
A COMPUTATIONAL APPROACH TO NONPARAMETRIC REGRESSION: 

BOOTSTRAPPING CMARS METHOD 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

 

BY 

 

CEYDA YAZICI 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS                                                  

FOR                                                                                                                           

THE DEGREE OF MASTER OF SCIENCE                                                                      

IN                                                                                                                   

STATISTICS 

 

 

 

 

 

SEPTEMBER 2011 

 



Approval of the thesis: 

 

A COMPUTATIONAL APPROACH TO NONPARAMETRIC REGRESSION: 

BOOTSTRAPPING CMARS METHOD 

 

submitted by Ceyda YAZICI in partial fulfillment of the requirements for the degree 

of Master of Science in Statistics Department, Middle East Technical University 

by, 

 

Prof. Dr. Canan Özgen                                                                     _______________ 

Dean, Graduate School of Natural and Applied Sciences   

                 

Prof. Dr. H. Öztaş Ayhan                                                                 _______________ 

Head of Department, Statistics       

                                

Assoc. Prof. Dr. İnci Batmaz,                                                           _______________ 

Supervisor, Statistics Department, METU 

 

Examining Committee Members:  

Prof. Dr. H. Öztaş Ayhan                                                                 _______________    

Statistics Department, METU     

Assoc. Prof. Dr. İnci Batmaz                                                            _______________ 

Supervisor, Statistics Department, METU 

Prof. Dr. Gülser Köksal                                                                    _______________ 

Industrial Engineering Department, METU    

Assist. Prof. Dr. Özlem İlk                                                               _______________ 

Statistics Department, METU 

Assist. Prof. Dr. Ceylan Yozgatlıgil                                                 _______________ 

Statistics Department, METU 

                                                                                               Date:  15.09.2011 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced 

all material and results that are not original to this work.  

 

 

 

Name, Last name: Ceyda YAZICI  

                                    

                                                                                  Signature: 



iv 

 

ABSTRACT 

 

A COMPUTATIONAL APPROACH TO NONPARAMETRIC REGRESSION: 

BOOTSTRAPPING THE CMARS METHOD 

 

Yazıcı, Ceyda 

M.Sc., Department of Statistics 

Supervisor: Assoc. Prof. Dr. İnci Batmaz 

 

September 2011, 114 pages 

 

Bootstrapping is a resampling technique which treats the original data set as a 

population and draws samples from it with replacement. This technique is widely 

used, especially, in mathematically intractable problems. In this study, it is used to 

obtain the empirical distributions of the parameters to determine whether they are 

statistically significant or not in a special case of nonparametric regression, Conic 

Multivariate Adaptive Regression Splines (CMARS). Here, the CMARS method, 

which uses conic quadratic optimization, is a modified version of a well-known 

nonparametric regression model, Multivariate Adaptive Regression Splines (MARS). 

Although performing better with respect to several criteria, the CMARS model is 

more complex than that of MARS. To overcome this problem, and to improve the 

CMARS performance further, three different bootstrapping regression methods, 

namely, Random-X, Fixed-X and Wild Bootstrap are applied on four data sets with 

different size and scale. Then, the performances of the models are compared using 

various criteria including accuracy, precision, complexity, stability, robustness and 

efficiency. Random-X yields more precise, accurate and less complex models 

particularly for medium size and medium scale data even though it is the least 

efficient method.  
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ÖZ 

 

PARAMETRİK OLMAYAN REGRESYON MODELİNE HESAPLAMALI 

BİR YAKLAŞIM: KONİK ÇOK DEĞİŞKENLİ UYARLANABİLİR 

REGRESYON EĞRİLERİNE  (KÇURE) KORUYAN HALKA YÖNTEMİNİN 

UYGULANMASI 

 

Yazıcı, Ceyda 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Doç. Dr. İnci Batmaz 

 

Eylül 2011, 114 sayfa 

 

Koruyan Halka (Bootstrap) yöntemi esas veri kümesine kitle gibi davranarak ondan 

örneklem alan bir yeniden örnekleme yöntemidir. Bu teknik, özellikle matematiksel 

çözümü olmayan problemlerde yaygın olarak kullanılmaktadır. Bu çalışmada, özel 

bir parametrik olmayan regresyon yöntemi olan Konik Çok Değişkenli Uyarlanabilir 

Regresyon Eğrilerine (KÇURE) ilişkin parametrelerin istatistiksel olarak önemli olup 

olmadığına karar vermek amacı ile deneysel dağılımlarını elde etmek için 

kullanılmıştır. Burada KÇURE yöntemi, konik ikinci derece eniyileme yöntemini 

kullanan ve iyi bilinen bir parametrik olmayan regresyon yöntemi olan Çok 

Değişkenli Uyarlanabilir Regresyon Eğrilerinin (ÇURE) değiştirilmiş özel bir 

şeklidir. Birçok ölçüte göre daha iyi başarıma sahip olduğu halde, KÇURE modeli 

ÇURE modelinden daha karmaşıktır. Bu problemin üstesinden gelebilmek ve 

KÇURE modelinin başarımını daha da iyileştirmek amacı ile üç farklı Koruyan 

Halka yöntemi, Sabit-X, Rastgele-X ve de Aşırı (Wild) Koruyan Halka yöntemi, 

büyüklük ve ölçekleri bakımından farklı dört veri kümesine uygulanmıştır. Daha 

sonra geliştirilen modellerin başarımları doğruluk, kesinlik, karmaşıklık, durağanlık 

(stability), sağlamlık (robustness) ve etkinlik (efficiency) ölçütleri açısından 

karşılaştırılmıştır. Rastgele-X yöntemi, daha az etkin olmasına rağmen özellikle orta 
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büyüklükte ve ölçekte veri kümeleri için daha kesin, doğru ve daha az karmaşık 

modeller üretmiştir.  

Anahtar Kelimeler: Koruyan Halka Regresyonu, Konik Çok Değişkenli 

Uyarlanabilir Regresyon Eğrileri,  Sabit-X Yeniden Örnekleme, Rastgele-X Yeniden 

Örnekleme, Aşrı Koruyan Halka  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Computational statistics is defined as “the method that heavily use computational 

techniques to create new statistical methodology” by Wegman (1988). In general, it 

includes computer-intensive methods of statistics and visualization. After the 

developments in the computer hardware and software, these methods have become 

feasible and popular, especially, since 1980s. Thus, producing and storing huge and 

high-dimensional data became easier and methods such as high-dimensional data 

representation became applicable.  

Efron and Tibshirani (1991) give the following methods as examples of 

computational statistics which are called as computer-intensive statistical methods: 

bootstrap methods, generalized additive models (GAM), nonparametric regression, 

and classification and regression trees (CART). In these methods, modern computer 

algorithms are used instead of classical mathematical methods. The advantage of 

computational approach is that the analyst is free from choosing methods because of 

its mathematical tractability (Martinez and Martinez, 2002).   

When computational statistics is compared with traditional statistics, it can be said 

that it is generally applicable to numerically tractable, computationally intensive, 

imprecise questions (Wegman, 1988). In these situations, the computational methods, 

including resampling, simulations and multiple views to make inferences for the 

parameters of the model are used (Gentle, 2009).   
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Multivariate Adaptive Regression Splines (MARS), a nonparametric regression 

method, is first introduced by Friedman (1991). It is widely used in every branch of 

science and engineering. Its main advantage lies in building models, which include 

main and interaction terms, for high-dimensional data. The MARS algorithm consists 

of two parts: forward and backward. In the forward part, a large model is obtained. 

The large model is reduced in the backward step. CMARS, which is introduced first 

by Yerlikaya (2008), and further improved by Batmaz et al. (2010) and evaluated by 

Weber et al. (2011), is a new approach to backward part of the algorithm by using 

conic quadratic optimization. In CMARS, the coefficients for the terms obtained 

from the forward step of MARS are calculated by conic quadratic optimization 

(CQP). As a result, there are more terms in a CMARS model than that of MARS, and 

hence, CMARS models are at least as complex as MARS models. 

The mathematical intractability appears as the lack of distribution fitting to the 

parameters. If the distribution of the parameters were known, then the significance of 

the parameters could be determined by using the hypothesis testing or constructing 

confidence intervals (CIs) of model parameters by utilizing traditional statistical 

approaches. Unfortunately, in this special case of nonparametric regression, the 

distributions of the parameters are not known.  

In this thesis, an empirical distribution is tried to be fitted to each parameter of 

CMARS models by using a computational method called bootstrap. Bootstrap is a 

resampling method that heavily depends on computer (Hjorth, 1994). The aim of this 

approach is to take samples with replacement from the original sample and calculate 

the parameter of interest. Using this approach, the statistically significant model 

parameters are determined, and thus, the large CMARS model (in other words the 

model complexity) is tried to be reduced. Three different bootstrapping regression 

methods, namely, Random-X, Fixed-X and Wild bootstrap methods are run on four 

different data sets with size and scale. These data sets are named as Concrete Slump 

(CS) (Yeh, 2007), Forest Fires (FF) (Cortez and Morais, 2007), PM10 (Aldrin, 2006) 

and Uniform Sampling (US) (Kartal, 2007). Then, performances of these methods 
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are compared with respect to various criteria including accuracy, precision, 

complexity, stability, robustness and efficiency. 

In this study, a literature review for the applications of MARS and CMARS methods, 

are given in Chapter 2. This chapter also includes a literature survey of bootstrap 

applications for modeling. In Chapter 3, MARS, CMARS and bootstrap methods that 

are used in this study are explained in detail. Application results of the methods on 

the data sets are presented in Chapter 4. In Chapter 5, the findings are discussed. 

Conclusions and future studies, which can be developed depending on the findings of 

this thesis, are given in the last chapter. 
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CHAPTER 2 

 

 

BACKGROUND 

 

 

 

The analysis related with the social, physical or economic systems is based on a 

structure. This underlying, logical structure is defined as a model by Ramanathan 

(2002). A model carries the behavior of the members of the system, and it is the 

basic framework of the analysis. Hjorth (1994) defines the aim of models as a way to 

structure ideas and conclusions. According to him, the models are simple forms of 

the research phenomenon. Moreover, he classifies the models as “not true” but will 

have some mistakes except for some pure situations.  In statistics, a model is an 

equation or a form of system which has several equations. To conduct an empirical 

study, formulating a model for the scientific question is the first step that should be 

conducted. After gathering the data, the model, including parameters should be 

estimated. If there are assumptions in the model, these must be checked by 

conducting hypothesis testing or with the help of visualization techniques. If the 

assumptions are satisfied, then the results can be interpreted statistically; otherwise, 

necessary attempts have to be made to validate them.  

Modeling is widely used in various fields of study such as engineering, economics, 

finance, biology and genetics. Parametric and nonparametric approaches are the 

major two branches of statistical modeling. When assumptions are validated, 

parametric statistical models provide more trustable inferences. However, in certain 

situations, it may not be possible to satisfy some assumptions of a parametric 

approach. In these cases, nonparametric approaches are suggested to be used.  

In 1991, famous statistician and physicist Jerome Friedman introduced the MARS 

model as a new method in nonparametric regression. The advantage of this model is 
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that it can handle the high-dimensional data easily and well approximate nonlinearity 

in case of high nonlinearity. MARS has a wide application area from biology to 

economy.  

Lin et al. (2011) compare the MARS model of tourism demand with ARIMA and 

Artificial Neural Networks (ANN) according to Mean Absolute Percentage Error 

(MAPE). The results of this study indicate that the forecasting ability of ARIMA is 

the best among the others in the application of times series data.  Zakeri et al. (2010) 

use MARS to model the prediction of energy expenditure for the first time in this 

research area. Moreover, Kriner (2007) uses MARS for survival analysis and show 

that the new model they obtained is a better fit than the classical method, called Cox 

PH approach. 

MARS also has a wide application in biostatistics. For instance, York et al. (2006) 

compare the power of MARS with least squares (LS) curve fitting using 

polynomials. The results show that the power for MARS is higher than the LS 

method for detecting disease-risk relationship among different subgroups. Deconinck 

et al. (2008) compare the performances of the MARS and Boosted Regression Trees 

(BRT) by using a data set for blood-brain barriers passage. The authors conclude that 

MARS is performing superior to BRT in terms of fitting nonlinearities, being robust 

to small changes in the data and having easier interpretation.  

The model is also applied to different research areas such as geology. Gutiérrez et al.  

(2011) use MARS to model soil properties of a region in Spain. In their study, the 

reason for choosing this predictive model is that it is faster, accurate and has easy 

interpretation compared with ANN and CART. Moreover, MARS is used for the first 

time to model the species distributions in freshwater environments in the study of 

Leathwick et al. (2005). 

Denison et al. (1998) provide a Bayesian algorithm for MARS.  In general, MARS 

has been applied to different data sets including time series, biostatistics, 

meteorology, geology and biology.  
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Yerlikaya (2008) proposes a contribution to MARS model, and call it as Conic 

MARS (CMARS). In CMARS, the backward step of MARS is replaced with CQP. 

Batmaz et al. (2010) improve CMARS to better model nonlinearities in data and 

compare it with MARS and Multiple Linear Regression (MLR). According to their 

results MARS and CMARS perform better than MLR. Moreover, CMARS has a 

higher performance in terms of R
2
 measure. Weber et al. (2011) evaluate CMARS 

method rigorously, and state that it produces more accurate, robust and stable models 

than MARS under various data features.  

In another study, Taylan et al. (2010), compare MARS and CMARS for 

classification and use a data set for diabetes. The analysis results show that the 

accuracy measures for both train and validation data sets are not different. Moreover, 

this study concludes that CMARS is also superior to MARS in terms of reducing the 

probability of committing Type-II Error. Özmen et al. (2011) propose a 

robustification on the CMARS method in order to reduce the estimation variance in 

case of modeling random (but not fixed) variables.  Alp et al. (2011) compare GAM, 

CMARS, MARS and Logistic Regression (LR) to detect a financial crisis before it 

occurs. The authors conclude that CMARS has better results with higher correct 

classification rate and stability, and also, being robust.  

In parametric modeling such as MLR, the significance of parameters can be tested by 

conducting hypothesis or with the help of CIs. For instance, in the MLR it is assumed 

that the parameters are distributed normally. However, if there is no information on 

the distribution of parameters and normality assumption is not plausible, methods in 

the computational statistics can be used.  

Efron (1988) applies bootstrap to Least Absolute Deviation (LAD) method. Fox 

(2002) uses Random-X and Fixed-X Resampling methods for robust regression 

which uses M-estimator with the Huber weight function. Also, Salibian-Barrera and 

Zamar (2002) apply bootstrapping to robust regression. Austin (2008) replaces 

bootstrap with backward elimination which results a better coverage in percentile 
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CIs.  Yetere-Kursun and Batmaz (2010) compare regression methods by employing 

different bootstrapping methods. 

Bootstrapping for estimating regression parameters is also applicable in biostatistics 

and bioinformatics. Loughin and Koehler (1997) estimate parameters by 

bootstrapping in multivariate survival analysis. Kirk and Stumpf (2009) use bootstrap 

resampling for Gaussian Process Regression (GPR), which is a Bayesian Model. 

Flachaire (2003) compares the pairs bootstrap with wild bootstrap for heteroscedastic 

models. Gonçalves and White (2005) use moving blocks bootstrap approach for 

estimating standard errors of the parameters in the MLR.  

Efron and Tibshirani (1993) apply resampling residuals to a model based on Least 

Median of Squares (LMS). The difference between this technique and LS approach 

depends on the fitting procedure. In LMS, the median of the residual sum of squares 

(RSS) is used. In the model, median is used since it is more resistant to influential 

observations.    

Chernick (2008) uses vector resampling for a kind of nonlinear model that is used in 

aerospace engineering. Montgomery et al. (2001) conduct bootstrapping residuals 

method to Michaelis-Menten model, which is a nonlinear regression. Note however 

that the data set used in the study has a small sample size, whereas the theoretical 

approach for the model is valid only for large samples.  
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CHAPTER 3 

 

 

METHODS 

 

 

 

3.1. Multivariate Adaptive Regression Splines (MARS) 

MARS, which is published by Jerome Friedman in 1991, is a nonparametric 

regression technique in which there is no assumption for the relationship between 

dependent and independent variables. According to Hastie et al. (2001) MARS is 

similar to stepwise MLR or another approach for CART model. MARS has an 

advantage for building models of high-dimensional data and approximating the 

nonlinearity in data. In addition to obtaining additive models, it is useful for 

constructing models including interaction terms. Due to recorded success of MARS 

in modeling real life data, it has a wide range of applications in various areas of 

research in recent years. As mentioned in Chapter 2, the application areas range from 

biology to meteorology. 

MARS stands for “Multivariate Adaptive Regression Splines”. Below each term is 

defined briefly: 

 MARS has the capability of dealing with multi-dimensional data; that is why 

MARS is known as a multivariate procedure. 

 MARS is able to reduce the model complexity (or terms) if any predictor 

does not contribute enough. Thus, it has special “adaptive” procedure.  

 MARS is a regression technique which investigates the relationship between 

variables.  

 “Splines” refer to the class of piecewise functions that are used in modeling. 

To obtain a spline, original space is divided into intervals separated by knot 
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values. Thus, any shape can be approximated with the help of sufficient 

number of knots.   

MARS constructs a model after conducting forward and backward algorithms. In the 

forward part, a large model including many basis functions (BFs) is obtained. This 

large model may lead to overfitting. In this stage, some of the terms in the model 

may not contribute to the model. Thus, a backward algorithm is applied to reduce the 

number of terms and retain only the ones that contribute.    

MARS is a nonparametric regression method. This regression is free from the 

assumption for the relationship that may exist between the dependent and 

independent variables. However, in parametric models such as MLR, the relationship 

between the response and predictor variables is predetermined. These parametric 

models are easy to implement but constrained by the assumptions of the model. The 

nonparametric models are defined to obtain a model where the assumptions of the 

parametric models are not satisfied.   

The classical nonparametric regression is defined as 

  ;,,1,, ' nixfy iii                                                                                (1)                                                                  

where β stands for the parameters, n represents the sample size of the data and 
ix
 

represents the independent variables. In this model, f  is in an unknown functional 

form.  

In the MARS model, the following forms of the independent variables are used as 

inputs to obtain a model. These are

 

 


 

 
otherwise,0

,, txiftx
tx          



 

 
otherwise,0

,, txifxt
xt                                              (2) 

where 
 

njjj xxxt ,,, 21   
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The first form of the BF takes the value of zero for the values less than t, and takes 

the value of the magnitude of the difference between t and x, otherwise. In the second 

form, the value of it is set to zero if the value of x is greater than t. Otherwise, it is set 

to the magnitude of the difference between t and the value of x.  Thus, the value of 

the BF always takes a nonnegative value.  Figure 1 represents the BFs (x-0.5) and 

(0.5-x). They are piecewise linear functions and the value of t is defined as the knot 

value for the BF. Moreover, these BFs are also called linear splines (Hastie et al., 

2001). These two functions are reflected pairs of each other. 

 

Figure 1. The BFs  )( tx  and  )( xt used by MARS (Based on Hastie et al., 

2001)
   

 

 

Here, the purpose is to obtain the reflected pairs for each jx with knots at each 

observed value of ijx . In this notation, p represents the number of independent 

variables. The set of BFs where  
njjj xxxt ,,, 21   and pj ,,2,1  is:  

    


 jj xttxC , .                                                           (3)
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There are np2 BFs, if all of the observed values of independent variables are distinct. 

The key point here is that each BF depends only on one independent variable, .jx  

The multivariate spline BFs take the following form to employ the BF that is tensor 

products of univariate spline functions: 

    ,)(
1







mK

k

kmkmkmm txsxB                                                                                  (4) 

where 
mK represents the number of truncated functions in the m

th
 BF, kmx shows the 

input variable corresponding to the k
th

 truncated linear function in the m
th

 BF and 
kmt

is the corresponding knot value and 
kms takes the value of 1 or -1.  

The method for obtaining the model is similar to forward stepwise MLR. However, 

in MARS, the BFs coming from the set C given in (3) are used instead of original 

independent variables.  The MARS model is defined as  

,)()(
1

0   


xhxf
M

m

mm

                                                                                      

 

where each 
mh  belongs to the set C and M represents the number of BFs in the 

current model. 

Given a choice for the ,mh  the coefficients for the parameters (
m ) are estimated by 

minimizing the RSS with the same method similar to the one used in the usual MLR. 

In this part of modelling, the key point is to determine the )(xhm
. The constant 

function 1)(0 xh
 

is the first function that is used, and all functions in C  are 

considered as candidate functions.  

The functions below are possible alternatives for BFs (Kriner, 2007): 

 1 

 jx  

(5) 
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 jl xx  

  )( kj tx  

   )()( hlkj txtx  

In the BFs above which include multiplication of two BFs, the independent variables, 

lx  and jx  are different. This is due to the algorithm of the MARS model. According 

to the algorithm, BFs cannot include same independent variables.  

The decision on adding a new BF to the current model is explained with the 

following algorithm. Let M represent the current model set. The BFs in the current 

model are multiplied by the BFs in the candidate set C (with their reflected pairs) as 

shown below:  

      .,ˆˆ
21 Mhxtxhtxxh ljlMjlM 

         (6) 

The BF which causes the most amount of reduction in the residual error is added to 

the model first. The estimates of coefficients (including 1
ˆ

M and 2
ˆ

M ) are 

determined by the LS approach. When the maximum number of terms, which is 

determined by the user, is reached, this process is finished.  

According to (Kriner, 2007) the functions given below can be some candidate BFs:  

 ,,,2,1, pjx j   

 ,jl xx if jx and 
lx  are already in the model, 

 ,)(  kj tx if jx  is already in the model, 

 ,)()(   hlkj txtx  if  )( hlj txx  and ,)( lkj xtx   are already in the 

model.  

