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ABSTRACT 

 

CHANCE CONSTRAINED OPTIMIZATION OF BOOSTER DISINFECTION IN 

WATER DISTRIBUTION NETWORKS 

Köker, Ezgi 

M.Sc., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. AyĢe Burcu Altan Sakarya 

 

September 2011,  109 pages 

 

Quality of municipal water is sustained by addition of disinfectant, generally 

chlorine, to the water distribution network. Because of health problems, chlorine 

concentration in the network is limited between maximum and minimum limits. 

Cancerogenic disinfectant by-products start to occur at high concentrations so it is 

desired to have minimum amount of chlorine without violating the limit. In addition 

to the health issues, minimum injection amount is favorable concerning cost. Hence, 

an optimization model is necessary which covers all of these considerations. 

However, there are uncertain factors as chlorine is reactive and decays both over 

time and space. Thus, probabilistic approach is necessary to obtain reliable and 

realistic results from the model. In this study, a linear programming model is 

developed for the chance constrained optimization of the water distribution network. 

The objective is to obtain minimum amount of injection mass subjected to 

maintaining more uniformly distributed chlorine concentrations within the limits 

while considering the randomness of chlorine concentration by probability 

distributions. Network hydraulics and chlorine concentration computations are done 

by the network simulation software, EPANET. 

Keywords: Water Distribution Network, Linear Optimization, Chance Constraint, 

Chlorine Concentration, EPANET 
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ÖZ 

 

SU DAĞITIM ġEBEKELERĠNDE EK KLORLAMA MĠKTARININ OLASILIK 

SINIRLAMALI OPTĠMĠZASYONU 

Köker, Ezgi 

Yüksek Lisans, ĠnĢaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. AyĢe Burcu Altan Sakarya 

 

Eylül 2011,  109 sayfa 

 

Ġçme suyunun dezenfektasyonu su dağıtım Ģebekesine klor enjekte edilerek sağlanır. 

ġebekedeki klor miktarı, sağlık sorunlarına yol açması göz önünde bulundurularak 

belli bir minimum ve maksimum değer arasında sınırlandırılmıĢtır. Klor  

konsantrasyonu arttığında kanserojen etkiye sahip yan ürünler oluĢmaya baĢlar. Bu 

yüzden Ģebekede en istenen durum, minimum sınırı ihlal etmeden en az düzeyde 

klor miktarına sahip olmaktır. Ġstenen bu durum aynı zamanda maliyet açısından da 

avantajlıdır. Böylece, bütün ihtiyaçları karĢılayacak bir optimizasyon modeli 

gerekmektedir. Klor, tepkisel bir madde olduğundan zamana ve mesafeye göre 

azalmaktadır. Bu durum değiĢken faktörlerin ortaya çıkmasına sebebiyet verir. 

Modelden güvenilir ve gerçekçi sonuçlar alabilmek için değiĢken faktörlerden 

kaynaklanan olasılık hesaplarının formülizasyonun içine katılması gerekir.  Bu 

çalıĢmada, su dağıtım Ģebekesinin olasılık sınırlamalı optimizasyonu için lineer bir 

programlama modeli oluĢturulmuĢtur. Amaç, sisteme uygulanan toplam klor 

miktarını en aza indirmektir. Optimizasyondaki kısıtlama klor miktarını, klor 

konsantrasyonunun rastgele davranıĢını dağılımlarla hesaba katarak daha düzgün bir 

dağılıma sahip Ģekilde gerekli değerler arasında tutmaktır. Sistem hidrolik değerleri 

ve klor konsantrasyonu hesaplamaları su Ģebekesi modelleme ve çözüm yazılımı 

olan EPANET ile elde edilmiĢtir.   

Anahtar Kelimeler: Su Dağıtım ġebekesi, Lineer Optimizasyon, Olasılık 

Sınırlaması, Klor Konsantrasyonu, EPANET 
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 CHAPTER 1 

1.   INTRODUCTION   

1.1 Statement of the Problem 

Water quality of the municipal water is generally provided by addition of the 

disinfectants. In order to supply sufficient quality, disinfectant concentration, i.e. 

chlorine, is limited between a maximum and a minimum limit. The reason of setting 

a maximum limit is that after that concentration, taste and odor problems start to 

occur. In addition to these problems, formations of the disinfectant by-products 

(DBPs) start which can lead to serious health problems. Likewise, minimum limit is 

set by considering the biological regrowth. Hence, having lowest amount of chlorine 

concentrations without violating the minimum limit is the most favorable condition.   

Amount of disinfectant mass supplied to the system should be adjusted carefully in 

order to supply water to the far ends of the water distribution networks with 

sufficient quality. High amount of disinfectant injection in order to cover the 

problems in the far ends, may result in excessive concentration values at the nodes 

near the booster stations. Moreover, it is not easy to calculate the total disinfectant 

demand as chlorine is decaying over time and space. Thus, it is necessary to adjust 

an appropriate scheduling of the booster disinfection facility in order to overcome 

this problem.  
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An optimization model is needed to arrange the scheduling of the booster 

disinfection facility. While modeling, it should be considered that there are many 

uncontrollable factors that will result in significant difference between the analysis 

results and the real case as nothing is as certain as it is modeled. Main uncertainty in 

the booster disinfection is the chlorine decaying. So, in order to get more realistic 

results, probability concept should be introduced to the optimization procedure.  

Consequently, an optimization model which will cover uncertainties in the network 

should be developed in order to minimize the total mass injected to the system while 

maintaining the residual concentrations within maximum and minimum limits.  

1.2 Literature Survey 

To develop a well supported study on chance constrained optimization of booster 

disinfection,  previous works related with the optimization of the water distribution 

network and uncertainty concept for water distribution network are reviewed and 

summarized in the following sections.  

1.2.1 Optimization of the Water Distribution Network 

Studies related with the optimization of the water distribution network are based on 

1970s and they are mostly depending on the physical characteristics of the hydraulic 

components. For example,  Deb and Sarkar (1971), applied the optimization 

procedure to a network consisting of pumps, elevated reservoir and pipes with 

known nodal pressures and water consumptions. Aim in the study is to minimize the 

cost by taking pipe sizes as decision variable.  

Then, in 1980s scope of the optimization studies started to cover operational 

characteristics. Zessler and Shamir (1989) conducted a study to find the optimal 

scheduling of pump operation of a water supply system with an iterative dynamic 

programming method.  

 



 

3 

In the similar times, optimization of water quality in municipal water distribution 

systems was also studied. Mark et al. (1987) developed a nonlinear optimization 

problem with the purpose of minimizing the cost. Analyses are done with a 

simulation model and it is significant that the formation of simulation models for 

water distribution networks enabled long period and complex analyses for network 

hydraulics and water quality. 

Later in 1990s, water quality and operational characteristics of a water distribution 

network started to be combined. Boccelli et al. (1998), worked with the optimal 

scheduling of booster disinfection facilities in the water distribution networks. Aim 

in this study was to minimize the total mass injected to the network while 

maintaining the chlorine concentrations at the consumer nodes between a maximum 

and a minimum limit. Using a linear programming formulation, it was proven that 

optimal scheduling of booster station reduces the general chlorine concentration in 

the network and number of the booster stations with their locations effect the 

optimal schedule.  

In 2000s Tryby et al. (2002), enhance their work with Bocelli et al. (1998) by 

introducing operation types of booster disinfection facilities to the analyses. Also, 

minimization of the total number of booster stations was the additional aim of the 

study. Similar results were obtained from the mixed integer linear programing 

problem. 

After the studies of Tryby and Bocelli (2002), Munavalli and Kumar (2003) 

formulated the problem in a nonlinear way in order to cover set-point sources and 

non-first-order reactions. Aim is formulated in this work as obtaining lowest 

difference between the nodal chlorine concentrations and the minimum 

concentration amount for all consumer nodes and for all time intervals. Using a 

genetic algorithm (GA) approach for the solution, it was proven that GA is useful 

for calculating optimal schedule of water quality sources.  
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Propato and Uber (2004) introduced a linear least-squares formulation to the 

problem with the purpose of optimal disinfectant scheduling that minimizes the 

variation in the system residual space-time distribution. Different type of booster 

facilities for both linear least squares and linear programming method were 

compared in the study and it was concluded that booster disinfection effects the 

reduction in disinfectant residual variations while minimizing the total injected 

mass. 

Lansey et al. (2007) improved the optimal schedule of the booster disinfection 

formulation by taking initial conditions into consideration. By taking initial 

concentrations equal to final concentrations, long water quality simulations are 

avoided. 

1.2.2 Uncertainty Concept for Water Distribution Network 

In 1980s, uncertainties started to play role in the optimization studies.             

Lansey et al. (1989), formulated a chance constrained optimization problem as 

nonlinear programing model for the minimization of the cost in a water distribution 

network. Uncertainties of necessary amount of demands, pressure heads and pipe 

roughness coefficients were taken into consideration and it was the accepted fact 

that they were independent from each other. Problem was solved with a generalized 

reduced gradient method and it was concluded that considering uncertainties have 

important effect on the optimal network design.  

Then, Goulter and Bouchart (1990) introduced a least-cost optimization model for 

looped water distribution networks which covered the probability of pipe failure and 

probability of actual demand exceeding the design value. By combining these 

probabilities, a single reliability measure was obtained as probability of no node 

failure.  

In the same year, Bao and Mays (1990) conducted a study on nodal and system 

hydraulic reliabilities of water distribution systems. Using Monte Carlo simulation, 

impact of uncertainties of water demands, pressure heads and pipe roughness’s on 



 

5 

nodal and system reliability examined. In addition to that, different probability 

distributions were tried to find the sensitivity of reliability.    

In the study of Jacobs (1991), a mixed integer chance constrained optimization 

model was formed for structural design. Although its subject is not related with the 

water distribution networks, the study contains explanation of obtaining the 

deterministic equivalent of chance constraint using established cumulative 

distribution function of the variable.   

Cullinane et al. (1992) extended the work of Lansey et al. (1989) with integrating a 

reliability based procedure. In this study, reliability of water distribution systems 

based on hydraulic availability represented and it is combined with nonlinear 

optimization procedure for component sizing.  

Datta and Dhiman (1996) formed a two parted mathematical model of ground water 

quality monitoring network. First one was the ground water pollution transport 

simulation model and the second one was the chance constrained optimization 

model. Uncertainties were resulting from the prediction of pollutant movement. 

Response matrix approach and chance constraint formulations with using 

cumulative distribution functions were examined in the study. 

Later, El-Gamel and Harrell (2003) developed a chance constraint optimization 

model with GA based search procedure in order to minimize the costs of water use 

and canal cleaning while maintaining stability of gates, maintaining adequate water 

levels in canals and preventing flood and water shortages. Uncertain parameters in 

the study were crop distributions and water demands in the network.   

Das (2007) presented a chance constrained optimization model for Muskingum 

model parameter estimation. The aim is to minimize the sum of squares of 

difference between the actual observed and computed outflows with chance 

constrained Muskingum flow routing equations. Hydraulic data was accepted as 

uncertain following a standard normal distribution.  
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Ezzeldin et al. (2008) conducted a study on a new approach to the reliability based 

optimal design of water distribution networks. In the approach, GA was used for the 

optimization tool and Newton method as the hydraulic simulation solver. Chance 

constraint integrated to Monte Carlo simulation to estimate network capacity 

reliability. Uncertainty was resulting from the external nodal demands which was 

accepted to follow a normal probability distribution. Effect of different reliability 

levels and coefficient of variations tried in the study.  

1.3 Objective of the Study 

The main aim of the study is to show the effect of uncertainty concept on the 

optimization of the booster disinfection. The objective of the optimization is to 

obtain minimum amount of applied disinfection while maintaining the chlorine 

concentrations within the specified limits. And, the purpose of introducing 

uncertainty is to examine the relationship between the reliability and total applied 

mass dosage, which indicates the cost. Obtaining more reliable water distribution 

networks mean having more uniformly distributed and low amount of chlorine 

concentrations while maintaining the minimum restraint. The main source of the 

uncertainty in this study is the decaying of the chlorine, thus probabilistic approach 

is applied to the constraint of the chlorine concentration for both maximum and 

minimum limits. In the analyses, the effects of different types of probability 

distributions are also investigated.    

1.4 Outline of the Thesis 

There are mainly four chapters in this study apart from the introduction part. These 

are optimal booster disinfection, uncertainty concept for booster disinfection, 

application and discussion of the results, conclusion and future work. 
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Firstly, Chapter 2 gives the optimal booster disinfection. In this chapter, why there is 

a need for appropriate scheduling of booster disinfection facility is briefly explained. 

Afterwards, aim of the optimization and formulization of the optimization problem 

are clarified.  

Then, in Chapter 3, how uncertainty concept is associated with the booster 

disinfection concept is described. In addition to that, the type of probability 

distributions and chance constrained model formulations corresponding to these 

distributions are explained.  

Next, Chapter 4 is the application and discussion of the results. In this part, 

characteristics of the application model are given and meaning of water quality 

being sufficient is described. After, the results of using different combinations and 

numbers of booster locations are briefly examined and lastly results of the 

application of chance constraint to selected two cases are given. 

Finally in Chapter 5, conclusion of this study is done and future recommendations 

are given. 
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      CHAPTER 2 

2.  OPTIMAL BOOSTER DISINFECTION 

Booster disinfection facilities are used to provide water within quality limits and 

with minimum variations to the consumers in the network. Water quality is 

determined by a detailed analysis of the variations in the network related with water 

and disinfectant concentration. Water demands at consumer nodes, discharge 

directions and amounts in the pipes are general water related variations. Likewise, 

amount of booster disinfection facilities, their operation and scheduling are general 

disinfectant concentration related variations.   

As water is not decaying over time it is easy to calculate the total amount that will 

satisfy the demands. However, it is difficult to supply water with disinfectant 

concentration within desired limits to every consumer node, as the disinfectant, i.e. 

chlorine, diminishes over time. In order to avoid insufficiencies in providing the 

necessary concentration amount, decaying of the disinfectant both over time and 

space have to be taken into consideration. To overcome this problem, appropriate 

scheduling of the booster disinfection facility is required. 

2.1 Model Formulation 

The main aim while applying optimization to the booster disinfection problem is to 

minimize the total mass injected to the system while maintaining the chlorine 

concentrations within limits at each consumer node. As the objection is to minimize 
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the cost by minimizing the total mass injected, the number of the booster stations 

and the locations of them have to be considered as well. 

In the optimization formulation, objection function is the minimization of the total 

disinfectant amount injected to the network. Constraints are the chlorine 

concentration to be between given upper and lower bounds and disinfectant injected 

to the system to be non-negative.          

2.1.1 General Formulation 

For a sample water distribution network, there are ir consumer nodes, nb number of 

possible booster locations, ns source locations and nt dosage schedule time intervals 

within typical daily operation of booster with time step size of ∆t. Consumer nodes 

in the network are the nodes that have demand, which means chlorine concentration 

for each of them for each time interval will be checked. On the other hand, possible 

booster locations are dummy nodes and unlike consumer nodes they do not have 

demand. Thus, disinfectant concentrations for these nodes will not be checked. 

As the aim of the optimization is to minimize the total chlorine mass added to the 

system, objective function is the minimization of, 

 

where is the mass injection rate (M / T) at booster or source location i, at time j 

and ∆t is the time step duration (T). In the equation, mass injection rate, is the 

decision variable and multiplying it with time step duration, ∆t, the total mass 

dosage supplied to the water distribution network from location i and at time j (M) is 

obtained. In order to find the total mass added to the network, summation of total 

mass dosages for every location, nb+ns, and for every time period, nt, is taken into 

consideration. 
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There are two constraints for this objective function. First one is to have disinfectant 

concentration within limits and the second one is the non-negativity of the 

injections. Concentration limitation can be formulated as,  

 

for all consumer nodes, ir and monitoring times, tr. 

In addition to that, non-negativity of the injections can be formulated as, 

 

In Equation 2.2, the nodal concentrations for each consumer node ir and monitoring 

time tr,  (M / L
3
), is limited between upper bound,  and lower bound, . In the 

expression of , the term  is corresponding to the response coefficient 

 which is the chlorine change at the consumer node ir, at 

monitoring time tr corresponding to the unit injection at the booster or a source 

location i, at time j, [(M / L
3
)/(M / T)]. The effect of the individual injections to the 

response nodes could be represented as linear functions of the injections, u, which is 

called the linear superposition principle. By applying this principle, Boccelli et al. 

(1998) has illustrated the time varying system hydraulics and chlorine dosages as a 

linear system. Thus if, units of chlorine is added from location i, at time j; the 

total response at the monitoring node ir will be . So, chlorine concentration 

values at all consumer nodes for all monitoring times corresponding to each booster 

location and injection period are calculated by using the summation in Equation 2.2. 

