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ABSTRACT

A COMPUTATIONAL MODEL OF SOCIAL DYNAMICS OF MUSICAL AGREEMENT

Öztürel, İsmet Adnan

M.Sc., Department of Cognitive Science

Supervisor : Assoc. Prof. Dr. H. Cem Bozşahin

September 2011, 59 pages

Semiotic dynamics and computational evolutionary musicology literature investigate emer-

gence and evolution of linguistic and musical conventions by using computational multi-agent

complex adaptive system models. This thesis proposes a new computational evolutionary

musicology model, by altering previous models of familiarity based musical interactions that

try to capture evolution of songs as a co-evolutionary process through mate selection. The

proposed modified familiarity game models a closed community of agents, where individ-

uals of the society interact with each other just by using their musical expectations. With

this novel methodology, it is found that constituent agents can form a musical agreement by

agreeing on a shared bi-gram musical expectation scheme. This convergence is attained in a

self-organizing fashion and throughout this process significant usage of n-gram melodic lines

become observable. Furthermore, modified familiarity game dynamics are investigated and it

is concluded that convergence trends are dependent on simulation parameters.

Keywords: computational evolutionary musicology, complex adaptive systems, musical ex-

pectation, emergence, machine learning
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ÖZ

MÜZİKAL ANLAŞMANIN TOPLUMSAL DİNAMİKLERİNİN SAYISAL BİR MODELİ

Öztürel, İsmet Adnan

Yüksek Lisans, Bilişsel Bilimler Bölümü

Tez Yöneticisi : Doç. Dr. H. Cem Bozşahin

Eylül 2011, 59 sayfa

İşaretbilimsel dinamikler ve hesapsal evrimsel müzikoloji literatürü dilbilimsel ve müzikal

konvansiyonların emerjansı ve evrimini hesapsal kompleks adaptif sistem modelleri ile incele-

mektedir. Bu çalışma yeni bir hesapsal evrimsel müzikoloji modeli önermektedir. Önerilen

model daha önceki müzikal benzerlik temelli etkileşimlerle gerçekleşen şarkıların eş seçimi

ile beraber evrimini inceleyen modellerin geliştirilmiş halidir. Değişitirilmiş müzikal benzer-

lik oyunu topluluktaki bireylerin sadece müzikal beklentilerini kullanarak etkileşimde bulun-

dukları ajan temelli kapalı bir popülasyonu modellemeyi amaçlamaktadır. Bu yeni modelle,

ajanların iki nota uzunluğundaki müzikal beklentiler üzerine bir anlaşma oluşturabildikleri

gözlemlenmektedir. Bu bağlamda, müzikal anlaşma sistemin kendi kendini organize etmesiyle

ortaya çıkmaktadır ve bu süreç içerisinde şarkılarda iki notadan uzun bazı melodik yapıların

belirgin kullanımı gözlemlenmiştir. Buna ek olarak, önerilen oyununun dinamikleri incelenmiş

ve anlaşmanın oluşumunun simülasyon parametrelerine bağlı olduğu sonucuna varılmıştır.

Anahtar Kelimeler: hesapsal evrimsel müzikoloji, kompleks adaptif sistemler, müzikal bek-

lenti, emerjans, makineli öğrenme
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CHAPTER 1

Introduction

Both language and music has a substantial social function. Individuals in a community con-

tinuously interact with each other and these interactions significantly influence how linguistic

and musical conventions evolve within that society over time. In this regard, this thesis will

focus on social dynamics of musical agreement on musical expectations and emergence of

melodic conventions, by computationally modeling an idealized musical community and its

constituent agents’ interactions.

Music has hierarchical structures, just like language. By adopting the organized sound def-

inition it can be defined as the sequential arrangement of sounds as building blocks. When

constituent sounds are grouped together for compositional purposes relationships between

them create higher-level concepts such as harmony, melody and rhythm. Moreover, music is

another well structured symbolic system, other than language, which can reveal valuable in-

formation about cognitive processes. Production and perception of musical pieces require ad-

vanced cognitive abilities to structurally process hierarchical organization of individual tones

in combination with each other within organized time slices. Such an organization is depen-

dent on changes in pitch, duration, articulation and timbre of each and every tone in sequence.

One of the well accepted conceptualization of music as a rule system, in which rules translate

musical structures into listeners’ experience, was first proposed by Lerdahl and Jackendoff in

Generative Theory of Tonal Music (GTTM) (Lerdahl & Jackendoff, 1996). It is based on psy-

chologically plausible structures, where organization of musical elements are investigated in a

multi-layered representational medium. Varying modes of abstraction separately realize each

layer of representation and underlying assumptions are claimed to be empirically testable.

Representational layers in GTTM are constructed over the notions of hierarchies and associa-
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tions (Lerdahl, 2009). Briefly, hierarchies capture the structural organization of fundamental

musical objects, whereas associations work out the similarities between these musical objects.

Therefore, theory of associations, or namely theory of similarity, and theory of hierarchies are

strictly bound to each other.

GTTM is composed of four distinct hierarchical structure layers, which covers all tonal com-

positions (Lerdahl & Krumhansl, 2007). Grouping structure explains apparent perceptual

segmentation of music into subgroups. Metrical structure deals with rhythmic segmentation

of a group. In accordance, time-span reduction hierarchically positions rhythmic segments of

metrical structures according to their importance. Finally, prolongation reduction generates

hierarchies of tension relaxation patterns. In order to comprehensively study complex struc-

tures of music all these layers of explanation must come together to provide an essential basis.

In fact, this four layered approach stems from Jackendoff’s conceptualization of language. As

it is proposed in Jackendoff (2002), a simple linguistic utterance also consists four generative

layers, namely phonological structure, syntactic structure, semantic/conceptual structure and

spatial structure. Accordingly, all these distinct structural layers has to be connected by using

interface rules.

On the other hand, Combinatory Categorial Grammars (CCG) can provide a pure formaliza-

tion for higher-level structures such as harmonic movements over chord sequencing instead of

examining them in distinct layers, as it allows bi-direction resolution of the rules. CCGs are

distinguishable from other formalisms as they adopt functional composition and type-raising

schemes (Steedman, 1996). Functional composition allows us to follow up an incremental

derivation, where the syntactic type of the constituent formed throughout the derivation is de-

termined according to all the chords encountered so far. Furthermore, functional type raising

allows us to perform a function application in both forward and backward directions. When

applied to music, CCG can capture the harmonic disposition rules successfully.

However, just like its precursors such as Schenkerian Analyis, GTTM and similar generative

and combinatory theories of music are just interested in explaining only well-structured mu-

sical pieces of tonal culture (Forte & Gilbert, 1982; Lerdahl & Jackendoff, 1996; Steedman,

1984). Still some other social aspects of music cognition needs to be studied conveniently. Re-

search questions like “How shared sound systems emerge?”, “How does hierarchical systems

like modality, tonality and their alikes evolve with a musical culture?” or “Does population
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dynamics play a crucial role in evolution and emergence of musical conventions?” still re-

mains unanswered. Considering these questions, it may be proposed that social dynamics of

a musical culture may influence compositional routines of its own.

By any means, compositional grouping is for sure not random in any musical culture. Mu-

sical systems can be broadly formalized over the processes undertaken by the composer to

generate a musical piece, in correlation with listeners effort to resolve overall dependencies

between the musical events within that piece to form a mental representation of what is heard.

Accordingly, minimal agreement is required to bridge the compositional grammar adopted

by the composer to generate and organize musical events and the listening grammar used by

the listener to parse the composed piece (Lerdahl, 1988).1 From the listeners perspective,

compositional rules are not directly accessible, if not explicitly presented. However, organi-

zational rules between the musical events can be reconstructed by the listener if listener has a

familiarity with the structural organization of the heard piece.2 Taking this into account, for

a musical piece to be successfully parsed by auditors, composers must construct a structural

organization within the composition based on a shared musical grammar, which embraces

both compositional and listening grammars.

Specifically, common and widely spread musical conventions among a culture form the nat-

ural grammar of music for that society. Natural grammars of music outline the boundaries

for compositional and listening grammars that can be generated in a specific culture.3 Mu-

sical conventions can be exemplified with commonly used harmonic structures, melodic and

rhythmic movements. These are not ossified, rather they are dynamically subject to change

depending on time and culture, in which they are used. Besides, new musical styles emerge

throughout time within a society and they impose an expansion in the set of musical conven-

tions.

1 Terms compositional grammar and listening grammar was first introduced by Fred Lerdahl in his essay
“Cognitive Constraints on Compositional Systems” in 1989. Compositional grammar is the set of rules used by
the composer, which regulates the organization and sequencing of musical events. On contrary, listening grammar
can be defined as the intuitive constraints of the auditor, which is used for generating a structural description of
the heard music from the raw acoustic signal.

2 For instance, Fred Lerdahl pinpoints some examples of the early serialism that are structurally hidden to the
listener because an agreement between the compositional and listening grammars could not be attained.

3 Culturally shared musical conventions are referred as natural music grammars in contrast with artificial
music grammars, which are invented and superimposed on the society on purpose by the composer. For instance,
within the following 20 years after the birth of electro-acoustic music in late 1940s some composers started
practising methods of algorithmic composition. Structural organization of these pieces can be considered as
examples of artificial music grammar products for the European society, which has an extensive background on
western tonality.
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Keeping all these in mind, it can be inferred that musical systems can not be grasped by only

modeling cognitive abilities of individuals of a specific culture. Similar to language, music

is also highly dependent on social interactions and cultural know-how. Therefore, a broader

understanding on how musical conventions emerge and evolve can only be investigated in a

model that can fulfill all these preliminary assumptions about musical systems.

Complex adaptive systems (CAS) and their computational models have proven to be success-

ful for investigating learning abilities of dynamical non-deterministic systems. Computational

CAS models are capable of capturing overall behavior of the system with respect to interac-

tions of its individual constituent components. Within the literature essential methodology of

computational modeling of CAS have also been adopted by social linguistics domain to re-

search emergence and evolution of form, meaning, form-meaning association and hierarchical

grammatical structures (Steels, 2000). Successively, computational models on emergence of

shared sounds systems and evolution of musical structures have ensued this research by mod-

ifying the same methodology for it to be applicable to musical contexts, where interactions

between the constituents did not involve any indexicality and semantic content (Miranda &

Todd, 2007). Overall, this line of research is promising for studying language and music

as a social tool and it can reveal intriguing facts about linguistic communication and music

cognition.

In correlation, this thesis will present a model of musical interactions and agents which are

captured as a complex dynamical system. Briefly, the scope is narrowed down only to study

how a social consensus on musical expectations may be attained in a model of closed musical

community. Correspondingly, agent’s compositional preferences and their aesthetic assess-

ments of the songs, which are exchanged among them, are only grounded to their musical

expectations. In accordance, it is aimed to explore how much of emergence of culturally

dependent musical structures (such as commonly used melodic lines) can be explained with

these minimal assumptions.

The organization of this thesis is as follows:

Chapter 2, aims to provide a detailed overview of CAS. Subsequently, two of the essential

features, namely emergence and self-organization, are reviewed. In correlation, last section

of this chapter presents a methodology for designing computational models of CAS.

4



Chapter 3, focuses on computation models of evolutionary linguistics and computational

evolutionary musicology. A domain specific methodology is overlaid and current literature

on emergence and evolution of linguistic and musical conventions is elaborated.

Chapter 4, presents the model and relevant motives behind this study. Moreover, empirical

results of the experiments that were conducted are also given in this chapter.

Chapter 5, presents a discussion of major contributions to the field and possible future re-

search over the findings.
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CHAPTER 2

Background on Complex Adaptive Systems

Complex adaptive systems (CAS) are nonlinear dynamical multi-agent systems that are highly

adaptive as constituent parts learn while they interact (Holland, 2006). Many recent problems

in domains like economics, biology, linguistics and musicology can be investigated by mod-

eling them as CAS.

