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ABSTRACT

ON PLANAR FUNCTIONS

Hamidli, Fuad
M.S., Department of Cryptography
Supervisor : Ferruh Ozbudak

September 2011, 35 pages

The notion of ”Planar functions” goes back to Dembowski and Ostrom, who introduced it
in 1968 first time to describe projective planes with special properties in finite geometry.
Recently, they attracted an interest from cryptography because of having an optimal resistance
to differential cryptanalysis.This thesis is based on the paper "New semifields, PN and APN
functions” by Jiirgen Bierbrauer. The whole purpose of this thesis is to understand and present
a detailed description of the results of the paper of Bierbrauer about planar functions. Here
and throughout this thesis “new” means “new” in the paper of Bierbrauer. In particular we

have no new constructions here and we only explain the results of Bierbrauer.

Keywords: Planar function, semifield, APN function
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DUZLEMSEL FONKSIYONLAR UZERINE

Hamidli, Fuad
Yiiksek Lisans, Kriptografi Boliimii

Tez Yoneticisi  : Ferruh Ozbudak

Eyliil 2011, 35 sayfa

Diizlemsel fonksiyonlar Dembowski ve Ostrom tarafindan 1968’de sonlu geometride pro-
jektif diizlemleri belirli 6zellikleri ile tanimlamak i¢in tanitildi. Son zamanlarda, diferen-
siyel kriptanalize kars1 optimal direnci oldugu icin kriptografide ilgi gordii. Bu tez Jiirgen
Bierbrauer’in ”New semifields, PN and APN functions” isimli makalesine dayanmaktadir.
Bu tezin biitiin amac1 makaleyi anlamak ve Bierbrauer’in diizlemsel fonksiyonlar hakkinda
olan sonuglarinin detayli tanimini1 vermektir. Burada ve bu tez boyunca “’yeni” Bierbrauer’in
makalesindeki “yeni”yi ifade eder. Ozellikle biz bu tezde yeni yapilar kurgulamayip sadece

Bierbrauer’in sonuclarini agikliyoruz.

Anahtar Kelimeler: “diizlemsel”(planar) fonksiyon, yar1 cisimler (semifields), APN-fonksiyon
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CHAPTER 1

Introduction

The notion of “’Planar functions” goes back to Dembowski and Ostrom, who introduced it
in 1968 first time to describe projective planes with special properties in finite geometry.
Recently, they attracted an interest from cryptography because of having an optimal resistance
to differential cryptanalysis. In cryptography, planar functions were first considered in the
work of Nyberg and renamed as perfect nonlinear” (PN).This name describes roughly the
importance of planar functions in cryptography as being far from linearity. In addition, the
notion “almost perfectly nonlinear” (APN) arose in the theory of S-boxes in characteristic 2 in
order to prevent linear attacks. This thesis is a survey on new results of the paper of Bierbrauer
about new family of functions that are PN and APN and corresponding new semifields. This

part consists of basic definitions and theorems that will be used in next chapters.

1.0.1 Basic definitions, PN and APN functions

Definition 1.0.1 Let f be a function from F to F. Directional derivative of a function f is

defined as f(x + a) — f(x) for everya € F and a # 0.

Definition 1.0.2 Let p be an odd prime and F = F . A function f: F — F is called a planar
function or perfectly nonlinear (PN) if for each a # 0 and a € F the directional derivative

defined as above is bijective.

Or, equivalently we can say that f is planar over finite field IF, if and only if
£g(x) = f(x+a) — f(x) = f(a) is one to one for any O # a € IF,. Here we may think of f as a

polynomial with coefficients in F. In this thesis, in order to prove planarity of a given function



we will use this equivalent definition. When characteristic is an odd number then there are

close connections to finite geometries and algebra.

Example 1.0.3 Let [y be finite field. Then f(x) = x? is a planar function over Fyn (folklore).

This is obvious, since Ay(x) = f(x + a) — f(x) — f(a) = 2ax which is one to one function.

Definition 1.0.4 Let p = 2 and F = Fon. A function f: F — F is called an almost perfectly
nonlinear (APN) if for each a # 0 and a € F the directional derivative defined as above is
two-to-one.

Equivalently, fis an APN if and only if kernel of A,(x) has the dimension 1 over finite field F.

Definition 1.0.5 Let F = IF» be a finite field with p an odd prime. A polynomial L: F — F
is called a linearized polynomial (or additive polynomial or p-polynomial) if L is of the shape

n—1

L(x) = Z al-xpi

i
Observe that, any linearized polynomial satisfies L(x) + L(y) = L(x + y) and L(ax) = aL(x)

where x,y € F, and « € F),. Conversely, any polynomial satisfying this conditions has to be

a linearized polynomial.

Definition 1.0.6 Let F = [ and p be an odd prime number. A function f: F — F is called
Dembowski-Ostrom (DO) polynomial if all the exponents are sums of two powers of p or f is

the form
k

Q)= aat?

i,j=0
1.0.2 Semifields and Presemifields

Let f be a planar function so that f(0) = 0. Interpret f(x + a) — f(x) — f(a) = a * x. Then
observe the followings:

Daxx=f(x+a)— f(x)— fla)=x*a

2) a * x = 0 holds if and only if either x = O or a = 0.

In addition, if we let f to be a Dembowski-Ostrom polynomial then we get an extra property

in odd characteristic:



Nax(x+y) =axx+axyand (a+x)*y = axy+ x*y (to prove use the shape of
f(x) = Zfi}.zo a; jxpiﬂ’j and put instead)

This properties leads to the notion of semifields and presemifields.

Definition 1.0.7 An algebra F with at least two elements and binary operations + (addition)
and + is called a finite semifield if it satisfies the followings:

1) (F,+) is a group with identity element 0.
2)ax(b+c)=asxb+axcand(a+b)xc=axc+b=*cforallab,ceF.
3)axb=0impliesa=0o0rb=0.

4) There exists 1 € F suchthat1 xa=ax1=aforallacF.

If all the conditions above are satisfied except 4) then F is called a presemifield. Note that a

semifield (presemifield) F is commutative if * is commutative.(See [3] for details)

Example 1.0.8 (/) A finite field is a trivial example of a semifield.

(2) (Fsk, +, %) is a nontrivial semifield of order ¢** with addition and multiplication defined
as follows:

(a,b) + (c,d)=(a+c,b+d)

(a,b) = (c,d) = (ac + abld?,ad + bc)

where q is an odd prime power and a is a non-square in ¥ . (Dickson [4]).

The relationship between presemifields and D.O polynomials is stated in the following theo-

rem discovered recently by Coulter-Henderson [2]:

Theorem 1.0.9 The following notions are equivalent:
i) Commutative presemifields in odd characteristic.

it) Dembowski-Ostrom polynomials that are planar functions.

It is already explained in introductory part of semifields that if we choose f as a planar D.O
polynomial in odd characteristic g and define our multiplication * as a * x = f(a + x) — f(x) —
f(a) then F = (F,, +, *) is a commutative presemifield.

Conversely, if F = (F,, +,*) is a commutative presemifield of odd characteristic, then the
polynomial given by f(x) = %(x * x) is a planar D.O polynomial.