For visualization of the notations used in the formulation, a sample network can be 

seen in Figure 2.1. This network composed of one booster node, i, and two 

consumer nodes, ir1 and ir2.  
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i ir1 ir2 

 

 

 

 

 

 

 

 

Total mass added from the booster node, i, at time j1 to the network shown in    

Figure 2.1 is . Chlorine concentrations at monitoring nodes ir1 and ir2 at time j1 

are and , respectively. The response coefficients at monitoring nodes ir1 

and ir2  resulting from this injection at time j1 are and  respectively. Note 

that, response coefficients will be calculated for all time periods, tr. 

2.1.1.1 Booster Mass Injection Matrix 

Booster mass injection matrix, U is the all in one representation of periodic 

injections of all booster disinfection stations for all time intervals. For example, if 

the injection time interval is selected as 1 h, there will be 24 different injections for a 

typical daily operation of the booster station. If it is shown in a vector notation, the 

periodic injections for one booster disinfection station will be, 

 

Likewise, in the case of two booster disinfectant stations, vector form of       

Equation 2.4 becomes, 

 

Figure 2.1: Sample network composed of three nodes 
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2.1.1.2 Response Coefficient Matrix 

Response coefficient matrix, B is the all in one representation of responses of all 

consumer nodes for each periodic injection from the booster station and for all 

monitoring time intervals. To obtain this matrix, only one booster disinfection node 

is selected; a suitable amount of chlorine is added to the network and responses of 

each consumer node for each monitoring time interval is recorded as              

. Then, this procedure is repeated for each booster station and 

gathering the entire recorded data together, response coefficient matrix is formed. 

For example, considering a water distribution network with one consumer and one 

booster node, selecting injection time interval 1 h again, there will be 24 different 

injections for a typical daily operation. If  amount of disinfectant injected to the 

network, response coefficient matrix will be, 

 

Likewise, in the case of two monitoring nodes with the same injection , vector 

form of Equation 2.6 becomes, 
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Apart from the example, a general matrix form of response coefficient for a water 

distribution network consisting of nb+ns number of booster locations and irC number 

of consumer nodes, can be obtained as,   
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In order to understand the matrix in a simpler way it can be stated that first 24 

columns are corresponding to booster station 1 and indicating the injections at each   

1 h time increment from the 1
st
 to the 24

th
 hour. Similarly, next 24 columns are 

corresponding to the booster station 2 and columns will continue until the number of 

the booster stations in the network is reached. In addition to that, first 24 rows are 

corresponding to consumer node 1 and indicating the responses at each 1 h time 

increment from the 1
st
 to the 24

th
 hour, to the injection at the corresponding time. 

Likewise, next 24 rows are corresponding to the consumer node 2 and rows will 

continue until the number of the monitoring nodes in the network is reached. For 

example, the coefficient  which is written in bold in the matrix, refers to the 

response of the monitoring node ir2 at time tr=1, to the injection from booster 

location 2, i=2 at time j=1.   
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2.1.2 Linear Programing Formulation 

In the model optimization formulation, objective function, Equation 2.1 and 

constraints, Equations 2.2 and 2.3 are all linear. Consequently, network problem can 

be treated as linear programing (LP) problem. When this LP problem is combined 

with the new expressions of booster mass injection matrix, Equation 2.5 and 

response coefficient matrix, Equation 2.8, new form of the LP becomes, 

Objective function, 

 

Subject to, 

 

and 

 

 

Response coefficient matrix, B, corresponds to the responses of all consumer nodes 

to unit disinfectant amount injected from the booster station. So, if B is multiplied 

with the real amount supplied to the network for corresponding time intervals and 

booster stations, which is booster mass injection matrix U, chlorine concentrations at 

each point will be obtained (Equation 2.10). The reason of taking transpose of U is 

to make it multipliable with B. 
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2.2 Periodicity 

Periodic hydraulic dynamics and the chlorine injections are required for the solution 

of the booster disinfection optimization problem according to the previous works of 

Boccelli et al. (1998) and Tryby et al. (2002). In order to reach periodic hydraulic 

dynamics, daily concentrations have to be equal for two consecutive days, which 

requires a long simulation time. Precise data can be obtained after that state of 

system is obtained; so after the system periodicity, the disinfectant residual 

concentrations at the consumer nodes are recorded over a time period, Tc called 

impact cycle  (Figure 2.2). 

 

 

Figure 2.2: Representation of impact cycle after periodicity 

 

Similarly, response coefficients for every monitoring node are calculated after the 

system periodicity and they are accepted as correct when the difference between two 

successive impact cycles is negligible (Sert, 2009). For this research, the difference 

of response coefficients for being negligible is to be less than 10
-5

 (Equation 2.12). 

 

where  is the response coefficients at a certain consumer monitoring node for 

impact cycle t and  is for the previous impact cycle t - 1.  
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      CHAPTER 3 

3. UNCERTAINTY CONCEPT FOR BOOSTER 

DISINFECTION 

 

During the water distribution network analysis and optimization of the booster 

disinfection formulation procedure, every step is taken by assuming a certainty. Two 

examples of the accepted certainty for water distribution network analyses can be 

assuming that there will be no uncontrolled losses in the network and demands will 

be certain during a time period. Likewise, two examples of the accepted certainty for 

booster disinfection formulations can be assuming that there will be no difference in 

the optimization formulation of different booster disinfector types and assumptions 

in the calculation of chlorine decaying bulk coefficients. These kinds of certainties 

are accepted in order to obtain simpler solvable mathematical models and they result 

in applicable solutions.  

For the real life, nothing is certain as it is modeled. There are many uncontrollable 

factors that will result in significant difference between the analysis results and the 

real case. All mathematical or simulation models are aimed to design idealized 

representations of reality; however they are imperfect representations of the real 

case. So, for more realistic and reliable results, probabilistic approach has to be 

taken into consideration in order to cover these uncertainties.  
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3.1 Governing Probability Distributions  

In the optimization of booster disinfection in a water distribution network, the 

component that has random characteristic is the chlorine concentration. This 

randomness is resulting from the space and time dependent decaying property of the 

chlorine. The only way to consider uncertainties is to obtain the probability 

distribution of this random variable. 

There are several probability distribution functions (PDF) that are frequently used in 

the reliability analysis of the continuous random variables as such the normal, 

lognormal, Gamma and exponential distributions. For this study, most frequent ones, 

normal and the lognormal distributions will be examined.   

3.1.1 The Normal Distribution 

The normal distribution, which is also known as the Gaussian distribution, is a    

well-known probability distribution (Ang et al., 1975). The probability density 

function of a normal distribution is given as,  

 

where µ is the mean and σ is the standard deviation. Both are the parameters of the 

distribution and simple notation for the distribution is N(µ, σ).  

In order to make the probability computations, the normal random variable has to be 

transformed into its standardized varied Z which denotes a distribution with µ = 0 

and σ = 1. X is a normally distributed random variable and since Z is a linear 

function of X, Z is also normally distributed. This distribution is called the standard 

normal distribution and denoted as N (0,1).  Z can be expressed as, 
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The probability density function of a standard normal distribution is given as, 

 

The cumulative distribution function (CDF) tables of Z can be found in statistics 

textbooks (Blank, 1980; Devore, 1987). 

Probability of random variable X ~ N(µ, σ) can be described by its CDF, which is  

 

where x is a value and  is the CDF of standardized variable, Z.  

3.1.2 Log-Normal Distribution 

The logarithmic normal distribution, simply log-normal distribution, is also a 

commonly used distribution which can be used when the variable cannot be negative 

(Ang et al., 1975).  A random variable X has a log-normal probability distribution if 

ln X is normal. The probability density function of a log-normal distribution is given 

as, 

 

where   is the mean and is the standard deviation. Both are the parameters of the 

log-normal distribution. These parameters are related to the mean, µ and the 

standard deviation, σ as, 

 

 



 

20 

With the logarithmic transformation, log-normal distribution is related with the 

normal distribution. Thus, the table of standard normal probabilities can be used to 

determine probabilities associated with the log-normal variable. 

3.2 Formulation of Chance Constrained Model 

In order to obtain chance constrained model, probability concept is applied to the 

constraints related with the random variable. So, objective function, Equation 2.9 

will not undergo any alteration and chlorine concentration limitation constraint, 

Equation 2.10, will change according to the probability distribution type.  As there is 

both upper and lower limit in the Equation 2.10, there will be three different 

formulations for each distribution type. Probabilistic approach is applied to the 

upper limit only in the first one, to the lower limit only in the second one and to the 

both in the third formulation. 

3.2.1 The Normal Distribution  

In the chance constrained optimization formulation objective function Equation 2.9 

and non-negativity constraint, Equation 2.11 will remain the same. Only chlorine 

concentration constraint, Equation 2.10 will be adjusted according to the side of the 

application of chance constraint by taking the probability distribution of chlorine 

concentration as the normal distribution (Mays and Tung, 1992).   

3.2.1.1 Upper Limit 

Probabilistic approach will only be applied to the upper limit of the chlorine 

concentration constraint. So, if the upper limit part of the Equation 2.10 is taken, 
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Replacing it with a probabilistic statement in the form of chance constraint, 

 

where  is the specified reliability of upper chlorine concentration limit.  

Equation 3.9 is not mathematically operational for algebraic solution. Consequently, 

deterministic equivalent of this equation can be obtained by the following steps. 

Upper limit, , is accepted to have a CDF with mean  and standard deviation . 

Equation 3.9 is equivalent to, 

 

which can also be expressed in terms of the CDF of , 

 

Using Equation 3.2, standardized versions of random variable  is obtained as, 

 

Introducing Equation 3.12 to Equations 3.10 and 3.11, these can be expressed as 

respectively, 

 

and 
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Deterministic equivalent of the original chance constraint, Equation 3.9, is the 

inverse of Equation 3.14, 

 

Equation 3.15 can be rearranged as,  

 

where the specific value of is , which is the th 

quantile of the standardized . Knowing the PDF of  and required constraint 

reliability,  the specific value  can be determined. As  has a normal 

distribution,  is referring to the standardized normal variant         

 where  is the standard normal CDF that is expressed in 

Equation 3.4. 

As there is no chance constraint applied to the lower limit of the chlorine 

concentration in this case, original constraint, Equation 2.10 becomes, 

 

Thus, optimization formulation corresponding to the chance constraint applied only 

to the upper limit of the normally distributed chlorine concentration is composed of 

the objective function, Equation 2.9, chlorine concentration limitation, Equation 

3.17 and non-negativity constraint, Equation 2.11. 

3.2.1.2 Lower Limit 

In this case, probabilistic approach will only be applied to the lower limit of the 

chlorine concentration constraint. So, if the lower limit part of the Equation 2.10 is 

taken, 
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Replacing it with a probabilistic statement in the form of chance constraint, 

 

where  is the specified reliability of lower chlorine concentration limit.  

Equation 3.19 is not mathematically operational for algebraic solution. So, 

deterministic equivalent of this equation can be obtained by the following steps. 

Lower limit, , is accepted to have a cumulative distribution function (CDF) with 

mean  and standard deviation . Equation 3.19 is equivalent to, 

 

which can also be expressed in terms of the CDF of  , 

 

Using Equation 3.2, standardized versions of random variable  is obtained as, 

 

Introducing Equation 3.22 to Equations 3.20 and 3.21, these can be expressed as 

respectively, 

 

and 
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Deterministic equivalent of the original chance constraint, Equation 3.19, is the 

inverse of Equation 3.24, 

 

Equation 3.25 can be rearranged as,  

 

where the specific value of  is , which is the th quantile of the 

standardized . Knowing the PDF of  and required constraint reliability,  the 

specific value  can be determined. As  has a normal distribution,  is 

referring to the standardized normal variant  where  is the 

standard normal CDF that is expressed in Equation 3.4. 

As there is no chance constraint applied to the upper limit of the chlorine 

concentration in this case, original constraint, Equation 2.10 becomes, 

 

Consequently, optimization formulation corresponding to the chance constraint 

which is applied only to the lower limit of the normally distributed chlorine 

concentration is formed by the objective function, Equation 2.9, chlorine 

concentration limitation, Equation 3.27 and non-negativity constraint,           

Equation 2.11. 

3.2.1.3 Both of the Limits 

In the last case of the normal distribution, probabilistic approach will be applied to 

both limits of the chlorine concentration constraint. Deterministic equations of 

probabilistic approach, applied on upper and lower limits separately, are obtained as 

Equation 3.16 and 3.26, respectively. As a result, deterministic equation of the 

chance constraint applied to both of the limits will be the combination of these two 
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equations, which is, 

 

Therefore, optimization formulation corresponding to the chance constraint applied 

to both of the limits of the normally distributed chlorine concentration is formed by 

the objective function, Equation 2.9, chlorine concentration limitation,                 

Equation 3.28 and non-negativity constraint, Equation 2.11. 

3.2.2 Log-Normal Distribution 

Similarly, objective function, Equation 2.9 and non-negativity constraint,       

Equation 2.11 will remain the same in the chance constrained optimization 

formulation. However, chlorine concentration constraint, Equation 2.10 will be 

adjusted according to the side of the application of chance constraint by taking the 

probability distribution of chlorine concentration as the log-normal distribution in 

this case. 

3.2.2.1 Upper Limit 

Same procedure with the upper limit of normal distribution, 3.2.1.1 is applied up to 

Equation 3.11. After Equation 3.11, standardization will be done according to the 

log-normal distribution of chlorine concentration. 

As it is explained in the Log-Normal Distribution part, 3.1.2, table of standard 

normal probabilities can be used to determine probabilities associated with the log-

normal variable; however, its own mean,  and standard deviation,  must be 

used. Accordingly, using Equation 3.2 and corresponding parameters, standardized 

versions of random variable  is obtained as, 
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Introducing Equation 3.29 to Equations 3.10 and 3.11, these can be expressed as 

respectively, 

 

and 

 

Deterministic equivalent of the original chance constraint, Equation 3.9, is the 

inverse of Equation 3.31, 

 

Equation 3.32 can be rearranged as,  

 

where the specific value of is , which is the th 

quantile of the standardized . Knowing the PDF of  and required constraint 

reliability,  the specific value  can be determined. As  has a log-normal 

distribution,  is referring to the standardized normal variant         

 where  is the standard normal CDF that is expressed in 

Equation 3.4. 

As there is no chance constraint applied to the lower limit of the chlorine 

concentration in this case, original constraint Equation 2.10 becomes, 
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Hence, optimization formulation corresponding to the chance constraint applied only 

to the upper limit of the chlorine concentration is composed of the objective 

function, Equation 2.9, chlorine concentration limitation, Equation 3.34 and         

non-negativity constraint, Equation 2.11. 

3.2.2.2 Lower Limit 

Same procedure with the lower limit of normal distribution, 3.2.1.2 is applied up to 

Equation 3.21. After Equation 3.21, standardization will be done according to the 

log-normal distribution of chlorine concentration. 

As it is explained in the upper limit, table of standard normal probabilities can be 

used to determine probabilities associated with the log-normal variable; though, its 

own mean,  and standard deviation,  must be used. Thus, using Equation 3.2 

and corresponding parameters, standardized versions of random variable  is 

obtained as, 

 

Introducing Equation 3.35 to Equations 3.20 and 3.21, these can be expressed as 

respectively, 

 

and 
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Deterministic equivalent of the original chance constraint, Equation 3.19, is the 

inverse of Equation 3.37, 

 

Equation 3.38 can be rearranged as,  

 

where the specific value of  is , which is the th quantile of the 

standardized . Knowing the PDF of  and required constraint reliability,  the 

specific value  can be determined. As  has a log-normal distribution,  is 

referring to the standardized normal variant  where  is the 

standard normal CDF that is expressed in Equation 3.4. 

As there is no chance constraint applied to the upper limit of the chlorine 

concentration in this case, original constraint Equation 2.10 becomes, 

 

Thus, optimization formulation corresponding to the chance constraint applied only 

to the lower limit of the chlorine concentration is composed of the objective 

function, Equation 2.9, chlorine concentration limitation, Equation 3.40 and             

non-negativity constraint, Equation 2.11. 

