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ABSTRACT

DYNAMIC SWITCHING TIMES FOR SEASON AND SINGLE TICKETS IN
SPORTS AND ENTERTAINMENT WITH TIME DEPENDENT DEMAND

RATES

Pakyardım, Yusuf Kenan

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Serhan Duran

August 2011, 46 pages

The most important market segmentation in sports and entertainment industry is the

competition between customers that buy bundle and single tickets. A common selling

practice is starting the selling season with bundle ticket sales and switching to selling

single tickets later on. The aim of this practice is to increase the number of customers

that buy bundles, to create a fund before the season starts and to increase the load

factor of the games with low demand. In this thesis, we investigate the effect of time

dependent demand on dynamic switching times and the potential revenue gain over

the case where the demand rate is assumed to be constant with time.

Keywords: Stopping times, revenue management, bundling, Non-homogeneous Pois-

son processes

iv



ÖZ

SPOR VE EǦLENCE SEKTÖRÜNDE ZAMANA BAǦLI DEǦİŞKEN TALEP
DURUMUNDA SEZON VE TEKLİ BİLETLER ARASINDAKİ DİNAMİK GEÇİŞ

ZAMANLARI

Pakyardım, Yusuf Kenan

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Serhan Duran

Aǧustos 2011, 46 sayfa

Spor ve eǧlence sektöründe en önemli pazar bölümlemesi sezon veya kombine bilet

alan müşteriler ile tek bir maç / organizasyon için bilet alan müşteriler arasındaki

yarışmadır. Yaygın olarak gözlemlenen bir satış yöntemi bilet satış dönemine müşteri-

lere sezon veya kombine bilet satışı ile başlanması, biletlerin tekli (diǧer oyun /

organizasyonlardan baǧımsız) olarak satılmasına ise daha sonra geçilmesidir. Bu

yöntemle sezon bileti alan müşteri sayısının artırılması, sezon başlamadan mali kay-

nak elde edilmesi ve talebin az olduǧu organizasyonların da doluluk oranının arttırılma-

sı amaçlanır. Bu çalışmada talebin zamana baǧlı olarak deǧişmesinin tekli bilet

satışına geçiş zamanları üzerindeki etkisi ve sabit talep varsayımı üzerine getire-

bileceǧi potansiyel gelir miktarı incelenmiştir.

Anahtar Kelimeler: Durdurma zamanları, gelir yönetimi, paketleme, homojen ol-

mayan Poisson süreçleri
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CHAPTER 1

INTRODUCTION

There are several fundamental decision problems that every seller faces regarding how

to price, how many to allocate to a specific customer group, when to make a specific

service or a specific product available etc., and there are several uncertainties involved

in such decisions. Revenue Management (RM) is the application of analytical tools

that mathematically assists to determine those decisions and reduces uncertainties in

order to maximize profitability. More specifically, revenue management deals with

three basic categories of decisions. The first category is the structural decisions in

which selling format and differentiation mechanisms such as market segmentations

are determined. The second category is about pricing; pricing strategies across prod-

uct groups are determined in this level. Allocation of the capacity to different market

segments and timing decisions are included in the third category of Revenue Man-

agement which is called quantity decisions.

Importance of these decision categories varies according to the type of business. Al-

though Revenue Management has made its outstanding reputation upon the success-

ful application in the airline industry, it can be applied to any other industry where

making decisions about three categories mentioned above is critical. Sports & Enter-

tainment (S&E) industry is one of the areas that revenue management can be applied

appreciably when three basic properties of the services or products of S&E industry

are regarded. First of all, the services or products of S&E industry are perishable

since tickets have no values after the event takes place. Moreover, there is always a

limited capacity for the service or product since events are held in venues like a sta-

dium or a theater hall, which have limited capacity. In addition, customers for S&E

products can be segmented into different types of customers.
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One of the major market segmentation utilized commonly in S&E industry is that

some customers prefer to purchase a season ticket to all events during the season,

while others prefer to purchase single ticket to an event. There are lots of intangible

values associated with the season tickets. These intangibles include sense of belong-

ing, personal seat license, guaranteeing of finding an available seat which may be

sold out soon, etc. Season ticket holders are also more beneficial to company since

company may benefit from early customer commitment which provides early cash

flow and season ticket holders are likely to renew their tickets for consecutive years.

Most of the times, season tickets are offered starting with the beginning of the selling

period, then single ticket sales are allowed later on in the selling period before the

performance period begins. Selling the bundle ticket first permits the firm to sell the

premium quality seats to season ticket buyers since season ticket buyers, most of the

time, are lucrative fans who are interested in season tickets. Also allocating better

seats to season ticket buyers encourages the customers to purchase bundled tickets.

In this work, we study the specific question of timing the switch from bundle tickets to

single tickets when time-dependent customer arrivals are observed and compare the

results with the case where customer arrivals are assumed to be constant over time.

The main feature of the problem we study is that some limited capacity can be sold

as bundled tickets or single tickets as well within the selling period. To maximize

profitability, a limited capacity must be shared optimally between bundle and single

ticket customers with the usage of an optimal switch time.

For our studies, we will consider in our problem that there are two events in the per-

formance period. Selling period starts with the selling of bundle tickets. We consider

Non-homogenous Poisson arrivals for bundle ticket customers since arrivals for bun-

dle tickets may change due to various reasons. After that selling of bundle tickets

is ceased at the switch time and selling of single ticket is started and continues till

the end of selling season which is the performance time of the first event. After the

switch, customer arrivals split into two independent Non-homogenous Poisson pro-

cess with time-dependent demand rates for each event. The problem is illustrated

in Figure 1.1. Our ultimate policy determines the switch times from bundle tickets

to single tickets dynamically according to a threshold set which consists of pairs of

2
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Figure 1.1: Event Time Line

system time and remaining inventory.

Remainder of this study is organized as follows. In Chapter 2, we review the related

literature and discuss recent studies about Revenue Management and switching times

and their application in S&E industry. In Chapter 3, we first present the basic as-

sumptions about the problem in Section 3.1 and we discuss the optimal revenue and

impact of the delaying switch on revenue in Section 3.2 and 3.3. Then, in Section 3.4,

we present a method to calculate optimal switching times and in Section 3.1, we talk

about simplifications of this method that will be used in numerical calculations. A

brief explanation of the usage of our policy is presented in Section 3.6. Next, numer-

ical analysis are conducted in Chapter 4. In Section 4.1 of Chapter 4, we discuss the

structure of optimal switching times for different demand rate schemes and compare

them with the case where demand rates are assumed to be constant. After that, sim-

ulation studies are conducted and % improvement on revenue is discussed in Section

4.2. Finally, brief summary of our results are presented in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

Revenue Management is the application of mathematical tools that help to determine

decisions about capacity allocation, pricing across customer segments etc. in order to

maximize profit. Traditional Revenue Management applications have been initiated

in the airline industry. In airline industry, variable cost per passenger is very small.

Therefore, revenue management practices in airline industry generally include book-

ing policies and pricing strategies across fare classes. The value of early commitment

to discount fair booking is discussed in Littlewood [22] and extension to multiple

fare classes in Belobaba [1]. Moreover, McGill [24], Curry [7], Wollmer [33] and

Brumelle and McGill [5] provided the techniques to determine optimal booking lim-

its for single leg flights.

However, in airline industry the problem is highly dependent on the origin and des-

tination of the flight and there may be multiple paths for the same origin-destination

pair. Minimum cost network flow formulation considering multiple paths for origin-

destination problem is described in Glover et al. [17]. For the last twenty years airline

Revenue Management has evolved from single leg control to origin-destination con-

trol, which requires big investment in information systems. Excellent return from

these investments on RM information systems is presented in Smith [28]. The bid-

price approach which is discussed in Williamson [32], Talluri and van Ryzin [29]

appears to be the most promising practice due to its ease of use and improved rate of

return. Latest studies in airline RM include Bertsimas and Popescu [4] and Karaes-

men and Ryzin [19].

Successful application of RM in airline industry has attracted other industries such as
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car rental and hotels. Dramatic improvements on revenue upon application of an RM

program in car rental industry are stated in Geraghty and Johnson [16] and application

in hotel management is considered in Feng and Gallego [12] and Bitran and Gilbert

[2]. However, there are many other industries that present several RM-type problems.

Sports & Entertainment (S&E) industry is an area whose RM-type problems are not

addressed entirely. Ho [18] presents six characteristics of S&E environment which

are completely relevant to RM. In S&E industry problems, customers are single indi-

viduals that are likely to purchase multiple tickets during a season, while in the airline

industry customers are groups of individuals that purchase a single ticket on a plane.

Therefore group sale in airline is not a key element in contrast to S&E industry. Thus,

the focus in S&E industry is the timing of bundle and single ticket sales rather than

determining the price and seat allocation as in airline industry. However, there are

limited studies on group sales such as Yuen [35] and Farley [11].

Most of the papers in airline RM and retail industries are focused on pricing as a

function of time. Gallego [15] studies pricing of a set stock of products to be sold

by a deadline and use intensity control to identify optimal prices as a function of the

stock level and remaining time. Nevertheless, most of the organizations in S&E in-

dustries announce the prices before the selling season starts and keep them constant

throughout the selling period which is known as price stickiness (Courty [6]). There-

fore timing of availability of different product groups is more applicable than timing

of a price chance of airline RM applications.