There is also a way to turn presemifield into a semifield. For this we choose our favourite



element, say e € F and define new multiplication * as:
(xxe)* (yxe)=xxy

Now with respect to this new multiplication we still have presemifield with an identity element
e xe.

On the other hand, only a small number of commutative semifields of odd order has been
found. Some classes are the followings:

1)The Dickson semifelds, [4]

2) The commutative twisted fields of Albert, [5]

3)The Cohen-Ganley semifields, [6]

4)The Ganley semifields, [7]

5)The Penttila-Williams semifield of order 3!°. [8]

Definition 1.0.10 Let Fy = (Fy, +, ) and F» = (F,, +, %) be two presemifields. We say that
F| and F; are isotopic if and only if there exists three invertible polynomials Ly, L, and
L; € Fy[x] such that L(x % y) = Ly(x) * L3(y) for all x,y € F,. In other words, (L, L3, L)

is an isotopism between F and F».

1.0.3 Nucleus of a semifield

Definition 1.0.11 The left nucleus Ni(F), the middle nucleus N, (F) and the right nucleus
N, (F) of a semifield F are defined as follows:

N(F)={acF|ax(bx*c)=(axb)*c forallb,c € F}

Npy(F)={beF|a*xb=xc)=(axb)*c foralla,ceF}
N,(F)={ceFl|laxbxc)=(axb)xc foralla,b e F}

Left nucleus is also called as kernel. In addition, N(F) is called a nucleus of F if

N(F) = N/(F) N Nu(F) N N,(F)

Observe that, Ny(F) = N,(F) when the semifield F is commutative.

Claim 1.0.12 Kernel of a commutative semifield is contained in middle nucleus.

4



Proof. We have to prove that N;(F) c N,,(F). Choose an element a € N;(F) and show that

a € N,,(F), that is prove that a satisfies: (b *a) = c = b * (a *c)
(bxa)xc=(a*xb)*c (commutativity)
=ax(b=x*c) (a € Ni(F))
=ax(c*b) (commutativity)
=(a*xc)*xb (a € Ni(F))
=b=x(ax*c) (commutativity)

Hence a € N,,,(F).



CHAPTER 2

New family of functions

In this chapter, a large class of new functions are defined and the method to prove whether

such kind of functions are PN or APN in different characteristic [1].

Definition 2.0.13 Ler g=p°, ¢’'=p, for some positive integers s and t, K=F, C Fy = F and
T: F — K be the trace.

Let P(Xo,X1,...,Xk=1,Y0,Y1,..., Y1 )=P(X,Y) be a homogeneous quadratic polynomial
with coefficients in F. We can write P as:

P(X, Y) = Z a,'inXj-i- Z binin-f- Z Cinin

o<i<j<k-1 o<i<j<k-1 o<i<j<k-1
Our new family of function f: F — F is defined as
7 k=1

F) = P(x,x9, ..., x01 xda x40 (2.1)

Large class of these functions are PN and APN for different values of k, in odd and in charac-

teristic 2 respectively.

2.1 Method to prove

To prove whether above functions are PN or APN in the cases k = 3 and k = 4 we will
proceed the method described in [1]. We assume k < 4. If p > 2 and A,(ax) is invertible (or
has kernel of dimension 0) for all a # O then f is PN or planar. If p = 2 and A,(ax) has a

kernel of dimension 1 for all a # O then f is APN.The method is described as follows:



1. Separation: Consider the equation T(cA,(ax)) = 0 for suitable ¢ € Fqk. Collect the terms
with ¢’ in the exponent to the right side and use elementary properties of trace function to get
the equation:

T(c1x) = T(cax?)

where ¢ and c¢; are in ]Fqk (depend on ¢).
2. [F;-linear equation: Find values of ¢ so that either ¢y = 0and ¢ # Oorcy # O and ¢, = 0.
Obtain :

T(cx?) =0

T(c‘f,x‘/) =0
in the first case and in the second case respectively.
3. Non-degeneracy: Show that these two [F;-linear equations for the unknown x4 are linearly
independent.
4. Reduction: Show that x € F, satisfies both equations in case k = 3. Show that x € Fp
satisfies both equations in case k = 4.
5. Final: Show that for arbitrary a # 0 and x € F; (when k = 3) respectively x € F . (for
k = 4) the kernel of the linear mapping A,(ax) has the dimension 0 in odd characteristic (for
planar case), and dimension 1 in characteristic 2.
Before passing to the chapter 3, we need to prove some basic things related to elementary

algebra.

Lemma 2.1.1 For any integers p > 2, k> 1 and m > 1 we have

ged(pt =1, p" — 1) = peedm 1

Proof. Let b = gcd(k, m). Then it is obvious that, p? — 1 divides p* — 1 and p — 1 and hence
c = ged(pF — 1, p™ — 1). If we show that ¢ divides p” — 1 then proof will be done.
Obviously, ¢ | (p* = 1) and ¢ | (p™ — 1). Now write k = md; + e; for some integers with d > 0
andm > e > 0.

Write p* — 1 = (p? = 1)p® + (p¢ - 1). Since ¢ | (p™ — 1) and (p" = 1) | (p?™ = 1), ¢ | (p?" = 1).
And since ¢ | p* = 1 = ¢ | p° — 1. We continue this process in analogue with the Euclidean
algorithm for k£ and m. (i.e, in second step we get m = e fi + e» and find that ¢ | p® — 1)

When we reach to the last step we get ¢ | p$¢&m _ 1 = pb — 1. Hence ¢ = p8cd®m _ 1,



In the following claim we collect the main facts that are used in the proofs in the next chapter.

Claim 2.1.2 Let p be a prime

i)Let 1 <1< p"—1anda be anonzero element o . Then x! = a has a solution in Fpnif
and only if a is an I-th power in T .

ii) Let u be a primitive element of Fjn and 1 < 1 < p" — 1 be a divisor of p" — 1. Then a
nonzero element a of ¥ is an I-th power in I pn if and only if a = u” where [ | r.

1

iii) Let p be odd and 1 < s < n. Then the equation x*"~' = —1 has a solution in Fpn if and

e
only if Zedons) 18 an even number:

/

Proof. i) This part is trivial, since first assume x' = a has a solution in I ,» say, w. Then,

a =w, ie, a is an [-th power in IF». For the second part, obviously if a is an [-th power then

/

it satisfies the equation x* = a in [F .

ii) a is an I-th power if and only if @ = w' for some w € F,». And since u is a primitive

element, w = u* for some k. Then we get a = u/* = u’.

iii) Let = ged(n, ). Then ged(p® — 1, p" — 1) = p' — 1 (see previous lemma)

Since u is a primitive element then it satisfies,
(=1) = 412

Then the equation x”’~! = (=1) has a solution if and only if

p=11(p"-1)2
(from i) and ii) ). And since p' — 1| p* -1,

pr=11(p"-D/2
We can assume that n = tv for some integer v (because ¢t = gcd(n, s)). Then observe that,

Pr=1=p" 1= =PV +p" D+ +p+1)

So p' — 1| (p* - 1)/2 if and only if (p'™~D + p'¥=2 4+ + p + 1) is even. Equivalently, it has

n

m 1S even.

an even number of summands, i.e v =



CHAPTER 3

Planar functions

Definition 3.0.3 Ler p be an odd prime, q=p°, ¢'=p', for some positive integers s and t,
K=F,CcFy =FandT: F — K be the trace.

