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ABSTRACT

A STUDY ON SYMBOL SYNCHRONIZATION AND CHANNEL ESTIMATION FCR
M-ARY ORTHOGONAL TRANSMISSION

Karagozlu, Eren
M.Sc., Department of Electrical and Electronics Enginegri

Supervisor : Prof. Dr. Yal¢cin Tanik

September 2011, 75 pages

In this thesis, two key issues regarding M-ary orthogorghaiing systems, namely channel
estimation and symbol timing recovery are investigatedsafa codes, which are also called
quasi orthogonal codes, are used for transmission of tleenmation in place of orthogonal
waveforms. In order to achieve symbol synchronizationménty recovery scheme based on
the Maximum Likelihood (ML) estimation of timingftset is proposed and th&ects of pro-
posed structure over the receiver performance are exarbineding computer simulations.
Moreover, the receiver performance of M-ary orthogonahalg transmitted over multipath
fading channel is investigated. Least Square (LS) approaabed on the transmission of
known training sequence, is used to estimate the channellsepesponse. In addition to
this, frame synchronization is employed at the receiveixtoaet the timing information by
determining the start time of the received symbols. Compiteulations related to the pro-
posed receiver structure are carried out in order to obdepwethe system performance is
affected under multipath fading channel. Parameter selegtiaes regarding a good perfor-

mance are also provided.



Keywords: M-ary orthogonal modulation, Kasami codes, syhtbning recovery, Least

Square(LS) channel estimation, frame synchronization
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M-ARY DIK SINYALLER IN ILETIMINDE SEMBOL SENKRONZASYONU VE
KANAL KESTIRIMI UZERINE CALISMA

Karagozlu, Eren
Yuksek Lisans, Elektrik ve Elektronik Mihendisligi Bin(

Tez Yoneticisi : Prof. Dr. Yalgin Tanik

Eylul 2011, 75 sayfa

Bu tezde, M-ary dik sinyaller icin kanal kestirimi ve serhkaman bilgisinin kazanimi konu-
lari incelenmistir. Mesajin iletimi icin dik sinyallereyine, dike yakin kod dizisi olarak
da bilinen Kasami kodlar kullaniimistir. Sembol senkeaisiyonu basarmak icin en buyuk
olasilikli (ML) zaman kaymasi kestirimi dustnulerek benkronizor yapisi onerilmis ve
alicinin performansi bilgisayar simulasyonlari argeyle analiz edilmistir. Buna ek olarak,
M-ary dik sinyallerin ¢ok yonli sonumlemeli kanaltan iletimi sirasindaki alici perfor-
mansi incelenmistir. Kanal kestirimi i¢in bilinen dnzderin gonderilmesine dayanan en
dusuk kareler (LS) yaklasimi kullaniimistir. Kanadtiriminin yaninda, gerekli zaman bil-
gisinin belirlenmesinde aliciya gelen sinyalin baslangamanini bulan ¢erceve senkroniza-
syonu kullaniimistir. Onerilen alici yapisinin performansini gézlemlemek igilgisayar
simulasyonlari yapiimistir. Ayrica iyi alici performarelde etmek icin parametre secimine

yonelik yollar sunulmustur.

Anahtar Kelimeler: M-ary dik sinyallerin iletimi, Kasamiokllar, sembol zaman bilgisinin

kazanimi, En Dusuk Kareler(LS) kanal kestirimi, gare senkronizasyonu
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CHAPTER 1

INTRODUCTION

M-ary Orthogonal modulation is a digital modulation mettodransfer a digital bit stream
by usingM equal-energy orthogonal signal waveforms which is formgdvbdimensional
signal vectors. M-ary Orthogonal modulation can ensurenarease in performance in terms
of capacity. Shannon’s limit is also achieved by increashmgalphabei to infinity. The
generation oM orthogonal waveforms is crucial for this modulation typ&eTuse of spread
spectrum can facilitate the generation of code sets for eathogonal modulation, since
spreading codes have correlation properties similar tiogdnal codes. The use spread spec-
trum can also provide many advantages such as decreasieffabts of interference due to

jamming, interference from other users and self interfegegfue to the multipath propagation.

