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ABSTRACT 

FPGA IMPLEMENTATION OF A NETWORK-ON-CHIP  
 

 

Kılınç, İsmail Özsel 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor : Assoc. Prof. Dr. Cüneyt Bazlamaçcı 

 

September 2011, 93 pages 

This thesis aims to design a Network-on-Chip (NoC) that performs wormhole flow 

control method and source routing and aims to describe the design in VHDL 

language and implement it on an FPGA platform. In order to satisfy the diverse 

needs of different network traffic, the thesis aims to design the NoC in such a way 

that it can be modified via a user interface, which changes the descriptions in the 

VHDL source code. Network topology, number of router ports, number of virtual 

channels, buffer size and flit size are the features of the designed NoC that can be 

modified. In this thesis, interfaces and operations of the blocks in the NoC are 

defined through block diagrams and algorithmic state machines. Verification of 

these blocks is performed not only on computer environment via simulations tools, 

but also in real world. To achieve this, source nodes generating dummy flits are also 

designed which communicate with our user interface via RS-232 generating flits 

according to the information provided by the user and monitoring the received flits 

from other source nodes in real-time. 

Keywords: On-Chip Networks, NoC, FPGA 
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ÖZ 

FPGA İLE BİR YONGA-İÇİ-AĞ GERÇEKLEMESİ 
 
 

Kılınç, İsmail Özsel 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Cüneyt Bazlamaçcı 

 

Eylül 2011, 93 sayfa 

Bu tez solucan deliği akış denetimi ve kaynak yönlendirme yapan bir Yonga-içi-Ağ 

(YiA) tasarlamayı ve bu tasarımı VHDL dilinde tanımlayıp FPGA platformunda 

uygulamayı hedefler. Farklı türdeki ağ trafik ihtiyaçlarını karşılamak için, bu tez 

tasarlanan YiA’yı VHDL kaynak kodundaki tanımı değiştiren kullanıcı arayüzü 

aracılığı ile değiştirilebilir olarak tasarlamayı hedefler. Ağ topolojisi, yönlendirici 

bağlantıların ve sanal kanalların sayısı, arabellek ve flit boyutu bu tasarlanan 

YiA’nın değiştirilebilir özellikleridir. Bu tezde, YiA’daki blokların arayüzleri ve 

işlemleri blok çizeneği ve algoritmik durum makinaları aracılığı ile tanımlanmıştır. 

Bu blokların doğrulaması sadece bilgisayar ortamında simülasyon araçları ile değil, 

aynı zamanda gerçek dünyada da yapılmıştır. Bunu gerçekleştirmek için, kullanıcı 

tarafından verilen bilgiye göre flit üreten ve gerçek zamanda diğer kaynak 

düğümlerden alınan flitleri gözlemleyen RS-232 aracılığıyla kullanıcı arayüzü ile 

iletişim kuran yapay flit üreten kaynak düğümleri de bu tez kapsamında 

tasarlanmıştır.  

Keywords: Yonga-içi-Ağ, YiA, FPGA 
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CHAPTER 1                                                                                  

INTRODUCTION 

As a result of developing technology, bits needed to describe the available 

information are increasing day by day. To keep pace with this excess demand, chips 

should process and transfer data more and more quickly. Until today the developers 

have made an effort to reduce the switching delay of flip-flops which directly 

affects the computation speed of the chip instead of dealing with the delay due to 

wires between the flip-flops, because the communication delay due to wires was 

negligibly small in comparison to computation delay due to flip-flops. However, the 

communication delay today is not negligible any more. Switching speed of the flip-

flops increased dramatically so communication delay now starts to be a limit in the 

bit rate. As a consequence of these developments, designers now focus on 

communication inside the chip [1].  

Most of the contemporary chips use a bus structure between the blocks inside the 

chip [2]. As the chip size expands and block count increases, wire lengths in the bus 

also expand. This results in an overhead in the transmission delay on the bus due to 

capacitive effect. The other way to connect the blocks inside chip is to link them by 

using dedicated wires between each two of them. From transmission speed point of 

view, this method is the best that can be achieved, but from productivity and 

scalability point of view, this is the worst. Since this is an ad-hoc method, for each 

new design with new blocks, a designer should redesign the links between them 

from scratch. The number of communication links is in the order of N2 where N is 

the number of blocks. Hence designers should find an intermediate way that meets 
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the advantages of the two methods. The new method should be shared as a bus 

structure and should also be end-to-end using dedicated links. In other words it 

should be a shared end-to-end medium, which is the definition of a network. 

Therefore a simplified version of the general computer networks is proposed to be 

used for communication inside the chip and is called Network-on-Chip (NoC) [3].  

At first view, NoCs and today’s computer networks are similar to each other in 

terms of their main functions. Their purpose is to provide communication between 

distributed terminals over a shared medium. Depending on the type of the network, 

either a temporary connection between source and destination is established or 

packets which include source and destination addresses are generated to achieve 

this purpose.  Even if the purpose is identical, NoCs differ from computer networks 

in their application domain. For computer networks, any terminal is far away from 

another one in terms of meters or even kilometers so that the medium is affected 

dramatically by noise and attenuation on the links (cables).  However in NoCs, the 

scale decreases to the order of micrometers or even nanometers. As a result NoCs 

do not suffer from noise mechanisms and attenuation as much as computer 

networks. Due to these advantages, a reduced layered structure can be applied to 

NoCs. These layers can be considered as physical layer, network layer, transport 

layer and application layer [4]. Each layer is implemented by different units of the 

NoC architecture.   

Because of its advantages over other communication structures, circuit designers 

have started to prefer on-chip networks. Although there are several proposed and 

implemented examples [5], unlike on-chip buses, a standard has not been defined 

for on-chip networks yet. 

In this thesis, an example on-chip network is designed, implemented on FPGA and 

verified both on computer environment and on real-time. Implemented NoC 

performs wormhole flow control and source routing. In order to use it for different 
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types of network traffic, some properties of the NoC such as topology, virtual 

channel number, buffer depth and flit size can be modified. According to user needs 

and parameters, required VHDL source codes are generated via the provided user 

interface and NoCs created by these source codes can be used instead of other 

communication structures in existing systems. For example, in ASELSAN shared 

bus structures are used for system on chips with a single master unit and crossbar 

structures are used for systems with multiple masters. As a product of this thesis 

work, on-chip network structures are now available to be used with their supreme 

advantages. Even though some of the existing NoC examples are open source, they 

are not preferred to be used in military applications due to reliability and possible 

licensing issues in future. Also to keep up with the new improvements and to 

enhance our NoC according to new requirements that will arise in the future, 

developing our own design for such a recently introduced topic is preferred instead 

of importing existing designs. 

In Figure 1.1, the road map followed to obtain our NoC is given. At first, NoC with 

specific characteristics is designed and described in VHDL language. Then, VHDL 

source codes are simulated on computer environment. As the next step, source 

nodes generating dummy traffic and serial communication interface to control and 

monitor the traffic generated by these nodes are designed.  Together with these 

auxiliary blocks, the designed NoC is implemented on FPGA platform. After the 

verification of our NoC in real-time, VHDL source nodes are generalized and 

parameterized to span various topologies, buffer sizes, VC numbers and flit sizes.  

Organization of the thesis is parallel to the design flow chart. Basic concepts and 

background information about on-chip networks will be given in the second 

chapter. Some of the existing NoC examples will also be summarized. In the third 

chapter, building blocks of the implemented NoC will be explained in detail. Their 

operation will be described through block diagrams and algorithmic state machines. 

Then, in the fourth chapter, verification of these blocks will be carried out both in 



computer environment and in real-time. Waveforms obtained in simulation of 

specific scenarios will be presented. Two user interfaces developed for traffic 

generation in real time implementation and for creating our VHDL source codes 

will also be described. And finally, the thesis will be concluded with possible 

enhancements that can be carried out in the future.  

 

 

Figure 1.1: Flow Chart to be Followed 
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CHAPTER 2                                                                                  

ON-CHIP NETWORKS 

A typical example of NoC equipped systems-on-chip, which is composed of three 

distinct types of units, is illustrated in the Figure 2.1. IP cores are the units whose 

communication needs will be met. They transmit and receive data packets 

throughout the network. Network interface units split packets generated by IP cores 

into flits which are ready to be injected into the network. At the same time they 

combine ejected flits and constitute packets ready to be transmitted to IP cores. 

Router blocks, fundamental components of the Network-on-Chip, lead flits from 

their sources to their destinations. During its transmission, a flit passes through 

multiple routers.     

   

 

Figure 2.1: Typical NoC Equipped SoC Example 
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In this chapter, firstly on-chip networks will be compared to other widely used 

communication structures in systems-on-chips. Then, they will be analysed in 

relation to off-chip networks. In the third section, basic concepts of NoC will be 

examined; and finally, existing NoC examples will be reviewed.  

2.1 COMMUNICATION STRUCTURES IN SYSTEMS-ON-CHIP 

In Figure 2.2, examples of basic communication structures for Systems-on-Chip are 

given. Each structure has both advantages and disadvantages over others.  

The bus structure is a well-known one, which can be implemented easily. However, 

as the number of units in the system increases, capacitive load on the bus also 

increases. This side effect causes an increase in power consumption and latency. 

Although poorly scalable, an intermediate solution between bus structure and 

dedicated point-to-point links is a crossbar, which still has some of the drawbacks 

of the bus.  

Dedicated point-to point links offer optimum solution for bandwidth, resource 

usage, latency and power consumption [6]. Even though it is easy to design such a 

system, reusability and flexibility are problem areas for these structures. In order to 

add a new unit to the system, a designer has to remodel the existing units. Another 

disadvantage is the O(n2) growth of links with increasing number of units.  

On the other hand, a data-routing network can be considered as the best solution for 

maximum flexibility and scalability. Identical networks can be used for diverse 

systems and identical routers can be used in diverse networks. Furthermore, because 

of point-to-point links, performance of such a system does not change with scaling 

and multiple transmissions can occur simultaneously inside the network. On the 

other hand, design complexity and latency due to contention are considerable 



handicaps of on-chip networks. Table 2.1 presents a comparison between on-chip 

buses and on-chip networks.  

 

 

Figure 2.2: Communication Structures for Systems-on-Chip [6]. 

Table 2.1: Comparison of On-Chip Buses and On-Chip Networks [6]. 

On-Chip Buses On-Chip Networks 

Due to paracitic capacitance, latency 
and power usage increase with each 
new attached unit. 

- +
Due to point-to-point one way links 
between routers, performance does 
not change with scaling.  

All units share the limited bandwidth. 
Each new attached unit decreases the 
available bandwidth.  

- +
Bandwidth also increases with the 
addition of new units.  

