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ABSTRACT

A STUDY ON SYMBOL SYNCHRONIZATION AND CHANNEL ESTIMATION FOR
M-ARY ORTHOGONAL TRANSMISSION

Karagözlü, Eren

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Yalçın Tanık

September 2011, 75 pages

In this thesis, two key issues regarding M-ary orthogonal signaling systems, namely channel

estimation and symbol timing recovery are investigated. Kasami codes, which are also called

quasi orthogonal codes, are used for transmission of the information in place of orthogonal

waveforms. In order to achieve symbol synchronization, a timing recovery scheme based on

the Maximum Likelihood (ML) estimation of timing offset is proposed and the effects of pro-

posed structure over the receiver performance are examinedby using computer simulations.

Moreover, the receiver performance of M-ary orthogonal signals transmitted over multipath

fading channel is investigated. Least Square (LS) approach, based on the transmission of

known training sequence, is used to estimate the channel impulse response. In addition to

this, frame synchronization is employed at the receiver to extract the timing information by

determining the start time of the received symbols. Computer simulations related to the pro-

posed receiver structure are carried out in order to observehow the system performance is

affected under multipath fading channel. Parameter selectionguides regarding a good perfor-

mance are also provided.
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ÖZ

M-ARY DİK SİNYALLER İN İLETİM İNDE SEMBOL SENKROṄIZASYONU VE
KANAL KESTİRİM İ ÜZERİNE ÇALIŞMA

Karagözlü, Eren

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Yalçın Tanık

Eylül 2011, 75 sayfa

Bu tezde, M-ary dik sinyaller için kanal kestirimi ve sembol zaman bilgisinin kazanımı konu-

ları incelenmiştir. Mesajın iletimi için dik sinyaller yerine, dike yakın kod dizisi olarak

da bilinen Kasami kodlar kullanılmıştır. Sembol senkronizasyonu başarmak için en büyük

olasılıklı (ML) zaman kayması kestirimi düşünülerek bir senkronizör yapısı önerilmiş ve

alıcının performansı bilgisayar simülasyonları aracılığıyla analiz edilmiştir. Buna ek olarak,

M-ary dik sinyallerin çok yönlü sönümlemeli kanallardan iletimi sırasındaki alıcı perfor-

mansı incelenmiştir. Kanal kestirimi için bilinen ön dizilerin gönderilmesine dayanan en

düşük kareler (LS) yaklaşımı kullanılmıştır. Kanal kestiriminin yanında, gerekli zaman bil-

gisinin belirlenmesinde alıcıya gelen sinyalin başlangıç zamanını bulan çerçeve senkroniza-

syonu kullanılmıştır. Önerilen alıcı yapısının performansını gözlemlemek için bilgisayar

simülasyonları yapılmıştır. Ayrıca iyi alıcı performansı elde etmek için parametre seçimine

yönelik yollar sunulmuştur.

Anahtar Kelimeler: M-ary dik sinyallerin iletimi, Kasami kodlar, sembol zaman bilgisinin

kazanımı, En Düşük Kareler(LS) kanal kestirimi, çerçeve senkronizasyonu
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CHAPTER 1

INTRODUCTION

M-ary Orthogonal modulation is a digital modulation methodto transfer a digital bit stream

by usingM equal-energy orthogonal signal waveforms which is formed by M-dimensional

signal vectors. M-ary Orthogonal modulation can ensure an increase in performance in terms

of capacity. Shannon’s limit is also achieved by increasingthe alphabetM to infinity. The

generation ofM orthogonal waveforms is crucial for this modulation type. The use of spread

spectrum can facilitate the generation of code sets for M-ary orthogonal modulation, since

spreading codes have correlation properties similar to orthogonal codes. The use spread spec-

trum can also provide many advantages such as decreasing theeffects of interference due to

jamming, interference from other users and self interference due to the multipath propagation.

In communication systems, the transmitted signal is received at a receiver with a time delay

due to the prorogation time from the transmitter to the receiver. In a digital communication

system, the output of the demodulator must be sampled periodically once per symbol interval

in order to recover the transmitted information. The receiver needs to know this propagation

delay in order to eliminate the performance degradation dueto the timing mismatch. Hence a

symbol synchronization is required at the receiver. A symbol timing synchronization, which

aims to estimate the time delay between the transmitted and the received signal, plays an im-

portant role in demodulation process. [11] and [17] are goodreferences in the symbol timing

synchronization literature. Symbol timing synchronization methods can be classified into two

groups: Decision directed, non-decision directed methods. Decision directed methods derives

the timing information by using the transmission of known symbols, whereas in non-decision

directed methods the timing estimation is done without pilot known symbols.

Furthermore, multipath fading is one of major concerns in wireless communications. In a
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multipath environment, the transmitted signal arrives to the receiver from different directions

with a different attenuation and different time delay. Hence, the received signal is the sum of

signals arriving through different propagation paths. These multiple paths cause degradation

in the performance of the communication system. One approach to reduce the multipath

channel effects is to detect the channel characteristics. This is accomplished by estimating the

channel at the receiver. In literature, channel estimationmethods are investigated in detail.

[17] is good reference in the subject of channel estimation.

The aim of this thesis is to investigate the performance of M-ary orthogonal signaling. Spread-

ing codes, such as m-sequences, Walsh Hadamard codes, Kasami codes and Gold codes are

explored in order to use in M-ary signaling structure and dueto better cross-correlation prop-

erty Kasami codes are chosen to use in place of orthogonal signals. Initially, the perfor-

mance of the proposed signaling system is explored under AWGN channel. Then the symbol

timing synchronization is examined for M-ary Kasami code signaling. The symbol timing

recovery scheme based on the non-decision directed approach is developed and the perfor-

mance of this timing recovery scheme is analyzed by comparing with Modified Cramer Rao

Bound(MCRB). Furthermore, the performance of M-ary signaling system under multipath

fading channel is considered. In order to remove the multipath channel effects the proposed

receiver requires the channel knowledge. For this reason, Least Square channel estimation

algorithm is used in order to estimate the channel impulse response from a known training

sequence. The channel estimator performance is explored for different channel responses and

different training sequence lengths.

This thesis is organized is follows:

In Chapter 2, M-ary orthogonal modulation is reviewed . Thenspreading codes, whose corre-

lation properties are similar to orthogonal codes, are analyzed. Finally, the proposed receiver

structure and the analyzed model is presented.

In Chapter 3, the performance of M-ary Kasami code signalingis compared with M-ary or-

thogonal modulation. Also Kasami codes are used in M-ary biorthogonal structure and the

performance of M-ary biorthogonal signaling using Kasami codes is presented.

In Chapter 4, the proposed non-decision directed symbol synchronizer is described and the

performance of this synchronizer is investigated.

2



In Chapter 5, transmission of M-ary signals over multipath fading channel is considered.

Initially the model of multipath channel model is presented. Then, the receiver structure

including frame synchronizer and Least Square channel estimator is described and simulation

results related to performance of the proposed receiver structure are presented.

In Chapter 6, conclusions and possible future works are presented.
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CHAPTER 2

M-ARY ORTHOGONAL SIGNALING

2.1 INTRODUCTION

Although bandwidth is a valuable commodity in wireless systems, increasing the transmit

signal bandwidth can sometimes improve performance. Spread spectrum is a technique that

increases signal bandwidth beyond the minimum necessary bandwidth for data communica-

tion [3]. Spread spectrum signals used for the transmissionof digital information are distin-

guished by the characteristic that their bandwidthW is much greater than the information rate

R in bits/s. In other words, the bandwidth expansion factorB = W/R for spread spectrum sig-

nals is much greater than unity. Moreover, the spread spectrum modulation is performed using

a spreading code, which is independent of the data in the signal. Each spreading code con-

sists of binary-valued elements called chips with a time intervalTc. Tc should be significantly

smaller than the symbol time intervalTs to satisfy the bandwidth expansion requirement.

One of the most important features of spreading codes is their pseudo-randomness property

which makes the signals appear similar to random noise and difficult to demodulate by the

unintended receivers. Spread spectrum provides so many advantages. Some of them are as

follows:

• Anti-jamming (A/J) - particularly for narrow-band jamming

• Anti-interference (A/I)

• Low Probability of Intercept (LPI)

• Multiple access capability

• Message Privacy

4



• High Resolution Ranging and Timing

M-ary orthogonal signaling is one of the major techniques toachieve spread spectrum. Also,

the use of spread spectrum might facilitate the code generation. M-ary orthogonal signals

yield a bit rate to bandwidth ratio (or spectral efficiency) ofR/W ≤ 1. Spectral efficiency

decreases with increasingM. However, asM increases the SNR per bit required to achieve a

given error probability decreases. Consequently, M-ary orthogonal signals are appropriate for

power-limited channels which possess sufficiently large bandwidth to accommodate a large

number of signals [2]. Indeed, M-ary orthogonal modulationachieves channel capacity under

AWGN channel as M goes to infinity.

In this chapter, background information about M-ary orthogonal modulation is presented.

Then, some spreading codes which satisfy cross correlationvalues similar to orthogonal codes

are investigated. Finally, the investigated communication model in this thesis is presented.

2.2 LITERATURE REVIEW

In digital communication, through modulations of the carrier amplitude and phase, the con-

structed signal waveforms correspond to two-dimensional vectors and signal space diagrams.

However it is sometimes required to construct signal waveforms corresponding to higher di-

mensional vectors and the number of dimension is increased by utilizing time domain or

frequency domain processing or both. M-ary orthogonal signaling is a special case of mul-

tidimensional signals. M-ary orthogonal signal set consists of M equal energy orthogonal

signals:

∫ T

0
si(t)sj(t)dt = εδi j (2.1)

whereδi j = 1 wheni = j and zero otherwise; andε denotes energy per symbol.

A generic form for M orthogonal signals is

si(t) =
√
εφi(t) i = 1, 2, . . . ,M (2.2)

5



whereφi represent orthonormal basis functions. Thus, these M orthogonal signals can be

represented byN = M dimensional vectors as follows:

s1 = [
√
ε 0 0 . . . 0 0]

s2 = [0
√
ε 0 . . . 0 0]

...

sM = [0 0 0 . . . 0
√
ε]

(2.3)

The minimum distance between any two signals in M-ary orthogonal symbol set is

di j =
√

2ε for all i, j (2.4)

The signal space diagrams for M=2 and N=2; M=3 and N=3 are illustrated in Figure 2.1.

Figure 2.1: Signal space diagrams of orthogonal signals forM=N=3 and M=N=2

One way to construct orthogonal signal waveforms is to use frequency-shift-keying. This class

of signals consists of sinusoids having a duration ofT and signals have frequency selected

from a set of M possible frequencies. The mathematical representation of these signals is [2]

si(t) =

√

2E
T

cos[2π fct + 2πm∆ f t] (2.5)

6



where∆ f represents the frequency difference between adjacent signals. For example, for

∆ f = 1/2T the orthogonality requirement is satisfied. More details can be found in [2].