Within this chapter shared characteristics of CAS will be presented in Section 2.1. Two of

these distinctive characteristics, namely emergence and self-organization, are often mistak-

enly used interchangeably within the literature. To clarify this dichotomy Section 2.2 will

present essential conditions that are required for emergence and self-organization to arise.

Notably, throughout this review working definitions for these concepts will be borrowed from

De Wolf and Holvoet (2005). Finally, Section 2.3 will present the essential methodology to

computationally model complex adative systems. This formalization will be excerpted from

Holland (2006).

2.1 Common Properties

Dynamic multi-agent systems can be classified as CAS if large number of local interactions

create an adaptive behavior. Collective adaptive behavior give cause for system complex-

ity. Interactions between the micro-level constituents, which are generally called the agents,

engender a structural reorganization on the system for it to reach a state that may promote

a specific macro-level functional behavior. Self-organization in CAS is a never-ending pro-

cess. Thus, widely spread self-adjusting interactions make the system behavior non-linear

so that the system exposes a state far from optimality in a given time (Holland, 1992). Un-
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der such complexity, studying unexpectedly generated macro-level effects instead of distinct

micro-level interactions becomes favorable.

Briefly, shared characteristics of these systems can be identified as (Holland, 1992):

• Evolution: For the individual constituents to survive in the environment that they are

acting on, they exhibit an evolutionary behavior. Evolutionary process can be attributed

to their eager in adaptation. Within the literature evolutionary trend is grounded in

agents ability to learn.

• Aggregate Behavior: Discrete interactions between the agents can impose an unex-

pected emergent aggregate system-wide behavior. In this sense, aggregation does not

connote a straightforward add up of the behavior of the parts, rather it is the property

that supervenes on macro-level over coherent local interactions. Motives of this aggre-

gate behavior could not always be traced back in micro-level interactions. However, it

can effect local interactions once it is spread to the system.

• Anticipation: CAS exhibit an expectation for interventions. Moreover, they have the

ability to respond to any perturbation. Anticipation of the system assures flexibility to

be susceptible for reorganization.

• Simultaneous Interaction: Local interactions between the agents involves exchange

of signals.1 Signal processing is a conditional assessment procedure. Agents receive

signals as inputs and if that signal satisfies an internal condition, either an action is per-

formed on the environment or an output signal is produced and transmitted to the corre-

sponding interacting parties. In correlation, agents can simultaneously create more than

one action or signal as an output if more than one internal condition is satisfied through-

out the assessment of the input signal. Moreover, signal exchanging and interactions

are concurrent to ensure parallelism.

• Self-Similarity: Interacting agents use a common decision making policy to generate

or process signals. However, agents does not always have to take the same learning

path. Therefore, within CAS the essential medium for agents to interact is success-

fully attained with self-similarity, while conserving individual differences regarding

1 In real world complex adaptive systems signals can come in any form as long as they carry necessary
information to complete an interaction. For instance, if we take immune system as a complex adaptive system,
then exchange of proteins between antibodies will be their fundamental method of signaling.
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their past experiences. Furthermore, self-similarity is also necessary for aggregate be-

havior to emerge. That is to say, a certain behavior which is adopted by a certain agent

can only be spread to the system if other agents are capable of performing the same

behavior.

2.2 Emergence and Self-Organization

2.2.1 Emergence

The concept of parts summing up to form a greater whole is deeply rooted in a great deal of

research after twentieth century. Philosophical foundation of emergence can be traced back to

Aristotle as he claimed “the totality is not, as it were, a mere heap, but the whole is something

besides the parts” to describe that an organism possesses all the required internal principles

in its parts and growth is a process of transformation over these principles to reach a state of

perfection (Clayton, 2006). Contemporary understanding of the concept originated with G.H.

Lewes’s scientific research. Lewes first pointed out emergent behavior in chemical reactions

by stating that observable resultants may be created by a series of chemical reactions, though

underlying steps of the chemical process to produce these resultants may not be identifiable

(De Wolf & Holvoet, 2005).

Thereafter, throughout the twentieth century theories about emergence disunite and group

under two categories, that are weak and strong emergence. Specifically, strong emergence,

or as it is also called ‘ontological emergence’, asserts that new causal processes related with

the emergent property, which are distinct from the causal processes that gave rise to it, are

created upon the origination of it. To put it in different words, emergence of the high-level

phenomenon creates its own truths that are not deducible from the truths of the low-level

domain which gave rise to it (Chalmers, 2006). On the contrary, weak emergence, or ‘episte-

mological emergence’, suggests that the causal processes which creates the emergent property

is also applicable for the emergent property itself. In this case, emergent phenomenon and the

truths of the high-level domain are just unexpected with respect to the truths of the low-level

domain (Chalmers, 2006).

Conceptual disparity between strong and weak emergenism is concerned with the measure

of emergence that is observed throughout the process. A strongly emergent phenomenon

8



might also be identified as weakly emergent considering that it can arise unexpectedly while

its truths are not deducible from the truths of low-level domain. Yet, an instance of weak

emergence can not always be a case of strong emergence, because being unexpected does not

always make certain that emergent phenomenon has its own causal processes independent of

the low-level domain.

To be clear, strongly emergent qualities can be explained by only establishing high and low

level domains as different levels of nature. In real world systems strong emergence can only

occur if and only if physical laws governing the low-level gives rise to a property which can

not be explained over physical causal relationships. David Chalmers as a philosopher, who

has an extensive research on consciousness, argues that strongly emergent phenomenon can

be exemplified with conscious experience (Chalmers, 2006). Substantially, what he proposes

is that given the same two physical low-level systems in two possibly different worlds, a

strongly emergent phenomenon like consciousness would not necessarily emerge in both of

these worlds. To put it in another way, it is not possible to emerge consciousness over a replica

of physical states of a conscious individual. That is to say, strongly emergent phenomenon

supervenes low-level physical facts, however there is an explanatory gap between the high-

level and low-level domain so that the facts about the emergent property are not deducible

from the facts of physical causality.

As it is claimed by Chalmers (2006) consciousness is the only real world example that is

found to be strongly emergent. All other emergent real world systems are weakly emergent,

which means supervenient emergent property has downward causal power on the low-level

physical domain and they are reducible to the interactions of physical agencies. In fact, even

consciousness is a doubtful example for strong emergence and it poses open-ended problems,

since there is not a unique definition for conscious experience. From a relativist point of

view if we accept that consciousness comes in different degrees, then everything must be

conscious to some extend (Minsky, 2006). For instance, it could be assumed that even atoms

have a little degree of consciousness and so human consciousness could be reduced to that.

Hence, with a relativist explanation consciousness could asserted to be an instance of weak

emergence. Accordingly, consciousness can only be strongly emergent if we presuppose that

only humans are conscious. For this reason, for the rest of this section we will leave strong

emergenism aside and focus on weak emergence to elaborate the concept accordingly. In that

respect, a working definition for emergence could be drawn as (De Wolf & Holvoet, 2005) :
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“A system exhibits emergence when there are coherent emergents at the macro-
level that dynamically arise from the interactions between the parts at the micro-
level. Such emergents are novel with respect to the individual parts of the sys-
tem.”

All in all, essential conditions for emergence to rise is as follows:

• Micro-Macro Effect: The working definition mentions about macro-level products,

namely emergents. Emergents are the structural, functional or behavioral outcomes in

macro-level as a result of micro-level interactions between the agents. So to speak, for

emergence to occur local phenomenon must effect global behavior.

• Radical Novelty: Agents should not have an embedded behavioral bias, which can

impose a certain macro-level effect. Emergent property should be novel in regard to

microscopic interactions and it can only arise as an effect of collective behavior of

constituents of the system.

• Coherence: A behavior is emergent if it is identifiable in the system. Therefore, local

interactions must come to a state of global coherence so that the relationship between

the parts could represent a unity. Strictly speaking, emergent behavior can only disperse

to the system if parts are logically consistent.

• Interacting Parts: Constituent parts must interact in micro-level for emergents to arise

in macro-level. Accordingly, interaction is a fundamental prerequisite for emergence.

• Dynamical: Dynamicity is an obvious requirement for emergence. Emergents can only

originate in course of time. Emergent property can not be attained instantaneously.

Behavior of the parts should first dynamically and coherently coincide.

• Decentralized Control: Macro-level behavior can not be centrally controlled. Behav-

ior of parts can be controlled in isolation, but none of them can directly impose a certain

change of behavior in macro-level. This is because, agents can not have a representation

of the macro-level behavior.

• Two-Way Link: Between micro and macro levels there needs to be a bidirectional

causal relationship. As a consequence of micro-macro effect, local interactions cause

higher-level emergent behavior. On the other hand, a certain behavior which emerges

on macro-level can also causally effect the behavior of its constituent parts.
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• Robustness and Flexibility: Emergent behavior is relatively persistent. Functional

deficiency of micro-level agents does not massively effect it. System preserves it in

case of replacement or failure of individual agents. Therefore, emergence is flexible

and fault tolerant with respect to sudden local behavioral alterations.

2.2.2 Self-Organization

Just like emergence, the notion of self-organization is not novel. The concept was first en-

titled in Second World War after advancements in cybernetics (De Wolf & Holvoet, 2005).

Generally, self-organization can be described as the adaptive behavior of the system to attain a

future state of increased structure or order compared to the starting state. The driving force to

reorganize the structure of the system can be extrinsic, thus a self-organizing system is open

for external input.

The concept could be formally defined as (De Wolf & Holvoet, 2005) :

“Self-organization is a dynamical and adaptive process where systems acquire
and maintain structure themselves, without external control.”

Accordingly, necessary and sufficient conditions for self-organization to arise in a dynamic

system is as follows:

• Increase in Order: Self-organizing systems strive to increase the order of the system

to reach a state in which the system can perform a specific function. In other words,

system gradually arranges its parts to reach an objective state, which is called the attrac-

tor, among its state space. Specifically, the attractor state should not be the one which

assures maximal order. Redundantly ordered systems can also foster lack of useful

functional behavior, just like chaotic systems.

• Autonomy: Increase in order is not sufficient for a system to be self-organizing. Agents

must also be autonomous, meaning that their behavior should not be governed by ex-

ternal regulations or centrally controlling agents. Accordingly, imposing such global

rules on the system would lead the behavior of the organization in a specific direction

on macro-level, therefore spontaneous micro-level interactions of the agents would not

be the primary driving force to readjust the system structure. However, it should not
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be deduced that self-organizing systems are closed to external interventions. Intrusion

of external input is permissible, nevertheless they should not have any regulatory infor-

mation in them. Strictly speaking, agents of self-organizing systems are close to any

type of controlling data. For instance, agents can acquire perceptual data, which is ex-

planatory about the environment, yet that should not involve any controlling impact on

overall system behavior.

• Robustness: Within this context, robustness refers to agents’ ability to alter system

behavior in terms of adaptability while keeping their structural characteristics constant.

System must have an adaptive character with respect to changes.

• Dynamical: A self-organizing system must be capable of spontaneously reacting to

disturbances as its agents autonomously organize their behavior. Self-organization is

not instantaneous nor imposed. Change of state to increase system order is a continuum.

2.2.3 Emergence vs. Self-Organization

Emergence and self-organization might be used to describe the overall behavior of a dynami-

cal multi-agent system. Both phenomena occur dynamically as a result of interacting agents,

which means that both processes are dependent on time. Moreover, they are both robust with

respect to systems durability on adopting the aggregate behavior and its agents capability to

learn and adapt to changes. However, as it can be inferred from previously presented def-

initions emergence is the process which promotes an unexpected system-wide behavior on

macro-level as a result of micro-level interactions of the constituting agents, whereas self-

organization is systems ability to adapt to a certain condition by internal reorganization. Nev-

ertheless, they are not the same phenomenon and they do not necessarily be observed together.