In communication systems, the transmitted signal is receat a receiver with a time delay
due to the prorogation time from the transmitter to the remeiln a digital communication
system, the output of the demodulator must be sampled pegitydonce per symbol interval
in order to recover the transmitted information. The regeiveeds to know this propagation
delay in order to eliminate the performance degradationtatige timing mismatch. Hence a
symbol synchronization is required at the receiver. A syimibting synchronization, which
aims to estimate the time delay between the transmittedrenceteived signal, plays an im-
portant role in demodulation process. [11] and [17] are gederences in the symbol timing
synchronization literature. Symbol timing synchroniaatmethods can be classified into two
groups: Decision directed, non-decision directed methDésision directed methods derives
the timing information by using the transmission of knowmsypls, whereas in non-decision

directed methods the timing estimation is done withouttgiftown symbols.

Furthermore, multipath fading is one of major concerns ireless communications. In a



multipath environment, the transmitted signal arriveshreceiver from dferent directions
with a different attenuation andfiirent time delay. Hence, the received signal is the sum of
signals arriving through étierent propagation paths. These multiple paths cause ddinad
in the performance of the communication system. One apprt@aceduce the multipath
channel &ects is to detect the channel characteristics. This is aplisimed by estimating the
channel at the receiver. In literature, channel estimati@thods are investigated in detail.

[17] is good reference in the subject of channel estimation.

The aim of this thesis is to investigate the performance ariylerthogonal signaling. Spread-
ing codes, such as m-sequences, Walsh Hadamard codes, iKast®s and Gold codes are
explored in order to use in M-ary signaling structure andtdugetter cross-correlation prop-
erty Kasami codes are chosen to use in place of orthogonadlsig Initially, the perfor-
mance of the proposed signaling system is explored under RWnnel. Then the symbol
timing synchronization is examined for M-ary Kasami codgnsiing. The symbol timing
recovery scheme based on the non-decision directed appieaeveloped and the perfor-
mance of this timing recovery scheme is analyzed by comgawvith Modified Cramer Rao
Bound(MCRB). Furthermore, the performance of M-ary sigmalsystem under multipath
fading channel is considered. In order to remove the muhiphannel &ects the proposed
receiver requires the channel knowledge. For this reaseastL.Square channel estimation
algorithm is used in order to estimate the channel impulsparse from a known training
sequence. The channel estimator performance is explorelitiferent channel responses and

different training sequence lengths.
This thesis is organized is follows:

In Chapter 2, M-ary orthogonal modulation is reviewed . Thpreading codes, whose corre-
lation properties are similar to orthogonal codes, areyaeal. Finally, the proposed receiver

structure and the analyzed model is presented.

In Chapter 3, the performance of M-ary Kasami code signangpmpared with M-ary or-
thogonal modulation. Also Kasami codes are used in M-arythidgonal structure and the

performance of M-ary biorthogonal signaling using Kasaodes is presented.

In Chapter 4, the proposed non-decision directed symbatispnizer is described and the

performance of this synchronizer is investigated.



In Chapter 5, transmission of M-ary signals over multipadifig channel is considered.
Initially the model of multipath channel model is presentethen, the receiver structure
including frame synchronizer and Least Square channehasir is described and simulation

results related to performance of the proposed receivectaiie are presented.

In Chapter 6, conclusions and possible future works arespted.