Arbiter is specific to the system and 
delay due to arbitration increases with 
number of masters.  

- +
Distributed routing decisions are made 
by reuseable routers.  

Latency is constant after the bus is 
granted by the unit. 

+ -
Latency can increase because of 
network contention.  

Easy to design due to simple and well 
understood concepts.  

+ -
More difficult to design due to new 
concepts. 
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2.2 ON-CHIP NETWORKS VS. OFF-CHIP NETWORKS 

On-chip networks operate as simplified versions of the off-chip networks due to 

unique VLSI constraints. These constraints limit the routers of the network in terms 

of area and power. Thus, light weight and hardware implemented protocols are 

implemented in routers, which are connected by short, reliable point-to-point links 

with high bandwidth. Routers and links are not affected by dynamic changes unlike 

the ones in off-chip networks [7].  

On-chip communication is composed of well-defined interacting layers similar to 

computer networks. A simplified version of the ISO-OSI reference model can be 

adapted for typical on-chip networks. Although it is treated differently in various 

approaches, physical, network, transport and application layers are the usually 

applied ones. Applied layers, for example, Spidergon STNoC design [8] is 

illustrated in Figure 2.3.  

 

 

Figure 2.3: Layers in Spidergon STNoC Design [8]. 
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2.3 BASIC CONCEPTS IN NETWORK-ON-CHIPS (NOCS) 

2.3.1 Topology 

Network topology describes the layout of the routers and connections between 

them. Topology affects network performance and cost dramatically. For instance, as 

the number of the routers that a flit must traverse increases, latency and power 

consumption also increase. Topologies are generally compared according to 

performance and cost metrics that are summarized in Table 2.2. 

Topologies can be classified as direct and indirect. In direct topologies each router 

is attached to several other routers of the network and at least one IP core. Thus 

number of routers and IP cores are equal. Ring, octagon, spidergon, mesh and torus 

are major examples for direct topologies. Today, direct topologies are preferred on 

most designs. On the other hand, in indirect topologies there exist routers that are 

attached only to other routers. In these topologies number of routers is greater than 

the number of IP cores. Crossbar and multistage interconnect networks are 

examples for indirect topologies [8]. 

In this thesis study, only direct topologies are implemented. Connection diagrams 

and detailed information about these topologies will be given in section 3.2. Also 

influence of applied topology on performance and cost metrics will be discussed. 

For more information on topological issues, reader may see [9] and [10]. 
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Table 2.2: Performance and Cost Metrics of Topologies 

Metric Definition 

Network Size The number of IP cores connected to network.  

Network Cost  
The number of routers, cross points, communication 
links, wire length, wire density etc. 

Extendibility 
Possibility for enlarging the network without changing 
the topology. 

Node Degree The number of edges connected to a router. 

Network Degree Maximum node degree in the network.  

Edge Bisection Width Wire density in the network 

Network Diameter 
Maximum router count on the shortest path between any 
two IP cores.  

Avarage Distance 
Avarage router count on all the shortest paths between 
IP cores. 

Connectivity Ability to operate in the case of disabled components. 

 

2.3.2 Routing Algorithm 

Figure 2.4 presents a classification of routing algorithms. Depending on the number 

of the destination, routing algorithms can be classified as unicast, in which packets 

have single destination, or multicast, where packets are destined to multiple nodes. 

Unicast routing has four categories according to the place where the routing 

decisions are made. In source routing, route is decided before the packet is injected 

into the network while in distributed routing, decision are taken inside the network 



during the transmission of a packet. A single unit makes the decision in centralized 

routing. All routing decisions can be implemented either by using lookup tables or 

finite state machines.  

Adaptability is another classification criterion. For the given source and destination 

nodes, if the routing algorithm always decides on the same route, this kind of 

routing is called deterministic, which generally chooses the shortest path between 

the nodes. XY, north first, south first, east first, west first, across first, across last 

routings are examples of deterministic routing. Unlike deterministic routing, 

adaptive routing takes also network traffic into account. Implementation of adaptive 

routing algorithms is more complex and costly than deterministic routing algorithms 

[11].           

 

 

Figure 2.4: Classification of Routing Algorithms [12] 

 
11



In progressive routing algorithms flits are not allowed to backtrack. Profitable 

(greedy) algorithms are also progressive because flits come closer to the destination 

in every routing decision. Deterministic routing algorithms are generally profitable. 

And final classification can be done as complete or partial routing according to 

number of paths considered. 

In this thesis, source routing is implemented using finite state machines. Routing 

information is stamped to the header flit of the packet before it is injected into the 

network. More information about NoC routing algorithms exists in [13] and [14].  

2.3.3 Flow Control (Switching) Methods 

Buffer and link allocations are performed by flow control mechanisms which are 

classified by the granularity of the allocated resources. As shown in Figure 2.5 

messages, before been injected into the network, are divided into packets, packets 

into flits and flits into phits. Size of the smallest segment determines the flow 

control method. 

 

 

Figure 2.5: Messages, Packets, Flits and Phits [4] 
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A classification of flow control mechanisms is given in Figure 2.6. In circuit 

switching, resources are allocated for messages. Link pre-allocation takes place and 

links are reserved to the entire message. Thus, buffers are not needed at each router. 

A router architecture performing circuit switching is proposed in [15]. In store-and-

forward and virtual-cut-through techniques messages are segmented into packets 

and packets are switched through the network as proposed in [16]. In store-and-

forward, before forwarding to the next one, routers wait for the entire packet to be 

stored. This mechanism causes long delays in routers and needs large buffer space 

for the entire packet. In order to prevent delays, virtual-cut-through flow control 

starts to forward packet to the next router before the entire packet is stored. 

However, packet-sized buffers are still needed in this method. Flit-based flow 

control mechanisms emerged as a solution to large buffer area requirements of other 

flow control mechanisms.  

Wormhole flow control operates in a way similar to the virtual-cut-through method. 

However in wormhole, availability of single flit sized empty buffer space in next 

router is enough for transmission. Therefore, main difference between these two 

methods is the necessary buffer space in the routers. During the transmission of a 

packet, header flit of that packet constructs a path in the network which is followed 

by other flits of the same packet. Although buffer allocation is done in units of flits, 

links are allocated for the entire packet which results in inefficient use of links. 

Then, if the header cannot proceed inside the network, whole packet is blocked 

Thus, allocated links are left idle. For more information please see [11] and [12]. 



Switching 
Techniques

Circuit Switching Packet Switching

Wormhole 
Switching

Store-and-Forward 
Switching

Virtual Cut 
Through

 

Figure 2.6: Classification of the Flow Control Mechanisms [12] 

Wormhole flow control is the most common switching technique for both 

commercial off-chip network routers and on-chip network routers since it allows 

affordable and fast routers [11]. Also in this thesis study, wormhole flow control is 

preferred because of its convenience for power, timing and area constraints of on-

chip networks. Store-and-forward, virtual-cut-through and wormhole mechanisms 

are compared in Figure 2.7 in terms of their timing performance. 
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Figure 2.7: Timing Comparison of Flow Control Mechanisms [7]                            

a) Store-and-Forward b) Virtual-Cut-Through c) Wormhole 

2.3.4 Virtual Channels 

Virtual channels can be defined as multiple parallel queues (buffers) in routers. 

Virtual channels share the physical channel and arbitrate for it on a cycle basis. 

They are used to avoid deadlocks and head-of-line blocking problems. When a 

packet in one of the virtual channels is blocked, packets in other virtual channels 

can continue to be transferred. Thus, performance of networks is improved by the 

implementation of virtual channels in routers [17, 18].  

Virtual channels can be implemented for all flow control methods mentioned in the 

previous section. However, since the integration of virtual channels to wormhole 

flow control mechanism solves the problem of inefficient link usage which is 

encountered especially in this mechanism, wormhole flow control method with VCs 

becomes the perfect choice for on-chip networks.  
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In this thesis the number of virtual channels can be selected via our configuration 

tool presented in this thesis. However, for the sake of simplicity, components of the 

NoC applying wormhole flow control with two VCs will only be examined in detail 

in the following chapters. 

2.3.5 Buffer Organization and Backpressure 

Network performance is directly related with the buffer organization. Buffers can 

exist both on the input ports and output ports. Output buffering is needed when 

speedup of a switch is required to be greater than one. Only input buffers are 

preferred in the routers of existing on-chip networks. Input buffering can be 

implemented by three different ways such as single-fixed-length queue, multiple 

fixed-length queues and multiple variable-length queues, which are shown in Figure 

2.8. Multiple queues are used in routers with virtual channels. In variable-length 

queues, virtual channels share a large buffer according to a ratio changing 

dynamically with respect to network traffic [7].  

Packet dropping is not allowed in most on-chip networks. Thus, a backpressure 

mechanism is required to stall the traffic. Availability of free space in buffers is 

signaled to neighbor routers via two commonly used mechanisms. In credit-based 

approach, number of available buffers is tracked [12]. In on-off backpressure 

approach, an on-off signal is generated according to a determined threshold. In this 

thesis study, multiple fixed-length buffers with credit-based backpressure 

mechanism are applied.  

 



 

Figure 2.8: Input Buffer Types [7] 

2.3.6 Allocators and Arbiters 

Allocators are used to match multiple requests to multiple resources and arbiters are 

used to match multiple requests to a single resource. Allocators and arbiters are 

needed to distribute the resources of routers, namely the output virtual channels and 

switch ports. Thus two distinct allocation mechanisms are required. Virtual-channel 

allocation is performed for only header flits and VCs are allocated to entire packet, 

while switch allocation is performed for all the flits and switch ports are allocated 

on flit basis [7]. 

There exist several allocation and arbitration mechanisms. Round-robin, matrix 

(least-recently-used), first-come-first-serve, priority-based, priority-based-round-

robin are examples for these mechanisms. Round-robin arbiter gives the lowest 

priority to the last served request in the next arbitration while matrix arbiter gives 

the highest priority to the least recently served request [12].  

In this thesis study, round-robin arbitration is applied in both virtual channel 

allocation and switch allocation blocks of the routers implemented. 
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2.3.7 Switches 

Packets are transported from input ports to output ports via switches. In this thesis, 

like other blocks, crossbar switches used in our routers are described as VHDL 

entities and synthesized for FPGA platforms. Since there exists no ready-to-use 

crossbar core in FPGA, these switches are composed of multiple multiplexers. As a 

result these switches cannot operate at higher clock frequencies as crossbar based 

switches. In Figure 2.9, a crossbar switch implementation composed of multiplexers 

is given and in Figure 2.10, a 5x5 crosspoint crossbar switch of w bits wide is 

illustrated.  