Herein, it would be appropriate to use illustrative examples to point out the dissimilarity. The

examples that are going to be presented below may not be the ones that are solely emergent or

self-organizing, since most of the complex adaptive systems employ both emergent and self-

organizing character together. Still, emergent or self-organizing nature of the below presented

examples are explicitly observable.

Perceptrons, particularly simple feed-forward neural networks, could be representative for

emergence. Perceptrons consist of logical units as building blocks that are functionally sep-

arable, in such a way that they do not have an internal representation of the whole network.
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Nonetheless, extensive exposure to a specific set of data can effectuate a specific behavior

on the entire network. In particular, perceptrons adequacy in learning and solving the XOR

problem is well-known. Without training on XOR data set, parts could not perform a coherent

behavior. Throughout the training, logical units interact with each other in direction of input

to output units iteratively in the absence of a central controlling unit. As a consequence of

these recurring interactions, perceptron can emerge a computational competence to XOR a

given input data. In this sense, throughout its learning perceptrons structure is not reformed

with external interventions, for this reason emergence of its computational adequacy can be

classified as an instance of weak emergence.

One of the most prominent example for self-organization is the immune system. Immune sys-

tem consists of simultaneously active components called antibodies. Functionally, antibodies

need to discriminate offensive intruders called antigens and take preventive action against

them. However, system do not employ a global predefined list of threats and precautions,

rather it dynamically adapts. Throughout the development, immune system dynamically gets

better and better in performing this task. For instance, when a specific antigen of an illness,

let’s say flu viruses, intrudes to the body the amount of antibodies that are required to sur-

mount flu is dynamically specified by the system, if its historical memory contains informa-

tion about the required preventive action for that specific type of antigen. Historical memory

is built up in time as parts of the system generally learn how to combat with an unknown

intruder after the first encounter by interacting with each other. Such an internal organization

is continuously carried on to attain the attractor state of keeping the organism disease free.

2.3 Computational Modeling: Classifier Systems

Due to non-linear nature of adaptive process in CAS, data-driven or deterministic models are

not suitable for analyzing internal dynamics of these systems. CAS can be studied in compu-

tational exploratory models which facilitate computer based programs or simulations. At the

outset, a model of interacting agents must be built up by using specific assumptions. Subse-

quently, significant alternations in system behavior that become apparent as a consequence of

agent interactions can be observed by executing these models as computer simulations. Such

an approach is exploratory, since we are testing whether the underlying assumptions about

agents and interactions that are embedded in our model cause any interesting overall effect on
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the system.

Holland (2006) specifies classifier systems as the essential formalism that can be used to

devise exploratory computational models. A classifier system to define agents must involve

classifiers, reservoirs, detectors, effectors and signals. Each of these principle components

will be elaborated below.

As it is mentioned earlier in Section 2.1 agents communicate over signals. Throughout an

interaction agents receive a signal from its counterparts and they assess that signal by using a

conditional evaluation scheme. Meaning that, every agent adopt a set of IF-THEN structured

decision making rules. This decisive rule set is called the set of classifiers. Indeed, if an

input satisfies the conditional IF part of a classifier from the set of classifiers agents compose

an output signal by using the corresponding THEN block. Specifically, if an input signal

satisfies more than one classifier from the set, then the output signal may be generated in

accordance with all the classifiers that it satisfies.

Set of classifiers of an agent determine its expectations while interacting. That is to say an

agent’s needs are satisfied as long as it can satisfy its classifiers so that it can increase its

performance. It could be deduced that an agent’s needs are dependent on the set of rules that

it is knowledgeable about. In this respect, set of reservoirs is used to keep track of how much

an agent satisfies its needs. If it can satisfy a specific classifier, corresponding reservoir for

that classifier from the set of reservoirs can be raised. Otherwise, reservoirs diminish over

time.

Agents use detectors to retrieve environmental data. Data taken as an input by using detectors

are turned into signals. Detectors can come as perceptual channels, which can collect infor-

mation about environment in different modalities (such as visual, auditory, etc). In addition,

signals are received over detectors when interacting with another agent. Likewise, effectors

are used by agents to act on the environment which they are surrounded by. That is, effectors

are the action inducers for agents to cause a change in the environment. Just like detectors

agents can effect the environment in various modes. For instance, effectors may be used to

move in space or to change the place of an object.

Signals are stored in the list of signals. Members of this list can either be created by the agent

itself (i.e. it can be created as a notifier signal when reservoirs are about to be emptied) or
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received externally by using detectors. If a signal is gathered externally through detectors,

first it has to satisfy a classifier to be inserted into the list of signals. Hence, list of signals

define internal states of the agents. Accordingly, all possible actions that an agent can take in

a given state is determined by the collection of signals and classifiers it has.

The set of rules that an agent is aware of is not static. Rules in the classifiers set compete

with each other. Classifiers are associated with a strength value to measure how much each

and every classifier contributes to the overall performance of the agent. Classifiers could

be strengthened if they induce a change in the environment with effectors, or if they are

repeatedly satisfied by the input signal which is collected through detectors. Even more,

agents can come up with new rules and classifiers. Though, rule discovery is not a random

process. For instance, new rules can be generated by slightly altering strong classifiers. By

doing so agents can discover alternate states within the state space.

To this end, interactions between the agents are iterative and possibly concurrent cycles of

a classifier system. However, interaction designs may vary depending on the system and

problem that we are dealing with. In accordance, following chapter will thoroughly investi-

gate similar computational models that deal with emergence and evolution of linguistic and

musical conventions.
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CHAPTER 3

Background on Emergence and Evolution of Language and Music

As it is presented in previous section, exploratory simulations are convenient tools for con-

structing multi-agent systems that may present emergent and self-organizing behavior, where

constituents are fully equipped to cooperatively act on a shared environment. Similar artificial

distributed multi-agent simulations are being used for testing the plausibility of hypotheses

related with emergence and evolution of linguistic and musical conventions, since they can

capture social dynamics on macro-level.

Computational models of evolutionary linguistics try to model language as a social tool with

adaptive complex dynamical systems. The field of research is often called semiotic dynamics

as it investigates how a population of agents generate a structural organization on the way to

create commonly shared social contexts or semiotic systems that involves social conventions

which are essential for cooperative action (Steels & Kaplan, 1999). In correspondence, com-

putational evolutionary musicology literature, which emanate from semiotic dynamics as the

historical successor, focus on computational modeling of emergence and evolution of musical

conventions (Miranda & Todd, 2007).1 Both lines of research investigate emergent behaviors

of societies, where complex local interactions between individuals effect global organization.

Underlying methodology for this investigation closely resembles the classifier systems ap-

proach.

This chapter will present a detailed review of models of these two domains. Section 3.1 will

overlay essential methodological components in correlation with classifier systems. Follow-

ing sections will detail some of the noteworthy findings of the domain to make the method-

1 Accordingly, a great deal of research, which are classified under computational evolutionary musicology,
investigates practical automatized music generation methods over evolutionary models. These models will be left
out of the scope for this chapter and only theoretical frameworks will be reviewed.
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ological approach clearer. Section 3.2 will present how shared sound systems can emerge.

Section 3.3 will focus on evolution of musical behavior. Finally, Section 3.4 will elaborate

how shared vocabularies can emerge.

3.1 Methodological Issues

In a simplistic way, models that are going to be presented in this chapter implement iterative

rounds of pairwise (or groupwise) linguistic or musical interactions. An instance of interac-

tion is called a game which encloses certain assumptions to regulate how agents engage in a

mutual activity. Games are designed to explore whether they would have specific bearings on

the population behavior.

Within this context, agents of a population is a computational abstraction, that are usually

implemented as robots. An agent can both play roles of speaker and hearer or composer

and listener in different instances of interactions depending on the model. Members of the

population are alike to assure self-similarity. Following premises would be descriptive to

outline the characteristics of an agent:

• Psychological Competence: Agents communicate over signals. An agent must be

capable of producing signals to externally transmit to the peers that it is interacting

with. Moreover, it must also be capable to listen an external signal input. Therefore,

agents must have sensori-motor apparatus which can be used as detectors and effectors.

• Cognitive Competence: An agent can conceptualize specific linguistic or musical

skills depending on the game that it is engaged in. To be more precise, it must be

knowledgeable of what a signal designates and how to compose a signal from lower-

level components. Furthermore, it should define a list of signals that can serve as a

memory.

• Enacting Script: Agents should know how to interact with each other and how to asses

a perceived signal that is externalized by a peer. Meaning that agents should have a list

of classifiers that specifies its possible actions in a given state.

• Discrete Memory: An agent is not aware of its peers mental states or memory. Partic-

ularly, if it is playing the role of being a hearer, then it can only be informed about the
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externalized signal that is produced by its match.

Respectively, an agent takes following actions through an interaction:

1. Collect signals either from its environment or from another agent through the detec-

tors/sensory apparatus.

2. Input signals are assessed with the classifiers/enacting script.

3. Memory/List of signals is updated depending on the rules of the game.

4. If it is entailed by the winning classifiers an action or an output signal is produced with

the effectors/motor apparatus.

While designing a game in this context, it could be assumed that musical pieces do not carry

a referential semantic content in contrary to linguistic utterances.2 This dissimilarity evokes

a substantial variation between the models of language and music.

Rules of language games relate agents to their environment so that they can agree on linguistic

conventions which are descriptive about their environment. Hence, language game models

involve a non-restrictive environment, which can accommodate numerous different states as

agents interact through it. Moreover, communicative signals are token type and they generally

represent a word.

Constrastively, models of computational evolutionary musicology are non-situated, meaning

that musical games between the agents do not relate them on an explicit representation of

their environment. That is to say, musical structures do not indicate some state of affairs.

Therefore, musical signal lacks indexicality. Besides, former definition of music presented

in Chapter 1 emphasizes a sequential organization of musical events in time. To represent

sequentiality, signals are composed as collections of successive musical events (in most cases

notes or sounds).

It could be argued that foregoing formalization of musical interactions can not capture some

other substantial aspects of music cognition. For instance, non-disputably a musical inter-

action culminate with an emotional response on the listener on individual basis. However,
2 In fact, debates about affective meaning of music are of long-standing (Wiggins, 1998). To simplify, hereafter

musical affect will be reduced only to the expectations of subsequent harmonic or melodic structures that are
induced on the listener.
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models of computational evolutionary musicology exclude such aspects with an abstraction.

Precisely, it is just questioned how much about emergence and evolution of musical conven-

tions can be revealed within a fully abstracted musical society. So it could be deduced that

these models, are relevant with real world musical interactions as much as computational

evolutionary linguistics models are relevant with natural languages.

Taking all these into consideration, rest of this section will unfold various types of language

and musical games.

3.1.1 Language Games

The term language game was first used by Wittgenstein to characterize linguistic communica-

tion (Wittgenstein, 1953). Wittgenstein construed linguistic meaning over the use of linguistic

tokens. In depth, use of a sentence or even a word involves an act of using signs. Therefore, for

a successful linguistic communication to take place all participants must engage in a shared

activity that should guarantee that they league together in a common ground, which he depicts

as a game-like activity (Biletzki & Matar, 2011).3 Intentions of the utterer and the meaning

conveyed by that specific utterance can only grasped if hearer gets involved in a so-called

‘language game’ with the speaker. Wittgenstein does not provide a clear cut definition for the

game. However, he outlines the basic characteristics of language games and linguistic com-

munication with the following two assertions, which will also serve as a basis to understand

the underlying assumptions of models of computational evolutionary linguistics:

• Form of Life: Specifically, language is meaningful when used within a social context.

