

FPGA IMPLEMENTATION OF A NETWORK-ON-CHIP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İSMAİL ÖZSEL KILINÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2011

Approval of the thesis:

FPGA IMPLEMENTATION OF A NETWORK-ON-CHIP

submitted by İSMAİL ÖZSEL KILINÇ in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen ________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen ________________
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Cüneyt BAZLAMAÇCI ________________
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Hasan GÜRAN ________________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt BAZLAMAÇCI ________________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Semih BİLGEN ________________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde BOZDAĞI AKAR ________________
Electrical and Electronics Engineering Dept., METU

M.Sc. Cemil KIZILÖZ ________________
Electronical Design Department, ASELSAN, MGEO

Date: September 7, 2011

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last Name : İsmail Özsel KILINÇ

 Signature :

iv

ABSTRACT

FPGA IMPLEMENTATION OF A NETWORK-ON-CHIP

Kılınç, İsmail Özsel

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Cüneyt Bazlamaçcı

September 2011, 93 pages

This thesis aims to design a Network-on-Chip (NoC) that performs wormhole flow

control method and source routing and aims to describe the design in VHDL

language and implement it on an FPGA platform. In order to satisfy the diverse

needs of different network traffic, the thesis aims to design the NoC in such a way

that it can be modified via a user interface, which changes the descriptions in the

VHDL source code. Network topology, number of router ports, number of virtual

channels, buffer size and flit size are the features of the designed NoC that can be

modified. In this thesis, interfaces and operations of the blocks in the NoC are

defined through block diagrams and algorithmic state machines. Verification of

these blocks is performed not only on computer environment via simulations tools,

but also in real world. To achieve this, source nodes generating dummy flits are also

designed which communicate with our user interface via RS-232 generating flits

according to the information provided by the user and monitoring the received flits

from other source nodes in real-time.

Keywords: On-Chip Networks, NoC, FPGA

v

ÖZ

FPGA İLE BİR YONGA-İÇİ-AĞ GERÇEKLEMESİ

Kılınç, İsmail Özsel

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cüneyt Bazlamaçcı

Eylül 2011, 93 sayfa

Bu tez solucan deliği akış denetimi ve kaynak yönlendirme yapan bir Yonga-içi-Ağ

(YiA) tasarlamayı ve bu tasarımı VHDL dilinde tanımlayıp FPGA platformunda

uygulamayı hedefler. Farklı türdeki ağ trafik ihtiyaçlarını karşılamak için, bu tez

tasarlanan YiA’yı VHDL kaynak kodundaki tanımı değiştiren kullanıcı arayüzü

aracılığı ile değiştirilebilir olarak tasarlamayı hedefler. Ağ topolojisi, yönlendirici

bağlantıların ve sanal kanalların sayısı, arabellek ve flit boyutu bu tasarlanan

YiA’nın değiştirilebilir özellikleridir. Bu tezde, YiA’daki blokların arayüzleri ve

işlemleri blok çizeneği ve algoritmik durum makinaları aracılığı ile tanımlanmıştır.

Bu blokların doğrulaması sadece bilgisayar ortamında simülasyon araçları ile değil,

aynı zamanda gerçek dünyada da yapılmıştır. Bunu gerçekleştirmek için, kullanıcı

tarafından verilen bilgiye göre flit üreten ve gerçek zamanda diğer kaynak

düğümlerden alınan flitleri gözlemleyen RS-232 aracılığıyla kullanıcı arayüzü ile

iletişim kuran yapay flit üreten kaynak düğümleri de bu tez kapsamında

tasarlanmıştır.

Keywords: Yonga-içi-Ağ, YiA, FPGA

vi

To My Family…

vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr.

Cüneyt Bazlamaçcı for his guidance and support in my study. His inspiring

suggestions and meticulous feedback in every step of this thesis enabled me to write

it and made it an invaluable experience for me. It has been a pleasure to write this

thesis under his guidance.

I would also wish to express my sincere gratitude to my thesis committee members

Prof. Dr. Hasan Güran, Prof. Dr. Semih Bilgen, Prof. Dr. Gözde Bozdağı Akar and

M.Sc. Cemil Kızılöz as they kindly accepted to share their invaluable comments

and helpful suggestions with me.

I also thank to Ufuk Dinçer, Fatih Işık, Cemil Kızılöz and all my other colleagues in

Aselsan who have contributed to improve myself in VHDL and digital design

engineering skills.

I deeply express my gratitude to Serkan Naneci and my other dancing friends for

their patience and encouragement during the preparation of this thesis. I am also

grateful to Ali Yetkin Penbegül, Halil Ertuğrul, Fatih İzciler and Önder Altan for

their willingness to share ideas and their belief in me. I am also greatly indebted to

Çiler Akyüz for her friendship.

I express my dearest thanks to Şule Akdoğan who did not leave me alone getting

through the hardest times. Her presence and her belief in me have been reassuring

throughout this study. I am deeply indebted to her for her understanding, patience,

respect in what I am doing and encouragement.

viii

Last but not least, most special thanks and love go to my family, Nevin and

Tacettin, who have supported me in everything I have done in my life. It could have

been impossible to write this thesis without their love and support. They are the true

possessors of my success.

ix

TABLE OF CONTENTS

ABSTRACT... IV

ÖZ ... V

ACKNOWLEDGMENTS ..VII

TABLE OF CONTENTS... IX

LIST OF TABLES ..XII

LIST OF FIGURES .. XIV

LIST OF ABBREVIATIONS.. XVIII

CHAPTERS

1. INTRODUCTION.. 1

2. ON-CHIP NETWORKS .. 5

 2.1 COMMUNICATION STRUCTURES IN SYSTEMS-ON-CHIP 6

 2.2 ON-CHIP NETWORKS VS. OFF-CHIP NETWORKS 8

 2.3 BASIC CONCEPTS IN NETWORK-ON-CHIPS (NOCS) 9

 2.3.1 Topology .. 9

 2.3.2 Routing Algorithm ... 10

x

 2.3.3 Flow Control (Switching) Methods ... 12

 2.3.4 Virtual Channels .. 15

 2.3.5 Buffer Organization and Backpressure .. 16

 2.3.6 Allocators and Arbiters .. 17

 2.3.7 Switches ... 18

 2.4 EXISTING NoC EXAMPLES... 19

3. IMPLEMENTATION OF NETWORK ON CHIP IN FPGA PLATFORM 21

 3.1 FLIT STRUCTURE... 21

 3.2 TOPOLOGY BLOCK.. 26

 3.3 ROUTER BLOCK ... 33

 3.3.1 Pre_vc Blocks .. 37

 3.3.2 Vc Blocks ... 38

 3.3.3 Va Blocks ... 55

 3.3.4 Sa Blocks.. 60

 3.3.5 Sw Blocks .. 63

4. SIMULATION RESULTS AND REAL-TIME IMPLEMENTATION.............. 66

 4.1 SIMULATION RESULTS... 67

 4.2 TESTING BLOCKS .. 75

 4.2.1 Source Nodes ... 75

 4.2.2 Uart Receiver and Transmitter ... 77

 4.2.3 Receiver and Transmitter Controllers .. 78

 4.3 NOC MONITOR.. 80

 4.4 NOC GENERATOR .. 81

xi

 4.5 IMPLEMENTATION ON FPGA PLATFORM.. 82

 4.6 PERFORMANCE .. 85

5. CONCLUSION AND FUTURE WORK .. 88

 5.1 CONCLUSIONS.. 88

 5.2 FUTURE WORK... 89

REFERENCES... 91

xii

LIST OF TABLES

TABLES

Table 2.1: Comparison of On-Chip Buses and On-Chip Networks........................... 7

Table 2.2: Performance and Cost Metrics of Topologies .. 10

Table 3.1: Flit Field Length vs. ‘v’ and ‘n’ .. 26

Table 3.2: Network Properties vs. Topology ... 27

Table 3.3: Network Properties vs. Topology and Network Size.............................. 28

Table 3.4: Functions of I/O Ports of Vc Blocks Part 1 of 2 40

Table 3.5: Functions of I/O Ports of Vc Blocks Part 2 of 2 41

Table 3.6: Functions of the Internal Signals of Vc Blocks 42

Table 3.7: Description of States of VC_IN Process... 44

Table 3.8: Description of States of VC_OUT Process Part 1 of 5........................... 46

Table 3.9: Description of States of VC_OUT Process Part 2 of 5........................... 48

Table 3.10: Description of States of VC_OUT Process Part 3 of 5......................... 49

Table 3.11: Description of States of VC_OUT Process Part 4 of 5......................... 51

xiii

Table 3.12: Description of States of VC_OUT Process Part 5 of 5......................... 53

Table 4.1: Generated NoCs vs. Maximum Delay and Resource Usages 85

xiv

LIST OF FIGURES

FIGURES

Figure 1.1: Flow Chart to be Followed .. 4

Figure 2.1: Typical NoC Equipped SoC Example ... 5

Figure 2.2: Communication Structures for Systems-on-Chip.................................... 7

Figure 2.3: Layers in Spidergon STNoC Design ... 8

Figure 2.4: Classification of Routing Algorithms.. 11

Figure 2.5: Messages, Packets, Flits and Phits .. 12

Figure 2.6: Classification of the Flow Control Mechanisms 14

Figure 2.7: Timing Comparison of Flow Control Mechanisms............................... 15

Figure 2.8: Input Buffer Types .. 17

Figure 2.9: Crossbar Composed of Multiplexers ... 18

Figure 2.10: 5x5 Crosspoint Crossbar Switch ... 18

Figure 2.11: Characteristics of the NoCs Developed by Faculdade de Informâtica

PUCRS. .. 20

Figure 3.1: Flit Structure .. 23

xv

Figure 3.2: Flit Sequencing.. 24

Figure 3.3: Rotation of Route Field for d = 2 and k = 3 .. 25

Figure 3.4: Ring Topology (N = 8) .. 29

Figure 3.5: Spidergon Topology (N = 8).. 30

Figure 3.6: Spidergon Topology (N = 12).. 30

Figure 3.7: Mesh Topology (N = 4 x 3) ... 31

Figure 3.8: Torus Topology (N = 4 x 4)... 32

Figure 3.9: Pinout Diagram for a Four-Port Router... 33

Figure 3.10: Block Diagram for Router with 4 Ports and 2 VCs............................. 36

Figure 3.11: Circuit Diagram for Pre_vc Blocks of a Router with 2 VCs............... 37

Figure 3.12: Distribution of the Sub-functions in the Form of Stages..................... 38

Figure 3.13: Pinout Diagram for Vc Blocks of a Router with 4 Ports and 2 VCs ... 39

Figure 3.14: ASM of VC_IN Process .. 43

Figure 3.15: ASM of VC_OUT Process Part 1 of 3 .. 47

Figure 3.16: ASM of VC_OUT Process Part 2 of 3 .. 50

Figure 3.17: ASM of VC_OUT Process Part 3 of 3 .. 52

Figure 3.18: State Transition Diagram of the VC_OUT Process............................. 54

Figure 3.19: Pinout Diagram for va6_1 Block... 55

Figure 3.20: ASM of VA Process Part 1 of 3 .. 57

xvi

Figure 3.21: ASM of VA Process Part 2 of 3 .. 58

Figure 3.22: ASM of VA Process Part 3 of 3 .. 59

Figure 3.23: Acknowledge Signals Passing Through the OR Gate 60

Figure 3.24: Block Diagram for Sa Block ... 62

Figure 3.25: ASM of SA Process... 63

Figure 3.26: Block Diagram of Sw Block.. 65

Figure 4.1: Simulation of Single Flit inside the Router ... 68

Figure 4.2: Simulation of Consecutive Single Flits Arriving to Same Port............. 69

Figure 4.3: Simulation of Consecutive Single Flits Arriving to the Same Port with

Different Routes ... 70

Figure 4.4: Simulation of the Case that Buffer is Full ... 71

Figure 4.5: Simulation of Simultaneous Flits Requesting the Same Output 72

Figure 4.6: Simulation of Packet Composed of Multiple Flits 73

Figure 4.7: Simulation of Packets Requesting the Same Output 74

Figure 4.8: Simulation of a Packet throughout the Whole Network........................ 74

Figure 4.9: Block Diagram for the Testing Infrastructure 76

Figure 4.10: Structure of Dummy Flits .. 77

Figure 4.11: Pinout Diagram for the Source Nodes... 78

xvii

Figure 4.12: Pinout Diagram for Receiver and Transmitter Blocks and Waveform

for the Serial Signal.. 79

Figure 4.13: Format of the Received Messages from User Interface 79

Figure 4.14 : NoC Monitor .. 81

Figure 4.15 : NoC Generator.. 82

Figure 4.16: Xilinx Virtex 6 Evaluation Board.. 84

Figure 4.17: Performance of the NoC Operated with 66 MHz Clock Frequency.... 86

Figure 4.18: Provided Fairness .. 87

xviii

LIST OF ABBREVIATIONS

ABBREVIATIONS

ASM : Algorithmic State Machine

FPGA : Field Programmable Gate Array

GUI : Graphical User Interface

IP : Intellectual Property

NOC : Network On Chip

SA : Switch Allocation

SOC : System On Chip

UI : User Interface

VA : Virtual Channel Allocation

VC : Virtual Circuit

VHDL : VHSIC Hardware Description Language

VHSIC : Very High Speed Integrated Circuit

VLSI : Very Large Scale Integration

1

CHAPTER 1

INTRODUCTION

As a result of developing technology, bits needed to describe the available

information are increasing day by day. To keep pace with this excess demand, chips

should process and transfer data more and more quickly. Until today the developers

have made an effort to reduce the switching delay of flip-flops which directly

affects the computation speed of the chip instead of dealing with the delay due to

wires between the flip-flops, because the communication delay due to wires was

negligibly small in comparison to computation delay due to flip-flops. However, the

communication delay today is not negligible any more. Switching speed of the flip-

flops increased dramatically so communication delay now starts to be a limit in the

bit rate. As a consequence of these developments, designers now focus on

communication inside the chip [1].