Let P(Xo, X1, ..., X5-1,Y0, Y1, ..., Yio1)=XoYy — vXi_1 Y1 wherev € (F*2 " and P(X,Y) is the
homogeneous quadratic polynomial with coefficients in F.

Our new family of function f: F — F is defined as

Fx) = P, x9, ..., x0 7 xda x40 (3.1)

By simple substitutions we can easily see that:
’ k—1 ’
flx) = x0T —px ¥4 (3.2)

Note that, f(x) is constructed in the way that described in Definition 2.0.6. In this chapter, we
will try to understand and explain the reason why f(x) is PN when k=3 and k=4 following the
method described in Chapter 2 for planar case. Note also that the result is new for the case

k=4.[1]

Lemma 3.0.4 Under the assumptions of definition 3.0.3 and definitions in introduction part

we have:
Aglax)

’ k—1 ’
- aYy — (x4 q'q
ke (x+xT)—u(x?  +x19)

where, u = va™ = w9l € (F)" andm = ¢ + q¢' - q' - 1

.. ’ ’ k—1 ’ ’ k—1
Proof. From definition of A: A,(x) = ax? + xa? —v(a? x99+ a?9x7 ")

Hence we have:



’ ’ ’ k—1 ’ ’ ’ k—1 k—1
Aglax) = a9 x4+ a?+ x — y(a? *99x99 4 g7 x4

4 4 4 k=14 1 ’ k—1
Aglax) = a1 x4 + a* x —q? +l(x79+ x4

’ ’ k—1 ’ ’ ’ k-1 .. . 4
Aglax) = a9 x? + x — ¥ 1979 1y(x79 4+ x2 )] = divide both side by a'*¢" to get:

Aglax)
a1+¢

’ k=14 1 1 ’ k=1
=x7 +x—al Ty 4 1T

Letu =va™ =w e (F)? ! where m = ¢! + g4’ — ¢ — 1 then we get

Aglax ’ k-1 ’
a ,):(x+xq)—u(xq +x79)
a1+q

that completes the proof. |

Lemma 3.0.5 Considering the same assumptions above,

Aglax) =0
implies:
1,
I(—=—-—)x")=0 (3.3)
w4 we
T(w? —wi7)x4) =0 (3.4)

where T is the trace function.

Proof. By previous lemma

Aq(ax)

’ k—1 ’
=@+ x?) —u(x?  +x71
pIEer ( ) — u( )

Aq(ax) = 0 implies:

’ k—1 ’
(x+xT)—ux? —ux?1=0
g a9 _ 4
x—ux? =ux?9-x

then

k—1 ’ ’
cx —cux? = cux?9 - cx?

for any ¢ € (F*)?~!. Hence by taking the trace of both side and using the linearity property of
trace we get:

T(cx) — T(cux? ) = T(cux??) — T(cx?)

10



where T is the trace function. Now, we will use the fact that T(x) = T(x?) for any x € ]Fqk.
In this case, T(cux? ') = T(cluix?) = T(clulx) and T(cux?9) = T(c? u? ' x4). Put

everything in the equation above and use the linearity property of the trace function to get:
k—1 k—1 ’ ’
T(cx — ctulx) =T(c? u? x?7 —cx?)

= T((c = uf)x) = T((ch—I u ™ o)x?)

Now we want to find the value c such that left hand side to be vanished, i.e

1
c-clul=0=c"=ul=c=—
w4
(Note that w and u are the same ones in previous lemma)
_ 1
when ¢ = -5,
k—1 k=1 1 1
Ul = —— - —
wd wd
Hence we get first result:
1 1y.q
T((F - W)xq )=0
Similarly we do same things for the right hand side,
k—1 k—1 _ k=1 k—1
¢ ul —c=0= 7 = yf =c=welFu

Whenc = w,

2
c—clul =w-wl

We get our second result:

T((w—w?)x) = 0 = T(W —w?7)x7) = 0

Claim 3.0.6 Two equations, (3.3) and (3.4) in Lemma 3.0.4 are satisfied for x € K = IF, when
k =3 and for x € F» whenk = 4

11



Proof.

i)Assume that k = 3.We will prove that x € [F, satisfies both equation in case k = 3.

1 1

T(—— )x7) =
w4

Cowi
1 1 !

— o q —

- T((qu W‘I)x )=

1 1 / 1 1
=(— - =) +(— -
w w wi

1 1 )q2xqrq2 —

q.,4'q
x99+ (— - —
) (qu o

wa
Use the facts x € Fy = x7 = xand w € F3 = we =wand (a + b)? = a? + b? in F, with

q=r":
N VE I N N

= (— = (— =+ (— - = =
q wi w4 w4 w!

1 1 1 1 1 1.
=(—2——+———+———)xq =0
wid wl  w owa

Similarly, for the second equation:
’ ’ .2 ’ ’ ’ 2 ’ ’ ’ 2 ’ ’ ’ 2 2 ’ 2
T(W? —w? a0y = (W —w?)x? + (w? —w?CYIx7e 4 (W1 — T 4T =

, ) ’ ’ , 2 ’ ’
=w? =Wl 4?9 — i W1 T 77 =

ii)Assume that kK = 4 and x € qu. Then 4" = x and w?" = w. Similar calculations can be
done to find:

1 1 )q3xqrq3 —

1 1 ’ 1 1 ’ 1 1 ’ 1 2 ’ 2
T((—— — — )27 = (— — =V (= — V7D (e NI (.
((Wq3 o)) (Wq3 )X (Wq3 )X (wq3 ) (Wq3 o

11 1 1 11 1 1,
S (— - —+——— )t (- —+———)71=0

wi w4 w9 w qu qu
and
T(W? —w?C)x? ) = (W =W T )x? (= CYx T Dy (@ TN 0T (7 Y (AT = )

Lemma 3.0.7 The two F, - linear conditions on x4 are linearly dependent over F, if and

only if
= (1 — u1+qk71)(f1—1)(q11'—1) (35)

ud+d

12



Proof. We will denote linear dependency by the sign ~, i.e, if X and y are linearly dependent
we will write x ~ y. We already know that x ~ y over Fy & § € Fy & (f)q‘1 =]l ext!=
yi L

Recall that, u = w? !, w e F . By doing simple operations we can get

I u?
qu—l - w
and uw = w?. We have to show that,
1 1 7 ’ 2 1 14+g5! -1 '—1
— - —~w? -7 & — = (1 —u'te Hlae=Dlad'=D
wd wd ud+qa
Observe that,
1 |7 A BT g |
Wi wd T w uw uw
and

’ ’ 2 2 ’ 2_ ’ ’ ’
w? =Wl = (w=w)? =w? (1 —w? ) = (1 —ut™),

k-1 k=1
Nl S B et 1S A SR R
e (1= o T yaml - a D ety
uw uw

ut

Use the identity w9~! = i and simplify the equation to get:

1 (1 — ud*1yd' @b

uitd (uqk*1+1 _ l)q—]

Since g — 1 is even,

(uqk_1+l _ l)q—l — (1 _ uqk_]+1)q—l
If we show the following equality then proof will be completed:
= (1 — u!*e ya-Dlag'=1)
But this is obvious, since:
(1 — u1+07ya=1( = e ya=Dlad' =1 = () — yy1+d ™ yataq' =D
—(1- uq+q")q(qq’—1)

=(- uq+l)q’(q—l)

13



Lemma 3.0.8 Let d’ = |(F*)?~'/(F*Y"|, (where |F| denotes the order of given field F) then

d = gcal(qk_1 + qk_2 + .. +1, qk_1 —q'). Furthermore, d’ divides ngd(’“’(k_l)s_’) - 1.