Wittgenstein refers to the collection of social contexts that have its own set of rule ap-

plications as “forms of life”. By conceptualizing linguistic communication over social

contexts, it is presumed that an utterance can have different meanings in different so-

cieties or contextual settling. This also represents the dynamic nature of language, as

forms of life is constantly subjected to change.

• Rule Following: Linguistic communication is a rule-following activity. A rule is an

abstract entity, which comes with its set of possible applications. However, rules do not

3 See PI2 in Wittgenstein’s Philosophical Investigations for a detailed description of the builders’ language-
game, which presents an idealized minimal linguistic communication that takes place between two participants to
achieve a common aim.
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give clear descriptions for the corresponding real world actions. An utterance conveys

meaning if it satisfies expectations that arise with the corresponding rule application for

that utterance in a given form of life. Accordingly, one should be aware of the socially

shared rules and their applications to perform linguistic communication which fulfills

his/her intentions.

Within the literature of computational modeling of language as a complex adaptive system,

various derivatives of language games are explored to investigate emergence and evolution

of phonetics, semantics and grammar by adopting the above mentioned assumptions to con-

ceptualize linguistic communication as an ever changing dynamical process (Steels, 2000).

Correspondingly, a language game model can be outlined as :

1. A pair of speaker and hearer is selected randomly among the population.

2. Both parties attend to a topic, which could be anything related with the environment

(e.g. an object). Topic must be perceivable by both parties.

3. Speaker transmits a feature about the topic to the hearer.

4. Hearer assesses whether it has that feature associated with the topic in its memory.

5. Both parties update their memory in accordance with the result of this assessment.

Well studied representative examples of language games are:

• Discrimination Game: Discrimination games focus on creation of shared meaning

repertoires (Steels, 1996b). Briefly, speaker attends to a portion of the perceptual space

and shares this selection with the hearer as the context. Within the context an object or

a perceptual entity is chosen as the topic by the speaker. Speaker transmits a word that

represents a feature about the topic from its memory to the hearer. The word which is

externalized by the speaker should supposedly be distinguishing for the topic from the

context. Hearer tries to identify the topic in the context by using the word provided by

the speaker. Both parties are informed about the success of this identification and they

perform memory updates accordingly. Throughout the game agents form categorization

trees. Each category denotes a specific feature set and words are members of these

feature sets. For instance, color of an object is internally represented as a category and
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words like red, blue, green would be categorized as color features. While interacting

agents adjusts these category trees to carve out a finer representation of the perceptual

space.

• Naming Game: Both speaker and hearer attends to an object from the environment.

Speaker utters a name referring to that object and hearer checks whether it has en-

countered a use of that specific name denoting that object. Participating agents try

to agree on a name for the objects of the environment through iterative interactions.

Naming game models aim to show that agents can converge on shared vocabularies

for separately identifiable objects (Baronchelli et al., 2005; Baronchelli, Felici, et al.,

2006; Baronchelli, Dall’Asta, et al., 2006; De Vylder & Tuyls, 2006; Steels, 1996a;

De Vylder & Tuyls, 2006). Game also allow a topological investigation over the popu-

lation structure (Lenaerts et al., 2005).

3.1.2 Musical Games4

In correlation with language games, a broad generalization of musical games could be drawn

as:

1. Performer(s) and listener(s) are selected randomly among the population.

2. Either an imitation or familiarity based interaction occurs between performer(s) and

listener(s).

3. Success of the interaction is assessed by one of the participating parties depending on

the type of the game.

4. According to the result of this assessment musical knowledge of participants are up-

dated.

Assessment and knowledge updating methods can differ according to the type of the musi-

cal interaction. Within the literature most common evaluation and updating methods can be

exemplified with the following games:

4 Although previous studies on emergence and evolution of musical conventions does not name their models
of musical interactions as musical games, the term will be introduced here for the first time by taking the method-
ological similarity between models of musical interactions and linguistic communication into consideration. For
the rest of this thesis we will refer musical interactions as musical games.
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• Imitation Game: Listener tries to imitate the musical signal generated by the per-

former. Performer listens the imitation and it compares the imitation with the original

signal by evaluating how similar they are. Imitation games can be used to bootstrap

shared repertoires of sounds among musical agents (Miranda, 2002; Miranda & Drouet,

2005; Miranda, 2008). Conventional performance dynamics such as certain forms of

pitch, duration and amplitude alternations of a sound can also emerge and evolve in a

society via imitation (Miranda et al., 2010). Moreover, there are also computational

evolutionary linguistics models which implement imitation game to investigate how

shared sound systems like vowels and consonants emerge (De Boer, 1997).

• Familiarity Game: Listener assesses the musical signal created by the performer by

considering how familiar it is with the organizational structure of the signal with re-

spect to its past experiences that have shaped its musical expectations. Accordingly,

quality of a performer can be evaluated by assessing whether its songs are pleasant

enough in the way of satisfying listener’s expectations. Current literature on familiarity

games are based on the assumption that music is a co-evolutionary process. The game is

commonly implemented to see how musical behavior and expectations evolve in a pop-

ulation through pair selection with mate quality from generation to generation (Werner

& Todd, 1997; Bown & Wiggins, 2005; Gong et al., 2005). Recent studies also show

that novel rhythmic forms can emerge in cultural-evolutionary systems where mating

is carried on through a mate quality assessment (Broek & Todd, 2009). In parallel,

the model that is going to be presented in Chapter 4 will investigate whether a closed

community of agents can agree on a globally shared musical expectation scheme on the

way to emerge melodic conventions by playing a modified familiarity game. Distinc-

tively, instead of working out evolution of musical expectations over generations as a

co-evolutionary process like models of Werner and Todd (1997) and Bown and Wig-

gins (2005), the model which is going to be presented in the upcoming chapter will just

focus on social dynamics of musical agreement of expectations within one generation.

3.2 Imitation Game: Emergence of a Shared Repertoire of Sounds

As discussed earlier in Chapter 1, composers and listeners must share some common knowl-

edge on musical conventions to complete a successful musical interaction. Miranda (2002)
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proposes that the primary requirement for a society to bootstrap a shared musical lexicon is to

attain a state, where its individuals’ knowledge on musical conventions must be sufficiently

similar. It has been argued that the primary aim of a musical agent must be to reorganize its

musical knowledge by interacting with other members of the community to have a common

background. Accordingly, this effort can be named as sociability or social bonding. That is

to say, an agent becomes accepted in a society if it can produce pieces that can be parsed by

others and if that agent can parse the pieces composed in accordance with the conventions of

that society (Miranda, 2002; Miranda & Drouet, 2005; Miranda, 2008).

An imitation game simulation is designed by Miranda (2002) to capture the effects of above

mentioned sociability hypothesis on organization of the social structure of a musical society.

Basically, the aim of each agent is to successfully mimic the heard signal, which is created by

a composer counterpart. Simulation models a population of agents that are capable of playing

the role of both performer and imitator. In each round a musical interaction, or specifically

an imitation game occurs between two randomly chosen agents, where one is the performer

and the other is the imitator. Before going any further in describing imitation game dynamics

in details, it would be handy to elaborate psychological and cognitive capabilities of agents

used in this model to apprehend how they compose and perceive musical signals throughout

an interaction.

Agents of this simulation are robot implementations and the musical signal (sounds) shared

between them are real world acoustic signals. To process a sound, agents use a two-fold

representation scheme. Each one of them is equipped with two separate lexicons to store

motor and perceptual representations of a sound. Moreover, they are capable of remembering

how many times they were successful in imitating a specific sound.

To hear a sound agents use a hearing apparatus, which converts the acoustic signal to its

perceptual representation. Perceptual representation is the rough estimations of the pitch,

loudness and duration of a sound, which can be calculated by the hearing apparatus from the

heard acoustic signal. If an agent wants to play a specific sound it first chooses the perceptual

representation from its own lexicon and then uses the corresponding motor representation to

articulate. Motor representation consists of the parameters fundamental frequency, amplitude

and duration. Vocal synthesizer of an agent use these values to synthesize the sound that is

intended to be generated.
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Overall, within the imitation game as sketched out by Miranda (2002), an interaction goes as

follows:

1. A random performer and imitator is chosen among the population.

2. Performer plays a sound from its lexicon by choosing a perceptual representation from

the lexicon and articulating its corresponded motor representation. If its lexicon is

empty, then a random sound is generated.

3. Imitator extracts a perceptual representation from the heard sound. To extract pitch

and loudness of the heard sound, a short sample is taken from the head of the sig-

nal and then rest of the signal is overviewed whether it has recurring fragments that

match with the sample. If there is a match, periodicity and frequency of the signal can

be calculated by using the time interval between the sample and matching fragments.

Sampling and comparison procedure is repeated for varying window sizes. This extrac-

tion methodology is named as efficient short-term auto-correlation method (Boersma,

1993). Duration of the signal is just estimated from the raw input. After the extraction,

imitator searches for a similar perceptual representation in its lexicon. When a match

is found, corresponding motor representation for the most similar sound is articulated.

A randomly generated sound is played back as the imitation, when its lexicon is empty.

4. Performer listens and assesses, whether the imitation is sufficiently similar to the sound

it played. If it is similar enough imitator is informed that its imitation was successful.

Otherwise imitation is ranked as unsuccessful and the imitator is informed accordingly.

5. Both performer and imitator updates their lexicon regarding the success of the imitation.

If the sound and its imitation is similar both agents reinforce and increase the amount

of successes gained by using that sound. Sounds, which are not used in a successful

imitation for a specific amount of time are forgotten.

To refine the assessment procedure, it can be stated that different agents can have different

motor representations for a particular sound. However, two sounds are classified as the same,

if their perceptual representations overlap. Therefore, an imitation is successful if interacting

agents can come up with a perceptual match rather than agreement of the sensory representa-

tions.
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Whenever an agent imitates a sound from its lexicon it slightly alters its motor representation

on performance. To this end, alteration of the motor representation on real-time articulation

confronts the spread of new intonations to the society. With the help of reformative updates on

the lexicon after successful imitations, population dynamically reaches to a state of agreement

of lexicons. Eventually within this agreement state imitations are observed to be successful,

which assures social bonding between the individuals.

3.3 Familiarity Game: Evolution of Musical Behavior

Music carries an information content, which is embodied in its structure. Meyer (1957) pro-

posed that the information content of a musical piece can be correlated with the measure of

fulfilled musical expectations, which arise dynamically all through a real-time exposure to

the musical structure itself. In general, musical expectations originate above the relationship

between antecedent and consequent musical events, which are following each other succes-

sively, within a temporal frame as a Markov process. In other words, if a consequent event

which follows a specific antecedent is assorted to be unexpected then information content of

that structure increases. Notably, musical expectations of an individual are shaped with their

previous musical experiences. That is to say, musical expectations may not be the same for ev-

ery individual, since they will not have the same amount of familiarity for each structure they

hear. Therefore, it could be claimed that information content of a specific musical structure is

individually dependent on auditors familiarity to that structure.

Accordingly, musical agents can revise their compositional routines to appeal a wider range

of listener populace. Musical structures with abundant information content may be enjoyed

by a wider range of audience, which can embed them into that culture over time. Known and

commonly used transitions between musical events can cause so called boredom on the lis-

tener, yet presumably listeners can also get distracted if the structure is totally unfamiliar. For

this reason, compositional practice to equate familiarity and surprise rests on a fine balance.

Diversity of musical conventions in a culture can be an indication for the pursuit of finding

surprising elements in music. Therefore, it is admissible to predict that listeners tend to seek

for some constrained amount of surprise within the structure.