Another way to construct orthogonal waveforms is to define binary code words which are

orthogonal between each other. Sample binary orthogonal code words are shown in Figure

2.2. This type of construction for M-ary orthogonal signaling is considered in this thesis.

Figure 2.2: Orthogonal waveforms by using binary code words

For the detection of the transmitted signal, we useM correlators each matched to one of the

possibleM orthogonal signals in the receiver. Suppose the received signal is composed of

signal plus noise:

r(t) = si(t) + w(t) i = 1, 2, . . . ,M (2.6)

wheresi(t) represents one of M equal energy orthogonal signals. When the received signal

passes through thej-th correlator, the response of thej-th correlator to the received signal is

y j =

∫ T

0
r(t)sj(t)dt j = 1, 2, . . . ,M (2.7)

7



y j =

∫ T

0
si(t)sj(t)dt +

∫ T

0
n(t)sj (t)dt (2.8)

This response is separated into two parts: one that results from the signal component of the

received signal and one that results from the noise component of the received signal. This

signal component at thej-th filter output is proportional to the signal energy and thecorrela-

tion coefficient betweeni-th signal andj-th signal. For ideal M-ary orthogonal modulation,

the correlation coefficient between any two orthogonal signals is zero. Therefore, in order to

detect the transmitted signal, the optimum detector chooses the signal giving the largest cross

correlation between the received signalr(t) and each possible orthogonal signalsi(t).

For example, supposes1 is transmitted. The received signal can also be representedby the

vectorr with componentsr i . Each componentr i is the projection of the received signal onto

one ofM possible orthogonal signals. At the input of the receiver, the received signal vector

is

r = [
√
εs + n1 n2 n3 . . . nM ] (2.9)

wheren1, n2, ..., nM are zero-mean, mutually independent Gaussian random variables with

variancesN0/2. After the received signal passes throughM correlators separately, the outputs

from the bank ofM correlators are

C(r , s1) =
√
εs(
√
ǫs + n1)

C(r , s2) =
√
εsn2

...

C(r , sM ) =
√
εsnM

(2.10)

All correlator outputs have the common factor
√
εs and it can be eliminated from the outputs.

Therefore correlator outputs are represented by the received vectorr = [r1 r2 . . . rM ].

In order to make the correct decision at the receiver the related correlator output must be larger

than each of otherM − 1 correlator outputs. Sinces1 is transmitted,r1 should be larger than

other correlator outputsr1 =
√
εs + n1 > n2, n3 . . . , nM for correct decision at the receiver.

The probability that the detector makes a correct decision is expressed as follows

Pc =

∫ ∞

−∞
P(r1 > n2, r1 > n3, . . . , r1 > nM |r1)p(r1)dr1 (2.11)
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After some manipulations as stated in [2], the following probability of correct symbol decision

is obtained

Pc =

∫ ∞

−∞















1
2π

∫ r1
√

2/N0

−∞
e−x2/2dx















M−1

p(r1)dr1 (2.12)

The probability of erroneous symbol decision denoted byPM is

PM = 1− Pc (2.13)

In [2], the symbol error probability is given by

PM =
1
√

2π

∫ ∞

−∞















1−
(

1
√

2π

∫ y

−∞
e−x2/2dx

)M−1












exp

















−1
2













y−
√

2ǫ
N0













2














dy (2.14)

For M-ary signal transmission, each symbol conveysk = log2M bits, soεs = kεb whereεb is

the bit energy. Also the probability of symbol error can be expressed in terms of the bit error

probability. As stated in [2], for largeM the bit error probability denoted byPb is

Pb ≈
PM

2
(2.15)

The performance of M-ary orthogonal signals can be analyzedby equation 2.14. However,

when the asymptotic behaviour is considered, it is more convenient to use an upper bound on

the probability of a symbol error. This upper bound can be derived by employing the union

bound: The probability of error for each symbol is bounded as[2]

PM ≤ (M − 1)Q(
√

εs/N0) (2.16)

where

Q(x) =
1
√

2π

∫ ∞

x
e−u2/2du. (2.17)

This bound can be further simplified by upper bounding the Q-function, that is

Q(
√

εs/N0) < e−εs/2N0 (2.18)
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The final form of the upper bound is

PM < Me−εs/2N0 < e−k(εb/N0−2ln2)/2 (2.19)

While M → ∞, the probability of error approximates zero forεb/N0 > 2ln2 = 1.39 or

1.42 dB. Generally the union bound is sufficiently accurate to be used as the error estimate.

According to this simple upper bound, the lowPM can be satisfied as long asεb/N0 > 1.42

dB. However, for low SNR, this bound is looser due to the assumption used for Q function in

(2.18). For low SNR per bit, [2] states a tighter upper bound on PM

PM ≤ 2e−k(
√
εb/N0−

√
ln22) (2.20)

Therefore, forεb/N0 > ln2 = 0.693 or−1.6 dB, PM → 0 as M → ∞. −1.6 dB is the

minimum required SNR per bit to achieve a small probability of error in the limit asM → ∞.

This minimum SNR value is also the Shannon limit for AWGN channel which maximizes the

mutual information between the input and output of the channel. Therefore, M-ary signals

achieve the channel capacity bound asM goes to infinity.

2.2.1 Welch Bound

There are several bounds on the maximum cross-correlationsof sequence families. One of

these bounds is the Welch bound developed by Welch in 1974. Welch bound is the lower

bound on the periodic cross-correlation between any pair ofsequences of period N in a set of

M sequences [2] and it is expressed by

Rmax ≥ N

√

M − 1
NM − 1

(2.21)

whereRmax represents the maximum cross-correlation value between any pair of sequences.

For large values of N and M, the lower bound is approximated to
√

N.
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2.2.2 PN Sequences

Pseudo noise (PN) code which is also called a pseudo random, consists of a sequence of

plus or minus ones and it acts as a noiselike signal. These sequences are used for bandwidth

spreading of the signal energy. This class of sequences has an important role in spread spec-

trum systems. There are two classes of PN sequences: periodic and aperiodic. An aperiodic

sequence does not repeat itself in a periodic fashion and it is zero outside the main inter-

val. Whereas, a periodic PN sequence is constructed by starting with a finite sequence and

expanding it periodically. Periodic sequences are very important in spread spectrum systems.

Before investigating periodic sequences’ properties, aperiodic sequences are reviewed briefly

to point to their limits. An aperiodic sequence is describedby

a1 a2 a3 a4 ... aN f or ai = ±1

In order to classify this code as a pseudorandom code, the sequence must satisfy the autocor-

relation property: The autocorrelation function of the sequencea is defined as

Raa[k] =
N−k
∑

n=1

anan+k k = 0, 1, ...,N − 1 (2.22)

The autocorrelation function of an ideal aperiodic sequence with lengthN takes following

values:

Raa[k] =



















N if k ≡ 0

0 or ± 1 if k , 0
(2.23)

For example, a Barker sequence of lengthN = 11, is

a[n] = [1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1]

The autocorrelation function corresponding this sequenceis shown in Figure 2.3, satisfying

the auto-correlation property.

Barker sequences are good examples of PN sequences but thesecodes have been discovered
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Figure 2.3: Autocorrelation of a Barker code of length 11

for only several specific sequence lengthsN, namelyN = 1, 2, 3, 4, 5, 7, 11 and 13. No larger

Barker sequence has been found yet. Moreover, these sequences are generally very short for

spreading purpose. However, these codes can be used for synchronization purposes. As it was

stated previously, periodic sequences are much more important in spread spectrum systems.

A periodic sequence repeats itself in period of N which is thelength of the PN sequence and

it can be illustrated by

...aN−1 aN a1 a2 a3 ... aN a1... , ai = ±1

Golomb states that such a sequence is said to be pseudorandomif it satisfies the following

conditions [7], [8]:

1. Balance property: In each period of the sequence the number of plus ones differ from

the number of minus ones by at most one. For example a sequence

Pn= +1+ 1+ 1− 1+ 1− 1− 1

satisfies this property where the difference between plus and minus one is one.

2. Run-length Distribution: A run is a sequence of single type of digits. In each period

one-half of the runs of each type have length 1, one-fourth have length 2, one- eighth

are of length 3 and so on. Also the number of positive and negative runs must be equal.

12



3. Autocorrelation: An autocorrelation characteristic of a periodic PN sequence is its

periodic autocorrelation property. The autocorrelation of a PN sequence must be two

valued. The autocorrelation function of a sequence of a length N is given by

Raa[k] =
N

∑

n=1

anan+k (2.24)

wherean+N = an. The autocorrelation function of a periodic pseudo noise sequence is

Raa[k] =



















N if k = 0

−1 if 1 ≤ k ≤ N − 1
(2.25)

For PN sequences the autocorrelation function takes the peak value only when there

is a perfect synchronization between PN codes. The synchronization requirement in

receiver for spread spectrum system is based on this property.

A deterministic sequence that possesses all these three properties is referred to as a pseu-

dorandom sequence. There are different types of periodic PN sequences. The most widely

known binary PN sequence is the Maximal-Length Linear ShiftRegister Sequence which is

also called an m-sequence.

2.2.2.1 Maximal-Length Linear Shift Register Sequences (M-Sequences)

M-sequences are the most commonly used pseudorandom sequence since they are easily gen-

erated by using shift registers. Since they are also a type ofcyclic codes, they are characterized

by a generator polynomial. An m-stage shift register structure used to generate PN sequence

is illustrated in Figure 2.4.

Feedback logic which uses taps to generate m-sequence is determined by the generator poly-

nomial:

G(x) = gmxm+ gm−1xm−1 + gm−2xm−2 + ...g2x2 + g1x1 + g0 (2.26)

where coefficientsgi represent tap weights andg0 = 1. If gi is equal to 1 it is connected to

the feedback block. Otherwise, there is no connection. Then, modulo 2 sum of all connected

feedback taps is performed and is used as the input to the shift register. This polynomial is
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Figure 2.4: Generation of Maximal-Length Linear Shift Register Sequences

also called the feedback polynomial or characteristic polynomial. The necessary and sufficient

condition for generating an m-sequence is that the generator polynomial should be primitive

[16]. It is because a characteristic polynomial of degreem generates a maximal sequence of

period 2m − 1 if and only if it is a primitive polynomial [19]. An irreducible polynomialp(x)

overGF(2) of degreem is said to be primitive if the smallest positive integern for which p(x)

dividesxn − 1 is n = 2m − 1 [19].

An m-stage shift register has the maximum length or period

N = 2m− 1 where m= 1, 2, 3. . . (2.27)

The binary sequence generated from linear feedback shift register is also called a chip se-

quence. Then, binary elements (1,0) are mapped to the elements (1,-1), respectively. Gener-

ated m-sequences by using shift register satisfy pseudorandomness properties such as balance,

run-length distribution and autocorrelation properties.The autocorrelation function of a PN

sequence generated by using 5 stage shift register is shown in Figure 2.5. Sincem = 5, the

period of the sequence isN = 31. The autocorrelation function takes the peak value when

there is no time shift. Otherwise the autocorrelation function is equal to−1.

In some applications, cross-correlation properties of PN sequences are also of interest. For

multi user capabilities of spread spectrum systems, low cross-correlation values between PN

codes are needed in order to minimize the interference between users. For example, in CDMA

14



Figure 2.5: Autocorrelation of a sample m-sequence for m=5

each user owns a specified PN sequence. Ideally, the code assigned to each user should be

orthogonal to others. Hence, the interference from one userto another user is zero. However,

PN sequences exhibit nonzero cross-correlation values. Therefore, small correlation values

are desired for multiple access techniques. When m-sequences are considered, these codes

are not suitable for multi user techniques, since m- sequences can take quite large cross corre-

lation values for some code sets. Table 2.1 gives the peak magnitude of the cross correlation

between m-sequence pairs. It also shows the number of different m-sequences of length N

generated by m-stage shift register.

