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ABSTRACT

FPGA IMPLEMENTATION OF A NETWORK-ON-CHIP

Kiling, ismail Ozsel

M.Sc., Department of Electrical and Electronics Engineering

Supervisor  : Assoc. Prof. Dr. Ciineyt Bazlamacc1

September 2011, 93 pages

This thesis aims to design a Network-on-Chip (NoC) that performs wormhole flow
control method and source routing and aims to describe the design in VHDL
language and implement it on an FPGA platform. In order to satisfy the diverse
needs of different network traffic, the thesis aims to design the NoC in such a way
that it can be modified via a user interface, which changes the descriptions in the
VHDL source code. Network topology, number of router ports, number of virtual
channels, buffer size and flit size are the features of the designed NoC that can be
modified. In this thesis, interfaces and operations of the blocks in the NoC are
defined through block diagrams and algorithmic state machines. Verification of
these blocks is performed not only on computer environment via simulations tools,
but also in real world. To achieve this, source nodes generating dummy flits are also
designed which communicate with our user interface via RS-232 generating flits
according to the information provided by the user and monitoring the received flits

from other source nodes in real-time.

Keywords: On-Chip Networks, NoC, FPGA
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FPGA ILE BIR YONGA-ICI-AG GERCEKLEMESI

Kiling, ismail Ozsel

Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Dog. Dr. Ciineyt Bazlamagc1

Eyliil 2011, 93 sayfa

Bu tez solucan deligi akis denetimi ve kaynak yonlendirme yapan bir Yonga-i¢i-Ag
(YiA) tasarlamay1 ve bu tasarimi VHDL dilinde tanimlayip FPGA platformunda
uygulamay1 hedefler. Farkli tiirdeki ag trafik ihtiyaglarini karsilamak icin, bu tez
tasarlanan YiA’yr VHDL kaynak kodundaki tanimi degistiren kullanici araytizii
aracilig1 ile degistirilebilir olarak tasarlamay1 hedefler. Ag topolojisi, yonlendirici
baglantilarin ve sanal kanallarin sayisi, arabellek ve flit boyutu bu tasarlanan
YiA’nin degistirilebilir 6zellikleridir. Bu tezde, YiA’daki bloklarin araytiizleri ve
islemleri blok ¢izenegi ve algoritmik durum makinalar1 araciligi ile tantmlanmustir.
Bu bloklarin dogrulamasi sadece bilgisayar ortaminda simiilasyon araglar1 ile degil,
ayni zamanda ger¢ek diinyada da yapilmistir. Bunu gergeklestirmek i¢in, kullanici
tarafindan verilen bilgiye gore flit iireten ve gergek zamanda diger kaynak
diigiimlerden alinan flitleri gézlemleyen RS-232 araciligiyla kullanici arayiizi ile
iletisim kuran yapay flit iireten kaynak digiimleri de bu tez kapsaminda

tasarlanmustir.

Keywords: Yonga-i¢i-Ag, YiA, FPGA
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CHAPTER 1

INTRODUCTION

As a result of developing technology, bits needed to describe the available
information are increasing day by day. To keep pace with this excess demand, chips
should process and transfer data more and more quickly. Until today the developers
have made an effort to reduce the switching delay of flip-flops which directly
affects the computation speed of the chip instead of dealing with the delay due to
wires between the flip-flops, because the communication delay due to wires was
negligibly small in comparison to computation delay due to flip-flops. However, the
communication delay today is not negligible any more. Switching speed of the flip-
flops increased dramatically so communication delay now starts to be a limit in the
bit rate. As a consequence of these developments, designers now focus on

communication inside the chip [1].

Most of the contemporary chips use a bus structure between the blocks inside the
chip [2]. As the chip size expands and block count increases, wire lengths in the bus
also expand. This results in an overhead in the transmission delay on the bus due to
capacitive effect. The other way to connect the blocks inside chip is to link them by
using dedicated wires between each two of them. From transmission speed point of
view, this method is the best that can be achieved, but from productivity and
scalability point of view, this is the worst. Since this is an ad-hoc method, for each
new design with new blocks, a designer should redesign the links between them
from scratch. The number of communication links is in the order of N* where N is

the number of blocks. Hence designers should find an intermediate way that meets



the advantages of the two methods. The new method should be shared as a bus
structure and should also be end-to-end using dedicated links. In other words it
should be a shared end-to-end medium, which is the definition of a network.
Therefore a simplified version of the general computer networks is proposed to be

used for communication inside the chip and is called Network-on-Chip (NoC) [3].

At first view, NoCs and today’s computer networks are similar to each other in
terms of their main functions. Their purpose is to provide communication between
distributed terminals over a shared medium. Depending on the type of the network,
either a temporary connection between source and destination is established or
packets which include source and destination addresses are generated to achieve
this purpose. Even if the purpose is identical, NoCs differ from computer networks
in their application domain. For computer networks, any terminal is far away from
another one in terms of meters or even kilometers so that the medium is affected
dramatically by noise and attenuation on the links (cables). However in NoCs, the
scale decreases to the order of micrometers or even nanometers. As a result NoCs
do not suffer from noise mechanisms and attenuation as much as computer
networks. Due to these advantages, a reduced layered structure can be applied to
NoCs. These layers can be considered as physical layer, network layer, transport
layer and application layer [4]. Each layer is implemented by different units of the

NoC architecture.

Because of its advantages over other communication structures, circuit designers
have started to prefer on-chip networks. Although there are several proposed and
implemented examples [5], unlike on-chip buses, a standard has not been defined

for on-chip networks yet.

In this thesis, an example on-chip network is designed, implemented on FPGA and
verified both on computer environment and on real-time. Implemented NoC

performs wormhole flow control and source routing. In order to use it for different



types of network traffic, some properties of the NoC such as topology, virtual
channel number, buffer depth and flit size can be modified. According to user needs
and parameters, required VHDL source codes are generated via the provided user
interface and NoCs created by these source codes can be used instead of other
communication structures in existing systems. For example, in ASELSAN shared
bus structures are used for system on chips with a single master unit and crossbar
structures are used for systems with multiple masters. As a product of this thesis
work, on-chip network structures are now available to be used with their supreme
advantages. Even though some of the existing NoC examples are open source, they
are not preferred to be used in military applications due to reliability and possible
licensing issues in future. Also to keep up with the new improvements and to
enhance our NoC according to new requirements that will arise in the future,
developing our own design for such a recently introduced topic is preferred instead

of importing existing designs.

In Figure 1.1, the road map followed to obtain our NoC is given. At first, NoC with
specific characteristics is designed and described in VHDL language. Then, VHDL
source codes are simulated on computer environment. As the next step, source
nodes generating dummy traffic and serial communication interface to control and
monitor the traffic generated by these nodes are designed. Together with these
auxiliary blocks, the designed NoC is implemented on FPGA platform. After the
verification of our NoC in real-time, VHDL source nodes are generalized and

parameterized to span various topologies, buffer sizes, VC numbers and flit sizes.

Organization of the thesis is parallel to the design flow chart. Basic concepts and
background information about on-chip networks will be given in the second
chapter. Some of the existing NoC examples will also be summarized. In the third
chapter, building blocks of the implemented NoC will be explained in detail. Their
operation will be described through block diagrams and algorithmic state machines.

Then, in the fourth chapter, verification of these blocks will be carried out both in



computer environment and in real-time. Waveforms obtained in simulation of
specific scenarios will be presented. Two user interfaces developed for traffic
generation in real time implementation and for creating our VHDL source codes
will also be described. And finally, the thesis will be concluded with possible

enhancements that can be carried out in the future.

Design of NoC in spidergon topology composed
of 8 routers with 4 ports and 2VCs

<

Describing the designed NoC in VHDL

<

Simulation of VHDL source codes on computer
environment

<

Design of source nodes generating dummy traffic
and serial communication interface to contol and
monitor traffic

~

Implementation of the designed NoC together
with dummy source nodes on FPGA platform.

~

Verification of the designed NoC in real-time by
using dummy source nodes.

<

Generalizing and parameterizing of the VHDL
source codes to span various topologies, buffer
sizes, VC numbers and flit sizes.

Figure 1.1: Flow Chart to be Followed



CHAPTER 2

ON-CHIP NETWORKS

A typical example of NoC equipped systems-on-chip, which is composed of three
distinct types of units, is illustrated in the Figure 2.1. IP cores are the units whose
communication needs will be met. They transmit and receive data packets
throughout the network. Network interface units split packets generated by IP cores
into flits which are ready to be injected into the network. At the same time they
combine ejected flits and constitute packets ready to be transmitted to IP cores.
Router blocks, fundamental components of the Network-on-Chip, lead flits from
their sources to their destinations. During its transmission, a flit passes through

multiple routers.

NETWORK NETWORK
INTERFACE INTERFACE
UNIT UNIT IP CORE

IP CORE

NETWORK NETWORK
INTERFACE INTERFACE
UNIT UNIT IP CORE

IP CORE

Figure 2.1: Typical NoC Equipped SoC Example



In this chapter, firstly on-chip networks will be compared to other widely used
communication structures in systems-on-chips. Then, they will be analysed in
relation to off-chip networks. In the third section, basic concepts of NoC will be

examined; and finally, existing NoC examples will be reviewed.

2.1 COMMUNICATION STRUCTURES IN SYSTEMS-ON-CHIP

In Figure 2.2, examples of basic communication structures for Systems-on-Chip are

given. Each structure has both advantages and disadvantages over others.

The bus structure is a well-known one, which can be implemented easily. However,
as the number of units in the system increases, capacitive load on the bus also
increases. This side effect causes an increase in power consumption and latency.
Although poorly scalable, an intermediate solution between bus structure and
dedicated point-to-point links is a crossbar, which still has some of the drawbacks

of the bus.

Dedicated point-to point links offer optimum solution for bandwidth, resource
usage, latency and power consumption [6]. Even though it is easy to design such a
system, reusability and flexibility are problem areas for these structures. In order to
add a new unit to the system, a designer has to remodel the existing units. Another

disadvantage is the O(n?) growth of links with increasing number of units.

On the other hand, a data-routing network can be considered as the best solution for
maximum flexibility and scalability. Identical networks can be used for diverse
systems and identical routers can be used in diverse networks. Furthermore, because
of point-to-point links, performance of such a system does not change with scaling
and multiple transmissions can occur simultaneously inside the network. On the

other hand, design complexity and latency due to contention are considerable



handicaps of on-chip networks. Table 2.1 presents a comparison between on-chip

buses and on-chip networks.

‘ Memory ‘ ‘ Memory ‘ Memory ‘
. e 1 o |
A\ % g~
f I ﬁ*——" -;J
B / A
Keypad DSP Keypad DSP Keypad DSP
a) bus b) point-to-point c) network

Figure 2.2: Communication Structures for Systems-on-Chip [6].

Table 2.1: Comparison of On-Chip Buses and On-Chip Networks [6].

On-Chip Buses On-Chip Networks
Due to paracitic capacitance, latency Due to point-to-point one way links
and power usage increase with each - | + | between routers, performance does
new attached unit. not change with scaling.
All units share the limited bandwidth.

. Bandwidth also increases with the
Each new attached unit decreases the | - |+

available bandwidth. addition of new units.

Arbiter is specific to the system and .. i ..
D i Distributed routing decisions are made

delay due to arbitration increases with | - | +
by reuseable routers.
number of masters.

Latency is constant after the bus is Latency can increase because of

granted by the unit. network contention.
Easy to design due to simple and well N More difficult to design due to new
understood concepts. concepts.




2.2 ON-CHIP NETWORKS VS. OFF-CHIP NETWORKS

On-chip networks operate as simplified versions of the off-chip networks due to
unique VLSI constraints. These constraints limit the routers of the network in terms
of area and power. Thus, light weight and hardware implemented protocols are
implemented in routers, which are connected by short, reliable point-to-point links
with high bandwidth. Routers and links are not affected by dynamic changes unlike

the ones in off-chip networks [7].