Among airline Revenue Management studies, Feng and Gallego [13] is one of the

most related study to our work. In that paper, they study the optimal dynamic switch-

ing time from one fare class to another fare class. Fare classes are predetermined

and they assume that demands are stochastic. Their eventual procedure is a set of

threshold values which consist of remaining inventory and corresponding time pairs.

Constant demand rates assumption and restriction to single price change at a time are

relaxed in Feng and Gallego [12]. Their focus of study is the timing of a price change

in order to sell out the fixed inventory over a finite time horizon so as to maximize

revenue. However, focus of our study is the timing of capacity allocation to different

customer group and this is the main difference in our work.
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Some organizations in S&E industries announce switching time from bundle ticket

sales to single ticket sale in advance before the beginning of the selling period. Drake

et al. [8] deal with that kind of static switching time problem. However, demand

realizations in real word may not be as smooth as considered in static switching prob-

lem. Therefore, Most organizations in (S&E) industry prefers to select their switching

times dynamically and determine the timing of promotion according to previous de-

mand realization. For that reason, in our work, we study the case where switching

time is selected dynamically after observing demand realization.

The most relevant study in the literature is carried out in Duran [9] where dynamic

switching is considered. Their ultimate procedure finds a set of threshold values

which depends on time and corresponding remaining inventory. However, they con-

sider homogenous Poisson process with the assumption that demand rates are con-

stant over the time. Moreover, in that paper, they study the option of two switches

case as an extension to Duran [10]. In our work, we consider Non-homogenous Pois-

son process with time-dependent demand rates for both bundle and single ticket. Al-

though mathematical effort needed is more intense, we believe that it is necessary in

order to match the real life situation.

There are also several works in other disciplines which are related to revenue im-

provement in SE industry. Numerous papers have studied pricing problem within a

venue. However, they did not consider bundling in order to maximize revenue. For

example, Leslie [21] and Rosen and Rosenfield [26] study ticket pricing that max-

imize revenue according to different seat qualities. Venkatesh and Kamakura [30],

McAfee et al. [23] and Salinger [27] are the most relevant studies in the economics

and marketing literature. However, these papers focus on the pricing of the bundles,

not the timing of decisions.

6



CHAPTER 3

MODEL AND ASSUMPTIONS

3.1 Assumptions

In S&E industry, season tickets are hardly sold after performance period begins Duran

[10]. Moreover, switching from bundle to single ticket is made within the selling

period. Therefore, we concentrate on a selling period which begins with the start of

the selling of bundle tickets at t = 0 and ends with the start of the first event at t = T ,

where T ∈ R+. Also, let M ∈ Z+ number of available seats for sale for each event. We

assume that prices for both bundle ticket and single ticket are announced before the

selling period begins and remain constant during the selling period, which is the real

practice for most S&E organizations. At the beginning of the selling period, bundle

tickets are offered at price pB and then single tickets are offered later on after the

switch at price pi for i = 1, 2 since we also assume that there are two event in the

performance period.

We assume there is a perfect market segmentation between bundles and singles and

the arrival process for bundles up to the switching time is independent of switch time.

Our study focuses a realistic practice where customer arrivals for both bundle and

single tickets are time-dependent. Therefore, we assume that there is a corresponding

Non-homogenous Poisson demand with time-dependent demand rates for each ticket

group: NB(s), 0 ≤ s ≤ t, with known time-dependent demand rate λB(t) for the

bundled events; N1(s), 0 ≤ s ≤ t, with known time-dependent demand rate λ1(t), and

N2(s), 0 ≤ s ≤ t, with known time-dependent demand rate λ2(t) for the two single

events, respectively. In addition, we assume that demand rates λi(t) for i = B, 1, 2

7



are linearly changing or constant over time. Thus, the major objective of our study is

to find an optimal method to allocate M seats among bundle and single ticket buyers

within a time period of T when time-dependent customer arrivals with λi(t) (i=B,1,2)

are observed.

Revenue rates for bundle and single tickets are defined as rB(t) = λB(t)pB and ri(t) =

λi(t)pi, i = 1, 2. We assume that at the beginning of the selling period, the revenue

rates for the bundle is higher than the sum of revenue rates of the single tickets, i.e.,

rB(0) > r1(0) + r2(0) and rB(t) − r1(t) + r2(t) is a non-decreasing function. Otherwise,

switching immediately would be optimal for all states.

Since we assumed a two-event selling horizon, both of the events considered must be

appropriate to be bundled. Therefore, demand rate for the bundled tickets is larger

than the individual events’ demand rates (λB(t) > λi(t), i = 1, 2). Moreover, we as-

sume that if the event demand rates increase (decrease) over time, increase (decrease)

rate is higher for singles (bundles), i.e., λB(t) − λi(t), i = 1, 2 is non-increasing in t.

3.2 The Dynamic Timing Problem

Initially, we will start with the calculation of the total expected revenue from ticket

sales for a specific switching time. Then, we will study the effects of delaying the

switch by comparing different switching options. Specifically, we will compare two

situations; switching immediately at time t or switching later at time τwith the help of

the marginal gain (or loss) expression. In order to quantify this gain (or loss), we will

define a generator function and use this quantification to discover the characteristic

of the optimal time to switch. Subsequently, we will develop a function that allows

us to compute the optimal switching times for each (time, left seat) pair. Finally, we

will use this function to show the structure of the optimal switching times.

For a switching time τ such that τ ϵ T , where T is the set of switching times satis-

fying t ≤ τ ≤ T , we assume that only bundle tickets will be sold in the period from

beginning of the selling period up to the switching time τ and only single tickets will

be sold in the period from switching time τ to the end of the selling period. Therefore,

expected total revenue from ticket sale over the entire time horizon [t,T ] is composed

8



of two main parts. The first part is the revenue from bundle ticket sales up to the

switching time τ with n seats available for sale and it is given by B(t, n):

B(t, n) = E
[
pB
(
(NB(τ) − NB(t)) ∧ n

)]
,

where (x ∧ y) is the function whose value is the minimum of the x and y. The second

part is the revenue from single ticket sales from switching at time τ to the end of the

selling period T and it is given by S (τ, n(τ)):

S (τ, n(τ)) = p1E[(N1(T ) − N1(τ)) ∧ n(τ)] + p2E[(N2(T ) − N2(τ)) ∧ n(τ)],

where n(τ) = [n − NB(τ) + NB(t)]+, where x+ = max{0, x}. n(τ) is the function

that indicates the remaining inventory for singles after the switch. This function also

reflects the distribution of the capacity usage between single and bundle tickets.

So far how to calculate the revenue from bundle ticket sales B(t, n) and the revenue

from single ticket sales S (τ, n(τ)) is stated. Total revenue for a specific switching

time τ over the selling period [t,T ] can be calculated by adding these two main terms

together as E
[
pB
(
(NB(τ)−NB(t))∧n

)
+S (τ, n(τ))

]
. Furthermore, taking the supremum

of this function over all stopping times τϵT will give us the optimal expected total

revenue from bundle and single ticket sales over [t,T ] with n remaining seats and it

is given by V(t, n):

V(t, n) = sup
τ∈T

E
[
pB
(
(NB(τ) − NB(t)) ∧ n

)
+ S (τ, n(τ))

]
. (3.1)

3.3 Delaying the Switch

It is possible to investigate the effects of the delaying the switch to a later time on

V(t, n) by comparing different switching options. For example if the switch is made

immediately at time t, the expected revenue will be S (t, n). However, instead of

switching immediately, switch may be delayed to a later time τ (t ≤ τ ≤ T ) and the

expected revenue in this case will be E[pB
(
(NB(τ)−NB(t))∧n

)
]+S (τ, n(τ)). If we can

compare these two switching options, then we can decide whether delaying the switch

is beneficial or not. To make this comparison, we start with the evaluation of the

changes within an infinitesimal time interval. We define the infinitesimal generator G
with respect to the Non-homogenous Poisson process (NPP) for bundles (t,NB(t)) for

9



a uniformly bounded function g(t, n). Infinitesimal generator G is a stochastic partial

differential operator which is defined as:

Gg(t, n) = lim
∆t→0

E[g(t + ∆t, n(t + ∆t)) − g(t, n)]
(t + ∆t) − t

(3.2)

we know that:

n(t + ∆t) = n(t) − (NB(t + ∆t) − NB(∆t)) (3.3)

= n − (NB(t + ∆t) − NB(∆t)) (3.4)

therefore

Gg(t, n) = lim
∆t→0

1
∆t

E[g(t + ∆t, n − (NB(t + ∆t) − NB(∆t))) − g(t, n)]. (3.5)

Remember the assumption that customer arrivals for both bundle and single tickets

occur in a nonuniform fashion. In such a case, probability that a customer buys an

i-type ticket (i = 1, 2, B) in the time interval (t, t + h] is λi(t)h + o(h). In our case we

want to investigate the changes from time t to t + ∆t while ∆t approaches to 0.