Most of the contemporary chips use a bus structure between the blocks inside the

chip [2]. As the chip size expands and block count increases, wire lengths in the bus

also expand. This results in an overhead in the transmission delay on the bus due to

capacitive effect. The other way to connect the blocks inside chip is to link them by

using dedicated wires between each two of them. From transmission speed point of

view, this method is the best that can be achieved, but from productivity and

scalability point of view, this is the worst. Since this is an ad-hoc method, for each

new design with new blocks, a designer should redesign the links between them

from scratch. The number of communication links is in the order of N2 where N is

the number of blocks. Hence designers should find an intermediate way that meets

2

the advantages of the two methods. The new method should be shared as a bus

structure and should also be end-to-end using dedicated links. In other words it

should be a shared end-to-end medium, which is the definition of a network.

Therefore a simplified version of the general computer networks is proposed to be

used for communication inside the chip and is called Network-on-Chip (NoC) [3].

At first view, NoCs and today’s computer networks are similar to each other in

terms of their main functions. Their purpose is to provide communication between

distributed terminals over a shared medium. Depending on the type of the network,

either a temporary connection between source and destination is established or

packets which include source and destination addresses are generated to achieve

this purpose. Even if the purpose is identical, NoCs differ from computer networks

in their application domain. For computer networks, any terminal is far away from

another one in terms of meters or even kilometers so that the medium is affected

dramatically by noise and attenuation on the links (cables). However in NoCs, the

scale decreases to the order of micrometers or even nanometers. As a result NoCs

do not suffer from noise mechanisms and attenuation as much as computer

networks. Due to these advantages, a reduced layered structure can be applied to

NoCs. These layers can be considered as physical layer, network layer, transport

layer and application layer [4]. Each layer is implemented by different units of the

NoC architecture.

Because of its advantages over other communication structures, circuit designers

have started to prefer on-chip networks. Although there are several proposed and

implemented examples [5], unlike on-chip buses, a standard has not been defined

for on-chip networks yet.

In this thesis, an example on-chip network is designed, implemented on FPGA and

verified both on computer environment and on real-time. Implemented NoC

performs wormhole flow control and source routing. In order to use it for different

3

types of network traffic, some properties of the NoC such as topology, virtual

channel number, buffer depth and flit size can be modified. According to user needs

and parameters, required VHDL source codes are generated via the provided user

interface and NoCs created by these source codes can be used instead of other

communication structures in existing systems. For example, in ASELSAN shared

bus structures are used for system on chips with a single master unit and crossbar

structures are used for systems with multiple masters. As a product of this thesis

work, on-chip network structures are now available to be used with their supreme

advantages. Even though some of the existing NoC examples are open source, they

are not preferred to be used in military applications due to reliability and possible

licensing issues in future. Also to keep up with the new improvements and to

enhance our NoC according to new requirements that will arise in the future,

developing our own design for such a recently introduced topic is preferred instead

of importing existing designs.

In Figure 1.1, the road map followed to obtain our NoC is given. At first, NoC with

specific characteristics is designed and described in VHDL language. Then, VHDL

source codes are simulated on computer environment. As the next step, source

nodes generating dummy traffic and serial communication interface to control and

monitor the traffic generated by these nodes are designed. Together with these

auxiliary blocks, the designed NoC is implemented on FPGA platform. After the

verification of our NoC in real-time, VHDL source nodes are generalized and

parameterized to span various topologies, buffer sizes, VC numbers and flit sizes.

Organization of the thesis is parallel to the design flow chart. Basic concepts and

background information about on-chip networks will be given in the second

chapter. Some of the existing NoC examples will also be summarized. In the third

chapter, building blocks of the implemented NoC will be explained in detail. Their

operation will be described through block diagrams and algorithmic state machines.

Then, in the fourth chapter, verification of these blocks will be carried out both in

computer environment and in real-time. Waveforms obtained in simulation of

specific scenarios will be presented. Two user interfaces developed for traffic

generation in real time implementation and for creating our VHDL source codes

will also be described. And finally, the thesis will be concluded with possible

enhancements that can be carried out in the future.

Figure 1.1: Flow Chart to be Followed

4

5

CHAPTER 2

ON-CHIP NETWORKS

A typical example of NoC equipped systems-on-chip, which is composed of three

distinct types of units, is illustrated in the Figure 2.1. IP cores are the units whose

communication needs will be met. They transmit and receive data packets

throughout the network. Network interface units split packets generated by IP cores

into flits which are ready to be injected into the network. At the same time they

combine ejected flits and constitute packets ready to be transmitted to IP cores.

Router blocks, fundamental components of the Network-on-Chip, lead flits from

their sources to their destinations. During its transmission, a flit passes through

multiple routers.

Figure 2.1: Typical NoC Equipped SoC Example

6

In this chapter, firstly on-chip networks will be compared to other widely used

communication structures in systems-on-chips. Then, they will be analysed in

relation to off-chip networks. In the third section, basic concepts of NoC will be

examined; and finally, existing NoC examples will be reviewed.

2.1 COMMUNICATION STRUCTURES IN SYSTEMS-ON-CHIP

In Figure 2.2, examples of basic communication structures for Systems-on-Chip are

given. Each structure has both advantages and disadvantages over others.

The bus structure is a well-known one, which can be implemented easily. However,

as the number of units in the system increases, capacitive load on the bus also

increases. This side effect causes an increase in power consumption and latency.

Although poorly scalable, an intermediate solution between bus structure and

dedicated point-to-point links is a crossbar, which still has some of the drawbacks

of the bus.

Dedicated point-to point links offer optimum solution for bandwidth, resource

usage, latency and power consumption [6]. Even though it is easy to design such a

system, reusability and flexibility are problem areas for these structures. In order to

add a new unit to the system, a designer has to remodel the existing units. Another

disadvantage is the O(n2) growth of links with increasing number of units.

On the other hand, a data-routing network can be considered as the best solution for

maximum flexibility and scalability. Identical networks can be used for diverse

systems and identical routers can be used in diverse networks. Furthermore, because

of point-to-point links, performance of such a system does not change with scaling

and multiple transmissions can occur simultaneously inside the network. On the

other hand, design complexity and latency due to contention are considerable

handicaps of on-chip networks. Table 2.1 presents a comparison between on-chip

buses and on-chip networks.

Figure 2.2: Communication Structures for Systems-on-Chip [6].

Table 2.1: Comparison of On-Chip Buses and On-Chip Networks [6].

On-Chip Buses On-Chip Networks

Due to paracitic capacitance, latency
and power usage increase with each
new attached unit.

- +
Due to point-to-point one way links
between routers, performance does
not change with scaling.

All units share the limited bandwidth.
Each new attached unit decreases the
available bandwidth.

- +
Bandwidth also increases with the
addition of new units.

Arbiter is specific to the system and
delay due to arbitration increases with
number of masters.

- +
Distributed routing decisions are made
by reuseable routers.

Latency is constant after the bus is
granted by the unit.

+ -
Latency can increase because of
network contention.

Easy to design due to simple and well
understood concepts.

+ -
More difficult to design due to new
concepts.

7

2.2 ON-CHIP NETWORKS VS. OFF-CHIP NETWORKS

On-chip networks operate as simplified versions of the off-chip networks due to

unique VLSI constraints. These constraints limit the routers of the network in terms

of area and power. Thus, light weight and hardware implemented protocols are

implemented in routers, which are connected by short, reliable point-to-point links

with high bandwidth. Routers and links are not affected by dynamic changes unlike

the ones in off-chip networks [7].

On-chip communication is composed of well-defined interacting layers similar to

computer networks. A simplified version of the ISO-OSI reference model can be

adapted for typical on-chip networks. Although it is treated differently in various

approaches, physical, network, transport and application layers are the usually

applied ones. Applied layers, for example, Spidergon STNoC design [8] is

illustrated in Figure 2.3.

Figure 2.3: Layers in Spidergon STNoC Design [8].

8

9

2.3 BASIC CONCEPTS IN NETWORK-ON-CHIPS (NOCS)

2.3.1 Topology

Network topology describes the layout of the routers and connections between

them. Topology affects network performance and cost dramatically. For instance, as

the number of the routers that a flit must traverse increases, latency and power

consumption also increase. Topologies are generally compared according to

performance and cost metrics that are summarized in Table 2.2.

Topologies can be classified as direct and indirect. In direct topologies each router

is attached to several other routers of the network and at least one IP core. Thus

number of routers and IP cores are equal. Ring, octagon, spidergon, mesh and torus

are major examples for direct topologies. Today, direct topologies are preferred on

most designs. On the other hand, in indirect topologies there exist routers that are

attached only to other routers. In these topologies number of routers is greater than

the number of IP cores. Crossbar and multistage interconnect networks are

examples for indirect topologies [8].

In this thesis study, only direct topologies are implemented. Connection diagrams

and detailed information about these topologies will be given in section 3.2. Also

influence of applied topology on performance and cost metrics will be discussed.

For more information on topological issues, reader may see [9] and [10].

10

Table 2.2: Performance and Cost Metrics of Topologies

Metric Definition

Network Size The number of IP cores connected to network.

Network Cost
The number of routers, cross points, communication
links, wire length, wire density etc.

Extendibility
Possibility for enlarging the network without changing
the topology.

Node Degree The number of edges connected to a router.

Network Degree Maximum node degree in the network.

Edge Bisection Width Wire density in the network

Network Diameter
Maximum router count on the shortest path between any
two IP cores.

Avarage Distance
Avarage router count on all the shortest paths between
IP cores.

Connectivity Ability to operate in the case of disabled components.

2.3.2 Routing Algorithm

Figure 2.4 presents a classification of routing algorithms. Depending on the number

of the destination, routing algorithms can be classified as unicast, in which packets

have single destination, or multicast, where packets are destined to multiple nodes.

Unicast routing has four categories according to the place where the routing

decisions are made. In source routing, route is decided before the packet is injected

into the network while in distributed routing, decision are taken inside the network

during the transmission of a packet. A single unit makes the decision in centralized

routing. All routing decisions can be implemented either by using lookup tables or

finite state machines.

Adaptability is another classification criterion. For the given source and destination

nodes, if the routing algorithm always decides on the same route, this kind of

routing is called deterministic, which generally chooses the shortest path between

the nodes. XY, north first, south first, east first, west first, across first, across last

routings are examples of deterministic routing. Unlike deterministic routing,

adaptive routing takes also network traffic into account. Implementation of adaptive

routing algorithms is more complex and costly than deterministic routing algorithms

[11].

Figure 2.4: Classification of Routing Algorithms [12]

11

In progressive routing algorithms flits are not allowed to backtrack. Profitable

(greedy) algorithms are also progressive because flits come closer to the destination

in every routing decision. Deterministic routing algorithms are generally profitable.

And final classification can be done as complete or partial routing according to

number of paths considered.