On-chip communication is composed of well-defined interacting layers similar to
computer networks. A simplified version of the ISO-OSI reference model can be
adapted for typical on-chip networks. Although it is treated differently in various
approaches, physical, network, transport and application layers are the usually

applied ones. Applied layers, for example, Spidergon STNoC design [8] is
illustrated in Figure 2.3.

Application &
05

| Software Framework |

Transport | Network Interface

Metwork | | Router |

‘ Physical ‘ Link

Spidergon STHoC

Figure 2.3: Layers in Spidergon STNoC Design [8].



2.3 BASIC CONCEPTS IN NETWORK-ON-CHIPS (NOCS)

2.3.1 Topology

Network topology describes the layout of the routers and connections between
them. Topology affects network performance and cost dramatically. For instance, as
the number of the routers that a flit must traverse increases, latency and power
consumption also increase. Topologies are generally compared according to

performance and cost metrics that are summarized in Table 2.2.

Topologies can be classified as direct and indirect. In direct topologies each router
is attached to several other routers of the network and at least one IP core. Thus
number of routers and IP cores are equal. Ring, octagon, spidergon, mesh and torus
are major examples for direct topologies. Today, direct topologies are preferred on
most designs. On the other hand, in indirect topologies there exist routers that are
attached only to other routers. In these topologies number of routers is greater than
the number of IP cores. Crossbar and multistage interconnect networks are

examples for indirect topologies [8].

In this thesis study, only direct topologies are implemented. Connection diagrams
and detailed information about these topologies will be given in section 3.2. Also
influence of applied topology on performance and cost metrics will be discussed.

For more information on topological issues, reader may see [9] and [10].



Table 2.2: Performance and Cost Metrics of Topologies

Metric Definition

Network Size The number of IP cores connected to network.

The number of routers, cross points, communication

Network Cost . . . .
W links, wire length, wire density etc.
S Possibility for enlarging the network without changing
Extendibility
the topology.
Node Degree The number of edges connected to a router.
Network Degree Maximum node degree in the network.

Edge Bisection Width | Wire density in the network

. Maximum router count on the shortest path between any
Network Diameter
two IP cores.

) Avarage router count on all the shortest paths between
Avarage Distance IP cores

Connectivity Ability to operate in the case of disabled components.

2.3.2 Routing Algorithm

Figure 2.4 presents a classification of routing algorithms. Depending on the number
of the destination, routing algorithms can be classified as unicast, in which packets
have single destination, or multicast, where packets are destined to multiple nodes.
Unicast routing has four categories according to the place where the routing
decisions are made. In source routing, route is decided before the packet is injected

into the network while in distributed routing, decision are taken inside the network
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during the transmission of a packet. A single unit makes the decision in centralized
routing. All routing decisions can be implemented either by using lookup tables or

finite state machines.

Adaptability is another classification criterion. For the given source and destination
nodes, if the routing algorithm always decides on the same route, this kind of
routing is called deterministic, which generally chooses the shortest path between
the nodes. XY, north first, south first, east first, west first, across first, across last
routings are examples of deterministic routing. Unlike deterministic routing,
adaptive routing takes also network traffic into account. Implementation of adaptive

routing algorithms is more complex and costly than deterministic routing algorithms

[11].

‘ Routing Algorithms ‘

A
— T
Number of Unicast Routing ‘ Multicast Routing ‘
Jlesimitmn‘s/’, S
Centralized Routing ‘ ‘ Source Routing ‘ ‘ Distributed Routing ‘ ‘ Multiphase Routing ‘
Routing Decisions T |
v v
Lookup Table ‘ ‘ Finite State Machines ‘
Implementation _—
~ «— ——— Sa
‘ Deterministic Routing ‘ ‘ Adaptive Routing ‘
Adaptability X
_A,-——-—""""f X
‘ Progressive ‘ ‘ Backtracking ‘
Progressiveness
— 0 09—
‘ Profitable ‘ ‘ Misrouting ‘
Minimality -
4_---—'-_--_— —__‘_—_-“———-_L
‘ Complete ‘ ‘ Partial ‘
Number of Paths

Figure 2.4: Classification of Routing Algorithms [12]
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In progressive routing algorithms flits are not allowed to backtrack. Profitable
(greedy) algorithms are also progressive because flits come closer to the destination
in every routing decision. Deterministic routing algorithms are generally profitable.
And final classification can be done as complete or partial routing according to

number of paths considered.

In this thesis, source routing is implemented using finite state machines. Routing
information is stamped to the header flit of the packet before it is injected into the

network. More information about NoC routing algorithms exists in [13] and [14].

2.3.3 Flow Control (Switching) Methods

Buffer and link allocations are performed by flow control mechanisms which are
classified by the granularity of the allocated resources. As shown in Figure 2.5
messages, before been injected into the network, are divided into packets, packets
into flits and flits into phits. Size of the smallest segment determines the flow

control method.

Message
Packet ~—_
Header -EHHHRHHWH
L 1]
Head flit — Body flit . Body flit  Tail flit
T T
T ey
/-"” H‘MR
Fit [ ] ] | | |

Phit Phit Phit

Figure 2.5: Messages, Packets, Flits and Phits [4]
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A classification of flow control mechanisms is given in Figure 2.6. In circuit
switching, resources are allocated for messages. Link pre-allocation takes place and
links are reserved to the entire message. Thus, buffers are not needed at each router.
A router architecture performing circuit switching is proposed in [15]. In store-and-
forward and virtual-cut-through techniques messages are segmented into packets
and packets are switched through the network as proposed in [16]. In store-and-
forward, before forwarding to the next one, routers wait for the entire packet to be
stored. This mechanism causes long delays in routers and needs large buffer space
for the entire packet. In order to prevent delays, virtual-cut-through flow control
starts to forward packet to the next router before the entire packet is stored.
However, packet-sized buffers are still needed in this method. Flit-based flow
control mechanisms emerged as a solution to large buffer area requirements of other

flow control mechanisms.

Wormhole flow control operates in a way similar to the virtual-cut-through method.
However in wormhole, availability of single flit sized empty buffer space in next
router is enough for transmission. Therefore, main difference between these two
methods is the necessary buffer space in the routers. During the transmission of a
packet, header flit of that packet constructs a path in the network which is followed
by other flits of the same packet. Although buffer allocation is done in units of flits,
links are allocated for the entire packet which results in inefficient use of links.
Then, if the header cannot proceed inside the network, whole packet is blocked

Thus, allocated links are left idle. For more information please see [11] and [12].
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Switching

Techniques
v v
Circuit Switching Packet Switching
\
v v v
Wormhole Store-and-Forward Virtual Cut
Switching Switching Through

Figure 2.6: Classification of the Flow Control Mechanisms [12]

Wormhole flow control is the most common switching technique for both
commercial off-chip network routers and on-chip network routers since it allows
affordable and fast routers [11]. Also in this thesis study, wormhole flow control is
preferred because of its convenience for power, timing and area constraints of on-
chip networks. Store-and-forward, virtual-cut-through and wormhole mechanisms

are compared in Figure 2.7 in terms of their timing performance.

14



o
T
o
ER
R
=R

a) Store and Forward

H|B‘B‘B|T

H|B|B‘B‘T

[V I ST

Location

w[efe]e]r]
H|B|B|B|T

01 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24

]

Time

ofule|e|e|r b) VCT O‘H 8 g | gl | Wormhole

1 H{B|B|B|T 1 H| B elelt
c H|B|B|B|T T
-E 2 c 2 Contention | H [ B [ B | B | T
T 5 Contention | H| B | B |81 o
e m HI B|B|B|T
- 8 H|B|B|B|T § 5

2 H|B|B|B|T
0012 3 456 7 8 9 1011
Time 01 2 3 456 7 8 91011

Figure 2.7: Timing Comparison of Flow Control Mechanisms [7]

a) Store-and-Forward b) Virtual-Cut-Through ¢) Wormhole

2.3.4 Virtual Channels

Virtual channels can be defined as multiple parallel queues (buffers) in routers.
Virtual channels share the physical channel and arbitrate for it on a cycle basis.
They are used to avoid deadlocks and head-of-line blocking problems. When a
packet in one of the virtual channels is blocked, packets in other virtual channels
can continue to be transferred. Thus, performance of networks is improved by the

implementation of virtual channels in routers [17, 18].

Virtual channels can be implemented for all flow control methods mentioned in the
previous section. However, since the integration of virtual channels to wormhole
flow control mechanism solves the problem of inefficient link usage which is
encountered especially in this mechanism, wormhole flow control method with VCs

becomes the perfect choice for on-chip networks.
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In this thesis the number of virtual channels can be selected via our configuration
tool presented in this thesis. However, for the sake of simplicity, components of the
NoC applying wormhole flow control with two VCs will only be examined in detail

in the following chapters.

2.3.5 Buffer Organization and Backpressure

Network performance is directly related with the buffer organization. Buffers can
exist both on the input ports and output ports. Output buffering is needed when
speedup of a switch is required to be greater than one. Only input buffers are
preferred in the routers of existing on-chip networks. Input buffering can be
implemented by three different ways such as single-fixed-length queue, multiple
fixed-length queues and multiple variable-length queues, which are shown in Figure
2.8. Multiple queues are used in routers with virtual channels. In variable-length
queues, virtual channels share a large buffer according to a ratio changing

dynamically with respect to network traffic [7].

Packet dropping is not allowed in most on-chip networks. Thus, a backpressure
mechanism is required to stall the traffic. Availability of free space in buffers is
signaled to neighbor routers via two commonly used mechanisms. In credit-based
approach, number of available buffers is tracked [12]. In on-off backpressure
approach, an on-off signal is generated according to a determined threshold. In this
thesis study, multiple fixed-length buffers with credit-based backpressure

mechanism are applied.
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Figure 2.8: Input Buffer Types [7]

2.3.6 Allocators and Arbiters

Allocators are used to match multiple requests to multiple resources and arbiters are
used to match multiple requests to a single resource. Allocators and arbiters are
needed to distribute the resources of routers, namely the output virtual channels and
switch ports. Thus two distinct allocation mechanisms are required. Virtual-channel
allocation is performed for only header flits and VCs are allocated to entire packet,
while switch allocation is performed for all the flits and switch ports are allocated

on flit basis [7].

There exist several allocation and arbitration mechanisms. Round-robin, matrix
(least-recently-used), first-come-first-serve, priority-based, priority-based-round-
robin are examples for these mechanisms. Round-robin arbiter gives the lowest
priority to the last served request in the next arbitration while matrix arbiter gives

the highest priority to the least recently served request [12].

In this thesis study, round-robin arbitration is applied in both virtual channel

allocation and switch allocation blocks of the routers implemented.
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2.3.7 Switches

Packets are transported from input ports to output ports via switches. In this thesis,
like other blocks, crossbar switches used in our routers are described as VHDL
entities and synthesized for FPGA platforms. Since there exists no ready-to-use
crossbar core in FPGA, these switches are composed of multiple multiplexers. As a
result these switches cannot operate at higher clock frequencies as crossbar based
switches. In Figure 2.9, a crossbar switch implementation composed of multiplexers
is given and in Figure 2.10, a 5x5 crosspoint crossbar switch of w bits wide is

illustrated.
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Figure 2.9: Crossbar Composed of Multiplexers [7]
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Figure 2.10: 5x5 Crosspoint Crossbar Switch [7]
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24  EXISTING NoC EXAMPLES

In this section, some of the existing NoC implementations will be briefly reviewed.

SPIN [19], The Scalable Programmable Integrated Network, uses indirect fat-tree
topology with two one-way data path in 32 bits width. Wormhole switching is
implemented in SPIN.

QNOC [20, 21], The Quality of Service NoC, uses direct network with irregular
mesh topology. Wormhole switching, credit-based backpressure mechanism and
XY minimal routing are implemented by QNoC which is developed by Technion in

Israel.