Werner and Todd (1997) argues that evolution of music is a consequence of selective pressure
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in that community. They propose that effects of different compositional routines on a society

can be reformulated and analyzed as a co-evolutionary mating problem through musical in-

teractions. That is to say, a population of agents from two opposing sex, namely males and

females, are modeled. Males undertook the role of being musical performers, whereas fe-

males were listeners. Agents are knowledgeable about a closed lexicon of notes. Males have

their own songs as a genotype, which is a sequential arrangement notes (an abstraction of a

melodic line). Each female have a transition table, which encodes musical expectations of

their own. To clarify, transition table contains information about how probable an antecedent-

consequent note sequence is. Females use it to evaluate the coherency between the heard

musical signal and their expectations.

Each round of interaction models a mating process. After individual interactions breeding

occurs between a female and a male counterpart, which is chosen by the female, to create

a child with merged compositional preferences of its parents. The aim of each female is to

choose the most eligible candidate for them to mate. In one round of musical interaction all

females engage in a familiarity game, to choose a mate. From one of the females perspective

this game is:

1. Predefined number of performers are randomly selected among males.

2. Each selected male plays its song to the listener.

3. Female listener evaluates these songs and chooses the highest scored performer as the

mate.

With this model Werner and Todd (1997) examines whether the songs of this society evolves

in subsequent generations contrastingly depending on the evaluation methodology of females.

To put it in another way, females preference scheme can be to look for the most familiar song

or to the one that has the most surprising elements. A formal clarification for these assessment

methodologies is presented below.

Let A = {M, F} be the set of agents, which consists two different groups of agents and they

are all aware of a global closed lexicon of notes L = {n1, ..., ni}, where NL = i.

• Performers M = {p1, ..., p j} is the set of male agents with size NM = j. Each performer
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p has a genotype G = [N1, ...,Nm] an array of notes, where N ∈ L, NGi = m and

NGi > NL .

• Listeners F = {l1, ..., lk} is the set of female agents with size NF = k. Each listener l

has a corresponding transition table T , which encodes the musical expectations of that

listener. T is a NL ∗ NL sized two dimensional array, such as:

T =


α1,1 · · · α1,NL

...
. . .

...

α1,NL · · · αNL,NL


In T , αx,y holds the value for the probability of nx followed by ny with in the heard

signal, according to the listeners expectations. For instance, if listener l3 has the value

of α5,12 = 0.01 in T3, then it could be considered as l3 does not expect to hear an

instance of note n12 after n5. Whereas, if this value was α5,12 = 0.99, after l3 hears n5

in the signal it would most probably expect a n12 to succeed it. In this case, if it turns

out that a note other than n12 is the successor, l3 would be surprised.

Regarding this formalization when a performer pi plays its song Gi the listener l j, it could be

evaluated by using following scoring policies:

• Local Score: is the score given by the listener to a heard melodic signal, by summing

up the individual expectancy values for each transition in real-time, as it is presented in

(3.1).

local score =

NGi−1∑
k=1

αGi[k],Gi[k+1] (3.1)

• Global Score: is the overall score of a song when it is evaluated as a whole. To compute

the global score, listener listens the whole song. Consequently, the number of each

possible transition is calculated and a transition table for that individual song is created

such as:

TGi =


α1,1 · · · α1,NL

...
. . .

...

α1,NL · · · αNL,NL


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To demonstrate, αx,y in TGi is the probability of nx followed by ny in Gi. In fact, prob-

ability values of TGi should not be confused with listeners l j’s musical expectations

T j. These are only song specific distribution values. Subsequently, the global score

of the song is determined regarding the similarity between song specific probability

distribution and listeners expectation matrix, as it is presented in (3.2).

global score = T j − TGi (3.2)

• Surprise Score: is the summation of the amount of surprise raised by each transition

between the notes within the heard piece, as it is presented in (3.3). To compute it,

let max() be the function that would return the probability for the most expected con-

sequent note for a specific antecedent. This would be used by the agent to find the

probability of its expectation for the upcoming note, when a note is heard in real-time.

In correlation, the amount of surprise while listening a transition, is the difference of the

probability of the most expected transition and the probability of the actual antecedent-

consequent pair.

surprise score =

NGi−1∑
k=1

max(Gi[k]) − αGi[k],Gi[k+1] (3.3)

Among these three evaluation schemes global and local scoring policies resulted in a similar

evolutionary trend for the songs of the modeled society. In short, these two scoring policies

can not generate a diversity in the musical signal over generations, therefore they are not ade-

quate to explain assorted forms of real world musical systems. Accordingly, Werner and Todd

(1997) claims that surprise seeking assessment methodology can produce plausible musical

diversity, while attaining a co-evolutionary trend in male songs.

As a follow up study, Bown and Wiggins (2005) altered above-mentioned model with two

assumptions. In the first place, Bown and Wiggins (2005) was interested in topological dis-

tribution of the interacting agents. Therefore, interactions are constrained by just allowing

listeners to listen performers, which are credibly close to them. Such a limited listening space

assumption on performer selection contrasts with Werner and Todd (1997)’s free and random

listener selection. Secondly, Bown and Wiggins (2005) does not try to capture cultural genetic

evolution of musical signals. Rather, their main aim is to explore dynamic spatial organiza-

tion of the agents in a limited social space. Therefore, agents are considered to be musically
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competent to both perform and listen, though they do not have a sex which dictates a role on

them.

Respectively, in Bown and Wiggins (2005) every agent in the population, even the performers,

has a transition matrix just like listeners of Werner and Todd (1997). This transition table

defines an agents compositional preferences if it is performing, whereas it is a tool to asses

the heard signal that encodes agents musical expectations if it is listening. It is still presumed

that all agents are aware of a global closed set of lexicon consisting of notes. Each agent has

a starting position in space. Briefly, any agent ai, where ai ∈ A will have a position vector

coordi =< x, y > defining its place with respect to the origin < 0, 0 >. Hence one round of

musical interaction in Bown and Wiggins (2005) occurs as:

1. A listener is selected randomly upon the population .

2. Predefined number of agents are chosen from the population, which are the ones most

proximate to the listener, as the set of performers. Listener attends to performers.

Among this set of performers a semi-random selection is made to choose the actual

performer.

3. Performer plays its song to the listener by using its transition table.

4. Listener assess the song using the local scoring policy of Werner and Todd (1997).

However, the local familiarity scoring is delimited with a lower and upper boundary.

This assumption depicts that agents can get bored with completely familiar signals and

they can also dislike highly unfamiliar structures.

5. According to the result of the evaluation, listener moves closer to or farther away from

the performer. Hence, if the song has a high score listener moves close to that performer,

which increases their chance to interact in upcoming rounds. The adverse scenario

applies if the interaction is not successful.

The most intriguing outcome of this model is the formation of stable musical subcultures via

spatial clustering. Close and relatively smaller clusters seem to effect each other, so that they

can merge or change their position in space within time. However, relatively large clusters

have their own isolated mainstream expectation trends. They are robust when compared to

the smaller ones. Eventually, Bown and Wiggins (2005) shows how diversification of spatial
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musical expectations emerge and evolve within a musical culture, where distinct subcultures

have an influence on each other.

3.4 Naming Game: Emergence of a Shared Lexicon

For agents to cooperatively act on the environment, they must agree on a shared form-meaning

mapping. That is to say, individuals of a population can only cooperate if they can conceive

what a name refers to when it is uttered by a peer. To this end, naming game provides the

essential model for a virtual society of agents to reach a consensus on a common vocabulary

of nouns.

Traditional naming game models a population of agents A = {a1, ..., an} with size NA = n.

Each and every agent can equally perceive the environment, which contains a set of objects

O = {o1, ..., om}, where NO = m. Agents can be described over their own private lexicons,

which defines an inventory of a set of word-object pairings I = {σ1, ...σm}. Each word-object

pair σ is the set of words that an agent knows to name an object at a given time. For instance,

for the object ok ∈ O, an agent can have σk = {w1, ...,wi}. Every agent starts the game with

an empty inventory, where for all i ≤ m the set of word-object pairs σi = ∅ in I.

Iteratively in each episode of communication (Baronchelli et al., 2005):

1. A random speaker ax and hearer ay is chosen for x , y and x, y ≤ n.

2. Both agents attend to an object oi for 1 ≤ i ≤ m.

3. Speaker transmits a name w j ∈ σi to the hearer from its inventory Ix. If σi = ∅ in Ix, it

creates a random name.

4. Hearer processes the uttered name. If w j ∈ σi in Iy then communication is a success,

else it is a failure.

5. Both parties make final modifications on their inventory. If communication was suc-

cessful then both parties delete all the words from σi in their inventories except w j,

which is agreed on. Else, only hearer ay adds w j to σi in Iy.

Naming game dynamics can also be studied on a simplified minimal version, where there

is only one object. In this case, a personal lexicon of an agent can be reduced to a set of
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words, such as I = {w1,w2, ...,wq} at a given time. Specifically, individuals start the game

by inventing new words for the objects as their lexicons are empty at the outset. Therefore,

number of words globally present in the society gradually increases up till a maxima, where-

after convergence starts. Throughout this initial phase interactions are usually unsuccessful.

From this point on total number of words start to decrease exposing an increase on the success

rate till the end of the game. At the end, all agents converge on a shared inventory, so that

I1 = I2 = ... = In. This lexical agreement occurs at NA
1.5 (Baronchelli et al., 2008). At a given

instance throughout the game agents can have more than one word in their lexicon to name

an object, hence synonymy is unavoidable. After all, the winning word-meaning pair for each

object might differ over distinct games, but eventually population decisively converges on a

shared lexicon in each game.
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CHAPTER 4

Methodology and Empirical Work

4.1 Model

4.1.1 Overall Description and Predictions

The model that is going to be presented in this section is a modified version of the familiarity

game. Our primary aim is to model a society of musical agents with random musical expec-

tations at the outset, which can attain a state where musical expectations of individuals will

allow them to compose pieces that will be pleasing when listened by peers. That is to say,

assumptions about agents and interactions are chosen in a way that an agreement on a com-

monly shared musical preference scheme can become observable just with freely interacting

agents.

In this scope, musical expectations will pretty much be the same with what Meyer (1957) has

proposed. Individual expectation schemes profile an agent’s familiarity and foresight for cer-

tain patterns of successive musical events. It is presumed that agents anticipate for a specific

precursor after each musical event they hear on the go. They get surprised if the precursor is

not the one that they were expecting. Moreover, in our model musical expectations are just re-

stricted with pairs of notes (bi-grams) in a melodic line. That is to say, agents will be designed

to have expectations only for the forthcoming note in sequence and nothing further than that.

This restriction is imposed by agents’ memory implementation, which defines how an agents

musical expectation is computationally represented and it will be elaborated in Section 4.1.3.

Specifically, a population of agents with their own private expectations is going to be modeled.

In each round of interaction, two agents will engage in a familiarity game, where one of them
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will perform a song and other will listen and assess the song. Songs will be composed in

variable predefined lengths, which are greater than two notes, depending on the simulation

setup. Interactions will be successful if performers can compose a song that will be familiar

to the listeners to some degree. It is assumed that for performers to be appreciated by listeners

their compositions must satisfy expectations of the audience. However, while interacting

agents will not be able to directly retrieve each others expectations. Therefore, performers

will compose songs according to their expectations and see whether their musical preferences

suit with the agents that they are interacting with. In other words, while performing agents

will compose by successively appending their most expected sequences in a row, so that the

composition will represent their own expectations. To this end, convergence can occur if

individuals of the population form a consensus on which antecedent-consequent pairs to be

used in songs. At this state of agreement, it could also be claimed that agents share a unified

compositional routine.