Gg(t, n) = lim
∆t→0

1
∆t

E[g(t + ∆t, n − (NB(t + ∆t) − NB(∆t))) − g(t, n)] (3.6)

= lim
∆t→0

1
∆t

∞∑
j=0

[g(t + ∆t, (n − j)+) − g(t, n)]P(NB(t + ∆t) = k + j|NB(t) = k)

where NB(t + ∆t) − NB(∆t) = j; j = 1, 2, 3...

If we use the probability values for j = 1, 2, 3..., Equation (3.6) can be simplified

much further. From the definition of Non-homogenous Poisson process [20], we

know that;

P[NB(t + ∆t) = k|NB(t) = k] = 1 − λB(t)∆t + o(∆t),

P[NB(t + ∆t) = k + 1|NB(t) = k] = λB(t)∆t + o(∆t),

P[NB(t + ∆t) = k + j|NB(t) = k] = o(∆t) f or j ≥ 2.

Substituting these values into Equation (3.6):

Gg(t, n) = lim
∆t→0

1
∆t
{[g(t + ∆t, n − 0) − g(t, n)](1 − λB(t)∆t + o(∆t)) + [g(t + ∆t, n − 1)

−g(t, n)](λB(t)∆t + o(∆t)) + [g(t + ∆t, n − 2) − g(t, n)]o(∆t)

+[g(t + ∆t, n − 3) − g(t, n)]o(∆t) + [g(t + ∆t, n − 4) − g(t, n)]o(∆t)

+(·)o(∆t) + ... + (·)o(∆t)}.
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Collecting the terms into three groups; having λ(t) multipliers, having o(∆t) multipli-

ers and other terms, we obtain;

Gg(t, n) = lim
∆t→0

1
∆t
[(

g(t + ∆t, n) − g(t, n)
)
+ λB(t)∆t

(
g(t + ∆t, n − 1)

−g(t + ∆t, n)
)
+ (·)o(∆t)

]
= lim

∆t→0

[g(t + ∆t, n) − g(t, n)
∆t

+ λB(t)
(
g(t + ∆t, n − 1) − g(t + ∆t, n)

)
+

(·)o(∆t)
∆t

]
.

Finally we have:

Gg(t, n) =
∂g(t, n)
∂t

+ λB(t)[g(t, n − 1) − g(t, n)].

When we apply this generator function G to the revenue function of only single ticket

sales S (t, n) together with the revenue function from bundle ticket sales B(t, n) =

E
[
pB
(
(NB(τ)−NB(t))∧n

)]
= λB(t)pB, we obtain the marginal gain (or loss) expression

as:

G[S (t, n) + B(t, n)] =
∂S (t, n)
∂t

+ λB(t)[S (t, n − 1) − S (t, n)] + λB(t)pB

+ G[pB
(
(NB(τ) − NB(t)) ∧ n

)]
it can be written as:

GS (t, n) + λB(t)pB =
∂S (t, n)
∂t

+ λB(t)[S (t, n − 1) − S (t, n)] + λB(t)pB.

Note that marginal gain(or loss) expression is composed of three parts. The first part

is ∂S (t, n)
∂t which is the revenue loss from single ticket sales due to elapsed time. The

second part is λB(t)[S (t, n − 1) − S (t, n)] which is the revenue loss again from single

ticket sales, but due to the decrease in inventory. The third and last part is λB(t)pB

which is the revenue gain from bundle ticket sales within infinitesimal delay time

since bundle ticket sale is active in this delay time.

The net marginal gain (or loss) expression will be one of the main terms in our analy-

sis. Behavior of our final optimal switching times expression will strongly be depen-

dent on the behavior of the net marginal gain expression. Therefore it is beneficial

to investigate the properties of the net marginal gain (or loss) in detail. Following

lemma will focus on this term more closely.
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Lemma 3.3.1. The net marginal gain from delaying for 0 ≤ t ≤ T can be written as

GS (t, n) + λB(t)pB = (rB(t) − r1(t) − r2(t)) + p1(λ1(t) − λB(t))P[N1(T ) − N1(t) ≥ n]

+ p2(λ2(t) − λB(t))P[N2(T ) − N2(t) ≥ n],

and is increasing in both n and t, when λB(t) > λi(t) (i = 1, 2) ∀t

Proof of Lemma 3.3.1. We will begin the proof by stating the simplification of some

general terms, and then we will use these simplification in our proof. Let Λi(t) =∫ t

0
λi(s)ds From the properties of NPP we know that:

P[Ni(T ) − Ni(t) = k] =
e−(Λi(T )−Λi(t))(Λi(T ) − Λi(t))k

k!
. (3.7)

Thus derivative of P[Ni(T ) − Ni(t) ≥ k] with respect to t can be written as:

∂P[Ni(T ) − Ni(t) ≥ k]
∂t

=
∂

∂t
(
1 − P[Ni(T ) − Ni(t) < k]

)
=
∂

∂t
(
1 − e−(Λi(T )−Λi(t))(Λi(T ) − Λi(t))k−1

(k − 1)!

−e−(Λi(T )−Λi(t))(Λi(T ) − Λi(t))k−2

(k − 2)!
...

−e−(Λi(T )−Λi(t))(Λi(T ) − Λi(t))0

(0)!
)
.

Taking derivatives of each term in the left hand side we have:

∂P[Ni(T ) − Ni(t) ≥ k]
∂t

=

−λi(t)P[Ni(T ) − Ni(t) = k − 1] +
((((((((((((((
λi(t)P[Ni(T ) − Ni(t) = k − 2]

−
((((((((((((((
λi(t)P[Ni(T ) − Ni(t) = k − 2] +

((((((((((((((
λi(t)P[Ni(T ) − Ni(t) = k − 3]

−
((((((((((((((
λi(t)P[Ni(T ) − Ni(t) = k − 3] + ���(....)

− ���(....) + ���(....)

− ���(....) +
(((((((((((((
λi(t)P[Ni(T ) − Ni(t) = 0]

−
(((((((((((((
λi(t)P[Ni(T ) − Ni(t) = 0].

After eliminations we have:

∂P[Ni(T ) − Ni(t) ≥ k]
∂t

= −λi(t)P[Ni(T ) − Ni(t) = k − 1], (3.8)
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therefore, we may write

∂
∑n

k=1 P[Ni(T ) − Ni(t) ≥ k]
∂t

= −λi(t)P[Ni(T ) − Ni(t) ≤ n − 1]. (3.9)

Also note that E[(Ni(T ) − Ni(t)) ∧ n] =
∑n

k=1 P[Ni(T ) − Ni(t) ≥ k], we can express

S (t, n) for n ≥ 1 as

S (t, n) = p1

n∑
k=1

P[N1(T ) − N1(t) ≥ k] + p2

n∑
k=1

P[N2(T ) − N2(t) ≥ k]. (3.10)

Using Equations (3.9) and (3.10):

GS (t, n) =
∂S (t, n)
∂t

+ λB(t)[S (t, n − 1) − S (t, n)]

= −λ1(t)p1P[N1(T ) − N1(t) ≤ n − 1] − λ2(t)p2P[N2(T ) − N2(t) ≤ n − 1]

−λB(t)p1P[N1(T ) − N1(t) ≥ n] − λB(t)p2P[N2(T ) − N2(t) ≥ n]

= −λ1(t)p1
(
1 − P[N1(T ) − N1(t) ≥ n]

) − λ2(t)p2
(
1 − P[N2(T ) − N2(t) ≥ n]

)
−λB(t)p1P[N1(T ) − N1(t) ≥ n] − λB(t)p2P[N2(T ) − N2(t) ≥ n]

= −λ1(t)p1 − λ2(t)p2 + p1(λ1(t) − λB(t))P[N1(T ) − N1(t) ≥ n]

+ p2(λ2(t) − λB(t))P[N2(T ) − N2(t) ≥ n].

Finally we have:

GS (t, n) + λB(t)pB = rB(t) − r1(t) − r2(t) + p1(λ1(t) − λB(t))P[N1(T ) − N1(t) ≥ n]

+ p2(λ2(t) − λB(t))P[N2(T ) − N2(t) ≥ n].

Obviously, GS (t, n) + λB(t)pB is an increasing function in n. Defining the following

functions as:

R(t) = rB(t) − r1(t) − r2(t),

ki(t, n) = P[Ni(T ) − Ni(t) ≥ n],

we may write the net marginal gain (or loss) expression simply as

GS (t, n) + λB(t)pB = R(t) + p1(λ1(t) − λB(t))k1(t, n) + p2(λ2(t) − λB(t))k2(t, n)

= R(t) − [p1(λB(t) − λ1(t))k1(t, n) + p2(λB(t) − λ2(t))k2(t, n)],

Also defining f (t, n) = [p1(λB(t) − λ1(t))k1(t, n) + p2(λB(t) − λ2(t))k2(t, n)], marginal

gain (or loss) expression simply turns into:

GS (t, n) + λB(t)pB = R(t, n) − f (t, n).
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For any fixed n, we have the following marginal gain (or loss) values at the beginning

and at the end of the selling period:

• at t = 0, GS (0, n) + λB(0)pB = R(0) − f (0, n),

• at t = T, GS (T, n) + λB(T )pB = R(T ) −����: 0f (T, n) = R(T ).