The SOCBUS NoC [15] uses direct 2-D mesh topology. Deadlock free circuit
switching is applied in the SOCBUS NoC, which is developed at Linkdping

University.

The Nostrum NoC [22], which is developed at KTH in Stockholm, uses direct 2-D
mesh topology. Store-and-forward switching is applied in the Nostrum NoC.

In the Athereal NoC [23], wormhole switching is applied with contention free
source routing. Both synchronous indirect and irregular topologies are supported by

Athereal NoC, which is developed by Philips.

Xpipes [24], developed by the Universisy of Bologna and Stanford University,
applies wormhole switching and source routing. It contains a SystemC library of
switches and links to create specific network components. Flit size, network
diameter are some of the tunable parameters of the instantiated NoC. Different
topologies such as mesh, torus, hypercube, clos and butterfly can be implemented

by using Xpipes.
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Spidergon STNoC [8], developed by STMicroelectronics, uses direct polygonal
topology, which is obtained by generalizing the octagonal topology. Packet

switching or circuit switching can be executed.

HERMES [25-27], developed by Faculdade de Informatica PUCRS in Brazil,
applies direct 2-D mesh topology. Wormhole switching is implemented with
minimal XY routing algorithm. There exist several tunable parameters such as flit
size, number of virtual channels, buffer depth. There are also several other NoCs
with different properties developed by Faculdade de Informatica PUCRS. These
NoCs are listed in Figure 2.11.

Hermes Hermes Hermes Hermes
TB TU SR CRC

Paramelars Hermes
firiual 5 fres urlimitzd
e T I I I I I -9

Mercury ¥HiNoC

Figure 2.11: Characteristics of the NoCs Developed by Faculdade de Informatica
PUCRS [27].
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CHAPTER 3

IMPLEMENTATION OF NETWORK ON CHIP IN FPGA PLATFORM

In this thesis study, NoC which is performing wormhole flow control and shortest
path across-first source routing is implemented in Field Programmable Gate Arrays
(FPGA). The implemented NoC is composed of identical routers, which are
connected in a definite topology. Routers also consist of sub-parts, which perform
buffering, virtual channel allocation, switch allocation and switching functions.
Topology, routers and sub-parts of router are implemented in different hierarchical

blocks in FPGA.

In this chapter, these blocks will be examined in hierarchical order. By using block
diagrams and state machine diagrams, their functions and operations will be
clarified. But before the presentation of the FPGA blocks of NoC, flit structure that

is recognized by the implemented NoC is given in the following section.

3.1 FLIT STRUCTURE

As was denoted in Chapter 2, wormhole flow control splits messages into packets
and packets into flits. Packets are transmitted through the network in the form of
single or multiple flits [11]. Flits are generated and injected into the network in the
source node. They travel in the network via routers until they reach the destination

node. In the destination node, flits are combined to form the packets again.
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Flits include not the only data field, but also a control field [16]. Control field is
necessary to express the characteristics of the flit to the network elements. As an
example, routing is executed depending on the related information in the control
field. This information needs to be in a definite place in the flits. Thus when a flit is
received, by inspecting the bits in this place, the router can decide on how to route

that flit.

The flit structure used in our implementation is given in Figure 3.1. Header flit
consists of type, size, VCID, route data as the control field and payload as the data
field. Body and tail flits have larger payload area instead of route data in header

flits.

Type field consists of two bits, which are ‘start of frame’ (sof) and ‘end of frame’
(eof). These two bits identify four different types of flit. Header flit (b’10°)
indicates the start of the packet and contains the routing information for the entire
packet. A header flit is followed by a body or tail flit. Header flit can also indicate
the end of packet in case of packet with a single flit (b’11”). It this case header flit is
followed by the header flit of another packet. Body flits (b’00’) come between the
header and tail flits. There can be one, multiple or no body flit in a packet. Body flit
does not contain routing information and it is routed according to the routing
information in the corresponding header flit. A body flit is followed by tail flit or
another body flit. Tail flit indicates the end of packet. Tail flit is routed in the same
way as a body flit. A tail flit is followed by the header flit of another packet. The
length of the type field is 2 bits and does not change with the topology or the length
of the rest of the flit (Figure 3.2).
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Figure 3.1: Flit Structure
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Figure 3.2: Flit Sequencing

Size field logarithmically shows the number of the meaningful bits in the payload
area of that flit. Valid data in the payload area does not have to be equal to the
whole length of the payload area. By using size field, destination node can
understand the length of the valid bits. This information is not used by routers in the
network. If the whole length of the payload area in a body or a tail flit is n, then the
length of the size field is equal to \_logzrlog2 (n)—U+1 . Since total lengths of all flits

are equal and header flit contains routing information, whole payload area in a body
or a tail flit is larger than the whole payload area in a header flit. So whole of the
payload area in a body or tail flit is taken into consideration while calculating the

length of the size field.

Virtual channel ID (VCID) field indicates virtual channel number to which the flit
is going to be accepted in the next router. VCID field is assigned during the virtual
channel allocation (va) for the header flit. Same VCID is also assigned to other flits
of the same packet. So each flit of the same packet carries the same VCID while
leaving the router. Since virtual channel allocation is going to be taken place again
in the next router, assigned VCID may change in each router. The length of VCID
field is equal to the number of virtual channels in input buffers. If there is no virtual

channel, meaning a single buffer, VCID consists of only one bit.
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Routing field includes output port numbers of all routers through which the flit is
going to pass. This field is written into header flit by the source node according to
shortest path across first routing. If d is the network diameter and K is the network
degree for the applied topology, then the length of the routing field is equal to

d+1* ]_logz(k + 1)—‘. (d +1) gives the maximum number of routers that a flit can
pass through until reaching the destination node. |_10g2(k + 1)—‘ gives the number of
bits needed to represent ports of these routers. Each router uses first |_10g2(k + 1)—‘

bits of this field to understand the output port for the incoming flit. While sending

the flit to the next one, router rotates this field as shown in Figure 3.3.

Figure 3.3: Rotation of Route Field ford =2 and k=3

Payload field contains the data to be transferred from source to destination. This
field is not used and changed by routers during the transfer. Payload fields are

combined to form packets at the destination node.

Number of virtual circuits and length of payload, which are two modifiable
attributes in our design, determine the whole flit size. In Table 3.1, field lengths for
body-tail flits are given for different virtual circuit numbers (V) and body-tail flit

payload length (n).
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Table 3.1: Flit Field Length vs. ‘v’ and ‘n’

FLIT FIELD LENGTHS (in bits) vs. v=2, Vv=2, v=4, V=4,
‘v’ and ‘n’ nN=32 n=25 n=32 n=256
Type Field Length 2 2 2 2
Size Field Length (= [log,[log,(n)]]+1) 3 4 3 4
VCID Field Length (=V) 2 2 4 4
Payload Field Length (=n) 32 256 32 256
Total Flit Length 39 264 41 266

On the other hand, topology determines the length of route field which also makes
payload areas of header flits and body-tail flits differ from each other. This
relationship between topology and route field will be explained in the following

section in more detail.

3.2 TOPOLOGY BLOCK

Topology of a network describes how routers are connected to each other. Thus,
topology block in our FPGA includes routers in network, interconnections among
routers, interfaces between router and device nodes. In this section routers will be
assumed as blackboxes and only connections defined by this block will be

highlighted.

There exist four different topologies, which can be applied by our topology block.

These are ring, spidergon, mesh and torus topologies, which was listed as direct
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topologies in Chapter 2. Depending on the applied topology, some properties of the

network, such as network degree and diameter, can be altered.

Node degree refers to number of edges connected to a router node where edge is
defined as the connection between two router nodes. Network degree is the
maximum node degree for all nodes in the network. The number of the ports in a
router node is directly proportional to network degree. On the other hand, network
diameter refers to the maximum number of routers on the shortest path route
connecting any two network node. Network diameter depends not only to the
applied topology but also to the network size. Network size is also defined by the
topology block and can be changed via this block. Network size stands for the
number of device nodes, which is also equal to number of router nodes in direct
topologies. Network diameter affects the routing scheme together with network

degree [8].

The relationship between topology and mentioned network properties is given in
Table 3.2. As can be seen in this table, the number of the ports of routers is greater
than network degree by one in all of the given topologies. Network diameter

depends on network size (N), varying with topology.

Table 3.2: Network Properties vs. Topology

: : 2-dmxn 2-dkxk
Ring Spidergon Mesh Torus

Network Degree

2 3 4 4
(=K
Port Number
(=k+1) 3 ) > °
1(\Iftg\)'0rk Diameter IN/2] [N /4] m+n—2 2[k/2]
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Since routing scheme changes with topology and network size, the length of route
field in a header flit changes too. An incoming flit can be sent via any one of the
(k +1) ports. In order to find the outgoing port for a flit, |_10g2(k +1)—‘ bits are
required by the router. In the implemented NoC, the shortest path across first route
between source and destination is calculated and written to the header flit of the
packet just before the flit is injected to the network. (d +1) is the maximum number
of routers that a flit can pass. As a result, (d +1) *|_10g2(k + 1)_| bits are needed to

represent the full route in a header flit. In Table 3.3 length of route field is given for

ring and spidergon topologies for different network sizes (N).

Table 3.3: Network Properties vs. Topology and Network Size

Ring Ring Spidergon | Spidergon

(N=8) | (N=12) (N =8) (N=12)
Network Degree (= K) 2 2 3 3
Port Number (=k + 1) 3 3 4 4
Routing Bits Per Router 5 5 5 5
(=[log, (k+D)1)
Network Diameter (= d) 4 6 2 3
Max. # Of Routers
Passed (=d+1) > 7 3 4
Length Of Route Field 10 14 6 g
(= (d+1)*[log,(k +1) )
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Connection diagram for the ring topology for N = 8 case is shown in the Figure 3.4.
In this topology each router node has two edges adjacent to two router nodes. Third

port of each router is connected to the related device node.

Node
8
Router
8

Node Topology Block

(Ring N = 8)

Node

Figure 3.4: Ring Topology (N = 8)

In spidergon topology routers have three edges. The extra channels across the
topology shorten the routes. Figure 3.5 presents the connection diagram for
spidergon topology for N = 8 case. The only difference between this diagram and
Figure 3.6 is the network size. Network size does not change the router node

structure.
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Figure 3.5: Spidergon Topology (N = 8)

Figure 3.6: Spidergon Topology (N = 12)



Routers in mesh topology have 5 ports. Since node degree for routers at edges and
corners is smaller than the network degree, some ports of these routers are
unconnected. Sending flits to unconnected ports should be prevented by the routing
scheme. A 4 x 3 mesh topology is shown in Figure 3.7. Corner routers (1, 4, 9 and
12) have 2 connections with other routers, while edge routers (2, 3, 5, 8, 10 and 11)
have 3 connections. The remaining ones (6 and 7) have 4 connections, which is also

the network degree.