CHAPTER 2

M-ARY ORTHOGONAL SIGNALING

2.1 INTRODUCTION

Although bandwidth is a valuable commodity in wireless sy, increasing the transmit
signal bandwidth can sometimes improve performance. 8mpectrum is a technique that
increases signal bandwidth beyond the minimum necessaigwidth for data communica-
tion [3]. Spread spectrum signals used for the transmissiatigital information are distin-
guished by the characteristic that their bandwMilis much greater than the information rate
Rin bitg/s. In other words, the bandwidth expansion fa&aet W/R for spread spectrum sig-
nals is much greater than unity. Moreover, the spread spaatrodulation is performed using
a spreading code, which is independent of the data in thelsigtach spreading code con-
sists of binary-valued elements called chips with a timerial T.. T, should be significantly
smaller than the symbol time interval to satisfy the bandwidth expansion requirement.
One of the most important features of spreading codes is piseudo-randomness property
which makes the signals appear similar to random noise dfidulli to demodulate by the
unintended receivers. Spread spectrum provides so mamndes. Some of them are as

follows:

e Anti-jamming (A/J) - particularly for narrow-band jamming

Anti-interference (A)

Low Probability of Intercept (LPI)

Multiple access capability

Message Privacy



¢ High Resolution Ranging and Timing

M-ary orthogonal signaling is one of the major techniqueadisieve spread spectrum. Also,
the use of spread spectrum might facilitate the code gearraiM-ary orthogonal signals
yield a bit rate to bandwidth ratio (or spectrdfieiency) of R/W < 1. Spectral fliciency
decreases with increasimd. However, asM increases the SNR per bit required to achieve a
given error probability decreases. Consequently, M-attyogional signals are appropriate for
power-limited channels which possesshgiently large bandwidth to accommodate a large
number of signals [2]. Indeed, M-ary orthogonal modulatghieves channel capacity under

AWGN channel as M goes to infinity.

In this chapter, background information about M-ary orihvogj modulation is presented.
Then, some spreading codes which satisfy cross correlaioes similar to orthogonal codes

are investigated. Finally, the investigated communicatiedel in this thesis is presented.

2.2 LITERATURE REVIEW

In digital communication, through modulations of the car@mplitude and phase, the con-
structed signal waveforms correspond to two-dimensioaetors and signal space diagrams.
However it is sometimes required to construct signal wave$ocorresponding to higher di-
mensional vectors and the number of dimension is increagedtilizing time domain or
frequency domain processing or both. M-ary orthogonalaigg is a special case of mul-
tidimensional signals. M-ary orthogonal signal set cdssis M equal energy orthogonal

signals:

-
£ s(t)sj(t)dt = &dj; (2.2)

wheres;; = 1 wheni = j and zero otherwise; anddenotes energy per symbol.

A generic form for M orthogonal signals is

s) = Vesi()  i=12....M (2.2)



where ¢; represent orthonormal basis functions. Thus, these M gottal signals can be

represented b = M dimensional vectors as follows:

ss=[ve 0 0 ... 0 Q]
=0 +¢ 0 ... 0 O
2=0 V¢ ] 23
su=[0 0 0 ... 0 +e
The minimum distance between any two signals in M-ary orbimad) symbol set is
dj = V2s  foralli, ] (2.4)

The signal space diagrams fora and N=2; M=3 and N=3 are illustrated in Figure 2.1.

fo(t) f(t)

Figure 2.1: Signal space diagrams of orthogonal signalMfeN=3 and M=N=2

One way to construct orthogonal signal waveforms is to wesguiency-shift-keying. This class
of signals consists of sinusoids having a duratiorm adnd signals have frequency selected

from a set of M possible frequencies. The mathematical sgmtation of these signals is [2]

s(t) = \/?cos{hfct + 2rmA ] (2.5)

6



where Af represents the frequencyfid@rence between adjacent signals. For example, for

Af = 1/2T the orthogonality requirement is satisfied. More detaits loafound in [2].

Another way to construct orthogonal waveforms is to defimealyi code words which are
orthogonal between each other. Sample binary orthogortd wmrds are shown in Figure

2.2. This type of construction for M-ary orthogonal signglis considered in this thesis.

L
Y

Si(t) Saft)

Sa(t)

Sa(t)

Y
Y

Figure 2.2: Orthogonal waveforms by using binary code words

For the detection of the transmitted signal, we deorrelators each matched to one of the
possibleM orthogonal signals in the receiver. Suppose the receigthkis composed of

signal plus noise:

) =s®+wt) i=12...,M (2.6)

wheres(t) represents one of M equal energy orthogonal signals. Wiemneceived signal

passes through thieth correlator, the response of tlieh correlator to the received signal is