Due to poor cross correlation properties, the maximal length sequences are not used for multi-

user application. Instead of m-sequences, Gold, Kasami or Walsh codes which have much

better cross-correlation properties have been developed.

2.2.2.2 Gold Codes [16]

In order to produce Gold codes, certain pairs of m -sequencescalled preferred sequences are

used as a point of departure. Preferred sequences are m-sequences whose cross-correlation

15



Table 2.1: Peak cross-correlation values for m-sequences

m N = 2m − 1 Number of m-sequencesPeak cross-correaltion valueRmax

3 7 2 5
4 15 2 9
5 31 6 11
6 63 6 23
7 127 18 41
8 255 16 95
9 511 48 113
10 1023 60 383
11 2047 176 287
12 4095 144 1407

function takes on possible values from the set ({-1,-t(m),t(m)-2}) where

t(m) =



















2(m+1)/2 + 1 for odd m

2(m+2)/2 + 1 for even m

Gold codes are a combination of 2 preferred sequences. Although Gold codes’ autocorrelation

properties are worse than m-sequences, they have better cross-correlation properties than m-

sequences.

Gold codes are produced by the binary addition of preferred m-sequences of length 2m − 1.

Suppose one of preferred sequences is denoted by m-sequence1 and the other is denoted by

m-sequence2 . For N cyclically shifted version of m-sequence2, a new gold code is generated

by modulo two sum of sequences . Hence,N new sequences with length 2m − 1 are pro-

duced in total. These generated codes, which satisfy the pseudorandomness properties, are

also called pseudo random sequences. Gold codes have a three-valued cross-correlation with

values (−1,−t(m), t(m) − 2) which are also the same as those of preferred sequences.

2.2.2.3 Kasami Codes [16]

Kasami codes are similar to Gold codes and they are also produced from m-sequences. Better

cross-correlation properties can be obtained by Kasami codes. Two different sets of Kasami

sequences can be generated: the small set and the large set. In order to generate the small

set, firstly an m-sequencea of length N = 2m − 1 is derived in whichm is even and then

a new sequenceb is generated by sampling every 2m/2 + 1 elements ofa. Hence a new
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sequenceb is obtained with a period 2m/2 − 1. Finally, the small set of Kasami sequences

is generated by taking modulo 2 sum of the m-sequencea with all cyclic shifts ofb. The

sequenceb has 2m−2 − 2 cyclic shifts and by including the original m-sequencea, totally a

small set which includes 2m/2 sequences is produced. The length of these sequences is 2m−1.

The cross-correlation and autocorrelation functions of these codes take on values from the set

(−1,−(2m/2 + 1), 2m/2 − 1). The larger Kasami set is also generated in a similar way asthe

small set. Again m-sequencea and a sequenceb are produced as it is done in the generation

of a small set . In addition to these sequences, a new sequencec is formed by sampling every

2(m+2)/2 + 1 elements of m-sequencea. The set is then comprised by taking modulo 2 sum of

a with all cyclic shifts ofb andc. Therefore, a large set including more Kasami sequences is

generated. The cross-correlation and autocorrelation functions of Kasami codes in the large

set take on values from the set (−1, (−1± 2m/2),−1± 2m/2+1).

2.2.2.4 Walsh-Hadamard Codes [16]

Walsh Hadamard codes are orthogonal codes. Hence the cross correlation value of two se-

quences is zero when there is no time shift between sequences. The generation of Hadamard-

Walsh sequences of length N is as follows.

H2N =





















HN HN

HN H−N





















whereHN represents the Hadamard matrix. For N=2 the Hadamard matrix is

H2 =





















1 1

1 −1





















Each row ofHN specifies a different sequence and each sequence has a length of N. Hence

we can obtain N spreading sequences which are mutually orthogonal. When synchronized,

these codes have good cross-correlation property. The mostdistinguished disadvantage of

Hadamard codes is that they are unable to satisfy the auto-correlation property.
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2.3 OPTIMUM RECEIVER FOR M-ARY ORTHOGONAL SIGNALS

Suppose that the transmitted word containsN symbols and the transmitted word is expressed

as

x(t) =
N−1
∑

k=0

sm(t − kT) m= 1, 2, . . . ,M (2.28)

Assume that the transmitted signal is passed through a channel which is characterized by the

impulse responsehc(t) and corrupted by the white noisew(t). Then, the received signalr(t)

is:

r(t) =
N−1
∑

k=0

um(t − kT) + w(t) (2.29)

where

um(t) = sm(t) ∗ hc(t). (2.30)

An optimum receiver structure for M-ary orthogonal signal set is given in Figure 2.6 [1].

As seen in Figure 2.6, the received signal is initially passed through a filterh∗c(−t) which is

called the channel matched filter (CMF). Then, the CMF outputis passed through a bank of M

symbol matched filters (SMF), each of which is matched to the Mspecific signal waveforms,

i.e.,si(t), 0 ≤ t ≤ T, i = 1, 2, ...,M and sampled periodically, once per symbol interval. Finally,

the transmitted symbol is detected by picking up the symbol matched filter with the largest

correlation value.

In this structure, Maximum Likelihood (ML) criterion basedon the decision of the maximum

of p(r |sm) is considered. Suppose the received signal is passed through the channel matched

filter and the bank ofM matched filters. Thus, at the output of thei-th matched filter we have

yi(t) = r(t) ∗ h∗c(−t) ∗ s∗i (−t) (2.31)
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Figure 2.6: Optimum receiver block scheme

These matched filter outputs are sampled att = T, the end of the symbol interval. This

response can be separated into two parts: the signal component and the noise component:

yi = zi + ηi (2.32)

The noise component is

ηi = w(t) ∗ h∗c(−t) ∗ s∗i (−t)|t=T (2.33)

whereηi are almost independent sincesm are nearly orthogonal. The signal component is

given by

zi = um(t) ∗ h∗c(−t) ∗ s∗i (−t)|t=T (2.34)

These terms represent the projection of the received signalontoM possible transmitted signal

waveforms. Then, the outputs of theM filters are compared and the largest one is selected.

This decision rule detects the signalsm that is closest in distance to the received signalr(t). It
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is also referred as minimum distance detection [2].

Since the transmitted word containsN symbols, at the input of the detector, the following

decision variables are produced:

yi =

N
∑

k=1

r(t) ∗ h∗c(−t) ∗ s∗m(i)(−t)|t=kT i = 1, 2, . . . ,M (2.35)

According to these decision variables, the detector estimates N symbols by picking up the

symbol matched filter with a largest correlation value in each symbol interval separately.

Furthermore, it can be shown that a RAKE receiver is actuallyimplemented by the channel

matched filter: Reference [4] states that a RAKE receiver extracts multipath replicas with

several correlators and performs maximum ratio combining using delay and weighting sum-

mation. It is known that a RAKE receiver features a channel matched filter which comple-

ments the channel impulse response and removes the effect of fading multipaths in a channel.

Also, the CMF in this receiver structure enables the reduction of the receiver complexity and

removes the channel effects as much as possible in the input of the code correlators.

2.4 THE SYSTEM STRUCTURE USED IN THIS THESIS

2.4.1 Code Selection

For exploring M-ary orthogonal signaling, practical spreading codes are used in place of

orthogonal signals. There are many choices with regard to spreading sequences. In previous

sections, details about spreading codes were described. Inparticular, the codes set size, the

cross-correlation property, the sequence length are considered in the code selection to use in

M-ary orthogonal signaling structure.

Now we can analyze spreading codes. It is known that for idealorthogonal signals,

∑

k

si [k]sj [k] = 0 f or i , j (2.36)

wheresi[k] are orthogonal sequences consisting of plus and minus ones.

Walsh-Hadamard codes are orthogonal sequences. However, these codes have some draw-
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Table 2.2: Comparison of Orthogonal, Kasami and Gold codes

Code Type Length Constraint ofm Code Set Size Rmax

Orthogonal Sequences N.A. N.A. N.A. 0
Gold Sequences 2m− 1 m odd 2m + 1 2(m+1)/2 + 1
Gold Sequences 2m− 1 meven 2m + 1 2(m+2)/2 + 1

Large set of Kasami Sequences2m− 1 meven ≈ 23m/2 2m/2+1 + 1
Small set of Kasami Sequences2m− 1 meven 2m/2 2m/2 + 1

backs: Although the full-sequence cross-correlation is identically zero, this does not hold

for partial sequence cross-correlation function. Moreover, these codes possess poor auto-

correlation property. These codes can easily be affected by multipath channel which results

in interference. The consequence is that the advantage of using orthogonal codes is lost.

The other spreading codes examined in the previous sectionsare not orthogonal but they

possess good correlation properties. Hence, we can consider to use these codes in place

of orthogonal signals. Possible spreading codes mentionedin previous sections are Barker

codes, m-sequences, Gold codes and Kasami codes. Barker codes are not suitable for M-ary

orthogonal signal structure because there are only one sequence for each length. M-sequences

have worse cross-correlation properties than Gold and Kasami codes. Table 2.2 compares

Kasami, Gold codes with ideal orthogonal codes in terms of the sequence length, code set

size and maximum cross-correlation value.

The Welch lower bound is approximated toRmax ≥
√

N whenN and M is large. For Gold

and Kasami sequences,N = 2m − 1 and the bound becomes

Rmax≈ 2m/2 (2.37)

As seen in table 2.2, the peak cross-correlation value for Gold codes is larger by
√

2 for odd

m and by 2 for evenm in comparison to Welch lower bound. Furthermore, for the large set

of Kasami sequences, the peak correlation value between anypair in this set is larger than

Welch lower bound. However, the maximum cross-correlationvalue for codes in a small set

of Kasami sequences is

Rmax= 2m/2 + 1 (2.38)
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This value approximately satisfies the Welch lower bound, soit may be stated that Kasami

codes are the best choice. Therefore, the small set of Kasamisequences is employed as M-ary

code set in our work.

2.4.2 Kasami Code Generation

In the previous section, the small set of Kasami codes has been chosen for M-ary signaling

structure. In this work, we chooseM = 8. A small set of Kasami codes produced from an m-

sequence, has 2m/2 members. Since 8 Kasami sequences are generated, the numberof stage

of the m-sequence is

m= 6

and the length of each Kasami code is

N = 2m − 1 = 63

Firstly, an m-sequence must be produced to generate Kasami codes. The m-sequence is de-

rived from the linear shift register with feedback taps determined by a generator polynomial

that must be primitive. Some primitive polynomials for the orderm= 6 are as follows

x6 + x+ 1

x6 + x5 + 1

x6 + x5 + x4 + x+ 1

(2.39)

In this work, we choose

G(x) = x6 + x5 + 1 (2.40)

The linear feedback shift register corresponding to the generator polynomial expressed in

equation 2.40 is shown in Figure 2.7.