Router 1 Router 2 Router 3 Router 4

Node 1 Node 2 Node 3 Node 4
Router 5 Router 6 Router 7 Router 8

Node 5 Node 6 Node 7 Node 8
Router 9 Router 10 Router 11 Router 12

Node 9 Node 10 Node 11 Node 12

Figure 3.7: Mesh Topology (N=4 x 3)

In Figure 3.8, 4 x 4 torus topology is given. In this topology routers have 5 ports
similar to the ones in mesh topology. Because edge and corner routers have across
connections to other edge and corner routers, node degree for all routers is 4
meaning that each router node is connected with four other router nodes. Hence this

condition shortens the routing as in the case of ring and spidergon.
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As stated in the beginning of this section, the topology block in our implementation
uses routers as components and defines connections between the routers. It also
connects one port of each router node to outside as an interface to device nodes.
This block does not contain any combinational or sequential logic. All the logical
operations and decisions are taken place inside the router blocks which are going to

be explained in the following section.
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Figure 3.8: Torus Topology (N=4 x 4)
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3.3 ROUTER BLOCK

Router blocks are identical building blocks of the network. In order to create a
network, routers are connected to each other through their identical ports. These
ports are composed of two physical channels, i.e., incoming and outgoing channels.
Each channel is composed of data bits whose count is equal to the length of whole
flit and flow control bits which are requests and credits. Apart from the ones in the
flits, these control bits are also required to ensure successful transfer of flits

between nodes. Pinout diagram for a 4 port router can be seen in Figure 3.9.
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Figure 3.9: Pinout Diagram for a Four-Port Router
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Function of a router is to direct the incoming flits from any one of the input ports to
any one of the output ports excluding the input one. In order to achieve this, several
mechanisms operate in a router, such as buffering, arbitration, allocation and
switching. Mostly, routers encounter cases where multiple flits should be routed
simultaneously. In these cases, if each flit is to be routed to different output ports,
only a switching mechanism would be sufficient for routing. However, there exist
cases where two or more flits are to be routed to the same output port. In such a
situation, the permission to use the desired output should be given to one of the flits
and other flits should be stored in the router. Here, an important problem arises:
which flit should be routed and which one should be stored? Buffering, arbitration
and allocation mechanisms are required to overcome this problem. In Figure 3.10,
block diagram for a router with 4 ports and 2 virtual channels is given. In this figure
different instances of each functional block are used. For example vc 1, ve 2, va 1
sa_1, sw etc... Only va_req_out_x and va_ack_in signals of v¢_1, sw_data_out and
sw_dir_out_x signals of vc 5, sa_req_out x signals of vc 7 and vc 8, and
sa_ack_in signal of vc_7 are shown in the figure. Please note that other blocks also

have the same signals although not shown for simplicity.

Pre_ve blocks demultiplex the incoming data and request to ve blocks according to
VCID field in the data (Shown as 1 on Figure 3.10). Ve blocks perform buffering
and manage the entire operation. Initially these blocks generate request signals for
output virtual channel allocation (va_req_out_X) (2). A vc block can only generate
requests for output virtual channels of other ports, not for the port it belongs to. In
this example, 2 va_req_out_x signals of each vec block are left unconnected and 6
va_req_out_x signals go to va blocks from each ve block. Similarly, each va block
has 6 request inputs. Depending on the round-robin arbitration method, va blocks
generate acknowledge signal for one of the requests and grant the corresponding
output virtual channel for that request until the end of the packet. After receiving

output virtual channel acknowledgment (va_ack_in) (3), ve blocks generate requests
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for the switch allocation (sa_req_out_X) (4). Because of the same reason mentioned
for va_req_out_x signals, one of these request signals is left unconnected and other
three requests are connected to sa blocks. Sa blocks perform round-robin arbitration
like va blocks and acknowledge the winner request. Unlike va blocks, which grant
output virtual channel on packet basis, they grant the switch usage on a flit basis.
When ve blocks get switch allocation acknowledgment (sa_ack_in) (5) and observe
available buffer space (credit_in_x) (6) on the next node, they transfer the data
(sw_data_out) to the switch (sw) which multiplexes the data to one of the output

ports according to select signals (sw_dir_out_x) (7).

These sub-blocks are explained in detail in the following sub-sections.
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Figure 3.10: Block Diagram for Router with 4 Ports and 2 VCs
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3.3.1 Pre_vc Blocks

Pre vc blocks are the first units which an incoming flit crosses through. Their
function is to direct the incoming flits into the correct virtual channel according to
the VCID field of the flits. There is only one data input and only one request input
for each physical channel. However there can be many virtual channels on these
physical channels. Pre_vc block demultiplexes data and generates request inputs for
virtual channels. Since it is composed of combinational logic only, a pre vc block

does not cause any delay except gate delays.

The number of pre_vc blocks in a router is equal to the number of ports. In Figure
3.11, circuit diagram for the pre_vc blocks of a router with two virtual channels is
illustrated. As the number of the virtual channels increases, number of the outputs
of the pre vc blocks increases too. Logic elements also increase proportionally to

multiplex the flits between more outputs.

e re36|1n }req_outj —
S - P data_in

e - }data_outj»

vc

VCID
vel | ve2

m / re\?czln } req_out 2 | »
data_in }data_out_Z»
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Figure 3.11: Circuit Diagram for Pre vc Blocks of a Router with 2 VCs
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3.3.2 Vc Blocks

Ve block performs a multiple stage functionality inside the router [7, 28, 29]. The
first stage of its function is to buffer the incoming flits until they leave the router. If
the stored flit is a header flit, in the next stage vc block decodes the routing field,
understands the output port for that flit and its trailing flits and chooses the
appropriate output virtual channel on this route. Depending on the output port and
output virtual channel, vc block sends a request for virtual channel allocation and
waits until the acknowledge is received. Unless the stored flit is a header flit, this
stage is bypassed because virtual channel allocation is executed on a packet basis.
Once acknowledgment is received for the header flit, it is valid for the rest of the
packet. In the third stage, vc block sends a request for switch allocation. The
buffered flit is multiplexed in the switch immediately after acknowledgment for the
switch allocation is received. Since switch allocation is executed on a flit basis,
every flit passes through this stage. In the implemented NoC, these stages are
sequentially connected. Each stage takes at least one clock period. Under best
conditions (buffer is not full, acknowledgments are received immediately) a header
flit leaves the router in three clock periods while other flits leave in two.

Distribution of the sub-functions in the form of stages is shown in Figure 3.12.

R 1t Stage -~ | S 2nd Stage -~ L S 3 Stage -~~~ >
¢ Buffering e Request to output virtual ¢ Request to switch
e Decoding of the route channel allocators allocators
field e  Wait for the acknowledge o Waiting for the
¢ Deciding the output virtual from output virtual acknowledge from switch
channel channel allocation allocation
e  Switching
S~ ] P O P o o ) P
i ~-~_ Header Fiits .- ) \\\\\ Header Flits ///// \\\\\ Header Flits /_/—/’/ ‘\‘\ﬂej(ie_iffllt,s//’/
" Body or Tail Flts 7 " T - T 7" Body or Tail s

""""""""""""" . . Body or Tail Flits P -

Figure 3.12: Distribution of the Sub-functions in the Form of Stages
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The number of the vc blocks in a router is equal to the number of ports times the
number of virtual channels. In Figure 3.13, pinout diagram for the vc blocks of a
router with 4 ports and 2 virtual channels is demonstrated. Functions of the I/O

ports are explained in Table 3.4 and Table 3.5.

Internal router
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Figure 3.13: Pinout Diagram for Vc Blocks of a Router with 4 Ports and 2 VCs
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Table 3.4: Functions of I/O Ports of V¢ Blocks Part 1 of 2

Port Function
clk Reference clock input for sequential processes.
rst Asyncronous reset input.
data in Data input connected to one of the data outputs of the
- related pre_vc block. Takes flits into block.
Request input connected to one of the request outputs of
req_in the related pre_vc block. Indicates availability of valid flit
in data_in input.
Credit output connected to credit_in inputs of the ve
blocks in neighbor nodes. Indicates available buffer size.
credit_out Credit_out signals of vc blocks belonging to the same
port are concatenated and they form pinx_credit_out
outputs of the router.
Credit inputs connected to credit_out outputs of 8 vc
credit_in_Xx blocks in neighbor nodes. Carries available buffer size
1-8) information of vec blocks in neighbor nodes. These signals
are formed from poutx_credits_in inputs of the router..
Eof bit output connected to the va_eof in input of the va
va_eof out

blocks to indicate the end of packet.

va_req_out X

Request outputs connected to 8 discrete virtual channel
allocators. Generated according to decoded route field

1-98) and decided output virtual channel. Two of these signals
are left unconnected.
) Acknowledge input indicating whether the output virtual
va_ack_in

channel is granted or not.

sa_req_out_X
1-4

Request outputs connected to switch arbitrators.
Generated according to decoded route field. One of these
signals is left unconnected.

sa_ack_in

Acknowledge input indicating the granted switch access.
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Table 3.5: Functions of I/O Ports of V¢ Blocks Part 2 of 2

Port Function

sw_data_out Data output connected to switch. Takes flits out of block.

Direction and request outputs connected to switch.

Indicates availability of valid flit in sw_data_out and its
direction.

sw_dir_out_X
(1-4)

Besides input and output ports, internal signals are also employed in the operation
of the vc block. These signals and their functions are given in Table 3.6. They will

be used in the following algorithmic state machine diagrams that describe the

operation of vc block.
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Table 3.6: Functions of the Internal Signals of Vc Blocks

. Function
Signal
) Counter in VC_IN process for incoming flits in modulo
in_cnt .
- buffer size.
Counter in VC_OUT process for outgoing flits in modulo
out_cnt .
- buffer size.
Used capacity of the buffer. Expresses zero or positive
buf ind values and equals to (in_cnt - out_cnt) or (buffer size +
uf in . . .
- in_cnt - out_cnt) depending on overflow of in_cnt and
out_cnt counters.
vc_buffer(x) x™ cell of the circular FIFO buffer with size buffer size.
Decoded routing info depending on related bits in
ve_route S
- vc_buffer(out_cnt) and credit_in inputs.
vc_eof Eof bit of the flit in vc_buffer(out_cnt).
va_buffer Latched vc_buffer(out_cnt).
va_route Latched vc_route.
Latched va_buffer on the instant that va_ack_in signal is
sa_buffer }
- received.
Latched va_route on the instant that va_ack_in signal is
sa_route )
- received.
sa_route_buf Latched sa_route used for restoring sa_route signal.
Signal indicating the availabilty of the next router for the
next ok )
- current flit.

V¢ block makes possible the flow of flits in pipelined mode, i.e., while a flit is
being buffered into vc_buffer, another flit can be switched to the next node through

sw block. Two processes running in parallel in ve block are designed to enable this
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2-stage pipelined operation. Operation of these processes will be explained in the

following algorithmic state machines.

\ RESET \

A
vc_buffer <= all 0;
in_ent <=0

A
\ GET_DATA_1 |

vc_buffer(in_cnt) <= data_in;
in_cnt <=in_cnt + 1,

< buf_size - 1

= buf_size - 1

\ GET_D'ATA_2 \

= buf_size

vc_buffer(in_cnt) <= data_in;
in_cnt <=in_cnt + 1,

Figure 3.14: ASM of VC_IN Process

First process named VC IN deals with storing incoming flits into buffers. In Figure

3.14 algorithmic state machine of this process is given. Each state is clarified in
detail in Table 3.7.
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Table 3.7: Description of States of VC IN Process

State

Description

RESET

After asynchronous reset VC IN process stays in
RESET state for one clock period.

In this state vc_buffer and in_cnt signals are reset to
zero, then process goes to GET DATA 1 state.

GET DATA 1

Buffering is performed in this state if more than one
buffer space is available.

To understand whether there is a new flit or not,
VC _IN process checks reg_in signal at every rising
edge of the applied clock signal.

In the case that an incoming flit exists, it is stored into
the next empty place indicated by in_cnt counter and
in_cnt counter is incremented by 1.

VC_IN process stays in this state until buf_ind signal
indicating the used capacity of the buffer reaches
buffer size.

If buf_ind reaches buffer size, VC IN process goes to
GET _DATA 2 state.

GET DATA 2

Buffering is performed in this state if only one
buffer space is available or halted if no buffer space
is available.

While an outgoing flit is leaving the buffer, an
incoming flit can be stored simultaneously.
GET DATA 2 state makes this possible even if a
single buffer area is available.

Process checks buf_ind signal first. Even if there is a
request for buffer write, incoming flit is not stored
until buf_ind signal indicates empty area.

If there is an empty area but no request, then process
returns to GET DATA 1 state.