§
yﬁi£FMQmm j=12....M (2.7)

7



T T
Yi =£ S(t)sj(t)dt+L n(t)s;(t)dt (2.8)

This response is separated into two parts: one that resaftsthe signal component of the
received signal and one that results from the noise comparfehe received signal. This
signal component at thgth filter output is proportional to the signal energy and¢heela-
tion codficient between-th signal andj-th signal. For ideal M-ary orthogonal modulation,
the correlation cafcient between any two orthogonal signals is zero. Thergforerder to
detect the transmitted signal, the optimum detector clotheesignal giving the largest cross

correlation between the received sign@) and each possible orthogonal sigsdt).

For example, supposg is transmitted. The received signal can also be represdyteie
vectorr with components;. Each componer is the projection of the received signal onto
one of M possible orthogonal signals. At the input of the receivss, received signal vector
is

r=[ves+n ny ng ... nu] (2.9)

whereng, ny, ..., Ny are zero-mean, mutually independent Gaussian randombiesiavith
varianceNp/2. After the received signal passes throldttorrelators separately, the outputs

from the bank oM correlators are

C(r,s1) = ves(+eés + )
é(r’SZ) = Vel (2.10)

C(r,sw) = Veshm

All correlator outputs have the common factges and it can be eliminated from the outputs.
Therefore correlator outputs are represented by the mteigctor =[r1 rp ... ru].

In order to make the correct decision at the receiver théagleorrelator output must be larger
than each of otheM — 1 correlator outputs. Sincg is transmittedy; should be larger than
other correlator outputs; = +/es+ N1 > N, N3..., Ny for correct decision at the receiver.

The probability that the detector makes a correct decisi@xpressed as follows

Pe = f P(r1 > ng,r1 > ng, ..., r1 > nylry)p(ri)dr (2.11)

(o)



After some manipulations as stated in [2], the followinglgbility of correct symbol decision

is obtained

(1 r1v2/No 2 M-1
PC:jN[ZLf é“ﬂd% o(r1)drs 2.12)

The probability of erroneous symbol decision denotedPkyis

Py=1-P (2.13)

In [2], the symbol error probability is given by

o [ [ Jod 2 (-

For M-ary signal transmission, each symbol conveyslog, M bits, soes = ke Wheregy, is

dy (2.14)

the bit energy. Also the probability of symbol error can bpressed in terms of the bit error

probability. As stated in [2], for larg® the bit error probability denoted Ry, is

P~ FM 2.15
b~ = (2.15)

The performance of M-ary orthogonal signals can be analyeequation 2.14. However,
when the asymptotic behaviour is considered, it is more eoient to use an upper bound on
the probability of a symbol error. This upper bound can bévddrby employing the union

bound: The probability of error for each symbol is boundefRas

Pum < (M - 1)Q(+es/No) (2.16)
where
Q(x) = \/% fx eV 2du, (2.17)

This bound can be further simplified by upper bounding thei@zfion, that is

Q(Vas/No) < & /2o (2.18)

9



The final form of the upper bound is

PM < Me—ss/ZN() < e—k(sb/No—2|n2)/2 (219)

While M — o, the probability of error approximates zero fgf/Ng > 2In2 = 1.39 or
1.42 dB. Generally the union bound isfBaiently accurate to be used as the error estimate.
According to this simple upper bound, the I&®y can be satisfied as long ag/Ng > 1.42

dB. However, for low SNR, this bound is looser due to the aggtiom used for Q function in

(2.18). For low SNR per bit, [2] states a tighter upper boundPg

Py < 2e7(Veo/No-Vin2?) (2.20)

Therefore, forep/Ng > In2 = 0.693 or-1.6 dB,Py — 0 asM — ~. —-1.6 dB is the
minimum required SNR per bit to achieve a small probabilitgmor in the limit asM — co.
This minimum SNR value is also the Shannon limit for AWGN ahalnvhich maximizes the
mutual information between the input and output of the cleaniiherefore, M-ary signals

achieve the channel capacity boundvagoes to infinity.