3.2.2.3 Both of the Limits 

In the last case of the log-normal distribution, probabilistic approach will be applied 

to the both limits of the chlorine concentration constraint. Deterministic equations of 

probabilistic approach applied on upper and lower limits separately are obtained as 

Equations 3.34 and 3.40, respectively. As a result, deterministic equation of the 

chance constraint applied to both of the limits will be the combination of these two 

equations, which is, 
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Consequently, optimization formulation corresponding to the chance constraint 

applied to both of the limits of the normally distributed chlorine concentration is 

formed by the objective function, Equation 2.9, chlorine concentration limitation, 

Equation 3.41 and non-negativity constraint, Equation 2.11. 
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CHAPTER 4 

4. APPLICATION AND DISCUSSION OF THE RESULTS  

4.1 Model Application 

A model water distribution with known physical and hydraulic characteristics is 

needed in order to check the benefits of the chance constrained optimization of 

booster disinfection formulation. For this study, a slightly modified version of the  

example network in EPANET version 2.0, which is The Brushy Plain water 

distribution network system shown in Figure 4.1, is used.  

4.1.1 Physical Characteristics  

The network shown in Figure 4.1 is composed of 1 source node with a pump station, 

34 consumer nodes, 1 storage tank and 47 pipes. Source at Node 1 is supplying 

water to the network that has 5.18 km 
2 

residential area, with the help of the pumps. 

Lengths, diameters and the roughness coefficients of the pipes can be seen in      

Table 4.1. Pump located at Node 1 is modeled with a negative demand of   

  with certain pump demand multipliers shown in Table 4.2. In 

addition to that, the consumer demand node multipliers are given in Table 4.2, for 

Nodes 1 to 36. 

At Node 26 there is storage tank which is completely mixed cylindrical tank with a 

diameter of 15.2 m. Measuring from the bottom of the tank, minimum and maximum 

water levels are 15.2 m and 21.3 m, respectively.  
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Figure 4.1: Schematic representation of the example network 
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Table 4.1: Network pipe characteristics 

Upstream     

Node 
Downstream 

Node 
Length              

(m) 
Diameter      

(m) 
Roughness 

Coefficients, C 

1 37 1.0 0.3 100 

37 2 730.0 0.3 100 

2 5 240.0 0.3 100 

2 3 400.0 0.2 100 

3 4 370.0 0.2 100 

4 5 300.0 0.3 100 

5 6 370.0 0.3 100 

6 7 820.0 0.3 100 

7 38 1.0 0.3 140 

7 39 1.0 0.3 100 

8 10 300.0 0.2 140 

9 11 210.0 0.3 100 

11 12 580.0 0.3 100 

12 13 180.0 0.3 100 

13 14 120.0 0.3 100 

14 15 90.0 0.3 100 

13 16 460.0 0.2 100 

15 17 460.0 0.2 100 

16 17 180.0 0.2 100 

17 18 210.0 0.3 100 

18 32 110.0 0.3 100 

16 19 430.0 0.2 100 

14 20 340.0 0.3 100 

20 21 400.0 0.2 100 

21 22 400.0 0.2 100 

20 22 400.0 0.2 100 

24 23 180.0 0.3 100 

15 24 80.0 0.3 100 

23 25 90.0 0.3 100 

25 42 30.0 0.3 100 

25 31 180.0 0.3 100 

31 27 120.0 0.2 100 

27 29 120.0 0.2 100 

29 40 1.0 0.2 100 

29 41 1.0 0.2 100 

22 33 300.0 0.2 100 

33 34 120.0 0.2 100 

32 19 150.0 0.2 100 

35 30 300.0 0.2 100 

28 35 210.0 0.2 100 

28 36 90.0 0.2 100 

38 8 370.0 0.3 140 

39 9 120.0 0.3 100 

40 35 150.0 0.2 100 

41 28 730.0 0.2 100 

42 26 1.0 0.3 100 
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Table 4.2: Demand and pump multipliers 

Hour 
Demand 

Multipliers 
Pump 

Multipliers 

1 1.19 0.96 

2 0.97 0.96 

3 0.90 0.96 

4 0.90 0.96 

5 0.82 0.96 

6 1.12 0.96 

7 1.21 0.00 

8 0.60 0.00 

9 0.60 0.00 

10 1.27 0.00 

11 2.39 0.00 

12 0.90 0.00 

13 0.85 0.80 

14 0.61 1.00 

15 1.36 1.00 

16 0.54 1.00 

17 0.24 1.00 

18 0.71 0.15 

19 0.30 0.00 

20 0.60 0.00 

21 1.19 0.00 

22 1.49 0.00 

23 1.12 0.00 

24 1.16 0.00 
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4.1.2 Network Hydraulics 

As it can be seen from Table 4.2, determination of the network hydraulic dynamics 

is done by the 24 h periodic cycle of the water demands in the example network. 

This 24 h periodic cycle is assumed to be repeated infinitely. Base demands of the 

consumer nodes are given in the example network file and can be seen in Table 4.3. 

To observe the network hydraulic behavior, demand multipliers are appointed to the 

consumer nodes, pump multipliers are appointed to the source node in the EPANET 

and network is solved.  

 

 

 

Table 4.3: Base demands of nodes in the example network 

Node ID  
Base Demand   

(LPS) 
 Node ID  

Base Demand   

(LPS) 

Junc 1  -43.810 Junc 22 0.631 

Junc 2 0.505 Junc 23 0.505 

Junc 3 0.883 Junc 24 0.694 

Junc 4 0.505 Junc 25 0.379 

Junc 5 0.505 Junc 27 0.505 

Junc 6 0.315 Junc 28 0.000 

Junc 7 0.252 Junc 29 0.442 

Junc 8 0.568 Junc 30 0.189 

Junc 9 0.883 Junc 31 1.073 

Junc 10 0.315 Junc 32 1.073 

Junc 11 2.194 Junc 33 0.095 

Junc 12 1.009 Junc 34 0.095 

Junc 13 0.126 Junc 35 0.000 

Junc 14 0.126 Junc 36 0.063 

Junc 15 0.126 Junc 37 0.000 

Junc 16 1.262 Junc 38 0.000 

Junc 17 1.262 Junc 39 0.000 

Junc 18 1.262 Junc 40 0.000 

Junc 19 0.315 Junc 41 0.000 

Junc 20 1.199 Junc 42 0.000 

Junc 21 1.009 Tank 26 - 



 

35 

If the total demand, inflow and flow from/to tank data are examined, results can be 

seen in Figure 4.2. Mainly, system demand is supplied by the pumps at the source 

node, during time intervals 0-6 h and 12-18 h. At the same time intervals, tank is 

being filled with the water supplied by the pumps. This can be seen from the line 

corresponding to the tank in the graph; during these time intervals tank line is in the 

positive side of the flow axis, meaning there is water coming to the tank. Likewise, 

it can be understood from the inflow and tank lines in the graph that during time 

intervals 6-12 h and 18-24 h system demand is supplied by the water in the tank.  

 

 

 

 

Figure 4.2: Hydraulic behavior of the network 
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4.1.3 Water Quality Description 

Chlorine concentration is limited between an upper and a lower bound in order to 

supply water to the network with sufficient quality. The lower bound is determined 

by taking biological regrowth into consideration. Likewise, taste and odor problems 

are effective in deciding the upper limit. Also, high concentration of chlorine 

resulted in formation of disinfectant by-products, DBP, which can lead to serious 

health problems (Bull, 1982). So, formation of DBP is another aspect considered 

while deciding the upper limit. Regulations for these minimum and maximum limits 

of chlorine concentration are varying. For example, World Health Organization, 

WHO, states that, water for municipal use can only have chlorine concentration of   

5 mg/l in maximum and there is no limitation for the lower bound (WHO, 2011). On 

the other hand, Safe Drinking Water Act, SDWA, fixes the maximum and minimum 

limits as 0.2 mg/l and 4.0 mg/l, respectively (SWDA, 2003).  

For Turkey, there are no limitations for chlorine concentration stated in the Turkish 

Standards for Water Intended for Human Consumption, TS 266 (2005). Only 

applied limitation for chlorine concentration is included in the Water Intended for 

Human Consumption Regulations prepared by Ministry of Health and it states that 

the chlorine concentration at the end points of the network can not exceed 0.5 mg/l.  

For this study, upper and lower bounds are taken as,  = 4.0 mg/l and  = 0.2 mg/l, 

respectively. For each consumer node there will be 24 different checks for a typical 

daily analysis by taking monitoring time interval as 1 h  (tr = 1, 2 ,…, 24).  

Analyses of response coefficient matrix, A, for the same example network were done 

by Sert (2009). In those analyses, mass booster type was used and booster station 

injection pattern time step was chosen as 1 h (j = 1, 2 ,…, 24) with the total of 24 h  

in order to coincide with the hydraulic cycle time of 24 h. Total simulation time was 

taken as 960 h to obtain the coefficients after the system becomes stable, meaning 

the periodicity is achieved. And, for the formation of matrix, last 24 h of the 

analyses was used. Moreover, it should be noted that the global bulk and wall decay 

coefficients used in that study are kb = 0.53 day
-1

 and kw = 5.1 mm/day, respectively. 
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In this study, response coefficients calculated by Sert (2009) will be used directly, as 

the analyses are done on the same network with the same hydraulic dynamics. Only, 

the name of the response coefficient matrix is changed from A to B and response of 

each consumer node from α to β in order to avoid possible confusions that may 

result from notation similarity of the probability, α, in the chance constraints.    

4.1.4 Booster Locations 

Probable booster locations and analyses of the selected nodes were done by          

Sert (2009). The Nodes from 37 to 42 in Figure 4.1 were selected as probable 

booster locations and added to the system as dummy nodes. These nodes have no 

demand and added to the network with 1.0 m of pipe to stand for booster station at 

that node. In the sample network, Node 37 was selected in order to model the 

conventional source injection method. Node 38 was chosen to supply the demand of 

the branch that contains Node 8 and 10. Node 39 was located to serve the upper 

region of the network. Node 40 and 41 were selected to satisfy the minimum 

concentration amount in the far ends of the network and Node 42 was chosen to be 

near the storage tank.  

Five different cases were tried in the work of Sert (2009) related with this study. In 

each case, different combination of the selected booster station nodes were analyzed 

and optimization procedure for minimization of total mass injected to the system 

was applied. Results of five cases and selected combinations of booster locations 

can be seen in Table 4.4.  

Considering the results of Sert (2009), booster location combination to which the 

chance constraint will be applied in this thesis, is decided. Chance constraint will be 

applied for the conventional case, which is the injection only from the source node, 

Case I. In addition to that, it will be applied to the most favorable case with respect 

to the cost, Case V. Although Case IV seems the most desired case by looking at the 

amount of total mass injected, it has slight difference with Case V. Moreover, 

number of the booster stations in Case IV is three more than Case V and total cost of 

this excess amount of stations make Case IV unfavorable.    



 

38 

Table 4.4: Total mass injection results of Sert (2009)  

Case Booster Locations 
Total Mass Injected     

U   (kg/day) 

I 37 (source) 21.24 

II 37, 38, 39, 40, 41 20.53 

III 37, 39 20.59 

IV 37, 38, 39, 40, 41, 42 14.14 

V 37, 39, 42 14.84 

 

 

 

For this study, notation for conventional injection is Case I and cost favorable case 

is Case II. 

4.2 Discussion of the Results 

 In the chance constrained optimization formulation of this example water 

distribution network, objective function and constraints are linear for all cases. Thus, 

in this study, a linear programming solver will be used for the analyses, which is 

Microsoft Excel with “Solver” add-on. Analyses are done for two cases, Case I and 

II. Total booster mass injected to the system for different probability distributions 

are obtained by applying corresponding chance constrained optimization 

formulations explained in section 3.2. 

The results of the optimization to which chance constraint is not applied, is 

corresponding to the 50% probability of occurrence for normal and log- normal 

distribution (Lansey et al., 1989; Das, 2007). Thus, it is advantageous to use these 

distribution types as these enable the comparison between the non-probability case 

and the different reliability levels.  
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Increasing amount of chlorine concentration results in increasing health risk. So, it is 

desirable to have chlorine concentrations as low as possible without violating the 

minimum limit (Manuvalli et al., 2003). In addition to that, it is favorable to obtain 

uniform concentration distributions over the periodic cycle of all consumer points. 

Therefore, a network with high reliability level means more uniformly distributed 

and low amount chlorine concentrations at consumer nodes. 

4.2.1 Case I 

Case I is the conventional case in which the injection is done from the source node 

(Node 37). Total mass injection amounts are calculated for normal and log-normal 

probability distribution. Different reliability levels and standard deviations are 

analyzed for both of the distribution types to see their effects on the total mass 

injection amount.  

For the non-probability case, objective function is Equation 2.9 and constraints are           

Equations 2.10 and 2.11. Response coefficient, B, used in the Equation 2.10 is taken 

from the Case I results of the program developed by Sert (2009). Upper and lower 

limits in Equation 2.10 are  = 4.0 mg/l and  = 0.2 mg/l, respectively. Reliability 

level is 50%. Linear programing formulation is solved by Excel and injection results 

can be seen in Table 4.5.  

For different probability distributions, chlorine concentration limitation constraint, 

Equation 2.10, will be modified taking different reliability levels and standard 

deviations into consideration. Rest of the problem is the same with the non-

probability case.  
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Table 4.5: Injection results of Case I 

Node 37 

Time                

(hr) 
u             

(mg/min) 

1 516.34 
2 1375.47 
3 516.34 
4 517.95 
5 517.86 
6 623.24 
7 0.00 
8 0.00 
9 0.00 
10 0.00 
11 0.00 
12 3653.80 
13 2629.94 
14 537.85 
15 538.23 
16 726.59 
17 2599.59 
18 0.00 
19 0.00 
20 0.00 
21 0.00 
22 0.00 
23 0.00 
24 0.00 

Σu (mg/min) 14753.198 
Σu (kg/day) 21.245 

 

 

 

In order to see the distribution of the data, frequency plot of chlorine concentrations 

throughout the network is given in Figure 4.3. As it can be seen from the figure, 

most of the data are lying between 0.2 mg/l and 1.0 mg/l and less number of data are 

between 1.0 mg/l and 4.0 mg/l.  
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Figure 4.3: Frequency plot of chlorine concentration for Case I 

 

 

 

4.2.1.1 The Normal Distribution 

Chance constrained optimization formulation by assuming the normal probability 

distribution for chlorine concentration is composed of objective function,       

Equation 2.9, non-negativity constraint, Equation 2.11 and chlorine concentration 

limitation adjusted according to the application to upper limit, lower limit and both. 

4.2.1.1.1 Upper Limit 

Chlorine concentration constraint is constructed according to the Equation 3.17 as 

explained in section 3.2.1.1. Mean value of the maximum concentration is taken as             

 = 4.0 mg/l and standardized normal variant is calculated for  ranging from 

0.60 to 0.99. Increments are set to 0.10 up to 0.90. As higher reliability values are 

favorable, increment is taken as 0.01 for the values of  ranging from 0.95 to 0.99 
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in order to see its effect more precisely. Modified maximum limits calculated from       

Equation 3.17 and computed total mass injection results can be seen in Table 4.6. 

Note that, the lower limit is kept at 0.2 mg/l for each run.  