Remember the assumption that R(t) = rB(t)− r1(t)− r2(t) is a non-decreasing function

on [0,T ]. Also f (0, n) is a positive value for any n. Therefore following inequalities

hold

R(0) − f (0, n) < R(0) ≤ R(t),

Thus it is easy to compare the net marginal gain (or loss) values at the beginning of

the selling period at t = 0 and at the end of the selling period at t = T as:

GS (0, n) + λB(0)pB = R(0) − f (0, n) < R(T ) = GS (T, n) + λB(T )pB,

Since f (t, n) is the product of two positive and non-increasing functions; λB(t) − λi(t)

and k(t, n), is also positive and non-increasing in t on [t,T ). Thus marginal gain (or

loss) expression GS (t, n) + λB(t)pB is an increasing function in t starting from the

value R(0) − f (0, n) at t=0 and reaching to a higher value R(T ) at t = T . �

In general, a martingale system is a stochastic process where the value of a future

observation is equal to the value of the present observed value even if values of all

observations up to the present observation are known. This means that past observa-

tions have no effect in prediction of the future observations.

If the random variable of a martingale is discrete-time stochastic process, it is called

as a discrete-time martingale. Assume that Xn is an observation of a discrete-time

martingale at time n, n = 1, 2, 3... . Therefore E(Xn+1|X1, ..., Xn) = Xn and E(Xn+1 −
Xn|X1, ..., Xn) = 0. Similarly, if the random variable of a martingale is continuous-time

stochastic process, it is called as a continuous-time martingale. Let Yt is an observa-

tion of a continuous-time martingale at time t. Then, E(Ys|{Yτ, τ ≤ t}) = Yt, ∀t ≤ s.

This expresses the property that the conditional expectation of an observation at time

s, given all the observations up to time t, is equal to the observation at time t for s ≥ t.
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Assume that Z(t) is the random variable of a continuous-time stochastic process, then

GZ(t) is the derivative of Z(t). If E[Z(s) − Z(t)] − E[
∫ s

t
GZ(u)du] = 0 for s ≥ t , this

system is a continuous-time martingale. Therefore, we can say that the following two

expressions are martingales for any s ≥ t, which is also stated in Dynkin’s Lemma

[25] :

m1(s) = S (s, n(s)) − S (t, n) −
∫ s

t
GS (u, n(u))du, (3.11)

m2(s) = pB
(
(NB(s) − NB(t)) ∧ n

) − ∫ s

t
λB(t)pBI{n(u)>0}du, (3.12)

where I{n(u)>0} is the indicator function. We also know from properties of martingales

that expected value of an observation at some time s is equal to the expected vale at

starting time t. Therefore we have E[m1(s)] = E[m2(s)] = 0. This leads us to:

S (s, n(s)) − S (t, n) = E
∫ s

t
GS (u, n(u))du, (3.13)

E[pB
(
(NB(s) − NB(t)) ∧ n

)
] = E

∫ s

t
λB(t)pBI{n(u)>0}du. (3.14)

It is stated in Doob’s Optional Stopping Theory [31] that the expected value of a

martingale at a stopping time is equal to its initial expected value or expected value at

any deterministic time. Thus we may replace s in (3.13) and (3.14) with any stopping

time τ ≥ t. So we may write

S (τ, n(τ)) − S (t, n) = E
∫ τ

t
GS (u, n(u))du, (3.15)

E[pB
(
(NB(τ) − NB(t)) ∧ n

)
] = E

∫ τ

t
λB(t)pBI{n(u)>0}du. (3.16)

Adding Equations (3.15) and (3.16) together we obtain:

E[pB
(
(NB(τ) − NB(t)) ∧ n

)
] + S (τ, n(τ)) − S (t, n) (3.17)

= E
∫ τ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du.

We see that the left-hand side of (3.17) is the expected revenue gained over S (t, n) by

delaying the switch from t to τ. As shown in the right-hand side, this can be quantified

by using G. Thus from Equation (3.17) we can conclude that delaying the switch

from t to a later time τ is beneficial if E
∫ τ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du > 0.

Furthermore if we take the supremum of both sides in (3.17) over all stopping times

t ≤ τ ≤ T , we get:

V(t, n) = S (t, n) + sup
t≤τ≤T

E
∫ τ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du. (3.18)
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At this point we may introduce

Ṽ(t, n) = sup
t≤τ≤T

E
∫ τ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du. (3.19)

Thus, from Equations (3.18) and (3.19) we have V(t, n) = S (t, n) + Ṽ(t, n). This

implies that the optimal revenue over [t,T ] consists of two parts. The first part is

S (t, n), which stands for the revenue from immediately switching and selling only

single tickets until the end of the selling period. The second part is Ṽ(t, n), which

stands for the additional revenue from delaying the switch to a later time. Since

Ṽ(t, n) is also given by

Ṽ(t, n) = sup
t≤τ≤T

E[pB
(
(NB(τ) − NB(t)) ∧ n

)
+ S (τ, n(τ))] − S (t, n), (3.20)

it is obvious that Ṽ(t, n) ≥ 0 for any 0 ≤ t ≤ T and 0 ≤ n ≤ M. In particular,

Ṽ(t, 0) = 0 for all 0 ≤ t ≤ T and Ṽ(T, n) = 0 for all 0 ≤ n ≤ M. Moreover, Equation

(3.20) indicates that when Ṽ(t, n) = 0, delaying the switch further is not optimal,

whereas Ṽ(t, n) > 0 implies a revenue potential from delaying the switch.

At this point, we introduce V(t, n) to compute Ṽ(t, n). When the conditions in Theo-

rem 3.3.2 are satisfied V(t, n) will be identical to Ṽ(t, n) and can be derived recursively.

Theorem 3.3.2. Suppose there exists a function V(t, n) such that V(t, n) is continu-

ous and differentiable with right continuous derivatives in [0,T] for each fixed n. In

addition, if V(t, n) satisfies:

(i) V(t, n) ≥ 0, 0 ≤ t ≤ T and 0 ≤ n ≤ M;

(ii) V(T, n) = 0 for 0 ≤ n ≤ M and V(t, 0) = 0 for 0 ≤ t ≤ T;

(iii) V(t, n) = 0⇒ G(V + S )(t, n) + λB(t)pB ≤ 0, 0 ≤ t ≤ T and 0 ≤ n ≤ M;

(iv) V(t, n) > 0⇒ G(V + S )(t, n) + λB(t)pB = 0, 0 ≤ t ≤ T and 0 ≤ n ≤ M;

then V(t, n) = Ṽ(t, n).

The first two conditions in the list are the non-negativity property and the boundary

conditions of V . Also, since Ṽ(t, n) determines whether it is optimal to switch imme-

diately or not, the conditions for V(t, n) to be positive or zero are also crucial and are

listed in conditions (iii) and (iv).
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Proof of Theorem 3.3.2. The proof is similar to Duran [10]. We will begin the proof

by assuming that there exists a function satisfying the conditions in the theorem.

Then, we will show that V is equal to Ṽ . For s ≥ t. From Dynkin’s Lemma, we know

that following equation is a martingale:

m(s) = V(s, n(s)) − V(t, n) −
∫ s

t
GV(u, n(u))du.

As we previously stated the expected value of a martingale at any time s is equal to

its expected value at the starting time t. Hence, we have Em(s) = 0. Further, by the

optional stopping theorem, for any discreet stopping time τ ≥ t we have

E
[
V(τ, n(τ)

] − E
∫ τ

t
GV(u, n(u))du = V(t, n), (3.21)

E
[
V(τ, n(τ))

] − E
∫ τ

t

[G(V + S )(u, n(u)) + λB(t)pBI{n(u)>0}
]
du (3.22)

= V(t, n) − E
∫ τ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du.

If we subtract E
∫ τ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du from both sides of (3.21), the

left-hand side of the resulting term, given by (3.22), is always positive by conditions

(i), (iii) and (iv). Therefore,

V(t, n) ≥ E
∫ τ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du.

Since V(t, n) is greater than or equal to each term in the right-hand side of Equation

(3.19) for any τ, it is also greater than or equal to the supremum of those terms over

all τ, which is Ṽ(t, n) in Equation (3.19). Hence, we conclude that V(t, n) ≥ Ṽ(t, n)

for any stopping time τ ≥ t.

To prove that V(t, n) ≤ Ṽ(t, n), we will define a specific stopping time. Let σ be

defined as σ = inf
{
t ≤ s ≤ T : V(s, n(s)) = 0

}
. Note that σ is well-defined because

V(T, ·) = 0. Replacing τ in Equation (3.22) with σ, we obtain

E
[
V(σ, n(σ))

] − E
∫ σ

t

[G(V + S )(u, n(u)) + λB(t)pBI{n(u)>0}
]
du (3.23)

= V(t, n) − E
∫ σ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du.