Proof. From elementary algebra we know that |A/B| = |A|/|B| for any group A and B. Fur-

thermore, |A"| = %. So, by using these identities we can obtain:
g | k-1 k-1
F ! = — =—1 =4
ged(Fl,q=1)  ged(g*-1,q-1) q-1
and
* |F*| k- 1
FY = — = —
gcd(F*|,m)  gcd(gh — 1, m)
Hence,
’ *\G— * Cd(k_l,m) k—l m
d = |Fy = EEL T geal—
q-—1 g-—1 ¢g-1
We already know from Lemma 3.0.4 that
m=¢g'+q¢ -q -1=@q-DG>+¢+.. +q+1+¢q)

So,
d' = gcd(@d ' +¢ 4. 4q+1, ¢ P+ P+ g 1+q) = ged( g+ g+, g =)

Now, we have to show the second part, ie, d’ divides p8cds:k=Ds=0 _ 1,

Using that ¢ = p* and ¢’ = p' we obtain:
d/ — gcd(ps(k—l) +ps(k—2) +o+ 1’ pS(k—l) _pt) — gcd(ps(k—l) +ps(k—2) 4.+ 1’ pl‘(ps(k—l)—t_ 1)) —

— gcd(ps(kfl) + ps(k72) + o+ l’ps(kfl)ft _ 1)
(since ged(p*®D 4+ p*=2 4+ 1,pH) =1)

From these equalities we can infer:

dp*Deptdy 1= pr_1=sa|p*-1

and

= d’ | ged(p™ —1,p"* V7" — 1)

We use Lemma 2.1.1 to see that:
ng(pSk _ l’ps(k—l)—t _ 1) — pgcd(sk,s(k—l)—t)
which completes the proof. ]
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Before proving for k = 4 case (which is the new result by Bierbrauer) we will consider the

case k = 3. But before proving planarity we need to prove the following lemma for this case.

3.0.1 Casek=3

Lemma 3.0.9 Assume that k = 3. Then

e i) d’ is divisible by p*8¢d(sh 4 pgedsh 4 1 if ¢ + ¢ = O(mod 3)
eii)d =3ifs"+t £ 0(mod 3) and g = ¢’ = 1(mod 3)

e iii) d’ = 1 in all other cases.

v and s’ is odd.

7 _ !
where s’ = = 2edGD

S
ged(s,t)’
Proof. Note that in the case k = 3, d’ = ged(p** + p* + 1, p>* = p') = (p* + p* + 1, p> " = 1)
(it is already shown in previous lemma)

e i) Assume that s + ' = O(mod 3). Then

chl?st,t) = 0(mod 3) = s+t = 0(mod 3)

We have to prove two things here:
preedst) 4 peedsh 4 1 divides p>~" — 1; and p?8¢d(sh) 4 pged(sh 4 1 divides p>* + p* + 1.

Now, observe that
ged(3s,2s —t) = ged(3s,3s —2s + 1) = gcd(3s, s + 1) = 3ged(s, s + 1) = 3gcd(s, t)

since s + t = O(mod 3).

Hence, we can say that

gcd(3s,25—t) _ 1 3ged(s,t) _ 1

p =p

Again from Lemma 2.1.1,
gcd(p?as _ 1’p2s—t _ 1) — p3gc‘d(.§',1‘) -1

N p3gcd(s,t) -1 |p2s—t -1
= p2gcd(s,t) + pgcd(s,t) +1 |p2s—l -1

(because p2gcd(s,t) + pgcd(s,t) + 1 divides p3gcd(s,t) -1= (pgcd(s,t) _ 1)(p2gcd(s,t) + pgcd(s,t) + 1))
Now, it is remained to show that p28¢4(s) 4 psed(sh) 4 1 divides p** + p* + 1. We observe that
we have a problem: in which cases of a, T> + T + 1 divides 7%¢ + T% + 1?

By calculating we see that:
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T, ifa= 1(mod3),
T=4q -T -1, ifa=2mod3), (3.6)
1, ifa=0(mod3).

-T -1, ifa= 1(mod3),
T* = T, ifa=2(mod3), (3.7)
1, ifa=0(mod3).

Hence we obtain that 72% + 7% + 1 = 0 (mod T2 + T + 1) except the case 3 divides a. In fact,
if we show that 3 does not divide s’ then problem will be done.

Assume that 3 divides s’. Since s’ + ¢ = 0(mod 3) = 3 divides .

2ed (5.1 = 0(mod3)

—— = 0(mod3
ged(spy 0ot
= s = 3mgcd(s,t) and t = 3mygcd(s, t) for some m; and m;.

Let

ged(s,t) =a
then s = ap; and t = ap, where gcd(p1, p2) = 1. Then we obtain that
p1 = 3my
and
p2 =3my

which implies that gcd(p;, p2) = 3. Contradiction. Hence, 3 does not divide s’ in the case
s’ + 1 = 0(mod3)

e ii) Assume that 5" + ¢’ # O(mod 3) and g = ¢’ = 1(mod 3).
Now consider,

ged(3s,2s —t) = ged(3s,3s — 25 +t) = gcd(3s, s + 1) = ged(s, s + 1) = gcd(s, 1)

Observe that, in this case gcd(3, s + t) = 1 because of 5" + ' # 0(mod 3).

= pgcd(3s,25—t) 1= pgcd(x,t) -1

16



= gcd(p3s _ 1’p2s—t _ 1) — pgcd(s,t) _ 1

Now, from definition of &', d’ | p** + p*® + 1.

And since (p>* + p* + )| (p¥ + p* + D(p* = 1) = p* - 1,

=>d|p*-1 (D

Again from definition of &, d’ | p**™' — 1 ..(2)
From (1) and (2)

d I ng(pSs _ 1’p2s—t _ 1) — pgcd(3s,25—t) —-1= pgcd(s,t) 1

But since gcd(s, 1) | s = p8d) — 1| p$ -1
Hence d’ | p* — 1.
d/ |p2S+pS+ 1’
d|p'-1=d|gedp* +p*+1,p -1)

By doing simple factorization we see that :

ged(p™ + p* +1,p° = 1) = ged((p* = D(p* +2) +3,p* = 1) = ged(3, p* - 1)
Since 3 | p* -1,

ged3,p*-1)=3=d"|3.