2.2.1 Welch Bound

There are several bounds on the maximum cross-correlatfbssquence families. One of
these bounds is the Welch bound developed by Welch in 1974chWeund is the lower
bound on the periodic cross-correlation between any paeqtiences of period N in a set of

M sequences [2] and it is expressed by

M-1
NM-1

Rmax= N (2.21)

whereRnax represents the maximum cross-correlation value betwegipain of sequences.

For large values of N and M, the lower bound is approximated/’a

10



2.2.2 PN Sequences

Pseudo noise (PN) code which is also called a pseudo randmmsjsts of a sequence of
plus or minus ones and it acts as a noiselike signal. Theseseegs are used for bandwidth
spreading of the signal energy. This class of sequencesnhiagpartant role in spread spec-
trum systems. There are two classes of PN sequences: pegiodliaperiodic. An aperiodic
sequence does not repeat itself in a periodic fashion arglzélio outside the main inter-
val. Whereas, a periodic PN sequence is constructed byngtavith a finite sequence and

expanding it periodically. Periodic sequences are venoitant in spread spectrum systems.

Before investigating periodic sequences’ propertiestiagie sequences are reviewed briefly

to point to their limits. An aperiodic sequence is describgd

a a a3 a .. ay for g ==+1

In order to classify this code as a pseudorandom code, theeseg must satisfy the autocor-

relation property: The autocorrelation function of thesstgea is defined as

N-k
Realkl = > ananu  k=0,1,..,N-1 (2.22)
n=1

The autocorrelation function of an ideal aperiodic seqaenith lengthN takes following

values:

N ifk=0
RaalK] = (2.23)
0 or+1 ifk#0

For example, a Barker sequence of leniyte: 11, is
a'[n] = [1’ _l’ 1’ la _1’ la 1’ la _1’ _la _1]

The autocorrelation function corresponding this sequésnshown in Figure 2.3, satisfying

the auto-correlation property.

Barker sequences are good examples of PN sequences butddeschave been discovered

11
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Figure 2.3: Autocorrelation of a Barker code of length 11

for only several specific sequence lengthshamelyN = 1,2, 3,4,5,7,11 and 13. No larger

Barker sequence has been found yet. Moreover, these seguarecgenerally very short for
spreading purpose. However, these codes can be used fbrsgization purposes. As it was
stated previously, periodic sequences are much more iangdrt spread spectrum systems.
A periodic sequence repeats itself in period of N which islémgth of the PN sequence and

it can be illustrated by

ANl Ay @ a az ... an  a1... ya =+1

Golomb states that such a sequence is said to be pseudordahi@atisfies the following

conditions [7], [8]:
1. Balance property: In each period of the sequence the number of plus orfes fliom
the number of minus ones by at most one. For example a sequence
Pn=+1+1+1-1+1-1-1
satisfies this property where thdfgirence between plus and minus one is one.

2. Run-length Distribution: A run is a sequence of single type of digits. In each period
one-half of the runs of each type have length 1, one-fourtte fength 2, one- eighth

are of length 3 and so on. Also the number of positive and negains must be equal.

12



3. Autocorrelation: An autocorrelation characteristic of a periodic PN seqgeiscits
periodic autocorrelation property. The autocorrelatibra N sequence must be two

valued. The autocorrelation function of a sequence of alteNgs given by

N
RealK] = ) @t (2.24)
n=1

wherea,.n = an. The autocorrelation function of a periodic pseudo noisgisace is

N ifk=0
RaalK] ={ _ (2.25)
-1 ifl1<k<N-1

For PN sequences the autocorrelation function takes thie ysdae only when there
is a perfect synchronization between PN codes. The synidatoon requirement in

receiver for spread spectrum system is based on this pyopert

A deterministic sequence that possesses all these threerpes is referred to as a pseu-
dorandom sequence. There arffatient types of periodic PN sequences. The most widely
known binary PN sequence is the Maximal-Length Linear SRégister Sequence which is

also called an m-sequence.