By using this shift register model, an m-sequence, calleda, is generated. 7 more sequences

must be generated for a small set of Kasami sequences. By following the procedures in section

2.2.2.3, firstly a new sequenceb is generated by sampling every 9 elements of the m-sequence
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output

Figure 2.7: Linear feedback shift register for related polynomial

a. Then, other 7 elements of the small set are generated by taking modulo 2 sum of the m-

sequencea with all cyclic shifts ofb. The generated Kasami sequences are shown in table

2.3.

The auto-correlation of the m-sequencea is shown in Figure 2.8. Since the sequencea is

an original m-sequence, the auto-correlation function only takes on values 63, the length

of the m-sequence, and−1 as shown in this figure. Also, some auto-correlation and cross-

correlation functions of the generated Kasami sequences are shown in Figures 2.9 and 2.10.

It can easily be observed that the cross-correlation and auto-correlation functions of Kasami

sequences take on values from the set (-1,-9,7). However, these calculations are conducted

by considering that the generated Kasami sequences with a length of 63 are periodic, that is,

the sequence is repeated periodically. However, it is not realistic to consider the sequence to

be periodic. Therefore, we consider the generated Kasami sequences in an aperiodic fashion,

that is to say, generated finite sequences are not repeated periodically. The auto-correlation

and cross-correlation functions corresponding to aperiodic Kasami sequences are shown in

Figures 2.11 and 2.12. It is observed that the auto-correlation and cross-correlation functions

also take low values, the maximum value being 13.
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Figure 2.8: Autocorrelation function of the generated m-sequencea
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Table 2.3: Generated Kasami sequences of lengthN = 63

No Generated Kasami Sequences
1 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1,-1, -1, 1, 1, 1, 1, -1, 1, -1,

-1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1,-1, -1, 1, 1, -1, 1, -1, 1,
-1, 1, 1, 1, 1, 1

2 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1,1, 1, 1, -1, -1, 1, 1, 1, -1,
-1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
-1, -1, -1, -1, 1, -1

3 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1,-1, -1, -1, -1, -1, -1, -1,
1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1,
1, -1, -1, 1, -1, 1

4 -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1,-1, 1, 1, 1, -1, -1, 1, -1,
1, -1, 1, 1

5 -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1,
1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1,1, 1, -1, -1, 1, 1, -1, 1, 1,
-1, 1, 1, -1

6 -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1,1, -1, 1, -1, 1, -1, -1, 1, 1,
-1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1,1, -1, -1, 1, -1, -1, 1, -1,
-1, -1, 1, 1, -1, -1

7 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1,1, 1, -1, 1, 1, 1, -1, 1, -1,
1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1,1, 1, 1, 1, -1, 1, 1, 1, 1,
1, -1, -1, -1

8 -1, -1 , -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1,
-1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1,1, -1, 1, -1, 1, -1, -1, -1,
-1, 1, -1, -1, -1, 1
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Figure 2.9: Autocorrelation function of one of the generated Kasami sequences
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Figure 2.10: Crosscorrelation function of two Kasami sequences
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Figure 2.11: Autocorrelation function of aperiodic Kasamisequence
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Figure 2.12: Crosscorrelation function of two aperiodic Kasami sequences
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2.4.3 Complete System Block Diagram

The general block diagram of the structure used in this thesis is shown in Figure 2.13.

Figure 2.13: Structure used in this work

In order to convey information bits, 8 Kasami sequences witha lengthN = 63 are generated

as described in section 2.4.2 and are used as transmitting symbols. At the transmitter, the

data is grouped intok = log2M = 3 bits block. This 3-bit block represents the symbol with

a symbol durationTs which is k times the bit durationTb. According to each 3-bit block

in the input data, a signal waveform is selected from the set of 8 Kasami sequences as the

transmitted symbol. Each transmitted symbol consists ofL = 63 chips and each chip has a

duration ofTc:

Ts = 3Tb = 63Tc (2.41)

The transmitted waveform in baseband is expressed as
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x(t) =
∑

k

akg(t − kTc) (2.42)

whereak are chips belonging to the transmitted symbol andg(t) is the pulse shape. We use a

Raised Cosine Filter for the overall pulse shaping. Root Raised Cosine Filters (RRC) are used

in both the transmitter and the receiver in order to obtain a Raised Cosine Filter as a resultant.

The frame structure of a transmitted packet is shown in 2.14.The training sequence is used

for frame synchronization and channel estimation. The information data part consists of 17

symbols (51 bits).

Figure 2.14: Frame structure of a transmitted word

The channel impulse response consisting of L taps is expressed as

hc(t) =
L

∑

i=1

hi(t)δ(t − τi) (2.43)

wherehi is the complex gain andτi is the time delay corresponding to related gain. The

channel output is corrupted by white Gaussian noise,w(t).

The receiver is the one already described in section 2.3

In simulations, the packet shown in Figure 2.14 is sent for each transmission burst. In each

packet, the information data consists of 17 symbols each of which is represented by one of

the generated Kasami sequences. The received signal is obtained by passing the transmitted

word through a channel and corrupting it by the white noise. After the demodulation process

at the receiver, the detector estimates the transmitted data. Then, the estimated bits and the

transmitted bits are compared to detect the number of bit errors in the received data. This

process is repeated until the sufficient bit error number is reached.
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Moreover, the performance of the proposed structure is explored by simulations carried out

in MATLAB. Since simulations are conducted in discrete time, the analog signals involved in

the system diagram are sampled at a rate greater than the corresponding Nyquist rate. In most

of the simulations, the sampling rate is chosen as 16 times the chip rate:

fsampling=
1

Tsampling
=

16
Tc

(2.44)
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CHAPTER 3

PERFORMANCE UNDER IDEAL CONDITIONS

3.1 INTRODUCTION

In Chapter 2, M-ary quasi-orthogonal signaling system using Kasami codes has been pro-

posed. Kasami codes are not orthogonal but they take low cross-correlation values. Hence

they can be treated as nearly orthogonal signals. In this chapter, the performance of M-ary

Kasami code signaling is explored by using the proposed receiver structure under AWGN

channel. Moreover, Kasami codes are used in an M-ary biorthogonal structure by including

negatives of Kasami codes as a transmitted symbol. Then, theperformance of this structure

is observed and compared with the M-ary Kasami codes signaling.

3.2 IDEAL M-ARY ORTHOGONAL SIGNALING

In order to explore the performance of our proposed M-ary signaling system using quasi or-

thogonal codes, it is needed to compare our simulation results with the exact M-ary orthogonal

modulation under ideal conditions. In Chapter 2, details ofM-ary orthogonal signaling are

described. As mentioned in Chapter 2, forM equal-energy orthogonal signals the symbol

error probability is

PM =
1
√

2π

∫ ∞

−∞















1−
(

1
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2π

∫ y

−∞
e−x2/2dx

)M−1












exp

















−1
2













y−
√

2ǫ
N0













2














dy (3.1)

The bit error probability can be derived from the symbol error probability. Each symbol

conveysk bits of information wherek = log2M and the average number ofn bit errors per

k-bit symbol is expressed as follows:

29



E{n bit errors} =
k

∑

n=1

(

k
n

)

PM

2k − 1
= k

2k−1

2k − 1
PM (3.2)

Then the bit error probability is

Pb =
2k−1

2k − 1
PM ≈

PM

2
k >> 1 (3.3)

The graphs of the bit error rate as a function of SNR per bit,εb/N0 are shown in Figure 3.1

for M = 2, 4, 8, 16, 32.
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Figure 3.1: Probability of bit error of M-ary orthogonal signals for different M values

3.2.1 Simulations and Comparisons

First, the performance of the proposed M-ary signaling structure using Kasami codes is in-

vestigated. For this purpose, Monte-Carlo simulations have been carried out for the AWGN

channel assuming perfect synchronization. The exact M-aryorthogonal signaling, the formula

of which is given in equation (3.1), can be used as a referenceto compare our simulation re-

sult. The number of Kasami codes used in our proposed system is M = 8 with or N = 63

chips. Figure 3.2 shows the performance of M-ary Kasami codes signaling.

As seen in Figure 3.2, the performance of the proposed systemusing Kasami codes is better

than M-ary orthogonal modulation. This performance improvement is attributed to the cross
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Figure 3.2: Performance of M-ary signaling system using Kasami codes

correlation property of Kasami sequences: Since the correlation of any two Kasami sequences

can take negative values, the distance between symbols is increased.

3.3 M-ARY BIORTHOGONAL SIGNALING

M-ary biorthogonal signaling which is deduced from M-ary orthogonal signaling can be used

in digital communication systems. A set ofM biorthogonal signals can be constructed from

M/2 orthogonal signals by including negatives of orthogonal signals [2]. Hence in order to

construct a set ofM biorthogonal signalsN = M/2 dimensions are required. Signal space

diagrams for some biorthogonal signals are shown in Figure 3.3.

The complexity of the receiver is reduced for biorthogonal signaling, since in M-ary biorthog-

onal signaling the receiver is implemented withM/2 correlators or matched filters while in

orthogonal signalingM correlators are required. In [2] an expression for the probability of

correct decision of M-ary biorthogonal signaling is derived:

Pc =

∫ ∞

−
√

2ǫs/N0















1
√

2π

∫ (v+
√

2ǫs/N0)

−(v+
√

2ǫs/N0)
e−x2/2dx















M/2−1

e−v2/2dv (3.4)

The symbol error probability for M-ary biorthogonal signals is then found as
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Figure 3.3: Signal space diagrams of biorthogonal signals for M=4, N=2 and M=6, N=3

PM = 1− Pc (3.5)

Figure 3.4 illustrates the symbol error rate as a function ofSNR per bit for different values of

M.
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Figure 3.4: Probability of symbol error for biorthogonal signals
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3.3.1 Simulations and Comparisons

In this section we investigate the performance of Kasami codes in biorthogonal structure.

We have totally 16 sequences with lengthN = 63 to transmit information by considering

negatives of 8 generated Kasami sequences. ForM = 16, log2M = 4 bits are conveyed

by each sequence. In contrast, in M-ary orthogonal signaling using Kasami codes 3 bits are

conveyed by each sequence. In order to see the performance ofM-ary biorthogonal signal-

ing using Kasami codes, the same structure for M-ary orthogonal signaling shown in Figure

2.13 is used. Again, in the demodulator part, real parts of the symbol matched filter outputs

are used for decision. Symbol matched filters are matched to 8Kasami sequences. At the

receiver, the detector first selects the related matched filter by picking up the maximum of

the absolute value of matched filter outputs. Then the transmitted symbol is determined by

looking for the sign of the selected symbol matched filter output. The implementation of the

receiver is similar to the structure used for M-ary orthogonal signaling. The only difference

between these receiver structures is that the absolute value of matched filter outputs in M-

ary biorthogonal signaling are used instead of themselves.Hence the advantage of having

negative cross-correlation value between the Kasami codesis lost.

The performance of M-ary biorthogonal signals forM = 16 is illustrated in Figure 3.5. The

theoretical result given in Figure 3.4 is used as a referenceto compare the performance of

M-ary biorthogonal modulation using Kasami codes.
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Figure 3.5: Performance of M-ary biorthogonal structure using Kasami codes
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It is seen in Figure 3.5 that the performance of biorthogonalsignaling using Kasami codes is

worse than the biorthogonal signaling using orthogonal signals as expected.