The definition of σ implies that V(σ, n(σ)) = 0, and the definition of σ and condition

(iv) together imply that G(V + S )(u, n(u)) + λB pB = 0 for all u ∈ [t, σ]. Therefore the
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left-hand side of (3.23) is zero and we have

V(t, n) = E
∫ σ

t

[GS (u, n(u)) + λB(t)pBI{n(u)>0}
]
du ≤ Ṽ(t, n).

The inequality follows from the fact that the left-hand side of the inequality is the

right-hand side of Equation (3.19) for a specific stopping time, and Ṽ(t, n) is the

supremum over all stopping times τ in that equation. Hence, V(t, n) = Ṽ(t, n). �

3.4 Calculation of Optimal (xn, n) Pairs

In the previous section we have shown the existence of the alternate function V(t, n).

In this section we will develop a formal procedure to calculate V(t, n) for any (t, n)

pairs. From condition (iv), we know that GV(t, n) = −GS (t, n) − λB(t)pB when

V(t, n) > 0. Applying the infinitesimal generator G to V(t, n), we get the differen-

tial equation

∂V(t, n)
∂t

− λB(t)V(t, n) = −[λB(t)V(t, n − 1) + GS (t, n) + λB(t)pB], (3.24)

By the integrating factor approach [3], solution of this differential equation is straight-

forward. For convenience let

[λB(t)V(t, n − 1) + GS (t, n) + λB(t)pB] = A(t, n) and ΛB(t) =
∫ t

0
λB(s)ds. Thus:

∂V(t, n)
∂t

− λB(t)V(t, n) = −A(t, n). (3.25)

Multiply both side by e−ΛB(t) in order to transform Equation (3.25)into a form that

integration can be performed,

e−ΛB(t)∂V(t, n)
∂t

− e−ΛB(t)λB(t)V(t, n) = −e−ΛB(t)A(t, n), (3.26)

It is easy to see that left hand side of the Equation (3.26) is the derivative of the

product of e−ΛB(t) and V(t, n). So

∂(e−ΛB(t)V(t, n))
∂t

= −e−ΛB(t)A(t, n), (3.27)

e−ΛB(t)V(t, n) =
∫
−e−ΛB(t)A(t, n)dt, (3.28)

V(t, n) = eΛB(t)
∫

[−e−ΛB(t)A(t, n)]dt. (3.29)
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Note that Equation (3.29) is an indefinite integral equation. Using the boundary con-

ditions on V(t, n), we can convert Equation (3.29) into a definite form as:

V(t, n) = V(T, n) − eΛB(t)
∫ T

t
[−e−ΛB(u)A(u, n)]du (3.30)

From condition (ii), we know that V(T, ·) = 0. Substituting V(T, ·) = 0 into Equation

(3.30), we obtain:

V(t, n) = eΛB(t)
∫ T

t
e−ΛB(u)A(u, n)du (3.31)

V(t, n) = eΛB(t)
∫ T

t
e−ΛB(u)[λB(u)V(u, n − 1) + GS (u, n) + λB(u)pB]du (3.32)

V(t, n) can be calculated if V(t, n − 1) is known. From condition (ii) we know that

V(t, 0) = 0. Therefore, V(t, n) can be recursively determined for any (t, n) pairs start-

ing from V(t, 0) = 0. The formal procedure for calculation V(t, n) is given in Theorem

3.4.1. This theorem also provides a formulation for the optimal switching time (xn)

for each possible unsold inventory level n.

Theorem 3.4.1. For all 1 ≤ n ≤ M and λB(t) > λi(t), for i = 1, 2, the switching-time

thresholds {xn} and V(t, n) is recursively determined by

V(t, n) =

 eΛB(t)
∫ T

t
e−ΛB(s)A(s, n)ds i f t > xn,

0 otherwise.
(3.33)

where xn = inf
{
0 ≤ t ≤ T : eΛB(t)

∫ T

t
e−ΛB(s)A(s, n)ds > 0

}
,

x1 ≥ x2 ≥ · · · ≥ xn,

A(t, n) = GS (t, n) + λB(t)pB + λBV(t, n − 1), 0 ≤ t ≤ T,

V(t, 0) = 0, 0 ≤ t ≤ T.

Proof of Theorem 3.4.1. The proof is similar to Duran [10]. We will prove by in-

duction on n that V(t, n) which is determined by Theorem 3.4.1 satisfies condition

(i)-(iv). Therefore we will prove that V(t, n) which is calculated by Theorem 3.4.1 is

equivalent to Ṽ(t, n). From condition (ii) we know that when n = 1, V(t, n − 1) = 0.

Also from Lemma 2 we know that GS (t, 1) + λB(t)pB is a non-decreasing function in

t. We require that for t ≤ x1 the following inequalities must hold:

A(t, 1) = GS (t, 1) + λB(t)pB ≤ GS (x1, 1) + λB(x1)pB ≤ 0.
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As we already said the first inequality is from the non-decreasing property ofGS (t, 1)+

λB(t)pB in t. The second inequality results from the fact that if GS (x1, 1)+λB(x1)pB >

0, then eΛB(t)
∫ T

t
e−ΛB(s)A(s, n)ds > 0, which contradicts the definition of x1. Hence,

for t ≤ x1 (or V(t, 1) = 0 by the definition of V)

G(V + S )(t, 1) + λB(t)pB =
∂V(t, 1)
∂t

+ λB(t)[V(t, 0) − V(t, 1)] + GS (t, 1) + λB(t)pB

= GS (t, 1) + λB(t)pB = A(t, 1) ≤ 0.

Thus, condition (iii) is satisfied when n = 1 and t ≤ x1 (or V(t, 1) = 0).

When t > x1 (or V(t, 1) > 0) we have that

G(V + S )(t, 1) + λB(t)pB =
∂V(t, 1)
∂t

+ λB(t)[V(t, 0) − V(t, 1)] + GS (t, 1) + λB(t)pB

=
∂V(t, 1)
∂t

− λB(t)V(t, 1) + GS (t, 1) + λB(t)pB. (3.34)

We previously stated that applying the infinitesimal generator G to V(t, n), we get the

following differential equation as in Equation(3.24)

∂V(t, n)
∂t

− λB(t)V(t, n) = −λB(t)V(t, n − 1) − GS (t, n) − λB(t)pB, (3.35)

∂V(t, n)
∂t

= λB(t)V(t, n) − λB(t)V(t, n − 1) − GS (t, n) − λB(t)pB, (3.36)

Since V(t, 0) = 0, for n = 1 we have:

∂V(t, 1)
∂t

= λB(t)V(t, 1) − GS (t, 1) − λB(t)pB. (3.37)

Substituting (3.37) into (3.34), we get G(V + S )(t, 1) + λB(t)pB = 0 when V(t, 1) >

0. Therefore, condition (iv) is satisfied when n = 1. Moreover, we have V(t, 1) ≥
V(t, 0) = 0 by the definition of x1 (there exists a time t such that V(t, 1) > 0 if x1 > 0).

Now assume that the following statements hold for n ≤ k < M: there exist k time

thresholds with T ≥ x1 ≥ · · · ≥ xk ≥ 0 such that V(t, n) is derived from Equation

(3.33) and satisfies conditions (i)-(iv), and the inequality V(t, n) ≥ V(t, n − 1) holds

for n = 1 . . . k.
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For n = k + 1 we have that

A(t, k + 1) = GS (t, k + 1) + λB(t)pB + λB(t)V(t, k) ≥ GS (t, k) + λB(t)pB

+ λB(t)V(t, k − 1) = A(t, k),

since GS (t, k) + λB(t)pB and V(t, k) are increasing in k by the induction assumption.

This implies that

eΛB(t)
∫ T

t
e−ΛB(s)A(s, k + 1)ds ≥ eΛB(t)

∫ T

t
e−ΛB(s)A(s, k)ds.

Together with Equation (3.33), this implies V(t, k + 1) ≥ V(t, k) and xk ≥ xk+1.

For t ≤ xk+1 (or V(t, k + 1) = 0),

G(V + S )(t, k + 1) + λB(t)pB

=
∂V(t, k + 1)
∂t

+ λB(t)[V(t, k) − V(t, k + 1)]

+GS (t, k + 1) + λB(t)pB

= GS (t, k + 1) + λB(t)pB + λB(t)V(t, k) = A(t, k + 1)

≤ A(xk+1, k + 1) ≤ 0.

Note that V(t, k) = V(t, k + 1) = 0 since t ≤ xk+1 ≤ xk. The first inequality follows

from GS (t, k + 1) + λB(t)pB being increasing in t, and the second inequality follows

from the fact that if A(xk+1, k + 1) > 0 then this will contradict the definition of xk+1.

Therefore, condition (iii) is satisfied, when t ≤ xk+1 (or V(t, k + 1) = 0). For t > xk+1

(or V(t, k + 1) > 0),

G(V + S )(t, k + 1) + λB(t)pB

=
∂V(t, k + 1)
∂t

+ λB(t)[V(t, k) − V(t, k + 1)] + GS (t, k + 1) + λB(t)pB

= −A(t, k + 1) + λB(t)V(t, k + 1) + λB(t)[V(t, k) − V(t, k + 1)] + GS (t, k + 1)

+λB(t)pB = 0.

