 

The performances of K-means and Translational RANSAC are almost equivalent 

whenever the ratio of outlier features is small as seen in experiments with 

“video24” and “video25”. However, K-means has a superior performance whenever 

outlier feature ratio increases. RANSAC is a probabilistic method and works based 

on an initial assumption set. If this initial set is not correct, then RANSAC cannot 

fit a model. In order to increase the performance, the algorithm is repeated with new 

initial sets. However if the ratio of outlier features are significantly high, RANSAC 
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may fail to estimate the motion. K-means has a similar mechanism but the 

algorithm does not start with a random feature set instead, it starts with the mean of 

the entire set. Moreover at each iterations, inliers are searched at a circle of lower 

radius thus outlier features are eliminated at each iteration. As a result, K-means 

based egomotion estimation outperforms RANSAC. 

Whenever the initial assumption is ensured, all the three methods have sufficient 

performance. Moreover some precautions are taken to improve the performance of 

the final algorithm. At frame n, SURF features whose location contains a moving 

object at frame n-1, are not counted while estimating the egomotion. This eliminates 

some of the outlier features. As another improvement, assuming that the camera 

motion does not change between frame n-1 and frame n, if egomotion estimation 

algorithm fails at frame n, the motion model at frame n-1 is used. Experiments show 

that this results an explicit improvement in the final algorithm.  

Finally, since Linear RANSAC has a sufficient performance and can operate while 

camera is zooming unlike the other algorithms, this method is chosen for the final 

tracking system. 

4.2 Motion Detection Results 

Motion detection experiments are taken on video5, video9 and video19. Target 

objects at each video are given in Table 4-1. Two detection methods which are 

outlier features based motion detection and frame differencing based motion 

detection are compared. The two algorithms are compared based on one criterion 

which is the ratio of number of frames where the target object can be detected. The 

algorithms are executed and the frames in which the target is detected are counted 

manually. Results are given in Table 4-5. The first column contains the total 

number of frames in which the target appears. The further columns contain the 

corresponding detection results for the algorithms. It is difficult to determine an 

objective success value for the detector algorithms since different object sizes, 

speeds, shapes and appearances can change the performance of the algorithms 
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dramatically. In test videos, the target objects are sometimes unsuitable for 

detection even for human eye. Thus the results in Table 4-5 are suitable only for 

comparing the two detection algorithms.    

Table 4-5 Test results for motion detection 

 # of frames 

target seen 

Frame dif. based 

detection 

Outlier based 

detection 

Video5 1272 1064 (%83) 332 (%26) 

Video9 332 243 (%73) 184 (%55) 

Video19 381 196 (%51) 256 (%67) 

Totally  1985 1503 (%76) 772 (%39) 

 

Egomotion estimation ratios are sufficient through all the test videos thus, these 

videos are suitable for the detection tests. Frame differencing based method clearly 

outperforms the outlier features based method. Frame differencing based method 

achieves a detection performance up to 76 percent while outlier based method has a 

performance of 39 percent.  

It is observed that outlier based method is good at detecting a car while it has a poor 

performance on pedestrians. This method relies on close outlier features whose 

motion is parallel. Cars are more suitable for this method. Shape of a car is fixed 

thus all SURF features on a car move parallel unless the car changes its angle with 

respect to the camera. On the other hand, shape of a walking person is not stable 

and its shape continuously changes during his motion. SURF features on a 

pedestrian do not make parallel motion thus most often they can not be recognized 

as a moving object. Moreover, since human has relatively small size compared to a 

car, less SURF features exist on a human and this causes an important performance 

decrease for outlier based method. Frame differencing based method has an 
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adequate performance on human. Since it relies on frame aligning and frame 

differencing, if the object size is sufficiently large, this method can successfully 

detect any moving object with any complex shape. Experiments also demonstrate 

that frame differencing based method considerably outperforms the other method at 

video5 since the target object is a walking pedestrian in this video. 

Frame differencing based method has a lower performance on video19. The main 

reason is the delay in the first detection. As explained earlier, a kind of connected 

component search mechanism is employed at first detection. In order to relieve the 

computational load, a sequential scan procedure is followed. At each frame only a 

single line is evaluated. Thus this procedure might cause latency at first detection of 

the object.  