In accordance, it is predicted that if the population can agree on shared expectations, their

composition can employ significant usage of melodic progressions with length more than

two. In a state of agreement population can only have specific expectations on bi-gram level

(as they only predict for successor notes), but throughout this agreement signals which are

pleasant may have significant ossified n-gram melodic lines in them. This prediction stems

from the sequentiality of the musical signal. In order to clarify, a musical piece is presumed to

be the sequential arrangement of atomic units that are notes from the lexicon set. Within this

context, in a possible agreement state population will compromise on particular bi-grams as

socially shared musical building blocks. Accordingly, when these come together sequentially

they may form lengthier significant structures/melodic lines. However, our model will not

entail them to be hierarchically or categorically ordered, as our agents will not be capable of

representing the relationships between these building blocks. Nevertheless, even a possible

social consensus on musical expectations would be a novel contribution to the literature.

4.1.2 Background Assumptions

Our model adopts all of the required assumptions for emergence and self-organization to rise.

These are previously explained in Section 2.2. Herein, additional specialized model specific

assumptions for the problem that we are interested in can be listed as:
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• Identical Agents: Every agent is cognitively and psychologically capable of compos-

ing musical pieces and perceiving them. The channels that are used for performance and

audition are separable. Meaning that agents use different detector and effector channels

to interact. Moreover, each agents musical expectancies are unique. Agents are not able

to directly access to others expectancies. They can just make limited estimations about

a peers musical expectations over its composition, when they interact. Agents are not

bestowed with a representation of the global system behavior and none of them have

a direct impact on it. As a consequence, system control is decentralized, so that only

local interactions can superimpose an aggregate system-wide behavior. Furthermore,

assumption of identical agents is also required for attaining coherency and consistency

among the members of the population.

• Closed Lexicon: Agents are aware of a stable and closed lexicon of sounds. Songs

can only be composed with this set of sounds, which is an abstraction of musical notes

generally ranging overall several octaves. For instance, if lexicon is set to be two oc-

taves, then it will consist all pitches in between C2-B3. This assumption is required to

ensure that all agents are aware of all possible musical pitches which can be included

in a composition. Computationally it is required to presume that such a global closed

lexicon exists, as agents enhance their compositional preferences in accordance with

their expectations over all possible bi-grams that can be built upon this set while they

are interacting. Furthermore, closed lexicon assumption will be promising to exclude

all indispensable inquires about how agents can come to state of agreement where they

will have a socially shared set of sounds that are eligible to be used in musical contexts.

As it is presented in previous chapter, imitation game models will be relevant to provide

essential elucidation on how shared sound systems emerge. Therefore, at this point our

model will be simplified by assuming that consensus on a globally shared lexicon of

sounds is taken granted at the outset.

• Closed Community: Throughout the simulation population size will be kept constant.

Interacting agents will not be replaced with new ones at any stage, hence there will

not be any disturbance on overall population behavior. Regarding this assumption, our

model differentiates from models of Werner and Todd (1997) and Bown and Wiggins

(2005). Within this context, cultural evolution of any kind will be left out of scope.

Briefly, it is just aimed to investigate significant consequences of agent interactions
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(such as emergence of significant compositional preferences or compositional/reusable

musical patterns) while population is reaching to an agreement of shared musical pref-

erences in a closed community. The only drawback of closed community assumption

is that it will practically not allow us to put robustness of any emergent behavior that

may become observable on a test.

• Free Interactions: Each an every agent is equally probable to interact with each other.

Any kind of topological distribution is omitted. Participants of an interaction is ran-

domly chosen among the population and any agent can be chosen to participate in an

interaction. Such a free interaction assumption assures every agent to equally effect

others musical expectations. By doing so, model stochasticity will be increased consid-

erably, which will hinder a detailed investigation on the effect of local interactions on

global behavior. Yet, our focus will be on macro-level instead of locality.

• Consecutive Interactions: Agents can not concurrently interact with each other. In

fact, parallel interactions are prevented as a consequence of assumption of free inter-

actions. Concurrent interactions can cause conflicting memory updates as interacting

parties are randomly chosen (i.e. How can an agent compose a song if it is chosen to

be a listener and a performer for two distinct interactions at the same time? Would it

compose before it listens? Or would it listen the performer first and do the necessary

memory updates before composing?). Such a contradiction on how to perform knowl-

edge updates will be computationally restrictive and it is avoided as it can result in

abnormalities on population dynamics.

• No Boredom: Agents can not get bored with extremely familiar signals. In other

words, interactions are successful even if entire antecedent-consequent note pairs of a

song are the ones which are expected by the listener. This assumption is required if

an absolute convergence of a shared musical expectancy is awaited. Boredom can be

introduced to our model to observe continuous dynamic evolution of global musical

preferences of a society. In fact, as long as boredom causes unsuccessful interactions,

alteration of globally shared musical expectancy schemes will be everlasting. How-

ever, in our model dynamic restructuring of individual preferences is expected to be

manifested throughout the learning phase before convergence.
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4.1.3 Agents and Interactions

Modified familiarity game models a population of musical agents A = {a1, ..., ai}, where pop-

ulation size NA = i. Agents are capable of playing the roles of both performer and listener.

Each and every agent is equipped with a transition table T , which defines their musical ex-

pectations. Transition table is a two-dimensional matrix, where each dimension has the size

of the lexicon NL. To demonstrate, assume that the lexicon only consists an octave of pitches,

so that NL = 12. Then T will be a 12 x 12 matrix, where rows will represent all possible

antecedent notes and columns will represent all possible consequent notes, such as:

Let L = {C,C#,D,D#, E, F, F#,G,G#, A, A#, B}

Then, T =


αC,C αC,C# · · · αC,A# αC,B
...

...
. . .

...
...

αB,C αB,C# · · · αB,A# αB,B


where 0 ≤ αni,n j ≤ 1 for ∀ni, n j ∈ L

Within the transition table a cell will define how much an agent expects a specific antecedent-

consequent note pair to occur successively. For instance, the value of αD,F# will give us the

amount of expectancy of an agent to hear an F# after it hears an instance of D within a signal.

All agents start the game with a flat transition table, that is all α in T has the value 0 at t = 0.

Every agents musical expectancies are dynamically shaped with readjusting modifications on

their transition tables with respect to the success of the interactions that they get involved

throughout the simulation.

Accordingly, agents of this model can be characterized with their table of musical expectan-

cies as their aim in each interaction is to evaluate whether a musical piece is pleasant enough

in terms of satisfying their expectancy on bi-gram level. At this point, it should be kept in

mind that our transition table implementation only allows agents to devise bi-gram expecta-

tions (i.e. agents can have a specific expectation for the note pair C-G to occur successively,

but not for any longer n-gram sequences like C-G-F-C). Therefore, evaluation of the heard

melodic line will be carried out over individual successive bi-grams.

In each round of interaction a modified familiarity game is played. The rules of this game is
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as follows:

1. Performer ax and listener ay is selected randomly from the population to interact, where

x , y and ax, ay ∈ A.

2. Performer ax composes a song S with predefined length NS by using its transition table

Tx and plays it to the listener ay.

Agents complete following steps to compose:

(a) An empty song template S ′ = [] is created.

(b) A random note nk ∈ L is selected and placed in the template as the first note. At

the end of this stage template with NS ′ = 1 looks like S ′ = [nk], where S ′[1] = nk.

(c) Rest of the song is recursively built in NS − 1 iterations. In each recursion, per-

former takes the last note S ′[NS ′] from the template and checks its transition table

Tx for the most expected successor. This search is carried out with λ function,

which is defined in (4.1). λ retrieves the most expected consequent for a given

antecedent. If there are more than one successors with the same expectancy value

then one of them is randomly chosen. In each iteration NS ′ increases by one and

composition is completed when NS ′ = NS .

λ(S ′[NS ′]) = max(αS ′[NS ′ ],ni) f or ∀ni ∈ L (4.1)

3. Listener ay evaluates S and conveys the success of the interaction to its counterpart.

(a) To evaluate a song agents use a local scoring policy, which is defined in (4.2).

Notably, success score is calculated in an additive fashion. In fact, the score could

also be calculated globally for a song, if the song had hierarchically organized

sections such as musical sentences or partitions. In that case, each musical section

would have its own score and the global song score would be the sum of the scores

of each section. However, within our model a musical signal represents just one

complete melodic line, therefore its pleasantness for the listener could be fixed on

summation of listeners expectancy values for each transition that they encountered

sequentially.

score =

NS−1∑
k=1

αS [i],S [i+1] (4.2)
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(b) For the interaction to be successful agents must be familiar with antecedent-

consequent note pairs that they hear in the song to some extend. This measure

of familiarity is fixed on a predefined threshold θ. Agents use the evaluation func-

tion ε to assess a song, as it is presented in (4.3). Overall score for the song is

calculated by adding the listeners expectancy values for all transitions. However,

evaluation is completed over the whole song score. Therefore, each transition will

have an impact on the success of the song, but they will not be decisive for the

success individually.

ε(score) =

 success f ul i f θ ∗ (NS − 1) ≤ score

unsuccess f ul i f score < θ ∗ (NS − 1)
(4.3)

4. Participants ax and ay modify their transition tables Tx and Ty.

Listener ay always increases expectancy values for all transitions that it heard with-

out taking success into consideration. This is because, listeners familiarity for these

antecedent-consequent pairs increase as they encounter them in a song. However, per-

former ay modifies its table with regard to the listeners evaluation. Expectancy values

for all transitions are incremented if interaction was successful, otherwise they are de-

creased. It is crucial to mention that transition tables are also used for composition

other than evaluation. Thus, if an agent is performing its table defines its compositional

preferences. In accordance, performers update their tables to make further use of the

antecedent-consequent pairs that they gained success in previous interactions in their

upcoming compositions. On contrary, decrease in expectancy values after unsuccess-

ful interactions help them to avoid using those note pairs in future. Amount of this

modification is predefined by learning rate τ for both increment and decrement. More

formally, agents use µ : T 7→ T ′ function for table updates. Notably, it can be observed

from (4.4) that there is no inhibition while performing table updates. For instance, if

there are two C-G pairs in a song that ends up as a successful interaction, performer

and listener increases αC,G in their transition tables by 2 ∗ τ. However, values for αC,ni ,

where ∀ni ∈ L, ni , G will not be inhibited. Therefore, T is not a pure probability

table, that is to say expectancy values in a column will not always add up to 1.0. In this

respect, an αni,n j will just give us an expectancy value not a probability, for defining

how often an agent expects an ni, n j pair. This expectation is merely dependent on how

many times it heard that specific pair as a listener, or how many times it used it as a
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performer in a successful interaction.

µ(T, S ) = T ′ =


αS [i],S [i+1] = αS [i],S [i+1] + τ f or ∀i, 0 < i < NS i f success f ul

or listener

αS [i],S [i+1] = αS [i],S [i+1] − τ f or ∀i, 0 < i < NS otherwise
(4.4)

As an example, Figures 4.1, 4.2 and 4.3 present an illustrative modified familiarity game in-

teraction to clarify composition, evaluation and memory update policies of interacting agents.

Let’s assume that NS = 10, θ = 0.5, τ = 0.05 and L covers only one octave (specifically notes

within the range of C to B) for this particular case.

Performing agent ax will first create an empty song template S ′ with length 10 to compose

as it is shown in Figure 4.1. Therefore, whole composition process will take NS − 1 = 9

iterations. First note will be chosen randomly and it appears to be a C. To append the second

note performing agent finds the most expected successor for C from its transition table Tx.