As it can be seen from Table 4.6 that in the analyses, increment of the standard 

deviation is mostly 0.50. For reliability levels of 0.60 and 0.70, analyses give 

feasible solutions even for standard deviations higher than 4.0; however, it is not 

reasonable to have these values, so analyses are stopped at 4.0. Apart from those 

two, highest analyzed value of the standard deviation is where the solver is unable to 

find a feasible solution. For example, for reliability level of 0.80, the maximum 

value of the standard deviation is 3.70. Increment is adjusted at necessary points in 

order to observe the changes in the total mass injection in a better way. The change 

of total mass injection versus reliability level for each standard deviation is given in     

Figure 4.4. Similarly, the change of total mass injection versus standard deviation 

for each reliability level is shown in Figure 4.5.  
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Table 4.6: Results of the upper limit application with normal probability distribution 

for Case I 

αU  U(kg/day) σ UL(mg/l) LL(mg/l) αU  U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

21.245 0.00 4.000 0.200 

0.95 

21.245 0.00 4.000 0.200 

21.300 0.50 3.873 0.200 21.604 0.50 3.178 0.200 

21.355 1.00 3.747 0.200 21.973 1.00 2.355 0.200 

21.411 1.50 3.620 0.200 22.159 1.25 1.944 0.200 

21.466 2.00 3.493 0.200 22.353 1.50 1.533 0.200 

21.522 2.50 3.367 0.200 22.777 1.70 1.204 0.200 

21.577 3.00 3.240 0.200 23.587 1.80 1.039 0.200 

21.633 3.50 3.113 0.200 25.569 1.89 0.891 0.200 

21.688 4.00 2.987 0.200 

0.96 

21.245 0.00 4.000 0.200 

0.70 

21.245 0.00 4.000 0.200 21.628 0.50 3.125 0.200 

21.359 0.50 3.738 0.200 22.020 1.00 2.249 0.200 

21.474 1.00 3.476 0.200 22.219 1.25 1.812 0.200 

21.589 1.50 3.213 0.200 22.445 1.50 1.374 0.200 

21.704 2.00 2.951 0.200 22.795 1.60 1.199 0.200 

21.821 2.50 2.689 0.200 23.726 1.70 1.024 0.200 

21.940 3.00 2.427 0.200 26.070 1.78 0.884 0.200 

22.059 3.50 2.165 0.200 

0.97 

21.245 0.00 4.000 0.200 

22.178 4.00 1.902 0.200 21.656 0.50 3.060 0.200 

0.80 

21.245 0.00 4.000 0.200 22.079 1.00 2.119 0.200 

21.429 0.50 3.579 0.200 22.292 1.25 1.649 0.200 

21.613 1.00 3.158 0.200 22.449 1.40 1.367 0.200 

21.799 1.50 2.738 0.200 22.871 1.50 1.179 0.200 

21.990 2.00 2.317 0.200 24.023 1.60 0.991 0.200 

22.180 2.50 1.896 0.200 25.264 1.65 0.897 0.200 

22.385 3.00 1.475 0.200 

0.98 

21.245 0.00 4.000 0.200 

23.458 3.50 1.054 0.200 21.694 0.50 2.973 0.200 

25.895 3.70 0.886 0.200 22.158 1.00 1.946 0.200 

0.90 

21.245 0.00 4.000 0.200 22.409 1.25 1.433 0.200 

21.525 0.50 3.359 0.200 23.098 1.40 1.125 0.200 

21.808 1.00 2.718 0.200 25.146 1.51 0.899 0.200 

22.098 1.50 2.078 0.200 

0.99 

21.245 0.00 4.000 0.200 

22.407 2.00 1.437 0.200 21.754 0.50 2.837 0.200 

22.863 2.20 1.181 0.200 22.281 1.00 1.674 0.200 

23.471 2.30 1.052 0.200 23.251 1.25 1.092 0.200 

24.667 2.40 0.924 0.200 26.156 1.34 0.883 0.200 
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Figure 4.4: Total injected mass versus upper limit reliability for normal probability 

distribution (Case I) 

 

 

Figure 4.5: Total injected mass versus standard deviation of upper limit for normal 

probability distribution (Case I) 
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It can be seen from Figure 4.4 that total injected mass continuously increase with the 

increase of reliability level for the same standard deviation. Especially after 

reliability level of 0.90, that increase becomes abrupt. For standard deviations 2.0, 

3.0 and 4.0 there is no feasible solution for high reliability levels and abrupt changes 

cannot be observed. For σ=0, there is no change in the upper limit for any reliability 

level; thus, results are same with the no probability case for all reliability levels.  

Likewise, it can be concluded from Figure 4.5 that total injected mass continuously 

increase with the increase of standard deviation for the same reliability level. Abrupt 

increases start to occur when the standard deviation gets closer to the value where 

solution becomes infeasible.  

4.2.1.1.2 Lower Limit 

Chlorine concentration constraint is constructed according to the Equation 3.26 as 

explained in section 3.2.1.2. Mean value of the minimum concentration is taken as             

 = 0.2 mg/l and standardized normal variant is calculated for  ranging from 0.60 

to 0.99 generally with 0.10 increments. In order to see the effect of higher 

reliabilities, increment is taken as 0.01 for the values of  ranging from 0.95 to 

0.99. Modified minimum limits calculated from Equation 3.26 and computed total 

mass injection results can be seen in Table 4.7. Note that, the upper limit is kept at 

4.0 mg/l for each run.  

Increment of the standard deviation is taken as 0.25 mostly, in this case. Highest 

analyzed value of the standard deviation is where the solver is unable to find a 

feasible solution. For example, for reliability level of 0.70, the maximum value of 

the standard deviation is 1.25. Increment is adjusted at necessary points in order to 

observe the changes in the total mass injection in a better way. The change of total 

mass injection versus reliability level for each standard deviation is given in     

Figure 4.6. Similarly, the change of total mass injection versus standard deviation 

for each reliability level is shown in Figure 4.7.  
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Table 4.7: Results of the lower limit application with normal probability distribution 

for Case I 

αL U(kg/day) σ UL(mg/l) LL(mg/l) αL U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

21.245 0.00 4.000 0.200 

0.96 

21.245 0.00 4.000 0.200 

28.527 0.25 4.000 0.263 31.311 0.05 4.000 0.288 

35.820 0.50 4.000 0.327 41.395 0.10 4.000 0.375 

43.116 0.75 4.000 0.390 51.478 0.15 4.000 0.463 

50.412 1.00 4.000 0.453 61.608 0.20 4.000 0.550 

57.725 1.25 4.000 0.517 72.063 0.25 4.000 0.638 

65.081 1.50 4.000 0.580 84.122 0.30 4.000 0.725 

72.822 1.75 4.000 0.643 97.857 0.35 4.000 0.813 

81.509 2.00 4.000 0.707 115.794 0.40 4.000 0.900 

90.825 2.25 4.000 0.770 

0.97 

21.245 0.00 4.000 0.200 

101.259 2.50 4.000 0.833 32.061 0.05 4.000 0.294 

114.391 2.75 4.000 0.897 42.894 0.10 4.000 0.388 

0.70 

21.245 0.00 4.000 0.200 53.726 0.15 4.000 0.482 

36.330 0.25 4.000 0.331 64.629 0.20 4.000 0.576 

51.432 0.50 4.000 0.462 76.450 0.25 4.000 0.670 

66.643 0.75 4.000 0.593 89.872 0.30 4.000 0.764 

84.008 1.00 4.000 0.724 105.433 0.35 4.000 0.858 

104.950 1.25 4.000 0.856 114.088 0.37 4.000 0.896 

0.80 

21.245 0.00 4.000 0.200 

0.98 

21.245 0.00 4.000 0.200 

45.465 0.25 4.000 0.410 33.057 0.05 4.000 0.303 

69.902 0.50 4.000 0.621 44.886 0.10 4.000 0.405 

100.904 0.75 4.000 0.831 56.725 0.15 4.000 0.508 

0.90 

21.245 0.00 4.000 0.200 68.710 0.20 4.000 0.611 

58.154 0.25 4.000 0.520 82.452 0.25 4.000 0.713 

102.487 0.50 4.000 0.841 98.415 0.30 4.000 0.816 

0.95 

21.245 0.00 4.000 0.200 115.008 0.34 4.000 0.898 

30.702 0.05 4.000 0.282 

0.99 

21.245 0.00 4.000 0.200 

40.176 0.10 4.000 0.364 34.627 0.05 4.000 0.316 

49.650 0.15 4.000 0.447 48.026 0.10 4.000 0.433 

59.151 0.20 4.000 0.529 61.470 0.15 4.000 0.549 

68.765 0.25 4.000 0.611 75.780 0.20 4.000 0.665 

79.667 0.30 4.000 0.693 92.728 0.25 4.000 0.782 

91.759 0.35 4.000 0.776 114.862 0.30 4.000 0.898 

105.374 0.40 4.000 0.858 - - - - - 
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Figure 4.6: Total injected mass versus lower limit reliability for normal probability 

distribution (Case I) 

 

 

Figure 4.7: Total injected mass versus standard deviation of lower limit for normal 

probability distribution (Case I) 
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Shown in Figure 4.6 that total injected mass continuously increases with the increase 

of reliability level for the same standard deviation. Especially after reliability level 

of 0.90, that increase becomes abrupt. For standard deviations 0.50 and 0.75 there is 

no feasible solution for high reliability levels and abrupt changes cannot be 

observed. For σ=0, there is no change in the upper limit for any reliability level; 

thus, results are same with the no probability case for all reliability levels.  

Likewise, it can be concluded from Figure 4.7 that total injected mass continuously 

increase with the increase of standard deviation for the same reliability level. Rapid 

increases start to occur when the standard deviation gets closer to the value where 

solution becomes infeasible.  

When Figure 4.4 and Figure 4.6 is compared, it can be seen that the same increase in 

the reliability level results in much more injection results in the lower limit case for 

the same standard deviation. For example, for the standard deviation 0.50 and 

increase of reliability level from 0.70 to 0.80, upper limit application results in 0.17 

kg/day increase of injection mass from 21.259 kg/day to 21.429 kg/day. On the other 

hand, lower limit application results in 18.47 kg/day increase from 51.432 kg/day to 

69.902 kg/day.  

Comparing Figure 4.5 and Figure 4.7, it is observed that the range of the standard 

deviation for the feasible solution is much smaller for the lower limit case. Most of 

the changes occur within the range of 0.0 and 1.0 in the lower limit case; whereas, 

there is no such significant range for the upper limit case and changes gradually 

occur between 0.0 and 4.0.  

4.2.1.1.3 Both of the Limits 

Chlorine concentration constraint is constructed according to the Equation 3.28 as 

explained in section 3.2.1.3. Mean values of the maximum and minimum 

concentrations are taken as  = 4.0 mg/l and  = 0.2 mg/l, respectively. For this 

case,  and  are equal to each other.  Standardized normal variants are calculated 
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for  and  ranging from 0.60 to 0.99 mostly with 0.10 increments. In order to see 

the effect of higher reliabilities, increment is taken as 0.01 for the values of   and 

 from 0.95 to 0.99. Modified maximum/minimum limits calculated from Equation 

3.28 and computed total mass injection results can be seen in Table 4.8.  

In this case, increment of the standard deviation is taken as 0.10 mostly. Highest 

analyzed value of the standard deviation is where the solver is unable to find a 

feasible solution. For example, for reliability level of 0.90, the maximum value of 

the standard deviation is 0.45. Increment is adjusted at necessary points in order to 

observe the changes in the total mass injection in a better way. The change of total 

mass injection versus reliability level for each standard deviation is given in     

Figure 4.8. Similarly, the change of total mass injection versus standard deviation 

for each reliability level is shown in Figure 4.9.  
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Table 4.8: Both of the limits application results with normal probability distribution 

for Case I 

αL-U U(kg/day) σ UL(mg/l) LL(mg/l) αL-U U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

21.245 0.00 4.000 0.200 

0.95 

21.245 0.00 4.000 0.200 

24.169 0.10 3.975 0.225 30.739 0.05 3.918 0.282 

27.092 0.20 0.251 0.251 40.250 0.10 3.836 0.364 

30.018 0.30 3.924 0.276 49.761 0.15 3.753 0.447 

32.947 0.40 3.899 0.301 59.337 0.20 3.671 0.529 

35.877 0.50 3.873 0.327 69.953 0.25 3.507 0.611 

50.527 1.00 3.747 0.453 82.654 0.30 3.507 0.693 

65.608 1.50 3.620 0.580 101.384 0.35 3.424 0.776 

84.952 2.00 3.493 0.707 

0.96 

21.245 0.00 4.000 0.200 

94.270 2.20 3.443 0.757 31.351 0.05 3.912 0.288 

0.70 

21.245 0.00 4.000 0.200 41.474 0.10 3.825 0.375 

27.297 0.10 3.948 0.252 51.597 0.15 3.737 0.463 

33.357 0.20 3.895 0.305 61.848 0.20 3.650 0.550 

39.421 0.30 3.843 0.357 73.756 0.25 3.562 0.638 

45.486 0.40 3.790 0.410 88.171 0.30 3.475 0.725 

51.551 0.50 3.738 0.462 94.874 0.32 3.440 0.760 

63.871 0.70 3.633 0.567 

0.97 

21.245 0.00 4.000 0.200 

88.031 1.00 3.476 0.724 32.103 0.05 3.906 0.294 

102.027 1.10 3.423 0.777 42.979 0.10 3.812 0.388 

0.80 

21.245 0.00 4.000 0.200 53.871 0.15 3.718 0.482 

30.961 0.10 3.916 0.284 65.080 0.20 3.624 0.576 

40.694 0.20 3.832 0.368 78.630 0.25 3.530 0.670 

50.427 0.30 3.748 0.452 96.027 0.30 3.436 0.764 

60.240 0.40 3.663 0.537 

0.98 

21.245 0.00 4.000 0.200 

71.328 0.50 3.579 0.621 33.103 0.05 3.897 0.303 

84.653 0.60 3.495 0.705 44.979 0.10 3.795 0.405 

99.557 0.68 3.428 0.772 56.897 0.15 3.692 0.508 

0.90 

21.245 0.00 4.000 0.200 69.886 0.20 3.589 0.611 

36.049 0.10 3.872 0.328 86.124 0.25 3.487 0.713 

50.869 0.20 3.744 0.456 101.019 0.28 3.425 0.775 

66.216 0.30 3.616 0.584 

0.99 

21.245 0.00 4.000 0.200 

85.982 0.40 3.487 0.713 34.680 0.05 3.884 0.316 

101.946 0.45 3.423 0.777 48.131 0.10 3.767 0.433 

- - - - - 

61.707 0.15 3.651 0.549 

77.845 0.20 3.535 0.665 

94.472 0.24 3.442 0.758 
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Figure 4.8: Total injected mass versus both limits reliability for normal probability 

distribution (Case I) 

 

 

Figure 4.9: Total injected mass versus standard deviation of both of the limits for 

normal probability distribution (Case I) 
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It is shown in Figure 4.8 that total injected mass continuously increases with the 

increase of reliability level for the same standard deviation. Especially after 

reliability level of 0.90, that increase becomes abrupt. For standard deviations 0.4 

and 0.5, there is no feasible solution for high reliability levels and abrupt changes 

cannot be observed. For σ=0, there is no change in the upper limit for any reliability 

level; thus, results are same with the no probability case for all reliability levels.  

Likewise, it can be concluded from Figure 4.9 that, total injected mass continuously 

increase with the increase of standard deviation for the same reliability level. Rapid 

increases start to occur when the standard deviation gets closer to the value where 

solution becomes infeasible.  

Analyses results of the three case show that lower limit is dominant in the both of 

the limits case. Comparing Figure 4.4, 4.6 and 4.8, same increase in the reliability 

level results in highest injection results in the both of the limits case, slightly lower 

results in lower limit case and lowest results in upper limit case for the same 

standard deviation. For example, for the standard deviation 0.50 and increase of 

reliability level from 0.70 to 0.80, upper limit application results in 0.17 kg/day 

increase of injection mass from 21.259 kg/day to 21.429 kg/day. Lower limit 

application results in 18.47 kg/day increase from 51.432 kg/day to 69.902 kg/day 

and both of the limits case result in 19.777 kg/day from 51.551 kg/day to 71.328 

kg/day. 

Comparing Figures 4.5, 4.7 and 4.9, range of the standard deviation for the feasible 

solution is much smaller for the lower limit and both of the limits cases. Most of the 

changes occur within the range of 0.0 and 1.0 in the lower limit and both of the 

limits cases; whereas, there is no such significant range for the upper limit case and 

changes gradually occur between 0.0 and 4.0.  
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4.2.1.2 Log-Normal Distribution 

Chance constrained optimization formulation by assuming the log-normal 

probability distribution for chlorine concentration is composed of objective function,       

Equation 2.9, non-negativity constraint, Equation 2.11 and chlorine concentration 

limitation adjusted according to the application to the upper limit, lower limit and 

both. 

4.2.1.2.1 Upper Limit 

Chlorine concentration constraint is constructed according to the Equation 3.33 as 

explained in section 3.2.2.1. Mean value of the maximum concentration is taken as             

 = 4.0 mg/l and for different standard distribution levels  and  are calculated 

by using Equations 3.6 and 3.7, respectively. Standardized normal variant is 

calculated for  ranging from 0.60 to 0.99 with 0.10 increments. As higher 

reliability values are favorable, increment is taken as 0.01 for the values of  

ranging from 0.95 to 0.99 in order to see its effect more precisely. Modified 

maximum limits calculated from Equation 3.33 and computed total mass injection 

results can be seen in Table 4.9. Note that, the lower limit is kept at 0.2 mg/l for each 

run. 