In addition, since p* = p' = 1 (mod3) and

d’ = ged(p* + p*+1,p* ™ = 1) = ged(p* + p* + 1, p* - p"),

=3|d.

Hence, d’ = 3.

e iii) In this case up to (x) everything is the same in case ii) since we dont use any condition

except s’ + ¢ # O(mod 3) which is the case of iii) also.

We get that d’ | ged(3, p* — 1). It is obvious that gcd(3, p* — 1) is either, 3 or 1. Hence d’ | 3

ord’ | 1 implies d’ is either 3 or 1.

If we are in the situation that p* = 1(mod 3) and p’ # 1(mod 3) then ged(3, p* — 1) = 3 and
d’ = gcd(p* + p* + 1, p** — p') can not be 3 because 3 does not divide p*>* — p’.Sod’ = 1.
If we are in the situation that p* # 1(mod 3) and p’ = 1(mod 3) then gcd(3, p* — 1) = 1 and

since d’ divides gcd(3, p* — 1) we getd’ = 1.

Now, by using the lemma above, for the condition k = 3 we will prove that new family of

functions defined in the Definition 3.0.3 are planar for some conditions.

17
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Theorem 3.0.10 Let p be an odd prime, q = p*, ¢’ = p', for some positive integers s and t,

F=Fg(ie. k=3), s = v and s’ is odd. Let f: F — F be defined as:

N _ t
ged(s,t)’ — ged(s,p)

Flx) = X1yt
where ord(v) = ¢* + q + 1.
Then f is a planar function in each of the following cases:
es +1 =0(mod 3)

and

eg=q =1(mod3)

Proof. Observe that, we are in the situation of Definition 2.0.1. To prove the theorem we
proceed as the method defined for k = 3 and k = 4 in the paper of Bierbrauer (see [1]).

Assume that A,(ax) = 0. Our aim is to show that A(x) is one to one. Since A,(ax) =0,
x+x7 - u(xq2 +x97) =0 (3-8)

2 ’_ . .. .
where u = va™ = va? 994" ¢ (IFZ‘I3 )9~ In this case it is proved in Lemma 3.0.5 we have

two conditions, and when k = 3 we get:
1 1.
T(—+—=1x7)=0
w4 wd
T(w? —wi7)x4) = 0

Now, assume that these two equations are linearly dependent over IF,. Then by Lemma 3.0.7:

— (1 _ ,1+a*\(g-D(gq’~1)
— = (1—u*7) (3.9)

For the proof of theorem we will look 2 cases given in the theorem:

e Casel: s’ + ¢ = O(mod 3)

In the equation (3.9), right hand side (RHS), ie, (1 — u“qz)(‘f‘l)(qql‘l) has the exponent:

qq/ 1= pspt - 1= ps+t 1= ps’gcd(s,t)+t’gcd(s,t) 1= p(s’+t’)gcd(s,t) -1

Now, since 3 | s’ + ¢’ (our case)
= p3gcd(s,t) 1 p(s'+t’)gcd(s,t) 1= qq/ -1
N (pgcd(s,t) _ 1)(p2gcd(s,t) + pgcd(s,t) + 1) — pSgcd(s,t) -1 | qq/ -1

18



Hence we conclude that

(1 — g1+ )a-Diag'=D) ¢ (sz)(q—1>(p25“’<“>+pg""<°‘”)+1>

(Recall from Lemma 3.0.4 that,

u =va", wherea € Fs ,v € (IF':;)‘Fl andm =q*+qq —¢ -1 =(@-1D(@g+qg +1).
Furthermore, d’ = gcd(q> + g + 1,4’ + g + 1) in this case)

Now, by Lemma 3.0.9,

p2gcd(s,t) + pgcd(s,t) +1 |d/ — ng(q2 +q+ l,q' +q+ 1)

Sinced' | ¢’ +q + 1,

= p2edsh 4 pgedsh 4 1| ¢’ + g + 1 holds.

= (1 =y +yaDad =D ¢ (F;)(q—1)<p2g""<”>+pg"d‘s~'>+1)

Since

— (1 _ @+1\(g-D(gq -1
= -u?™)

ud+4d

c (F* )(q_1)(p2gcd(s,t)+pgcd(s,t)+ 1)

’ 3

ud+dq q

N uq+qr c (F*} )(q_1)(p2gcd(s,r)+pgcd(s,t)+ 1)
q

From Lemma 3.0.4 it is known that u = va™ holds.By using this equality we get

uitd = (va™1te = 1t gt m

Now, see that

a" = gla-O@+a+) ¢ (F;)(q—1)(p2g"d“")+pg"d(“"")+1)
= g ¢ ()
Do @ (D)
By definitions of ¢ and ¢’ (and also s’ and ¢') we get:
q+ q/ — ps'gcd(s,t) + pt’gcd(s,z)

. . . _ 2gcd(s,t) cd(s,t)
It is obvious that, since ord(v) = ¢*> + g + 1, v generates (IF;)(" D80 4pse@sid)

N (ngcd(s,t) + pgcd(s,t) + 1) | g+ q/ — ps ged(s,t) + pt ged(s,t)
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But this is impossible we showed it in the proof of previous lemma part i). Hence, in this case
2 equations given in the beginning can not be linearly dependent.

e Case2: g = ¢’ = 1(mod 3)

For this case, we proved in Lemma 3.0.9 that d’ = gcd(¢*> + g+ 1,4’ +q+1)=3

Since 3 | g¢’ — 1 (RHS) of the equation (3.9) satisfies:

(- u612+1)(61—1)qfl'—1) c (F23)3(4—1)
Hence (LHS) of the equation (3.9) must satisfy:
uitd ¢ (F;3)3(q—1)

=3|g+q

On the other hand, g + ¢’ = 2(mod 3), ie, not divisible by 3. Contradiction.

As a result, we can conclude that 2 equations are not linearly dependent, so they are linearly
independent.

Following the method, it is time to assume that 0 # x € F,.

x € F, = x% = x. Using these identity simplify the equation (3.8) to get:
Aglax) = (1 —u)(x+x7) =0

Now, look whether 1 — u = 0 can hold or not. Remember that, d’ = [(F*)?~!/(F*)"| where,

(F*) = F . Since in our both cases, d’ > 1 and ord(v) = g* + g + 1 we can say that:
vé¢ (FH)"

And since, u = va™ and a™ € (F*)™ then u = va™ = 1 can not hold.

Now, lets look whether x + x4 = 0 holds or not. But we already know from Claim 2.1.2 that
it can happen if and only if s = 5/gcd(s, t) is even. However, we are given that s’ is odd.

We get contradiction to the fact that x # 0.

Hence we can say that, A,(ax) = 0 if and only if x = 0. This means that, A, is one to one.