If there is both empty area and a request, incoming flit
is stored into next empty place indicated by in_cnt
counter and in_cnt counter is incremented by 1.
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Second process named VC_OUT deals with reading flits out of the buffer, timing of
allocation stages and directing flits to the switch. In Figure 3.15, Figure 3.16 and
Figure 3.17 the algorithmic state machine of this process is illustrated. Also states
of VC_OUT process are defined and explained in Table 3.8, Table 3.9, Table 3.10,
Table 3.11 and Table 3.12. Different micro-operations are applied to flits in
different stages. The specified tables also denote which micro-operation belongs to

which stage of the Figure 3.12.
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Table 3.8: Description of States of VC_OUT Process Part 1 of 5

State

Description

RESET

After asynchronous reset VC OUT process stays in
RESET state for one clock period.

In this state va_buffer, sa_buffer, va_route, sa_route,
sa_route_buf, va_eof out and out_cnt signals are reset to
zero, then process goes to OUT_DATA 1 state.

OUT _DATA 1

Generation of output virtual channel request for
header flit is handled in this state if the vc_buffer is
initially empty.

To understand whether there is a new flit or not,
VC_OUT process checks buf_ind signal at every rising
edge of applied clock signal until buf _ind signal
indicates that vc_buffer is not empty. (1% Stage)

In the case that vc_buffer is not empty; the cell indicated
by out_cnt of the vc_buffer is read out and latched into
va_buffer. Also vc_route is latched into va_route and
vc_eof is output via va_eof_out. Then out_cnt counter is
incremented by 1. (1* Stage)

Meanwhile a combinational logic circuit generates
corresponding va_req_out signal depending on va_route
signal. (1% Stage)

Finally, next state is decided using vc_eof signal
indicating whether the following flit will be a header flit
or not. (1% Stage)

If next flit is a header flit (vc_eof = 1), VC_OUT process
goes to OUT DATA 2 state, otherwise (vc_eof = 0)
process goes to OUT DATA 4 state. (1* Stage)
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RESET

va_buffer <=all 0;
sa_buffer <=all 0;
va_route <=all 0;
sa_route <=all 0;
sa_route_buf <= all 0;
va_eof_out <=0;

out_cnt <=0

va_buffer <= vc_buffer(out_cnt);
va_route <=vc_route;
va_eof_out <= vc_eof;

out_cnt <=out_cnt + 1;

vc_eof

A, A
OUT_DATA_2 \ OUT_DATA 4 |

sa_buffer <=va_buffer;
sa_route <=va_route;
va_buffer <=all 0;
va_route <=all0;
va_eof_out <= 0;

sa_buffer <= va_buffer;
sa_route <=va_route;
sa_route_buf <= va_route;
va_buffer <=all 0;
va_route <=all 0;

l

A
OUT_DATA_3 OUT_DATA_5

Figure 3.15: ASM of VC_OUT Process Part 1 of 3
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Table 3.9: Description of States of VC_OUT Process Part 2 of 5

State

Description

OUT_DATA 2

Generation of switch request for header flit is handled
in this state if the packet is composed of header flit only
(single flit).

Process checks va_ack_in signal at every rising edge to
understand whether the desired output virtual channel is
granted or not. (2™ Stage)

If the va_ack_in signal is detected, va_buffer signal is
latched into sa_buffer and va route is latched into
sa_route. Furthermore va_buffer, va route and
va_eof_out are reset to zero. (2™ Stage)

Meanwhile combinational logic circuit generates
corresponding sa_req_out signal depending on sa_route
signal. (2™ Stage)

Then, process goes to OUT _DATA 3 state.
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Table 3.10: Description of States of VC_OUT Process Part 3 of 5

State

Description

OUT_DATA 3

Transmission of single flit to the sw block is handled in
this state. Also generation of output virtual channel
request for new incoming header flit is handled in
parallel in this state.

Process checks sa_ack_in and next_ok signals at every
rising edge to understand whether the switch is allocated
or not and whether the next node have enough buffer
space or not, respectively. (3ml Stage)

If these two signals are detected, meaning flit is
transmitted to next node successfully, sa_buffer and
sa_route signals are reset to zero to cancel the switch
allocation request. (2" Stage)

Simultaneously buf _ind signal is checked to understand
whether vc_buffer is empty or not. (1% Stage)

If vc_buffer is empty, process goes to OUT DATA 1
stare. (1% Stage)

If vc_buffer is not empty, vc_buffer(out_cnt) is latched
into va_buffer, vc_route is latched into va_route, vc_eof
is output via va_eof out and out_cnt counter is
incremented by 1 and va_req out is generated. (1%
Stage)

Depending on vc_eof signal, process goes to
OUT _DATA 2 or OUT _DATA 4 state. (1% Stage)
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A
OUT DATA_3

sa_buffer <= all 0;
sa_route <=all 0;

buf_ind

>0

va_buffer <=vc_buffer(out_cnt);
va_route <= vcC_route;
va_eof_out <= vc_eof;

out_cnt <=out_cnt + 1;

OUT_DATA_1 | OUT_DATA_2 | \ OUT_I;ATA_4

Figure 3.16: ASM of VC_OUT Process Part 2 of 3
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Table 3.11: Description of States of VC_OUT Process Part 4 of 5

State

Description

OUT_DATA 4

Generation of switch request for header flit is handled
in this state if the packet is composed of multiple flits.
Process checks va_ack _in signal at every rising edge.
(2™ Stage)

If the va_ack_in signal is detected, va_buffer signal is
latched into sa_buffer, va_route is latched both into
sa_route and sa_route _buf which will be used for
restoring sa_route in following states, va_buffer and
va_route are reset to zero. (2nd Stage)

Sa_req_out signal is generated by combinational logic
depending on sa_route signal. (2™ Stage)

Then, process goes to OUT _DATA 5 state.

OUT_DATA 5

Transmission of header and body flits of packets
composed of multiple flits to the sw block is handled in
this state. Also generation of switch request for new
incoming body flits is handled in parallel in this state.
Process checks sa_ack_in and next_ok signals at every
rising edge. (3™ Stage)

If these two signals are detected, process checks buf_ind
signal. (1* Stage)

If vc_buffer is empty, sa_buffer and sa_route signals are
reset to zero to cancel switch allocation request. Process
goes to OUT DATA 6 state. (1* Stage)

If vc_buffer is not empty, vc_buffer(out_cnt) is latched
into sa_buffer, vc_eof is output via va_eof_out, out_cnt
counter is incremented by 1 and sa_req_out is
generated. (1% Stage)

Depending on vc_eof signal, process stays in
OUT _DATA 5 state or goes to OUT DATA 7 state.
(1* Stage)
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A
OUT_DATA_5

buf_ind

A
sa_buffer <= vc_buffer(out_cnt);
va_eof_out <=vc_eof;
out_cnt <=out_cnt+1;

T

|
=0
<CjM
-1

A
\ OUT_DATA_7

=0
sa_ack_in and next_ ok

sa buffer <= all 0;
sa route <= all 0;

el

v va_buffer <= vc_buffer_(out_cnt);

<=all 0;
<=all 0;

sa_buffer
sa_route

A

OUT_DATA_6

sa_buffer <= vc_buffer(out_cnt);
sa_route <= sa_route_buf;
va_eof_out <= vc_eof;

out_cnt <=out_cnt+1;

s .
va eof out<=0: va_route <=vc_route;
- - va_eof_out <= vc_eof;

out_cnt  <=out_cnt+1;

OUT_DATA_1

4 4

\ OUT_DATA_2 | \ OUT_DATA_4

Figure 3.17: ASM of VC_OUT Process Part 3 of 3
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Table 3.12: Description of States of VC_OUT Process Part 5 of 5

State

Description

OUT_DATA 6

Generation of switch request for new incoming body
flits is handled in this state if the vc_buffer is initially
empty.

Process checks buf ind signal at every rising edge of
applied clock. (1* Stage)

In an instant that vc_buffer is not empty,
vc_buffer(out_cnt) is latched into sa_buffer, sa_route is
restored from sa_route_buf, vc eof is output via
va_eof_out, out_cnt counter is incremented by 1 and
sa_req_out is generated. (1 Stage)

Depending on vc_eof signal, process goes to
OUT DATA 5 state or goes to OUT DATA 7 state.
(1* Stage)

OUT_DATA 7

Transmission of tail flits of packets composed of
multiple flits to the sw block is handled in this state.
Also generation of output virtual channel request for
new incoming header flits is handled in parallel in this
state.

Process checks sa_ack_in and next_ok signals at every
rising edge. (3™ Stage)

If these two signals are detected, process reset sa_buffer
and sa_route signals to zero (2"%) and checks buf_ind
signal. (1% Stage)

If vc_buffer is empty, va_eof_out is reset to zero. Then,
process goes to OUT_DATA 1 state. (1¥ Stage)

If vc_buffer is not empty, vc_buffer(out_cnt) is latched
into va_buffer, vc_route is latched into va_route, vc_eof
is output via va_eof out, out_cnt counter is incremented
by 1 and va_req_out is generated. (1% Stage)

Depending on vc_eof signal, process goes to
OUT DATA 2 state or goes to OUT DATA 4 state.
(1™ Stage)
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State transition diagram of the VC OUT process is given in Figure 3.18. State
transitions depend on several conditions. Different conditions are checked for flits
in different stages of Figure 3.12. For instance, ‘empty’, ‘tail’ and ‘not tail’
conditions are checked for the flits in the 1 stage, ‘va’ condition is checked for the

flits in the 2™ stage and ‘sa’ condition is checked for the flits in the 31 stage.

sa and empty

va

sa and tail

sa and not_tail

saand not_tall

Sg
ang ot tail

STATES CONDITIONS
R : RESET empty ='1"if (buf_ind = 0) else ‘0’
1 : OUT_DATA_1 tail =1’ if (buf_ind > 0 and vc_eof = 1) else ‘0’
2 :OUT_DATA 2 not_tail = ‘1" if (buf_ind > 0 and vc_eof = 0) else ‘0’
..... va ='1"if (va_ack_in=1) else ‘'O’
7 : OUT_DATA_7 sa ='1" if (sa_ack_in = 1 and next_ok = 1) else ‘0’

Figure 3.18: State Transition Diagram of the VC_OUT Process
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3.3.3 VaBlocks

Va blocks implement output virtual channel allocation hardware. Depending on the
arbitration method applied in va blocks an output virtual channel is allocated to one
of the vc blocks requesting it. The number of va blocks in a router is equal to
number of ports * number of virtual channels. Each of these blocks have (number of
ports — 1) * number of virtual-channels request inputs and corresponding number of
acknowledge outputs. This is because flits can not be routed to the port from which
they are inserted. So vc blocks can only send a request to virtual channels of other
ports. As an example, for a router with 4 ports and 2 VCs, there are 8 va blocks with
6 request and 6 acknowledge outputs. Output virtual channels of port 1 can not be
requested by its own vc blocks. They can be requested by vc blocks of port 2, 3 and
4. Since each port has 2 vc blocks, arbitration is performed among 6 requests. The
pinout diagram for va6 1 block, va block of the router with 4 ports and 2 VCs, is

given in the Figure 3.19.