In this thesis, source routing is implemented using finite state machines. Routing

information is stamped to the header flit of the packet before it is injected into the

network. More information about NoC routing algorithms exists in [13] and [14].

2.3.3 Flow Control (Switching) Methods

Buffer and link allocations are performed by flow control mechanisms which are

classified by the granularity of the allocated resources. As shown in Figure 2.5

messages, before been injected into the network, are divided into packets, packets

into flits and flits into phits. Size of the smallest segment determines the flow

control method.

Figure 2.5: Messages, Packets, Flits and Phits [4]

12

13

A classification of flow control mechanisms is given in Figure 2.6. In circuit

switching, resources are allocated for messages. Link pre-allocation takes place and

links are reserved to the entire message. Thus, buffers are not needed at each router.

A router architecture performing circuit switching is proposed in [15]. In store-and-

forward and virtual-cut-through techniques messages are segmented into packets

and packets are switched through the network as proposed in [16]. In store-and-

forward, before forwarding to the next one, routers wait for the entire packet to be

stored. This mechanism causes long delays in routers and needs large buffer space

for the entire packet. In order to prevent delays, virtual-cut-through flow control

starts to forward packet to the next router before the entire packet is stored.

However, packet-sized buffers are still needed in this method. Flit-based flow

control mechanisms emerged as a solution to large buffer area requirements of other

flow control mechanisms.

Wormhole flow control operates in a way similar to the virtual-cut-through method.

However in wormhole, availability of single flit sized empty buffer space in next

router is enough for transmission. Therefore, main difference between these two

methods is the necessary buffer space in the routers. During the transmission of a

packet, header flit of that packet constructs a path in the network which is followed

by other flits of the same packet. Although buffer allocation is done in units of flits,

links are allocated for the entire packet which results in inefficient use of links.

Then, if the header cannot proceed inside the network, whole packet is blocked

Thus, allocated links are left idle. For more information please see [11] and [12].

Switching
Techniques

Circuit Switching Packet Switching

Wormhole
Switching

Store-and-Forward
Switching

Virtual Cut
Through

Figure 2.6: Classification of the Flow Control Mechanisms [12]

Wormhole flow control is the most common switching technique for both

commercial off-chip network routers and on-chip network routers since it allows

affordable and fast routers [11]. Also in this thesis study, wormhole flow control is

preferred because of its convenience for power, timing and area constraints of on-

chip networks. Store-and-forward, virtual-cut-through and wormhole mechanisms

are compared in Figure 2.7 in terms of their timing performance.

14

Figure 2.7: Timing Comparison of Flow Control Mechanisms [7]

a) Store-and-Forward b) Virtual-Cut-Through c) Wormhole

2.3.4 Virtual Channels

Virtual channels can be defined as multiple parallel queues (buffers) in routers.

Virtual channels share the physical channel and arbitrate for it on a cycle basis.

They are used to avoid deadlocks and head-of-line blocking problems. When a

packet in one of the virtual channels is blocked, packets in other virtual channels

can continue to be transferred. Thus, performance of networks is improved by the

implementation of virtual channels in routers [17, 18].

Virtual channels can be implemented for all flow control methods mentioned in the

previous section. However, since the integration of virtual channels to wormhole

flow control mechanism solves the problem of inefficient link usage which is

encountered especially in this mechanism, wormhole flow control method with VCs

becomes the perfect choice for on-chip networks.

15

16

In this thesis the number of virtual channels can be selected via our configuration

tool presented in this thesis. However, for the sake of simplicity, components of the

NoC applying wormhole flow control with two VCs will only be examined in detail

in the following chapters.

2.3.5 Buffer Organization and Backpressure

Network performance is directly related with the buffer organization. Buffers can

exist both on the input ports and output ports. Output buffering is needed when

speedup of a switch is required to be greater than one. Only input buffers are

preferred in the routers of existing on-chip networks. Input buffering can be

implemented by three different ways such as single-fixed-length queue, multiple

fixed-length queues and multiple variable-length queues, which are shown in Figure

2.8. Multiple queues are used in routers with virtual channels. In variable-length

queues, virtual channels share a large buffer according to a ratio changing

dynamically with respect to network traffic [7].

Packet dropping is not allowed in most on-chip networks. Thus, a backpressure

mechanism is required to stall the traffic. Availability of free space in buffers is

signaled to neighbor routers via two commonly used mechanisms. In credit-based

approach, number of available buffers is tracked [12]. In on-off backpressure

approach, an on-off signal is generated according to a determined threshold. In this

thesis study, multiple fixed-length buffers with credit-based backpressure

mechanism are applied.

Figure 2.8: Input Buffer Types [7]

2.3.6 Allocators and Arbiters

Allocators are used to match multiple requests to multiple resources and arbiters are

used to match multiple requests to a single resource. Allocators and arbiters are

needed to distribute the resources of routers, namely the output virtual channels and

switch ports. Thus two distinct allocation mechanisms are required. Virtual-channel

allocation is performed for only header flits and VCs are allocated to entire packet,

while switch allocation is performed for all the flits and switch ports are allocated

on flit basis [7].

There exist several allocation and arbitration mechanisms. Round-robin, matrix

(least-recently-used), first-come-first-serve, priority-based, priority-based-round-

robin are examples for these mechanisms. Round-robin arbiter gives the lowest

priority to the last served request in the next arbitration while matrix arbiter gives

the highest priority to the least recently served request [12].

In this thesis study, round-robin arbitration is applied in both virtual channel

allocation and switch allocation blocks of the routers implemented.

17

2.3.7 Switches

Packets are transported from input ports to output ports via switches. In this thesis,

like other blocks, crossbar switches used in our routers are described as VHDL

entities and synthesized for FPGA platforms. Since there exists no ready-to-use

crossbar core in FPGA, these switches are composed of multiple multiplexers. As a

result these switches cannot operate at higher clock frequencies as crossbar based

switches. In Figure 2.9, a crossbar switch implementation composed of multiplexers

is given and in Figure 2.10, a 5x5 crosspoint crossbar switch of w bits wide is

illustrated.

Figure 2.9: Crossbar Composed of Multiplexers [7]

18

Figure 2.10: 5x5 Crosspoint Crossbar Switch [7]

19

2.4 EXISTING NoC EXAMPLES

In this section, some of the existing NoC implementations will be briefly reviewed.

SPIN [19], The Scalable Programmable Integrated Network, uses indirect fat-tree

topology with two one-way data path in 32 bits width. Wormhole switching is

implemented in SPIN.

QNOC [20, 21], The Quality of Service NoC, uses direct network with irregular

mesh topology. Wormhole switching, credit-based backpressure mechanism and

XY minimal routing are implemented by QNoC which is developed by Technion in

Israel.

The SOCBUS NoC [15] uses direct 2-D mesh topology. Deadlock free circuit

switching is applied in the SOCBUS NoC, which is developed at Linköping

University.

The Nostrum NoC [22], which is developed at KTH in Stockholm, uses direct 2-D

mesh topology. Store-and-forward switching is applied in the Nostrum NoC.

In the Æthereal NoC [23], wormhole switching is applied with contention free

source routing. Both synchronous indirect and irregular topologies are supported by

Æthereal NoC, which is developed by Philips.

Xpipes [24], developed by the Universisy of Bologna and Stanford University,

applies wormhole switching and source routing. It contains a SystemC library of

switches and links to create specific network components. Flit size, network

diameter are some of the tunable parameters of the instantiated NoC. Different

topologies such as mesh, torus, hypercube, clos and butterfly can be implemented

by using Xpipes.

Spidergon STNoC [8], developed by STMicroelectronics, uses direct polygonal

topology, which is obtained by generalizing the octagonal topology. Packet

switching or circuit switching can be executed.

HERMES [25-27], developed by Faculdade de Informâtica PUCRS in Brazil,

applies direct 2-D mesh topology. Wormhole switching is implemented with

minimal XY routing algorithm. There exist several tunable parameters such as flit

size, number of virtual channels, buffer depth. There are also several other NoCs

with different properties developed by Faculdade de Informâtica PUCRS. These

NoCs are listed in Figure 2.11.

Figure 2.11: Characteristics of the NoCs Developed by Faculdade de Informâtica

PUCRS [27].

20

21

CHAPTER 3

IMPLEMENTATION OF NETWORK ON CHIP IN FPGA PLATFORM

In this thesis study, NoC which is performing wormhole flow control and shortest

path across-first source routing is implemented in Field Programmable Gate Arrays

(FPGA). The implemented NoC is composed of identical routers, which are

connected in a definite topology. Routers also consist of sub-parts, which perform

buffering, virtual channel allocation, switch allocation and switching functions.

Topology, routers and sub-parts of router are implemented in different hierarchical

blocks in FPGA.

In this chapter, these blocks will be examined in hierarchical order. By using block

diagrams and state machine diagrams, their functions and operations will be

clarified. But before the presentation of the FPGA blocks of NoC, flit structure that

is recognized by the implemented NoC is given in the following section.

3.1 FLIT STRUCTURE

As was denoted in Chapter 2, wormhole flow control splits messages into packets

and packets into flits. Packets are transmitted through the network in the form of

single or multiple flits [11]. Flits are generated and injected into the network in the

source node. They travel in the network via routers until they reach the destination

node. In the destination node, flits are combined to form the packets again.

22

Flits include not the only data field, but also a control field [16]. Control field is

necessary to express the characteristics of the flit to the network elements. As an

example, routing is executed depending on the related information in the control

field. This information needs to be in a definite place in the flits. Thus when a flit is

received, by inspecting the bits in this place, the router can decide on how to route

that flit.

The flit structure used in our implementation is given in Figure 3.1. Header flit

consists of type, size, VCID, route data as the control field and payload as the data

field. Body and tail flits have larger payload area instead of route data in header

flits.

Type field consists of two bits, which are ‘start of frame’ (sof) and ‘end of frame’

(eof). These two bits identify four different types of flit. Header flit (b’10’)

indicates the start of the packet and contains the routing information for the entire

packet. A header flit is followed by a body or tail flit. Header flit can also indicate

the end of packet in case of packet with a single flit (b’11’). It this case header flit is

followed by the header flit of another packet. Body flits (b’00’) come between the

header and tail flits. There can be one, multiple or no body flit in a packet. Body flit

does not contain routing information and it is routed according to the routing

information in the corresponding header flit. A body flit is followed by tail flit or

another body flit. Tail flit indicates the end of packet. Tail flit is routed in the same

way as a body flit. A tail flit is followed by the header flit of another packet. The

length of the type field is 2 bits and does not change with the topology or the length

of the rest of the flit (Figure 3.2).

Figure 3.1: Flit Structure

23

Figure 3.2: Flit Sequencing

Size field logarithmically shows the number of the meaningful bits in the payload

area of that flit. Valid data in the payload area does not have to be equal to the

whole length of the payload area. By using size field, destination node can

understand the length of the valid bits. This information is not used by routers in the

network. If the whole length of the payload area in a body or a tail flit is n, then the

length of the size field is equal to ⎡ ⎤⎣ ⎦22 1)(loglog +n . Since total lengths of all flits

are equal and header flit contains routing information, whole payload area in a body

or a tail flit is larger than the whole payload area in a header flit. So whole of the

payload area in a body or tail flit is taken into consideration while calculating the

length of the size field.

Virtual channel ID (VCID) field indicates virtual channel number to which the flit

is going to be accepted in the next router. VCID field is assigned during the virtual

channel allocation (va) for the header flit. Same VCID is also assigned to other flits

of the same packet. So each flit of the same packet carries the same VCID while

leaving the router. Since virtual channel allocation is going to be taken place again

in the next router, assigned VCID may change in each router. The length of VCID

field is equal to the number of virtual channels in input buffers. If there is no virtual

channel, meaning a single buffer, VCID consists of only one bit.

24

25

)1(log*)1(2 ++ kd)1(+d

Routing field includes output port numbers of all routers through which the flit is

going to pass. This field is written into header flit by the source node according to

shortest path across first routing. If d is the network diameter and k is the network

degree for the applied topology, then the length of the routing field is equal to

. gives the maximum number of routers that a flit can

pass through until reaching the destination node.

⎡ ⎤

⎡ ⎤2)1(log +k

)1(log

 gives the number of

bits needed to represent ports of these routers. Each router uses first ⎡ ⎤2 +k

bits of this field to understand the output port for the incoming flit. While sending

the flit to the next one, router rotates this field as shown in Figure 3.3.

Figure 3.3: Rotation of Route Field for d = 2 and k = 3

Payload field contains the data to be transferred from source to destination. This

field is not used and changed by routers during the transfer. Payload fields are

combined to form packets at the destination node.