Hence , f(x) is planar function in the above conditions given.

|
Up to this point, we used nothing but the proof method of Bierbrauer [1] for k = 3. But for
k = 3 it had already been proven by other scientists also [10]. The new result of Bierbrauer
comes when k = 4. In this case, we still proceed the same method. In the proof of the

following theorem we often refer to the previous definitions and lemmas.
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3.0.2 New result: Case k=4

Theorem 3.0.11 Let p be an odd prime, g = p*, ¢’ = p', for some positive integers s and t,
K=F, F=Fgu, (2s)/gcd?2s,1) is odd and q = q' = 1(mod 4).
Let f: F — F be defined as:

’ 3.,
fx) = x1H9 —yx T

where ord(v) = ¢° + ¢* + g + 1. Then f is a planar function.

But before proving the theorem we need to prove the following claim.

Claim 3.0.12 &’ = gcd(¢® + ¢* + g+ 1,4 + ¢* + g+ 1) = 4 under the conditions above in the

theorem.

Proof. (of Claim 3.0.12)

Since we are given that (2s)/gcd(2s, t) is odd, it is easy to see that
s =201y =00y

where « is positive integer and s” and ¢’ are positive odd integers. Before proving the claim,
consider @ = 1 and see what happens in this case.
ea=1=s=sandt=2¢

=d =gcd((g+ (@ +1),¢> —q') = gcd((p® + D(Pp** + 1), p>* = p)
= ged((p* + (™ + 1), p* = p*)

= ged(p* + D™ + 1, p* (p¥7 = 1)
= ged((p” + (P + 1, p* ¥ ~1)
Obviously, 3s” — 2¢ is an odd number since s” and ¢’ are odd. Call z = 35" — 2¢ and obtain:
d' = ged((p* + D(P* +1).p* = 1)

Let p’ be an odd prime divisor of d’. Then, p’ | (p* — 1) and p’ | (p“/ 4 1)(p2s/ +1). Since p’
is prime number, either p’ | (p* + 1) or p’ | (p* + 1).

First assume that p’ | (p* + 1). Then
p* = ~1(mod p')
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Since z is an odd number :

p** = ~1mod p')
On the other hand, since p’ | (p* — 1):
p* = 1(mod p")
And since s’ is odd, raise the power to get:
p** = 1mod p')

which is the contradiction.

Now we can assume that p’ | (p>* + 1). Similarly,
p* = =1(mod p')
= p¥% = ~1(mod p')
p* = L(mod p’)
= p** = 1(mod p’)

Contradiction. Hence , there can not be an odd prime divisor of d’.This means that, d’ is
of the form 2° for some positive integer e. Now, since it is given, (p* + 1) = 2(mod 4) and
(p** + 1) = 2(mod 4). Then, 4 | (p* + D(p* + 1) but 8 [ (p* + D(p** + ).

And obviously 4 | (p**—p') by the same reason. Hence, 4 | d’ = gcd((p*+1)(p**+1)), p>*—p?)
but 8 | d’. We can conclude that d’ = 4 since d’ is of the form 2¢ and 4 | d’.

ea>2=p'=p* 'Y = (p*)"" = 1(mod 8) ,(Since square of an od number gives 1 mod 8)
Similarly, p' = p*'* = (p")*" = 1(mod 8) by the same reason.Then (g+1)(¢>+1) = 4(mod 8).
The rest is the same as the case a = 1:

d’ = ged(p* ¥ +1)(p*"% +1), p°—1) where z is the same z in the first part (odd). Now, assume
that p’ is an any odd prime divisor of &’ Then p’ | (p*** + 1)(p*" + 1) and p’ |(p*" ¥ (p*—1)
= either p’ | (pZ‘HS' +Dorp | (P*Y +1)

1

Ifp/ | (p* ' +1), then p* ' = —1(mod p’) = p*'*'* = —1(mod p’) (since z is 0dd).On the

(03

other hand, p* = 1(mod p’) =p*"'*% = 1(mod p’).Contradiction.

25’z

If p’ | (p*" + 1), then p**Y = —1(mod p’) = p = —1(mod p’). But, p* = 1(mod p’) =
p**S'% = 1(mod p’). Contradiction.
Hence d’ is of the form 2¢ for some positive integer e. Observe that, 4 | d’ but8 [d’

=d =4
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Claim 3.0.13 Let Z be a subgroup of order q + 1, then |(F*)?~'/Z(F*)"| = 2. In particular,
ug¢Zandu ¢ (F )"

Proof. (of Claim 3.0.13) From previous claim we get
|(F*)2~"| = 41(F*)"|
We have left to prove that
|Z(F*)™| = 2|(F*)"|
To calculate |Z(F*)"| = lem(|Z], |(F*)"|) we first find |(F*)™|:

gt -1
ged(@* - 1,(q— (@ +q+1+q)

I(F)"| =

_ @ +q+1
Cgd P AP +q+ L, P +qg+1+q)

_q3+q2+q+1 B q3+q2+q+1
B d’ B 4

Using this equality we find

g +q+1

|Z(F*)™| = lem(g + 1, ) )
2
=lem(g + 1, —(q Al l)ftq al 1))
g+ D(g* + 1))
B 2
= 2|(F*)"|

Now, lets show that u ¢ Z. Assume to the contrary that u € Z. Since |Z] = g + 1, uttl =1
holds.We already know that u = va™ where v is the (¢ —1)-st power, m = (g—1)(¢’ +¢* +g+1)

and v, a € (F*)?! = [F 4. Raise the power to (¢ + 1) in both sides to get:
uq+l — vq+lam(q+l)
= 1 = yitlgma+h
=Svyv=q"

=>veF)"

Hence, ord(v) = (¢° + ¢* + g + 1) must divide [(F*)"|. But this is impossible since we have

found that |(F*)"| = (¢* + ¢*> + ¢ + 1)/4 < ¢* + ¢* + g + 1. We get contradiction, so u ¢ Z.
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Similarly, assume that u € (F*)™. This means that va™ € (F*)". Impossible since v ¢ (F*)"

and a" € (F*)". [ |

Proof.(of Theorem 3.0.11) We follow the method described before and use the Lemma 3.0.4,
Lemma 3.0.5 and Lemma 3.0.7 and assume that two [F;-linear conditions are dependent. Then

by Lemma 3.0.7 :

= (1 — y*a’y@=Dlag'=D
ud+qa’

Since it is given, 4 | g¢’ — 1, (RHS) € (F*)*@~D. On the other hand, (LHS) ¢ (F*)*¢~D
because g + ¢’ = 2(mod 4). We get contradiction, so the equations are linearly independent.
It has been proved that x € F > satisfies both equations. We simplify the equation in Lemma
3.0.5 and get:

x4 x7 = u(x? + x79) = u(x + x4
Assume x # 0. Recall that, since 2s/gcd(2s,t) is odd we have found that s = 2%~!s’ and
t = 2% where s’ and ¢’ are odd numbers. Now see that

s 2(2—1 5 5 5

gcd(s,)  ged(2e-1s/, 201y ged(s',2t)  ged(s', 1)

Since s’ and ¢’ are odd, s/gcd(s, t) is an odd number. Then by Claim 2.1.2, x + x? # 0. Then
u=(x+x7)-4

We see that u is the g — 1-st power in F 2, say u = nt'e [F,2. Then by raising power to g + 1

we get:

2
wit = p?1 =

This implies that u € Z, however we showed that this is impossible. Contradiction to the

assumption x # 0.We conclude that, A,(ax) has the dimension 0, implies that f is planar.