The forward procedure of MARS is finished by yielding a large model.  This model 

may causes overfitting in the data.  In this situation, the model estimates the data 

well, however it is not safe to generalize it. So, a backward deletion procedure is 
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needed. In this step, a term in the model whose deletion causes the least amount of 

residual squared error is deleted first. This procedure estimates the best model, ,ˆ
Mf  

of each size (number of terms) .M  Cross validation (CV) is a possible solution for 

finding the optimal value of .M  However, generalized cross validation (GCV) is 

used due to computational purposes. The GCV is defined as    

  

 
,

/)(1

ˆ

1

2

nMC

xfy

GCV

n

i

iMi








            (7) 

where n represents the number of data samples. The numerator of the GCV  is the 

usual RSS.  

In general, )(MC is calculated by using the following formula:  

1))(()( 1   TT BBBBtraceMC .          (8) 

)(MC represents the cost penalty measure of a model in which there are M BFs. So, 

B is the matrix of BFs with dimensions .nM    

However, )(MC  also has a representation other than the above formula. For 

instance, it is also calculated as ,cKr    where r  represents the linearly independent 

BFs, and K shows the number of knot points used during the forward step and the 

value of c is generally taken as three. In case of additive models, the value is taken as 

two. If the value of  )(MC  is small, it produces a model with many BFs. Otherwise, 

a smaller model with less BFs is obtained. This procedure continues for all BFs and 

then chooses the best model that has minimum GCV. .  

MARS uses BFs for modeling instead of original variables and has a particular 

modeling procedure. Piecewise linear BFs allow model to operate locally instead of 

global modeling. Multiplication of two BFs produces a result which is nonzero only 

over the factor space where both components are nonzero (Figure 2). Thus, the 

regression surface is obtained by using only nonzero components locally- only when 
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they are needed. If polynomial BFs are used, then the multiplication of BFs would be 

nonzero everywhere and would not work as well.  

The BF in Figure 2 is defined as the multiplication of two BFs such as 

      ., 22715121 
 XxxXXXh           

The forward procedure of modeling is hierarchical. Multiway products of BFs are 

constructed from the terms already exist in the model. If a higher-order level BF is in 

the model, then its lower-order components must also exist in the model. For 

instance, a three-way product can only exist in the model if one of its two-way 

components is already in the model. This property avoids constructing a large 

number of alternatives and focuses on the BFs in the model.  

   

 

Figure 2. Two-way interactions BFs (Based on Hastie et al., 2001)
  
 

 

 

There is a limitation in the construction of the model: each independent variable can 

exist at most once in a product. This prevents the occurrence of higher-order degrees 

of a variable which increase or decrease too sharply near the boundaries of the 
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feature space. Piecewise linear function can approximate the higher-order powers in 

a more stable way.  

There is an option to set the upper limit of the degree of interaction in the MARS 

model. By setting it to three, the powers of four and more interactions are not 

allowed. If it is set to one, an additive model is produced. This makes the 

interpretation of the model easier.    

3.2. Conic Multivariate Adaptive Regression Splines (CMARS) 

CMARS is a modified version of MARS developed by using the CQP. The letter 

""C  here stands for “convex” and “continuous”. Yerlikaya (2008) explains the 

modified model as the following. Note that the notations below will be used for the 

BFs:  

   






  )(),(,)(),(  xxcxxc .       (9)
                              

 

Here,  [ ] : max 0,q q  and   is a univariate knot. Each BF is a piecewise linear 

function which has a knot value at  .  

In the previous section, the nonparametric regression model is explained as    

  , Xβ,fY                                                      (10) 

where Y  represents the dependent variable whereas  TpXXX ,,, 21 X  is a vector 

of independent variables.   is the error term which is assumed to have zero mean 

and finite variance.  

The objective here is to obtain reflected pairs for each independent variable, 

),,2,1( pjX j   with knot values at  
piiii ,2,1, ,,    or at 

 T
piiii xxxx ,2,1, ,,,   of that independent variable. These ix  values are very close 

but not equal to i  value.  The aim of this modification is to take the derivatives 

during optimization process. The nonparametric regression model given in (9) can be 

explained by the following formula  
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  ,
1

0   


M

m

mY X                             (11) 

where 0  is the intercept and ),,2,1( Mmm   are the BFs, where m  comes 

from   which is defined by 

        .,,2,1,,,,|, ,,2,1 pjxxxXX jNjjjj  

     (12) 

The m
th

 BF is defined as 

     ,
1 

 
m

m
j

m
j

m
j

j

m xsx





 

where    is the truncated linear functions multiplied in the m
th

 BF and m
j

x


 is the 

independent variable associated with m
th

 BF. m
j

   represents the knot value 

corresponding to the variable m
j

x


 and m
j

s


 takes the value of 1 or -1. There are 2np 

BFs in total in case of distinct independent variables.
 

The BFs, which came from the set of ζ, are represented by ψm in the model. βm is the 

coefficient for the m
th

 BF (m = 1,2,…,M). 

In CMARS, the backward algorithm is eliminated. Instead of backward procedure, 

penalty terms after applying LS are used to control the lack of fit.
 

3.2.1. The Penalized Residual Sum of Squares Problem (PRSS) 

For the MARS model, the Penalized Residual Sum of Squares (PRSS) has the 

following form: 

 
max

1 2

2
22 2

,

1 1 1
, ( )( , )

( ) ( ) ,

T

Mn
m m

i i m m r s m

i m r s
r s V m

PRSS y f D d

 

  
   



         x t t




      (14) 

      (13) , 
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where 
maxM is the number of BFs reached at the end of the forward algorithm; 

 ( ) | 1,2,...,m

j mV m j K    is the variable set associated with thm  BF, 
m . 

 Tmm

m

m

tt


,,,
2


1m
tt represents the variables which contribute to the m

th
  BF, .m  

The 
m values are always nonnegative and used as the penalty parameters 

(m=1,2,…, Mmax). Moreover, the   values in the following term (13) is taken as 

1 2
, ( ) ( )m mm

r s m m m

r s

D
t t 






 

t t


  ,                                                               (15) 

 1 2 1 2 1 2( , ), , where , 0,1 .         
 

If ,2i  the derivative )(,

m

msr tD 
 disappears, and by addressing indices ,sr  the 

Schwarz’s Theorem can be applied. 

The optimization approach to the problem takes both the accuracy and lower 

complexity into account. The term accuracy refers to the small sum of squares of 

errors. The tradeoff between these two terms are expressed by penalty parameters 

and solved by CQP.  

The purpose of obtaining low complexity is explained by two ways. First, the areas 

where the base functions contribute to an explanation of the observations should be 

large. In the classification view, the classes should be large and this is obtained by 

the flat model. This flat model is defined as the linear combination of BFs which 

have small residual errors. This means the model is moved from the coordinate axes 

to the data points   niyx ii ,,2,1,  . The aim is to dampen the coefficients of the 

BFs,
m , while making no change in the goodness of data fitting. The second 

approach is to achieve the stability of the estimation by taking care that curvatures of 

the model function with its compartments.  

By considering (11), (13) and (14), the objective function takes the following form: 
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where ( , ,..., )T

i i i, i,px x x x  represents any of the independent variables and 

1 2, , ,( , ,..., )
Km

m T

i i i i  = x x x  x  stands for the corresponding projection vectors of 
ix  onto 

those coordinates which contribute to the m
th

 BF, and they are related with the i
th

 

output 
iy . Those coordinates are collected from the set .mV   

To obtain discretized form, the following changes are made. The input data which is 

represented by ,1 ,2 ,( , ,..., )T

l l l l px x xx
 

generates a subdivision of any sufficiently 

large parallelpipe Q of IR
n
 . 

The parallelpipe, which is represented by Q , contains all the input data, and it is 

expressed as 

   1 1 2 2

1

, , ... ,
p

p p j

j

Q a b a b a b Q


        ,                            (17) 

where , ,j j jQ a b     , ( 1,2,..., ;  1,2,..., )j l j ja x b j p l N    . 

It is assumed that 
, .j l j ja x b  For all j reordering is done on the coordinates of the 

input data points as: 
jljljl

j
n

jj xxx
,,, 121

   where nj ,,2,1  ),,2,1( n

1,2,..., )j p , and 
,jl j

x


 is the j
th

 component of jl
x , the 

jl
th
 input vector after 

reordering. Without loosing generality, it can be assumed that , ,j jj jl l
x x

 

  for all 

n,,2,1,    with ;   i.e. 
jljljl

j
n

jj xxx
,,, 121

  . 

By using the previous notations, the parallelpipe is expressed as  

 
n p

j

jljl
j

jj
xxQ

0 1

,, 1
,

 

 





        (18) 

         (16) 
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So the PRSS takes the following form;
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 The following notations related with )( i  are defined in order to use in the forward 

steps: 
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The approximation to the PRSS is defined as 
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To simplify (22), the PRSS is redefined as follows:
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where  1( ) ( ),..., ( )
T

Nd d d    is a matrix with dimensions of   1max  Mn
 
, 

and 
2

  denotes the Euclidean norm and the numbers 
imL  are defined as 

1
2

1 2

2
2

,

1
, ( )( , )

ˆ ˆ( ) .

T

m m

im r s m i i

r s
r s V m

L D

 


 



  
  

     
  
  

  x x




                                                      

 

The first parts of the equations (22) and (23) are equal since it can be written as  
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3.2.2. Applying Tikhonov Regularization  

The linear systems of equations ( ) y d  can be solved approximately by using 

the PRSS. The problem is classified as ill-posed, which means irregular or unstable. 

Thus, Tikhonov regularization problem is considered for the PRSS problem since it 

is the most widely used method for converting the ill-posed problems to well-posed 

(regular or stable) ones.  

When (23) is considered again, the PRSS can be written as 
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 Tikhonov regularization needs one  parameter. However, in Equation 26, there is a 

vector of parameters, i.e. 
T

M ),,,(
max21   . To overcome this problem, same 

value for each derivative term is defined as .
max21   M  

 

            (24) 
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Then, the PRSS is expressed as  

2 2

22
( )PRSS   y d L  

                                                                            (27)
 

where L is an
max max( 1) ( 1)M M   -diagonal matrix with first column 

  mK
n 10 

0L   

and the other columns being the vectors 
mL  introduced above. Here, ,  with the 

dimensions of ),1)1(( MaxM
 
is a vector contains parameters to be estimated. 

   

After these modifications, the problem becomes a Tikhonov regularization problem 

with ,0  i.e. 2  for some .R  

Tikhonov regularization approach tries to find solutions to minimize the two
 

objective functions: 
2

2
( )y d   and 

2

2
L . Thus, this is a multiobjective problem. 

Tikhonov regularization approach combines these two objective functions into a 

single functional form by using weighted linear sum of the functions with weights 

defined by .   

3.2.3. An Alternative Approach: The Conic Quadratic Programming (CQP) 

The PRSS can be taken from the view point of CQP, a technique used for continuous 

optimization. Thus, the Tikhonov regularization problem can be formulated again by 

using the CQP. The optimization problem below is considered by putting an 

appropriate bound, M.  

2

2

2

2

min ( )

subject to .M

d y

L

  


         (28) 

Here, the LS objective function is tried to be minimized subject to the inequality 

constraint function. To obtain feasible solution, this constraint function should be 

nonnegative.  
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By adding a new variable and taking the square root of the constraint function, the 

problem can be expressed as the following way: 

,

2

2

min ,
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Thus, the problem can be expressed as a CQP problem with the following way 
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The problem (Equation 29) should be reformulated to obtain the optimality condition 

as the following 
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where max 21,
MnL L

 are the ( 1n ) and (
max 2M  ) dimensional ice-cream (or 

second-order, or Lorentz) cones, defined by  

  1 1 2 2 2

1 2 1 1 1 2( , ,..., ) | ... ( 1).n T n

n n+ nL x x x x x x x n 

       x R   (32) 

The dual problem to the latter primal one is explained as below 

  (30) 

            (31) 



23 

 

 
max

max

maxmax max

2max

1 1 2

1

1 2

11 1

1

1 2

max ( ,0) ,

0 11
such that ,

( )

, .M

T T

M

TT
Mn

T T
MM M

n

M

L L 





 



 

    
        

    

 

0

00

00 0

y

d L

 

 


 
                     (33) 

Moreover, 
1 2( , , , , , )t      is a primal dual optimal solution if and only if   
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3.2.4. MOSEK: The Optimization Software Used in CMARS 

In this thesis, MOSEK software is used for solving optimization problems. The 

package is used as an MATLAB add-on and can solve CQPs as well as linear convex 

quadratic, general convex and mixed integer problems. 

The package can handle high-dimensional data and can be used with C/C++, JAVA, 

MATLAB, and Python. Moreover, MOSEK supplies an interior-point optimizer 

with basis identification. The package has an efficient presolver for reducing the 

problem size before optimization. For linear programming (LP), it provides primal 

and dual simplex optimizers.  

MOSEK can be used with MPS, LP and XML formats for reading and writing. The 

package can also do sensitivity analysis for linear problems. It can solve a problem 

with different optimizers simultaneously with the help of concurrent optimizer.  
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3.3. The Bootstrap Method 

The bootstrap is a resampling technique which takes samples from the original data 

set with replacement.  It is a data-based simulation method useful for producing 

inferences. Even though the term “boot” is used in the computer science, the term 

bootstrap is different from it. The term bootstrap is used by Efron (1979), which is 

inspired from a story (Adventures of Baron Munchausen) written by Rudolph Erich 

Rapse. In the story, when the Baron fell to the bottom of a deep lake, he survived by 

“pulling himself up by his bootstraps,” which hides the idea of being close to doing 

the impossible (Hjorth, 1994).  

Two major problems in applied statistics are the determination of an estimator for a 

particular parameter of interest and the evaluation of its accuracy. The evaluation of 

accuracy is determined by the estimates of the standard error of the estimator and 

conducting CIs. Efron (1979) focused on these two problems when introducing the 

bootstrap methodology. The purpose of bootstrap is to conduct basic statist ical 

concepts by using computer-based implementation. The application of this method is 

not difficult, but depends heavily on computers. Thus, they are called computer-

intensive methods (Chernick, 2008). 

The bootstrap is widely used for estimating bias, standard errors and parameters. The 

approach is generalized to solve problems in independent but not identically 

distributed data, dependent data, and discrimination and regression problems. The 

application of bootstrap includes the following: 

 Estimation of standard errors and bias, 

 Constructing CIs, 

 Subset selection in regression, 

 Classification,  

 Kriging, 

in the field of psychology, geology, econometrics, biology, engineering and 

accounting (Chernick, 2008). 
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The bootstrap procedure, which is graphically shown in Figure 3, can be explained 

with the following steps. 

1. Generate a random sample (x
*b

) of size n (the same sample size with the 

original data) from the empirical distribution with replacement.  

2. Compute the value of the statistic of interest for this sample. 

3. Repeat steps 1-2 B times (i.e. b = 1,…, B). 
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Figure 3. The Bootstrap Algorithm (Efron and Tibshirani, 1993) 
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Taking the observations with replacement from the sample to each bootstrap sample 

makes the observations independent from each other. Otherwise the observations 

become dependent. By treating the original sample as the population, the bootstrap 

algorithm is defined as “the population is to the sample as the sample is to the 

bootstrap samples” by Fox (2002).  

Let )(FT be a statistic of interest and 
nxxx ,, 21

 be the data observed of the 

random variables 
nXXX ,, 21
 are i.i.d. F and },,{ 21 nXXX  denote the entire 

data set. The key idea is to resample from the original data. Thus, the bootstrap 

methodology depends on treating the sample as a population. If F̂ denotes the 

empirical distribution function (will be explained in the next subsection) of the 

observed data, then the estimator of the parameter is defined as ).ˆ(ˆ FT  Statistical 

inference deals with estimating the distribution of )ˆ(FT or R(χ,F), which is defined 

as a function of the data and its unknown distribution function. Sometimes, the 

distribution of this random variable cannot be derived theoretically. In these cases, 

bootstrap method provides an approximation to the unknown distribution based on 

the empirical distribution function. This method can be applied to make the analyst 

free from assumptions, and thus, to obtain quick solutions (Davison and Hinkley, 

1997). 

3.3.1. Empirical Cumulative Distribution Function (ECDF) 

It can be intractable to derive the distribution of the random variable R(χ,F) or it may 

be unknown. In these cases, bootstrap provides an approach to obtain the distribution 

and to make inferences. Use of the Empirical Cumulative Distribution Function 

(ECDF) is defined as one of the main approaches in statistical inference by Gentle 

(2009).  

Suppose a researcher is interested in the statistic ).ˆ(ˆ FT  Moreover, assume that it 

is an estimate of the population parameter )(FT . To derive the sampling 

distribution of̂ , some assumptions should be satisfied. Otherwise, the bootstrap 

method will help to obtain the distribution empirically.  
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The exact distribution of ̂  cannot be obtained for some cases. For these cases, the 

most popular approach is to obtain the asymptotic distribution of T. However, this 

method has the following drawbacks (Fox, 2002): 

 If the assumptions for the population are not satisfied, then the sampling 

distribution for the T will be probably incorrect. Even though the results can 

be relied on, the level of accuracy will not be obtained for small samples. 

 Trying to obtain the sampling distribution of the statistic can be intractable.  

The bootstrap provides an empirical approach for the solution of this problem. The 

nonparametric bootstrap method uses the data as the population and draws samples 

from it with replacement. Thus, the sampling distribution of the statistic is obtained 

from each sample by making the researcher free from the assumptions.  

In mathematical statistics, the cumulative distribution function is defined as  






x

dxxfxXPxF )()()(  for continuous cases  

and           (35) 





ax

i

i

xfaF )()( for discrete cases.        

When the mathematical form of the distribution is not known, the ECDF is used as 

the estimate of the underlying distribution. This is also known as the nonparametric 

estimate. If the sample is estimated from a known form, then this is called as the 

parametric setting. So, in the parametric form, the CDF can easily be obtained with 

the help of parameters.  

For the nonparametric setting, the CDF is obtained by using order statistics. Let 

,)()2()1( nXXX   be the order statistics of a sample whose size is n, and )(iX

be the i
th

 order statistic.  Then, the ECDF, )(xFn
, given in (37) represents the number 

of observations less than or equal to x divided by the sample size: 
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In bootstrap inference, the sources of error are defined as follows: 

1. The error originated from the sample by not representing the population, 

which is a common problem in every branch of statistics. The only 

assumption for the bootstrap is that the sample is a good representative for the 

population.  

 

2. The sampling error originated by not covering all bootstrap samples. The 

solution for this kind of error is to make the number of bootstrap samples (B) 

large.  

 

3.3.2 Bootstrapping Regression 

Let niforxY i

T

ii ,,1,    be the usual MLR model. In the model, xi 

represents the independent variables and β shows the parameters. The error terms, εi, 

are normally distributed with zero mean and constant variance. The parameters, β, 

are distributed normally.  

If all assumptions of the model are satisfied, then the model is appropriate for the 

data and the results will be reliable. However, in the following cases there are some 

problems (Hjorth, 1994). If  

 the model is non-linear, 

 the statistical analysis of estimation has no direct classical solution, 

 errors are not normally distributed, 

 there are parameters dependent on another function.  

Efron and Tibshirani (1993) indicate that bootstrap is applicable to general models 

including non-linearity of parameters; fitting methods different from LS approach by 
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giving reasonable outputs. According to them, bootstrapping regression is applicable 

to models that have a mathematical form in addition to models that have no 

mathematical solution.  

The principle of bootstrap for regression models is defined as “To compute a test, the 

bootstrap principle is to construct a data-generating process (DGP), called the 

bootstrap DPG, based on estimates on the unknown parameters and probability 

distributions. The distribution of the test statistic under this artificial DGP is called 

bootstrap distribution” (Flachaire, 2003). 

Moreover, applying bootstrap to regression modeling, a computer-based result for 

accuracy of the parameters is yielded. Here, “accuracy” refers to how much ̂  

fluctuates, if independently generated replicates of ̂  observed, which is not easy to 

obtain in real situations. Chernick (2008) expresses that in the non-Gaussian case of 

errors, the probability distribution of the parameters cannot be determined. Thus, 

constructing CIs, prediction intervals and obtaining standard errors are not possible. 

The bootstrap approach provides a method for approximating the distribution of 

parameters through bootstrap sample estimates.  

The bootstrapping regression methods are classified into two parts: Random-X and 

Fixed-X Resampling. Each method has its own advantages and disadvantages.  

3.3.2.1   Random-X Resampling (Pairs Bootstrap)  

Freedman (1981) calls it as “correlation model” since it is applicable to 

heteroscedastic models. This method is also known as “vector resampling” (Hjorth, 

1994). It is recommended to be used when there is heteroscedasticity in the residual 

variance or correlation structure in the residuals, or it is suspected that some 

important parameters are missing in the model (Chernick, 2008). 

Response variable is represented by yi, and predictors are denoted by xi. 

Step 1: Select B bootstrap samples of  nixxxyz ikiiii ,,1),,,,,( 21

'    
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Step 2: Fit a model to the vector 
'

iz   and obtain the estimates of parameters (β) and 

save them.  

Step 3: Repeat this procedure B times and obtain bootstrap estimates of parameters.  

The design X is assumed to be deterministic as in the usual regression approach. But 

this approach makes the X matrix random so the estimates will lead to the variability.  

This method can be more advantages to be used in the following cases:  

 If the distribution of the error terms is different for the independent variables 

(i.e. heteroscedasticity, skewness),  

 If the non-linearity part is not well-defined, 

 For large sample sizes, if the data consists influential observations, in case of 

heteorscedasticity or skewness. 

 

3.3.2.2  Fixed-X Resampling (Residual Resampling) 

In this model, the response values are taken as random due to the error components. 

Its use is recommended in case of identically distributed errors (Fox, 2002). 

Step 1: Fit a model to the data and obtain the fitted values,
iŷ and the residuals,

i̂ . 

Step 2: Select a bootstrap sample of residuals and add them to the fitted values. 

These new fitted values are now new response variables, 
binew yy ̂ˆ  . 

Step 3: Fit a model to the original independent variables and new response variables. 

Obtain the new parameters,   Xynew
.  