Number of virtual circuits and length of payload, which are two modifiable

attributes in our design, determine the whole flit size. In Table 3.1, field lengths for

body-tail flits are given for different virtual circuit numbers (v) and body-tail flit

payload length (n).

Table 3.1: Flit Field Length vs. ‘v’ and ‘n’

 FLIT FIELD LENGTHS (in bits) vs.
‘v’ and ‘n’

v = 2,
n = 32

v = 2,
n = 256

v = 4,
n = 32

v = 4,
n = 256

Type Field Length 2 2 2 2

Size Field Length (= ⎡ ⎤⎣ 1)(loglog 22 ⎦ +n) 3 4 3 4

VCID Field Length (= v) 2 2 4 4

Payload Field Length (= n) 32 256 32 256

Total Flit Length 39 264 41 266

On the other hand, topology determines the length of route field which also makes

payload areas of header flits and body-tail flits differ from each other. This

relationship between topology and route field will be explained in the following

section in more detail.

3.2 TOPOLOGY BLOCK

Topology of a network describes how routers are connected to each other. Thus,

topology block in our FPGA includes routers in network, interconnections among

routers, interfaces between router and device nodes. In this section routers will be

assumed as blackboxes and only connections defined by this block will be

highlighted.

There exist four different topologies, which can be applied by our topology block.

These are ring, spidergon, mesh and torus topologies, which was listed as direct

26

topologies in Chapter 2. Depending on the applied topology, some properties of the

network, such as network degree and diameter, can be altered.

Node degree refers to number of edges connected to a router node where edge is

defined as the connection between two router nodes. Network degree is the

maximum node degree for all nodes in the network. The number of the ports in a

router node is directly proportional to network degree. On the other hand, network

diameter refers to the maximum number of routers on the shortest path route

connecting any two network node. Network diameter depends not only to the

applied topology but also to the network size. Network size is also defined by the

topology block and can be changed via this block. Network size stands for the

number of device nodes, which is also equal to number of router nodes in direct

topologies. Network diameter affects the routing scheme together with network

degree [8].

The relationship between topology and mentioned network properties is given in

Table 3.2. As can be seen in this table, the number of the ports of routers is greater

than network degree by one in all of the given topologies. Network diameter

depends on network size (N), varying with topology.

Table 3.2: Network Properties vs. Topology

 Ring Spidergon 2-d m x n
Mesh

2-d k x k
Torus

Network Degree
(= k) 2 3 4 4

Port Number
(= k + 1) 3 4 5 5

Network Diameter
(= d) ⎣ ⎦2/N ⎡ ⎤4/N 2−+ nm ⎡ ⎤2/2 k

27

28

)1(+k

Since routing scheme changes with topology and network size, the length of route

field in a header flit changes too. An incoming flit can be sent via any one of the

 ports. In order to find the outgoing port for a flit, ⎡ ⎤2)1(log +k

)1(

 bits are

required by the router. In the implemented NoC, the shortest path across first route

between source and destination is calculated and written to the header flit of the

packet just before the flit is injected to the network. +d is the maximum number

of routers that a flit can pass. As a result, ⎡ ⎤)1(log*)1 2(+ +kd bits are needed to

represent the full route in a header flit. In Table 3.3 length of route field is given for

ring and spidergon topologies for different network sizes (N).

Table 3.3: Network Properties vs. Topology and Network Size

 Ring
(N = 8)

Ring
(N = 12)

Spidergon
(N = 8)

Spidergon
(N = 12)

Network Degree (= k) 2 2 3 3

Port Number (= k + 1) 3 3 4 4

Routing Bits Per Router
(= ⎡ ⎤)1(log2 +k) 2 2 2 2

Network Diameter (= d) 4 6 2 3

Max. # Of Routers
Passed (= d + 1) 5 7 3 4

Length Of Route Field
(=)⎡)1(log*)1(2 ++ kd ⎤ 10 14 6 8

Connection diagram for the ring topology for N = 8 case is shown in the Figure 3.4.

In this topology each router node has two edges adjacent to two router nodes. Third

port of each router is connected to the related device node.

Topology Block
(Ring N = 8)

Router
1

Router
5

Router
3

Router
7

Router
8

Router
2

Router
4

Router
6

Node
1

Node
3

Node
5

Node
7

Node
8 Node

2

Node
4

Node
6

Figure 3.4: Ring Topology (N = 8)

In spidergon topology routers have three edges. The extra channels across the

topology shorten the routes. Figure 3.5 presents the connection diagram for

spidergon topology for N = 8 case. The only difference between this diagram and

Figure 3.6 is the network size. Network size does not change the router node

structure.

29

Router
1

Router
5

Router
3

Router
7

Router
8

Router
2

Router
4

Router
6

Node
1

Node
3

Node
5

Node
7

Node
8 Node

2

Node
4

Node
6

Figure 3.5: Spidergon Topology (N = 8)

Figure 3.6: Spidergon Topology (N = 12)

30

Routers in mesh topology have 5 ports. Since node degree for routers at edges and

corners is smaller than the network degree, some ports of these routers are

unconnected. Sending flits to unconnected ports should be prevented by the routing

scheme. A 4 x 3 mesh topology is shown in Figure 3.7. Corner routers (1, 4, 9 and

12) have 2 connections with other routers, while edge routers (2, 3, 5, 8, 10 and 11)

have 3 connections. The remaining ones (6 and 7) have 4 connections, which is also

the network degree.

Router 1 Router 2 Router 4Router 3

Router 5 Router 6 Router 8Router 7

Router 9 Router 10 Router 12Router 11

Node 1 Node 2 Node 3 Node 4

Node 5 Node 6 Node 7 Node 8

Node 9 Node 10 Node 11 Node 12

Figure 3.7: Mesh Topology (N = 4 x 3)

In Figure 3.8, 4 x 4 torus topology is given. In this topology routers have 5 ports

similar to the ones in mesh topology. Because edge and corner routers have across

connections to other edge and corner routers, node degree for all routers is 4

meaning that each router node is connected with four other router nodes. Hence this

condition shortens the routing as in the case of ring and spidergon.

31

As stated in the beginning of this section, the topology block in our implementation

uses routers as components and defines connections between the routers. It also

connects one port of each router node to outside as an interface to device nodes.

This block does not contain any combinational or sequential logic. All the logical

operations and decisions are taken place inside the router blocks which are going to

be explained in the following section.

Figure 3.8: Torus Topology (N = 4 x 4)

32

3.3 ROUTER BLOCK

Router blocks are identical building blocks of the network. In order to create a

network, routers are connected to each other through their identical ports. These

ports are composed of two physical channels, i.e., incoming and outgoing channels.

Each channel is composed of data bits whose count is equal to the length of whole

flit and flow control bits which are requests and credits. Apart from the ones in the

flits, these control bits are also required to ensure successful transfer of flits

between nodes. Pinout diagram for a 4 port router can be seen in Figure 3.9.

pi
n3

_d
at

a_
in

pi
n1

_d
at

a_
in

pi
n3

_c
re

di
ts

_o
ut

pi
n1

_c
re

di
ts

_o
ut

po
ut

3_
da

ta
_o

ut
po

ut
1_

da
ta

_o
ut

po
ut

3_
cr

ed
its

_i
n

po
ut

1_
cr

ed
its

_i
n

pi
n3

_t
ra

ns
_r

eq
_i

n
pi

n1
_t

ra
ns

_r
eq

_i
n

po
ut

3_
tra

ns
_r

eq
_o

ut
po

ut
1_

tra
ns

_r
eq

_o
ut

Figure 3.9: Pinout Diagram for a Four-Port Router

33

34

Function of a router is to direct the incoming flits from any one of the input ports to

any one of the output ports excluding the input one. In order to achieve this, several

mechanisms operate in a router, such as buffering, arbitration, allocation and

switching. Mostly, routers encounter cases where multiple flits should be routed

simultaneously. In these cases, if each flit is to be routed to different output ports,

only a switching mechanism would be sufficient for routing. However, there exist

cases where two or more flits are to be routed to the same output port. In such a

situation, the permission to use the desired output should be given to one of the flits

and other flits should be stored in the router. Here, an important problem arises:

which flit should be routed and which one should be stored? Buffering, arbitration

and allocation mechanisms are required to overcome this problem. In Figure 3.10,

block diagram for a router with 4 ports and 2 virtual channels is given. In this figure

different instances of each functional block are used. For example vc_1, vc_2, va_1

sa_1, sw etc… Only va_req_out_x and va_ack_in signals of vc_1, sw_data_out and

sw_dir_out_x signals of vc_5, sa_req_out_x signals of vc_7 and vc_8, and

sa_ack_in signal of vc_7 are shown in the figure. Please note that other blocks also

have the same signals although not shown for simplicity.

Pre_vc blocks demultiplex the incoming data and request to vc blocks according to

VCID field in the data (Shown as 1 on Figure 3.10). Vc blocks perform buffering

and manage the entire operation. Initially these blocks generate request signals for

output virtual channel allocation (va_req_out_x) (2). A vc block can only generate

requests for output virtual channels of other ports, not for the port it belongs to. In

this example, 2 va_req_out_x signals of each vc block are left unconnected and 6

va_req_out_x signals go to va blocks from each vc block. Similarly, each va block

has 6 request inputs. Depending on the round-robin arbitration method, va blocks

generate acknowledge signal for one of the requests and grant the corresponding

output virtual channel for that request until the end of the packet. After receiving

output virtual channel acknowledgment (va_ack_in) (3), vc blocks generate requests

35

for the switch allocation (sa_req_out_x) (4). Because of the same reason mentioned

for va_req_out_x signals, one of these request signals is left unconnected and other

three requests are connected to sa blocks. Sa blocks perform round-robin arbitration

like va blocks and acknowledge the winner request. Unlike va blocks, which grant

output virtual channel on packet basis, they grant the switch usage on a flit basis.

When vc blocks get switch allocation acknowledgment (sa_ack_in) (5) and observe

available buffer space (credit_in_x) (6) on the next node, they transfer the data

(sw_data_out) to the switch (sw) which multiplexes the data to one of the output

ports according to select signals (sw_dir_out_x) (7).

These sub-blocks are explained in detail in the following sub-sections.

Figure 3.10: Block Diagram for Router with 4 Ports and 2 VCs

36

3.3.1 Pre_vc Blocks

Pre_vc blocks are the first units which an incoming flit crosses through. Their

function is to direct the incoming flits into the correct virtual channel according to

the VCID field of the flits. There is only one data input and only one request input

for each physical channel. However there can be many virtual channels on these

physical channels. Pre_vc block demultiplexes data and generates request inputs for

virtual channels. Since it is composed of combinational logic only, a pre_vc block

does not cause any delay except gate delays.

The number of pre_vc blocks in a router is equal to the number of ports. In Figure

3.11, circuit diagram for the pre_vc blocks of a router with two virtual channels is

illustrated. As the number of the virtual channels increases, number of the outputs

of the pre_vc blocks increases too. Logic elements also increase proportionally to

multiplex the flits between more outputs.

Figure 3.11: Circuit Diagram for Pre_vc Blocks of a Router with 2 VCs

37

3.3.2 Vc Blocks

Vc block performs a multiple stage functionality inside the router [7, 28, 29]. The

first stage of its function is to buffer the incoming flits until they leave the router. If

the stored flit is a header flit, in the next stage vc block decodes the routing field,

understands the output port for that flit and its trailing flits and chooses the

appropriate output virtual channel on this route. Depending on the output port and

output virtual channel, vc block sends a request for virtual channel allocation and

waits until the acknowledge is received. Unless the stored flit is a header flit, this

stage is bypassed because virtual channel allocation is executed on a packet basis.

Once acknowledgment is received for the header flit, it is valid for the rest of the

packet. In the third stage, vc block sends a request for switch allocation. The

buffered flit is multiplexed in the switch immediately after acknowledgment for the

switch allocation is received. Since switch allocation is executed on a flit basis,

every flit passes through this stage. In the implemented NoC, these stages are

sequentially connected. Each stage takes at least one clock period. Under best

conditions (buffer is not full, acknowledgments are received immediately) a header

flit leaves the router in three clock periods while other flits leave in two.

Distribution of the sub-functions in the form of stages is shown in Figure 3.12.