3.0.3 About the nuclei

In this part, we estimate the left nucleus and the middle nucleus for the last planar function

defined in the Theorem 3.0.11.
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Theorem 3.0.14 Assume that all the conditions in Theorem 3.0.11 are satisfied and f is a
planar function. Let (F, +, %) be a semifield isotopic to a presemifield (F, +, «) determined by
f. Then (F, +, %) has a left nucleus and middle nucleus of dimensions a multiple of gcd(s,t)

and ged(2s, t) respectively.

Proof. Recall that, we have in the Theorem 3.0.11 that (25)/gcd(2s, t) isan odd and s = 2%~ !’
and r = 2t where « is positive integer and s’ , ¢’ are odd numbers. These identities help us

to see the followings:
ged(2s,1) = ged(2%s",2°) = 2%gcd(s’, 1)

ged(s, 1) = ged(2%7 s, 2°¢) = 29\ ged(s', 21') = 2% ged(s', 1)

Hence we can say that, F» = F ., has an odd degree over F 25 (because 25 = 2%s" and
s'/gcd(s’, ') is also odd). In addition, IE‘pgcms,,) has a degree 2 over Fpgcd@,,).

To prove the theorem, we will show that Fpgcd(s,t) is in the left nucleus and Fpgca'(Zs,t) is in the
middle nucleus of the semifield (F, +, x). Now define our corresponding presemifield product

as following:

s B [+ a) - f) - f@
4 -4y 4 -4y

3 xa? +x7a—vx? a9 — ya? x99

- 2-2v

Observe that, 1 is an identity element due to this multiplication and in particular 1 = 1 = 1.
It is already mentioned the way of producing semifield from presemifiled in introduction
part,so we apply the procedure : choose our favorite element 1 and define our new semifield
multiplication % as:

(xxD*x(@*x1)=x+*a

Now to show that ]Fpgcd(s,l) is in N;(F), take any element b € Fpgal(.v,l) C IFjr . Then obviously, b

satisfies

pgcd(s.t)

b =b, b’ =b, b =b
Using these identities we observe the followings:

b+b7 — bt — b
2-2v

bx1=

_b+b—vb—vb

= =1
22y b=1xb
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’ ’ 3 ’ 3.
ba? +ab? —vb? a®1 —va? b1

b =
wa 2—2v
ba + ab — vba — vab b
= = ba
2-2vy

=b(1xa) = (ba) *1

By definition of * we have :
BbxDx((xxD*x@x1)=0Bx*1)*x(x*a)

Now,
(bsxDx(xx1))*xk(@x1)=((b=*x)x(ax1) (definition)
=(bxx1)x(ax1) (identity above)
=bx)xa=((b=*1)*x(x*a)

Hence, b = 1 € N(F) implies that F i is in Ni(F).
For the N,,,(F), we take an element b € F peeds and show that b = 1 is in the middle nucleus.

Since b e F pscd@sn C I, it satisfies:
gcd(2s,t) 1
b’ =b and b’ =b

Similar to the left nucleus case using these identities we get:

— vhd
bal = b-vb
1-v
and
b bx + xb —vx1b? —vbix?  2bx — 2vxib4
3k = =
* 22y 2—2v
2bx — 2vxib4
l=———
(bx) * 22y

= xxb=(bx)*1
= x*(ba) = (bx) % a
for any x. Now it follows that
(xx D)% (b 1) % (@*1) = (xxb)x (ax1)
=(bxx 1) x(ax1)
= (bx) % a
(xxDx((bx1)*(@x1)=(xx1)*(b*a)
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=(x*x1)*x(bax1)
= x x (ba)

And we already know that x = (ba) = (bx) = a, hence F sy 1s in middle nucleus, that

completes the proof.
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CHAPTER 4

Some APN polynomials

In this chapter some APN functions that are constructed in the way of definition in Chapter 2
are illustrated. Note that, now we are in even characteristic, namely in characteristic 2. We
have two theorems for the cases k = 2 and k = 3 respectively.[1] Proof idea is the same as the
method described in Chapter 2, we will proceed the same steps. Our aim is to show that, the

kernel of A,(x) has the dimension 1.

Theorem 4.0.15 Let s be odd and t be an even number satisfying t < 2s and gcd(s,t) = 1.

Letq=2°,q =2, F=Fp,ve F\F,and u ¢ (F*)3. Then the function
Fx) = ux'99 4 yfx T g yxd 130

is an APN.

Proof. By looking Chapter 2 for the new family of functions defined, we see that the function

in the theorem satisfies the properties of these new family. Here we have
p=2k=2K=F,F=F_,
and the quadratic polynomial is defined as
P(Xo, X1, Y0, Y1) = uXoY + u?X, Yy + v¥pY)

Now to proceed, we have to calculate A,(ax) where 0 # a € F. Remember that, A,(x) =

fx+a) - f(x) - fla)
fx+a) = ulx+a)'* + ul(x + @)+ + v(x + a)? 149
F(x) = ux'99 4 x99 4y 10

28



f(a@) = ua'* + ula?™7 4 va? 149

By substituting in the equation and by doing simplifications we get:
£a(x) = u(xa®® + ax®?) + ul(xla? + alx7) + v(x? a?9 + a? x79)
Now we find A,(ax), by putting ax instead of x:
Agax) = ua" % (x + x97) + uda? *(x7 + x7) + va? VO + x99

We have to prove that the kernel of A,(ax) has dimension 1. Since k = 2 we need only one
K-linear equation. To get equation, take trace of each side and equalize to 0, T(cA,(ax)) = 0
(Separation step- collect the terms involving x? to one side) and use the elementary properties

of trace function. In this case we take ¢ = 1.

Twla? x7) + T(va? 17 9x7) = T(ua? "' x) + T(ua® ' x99y + T(ula? *1x7) + T(va? 7"x79)

To simplify, use the property that T(x) = T(x?) :
= T(ua? "' x) + T(ua?*x7) + T(ula? *9x7) + T(v1a? ' x7)
Since we are in characteristic 2 we obtain the following equation:
T(v +v)a? 17 x7) = 0

Observe that, v + v¥ # 0 since given that v ¢ [F,. The solution is non-trivial, so it follows that

x € F,. Hence we can substitute, x¢ = x in the main equation and simplify:

Ag(ax) = a1 + ula? ) (x + x7) = 0

Claim 4.0.16 ua'*9'9 + y9q9+9 + O

Proof. (of Claim 4.0.16): Assume that ua'*?? + u?a?*% = 0. Then it follows that
ua' 11 = ylq?*1 = (ua'+7 )
This means that ua'*79 € IF,. Since, g = 2° the elements of I, are third powers. Observe

that, 3| 1 + g¢’ = 1 + 2+ since s + ¢ is odd. Hence, a'*79 is also third power. It follows that

u has to be third power but this is not true. Contradiction. ]
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Now, using the claim above we see that x + x¢ = 0. But this can happen only if x € [F, since
ged(s,t) = 1. Hence, the dimension of the kernel of linear mapping A,(x) has the dimension

1 in characteristic 2, implying that f is an APN.