Step 4: Repeat this procedure B times and collect the parameters. 

This method can be more advantages to be used in the following cases:  

 If there is no doubt about the adequacy of the model,  

 If the predictors are considered as fixed,  
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 For small data sets or data with influential observations. 

 

3.3.2.3  Wild Bootstrap 

The wild bootstrap is a new approach for heteroscedastic models. According to Liu 

(1988), the errors of the model have two-point distribution which is called 

Rademacher distribution, and defined as follows: 















otherwise

x

x

xf

,0

1,5.0

1,5.0

)(  .        (37) 

Step 1: Fit a model to the data and obtain the fitted values,
iŷ , and the residuals,

i̂ . 

Step 2: These new fitted values are now new response variables,
binew yy ̂ˆ  , 

where the error distribution is the f(x) given in (38).
  

Step 3: Repeat this procedure B times and collect the parameters. 

In the wild bootstrap, the errors are randomly assigned as 1 or -1 and attached to the 

fitted values.  

Flachaire (2005) suggests the use of wild bootstrap instead of pairs bootstrap in case 

of heteroscedasticity since the simulation studies give better results.  

The choice of the bootstrapping regression model depends on how well the 

assumptions of the model are satisfied. For instance, if the model is MLR, then the 

errors must be independent from the covariates and must be i.i.d. Then, the Fixed-X 

resampling is reliable. However, Random-X resampling is not as conservative as the 

Fixed-X resampling.  It performs better even when the assumptions are not satisfied. 

3.3.3. Bootstrap Confidence Intervals 

CIs are used to determine the reliability of the parameter estimates. Generally it is 

defined as the  
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    1)),((Pr )2/1()2/( fTff .                                                                  (38) 

In order to be able to use this method, the distribution, f, must be specified.  

The types of CIs are described below (Martinez and Martinez, 2002). 

i. Standard Normal Interval 

For a parameter θ, the standard normal CI is defined as  

    ,ˆˆ,ˆˆ 2/2/1 eszesz    
                                                                                       (39) 

where es ˆ  represents the estimated standard error.   

ii. Percentile Interval 

Percentile interval uses the ECDF of the bootstrap sample to find the upper and 

lower endpoints. It is defined as  

 )2/1*()2/*( ˆ,ˆ   

BB .                                                                                                      (40) 

If the bootstrap distribution has a roughly normal shape, then the percentile and 

standard normal CIs give closer solutions (Efron and Tibshirani, 1993). According to 

the Central Limit Theorem the bootstrap histogram will approach to normal shape as 

the sample size gets larger. However, for small samples, two intervals may give 

different results. Efron and Tibshirani (1993) indicate that percentile method is a 

computational approach for the generalization of effectiveness of the standard 

normal interval. The percentile interval automatically transforms data; the user need 

not have to know the true type of transformation. However, in standard normal 

interval, the user must know the correct type of transformation to construct the CI.  

iii. Bootstrap-t Interval 

 In this CI, there is no need to make normality assumption. The construction steps of 

the Bootstrap-t CIs are as follows: 

Step 1: For each bootstrap sample, calculate the following value 
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 .                                                                                                             (41) 

Step 2: Calculate the th percentile of the
*

bz , which is represented by )(ˆ t with the 

following formula 

 
B

t )(*

b
ˆz# 




  .                                                                                                 (42) 

 

Step 3: Construct the CI as  

 estest ˆˆˆ,ˆˆˆ )()1(    
.        (43) 

This type of CIs is applicable mostly to location statistics.  

3.3.4. Bootstrap Estimate of Bias 

Bias is used to investigate the performance of a measure (Martinez and Martinez, 

2002). Actually, it measures the statistical accuracy of a measure. It is defined as  

,][)(  TETbias                                                                                                   (44)                         

In general, it is the difference between the expected value of a statistic and the 

parameter value. For bootstrap estimate of bias, the empirical distribution of the 

parameter is used. It is defined as the following formula. 

,ˆˆˆ *  Bsbia                                                                                                         (45) 

where 



B

b

b

B 1

** )ˆ(
1ˆ  .  

where *̂  is the mean of the values obtained by bootstrapping. The bias corrected 

estimator of a parameter is defined as 

.ˆˆ~
Bsbia                                                                                                           (46) 
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When the Equation (45) is inserted to Equation (46) the bias corrected estimate is 

explained by the following formula. 

.*ˆˆ2
~

  .                                                                                                            (47)                                                                                

3.3.4. Cross Validation (CV) Technique and the Performance Criteria  

 

In the comparison of models, 3-fold CV technique is used (Martinez and Martinez, 

2002; Gentle, 2009). In this technique, data sets are randomly divided into three parts 

(folds). At each attempt, two folds (66.6% of observations) are used to develop 

models while the other fold (33.3% of observations) is kept to test them.  

The performances of the models developed are evaluated with respect to different 

criteria. These include accuracy, precision, complexity, stability, robustness and 

efficiency.  The accuracy criterion is used to measure the predictive ability of the 

models while precision criterion is used to determine how variable the parameter 

estimates are; the less variability indicates more precision. The MAE, R
2
, PWI and 

PRESS measures are used to evaluate the models according to accuracy. On the other 

hand, the precision of parameter estimates are determined by their empirical CIs. 

Other criterion used in the comparisons is the complexity; it is measured by the 

MSE. Besides, the stabilities of the accuracy and complexity measures obtained from 

the training and test data sets are also evaluated. The definitions of these measures 

are placed in Appendix A. Furthermore, robustness of the measures with respect to 

different data sets are evaluated by considering the standard deviations of the 

measures. Moreover, to assess the efficiency of the models build, computational run 

times are utilized. 

 

 

 

 



35 

 

CHAPTER 4 

 

APPLICATIONS AND RESULTS 

 

 

4.1. Data Sets 

In order to evaluate and compare the performances of the models developed by using 

the MARS, CMARS and Bootstrapping CMARS (BCMARS) methods, they are run 

on four different data sets. These data sets are particularly selected to observe the 

effects of certain data characteristics such as size and complexity on the methods’ 

performances. Here, the size and the complexity features are represented by the 

sample size (n) of the data set and the scale (p), the number of variables involved in 

the problems, respectively.   

In this study, two different sample sizes (small and medium) and scales (small and 

medium) are considered. The data sets are gathered from variety of sources which 

meet the constraints of the study (Table 1). Before conducting any analysis, 

preprocessing is applied to all data sets including standardization of variables and 

handling missing values.  

Table 1. Data Sets Used in the Comparisons 

Scale (p) 

 

 

 

 

Sample Size (n) 

(n, p) Small Medium 

Small Data Set 1: 

Concrete Slump 

(CS)  

(103,7) 

Data Set 2: 

Uniform Sampling 

(US) 

(160,10) 

Medium Data Set 3: 

PM10  

(500,7) 

Data Set 4: 

Forest Fires (FF) 

(517,11) 
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 Small-size and small-scale: CS, labeled as Data Set 1, includes seven 

independent variables with 103 observations (Yeh, 2007).  

 Small-size and medium-scale: US, labeled as Data Set 2, consists of 10 

independent variables and 160 records (Kartal, 2007).  

 Medium-size and small-scale: PM10, labled as Data Set 3, has seven 

independent variables with 500 observations (Aldrin, 2006).  

 Medium-size and medium-scale: FF, labeled as Data Set 4, contains 11 

independent variables and 517 records (Cortez and Morais, 2007). 

In this study, the CV approach is use as defined in Section 3.4. Therefore, instead of 

the original data sizes stated above, two-third of the observations are used for 

training and the rest is used for testing the model.  

4.2. Application of the Methods 

In this study, three different packages are used to obtain the CMARS and then 

BCMARS models. To develop a CMARS model, first, the R package (2.10.0, R 

Development Core Team, Austria) is used to obtain the BFs provided from the 

forward step of MARS. Then, the code written in MATLAB (2009a, The 

MathWorks, U.S.A.) by Yerlikaya (2008) and developed further by Batmaz et al. 

(2010) is used to obtain CMARS models. For optimization process in CMARS, the 

MOSEK optimization software (6, MOSEK ApS, Denmark) which is described in 

the next subsection (Section 4.2.1) is utilized. Then, all computations, including 

bootstrap, are run using the code written in MATLAB.  

CMARS replaces the backward elimination of MARS with conic quadratic 

optimization. It utilizes all BFs yielded from the forward part of the MARS 

algorithm. To fit a MARS model to a data set, the R package “Earth” (Milborrow, 

2009) is preferred due to the lack of MARS code in MATLAB.  Nevertheless, there 

are some limitations of this package (Milborrow, 2009). These include the 

followings: 
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 R is not capable of obtaining piecewise cubic models which means that it can 

build at most two-way interactions. 

 This package is not capable of handling missing values. 

To carry out runs automatically, a link between MATLAB and R is conducted. With 

this link, the commands which belong to the R package can be run in MATLAB 

without opening its environment. After providing these BFs as inputs to the CMARS 

model, the program written by Batmaz et al. (2010) is run. Note here that, in this 

study, this program is improved further to make its interface more user-friendly.  In 

its current version, the program can be run automatically by only supplying the data 

set. Hence, by developing codes for automatization, probable mistakes in the 

inputting procedure are prevented. After obtaining the CMARS model, three 

different bootstrap approaches are applied by using this improved program.  

The following steps belong to the algorithm followed for obtaining three different 

BCMARS models, labeled as BCMARS-1 (uses Fixed-X Resampling), BCMARS-2 

(uses Random-X Resampling) and BCMARS-3 (uses Wild Bootstrap). 

Step 1: The set of BFs (from the first part of the MARS algorithm) are obtained. The 

BFs are considered fixed and they will be used for bootstrapping. 

Step 2: A CMARS Model is constructed and the optimal value of M is found. To 

achieve this, the curve of RSS  versus norm of L  in the log-log scale is obtained 

(see Figure 4). The optimal value of this curve is the corner point which is 

demonstrated by a red point. The selected value gives the best solution for both 

accuracy and complexity.  

Step 3: Since there is not a distributional assumption, nonparametric bootstrap is 

used for the analysis. 

 BCMARS-1:  the original data is used to obtain the residuals and fitted values. 

The bootstrap sample of residuals are selected with replacement and added to 

the fitted values, so the new dependent variable is obtained. A model is 
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constructed by using the fixed independent variables and this new dependent 

variable to obtain the parameters of BFs. 

 BCMARS-2: the bootstrap sample of the data (including independent and 

dependent variables) is selected. This bootstrap sample and the BFs coming 

from Step 1 are used to obtain the parameters of the model (including the 

intercept).  

 BCMARS-3: a model is fitted to the original data and the fitted values are 

obtained. The bootstrap sample of errors is obtained with Rademacher 

distribution. The fitted values and the bootstrap sample of errors are added to 

obtain new response variable. A model is constructed by using the fixed 

independent variables and this new dependent variable to obtain the 

parameters. 

 Step 4: Step 3 is repeated 1000 times and the ECDF of each parameter is obtained. 

Step 5: For the significance level taken as α = 0.1, the percentile CI of each 

parameter is constructed. If this interval includes zero, the corresponding BF is 

removed from the model.  

Step 6: The Steps 2-5 are reapplied with the remaining BFs until all the CIs of the 

parameters do not include zero.  

The percentile method is used for conducting the CIs, since there is no know form of 

the distribution of parameters. Efron and Tibshirani (1993) suggest the number of 

bootstrap samples to be as at least 1000 to construct percentile intervals.  Then, the 

performance measures of each model obtained in three different ways are calculated. 

These are named as S1, S2 and S3.  

 S1 is the solution obtained by taking the corner value of graph in Figure 4. 

 S2 is the solution selected as an alternative to S1 and shown with the blue point 

in the Figure 4. This point may give better performance measures than S1. 

 S3 is the solution obtained by bias-corrected method of parameters. 

Moreover, the computational run time of the methods are recorded to be compared.       
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Figure 4. The plot of norm L  versus RSS  

4.3. Results 

The performance results of the MARS, CMARS, BCMARS models (BCMARS-1, 

BCMARS-2 and BCMARS-3, explained in the previous Chapter) with three 

solutions (S1, S2 and S3) for training and  test data sets and for the stabilities of 

measures are presented in Tables 2-4 for Fold 1; in Tables 5-7 for Fold 2; in Tables 

8-10 for Fold 3. The performance criteria used to compare models are expressed in 

Appendix A. Small  values of MAE, MSE and PRESS and higher values for R
2
 and 

PWI measures indicate better performances.  The comparisons are made by 

investigating the absolute differences. The results can be interpreted as follows: 

For training data set of Fold 1 (Table 2): 

 For all data sets, Random-X and Fixed-X Resampling methods produce the same 

results for all solutions (S1, S2 and S3). 

 In CS data set, Fixed-X Resampling gives the same results with the Random-X 

Resampling which has the best performance. 

 In Forest data set, no significant BF is obtained for Random-X Resampling method.

S1     S2         

    S2 

 



 
 

Table 2.  Performance Results of the Models Built for the Training Data Sets (Fold 1) 

 

Data 

Set  

 

Performance 

Measure 

Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.5746 1.4852 0.4210 0.4187* 0.4202 0.421 0.4187* 0.4202 0.5715 0.5700 0.5691 

MSE 0.4822 3.3023 0.2843 0.2775* 0.2806 0.2843 0.2775* 0.2806 0.5160 0.5134 0.5162 

R
2 0.5095 0.0139* 0.7132 0.7177 0.7157 0.7132 0.7177 0.7157 0.4771 0.4777 0.4772 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0023* 86.2012 0.0408 0.0706 0.2371 0.0408 0.0706 0.2371 0.1421 0.1643 0.4712 

 

 

US 

MAE 0.0050* 0.0652 0.0652 0.0221 0.0629 0.0652 0.0221 0.0629 0.0652 0.0221 0.0629 

MSE 0.0000* 0.0061 0.0061 0.0007 0.0056 0.0061 0.0007 0.0056 0.0061 0.0007 0.0056 

R
2 1.0000* 0.9995 0.9995 0.9999 0.9996 0.9995 0.9999 0.9996 0.9995 0.9999 0.9996 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0000* 0.0004 0.0004 0.0001 0.0000 0.0004 0.0001 0.0000* 0.0004 0.0001 0.0000* 

 

 

PM10 

MAE 0.5620 0.5510 0.5508* 0.5492 0.5498 0.5508* 0.5492 0.5498 0.5508* 0.5492 0.5498 

MSE 0.5441 0.5084 0.5095 0.5078* 0.5083 0.5095 0.5078* 0.5083 0.5095 0.5078* 0.5083 

R
2 0.4643 0.4999 0.4987 0.5000* 0.4996 0.4987 0.5000* 0.4996 0.4987 0.5000* 0.4996 

PWI 0.9913 0.9942* 0.9942* 0.9942* 0.9942* 0.9942* 0.9942* 0.9942* 0.9942* 0.9942* 0.9942* 

PRESS 0.0001* 0.0012 0.0040 0.0050 0.3791 0.0040 0.0050 0.3791 0.004 0.005 0.3791 

 

 

FF 

MAE 0.2258* 0.2469 0.245 0.2441 0.2453 - - - 0.2375 0.2375 0.4966 

MSE 0.3269 0.3025* 0.3087 0.3075 0.3082 - - - 0.3552 0.3552 44.398 

R
2 0.3847 0.4307* 0.4190 0.4212 0.4201 - - - 0.3314 0.3314 0.0001 

PWI 0.9742 0.9742 0.9742 0.9742 0.9742 - - - 0.9799 0.9799 0.9881* 

PRESS 0.0040 0.0008* 0.0086 0.0075 0.0312 - - - 0.0179 0.0179 13.184 

* indicates a better performing model with respect to the corresponding performance measure   

-  shows that there is not any statistically significant BF in the model 
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Table 3.  Performance Results of the Models Built for the Testing Data Sets (Fold 1) 

 

Data Set  

 

Performance 

Measure 

Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.5210* 1.6614 0.6055 0.6402 0.6181 0.6055 0.6402 0.6181 0.5759 0.5717 0.5717 

MSE 0.3628* 3.6901 0.5668 0.6334 0.5894 0.5668 0.6334 0.5894 0.4718 0.4812 0.4689 

R
2 0.6669* 0.0006 0.4924 0.4711 0.4844 0.4924 0.4711 0.4844 0.5421 0.5338 0.5421 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 40.8108 517.2857 34.6381 33.9971 36.8989 34.6381 33.9971 36.8989 23.3453 26.2234 17.9402* 

 

 

US 

MAE 0.0044* 0.0660 0.0660 0.0227 0.0637 0.066 0.0227 0.0637 0.066 0.0227 0.0637 

MSE 0.0000* 0.0059 0.0059 0.0007 0.0055 0.0059 0.0007 0.0055 0.0059 0.0007 0.0055 

R
2 1.0000* 0.9996 0.9996 0.9999 0.9997 0.9996 0.9999 0.9997 0.9996 0.9999 0.9997 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0001 0.0001 0.0001 0.0002 0.0000* 0.0001 0.0002 0.0000* 0.0001 0.0002 0.0000* 

 

 

PM10 

MAE 0.6829 0.6857 0.6824 0.6839 0.6837 0.6824 0.6839 0.6837 0.6748 0.6829 0.6745* 

MSE 0.7171 0.7425 0.7375 0.7493 0.7442 0.7375 0.7493 0.7442 0.7008 0.7171 0.6995* 

R
2 0.2928 0.2772 0.2816 0.2824 0.2819 0.2816 0.2824 0.2819 0.2936 0.2928 0.2943* 

PWI 0.9936* 0.9936* 0.9936* 0.9936* 0.9936* 0.9936* 0.9936* 0.9936* 0.9936* 0.9936* 0.9936* 

PRESS 31.0120* 66.5730 61.7353 72.1223 73.0802 61.7353 72.1223 73.0802 31.0414 31.0119 24.3775 

 

 

FF 

MAE 0.545 0.5804 0.5582 0.5684 0.562 - - - 0.4947* 0.4947* 0.4966 

MSE 7.1841 7.4383 6.9455 7.5438 7.1681 - - - 4.4402 4.4404 4.4398* 

R
2 0.0001 0.0001 0.0002* 0.0002* 0.0002* - - - 0.0001 0.0001 0.0001 

PWI 0.9881* 0.9881* 0.9881* 0.9881* 0.9881* - - - 0.9881* 0.9881* 0.9881* 

PRESS 3575.863 3551.976 3506.1 3840.5 3606.5 - - - 2066.3 2066.4 2020.6* 

* indicates a better performing model with respect to the corresponding performance measure  

-  shows that there is not any statistically significant BF in the model 
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Table 4.  Stabilities of the Performance Results of the Models Built for the Data Sets (Fold 1) 

 

Data Set  

 

Performance 

Measure 

Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.9067 0.8939 0.6953 0.6540 0.6798 0.6953 0.6540 0.6798 0.9924 0.9970* 0.9955 

MSE 0.7524 0.8949 0.5016 0.4381 0.4761 0.5016 0.4381 0.4761 0.9143 0.9373* 0.9084 

R
2 0.7640 0.0432 0.6904 0.6564 0.6768 0.6904 0.6564 0.6768 0.8801 0.8949* 0.8803 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0000 0.1666* 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

US 

MAE 0.8800 0.9879* 0.9879* 0.9736 0.9874 0.9879* 0.9736 0.9874 0.9879* 0.9736 0.9874 

MSE - 0.9672 0.9672 1.0000* 0.9821 0.9672 1.0000* 0.9821 0.9672 1.0000* 0.9821 

R
2 1.0000* 0.9999 0.9999 1.0000* 0.9999 0.9999 1.0000* 0.9999 0.9999 1.0000* 0.9999 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0009 0.2500 0.2500 0.5000* 0.0243 0.2500 0.5000* 0.0243 0.2500 0.5000* 0.0243 

 

 

PM10 

MAE 0.8230* 0.8036 0.8072 0.8030 0.8042 0.8072 0.8030 0.8042 0.8162 0.8042 0.8151 

MSE 0.7588* 0.6847 0.6908 0.6777 0.6830 0.6908 0.6777 0.6830 0.7270 0.7081 0.7267 

R
2 0.6306* 0.5545 0.5647 0.5648 0.5643 0.5647 0.5648 0.5643 0.5887 0.5856 0.5891 

PWI 0.9977 0.9994* 0.9994* 0.9994* 0.9994* 0.9994* 0.9994* 0.9994* 0.9994* 0.9994* 0.9994* 

PRESS 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

 

 

FF 

MAE 0.4143 0.4254 0.4389 0.4295 0.4365 - - - 0.4801 0.4801 1.0000* 

MSE 0.0000 0.0000 0.0000 0.0000 0.0000 - - - 0.0000 0.0000 1.0000* 

R
2 0.0003 0.0002 0.0005 0.0005 0.0005 - - - 0.0003 0.0003 1.0000* 

PWI 0.9859 0.9859 0.9859 0.9859 0.9859 - - - 0.9917 0.9917 1.0000* 

PRESS 0.0000 0.0000 0.0000 0.0000 0.0000 - - - 0.0000 0.0000 0.1533* 

 * indicates a better performing model with respect to the corresponding performance measure  

            - shows that there is not any statistically significant BF in the model 
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Table 5.  Performance Results of the Models Built for the Training Data Sets (Fold 2) 

 

Data Set  

 

Performance 

Measure 

Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.3662 0.3022* 0.3695 0.3661 0.3671 0.3673 0.3674 0.3666 0.5296 0.5293 0.5297 

MSE 0.2499 0.1692* 0.2402 0.2387 0.2389 0.2430 0.2400 0.2433 0.4285 0.4259 0.4292 

R
2 0.7387 0.8235* 0.7494 0.7504 0.7503 0.7472 0.7490 0.7465 0.5545 0.5547 0.5544 

PWI 1.0000* 0.9859 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0178 0.0031* 0.0170 0.0184 0.0119 0.0087 0.0069 0.1253 0.0193 0.0222 0.8210 

 

 