In this example Tx[C][G] has the highest value in row Tx[C], for that reason G is appended

to S ′ as the second note. Remarkably, it can be observed from Figure 4.1 that both A# and

B can follow F in two different instances. This is because values for Tx[F][A] and Tx[F][B]

are equal and maximal in Tx[F] throughout this interaction. Accordingly, successive note for

F is chosen randomly among the set of most expected successors. Table look up is carried

on iteratively by the performer for NS − 2 iterations, since S ′ is filled with notes. When

composition is completed it is played to listener ay for an evaluation as the musical signal S .

Figure 4.1: (Model - Agents & Interactions) An illustrative case of how agents compose a
song.
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Figure 4.2: (Model - Agents & Interactions) An illustrative case of how agents evaluate a
song.

To evaluate S listener ay first calculates a song score as it is presented in Figure 4.2. Listener

sums up expectation values for each note transition by using its transition table Ty. In our

case, score would be score = Ty[C][G] + Ty[G][F] + ... + Ty[A][C]. In consequence, score is

used to evaluate pleasantness of S for ay by checking whether it is above the success threshold

θ. In our specific case, there are 9 transitions in the song and score must be greater than 4.5 as

θ = 0.5. If score > 4.5 interaction would be successful and otherwise it will be unsuccessful.

After ay completes its evaluation it conveys the success to ax to perform memory updates.

Figure 4.3: (Model - Agents & Interactions) An illustrative case of how agents preform
memory updates on their table of musical expectations according to the success of the game.

Updates on the transition table of musical expectations are straightforward for both ax and

ay. Specifically, interacting parties adjust their tables Tx and Ty for each note transition of

S iteratively to attain T ′x and T ′y. As it is shown in Figure 4.3 listeners always add τ on the
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expectancy values of transitions in Ty. However, performers either decrement expectancy

values for each transition with τ if the interaction was unsuccessful or increment them if the

evaluation was successful.

4.1.4 Experiments

With the model that is described above two interrelated experiments are conducted to inves-

tigate the overall behavior of the population with respect to various simulation parameters.

These experiments are:

1. Test for agreement of expectation tables.

The simulation is run for a base case with 50 agents (NA), where the lexicon size was

two octaves (NL) to examine whether agents can converge on a shared musical prefer-

ence. In this specific case agents composed musical signals of size 32 (NS ), and their

learning rate (τ) was 0.05. Successively, modified familiarity game dynamics is inves-

tigated for varying number of agents (NA = 25, 50, 75), lexicon size (NL = 12, 60, 120),

signal length (NS = 16, 24, 32, 64), learning rate (τ = 0.025, 0.05, 0.075, 0.1) and

success threshold (θ = 0.3, 0.4, 0.5, 0.6) independently.

2. Test for emergence of reusable units.

Once more the simulation is run for (NA = 25, NL = 12, NS = 12, τ = 0.05, θ = 0.5),

but throughout this run a global transition table (GT ) is calculated for each round of

interaction. This global table represents overall average of the bi-gram expectations for

the whole population. GT can be defined as:

T [i][ j] = αni,n j f or ∀ni, n j ∈ L

GT [i][ j] =

∑k=NA
k=1 Tk[i][ j]

NA

In this case, GT is examined particularly to investigate whether all agents can form a

consensus on expectations for specific note pairs. In this experiment, a chi-square (χ2)

significance test is applied to a corpus of musical signals to find significant collocations.

Corpus (Cx) is the collection of signals that are exchanged between interacting agents

after overall success rate S(t) exceeds x. S(t) can be calculated as:

S (t) =
Total Number o f S uccesses at Round t

t

41



In this test three different corpora (C0.0, C0.5 and C0.9) are generated for S(t) = 0.0, 0.5,

0.9. C0.0 consists all signals that are composed from the beginning of the game. C0.5

and C0.9 includes signals after S(t) = 0.5 and 0.9 respectively. It could be presumed

that an agreement is formed after S(t) = 0.9, because principally it is guaranteed for this

setup that agents were interacting successfully for at least 40,000 rounds to reach this

success rate. So, C0.9 supposedly only includes signals of the agreement state. χ2 is

applied to all these three to observe the dynamic nature of consensus formation.

χ2 values for each possible bi-gram that can be formed by using the notes of the lexicon

makes it possible to test whether they significantly co-occur successively throughout the

agreement stage. In fact χ2 significance test can be extended to n-grams of any length.

However, in our experiment we apply χ2 test on the corpus for all possible collocations

of bi-grams, tri-grams and 4-grams. That is to say, it is examined whether any signif-

icant musical pattern of length three or four can emerge from agents limited bi-gram

musical expectations. This test is carried out in correlation with dynamic evolution of

global musical expectations that is defined by GT .

4.1.5 Implementation

Both simulation and analyzer software are implemented with Python 2.7, particularly for data

collection and data analysis. Specifically, transition tables are implemented with scientific

arrays of NumPy module from SciPy library. All other data structures are from standard

Python 2.7 libraries. Figures, which are going to be presented in Section 4.2 are plotted with

standardized matplotlib library. Experiments and analyses are conducted on a dual-core Linux

machine.

4.2 Empirical Results

4.2.1 Game Dynamics

In the beginning of the game agents do not have specialized preferences for composition and

assessment. After successful interactions they perform memory updates in order to build their

own private tables of musical expectations. As it is mentioned in the previous section, success
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rate is the number of average successful interactions throughout the simulation. Accordingly,

growth of the success rate will signify convergence on a state of agreement on global musical

expectations as agents start to interact successfully more often. In fact, an investigation of in-

dividual interactions will be barely useful to study population dynamics since large number of

random and free interactions result in an unmanageable stochasticity. In this respect, through-

out this section success rate S(t) and time of convergence will be our primary measures to

interpret model performance.

Figure 4.4: (FG - Game Dynamics) Success rate of interactions and convergence on a shared
table of expectations. Simulation is run for NA = 50, NL = 24, NS = 32, τ = 0.05 and θ = 0.5.
Success rates are averaged for 10 runs.

Figure 4.4 presents change of S(t) within time for a baseline simulation that tests whether

agents can ever come to a state of agreement when convenient conditions are provided. It can

be observed that S(t) increases rapidly just at the outset and it grows steadily till S(t) = 0.9.

Within this phase, most of the learning takes place. After S(t) = 0.9, rate of increase in S(t)

decreases and S(t) curve flattens since learning is brought to a completion. This distinctive

success rate curve denotes to a decisive minimal agreement as shared musical expectation

scheme becomes spread among the population. However, time of convergence is heavily

dependent on population and agent characteristics, such as population size, learning rate of

the agents, success threshold, number of notes used for composing and length of the signal.

In Figure 4.5, effect of population size on time of convergence can be observed, particularly
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Figure 4.5: (FG - Game Dynamics) Effect of population size NA on convergence. Simulation
is run for NL = 24, NS = 32, τ = 0.05 and θ = 0.5. Convergence trends for NA = 25, 50 and
75 are presented. Success rates are averaged for 10 runs. Time of convergence increases as
population size grows.

Figure 4.6: (FG - Game Dynamics) Effect of success threshold θ on convergence. Simulation
is run for NA = 50, NL = 24, NS = 32 and τ = 0.05. Convergence trends for θ = 0.3, 0.4, 0.5
and 0.6 are presented. Success rates are averaged for 10 runs. Time of convergence increases
with increasing θ.
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for NA = 25, 50 and 75. For larger populations agreement comes late. Therefore, increas-

ing the population size will also delay convergence. This is because, dominating bi-gram

expectancies has to be spread to the individuals of the population to attain an agreement. It

could be deduced that all agents must participate in a considerable amount of interaction to

learn what others expectations are for a global transition table to become observable. As a

consequence, greater number of interactions are required for the members of larger commu-

nities to interchange their preferences on winning note pairs.

Agent’s learning is dependent on two independent factors that are success threshold θ and

learning rate τ. To evaluate a song, raw sum of expectations for each bi-gram of that song

must exceed a specific θ. In consequence, θ defines a lower boundary for a song to be pleas-

ant. In other words, θ determines how much performers and listeners transition tables should

overlap for the interaction to be successful. In Figure 4.6 varying S(t) curves are presented for

increasing success thresholds 0.3, 0.4, 0.5, 0.6. Time of convergence increases with increas-

ing θ. This is because listeners look for higher number of expected transitions in the song to

classify the song acceptably familiar when θ is large.

In Figure 4.7 it can be seen that time of convergence depends on τ. Interestingly, system’s

learning is optimal at around τ = 0.5. Within the range 0.2 < τ < 0.7 systems tends to

converge rapidly. However, for greater or smaller values of τ time of convergence increases.

In particular, τ determines how fine agents search the state space. So, for both considerably

small and large learning rates this search is not optimal, thus performance is affected nega-

tively. When τ is fairly small increase in expectation values for antecedent-consequent pairs

of successful interactions are negligibly small so that the population can not bring out win-

ning bi-grams promptly. In a similar fashion, if τ is larger than the aforementioned boundary

agreement comes late, since expectation values for bi-grams that bring success drastically

alters after memory updates throughout the learning phase.

In Figure 4.8 alteration of S(t) is presented with respect to signal lengths NS = 16, 24, 32

and 64. Notably, change in NS does not affect convergence upto a hard boundary. From

the figure, it can be observed that S(t) curves overlap for NS = 12, 24 and 32. However,

when NS grows significantly larger (such as NS = 64), S(t) drastically drops. Besides, S(t)

for NS = 64 can not even catch up success rates of NS = 12, 24 and 32. Lengthier signals

consist relatively larger amounts of transitions to be evaluated. Consequently, its more likely
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Figure 4.7: (FG - Game Dynamics) Effect of success learning rate τ on convergence. Sim-
ulation is run for NA = 50, NL = 24, NS = 32 and θ = 0.05. Convergence trends for τ =

0.025, 0.05, 0.075 and 0.1 are presented. Success rates are averaged for 10 runs. Time of
convergence increases with increasing τ, when τ is greater than 0.5.

Figure 4.8: (FG - Game Dynamics) Effect of signal length NS on convergence. Simulation
is run for NA = 50, NL = 24, τ = 0.05 and θ = 0.5. Convergence trends for NS = 16, 24, 32
and 64 are presented. Success rates are averaged for 10 runs. Agreement trends are similar
for short signals with NS = 16, 24, 32. However, success rate drastically drops exposing a
delay in agreement when relatively longer signals such as NS = 64 are exchanged.
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Figure 4.9: (FG - Game Dynamics) Effect of lexicon size NL on convergence. Simulation is
run for NA = 50, NS = 32, τ = 0.05 and θ = 0.5. Convergence trends for NL = 12, 60 and 120
are presented. Success rates are averaged for 10 runs. Time of convergence proportionally
increases with increasing size of the lexicon.

for an antecedent-consequent pair to be involved in a composition more than once for larger

NS . Hence, when signal size increases expectancy values for winning bi-grams which are

involved in performers compositions are intensely modified. Therefore, population could not

easily settle on a dominating set of bi-grams. Indeed, an adverse effect should be expected

for shorter signals. However, from Figure 4.8 it could be deduced that performance does

not always improve for short signals. Arguably this is because, impact of other independent

parameters such as τ and θ supervenes the impact of NS on learning rate.

Finally, Figure 4.9 presents how lexicon size NL effects convergence. NL determines the size

of the state space. If agents are allowed to use greater number of notes in their compositions,

the amount of all possible bi-grams that can be produced from the lexicon grows exponen-

tially. Accordingly, as long as the state space grows the time required for the population to

form an agreement in one of the attractor states increase. Consequently, it can be observed

from Figure 4.9 that an increase in lexicon size lags convergence.
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4.2.2 Self-Organization and Emergence of Reusable Units

In this section, a representative run of the simulation will be examined to present dynamic

self-organization of the population. In Figure 4.10 it can be observed that population conver-

gences on a global table of expectations roughly at 50,000. At the end of 200,000 rounds S(t)

converges to 1.0. The global transition table at this point is presented in Table 4.1.