It is shown in Table 4.9 that in the analyses, increment of the standard deviation is 

taken as 0.50 mostly. For reliability levels ranging from 0.60 to 0.90, analyses give 

feasible solutions even for standard deviations higher than 4.0; however, it is not 

reasonable to have these values, so analyses are stopped at 4.0. Apart from those, 

highest analyzed value of the standard deviation is where the solver is unable to find 

a feasible solution. For example, for reliability level of 0.96, the maximum value of 

the standard deviation is 3.20. Increment is adjusted at necessary points in order to 

observe the changes in the total mass injection in a better way. The change of total 

mass injection versus reliability level for each standard deviation is given in Figure 

4.10. Similarly, the change of total mass injection versus standard deviation for each 

reliability level is shown in Figure 4.11.  
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Table 4.9: Results of the upper limit application with log-normal probability 

distribution for Case I 

αU U(kg/day) σ UL(mg/l) LL(mg/l) αU U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

21.245 0.00 4.000 0.200 

0.95 

21.245 0.00 4.000 0.200 

21.312 0.50 3.846 0.200 21.580 0.50 3.234 0.200 

21.400 1.00 3.646 0.200 21.867 1.00 2.588 0.200 

21.500 1.50 3.416 0.200 22.105 1.50 2.062 0.200 

21.606 2.00 3.174 0.200 22.294 2.00 1.645 0.200 

21.712 2.50 2.933 0.200 22.492 2.50 1.319 0.200 

21.816 3.00 2.702 0.200 23.377 3.00 1.066 0.200 

21.913 3.50 2.487 0.200 24.940 3.40 0.906 0.200 

22.002 4.00 2.291 0.200 

0.96 

21.245 0.00 4.000 0.200 

0.70 

21.245 0.00 4.000 0.200 21.598 0.50 3.192 0.200 

21.368 0.50 3.718 0.200 21.897 1.00 2.522 0.200 

21.503 1.00 3.411 0.200 22.140 1.50 1.985 0.200 

21.640 1.50 3.097 0.200 22.335 2.00 1.565 0.200 

21.774 2.00 2.793 0.200 22.646 2.50 1.241 0.200 

21.902 2.50 2.510 0.200 23.997 3.00 0.994 0.200 

22.018 3.00 2.254 0.200 24.854 3.20 0.912 0.200 

22.121 3.50 2.027 0.200 

0.97 

21.245 0.00 4.000 0.200 

22.211 4.00 1.828 0.200 21.621 0.50 3.140 0.200 

0.80 

21.245 0.00 4.000 0.200 21.933 1.00 2.442 0.200 

21.431 0.50 3.574 0.200 22.182 1.50 1.893 0.200 

21.615 1.00 3.154 0.200 22.387 2.00 1.471 0.200 

21.789 1.50 2.760 0.200 22.984 2.50 1.152 0.200 

21.950 2.00 2.404 0.200 24.866 3.00 0.911 0.200 

22.092 2.50 2.092 0.200 

0.98 

21.245 0.00 4.000 0.200 

22.213 3.00 1.824 0.200 21.650 0.50 3.074 0.200 

22.318 3.50 1.596 0.200 21.979 1.00 2.340 0.200 

22.426 4.00 1.404 0.200 22.234 1.50 1.778 0.200 

0.90 

21.245 0.00 4.000 0.200 22.458 2.00 1.356 0.200 

21.514 0.50 3.384 0.200 23.554 2.50 1.043 0.200 

21.757 1.00 2.830 0.200 25.312 2.80 0.896 0.200 

21.974 1.50 2.353 0.200 

0.99 

21.245 0.00 4.000 0.200 

22.155 2.00 1.953 0.200 21.695 0.50 2.971 0.200 

22.303 2.50 1.625 0.200 22.048 1.00 2.188 0.200 

22.455 3.00 1.359 0.200 22.310 1.50 1.611 0.200 

23.011 3.50 1.145 0.200 22.820 2.00 1.192 0.200 

24.182 4.00 0.973 0.200 25.532 2.50 0.892 0.200 
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Figure 4.10: Total injected mass versus upper limit reliability for log-normal 

probability distribution (Case I) 

 

 

Figure 4.11: Total injected mass versus standard deviation of upper limit for        

log-normal probability distribution (Case I) 
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It is shown in Figure 4.10 that total injected mass continuously increases with the 

increase of reliability level for the same standard deviation. Especially after 

reliability level of 0.90, that increase become abrupt. For standard deviations 3.5 and 

4.0 there is no feasible solution for high reliability levels and abrupt changes cannot 

be observed. For σ=0, there is no change in the upper limit for any reliability level; 

thus, results are same with the no probability case for all reliability levels.  

Similarly, it can be concluded from Figure 4.11 that total injected mass continuously 

increase with the increase of standard deviation for the same reliability level. Abrupt 

increases start to occur when the standard deviation gets closer to the value where 

solution becomes infeasible.  

4.2.1.2.2 Lower Limit 

Chlorine concentration constraint is constructed according to the Equation 3.39 as 

explained in 3.2.2.2. Mean value of the minimum concentration is taken as             

 = 0.2 mg/l and for different standard distribution levels ,  are calculated by 

using Equations 3.6 and 3.7, respectively. Standardized normal variant is calculated 

for  ranging from 0.60 to 0.99 with 0.10 increments. In order to see the effect of 

higher reliabilities, increment is taken as 0.01 for the values of  ranging from 0.95 

to 0.99. Modified minimum limits calculated from Equation 3.39 and computed total 

mass injection results can be seen in Table 4.10. Note that, the upper limit is kept at 

4.0 mg/l for each run.  

Increment of the standard deviation is 0.01 up to 0.05 and after that increment value 

is taken as 0.10, which can be seen in Table 4.10. Highest analyzed value of the 

standard deviation is where the solver is unable to find a feasible solution. For 

example, for reliability level of 0.70, the maximum value of the standard deviation is 

0.1. Increment is adjusted at necessary points in order to observe the changes in the 

total mass injection in a better way. For showing the effect of standard deviation on 

total mass injection, only the reliability level up to 90% is used. This is because 

standard deviations between 0.01-0.05 are so small to create detectable changes for 

reliability level from 95% to 99%. The change of total mass injection versus 
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reliability level for each standard deviation is given in Figure 4.12. Similarly, the 

change of total mass injection versus standard deviation for each reliability level is 

shown in Figure 4.13. 

 

 

 

Table 4.10: Results of the lower limit application with log-normal probability 

distribution for Case I 

αL U(kg/day) σ UL(mg/l) LL(mg/l) αL U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

21.245 0.000 4.000 0.200 

0.95 

21.245 0.00 4.000 0.200 
21.509 0.010 4.000 0.202 43.007 0.10 4.000 0.389 
21.716 0.020 4.000 0.204 62.314 0.20 4.000 0.556 
21.866 0.030 4.000 0.205 75.288 0.30 4.000 0.662 
21.958 0.040 4.000 0.206 83.493 0.40 4.000 0.721 
21.994 0.050 4.000 0.207 87.984 0.50 4.000 0.752 

0.70 

21.245 0.000 4.000 0.200 90.388 0.60 4.000 0.767 
21.826 0.010 4.000 0.205 91.329 0.70 4.000 0.773 
22.359 0.020 4.000 0.210 91.417 0.75 4.000 0.774 

22.840 0.030 4.000 0.214 

0.96 

21.245 0.00 4.000 0.200 
23.266 0.040 4.000 0.218 45.304 0.10 4.000 0.409 
23.633 0.050 4.000 0.221 68.320 0.20 4.000 0.607 
24.292 0.075 4.000 0.227 86.535 0.30 4.000 0.742 
24.598 0.100 4.000 0.229 99.770 0.40 4.000 0.824 

0.80 

21.245 0.000 4.000 0.200 108.163 0.50 4.000 0.873 
22.202 0.010 4.000 0.208 116.100 0.60 4.000 0.901 

23.134 0.020 4.000 0.216 

0.97 

21.245 0.00 4.000 0.200 
24.032 0.030 4.000 0.224 48.291 0.10 4.000 0.435 
24.888 0.040 4.000 0.232 77.371 0.20 4.000 0.677 
25.695 0.050 4.000 0.239 104.833 0.30 4.000 0.855 
28.858 0.100 4.000 0.266 113.945 0.33 4.000 0.896 

30.528 0.150 4.000 0.281 

0.98 

21.245 0.00 4.000 0.200 
31.018 0.200 4.000 0.285 35.249 0.05 4.000 0.322 

0.90 

21.245 0.000 4.000 0.200 52.556 0.10 4.000 0.472 
22.735 0.010 4.000 0.213 71.161 0.15 4.000 0.631 
24.251 0.020 4.000 0.226 92.764 0.20 4.000 0.782 
25.781 0.030 4.000 0.239 106.573 0.23 4.000 0.865 

27.313 0.040 4.000 0.253 

0.99 

21.245 0.00 4.000 0.200 
28.835 0.050 4.000 0.266 37.822 0.05 4.000 0.344 
35.939 0.100 4.000 0.328 60.062 0.10 4.000 0.537 
45.539 0.200 4.000 0.411 88.717 0.15 4.000 0.757 
49.566 0.300 4.000 0.446 112.677 0.18 4.000 0.892 

50.556 0.400 4.000 0.455 - - - - - 
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Figure 4.12: Total injected mass versus lower limit reliability for log-normal 

probability distribution (Case I) 

 

 

Figure 4.13: Total injected mass versus standard deviation of lower limit for        

log-normal probability distribution (Case I) 
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Total injected mass continuously increases with the increase of reliability level for 

the same standard deviation as it is shown in Figure 4.12. As comparison is done up 

to the standard deviation value of 0.05, infeasible solution limit is not reached for 

any reliability level. For σ=0, there is no change in the upper limit for any reliability 

level; thus, results are same with the no probability case for all reliability levels.  

Similarly, it can be concluded from Figure 4.13 that total injected mass increase 

with the increase of standard deviation for the same reliability level. When the 

standard deviation gets closer to the value where solution become infeasible, total 

injection start to asymptotically reach its limiting value.  

Comparing Figure 4.10 and Figure 4.12, same increase in the reliability level results 

in much more injection results in the lower limit case for the same standard 

deviation. For example, for the standard deviation 0.50 and increase of reliability 

level from 0.70 to 0.80, upper limit application results in 0.063 kg/day increase of 

injection mass from 21.368 kg/day to 21.431 kg/day. On the other hand, for lower 

limit application even the analyses cannot be done for the standard deviation of 0.50. 

For standard deviation 0.1 and increase of reliability level from 0.70 to 0.80, lower 

limit application result in 4.26 kg/day increase from 24.598 kg/day to 28.858 kg/day. 

Same analyses results for upper limit will be lower than 0.063 kg/day. 

Comparing Figure 4.11 and Figure 4.13, most important difference is the attitudes of 

the results. For the upper limit case, total injected mass continuously increase with 

the increase of standard deviation for the same reliability level while total injection 

start to asymptotically reach its limiting value for the lower limit case. This behavior 

is resulting from the formulations of the  and  in the log-normal distribution. As 

it can be seen in Equation 3.7, ratio of  exists in the formulation of  . When it 

is calculated for upper limit, µ is always greater than σ so the ratio is always smaller 

than 1. However, for the lower limit, µ is smaller than σ for most of the times and 

the ratio becomes greater than 1. This ratio difference become more effective when 

 and  are calculated as shown in Equation 3.6 and 3.7, respectively. And this 

growing effect results in the change of the behavior.  
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4.2.1.2.3 Both of the Limits  

Chlorine concentration constraint is constructed according to the Equation 3.41 as 

explained in 3.2.2.3. Mean values of the maximum and minimum concentrations are 

taken as  = 4.0 mg/l and  = 0.2 mg/l, respectively. For different standard 

distribution levels , ,  and  are calculated by using Equation 3.6 and 3.7 

respectively. For this case,  and  are equal to each other.  Standardized normal 

variants are calculated for  and  ranging from 0.60 to 0.99 with 0.10 

increments. In order to see the effect of higher reliabilities, increment is taken as 

0.01 for the values of   and  ranging from 0.95 to 0.99. Modified 

maximum/minimum limits calculated from Equation 3.41 and computed total mass 

injection results can be seen in Table 4.11.  

For this case, increment of the standard deviation is 0.01 up to 0.05 and after that 

value increment is taken as 0.10, which can be seen in Table 4.11. Highest analyzed 

value of the standard deviation is where the solver is unable to find a feasible 

solution. For example, for reliability level of 0.90, the maximum value of the 

standard deviation is 0.40. Increment is adjusted at necessary points in order to 

observe the changes in the total mass injection in a better way. For showing the 

effect of standard deviation on total mass injection, only the reliability level up to 

90% is used. This is because standard deviations between 0.01-0.05 are so small to 

create detectable changes for reliability level from 95% to 99%. The change of total 

mass injection versus reliability level for each standard deviation is given in      

Figure 4.14. Similarly, the change of total mass injection versus standard deviation 

for each reliability level is shown in Figure 4.15.  
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Table 4.11: Both of the limits application results with log-normal probability 

distribution for Case I 

αU-L U(kg/day) σ UL(mg/l) LL(mg/l) αU-L U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

21.245 0.00 4.000 0.200 

0.95 

21.245 0.00 4.000 0.200 

21.510 0.01 3.997 0.202 43.080 0.10 3.838 0.389 

21.718 0.02 3.995 0.204 62.542 0.20 3.680 0.556 

21.869 0.03 3.992 0.205 77.348 0.30 3.526 0.662 

21.963 0.04 3.990 0.206 88.341 0.40 3.378 0.721 

22.000 0.05 3.987 0.207 93.804 0.45 3.305 0.739 

0.70 

21.245 0.00 4.000 0.200 

0.96 

21.245 0.00 4.000 0.200 

21.828 0.01 3.995 0.205 32.624 0.05 3.913 0.299 

22.364 0.02 3.989 0.210 45.383 0.10 3.828 0.409 

22.847 0.03 3.984 0.214 57.706 0.15 3.743 0.515 

23.275 0.04 3.979 0.218 69.166 0.20 3.660 0.607 

23.644 0.05 3.974 0.221 80.234 0.25 3.579 0.683 

24.205 0.07 3.963 0.226 90.773 0.30 3.499 0.742 

24.622 0.10 3.947 0.229 97.855 0.33 3.451 0.771 

0.80 

21.245 0.00 4.000 0.200 

0.97 

21.245 0.00 4.000 0.200 

22.206 0.01 3.992 0.208 33.746 0.05 3.907 0.308 

23.142 0.02 3.983 0.216 48.375 0.10 3.815 0.435 

24.043 0.03 3.975 0.224 63.194 0.15 3.725 0.562 

24.902 0.04 3.966 0.232 78.982 0.20 3.637 0.677 

25.713 0.05 3.958 0.239 95.959 0.25 3.550 0.775 

28.895 0.10 3.916 0.266 101.022 0.26 3.533 0.792 

30.586 0.15 3.873 0.281 

0.98 

21.245 0.00 4.000 0.200 

31.094 0.20 3.830 0.285 35.295 0.05 3.898 0.322 

0.90 

21.245 0.00 4.000 0.200 52.649 0.10 3.799 0.472 

22.740 0.01 3.987 0.213 72.222 0.15 3.701 0.631 

24.262 0.02 3.974 0.226 96.528 0.20 3.605 0.782 

25.797 0.03 3.962 0.239 105.072 0.21 3.586 0.810 

27.335 0.04 3.949 0.253 

0.99 

21.245 0.00 4.000 0.200 

28.863 0.05 3.936 0.266 37.874 0.05 3.885 0.344 

35.997 0.10 3.873 0.328 60.190 0.10 3.773 0.537 

41.663 0.15 3.810 0.377 91.699 0.15 3.663 0.757 

45.654 0.20 3.747 0.411 

- - - - - 49.736 0.30 3.624 0.446 

50.798 0.40 3.503 0.455 
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Figure 4.14: Total injected mass versus both limits reliability for log-normal 

probability distribution (Case I) 

 

 

Figure 4.15: Total injected mass versus standard deviation of both of the limits for 

log-normal probability distribution (Case I) 

21

22

23

24

25

26

27

28

29

0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90

U
 (

k
g
/d

a
y

)

αU = αL

σ = 0.00 σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05

20

30

40

50

60

70

80

90

100

110

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45

U
 (

k
g
/d

a
y

)

σ
α = 0.60 α = 0.70 α = 0.80 α = 0.90 α = 0.95
α = 0.96 α = 0.97 α = 0.98 α = 0.99



 

63 

It is seen from Figure 4.14 that total injected mass continuously increases with the 

increase of reliability level for the same standard deviation. As comparison is done 

up to the standard deviation value of 0.05, infeasible solution limit is not reached for 

any reliability level. For σ=0, there is no change in the upper limit for any reliability 

level; thus, results are same with the no probability case for all reliability levels. 

Likewise, it can be concluded from Figure 4.15 that total injected mass increase with 

the increase of standard deviation for the same reliability level. When the standard 

deviation gets closer to the value where solution becomes infeasible, total injection 

start to asymptotically reach its limiting value.  