 

 

Figure 2.9: Crossbar Composed of Multiplexers [7] 
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Figure 2.10: 5x5 Crosspoint Crossbar Switch [7] 



 
19

2.4 EXISTING NoC EXAMPLES 

In this section, some of the existing NoC implementations will be briefly reviewed. 

SPIN [19], The Scalable Programmable Integrated Network, uses indirect fat-tree 

topology with two one-way data path in 32 bits width. Wormhole switching is 

implemented in SPIN. 

QNOC [20, 21], The Quality of Service NoC, uses direct network with irregular 

mesh topology. Wormhole switching, credit-based backpressure mechanism and 

XY minimal routing are implemented by QNoC which is developed by Technion in 

Israel. 

The SOCBUS NoC [15] uses direct 2-D mesh topology. Deadlock free circuit 

switching is applied in the SOCBUS NoC, which is developed at Linköping 

University. 

The Nostrum NoC [22], which is developed at KTH in Stockholm, uses direct 2-D 

mesh topology. Store-and-forward switching is applied in the Nostrum NoC. 

In the Æthereal NoC [23], wormhole switching is applied with contention free 

source routing. Both synchronous indirect and irregular topologies are supported by 

Æthereal NoC, which is developed by Philips. 

Xpipes [24], developed by the Universisy of Bologna and Stanford University, 

applies wormhole switching and source routing. It contains a SystemC library of 

switches and links to create specific network components. Flit size, network 

diameter are some of the tunable parameters of the instantiated NoC. Different 

topologies such as mesh, torus, hypercube, clos and butterfly can be implemented 

by using Xpipes. 



Spidergon STNoC [8], developed by STMicroelectronics, uses direct polygonal 

topology, which is obtained by generalizing the octagonal topology. Packet 

switching or circuit switching can be executed.  

HERMES [25-27], developed by Faculdade de Informâtica PUCRS in Brazil, 

applies direct 2-D mesh topology. Wormhole switching is implemented with 

minimal XY routing algorithm. There exist several tunable parameters such as flit 

size, number of virtual channels, buffer depth. There are also several other NoCs 

with different properties developed by Faculdade de Informâtica PUCRS. These 

NoCs are listed in Figure 2.11. 

 

 

Figure 2.11: Characteristics of the NoCs Developed by Faculdade de Informâtica 

PUCRS [27]. 
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CHAPTER 3                                                                                  

IMPLEMENTATION OF NETWORK ON CHIP IN FPGA PLATFORM 

In this thesis study, NoC which is performing wormhole flow control and shortest 

path across-first source routing is implemented in Field Programmable Gate Arrays 

(FPGA). The implemented NoC is composed of identical routers, which are 

connected in a definite topology. Routers also consist of sub-parts, which perform 

buffering, virtual channel allocation, switch allocation and switching functions. 

Topology, routers and sub-parts of router are implemented in different hierarchical 

blocks in FPGA. 

In this chapter, these blocks will be examined in hierarchical order. By using block 

diagrams and state machine diagrams, their functions and operations will be 

clarified. But before the presentation of the FPGA blocks of NoC, flit structure that 

is recognized by the implemented NoC is given in the following section. 

3.1 FLIT STRUCTURE 

As was denoted in Chapter 2, wormhole flow control splits messages into packets 

and packets into flits. Packets are transmitted through the network in the form of 

single or multiple flits [11]. Flits are generated and injected into the network in the 

source node. They travel in the network via routers until they reach the destination 

node. In the destination node, flits are combined to form the packets again.  



 
22

Flits include not the only data field, but also a control field [16]. Control field is 

necessary to express the characteristics of the flit to the network elements. As an 

example, routing is executed depending on the related information in the control 

field. This information needs to be in a definite place in the flits. Thus when a flit is 

received, by inspecting the bits in this place, the router can decide on how to route 

that flit. 

The flit structure used in our implementation is given in Figure 3.1. Header flit 

consists of type, size, VCID, route data as the control field and payload as the data 

field. Body and tail flits have larger payload area instead of route data in header 

flits.  

Type field consists of two bits, which are ‘start of frame’ (sof) and ‘end of frame’ 

(eof). These two bits identify four different types of flit. Header flit (b’10’) 

indicates the start of the packet and contains the routing information for the entire 

packet. A header flit is followed by a body or tail flit. Header flit can also indicate 

the end of packet in case of packet with a single flit (b’11’). It this case header flit is 

followed by the header flit of another packet. Body flits (b’00’) come between the 

header and tail flits. There can be one, multiple or no body flit in a packet. Body flit 

does not contain routing information and it is routed according to the routing 

information in the corresponding header flit. A body flit is followed by tail flit or 

another body flit. Tail flit indicates the end of packet. Tail flit is routed in the same 

way as a body flit. A tail flit is followed by the header flit of another packet. The 

length of the type field is 2 bits and does not change with the topology or the length 

of the rest of the flit (Figure 3.2). 



 

Figure 3.1: Flit Structure 
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Figure 3.2: Flit Sequencing 

Size field logarithmically shows the number of the meaningful bits in the payload 

area of that flit. Valid data in the payload area does not have to be equal to the 

whole length of the payload area. By using size field, destination node can 

understand the length of the valid bits. This information is not used by routers in the 

network. If the whole length of the payload area in a body or a tail flit is n, then the 

length of the size field is equal to ⎡ ⎤⎣ ⎦22 1)(loglog +n . Since total lengths of all flits 

are equal and header flit contains routing information, whole payload area in a body 

or a tail flit is larger than the whole payload area in a header flit. So whole of the 

payload area in a body or tail flit is taken into consideration while calculating the 

length of the size field.  

Virtual channel ID (VCID) field indicates virtual channel number to which the flit 

is going to be accepted in the next router. VCID field is assigned during the virtual 

channel allocation (va) for the header flit. Same VCID is also assigned to other flits 

of the same packet. So each flit of the same packet carries the same VCID while 

leaving the router. Since virtual channel allocation is going to be taken place again 

in the next router, assigned VCID may change in each router. The length of VCID 

field is equal to the number of virtual channels in input buffers. If there is no virtual 

channel, meaning a single buffer, VCID consists of only one bit. 
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)1(log*)1( 2 ++ kd )1( +d

Routing field includes output port numbers of all routers through which the flit is 

going to pass. This field is written into header flit by the source node according to 

shortest path across first routing. If d is the network diameter and k is the network 

degree for the applied topology, then the length of the routing field is equal to 

.  gives the maximum number of routers that a flit can 

pass through until reaching the destination node. 

⎡ ⎤

⎡ ⎤2 )1(log +k

)1(log

 gives the number of 

bits needed to represent ports of these routers. Each router uses first ⎡ ⎤2 +k  

bits of this field to understand the output port for the incoming flit. While sending 

the flit to the next one, router rotates this field as shown in Figure 3.3. 

 

 

Figure 3.3: Rotation of Route Field for d = 2 and k = 3 

Payload field contains the data to be transferred from source to destination. This 

field is not used and changed by routers during the transfer. Payload fields are 

combined to form packets at the destination node.  

Number of virtual circuits and length of payload, which are two modifiable 

attributes in our design, determine the whole flit size. In Table 3.1, field lengths for 

body-tail flits are given for different virtual circuit numbers (v) and body-tail flit 

payload length (n).  

 



Table 3.1: Flit Field Length vs. ‘v’ and ‘n’ 

 FLIT FIELD LENGTHS (in bits) vs.  
‘v’ and ‘n’  

v = 2,    
n = 32 

v = 2,    
n = 256 

v = 4,    
n = 32 

v = 4,   
n = 256

Type Field Length 2 2 2 2 

Size Field Length ( = ⎡ ⎤⎣ 1)(loglog 22 ⎦ +n  ) 3 4 3 4 

VCID Field Length ( = v) 2 2 4 4 

Payload Field Length ( = n) 32 256 32 256 

Total Flit Length 39 264 41 266 

 

On the other hand, topology determines the length of route field which also makes 

payload areas of header flits and body-tail flits differ from each other. This 

relationship between topology and route field will be explained in the following 

section in more detail. 

3.2 TOPOLOGY BLOCK 

Topology of a network describes how routers are connected to each other. Thus, 

topology block in our FPGA includes routers in network, interconnections among 

routers, interfaces between router and device nodes. In this section routers will be 

assumed as blackboxes and only connections defined by this block will be 

highlighted. 

There exist four different topologies, which can be applied by our topology block. 

These are ring, spidergon, mesh and torus topologies, which was listed as direct 
 

26



topologies in Chapter 2. Depending on the applied topology, some properties of the 

network, such as network degree and diameter, can be altered. 

Node degree refers to number of edges connected to a router node where edge is 

defined as the connection between two router nodes. Network degree is the 

maximum node degree for all nodes in the network. The number of the ports in a 

router node is directly proportional to network degree. On the other hand, network 

diameter refers to the maximum number of routers on the shortest path route 

connecting any two network node. Network diameter depends not only to the 

applied topology but also to the network size. Network size is also defined by the 

topology block and can be changed via this block. Network size stands for the 

number of device nodes, which is also equal to number of router nodes in direct 

topologies. Network diameter affects the routing scheme together with network 

degree [8].  

The relationship between topology and mentioned network properties is given in 

Table 3.2. As can be seen in this table, the number of the ports of routers is greater 

than network degree by one in all of the given topologies. Network diameter 

depends on network size (N), varying with topology.  

 

Table 3.2: Network Properties vs. Topology 

  Ring Spidergon 2-d m x n 
Mesh 

2-d k x k 
Torus 

Network Degree  
( = k) 2 3 4 4 

Port Number 
( = k + 1) 3 4 5 5 

Network Diameter 
( = d) ⎣ ⎦2/N    ⎡ ⎤4/N  2−+ nm     ⎡ ⎤2/2 k
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)1( +k

Since routing scheme changes with topology and network size, the length of route 

field in a header flit changes too. An incoming flit can be sent via any one of the 

 ports. In order to find the outgoing port for a flit, ⎡ ⎤2 )1(log +k

)1(

 bits are 

required by the router. In the implemented NoC, the shortest path across first route 

between source and destination is calculated and written to the header flit of the 

packet just before the flit is injected to the network. +d  is the maximum number 

of routers that a flit can pass. As a result, ⎡ ⎤)1(log*)1 2( + +kd  bits are needed to 

represent the full route in a header flit. In Table 3.3 length of route field is given for 

ring and spidergon topologies for different network sizes (N). 