Figure 3.12: Distribution of the Sub-functions in the Form of Stages

38

The number of the vc blocks in a router is equal to the number of ports times the

number of virtual channels. In Figure 3.13, pinout diagram for the vc blocks of a

router with 4 ports and 2 virtual channels is demonstrated. Functions of the I/O

ports are explained in Table 3.4 and Table 3.5.

clk va_req_out_1
rst va_req_out_2

va_req_out_3
va_req_out_4

data_in va_req_out_5
req_in va_req_out_6
credit_out va_req_out_7

va_req_out_8
va_eof_out

sw_dir_out_1
sw_dir_out_2
sw_dir_out_3
sw_dir_out_4

credit_in_1 sa_req_out_1
credit_in_2 sa_req_out_2
credit_in_3 sa_req_out_3
credit_in_4 sa_req_out_4
credit_in_5 sa_ack_in
credit_in_6
credit_in_7
credit_in_8 sw_data_out

va_ack_in

Internal router
signals from/to

va blocks

Internal router
signals from/to

sa blocks

Internal router
signals to sw

block

Credit signals
from neighbor

routers

Internal router
signals from
pre_vc block

Credit signal to
neighbor routers

Figure 3.13: Pinout Diagram for Vc Blocks of a Router with 4 Ports and 2 VCs

39

40

Table 3.4: Functions of I/O Ports of Vc Blocks Part 1 of 2

Port Function

clk Reference clock input for sequential processes.

rst Asyncronous reset input.

data_in
Data input connected to one of the data outputs of the
related pre_vc block. Takes flits into block.

req_in
Request input connected to one of the request outputs of
the related pre_vc block. Indicates availability of valid flit
in data_in input.

credit_out

Credit output connected to credit_in inputs of the vc
blocks in neighbor nodes. Indicates available buffer size.
Credit_out signals of vc blocks belonging to the same
port are concatenated and they form pinx_credit_out
outputs of the router.

credit_in_x
(1 - 8)

Credit inputs connected to credit_out outputs of 8 vc
blocks in neighbor nodes. Carries available buffer size
information of vc blocks in neighbor nodes. These signals
are formed from poutx_credits_in inputs of the router..

va_eof_out
Eof bit output connected to the va_eof_in input of the va
blocks to indicate the end of packet.

va_req_out_x
(1 - 8)

Request outputs connected to 8 discrete virtual channel
allocators. Generated according to decoded route field
and decided output virtual channel. Two of these signals
are left unconnected.

va_ack_in
Acknowledge input indicating whether the output virtual
channel is granted or not.

sa_req_out_x
(1 - 4)

Request outputs connected to switch arbitrators.
Generated according to decoded route field. One of these
signals is left unconnected.

sa_ack_in Acknowledge input indicating the granted switch access.

41

Table 3.5: Functions of I/O Ports of Vc Blocks Part 2 of 2

Port Function

sw_data_out Data output connected to switch. Takes flits out of block.

sw_dir_out_x
(1 – 4)

Direction and request outputs connected to switch.
Indicates availability of valid flit in sw_data_out and its
direction.

Besides input and output ports, internal signals are also employed in the operation

of the vc block. These signals and their functions are given in Table 3.6. They will

be used in the following algorithmic state machine diagrams that describe the

operation of vc block.

42

Table 3.6: Functions of the Internal Signals of Vc Blocks

Signal

Function

in_cnt
Counter in VC_IN process for incoming flits in modulo
buffer size.

out_cnt
Counter in VC_OUT process for outgoing flits in modulo
buffer size.

buf_ind

Used capacity of the buffer. Expresses zero or positive
values and equals to (in_cnt - out_cnt) or (buffer size +
in_cnt - out_cnt) depending on overflow of in_cnt and
out_cnt counters.

vc_buffer(x) xth cell of the circular FIFO buffer with size buffer size.

vc_route
Decoded routing info depending on related bits in
vc_buffer(out_cnt) and credit_in inputs.

vc_eof Eof bit of the flit in vc_buffer(out_cnt).

va_buffer Latched vc_buffer(out_cnt).

va_route Latched vc_route.

sa_buffer
Latched va_buffer on the instant that va_ack_in signal is
received.

sa_route
Latched va_route on the instant that va_ack_in signal is
received.

sa_route_buf Latched sa_route used for restoring sa_route signal.

next_ok
Signal indicating the availabilty of the next router for the
current flit.

Vc block makes possible the flow of flits in pipelined mode, i.e., while a flit is

being buffered into vc_buffer, another flit can be switched to the next node through

sw block. Two processes running in parallel in vc block are designed to enable this

2-stage pipelined operation. Operation of these processes will be explained in the

following algorithmic state machines.

Figure 3.14: ASM of VC_IN Process

First process named VC_IN deals with storing incoming flits into buffers. In Figure

3.14 algorithmic state machine of this process is given. Each state is clarified in

detail in Table 3.7.

43

44

Table 3.7: Description of States of VC_IN Process

State Description

RESET

• After asynchronous reset VC_IN process stays in
RESET state for one clock period.

• In this state vc_buffer and in_cnt signals are reset to
zero, then process goes to GET_DATA_1 state.

GET_DATA_1

• Buffering is performed in this state if more than one
buffer space is available.

• To understand whether there is a new flit or not,
VC_IN process checks req_in signal at every rising
edge of the applied clock signal.

• In the case that an incoming flit exists, it is stored into
the next empty place indicated by in_cnt counter and
in_cnt counter is incremented by 1.

• VC_IN process stays in this state until buf_ind signal
indicating the used capacity of the buffer reaches
buffer size.

• If buf_ind reaches buffer size, VC_IN process goes to
GET_DATA_2 state.

GET_DATA_2

• Buffering is performed in this state if only one
buffer space is available or halted if no buffer space
is available.

• While an outgoing flit is leaving the buffer, an
incoming flit can be stored simultaneously.
GET_DATA_2 state makes this possible even if a
single buffer area is available.

• Process checks buf_ind signal first. Even if there is a
request for buffer write, incoming flit is not stored
until buf_ind signal indicates empty area.

• If there is an empty area but no request, then process
returns to GET_DATA_1 state.

• If there is both empty area and a request, incoming flit
is stored into next empty place indicated by in_cnt
counter and in_cnt counter is incremented by 1.

45

Second process named VC_OUT deals with reading flits out of the buffer, timing of

allocation stages and directing flits to the switch. In Figure 3.15, Figure 3.16 and

Figure 3.17 the algorithmic state machine of this process is illustrated. Also states

of VC_OUT process are defined and explained in Table 3.8, Table 3.9, Table 3.10,

Table 3.11 and Table 3.12. Different micro-operations are applied to flits in

different stages. The specified tables also denote which micro-operation belongs to

which stage of the Figure 3.12.

46

Table 3.8: Description of States of VC_OUT Process Part 1 of 5

State Description

RESET

• After asynchronous reset VC_OUT process stays in
RESET state for one clock period.

• In this state va_buffer, sa_buffer, va_route, sa_route,
sa_route_buf, va_eof_out and out_cnt signals are reset to
zero, then process goes to OUT_DATA_1 state.

OUT_DATA_1

• Generation of output virtual channel request for
header flit is handled in this state if the vc_buffer is
initially empty.

• To understand whether there is a new flit or not,
VC_OUT process checks buf_ind signal at every rising
edge of applied clock signal until buf_ind signal
indicates that vc_buffer is not empty. (1st Stage)

• In the case that vc_buffer is not empty; the cell indicated
by out_cnt of the vc_buffer is read out and latched into
va_buffer. Also vc_route is latched into va_route and
vc_eof is output via va_eof_out. Then out_cnt counter is
incremented by 1. (1st Stage)

• Meanwhile a combinational logic circuit generates
corresponding va_req_out signal depending on va_route
signal. (1st Stage)

• Finally, next state is decided using vc_eof signal
indicating whether the following flit will be a header flit
or not. (1st Stage)

• If next flit is a header flit (vc_eof = 1), VC_OUT process
goes to OUT_DATA_2 state, otherwise (vc_eof = 0)
process goes to OUT_DATA_4 state. (1st Stage)

RESET

buf_ind

va_buffer <= all 0;
sa_buffer <= all 0;
va_route <= all 0;
sa_route <= all 0;
sa_route_buf <= all 0;
va_eof_out <= 0;
out_cnt <= 0

OUT_DATA_1

va_buffer <= vc_buffer(out_cnt);
va_route <= vc_route;
va_eof_out <= vc_eof;
out_cnt <= out_cnt + 1;

vc_eof

OUT_DATA_2 OUT_DATA_4

va_ack_in

sa_buffer <= va_buffer;
sa_route <= va_route;
va_buffer <= all 0;
va_route <= all 0;
va_eof_out <= 0;

OUT_DATA_3

> 0

= 0

= 1

= 1

= 0 va_ack_in

sa_buffer <= va_buffer;
sa_route <= va_route;
sa_route_buf <= va_route;
va_buffer <= all 0;
va_route <= all 0;

OUT_DATA_5

= 0

= 1

= 0

Figure 3.15: ASM of VC_OUT Process Part 1 of 3

47

48

Table 3.9: Description of States of VC_OUT Process Part 2 of 5

State Description

OUT_DATA_2

• Generation of switch request for header flit is handled
in this state if the packet is composed of header flit only
(single flit).

• Process checks va_ack_in signal at every rising edge to
understand whether the desired output virtual channel is
granted or not. (2nd Stage)

• If the va_ack_in signal is detected, va_buffer signal is
latched into sa_buffer and va_route is latched into
sa_route. Furthermore va_buffer, va_route and
va_eof_out are reset to zero. (2nd Stage)

• Meanwhile combinational logic circuit generates
corresponding sa_req_out signal depending on sa_route
signal. (2nd Stage)

• Then, process goes to OUT_DATA_3 state.

49

Table 3.10: Description of States of VC_OUT Process Part 3 of 5

State Description

OUT_DATA_3

• Transmission of single flit to the sw block is handled in
this state. Also generation of output virtual channel
request for new incoming header flit is handled in
parallel in this state.

• Process checks sa_ack_in and next_ok signals at every
rising edge to understand whether the switch is allocated
or not and whether the next node have enough buffer
space or not, respectively. (3rd Stage)

• If these two signals are detected, meaning flit is
transmitted to next node successfully, sa_buffer and
sa_route signals are reset to zero to cancel the switch
allocation request. (2nd Stage)

• Simultaneously buf_ind signal is checked to understand
whether vc_buffer is empty or not. (1st Stage)

• If vc_buffer is empty, process goes to OUT_DATA_1
stare. (1st Stage)

• If vc_buffer is not empty, vc_buffer(out_cnt) is latched
into va_buffer, vc_route is latched into va_route, vc_eof
is output via va_eof_out and out_cnt counter is
incremented by 1 and va_req_out is generated. (1st

Stage)
• Depending on vc_eof signal, process goes to

OUT_DATA_2 or OUT_DATA_4 state. (1st Stage)

OUT_DATA_3

sa_ack_in

50

and next_ ok

buf_ind

= 0

= 1

sa_buffer <= all 0;
sa_route <= all 0;

va_buffer <= vc_buffer(out_cnt);
va_route <= vc_route;
va_eof_out <= vc_eof;
out_cnt <= out_cnt + 1;

vc_eof

> 0

OUT_DATA_2 OUT_DATA_4

= 1 = 0

OUT_DATA_1

= 0

Figure 3.16: ASM of VC_OUT Process Part 2 of 3

51

Table 3.11: Description of States of VC_OUT Process Part 4 of 5

State Description

OUT_DATA_4

• Generation of switch request for header flit is handled
in this state if the packet is composed of multiple flits.

• Process checks va_ack_in signal at every rising edge.
(2nd Stage)

• If the va_ack_in signal is detected, va_buffer signal is
latched into sa_buffer, va_route is latched both into
sa_route and sa_route_buf which will be used for
restoring sa_route in following states, va_buffer and
va_route are reset to zero. (2nd Stage)

• Sa_req_out signal is generated by combinational logic
depending on sa_route signal. (2nd Stage)

• Then, process goes to OUT_DATA_5 state.

OUT_DATA_5

• Transmission of header and body flits of packets
composed of multiple flits to the sw block is handled in
this state. Also generation of switch request for new
incoming body flits is handled in parallel in this state.