We also compare the performance of M-ary biorthogonal signaling using Kasami codes with

M-ary Kasami code signaling. For this comparison, we equatethe dimensions of both modu-

lations to 8. The number of sequences is:

Morth = 8 Mborth = 16

The performance comparison for these signaling schemes canbe made by examining Figure

3.6.
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Figure 3.6: Comparison of M-ary signaling and M-ary biorthogonal structure using Kasami
codes

As seen in Figure 3.6, performances of these systems are veryclose to each other. One of the

advantages of M-ary biorthogonal signaling is that higher data transmission rate is achieved

which means higher spectral efficiency. In an equal symbol time interval, the number of bits

conveyed by a Kasami symbol is

log2Morth = 3 for M-ary orthogonal structure

log2Mborth = 4 for M-ary biorthogonal structure
(3.6)

Hence, in M-ary biorthogonal signaling, more bits can be transmitted in a symbol. This allows

us to use error correction codes in M-ary biorthogonal signaling with the same information bit
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rate as the uncoded M-ary orthogonal signaling. Therefore,the performance can be improved

by M-ary biorthogonal signaling.
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CHAPTER 4

A SIMPLE SYMBOL SYNCHRONIZER

4.1 INTRODUCTION

In communication systems, the parameters required by most receivers are the carrier fre-

quency, the carrier phase and the symbol timing of the received signal [18]. The carrier fre-

quency of the received signal may be different from that of the nominal value of the transmitter

carrier frequency. This discrepancy could be due to the deviation of the transmitter oscillator

and the receiver oscillator from the nominal frequency and the Doppler effect. In reality, the

information-bearing signal travels from the transmitter to the receiver within a finite amount

of time. This transmission delay introduces a mismatch between the symbol timing at the

transmitter and that at the receiver. The matched filter output needs to be sampled at an exact

time in order to optimize the receiver performance. The carrier phase of the received signal

is the sum of three major components, namely, the random phase due to the mismatch be-

tween the local oscillators of the transmitter and the receiver, the channel phase response and

the phase stemming from the transmission delay. In this chapter, we focus on estimation of

symbol timing. Since the prorogation delay from the transmitter to the receiver is unknown

at the receiver, the symbol timing must be derived from the received signal in order to sample

the demodulator output synchronously. The process of extracting the clock for determining

the accurate location of the symbol timing at the receiver iscalled symbol synchronization or

symbol timing recovery [2]. A system that is able to estimatesuch locations is called a timing

(or) clock synchronizer.

Suppose the channel delays the signal transmitted through it and corrupts the signal by adding
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Gaussian noise. Hence, the received signal is

r(t) = s(t − τ) + w(t) (4.1)

whereτ is the propagation delay andw(t) is the white Gaussian noise with two-sided spectral

densityN0/2. The transmitted signals(t) in equation 4.1 is given by

s(t) =
∑

k

akg(t − kT) (4.2)

whereak are data symbols belonging to theM-ary alphabet and g(t) is the pulse shape with a

time intervalT. In general, the typical block diagram of a baseband receiver with a symbol

synchronizer is indicated in Figure 4.1.

Figure 4.1: Block diagram of a baseband receiver

After the incoming waveform is filtered in order to remove theout-of-band noise, the output

of the filter is sampled periodically at T-spaced instants, that ist = kT+ τ̂. Via these samples,

the detector derives estimates ˆak of the transmitted data. The timing recovery function aims at

generating optimum sampling instants which amount to the maximum eye opening at the out-

put of the receiver filter [11]. Hence, by using these estimated samples the receiver achieves

a bit error rate as close as possible to optimum.

Mengali and D’ Andrea in [11] state two topologies used for the symbol synchronization

in digital communication systems, i.e. feedback(closed loop) configuration and feedforward

(open loop) configuration. Figures 4.2 and 4.3 illustrate configurations pertaining to these

topologies. In both cases, the received signal applies to AAF (Anti-Aliasing Filter) which

limits the bandwidth of the received signal. Sampling is controlled by a fixed clock whose

ticks are not locked to the incoming data. The bulk of the pulse shaping is performed in the
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matched filter whose location is not necessarily that shown in the figures. Timing correction

is similar to the operation of a voltage controllable delay line and produces synchronized

samples to be used for decision and synchronization purposes [11].

Figure 4.2: Feedforward configuration

Figure 4.3: Feedback configuration

In feedforward configuration, an estimate of the timing information is derived by processing

received signal samples. Whereas, in feedback configuration a timing corrector feeds a timing

error detector (TED) the purpose of which is to generate an error signale(k) in proportion to

the difference between the prorogation delayτ and its current estimate. Symbol synchroniza-

tion methods can be classified into two groups: Decision directed methods and non-decision

directed methods.

In this chapter, a new symbol timing synchronizer suitable for M-ary signaling is proposed

and the performance of this synchronizer is explored.
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4.2 PROPOSED SYMBOL SYNCHRONIZATION

In this work, a non-decision directed timing recovery scheme is proposed in order to derive

symbol timing information. The proposed timing synchronizer has its roots from the Maxi-

mum Likelihood (ML) estimation of the timing offset. The likelihood function is given by

Λ(τ̂) = CL

∫

T0

r(t)s(t − τ̂)dt (4.3)

for estimating the time of arrival of known signal s(t) in AWGN. Thus, the likelihood function

is just a correlation process. The most likely timing offset to f f set is the value of ˆτ which

maximizes the likelihood function:

t̂o f f set= argmax
τ̂

Λ(τ̂) (4.4)

For M-ary signaling, eachlog2M bit block is conveyed by one of M specific waveforms.

Suppose the transmitted signal is delayed by the channel andcorrupted by Gaussian noise.

Hence, the received signal is given by

y(t) =
K

∑

k=0

sIk(t − kTs − τ) + w(t) (4.5)

whereIk represents one of M symbols. The sequentially transmitted symbols are denoted by

I vector:

I = {I1, I2, . . . , IK} (4.6)

In our proposed timing recovery, the timing offsetτ is estimated by maximizing the probabil-

ity density functionp(y|τ, I ) with respect to unknown signal parametersτ andI as follows:

{Î , τ̂} = argmax
τ,I

p(y|τ, I ) (4.7)

{Î , τ̂} = argmax
τ,I

K
∑

k=0

∫ (k+1)Ts

kTs

y(t)sIk(t − kTs − τ)dt (4.8)
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{Î , τ̂} = argmax
τ,I

K
∑

k=0

yIk,τ (4.9)

whereyIk,τ is the matched filter output of k-th symbol with a certain timedelayτ. The symbol

timing offset may be estimated by looking for the timing instant where the maximum of the

correlation between the received signal and reference signals is obtained. This is the optimal

decoding method. However, this method is rather complex. Since there areM matched filters,

the process in equation 4.8 is repeatedMK times in order to estimate the timing offset. One

can simplify this optimal decoding by using suboptimal symbol by symbol decision:

{τ̂} = argmax
τ

K
∑

k=0

max
Ik

yIk,τ (4.10)

In this suboptimal decoding, the complexity to make symbol decision reduces since the pro-

cess in equation 4.10 is repeatedM ·K times. This correlation function may also be evaluated

as the output of a filter matched to the reference signal. For M-ary signaling, we useM fil-

ters each of which is matched to one of the possibleM signals. After the received samples

are passed through the matched filters each of which matched to a signal in the set,si(t), the

matched filter outputs resemble those shown in Figure 4.4.

Figure 4.4: Matched filter outputs
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As seen in the matched filter outputs, different matched filter outputs give maximum correla-

tion values atTs-spaced instants with a propagation delayτ. For the estimation of the timing

offset as expressed in equation 4.10, we construct a function which is called “comb” function.

The “comb” function comprises a kind of time-gate function which has a periodic structure

and a certain time offset as shown in Figure 4.5.

Figure 4.5: “Comb” Function

The “comb” function is used to look for the timing instant where we obtain the maximum

value at the channel matched filter outputs. For this purpose, the “comb” function is applied

to matched filter outputs to sample the matched filter outputsat the timeτ+kTs. Functionally,

at time instancesτ + kTs all matched filter outputs are sampled, the one with maximum value

at τ + kTs is chosen and all these maximum values are added to get the function’s value at

the time delayτ. This process is repeated for all 0≤ τ < Ts. Finally, the valueτ for which

the “comb” function is maximum is declared the estimated time offset. This timing offset

estimation process is shown in Figure 4.6.
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Figure 4.6: Timing recovery process: In each iteration, the“comb” function is shifted in time
by a certain time offsetτ and all matched filter outputs are sampled att = τ + kTs. After
choosing the sample with maximum value att = τ + kTs, these maximum values are added.
After completing all iterations, the sum values obtained ineach iteration are compared and
the largest sum value is chosen. The valueτ where the “comb” function is maximum is the
estimated time offset.

In the following part of this section, in order to apply the proposed timing recovery the written

matlab code is given:

%matched filter outputs are combined in a function by selecting the maximum valued sample

between the samples of all matched filter outputs.

for i=1:length(r1)

w1(i)=max(r1(i),r2(i));

w2(i)=max(w1(i),r3(i));

w3(i)=max(w2(i),r4(i));

w4(i)=max(w3(i),r5(i));

w5(i)=max(w4(i),r6(i));

w6(i)=max(w5(i),r7(i));

s(i)=max(w6(i),r8(i));

end

%create the “comb” function which is equal to 1 at t= mTs where m= 0, 1, 2 . . . , total

symbol number−1.
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combfunc=zeros(1,16*length(k1)+1);

for z=1:1:17

combfunc((z-1)*length(k1)+1)=1; % length(k1)=symbol time

end

%multiply the terms of s[k] by the terms of a time shifted combfunc[k] and add them up. All

sum values are compared and the symbol timing offset is estimated by picking up the time shift

with the largest sum value.

for i=1:1:length(k1)*2-1)

a=s(i:1:(i+16*length(k1))) .* combfunc;

b(i)=sum(a);

end

[maxnumber,sampletime]=max(b);

4.3 MODIFIED CRAMER-RAO BOUND [11][12]

Cramer-Rao Bound (CRB) is a useful tool which gives a lower bound on the error variance of

any parameter estimator [13].

Suppose that the complex envelope of the received signal is given by

r(t) = s(t) + w(t) (4.11)

where

s(t) = exp j[2πv(t − t0) + θ]
∑

k

aig(t − kT − τ) (4.12)

and w(t) is the complex valued additive white Gaussian noise. In 4.12,v is the carrier fre-

quency offset,θ is the carrier phase at some reference timet = t0 andτ is the symbol time

delay. These three parametersv, θ, τ are unknown and should therefore be estimated at the re-

ceiver. In this work, we focus on estimating the symbol timing offsetτ. CRB defines a bound

for a variance of any parameter estimation error. Let a single element ofv, θ, τ be denoted
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by λ which is assumed to be deterministic (nonrandom). All otherparameters and the data

are gathered in a vectoru having a known probability density functionp(u). If λ̂(r ) is any

unbiased estimate ofλ, then the CRB is given by

Var
[

λ − λ̂ (r )
]

≥ CRB(λ) =
1

Er















[

∂p(r |λ)
∂λ

]2














(4.13)

or equivalently,

CRB(λ) = − 1

Er

{[

∂2p(r |λ)
∂2λ

]}
. (4.14)

The Cramer-Rao Bound expression given in equations (4.13) and (4.14) provides a bound for

the variance of the estimation error. It is known that no unbiased estimator can provide a

lower variance than that established by CRB. Although this bound provides a lower limit for

the estimation error, the computation ofp(r |λ) contains some mathematical difficulties. The

probability density functionp(r |λ) is derived by averaging out the unwanted parameters from

p(r |u, λ):

p(r |λ) =
∫ ∞

−∞
p(r |u, λ)p(u)du (4.15)

Unfortunately, in most cases of practical interest, the computation of the CRB formula is

difficult since either the integration in equation 4.15 cannot becarried out analytically or

there are obstacles risen in calculating the expectation inequation 4.14 [12]. Another lower

bound to the variance of the estimation error is the Modified Cramer-Rao Bound (MCRB)

[11] [12]. MCRB is much easier to employ but it is generally looser than CRB.