2.2.2.1 Maximal-Length Linear Shift Register Sequences (Msequences)

M-sequences are the most commonly used pseudorandom secgiece they are easily gen-
erated by using shift registers. Since they are also a typgatit codes, they are characterized
by a generator polynomial. An m-stage shift register stnectised to generate PN sequence

is illustrated in Figure 2.4.

Feedback logic which uses taps to generate m-sequencesisnitetd by the generator poly-
nomial:

G(X) = gmnX™ + G- 1X™ L + gmoX™ 2 4+ g2X + g1 Xt + Oo (2.26)

where coéficientsg; represent tap weights amggd = 1. If gj is equal to 1 it is connected to
the feedback block. Otherwise, there is no connection. Tim&dulo 2 sum of all connected

feedback taps is performed and is used as the input to therebister. This polynomial is

13



bit sequence

b=10110...
= Stﬂ.gﬂ‘ — 3';&93 P R Etﬂﬂ'
1 2 L
L8] 9 SUm
\
Feedback Logic

Figure 2.4: Generation of Maximal-Length Linear Shift Regi Sequences

also called the feedback polynomial or characteristic patgial. The necessary andBcient
condition for generating an m-sequence is that the gengpatgnomial should be primitive
[16]. It is because a characteristic polynomial of degregenerates a maximal sequence of
period 2" — 1 if and only if it is a primitive polynomial [19]. An irredubie polynomialp(x)
overGF(2) of degreamis said to be primitive if the smallest positive integpfior which p(x)

dividesx" - 1isn=2"-1[19].

An m-stage shift register has the maximum length or period

N=2"_1 wheremx 1, 2, 3... (2.27)

The binary sequence generated from linear feedback skiftee is also called a chip se-
guence. Then, binary elements (1,0) are mapped to the elgrfierl), respectively. Gener-
ated m-sequences by using shift register satisfy pseudonamess properties such as balance,
run-length distribution and autocorrelation propertiége autocorrelation function of a PN
sequence generated by using 5 stage shift register is shofigure 2.5. Sincen = 5, the
period of the sequence I$ = 31. The autocorrelation function takes the peak value when

there is no time shift. Otherwise the autocorrelation fiarcts equal to-1.

In some applications, cross-correlation properties of Blusnces are also of interest. For
multi user capabilities of spread spectrum systems, lowssoorrelation values between PN

codes are needed in order to minimize the interference leetwsers. For example, in CDMA

14
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Figure 2.5: Autocorrelation of a sample m-sequence febm

each user owns a specified PN sequence. ldeally, the codmeddb each user should be
orthogonal to others. Hence, the interference from onetosanother user is zero. However,
PN sequences exhibit nonzero cross-correlation valuesrefdre, small correlation values
are desired for multiple access techniques. When m-segsare considered, these codes
are not suitable for multi user techniques, since m- seqegecan take quite large cross corre-
lation values for some code sets. Table 2.1 gives the peakitndg of the cross correlation
between m-sequence pairs. It also shows the numbeftefelit m-sequences of length N

generated by m-stage shift register.

Due to poor cross correlation properties, the maximal kesgtjuences are not used for multi-
user application. Instead of m-sequences, Gold, KasamiaishW\todes which have much

better cross-correlation properties have been developed.

2.2.2.2 Gold Codes [16]

In order to produce Gold codes, certain pairs of m -sequerelésd preferred sequences are

used as a point of departure. Preferred sequences are mrseguvhose cross-correlation

15



Table 2.1: Peak cross-correlation values for m-sequences

m | N=2"-1 | Number of m-sequencesPeak cross-correaltion vallRax
3 7 2 5

4 15 2 9

5 31 6 11
6 63 6 23
7 127 18 41
8 255 16 95
9 511 48 113
10 1023 60 383
11 2047 176 287
12 4095 144 1407

function takes on possible values from the $et,(t(m),t(m)-3) where

2m)/2 4 1 for odd m
t(m) =
2m2)/2 4 1 for even m

Gold codes are a combination of 2 preferred sequences. WthGold codes’ autocorrelation
properties are worse than m-sequences, they have betssr@porelation properties than m-

sequences.