 

Table 3.3: Network Properties vs. Topology and Network Size 

  Ring     
(N = 8) 

Ring      
(N = 12) 

Spidergon 
(N = 8) 

Spidergon 
(N = 12) 

Network Degree ( = k) 2 2 3 3 

Port Number ( = k + 1) 3 3 4 4 

Routing Bits Per Router 
( = ⎡ ⎤)1(log2 +k ) 2 2 2 2 

Network Diameter ( = d) 4 6 2 3 

Max. # Of Routers 
Passed ( = d + 1) 5 7 3 4 

Length Of Route Field   
( = )⎡ )1(log*)1( 2 ++ kd ⎤ 10 14 6 8 

 



Connection diagram for the ring topology for N = 8 case is shown in the Figure 3.4. 

In this topology each router node has two edges adjacent to two router nodes. Third 

port of each router is connected to the related device node. 
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Figure 3.4: Ring Topology (N = 8) 

In spidergon topology routers have three edges. The extra channels across the 

topology shorten the routes. Figure 3.5 presents the connection diagram for 

spidergon topology for N = 8 case. The only difference between this diagram and 

Figure 3.6 is the network size. Network size does not change the router node 

structure.  
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Figure 3.5: Spidergon Topology (N = 8) 

 

Figure 3.6: Spidergon Topology (N = 12) 
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Routers in mesh topology have 5 ports. Since node degree for routers at edges and 

corners is smaller than the network degree, some ports of these routers are 

unconnected. Sending flits to unconnected ports should be prevented by the routing 

scheme. A 4 x 3 mesh topology is shown in Figure 3.7. Corner routers (1, 4, 9 and 

12) have 2 connections with other routers, while edge routers (2, 3, 5, 8, 10 and 11) 

have 3 connections. The remaining ones (6 and 7) have 4 connections, which is also 

the network degree.   

 

Router 1 Router 2 Router 4Router 3

Router 5 Router 6 Router 8Router 7

Router 9 Router 10 Router 12Router 11

Node 1 Node 2 Node 3 Node 4

Node 5 Node 6 Node 7 Node 8

Node 9 Node 10 Node 11 Node 12

 

Figure 3.7: Mesh Topology (N = 4 x 3) 

In Figure 3.8, 4 x 4 torus topology is given. In this topology routers have 5 ports 

similar to the ones in mesh topology. Because edge and corner routers have across 

connections to other edge and corner routers, node degree for all routers is 4 

meaning that each router node is connected with four other router nodes. Hence this 

condition shortens the routing as in the case of ring and spidergon. 
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As stated in the beginning of this section, the topology block in our implementation 

uses routers as components and defines connections between the routers. It also 

connects one port of each router node to outside as an interface to device nodes. 

This block does not contain any combinational or sequential logic. All the logical 

operations and decisions are taken place inside the router blocks which are going to 

be explained in the following section. 

 

 

Figure 3.8: Torus Topology (N = 4 x 4) 
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3.3 ROUTER BLOCK 

Router blocks are identical building blocks of the network. In order to create a 

network, routers are connected to each other through their identical ports. These 

ports are composed of two physical channels, i.e., incoming and outgoing channels. 

Each channel is composed of data bits whose count is equal to the length of whole 

flit and flow control bits which are requests and credits. Apart from the ones in the 

flits, these control bits are also required to ensure successful transfer of flits 

between nodes. Pinout diagram for a 4 port router can be seen in Figure 3.9.  
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Figure 3.9: Pinout Diagram for a Four-Port Router 
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Function of a router is to direct the incoming flits from any one of the input ports to 

any one of the output ports excluding the input one. In order to achieve this, several 

mechanisms operate in a router, such as buffering, arbitration, allocation and 

switching. Mostly, routers encounter cases where multiple flits should be routed 

simultaneously. In these cases, if each flit is to be routed to different output ports, 

only a switching mechanism would be sufficient for routing. However, there exist 

cases where two or more flits are to be routed to the same output port. In such a 

situation, the permission to use the desired output should be given to one of the flits 

and other flits should be stored in the router. Here, an important problem arises: 

which flit should be routed and which one should be stored? Buffering, arbitration 

and allocation mechanisms are required to overcome this problem. In Figure 3.10, 

block diagram for a router with 4 ports and 2 virtual channels is given. In this figure 

different instances of each functional block are used. For example vc_1, vc_2, va_1 

sa_1, sw etc… Only va_req_out_x and va_ack_in signals of vc_1, sw_data_out and 

sw_dir_out_x signals of vc_5, sa_req_out_x signals of vc_7 and vc_8, and 

sa_ack_in signal of vc_7 are shown in the figure. Please note that other blocks also 

have the same signals although not shown for simplicity. 

Pre_vc blocks demultiplex the incoming data and request to vc blocks according to 

VCID field in the data (Shown as 1 on Figure 3.10). Vc blocks perform buffering 

and manage the entire operation. Initially these blocks generate request signals for 

output virtual channel allocation (va_req_out_x) (2). A vc block can only generate 

requests for output virtual channels of other ports, not for the port it belongs to. In 

this example, 2 va_req_out_x signals of each vc block are left unconnected and 6 

va_req_out_x signals go to va blocks from each vc block. Similarly, each va block 

has 6 request inputs. Depending on the round-robin arbitration method, va blocks 

generate acknowledge signal for one of the requests and grant the corresponding 

output virtual channel for that request until the end of the packet. After receiving 

output virtual channel acknowledgment (va_ack_in) (3), vc blocks generate requests 
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for the switch allocation (sa_req_out_x) (4). Because of the same reason mentioned 

for va_req_out_x signals, one of these request signals is left unconnected and other 

three requests are connected to sa blocks. Sa blocks perform round-robin arbitration 

like va blocks and acknowledge the winner request. Unlike va blocks, which grant 

output virtual channel on packet basis, they grant the switch usage on a flit basis. 

When vc blocks get switch allocation acknowledgment (sa_ack_in) (5) and observe 

available buffer space (credit_in_x) (6) on the next node, they transfer the data 

(sw_data_out) to the switch (sw) which multiplexes the data to one of the output 

ports according to select signals (sw_dir_out_x) (7).  

These sub-blocks are explained in detail in the following sub-sections. 



 

Figure 3.10: Block Diagram for Router with 4 Ports and 2 VCs 
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3.3.1 Pre_vc Blocks 

Pre_vc blocks are the first units which an incoming flit crosses through. Their 

function is to direct the incoming flits into the correct virtual channel according to 

the VCID field of the flits. There is only one data input and only one request input 

for each physical channel. However there can be many virtual channels on these 

physical channels. Pre_vc block demultiplexes data and generates request inputs for 

virtual channels. Since it is composed of combinational logic only, a pre_vc block 

does not cause any delay except gate delays. 

The number of pre_vc blocks in a router is equal to the number of ports. In Figure 

3.11, circuit diagram for the pre_vc blocks of a router with two virtual channels is 

illustrated. As the number of the virtual channels increases, number of the outputs 

of the pre_vc blocks increases too. Logic elements also increase proportionally to 

multiplex the flits between more outputs.  

 

 

Figure 3.11: Circuit Diagram for Pre_vc Blocks of a Router with 2 VCs 
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3.3.2 Vc Blocks 

Vc block performs a multiple stage functionality inside the router [7, 28, 29]. The 

first stage of its function is to buffer the incoming flits until they leave the router. If 

the stored flit is a header flit, in the next stage vc block decodes the routing field, 

understands the output port for that flit and its trailing flits and chooses the 

appropriate output virtual channel on this route. Depending on the output port and 

output virtual channel, vc block sends a request for virtual channel allocation and 

waits until the acknowledge is received. Unless the stored flit is a header flit, this 

stage is bypassed because virtual channel allocation is executed on a packet basis. 

Once acknowledgment is received for the header flit, it is valid for the rest of the 

packet. In the third stage, vc block sends a request for switch allocation. The 

buffered flit is multiplexed in the switch immediately after acknowledgment for the 

switch allocation is received. Since switch allocation is executed on a flit basis, 

every flit passes through this stage. In the implemented NoC, these stages are 

sequentially connected. Each stage takes at least one clock period. Under best 

conditions (buffer is not full, acknowledgments are received immediately) a header 

flit leaves the router in three clock periods while other flits leave in two. 

Distribution of the sub-functions in the form of stages is shown in Figure 3.12. 

 

 

Figure 3.12: Distribution of the Sub-functions in the Form of Stages 
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The number of the vc blocks in a router is equal to the number of ports times the 

number of virtual channels. In Figure 3.13, pinout diagram for the vc blocks of a 

router with 4 ports and 2 virtual channels is demonstrated. Functions of the I/O 

ports are explained in Table 3.4 and Table 3.5. 

 

clk va_req_out_1
rst va_req_out_2

va_req_out_3
va_req_out_4

data_in va_req_out_5
req_in va_req_out_6
credit_out va_req_out_7

va_req_out_8
va_eof_out

sw_dir_out_1
sw_dir_out_2
sw_dir_out_3
sw_dir_out_4

credit_in_1 sa_req_out_1
credit_in_2 sa_req_out_2
credit_in_3 sa_req_out_3
credit_in_4 sa_req_out_4
credit_in_5 sa_ack_in
credit_in_6
credit_in_7
credit_in_8 sw_data_out

va_ack_in

Internal router 
signals from/to 

va blocks

Internal router 
signals from/to 

sa blocks

Internal router 
signals to sw

block

Credit signals 
from neighbor 

routers

Internal router 
signals from 
pre_vc block

Credit signal to 
neighbor routers

 

Figure 3.13: Pinout Diagram for Vc Blocks of a Router with 4 Ports and 2 VCs 
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Table 3.4: Functions of I/O Ports of Vc Blocks Part 1 of 2 

Port Function 

clk Reference clock input for sequential processes. 

rst Asyncronous reset input. 

data_in 
Data input connected to one of the data outputs of the 
related pre_vc block. Takes flits into block. 

req_in 
Request input connected to one of the request outputs of 
the related pre_vc block. Indicates availability of valid flit 
in data_in input. 

credit_out 

Credit output connected to credit_in inputs of the vc 
blocks in neighbor nodes. Indicates available buffer size. 
Credit_out signals of vc blocks belonging to the same 
port are concatenated and they form pinx_credit_out 
outputs of the router. 

credit_in_x         
(1 - 8) 

Credit inputs connected to credit_out outputs of 8 vc 
blocks in neighbor nodes. Carries available buffer size 
information of vc blocks in neighbor nodes. These signals 
are formed from poutx_credits_in inputs of the router.. 

va_eof_out 
Eof bit output connected to the va_eof_in input of the va 
blocks to indicate the end of packet.  

va_req_out_x       
(1 - 8) 

Request outputs connected to 8 discrete virtual channel 
allocators. Generated according to decoded route field 
and decided output virtual channel. Two of these signals 
are left unconnected.   

va_ack_in 
Acknowledge input indicating whether the output virtual 
channel is granted or not. 

sa_req_out_x       
(1 - 4) 

Request outputs connected to switch arbitrators. 
Generated according to decoded route field. One of these 
signals is left unconnected. 

sa_ack_in Acknowledge input indicating the granted switch access. 
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Table 3.5: Functions of I/O Ports of Vc Blocks Part 2 of 2 

Port Function 

sw_data_out Data output connected to switch. Takes flits out of block. 

sw_dir_out_x       
(1 – 4) 

Direction and request outputs connected to switch. 
Indicates availability of valid flit in sw_data_out and its 
direction. 