MCRB is a variant of CRB and it is derived by using Jensen’s inequality in the CRB formula.

MCRB by [12] for the variance ofλ − λ̂(r ) is as follows

MCRB(λ) =
1

Er,u















[

∂lnp(r |u, λ)
∂λ

]2














, (4.16)
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whereu represents a set of nuisance parameters.

The relationship betweenCRB(λ) andMCRB(λ) is

Var
[

λ − λ̂ (r )
]

≥ CRB(λ) ≥ MCRB(λ) (4.17)

In Figure 4.7, examples ofCRB(λ) and MCRB(λ) are drawn as a function of the signal to

noise ratioEs/N0 in case MCRB is looser, i.e. too low in comparison to the errorvariances

of good estimators. MCRB and CRB become identical when unwanted parameters inu are

perfectly known or there are no unknown parameters.

Figure 4.7: Example curves: Actual error variance, CRB(λ), MCRB(λ) [11]

In this study, we consider the estimation of the symbol timing delayτ. In order to compute

MCRB for the separate estimation of{τ, θ, v} following assumptions are made: While deriving

MCRB(λ), λ is considered as a fixed parameter and the vectoru including unwanted param-

eters and data symbols{ai} is considered as a random vector. Supposeλ = v. In computing

MCRB(v), we considerv as a fixed parameter anduv = {τ, θ, ai} as a random vector. Simi-

lar assumptions are made forλ = τ, λ = θ and their associated unwanted parameter vectors

uτ = {v, θ, ai} anduθ = {τ, v, ai }. In addition, there are some assumptions made on statistics

of parameters{τ, θ, v, ai }. It is assumed that the timing epochτ in uv and uθ is uniformly

distributed between 0 and symbol intervalT. Data symbolsai are zero mean independent

random variables. Finally, synchronization parameters included in any of the vectorsuv, uτ,
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uθ are independent.

In this thesis, only the estimation of timing delayτ is considered. In [12], the MCRB forτ is

given by

MCRB(τ) =
BLT

4π2ξ

T2

Es/N0
(4.18)

whereξ is a coefficient depending on the pulse shapeg(t):

ξ �

∫ ∞

−∞
T2 f 2 |G( f )|2 d f

∫ ∞

−∞
|G( f )|2 d f

(4.19)

In equation 4.18, the equivalent noise bandwidthBL is:

BL =
1

2LT
(4.20)

whereLT equals the observation time intervalT0.

The bound in equation 4.18 will be used as a reference in performance comparisons in the

sequel.

4.4 SIMULATIONS AND RESULTS

In this section, the performance of the proposed synchronizer is investigated under AWGN

channel. For simulation of the proposed synchronizer, a model is developed in MATLAB.

Hence, continuous time signals must be represented by theirdiscrete time samples taken at a

rate greater than the Nyquist rate in the simulation model. In simulations, the discrete time

samples are taken at a ratefsampling= 1/Tsamplingwhere

Tsampling=
Tc

16

whereTc represents the chip time interval. Transmitted symbols consist of chips belonging to

the relevant Kasami code. The block diagram of the simulatedmodel is shown in Figure 4.8.
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Figure 4.8: Simulated model of a receiver

The received signal is

x(t) =
∑

cng(t − nTc) + w(t) (4.21)

whereg(t) denotes the pulse shape andw(t) represents the white Gaussian noise. The proposed

symbol synchronizer produces the estimate of the sampling time:

tk = kTc + τ̂ (4.22)

whereτ̂ is the estimate of the symbol timing offset. Having sampled the received signal at the

sampling instant produced by the timing synchronizer, the signal becomes

xk =
∑

cng(kTc + τ̂ − nTc) + w(kTc + τ̂) (4.23)

Then, the receiving process continues in the manner as described in Chapter 2. Initially, the

receiver model without synchronizer is considered in orderto investigate the receiver delay

sensitivity. For this purpose, the received signal is sampled at the exact sampling time with a

known fractional delay as follows:

tk = kTc + τexact+m
Tc

16
wherem= 1, 2, . . . , 16 (4.24)

For each factional delay, the bit error performance is observed. Simulations that are carried

out for SNR=4 dB and SNR=6 dB are illustrated in Figures 4.9 and 4.10.
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Figure 4.9: Receiver delay sensitivity for SNR=4 dB
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Figure 4.10: Receiver delay sensitivity for SNR=6 dB

As seen in these figures, the receiver performance is degraded when the offset to the exact

sampling time is increased.

Furthermore, the receiver sensitivity to the symbol timingdelay is explored under a multipath

environment. Hilly Terrain channel model is used as an example (The details of this channel

model will be given in the next chapter). The simulation is carried out for the chip duration

Tc = 0.1 µsecand SNR=6 dB. Also, it is assumed that the channel is known at the receiver.

In order to see the receiver timing delay sensitivity in a presence of multipath channel, the

received signal is sampled at the exact sampling time with a known fractional delay as shown

in equation 4.24. According to the simulation result shown in Figure 4.11, it is illustrated that
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the receiver is less sensitive to the symbol timing in a multipath environment when compared

to the condition where the channel is AWGN.
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Figure 4.11: Receiver delay sensitivity under a multipath environment for SNR=6 dB

Later, performance of the proposed synchronizer is tested.For this purpose, the BER per-

formance of M-ary Kasami code signaling with the symbol synchronizer is tested and the

simulation result is presented in Figure 4.12.
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Symbol timing instant is known
Symbol timing instant is estimated by the synchronizer

Figure 4.12: BER performance with synchronizer

In addition to the BER performance, the synchronizer performance is tested by considering

the symbol timing error (also called jitter). The symbol timing error is:
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error = exact sampling time-estimated sampling time= τ − τ̂

MCRB is used as a reference to test the proposed synchronizer. The MCRB formula for the

symbol timingτ is given by

1

T2
× MCRB(τ) =

1

8π2Lξ

1
Es/N0

(4.25)

whereL is the number of observed symbols during the timing offset estimation process. Since

in each transmission burst 17 symbols are sent, the observedsymbol number to estimate the

timing offset is 17. In Figure 4.13, the standard deviation of the timing estimation error is

compared with the MCRB for the estimate of the timing error.
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Figure 4.13: Synchronizer timing error standard deviation

It is seen in Figure 4.12 that the BER performance of the system with the symbol synchronizer

is very close to the performance with perfect synchronization: There is approximately a 0.1

dB loss due to the proposed symbol timing recovery structure. Considering Figure 4.13 we

can conclude that the performance of the synchronizer is somewhat worse than the MCRB.

However the difference diminishes as the SNR increases.
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CHAPTER 5

CHANNEL ESTIMATION

5.1 INTRODUCTION

Multipath fading is one of the major concerns in wireless communications. A multipath trans-

mission takes place when a transmitted signal arrives at a receiver via two or more paths with

different delays. Such multiple paths may be due to the atmospheric reflection or refraction,

or reflections from buildings or other objects [15]. Each path can have a separate phase,

attenuation, delay and Doppler shift associated with it. Some adverse effects of multipath

propagation are inter symbol interference (ISI) and signalfading. These effects significantly

limit the performance of a wireless communication system. ARAKE receiver can be used

in order to mitigate multipath channel effects. It is described in Chapter 2 that the channel

matched filter (CMF) is utilized in our proposed receiver structure for processing the incoming

signal and the channel matched filter provides a RAKE receiver implementation. Obviously,

the channel matched filter needs to know the channel. This is accomplished by estimating

channel parameters. Then, the receiver uses the estimate ofthe channel in order to detect the

transmitted information from the received signal. In general, channel estimation methods can

be classified into two groups:

• Data Aided Channel Estimation: For this estimation method, known pilot symbols,

which are also called training sequence or preamble, are transmitted. At the receiver

end, the channel estimation algorithm operates on the received signal along with its

stored symbols to generate an estimate of the transmission channel.

• Blind Channel Estimation: This estimation process relies not on training sequence or

symbol decisions but rather on certain characteristics of the modulated signal.
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In this work, Least Square channel estimation, which is the major data aided channel estima-

tion method, is investigated for its use in M-ary receivers.For the accuracy of the channel

estimation, symbol timing information is required. In order to estimate the exact time for

the start of the transmitted signal, a frame synchronizer isemployed in our work. For a re-

ceiver to decode the incoming data stream, the receiver requires to be synchronized with the

data streams’ frame structure. The frame synchronization is accomplished with the aid of the

training data. The receiver knows the training data in the incoming data stream and in the

receiver the incoming data stream is correlated with the known training pattern at the known

injection interval. The receiver looks for the correlator output where the largest value is at-

tained. Hence, the start time of the incoming symbol is estimated. If the receiver is not in

synchronization with the framing pattern, the accumulatedcorrelation is low. Therefore, both

the Least Square channel estimator and the frame synchronizer are used in the receiver struc-

ture and both of them are based on the transmission of the known preamble data. In this work,

the same preamble data, which indeed consists of Kasami sequences, is used for the frame

synchronization and the channel estimation.

In this chapter, we first explain the simulated model and then, the performance of the proposed

receiver structure is investigated.

5.2 DESCRIPTION OF THE SIMULATED SYSTEM

5.2.1 Channel Model

A wireless channel is a time-varying system in which the parameters are random and liable to

change with time. From [2], the equivalent low pass responseof the channel is described by

its time varying impulse response as follows:

hc(τ; t) =
∑

n

βn(t)e− j2π fcτn(t)δ(τ − τn(t)) (5.1)

t is the observation instant andt − τ represents the time where the impulse is applied.βn(t) is

the attenuation factor andτn is the propagation delay for the n-th path. The multipath channel

model is shown in Figure 5.1.
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Figure 5.1: Multipath channel model

In order to characterize the multipath channel the scattering function denoted byS(τ; f ) is

used. This function procures a measure of the average channel output power as a function of

the time delayτ and the Doppler frequencyf . Via the scattering function we can get some

important characteristics of a channel such as the power delay profile, the power Doppler

spectrum which have an impact on the performance of a communication system operating

over that channel. In this work, we focus on channels having negligible or no Doppler spread.

The power delay profile of the channel which is denoted byP(τ) is given by

P(τ) =
∫

S(τ; f )d f (5.2)

The power delay profile, also called the multipath intensityprofile represents the average

power associated with a given multipath delay as a function of the time delayτ. The range

of values ofτ over whichP(τ) is nonzero is called the multipath spread of the channel andis

denoted byTm. Tm indicates the time dispersive properties of the channel.