Derived signal from
poutx_credit_in
inputs coming from

clk———» ;
. neighbor routers
rst——p <<—next_ok_in——
req_in_1—p; ——ack_out_1—»
in 2 K out 2 Internal router
req_in_ ’ ack_out 2> signals to ve
req_in_3—» ——ack_out_3—» blocks
req_in_4—» ——ack_out_4—»
Internal router req_in_5—» Va6 1 ——ack_out_5—»
signals from vc req_in_6—» - ——ack_out_6—»
blocks
eof_in_1—p [—sa_ack_in_1—\ Internal router
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Figure 3.19: Pinout Diagram for va6_1 Block
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A vc block can request only one output virtual channel at a moment. However
several vec blocks can request the same output virtual channel at the same time. To
solve this contention, an arbitration mechanism is executed in va blocks. This
mechanism chooses one of the requests and sends acknowledge indicating that the
output virtual channel is allocated to vc block to whom the winner request belongs.
Round-robin type arbitration mechanism is applied in our implemented NoC. State
of this mechanism is held in the VA process running independently in each va
block. For the sake of simplicity, one sixth of ASM of this process is illustrated in
Figure 3.20 and Figure 3.21. Only the transitions of GET HEADER 1,
GET HEADER ACK 1 and GET PAYLOAD 1 states are given in these figures.
Entire ASM is composed of eighteen states. Connection between these all states is
expressed through Figure 3.22. Mechanism is same for other states except checking
order of requests which corresponds to priority. For example, in GET _HEADER 4
state req_in_4 is the most prior request and req_in_3 is least prior one while in
GET HEADER 1 state reg_in_1 is the most prior request and req_in_6 is least
prior one. In the case that there exist one or more requests, the most prior one is
accepted and acknowledged. According to eof in_1 input which is coming from vc
blocks to indicate the end of packet, next state is decided. If eof _in_1 is active, then
process goes to GET HEADER ACK 1 state. Unlike GET HEADER 1, these
states control additional inputs next ok _in, generated to indicate the free space
availability in the next router, and sa ack_in_1, related switch allocation
acknowledgment, at first to understand whether the transmission of last flit is
successful or not. Beside this difference, remaining logic is the same as
GET HEADER 1. If eof.in_ 1 is not active, then process goes to
GET PAYLOAD 1 state. This state is needed to hold acknowledgment for the
entire packet composed of multi flits until the tail flit of packet is transmitted

successfully.
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Figure 3.20: ASM of VA Process Part 1 of 3
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Figure 3.21: ASM of VA Process Part 2 of 3
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Figure 3.22: ASM of VA Process Part 3 of 3

As was denoted in previous sub-section there are 8 virtual channel request outputs
in each vc block of a router with 4 ports and 2 VCs. Only 6 of these requests are
connected to the va blocks. Corresponding acknowledge signals of requests passes
through an OR gate and a single acknowledgment reaches the vc block as shown in

Figure 3.23.
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Figure 3.23: Acknowledge Signals Passing Through the OR Gate

3.3.4 Sa Blocks

Sa blocks implement switch allocation hardware. Desired port of the switch is
allocated to one of the vc blocks requesting that port depending on the arbitration
method applied inside sa blocks. Allocation is performed on flit a basis and takes
place in two stages. In the first stage, only one vc block is chosen among the ones
which belong to same physical port. Even if ve blocks request different ports of the
switch, only one of them can be elected for the next step. Number of sa blocks
operating in this stage (sa2 1) is equal to the number of ports and number of request
inputs of each sa block is equal to the number of virtual channels. Sa_req_out

outputs of each vc block passes through OR gates and resulting signals enter sa
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blocks in first stage. By using outputs of these sa blocks and sa_req_out outputs of
vc blocks, request signals for next stage are generated through some combinational
logic. Second stage carries out the elimination among the elected vc blocks
requesting the same output port. The number of sa blocks operating in the 2™ stage
(sa3_1) is also equal to the number of ports. Since vc blocks cannot request their
own port, these blocks have (port number — 1) request inputs and acknowledge
outputs. The elected vc blocks which pass both of the stages successfully are
informed by the signals generated from acknowledgments of sa blocks in both
stages. Block diagram for switch allocation mechanism performed in a router with 4
ports and 2 VCs is given in Figure 3.24. For the sake of simplicity, only the
requesting path of vc blocks of input port 1 for the allocation of output port 2 is

shown in the figure.

Inside the sa blocks of both stages, round robin type arbitration mechanisms are
taken place as in the va blocks. Unlike va blocks, sa block allocates the switch
access for one flit period not for whole packet period. ASM for SA process
performing in sa2 1 block is illustrated in Figure 3.25. Same flow is also applicable
for sa3 1 block with difference in the number of states. Output acknowledge signals
of sa blocks are generated by inside combinational logic according to the state in

which the SA process is and the incoming requests.
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Figure 3.24: Block Diagram for Sa Block
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Figure 3.25: ASM of SA Process

3.3.5 Sw Blocks

Sw blocks switch the flits on the data_in_x inputs to the data_out X outputs
according to req_in_x signals and generate trans_req_out x signals. Sw_data_out
outputs of each vc block are connected to data_in_x inputs and sw_dir_out_x
outputs of each vc block are connected to reg_in_X inputs of sw block inside the
router block. Data_out_x and trans_req_out_x outputs of this block are connected
to the poutx data out and poutx_trans_req_out outputs of the router block

respectively.
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There exists only one sw block in each router block, which is composed of
combinational logic only. Numbers of input and output ports of sw blocks are also
depended on the number of ports and virtual channels as other blocks inside the
router. In Figure 3.26, block diagram of the sw block inside a router with 4 ports
and 2 VCs is shown. 8 data inputs connected to vc blocks are multiplexed
depending on 24 bits direction information. Each vc block generates 4 bits direction
information just after output virtual channel allocation and switch allocation stage.
Each bit corresponds to one of the ports. One of these bits is useless due to the fact
that vc blocks cannot send flits to their own port. Other 3 direction bits of each vc
block are connected to select inputs of the multiplexers inside the sw block. Since
allocation stages prevent any possible conflict, only one of the select inputs can be
active at a time. Inside the multiplexer, one of the data inputs which is pointed by

the active select input is switched to the output.
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Figure 3.26: Block Diagram of Sw Block
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CHAPTER 4

SIMULATION RESULTS AND REAL-TIME IMPLEMENTATION

The NoC design described in Chapter 3 is implemented in VHDL language. Before
its real-time implementation on an FPGA platform, verifications of the VHDL
source codes and also the design are performed using MODELSIM, the simulation
tool produced by MENTOR GRAPHICS. After verifying the source codes, source
nodes creating dummy flits are designed for real-time verification. These nodes
communicate with a user interface via RS-232 to receive traffic characteristics to be
be used. The designed NoC connected to these source nodes is synthesized and

embedded onto our FPGA.

This chapter is composed of four sections. At first, simulation results will be
presented for the NoC in spidergon topology created by 8 routers with 4 ports and 2
VCs and supporting 32-bit flits. Functions of the source node blocks and serial
interface blocks will be explained in the second section. Then, user interface
communicating with the source nodes will be defined and finally results of our real-

time implementation obtained via this user interface will be presented.
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4.1 SIMULATION RESULTS

For the verification of the designed NoC, several scenarios are created by using test
blocks. Signals generated by the blocks of the NoC according to the applied
scenarios are simulated via MODELSIM.

Scenario 1: A single flit is injected to second port of the router of which buffers

and other ports are empty.

Simulation result in Figure 4.1 is obtained. At the first rising edge (labelled as 1 in
Figure 4.1), the flit whose value is 0xED201201 (type: bx11, size: bx101, VCID:
bx10, route: bx100100, payload: bx0000001001000000001) appears at the input of
the second port of the router referenced as r 1 with the request. Flit and request are
demultiplexed by the pre vc (p_2). At the second rising edge (labelled as 2 in
Figure 4.1) flit is stored into the buffer in vc 3. Since there is no other flit in the
buffer, flit is latched into the va buffer and request for output virtual channel is
created in the next edge. This request can be detected by va block at the fourth edge
and is acknowledged immediately since no other request exists. Acknowledge can
be sensed by vc block at the fifth edge and flit is latched into sa_buffer. Request for
switch allocation is also created and va buffer is reset since vc_buffer becomes
empty. At the sixth edge acknowledgment for switch allocation and next in signal
indicating the availability of the next node are checked. Flit is stored into the

buffers of the next node.
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Figure 4.1: Simulation of Single Flit inside the Router
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Scenario 2: Consecutive flits carrying the same route information are injected
through the same physical port, but via different virtual channels which is selected

depending on credit_out signal of the router.

The obtained waveform is given in Figure 4.2. First two flits are injected from the
first virtual channel and next two flits are injected from the second. First flit appears
at the output port after 4 clock periods. After 2 more clock periods third flit appears
at the output before the second flit since second one has to wait in vc_buffer until
first flit is switched to output. Flits can be switched to output port consecutively as
in the case of fourth and fifth flits. However, generally output port can not be used
in full capacity due to the delay in virtual channel allocation stage. As the number
of virtual channels using the same physical channel increases, throughput of

physical channel usage is expected to increase.
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Figure 4.2: Simulation of Consecutive Single Flits Arriving to Same Port
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Scenario 3: Consecutive flits carrying different route information are injected

through the same port with different virtual channels.

Result is illustrated in Figure 4.3. As in the previous scenario, first flit can be
observed at the desired output after 4 clock periods. Moreover the flit which will be
transmitted to eighth node is switched to output port before the flit which will be
transmitted to fifth.

JED201...
ED201201
EDEQ1501

r_1fpout3_trans_req_out
r_1jpoutd data_out EDS981501 00
r_1fpout4_trans_req_out

Figure 4.3: Simulation of Consecutive Single Flits Arriving to the Same Port with

Different Routes

Scenario 4: If the rate of injected flits is greater than the rate of ejected ones,
buffers inside the block start to fill.
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This case is simulated in Figure 4.4. Buf_ind signals increase until they reach the
buffer size. VC IN processes of both vc blocks (ve 3 and vc 4) go to
GET DATA 2 state. By checking credit_out signal, previous node understands that
ejected flits cannot be stored and continues to hold the last flit in the link. On the
other hand, tenth and twelfth flits can not be transmitted from r 1 and stay in the
sa_buffers of vc blocks. V¢ blocks continue requesting the switch. Flits are tried to

be transmitted on a flit basis.

T T e e O e O e I |

EE201214 FB201215 |FD201216 FD201217

100 011 100 011 100
qet data 2 net dat...)get data 2

000 no1 000 001 0o
011 100

get dat.../get data 2
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Figure 4.4: Simulation of the Case that Buffer is Full

Scenario 5: Three flits requesting the same output are injected through different

ports.

The obtained waveform is given in Figure 4.5. Request signals generated for the
same output virtual channel reach va block (vc 3) at the same time. Only one of
them can be acknowledged at any time instance. Other vc blocks continue to hold
request signal. Acknowledged request by the va block generates request for the
switch allocation stage. Flits are ejected in the order determined by these two

allocation stages.
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Figure 4.5: Simulation of Simultaneous Flits Requesting the Same Output

Scenario 6: Simulation of a packet composed of four flits is illustrated in Figure

4.6.

Only header flit of the packet includes routing information. This information is
stored in ve block and is also used for body and tail flits of the packet. Since header
flit allocates the output virtual channel for the entire packet, other flits passes to
switch allocation stage directly. Va block does not carry out new arbitration and
holds acknowledge signal until the end of packet. Sa block carries out arbitration
mechanism on flit basis. Since flits except the header are not exposed to the delay in
virtual channel allocation stage, flits can be switched to output consecutively. Thus,
output port can be used in full capacity even if there is only 1 virtual channel. If
there exists any flit requesting the same output but different output virtual channel,

flits of different virtual channels will appear on this same output port. This situation
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is simulated in the Figure 4.7. While vc block is receiving a packet from port 2,
another packet requesting the same output port is injected from port 1 after 5 clock
periods. Different VCIDs are assigned to these packets by the vc blocks. At the
output port, header flit of the second packet appears between fifth and sixth flits of
the first packet. Next node distinguishes the flits through the assigned VCIDs.
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Figure 4.6: Simulation of Packet Composed of Multiple Flits

Scenario 7: Flits are routed by multiple router nodes until they reach the

destination.