• Process checks sa_ack_in and next_ok signals at every
rising edge. (3rd Stage)

• If these two signals are detected, process checks buf_ind
signal. (1st Stage)

• If vc_buffer is empty, sa_buffer and sa_route signals are
reset to zero to cancel switch allocation request. Process
goes to OUT_DATA_6 state. (1st Stage)

• If vc_buffer is not empty, vc_buffer(out_cnt) is latched
into sa_buffer, vc_eof is output via va_eof_out, out_cnt
counter is incremented by 1 and sa_req_out is
generated. (1st Stage)

• Depending on vc_eof signal, process stays in
OUT_DATA_5 state or goes to OUT_DATA_7 state.
(1st Stage)

OUT_DATA_5

sa_ack_in

52

and next_ ok

buf_ind

sa_buffer <= vc_buffer(out_cnt);
va_eof_out <= vc_eof;
out_cnt <= out_cnt + 1;

sa_buffer <= all 0;
sa_route <= all 0;

vc_eof

= 1

= 0

= 0

OUT_DATA_6

OUT_DATA_7

buf_ind

sa_buffer <= vc_buffer(out_cnt);
sa_route <= sa_route_buf;
va_eof_out <= vc_eof;
out_cnt <= out_cnt + 1;

vc_eof

= 0

> 0

sa_ack_in xt_ okand ne

buf_ind

va_buffer <= vc_buffer_(out_cnt);
va_route <= vc_route;
va_eof_out <= vc_eof;
out_cnt <= out_cnt + 1;

sa_buffer <= all 0;
sa_route <= all 0;

va_eof_out <= 0;

vc_eof

= 1

= 0 > 0

OUT_DATA_2 OUT_DATA_4

= 1 = 0

> 0

= 0

= 1

= 0

= 0 = 1

OUT_DATA_1

Figure 3.17: ASM of VC_OUT Process Part 3 of 3

53

Table 3.12: Description of States of VC_OUT Process Part 5 of 5

State Description

OUT_DATA_6

• Generation of switch request for new incoming body
flits is handled in this state if the vc_buffer is initially
empty.

• Process checks buf_ind signal at every rising edge of
applied clock. (1st Stage)

• In an instant that vc_buffer is not empty,
vc_buffer(out_cnt) is latched into sa_buffer, sa_route is
restored from sa_route_buf, vc_eof is output via
va_eof_out, out_cnt counter is incremented by 1 and
sa_req_out is generated. (1st Stage)

• Depending on vc_eof signal, process goes to
OUT_DATA_5 state or goes to OUT_DATA_7 state.
(1st Stage)

OUT_DATA_7

• Transmission of tail flits of packets composed of
multiple flits to the sw block is handled in this state.
Also generation of output virtual channel request for
new incoming header flits is handled in parallel in this
state.

• Process checks sa_ack_in and next_ok signals at every
rising edge. (3rd Stage)

• If these two signals are detected, process reset sa_buffer
and sa_route signals to zero (2nd) and checks buf_ind
signal. (1st Stage)

• If vc_buffer is empty, va_eof_out is reset to zero. Then,
process goes to OUT_DATA_1 state. (1st Stage)

• If vc_buffer is not empty, vc_buffer(out_cnt) is latched
into va_buffer, vc_route is latched into va_route, vc_eof
is output via va_eof_out, out_cnt counter is incremented
by 1 and va_req_out is generated. (1st Stage)

• Depending on vc_eof signal, process goes to
OUT_DATA_2 state or goes to OUT_DATA_4 state.
(1st Stage)

State transition diagram of the VC_OUT process is given in Figure 3.18. State

transitions depend on several conditions. Different conditions are checked for flits

in different stages of Figure 3.12. For instance, ‘empty’, ‘tail’ and ‘not_tail’

conditions are checked for the flits in the 1st stage, ‘va’ condition is checked for the

flits in the 2nd stage and ‘sa’ condition is checked for the flits in the 3rd stage.

sa'

sa
 a

nd
 e

m
pt

y

sa
 an

d t
ail

sa
'

Figure 3.18: State Transition Diagram of the VC_OUT Process

54

3.3.3 Va Blocks

Va blocks implement output virtual channel allocation hardware. Depending on the

arbitration method applied in va blocks an output virtual channel is allocated to one

of the vc blocks requesting it. The number of va blocks in a router is equal to

number of ports * number of virtual channels. Each of these blocks have (number of

ports – 1) * number of virtual-channels request inputs and corresponding number of

acknowledge outputs. This is because flits can not be routed to the port from which

they are inserted. So vc blocks can only send a request to virtual channels of other

ports. As an example, for a router with 4 ports and 2 VCs, there are 8 va blocks with

6 request and 6 acknowledge outputs. Output virtual channels of port 1 can not be

requested by its own vc blocks. They can be requested by vc blocks of port 2, 3 and

4. Since each port has 2 vc blocks, arbitration is performed among 6 requests. The

pinout diagram for va6_1 block, va block of the router with 4 ports and 2 VCs, is

given in the Figure 3.19.

Figure 3.19: Pinout Diagram for va6_1 Block

55

56

A vc block can request only one output virtual channel at a moment. However

several vc blocks can request the same output virtual channel at the same time. To

solve this contention, an arbitration mechanism is executed in va blocks. This

mechanism chooses one of the requests and sends acknowledge indicating that the

output virtual channel is allocated to vc block to whom the winner request belongs.

Round-robin type arbitration mechanism is applied in our implemented NoC. State

of this mechanism is held in the VA process running independently in each va

block. For the sake of simplicity, one sixth of ASM of this process is illustrated in

Figure 3.20 and Figure 3.21. Only the transitions of GET_HEADER_1,

GET_HEADER_ACK_1 and GET_PAYLOAD_1 states are given in these figures.

Entire ASM is composed of eighteen states. Connection between these all states is

expressed through Figure 3.22. Mechanism is same for other states except checking

order of requests which corresponds to priority. For example, in GET_HEADER_4

state req_in_4 is the most prior request and req_in_3 is least prior one while in

GET_HEADER_1 state req_in_1 is the most prior request and req_in_6 is least

prior one. In the case that there exist one or more requests, the most prior one is

accepted and acknowledged. According to eof_in_1 input which is coming from vc

blocks to indicate the end of packet, next state is decided. If eof_in_1 is active, then

process goes to GET_HEADER_ACK_1 state. Unlike GET_HEADER_1, these

states control additional inputs next_ok_in, generated to indicate the free space

availability in the next router, and sa_ack_in_1, related switch allocation

acknowledgment, at first to understand whether the transmission of last flit is

successful or not. Beside this difference, remaining logic is the same as

GET_HEADER_1. If eof_in_1 is not active, then process goes to

GET_PAYLOAD_1 state. This state is needed to hold acknowledgment for the

entire packet composed of multi flits until the tail flit of packet is transmitted

successfully.

Figure 3.20: ASM of VA Process Part 1 of 3

57

Figure 3.21: ASM of VA Process Part 2 of 3

58

Figure 3.22: ASM of VA Process Part 3 of 3

As was denoted in previous sub-section there are 8 virtual channel request outputs

in each vc block of a router with 4 ports and 2 VCs. Only 6 of these requests are

connected to the va blocks. Corresponding acknowledge signals of requests passes

through an OR gate and a single acknowledgment reaches the vc block as shown in

Figure 3.23.

59

va6_1

va6_1

va6_1

va6_1

va6_1

va6_1

vc

va_req_out_5

va_req_out_6

va_req_out_4

va_req_out_3

va_req_out_8

va_req_out_7

va_ack_in

Figure 3.23: Acknowledge Signals Passing Through the OR Gate

3.3.4 Sa Blocks

60

Sa blocks implement switch allocation hardware. Desired port of the switch is

allocated to one of the vc blocks requesting that port depending on the arbitration

method applied inside sa blocks. Allocation is performed on flit a basis and takes

place in two stages. In the first stage, only one vc block is chosen among the ones

which belong to same physical port. Even if vc blocks request different ports of the

switch, only one of them can be elected for the next step. Number of sa blocks

operating in this stage (sa2_1) is equal to the number of ports and number of request

inputs of each sa block is equal to the number of virtual channels. Sa_req_out

outputs of each vc block passes through OR gates and resulting signals enter sa

61

blocks in first stage. By using outputs of these sa blocks and sa_req_out outputs of

vc blocks, request signals for next stage are generated through some combinational

logic. Second stage carries out the elimination among the elected vc blocks

requesting the same output port. The number of sa blocks operating in the 2nd stage

(sa3_1) is also equal to the number of ports. Since vc blocks cannot request their

own port, these blocks have (port number – 1) request inputs and acknowledge

outputs. The elected vc blocks which pass both of the stages successfully are

informed by the signals generated from acknowledgments of sa blocks in both

stages. Block diagram for switch allocation mechanism performed in a router with 4

ports and 2 VCs is given in Figure 3.24. For the sake of simplicity, only the

requesting path of vc blocks of input port 1 for the allocation of output port 2 is

shown in the figure.

Inside the sa blocks of both stages, round robin type arbitration mechanisms are

taken place as in the va blocks. Unlike va blocks, sa block allocates the switch

access for one flit period not for whole packet period. ASM for SA process

performing in sa2_1 block is illustrated in Figure 3.25. Same flow is also applicable

for sa3_1 block with difference in the number of states. Output acknowledge signals

of sa blocks are generated by inside combinational logic according to the state in

which the SA process is and the incoming requests.

1st Stage of Switch Allocation

Generation of Single ACK Signal for each Vc Block

2nd Stage of Switch Allocation

Vc Blocks of Port 1

sa3_1

clk
rst

req_in_1
req_in_2

ac
k_

ou
t_

2

req_in_3

ac
k_

ou
t_

3

sa2_1

clk
rst

req_in_2

req_in_1
ack_out_1

ack_out_2
vc_1

vc_2

sa_req_out_2

sa_req_out_2 of vc_2

sa_req_out_2 of vc_1

sa_req_out_3

sa_req_out_4

sa_req_out_2

sa_req_out_4

sa_req_out_3

ack_out_1

ack_out_2 of sa2_1

ack_out_1 of sa2_1

sa_ack_in of vc_1

sa_ack_in of vc_2

Figure 3.24: Block Diagram for Sa Block

62

Figure 3.25: ASM of SA Process

3.3.5 Sw Blocks

Sw blocks switch the flits on the data_in_x inputs to the data_out_x outputs

according to req_in_x signals and generate trans_req_out_x signals. Sw_data_out

outputs of each vc block are connected to data_in_x inputs and sw_dir_out_x

outputs of each vc block are connected to req_in_x inputs of sw block inside the

router block. Data_out_x and trans_req_out_x outputs of this block are connected

to the poutx_data_out and poutx_trans_req_out outputs of the router block

respectively.

63

64

There exists only one sw block in each router block, which is composed of

combinational logic only. Numbers of input and output ports of sw blocks are also

depended on the number of ports and virtual channels as other blocks inside the

router. In Figure 3.26, block diagram of the sw block inside a router with 4 ports

and 2 VCs is shown. 8 data inputs connected to vc blocks are multiplexed

depending on 24 bits direction information. Each vc block generates 4 bits direction

information just after output virtual channel allocation and switch allocation stage.

Each bit corresponds to one of the ports. One of these bits is useless due to the fact

that vc blocks cannot send flits to their own port. Other 3 direction bits of each vc

block are connected to select inputs of the multiplexers inside the sw block. Since

allocation stages prevent any possible conflict, only one of the select inputs can be

active at a time. Inside the multiplexer, one of the data inputs which is pointed by

the active select input is switched to the output.

Figure 3.26: Block Diagram of Sw Block

65

66

CHAPTER 4

SIMULATION RESULTS AND REAL-TIME IMPLEMENTATION

The NoC design described in Chapter 3 is implemented in VHDL language. Before

its real-time implementation on an FPGA platform, verifications of the VHDL

source codes and also the design are performed using MODELSIM, the simulation

tool produced by MENTOR GRAPHICS. After verifying the source codes, source

nodes creating dummy flits are designed for real-time verification. These nodes

communicate with a user interface via RS-232 to receive traffic characteristics to be

be used. The designed NoC connected to these source nodes is synthesized and

embedded onto our FPGA.

This chapter is composed of four sections. At first, simulation results will be

presented for the NoC in spidergon topology created by 8 routers with 4 ports and 2

VCs and supporting 32-bit flits. Functions of the source node blocks and serial

interface blocks will be explained in the second section. Then, user interface

communicating with the source nodes will be defined and finally results of our real-

time implementation obtained via this user interface will be presented.

67

4.1 SIMULATION RESULTS

For the verification of the designed NoC, several scenarios are created by using test

blocks. Signals generated by the blocks of the NoC according to the applied

scenarios are simulated via MODELSIM.