Theorem 4.0.17 Let gcd(s,3) = 1, ged(t,3) = 1, ged(s,t) = 1, t < 3s and 3 divides s + t.
Letqg=2%¢q =2, F = an, velF,andue F\(F*)'. Then the function

FOx) = ux? 94 4 yax1+ 4y (140
is an APN.

Proof.Function f satisfies the properties of the new family of functions defined before:
p=2,k=3and P(X,Y) = uXpY; +u?XyYy+vYyY;. Then we follow the steps, letO0 # a € F :
fx+a) = u(x 99 4 x7 gt 4 g7 x99 1 g7+ 4 1 (x4 + xa? +ax? + al )

Fu(x7 9 4 x7 g9 4 g7 x99 4 g7+
f@) = ua® 4 + yig"te 4yt 1+

Then

2 ’ 2 ’ ’
Ad(x) = u(xT a? +a? x1 ) + ul(xa? + ax?) + v(x? a?? + a? x77)
’ 2 2 ’ ’ ’ ’ ’ ’ ’
= Aglax) = ua®? T (x4 + x4 + ula?  (x + x9) + va? 9 (x4 + x79)

The separation step yields the equation T(cA,(ax)) = O for some c. Collect the terms involving

x4 to the right side:
T(cuaqzwq,xqz)+T(cuqal+q’x) = T(cuqa1+q,xq,)+T(cvaq,+qq,xq,)+T(cuaq2+qq,xq,q)+T(cvaq,+qq,xq,q)
Use the facts that T(x) = T(x?), v = v and X = xto get:
T((c‘/uanq,q2 +cula™)x) = T((cula'™t? + cva? *19 + T ut 1% cqzvaq,qh’"’)x‘/) 4.1)
Now we want to find a value of ¢ that makes left side O:
a1 4 gt = 0
= Aydg T = eyt
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= 07 = g7 (-4
=c = a‘ﬂ'(ﬂ‘*'l)
=c=al"

Last equality comes from the fact that a € F 3. Now when ¢ = a? ", left side of the equation

(4.1) vanishes and the right side becomes:

T((a¥ " ula"+ + @I Ly 4 qf T g1 4 g1 9T )0y = O
’ 2 ’ ’ , 2 ,
= T((@? 919 yd 4 q9*9*9 ) x4y = 0

’ .2 ’ ’ ’ 2 ’ 2 ’
Observe that, (a9 149 y1)4 = q99*4*4 y4" Then call @ = u9a?? *1*4'. Hence we get our
first condition as :

T((a+ahH)x?)=0
Now we want to find ¢ so that the right hand side of the equation (4.1) vanishes. That means
’ ’ ’ 2 2 ’ 2 s o2
cula™ ' + cva 1 4 ¢yt q? 4 T va? T = 0
’ 2 2 ’ .2
= cg/(uqa+vaqq)= cqﬂ/(uq al +va??)
’ 2 ’ 2
Observe that, (ua + va?? )4 = u? a9 + va?1
/ 2 /
= c(ula+val?) = ¢? (ula + val? )l
2 ’ 2
=c=ula? +val?

This value of ¢ makes right side of the equation (4.1) 0 and left side is the required second
equation.

2 , 2 ’ 2 2 ’ 2 ’
T((? a? +va? 7)Y ula " 7T+l a? +va? T yula"*)x) = 0
= T((uq+laq2+q’q2+l + vl ' +q g +1 + uq2+qaq’+q+1 + vud "G +l)x) =0
g+l _g*+q' ¢*+1 G*+q g +g+l
= Tw! a +u? Ma )x) =0

Note that, since we are in characteristic 2, T(x) = T(x? ). Furthermore,

g+l _g*+q' ¢*+1\q P+q g +g+1

W a )Y =u?"qa
20,2 .

Solet B =ut'q?+94+! Then equation becomes:

T(B+pDx) =0
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= T(B+B)7x7)=0
This equation is our second I -linear equation. Recall that ,

’ 2 ’ ’ ’ 2 ’ ’ 2 ’ 2
@+ =aql Ty g gdarard = g4 (4T Y 4 g7 T
2 7 2
Now let, ¢ =a¥¥9 +1yd + a7 9949 . Then
a+al=al¢

Observe also that,

B+ 7 = ula(@ T Ut + a1y Ty = yfag?
Claim 4.0.18 o« ¢ F, and g ¢ F,. In particular, ¢ # 0.

Proof.(of Claim 4.0.18) Assume to the contrary that @ € F,. Then a = a7 holds. Put the

value of « instead to get:
) 2 ’ ’
wlgtta+4a = 47 4919 atq
2_ ' 2
= 949 = g\t -a-9'q
—_ —_ /_
= yda-D = 4-Dlgg'-D
-1

SN ——
Now since, 3 | s + 7, then g¢’ — 1 = 2°*" — 1 is divisible by 7. Hence right hand side satisfies:
a?’ " e (F*Y
= ul e (F*)’
= ue (F*)’ (since 7 Jq)

But this is impossible, since given that u ¢ (F*)’. Contradiction.
Now since 0 # @ + a? = a? ¢, it follows that ¢ # 0. Similarly, since ¢ # 0 and

0 # ulag? = B+ 7 then, B ¢ F,. u
Claim 4.0.19 F;  (F")" = (F,,)".

Proof.(of Claim 4.0.19) Our aim is to show that there exists 8 € (IE‘:‘13)7 such that 8 is a

primitive element of Fy. Since Fj is a cyclic group it has a generator, say . Obviously,
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a € IF;.
Observe that, when gcd(s,3) = 1 then ged(7,2° — 1) = 1 holds. Then we can say that o is

also a primitive element of F;. Note that

ol € (F)

That helps us to prove that F;, € (F*) = (IFZ3)7. |

Assume that two [F,-linear conditions are dependent. Then this is equivalent to saying that

B+ o

a+ af a

= ul 99?1 € F, C (F*)
Obviously, $79 ! € (F*)’ because 7 | gq’ — 1.
= u?? e (F*)’
= ue (F)’

Contradiction. Hence two equations are linearly independent and it is known that x € [,

satisfies both equation. Now, A,(ax) = 0 simplifies to:
2 ’ ’ ’
(ua® M+ yla ) (x+ x7) =0

Show that

2 ’ ’
uad 9 4+ y1q" 4 £ 0

Otherwise,

ud! = gD +g+1)
= u = g7+

Now turn to the conditions on s and ¢. There are only two possibilities:
)s=3m+1andt=3n+2or,
ii)s=3m+2andt=3n+1

Observe that, in both cases ¢’ + ¢ + 1 is divisible by 7. Hence,
U= aq’+q+1 c (F*)7
But this is impossible. So ua? 49 + y9a'*+4 % 0. It follows that
x+x7 =0
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Since gcd(s,t) = 1, this can happen only when x € [F,. This means that the kernel of A,(x)
has the dimension 1 in characteristic 2, equivalent to saying that f is an APN function.

( For another proof way for this theorem see [9])
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