COST 207 [20] proposes models for the continuous delay powerprofile P(∆t) for different

areas as follows

1. For Rural (Non-hilly) area

P(∆t) =



















e−9.2∆t for 0 < ∆t < 7µs

0 elsewhere
(5.3)
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2. For Urban (Non-hilly) area

P(∆t) =



















e−∆t for 0 < ∆t < 7µs

0 elsewhere
(5.4)

3. For Hilly Urban area

P(∆t) =



































e−∆t for 0 < ∆t < 5µs

0.5e5−∆t for 5 < ∆t < 10µs

0 elsewhere

(5.5)

4. For Hilly Terrain area

P(∆t) =



































e−3.5∆t for 0 < ∆t < 2µs

0.1e15−∆t for 15< ∆t < 20µs

0 elsewhere

(5.6)

Figure 5.2 presents average power delay profiles for corresponding channel types.
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Figure 5.2: Power delay profiles

5.2.2 Simulation Model

The general block diagram for M-ary Kasami code signaling structure has been described in

section 2.4.3. In this chapter, the performance of M-ary Kasami code signaling is explored

over a multipath fading channel. The packet in each transmission burst is illustrated in Figure
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5.3. In simulations, the information data consists of 17 Kasami sequences. Also, Kasami

sequences are used as a training data which is used in both theframe synchronization and the

LS channel estimation.

Figure 5.3: Frame structure for a transmission bus

In the simulated model, a tapped delay line (TDL) model of thetime invariant frequency

selective fading channel is used. The time-invariant equivalent low-pass channel is given by

hc(τ) =
∑

n

hnδ(τ − τn). (5.7)

The simulated channel model is shown in Figure 5.4.

Figure 5.4: Channel model used in simulations

While performing simulations described in this chapter, analog signals involved in the system
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diagram are sampled at the chip rate.τn is the time delay between the successive taps of the

tapped delay line channel model. In simulations, the time delay τn is chosen asτn = Tc. Since

the multipath spread isTm, the number of taps isK = (Tm/Tc) + 1. The tap coefficientshk

are complex, Gaussian, independent random variables with variancesσ2
k which follows the

average power delay profile of the channel andσ2
k satisfy the equality:

∑

k

σ2
k = 1 (5.8)

in order to normalize the channel average power gain to unity. Tap gains are circularly symet-

ric and Gaussian:

hk = hre + jhim (5.9)

wherehre andhim are independent and identically distributed Gaussian random variables with

mean 0 and varianceσk/2.

The simulated receiver model is illustrated in Figure 5.5.

Figure 5.5: Proposed receiver structure

As shown in Figure 5.5, both the frame synchronization and the Least Square channel esti-

mation are performed at the receiver respectively by the aidof a training sequence. Initially,

the exact point for the start of the symbol is estimated by theframe synchronizer. The start of

the symbol is where the correlation of the training data and the received signal is maximized

in a predetermined interval. Then, the Least Square channelestimator follows the synchro-

nizer in order to estimate channel taps. In the absence of themultipath channel the frame

synchronizer works fine and gives the exact point for the start of the symbol. However, in the
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presence of the multipath channel the frame synchronizer would not give the start time of the

incoming symbol correctly since the first path may not be the strongest one. Due to this frame

synchronization error, some channel taps can not be estimated. In order to prevent this loss,

we consider the start time of the incoming signalTstart in terms of the estimated start time

T f rame which is determined by the frame synchronizer as follows:

Tstart = T f rame− 10Tc (5.10)

5.3 LEAST SQUARE(LS) CHANNEL ESTIMATION

Least Square (LS) channel estimation approach is the primary approach of channel estima-

tion by using a known training sequence. The LS channel estimation algorithm which aims

to minimize the sum of the square of the error is used for the channel estimation over the

transmitted pilot sequence. We review the LS algorithm in this section.

Suppose only the training data is transmitted. Then, the received signaly can be expressed as

y = Xh+ v (5.11)

whereh is the complex channel impulse response, which includesL taps, is denoted by

h = [h1 h2 . . . hL] (5.12)

and X is the training sequence matrix,v represents white Gaussian noise. The transmitter

sends a training data ofP symbols which is denoted by [x0 x1 . . . xP−1]. The training

sequence matrixX is aP× L matrix given by

X =





































































x0 0 0 . . . 0

x1 x0 0 . . . 0

x2 x1 x0 . . . 0
...

...
...

...
...

xP−1 xP−2 xP−3 . . . xP−1−L





































































(5.13)
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LS channel estimates are formulated by using the squared error probability:

ĥ = argmin
h
‖y− Xh‖2 (5.14)

Equation 5.14 is solved as follows [14]:

ĥ = (XHX)−1XHy (5.15)

where ()H and ()−1 denote the Hermitian and inverse matrices, respectively.

Ideally, the training sequence is selected such that the correlation matrixXHX becomes diag-

onal. If the correlation matrix is diagonal, equation 5.15 is simplified to

ĥ =
1
P

XHy (5.16)

As a result, channel estimates given by equation 5.16 are simply the correlation between

the training sequence and the received signal. The performance of this estimation method is

investigated in the following section.

5.4 PERFORMANCE OF LEAST SQUARE CHANNEL ESTIMATION

The LS channel estimator estimates the channel impulse response for each burst separately by

using the known training sequence and the received signal. However, invariably, an estimation

error occurs during the channel estimation process. Suppose that the estimated channel taps

are composed of the exact channel impulse response and the channel estimation error:

ĥ = h+ e (5.17)

Due to this estimation error, there will be some unwanted terms in the decision variables.

The received signal is given by
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yn =
∑

k

hkIn−k + vn (5.18)

whereIk represent samples belonging to the transmitted symbols andvn represent noise sam-

ples corresponding to AWGN channel. The received signal is passed through the channel

matched filter which is based on the channel estimatesĥ provided by the channel estimator.

The channel matched filter output is

zn = (
∑

k

hkIn−k + vn) ∗ (h∗−n + e∗−n) (5.19)

zn =
∑

k

(hk ∗ h∗−k)In−k +
∑

k

(hk ∗ e∗−k)In−k + vn ∗ h∗−n + vn ∗ e∗−n (5.20)

As seen in equation 5.20, the second and fourth terms are undesired terms caused by the

channel estimation error. In order to see the effects of these undesired terms, initially the error

term is analyzed theoretically. LetR denote the correlation matrix andR = XHX whereX

is the training sequence matrix which is shown in equation 5.13. For simulations, Kasami

codes are used as a training data and it is known that the cross-correlation function of any two

Kasami codes takes small values. Hence the correlation matrix R is approximately diagonal

and it is expressed as follows

XHX = R≈ εcNcI (5.21)

whereεc denotes the chip energy,Nc denotes the training sequence length andI is the identity

matrix of sizeNc. Then, channel estimates are expressed as

ĥ = R−1XHy = h+ e (5.22)

By considering equation 5.18, the channel estimation erroris:

e= R−1XHv (5.23)
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Then the variance of the channel estimation error is:

σ2
e = (S NRc × Nc)

−1 (5.24)

where SNR(Signal to Noise Ratio) per chip is:

S NRc =
εc

N0
(5.25)

As expressed in equation 5.20, there are two undesired termsdue to channel estimation error.

It is conjectured that the undesired term, which is related to correlation between the channel

estimation error and AWGN channel, has more adverse effects on the system performance.

This undesired term is expressed by

AWGN×ChannelEstimationError= vn ∗ e∗−n (5.26)

Suppose this undesired term is denoted bybn:

bn =

L
∑

k=0

ekv
∗
k+n (5.27)

Because the channel estimation error and Gaussian noise areindependent, the mean square

value ofbn is:

E{|bn|2} =
L

∑

k=0

N0σ
2
e (5.28)

After substitutingσ2
e in equation 5.28 with an expression given in 5.24, the mean square value

of bn is:

E{|bn|2} =
L × N0

S NRc × Nc
(5.29)

As seen in equation 5.29, in order to mitigate the effects of the undesired termbn caused by

the correlation between AWGN and the channel estimation error,
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• SNR per chip, denoted byS NRc=εc/N0, should be large or

• L/Nc should be small. That is to say, the length of the training sequence should be much

larger than the total channel taps number

Nc >> L (5.30)

In order to observe the effects of the channel estimation error, simulations are also conducted

for different training sequence lengths under Hilly Terrain Channel and a fixed channel with

15 taps. In simulations, the chip duration is chosen asTc = 0.1 µsec. Throughout the simu-

lations, the channel estimation error term and the terms at the channel matched filter output

shown in Figure 5.6 are recorded.

Figure 5.6: Expression at the channel matched filter output

Simulation results are presented in tables 5.1, 5.2, 5.3 and5.4.

According to simulation results given in these tables, the unwanted term due to the correlation

of white Gaussian noise and the channel estimation error becomes effective at the demodula-

tion process. The other unwanted term, caused by the correlation of the channel estimation

error and the exact channel response, is also observed in a sufficient amount at the channel

matched filter output but the term related to the correlationof white Gaussian noise and the

the channel estimation error affects the system more adversely. Also, the simulation results
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Table 5.1: Channel estimation performance under Hilly Terrain channel, training sequence
length=8 × 63 chips

S NRperbit= 5 dB Mean Variance
Channel estimation erroren 0.0031 - 0.0010i 0.0142
1st term in Figure 5.6 0.0012 - 0.0000i 0.0039
2nd term in Figure 5.6 0.0006 - 0.0010i 0.0062
3rd term in Figure 5.6 0.0171+ 0.0233i 3.9933
4th term in Figure 5.6 0.0277-0.0032 18.2255

Table 5.2: Channel estimation performance under Hilly Terrain channel, training sequence
length=32× 63 chips

S NRperbit= 5 dB Mean Variance
Channel estimation erroren 0.0003+ 0.0002i 0.0044
1st term in Figure 5.6 0.0041+ 0.0000i 0.0038
2nd term in Figure 5.6 -0.0001+ 0.0002i 0.0020
3rd term in Figure 5.6 -0.0484 - 0.0339i 5.7600
4th term in Figure 5.6 -0.0011+ 0.0036i 6.0490

Table 5.3: Channel estimation performance under 15-tappedfixed channel, training sequence
length=2 × 63 chips

S NRperbit= 5 dB Mean Variance
Channel estimation erroren -0.0208+ 0.0593i 0.0508
1st term in Figure 5.6 0.0133+ 0.0000i 0.0097
2nd term in Figure 5.6 -0.0159 - 0.0125i 0.0087
3rd term in Figure 5.6 -0.0470+ 0.0260i 2.9312
4th term in Figure 5.6 0.0804+ 0.0133i 5.0819

Table 5.4: Channel estimation performance under 15-tappedfixed channel, training sequence
length=16× 63 chips

S NRperbit= 5 dB Mean Variance
Channel estimation erroren 0.0201+ 0.0130i 0.0083
1st term in Figure 5.6 0.0133+ 0.0000i 0.0097
2nd term in Figure 5.6 0.0032 - 0.0070i 0.0020
3rd term in Figure 5.6 -0.0026 - 0.0558i 2.8984
4th term in Figure 5.6 -0.0298 - 0.0121i 0.8407
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reveal that as the training sequence length gets larger withrespect to the number of channel

taps, the channel estimation error diminishes and the effects of the undesired terms due to the

incorrect channel estimation decrease.