 

Besides input and output ports, internal signals are also employed in the operation 

of the vc block. These signals and their functions are given in Table 3.6. They will 

be used in the following algorithmic state machine diagrams that describe the 

operation of vc block. 
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Table 3.6: Functions of the Internal Signals of Vc Blocks 

 
Signal 

Function 

in_cnt 
Counter in VC_IN process for incoming flits in modulo 
buffer size. 

out_cnt 
Counter in VC_OUT process for outgoing flits in modulo 
buffer size. 

buf_ind 

Used capacity of the buffer. Expresses zero or positive 
values and equals to (in_cnt - out_cnt) or (buffer size + 
in_cnt - out_cnt) depending on overflow of in_cnt and 
out_cnt counters.  

vc_buffer(x) xth cell of the circular FIFO buffer with size buffer size. 

vc_route 
Decoded routing info depending on related bits in 
vc_buffer(out_cnt) and credit_in inputs. 

vc_eof Eof bit of the flit in vc_buffer(out_cnt). 

va_buffer Latched vc_buffer(out_cnt). 

va_route Latched vc_route. 

sa_buffer 
Latched va_buffer on the instant that va_ack_in signal is 
received. 

sa_route 
Latched va_route on the instant that va_ack_in signal is 
received. 

sa_route_buf Latched sa_route used for restoring sa_route signal.  

next_ok 
Signal indicating the availabilty of the next router for the 
current flit. 

 

Vc block makes possible the flow of flits in pipelined mode, i.e., while a flit is 

being buffered into vc_buffer, another flit can be switched to the next node through  

sw block. Two processes running in parallel in vc block are designed to enable this 



2-stage pipelined operation. Operation of these processes will be explained in the 

following algorithmic state machines. 

 

 

Figure 3.14: ASM of VC_IN Process 

First process named VC_IN deals with storing incoming flits into buffers. In Figure 

3.14 algorithmic state machine of this process is given. Each state is clarified in 

detail in Table 3.7. 
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Table 3.7: Description of States of VC_IN Process 

State Description 

RESET 

• After asynchronous reset VC_IN process stays in 
RESET state for one clock period. 

• In this state vc_buffer and in_cnt signals are reset to 
zero, then process goes to GET_DATA_1 state. 

GET_DATA_1 

• Buffering is performed in this state if more than one 
buffer space is available.  

• To understand whether there is a new flit or not,
VC_IN process checks req_in signal at every rising 
edge of the applied clock signal.  

• In the case that an incoming flit exists, it is stored into 
the next empty place indicated by in_cnt counter and 
in_cnt counter is incremented by 1.  

• VC_IN process stays in this state until buf_ind signal 
indicating the used capacity of the buffer reaches
buffer size. 

• If buf_ind reaches buffer size, VC_IN process goes to 
GET_DATA_2 state. 

GET_DATA_2 

• Buffering is performed in this state if only one 
buffer space is available or halted if no buffer space 
is available. 

• While an outgoing flit is leaving the buffer, an 
incoming flit can be stored simultaneously. 
GET_DATA_2 state makes this possible even if a 
single buffer area is available. 

• Process checks buf_ind signal first. Even if there is a 
request for buffer write, incoming flit is not stored 
until buf_ind signal indicates empty area. 

• If there is an empty area but no request, then process 
returns to GET_DATA_1 state.  

• If there is both empty area and a request, incoming flit 
is stored into next empty place indicated by in_cnt 
counter and in_cnt counter is incremented by 1. 
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Second process named VC_OUT deals with reading flits out of the buffer, timing of 

allocation stages and directing flits to the switch. In Figure 3.15, Figure 3.16 and 

Figure 3.17 the algorithmic state machine of this process is illustrated. Also states 

of VC_OUT process are defined and explained in Table 3.8, Table 3.9, Table 3.10, 

Table 3.11 and Table 3.12. Different micro-operations are applied to flits in 

different stages. The specified tables also denote which micro-operation belongs to 

which stage of the Figure 3.12.  
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Table 3.8: Description of States of VC_OUT Process Part 1 of 5 

State Description 

RESET 

• After asynchronous reset VC_OUT process stays in 
RESET state for one clock period. 

• In this state va_buffer, sa_buffer, va_route, sa_route, 
sa_route_buf, va_eof_out and out_cnt signals are reset to 
zero, then process goes to OUT_DATA_1 state. 

OUT_DATA_1 

• Generation of output virtual channel request for 
header flit is handled in this state if the vc_buffer is 
initially empty.  

• To understand whether there is a new flit or not, 
VC_OUT process checks buf_ind signal at every rising 
edge of applied clock signal until buf_ind signal 
indicates that vc_buffer is not empty. (1st Stage) 

• In the case that vc_buffer is not empty; the cell indicated 
by out_cnt of the vc_buffer is read out and latched into 
va_buffer. Also vc_route is latched into va_route and 
vc_eof is output via va_eof_out. Then out_cnt counter is 
incremented by 1. (1st Stage) 

• Meanwhile a combinational logic circuit generates 
corresponding va_req_out signal depending on va_route 
signal. (1st Stage) 

• Finally, next state is decided using vc_eof signal 
indicating whether the following flit will be a header flit 
or not. (1st Stage) 

• If next flit is a header flit (vc_eof = 1), VC_OUT process 
goes to OUT_DATA_2 state, otherwise (vc_eof = 0) 
process goes to OUT_DATA_4 state. (1st Stage) 

 



RESET

buf_ind

va_buffer       <= all 0;
sa_buffer       <= all 0;
va_route        <= all 0;
sa_route        <= all 0;
sa_route_buf <= all 0;
va_eof_out    <= 0;
out_cnt          <= 0

OUT_DATA_1

va_buffer    <= vc_buffer(out_cnt);
va_route     <= vc_route;
va_eof_out <= vc_eof;
out_cnt       <= out_cnt + 1;

vc_eof

OUT_DATA_2 OUT_DATA_4

va_ack_in

sa_buffer    <= va_buffer;
sa_route     <= va_route;
va_buffer    <= all 0;
va_route     <= all 0;
va_eof_out <= 0;

OUT_DATA_3

> 0

= 0

= 1

= 1

= 0 va_ack_in

sa_buffer       <= va_buffer;
sa_route        <= va_route;
sa_route_buf <= va_route;
va_buffer       <= all 0;
va_route        <= all 0;

OUT_DATA_5

= 0

= 1

= 0

 

Figure 3.15: ASM of VC_OUT Process Part 1 of 3 
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Table 3.9: Description of States of VC_OUT Process Part 2 of 5 

State Description 

OUT_DATA_2 

• Generation of switch request for header flit is handled 
in this state if the packet is composed of header flit only
(single flit). 

• Process checks va_ack_in signal at every rising edge to 
understand whether the desired output virtual channel is 
granted or not. (2nd Stage) 

• If the va_ack_in signal is detected, va_buffer signal is 
latched into sa_buffer and va_route is latched into 
sa_route. Furthermore va_buffer, va_route and 
va_eof_out are reset to zero. (2nd Stage) 

• Meanwhile combinational logic circuit generates 
corresponding sa_req_out signal depending on sa_route 
signal. (2nd Stage) 

• Then, process goes to OUT_DATA_3 state. 
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Table 3.10: Description of States of VC_OUT Process Part 3 of 5 

State Description 

OUT_DATA_3 

• Transmission of single flit to the sw block is handled in 
this state. Also generation of output virtual channel 
request for new incoming header flit is handled in 
parallel in this state. 

• Process checks sa_ack_in and next_ok signals at every 
rising edge to understand whether the switch is allocated 
or not and whether the next node have enough buffer 
space or not, respectively. (3rd Stage) 

• If these two signals are detected, meaning flit is 
transmitted to next node successfully, sa_buffer and
sa_route signals are reset to zero to cancel the switch 
allocation request. (2nd Stage) 

• Simultaneously buf_ind signal is checked to understand 
whether vc_buffer is empty or not. (1st Stage) 

• If vc_buffer is empty, process goes to OUT_DATA_1 
stare. (1st Stage) 

• If vc_buffer is not empty, vc_buffer(out_cnt) is latched 
into va_buffer, vc_route is latched into va_route, vc_eof
is output via va_eof_out and out_cnt counter is 
incremented by 1 and va_req_out  is generated. (1st

Stage) 
• Depending on vc_eof signal, process goes to 

OUT_DATA_2 or OUT_DATA_4 state. (1st Stage) 

 



OUT_DATA_3

sa_ack_in 
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and next_ ok

buf_ind

= 0

= 1

sa_buffer <= all 0;
sa_route  <= all 0;

va_buffer    <= vc_buffer(out_cnt);
va_route     <= vc_route;
va_eof_out <= vc_eof;
out_cnt       <= out_cnt + 1;

vc_eof

> 0

OUT_DATA_2 OUT_DATA_4

= 1 = 0

OUT_DATA_1

= 0

 

Figure 3.16: ASM of VC_OUT Process Part 2 of 3 
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Table 3.11: Description of States of VC_OUT Process Part 4 of 5 

State Description 

OUT_DATA_4 

• Generation of switch request for header flit is handled 
in this state if the packet is composed of multiple flits. 

• Process checks va_ack_in signal at every rising edge. 
(2nd Stage) 

• If the va_ack_in signal is detected, va_buffer signal is 
latched into sa_buffer, va_route is latched both into 
sa_route and sa_route_buf which will be used for 
restoring sa_route in following states, va_buffer and 
va_route are reset to zero. (2nd Stage) 

•  Sa_req_out signal is generated by combinational logic 
depending on sa_route signal. (2nd Stage) 

• Then, process goes to OUT_DATA_5 state. 

OUT_DATA_5 

• Transmission of header and body flits of packets 
composed of multiple flits to the sw block is handled in 
this state. Also generation of switch request for new 
incoming body flits is handled in parallel in this state. 