Analyses results of the three case show that lower limit is dominant in the both of 

the limits case. Comparing Figure 4.10, 4.12 and 4.14, same increase in the 

reliability level results in highest injection results in the both of the limits case, 

slightly lower results in lower limit case and lowest results in upper limit case for 

the same standard deviation. For example, for the standard deviation 0.50 and 

increase of reliability level from 0.70 to 0.80, upper limit application results in   

0.063 kg/day increase of injection mass from 21.368 kg/day to 21.431 kg/day. On 

the other hand, for lower limit application even the analyses cannot be done for the 

standard deviation of 0.50. For standard deviation 0.1 and increase of reliability 

level from 0.70 to 0.80, lower limit application result in 4.26 kg/day increase from 

24.598 kg/day to 28.858 kg/day and both of the limits application result in              

4.23 kg/day increase from 24.662 kg/day to 28.895 kg/day. Same analyses results for 

upper limit will be lower than 0.063 kg/day. 

The most important difference is seen when Figures 4.11, 4.13 and 4.15 are 

compared. For the upper limit case, total injected mass continuously increase with 

the increase of standard deviation for the same reliability level while total injection 

start to asymptotically reach its limiting value for the lower limit and both of the 

limits cases.  
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4.2.2 Case II 

In Case II the injection is done from Nodes 37, 39 and 42. For normal and log-

normal probability distribution, total mass injection amounts are calculated. To see 

the effects on the total injected amount, different reliability levels and standard 

deviations are analyzed in both of the distribution types.   

For the non-probability case, objective function is Equation 2.9 and constraints are           

Equations 2.10 and 2.11. Response coefficient, B, used in the Equation 2.10 is taken 

from the Case V results of the program developed by Sert (2009). Upper and lower 

limits in Equation 2.10 are  = 4.0 mg/l and  = 0.2 mg/l, respectively. Reliability 

level is 50%. Linear programing formulation is solved by Excel and injection results 

can be seen in Table 4.12.  

For different probability distributions, chlorine concentration limitation constraint, 

Equation 2.10, will be modified taking different reliability levels and standard 

deviations into consideration. Rest of the problem is the same with the non-

probability case.  
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Table 4.12: Injection results of Case II 

Node 37, 39 and 42 

Time                

(hr) 

u                                                         

(mg/min) 

37 39 42 

1 696.07 0.00 0.00 
2 583.04 0.00 0.00 
3 549.55 0.00 0.00 
4 579.74 0.00 0.00 
5 595.43 0.00 0.00 
6 661.52 0.00 0.00 
7 0.00 2.25 245.13 
8 0.00 0.00 117.64 
9 0.00 2.12 132.54 

10 0.00 6.64 367.97 
11 0.00 145.79 624.42 
12 521.59 0.00 0.00 
13 728.88 0.00 0.00 
14 607.30 0.00 0.00 
15 576.99 0.00 0.00 
16 755.38 31.73 0.00 
17 368.68 0.00 0.00 
18 0.00 0.00 113.71 
19 0.00 0.00 38.66 
20 0.00 0.00 93.80 
21 0.00 0.00 231.44 
22 0.00 21.48 334.57 
23 0.00 0.00 313.62 
24 0.00 1.31 258.46 

Σu (mg/min) 7224.18 211.33 2871.97 
Σu (kg/day) 14.843 

 

 

 

In order to see the distribution of the data, frequency plot of chlorine concentrations 

throughout the network is given in Figure 4.16. As it can be seen from the figure, 

most of the data are lying between 0.2 mg/l and 0.4 mg/l and much less number of 

data are between 0.4 mg/l and 4.0 mg/l.  
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Figure 4.16: Frequency plot of chlorine concentration for Case II 

 

 

 

4.2.2.1 The Normal Distribution 

Chance constrained optimization formulation by assuming the normal probability 

distribution for chlorine concentration is composed of objective function,       

Equation 2.9, non-negativity constraint, Equation 2.11 and chlorine concentration 

limitation adjusted according to application to the upper limit, lower limit and both. 

For upper limit, lower limit and both of the limits sections, mean values of 

minimum/maximum concentrations and increment used in the reliability level will 

be the same as explained in sections 4.2.1.1.1, 4.2.1.1.2 and 4.2.1.1.3, respectively.  
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4.2.2.1.1 Upper Limit 

Modified maximum limits and computed total mass injection results can be seen in 

Table 4.13. As it can be seen from the Table 4.13 that in the analyses, increment of 

the standard deviation is mostly 0.50. For reliability levels ranging from 0.50 to 

0.80, analyses give feasible solutions for standard deviations higher than 4.0; 

however, it is not reasonable to have these values so analyses are stopped at 4.0. 

Apart from those two, highest analyzed value of the standard deviation is where the 

solver is unable to find a feasible solution. For example, for reliability level of 0.90, 

the maximum value of the standard deviation is 2.75. Increment is adjusted at 

necessary points in order to observe the changes in the total mass injection in a 

better way. The change of total mass injection versus reliability level for each 

standard deviation is given in Figure 4.17. Similarly, the change of total mass 

injection versus standard deviation for each reliability level is shown in Figure 4.18.  
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Table 4.13: Results of the upper limit application with normal probability 

distribution for Case II 

αU U(kg/day) σ UL(mg/l) LL(mg/l) αU U(kg/day) σ UL(mg/l) LL(mg/l) 

0.50 

14.843 0.00 4.000 0.200 

0.95 

14.843 0.00 4.000 0.200 

14.843 3.00 4.000 0.200 14.843 0.50 3.178 0.200 

14.843 3.50 4.000 0.200 14.843 1.00 2.355 0.200 

14.843 4.00 4.000 0.200 14.843 1.50 1.533 0.200 

0.60 

14.843 0.00 4.000 0.200 14.844 2.00 0.710 0.200 

14.843 3.00 3.240 0.200 14.854 2.10 0.546 0.200 

14.843 3.50 3.113 0.200 

0.96 

14.843 0.00 4.000 0.200 

14.843 4.00 2.987 0.200 14.843 0.50 3.125 0.200 

0.70 

14.843 0.00 4.000 0.200 14.843 1.00 2.249 0.200 

14.843 3.00 2.427 0.200 14.843 1.50 1.374 0.200 

14.843 3.50 2.165 0.200 14.889 2.00 0.499 0.200 

14.843 4.00 1.902 0.200 

0.97 

14.843 0.00 4.000 0.200 

0.80 

14.843 0.00 4.000 0.200 14.843 0.50 3.060 0.200 

14.843 3.00 1.475 0.200 14.843 1.00 2.119 0.200 

14.843 3.50 1.054 0.200 14.843 1.50 1.179 0.200 

14.847 4.00 0.634 0.200 14.849 1.80 0.615 0.200 

0.90 

14.843 0.00 4.000 0.200 

0.98 

14.843 0.00 4.000 0.200 

14.843 2.00 3.744 0.200 14.843 0.50 2.973 0.200 

14.843 2.50 0.796 0.200 14.843 1.00 1.946 0.200 

14.845 2.60 0.668 0.200 14.843 1.50 0.919 0.200 

14.855 2.70 0.540 0.200 14.859 1.70 0.509 0.200 

14.976 2.74 0.489 0.200 

0.99 

14.843 0.00 4.000 0.200 

15.170 2.75 0.476 0.200 14.843 0.50 2.837 0.200 

- - - - - 
14.843 1.00 1.674 0.200 

14.858 1.50 0.510 0.200 
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Figure 4.17: Total injected mass versus upper limit reliability for normal probability 

distribution (Case II) 

 

 

Figure 4.18: Total injected mass versus standard deviation of upper limit for normal 

probability distribution (Case II) 
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As the distribution of the data is on a much more narrow limits in the use of three 

booster stations (Figure 4.16), changing the reliability level and the standard 

deviation of the upper limit does not affect the analyses results of non-probability 

case in considerable amounts.  

It can be seen from Figure 4.17 that total injected mass slightly increase with the 

increase of reliability level for the same standard deviation. Only detectable change 

occurs for standard deviation 2.0 and it is only 0.045 mg/l from 14.889 mg/l to 

14.844 mg/l. For σ=0, there is no change in the upper limit for any reliability level; 

thus, results are same with the no probability case for all reliability levels.  

Likewise, it can be concluded from Figure 4.18 that total injected mass slightly 

increase with the increase of standard deviation for the same reliability level. 

Detectable increases start to occur when the standard deviation gets closer to the 

value where solution becomes infeasible.  

 

4.2.2.1.2 Lower Limit 

Modified minimum limits and computed total mass injection results can be seen in 

Table 4.14.  

Shown in the Table 4.14 that in the analyses, increment of the standard deviation is 

0.10 mostly. For reliability level 0.60 analyses give feasible solutions for standard 

deviations higher than 4.0; however, it is not reasonable to have these values so 

analyses are stopped at 4.0. Apart from this, highest analyzed value of the standard 

deviation is where the solver is unable to find a feasible solution. For example, for 

reliability level of 0.90, the maximum value of the standard deviation is 1.20. 

Increment is adjusted at necessary points in order to observe the changes in the total 

mass injection in a better way. The change of total mass injection versus reliability 

level for each standard deviation is given in Figure 4.19. Similarly, the change of 

total mass injection versus standard deviation for each reliability level is shown in 

Figure 4.20. 
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Table 4.14: Results of the lower limit application with normal probability 

distribution for Case II 

αL U(kg/day) σ UL(mg/l) LL(mg/l) αL U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

14.843 0.00 4.000 0.200 

0.96 

14.843 0.00 4.000 0.200 

24.244 0.50 4.000 0.327 27.835 0.10 4.000 0.375 

33.645 1.00 4.000 0.453 40.828 0.20 4.000 0.550 

43.046 1.50 4.000 0.580 53.820 0.30 4.000 0.725 

52.446 2.00 4.000 0.707 66.813 0.40 4.000 0.900 

61.847 2.50 4.000 0.833 79.806 0.50 4.000 1.075 

71.248 3.00 4.000 0.960 92.823 0.60 4.000 1.250 

80.651 3.50 4.000 1.087 105.860 0.70 4.000 1.425 

90.068 4.00 4.000 1.213 119.078 0.80 4.000 1.601 

0.70 

14.843 0.00 4.000 0.200 143.516 0.90 4.000 1.776 

34.302 0.50 4.000 0.462 

0.97 

14.843 0.00 4.000 0.200 

53.761 1.00 4.000 0.724 28.801 0.10 4.000 0.388 

73.219 1.50 4.000 0.987 42.759 0.20 4.000 0.576 

92.703 2.00 4.000 1.249 56.717 0.30 4.000 0.764 

112.236 2.50 4.000 1.511 70.675 0.40 4.000 0.952 

142.993 3.00 4.000 1.773 84.642 0.50 4.000 1.140 

0.80 

14.843 0.00 4.000 0.200 98.636 0.60 4.000 1.328 

46.073 0.50 4.000 0.621 112.650 0.70 4.000 1.517 

77.303 1.00 4.000 1.042 130.732 0.80 4.000 1.705 

108.614 1.50 4.000 1.462 

0.98 

14.843 0.00 4.000 0.200 

132.288 1.80 4.000 1.715 30.084 0.10 4.000 0.405 

0.90 

14.843 0.00 4.000 0.200 45.326 0.20 4.000 0.611 

38.620 0.25 4.000 0.520 60.568 0.30 4.000 0.816 

62.397 0.50 4.000 0.841 75.809 0.40 4.000 1.021 

86.186 0.75 4.000 1.161 91.071 0.50 4.000 1.227 

110.040 1.00 4.000 1.482 106.364 0.60 4.000 1.432 

136.118 1.20 4.000 1.738 122.630 0.70 4.000 1.638 

0.95 

14.843 0.00 4.000 0.200 

0.99 

14.843 0.00 4.000 0.200 

27.050 0.10 4.000 0.364 32.107 0.10 4.000 0.433 

39.257 0.20 4.000 0.529 49.372 0.20 4.000 0.665 

51.464 0.30 4.000 0.693 66.637 0.30 4.000 0.898 

63.671 0.40 4.000 0.858 83.909 0.40 4.000 1.131 

75.878 0.50 4.000 1.022 101.219 0.50 4.000 1.363 

88.100 0.60 4.000 1.187 118.638 0.60 4.000 1.596 

100.342 0.70 4.000 1.351 

- - - - - 112.600 0.80 4.000 1.516 

127.393 0.90 4.000 1.680 
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Figure 4.19: Total injected mass versus lower limit reliability for normal probability 

distribution (Case II) 

 

 

Figure 4.20: Total injected mass versus standard deviation of lower limit for normal 

probability distribution (Case II) 
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Shown in Figure 4.19 that total injected mass continuously increases with the 

increase of reliability level for the same standard deviation. Especially after 

reliability level of 0.90, that increase becomes abrupt. For standard deviations of 1.0, 

1.5 and 2.0 there is no feasible solution for high reliability levels and abrupt changes 

cannot be observed. For σ=0, there is no change in the upper limit for any reliability 

level; thus, results are same with the no probability case for all reliability levels.  

Likewise, it can be concluded from Figure 4.20 that total injected mass continuously 

increase with the increase of standard deviation for the same reliability level. Rapid 

increases start to occur when the standard deviation gets closer to the value where 

solution becomes infeasible.  

Comparing Figure 4.17 and Figure 4.19, same increase in the reliability level results 

in much more injection results in the lower limit case for the same standard 

deviation. For example, for the standard deviation 0.50 and increase of reliability 

level from 0.97 to 0.98, upper limit application results in no change in injection 

mass. On the other hand, lower limit application results in 6.429 kg/day increase 

from 84.642 kg/day to 91.071 kg/day. 

Comparing Figure 4.18 and Figure 4.20, range of the standard deviation for the 

feasible solution is much smaller for the lower limit case. Most of the changes occur 

within the range of 0.0 and 1.0 in the lower limit case; whereas, there is no such 

significant range for the upper limit case and small changes occur between 0.0 and 

4.0.  

4.2.2.1.3 Both of the Limits 

Modified maximum/minimum limits and computed total mass injection results can 

be seen in Table 4.15.  

In this case, increment of the standard deviation is taken as 0.10 mostly. For 

reliability level 0.60 analyses give feasible solutions for standard deviations higher 

than 4.0; however, it is not reasonable to have these values so analyses are stopped 

at 4.0. Apart from this, highest analyzed value of the standard deviation is where the 
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solver is unable to find a feasible solution. For example, for reliability level of 0.70, 

the maximum value of the standard deviation is 2.10. Increment is adjusted at 

necessary points in order to observe the changes in the total mass injection in a 

better way. The change of total mass injection versus reliability level for each 

standard deviation is given in Figure 4.21. Similarly, the change of total mass 

injection versus standard deviation for each reliability level is shown in Figure 4.22.  
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Table 4.15: Both of the limits application results with normal probability 

distribution for Case II 

αU-L U(kg/day) σ UL(mg/l) LL(mg/l) αU-L U (kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

14.843 0.00 4.000 0.200 

0.95 

14.843 0.00 4.000 0.200 

16.723 0.10 3.975 0.225 27.050 0.10 3.836 0.364 

18.603 0.20 3.949 0.251 39.257 0.20 3.671 0.529 

20.483 0.30 3.924 0.276 51.464 0.30 3.507 0.693 

22.363 0.40 3.899 0.301 63.671 0.40 3.342 0.858 

24.244 0.50 3.873 0.327 75.905 0.50 3.178 1.022 

33.645 1.00 3.747 0.453 88.181 0.60 3.013 1.187 

52.446 2.00 3.493 0.707 99.020 0.65 2.931 1.269 

71.260 3.00 3.240 0.960 

0.96 

14.843 0.00 4.000 0.200 

90.643 4.00 2.987 1.213 27.835 0.10 3.825 0.375 

0.70 

14.843 0.00 4.000 0.200 40.828 0.20 3.650 0.550 

18.735 0.10 3.948 0.252 53.820 0.30 3.475 0.725 

22.626 0.20 3.895 0.305 66.815 0.40 3.300 0.900 

26.518 0.30 3.843 0.357 79.849 0.50 3.125 1.075 

30.410 0.40 3.790 0.410 95.447 0.60 2.950 1.250 

34.302 0.50 3.738 0.462 

0.97 

14.843 0.00 4.000 0.200 

53.761 1.00 3.476 0.724 28.801 0.10 3.812 0.388 

73.236 1.50 3.213 0.987 42.759 0.20 3.624 0.576 

95.169 2.00 2.951 1.249 56.717 0.30 3.436 0.764 

108.839 2.10 2.899 1.301 70.685 0.40 3.248 0.952 

0.80 

14.843 0.00 4.000 0.200 84.703 0.50 3.060 1.140 

21.089 0.10 3.916 0.284 93.035 0.55 2.966 1.234 

27.335 0.20 3.832 0.368 

0.98 

14.843 0.00 4.000 0.200 

33.581 0.30 3.748 0.452 30.084 0.10 3.795 0.405 

39.827 0.40 3.663 0.537 45.326 0.20 3.589 0.611 

46.073 0.50 3.579 0.621 60.568 0.30 3.384 0.816 

61.688 0.75 3.369 0.831 75.836 0.40 3.179 1.021 

77.336 1.00 3.158 1.042 92.146 0.50 2.973 1.227 

95.728 1.25 2.948 1.252 

0.99 

14.843 0.00 4.000 0.200 

105.457 1.30 2.906 1.294 32.107 0.10 3.767 0.433 

0.90 

14.843 0.00 4.000 0.200 49.372 0.20 3.535 0.665 

24.354 0.10 3.872 0.328 66.638 0.30 3.302 0.898 

33.865 0.20 3.744 0.456 83.967 0.40 3.069 1.131 

43.375 0.30 3.616 0.584 94.860 0.45 2.953 1.247 

52.886 0.40 3.487 0.713 

- - - - - 
62.397 0.50 3.359 0.841 

86.254 0.75 3.039 1.161 

103.840 0.85 2.911 1.289 
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Figure 4.21: Total injected mass versus both limits reliability for normal probability 

distribution (Case II) 

 

 

Figure 4.22: Total injected mass versus standard deviation of both of the limits for 

normal probability distribution (Case II) 
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Shown in Figure 4.21 that total injected mass continuously increases with the 

increase of reliability level for the same standard deviation. Especially after 

reliability level of 0.90, that increase become abrupt. For σ=0, there is no change in 

the upper limit for any reliability level; thus, results are same with the no probability 

case for all reliability levels.  