By examining the results of the experiments, one advantage of outlier features 

based method can be realized. This algorithm can work faster compared to the other 

algorithm. For instance, at video9, outlier based algorithm works at an average 

speed of 7.2 FPS. Frame difference based algorithm works at an average speed of 

5.8 FPS at the same video. This is an expected result since frame difference based 

method works on image pixels after egomotion estimation step and thus it is 

computationally more loaded.  

Outlier based method sometimes makes false detections such that a static section of 

the video is marked as a moving object. This failure is very rare for frame 

difference based method. For instance, at frame 651 of video5, a false object is 

detected on the sidewalk. Pieces of the sidewalk have very similar shapes with each 

other thus wrong matches are very possible at that location. These wrong matches 

sometimes mislead the detector algorithm. In general, similar shaped objects at 

background are a common problem for both algorithms. Egomotion estimation 

process might also be affected by these wrong matches. However, egomotion 

estimation algorithms are specially designed to filter out these unwanted matches. 

For instance at Figure 4-4, egomotion is estimated correctly at both algorithms. 

Outlier based method makes a false detection. Frame difference based method is 



less vulnerable to this effect. As long as egomotion is estimated correctly, this 

algorithm is expected to make accurate detections. This method is able to detect the 

real object at the same time instant. 

 

 

           (a)          (b) 

Figure 4-4 False detection of outlier features based algorithm (a) and the response 

of frame difference based algorithm at the same instant (b) 

 

Another consequence obtained from the experiments is that frame difference based 

method is more robust. A detected object is not lost as long as the target object 

appears in the video and is sufficiently large. Outlier based method frequently 

looses and relocates target objects. Furthermore, frame difference based method, 

locates object boundary better while outlier based method sometimes partially 

locates the object. Figure 4-5 demonstrates this phenomenon. This situation can be 

observed through all the test videos.  
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           (a)          (b) 

Figure 4-5 Outlier based detector, partially locates the object (a) while the object is 

located better with frame difference based detector (b) 

 

Experiments prove that even though frame difference based detection is 

computationally more loaded, it has a superior detection performance compared to 

its competitor. False detection rate is lower and a detected object is not lost most 

often. Moreover object boundaries are better located. Finally it was concluded to 

use frame difference based detection technique for the final detector-tracker 

algorithm.  

4.3 Detector-Tracker System 

A detector-tracker system is developed depends on the main goal of this thesis 

work. When the detector is initiated, moving objects are searched. Detected objects 

are marked and the camera is directed to the target if the tracker is initiated by the 

user. A simple GUI is designed to handle user commands. Different buttons are 

available to initialize the camera, the detector and the tracker. Moreover, vibration 

and sweep modes are added to the GUI. While the camera is not tracking, user is 

able to vibrate the camera or a large area can be scanned. In vibration mode, the 

camera makes small circular movements. In sweep mode, the camera makes long 
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pan movements through right and left thus moving objects can be searched through 

a large area. These modes are valuable for testing the performance of the detector 

while the camera is moving. 

At egomotion estimation step, Linear RANSAC method is chosen since it can 

model the camera egomotion while the camera is zooming. Then detection is 

performed by frame difference based detector. If track command is active, the 

Euclidean distance between the object center and the image center is calculated. Pan 

and tilt speed of the camera is arranged proportional to this distance and camera is 

directed through the target object. Moreover object size is stabilized by using the 

zoom capability of the camera. The algorithm checks the size of object marker 

rectangle. If the length of the diagonals is smaller than a lower limit, then the 

camera zooms in to the object. If the length of the diagonals is larger than an upper 

limit, then the camera zooms out. Flow diagram of the final tracking system is given 

in Figure 4-6. 



 

Figure 4-6 Flow diagram of the tracker system 

 

Example videos are recorded with the final detector-tracker algorithm. Figure 4-7 is 

an indoor demonstration. In this video, vibration function is active until the tracker 

is enabled. The target person is successfully detected and tracked through the video.  
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           (a)          (b) 

 

           (c)          (d) 

Figure 4-7 Indoor tracking experiment 

 

Figure 4-8 is an outdoor demonstration of the algorithm. Target car moves away 

from the camera thus the software is continuously zooming the camera to the car. 

Zoom in symbology is seen on the center of the video. Note that at frame (d) 

egomotion cannot be estimated but the detector is still operational.   
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           (a)          (b) 

 

           (c)          (d) 

Figure 4-8 Outdoor tracking experiment. The camera zooms in to the target car 

since its size is smaller than expected. 