US 

MAE 0.0045* 0.0045* 0.0045* 0.0045* 0.0045* 0.0045* 0.0045* 0.0045* 0.0953 0.0877 0.0953 

MSE 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0216 0.0173 0.0216 

R
2 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9833 0.9833 0.9833 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9722 0.9722 0.9722 

PRESS 0.0004 0.0000* 0.0000* 0.0003 0.0274 0.0000* 0.0003 0.0274 0.0074 0.0077 0.0074 

 

 

PM10 

MAE 0.6076 0.5917* 0.6034 0.6051 0.6038 0.5989 0.5946 0.5995 0.6243 0.6235 0.6237 

MSE 0.5858 0.5585* 0.5845 0.5815 0.5826 0.5718 0.5637 0.5715 0.6183 0.6161 0.6168 

R
2 0.4382 0.4644* 0.4402 0.4424 0.4415 0.4519 0.4594 0.4524 0.4078 0.4091 0.4088 

PWI 1.0000* 1.0000* 0.9971 1.0000* 0.9971 0.9971 0.9971 0.9971 0.9912 0.9941 0.9912 

PRESS 0.0021 0.0023 2.5200 0.0016* 0.1414 9.8200 0.0038 0.4475 0.0688 0.0522 0.6029 

 

 

FF 

MAE 0.4144 0.4119 0.4171 0.4174 0.417 0.3990* 0.3990* 0.4026 0.4139 0.4144 0.4152 

MSE 0.8298 0.8143* 0.8229 0.8227 0.8228 11.5770 11.5770 11.5940 0.8300 0.8298 0.8298 

R
2 0.4004 0.4115* 0.4053 0.4055 0.4054 0.1634 0.1634 0.1622 0.4002 0.4004 0.4003 

PWI 0.9859 0.9859 0.9859 0.9859 0.9859 0.9915 0.9915 0.9887* 0.9887* 0.9859 0.9831 

PRESS 0.0054 0.0000* 0.0056 0.0048 0.283 0.1437 0.1437 0.3102 0.0017 0.0012 0.0011 

 * indicates a better performing model with respect to the corresponding performance measure  

            - shows that there is not any statistically significant BF in the model             
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Table 6.  Performance Results of the Models Built for the Testing Data Sets (Fold 2) 

 

Data Set  

 

Performance 

Measure 

Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.8005 0.9002 0.7526 0.7640 0.7587 0.7779 0.7819 0.7683 0.7386 0.7331* 0.7381 

MSE 1.1056 1.4768 1.0608 1.0990 1.0780 1.0449 1.0802 0.9714 0.7124 0.7081* 0.7092 

R
2 0.2567 0.1820 0.2804 0.2821 0.2834 0.2639 0.2761 0.2862 0.3567 0.3654* 0.3543 

PWI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

PRESS 23.9484 1.3163* 7.5776 7.6102 7.3092 28.3008 27.9363 19.5066 53.4781 52.9454 46.6092 

 

 

US 

MAE 0.0052* 0.0052* 0.0052* 0.0052* 0.0052* 0.0052* 0.0052* 0.0052 0.1002 0.0877 0.0897 

MSE 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0228 0.0173 0.0187 

R
2 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9807 0.9833 0.9807 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9423 0.9722 0.9423 

PRESS 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.1318 0.0077* 0.0107 

 

 

PM10 

MAE 0.5283* 0.6547 0.6352 0.6518 0.6422 0.6424 0.6520 0.6451 0.6301 0.639 0.6332 

MSE 0.4927* 0.7402 0.6931 0.7337 0.7094 0.7112 0.7349 0.7183 0.6773 0.6998 0.6872 

R
2 0.4569* 0.3101 0.3109 0.3026 0.308 0.3116 0.3071 0.3056 0.2993 0.2941 0.2974 

PWI 0.9938* 0.9876 0.9876 0.9814 0.9876 0.9938* 0.9876 0.9876 0.9876 0.9876 0.9876 

PRESS 61.0080 8.6709 8.9899 7.3399 9.2137 7.1697 7.7663 8.2915 0.3726 0.3698* 1.4983 

 

 

FF 

MAE 0.7058 0.6844 0.6876 0.6857 0.6826 0.4134* 0.4134* 0.4239 0.7080 0.7058 0.7046 

MSE 2.4708 2.4061 2.3898 2.3835 2.3620 0.7112* 0.7112* 0.7369 24.7970 24.7080 24.5750 

R
2 0.0008 0.0006 0.0006 0.0007 0.0007 0.0006 0.0006 0.0005 0.0008 0.0008 0.0009* 

PWI 0.9632* 0.9632* 0.9632* 0.9632* 0.9632* 0.9632* 0.9632* 0.9693* 0.9632* 0.9632* 0.9632* 

PRESS 499.0300 452.680 482.9513 485.6970 497.3172 323.5600 323.559* 326.292 480.541 485.044 493.796 

* indicates a better performing model with respect to the corresponding performance measure  

- shows that there is not any statistically significant BF in the model 
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Table 7.  Stabilities of the Performance Results of the Models Built for the Data Sets (Fold 2) 

 

Data Set  

 

Performance 

Measure 

Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.4575 0.3357 0.4910 0.4792 0.4839 0.4722 0.4699 0.4772 0.7170 0.7220 0.7177* 

MSE 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 0.0000 0.2505 0.6015 0.6015 0.6052* 

R
2 0.3475 0.2210 0.3742 0.3759 0.3777 0.3532 0.3686 0.3834 0.6433 0.6587 0.6391 

PWI 1.0000* 0.9859 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

 

 

US 

MAE 0.8654 0.8654 0.8654 0.8654 0.8654 0.8654 0.8654 0.8654 0.9511 1.0000* 0.9412 

MSE - - - - - - - - 0.9474 1.0000* 0.8657 

R
2 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9974 1.0000* 0.9974 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9692 1.0000 0.9692 

PRESS 0.0014 0.0000 0.0000 0.0013 0.0913 0.0000 0.0013 0.0913 0.0561 1.0000 0.6916 

 

 

PM10 

MAE 0.8695 0.9038 0.9499 0.9284 0.9402 0.9323 0.9120 0.9293 0.9908* 0.9757 0.9850 

MSE 0.8411 0.7545 0.8433 0.7926 0.8213 0.8040 0.7670 0.7956 0.9129* 0.8804 0.8976 

R
2 0.9591* 0.6677 0.7063 0.6840 0.6976 0.6895 0.6685 0.6755 0.7339 0.7189 0.7275 

PWI 0.9938 0.9876 0.9905 0.9814 0.9905 0.9967 0.9905 0.9905 0.9964* 0.9935 0.9964* 

PRESS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.1846* 0.1412 0.0000 

 

 

FF 

MAE 0.5871 0.6018 0.6066 0.6087 0.6109 0.9652* 0.9652* 0.9498 0.5846 0.5871 0.5893 

MSE 0.0000 0.0000 0.0000 0.0000 0.0003* 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 

R
2 0.0020 0.0015 0.0015 0.0017 0.0017 0.0037 0.0037 0.0037 0.0020 0.0020 0.0022* 

PWI 0.9770 0.9770 0.9770 0.9770 0.9770 0.9715 0.9715 0.9742 0.9742 0.9770 0.9798* 

PRESS 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

* indicates a better performing model with respect to the corresponding performance measure  

-  shows that there is not any statistically significant BF in the model 

 4
5
 



 
 

Table 8.  Performance Results of the Models Built for the Training Data Sets (Fold 3) 

 

Data Set  

 

Performance 

Measure 

Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.4507 0.2750* 0.3247 0.3234 0.3242 0.4385 0.4385 0.4387 0.7519 0.7519 0.7520 

MSE 0.3317 0.1341* 0.1787 0.1776 0.1778 0.3141 0.3141 0.3147 0.8229 0.8229 0.8229 

R
2 0.6763 0.8692* 0.8258 0.8267 0.8265 0.6935 0.6935 0.6932 0.1971 0.1971 0.1971 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0812 0.0017* 0.0244 0.0183 0.0143 0.0384 0.0384 0.8456 0.0324 0.0324 0.0323 

 

 

US 

MAE 0.0045* 0.0123 0.0123 0.0045* 0.0119 0.0123 0.0045* 0.0119 0.0916 0.0936 0.0868 

MSE 0.0000* 0.0003 0.0003 0.0000* 0.0003 0.0003 0.0000* 0.0003 0.0208 0.0182 0.0187 

R
2 1.0000* 0.9998 0.9998 1.0000* 0.9998 0.9998 1.0000* 0.9998 0.9810 0.9810 0.9810 

PWI 1.0000* 0.9519 0.9519 1.0000* 0.9519 0.9519 1.0000* 0.9519 0.9519 0.9519 0.9519 

PRESS 0.0000* 0.0001 0.0001 0.0000* 0.0001 0.0001 0.0000* 0.0001 0.0075 0.0094 0.0085 

 

 

PM10 

MAE 0.5764 0.5743 0.5741 0.5710* 0.5722 0.5761 0.5738 0.5752 0.9007 0.9135 0.9067 

MSE 0.5354 0.5159 0.5165 0.5149* 0.5156 0.5223 0.5211 0.5222 17.1420 17.7520 17.4110 

R
2 0.4241 0.4452 0.4446 0.4462* 0.4455 0.4384 0.4395 0.4385 0.1295 0.1299 0.1305 

PWI 0.9937 0.9969* 0.9937 0.9937 0.9937 0.9969* 0.9969* 0.9937 0.9748 0.9748 0.9748 

PRESS 0.0057 1.4500 0.0011* 0.0023 0.6961 3.7300 3.2400 0.2510 1.62*10
8 

1.75*10
8
 1.67*10

8
 

 

 

FF 

MAE 0.3518 0.3231 - - - 0.3161* 0.3161* 0.3175 0.3161* 0.3161* 0.3175 

MSE 0.8932* 0.9756 - - - 10.6550 10.6550 10.6550 10.6550 10.6550 10.6550 

R
2 0.1692* 0.1350 - - - 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089 

PWI 0.9879 0.9940* - - - 0.9940* 0.9940* 0.9940* 0.9940* 0.9940* 0.9940* 

PRESS 0.0012 0.0069 - - - 0.0011* 0.0011* 0.3385 0.0011* 0.0011* 0.3385 

 * indicates a better performing model with respect to the corresponding performance measure  

            -  shows that there is not any statistically significant BF in the model 
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Table 9.  Performance Results of the Models Built for the Testing Data Sets (Fold 3) 

 

Data Set  

 

Performan

ce Measure 

Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.6455* 0.6868 0.6603 0.6589 0.6602 0.6561 0.6561 0.6514 0.7644 0.7644 0.7643 

MSE 0.6440* 0.8351 0.7515 0.7611 0.7563 0.6643 0.6643 0.6607 0.9253 0.9253 0.9251 

R
2 0.3447* 0.2715 0.2865 0.2836 0.2854 0.3215 0.3215 0.323 0.0393 0.0393 0.0393 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 73.882 217.44 168.11 179.66 173.43 58.085* 58.087 63.251 70.747 70.747 70.665 

 

 

US 

MAE 0.0052* 0.0137 0.0137 0.0052* 0.0132 0.0137 0.0052* 0.0132 0.098 0.0972 0.0923 

MSE 0.0000* 0.0004 0.0004 0.0000* 0.0004 0.0004 0.0000* 0.0004 0.0244 0.0203 0.0215 

R
2 1.0000* 0.9998 0.9998 1.0000* 0.9998 0.9998 1.0000* 0.9998 0.9814 0.9814 0.9814 

PWI 1.0000* 0.9821 0.9821 1.0000* 0.9821 0.9821 1.0000* 0.9821 0.9821 0.9821 0.9821 

PRESS 0.0070 0.0035* 0.0035* 0.0070 0.0035* 0.0035* 0.0070 0.0035* 0.8626 1.7572 1.3207 

 

 

PM10 

MAE 0.6910* 0.7039 0.7013 0.7011 0.7007 0.7025 0.7019 0.7004 0.9041 0.9159 0.9103 

MSE 0.7991 0.8153 0.8136 0.8153 0.8134 0.7974 0.7983* 0.7945* 16.023 16.563 16.281 

R
2 0.2975 0.2855 0.2872 0.2864 0.2883 0.2995* 0.2988 0.3025 0.1011 0.1007 0.101 

PWI 0.9945* 0.9945* 0.9945* 0.9945* 0.9945* 0.9945* 0.9945* 0.9945* 0.9780 0.9780 0.9780 

PRESS 594.95* 718.30 717.10 754.91 757.70 605.28 630.36 610.05 1730 1885 1790 

 

 

FF 

MAE 0.3518 0.3231 - - - 0.2929* 0.2929* 0.2947 0.2929* 0.2929* 0.2947 

MSE 0.8932 0.9756 - - - 0.8510* 0.8510* 0.8511 0.8510* 0.8510* 0.8511 

R
2 0.1692* 0.1350 - - - 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 

PWI 0.9879 0.9940* - - - 0.9892 0.9892 0.9892 0.9892 0.9892 0.9892 

PRESS 0.0012* 0.0069 - - - 10.257 10.250 12.212 10.257 10.250 12.212 

* indicates a better performing model with respect to the corresponding performance measure  

-  shows that there is not any statistically significant BF in the model 
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Table 10.  Stabilities of the Performance Results of the Models Built for the Data Sets (Fold 3) 

 

Data 

Set  

 

Performance 

Measure 

Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

 

 

CS 

MAE 0.6982 0.4004 0.4917 0.4908 0.4911 0.6683 0.6683 0.6735 0.6735 0.9836* 0.9836* 

MSE 0.5151 0.1606 0.2378 0.2333 0.2351 0.4728 0.4728 0.4763 0.4763 0.8893* 0.8893* 

R
2 0.5097* 0.3124 0.3469 0.3431 0.3453 0.4636 0.4636 0.466 0.466 0.1994 0.1994 

PWI 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

PRESS 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

 

 

US 

MAE 0.8654 0.8978 0.8978 0.8654 0.9015 0.8978 0.8654 0.9015 0.9015 0.9347 0.9424* 

MSE - 0.7500 0.7500 - 0.7500 0.7500 - 0.7500 0.7500 0.8525 0.9760* 

R
2 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9996 0.9996 

PWI 1.0000* 0.9693 0.9693 1.0000* 0.9693 0.9693 1.0000* 0.9692 0.9693 0.9692 0.9693 

PRESS 0.0001 0.0286* 0.0286* 0.0011 0.0286* 0.0286* 0.0011 0.0286* 0.0286* 0.0087 0.0000 

 

 

PM10 

MAE 0.8342 0.8159 0.8186 0.8144 0.8166 0.8201 0.8175 0.8212 0.8212 0.9962* 0.9834 

MSE 0.6700 0.6328 0.6348 0.6315 0.6339 0.6550 0.6528 0.6573 0.6573 0.9347 0.9662* 

R
2 0.7015 0.6413 0.6460 0.6419 0.6471 0.6832 0.6799 0.6899 0.6899 0.7807* 0.7776 

PWI 0.9992* 0.9976 0.9992* 0.9992* 0.9992* 0.9976 0.9976 0.9992* 0.9992* 0.9967 0.9967 

PRSS 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

 

 

FF 

MAE 1.0000* 1.0000* - - - 0.9266 0.9266 0.9282 0.9282 0.9266 0.9266 

MSE 1.0000* 1.0000* - - - 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 

R
2 1.0000* 1.0000* - - - 0.7946 0.7946 0.7946 0.0000 0.7946 0.7946 

PWI 1.0000* 1.0000* - - - 0.9952 0.9952 0.9952 0.0000 0.9952 0.9952 

PRESS 1.0000* 1.0000* - - - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 * indicates a better performing model with respect to the corresponding performance measure  

            - shows that there is not any statistically significant BF in the model 
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 CMARS and S1 of the Fixed-X, Random-X Resampling and Wild bootstrap 

methods give the same results for US data set. 

 In CS data, the best MSE values are obtained for the S2 solution of Fixed-X 

and Random-X models; while in PM10 data, they are obtained for S2 solution 

of all three BCMARS methods. 

 In PM10 data, S2 solutions of the three BCMARS methods provide the best 

method with respect to all measures (except MAE) considered. 

For test data set of Fold 1 (Table 3): 

 For CS and US data, MARS method gives the best results with respect to all 

measures except for PRESS. In US data set, S1 solutions of Fixed-X and 

Random-X Resampling models yield the same results with that of CMARS. 

 In PM10 and FF data sets, S3 solution of Wild bootstrapping method is better 

than the other methods in terms of most of the measures. 

 In PM10 and Forest data, the smallest MSE value occurred in the S3 of the 

Wild bootstrap model. 

In Fold 1, S2 of Wild bootstrapping provides the most stable model for CS data 

(Table 4). Stability is explained in Appendix A in Equation (55). In US data, 

however, S2 of the Fixed-X, Random-X Resampling and Wild bootstrap models 

indicate the highest stability for all measures. For PM10, each method has closer 

stability values, but MARS is more stable than the other models in terms of 

MAE, R
2
 and MSE. For Forest data set, the most stable measures are obtained by 

S3 of Wild bootstrapping. 

For training data set of Fold 2 (Table 5): 

 In general, Wild bootstrapping does not perform good at all. 

 In US data, all methods, except for Wild bootstrap, produce the same 

performance results. 

 CMARS produces the best model for PM10 data set for all performance 

measures. 
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 The smallest MAE and the largest PWI in FF data belongs to S1 and S2 

solutions of Random-X Resampling model. However, CMARS gives the best 

performance with respect to the other measures. 

For testing data of Fold 2 (Table 6): 

 In CS data set, Wild bootstrap method yields the best MAE, MSE and R
2
 

values. Fixed-X is better than the other two bootstrap methods in terms of 

PRESS values. 

 In US data, all methods, except for Wild bootstrap, give the same results. 

 Wild bootstrap is better than CMARS in terms of MAE and MSE value for 

PM10 data. However, this method yields the worst result with respect to R
2
. 

Moreover, MARS is the best method in this data set for all performance 

measures. 

 In FF data, Random-X Resampling produces the best values for the MAE, 

MSE, PWI and PRESS measures. 

The most stable performance measures for Fold 2, except for R
2
, belong to Wild 

bootstrapping models (S3) of CS data (Table 7). In the US data, S2 solution of 

Wild bootstrapping gives the most stable measures among the others. The MSE, 

MAE and PRESS measures of the PM10 data set are the most stable ones for 

Wild bootstrapping. However, the best value of stability measure for R
2
 belongs 

to MARS. In FF data, Random-X Resampling is the most stable method with 

respect to MAE, while Fixed-X Resampling is the most stable model for MSE. 

For the PWI and R
2
 measures, Wild bootstrapping results in the best model in 

terms of stability. All methods are not stable at all with respect to PRESS 

measure. 

For training data set of Fold 3 (Table 8): 

 CMARS gives the best results for all performance measures in CS data. 

Following CMARS, the Fixed-X Resampling method yields the best results 

among all bootstrap methods. 
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 For US data, Fixed-X and Random-X models produce the same results with 

MARS. 

 In PM10 data set, Wild bootstrapping does not yield good performance with 

respect to the MAE and MSE measures, whereas other methods give results 

similar to the best model, which is produced by the Fixed-X Resampling 

method. 

 Fixed-X Resampling method does not produce any significant BFs for FF 

data. Random-X and Wild bootstrapping yield the same and the best results 

with respect to most of the measures, namely MAE, PWI and PRESS. 

 When all bootstrapping models are compared, Fixed-X method has better 

performance measures. 

For test data set of Fold 3 (Table 9): 

 When MSE values are considered, Random-X and Fixed-X Resampling 

methods perform better than CMARS. Moreover, higher R
2
 values are 

obtained by Random-X Resampling method. However, the best values of 

measures for CS data set, other than that of PRESS, belong to MARS. 

 For US data, best performance measures are obtained by MARS, S2 of Fixed-

X and Random-X Resampling methods. And, the performance measures of 

CMARS, Fixed-X and Random-X are the same. 

 In PM10 data, Random-X and Fixed-X methods give better results than 

CMARS in terms of MSE and R
2
. And, S3 of Random-X gives the best 

performance with respect to three measures, namely MSE, R
2

 and PWI, while 

MARS produce the best performance in terms of MAE, PWI and PRESS. 

 For FF data, Fixed-X Resampling gives no results at all. And, Random-X 

Resampling and Wild bootstrap performs better in terms of MAE and MSE 

while MARS performs better with respect to R
2
 and PRESS measures. 

For the stability of the measures obtained from the CS and US data sets, it is seen 

that Wild bootstrap is superior to other models in all measures other than R
2
 

(Table 10). For most data sets, Wild bootstrap is stable in terms of MSE values. 
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                                                   CHAPTER 5 

 

DISCUSSION 

 

 

In this section, it is aimed to compare the performances of the methods studied, 

namely MARS, CMARS, BCMARS (Fixed-X Resampling, Random-X Resampling 

and Wild Bootstrapping) in general (Section 5.1), and also, according to different 

features of data sets such as size (Section 5.2) and scale (Section 5.3). In these 

comparisons, various criteria including accuracy, precision, stability, efficiency 

(Section 5.4) and robustness are considered. Note here that while calculating the 

means (and standard deviations) for the BCMARS method, the best solution, S1, S2 

or S3, with respect to the measure considered is used. 

5.1. Comparison with respect to Overall Performances 

The mean and standard deviations of measures obtained from four data sets are given 

in Table 11. These values are calculated for training and testing data sets in addition 

to the stability of measures. Definitions of the measures are given in Appendix A. In 

this table, lower means for MAE, MSE and PRESS and higher means for R
2
 and 

PWI measures indicate better performances. On the other hand, smaller standard 

deviations imply robustness for the corresponding measure.  The following 

conclusions can be drawn from this table: 

For training data sets: 

 Fixed-X Resampling provides best performance with respect to MAE and R
2
 

accuracy measures. This method is the most robust among the others with 

respect to the same measures. These findings are also valid with respect to the 

complexity measure, MSE, as well.  
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 MARS, however, performs best with respect to the other accuracy measures 

PWI and PRESS. This method is the most robust among the others with 

respect to the same measures. 