Likewise, it can be concluded from Figure 4.22 that total injected mass continuously 

increase with the increase of standard deviation for the same reliability level. Rapid 

increases start to occur when the standard deviation gets closer to the value where 

solution becomes infeasible.  

Analyses results of the three case show that lower limit is dominant in the both of 

the limits case. Comparing Figures 4.17, 4.19 and 4.21, same increase in the 

reliability level results in highest injection results in the both of the limits case, 

slightly lower results in lower limit case and lowest results in upper limit case for 

the same standard deviation. For example, for the standard deviation 0.50 and 

increase of reliability level from 0.97 to 0.98, upper limit application results in no 

change in injection mass. On the other hand, lower limit application results in    

6.429 kg/day increase from 84.642 kg/day to 91.071 kg/day and both of the limits 

application results in 7.443 kg/day increase from 84.703 kg/day to 92.146 kg/day.  

Comparing Figures 4.18, 4.20 and 4.22, range of the standard deviation for the 

feasible solution is much smaller for the lower limit and both of the limits cases. 

Most of the changes occur within the range of 0.0 and 1.0 in the lower limit and both 

of the limits cases; whereas, there is no such significant range for the upper limit 

case and small changes occur between 0.0 and 4.0. 

4.2.2.2 Log-Normal Distribution 

Chance constrained optimization formulation by assuming the normal probability 

distribution for chlorine concentration is composed of objective function,       

Equation 2.9, non-negativity constraint, Equation 2.11 and chlorine concentration 

limitation adjusted according to application to the upper limit, lower limit and both. 
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For upper limit, lower limit and both of the limits sections, mean values of 

minimum/maximum concentrations and increment used in the reliability level will 

be same as explained in sections 4.2.1.2.1, 4.2.1.2.2 and 4.2.1.2.3, respectively.  

4.2.2.2.1 Upper Limit 

Modified maximum limits and computed total mass injection results can be seen in 

Table 4.16. It is shown in Table 4.16 that increment of the standard deviation is 

mostly 1.00.For reliability levels ranging from 0.60 to 0.98, analyses give feasible 

solutions for standard deviations higher than 4.0; however, it is not reasonable to 

have these values so analyses are stopped at 4.0. Apart from those, highest analyzed 

value of the standard deviation is where the solver is unable to find a feasible 

solution. For example, for reliability level of 0.99, the maximum value of the 

standard deviation is 3.50. The change of total mass injection versus reliability level 

for each standard deviation is given in Figure 4.23. Similarly, the change of total 

mass injection versus standard deviation for each reliability level is shown in Figure 

4.24.  
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Table 4.16: Results of the upper limit application with log-normal probability 

distribution for Case II 

αU U(kg/day) σ UL(mg/l) LL(mg/l) αU U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

14.843 0.00 4.000 0.200 

0.95 

14.843 0.00 4.000 0.200 

14.843 1.00 3.646 0.200 14.843 1.00 2.588 0.200 

14.843 2.00 3.174 0.200 14.843 2.00 1.645 0.200 

14.843 3.00 2.702 0.200 14.843 3.00 1.066 0.200 

14.843 4.00 2.291 0.200 14.844 4.00 0.719 0.200 

0.70 

14.843 0.00 4.000 0.200 

0.96 

14.843 0.00 4.000 0.200 

14.843 1.00 3.411 0.200 14.843 1.00 2.522 0.200 

14.843 2.00 2.793 0.200 14.843 2.00 1.565 0.200 

14.843 3.00 2.254 0.200 14.843 3.00 0.994 0.200 

14.843 4.00 1.828 0.200 14.846 4.00 0.658 0.200 

0.80 

14.843 0.00 4.000 0.200 

0.97 

14.843 0.00 4.000 0.200 

14.843 1.00 3.154 0.200 14.843 1.00 2.442 0.200 

14.843 2.00 2.404 0.200 14.843 2.00 1.471 0.200 

14.843 3.00 1.824 0.200 14.843 3.00 0.911 0.200 

14.843 4.00 1.404 0.200 14.850 4.00 0.591 0.200 

0.90 

14.843 0.00 4.000 0.200 

0.98 

14.843 0.00 4.000 0.200 

14.843 1.00 2.830 0.200 14.843 1.00 2.340 0.200 

14.843 2.00 1.953 0.200 14.843 2.00 1.356 0.200 

14.843 3.00 1.359 0.200 14.843 3.00 0.812 0.200 

14.843 4.00 0.973 0.200 14.858 4.00 0.512 0.200 

- - - - - 0.99 

14.843 0.00 4.000 0.200 

14.843 1.00 2.188 0.200 

14.843 2.00 1.192 0.200 

14.845 3.00 0.676 0.200 

14.857 3.50 0.521 0.200 
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Figure 4.23: Total injected mass versus upper limit reliability for log-normal 

probability distribution (Case II) 

 

 

Figure 4.24: Total injected mass versus standard deviation of upper limit for        

log-normal probability distribution (Case II) 
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As the distribution of the data is on a much more narrow limits in the use of three 

booster stations (Figure 4.16), changing the reliability level and the standard 

deviation of the upper limit does not affect the analyses results of non-probability 

case in considerable amounts. 

Shown in Figure 4.23 that total injected mass slightly increases with the increase of 

reliability level for the same standard deviation. Only detectable change occurs for 

standard deviation 4.0 and it is only 0.012 mg/l from 14.844 mg/l to 14.858 mg/l.   

For σ=0, there is no change in the upper limit for any reliability level; thus, results 

are same with the no probability case for all reliability levels.  

Similarly, it can be concluded from Figure 4.24 that total injected mass slightly 

increase with the increase of standard deviation for the same reliability level. 

Detectable increases start to occur when the standard deviation gets closer to the 

value where solution becomes infeasible.  

4.2.2.2.2 Lower Limit 

Modified minimum limits and computed total mass injection results can be seen in 

Table 4.17.  

In this case, increment of the standard deviation is 0.01 up to 0.05 and after that 

value increment is taken as 0.10, which can be seen in Table 4.17. Highest analyzed 

value of the standard deviation is where the solver is unable to find a feasible 

solution. For example, for reliability level of 0.97, the maximum value of the 

standard deviation is 1.1. Increment is adjusted at necessary points in order to 

observe the changes in the total mass injection in a better way. For showing the 

effect of standard deviation on total mass injection, only the reliability level up to 

90% is used. This is because standard deviations between 0.01-0.05 are so small to 

create detectable changes for reliability level from 95% to 99%. The change of total 

mass injection versus reliability level for each standard deviation is given in      

Figure 4.25. Similarly, the change of total mass injection versus standard deviation 

for each reliability level is shown in Figure 4.26. 
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Table 4.17: Results of the lower limit application with log-normal probability 

distribution for Case II 

αL U(kg/day) σ UL(mg/l) LL(mg/l) αL U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

14.843 0.000 4.000 0.200 

0.96 

14.843 0.00 4.000 0.200 

15.013 0.010 4.000 0.202 30.354 0.10 4.000 0.409 

15.147 0.020 4.000 0.204 45.082 0.20 4.000 0.607 

15.244 0.030 4.000 0.205 55.083 0.30 4.000 0.742 

15.303 0.040 4.000 0.206 61.177 0.40 4.000 0.824 

15.326 0.050 4.000 0.207 64.785 0.50 4.000 0.873 

0.70 

14.843 0.000 4.000 0.200 66.871 0.60 4.000 0.901 

15.218 0.010 4.000 0.205 68.014 0.70 4.000 0.916 

15.562 0.020 4.000 0.210 68.558 0.80 4.000 0.924 

15.873 0.030 4.000 0.214 68.714 0.90 4.000 0.926 

16.147 0.040 4.000 0.218 

0.97 

14.843 0.00 4.000 0.200 

16.384 0.050 4.000 0.221 32.278 0.10 4.000 0.435 

16.809 0.075 4.000 0.227 50.240 0.20 4.000 0.677 

17.008 0.100 4.000 0.229 63.439 0.30 4.000 0.855 

0.80 

14.843 0.000 4.000 0.200 72.156 0.40 4.000 0.972 

15.461 0.010 4.000 0.208 77.804 0.50 4.000 1.048 

16.063 0.020 4.000 0.216 81.469 0.60 4.000 1.098 

16.642 0.030 4.000 0.224 83.842 0.70 4.000 1.130 

17.194 0.040 4.000 0.232 85.353 0.80 4.000 1.150 

17.715 0.050 4.000 0.239 86.276 0.90 4.000 1.162 

19.757 0.100 4.000 0.266 86.789 1.00 4.000 1.169 

20.835 0.150 4.000 0.281 87.010 1.10 4.000 1.172 

21.150 0.200 4.000 0.285 

0.98 

14.843 0.00 4.000 0.200 

0.90 

14.843 0.000 4.000 0.200 35.026 0.10 4.000 0.472 

15.805 0.010 4.000 0.213 58.021 0.20 4.000 0.782 

16.783 0.020 4.000 0.226 76.543 0.30 4.000 1.031 

17.771 0.030 4.000 0.239 89.878 0.40 4.000 1.211 

18.760 0.040 4.000 0.253 99.295 0.50 4.000 1.337 

19.742 0.050 4.000 0.266 105.984 0.60 4.000 1.427 

24.321 0.100 4.000 0.328 110.798 0.70 4.000 1.492 

30.505 0.200 4.000 0.411 114.293 0.80 4.000 1.539 

33.099 0.300 4.000 0.446 116.846 0.90 4.000 1.573 

33.099 0.400 4.000 0.455 118.810 1.00 4.000 1.598 

0.95 

14.843 0.000 4.000 0.200 120.516 1.10 4.000 1.616 

28.874 0.100 4.000 0.389 123.680 1.60 4.000 1.648 

41.280 0.200 4.000 0.556 

0.99 

14.843 0.00 4.000 0.200 

49.104 0.300 4.000 0.662 39.840 0.10 4.000 0.537 

53.491 0.400 4.000 0.721 72.802 0.20 4.000 0.981 

55.819 0.500 4.000 0.752 102.964 0.30 4.000 1.387 

56.950 0.600 4.000 0.767 131.685 0.40 4.000 1.711 

57.374 0.700 4.000 0.773 - - - - - 
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Figure 4.25: Total injected mass versus lower limit reliability for log-normal 

probability distribution (Case II) 

 

 

Figure 4.26: Total injected mass versus standard deviation of lower limit for        

log-normal probability distribution (Case II) 
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Shown in Figure 4.25 that total injected mass continuously increases with the 

increase of reliability level for the same standard deviation. As comparison is done 

up to the standard deviation value of 0.05, infeasible solution limit is not reached for 

any reliability level. For σ=0, there is no change in the upper limit for any reliability 

level; thus, results are same with the no probability case for all reliability levels.  

Similarly, it can be concluded from Figure 4.26 that total injected mass increase 

with the increase of standard deviation for the same reliability level. When the 

standard deviation gets closer to the value where solution become infeasible, total 

injection start to asymptotically reach its limiting value.  

Comparing Figure 4.23 and Figure 4.25, same increase in the reliability level results 

in much more injection results in the lower limit case for the same standard 

deviation. For example, For example, for the standard deviation 0.50 and increase of 

reliability level from 0.97 to 0.98, upper limit application results in no change in 

injection mass. On the other hand, lower limit application results in 21.491 kg/day 

increase from 77.804  kg/day to 99.295 kg/day.  

Comparing Figure 4.24 and Figure 4.26, most important difference is the attitudes of 

the results. For the upper limit case, total injected mass slightly increase with the 

increase of standard deviation for the same reliability level while total injection start 

to asymptotically reach its limiting value for the lower limit case.  

4.2.2.2.3 Both of the Limits 

Modified maximum/minimum limits and computed total mass injection results can 

be seen in Table 4.18.  

For this case, general increment of the standard deviation is 0.01 up to 0.05 and after 

that value increment is taken as 0.10, which can be seen in Table 4.17. Highest 

analyzed value of the standard deviation is where the solver is unable to find a 

feasible solution. For example, for reliability level of 0.80, the maximum value of 

the standard deviation is 0.20. Increment is adjusted at necessary points in order to 

observe the changes in the total mass injection in a better way. For showing the 
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effect of standard deviation on total mass injection, only the reliability level up to 

90% is used. This is because standard deviations between 0.01-0.05 are so small to 

create detectable changes for reliability level from 95% to 99%. The change of total 

mass injection versus reliability level for each standard deviation is given in      

Figure 4.27. Similarly, the change of total mass injection versus standard deviation 

for each reliability level is shown in Figure 4.28.  
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Table 4.18: Both of the limits application results with log-normal probability 

distribution for Case II 

αU-L U(kg/day) σ UL(mg/l) LL(mg/l) αU-L U(kg/day) σ UL(mg/l) LL(mg/l) 

0.60 

14.843 0.00 4.000 0.200 

0.95 

14.843 0.00 4.000 0.200 

15.013 0.01 3.997 0.202 28.874 0.10 3.838 0.389 
15.147 0.02 3.995 0.204 41.280 0.20 3.680 0.556 

15.244 0.03 3.992 0.205 49.104 0.30 3.526 0.662 
15.303 0.04 3.990 0.206 53.491 0.40 3.378 0.721 

15.326 0.05 3.987 0.207 55.819 0.50 3.234 0.752 

0.70 

14.843 0.00 4.000 0.200 56.950 0.60 3.095 0.767 

15.218 0.01 3.995 0.205 57.374 0.70 2.961 0.773 
15.562 0.02 3.989 0.210 57.413 0.74 2.909 0.774 

15.873 0.03 3.984 0.214 

0.96 

14.843 0.00 4.000 0.200 

16.147 0.04 3.979 0.218 30.354 0.10 3.828 0.409 
16.384 0.05 3.974 0.221 45.082 0.20 3.660 0.607 

16.743 0.07 3.963 0.226 55.083 0.30 3.499 0.742 
16.954 0.09 3.952 0.228 61.177 0.40 3.342 0.824 

17.008 0.10 3.947 0.229 64.787 0.50 3.192 0.873 

0.80 

14.843 0.00 4.000 0.200 66.881 0.60 3.047 0.901 

15.461 0.01 3.992 0.208 68.034 0.70 2.907 0.916 
16.063 0.02 3.983 0.216 68.590 0.80 2.773 0.924 

16.642 0.03 3.975 0.224 68.756 0.90 2.645 0.926 

17.194 0.04 3.966 0.232 

0.97 

14.843 0.00 4.000 0.200 
17.715 0.05 3.958 0.239 32.278 0.10 3.815 0.435 

19.757 0.10 3.916 0.266 50.240 0.20 3.637 0.677 
20.835 0.15 3.873 0.281 63.439 0.30 3.465 0.855 

21.150 0.20 3.830 0.285 72.168 0.40 3.299 0.972 

0.90 

14.843 0.00 4.000 0.200 77.840 0.50 3.140 1.048 

15.805 0.01 3.987 0.213 81.529 0.60 2.988 1.098 
16.783 0.02 3.974 0.226 83.937 0.70 2.842 1.130 

17.771 0.03 3.962 0.239 88.073 0.80 2.703 1.150 
18.760 0.04 3.949 0.253 91.896 0.85 2.635 1.157 

19.742 0.05 3.936 0.266 

0.98 

14.843 0.00 4.000 0.200 

24.321 0.10 3.873 0.328 35.026 0.10 3.799 0.472 
30.505 0.20 3.747 0.411 58.021 0.20 3.605 0.782 

33.099 0.30 3.624 0.446 76.558 0.30 3.420 1.031 
33.738 0.40 3.503 0.455 89.935 0.40 3.243 1.211 

- - - - - 

104.932 0.50 3.074 1.337 
111.455 0.52 3.041 1.358 

0.99 

14.843 0.00 4.000 0.200 

39.840 0.10 3.773 0.537 
72.806 0.20 3.557 0.981 

104.253 0.30 3.351 1.387 
116.270 0.32 3.311 1.458 
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Figure 4.27: Total injected mass versus both limits reliability for log-normal 

probability distribution (Case II) 

 

 

Figure 4.28: Total injected mass versus standard deviation of both of the limits for 

log-normal probability distribution (Case II) 
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Shown in Figure 4.27 that total injected mass continuously increases with the 

increase of reliability level for the same standard deviation. As comparison is done 

up to the standard deviation value of 0.05, infeasible solution limit is not reached for 

any reliability level. For σ=0, there is no change in the upper limit for any reliability 

level; thus, results are same with the no probability case for all reliability levels. 