Therefore condition (iv) is satisfied when t > xk+1 (or V(t, k + 1) = 0).

For n = k+ 1 we showed that conditions (i)-(iv) hold. Thus the function V(t, k) that is

determined by the proposed procedure, is equal to Ṽ(t, k). Further the switching time

thresholds (xn) are monotonically non-increasing in n. �
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3.5 Details for the Approximation of the V Function

Although we have demonstrated the calculation of V(t, n) values for each (t, n) pair,

we will use an approximation using discrete time intervals for computational study.

The details of the approximation using discrete time intervals are given below. For

any 1 ≤ n ≤ M, and xn < t < T with some δ > 0 such that t + δ ≤ T , we have

V(t, n) = eΛB(t)
∫ T

t
e−ΛB(u)A(u, n)du

= eΛB(t)
∫ T

t+δ
e−ΛB(u)A(u, n)du + eΛB(t)

∫ t+δ

t
e−ΛB(u)A(u, n)du

= e−(ΛB(t+δ)−ΛB(t))[eΛB(t+δ)
∫ T

t+δ
e−ΛB(u)A(u, n)du

]
+ eΛB(t)

∫ t+δ

t
e−ΛB(u)A(u, n)du

� e−(ΛB(t+δ)−ΛB(t))V(t + δ, n) +
∫ t+δ

t
e−(ΛB(u)−ΛB(t))A(u, n)du

V(t, n) � e−(ΛB(t+δ)−ΛB(t))V(t + δ, n)

+

∫ t+δ

t
e−(ΛB(u)−ΛB(t))[GS (u, n) + λB(t)pB + λB(t)V(u, n − 1)

]
du

V(t, n) � e−(ΛB(t+δ)−ΛB(t))V(t + δ, n) +
∫ t+δ

t
e−(ΛB(u)−ΛB(t))[ (t, n)

∂t
+ λB(t)[S (t, n − 1)

− S (t, n)] + λB(t)pB + λB(t)V(u, n − 1)
]
du

For a small time interval from t to t + δ, we may take S (t, n),λB(t)pB and V(t, n) as

constants, defining the function θ(t, δ) = e−(ΛB(t+δ)+ΛB(t))

V(t, n) � V(t + δ, n)θ(t, δ) + (1 − θ(t, δ))pB + (1 − θ(t, δ))V(t, n − 1)

+ (1 − θ(t, δ))[S (t, n − 1) − S (t, n)] + θ(t, δ)[S (t + δ, n) − S (t, n)].

Therefore V(t, n) can be estimated by

V(t, n) � (V + S )(t + δ, n)θ(t, δ) + (1 − θ(t, δ))[pB + (V + S )(t, n − 1)] − S (t, n).

If the selling horizon T is divided into a large number K of intervals of length δ, we

obtain

V(kδ, n) � (V + S )((k + 1)δ, n)θ(t, δ) + (1 − θ(t, δ))[pB + (V + S )(kδ, n − 1)] − S (kδ, n).
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3.6 Usage of Optimal Switching Thresholds

We have demonstrated in our analysis that for any remaining inventory level n ∈ M,

there exists a corresponding optimal switch time xn . If the unsold inventory level

n is reached at time t where t > xn, delaying the switch is optimal since there is

an additional revenue from delaying the switch to a later time, that is, V(t, n) > 0 for

t > xn. Intuition behind this is as follows: when there is n remaining inventory, singles

can only sell out this n items of inventory in more than T − xn times. Therefore, there

is not enough time for singles to sell out the remaining inventory when t > xn since

T − t < T − xn when t > xn. Conversely, If the unsold inventory level n is reached

at time t where t ≤ xn, switching immediately is optimal since there is no additional

revenue from delaying the switch to a later time, that is, V(t, n) = 0 for t ≤ xn. A more

detailed interpretation of the meaning of switch-time thresholds and their behaviors

under different demand rates schemes are discussed in the numerical study section.

3.7 Extension to n > 2 Events

Although we specifically focused on the case where there are only two events in the

performance season in our work, number of events in a season can be extended to

more than two. However, this extension complicates the model and presents several

problems to be addressed. First of all, in our analysis we assumed that selling period

ends with the start of the first event. However, this assumption become harder to jus-

tify in the case where there are more than two events since the time period between

the first event and the last event gets larger demand for upcoming events matters.

Moreover, scheduling becomes another important factor to be considered. Consider

a sequence of events which will be performed in a season. Most of the time, some

events are high-demand events compared to the others and specific order of those

high-demand games in the sequence effects the optimal solution. Therefore, schedul-

ing should also be included in the model, which complicates the mathematics and

algorithm. Another important problem to be considered in the case where there are

more than two events in a performance period is about bundling. Particularly, which

events to be included in the bundle and possibility of multiple bundle that consist of
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mini bundles should be considered in the case where there are more than two events

in a season.
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CHAPTER 4

NUMERICAL STUDY

In the previous section we developed a procedure to find the optimal time to switch

from bundle ticket sales to single ticket sale. In this section we will present several

computational analysis regarding different situations. First, we will study the struc-

ture of optimal switching times for different demand rates schemas and then compare

the calculated optimal switching times for various demand rate schemas with the case

demand rate is assumed to be constant. By this way intuition behind the procedure can

be realized more clearly. After this, we will study percentage improvement on rev-

enue over constant demand rate assumption case for different demand rates schemes.

Thus, the value of recognizing the fact that demand rates depend on time and utilizing

the time dependent demand rates in switching time calculation will be observed.

4.1 Optimal Switching Times and Their Behavior for Different Demand Rates

In order to calculate optimal switching times, we will use the approximation shown in

Chapter 3. Then, V and optimal switching times can be calculated using the following

algorithm:

Algorithm

Let, ∆A(kδ, n) = (V + S )((k + 1)δ, n)θ(t, δ)

+(1 − θ(t, δ))[pB + (V + S )(kδ, n − 1)] − S (kδ, n).

where θ(t, δ) = e−(ΛB(t+δ)+ΛB(t))

• Step 0: Initialize V(T, ·) = V(Kδ, ·) = 0 for all inventory levels. Set n = 1 and
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k = (K − 1).

• Step 1: Calculate ∆A(kδ, n).

• Step 2: Set V(kδ, n) = (∆A(kδ, n))+ and k = k − 1.

– if k , −1 and V(kδ, n) ≥ 0, go to Step 1;

– otherwise set V( jδ, n) = 0 for all j < k − 1 and n = n + 1.

For numerical studies we will consider two events for a season which will be held

in a 120-ticket stadium. One game will be a high-demand game while the other

will be a low-demand. We will also consider a selling horizon of 2 months. The

price charged for a high-demand game seat will be $200 and the price charged for

a low-demand game will be $50, constant over the selling horizon. However, if the

seats are to be sold as bundles with one high-demand and one low-demand seat, the

price will be $220. We will study different demand rate schemes, i.e. we will study

linearly decreasing demand rates, linearly increasing demand rates and their various

combinations as well. Regardless of their behavior, arithmetic average of demand

rates for all cases will be taken equal for two-month selling period. As the constant

demand rate assumption case, we will consider 30 customers per month for high-

demand game, 25 customers per month for low-demand game and 70 customers per

month for bundle tickets on average. For example, if we are to investigate linearly

increasing demand rate for high-demand game with an increase rate of 10, we will

use λH = 20 + 10t. In such a situation, demand rate will start from 20 customers

per month and will reach 40 customers per month linearly at the end of the selling

horizon and provides 30 customers per month on average. Similarly, if we are to

investigate linearly decreasing demand rate for bundle tickets with a decrease rate

of 10, we will use λB = 80 − 10t. In this situation, demand rate will start from 80

customers per month and will drop to 60 customers per month linearly at the end of

the selling horizon and provides 70 customers per month on average.

Initially, we will calculate switching thresholds assuming that demand rates are con-

stant for all tickets as in Duran [10] using λB = 70, λH = 30, λL = 25 and show the

mechanics and usage of switching threshold times. Then we will examine different

demand rate schemes and their comparisons with constant demand rates assumptions.
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Optimal switching times for constant demand rates assumption are provided in Table

(4.1).

Table 4.1: Selected Optimal Switching Times when λB = 70, λH = 30 and λL = 25.

sales 77 76 75 74 73 72 71 70 69
remained seats (n) 43 44 45 46 47 48 49 50 51
switch time (xn) 0.272 0.232 0.196 0.156 0.120 0.084 0.044 0.01 0

For maximum profitability, we want to sell as much singles as possible because total

price for singles are higher than bundle price. However, we also have to sell some

bundles in order to completely sell out the inventory since demands only for singles

themselves do not match the capacity. Our ultimate procedure dynamically finds the

optimal time to switch from bundle ticket sales to single ticket sales according to

the system state (n, t) in such a way that possible maximum singles are sold while

some portion of capacity is initially sold as bundle in order to completely sell out

the inventory. Consider the situation that 76 bundle tickets has already been sold.