In Figure 4.8, a packet composed of 5 flits is injected by the source node which is
connected to port 2 of router 1 (r_1). Through routers r 1, r 5 and r_6, flits reach
their destination node which is connected to port 4 of router 6 (r 6). Because of
having 4 clock delay in each router, flits appear in the input of the destination node

after 12 clocks.
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Figure 4.8: Simulation of a Packet throughout the Whole Network
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4.2  TESTING BLOCKS

In order to test the implemented NoC in real time, an infrastructure generating
dummy flits is required. Our infrastructure contains source nodes, which can
transmit flits to other 7 nodes through the NoC and can receive flits from them. Our
test infrastructure also communicates with a user interface executing on the
computer via RS-232. Thus, outgoing traffic generated by each source node can be
changed and incoming traffic received by each node can be monitored. In addition
to source nodes, additional blocks are needed to maintain RS-232 communication.
These blocks perform different tasks such as encoding, decoding, serializing and
deserializing. Block diagram for our overall testing infrastructure is given in Figure
4.9. All blocks existing in the infrastructure will be explained briefly in the

following sub-sections.

4.2.1 Source Nodes

Source nodes have two main functions. First function is to generate packets
composed of one or more flits. Number of flits in packets is determined according
to outgoing_cnt_x inputs. Packets are generated for the nodes whose corresponding
outgoing_cnt_x inputs are not zero. Generation is also related with wait_cnt input
defining the idle period of the node, in which no flit is generated. As an example if
the outgoing_cnt_1, outgoing_cnt_2 and wait_cnt inputs of node 1 are equal to 5,
20 and 10 respectively and other inputs are equal to zero, node 1 generates a packet
composed of 5 flits to be transmitted to node 2, generates a packet composed of 20
flits to node 3 and waits for 10 clock periods without generating any flits in each

cycle.
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Route fields of generated header flits are determined using a look-up table which
implements across first routing. Packets are injected from the virtual channel which
is determined according to pout_ack_in signal carrying the credit information of the
router, which the source node is connected to. Payload fields of the flits include
source and destination addresses. These addresses are used in destination nodes to

verify the routing applied inside the network. Payload fields also contain flit

Figure 4.9: Block Diagram for the Testing Infrastructure

counter. Structure of the generated dummy flits is given in Figure 4.10.




Type! Size (VCID Route Payload
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Figure 4.10: Structure of Dummy Flits

Second function of the source nodes is to monitor the incoming flits. Related
incoming_cnt_x output is incremented according to the source address. Also
destination address is checked to understand whether the flit is routed to correct
destination or not. In case that destination address does not belong to that node,

error_cnt output is incremented instead of incoming_cnt_x outputs.

Pinout diagram for the source nodes is given in Figure 4.11. In addition to the
mentioned inputs and outputs, source nodes have a router interface to be connected

to network and also activate input to start or stop flit generation instantly.

4.2.2 Uart Receiver and Transmitter

These blocks perform serializing and deserializing tasks. Receiver block
deserializes the bit stream coming from the computer, outputs parallel data with
data_valid signal indicating the availability of meaningful data. On other hand,
transmitter serializes the parallel data when the transmit signal is triggered and also
signals the state of transmission from the transmitting output. Pinout diagram of
these blocks and waveform of the serial signals are given in Figure 4.12. 1 bit start
and 1 bit stop bit are used to transmit 8 bits data and baudrate of the serial signal is

115200 bits/sec.
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Figure 4.11: Pinout Diagram for the Source Nodes

4.2.3 Receiver and Transmitter Controllers

Receiver controller decodes messages coming from the user interface. Activate,
outgoing_cnt_x and wait_cnt inputs of 8 source nodes are connected to receiver
controller. Depending on the received messages, this block modifies the values
assigned to these signals. Format of the received message is given in Figure 4.13.
Value in data field is assigned to the signal to which value in address fields is
mapped. In order to confirm the message, calculated checksum from first three

bytes is compared with the received one.
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Figure 4.12: Pinout Diagram for Receiver (a) and Transmitter Blocks (b) and

Waveform for the Serial Signal (c)

In order to maintain real time monitoring on the computer side, unlike receiver

controller, transmitter performs its task using address and data. This block puts the

information gathered from incoming_cnt_x and error_cnt outputs of the source

nodes in the order recognised by the user interface and transmits bytes continuously

in this order. Transmit and clock counters that are kept inside the controller are also

added to the message. Values of these counters are used in rate calculations

performed on the computer side. Header and checksum fields are also available in

this message.

I Header

Address

Data

Checksum

0xC5

0xXX

oxYY

0x00 — (0xC5 + 0xXX + 0xYY)

Figure 4.13: Format of the Received Messages from User Interface
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43 NOC MONITOR

NoC Monitor is a graphical user interface running on the computer to create dummy
traffic for the on-chip network composed of 8 routers (4 ports, 2 VCs) in spidergon

topology and to monitor created traffic on real time.

A screenshot of the NoC Monitor is given in Figure 4.14. Generated traffic is
controlled by the checkboxes and the table in the division marked as 1. Each
checkbox activates or deactivates generation of packets in the related source node.
Each cell on the table corresponds to one of the outgoing_cnt x (TO NODEX) or
wait_cnt (IDLE) inputs of the source nodes. User interface calculates the address
field according to edited cell and transmits the serial message whose format is given

in Figure 4.13.

Each serial message sent by the transmitter controller block on FPGA includes 1
byte packet counter. This counter and the difference between packet counters of two
consecutive messages fetched by Ul are displayed on the table in the 2™ division of
Figure 4.14. Time difference between two recent messages is also presented on this

table in terms of seconds.

Table in the 3™ division indicates the total number of the received flits by each
source node. Values of incoming_cnt_x and error_cnt outputs of source nodes are
printed on the table according to source-destination pairs. Rows correspond to
sources and columns to destinations. The value of a clock counter is also received
from the transmitter controller on FPGA. This value is used to calculate rates of the
received flits. Differences between previous and current values of each cell are
divided by the difference between previous and current value of clock counter. To
find the rate in terms of Mbit/sec result divisions are multiplied with 0,000032 since

flit size of the tested NoC is 32. Total received and transmitted traffic by each node
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can also be observed from the table. Intersection of these column and rows gives the

rate of the whole traffic on NoC.

I v 5.0 -

Disconnect Reset el
@ [V]on [#]on [V]oN [Z]on [F]oN [#]oM [T]oN []oN @
NDL | ND2 | ND3 | ND4 | ND5 | ND6 | ND7 | NDS | PACKET ™E |
TO NODEL 0 1 s 1 2 0 % — PREVIOUS | 182 iz3ieios
O NpaES Mo o5 75 425 0 1 CURRENT 186 1.2346e+03
TO NODE3 15 222 o 0 80 0 % DIFFERENCE 3 01071
TO NODE4 2 g 76 o 18 1 o 10
TO NODE5 3 G/ 81 150 50 o 3
TO NODE& 203 o 44 7 3 o o 75
TO NODE7 a 12 100 o 2] 10 o 255
TO NODES 1 o 100 o 43 120 o o
IDLE 8 g 8 g g g g 8
) TONODEL | TONODE? | TONODE3 | TONODE4 | TONODES | TOMODES = TONODE? | TONODES TOALL
FROM NODE1 0.00 26244128000 293955402000 38715736800 1735526466.00 3613917667.00 0.00 18547869600 9124075497 .00
RATE 0.00 39847 5433 724 32.60 73533 0.00 362 123158
FROM NODE2 451947520.00 0.00 114937959800 160430539500 177978043.00 0.00 2127717456 00 0.00 5511328012.00
RATE 464.27 0.00 858.88 3482 387 0.00 4643 0.00 1408.26
FROM NODE3 | 231932027400 597314685.00 0.00 40242994200 885815173.00 82195383200 297900020800 293692250800 10942756624.00
RATE 144.88 13.47 0.00 200.20 213,37 115.90 26341 263,41 1214.35
FROM NODE4 |  309965966.00 2371085700.00 0.00 0.00 3664601990.00 60642167100 0.00 0.00 6952079327.00
RATE 469 351.91 0.00 0.00 703.87 79.77 0.00 0.00 1140.24
FROM NODES | 2702433533.00 109943996.00 5423658400 47759195700 0.00 7458565100 220453659.00 1144654608.00 4783999988.00
RATE 1049.56 16.79 3.40 75.57 0.00 12.60 37.79 201.52 1402.22
FROM NODEG 54705346.00 410265850.00 1197459630.00  14609258.00 46977335000 0.00 8852322000 989173064.00 3224599763.00
RATE 5.60 £9.97 22391 2.80 139.94 0.00 27.99 335.93 806 14
FROM NODET 0.00 0.00 o.00 0.00 0.00 0.00 .00 0.00 0.00
RATE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FROM NODES 471541905.00 10183777.00 236536144.00 81744170.00 18621633.00 395081550.00 1215146975.00 0.00 2428856154.00
RATE 148.16 3.29 85.60 3292 9.88 246.93 839.56 0.00 1366.35
ERRORS 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 o0
FROM ALL 6310008544.00 3761235288.00 5577166026.00 296783B8092.00 6952316655.00 5512060371.00 663084151800 5256228876.00 42967695370.00
RATE 1817.16 853.61 1231.11 353.55 1103.52 1190.53 121518 804.49 8569.14

Figure 4.14 : NoC Monitor

44 NOC GENERATOR

NoC Generator is another graphical user interface designed within the scope of this
thesis to generate diverse NoCs with different characteristics. This tool creates

necessary VHDL source codes for the specified NoC via a user interface.

In Figure 4.15, a screenshot of the NoC Generator is illustrated. First, user chooses

the topology of the network among 4 choices which are ring, spidergon, mesh and
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torus. Depending on the chosen topology network size is specified as one
dimensional (ring, spidergon) or two dimensional (mesh, torus). Node degree is

displayed by the user interface according to the topology.

MoC Generator v1.0 L — &I
Topology : 5. Spidergon - | [ Sonsols
01:50:41 Ready -
Hetwork Size:| 01:50:49 Generation is started
01:50: 49 NoC_lik directory is created
Node Degree : 3 01:50:49 Generation is completed succesfully

01:50:49 Ready
Data Field Size: 4

Flit Size :| 5 GEMNERATE
Buffer Size : 4

VYC Number:| 5 2z

Figure 4.15 : NoC Generator

Then, data field size in the header flit is assigned. Together with topology, network
size and VC number, data flit size determines the whole flit size which is calculated
and displayed by our Ul The depth of the input buffers in vc blocks is specified by
Buffer Size tab. Finally virtual channel number is entered and Generate button is
pressed to start the generation. ‘NoC _lib’ directory is created and VHDL source

codes which are ready to be synthesized are generated under this directory.

4.5 IMPLEMENTATION ON FPGA PLATFORM

The designed NoC composed of 8 routers (4 ports, 2VCs) in spidergon topology is
also executed together with our testing blocks on Xilinx Virtex 6 Evaluation Board
which is illustrated in Figure 4.16. This board includes XC6VLX240T FPGA of
Xilinx which contains 241.152 logic cells and 37.680 slices each of which
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composes of 4 look-up-tables (LUTs) and 8 flip-flops. The design is synthesized
and implemented (translate, map, place & route) by using Integrated Software
Environment (ISE) tool of Xilinx. At the end of these processes, programming file
needed to configure FPGA is obtained and design issues such as maximum delay,
maximum applicable clock frequency, I/O pad assignments and resource usage etc.
are reported. According to these reports, maximum delay observed on the paths is
5,675 ns. So maximum clock frequency that can be applied to the blocks in the
design is 176,214MHz. Our design uses 14.626 of 301.440 flip-flops (registers) and
44.335 of 150.720 LUTs. This information is stated on Table 4.1.

Several NoCs with different parameters are also generated using our NoC
Generator. These NoCs are synthesized by using ISE. Similar information for all
these NoCs is stated on Table 4.1. Table 4.1 shows that network size, flit size and
buffer depth do not change maximum delay significantly. But these parameters
dramatically affect resource usage. Therefore a network can be expanded without
changing its timing performance. On the other hand, since number of virtual
channels also has an influence on control logic, it affects both resource usage and
timing performance. Topology type also changes both resource usage and timing

performance.