Likewise, it can be concluded from Figure 4.28 that total injected mass increase with 

the increase of standard deviation for the same reliability level. When the standard 

deviation gets closer to the value where solution become infeasible, total injection 

start to asymptotically reach its limiting value.  

Analyses results of the three case show that lower limit is dominant in the both of 

the limits case. Comparing Figure 4.23, 4.25 and 4.27, same increase in the 

reliability level results in highest injection results in the both of the limits case, 

slightly lower results in lower limit case and lowest results in upper limit case for 

the same standard deviation. For example, for the standard deviation 0.50 and 

increase of reliability level from 0.97 to 0.98, upper limit application results in no 

change in injection mass. On the other hand, lower limit application results in 

21.491 kg/day increase from 77.804  kg/day to 99.295 kg/day and both of the limits 

application result in 27.092 kg/day increase from 77.840 kg/day to 104.932 kg/day.  

Comparing Figure 4.24, 4.26 and 4.28, most important difference is the attitudes of 

the results. For the upper limit case, total injected mass continuously increase with 

the increase of standard deviation for the same reliability level while total injection 

start to asymptotically reach its limiting value for the lower limit and both of the 

limits cases.  

4.2.3 Discussions 

In this part, effects of the chance constraint application on the frequency of the 

chlorine concentration, feasibility limit of standard deviation and uniformity of 

chlorine distribution are given. In addition to these, verification of the results by 

using EPANET will be done. 
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4.2.3.1 Frequency of the Concentrations 

In order to see the effect of changing reliability level and standard deviation on the 

distribution of the data, frequency plot of chlorine concentrations at all consumer 

nodes for different type of distributions and side of applications are given below. In 

order to show the response, comparing application results of Case I is chosen. For 

comparison, reliability levels of 0.90, 0.70 and non-probability case are taken 

mostly. At necessary points 0.60 is also shown on the plots to observe the changes in 

a better way. For each reliability level, limit values of standard deviations are 

presented on the figures.  

Figures 4.29 and 4.30 illustrate the upper limit application of the chance constraint 

for normal and log-normal probability distributions, respectively. It can be seen 

from both of the figures that increasing reliability level of upper limit at low 

standard deviations is not affecting the frequency of the concentrations in great 

extent. As expected, effect can be noticeable at high standard deviations and that 

effect is  increasing reliability results in narrowing down of the interval that data is 

distributed. For example for standard deviation 2.0 at normal distribution, data is 

distributed between 0.2 mg/l and 1.4 mg/l for reliability level of 0.90; whereas 

distribution is between 0.2 mg/l and 3.0 mg/l for reliability level of 0.70. For 

comparison between the two different types of distributions, log-normal distribution 

results in narrower interval.  

Figures 4.31 and 4.32 demonstrate the lower limit application of the chance 

constraint for normal and log-normal probability distributions, respectively. It can be 

concluded from both of the figures that changes in standard deviation is more 

dominant for lower limit application comparing with upper limit application. For 

log-normal distribution similar changes occur with much smaller standard deviation 

values compared with the normal distribution. 

Figures 4.33 and 4.34 show both of the limits application of the chance constraint 

for normal and log-normal probability distributions, respectively. It can be 

understood from both of the figures that both of the limits application narrows down 
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the interval from both of the sides. If these figures are compared with the          

Figures 4.29, 4.30, 4.31 and 4.32 it can be said that lower limit is more effective in  

both of the limits application. 

 

 

 

 

Figure 4.29: Frequency plot of normally distributed upper limit application             
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Figure 4.30: Frequency plot of log-normally distributed upper limit application  

            

 

Figure 4.31: Frequency plot of normally distributed lower limit application             
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Figure 4.32: Frequency plot of log-normally distributed lower limit application    

 

          

 

Figure 4.33: Frequency plot of normally distributed both of the limits application             
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Figure 4.34: Frequency plot of log-normally distributed both of the limits 

application  
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For normal distribution, it can be concluded from the figures that increasing the 

reliability level of the network results in a decrease in the highest standard deviation 

value which gives feasible solution. For upper limit results in both of the figures, 

there exist standard deviations of 4.0. These nodes are not limiting values of 

standard deviations but the values at which the analyses are stopped.  

For log-normal distribution, it can be concluded from the figures that increasing the 

reliability level of the network results in an increase in the highest standard 

deviation value which gives feasible solution up to a point. However, for high 

reliability levels, this behavior changes and highest standard deviation value which 

gives feasible solution starts to decrease with the increase of reliability level. For 

example, for the lower limit application of Case I (Figure 4.35), limiting standard 

deviation value is 0.75 for reliability level of 0.95 and after that reliability level it 

start to decrease. This is due to the formulation of log-normal distribution as it is 

explained in section 4.2.1.2.2.  

For upper limit case in log-normal distribution, same standard deviation results in 

lower changes in the limits compared with normal distribution. Thus, higher limiting 

standard deviations can be obtained in the analyses of log-normal distribution which 

results in lower cost for the same standard deviations of different type of 

distributions. 

For both of the cases and distribution types, it can be seen from the figures that 

lower limit is more effective in both of the limits application and standard deviation 

is more critical for lower limit and  both of the limits application.  
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Figure 4.35: Feasibility limits of standard deviation values for Case I 

 

 

Figure 4.36: Feasibility limits of standard deviation values for Case II 
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Comparing Case I and Case II, amount of standard deviation is much more critical 

in lower limit case than the upper limit case in Case II as the gap is narrower in 

which the concentration data is lying (Figure 4.16).  

4.2.3.3 Uniformity of Chlorine Distribution 

In order to see the effect of changing reliability level and standard deviation on the 

uniformity of chlorine distribution, 24 h analysis of chlorine concentrations for 

consumer nodes are checked for different type of distributions and side of 

applications. In order to show the response results Case I is chosen. Two end nodes 

of the network are selected to show the effect which are Nodes 34 and 36. Figures 

4.37 and 4.38 gives the analyses results of Node 34 for normal and log-normal 

distributions, respectively. Similarly, Figures 4.39 and 4.40 gives the analyses 

results of Node 36 for normal and log-normal distributions, respectively.  

For normal distribution, which can be seen from Figures 4.37 and 4.39, increasing 

the reliability level of upper limit results in increase of the uniformity of chlorine 

distribution of consumer node throughout its 24 h period. Moreover, for lower and 

both of the limits applications higher concentration values are obtained as the lower 

limit increases. Uniformity is increasing as the difference between the peak and the 

lowest value is decreasing with the increase in reliability level. For example for 

normal distribution of Node 34 (Figure 4.37), the maximum difference is 

approximately 1.5 mg/l for reliability level of 0.50 and 1.0 mg/l for reliability level 

of 0.90. 

For log-normal distribution, which can be seen from Figures 4.38 and 4.40, reaction 

is similar with the normal distribution, increasing the reliability level of all 

applications result in increase of the uniformity of chlorine distribution of consumer 

nodes. Although there are peaks for lower and both of the limits applications, these 

peaks are smaller than the non-probability case. 
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Figure 4.37: 24 h analyses results of Node 34 for normal distribution 

 

 

Figure 4.38: 24 h analyses results of Node 34 for log-normal distribution 
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Figure 4.39: 24 h analyses results of Node 36 for normal distribution 

 

 

Figure 4.40: 24 h analyses results of Node 36 for log-normal distribution 
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4.2.3.4 EPANET Verification  

In the analyses, response coefficient matrix is calculated by the program developed 

by Sert (2009). The code of the program uses the water quality of the EPANET 

externally and give the response coefficient values up to 20 digits. When the system 

is solved by EPANET directly it gives results with 2 digits. Thus, there occurs 

difference between the results of analyses which are done by program output and 

direct EPANET results. It should be noted that, system is solved for 960 h and the 

results of last 24 h are used for both developed program and solving with EPANET 

manually. In order to see the difference, three sample nodes are chosen as Node 2 as 

being near the source node, Node 15 as being in the middle of the network and Node 

36 as being at the end of the network. For these nodes, booster mass injection values 

calculated by chance constrained LP model are entered to the EPANET manually 

and system is solved by EPANET. Results of the LP model formulation and 

EPANET are compared in Figures 4.41, 4.42 and 4.43 for Node 2, Node 15 and 

Node 36, respectively. For the comparison, reliability level of 0.90 and standard 

deviation value of 0.5 is used for all three nodes.  

As it can be seen from figures that the difference between the results increase as the 

distance between the selected node and the source increases. This may be due to 

several reasons. One of the reasons is the difference of the digits used in the program 

and EPANET. Although this difference is negligibly small when calculating the 

response coefficient matrix, it becomes noticeable when it is multiplied with the 

booster mass injection matrix to calculate the chlorine concentration values.  

Another reason for the difference is the uncertainty in the decay kinetics of the 

chlorine. Node 2 is near the source node so it is affected from the uncertainties 

resulting from the decaying much less than Node 36, which is at the end of the 

network.  
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Figure 4.41: Verification of the chlorine concentrations for Node 2 

 

 

Figure 4.42: Verification of the chlorine concentrations for Node 15 
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Figure 4.43: Verification of the chlorine concentrations for Node 36 
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 CHAPTER 5 

5. CONCLUSIONS AND RECOMMENDATIONS   

5.1 Summary and Conclusions 

The subject in this study is the application of the chance constrained optimization of 

booster disinfection in a water distribution network. The main aim of the 

optimization is to minimize the total mass injected to the system while maintaining 

the chlorine concentrations within limits at each consumer node. Chlorine 

concentration is limited between upper and lower bounds in order to supply water to 

the network with sufficient quality. The lower bound is set by considering the 

biological regrowth into consideration and the upper bound is set by considering the 

taste and odor problems. It should be noted that, at high concentrations, formation of 

disinfectant by-products, DBP, which can lead to serious health problems. 

As high amount of chlorine concentration results in increasing health risk, it is 

desirable to have chlorine concentrations as low as possible without violating the 

minimum limit. In addition to that, it is favorable to obtain uniform concentration 

distributions over the 24 h periodic cycle for all consumer points.  

As nothing is as certain as it is modeled, probabilistic approach is taken into 

consideration for more realistic and reliable results. For the disinfection in a water 

distribution network, the component that has random characteristic is considered to 

be the chlorine concentration. This randomness is resulting from the space and time 

dependent decaying property of the chlorine. The only way to consider uncertainties 
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is to obtain the probability distribution of this random variable. Normal and log-

normal probability distributions are selected for the reliability analyses as they are 

the most frequently used ones for continuous random variables. Another reason for 

selecting log-normal distribution is that it is suitable for chlorine concentration 

which cannot be negative. 

Analyses are done by applying chance constraint to the upper limit, lower limit and 

both of the limits for two cases which are conventional case, Case I and two booster 

stations and one source case, Case II. In conventional case, chlorine injection is done 

only from the source node and in the second case, injection is done from the three 

nodes selected by the previous work of Sert (2009). As the objective function and 

constraints are linear for all cases, a linear programming solver is used for the 

analyses. In the light of these studies, the following conclusions are reached: 

1) Increasing reliability level of the network results in increasing total injected 

mass for the same standard deviation as it is expected. The main difference 

between two types of probability distributions is the behavior of the increase. 

For upper limit, lower limit and both of the limits application of normal 

distribution, increase becomes abrupt, especially after reliability level of 

0.90. In log-normal distribution, for upper limit that increase becomes abrupt 

after reliability level of 0.90 for the standard deviation values that access the 

feasibility limit in the analyses. For lower limit and both of the limits 

applications, comparison can be made between small standard deviation 

values. So feasibility limit is out of discussion and there is no opportunity to 

observe abrupt changes.  

Comparing three application types of both of the distributions, same increase 

in the reliability level results in highest injection results in the both of the 

limits case, slightly lower results in the lower limit case and lowest results in 

the upper limit case for the same standard deviation. Analyses results of the 

three case show that lower limit is dominant in the both of the limits case. 
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2) Increasing standard deviation results in increase of the total injected mass for 

the same reliability level. Same with the reliability level, the main difference 

between two types of probability distributions is the behavior of the increase. 

For upper limit, lower limit and both of the limits application of normal 

distribution, abrupt increases start to occur when the standard deviation gets 

closer to the value where solution becomes infeasible. In log-normal 

distribution, for upper limit, rapid increases start to occur when the standard 

deviation gets closer to the value where solution becomes infeasible. For 

lower limit and both of the limits case, total injection start to asymptotically 

reach its limiting value. 

Comparing three application types, feasibility range of the standard deviation 

is narrower in the both of the limits case, slightly wider in the lower limit 

case and widest in the upper limit case. This is resulting from the degree of 

effect of standard deviation in the application side. Changes in the standard 

deviation is more critical for lower limit compared with upper limit and 

analyses of the results show that lower limit is dominant in both of the limits 

case. 

 

3) Increasing reliability level of upper limit at low standard deviations is not 

affecting the frequency of the concentrations in great extent. The effect can 

be noticeable at high standard deviations and that effect is increasing 

reliability results in narrowing down of the interval that data is distributed. 

Changes in standard deviation are more dominant for lower limit application 

comparing with upper limit application. Both of the limits application 

narrows down the interval from both of the sides. For comparison between 

the two different types of distributions, log-normal distribution results in 

narrower interval and similar changes occur with much smaller standard 

deviation values compared with the normal distribution. 
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4) Increasing the reliability level of the network results in a decrease in the 

highest standard deviation value which gives feasible solution for the normal 

distribution. On the other hand, for the log-normal distribution, increasing 

the reliability level of the network, results in an increase in the highest 

standard deviation value which gives feasible solution up to a point. 

However, for high reliability levels, this behavior changes and highest 

standard deviation value which gives feasible solution starts to decrease with 

the increase of reliability level. This is due to the formulation of log-normal 

distribution. 

Another aspect is same standard deviation results in lower changes in the 

limits for log-normal distribution compared with the normal distribution. 

Thus, higher limiting standard deviations can be obtained in the analyses of 

log-normal distribution which results in lower cost for the same standard 

deviations of different type of distributions. 

 

5) Uniformity of chlorine distribution increases with the increasing reliability 

for both of the distributions. For lower limit and both of the limits 

application of the normal distribution, this increase occurs as more uniform 

spans with the distribution of peak values. Likewise, there exist peaks at the 

lower limit and both of the limits applications of the log-normal distribution; 

however, these peaks are smaller than the non-probability case. 

 

6) Range in which the chlorine concentration data is lying is narrower in      

Case II compared to Case I as three different booster stations are used in 

Case II. Hence, lower limit and both of the limits application of Case II is 

more sensitive to standard deviation changes. Similarly as data distribution is 

built up on smaller concentration values, upper limit application is less 

sensitive to standard deviation changes.  
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5.2 Recommendations 

In this research, analyses for both of the limits are done by taking same standard 

deviation value for upper and lower limits. For the same reliability level lower limit 

is more sensitive to the changes in standard deviations. Thus, while a small 

increment in the standard deviation creates a significant difference in the results of 

lower limit application, its effect become negligible in the upper limit. Hence, for a 

future study, using different standard deviations for upper and lower limits may be 

tried.  

Moreover, since the chlorine distribution used in this study is unknown, mean values 

and probability distributions are decided logically. For a future recommendation, 

same analyses can be applied on a network with known chlorine data. In this way 

uncertainty will be reduced and reliability of the model can be checked in a more 

realistic way.    
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