Therefore 44 seats remained as unsold inventory. For 44 unsold inventories, optimal

Figure 4.1: Optimal Switching Times when λB = 70, λH = 30 and λL = 25
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switching time is calculated as 0.232 months.If the team sold 76 seats before time

0.232 (t < x44), it is optimal to switch before 77th customer arrive since remaining

inventory can be completely sold out within remaining time by single ticket sales. In

other words, there is no expected revenue from delaying the switch further (V(t, 44) =

0).

All optimal threshold values are plotted in Figure 4.1. If the system state (t, n) falls

below the threshold line then it is optimal to switch because there is possible expected

revenue in delaying. Likewise, if the system state (t, n) is above the threshold line,

it is not optimal to switch. For some remaining inventory level, for example 51, the

optimal switching time is calculated as 0. Zero switching time until 69 seats are sold

means that switching should not be considered before 69th sale because it is not pos-

sible to sell out the remaining inventory by selling only singles.

We have stated the interpretation and usage of optimal switching times. However,

demand rates may not be constant most of the times throughout the selling period in

real life. Now, we will examine different demand rate schemes and compare them

with constant demand rates assumption. Although there are 9 possible demand rates

schemes and requirements of the theorem brings additional restriction on the cases

to be considered, we will investigate the following six most probable demand rate

schemes which have monotonic threshold values.

Case 1: All decreasing demand rates.

First demand rates scheme is “all decreasing demand rates” case. For some situa-

tions, demand rates for both games and for bundle ticket as well may decrease due to

timing of the pricing, remained bad seats etc. In order to see the effect of the rate of

change, two decreasing demand rates schemes with different slopes are investigated.

Following two demand rates schemes are used:

• λB = 80 − 10t, λH = 40 − 10t, λL = 30 − 5t,

• λB = 90 − 20t, λH = 50 − 20t, λL = 35 − 10t.

Optimal switching thresholds for these two demand rate schemes and for constant

demand rates are plotted in Figure 4.2.
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Figure 4.2: Optimal Switching Times for all Decreasing Demand Rates

In this case, all demand rates start from high values and decreases linearly as the time

passes. At early times in the selling period, demand rates for both bundles and singles

are relatively higher compared to the constant demand rates assumption case. Thus

more customers for both bundle and single tickets arrive in early times compared to

the constant demand rates case. Therefore, the sales portion that is intended to be

sold as bundles (this portion is also dynamically changing according to system state

(t, n)) to completely sell out the inventory are realized earlier. Consequently switch-

ing occurs more frequently at early times in the selling period. We see in the graph

that areas under the threshold curves calculated for decreasing demand rate cases are

greater than the area under the threshold line calculated for constant demand rate case.

This means that switching occurs more frequently in these areas. Therefore, it is obvi-

ous that switching thresholds are underestimated at early times in the selling horizon

if the decreasing demand rates are failed to be recognized. Moreover as the time goes

by; all demand rates decrease, average inter-arrival times between events increase,

that is, time is not in favor of single ticket sales. Therefore switching tends to become

less frequent as time passes. This is the reason why the curve is concave up because

deceasing demand rates bend the curves downwards. At later times throughout the
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selling period, demand rates for both bundle and single tickets are relatively lower

compared to the constant demand rate case. Thus switching occurs less frequently

in later times. That is why threshold curves for decreasing demands fall below the

threshold line for constant demand assumption case. Accordingly, we may say that

switching thresholds are overestimated at later times in the selling period again if the

decreasing demand rate fact is not considered.

Case 2: All increasing demand rates

Our second case is all increasing demand rates case. On contrary to all decreasing

demand rates case, for some situations, demand rates for both games and for bundles

as well may increase due to timing of the events, advertisement policy etc. In order

to see the effect of the rate of change, two increasing demand rates schemes with

different slopes are investigated. Following two demand rates schemes are used:

• λB = 60 + 10t, λH = 25 + 5t, λL = 20 + 5t,

• λB = 50 + 20t, λH = 20 + 10t, λL = 15 + 10t.

Optimal switching thresholds for these two demand rate schemes and for constant

demand rates are plotted in Figure 4.3.

In this case, demand rates start from low values and increases linearly as the time

passes. On the contrary to all decreasing demand rates case, demand rates are rel-

atively lower at early times in the selling period and relatively higher at later times

compared to demand rates in constant demand rates assumption case. At early times,

switching is less frequent than what is suggested by constant demand rates assump-

tion. Thus, we can say that switching thresholds are overestimated in constant de-

mand rates assumption at early times in the selling period. Demand rates increase

with increasing time and so, switching tends to become more frequent, which is the

reason why the curve is concave down. At later times demand rates are relatively

greater and accordingly, switching is more frequent than what is suggested in con-

stant demand rates assumption. Therefore, switching thresholds are underestimated

by assuming constant demand rates at later times in the selling period if the demand

rates are incorrectly considered to be constant.
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Figure 4.3: Optimal Switching Times for all Increasing Demand Rates

Case 3: Decreasing λB and λH, increasing λL

In some situations, demand rates for high-demand game may decrease due to high

price, bad seats left etc. while demand rate for low-demand game may increase due

to low price, time of the event etc. In such a situation demand rate for bundle also

decreases but not as sharp as demand rates for high-demand game. In order to see the

effect of the rate of change, two different schemes with different slopes are investi-

gated. Following two demand rate schemes are used in this case:

• λB = 75 − 5t, λH = 40 − 10t, λL = 20 + 5t,

• λB = 80 − 10t, λH = 50 − 20t, λL = 15 + 10t.

Optimal switching thresholds for these two demand rate schemes and for constant

demand rates are plotted in Figure 4.4. In this case λB and λH starts from high values

and decreases linearly, but λL stars from a low value and increases linearly as the

time goes by. For early times in the selling period, λB and λH are relatively higher
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Figure 4.4: Optimal Switching Times for Decreasing λB and λH, Increasing λL Case

and λL is relatively lower at early limes compared to the constant demand assumption

case. Hence more customers for both bundle and high-demand game tickets and

fewer customers for low-demand game tickets arrive in early times compared to the

constant demand rates case. Although we may expect more frequent switching at

early times since λB and λH are relatively higher, switching times are smaller in early

times due to the relatively lower demand for λL and we may say that λL is the critical

demand rate at early times in the selling horizon. Here λL happens to be a limiting

factor for switching because there is a potential risk for not being able to sell out all

low-demand game tickets in the case of early switching. Similarly, at higher times

λB and λH are relatively lower and thus, threshold curve behaves like the threshold

curves in all decreasing demand rates case although λL is relatively higher. At this

point we can conclude that critical demand rate has a considerable effect on the shape

of the switching time thresholds curve.

In this case the threshold curves always fall under the threshold line which is deter-

mined by constant demand rates assumption. Therefore, switching should be less

frequent than what is suggested by constant demand rates assumption both at early
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and later times. Consequently, it is clear that switching thresholds are overestimated

by constant demand rates assumption.

Case 4: Increasing λB and λH, decreasing λL

In contrast to Case 3, in some cases, demand rates for both bundle and high-demand

game may increase in time while demand rate for low-demand game may decrease in

time. Again, two different schemes with different slopes are used as follows:

• λB = 65 + 5t, λH = 25 + 5t, λL = 35 − 10t,

• λB = 60 + 10t, λH = 20 + 10t, λL = 45 − 20t.

Optimal switching thresholds for these two demand rate schemes and for constant

demand rates are plotted in Figure 4.5. In this case, we see the dominant effect of

Figure 4.5: Optimal Switching Times for Increasing λB and λH, Decreasing λL Case

low values of λB and λH at early times and dominant effect of low value of λL at later

times. At middle times, high values of demand makes the switching slightly more

frequent. For such a case, optimal switching thresholds are overestimated both at
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early and later times and slightly underestimated at middle times by constant demand

rates assumption.

Case 5: Constant λB, decreasing λH and increasing λL.

It is possible for some cases that demand for bundle tickets may be constant while

demands for individual games may decrease in time. Again, two different schemes

with different slopes are used as follows:

• λB = 70, λH = 40 − 10t, λL = 15 + 10t,

• λB = 70, λH = 50 − 20t, λL = 5 + 20t.

Optimal switching thresholds for these two demand rate schemes and for constant

demand rates are plotted in Figure 4.6.

Figure 4.6: Optimal Switching Times for Constant λB, Decreasing λH and Increasing
λL

In this case λB is constant throughout the selling horizon. Thus λB has no considerable

effect on the shape of the switching threshold curves. Threshold values are strongly

affected by the behavior of λH and λL. At early times in the selling period, switching
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is much less frequent than what is suggested by constant demand rates assumption

due to very low values of λL. At later times, switching is again less frequent but not

that much as at early times. Accordingly, threshold values are significantly under-

estimated at early times and moderately underestimated in later times when constant

demand rates are assumed for such a demand rate profile.

Case 6: Increasing λB constant λH and λL

For some cases, demand rate for bundle may increase in time due to its lower price,

loyalty, or other advantageous provided to bundle-ticket-buyers etc. while demand

rates for single tickets may remain constant in time. Nevertheless it may be a rare

case, it is beneficial to investigate this case in order to understand the behavior of

optimal switching thresholds.

• λB = 60 + 10t, λH = 30, λL = 25,

• λB = 50 + 20t, λH = 30, λL = 28.