• Process checks sa_ack_in and next_ok signals at every 
rising edge. (3rd Stage) 

• If these two signals are detected, process checks buf_ind
signal. (1st Stage) 

• If vc_buffer is empty, sa_buffer and sa_route signals are 
reset to zero to cancel switch allocation request. Process 
goes to OUT_DATA_6 state. (1st Stage) 

• If vc_buffer is not empty, vc_buffer(out_cnt) is latched 
into sa_buffer, vc_eof is output via va_eof_out, out_cnt
counter is incremented by 1 and sa_req_out  is 
generated. (1st Stage) 

• Depending on vc_eof signal, process stays in 
OUT_DATA_5 state or goes to OUT_DATA_7 state. 
(1st Stage) 



OUT_DATA_5

sa_ack_in 
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and next_ ok

buf_ind

sa_buffer     <= vc_buffer(out_cnt);
va_eof_out  <= vc_eof;
out_cnt        <= out_cnt + 1;

sa_buffer <= all 0;
sa_route  <= all 0;

vc_eof

= 1

= 0

= 0

OUT_DATA_6

OUT_DATA_7

buf_ind

sa_buffer    <= vc_buffer(out_cnt);
sa_route     <= sa_route_buf;
va_eof_out <= vc_eof;
out_cnt       <= out_cnt + 1;

vc_eof

= 0

> 0

sa_ack_in xt_ okand ne

buf_ind

va_buffer    <= vc_buffer_(out_cnt);
va_route     <= vc_route;
va_eof_out <= vc_eof;
out_cnt       <= out_cnt + 1;

sa_buffer <= all 0;
sa_route  <= all 0;

va_eof_out <= 0;

vc_eof

= 1

= 0 > 0

OUT_DATA_2 OUT_DATA_4

= 1 = 0

> 0

= 0

= 1

= 0

= 0 = 1

OUT_DATA_1

 

Figure 3.17: ASM of VC_OUT Process Part 3 of 3 
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Table 3.12: Description of States of VC_OUT Process Part 5 of 5 

State Description 

OUT_DATA_6 

• Generation of switch request for new incoming body 
flits is handled in this state if the vc_buffer is initially
empty. 

• Process checks buf_ind signal at every rising edge of 
applied clock. (1st Stage) 

• In an instant that vc_buffer is not empty, 
vc_buffer(out_cnt) is latched into sa_buffer, sa_route is 
restored from sa_route_buf, vc_eof is output via 
va_eof_out, out_cnt counter is incremented by 1 and 
sa_req_out  is generated. (1st Stage) 

• Depending on vc_eof signal, process goes to 
OUT_DATA_5 state or goes to OUT_DATA_7 state. 
(1st Stage) 

OUT_DATA_7 

• Transmission of tail flits of packets composed of 
multiple flits to the sw block is handled in this state. 
Also generation of output virtual channel request for 
new incoming header flits is handled in parallel in this 
state. 

• Process checks sa_ack_in and next_ok signals at every 
rising edge. (3rd Stage) 

• If these two signals are detected, process reset sa_buffer
and sa_route signals to zero (2nd) and checks buf_ind
signal. (1st Stage) 

• If vc_buffer is empty, va_eof_out is reset to zero. Then, 
process goes to OUT_DATA_1 state. (1st Stage) 

• If vc_buffer is not empty, vc_buffer(out_cnt) is latched 
into va_buffer, vc_route is latched into va_route, vc_eof
is output via va_eof_out, out_cnt counter is incremented 
by 1 and va_req_out  is generated. (1st Stage) 

• Depending on vc_eof signal, process goes to 
OUT_DATA_2 state or goes to OUT_DATA_4 state. 
(1st Stage) 



State transition diagram of the VC_OUT process is given in Figure 3.18. State 

transitions depend on several conditions. Different conditions are checked for flits 

in different stages of Figure 3.12. For instance, ‘empty’, ‘tail’ and ‘not_tail’ 

conditions are checked for the flits in the 1st stage, ‘va’ condition is checked for the 

flits in the 2nd stage and ‘sa’ condition is checked for the flits in the 3rd stage.  
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Figure 3.18: State Transition Diagram of the VC_OUT Process 
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3.3.3 Va Blocks 

Va blocks implement output virtual channel allocation hardware. Depending on the 

arbitration method applied in va blocks an output virtual channel is allocated to one 

of the vc blocks requesting it. The number of va blocks in a router is equal to 

number of ports * number of virtual channels. Each of these blocks have (number of 

ports – 1) * number of virtual-channels request inputs and corresponding number of 

acknowledge outputs. This is because flits can not be routed to the port from which 

they are inserted. So vc blocks can only send a request to virtual channels of other 

ports. As an example, for a router with 4 ports and 2 VCs, there are 8 va blocks with 

6 request and 6 acknowledge outputs. Output virtual channels of port 1 can not be 

requested by its own vc blocks. They can be requested by vc blocks of port 2, 3 and 

4. Since each port has 2 vc blocks, arbitration is performed among 6 requests. The 

pinout diagram for va6_1 block, va block of the router with 4 ports and 2 VCs, is 

given in the Figure 3.19.  

 

 

Figure 3.19: Pinout Diagram for va6_1 Block 
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A vc block can request only one output virtual channel at a moment. However 

several vc blocks can request the same output virtual channel at the same time. To 

solve this contention, an arbitration mechanism is executed in va blocks. This 

mechanism chooses one of the requests and sends acknowledge indicating that the 

output virtual channel is allocated to vc block to whom the winner request belongs. 

Round-robin type arbitration mechanism is applied in our implemented NoC. State 

of this mechanism is held in the VA process running independently in each va 

block. For the sake of simplicity, one sixth of ASM of this process is illustrated in 

Figure 3.20 and Figure 3.21. Only the transitions of GET_HEADER_1, 

GET_HEADER_ACK_1 and GET_PAYLOAD_1 states are given in these figures. 

Entire ASM is composed of eighteen states. Connection between these all states is 

expressed through Figure 3.22. Mechanism is same for other states except checking 

order of requests which corresponds to priority. For example, in GET_HEADER_4 

state req_in_4 is the most prior request and req_in_3 is least prior one while in 

GET_HEADER_1 state req_in_1 is the most prior request and req_in_6 is least 

prior one. In the case that there exist one or more requests, the most prior one is 

accepted and acknowledged. According to eof_in_1 input which is coming from vc 

blocks to indicate the end of packet, next state is decided. If eof_in_1 is active, then 

process goes to GET_HEADER_ACK_1 state. Unlike GET_HEADER_1, these 

states control additional inputs next_ok_in, generated to indicate the free space 

availability in the next router, and sa_ack_in_1, related switch allocation 

acknowledgment, at first to understand whether the transmission of last flit is 

successful or not. Beside this difference, remaining logic is the same as 

GET_HEADER_1. If eof_in_1 is not active, then process goes to 

GET_PAYLOAD_1 state. This state is needed to hold acknowledgment for the 

entire packet composed of multi flits until the tail flit of packet is transmitted 

successfully.  

 



 

Figure 3.20: ASM of VA Process Part 1 of 3 
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Figure 3.21: ASM of VA Process Part 2 of 3 
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Figure 3.22: ASM of VA Process Part 3 of 3 

As was denoted in previous sub-section there are 8 virtual channel request outputs 

in each vc block of a router with 4 ports and 2 VCs. Only 6 of these requests are 

connected to the va blocks. Corresponding acknowledge signals of requests passes 

through an OR gate and a single acknowledgment reaches the vc block as shown in 

Figure 3.23.  
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va6_1

va6_1

va6_1

va6_1

va6_1

va6_1

vc

va_req_out_5

va_req_out_6

va_req_out_4

va_req_out_3

va_req_out_8

va_req_out_7

va_ack_in  

Figure 3.23: Acknowledge Signals Passing Through the OR Gate 

3.3.4 Sa Blocks 
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Sa blocks implement switch allocation hardware. Desired port of the switch is 

allocated to one of the vc blocks requesting that port depending on the arbitration 

method applied inside sa blocks. Allocation is performed on flit a basis and takes 

place in two stages. In the first stage, only one vc block is chosen among the ones 

which belong to same physical port. Even if vc blocks request different ports of the 

switch, only one of them can be elected for the next step. Number of sa blocks 

operating in this stage (sa2_1) is equal to the number of ports and number of request 

inputs of each sa block is equal to the number of virtual channels. Sa_req_out 

outputs of each vc block passes through OR gates and resulting signals enter sa 
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blocks in first stage. By using outputs of these sa blocks and sa_req_out outputs of 

vc blocks, request signals for next stage are generated through some combinational 

logic. Second stage carries out the elimination among the elected vc blocks 

requesting the same output port. The number of sa blocks operating in the 2nd stage 

(sa3_1) is also equal to the number of ports. Since vc blocks cannot request their 

own port, these blocks have (port number – 1) request inputs and acknowledge 

outputs. The elected vc blocks which pass both of the stages successfully are 

informed by the signals generated from acknowledgments of sa blocks in both 

stages. Block diagram for switch allocation mechanism performed in a router with 4 

ports and 2 VCs is given in Figure 3.24. For the sake of simplicity, only the 

requesting path of vc blocks of input port 1 for the allocation of output port 2 is 

shown in the figure.  

Inside the sa blocks of both stages, round robin type arbitration mechanisms are 

taken place as in the va blocks. Unlike va blocks, sa block allocates the switch 

access for one flit period not for whole packet period. ASM for SA process 

performing in sa2_1 block is illustrated in Figure 3.25. Same flow is also applicable 

for sa3_1 block with difference in the number of states. Output acknowledge signals 

of sa blocks are generated by inside combinational logic according to the state in 

which the SA process is and the incoming requests. 
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Figure 3.24: Block Diagram for Sa Block 
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Figure 3.25: ASM of SA Process 

3.3.5 Sw Blocks 

Sw blocks switch the flits on the data_in_x inputs to the data_out_x outputs 

according to req_in_x signals and generate trans_req_out_x signals. Sw_data_out 

outputs of each vc block are connected to data_in_x inputs and sw_dir_out_x 

outputs of each vc block are connected to req_in_x inputs of sw block inside the 

router block. Data_out_x and trans_req_out_x outputs of this block are connected 

to the poutx_data_out and poutx_trans_req_out outputs of the router block 

respectively.  
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There exists only one sw block in each router block, which is composed of 

combinational logic only. Numbers of input and output ports of sw blocks are also 

depended on the number of ports and virtual channels as other blocks inside the 

router. In Figure 3.26, block diagram of the sw block inside a router with 4 ports 

and 2 VCs is shown. 8 data inputs connected to vc blocks are multiplexed 

depending on 24 bits direction information. Each vc block generates 4 bits direction 

information just after output virtual channel allocation and switch allocation stage. 