 When the bootstrapping models are compared among themselves, the Fixed-

X Resampling method overperforms with respect to the means and spreads of 

all measures except the spread of PWI. Random-X Resampling is the most 

robust one with respect to the PWI measure. 

For testing data sets: 

 Random-X performs best with respect to most of the measures, namely 

MSE, R
2
 and PRESS. It also produces more robust models for the same 

measures. Moreover, it gives the least complex models as well by 

providing the smallest MSE mean value. 

 MARS has the best performance with respect to the only one accuracy 

measure, MAE. It is also the most robust for the same measure. 

 CMARS, on the other hand, is the best performing and also the most 

robust method in terms of PWI.  

 When only the bootstrapping methods are considered, Fixed-X 

Resampling is the best one with respect to the performance measure 

MAE, and Wild bootstrapping is the most robust one for the same 

performance measure. Moreover, Random-X Resampling has the highest 

PWI coverage, and Wild bootstrapping is the most robust with respect to 

PWI. 

For stability; 

 Random-X Resampling and Wild bootstrapping methods are more stable 

when compared to the other methods.  

 Random-X is more stable with respect to R
2
 and PWI; it has the most 

robust stability with respect to the same measures, and also has the most 

robust stability with respect to the MSE.  



 

Table 11. Overall Performances (Mean±Std. Dev.) of the Methods  

Performance 

Measures 

Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

MAE 0.3453 ±0.2336 0.4040 ±0.3980 0.3204*±0.2260** 0.3356 ±0.2263 0.4251 ±0.2797 

MSE 0.4015 ±0.3064 0.6070 ±0.9080 0.3117*±0.2700** 0.4230 ±0.3990 0.5770 ±0.4950 

R
2 0.6005 ±0.2797 0.5911 ±0.3407 0.6827*±0.2492** 0.6120  ±0.3350 0.5127 ±0.3398 

PWI 0.9944*±0.0082** 0.9942 ±0.0082** 0.9909 ±0.0153 0.9932 ±0.0140 0.9855 ±0.0158 

PRESS 0.0097*±0.0230** 72.0000 ±248.80 0.2390 ±0.7570 1.2090 ±3.0150 13.5x10
6
±4.7x10

6
 

Performance 

Measures 

Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

MAE 0.4576*±0.2956** 0.5800 ±0.4580 0.4838±0.3076 0.6460±0.6110 0.4977±0.2998 

MSE 3.0700±7.0900 1.5780 ±2.1350 1.2670±1.9970 0.5480*±0.3660** 1.0720 ±1.2710 

R
2 0.4480±0.3820 0.3630±0.4030 0.4500±0.3800 0.4530*±0.3770** 0.3840±0.4010 

PWI 0.9930*±0.0108 0.9930*±0.0106** 0.9884±0.0177 0.989±0.0169 0.9878±0.0120 

PRESS 470±996 491±287 459±1037 107.700*±189.10** 1.4x10
6
±0.5x10

6
 

Performance 

Measures 

Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

MAE 0.7657±0.1848 0.7440±0.2383  0.7252±0.1939  0.7375±0.2870 0.8690*±0.1783** 

MSE 0.5500 ±0.3710 0.5690±0.3400 0.5550±0.3450 0.6374±0.2174** 0.7616*±0.2852 

R
2 0.6070±0.3680 0.4690±0.3940 0.5750±0.3640 0.6577*±0.3063** 0.6300±0.3650 

PWI 0.9950*±0.0070 0.9940±0.0070 0.9940±0.0070 0.9950*±0.0060** 0.9940±0.0080 

PRESS 0.0003±0.0005 0.0±0.0** 0.0100±0.0270 0.0020±0.0050 0.1000*±0.2733 

  *indicates better performance with respect to means; **indicates better performance with respect to spread 

5
4
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 Besides, Wild bootstrapping is more stable in terms of MAE, MSE and 

PRESS; it has the most robust stability with respect to the MAE measure 

only. 

 CMARS has the most robust stability with respect to PRESS.  

5.2. Comparison with respect to Sample Sizes 

Table 12 presents the performance measures of the studied methods with respect 

to two sample size categories: small and medium. Depending on the results given 

in the table, following conclusions can be reached: 

 Small training and test data sets produce better models for all measures 

except PRESS compared to the medium training and testing data sets. 

 All methods are more stable in small data sets with respect to R
2
, PWI 

and PRESS.  

 Wild bootstrapping is more stable in small data sets with respect to all 

measures except PWI. 

 Fixed-X method produces the lowest MAE for training small size data 

sets, while MARS has the best value for this measure in testing samples.  

 Fixed-X produces the lowest MSE value in both small and medium sized 

training samples. However, MARS is the best method for the MAE in 

small data while Random-X is the best one in medium size testing data. 

 Fixed-X method is superior to other methods in terms of R
2
 for small and 

medium size training data sets, while MARS is the best one for testing 

small and medium size data sets. 

 MARS and CMARS are the best methods with respect to PWI measure in 

both types of testing data. Both methods also perform similar with respect 

to the same measure in training samples. 

 Random-X Resampling is the best method for the PRESS measure in 

small testing samples while MARS is the best model for PRESS is 

medium training samples. On the other hand, Fixed-X gives the best 

result in small training samples with respect to the same measure. 
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Table 12. Averages of Performance Measures with Respect to Different Sample 

Sizes 

*indicates better performance with respect to the corresponding measure and sample  

 

 

 

Sample 

Size 
Performance 

Measures 
Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.2340 0.3570 0.1899* 0.2092 0.3410 

MSE 0.1773 0.6020 0.1158* 0.1387 0.3000 

R
2
 0.8208 0.7840 0.8824* 0.8596 0.7350 

PWI 1.0000* 0.9970 0.9910 0.9910 0.9870 

PRESS 0.0170 144 0.0150* 0.0140 0.0340 

Medium MAE 0.4563 0.4498* 0.4769 0.4874 0.5090 

MSE 0.6257 0.6125 0.5469* 0.7630 0.8540 

R
2
 0.3802 0.3978 0.4431* 0.3140 0.2908 

PWI 0.9888 0.9900* 0.9890 0.9940* 0.9830 

PRESS 0.0020* 0.2440 0.5080 2.6400 27x106 

Sample 

Size 
Performance 

Measures 
Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.3300* 0.5560 0.3440 0.7280 0.3790 

MSE 0.3520* 1.0010 0.3980 0.3670 0.3570 

R
2
 0.7110* 0.5760 0.6770 0.6800 0.6500 

PWI 1.0000* 1.0000* 0.9910 0.9910 0.9920 

PRESS 23.200 122.70 35.000 18.650* 22.700 

Medium MAE 0.5849 0.6052 0.6518 0.5468* 0.6160 

MSE 5.7800 2.1500 2.3100 0.7658* 1.7880 

R
2
 0.1853* 0.1497 0.1765 0.1817 0.1178 

PWI 0.9860* 0.9860* 0.9850 0.9860* 0.9830 

PRESS 918.00 860.00 968.00 215.00* 2.9x106 

Sample 

Size 
Performance 

Measures 
Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.2250 0.7300 0.7265 0.6110 0.9359* 

MSE 0.4980 0.5770 0.5750 0.5530 0.8835* 

R
2
 0.7700 0.5960 0.7350 0.7510 0.7710* 

PWI 1.0000* 0.9970 0.9990 0.9990 0.9940 

PRESS 0.0007 0.0469 0.0189 0.0040 0.1660* 

Medium MAE 0.4431 0.7578 0.7236 0.8888* 0.8022 

MSE 0.5760 0.5620 0.4410 0.7049* 0.6150 

R
2
 0.4450 0.3410 0.3830 0.5460* 0.4890 

PWI 0.9915 0.9900 0.9898 0.9920 0.9948* 

PRESS 0.0000 0.0003 0.0000 0.0012 0.0457* 
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 In terms of the complexity measure, MSE as well as the accuracy 

measures MAE and R
2
, Wild bootstrapping and the Random-X are the 

most stable methods in small and medium size data sets. 

 MARS and Wild bootstrapping methods are the most stable methods in 

small and medium size data sets with respect to PWI, respectively. 

 Wild bootstrapping is the most stable method in both size data in terms of 

the PRESS measure. 

5.3. Comparisons with respect to Scales 

In Table 13, the performance measures of the studied methods with respect to two 

scale types; small and medium are presented. Depending on the results given in the 

table, following conclusions can be drawn 

 Medium scale training data sets produce better models for all methods 

with respect to all measures except PWI. 

 Small scale testing data sets produce better models for all methods with 

respect to MSE and PWI measures while medium scale testing data sets 

produce better models with respect to MAE and R
2
.  

 Medium scale data sets produce more stable models for all methods for 

MAE, R
2
 and PRESS. On the other hand, small scale data yield more 

stable models for MSE and PWI. 

 In small scale training samples, CMARS produces similar results with 

Fixed-X and Random-X Resampling for MAE and MSE measures. 

However, in small scale testing samples, MARS, Fixed-x and Random-x 

yield similar values for the same accuracy measures.  

 Fixed-X Resampling is the best method with respect to the complexity 

measure, MSE, in small and medium scale training data sets. However, 

MARS and Random-X are the best methods for the same measure in 

small and medium scale test samples, respectively. 
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Table 13. Averages of Performance Measures with Respect to Different Scale 

* indicates better performance with respect to the corresponding measure and scale 

 

 The best model in terms of R
2
 is yielded by Fixed-X in both scale 

training samples, while CMARS and Random-X produce the best for the 

same measure in small and medium scale testing data, respectively. 

 Fixed-X and Random-X models are superior to others in terms of PWI in 

small scale training samples. In medium scaled training samples, 

however, CMARS produces the best value for the same measure. On the 

Scale Performance 

Measures 

Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.5229 0.4140* 0.4720 0.4910 0.6561 

MSE 0.4572 0.8992 0.3830* 0.4040 0.7728 

R
2
 0.5483 0.4985 0.6139* 0.5928 0.4078 

PWI 0.9970 0.9924 0.9980* 0.9980* 0.9934 

PRESS 0.0214* 143.66 0.4320 2.1910 2.7000 

Medium MAE 0.1677 0.1773 0.1384* 0.1492 0.1940 

MSE 0.3417 0.3500 0.2260* 0.4450 0.3810 

R
2
 0.6591 0.6630 0.7650* 0.6340 0.6170 

PWI 0.9913 0.9920* 0.9820 0.9870 0.9770 

PRESS 0.0017 0.0010* 0.0080 0.0300 0.0060 

Scale Performance 

Measures 
Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.6696 0.5445* 0.6747 0.6776 0.7130 

MSE 0.7327* 2.3959 0.7717 0.7443 0.8469 

R
2
 0.3297 0.3377* 0.3240 0.3293 0.2721 

PWI 0.9964* 0.9901 0.9960 0.9960 0.9932 

PRESS 213.00 800.69 176.94 141.72* 2.9x106 

Medium MAE 0.2703 0.2790 0.2550* 0.6070 0.2820 

MSE 5.4630 1.7800 1.8600 0.3130* 1.2980 

R
2
 0.5107 0.5040 0.6000 0.6020* 0.4960 

PWI 0.9892 0.9900* 0.9790 0.9810 0.9820 

PRESS 1012.8 714.00 714.00 66.800* 419.00 

Scale Performance 

Measures 
Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.5008 0.7801 0.7041 0.7300 0.9200* 

MSE 0.6515 0.5771 0.5183 0.5539 0.8378* 

R
2
 0.6521* 0.3714 0.5540 0.5539 0.6277 

PWI 0.9984* 0.9930 0.9977 0.9979 0.9980 

PRESS 0.0003 0.0828* 0.0005 0.0013 0.0471 

Medium MAE 0.7666 0.7900 0.7505 0.7470 0.8100* 

MSE 0.3474 0.5920 0.3480 0.8040* 0.6850 

R
2
 0.5628 0.5310 0.6000 0.7600* 0.6330 

PWI 0.9931* 0.9930* 0.9910 0.9930 0.9920 

PRESS 0.0004 0.0460* 0.0220 0.0040 0.1650 
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other hand, in testing samples, MARS and CMARS give the best models 

with respect to PWI in both small and medium scale. 

  Random-X Resampling is the best model for PRESS in all testing 

samples. But, MARS and CMARS result in better PRESS values all 

training data.      

 Wild bootstrap is superior to other methods with respect to the stability 

of MAE in all type data sets.  

 MARS seems more stable in terms of PWI in type data sets. 

 Wild bootstrapping is superior to other methods with respect to the 

stability of MSE, the complexity measure, in small scaled while 

Random-X Resampling is the best method in medium scaled data with 

respect to the stability of the same measure.  

 MARS and Random-X are the most stable in small scale data and 

medium scale data, respectively. 

 CMARS is the most stable method with respect to the PRESS measure 

for both scales of data.  

 The most stable model in small and medium scale data in terms of R
2
 are 

MARS and Random-X Resampling, respectively.  

5.4. Evaluation of the Efficiencies 

The elapsed time of each method for each data set are recorded on Pentium (R) Dual-

Core CPU 2.80 GHz processor and 32-bit operating system Windows ® computer 

during the runs (Table 14). Depending on the results, following conclusions can be 

stated: 

 Run times increases as sample size and scale increases. 

 As expected, it takes the bootstrap methods considerably longer times to run 

than MARS and CMARS.  

 

 



60 
 

Table 14. Runtimes (in seconds) of Methods with respect to Size and Scale of Data 

Sets 

Scale 

Small Medium 

Sample 

Size 

 

 

Small 

MARS:  < 0.0800 sec.* 

 

MARS:  < 0.0800 sec.* 

 CMARS: < 4.4666 sec. CMARS:  < 19.5269 sec. 

BCMARS-1: < 1,595 sec. BCMARS-1: < 13,262 sec. 

BCMARS-2: < 1,578 sec. BCMARS-2: < 18,537 sec. 

BCMARS-3: < 1,599 sec. BCMARS-3: < 15,617 sec. 

 

 

Medium 

MARS: < 0.0840 sec.* MARS: < 0.0900 sec.* 

 CMARS: < 18.2008 sec. CMARS: < 21.6737 sec. 

BCMARS-1: < 15,958 sec. BCMARS-1: < 18,664 sec. 

BCMARS-2: < 7,076 sec. BCMARS-2: < 31,590 sec. 

BCMARS-3: < 8,374 sec. BCMARS-3: < 16,753  sec. 

 *indicates better performance with respect to run times 

 Three bootstrap regression methods have almost the same efficiencies in 

small size and small scale data sets. Note that run times of these methods 

increases almost ten times as much as the scale increases from small to 

medium. 

 Random-X and Wild bootstrapping have similar efficiencies in medium size 

small scale data sets; Fixed-X runs twice as much to those of Random-X and 

Wild bootstrapping, whose run times increase almost five times as much as 

the sample size increases. 

 Fixed-X and Wild bootstrapping have similar run times for medium size 

medium scale data sets while Random-X runs twice as much to that of Fixed-

X and Wild bootstrapping.  

5.5. Evaluation of the Precisions of the Model Parameters 

In addition to performance measures of the models, the CIs and standard deviations 

of the parameters are calculated after bootstrapping. These values are compared with 

those values obtained from bootstrapping CMARS. Table A1-A48 in Appendix B 

presents the length of CIs and standard deviations of the model parameters in 

addition to BFs of the models. The smaller the lengths of the CIs and the standard 

deviations, the more precise the parameter estimates are. 
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According to the results, following conclusions can be drawn: 

In Forest data: 

 The length of CIs is larger in Wild bootstrapping than the ones obtained 

by Fixed-X Resampling. Thus, Fixed-X gives more precise parameter 

estimates. 

 The standard deviations obtained by bootstrapping (STD(BS)) are smaller 

for Wild bootstrapping method than for Fixed-X Resampling.  

 In general, both types of standard deviations are smaller than the ones 

obtained from CMARS.  

In US data set: 

 In fold 2, standard deviations of Wild bootstrapping are smaller compared 

to those of CMARS, while the STD (BS) are not. However, the lengths of 

CIs become narrower after bootstrapping. 

In PM10 data set: 

 In general, the length of CIs of Random-X is smaller than CMARS. Thus, 

Random-X produces more precise parameter estimates. 

 Random-X Resampling produces narrower CIs than Fixed-X. So, 

parameter estimates of Random-X are more precise. 

 The standard deviations of parameters obtained by Random-X and Fixed-

X are similar. 

In Slump data set: 

 The lengths of CIs become narrower and standard deviations of the 

parameters become smaller after bootstrapping, thus, resulting in more 

precise parameter estimates. 

 STD(BS) values obtained for Fixed-X Resampling are smaller than ones 

obtained from Random-X. 
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CHAPTER 6 

 

CONCLUSION AND FURTHER RESEARCH 

 

 

In this study, three different bootstrap methods are applied to a nonparametric 

regression, called CMARS, which is an improved version of the backward step of the 

widely used method MARS. MARS has two-step algorithm to build a model: 

forward and backward. CMARS uses inputs obtained from the forward step of 

MARS, and then, by utilizing the CQP technique, it constructs the large model. 

Although CMARS overperforms MARS with respect to several criteria, it constructs 

models which are at least as complex as MARS (Weber et al., 2011).  

In this thesis, it is aimed to reduce the complexity of CMARS models. To achieve 

this aim, bootstrapping regression methods, namely Fixed-X and Random-X 

Resampling, and Wild bootstrapping, are utilized by adopting an iterative approach 

to determine whether the parameters statistically contribute to the developed 

CMARS model or not. If there are any which do not contribute, they are removed 

from the model, and a new CMARS model is fitted to the data by only retaining the 

statistically significant parameters until none of them is found to be insignificant. 

The reason of using a computational method here is the lack of prior knowledge 

regarding the distributions of the model parameters.  

The performances of the methods are empirically evaluated and compared with 

respect to several criteria by using four data sets which are selected in such a way 

that they can represent the small and medium sample size and scale categories. The 

criteria include accuracy (with MAE, R
2
, PWI and PRESS measures), complexity 

(with the MSE measure), stability (by comparing the performances in training and 

test samples), robustness (by comparing the performances in different data sets), 
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efficiency (using run times) and precision (by evaluating the length of CIs of 

parameters). All performance criteria are explained in Appendix A. In order to 

validate all models developed; three-fold CV approach is used. For this purpose, 

these data sets are divided into three parts (folds) and two of them are used for 

building (training) and the remaining one is used for testing.  

Depending on the comparisons presented in the previous chapter, Chapter 5, one may 

conclude the followings: 

 In general, BCMARS methods perform better than MARS and CMARS with 

respect to most of the measures, and also lead to development of robust 

models with respect to the same measures.  

 Either one of the BCMARS methods yields models which are less complex 

than that of MARS and CMARS. 

 In overall, Random-X Resampling or Wild bootstrapping produce more 

stable models with respect to most of the measures considered. 

 Fixed-X method performs the best in small size training data in terms of most 

measures. 

 Fixed-X also performs the best in medium size training data sets with respect 

to MSE and R
2
. 

 MARS and Random-X Resampling overperform in small and medium size 

test data sets, respectively. 

 Wild bootstrapping and Random-X methods are more stable in small and 

medium size test data sets, respectively. 

 Fixed-X is performing equally well on both scale of training data sets. 

 Random-X performs best in medium scale data while MARS and CMARS 

perform best in small scale data. 

 Random-X Resampling is more stable in medium scale data set. 

 It is apparent that by decreasing the number of terms in the model by 

bootstrapping, the CIs become narrower compared to those of CMARS. 

Moreover, the standard errors of the parameters which obtained empirically 
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decreases after bootstrapping. Thus, bootstrapping results in more precise 

parameter estimates. 

 The main drawback of bootstrapping is its computational effort. Since it is 

heavily dependent on computers, it takes significantly more time than the 

other methods, MARS and CMARS.  

In short, depending on the above conclusions, it may be suggested that Random-X 

Resampling method leads to more accurate and more precise and less complex 

models particularly for medium size and medium scale data. Nevertheless, it is the 

least efficient method among the others for this type of data set.  

Future studies are planned in several directions. First, BCMARS methods are going 

to be applied on different data sets with small to large size and scale. Then, Repeated 

Analysis of Variance (RANOVA) will be applied to test whether there is statistically 

significant difference between the performances of methods. Besides, replicated CV 

is going to be used while validating the models. Then, after well-documented, the 

written MATLAB code will be issued as on open source to make it available for 

interested researchers.   
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APPENDIX A 

 

 

DEFINITIONS OF COMPARISON MEASURES 

 

 

 

Nomencleature: 

iy is the response value for the thi observation, 

iŷ is the estimated response value for the thi observation, 

y is the value of the mean response, 

n  is the number of observations (sample size), 

p is the number of terms (BFs) in the model, 

ŷ is the value of the mean of the estimated responses, 

2)(ys  is the sample variance of the observed response values, 

2)ˆ(ys is the sample variance of the estimated response values, 

iii yye ˆ is the residual for the thi  observation, 

ih is the leverage value of the thi  observation. It is obtained from the thi diagonal 

element of the hat matrix; .H  The hat matrix is defined with the following formula 

.)( 1 TT XXXXH   Here, X  represents the design matrix and rank of it is .p  

Accuracy Measures 

Mean Absolute Error (MAE) 

It is defined as follows:  





n
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ii

n

i

i yy
n

e
n
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ˆ
11

.        (48) 
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Small values are the better. 

The Coefficient of Determination (R
2
)  

This value shows how much variation in the response variable is explained by the 

model. It is defined by the following formula: 

 
 
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R .          (49) 

Higher values indicate better fit. 

Proportion of Residuals within Some User-Specified Range (PWI) 

PWI is the proportion of residuals within some user-specified range such as two or 

three sigma. In this study, three sigma coverage is considered. The greater the 

percentage is the better the performance. 

Prediction Error Residual Sum of Squares (PRESS) 

PRESS measures the predictive capability of the model. The formula used to 

calculate this measure is defined as:  

.
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
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

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i i

i

h

e
PRESS          (50) 

Small values of PRESS, indicates a higher ability of prediction. 