Optimal switching thresholds for these two demand rate schemes and for constant de-

mand rates are plotted in Figure 4.7. In this case, λH and λL are constant throughout

the selling season but λB is increasing in time. Since switching is mainly related with

the amount of singles that can be sold after the switch, switching threshold curve is

similar to the threshold line for all constant demand rates assumption case

After evaluating different demand rate schemes, it can be concluded that switching

thresholds are mainly effected by the behavior of demand rates for single tickets.

Moreover, when demand rates for singles are higher than their constant counterparts,

switching occur more frequently whereas it tends to be less frequent when single

demand rates are lower. Also, critical demand rate limits the behavior of the threshold

curve as explained in Case 3. Furthermore note that the difference between threshold

curves calculated for time-dependent demand rates and the threshold line calculated

for constant demand rates is changing with time. This means that effect of constant

demand rates assumption may vary according to the realization path. Also, we see

that all threshold values intersect at the same point in each demand rate scheme.
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Figure 4.7: Optimal Switching Times for Increasing λB Constant λH and λL Case

4.2 Simulation studies

Impact of the dynamic switching times calculated with constant demand rates as-

sumption on revenue improvement is demonstrated by a numerical experiment in

Duran [10]. Average revenue from dynamic switching policy is compared with the

average revenues from two possible industry practices in which switching times are

determined before selling season begins. The first comparison is with a naive ap-

proach in which the middle point of the selling horizon is selected as the switching

time. The second comparison is with the optimal approach, where the best static

switch time is selected using enumeration over all possible switching times using

Equation 3.1. In order to see the impact of different demand realizations, compar-

isons of dynamic switching policy with static ones are made over ten different sce-

narios. For each scenario, 100 random sample paths for the bundle and single ticket

customers are generated. The results are summarized in Figure 4.8

The percentage improvement on revenue from dynamic switching over the static case

can be between 2.5-4% when the static switching time is arbitrarily selected to be
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Figure 4.8: % Improvement over Static when Constant Demand Rates are Assumed

the middle point of the selling period (i.e., 1 month) or 1-2% when the optimal static

switch time is used.

Now we will investigate the first five time-dependent demand rate cases and find the

percentage improvement over constant demand rates assumption case. In order to

do that, we will generate two switching threshold sets for each case; one with time

dependent demand rates and one with constant demand rates. Then we will simu-

late the sale horizon. For simulation, we will basically investigate what would the

revenue be if we used the switching thresholds which are determined by constant

demand rate assumption instead of using threshold values based on time dependent

demand rates while customers are arriving according to the time-dependent rates. To

do that, we write a program in Java and use Intel Core i3 2.53 Ghz processer. Also,

we use predefined Java random number generator for our analysis. In each itera-

tion, we will generate a random inter-arrival sets for both bundle and single tickets.

First, we will calculate expected revenues using switching threshold values which are

determined for time dependent demand rates. Then, we will calculate the expected
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revenue using the same random inter arrival set but utilizing the switching thresh-

old values which are determined for constant demand rate assumption. Lastly, we

will find the % improvement comparing these two revenue values and continue with

next iteration. In this way, we guarantee that same random realization path that as-

sumes time-dependent customer arrivals is taken for both case in each iteration, which

makes the comparison more reliable. For each case which are evaluated in Section

4.1 we will make ten thousand replication using random inter arrivals. The result is

summarized in Figure 4.9

Figure 4.9: % Improvement over Constant Demand Rates Assumption Case

We find that revenue gain is between 0.8% and 2.5% varying according to demand

rate schemes. Also remember that this gain is over the optimal revenue which is

calculated using constant demand rates which is also a dynamic switching method.

Moreover, we can conjecture due to the results in Duran [10] that % improvement on

expected revenue over optimal static practice will be 3 - 6 % when dynamic switching

with time dependent demand rates policy is utilized. Also note that this improvement

is the minimum improvement because comparison is made with the optimal static

case. Realization path is another factor that has an impact on revenue improvement.
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According to the figures in Section 4.1, difference between switching threshold pro-

files are greater at early times and at later times. Therefore, we can expect higher

improvements for different early demand realizations. As an example for such a situ-

ation, the case when 40 early demand is realized within 0.5 months is evaluated. The

result are presented in Figure 4.10.

Figure 4.10: % Improvement on Revenue when 40 Early Demand is Realized within
0.5 Months

In this case % improvement over constant demand rates assumption is greater for the

first four cases due to the greater difference between switching times at earlier times

in the selling period. However for the 5th case it is smaller because in 5th case there

is a problem of selling out the event and that is the reason why switching is much

less frequent at early times. Another important factor that has a considerable effect

on revenue improvement is the difference between single ticket prices and bundled

ticket price, p1 + p2 − pB. For our base case, price difference is p1 + p2 − pB =

$200+$50−$220 = $30. Keeping all system parameters same as in our base case, we

can see the effect of price difference by changing bundle ticket price pB. Percentage

improvement for each cases for bundle ticket price pB = $210, bundle ticket price

pB = $230 and its comparison with the base case where bundle ticket price pB =
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$220 are presented in Figure 4.11. We see that percentage improvement on revenue

is greater for larger difference between single ticket prices and bundle ticket price.

Similarly, percentage improvement on revenue is smaller for smaller price difference

between bundled tickets and single tickets.

Figure 4.11: % Improvement on Revenue for Different Bundle Prices
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CHAPTER 5

CONCLUSIONS

Revenue management has been recognized as one of the most flourishing application

of Operation Research (OR). Most of the revenue management practices deal with

the allocation of the right inventory to the right market segment at the right time for

an optimal price in order to maximize profitability. Therefore, revenue management

can be applied to every industry where number of fundamental decisions about inven-

tory, timing, pricing, etc. is needed although it has gained mostly its reputation upon

successful application in airline industry.

In this study, we have worked on the application of revenue management in Sports

& Entertainment industry, which is a fairly new practice. We have studied the prob-

lem of switching from bundle tickets to single tickets and particularly comparison of

the case where time dependent demand rates are utilized to the case where demand

rates are assumed to be constant while time-dependent customer arrivals are realized.

Major characteristics of the problem incorporate that a limited capacity is shared be-

tween bundle ticket buyers and single ticket buyers. The capacity allocation is made

according to a switch-time after which bundle split into multiple simultaneous Non-

homogenous Poisson processes with time-dependent demand rates for singles.

In Chapter 3, we showed that for any inventory level n, there exist a time xn after

which switching from bundle ticket sales to single ticket sales is not optimal. There-

fore, the optimal switch times constitute a set of thresholds defined by the remaining

inventory and the time spent in the selling period. Usage of the policy is as follows:

After each sale, the current time is compared to the time threshold for the correspond-

ing remaining inventory to determine if the switch should be made immediately or
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not. Moreover, we have illustrated that threshold are decreasing in remaining inven-

tory n and monotonically increasing in t as suggested in Duran [10].

In Chapter 4, we have worked on several numerical experiments considering differ-

ent situations. Initially, we have studied the structure of optimal switching times for

various demand rates schemes in six cases and compared them with the case where

demand rates were assumed to be constant. We illustrated that when time-dependent

demand rates are used; switching thresholds form a curve rather than being a line

which is suggested by constant demand rates assumption due to varying characteris-

tics of demand rates in time. We have also demonstrated that when demand rates are

higher than their constant demand rates counterpart in a specific time interval, thresh-

old values are underestimated by constant demand rates assumption in that specific

time interval as in Case 1 at early times in the selling period. Likewise, we have

demonstrated that when demand rates are lower than their constant demand rates

counterpart in a specific time interval, threshold values are overestimated by constant

demand rates assumption in that specific time interval as in Case 2 at early times in the

selling period. We can generalize this as: if the demand rates are incorrectly consid-

ered lower than their actual values, switching threshold would be overestimated and if

the demand rates are incorrectly considered higher than their actual values, switching

thresholds would be underestimated. Furthermore, it is possible that a demand rate

may drop to critical values and that demand rate turns out to be a critical demand rate.

Behavior of the switching thresholds may be limited by the critical demand as in Case

3. In addition, behavior of the threshold curve is strongly dependent on the behavior

of demand rates for singles as shown in Case 6.

In simulation studies, we have expressed the value of utilizing the dynamic switching

threshold policy by calculating % improvement on revenue. We have found that rev-

enue gain can be between 0.8% and 2.5% (varying according to demand rate schemes)

over constant demand rate assumption. Along with the results of Duran [10], we con-

juncture that % improvement on revenue over static switch may be 3 - 6 % when

dynamic switching with time dependent demand rates policy is utilized. Finally, we

have illustrated that usage of time-dependent demand rates instead of assuming that

they are constant can be more beneficial in the case of different demand realizations.
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In this work, we have studied the dynamic switching problem considering two-event

for a season. It would be an interesting study to evaluate the cases where there are

more than two events for a season. In such a case, the decision of which events to

include into the bundle is also an interesting question (Yakıcı [34]). Moreover, mini-

bundle and bundle combinations can be offered to the customers and timing of such

products is another interesting problem to work on.
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