Each bit corresponds to one of the ports.  One of these bits is useless due to the fact 

that vc blocks cannot send flits to their own port. Other 3 direction bits of each vc 

block are connected to select inputs of the multiplexers inside the sw block. Since 

allocation stages prevent any possible conflict, only one of the select inputs can be 

active at a time. Inside the multiplexer, one of the data inputs which is pointed by 

the active select input is switched to the output.    

 



 

Figure 3.26: Block Diagram of Sw Block 
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CHAPTER 4                                                                                  

SIMULATION RESULTS AND REAL-TIME IMPLEMENTATION 

The NoC design described in Chapter 3 is implemented in VHDL language. Before 

its real-time implementation on an FPGA platform, verifications of the VHDL 

source codes and also the design are performed using MODELSIM, the simulation 

tool produced by MENTOR GRAPHICS. After verifying the source codes, source 

nodes creating dummy flits are designed for real-time verification. These nodes 

communicate with a user interface via RS-232 to receive traffic characteristics to be 

be used. The designed NoC connected to these source nodes is synthesized and 

embedded onto our FPGA.  

This chapter is composed of four sections. At first, simulation results will be 

presented for the NoC in spidergon topology created by 8 routers with 4 ports and 2 

VCs and supporting 32-bit flits. Functions of the source node blocks and serial 

interface blocks will be explained in the second section. Then, user interface 

communicating with the source nodes will be defined and finally results of our real-

time implementation obtained via this user interface will be presented.  

 



 
67

4.1 SIMULATION RESULTS 

For the verification of the designed NoC, several scenarios are created by using test 

blocks. Signals generated by the blocks of the NoC according to the applied 

scenarios are simulated via MODELSIM. 

Scenario 1:  A single flit is injected to second port of the router of which buffers 

and other ports are empty. 

Simulation result in Figure 4.1 is obtained. At the first rising edge (labelled as 1 in 

Figure 4.1), the flit whose value is 0xED201201 (type: bx11, size: bx101, VCID: 

bx10, route: bx100100, payload: bx0000001001000000001) appears at the input of 

the second port of the router referenced as r_1 with the request. Flit and request are 

demultiplexed by the pre_vc (p_2). At the second rising edge (labelled as 2 in 

Figure 4.1) flit is stored into the buffer in vc_3. Since there is no other flit in the 

buffer, flit is latched into the va_buffer and request for output virtual channel is 

created in the next edge. This request can be detected by va block at the fourth edge 

and is acknowledged immediately since no other request exists. Acknowledge can 

be sensed by vc block at the fifth edge and flit is latched into sa_buffer. Request for 

switch allocation is also created and va_buffer is reset since vc_buffer becomes 

empty. At the sixth edge acknowledgment for switch allocation and next_in signal 

indicating the availability of the next node are checked. Flit is stored into the 

buffers of the next node. 
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Figure 4.1: Simulation of Single Flit inside the Router 
 

68



Scenario 2:  Consecutive flits carrying the same route information are injected 

through the same physical port, but via different virtual channels which is selected 

depending on credit_out signal of the router. 

The obtained waveform is given in Figure 4.2. First two flits are injected from the 

first virtual channel and next two flits are injected from the second. First flit appears 

at the output port after 4 clock periods. After 2 more clock periods third flit appears 

at the output before the second flit since second one has to wait in vc_buffer until 

first flit is switched to output. Flits can be switched to output port consecutively as 

in the case of fourth and fifth flits. However, generally output port can not be used 

in full capacity due to the delay in virtual channel allocation stage. As the number 

of virtual channels using the same physical channel increases, throughput of 

physical channel usage is expected to increase.   

 

 

Figure 4.2: Simulation of Consecutive Single Flits Arriving to Same Port 
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Scenario 3: Consecutive flits carrying different route information are injected 

through the same port with different virtual channels.  

Result is illustrated in Figure 4.3. As in the previous scenario, first flit can be 

observed at the desired output after 4 clock periods. Moreover the flit which will be 

transmitted to eighth node is switched to output port before the flit which will be 

transmitted to fifth.        

 

 

Figure 4.3: Simulation of Consecutive Single Flits Arriving to the Same Port with 

Different Routes 

Scenario 4: If the rate of injected flits is greater than the rate of ejected ones, 

buffers inside the block start to fill.  
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This case is simulated in Figure 4.4. Buf_ind signals increase until they reach the 

buffer size. VC_IN processes of both vc blocks (vc_3 and vc_4) go to 

GET_DATA_2 state. By checking credit_out signal, previous node understands that 

ejected flits cannot be stored and continues to hold the last flit in the link. On the 

other hand, tenth and twelfth flits can not be transmitted from r_1 and stay in the 

sa_buffers of vc blocks. Vc blocks continue requesting the switch. Flits are tried to 

be transmitted on a flit basis.  

 

 

Figure 4.4: Simulation of the Case that Buffer is Full 

Scenario 5: Three flits requesting the same output are injected through different 

ports.  

The obtained waveform is given in Figure 4.5. Request signals generated for the 

same output virtual channel reach va block (vc_3) at the same time. Only one of 

them can be acknowledged at any time instance. Other vc blocks continue to hold 

request signal. Acknowledged request by the va block generates request for the 

switch allocation stage. Flits are ejected in the order determined by these two 

allocation stages.  
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Figure 4.5: Simulation of Simultaneous Flits Requesting the Same Output 

Scenario 6: Simulation of a packet composed of four flits is illustrated in Figure 

4.6.  

Only header flit of the packet includes routing information. This information is 

stored in vc block and is also used for body and tail flits of the packet. Since header 

flit allocates the output virtual channel for the entire packet, other flits passes to 

switch allocation stage directly. Va block does not carry out new arbitration and 

holds acknowledge signal until the end of packet. Sa block carries out arbitration 

mechanism on flit basis. Since flits except the header are not exposed to the delay in 

virtual channel allocation stage, flits can be switched to output consecutively. Thus, 

output port can be used in full capacity even if there is only 1 virtual channel. If 

there exists any flit requesting the same output but different output virtual channel, 

flits of different virtual channels will appear on this same output port. This situation 
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is simulated in the Figure 4.7. While vc block is receiving a packet from port 2, 

another packet requesting the same output port is injected from port 1 after 5 clock 

periods. Different VCIDs are assigned to these packets by the vc blocks. At the 

output port, header flit of the second packet appears between fifth and sixth flits of 

the first packet. Next node distinguishes the flits through the assigned VCIDs.   

 

 

Figure 4.6: Simulation of Packet Composed of Multiple Flits 

Scenario 7: Flits are routed by multiple router nodes until they reach the 

destination.  

In Figure 4.8, a packet composed of 5 flits is injected by the source node which is 

connected to port 2 of router 1 (r_1). Through routers r_1, r_5 and r_6, flits reach 

their destination node which is connected to port 4 of router 6 (r_6). Because of 

having 4 clock delay in each router, flits appear in the input of the destination node 

after 12 clocks.  
 

73



 

Figure 4.7: Simulation of Packets Requesting the Same Output 

 

Figure 4.8: Simulation of a Packet throughout the Whole Network 
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4.2 TESTING BLOCKS 

In order to test the implemented NoC in real time, an infrastructure generating 

dummy flits is required. Our infrastructure contains source nodes, which can 

transmit flits to other 7 nodes through the NoC and can receive flits from them. Our 

test infrastructure also communicates with a user interface executing on the 

computer via RS-232. Thus, outgoing traffic generated by each source node can be 

changed and incoming traffic received by each node can be monitored. In addition 

to source nodes, additional blocks are needed to maintain RS-232 communication. 

These blocks perform different tasks such as encoding, decoding, serializing and 

deserializing. Block diagram for our overall testing infrastructure is given in Figure 

4.9. All blocks existing in the infrastructure will be explained briefly in the 

following sub-sections.  

4.2.1  Source Nodes 

Source nodes have two main functions. First function is to generate packets 

composed of one or more flits. Number of flits in packets is determined according 

to outgoing_cnt_x inputs. Packets are generated for the nodes whose corresponding 

outgoing_cnt_x inputs are not zero. Generation is also related with wait_cnt input 

defining the idle period of the node, in which no flit is generated. As an example if 

the outgoing_cnt_1, outgoing_cnt_2 and wait_cnt inputs of node 1 are equal to 5, 

20 and 10 respectively and other inputs are equal to zero, node 1 generates a packet 

composed of 5 flits to be transmitted to node 2, generates a packet composed of 20 

flits to node 3 and waits for 10 clock periods without generating any flits in each 

cycle.    
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Figure 4.9: Block Diagram for the Testing Infrastructure 

Route fields of generated header flits are determined using a look-up table which 

implements across first routing. Packets are injected from the virtual channel which 

is determined according to pout_ack_in signal carrying the credit information of the 

router, which the source node is connected to. Payload fields of the flits include 

source and destination addresses. These addresses are used in destination nodes to 

verify the routing applied inside the network. Payload fields also contain flit 

counter. Structure of the generated dummy flits is given in Figure 4.10. 
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Figure 4.10: Structure of Dummy Flits 

Second function of the source nodes is to monitor the incoming flits. Related 

incoming_cnt_x output is incremented according to the source address. Also 

destination address is checked to understand whether the flit is routed to correct 

destination or not. In case that destination address does not belong to that node, 

error_cnt output is incremented instead of incoming_cnt_x outputs.  

Pinout diagram for the source nodes is given in Figure 4.11. In addition to the 

mentioned inputs and outputs, source nodes have a router interface to be connected 

to network and also activate input to start or stop flit generation instantly.  

4.2.2 Uart Receiver and Transmitter 

These blocks perform serializing and deserializing tasks. Receiver block 

deserializes the bit stream coming from the computer, outputs parallel data with 

data_valid signal indicating the availability of meaningful data. On other hand, 

transmitter serializes the parallel data when the transmit signal is triggered and also 

signals the state of transmission from the transmitting output. Pinout diagram of 

these blocks and waveform of the serial signals are given in Figure 4.12. 1 bit start 

and 1 bit stop bit are used to transmit 8 bits data and baudrate of the serial signal is 

115200 bits/sec. 
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Figure 4.11: Pinout Diagram for the Source Nodes 

4.2.3 Receiver and Transmitter Controllers 

Receiver controller decodes messages coming from the user interface. Activate, 

outgoing_cnt_x and wait_cnt inputs of 8 source nodes are connected to receiver 

controller. Depending on the received messages, this block modifies the values 

assigned to these signals. Format of the received message is given in Figure 4.13. 