Precision Measure 

Bootstrap Estimate of Standard Deviation 

The bootstrap estimate of standard error is calculated with the following formula 

(Martinez and Martinez, 2002).  
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where  





B

b

b

B 1

** ˆ1ˆ            (52) 

and  b*̂  is the bootstrap replication of .̂  

It measures the variation around the mean. The standard deviations of the parameters 

from ECDF are obtained. Besides, standard deviations of the distributions of 

parameters are calculated in another way. First, an empirical distribution is obtained 

for each parameter. Then, by bootstrapping, the standard deviation of each parameter 

is calculated 1000 times.  The standard deviations of these 1000 values are obtained 

and recorded in the tables presented in Appendix B under the label “STD (BS).” 

Thus, the spread of the standard deviations around the mean is obtained.   

Efron and Tibshirani (1993) use the same method (second method) for correlation 

coefficient instead of standard error.    

Complexity Measure 

Mean Square Error (MSE) 

In this study, the MSE is used to measure the model complexity. Larger values of the 

MSE indicate more complex models. The formula for the MSE is given below:

  
2

1

ˆ
1

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



n

i

ii yy
pn

MSE         (53)  

Stability Measure 

The model is said to be stable if it performs well on both training and testing data 

sets. It is measured by the following formula (Osei-Bryson, 2004):
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TRCR and 
TECR  represents the performance measures obtained from training and 

testing samples. If the stability measure is close to one, it indicates higher stability.  
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APPENDIX B 

 

 

 

 

BASIS FUNCTIONS AND PERCENTILE INTERVALS 

 

 

 

 

Table A1. BFs from Forward Step of MARS Obtained from the Main Effects Model 

with Interactions for Fold 1 FF Data Set 

BF1 = max (0, 0, x5-1.74135)                   

BF2 = max (0, 0, 1.74135-x5)              

BF3 = max (0, x5-1.5009)                    

BF4 = max (0, x5-1.5009)*max (0, x8-0.862951)     

BF5 = max (0, x5-1.5009)*max (0, 0.862951-x8)     

BF6 = max (0, x5-1.74135)*max(0, x8-0.759621)    

BF7 = max (0, x5-1.74135)*max (0, 0.759621-x8)    

BF8 = max (0, x4-0.75276)*max (0, x5-1.5009)      

BF9 = max (0, 0.75276-x4)*max (0, x5-1.5009)      

BF10 = max (0, x4-0.553489)*max (0, x5-1.74135)    

BF11 = max (0, x2+1.05684)                  

BF12 = max(0, -1.05684-x2)                  

BF13 = max(0, x2+0.243765)*max(0, 1.74135-x5)   

BF14 = max(0, -0.243765-x2)*max(0, 1.74135-x5)   

BF15 = max(0, -1.05684-x2)*max(0, x8-0.518517)   

BF16 = max(0, -1.05684-x2)*max(0, 0.518517-x8)   

BF17 = max(0, -1.05684-x2)*max(0, x3-0.230308)   

BF18 = max(0, -1.05684-x2)*max(0, 0.230308-x3)   

BF19 = max(0, x2-1.38238)*max(0, x5-1.74135)     

BF20 = max(0, 1.38238-x2)*max(0, x5-1.74135)     
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Table A2. Percentile Intervals of Parameters Obtained by Fixed-X Resampling of 

the Main Effects Model with Interactions at α = 0.1 for Fold 1 FF Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.4603 0.2559* 0.0033 0.0019* 0.1368 0.0784* 

θ1
 

3.7137 2.6732* 0.0578 0.0365* 1.2346 0.8627* 

θ2
 

0.1448 - 0.0011 
- 

0.0447 
- 

θ3
 

2.5156 1.8946* 0.0325 0.03* 0.8194 0.646* 

θ4
 

7.8272 7.3439* 0.1265 0.1368 2.614 2.6197 

θ5
 

5.5938 4.6525* 0.0803 0.0595* 1.8364 1.5029* 

θ6
 

24.4399 22.4373* 0.4997 0.5158 8.5912 8.2625* 

θ7
 

6.8601 5.5717* 0.0991 0.0739* 2.2595 1.8446* 

θ8
 

98.5900 95.7020* 2.4622 2.8581 36.35 38.1427 

θ9
 

14.039 - 0.0288 
- 

0.6406 
- 

θ10
 

72.3437 72.7325 1.4864 2.305 25.2854 29.9606 

θ11
 

0.2670 0.2349* 0.0024 0.0018* 0.0835 0.0722* 

θ12
 

0.982 - 0.0109 
- 

0.3031 
- 

θ13
 

0.1223 0.1047* 0.001 0.001* 0.0381 0.0331* 

θ14
 

0.2173 0.1437* 0.0018 0.0012* 0.0666 0.0436* 

θ15
 

2.0120 1.3176* 0.0389 0.0331* 0.6712 0.4794* 

θ16
 

1.1293 - 0.0128 
- 

0.353 
- 

θ17
 

2.3470 2.0170* 0.0267 0.031 0.7391 0.6868* 

θ18
 

0.9709 - 0.0164 
- 

0.3235 
- 

θ19
 

11.2567 11.0153* 0.3327 0.2807 4.623 4.3802* 

θ20
 

1.1728 1.1216* 0.0111 0.0155 0.3458 0.3594 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A3. Percentile Intervals of Parameters Obtained by Random-X Resampling of 

the Main Effects Model with Interactions at α = 0.1 for Fold 1 FF Data Set 

 

 

Parameter 

Length of 

CIs for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.9803 - 0.0063 - 0.3063 - 

θ1
 

12.7135 - 0.0749 - 4.017 - 

θ2
 

0.1601 - 0.0012 - 0.0518 - 

θ3
 

11.927 - 0.0706 - 3.5503 - 

θ4
 

76.7845 - 7293.755 - 14291.84 - 

θ5
 

13.8178 - 0.0848 - 4.1067 - 

θ6
 

196.095 - 50992784 - 1.09E+08 - 

θ7
 

17.1029 - 0.1189 - 5.1721 - 

θ8
 

69,000,041 - 1.66E+11 - 2.68E+11 - 

θ9
 

5.4917 - 0.1246 - 2.08 - 

θ10
 

251.5979 - 15987320 - 26288490 - 

θ11
 

0.7684 - 0.0047 - 0.2404 - 

θ12
 

1.5667 - 0.0119 - 0.4804 - 

θ13
 

0.3131 - 0.002 - 0.0983 - 

θ14
 

0.4462 - 0.0116 - 0.1839 - 

θ15
 

5.3164 - 0.0967 - 1.9302 - 

θ16
 

1.6985 - 0.018 - 0.54 - 

θ17
 

7.5524 - 0.0939 - 2.3861 - 

θ18
 

1.3503 - 35.9922 - 57.0924 - 

θ19
 

1,984,276 - 1.24E+10 - 3.63E+10 - 

θ20
 

1.9581 - 0.0501 - 0.7559 - 

- shows statistically insignificant model parameter 
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Table A4. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of the 

Main Effects Model with Interactions at α = 0.1 for Fold 1 FF Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.821 0.037* 0.0054 0.0002* 0.2484 0.011* 

θ1
 

12.653 - 0.0839 
- 

3.8946 
- 

θ2
 

0.290 - 0.002 
- 

0.0876 
- 

θ3
 

7.737 - 0.0512 
- 

2.3136 
- 

θ4
 

16.308 14.434* 0.0964 0.0874* 5.0666 4.281* 

θ5
 

11.264 - 0.072 
- 

3.3351 
- 

θ6
 

50.145 48.527* 0.2932 0.2836* 14.9126 14.3465* 

θ7
 

14.011 - 0.091 
- 

4.1611 
- 

θ8
 

234.212 221.133* 1.164 1.047* 69.0034 69.0773 

θ9
 

4.442 - 0.0245 
- 

1.3842 
- 

θ10
 

191.733 - 1.0982 
- 

59.6608 
- 

θ11
 

0.493 - 0.0032 
- 

0.1514 
- 

θ12
 

1.788 - 0.0127 
- 

0.5471 
- 

θ13
 

0.227 - 0.0015 
- 

0.069 
- 

θ14
 

0.368 - 0.0024 
- 

0.1131 
- 

θ15
 

3.667 2.791* 0.0236 0.0167* 1.1139 0.8465* 

θ16
 

2.114 - 0.0129 
- 

0.6326 
- 

θ17
 

4.417 4.047* 0.0267 0.0257* 1.3321 1.182* 

θ18
 

1.848 - 0.0107 
- 

0.5752 
- 

θ19
 

25.997 - 0.1522 
- 

7.997 
- 

θ20
 

2.154 - 0.014 
- 

0.6703 
- 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A5. BFs from Forward Step of MARS Obtained from the Main Effects Model 

with Interactions for Fold 2 FF Data Set 

 

BF1 = max (0, x8-0.294634)                   

BF2 = max (0,0.294634-x8)                    

BF3 = max (0, x8-0.294634)*max (0, x10-0.492505)    

BF4 = max (0,  x8-0.294634)*max (0, 0.492505-x10)   

BF5 = max (0, x8-0.294634)*max (0, x9+1.05949)     

BF6 = max (0, x8-0.294634)*max (0, -1.05949-x9)     

BF7 = max (0, x8-0.294634)*max (0, x9+0.936922)    

BF8 = max (0, x8-1.44849)                   

BF9 = max (0, x6-0.611369)*max (0, x8-0.294634)     

BF10 = max (0, 0.611369-x6)*max (0, x8-0.294634)     

BF11 = max (0, x1-0.575144)*max (0, x8-0.294634)     

BF12 = max (0, 0.575144-x1)*max (0, x8-0.294634)    

BF13 = max (0, x4+0.0080942)*max (0, x8-0.294634) 

BF14 = max (0, -0.0080942-x4)*max (0, x8-0.294634) 

BF15 = max (0, x8-0.294634)*max (0, x10+0.735411) 

BF16 = max (0, x1-0.14295)*max (0, x8-0.294634)      

BF17 = max (0, x5-1.87719)*max (0, x8-0.294634)      

BF18 = max (0, 1.87719-x5)*max (0, x8-0.294634)      
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Table A6. Percentile Intervals of Parameters Obtained by Fixed-X Resampling of 

the Main Effects Model with Interactions at α = 0.1 for Fold 2 FF Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.2615 0.1898* 0.0021 0.0013* 0.0808 0.0579 

θ1
 

2.4441 - 0.0216 
- 

0.7462 
- 

θ2
 

0.2494 - 0.0021 
- 

0.0759 
- 

θ3
 

3.1275 2.8766* 0.0298 0.0369 0.9813 0.9731* 

θ4
 

1.7759 1.0452* 0.0178 0.0128* 0.5643 0.3462* 

θ5
 

9.3435 9.4064 0.0787 0.1187 2.8484 2.9944 

θ6
 

5.4064 5.6300 0.0513 0.084 1.6834 1.8615 

θ7
 

9.6387 9.6081* 0.0809 0.1141 2.9521 3.097 

θ8
 

2.0566 1.3534* 0.0237 0.0287 0.6392 0.5379* 

θ9
 

7.5281 6.9701* 0.0755 0.0714* 2.3385 2.23* 

θ10
 

1.2823 1.2868 0.0182 0.0143* 0.4388 0.421* 

θ11
 

4.1136 3.3978* 0.0403 0.0552 1.2739 1.1904* 

θ12
 

0.7375 - 0.0083 
- 

0.2411 
- 

θ13
 

1.6949 1.5016* 0.0156 0.0149* 0.5377 0.4706* 

θ14
 

1.2660 1.3234 0.0233 0.0181* 0.4527 0.4461* 

θ15
 

2.4694 1.7393* 0.0206 0.0261 0.7599 0.5809* 

θ16
 

3.2114 2.3321* 0.0326 0.04 0.9952 0.813* 

θ17
 

7.2183 7.2505 0.0947 0.1004 2.373 2.4001 

θ18
 

0.7454 0.7166* 0.0081 0.0081 0.2361 0.2426 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A7. Percentile Intervals of Parameters Obtained by Random-X Resampling of 

the Main Effects Model with Interactions at α = 0.1 for Fold 2 FF Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.1738 0.1826 0.0013 0.0013* 0.0524 0.0568 

θ1
 

7.2361 - 0.0719 
- 

2.3023 
- 

θ2
 

0.1092 - 0.0007 
- 

0.0331 
- 

θ3
 

12.1772 5.8499* 0.0787 0.0384* 3.4944 1.7307* 

θ4
 

4.9731 - 0.033 
- 

1.529 
- 

θ5
 

48.8433 22.0268* 0.3168 0.1512* 14.1354 6.4682* 

θ6
 

30.9479 12.9475* 0.2195 0.0919* 9.5091 3.9949* 

θ7
 

48.0485 22.2773* 0.2981 0.1578* 13.8268 6.6065* 

θ8
 

7.8384 
- 

0.0547 
- 

2.4153 
- 

θ9
 

18.1939 
- 

0.1402 
- 

5.8189 
- 

θ10
 

2.4921 
- 

0.0185 
- 

0.7795 
- 

θ11
 

18.8273 
- 

0.1205 
- 

6.079 
- 

θ12
 

1.2867 
- 

0.013 
- 

0.3945 
- 

θ13
 

5.294 - 0.0381 
- 

1.7073 
- 

θ14
 

2.8865 - 0.0755 
- 

1.1333 
- 

θ15
 

9.2723 3.4522* 0.0584 0.0211* 2.7038 1.0296* 

θ16
 

12.5715 1.4830* 0.089 0.012* 4.0295 0.474* 

θ17
 

20.3324 - 10026.41 
- 

51681.67 
- 

θ18
 

1.6136 - 0.0101 
- 

0.5262 
- 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A8. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of the 

Main Effects Model with Interactions at α = 0.1 for Fold 2 FF Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.2416 0.1112* 0.0016 0.0007* 0.0739 0.0333* 

θ1
 

2.7944 - 0.0195 
- 

0.8573 
- 

θ2
 

0.2693 - 0.0018 
- 

0.0826 
- 

θ3
 

3.9781 3.0994* 0.0277 0.0213* 1.1851 0.9786* 

θ4
 

2.3040 1.2159* 0.0153 0.0076* 0.6696 0.363* 

θ5
 

10.3385 10.1477* 0.0676 0.0627* 3.1805 3.1021* 

θ6
 

6.5232 6.5581 0.0386 0.0405 1.969 1.9497* 

θ7
 

10.6166 10.4488* 0.0679 0.0688 3.2873 3.208* 

θ8
 

2.3615 1.6832* 0.0168 0.0168* 0.7419 0.579* 

θ9
 

8.1361 - 0.0539 
- 

2.5172 
- 

θ10
 

1.5512 1.4582* 0.0105 0.0095* 0.478 0.4475* 

θ11
 

4.8457 4.1868* 0.0314 0.0272* 1.5174 1.267* 

θ12
 

0.8703 - 0.0058 
- 

0.2683 
- 

θ13
 

1.9068 1.7376* 0.0125 0.0105* 0.5708 0.5053* 

θ14
 

1.6044 1.4854* 0.0108 0.0098* 0.4902 0.455* 

θ15
 

3.0240 2.0019* 0.0205 0.0125* 0.9096 0.5871* 

θ16
 

3.8541 2.7509* 0.0242 0.0175* 1.1816 0.8386* 

θ17
 

8.6764 5.7258* 0.0573 0.0318* 2.5329 1.7714* 

θ18
 

0.8584 0.8137* 0.0061 0.0055* 0.2629 0.2463* 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A9. BFs from Forward Step of MARS Obtained from the Main Effects Model 

with Interactions for Fold 3 FF Data Set 

 

BF1 = max (0, x8-1.12128)                      

BF2= max (0, 1.12128-x8)                      

BF3 = max (0, x8-0.845729)                     

BF4 = max (0, x8-1.29349)                      

BF5 = max (0, x8-0.845729)*max (0, x9+1.05949)      

BF6 = max (0, x8-0.845729)*max (0, -1.05949-x9)      

BF7 = max (0, x8-1.12128)*max (0, x9+1.05949)       

BF8 = max (0, x8-1.12128)*max (0, -1.05949-x9)       

BF9 = max (0, x8-0.845729)*max (0, x10+0.0098242)   

BF10 = max (0, x8-0.845729)*max (0, -0.0098242-x10)   

BF11 = max (0, x8-1.12128)*max (0, x10+2.01914)      

BF12 = max (0, x8-1.12128)*max (0, x10+0.0098242)    

BF13 = max (0, x8-1.29349)*max (0, x9+1.18206)       

BF14 = max (0, x8-1.29349)*max (0, -1.18206-x9)       

BF15 = max (0, x8-1.29349)*max (0, x9+0.998206)      

BF16 = max (0, x8-0.845729)*max (0, x9+0.936922)     
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Table A10. Percentile Intervals of Parameters Obtained by Fixed-X Resampling of 

the Main Effects Model with Interactions at α = 0.1 for Fold 3 FF Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.3524 - 0.0031 - 0.1108 - 

θ1
 

5.6518 - 0.0376 - 1.6553 - 

θ2
 

0.2221 - 0.0021 - 0.0656 - 

θ3
 

2.8373 - 0.0555 - 1.0483 - 

θ4
 

5.3950 - 0.0466 - 1.6727 - 

θ5
 

22.7249 - 0.4397 
- 

8.4137 
- 

θ6
 

30.1681 - 0.7874 
- 

10.8025 
- 

θ7
 

22.1346 - 0.5879 
- 

9.2691 
- 

θ8
 

79.9583 - 1.9622 
- 

28.226 
- 

θ9
 

7.5260 - 0.2921 
- 

3.3645 
- 

θ10
 

2.9897 - 0.0619 - 1.0936 - 

θ11
 

4.8080 - 0.0901 - 1.7008 - 

θ12
 

14.1384 
- 

0.3529 
- 

5.8088 
- 

θ13
 

45.4657 
- 

0.9245 
- 

15.7589 
- 

θ14
 

58.4440 
- 

1.2106 
- 

21.5196 
- 

θ15
 

63.0700 
- 

1.657 
- 

22.2767 
- 

θ16
 

22.3437 
- 

0.521 
- 

8.5695 
- 

- shows statistically insignificant model parameter 
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Table A11.  Percentile Intervals of Parameters Obtained by Random-X Resampling 

of the Main Effects Model with Interactions at α = 0.1 for Fold 3 FF Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.5943 - 0.0056 - 0.1886 - 

θ1
 

4.1307 - 0.0248 - 1.5353 - 

θ2
 

0.3145 - 0.003 - 0.0995 - 

θ3
 

6.0062 - 0.0279 - 2.5694 - 

θ4
 

3.9385 - 0.0314 - 1.3953 - 

θ5
 

25.3066 - 0.1337 - 8.5121 - 

θ6
 

39.1122 - 0.1906 - 14.2317 - 

θ7
 

29.5122 - 0.1749 - 9.5268 - 

θ8
 

91.9701 - 0.4401 - 32.9339 - 

θ9
 

8.3818 - 0.0898 - 2.6828 - 

θ10
 

3.9866 - 0.02 - 1.4636 - 

θ11
 

6.8726 - 0.0374 - 2.4567 - 

θ12
 

16.9952 - 0.1444 - 5.6448 - 

θ13
 

47.8843 - 0.2759 - 15.5051 - 

θ14
 

62.1864 - 25077.87 - 107107.7 - 

θ15
 

67.5898 - 0.4042 - 21.7303 - 

θ16
 

19.6854 - 0.1213 - 6.3671 - 

- shows statistically insignificant model parameter 
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Table A12. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of 

the Main Effects Model with Interactions at α = 0.1 for Fold 3 FF Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.3411 0.2198* 0.0023 0.0014* 0.1056 0.0684* 

θ1
 

20.5739 - 0.13 - 6.2377 - 

θ2
 

0.2462 0.1950* 0.0016 0.0013* 0.0748 0.0607* 

θ3
 

7.8834 - 0.0494 - 2.4079 - 

θ4
 

15.3645 - 0.1 - 4.6484 - 

θ5
 

34.7498 - 0.2111 - 10.2602 - 

θ6
 

56.4426 - 0.3494 - 16.8484 - 

θ7
 

38.4642 - 0.2425 - 11.3621 - 

θ8
 

132.6501 - 0.8702 - 40.3004 - 

θ9
 

10.9232 - 0.0701 - 3.3922 - 

θ10
 

6.0988 - 0.036 - 1.8604 - 

θ11
 

9.995 - 0.0587 - 3.0387 - 

θ12
 

22.7681 - 0.1551 - 6.9473 - 

θ13
 

72.6011 - 0.4712 - 21.854 - 

θ14
 

85.6487 - 0.585 - 26.1419 - 

θ15
 

90.8052 - 0.6072 - 28.1857 - 

θ16
 

32.953 - 0.2088 - 10.0022 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A13. BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 1 PM10 Data Set 

 

BF1 = max (0, x1+0.533237)                  

BF2 = max (0, -0.533237-x1)                 

BF3 = max (0, x3-0.692675)                   

BF4 = max (0, 0.692675-x3)                   

BF5 = max (0, x7+0.610358)                  

BF6 = max (0, -0.610358-x7)                  

BF7 = max (0, x2-0.0959798)                  

BF8 = max (0, 0.0959798-x2)                  

BF9 = max (0, x2-0.0959798)*max (0, x7-1.16449)    

BF10 = max (0, x2-0.0959798)*max (0, 1.16449-x7)    

BF11 = max (0, x5+0.70273)                   

BF12 = max (0, -0.70273-x5)                   

BF13 = max (0, x3-0.692675)*max (0, x7-0.431617)    

BF14 = max (0, x3-0.692675)*max (0, 0.431617-x7)    

BF15 = max (0, x4+0.0554302)                 

BF16 = max (0, -0.0554302-x4)                 

BF17 = max (0, x1-0.386576)*max (0, -0.610358-x7)   

BF18 = max (0, 0.386576-x1)*max (0, -0.610358-x7)  