Scenario 1: A single flit is injected to second port of the router of which buffers

and other ports are empty.

Simulation result in Figure 4.1 is obtained. At the first rising edge (labelled as 1 in

Figure 4.1), the flit whose value is 0xED201201 (type: bx11, size: bx101, VCID:

bx10, route: bx100100, payload: bx0000001001000000001) appears at the input of

the second port of the router referenced as r_1 with the request. Flit and request are

demultiplexed by the pre_vc (p_2). At the second rising edge (labelled as 2 in

Figure 4.1) flit is stored into the buffer in vc_3. Since there is no other flit in the

buffer, flit is latched into the va_buffer and request for output virtual channel is

created in the next edge. This request can be detected by va block at the fourth edge

and is acknowledged immediately since no other request exists. Acknowledge can

be sensed by vc block at the fifth edge and flit is latched into sa_buffer. Request for

switch allocation is also created and va_buffer is reset since vc_buffer becomes

empty. At the sixth edge acknowledgment for switch allocation and next_in signal

indicating the availability of the next node are checked. Flit is stored into the

buffers of the next node.

1

2

3

5

6

4

Figure 4.1: Simulation of Single Flit inside the Router

68

Scenario 2: Consecutive flits carrying the same route information are injected

through the same physical port, but via different virtual channels which is selected

depending on credit_out signal of the router.

The obtained waveform is given in Figure 4.2. First two flits are injected from the

first virtual channel and next two flits are injected from the second. First flit appears

at the output port after 4 clock periods. After 2 more clock periods third flit appears

at the output before the second flit since second one has to wait in vc_buffer until

first flit is switched to output. Flits can be switched to output port consecutively as

in the case of fourth and fifth flits. However, generally output port can not be used

in full capacity due to the delay in virtual channel allocation stage. As the number

of virtual channels using the same physical channel increases, throughput of

physical channel usage is expected to increase.

Figure 4.2: Simulation of Consecutive Single Flits Arriving to Same Port

69

Scenario 3: Consecutive flits carrying different route information are injected

through the same port with different virtual channels.

Result is illustrated in Figure 4.3. As in the previous scenario, first flit can be

observed at the desired output after 4 clock periods. Moreover the flit which will be

transmitted to eighth node is switched to output port before the flit which will be

transmitted to fifth.

Figure 4.3: Simulation of Consecutive Single Flits Arriving to the Same Port with

Different Routes

Scenario 4: If the rate of injected flits is greater than the rate of ejected ones,

buffers inside the block start to fill.

70

This case is simulated in Figure 4.4. Buf_ind signals increase until they reach the

buffer size. VC_IN processes of both vc blocks (vc_3 and vc_4) go to

GET_DATA_2 state. By checking credit_out signal, previous node understands that

ejected flits cannot be stored and continues to hold the last flit in the link. On the

other hand, tenth and twelfth flits can not be transmitted from r_1 and stay in the

sa_buffers of vc blocks. Vc blocks continue requesting the switch. Flits are tried to

be transmitted on a flit basis.

Figure 4.4: Simulation of the Case that Buffer is Full

Scenario 5: Three flits requesting the same output are injected through different

ports.

The obtained waveform is given in Figure 4.5. Request signals generated for the

same output virtual channel reach va block (vc_3) at the same time. Only one of

them can be acknowledged at any time instance. Other vc blocks continue to hold

request signal. Acknowledged request by the va block generates request for the

switch allocation stage. Flits are ejected in the order determined by these two

allocation stages.

71

Figure 4.5: Simulation of Simultaneous Flits Requesting the Same Output

Scenario 6: Simulation of a packet composed of four flits is illustrated in Figure

4.6.

Only header flit of the packet includes routing information. This information is

stored in vc block and is also used for body and tail flits of the packet. Since header

flit allocates the output virtual channel for the entire packet, other flits passes to

switch allocation stage directly. Va block does not carry out new arbitration and

holds acknowledge signal until the end of packet. Sa block carries out arbitration

mechanism on flit basis. Since flits except the header are not exposed to the delay in

virtual channel allocation stage, flits can be switched to output consecutively. Thus,

output port can be used in full capacity even if there is only 1 virtual channel. If

there exists any flit requesting the same output but different output virtual channel,

flits of different virtual channels will appear on this same output port. This situation

72

is simulated in the Figure 4.7. While vc block is receiving a packet from port 2,

another packet requesting the same output port is injected from port 1 after 5 clock

periods. Different VCIDs are assigned to these packets by the vc blocks. At the

output port, header flit of the second packet appears between fifth and sixth flits of

the first packet. Next node distinguishes the flits through the assigned VCIDs.

Figure 4.6: Simulation of Packet Composed of Multiple Flits

Scenario 7: Flits are routed by multiple router nodes until they reach the

destination.

In Figure 4.8, a packet composed of 5 flits is injected by the source node which is

connected to port 2 of router 1 (r_1). Through routers r_1, r_5 and r_6, flits reach

their destination node which is connected to port 4 of router 6 (r_6). Because of

having 4 clock delay in each router, flits appear in the input of the destination node

after 12 clocks.

73

Figure 4.7: Simulation of Packets Requesting the Same Output

Figure 4.8: Simulation of a Packet throughout the Whole Network

74

75

4.2 TESTING BLOCKS

In order to test the implemented NoC in real time, an infrastructure generating

dummy flits is required. Our infrastructure contains source nodes, which can

transmit flits to other 7 nodes through the NoC and can receive flits from them. Our

test infrastructure also communicates with a user interface executing on the

computer via RS-232. Thus, outgoing traffic generated by each source node can be

changed and incoming traffic received by each node can be monitored. In addition

to source nodes, additional blocks are needed to maintain RS-232 communication.

These blocks perform different tasks such as encoding, decoding, serializing and

deserializing. Block diagram for our overall testing infrastructure is given in Figure

4.9. All blocks existing in the infrastructure will be explained briefly in the

following sub-sections.

4.2.1 Source Nodes

Source nodes have two main functions. First function is to generate packets

composed of one or more flits. Number of flits in packets is determined according

to outgoing_cnt_x inputs. Packets are generated for the nodes whose corresponding

outgoing_cnt_x inputs are not zero. Generation is also related with wait_cnt input

defining the idle period of the node, in which no flit is generated. As an example if

the outgoing_cnt_1, outgoing_cnt_2 and wait_cnt inputs of node 1 are equal to 5,

20 and 10 respectively and other inputs are equal to zero, node 1 generates a packet

composed of 5 flits to be transmitted to node 2, generates a packet composed of 20

flits to node 3 and waits for 10 clock periods without generating any flits in each

cycle.

 FPGA

NoC

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Node
7

Node
8

Receiver
Controller

Transmitter
Controler

Uart
Trasmitter

Uart
Receiver

RS-232

Figure 4.9: Block Diagram for the Testing Infrastructure

Route fields of generated header flits are determined using a look-up table which

implements across first routing. Packets are injected from the virtual channel which

is determined according to pout_ack_in signal carrying the credit information of the

router, which the source node is connected to. Payload fields of the flits include

source and destination addresses. These addresses are used in destination nodes to

verify the routing applied inside the network. Payload fields also contain flit

counter. Structure of the generated dummy flits is given in Figure 4.10.

76

Figure 4.10: Structure of Dummy Flits

Second function of the source nodes is to monitor the incoming flits. Related

incoming_cnt_x output is incremented according to the source address. Also

destination address is checked to understand whether the flit is routed to correct

destination or not. In case that destination address does not belong to that node,

error_cnt output is incremented instead of incoming_cnt_x outputs.

Pinout diagram for the source nodes is given in Figure 4.11. In addition to the

mentioned inputs and outputs, source nodes have a router interface to be connected

to network and also activate input to start or stop flit generation instantly.

4.2.2 Uart Receiver and Transmitter

These blocks perform serializing and deserializing tasks. Receiver block

deserializes the bit stream coming from the computer, outputs parallel data with

data_valid signal indicating the availability of meaningful data. On other hand,

transmitter serializes the parallel data when the transmit signal is triggered and also

signals the state of transmission from the transmitting output. Pinout diagram of

these blocks and waveform of the serial signals are given in Figure 4.12. 1 bit start

and 1 bit stop bit are used to transmit 8 bits data and baudrate of the serial signal is

115200 bits/sec.

77

Figure 4.11: Pinout Diagram for the Source Nodes

4.2.3 Receiver and Transmitter Controllers

Receiver controller decodes messages coming from the user interface. Activate,

outgoing_cnt_x and wait_cnt inputs of 8 source nodes are connected to receiver

controller. Depending on the received messages, this block modifies the values

assigned to these signals. Format of the received message is given in Figure 4.13.

Value in data field is assigned to the signal to which value in address fields is

mapped. In order to confirm the message, calculated checksum from first three

bytes is compared with the received one.

78

sec
115200

1

Figure 4.12: Pinout Diagram for Receiver (a) and Transmitter Blocks (b) and

Waveform for the Serial Signal (c)

In order to maintain real time monitoring on the computer side, unlike receiver

controller, transmitter performs its task using address and data. This block puts the

information gathered from incoming_cnt_x and error_cnt outputs of the source

nodes in the order recognised by the user interface and transmits bytes continuously

in this order. Transmit and clock counters that are kept inside the controller are also

added to the message. Values of these counters are used in rate calculations

performed on the computer side. Header and checksum fields are also available in

this message.

Figure 4.13: Format of the Received Messages from User Interface

79

80

4.3 NOC MONITOR

NoC Monitor is a graphical user interface running on the computer to create dummy

traffic for the on-chip network composed of 8 routers (4 ports, 2 VCs) in spidergon

topology and to monitor created traffic on real time.

A screenshot of the NoC Monitor is given in Figure 4.14. Generated traffic is

controlled by the checkboxes and the table in the division marked as 1. Each

checkbox activates or deactivates generation of packets in the related source node.

Each cell on the table corresponds to one of the outgoing_cnt_x (TO NODEx) or

wait_cnt (IDLE) inputs of the source nodes. User interface calculates the address

field according to edited cell and transmits the serial message whose format is given

in Figure 4.13.

Each serial message sent by the transmitter controller block on FPGA includes 1

byte packet counter. This counter and the difference between packet counters of two

consecutive messages fetched by UI are displayed on the table in the 2nd division of

Figure 4.14. Time difference between two recent messages is also presented on this

table in terms of seconds.

Table in the 3rd division indicates the total number of the received flits by each

source node. Values of incoming_cnt_x and error_cnt outputs of source nodes are

printed on the table according to source-destination pairs. Rows correspond to

sources and columns to destinations. The value of a clock counter is also received

from the transmitter controller on FPGA. This value is used to calculate rates of the

received flits. Differences between previous and current values of each cell are

divided by the difference between previous and current value of clock counter. To

find the rate in terms of Mbit/sec result divisions are multiplied with 0,000032 since

flit size of the tested NoC is 32. Total received and transmitted traffic by each node

can also be observed from the table. Intersection of these column and rows gives the

rate of the whole traffic on NoC.

Figure 4.14 : NoC Monitor

4.4 NOC GENERATOR

NoC Generator is another graphical user interface designed within the scope of this

thesis to generate diverse NoCs with different characteristics. This tool creates

necessary VHDL source codes for the specified NoC via a user interface.

81

In Figure 4.15, a screenshot of the NoC Generator is illustrated. First, user chooses

the topology of the network among 4 choices which are ring, spidergon, mesh and

torus. Depending on the chosen topology network size is specified as one

dimensional (ring, spidergon) or two dimensional (mesh, torus). Node degree is

displayed by the user interface according to the topology.

Figure 4.15 : NoC Generator

Then, data field size in the header flit is assigned. Together with topology, network

size and VC number, data flit size determines the whole flit size which is calculated

and displayed by our UI. The depth of the input buffers in vc blocks is specified by

Buffer Size tab. Finally virtual channel number is entered and Generate button is

pressed to start the generation. ‘NoC_lib’ directory is created and VHDL source

codes which are ready to be synthesized are generated under this directory.