For comparison, HERMES [25-27] NoC in mesh (4x2) topology with 2 VCs, 32 bit
flit size and buffers of depth 4 is synthesized by using ISE and synthesis results are
also stated on Table 4.1. When we compare HERMES NoC and our NoC with the
same parameters, it is observed that our proposed NoC outperforms HERMES in

timing performance in return for an increase in resource usage.
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Figure 4.16: Xilinx Virtex 6 Evaluation Board
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Table 4.1: Generated NoCs vs. Maximum Delay and Resource Usages

Generated NoCs vs. Maximum Delay and | Maximum Registers LUTs
Resource Usages Delay
Spidergon (8), VC=2,F=32,B=4 5,675 ns 14.626 44335
Spidergon (8), VC=2,F=32,B=2 5,528 ns 10.663 33.205
Spidergon (8), VC=2,F =64, B =4 5,519 ns 26.914 50.065
Spidergon (8), VC=4,F=32,B=4 7,076 ns 31.778 115.137
Spidergon (16), VC=2,F=32,B=4 5,586 ns 29.250 65.073
Ring (8), VC=2,F=32,B=4 4,473 ns 10.676 31.315
Mesh (4x2), VC=2,F=32,B=4 6,162 ns 14.277 32.710
Torus (3x3), VC=2,F=32,B=4 6,450 ns 21.788 57.646
HERMES Mesh (4x2), VC=2,F=32,B=4| 8319ns 3.370 11.034

4.6 PERFORMANCE

When operated with 66 MHz clock frequency, a total rate of over 14 Gb/s can be
obtained on the network with a 32-bit flit size as shown in Figure 4.17. Applied
network traffic can also be seen on this figure. At this frequency, total capacity of 8
point-to-point links of 32 bit width is 16,896 Gb/s. In our implementation, more
than 82% of this capacity can be reached. If a bus structure was implemented with

the same flit size and was operated with same clock frequency, maximum 2,112
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Gb/s rate would be obtained, even if arbitration periods are assumed as zero. Total

rate obtained on the network can be increased by operating the network under

higher clock frequencies. Maximum delay obtained by synthesis tools (as shown in

Table 4.1) limits the maximum operating frequency.

R — R

Disconnect Reset k]
[¥]oN [v]on [V]ON [Z1oN [Z]ON [V]ON [V]ON [V
ND1 | ND2 | ND3 | ND4 | ND5 ND6 | ND7 ND8 [ PACKET TIVE
| | ToNoDEL 0 220 {0 210 200 40 1m0 235 PREVIOUS 33 206038403
TO NODEZ 20 o0 20N 20 20 20 20 CURRENT 85 206046403
TO NODE3 230 215 0 200 240 180 210 170 DIFFERENCE 2 0.0300
TO NODE4 20 195 245 0 185 355 245 180
TO NODES 240 180 190 225 0 230 185 195
TO NODE§ 205 225 210 230 255 0 245 220
TO NODET 185 255 205 245 205 210 o 230
TO NODES 185 220 200 190 180 200 235 0
IDLE 8 8 8 8 8 8 3 B
TONODEL | TONODEZ | TONODE3 ~ TOMNODE4 | TONODE5 | TONODEG | TOMNODE? = TONODES TOALL
"FROMNODEL | 000 2692322366.00 1987561429.00 2121993982.00 237801721100 196846483200 110715430500 925930997.00 1275199482200
RATE 0.00 233.32 268.32 244.99 279.99 239.12 24571 227.49 1708.94
|| | FROMMNODE2 | 1962108552.00 0.00 1356762960.00 4254526526.00 4156357365.00 1643993626.00 2822096582.00 219394465.00 16415240079.00
RATE 256.65 0.00 250.82 221.37 209.99 262.49 297.48 256.65 1761.45
| FROM NODE3 | 4026550954.00 164915595800 0.00 2033867400.00 #177565255.00 171157801500 384601103.00 1236237977.00 15219556662.00
RATE 221,65 268.32 0.00 285.82 221.65 244.99 262.46 233.21 1738.10
FROM NODE4 534260431.00 3740213519.00 4099435059.00 0.00 843942170.00 99863373400 1495042595.00 3798251512.00 15509779020.00
RATE 24499 256.65 233.32 0.00 262.44 268.22 285.82 221.65 1773.10
FROMMNODES | 4221282662.00 581808529.00 31377457.00 3922947733.00 0.00 938035670.00 3359460308.00 332200691.00 16706919277.00
RATE 23332 296.52 279.98 227.49 0.00 297.48 239.16 209.99 1743.94
FROM NODEG 322490864.00 2722968394.00 4208192969.00 1347446275.00 425461963.00 0.00 3301657948.00 3229643135.00 15557861553.00
RATE 279.99 256,65 22165 297.48 26822 0.00 24499 23332 180231
FROMMNODET | 37118445400.00 28757138300 3647989291.00  45384793.00 2843691928.00 265435845.00 0.00 4157434955.00 14369913195.00
RATE 22165 279.99 244.86 285.81 215.82 285.82 0.00 274.15 1808.11
FROM NODES 3505781785.00 4148042387.00 1902010306.00 2154330887.00 254919404800 3190843792.00 3446202659.00 0.00 20896955864.00
RATE 262.35 291.64 198.32 209.99 227.49 256.65 268.32 0.00 1714.77
ERRORS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FROM ALL 17690920648.00 15822582536.00 17563329471.00 15881047596.00 17374189545.00 10316985314.00 15916215500.00 16383949962.00 127454220572.00
RATE 172061 1843.10 1697.27 1778.95 1685 61 1854.77 181393 1656.47 <502

Figure 4.17: Performance of the NoC Operated with 66 MHz Clock Frequency

Also, we observe that, through our allocation mechanisms, fairness is provided. In

the case that all source nodes generate identical traffic, observed incoming and

outgoing traffic rates for each source node are observed to be identical. This case is
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created and monitored by using our NoC Monitor as shown in Figure 4.18 which

demonstrates that our NoC does not cause any privilege to any node in the network.

—

Disconnect Reset £l

ND1 | ND2 | ND3 | ND4 | ND5 | NDG | ND7 | ND8 PACKET TIVE
TO NODE1 o 10 10 10 10 10 10 10 PREVIOUS 138 202.3426
TO NODE2 0 0 40 0 0 q0 40 1D CURRENT WA AR
TONODE | 10 40 0 40 10 40 10 10 DFFERENCE R L
TO NODE4 0 10 10 0 M0 10 10 10
TO NODES 0 10 10 10 00 10 10
TO NODES 0 10 10 10 10 010 10
TO NODET 0 10 10 10 10 10 010 ‘
TO NODES 0 10 10 10 10 f0 10 0
IDLE 8 8 8 8 8 8 8 8
TOMODEL | TONODEZ | TOMNODE3 | TONODE4  TOMODES | TOMNODEE | TOMNODET | TONODES TOALL | |
'FROM NODEI 000 416396575200 4141TET40.00 12878098200 £1BTIIZS400 $109244096.00 410226906100 414514395000 2690990336300
RATE 0.00 185,57 18557 18557 18557 18657 18857 185,57 C 151999 #
FROMNODE2 | 4087178985.00 0.00 4058101187.00 4044241947.00 4044390732.00 AD39444306.00 4039925890.00 4030831122.00 28340114189.00
RATE 168,57 0.00 18557 18557 18857 18857 16857 18857 @D
FROMNODE3 | 3544496532.00 3819413892.00 0.00 380027422200 3791098116.00 3785889732.00 378150110200 3775561032.00 26598234628.00 |
RATE 168,57 188,57 0.00 18557 18557 18857 188,57 188,57 ﬂ£>
FROMNODE4 | 3786505502.00 3768759072.00 3758237552.00 0.00 3744206662.00 3738300382.00 3733777932.00 3730403818.00 26260190920.00 L
RATE 168,57 188,57 188,57 0.00 18557 18857 188,57 188,56 @
| | FROMNODES | 5735182972.00 372125150200 371149048200 369513405200 000 388437305200 367047440200 IB74140782.00 259040452 14.00
RATE 168,57 168,55 188,57 18557 0.00 18857 188,57 188,57 @)
FROMMNODES | 3687515462.00 3678858122.00 366526966200 365971823100 383644245200 0.00 362583370200 3620226322.00 2557519745300
RATE 168,57 168,57 188,57 18558 18557 0.00 188,57 188,57 @>
FROMMNODET | 264844334200 3603098344.00 3601555602.00 359525063200 3583665762.00 357954524200 0.00 3573706622.00 2518607 0
RATE 188.57 188,57 18857 18857 18857 18857 0.00 188,57 d‘;ﬁ>
FROMMNODER | 2569127132.00 3550008242.00 355383550200 354541430200 3544038322.00 3540468550.00 353532057200 0.00 2435026 0
RATE 188.57 188,57 18857 18857 18857 18858 18857 0.00 $>
ERRORS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FROMALL  |26328753927.00 26318205016.00 2649324 26494123761.00 26550013656.00 211604026384.00
RATE 1320.00 131999 1320.00 131949 1318.99 131999 10559.95

Figure 4.18: Provided Fairness
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSIONS

In order to meet increasing needs and demands of the contemporary world,
technology development gained acceleration. For instance, past black and white
televisions have left their places to high definition 3D televisions, and gramophone
records have been replaced by lossless audio media. Hence, there has been a
demand for increased processing capacity to support these, which could be realized
by increasing processing frequency and/or the number of processors. As the number
of processors increased, the communication between these processors gained
significant importance. In addition to the existing communication structures such as
on chip buses and crossbars, developers have recently directed their attention to
another solution; that is on-chip network which is composed of shared point-to-
point links. So far, several NoC examples have been proposed and implemented;
however, a standard such as the ones found for on-chip buses has not been

developed yet.

In this thesis an example NoC that performs wormhole flow control and source
routing is implemented. Firstly, a NoC composed of 8 routers, each having 4 ports
and 2 VCs in spidergon topology is designed. Then, this design is described using
VHDL and source codes are created. These source codes were simulated on
computer environment. Afterwards, to verify the design in real-time, blocks

generating dummy traffic and serial interface blocks that communicate with user

88



interface on the computer and provide control and monitoring of the generated
dummy traffic are also designed. Furthermore, together with these testing blocks,
the designed NoC is synthesized to be implemented on an FPGA. Thus, using the
user interface, i.e., our NoC Monitor, running on the computer, we verified our
design in real-time. We observed that created dummy packets were successfully
transferred from sources to destinations through the network. Eventually, a total rate
of over 14 Gb/s is obtained on the network with a 32-bit flit size operating with 66
MHz clock frequency. If a bus structure was implemented with the same flit size
and clock frequency, 2,112 Gb/s rate would be obtained. So we conclude that using

network structures on chips, almost a sevenfold performance increase is obtained.

Our VHDL source codes are generalized and parameterized to span ring, spidergon,
mesh and torus topologies with diverse buffer sizes, flit sizes and virtual channel
numbers. Thus, to be used under various network traffics, it is now possible to

generate different NoCs using our NoC Generator.

5.2 FUTURE WORK

The NoCs obtained throughout this study can be varied and further developed with
new properties. Our tools, the NoC Generator and the NoC Monitor, created in this

study can be improved.

The designed network does not provide any bandwidth guarantee. Bandwidth
provided to a source node changes according to the traffic produced by other source
nodes. In the future, Quality of service (QoS) can be implemented to ensure the

guaranteed traffic.

Furthermore, in our current solution, dead lock avoidance is achieved by using a
proper routing method. In future studies, it can be managed by router blocks on the

network.
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Also, instead of network interface units, dummy test blocks are used in the design.
Network interface units can be designed and included in the NoC Generator. In

these network interface units, various other routing methods can be applied.

Although they are not preferred to be used in on-chip networks, different flow
control methods such as circuit-switching, store-and-forward, and virtual-cut-

through can be added to the NoC Generator.

Moreover, the NoC Monitor can be developed to create other traffic types to

observe different qualities of the network.
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