BF19 = max (0, x2-0.0959798)*max (0, x4+1.26923)   

BF20 = max (0, x2-0.0959798)*max (0, -1.26923-x4)   
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Table A14. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 1 PM10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.5354 0.4495* 0.0038 0.003* 0.1656 0.1357* 

θ1
 

0.3363 0.2746* 0.0023 0.0018* 0.1022 0.0821* 

θ2
 

0.3597 - 0.0025 
- 

0.1107 
- 

θ3
 

0.7599 0.7424* 0.0049 0.005 0.2262 0.2273 

θ4
 

0.2209 0.2236 0.0014 0.0014* 0.0671 0.0671* 

θ5
 

0.2682 0.2377* 0.0018 0.0016* 0.0841 0.0709* 

θ6
 

1.1244 - 0.0079 
- 

0.3429 
- 

θ7
 

0.5882 0.5893 0.0045 0.004* 0.1874 0.1771* 

θ8
 

0.2247 0.2327 0.0016 0.0016 0.0691 0.0704 

θ9
 

3.1358 2.9515* 0.0213 0.0204* 0.9489 0.9062* 

θ10
 

0.3752 0.3667* 0.0026 0.0025* 0.1154 0.1121* 

θ11
 

0.1722 0.1777 0.0011 0.0011* 0.0516 0.0528 

θ12
 

0.8167 0.7840* 0.0054 0.0056 0.2426 0.2364* 

θ13
 

1.2167 1.1739* 0.008 0.0079* 0.3676 0.3593* 

θ14
 

0.5859 0.5634* 0.0039 0.0039* 0.1771 0.1766* 

θ15
 

0.2508 0.2684 0.0018 0.0018* 0.0774 0.0794 

θ16
 

0.4012 0.3665* 0.0027 0.0025* 0.1189 0.1101* 

θ17
 

2.6372 2.1034* 0.0179 0.0146* 0.7876 0.6372* 

θ18
 

0.7346 0.5137* 0.0051 0.0037* 0.2175 0.1599* 

θ19
 

0.4529 - 0.0031 
- 

0.1363 
- 

θ20
 

0.3221 0.3228 0.0023 0.0021* 0.0958 0.0961 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A15. Percentile Intervals of Parameters Obtained by Random-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 1 PM10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.5615 0.4343* 0.0037 0.003* 0.1651 0.1374* 

θ1
 

0.3492 0.2929* 0.0026 0.002* 0.1041 0.0871* 

θ2
 

0.3567 - 0.0027 
- 

0.1107 
- 

θ3
 

0.5636 0.5450* 0.0052 0.0041* 0.1758 0.1698* 

θ4
 

0.2154 0.2141* 0.0014 0.0014* 0.0666 0.0646* 

θ5
 

0.2757 0.2517 0.0018 0.0018* 0.0842 0.0766* 

θ6
 

0.9608 - 0.0066 
- 

0.2983 
- 

θ7
 

0.5003 0.4397* 0.0034 0.0031* 0.1524 0.1345* 

θ8
 

0.1963 0.1979 0.0014 0.0014* 0.061 0.061* 

θ9
 

2.3160 2.0397* 0.0162 0.0162* 0.7057 0.6428* 

θ10
 

0.3703 0.3370* 0.0025 0.0027 0.1108 0.103* 

θ11
 

0.1404 0.1359* 0.001 0.0009* 0.043 0.0411* 

θ12
 

0.7446 0.7156* 0.0053 0.0048* 0.2251 0.2124* 

θ13
 

0.9753 0.9691* 0.0076 0.0065* 0.2999 0.2906* 

θ14
 

0.6143 0.6149 0.0056 0.0047* 0.1909 0.1917 

θ15
 

0.2763 0.2678* 0.0017 0.0016* 0.0827 0.08* 

θ16
 

0.2832 0.2630* 0.0021 0.0017* 0.0847 0.08* 

θ17
 

2.4831 2.1737* 0.0192 0.0172* 0.7719 0.6891* 

θ18
 

0.7831 0.6699* 0.0051 0.0044* 0.2323 0.2013* 

θ19
 

0.4619 - 0.0032 
- 

0.1409 
- 

θ20
 

0.2880 0.2780* 0.0027 0.0027* 0.0895 0.0886* 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 

 

 

 



90 
 

Table A16. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of 

the Main Effects Model with Interactions at α = 0.1 for Fold 1 PM10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.8329 0.4999* 0.0055 0.0034* 0.2558 0.1531* 

θ1
 

0.5040 0.3467* 0.0034 0.0024* 0.1507 0.1074* 

θ2
 

0.5321 - 0.0035 
- 

0.1632 
- 

θ3
 

1.3528 - 0.0083 
- 

0.4173 
- 

θ4
 

0.3139 0.2764* 0.002 0.002* 0.0958 0.0884* 

θ5
 

0.4175 - 0.0028 
- 

0.1275 
- 

θ6
 

1.6759 - 0.0112 
- 

0.5094 
- 

θ7
 

1.0458 0.5419* 0.0082 0.0036* 0.3254 0.1645* 

θ8
 

0.3279 0.3060* 0.0021 0.0021* 0.0969 0.0943* 

θ9
 

4.9698 3.1303* 0.0363 0.0202* 1.4948 0.9399* 

θ10
 

0.6321 - 0.0041 
- 

0.1942 
- 

θ11
 

0.2435 0.2457 0.0016 0.0017 0.0752 0.0754 

θ12
 

1.3032 1.1804* 0.0092 0.0079* 0.3917 0.3577* 

θ13
 

2.0937 0.7942* 0.013 0.0052* 0.6352 0.2355* 

θ14
 

1.0284 - 0.0068 
- 

0.3114 
- 

θ15
 

0.3740 0.3926 0.0025 0.0025* 0.1129 0.1169 

θ16
 

0.5692 0.5167* 0.0038 0.0034* 0.1764 0.159* 

θ17
 

3.7852 - 0.0249 
- 

1.1492 
- 

θ18
 

1.0094 0.6595* 0.007 0.0046* 0.306 0.2023* 

θ19
 

0.6435 - 0.0042 
- 

0.1981 
- 

θ20
 

0.4430 0.4490 0.0032 0.0034 0.137 0.1364* 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A17. BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 2 PM10 Data Set 

 

BF1 = max (0, x1-0.913661)                    

BF2 = max (0, 0.913661-x1)                   

BF3 = max (0, x3-0.423946)                    

BF4 = max (0, 0.423946-x3)                    

BF5 = max (0, x4+0.0554302)                  

BF6 = max (0, -0.0554302-x4)                  

BF7 = max (0, 0.913661-x1)*max (0, x5+0.737813)   

BF8 = max (0, 0.913661-x1)*max (0, -0.737813-x5)   

BF9 = max (0, 0.913661-x1)*max (0, x7+0.535575)   

BF10 = max (0, 0.913661-x1)*max (0, -0.535575-x7)   

BF11 = max (0, -0.0554302-x4)*max (0, x7-1.22431)    

BF12 = max (0, -0.0554302-x4)*max (0, 1.22431-x7)    

BF13 = max (0, 0.423946-x3)*max (0, x4-0.652619)     

BF14 = max (0, 0.423946-x3)*max (0, 0.652619-x4)     

BF15 = max (0, x2-0.127295)                    

BF16 = max (0, 0.127295-x2)                    

BF17 = max (0, -0.0554302-x4)*max (0, x7-0.496428)   

BF18 = max (0, 0.913661-x1)*max (0, x3-2.03632)     

BF19 = max (0, 0.913661-x1)*max (0, 2.03632-x3)   
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Table A18. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 2 PM 10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.3611 0.2641 0.0024 0.0019* 0.1122 0.079* 

θ1
 

2.1895 - 0.0164 
- 

0.6777 
- 

θ2
 

0.4845 - 0.0033 
- 

0.1476 
- 

θ3
 

0.3981 0.3185 0.0026 0.0022* 0.1195 0.0963* 

θ4
 

0.4406 0.2763 0.0028 0.002* 0.1355 0.0847* 

θ5
 

0.5199 0.2461 0.0035 0.0016* 0.155 0.0748* 

θ6
 

1.2036 - 0.0119 
- 

0.3849 
- 

θ7
 

0.1107 0.1034 0.0008 0.0007* 0.0342 0.031* 

θ8
 

0.7916 0.7216 0.0054 0.0051* 0.2367 0.2233* 

θ9
 

0.1813 0.1321 0.0012 0.0009* 0.0556 0.0403* 

θ10
 

0.4804 0.3388 0.0032 0.0022* 0.1488 0.1035* 

θ11
 

4.1837 3.8085 0.028 0.0267* 1.2868 1.1424* 

θ12
 

0.6572 0.2614 0.0062 0.0019* 0.2051 0.0775* 

θ13
 

0.4449 - 0.003 
- 

0.1347 
- 

θ14
 

0.3715 0.3054 0.0026 0.0022* 0.1143 0.0959* 

θ15
 

0.3359 0.3159 0.0023 0.0021* 0.1058 0.0938* 

θ16
 

0.2561 0.2299 0.0017 0.0015* 0.0787 0.07* 

θ17
 

1.8645 0.7622 0.0171 0.0053* 0.5953 0.2299* 

θ18
 

3.7680 3.3986 0.0237 0.0223* 1.1172 1.0337* 

θ19
 

0.1851 - 0.0012 
- 

0.0546 
- 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A19. Percentile Intervals of Parameters Obtained by Random-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 2 PM 10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.4008 0.2950* 0.0029 0.002* 0.1229 0.0883* 

θ1
 

2.1105 1.2882* 0.0149 0.0089* 0.6542 0.3942* 

θ2
 

0.5339 - 0.0037 
- 

0.1568 
- 

θ3
 

0.4798 0.3713* 0.0032 0.0026* 0.1446 0.1155* 

θ4
 

0.4533 0.3113* 0.0031 0.0021* 0.1352 0.0953* 

θ5
 

0.5188 0.2444* 0.0034 0.0018* 0.1534 0.075* 

θ6
 

0.5193 0.3490* 0.0081 0.002* 0.1719 0.1075* 

θ7
 

0.1306 0.1234* 0.001 0.0008* 0.041 0.0375* 

θ8
 

1.2387 0.9917* 0.0125 0.0096* 0.3673 0.3041* 

θ9
 

0.1853 0.1173* 0.0013 0.0008* 0.0567 0.0366* 

θ10
 

0.5032 0.3695* 0.0036 0.0025* 0.152 0.1109* 

θ11
 

3.4493 3.1655* 0.0355 0.0424* 1.111 1.0531* 

θ12
 

0.3386 0.3145* 0.0028 0.0021* 0.1041 0.095* 

θ13
 

0.4286 - 0.0032 
- 

0.13 
- 

θ14
 

0.3417 0.3037* 0.0025 0.0021* 0.1034 0.0925* 

θ15
 

0.3397 0.3013* 0.0024 0.0021* 0.1012 0.0895* 

θ16
 

0.2455 0.2177* 0.0017 0.0014* 0.0734 0.0652* 

θ17
 

1.0092 0.8058* 0.0093 0.0052* 0.3058 0.2461* 

θ18
 

3.8624 3.8507* 0.0283 0.0337 1.1823 1.1975 

θ19
 

0.1957 - 0.0013 
- 

0.0601 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A20. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of 

the Main Effects Model with Interactions at α = 0.1 for Fold 2 PM10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.4689 0.2449* 0.0032 0.0017* 0.1421 0.0754* 

θ1
 

3.1026 - 0.0206 
- 

0.9653 
- 

θ2
 

0.6381 - 0.0045 
- 

0.2034 
- 

θ3
 

0.5241 - 0.0038 
- 

0.1661 
- 

θ4
 

0.5978 0.2165* 0.0039 0.0021* 0.1787 0.0673* 

θ5
 

0.6711 - 0.0043 
- 

0.202 
- 

θ6
 

3.0574 - 0.0188 
- 

0.9354 
- 

θ7
 

0.1542 0.1298* 0.0011 0.0009* 0.0473 0.0403* 

θ8
 

1.0190 1.0139* 0.0066 0.0063* 0.3151 0.2984* 

θ9
 

0.2440 0.1742* 0.0017 0.0012* 0.0747 0.0543* 

θ10
 

0.6449 0.4331* 0.004 0.0029* 0.1902 0.1323* 

θ11
 

7.6795 4.8378* 0.0503 0.0287* 2.2867 1.4354* 

θ12
 

1.5390 0.3038* 0.0095 0.002* 0.4701 0.093* 

θ13
 

0.5922 - 0.0041 
- 

0.1812 
- 

θ14
 

0.4926 0.3266* 0.0033 0.0025* 0.1509 0.1016* 

θ15
 

0.4728 - 0.0033 
- 

0.1439 
- 

θ16
 

0.3440 0.2966* 0.0023 0.0019* 0.1069 0.0887* 

θ17
 

4.4368 0.9381* 0.0284 0.0061* 1.3589 0.2896* 

θ18
 

4.9904 3.6743* 0.0327 0.0221* 1.5194 1.1068* 

θ19
 

0.2453 - 0.0016 - 0.0756 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A21. BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 3 PM10 Data Set 

 

BF1 = max (0, x1+0.401651)                   

BF2 = max (0, -0.401651-x1)                  

BF3 = max (0, x3+0.221003)                   

BF4 = max (0, -0.221003-x3)                   

BF5 = max (0, x2+0.138881)*max (0, x3+0.221003)   

BF6 = max (0, -0.138881-x2)*max (0, x3+0.221003)   

BF7 = max (0, x7-1.25921)                     

BF8 = max (0, 1.25921-x7)                     

BF9 = max (0, x3+0.221003)*max (0, x5+0.74483)    

BF10 = max (0, x3+0.221003)*max (0, -0.74483-x5)    

BF11 = max (0, x4-0.0457198)*max (0, 1.25921-x7)     

BF12 = max (0, 0.0457198-x4)*max (0, 1.25921-x7)     

BF13 = max (0, x5-0.852629)*max (0, 1.25921-x7)      

BF14 = max (0, 0.852629-x5)*max (0, 1.25921-x7)      

BF15 = max (0, -0.221003-x3)*max (0, x6+0.794168)   

BF16 = max (0, -0.221003-x3)*max (0, -0.794168-x6)   

BF17 = max (0, x7-0.960082)                    

BF18 = max (0, x3+0.221003)*max (0, x4-0.34917)     

BF19 = max (0, x3+0.221003)*max (0, 0.34917-x4)     
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Table A22. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 3 PM10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.4940 0.3860* 0.0032 0.0027* 0.1524 0.1191* 

θ1
 

0.3181 0.2604* 0.0023 0.0018* 0.0987 0.0809* 

θ2
 

0.3821 - 0.0026 
- 

0.1175 
- 

θ3
 

0.4669 - 0.0029 
- 

0.1451 
- 

θ4
 

0.6524 - 0.0043 
- 

0.1964 
- 

θ5
 

0.3859 0.4029 0.0026 0.0026* 0.1157 0.1194 

θ6
 

0.4207 0.3914* 0.0028 0.0026* 0.1255 0.1197* 

θ7
 

3.4964 3.0799* 0.0432 0.0321* 1.2001 1.0628* 

θ8
 

0.2630 0.2390* 0.0019 0.0015* 0.0806 0.072* 

θ9
 

0.2654 0.2109* 0.0018 0.0015* 0.0803 0.0644* 

θ10
 

1.0060 0.7516* 0.0067 0.0049* 0.3121 0.2258* 

θ11
 

0.1470 0.1475 0.001 0.001* 0.0451 0.0451* 

θ12
 

0.1719 0.1744 0.0011 0.0012 0.0512 0.0518 

θ13
 

0.3044 - 0.0021 
- 

0.0941 
- 

θ14
 

0.1444 0.1238* 0.001 0.0008* 0.0425 0.0373* 

θ15
 

0.3842 0.2551* 0.0026 0.0017* 0.1153 0.0784* 

θ16
 

1.5930 1.2644* 0.0105 0.0084* 0.4778 0.3833* 

θ17
 

1.6896 1.6429* 0.0138 0.0116* 0.5229 0.4919* 

θ18
 

1.7358 1.6004* 0.0119 0.011* 0.5357 0.4757* 

θ19
 

0.3639 0.3569* 0.0026 0.0026* 0.1125 0.1115* 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A23. Percentile Intervals of Parameters Obtained by Random-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 3 PM10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.4856 0.3747* 0.0034 0.0025* 0.1465 0.1162* 

θ1
 

0.3262 0.2936* 0.0022 0.0018* 0.0999 0.0878* 

θ2
 

0.4045 - 0.0028 
- 

0.1217 
- 

θ3
 

0.6624 - 0.0043 
- 

0.1984 
- 

θ4
 

0.6449 - 0.0045 
- 

0.1991 
- 

θ5
 

0.4013 0.3064* 0.0029 0.0023* 0.1238 0.0946* 

θ6
 

0.5206 0.5004* 0.0048 0.0044* 0.164 0.1562* 

θ7
 

1.2349 1.8221 0.0317 0.0344 0.4341 0.5991 

θ8
 

0.2997 0.2528* 0.002 0.0016* 0.0911 0.0772* 

θ9
 

0.3532 0.2557* 0.0022 0.0017* 0.107 0.0788* 

θ10
 

1.3608 0.8236* 0.0097 0.0069* 0.4162 0.2487* 

θ11
 

0.1789 0.1738* 0.0014 0.0016 0.0545 0.055 

θ12
 

0.1893 0.1768* 0.0016 0.0013* 0.0597 0.053* 

θ13
 

0.299 - 0.002 
- 

0.0926 
- 

θ14
 

0.1649 0.1376* 0.0011 0.0009* 0.0502 0.0421* 

θ15
 

0.3752 0.2654* 0.0025 0.0018* 0.1118 0.0798* 

θ16
 

1.5711 1.1490* 0.012 0.0075* 0.4907 0.3487* 

θ17
 

1.2086 1.2142 0.008 0.0114 0.3665 0.3844 

θ18
 

1.6782 1.6414* 0.0178 0.0163* 0.5348 0.5313* 

θ19
 

0.3525 - 0.0028 - 0.1078 
- 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A24. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of 

the Main Effects Model with Interactions at α = 0.1 for Fold 3 PM10 Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 0.6632 0.5067* 0.0047 0.0035* 0.2 0.1524* 

θ1
 

0.4780 0.3929* 0.003 0.0026* 0.1416 0.1192* 

θ2
 

0.5606 - 0.0038 - 0.1661 - 

θ3
 

0.7077 - 0.0046 - 0.2136 - 

θ4
 

0.8693 - 0.0064 - 0.2641 - 

θ5
 

0.5330 0.3745* 0.0036 0.0026* 0.163 0.1159* 

θ6
 

0.5864 - 0.0038 - 0.1788 - 

θ7
 

4.7908 4.5729* 0.0536 0.0483* 1.6091 1.5516* 

θ8
 

0.3532 0.3185* 0.0024 0.002* 0.1078 0.0989* 

θ9
 

0.3701 0.2947* 0.0023 0.0017* 0.1124 0.0865* 

θ10
 

1.5266 1.0100* 0.0105 0.0065* 0.4459 0.2936* 

θ11
 

0.2162 0.2116* 0.0013 0.0013* 0.0657 0.064* 

θ12
 

0.2406 0.2324* 0.0015 0.0015* 0.0733 0.0702* 

θ13
 

0.4462 - 0.0029 - 0.1346 - 

θ14
 

0.1946 0.1764* 0.0013 0.0012* 0.0588 0.0515 

θ15
 

0.5267 0.3383* 0.0035 0.0023* 0.1576 0.1051 

θ16
 

2.2290 1.6441* 0.0151 0.0113* 0.6772 0.5134 

θ17
 

2.2199 2.1806* 0.0168 0.0174 0.6998 0.6802 

θ18
 

2.4348 - 0.0154 - 0.729 - 

θ19
 

0.527 - 0.0037 - 0.1603 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A25. BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 1 CS Data Set 

 

BF1 = max (0, x4+0.305221)                     

BF2 = max (0, -0.305221-x4)                     

BF3 = max (0, x2-0.132749)                      

BF4 = max (0, 0.132749-x2)                      

BF5 = max (0, x4+0.305221)*max (0, x6-0.000241644)   

BF6 = max (0, x4+0.305221)*max (0, 0.000241644-x6)   

BF7 = max (0, x2-0.132749)*max (0, x7+0.383708)      

BF8 = max (0, x2-0.132749)*max (0, -0.383708-x7)      

BF9 = max (0, x1-0.936973)*max (0, x2-0.132749)       

BF10 = max (0, 0.936973-x1)*max (0, x2-0.132749)      

BF11 = max (0, x4+0.305221)*max (0, x7-0.274622)      

BF12 = max (0, x4+0.305221)*max (0, 0.274622-x7)      

BF13 = max (0, x5+0.0854152)                    

BF14 = max (0, -0.0854152-x5)                    

BF15 = max (0, x2-0.228678)*max (0, x5+0.0854152)     

BF16 = max (0, 0.228678-x2)*max (0, x5+0.0854152)     

BF17 = max (0, x3-0.175436)*max (0, x4+0.305221)      

BF18 = max (0, 0.175436-x3)*max (0, x4+0.305221) 

BF19 = max (0, x3-1.05581)                       

BF20 = max (0, 1.05581-x3) 
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Table A26. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 1 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.8349 0.4618* 0.0056 0.0033* 0.2512 0.1439* 