4.5 IMPLEMENTATION ON FPGA PLATFORM

The designed NoC composed of 8 routers (4 ports, 2VCs) in spidergon topology is

also executed together with our testing blocks on Xilinx Virtex 6 Evaluation Board

which is illustrated in Figure 4.16. This board includes XC6VLX240T FPGA of

Xilinx which contains 241.152 logic cells and 37.680 slices each of which

82

83

composes of 4 look-up-tables (LUTs) and 8 flip-flops. The design is synthesized

and implemented (translate, map, place & route) by using Integrated Software

Environment (ISE) tool of Xilinx. At the end of these processes, programming file

needed to configure FPGA is obtained and design issues such as maximum delay,

maximum applicable clock frequency, I/O pad assignments and resource usage etc.

are reported. According to these reports, maximum delay observed on the paths is

5,675 ns. So maximum clock frequency that can be applied to the blocks in the

design is 176,214MHz. Our design uses 14.626 of 301.440 flip-flops (registers) and

44.335 of 150.720 LUTs. This information is stated on Table 4.1.

Several NoCs with different parameters are also generated using our NoC

Generator. These NoCs are synthesized by using ISE. Similar information for all

these NoCs is stated on Table 4.1. Table 4.1 shows that network size, flit size and

buffer depth do not change maximum delay significantly. But these parameters

dramatically affect resource usage. Therefore a network can be expanded without

changing its timing performance. On the other hand, since number of virtual

channels also has an influence on control logic, it affects both resource usage and

timing performance. Topology type also changes both resource usage and timing

performance.

For comparison, HERMES [25-27] NoC in mesh (4x2) topology with 2 VCs, 32 bit

flit size and buffers of depth 4 is synthesized by using ISE and synthesis results are

also stated on Table 4.1. When we compare HERMES NoC and our NoC with the

same parameters, it is observed that our proposed NoC outperforms HERMES in

timing performance in return for an increase in resource usage.

Figure 4.16: Xilinx Virtex 6 Evaluation Board

84

85

Table 4.1: Generated NoCs vs. Maximum Delay and Resource Usages

Generated NoCs vs. Maximum Delay and
Resource Usages

Maximum
Delay Registers LUTs

Spidergon (8), VC = 2, F = 32, B = 4 5,675 ns 14.626 44.335

Spidergon (8), VC = 2, F = 32, B = 2 5,528 ns 10.663 33.205

Spidergon (8), VC = 2, F = 64, B = 4 5,519 ns 26.914 50.065

Spidergon (8), VC = 4, F = 32, B = 4 7,076 ns 31.778 115.137

Spidergon (16), VC = 2, F = 32, B = 4 5,586 ns 29.250 65.073

Ring (8), VC = 2, F = 32, B = 4 4,473 ns 10.676 31.315

Mesh (4x2), VC = 2, F = 32, B = 4 6,162 ns 14.277 32.710

Torus (3x3), VC = 2, F = 32, B = 4 6,450 ns 21.788 57.646

HERMES Mesh (4x2), VC = 2, F = 32, B = 4 8,319 ns 3.370 11.034

4.6 PERFORMANCE

When operated with 66 MHz clock frequency, a total rate of over 14 Gb/s can be

obtained on the network with a 32-bit flit size as shown in Figure 4.17. Applied

network traffic can also be seen on this figure. At this frequency, total capacity of 8

point-to-point links of 32 bit width is 16,896 Gb/s. In our implementation, more

than 82% of this capacity can be reached. If a bus structure was implemented with

the same flit size and was operated with same clock frequency, maximum 2,112

Gb/s rate would be obtained, even if arbitration periods are assumed as zero. Total

rate obtained on the network can be increased by operating the network under

higher clock frequencies. Maximum delay obtained by synthesis tools (as shown in

Table 4.1) limits the maximum operating frequency.

Figure 4.17: Performance of the NoC Operated with 66 MHz Clock Frequency

Also, we observe that, through our allocation mechanisms, fairness is provided. In

the case that all source nodes generate identical traffic, observed incoming and

outgoing traffic rates for each source node are observed to be identical. This case is

86

created and monitored by using our NoC Monitor as shown in Figure 4.18 which

demonstrates that our NoC does not cause any privilege to any node in the network.

Figure 4.18: Provided Fairness

87

88

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSIONS

In order to meet increasing needs and demands of the contemporary world,

technology development gained acceleration. For instance, past black and white

televisions have left their places to high definition 3D televisions, and gramophone

records have been replaced by lossless audio media. Hence, there has been a

demand for increased processing capacity to support these, which could be realized

by increasing processing frequency and/or the number of processors. As the number

of processors increased, the communication between these processors gained

significant importance. In addition to the existing communication structures such as

on chip buses and crossbars, developers have recently directed their attention to

another solution; that is on-chip network which is composed of shared point-to-

point links. So far, several NoC examples have been proposed and implemented;

however, a standard such as the ones found for on-chip buses has not been

developed yet.

In this thesis an example NoC that performs wormhole flow control and source

routing is implemented. Firstly, a NoC composed of 8 routers, each having 4 ports

and 2 VCs in spidergon topology is designed. Then, this design is described using

VHDL and source codes are created. These source codes were simulated on

computer environment. Afterwards, to verify the design in real-time, blocks

generating dummy traffic and serial interface blocks that communicate with user

89

interface on the computer and provide control and monitoring of the generated

dummy traffic are also designed. Furthermore, together with these testing blocks,

the designed NoC is synthesized to be implemented on an FPGA. Thus, using the

user interface, i.e., our NoC Monitor, running on the computer, we verified our

design in real-time. We observed that created dummy packets were successfully

transferred from sources to destinations through the network. Eventually, a total rate

of over 14 Gb/s is obtained on the network with a 32-bit flit size operating with 66

MHz clock frequency. If a bus structure was implemented with the same flit size

and clock frequency, 2,112 Gb/s rate would be obtained. So we conclude that using

network structures on chips, almost a sevenfold performance increase is obtained.

Our VHDL source codes are generalized and parameterized to span ring, spidergon,

mesh and torus topologies with diverse buffer sizes, flit sizes and virtual channel

numbers. Thus, to be used under various network traffics, it is now possible to

generate different NoCs using our NoC Generator.

5.2 FUTURE WORK

The NoCs obtained throughout this study can be varied and further developed with

new properties. Our tools, the NoC Generator and the NoC Monitor, created in this

study can be improved.

The designed network does not provide any bandwidth guarantee. Bandwidth

provided to a source node changes according to the traffic produced by other source

nodes. In the future, Quality of service (QoS) can be implemented to ensure the

guaranteed traffic.

Furthermore, in our current solution, dead lock avoidance is achieved by using a

proper routing method. In future studies, it can be managed by router blocks on the

network.

90

Also, instead of network interface units, dummy test blocks are used in the design.

Network interface units can be designed and included in the NoC Generator. In

these network interface units, various other routing methods can be applied.

Although they are not preferred to be used in on-chip networks, different flow

control methods such as circuit-switching, store-and-forward, and virtual-cut-

through can be added to the NoC Generator.

Moreover, the NoC Monitor can be developed to create other traffic types to

observe different qualities of the network.

91

REFERENCES

[1] R. Marculescu, U. Y. Ogras, L. S. Peh, N. E. Jerger, and Y. Hoskote,
"Outstanding research problems in NoC design: System, microarchitecture,
and circuit perspectives," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 28, pp. 3-21, Jan 2009.

[2] P. Bhojwani and R. Mahapatra, "Interfacing cores with on-chip packet-
switched networks," 16th International Conference on VLSI Design,
Proceedings, pp. 382-387, 2003.

[3] C. A. Zeferino, F. G. M. E. Santo, and A. A. Susin, "ParIS: A
parameterizable interconnect switch for networks-on-chip," in Proc. 17th
Symposium on Integrated Circuits and Systems Design, SBCCI2004 pp.
204-209, 2004.

[4] S. Pasricha and N. Dutt, On-chip communication architectures : system on
chip interconnect. Amsterdam ; Boston: Elsevier / Morgan Kaufmann
Publishers, 2008.

[5] S. Murali, Designing reliable and efficient networks on chips. Dordrecht:
Springer, 2009.

[6] T. Bjerregaard and S. Mahadevan, "A survey of research and practices of
network-on-chip," ACM Computing Surveys, vol. 38, pp. 1-51, Mar 2006.

[7] N. D. Enright Jerger and L.-S. Peh. (2009). On-chip networks. Available:
http://www.morganclaypool.com/doi/abs/10.2200/S00209ED1V01Y200907
CAC008, last visited on 23.06.2011

[8] M. Coppola. (2009). Design of cost-efficient interconnect processing units
Spidergon STNoC. Available:
http://marc.crcnetbase.com/isbn/9781420044720, last visited on 23.06.2011

[9] W. J. Dally and B. Towles, Principles and practices of interconnection
networks. San Francisco: Morgan Kaufmann Publishers, 2003.

92

[10] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, "Performance
evaluation and design trade-offs for network-on-chip interconnect
architectures," IEEE Transactions on Computers, vol. 54, pp. 1025-1040,
Aug 2005.

[11] P. Tvrdik. Routing algorithms and switching techniques. Available:
http://pages.cs.wisc.edu/~tvrdik/7/html/Section7.html#Wormhole, last
visited on 23.06.2011

[12] A. Agarval, C. Iskander, and R. Shankar, "Survey of NoC architecture and
contributions," Journal of engineering, computing, and architecture, 2009

[13] R. Gindin, I. Cidon, and I. Keidar, "NoC-based FPGA: Architecture and
routing," in Proc. First International Symposium on Networks-on-Chip,
NOCS 2007 pp. 253-262, 2007.

[14] M. Atagoziyev, "Routing algorithms for on chip networks," M. Sc. Thesis
Middle East Technical University, 2007.

[15] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and L. T. Smit, "An energy-
efficient reconfigurable circuit-switched network-on-chip," in Proc. 19th
IEEE International Conference on Parallel and Distributed Processing
Symposium 2005, pp. 155-163.

[16] W. J. Dally and B. Towles, "Route packets, not wires: On-chip
interconnection networks," in Proc. 38th Design Automation Conference pp.
684-689, 2001.

[17] T. Bjerregaard and J. Sparso, "A router architecture for connection-oriented
service guarantees in the MANGO clockless network-on-chip," in Proc.
Design, Automation and Test in Europe Conference and Exhibition, Vols 1
and 2, Proceedings, pp. 1226-1231, 2005.

[18] R. Mullins, A. West, and S. Moore, "Low-latency virtual-channel routers for
on-chip networks," in Proc. 31st Annual International Symposium on
Computer Architecture, pp. 188-197, 2004.

[19] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A.
Zeferino, "SPIN: a scalable, packet switched, on-chip micro-network,"
Designers Forum: Design, Automation and Test in Europe Conference and
Exhibition, pp. 70-73, 2003.

[20] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "QNoC: QoS architecture
and design process for network on chip," Journal of Systems Architecture,
vol. 50, pp. 105-128, Feb 2004.

93

[21] R. R. Dobkin, R. Ginosar, and I. Cidon, "QNoC asynchronous router with
dynamic virtual channel allocation," in Proc. First International Symposium
on Networks-on-Chip, NOCS 2007 pp. 218-218, 2007.

[22] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, "The Nostrum
backbone - a communication protocol stack for networks on chip," in Proc.
17th International Conference on VLSI Design, pp. 693-696, 2004.

[23] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal network on chip:
Concepts, architectures, and implementations," IEEE Design & Test of
Computers, vol. 22, pp. 414-421, Sep-Oct 2005.

[24] M. Dall'Osso, C. Biccari, L. Giovannini, D. Bertozzi, and L. Benini,
"xpipes: a latency insensitive parameterized network-on-chip architecture
for multi-processor SoCs," in Proc. 21st International Conference on
Computer Design, pp. 536-539, 2003.

[25] F. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost, "HERMES: an
infrastructure for low area overhead packet-switching networks on chip,"
Integration-the VLSI Journal, vol. 38, pp. 69-93, Oct 2004.

[26] L. Ost, A. Mello, J. Palma, F. Moraes, N. Calazans, and C. Postal, "MAIA -
A framework for networks on chip generation and verification," in Proc.
Asia and South Pacific Design Automation Conference, Vols 1 and 2, Asp-
Dac 2005 pp. 49-52, 2005.

[27] (23.06.2011). Atlas - Atlas Wiki - Welcome to GAPH Projects. Available:
https://corfu.pucrs.br/redmine/projects/atlas/wiki

[28] N. Hou, D. L. Zhang, G. M. Du, Y. K. Song, and H. H. Wen, "Design and
performance evaluation of virtual-channel based NoC," in Proc. 3rd
International Conference on Anti-Counterfeiting, Security, and
Identification in Communication, pp. 294-298, 2009.

[29] L.-S. Peh, "Flow control and micro-architectural mechanisms for extending
the performance of interconnection networks," Thesis (PhD), Stanford
University, 2001.