Value in data field is assigned to the signal to which value in address fields is 

mapped. In order to confirm the message, calculated checksum from first three 

bytes is compared with the received one. 
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Figure 4.12: Pinout Diagram for Receiver (a) and Transmitter Blocks (b) and 

Waveform for the Serial Signal (c) 

In order to maintain real time monitoring on the computer side, unlike receiver 

controller, transmitter performs its task using address and data. This block puts the 

information gathered from incoming_cnt_x and error_cnt outputs of the source 

nodes in the order recognised by the user interface and transmits bytes continuously 

in this order. Transmit and clock counters that are kept inside the controller are also 

added to the message. Values of these counters are used in rate calculations 

performed on the computer side. Header and checksum fields are also available in 

this message.  

 

 

Figure 4.13: Format of the Received Messages from User Interface 
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4.3 NOC MONITOR 

NoC Monitor is a graphical user interface running on the computer to create dummy 

traffic for the on-chip network composed of 8 routers (4 ports, 2 VCs) in spidergon 

topology and to monitor created traffic on real time.   

A screenshot of the NoC Monitor is given in Figure 4.14. Generated traffic is 

controlled by the checkboxes and the table in the division marked as 1. Each 

checkbox activates or deactivates generation of packets in the related source node. 

Each cell on the table corresponds to one of the outgoing_cnt_x (TO NODEx) or 

wait_cnt (IDLE) inputs of the source nodes. User interface calculates the address 

field according to edited cell and transmits the serial message whose format is given 

in Figure 4.13.  

Each serial message sent by the transmitter controller block on FPGA includes 1 

byte packet counter. This counter and the difference between packet counters of two 

consecutive messages fetched by UI are displayed on the table in the 2nd division of   

Figure 4.14. Time difference between two recent messages is also presented on this 

table in terms of seconds. 

Table in the 3rd division indicates the total number of the received flits by each 

source node. Values of incoming_cnt_x and error_cnt outputs of source nodes are 

printed on the table according to source-destination pairs. Rows correspond to 

sources and columns to destinations. The value of a clock counter is also received 

from the transmitter controller on FPGA. This value is used to calculate rates of the 

received flits. Differences between previous and current values of each cell are 

divided by the difference between previous and current value of clock counter. To 

find the rate in terms of Mbit/sec result divisions are multiplied with 0,000032 since 

flit size of the tested NoC is 32. Total received and transmitted traffic by each node 



can also be observed from the table. Intersection of these column and rows gives the 

rate of the whole traffic on NoC.  

 

 

Figure 4.14 : NoC Monitor 

4.4 NOC GENERATOR 

NoC Generator is another graphical user interface designed within the scope of this 

thesis to generate diverse NoCs with different characteristics. This tool creates 

necessary VHDL source codes for the specified NoC via a user interface. 
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In Figure 4.15, a screenshot of the NoC Generator is illustrated. First, user chooses 

the topology of the network among 4 choices which are ring, spidergon, mesh and 



torus. Depending on the chosen topology network size is specified as one 

dimensional (ring, spidergon) or two dimensional (mesh, torus). Node degree is 

displayed by the user interface according to the topology.   

 

 

Figure 4.15 : NoC Generator 

Then, data field size in the header flit is assigned. Together with topology, network 

size and VC number, data flit size determines the whole flit size which is calculated 

and displayed by our UI. The depth of the input buffers in vc blocks is specified by 

Buffer Size tab. Finally virtual channel number is entered and Generate button is 

pressed to start the generation. ‘NoC_lib’ directory is created and VHDL source 

codes which are ready to be synthesized are generated under this directory. 

4.5 IMPLEMENTATION ON FPGA PLATFORM 

The designed NoC composed of 8 routers (4 ports, 2VCs) in spidergon topology is 

also executed together with our testing blocks on Xilinx Virtex 6 Evaluation Board 

which is illustrated in Figure 4.16. This board includes XC6VLX240T FPGA of 

Xilinx which contains 241.152 logic cells and 37.680 slices each of which 
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composes of 4 look-up-tables (LUTs) and 8 flip-flops. The design is synthesized 

and implemented (translate, map, place & route) by using Integrated Software 

Environment (ISE) tool of Xilinx. At the end of these processes, programming file 

needed to configure FPGA is obtained and design issues such as maximum delay, 

maximum applicable clock frequency, I/O pad assignments and resource usage etc. 

are reported. According to these reports, maximum delay observed on the paths is 

5,675 ns. So maximum clock frequency that can be applied to the blocks in the 

design is 176,214MHz. Our design uses 14.626 of 301.440 flip-flops (registers) and 

44.335 of 150.720 LUTs. This information is stated on Table 4.1. 

Several NoCs with different parameters are also generated using our NoC 

Generator. These NoCs are synthesized by using ISE. Similar information for all 

these NoCs is stated on Table 4.1. Table 4.1 shows that network size, flit size and 

buffer depth do not change maximum delay significantly. But these parameters 

dramatically affect resource usage. Therefore a network can be expanded without 

changing its timing performance. On the other hand, since number of virtual 

channels also has an influence on control logic, it affects both resource usage and 

timing performance. Topology type also changes both resource usage and timing 

performance. 

For comparison, HERMES [25-27] NoC in mesh (4x2) topology with 2 VCs, 32 bit 

flit size and buffers of depth 4 is synthesized by using ISE and synthesis results are 

also stated on Table 4.1. When we compare HERMES NoC and our NoC with the 

same parameters, it is observed that our proposed NoC outperforms HERMES in 

timing performance in return for an increase in resource usage.   



 

Figure 4.16: Xilinx Virtex 6 Evaluation Board 
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Table 4.1: Generated NoCs vs. Maximum Delay and Resource Usages 

Generated NoCs vs. Maximum Delay and 
Resource Usages 

Maximum 
Delay Registers LUTs 

Spidergon (8), VC = 2, F = 32, B = 4 5,675 ns 14.626 44.335 

Spidergon (8), VC = 2, F = 32, B = 2 5,528 ns 10.663 33.205 

Spidergon (8), VC = 2, F = 64, B = 4 5,519 ns 26.914 50.065 

Spidergon (8), VC = 4, F = 32, B = 4 7,076 ns 31.778 115.137 

Spidergon (16), VC = 2, F = 32, B = 4 5,586 ns 29.250 65.073 

Ring (8), VC = 2, F = 32, B = 4 4,473 ns 10.676 31.315 

Mesh (4x2), VC = 2, F = 32, B = 4 6,162 ns 14.277 32.710 

Torus (3x3), VC = 2, F = 32, B = 4 6,450 ns 21.788 57.646 

HERMES Mesh (4x2), VC = 2, F = 32, B = 4 8,319 ns 3.370 11.034 

 

4.6 PERFORMANCE 

When operated with 66 MHz clock frequency, a total rate of over 14 Gb/s can be 

obtained on the network with a 32-bit flit size as shown in Figure 4.17. Applied 

network traffic can also be seen on this figure. At this frequency, total capacity of 8 

point-to-point links of 32 bit width is 16,896 Gb/s. In our implementation, more 

than 82% of this capacity can be reached. If a bus structure was implemented with 

the same flit size and was operated with same clock frequency, maximum 2,112 



Gb/s rate would be obtained, even if arbitration periods are assumed as zero. Total 

rate obtained on the network can be increased by operating the network under 

higher clock frequencies. Maximum delay obtained by synthesis tools (as shown in 

Table 4.1) limits the maximum operating frequency. 

    

 

Figure 4.17: Performance of the NoC Operated with 66 MHz Clock Frequency 

Also, we observe that, through our allocation mechanisms, fairness is provided. In 

the case that all source nodes generate identical traffic, observed incoming and 

outgoing traffic rates for each source node are observed to be identical. This case is 
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created and monitored by using our NoC Monitor as shown in Figure 4.18 which 

demonstrates that our NoC does not cause any privilege to any node in the network.  

 

 

Figure 4.18: Provided Fairness 
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CHAPTER 5                                                                                  

CONCLUSION AND FUTURE WORK 

5.1 CONCLUSIONS 

In order to meet increasing needs and demands of the contemporary world, 

technology development gained acceleration. For instance, past black and white 

televisions have left their places to high definition 3D televisions, and gramophone 

records have been replaced by lossless audio media. Hence, there has been a 

demand for increased processing capacity to support these, which could be realized 

by increasing processing frequency and/or the number of processors. As the number 

of processors increased, the communication between these processors gained 

significant importance. In addition to the existing communication structures such as 

on chip buses and crossbars, developers have recently directed their attention to 

another solution; that is on-chip network which is composed of shared point-to-

point links. So far, several NoC examples have been proposed and implemented; 

however, a standard such as the ones found for on-chip buses has not been 

developed yet.  

In this thesis an example NoC that performs wormhole flow control and source 

routing is implemented. Firstly, a NoC composed of 8 routers, each having 4 ports 

and 2 VCs in spidergon topology is designed. Then, this design is described using 

VHDL and source codes are created. These source codes were simulated on 

computer environment. Afterwards, to verify the design in real-time, blocks 

generating dummy traffic and serial interface blocks that communicate with user 
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interface on the computer and provide control and monitoring of the generated 

dummy traffic are also designed. Furthermore, together with these testing blocks, 

the designed NoC is synthesized to be implemented on an FPGA. Thus, using the 

user interface, i.e., our NoC Monitor, running on the computer, we verified our 

design in real-time. We observed that created dummy packets were successfully 

transferred from sources to destinations through the network. Eventually, a total rate 

of over 14 Gb/s is obtained on the network with a 32-bit flit size operating with 66 

MHz clock frequency. If a bus structure was implemented with the same flit size 

and clock frequency, 2,112 Gb/s rate would be obtained. So we conclude that using 

network structures on chips, almost a sevenfold performance increase is obtained.  

Our VHDL source codes are generalized and parameterized to span ring, spidergon, 

mesh and torus topologies with diverse buffer sizes, flit sizes and virtual channel 

numbers. Thus, to be used under various network traffics, it is now possible to 

generate different NoCs using our NoC Generator. 

5.2 FUTURE WORK 

The NoCs obtained throughout this study can be varied and further developed with 

new properties. Our tools, the NoC Generator and the NoC Monitor, created in this 

study can be improved.  

The designed network does not provide any bandwidth guarantee.  Bandwidth 

provided to a source node changes according to the traffic produced by other source 

nodes. In the future, Quality of service (QoS) can be implemented to ensure the 

guaranteed traffic.  

Furthermore, in our current solution, dead lock avoidance is achieved by using a 

proper routing method. In future studies, it can be managed by router blocks on the 

network. 
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Also, instead of network interface units, dummy test blocks are used in the design.  

Network interface units can be designed and included in the NoC Generator. In 

these network interface units, various other routing methods can be applied.  

Although they are not preferred to be used in on-chip networks, different flow 

control methods such as circuit-switching, store-and-forward, and virtual-cut-

through can be added to the NoC Generator.  

Moreover, the NoC Monitor can be developed to create other traffic types to 

observe different qualities of the network. 
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