θ1
 

1.1581 - 0.0078 
- 

0.3587 
- 

θ2
 

0.6468 0.5672* 0.0046 0.0037* 0.1969 0.1719* 

θ3
 

1.6632 1.3112* 0.0101 0.008* 0.5048 0.3979* 

θ4
 

0.4771 - 0.0032 
- 

0.1443 
- 

θ5
 

1.2562 1.2432* 0.009 0.0084* 0.3744 0.3599* 

θ6
 

0.6149 - 0.0042 
- 

0.1934 
- 

θ7
 

0.6993 0.7179 0.0048 0.0048* 0.2115 0.2214 

θ8
 

1.2971 - 0.0086 
- 

0.3949 
- 

θ9
 

4.6015 - 0.0329 
- 

1.4312 
- 

θ10
 

0.6470 0.6700 0.0044 0.0043* 0.1983 0.2039 

θ11
 

0.4756 - 0.0032 
- 

0.1415 
- 

θ12
 

0.693 - 0.0046 
- 

0.2054 
- 

θ13
 

0.6083 0.5739* 0.0042 0.0041* 0.1849 0.1715* 

θ14
 

0.6488 - 0.0043 
- 

0.1984 
- 

θ15
 

0.8789 0.6978* 0.0054 0.0056 0.2577 0.2172* 

θ16
 

0.7496 0.6847* 0.0051 0.0044* 0.2312 0.2023* 

θ17
 

0.7511 - 0.005 
- 

0.2311 
- 

θ18
 

0.5839 0.4484* 0.004 0.003* 0.1815 0.1342* 

θ19
 

10.1595 - 0.0603 
- 

3.0448 
- 

θ20
 

0.3558 0.3215* 0.0024 0.0021* 0.1109 0.0973* 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A27. Percentile Intervals of Parameters Obtained by Random-X of the 

Main Effects Model with Interactions at α = 0.1 for Fold 1 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

1.1536 0.5221* 0.0082 0.0034* 0.352 0.1564* 

θ1
 

1.3211 - 0.0098 - 0.3964 - 

θ2
 

0.7964 0.6475* 0.0065 0.0043* 0.2441 0.1936* 

θ3
 

1.7350 1.6127* 0.02 0.0130* 0.5507 0.4801* 

θ4
 

0.5835 - 0.0041 - 0.1766 - 

θ5
 

2.0669 1.6124* 0.022 0.0163* 0.6481 0.5043* 

θ6
 

0.7511 - 0.006 - 0.2321 - 

θ7
 

1.0749 0.7490* 0.011 0.0054* 0.3335 0.2315* 

θ8
 

1.873 - 0.0246 - 0.6126 - 

θ9
 

5.8572 - 0.0431 - 1.7984 - 

θ10
 

0.8894 0.8761* 0.0085 0.0066* 0.2681 0.2554* 

θ11
 

0.7806 - 0.008 - 0.2363 - 

θ12
 

0.8853 - 0.0075 - 0.2774 - 

θ13
 

0.6347 0.3962* 0.0092 0.0082* 0.2117 0.1386* 

θ14
 

0.9289 - 0.0063 - 0.2866 - 

θ15
 

0.8715 0.6244* 0.0122 0.0092* 0.2773 0.2001* 

θ16
 

0.7506 0.6612* 0.0082 0.0405* 0.2462 0.2554* 

θ17
 

1.2385 - 0.01 - 0.3803 - 

θ18
 

0.8918 0.5349* 0.0065 0.0040* 0.2577 0.1591* 

θ19
 

5.3385 - 0.0524 - 1.7238 - 

θ20
 

0.4319 0.2995* 0.0034 0.0023* 0.1326 0.0911* 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A28. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of 

the Main Effects Model with Interactions at α = 0.1 for Fold 1 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

1.8352 0.3401* 0.012 0.0022 * 0.5486 0.1039* 

θ1
 

2.9865 - 0.0178 - 0.8939 - 

θ2
 

1.5587 0.9879* 0.0101 0.0069* 0.4805 0.3094* 

θ3
 

5.1004 - 0.0332 - 1.533 - 

θ4
 

1.0801 - 0.0073 - 0.3291 - 

θ5
 

2.8467 - 0.019 - 0.8729 - 

θ6
 

1.598 - 0.01 - 0.4841 - 

θ7
 

1.6127 - 0.0102 - 0.4951 - 

θ8
 

2.9106 - 0.0188 - 0.8953 - 

θ9
 

12.5849 - 0.0778 - 3.816 - 

θ10
 

2.1023 - 0.0136 - 0.6324 - 

θ11
 

1.1046 - 0.0068 - 0.3286 - 

θ12
 

1.6252 - 0.0108 - 0.4983 - 

θ13
 

1.7630 1.1073* 0.0104 0.0071* 0.5351 0.3327* 

θ14
 

1.4583 - 0.01 - 0.4464 - 

θ15
 

2.3503 1.1835* 0.0144 0.0083 * 0.7114 0.3609* 

θ16
 

1.905 - 0.0121 - 0.5626 - 

θ17
 

1.6945 - 0.0112 - 0.5173 - 

θ18
 

1.4136 - 0.0098 - 0.4283 - 

θ19
 

32.4422 - 0.1873 - 9.5966 - 

θ20
 

0.8394 - 0.0052 - 0.2519 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A29. BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 2 CS Data Set 

 

BF1 = max (0, x4+0.161715)                   

BF2 = max (0, -0.161715-x4)                   

BF3 = max (0, x2+0.548677)                   

BF4 = max (0, -0.548677-x2)                   

BF5 = max (0, x2-0.860487)*max (0, x4+0.161715)    

BF6 = max (0, 0.860487-x2)*max (0, x4+0.161715)    

BF7 = max (0, x1-0.852031)*max (0, x2+0.548677)    

BF8 = max (0, 0.852031-x1)*max (0, x2+0.548677)   

BF9 = max (0, -0.548677-x2)*max (0, x5+0.192271)   

BF10 = max (0, -0.548677-x2)*max (0, -0.192271-x5)   

BF11 = max (0, x4+0.161715)*max (0, x7-0.274622)    

BF12 = max (0, x4+0.161715)*max (0, 0.274622-x7)    

BF13 = max (0, x2+0.548677)*max (0, x4+0.899041)   

BF14 = max (0, x2+0.548677)*max (0, -0.899041-x4)   

BF15 = max (0, x4+0.161715)*max (0, x6-1.31485)     

BF16 = max (0, x4+0.161715)*max (0, 1.31485-x6)     

BF17 = max (0, -0.548677-x2)*max (0, x3-0.902449)    

BF18 = max (0, -0.548677-x2)*max (0, 0.902449-x3)    

BF19 = max (0, x1-1.14236)*max (0, -0.161715-x4)     

BF20 = max (0, 1.14236-x1)*max (0, -0.161715-x4) 
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Table A30. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 2 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.6194 0.4656* 0.0042 0.003* 0.1823 0.1378* 

θ1
 

1.4771 - 0.0104 - 0.4384 - 

θ2
 

0.9296 0.5569* 0.0067 0.0035* 0.2792 0.1669* 

θ3
 

0.6639 0.4111* 0.0051 0.0035* 0.2064 0.1265* 

θ4
 

1.4081 - 0.0097 - 0.4252 - 

θ5
 

3.1569 3.5235 0.0249 0.0245* 0.9732 1.0368 

θ6
 

0.6804 - 0.0048 - 0.212 - 

θ7
 

1.2528 - 0.0087 - 0.3829 - 

θ8
 

0.3053 0.2139* 0.002 0.0017* 0.0937 0.0665* 

θ9
 

1.726 - 0.0122 - 0.5221 - 

θ10
 

1.2674 0.9742* 0.0088 0.0071* 0.3853 0.3014* 

θ11
 

0.6364 - 0.0045 - 0.1915 - 

θ12
 

0.7621 - 0.0058 - 0.2326 - 

θ13
 

0.8308 0.3796* 0.0057 0.0026* 0.2525 0.1168* 

θ14
 

1.0763 - 0.0077 - 0.3215 - 

θ15
 

10.1908 - 0.0764 - 3.0414 - 

θ16
 

0.4930 0.1710* 0.0036 0.0012* 0.1534 0.0527* 

θ17
 

7.5678 - 0.0516 - 2.3094 - 

θ18
 

1.039 - 0.0078 - 0.32 - 

θ19
 

14.0316 - 0.1124 - 4.1751 - 

θ20
 

0.4856 - 0.0031 - 0.146 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A31. Percentile Intervals of Parameters Obtained by Random-X of the 

Main Effects Model with Interactions at α = 0.1 for Fold 2 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.541 0.4054* 0.005 0.0029* 0.1722 0.1274* 

θ1
 

1.625 - 0.0097 - 0.4923 - 

θ2
 

1.037 0.5729* 0.0163 0.0046* 0.3315 0.1749* 

θ3
 

0.862 0.3410* 0.0062 0.0044* 0.2617 0.1126* 

θ4
 

1.377 - 0.0103 - 0.4175 - 

θ5
 

14.925 5.8688* 0.3832 0.2498* 5.1734 3.5565* 

θ6
 

0.951 - 0.0074 - 0.3018 - 

θ7
 

3.882 - 0.0394 - 1.1874 - 

θ8
 

0.487 0.2579* 0.0033 0.002* 0.1459 0.0786* 

θ9
 

2.227 - 0.0275 - 0.7411 - 

θ10
 

1.276 0.9635* 0.0409 0.0071* 0.4683 0.2856* 

θ11
 

1.059 - 0.0096 - 0.3097 - 

θ12
 

1.062 - 0.0117 - 0.34 - 

θ13
 

0.994 0.3209* 0.0075 0.0031* 0.3058 0.0993* 

θ14
 

1.062 - 0.0164 - 0.3667 - 

θ15
 

200.365 - 37.4586 - 204.2981 - 

θ16
 

0.717 - 0.0077 - 0.2209 - 

θ17
 

9.743 - 0.183 - 3.4413 - 

θ18
 

1.271 - 0.0213 - 0.4129 - 

θ19
 

17.690 - 3.7782 - 32.0593 - 

θ20
 

0.546 0.3031* 0.0072 0.0022* 0.1751 0.0922* 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A32. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of 

the Main Effects Model with Interactions at α = 0.1 for Fold 2 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

1.8182 0.5300* 0.0124 0.0036 * 0.5626 0.1592* 

θ1
 

4.9591 - 0.031 - 1.4927 - 

θ2
 

2.5576 0.8149* 0.0167 0.0059* 0.7677 0.2543* 

θ3
 

2.3307 0.5567* 0.0147 0.0040* 0.701 0.1750* 

θ4
 

4.2330 - 0.0286 - 1.2871 - 

θ5
 

8.6484 - 0.0485 - 2.6596 - 

θ6
 

2.0279 - 0.0131 - 0.5945 - 

θ7
 

3.3377 - 0.0195 - 1.017 - 

θ8
 

0.9646 - 0.0059 - 0.2919 - 

θ9
 

4.2401 - 0.0267 - 1.2775 - 

θ10
 

3.4505 - 0.0218 - 1.0069 - 

θ11
 

1.5732 - 0.0098 - 0.4709 - 

θ12
 

1.9820 - 0.0128 - 0.6068 - 

θ13
 

2.2874 - 0.0158 - 0.6967 - 

θ14
 

2.6431 - 0.0178 - 0.8293 - 

θ15
 

24.4069 - 0.1399 - 7.8168 - 

θ16
 

1.4307 - 0.0095 - 0.4446 - 

θ17
 

18.3490 - 0.1171 - 5.6617 - 

θ18
 

2.7393 - 0.0173 - 0.8269 - 

θ19
 

34.3476 - 0.1895 - 10.3674 - 

θ20
 

1.2522 - 0.0084 - 0.3806 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A33. BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 3 CS Data Set 

 

BF1 = max (0, (x4+0.701101)                    

BF2 = max (0, (-0.701101-x4)                    

BF3 = max (0, (x2+0.0326454)                   

BF4 = max (0, (-0.0326454-x2)                   

BF5 = max (0, (x1+0.860758)*max (0, (x2+0.0326454)   

BF6 = max (0, (-0.860758-x1)*max (0, (x2+0.0326454)  

BF7 = max (0, (x3-0.491529)*max (0, (-0.701101-x4)     

BF8 = max (0, (0.491529-x3)*max (0, (-0.701101-x4)     

BF9 = max (0, (x1-0.229544)*max (0, (-0.701101-x4)     

BF10 = max (0, (0.229544-x1)*max (0, (-0.701101-x4)    

BF11 = max (0, (-0.701101-x4)*max (0, (x6-0.776335)     

BF12 = max (0, (-0.701101-x4)*max (0, (0.776335-x6)     

BF13 = max (0, (-0.0326454-x2)*max (0, (x3-1.04762)     

BF14 = max (0, (-0.0326454-x2)*max (0, (1.04762-x3)     

BF15 = max (0, (x3-1.00547)                      

BF16 = max (0, (1.00547-x3)                      

BF17 = max (0, (x1-0.394357)*max (0, (1.00547-x3)       

BF18 = max (0, (0.394357-x1)*max (0, (1.00547-x3)      

BF19 = max (0, (x2+0.0326454)*max (0, (x3+0.32797)    

BF20 = max (0, (x2+0.0326454)*max (0, (-0.32797-x3) 
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Table A34. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 3 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.8402 0.4044* 0.0056 0.0027* 0.2585 0.1212* 

θ1
 

0.2615 0.2375* 0.0017 0.0016* 0.0789 0.0732* 

θ2
 

1.8106 0.5181* 0.0142 0.005* 0.5657 0.1607* 

θ3
 

1.651 - 0.0114 - 0.5046 - 

θ4
 

0.8568 - 0.0057 - 0.2604 - 

θ5
 

0.7944 0.6826* 0.0056 0.0043* 0.2399 0.2075* 

θ6
 

2.3505 2.6173 0.017 0.0171 0.6977 0.787 

θ7
 

2.7446 - 0.0193 - 0.8563 - 

θ8
 

4.3385 4.1189* 0.028 0.0269* 1.3232 1.2308* 

θ9
 

2.5137 2.0898* 0.0178 0.0133* 0.7559 0.6254* 

θ10
 

1.552 - 0.0103 - 0.479 - 

θ11
 

1.9196 - 0.0133 - 0.5777 - 

θ12
 

3.1979 2.8287* 0.0227 0.0189* 0.9513 0.8528* 

θ13
 

10.1284 - 0.0679 - 3.058 - 

θ14
 

0.6883 0.5021* 0.0047 0.0033* 0.2121 0.1549* 

θ15
 

9.7712 - 0.0604 - 2.9353 - 

θ16
 

0.563 - 0.0036 - 0.1691 - 

θ17
 

0.5640 0.5211* 0.0038 0.0034* 0.1675 0.1576* 

θ18
 

0.5008 0.2856* 0.0032 0.0021* 0.1505 0.0854* 

θ19
 

1.3428 0.4459* 0.009 0.0031* 0.4081 0.1362* 

θ20
 

0.9351 - 0.0061 - 0.2819 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 

 

 

 



109 
 

Table A35. Percentile Intervals of Parameters Obtained by Random-X of the 

Main Effects Model with Interactions at α = 0.1 for Fold 3 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

1.2749 0.4408* 0.0114 0.0032* 0.3872 0.1368* 

θ1
 

0.3411 0.2921* 0.0026 0.0021* 0.106 0.0883* 

θ2
 

6.6228 - 0.0564 - 1.9939 - 

θ3
 

2.4685 - 0.0172 - 0.737 - 

θ4
 

1.2987 - 0.0099 - 0.3962 - 

θ5
 

1.8741 0.5438* 0.013 0.0051* 0.5977 0.1699* 

θ6
 

4.7389 - 0.041 - 1.5475 - 

θ7
 

8.1824 - 0.126 - 2.7145 - 

θ8
 

18.3398 - 1.1407 - 10.3677 - 

θ9
 

35.9401 - 367736.2 - 1668763 - 

θ10
 

6.1838 - 0.3062 - 2.5232 - 

θ11
 

6.7286 - 0.8044 - 3.9658 - 

θ12
 

6.4461 2.8157* 0.5899 0.1193* 3.9535 0.997* 

θ13
 

19.0219 - 0.3998 - 6.8181 - 

θ14
 

1.1699 0.4074* 0.0091 0.0044* 0.3614 0.1302* 

θ15
 

10.8229 - 0.0682 - 3.2157 - 

θ16
 

0.9299 - 0.0065 - 0.2749 - 

θ17
 

1.2579 - 0.0127 - 0.3787 - 

θ18
 

0.6791 - 0.0058 - 0.208 - 

θ19
 

2.5027 0.6750* 0.0233 0.0067* 0.7733 0.2156* 

θ20
 

1.5654 - 0.0208 - 0.5121 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A36. Percentile Intervals of Parameters Obtained by Wild Bootstrapping of 

the Main Effects Model with Interactions at α = 0.1 for Fold 3 CS Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

3.0397 0.1216* 0.0187 0.0007* 0.9236 0.0360* 

θ1
 

0.7821 - 0.0049 - 0.2306 - 

θ2
 

7.6769 - 0.0482 - 2.3349 - 

θ3
 

5.0627 - 0.0333 - 1.5455 - 

θ4
 

2.6152 - 0.0171 - 0.795 - 

θ5
 

2.2105 - 0.0146 - 0.658 - 

θ6
 

6.1088 - 0.0391 - 1.9091 - 

θ7
 

11.1186 - 0.0738 - 3.3338 - 

θ8
 

13.0314 - 0.0756 - 3.9102 - 

θ9
 

7.5366 - 0.0485 - 2.254 - 

θ10
 

4.8937 - 0.0322 - 1.4809 - 

θ11
 

5.9532 - 0.0388 - 1.7927 - 

θ12
 

9.0160 3.7621* 0.0525 0.0205* 2.7377 1.1144* 

θ13
 

46.2720 - 0.2842 - 13.8551 - 

θ14
 

2.0107 - 0.0123 - 0.5995 - 

θ15
 

48.6094 - 0.2929 - 14.73 - 

θ16
 

1.8723 - 0.0132 - 0.5794 - 

θ17
 

1.5336 - 0.0097 - 0.4765 - 

θ18
 

1.4380 - 0.0096 - 0.4351 - 

θ19
 

3.9585 - 0.0257 - 1.2165 - 

θ20
 

3.0357 - 0.0194 - 0.9174 - 

* indicates more precise parameter estimate 

- shows statistically insignificant model parameter 
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Table A37. BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 1 US Data Set 

BF1 = max (0, x1-0.384375)   

BF2 = max (0, 0.384375-x1) 

 

Table A38. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 1 US Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.0481 0.0481 0.0003 0.0003 0.0147 0.0147 

θ1
 

0.1377 0.1377 0.001 0.001 0.0422 0.0422 

θ2
 

0.2185 0.2185 0.0015 0.0015 0.0675 0.0675 

 

Table A39. Percentile Intervals of Parameters Obtained by Random-X of the 

Main Effects Model with Interactions at α = 0.1 for Fold 1 US Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.0203 0.0203 0.0001 0.0001 0.0063 0.0063 

θ1
 

0.1162 0.1162 0.0008 0.0008 0.0353 0.0353 

θ2
 

0.1769 0.1769 0.0012 0.0012 0.0537 0.0537 
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Table A40. Percentile Intervals of Parameters Obtained by Wild Bootstrapping 

of the Main Effects Model with Interactions at α = 0.1 for Fold 1 US Data Set 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.5498 0.5498 0.0037 0.0037 0.0037 0.0037 

θ1
 

2.0171 2.0171 0.0133 0.0133 0.0133 0.0133 

θ2
 

3.2669 3.2669 0.0219 0.0219 0.0219 0.0219 

 

Table A41. BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 2 US Data Set 

 

BF1 = max (0,x1-0.190625)   

BF2 = max (0, 0.190625-x1) 

 

Table A42. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 2 US Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.0034 0.0034 0.0001 0.0001 0.0011 0.0011 

θ1
 

0.0075 0.0075 0.0001 0.0001 0.0023 0.0023 

θ2
 

0.0485 0.0485 0.0003 0.0003 0.0148 0.0148 
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Table A43. Percentile Intervals of Parameters Obtained by Random-X of the 

Main Effects Model with Interactions at α = 0.1 for Fold 2 US Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.0037 0.0037 0.0001 0.0001 0.0011 0.0011 

θ1
 

0.0073 0.0073 0.0001 0.0001 0.0023 0.0023 

θ2
 

0.0515 0.0515 0.0003 0.0003 0.0158 0.0158 

 

 

Table A44. Percentile Intervals of Parameters Obtained by Wild Bootstrapping 

of the Main Effects Model with Interactions at α = 0.1 for Fold 2 US Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 0.4365 0.2056* 0.0027 0.0025* 0.1357 0.0754* 

θ1
 

1.0947 0.6084* 0.007 0.0076 0.3417 0.2231* 

θ2
 

5.2515 - 0.038 - 1.6408 - 

 

Table A45. The BFs from Forward Step of MARS Obtained from the Main Effects 

Model with Interactions for Fold 3 US Data Set 

 

BF1 = max (0, x1-0.196875)   

BF2 = max (0, 0.196875-x1) 
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Table A46. Percentile Intervals of Parameters Obtained by Fixed-X of the Main 

Effects Model with Interactions at α = 0.1 for Fold 2 US Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.0108 0.0108 0.0001 0.0001 0.0033 0.0033 

θ1
 

0.0244 0.0244 0.0002 0.0002 0.0075 0.0075 

θ2
 

0.0992 0.0992 0.0008 0.0008 0.0304 0.0304 

 

Table A47. Percentile Intervals of Parameters Obtained by Random-X of the 

Main Effects Model with Interactions at α = 0.1 for Fold 2 US Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.0039 0.0039 ~0 ~0 0.0012 0.0012 

θ1
 

0.0077 0.0077 0.0001 0.0001 0.0023 0.0023 

θ2
 

0.0444 0.0444 0.0003 0.0003 0.0137 0.0137 

 

Table A48. Percentile Intervals of Parameters Obtained by Wild Bootstrapping 

of the Main Effects Model with Interactions at α = 0.1 for Fold 2 US Data Set 

 

 

Parameter 

Length 

of CIs 

for 

CMARS 

Length of 

CIs for 

BCMARS 

STD (BS) STD 

CMARS BCMARS CMARS BCMARS 

θ0
 

0.5445 0.3914* 0.0037 0.0028* 0.1661 0.1187* 

θ1
 

1.4967 1.2621* 0.0099 0.0090* 0.4423 0.3829* 

θ2
 

8.5869 - 0.0531 - 2.582 - 

 