Additionally, these simulation results are compared with the theoretical formulas given in

equation 5.24 and 5.29. The related graphs are presented in Figures 5.7, 5.8, 5.9 and 5.10.

500 1000 1500 2000 2500 3000 3500 4000
−0.02

0

0.02

0.04

0.06

0.08

0.1

Eb/N0=5 dB, fixed channel with 15 taps, channel estimation length=15

training sequence length

 c
ha

nn
el

 e
st

im
at

io
n 

er
ro

r 
va

ria
nc

e

 

 

theory
simulation

Figure 5.7: Channel estimation error variance for fixed channel
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Figure 5.8: AWGN and channel estimation error term variancefor fixed channel
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Figure 5.9: Channel estimation error variance for Hilly Terrain channel
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Figure 5.10: AWGN and channel estimation error term variance for HT channel

As seen in Figures 5.7, 5.8, 5.9, 5.10, simulation and theoretical results are approximately the

same. A small difference between the simulation and the theoretical results is expected since

the correlation matrixR is assumed to be diagonal, but in reality, the correlation matrix R is

not exactly diagonal but similar. It is also concluded from the simulation results that as the

training sequence length gets larger with respect to the number of channel taps, the channel
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estimation error and its effects decrease.

5.5 BER SIMULATIONS AND RESULTS

In this section, the BER performance of the proposed receiver is investigated. The simulation

model is as described in section 5.2. Initially, simulations are carried out in order to test the

performance of the proposed receiver with a perfect knowledge of the channel parameters.

In simulations, COST207 Hilly Terrain channel model is used. As it was mentioned, the

multipath spread isTm = 20µsecfor Hilly Terrain channel. The performance of the receiver

is observed for different chip durationsTc = 10, 1, 0.1, 0.01, 0.001µsecseparately. It is known

that the total number of taps isL = Tm/Tc+1. Furthermore, for M-ary Kasami code signaling,

each symbol consists of 63 chips. The bit error probability of M-ary Kasami code signaling

as a function of SNR per bit is illustrated separately for differentTm/Tsymbolvalues in Figure

5.11.
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Figure 5.11: Receiver performance under Hilly Terrain channel for different chip rates where
the channel characteristic is known at the receiver

The simulation results in Figure 5.11 illustrate the advantage of diversity as a means of over-

coming the severe penalty in SNR caused by the multipath fading channel. As seen in Figure

5.11, there is an optimum valueTm/Tsymbolat which the bit error probability is minimal. A

careful examination of these graphs reveals that the minimum bit error rate is obtained when
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Tm/Tsymbol= 3.17. After this optimum value, a degradation in the BER performance is ob-

served. WhenTm/Tsymbol = 317.5, the system performance is degraded dramatically since

ISI seriously affects the receiver performance. However, a significant gain in performance is

obtained forTm/Tsymbol= 31.7 and 3.17. Therefore, it is concluded that even for large values

of multipath numbers, M-ary Kasami code signaling still resists inter symbol interference.

This indicates the robustness of Kasami codes in a multipathenvironment.

Now, the performance of the proposed receiver structure including the frame synchronizer and

the channel estimator is investigated. Simulations are carried out for the chip rateRc = 10

Mchip/sec under Hilly Terrain channel. In order to test the proposed receiver, three scenarios

are considered.

In the first scenario, the training sequence length is variedfor each simulation and the effects

of this change on system performance are observed. In this scenario, the channel length is

assumed to be known by the receiver. The graphs of bit error rate as a function of SNR per

bit are shown in Figure 5.12 for different training sequence lengths.
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Figure 5.12: Receiver performance for different training sequence lengths under Hilly Terrain
channel after the channel estimation algorithm is applied

The simulation results in Figure 5.12 illustrate the improvement in the performance as the

training sequence length increases. When the training dataconsists of 64 Kasami codes,

the performance is improved by approximately 2.5 dB with respect to the BER performance
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which is obtained by using 8 Kasami codes as a training data. When the training sequence

length increases, the channel estimation error decreases and the performance of the proposed

receiver is improved.

In the second scenario, the channel length is unknown and theLS channel estimator estimates

L̂ taps. Simulations are performed under Urban channel and Hilly Terrain channel. The

simulation is repeated for different training sequence lengths and the results are compared

with the condition in which the channel is known at the receiver. The bit error probability as

a function of the number of estimated taps is presented in Figures 5.13, 5.14, 5.15, 5.16 .
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Figure 5.13: Receiver performance under Hilly Terrain channel for different estimated chan-
nel lengths

For simulations carried out under Hilly Terrain channel, itseen in Figures 5.13, 5.14 that fluc-

tuations occur in the error rate performance of M-ary signaling while the number of estimated

tapsL̂ increases. For Hilly Terrain channel, there are two separated regions over which the

power is spread; together, the spread is much longer for hilly regions as seen in Figure 5.2.

Between these two regions, the Hilly Terrain channel includes no taps. However the channel

estimator estimates the channel impulse response in case there are nonzero taps. Hence, the

noisy taps are estimated to be processed in the channel matched filter which causes the degra-

dation in the performance. As a result, fluctuations in performance are observed due to the
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Figure 5.14: Receiver performance under Hilly Terrain channel for different estimated chan-
nel lengths
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Figure 5.15: Receiver performance for different estimated channel lengths under Urban chan-
nel

characteristic of Hilly Terrain channel. For simulations performed under Urban channel, it is

seen in Figures 5.15, 5.16 that as the number of estimated taps, L̂, gets larger, the performance

gets better initially and then the performance is stabilized around a certain value. However,

when L̂ is larger than the number of exact channel taps, the performance of the estimator

decreases, therefore, the system performance is degraded as expected.
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Figure 5.16: Receiver performance for different estimated channel lengths under Urban chan-
nel

In the third scenario, it is assumed that the channel length is known at the receiver and the

channel estimator selectsLmax strongest taps from the estimated taps to be processed in the

channel matched filter. Since most of the signal energy is concentrated on the strongest taps, it

is thought that taking only these into account and not using the weak ones, better performance

can be achieved. In the following simulations, Urban channel and Hilly Terrain channel

models are used. Simulation results are presented in Figures 5.17, 5.18, 5.19 and 5.20.
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Figure 5.17: Effects of the number of selected strongest taps in channel estimation on the
receiver performance under Hilly Terrain channel using 16 Kasami sequences as a training
data
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Figure 5.18: Effects of the number of selected strongest taps in channel estimation on the
receiver performance under Hilly Terrain channel using 32 Kasami sequences as a training
data

As seen in Figure 5.17 and 5.18, the performance gets better until a certain valueLopt at which

the bit error probability is minimal. When the number of selected strongest taps is greater than

Lopt, it is concluded that more noisy taps are included in the estimated taps which degrades

the receiver performance. The generation of noisy taps in channel estimation is due to the

Hilly Terrain channel characteristic.

70



0 10 20 30 40 50 60 70 80
10

−5

10
−4

10
−3

10
−2

10
−1

Number of Max Selected Taps

P
ro

ba
bi

lit
y 

of
 b

it 
er

ro
r

Eb/N0=9 dB; Tc=0.1, Urban Channel, 71 tap, 

 

 

Exact channel knowledge 
Channel Estimation, 16 kasami sequence as a preamble

Figure 5.19: Effects of the number of selected strongest taps in channel estimation on the
receiver performance under Urban channel using 16 Kasami sequences as a training data
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Figure 5.20: Effects of the number of selected strongest taps in channel estimation on the
receiver performance under Urban channel using 32 Kasami sequences as a training data

When simulation results for Urban channel in Figure 5.19, 5.20 are observed, it is seen that

the BER performance is similar to the case in which the channel is known at the receiver.

Furthermore, there is an optimum valueLopt after which significant variations in bit error rate

of M-ary Kasami code signaling are not observed. It is concluded that most of the channel

energy is contained in theLopt strongest channel taps.
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CHAPTER 6

CONCLUSIONS

In this thesis study, the performance of M-ary orthogonal modulation has been investigated.

For exploring M-ary orthogonal signaling, practical spreading codes have been explored in

order to use them in place of orthogonal codes. The analyzed spreading codes are Barker

codes, m-sequences, Gold codes, Kasami codes and Walsh-Hadamard codes. Kasami codes

are chosen to use in place of orthogonal codes, since they have correlation properties similar

to orthogonal codes and they almost satisfy the Welch bound,which is a lower bound on the

cross-correlation between any pair of sequences.

For the demodulation process, an optimal receiver structure given in the literature has been

used. In the receiver structure, the channel matched filter is utilized to process M-ary signals

as a RAKE receiver which is adopted in this study to equalize the channel effects.

Initially, M-ary Kasami code signaling performance is compared with M-ary orthogonal sig-

naling. The results showed that M-ary Kasami code signalingperforms better than M-ary

orthogonal signaling in terms of bit error rate, since the distance between symbols is in-

creased. The distance is increased because the cross-correlation function of Kasami codes

can take negative values. M-ary biorthogonal signaling using Kasami codes has also been

examined. It was seen from the results that the advantage of taking negative cross-correlation

values for Kasami codes is lost because the absolute value ofthe matched filter outputs is

taken into consideration during the demodulation process.However, M-ary biorthogonal sig-

naling have some advantages over M-ary orthogonal signaling. The data transmission rate for

M-ary biorthogonal signaling is higher. In addition, the receiver complexity is reduced for

biorthogonal signaling sinceM/2 correlators are sufficient at the receiver.

Secondly, the symbol timing recovery for M-ary signaling has been investigated. A non-
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decision directed symbol synchronizer was proposed to estimate the symbol timing. It was

seen through simulations that the BER performance of the receiver using the timing provided

by the proposed synchronizer is extremely close to that of a receiver operating with exact

symbol clock.

Furthermore, the receiver sensitivity to the timing delay has been explored for the transmission

of signals over a multipath channel. The simulation resultsrevealed that the receiver is quite

insensitive to the symbol timing in the presence of multipath.

The final part of this thesis is on channel estimation to be used in the M-ary receiver. We

considered a receiver consisting of a frame synchronizer and channel estimator based on the

training sequence operation. The estimated channel is usedin the channel matched filter.

We have tested the proposed system in COST 207 Hilly Terrain channel and Urban channel

environment models. Extensive simulations showed that thesystem works well even under

channel conditions causing significant ISI. We also investigated the use of certain number of

the strongest estimated taps instead of the full set of taps.It was seen that this approach can

give better performance while reducing the complexity considerably.

The following list provides insight to future work:

• M-ary signaling systems may be investigated for different spreading codes.

• Error detection and correction techniques may be considered. Effects of the usage of

error correction codes on the system performance may be explored.

• In this study, BPSK is used. Different digital modulation methods such as QPSK, 8PSK,

QAM may be explored on the same framework in M-ary signals.

• MAP channel estimation methods may be applied to estimate the channel impulse re-

sponse.

• The performance of M-ary Kasami code signaling under carrier frequency offset may

be investigated
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