 

Figure 4-9 demonstrates another outdoor experiment. Target object are walking 

people this time. Pedestrians are detected at frame (a) and software zooms to them 

for an amount as seen in frame (b). Frame (c) and frame (d) are examples of 

partially occlusion. The algorithm successfully continues to detect the target. The 

tracking task continued more than 750 frames without loosing the target at any time 

instant. 

72 

 



 
           (a)                    (b) 

 
           (c)                    (d) 

 
           (e)                    (f) 

Figure 4-9 Outdoor tracking experiment. Target is pedestrians 
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CHAPTER 5  

 

CONCLUSION  

5.1 Summary and Conclusions 

Due to the increasing needs to surveillance applications and due to the technological 

improvements, the number of active surveillance systems is continuously growing 

through out the world. It is not an efficient way to operate all these systems only 

with human operators. This is an expensive solution. Instead, today’s technology 

has a tendency to reduce the number of human operators by using automated 

surveillance software. Automated detection and tracking is one of the most common 

research areas.  

Stable cameras have a limited line of sight and generally a single static camera is 

not sufficient to monitor a wide terrain. A few of them are necessary to completely 

cover the entire terrain. However, a clearly located PTZ camera can alone monitor a 

wide area. For example a PTZ camera and automated tracker software, can detect 

any violation to a terrain. On the other hand, active camera tracker systems have a 

main disadvantage such that the algorithms for active cameras are generally more 

complex compared to the algorithms for static cameras. 

In this thesis, an automated tracker system for active cameras is developed. It was 

aimed to develop a computer based solution which is capable of real time working. 

In order to ensure real time performance, C++ language and OpenCV library are 

used for algorithm development. Similar applications in the literature are analyzed. 

It is observed that due to computational efficiency, feature based detection methods 
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are frequently used. This idea is adapted to this thesis work and SURF features are 

chosen as the main building block of the proposed algorithm.  

SURF features are matched between consecutive frames and motion vectors are 

obtained on the image. Assuming that majority of these motion vectors belong to 

the background, wrong matches which are not compatible with the majority, are 

eliminated and a camera motion model is constructed. Three different methods are 

implemented and evaluated with some test videos. All the three methods are 

convenient if outlier features are limited however K-means based method 

outperforms the other two when ratio of outlier features is higher. Translational 

RANSAC and K-means can model only pan and tilt movements of the camera 

while Linear RANSAC can also model zoom movements. For this reason, this 

method is employed in the final tracking system. 

Two different motion detection methods are implemented. The first one is a very 

popular method used in the literature. Consecutive frames are aligned with respect 

to the estimated egomotion and then frame differencing is performed as like the 

camera is stable. The second method relies on the outlier features on the image. 

Parallel and close outlier features are recognized as moving objects. This method is 

computationally more efficient however, it is very vulnerable to wrong matched 

features. If there are relatively more wrong matches, this algorithm might detect 

false objects. Moreover, this method is not successful to detect objects whose shape 

is variable. Thus this method is not suitable for tracking pedestrians. On the other 

hand, frame difference based method does not suffer from the same drawbacks. 

Features are only used for egomotion estimation. Experiments verify that this 

method is more suitable to detect walking people. 

According to the initial goal of the thesis, a detector-tracker system was developed. 

The developed algorithm can work approximately at 5 FPS and this speed is 

acceptable for this thesis work. The algorithm is tested with different targets and 

appropriate results are obtained as long as the initial assumption is valid in the test 

scene. 
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5.2 Future Work 

The proposed algorithm in this thesis is capable of working at a speed of 5 FPS. By 

increasing the speed of the algorithm, smoother camera motion can be obtained. 

Moreover faster objects can be tracked since the response time of the camera is 

increased. In order to achieve this, efficiency of the algorithm should be enhanced. 

Before feature matching step, features can be indexed based on their locations thus 

a pair for a feature is not searched through the entire feature set. Or a better feature 

type might be found instead of SURF to increase the speed. Instead of computer, the 

algorithm might be implemented on an FPGA. The speed of the algorithm can be 

increased with parallel processing.  

The proposed algorithm has a zooming limitation through a target object since the 

principal assumption should be assured for proper egomotion estimation. Moreover 

lack of blob regions on the background might result to poor egomotion estimation. 

In order to overcome this situation, supporting hardware can be used for egomotion 

estimation task.  
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