Figure 4.10: (FG - Self-Organization & Emergence) S(t) curve for NA = 25, NL = 12, NS

= 12, τ = 0.05, θ = 0.5.

In the global transition table (GT ) there are thirty antecedent-consequent pairs, which have

significantly high expectation values (i.e. C-C, D#-E, etc.). These note pairs are the ones,

which are commonly agreed on by the population at exactly t = 200, 000. However, when

we perform a χ2 to a corpus of signals for S (t) ≥ 0.9, test yields thirty-two bi-grams that

significantly appear successively throughout the agreement state. For instance, with a quick

comparison between Tables 4.1 and 4.2-(a) it could be seen that B-G and B-B bi-grams do not

have high expectation values in GT , whereas they appear to be significant according to the χ2

test. This dissimilarity arise from self-organizing nature of the system.

To be clear, dominating bi-grams are not deterministicly predefined. Interactions between

the agents would result in alterations in the set of winning bi-grams throughout the game. In

other words, winning bi-grams can lose their significance, or adversely a non-significant bi-

gram can become a winning pair dynamically. This spontaneous restructuring is continuously
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Table 4.1: (FG - Self-Organization & Emergence) Global Transition Table after 200,000
interactions for NA = 25, NL = 12, NS = 12, τ = 0.05, θ = 0.5. Bold values indicate the
bi-grams which are currently agreed on by the population.

c c# d d# e f f# g g# a a# b

c 1.000 0.012 0.020 0.026 0.038 0.012 0.022 0.012 0.018 0.032 0.054 0.024
c# 0.032 1.000 0.048 0.130 0.024 0.012 0.048 0.054 0.088 0.116 0.006 0.012
d 0.012 0.022 1.000 0.074 0.044 0.060 0.020 0.014 0.012 0.150 0.022 0.024

d# 1.000 0.094 0.046 0.088 1.000 0.012 0.008 0.016 0.018 1.000 0.008 0.098
e 1.000 0.008 0.016 1.000 1.000 1.000 0.048 0.056 0.018 0.028 1.000 0.010
f 1.000 0.026 0.996 0.006 1.000 0.050 1.000 1.000 0.016 0.018 0.022 1.000
f# 0.022 0.008 0.040 0.018 0.010 0.100 1.000 0.044 0.150 0.030 0.008 0.014
g 1.000 0.012 0.012 0.004 0.012 1.000 0.014 0.072 0.076 0.016 0.074 0.028

g# 1.000 0.032 0.024 0.040 0.012 0.014 1.000 0.026 0.078 0.018 1.000 0.022
a 1.000 0.014 0.022 0.020 1.000 0.030 0.046 0.010 1.000 0.054 1.000 0.016

a# 1.000 0.056 0.070 0.018 0.040 0.014 0.012 0.010 0.054 0.012 1.000 0.044
b 1.000 0.056 0.008 0.072 0.484 0.012 0.006 0.504 0.032 0.012 0.018 0.096

carried on. For instance, Tables 4.1 and 4.2-(a) show that B-G and B-B were the winning

pairs at early stages of agreement, however they lost their significance later on.

Self-organization becomes prominent when we perform χ2 test to C0.0 and C0.5. For C0.0

(notably all signals of the game included in this corpus), χ2 test shows that 140 of the all

possible 144 bi-gram collocations were significant. This means that the population nearly

searched for all states throughout the game. Successively, for C0.5 there are only 44 bi-grams.

Accordingly, it can be deduced that individuals of the population converge on an attractor

state, by fine tuning their expectation tables to narrow down the set of significant bi-grams.

Set of winning pairs can be different for each distinct run, however convergence on a specific

set of bi-grams is being attained outright.

As a consequence, all winning antecedent-consequent note pairs become bi-gram building

blocks of a musical signal. In Tables 4.2-(b) and 4.2-(c) it can be concluded that some frag-

ments of signal of length three and four can be significantly observed by applying χ2 test

on C0.9. There are 74 observable tri-gram and 7 4-grams that are significantly used in com-

position through the agreement. Notably, there is a vast difference between the number of

significant tri-grams and 4-grams. As the length increases the number of significant n-gram

melodic lines decrease. Arguably, this trend could be grounded on the learning trend of the

population. Moreover, all these n-gram note sequences are composed of sequential arrange-

ment of some of the winning bi-grams. It could be stated that these n-gram sequences are the

commonly shared pseudo melodic lines of the population. Hence, winning bi-grams become
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the reusable musical units for the population to compose lengthier structures.

To put it differently, all possible signals with length NS that can be generated from the lex-

icon L create the state space for the agents. As the population dynamically self-organize to

reach a consensus on bi-gram musical expectations they agree on a set of winning antecedent-

consequent pairs. This self-organizing behavior can also be described as a search problem,

where interactions and consecutive memory updates help the population to settle on an at-

tractor state. Notably, within this state performing agents just have a favor to use winning

bi-grams in their compositions. However, since NS > 2 compositions within this attractor

state involves melodic patterns that are greater than length two, which can be classified as

pleasant by the listeners. This is because, throughout the agreement phase performing agents

just append the winning bi-grams sequentially to compose a song.
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Table 4.2: (FG - Self-Organization & Emergence) (a) Significant bi-gram collocations
found with χ2 on C0.9. (b) Significant tri-gram collocations found with χ2 on C0.9. (c) Signif-
icant 4-gram collocations found with χ2 on C0.9. Simulation is run for NA = 25, NL = 12, NS

= 12, τ = 0.05, θ = 0.5.

(a) Bi-grams (b) Tri-grams (c) 4-grams
C-C C-C-C F-G-C D#-E-F-B

C#-C# C#-C#-C# F-G-F E-E-F-B
D-D D-D-D F-B-C F-E-F-B
D#-C D#-C-C F-B-E F-G-F-B
D#-E D#-E-C F-B-G A-E-F-B
E-A D#-E-D# F#-F#-F# B-G-F-B
E-C D#-E-E G-C-C B-B-B-B

E-D# D#-E-F G-F-C
E-E D#-E-A# G-F-D
E-F D#-A-C G-F-E

E-A# D#-A-E G-F-F#
F-C D#-A-G# G-F-G
F-D D#-A-A# G-F-B
F-E E-C-C G#-C-C
F-F# E-D#-C G#-F#-F#
F-G E-D#-E G#-A#-C
F-B E-D#-A G#-A#-A#

F#-F# E-E-C A-C-C
G-C E-E-D# A-E-C
G-F E-E-E A-E-D#

G#-A# E-E-F A-E-E
G#-C E-E-A# A-E-A#
G#-F# E-F-C A-G#-C
A-C E-F-D A-E-F
A-E E-F-E A-G#-F#

A-G# E-F-F# A-G#-A#
A-A# E-F-G A-A#-C
A#-C E-F-B A-A#-A#

A#-A# E-A#-C A#-C-C
B-C E-A#-A# A#-A#-C
B-G F-C-C A#-A#-A#
B-B F-D-D B-C-C

F-E-C B-E-A#
F-E-D# B-G-C
F-E-E B-G-F
F-E-F B-B-B

F-E-A#
F-F#-F#
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CHAPTER 5

Conclusion and Discussions

In this thesis, we have presented a computational model of a multi-agent musical society,

where agents played a modified musical familiarity game. The simulation can capture social

dynamics of musical agreement in terms of shared musical expectations. We have found that

a closed community of agents can converge on a global musical expectations scheme without

any external intervention and centralized control, when specific baseline conditions are pro-

vided. These conditions can be characterized with simulation parameters such as population

size, learning rate of the agents, success threshold, lexicon size and signal length. It can be

concluded that performance of the model is inversely proportional with the population size,

success threshold and lexicon size. Performance is also dependent on agent’s learning rate.

Significantly small and large learning rates have a negative impact on time of convergence.

Therefore, learning rate should be optimal for faster convergence. Population can only form

a consensus when the signal length is chosen to be smaller than a specific hard boundary,

otherwise agents cannot agree on shared conventions.

Accordingly, our method of modeling has proven to be successful to investigate how musi-

cal structures change in time within a culture just with pairwise interactions of the involved

agents. Overall, it is presented that a closed community can attain a state, where it has its

own specialized musical expectations. The change in cultural know-how of compositional

preferences and aesthetic evaluation of a song can be modeled in a self-organizing system

as a continuously evolving dynamic phenomenon. Moreover, it is concluded that building

blocks of a musical piece can emerge as a result of the sequential organization, while agents

converge on the shared expectation scheme.

The model and the findings are novel with respect to previous research of computational evo-
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lutionary musicology, thus its performance and robustness could not be compared and con-

trasted with its alikes. However, it has been presented that emergence of musical conventions

could be studied in a model, in which musical agents are only acting in accordance with their

musical expectations. In fact, the assumption that music does not carry any semantic content

distinguishes our model from models of evolutionary linguistics. Within this context, emer-

gence of socially shared musical conventions such as harmonic and melodic progressions and

rhythmic movements can only be worked out over the structural characteristics of a musical

piece like we did.

Particularly, it should be kept in mind that dynamics of real world musical interactions might

most probably be different from this computational model. This is because, we are abstracting

the musical signal in a way that we are only representing its constituents while leaving out the

whole auditory experience. Therefore, aforementioned findings may not be always applicable

for real world musical system.

Briefly, our formalization provides a broad framework, which can be extended in various

ways. Some of these possible proposals for future research can be listed as:

• Agents can be modified to construct a population which can emerge hierarchical and

categorical structures. Our agents are just using their transition tables/expectations to

compose and listen. However, they are not capable of working out the relationships

between the constituents of a song. Tonal categories create the hierarchical organization

in a musical piece. In a simplistic way, modality, tonality and any other hierarchical

system is based on how tones are related with each other. For instance, in western

tonality notes are positioned according to their distances to a central tone. Therefore,

compositional grouping is accomplished over these relationships. In correlation, our

agents are not restricted with such rules while they are composing. For instance, agents

could be modified in a way that they could track how often several tones come together

to find out the relationship between them.

• Agents could get bored with extremely familiar signals. By doing so, an absolute con-

vergence will not be possible, rather the system will continuously evolve through time.

Effects of various different agent characteristics on evolution of songs could become

observable in such a setup.
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• In our model a constant learning rate is used for agents to perform table updates both

for incrementing expectation values after successful interactions and decrementing after

unsuccessful ones. An experiment on differing increment and decrement rates (possibly

non-equal increment and decrement rates) might cause interesting impacts on conver-

gence trends.

• The number of winning bi-grams, which are agreed on, might be bound to simulation

parameters. It might be intriguing to examine whether the set of winning antecedent-

consequent pairs dependent on population size, learning rate, success threshold, lexicon

size or signal length.

• As it is mentioned earlier, our model is suitable for studying other sequencing tasks in

a broader sense. For instance, agents and interactions presented in the previous chap-

ter could be modified to tackle problems from the domain of evolutionary linguistics.

Emergence and evolution of phonemes is such a sequencing task, which is eminent to

study emergence and evolution of spoken linguistic communication. One of the pro-

posed methods to capture social dynamics of emergence of phonemes is to model a

society in which interacting agents compose and assess signals that are formed from

sequencing of phonemes. Such a model would be a mixture of the naming game and

modified familiarity game. An environment which consists objects should be mod-

eled and interacting agents should try to agree on a set of sequential arrangement of

phonemes, where each sequence will denote an object. In fact, agents will have a lex-

icon of phonemes, which will be subjected to alterations depending on the success of

the interactions that an agent gets involved to. With such a model, it can be observed

whether the modeled society emerges distinctive patterns of phoneme sequencing on

the way to attain an agreement.
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