Gold codes are produced by the binary addition of preferresequences of lengtH™2- 1.
Suppose one of preferred sequences is denoted by m-sedjuemte¢he other is denoted by
m-sequence2 . For N cyclically shifted version of m-seqa@na new gold code is generated
by modulo two sum of sequences . Henbenew sequences with lengti"2- 1 are pro-
duced in total. These generated codes, which satisfy thedpsendomness properties, are
also called pseudo random sequences. Gold codes have &dlued cross-correlation with

values €1, —t(m), t(m) — 2) which are also the same as those of preferred sequences.

2.2.2.3 Kasami Codes [16]

Kasami codes are similar to Gold codes and they are also pedduom m-sequences. Better
cross-correlation properties can be obtained by Kasamésotiwo diferent sets of Kasami
sequences can be generated: the small set and the large setlet to generate the small
set, firstly an m-sequenaeof lengthN = 2™ — 1 is derived in whichm is even and then

a new sequenck is generated by sampling every’2 + 1 elements ofa. Hence a new
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sequencd is obtained with a period™? — 1. Finally, the small set of Kasami sequences
is generated by taking modulo 2 sum of the m-sequenaéth all cyclic shifts ofb. The
sequencéd has 22 — 2 cyclic shifts and by including the original m-sequerdotally a
small set which includes™? sequences is produced. The length of these sequenc®s ik 2
The cross-correlation and autocorrelation functions e$¢éhcodes take on values from the set
(-1, —(2™2 + 1),2™2 — 1). The larger Kasami set is also generated in a similar waheas
small set. Again m-sequeneeand a sequendeare produced as it is done in the generation
of a small set . In addition to these sequences, a new sequént@med by sampling every
20m2)/2 1 1 elements of m-sequenee The set is then comprised by taking modulo 2 sum of
awith all cyclic shifts ofb andc. Therefore, a large set including more Kasami sequences is
generated. The cross-correlation and autocorrelatioctifums of Kasami codes in the large

set take on values from the setl( (-1 + 2™?), -1 + 2MW?2+1),

2.2.2.4 Walsh-Hadamard Codes [16]

Walsh Hadamard codes are orthogonal codes. Hence the awsfation value of two se-
guences is zero when there is no time shift between sequefitegieneration of Hadamard-

Walsh sequences of length N is as follows.

Hn  Hn
Hon =
Hnv Hon

whereHy represents the Hadamard matrix. Fos2\the Hadamard matrix is

11
Hy =

Each row ofHy specifies a dferent sequence and each sequence has a length of N. Hence
we can obtain N spreading sequences which are mutuallygwtiad. When synchronized,
these codes have good cross-correlation property. The disigiguished disadvantage of

Hadamard codes is that they are unable to satisfy the autekation property.
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2.3 OPTIMUM RECEIVER FOR M-ARY ORTHOGONAL SIGNALS

Suppose that the transmitted word contdihsymbols and the transmitted word is expressed

as

N-1
X0) = Y sut-KT)  m=12...,M (2.28)
k=0

Assume that the transmitted signal is passed through a ehawich is characterized by the

impulse responsbc(t) and corrupted by the white noisgt). Then, the received signa(t)

is:
N-1
() = > Un(t = KT) + w(t) (2.29)
k=0
where
Um(t) = sm(t) * he(t). (2.30)

An optimum receiver structure for M-ary orthogonal sigretiis given in Figure 2.6 [1].

As seen in Figure 2.6, the received signal is initially pdsseough a filtem;(—t) which is

called the channel matched filter (CMF). Then, the CMF ouippassed through a bank of M
symbol matched filters (SMF), each of which is matched to thepkrific signal waveforms,
ie.,s(),0<t<T,i=12..,Mand sampled periodically, once per symbol interval. Finall
the transmitted symbol is detected by picking up the symbatichred filter with the largest

correlation value.

In this structure, Maximum Likelihood (ML) criterion based the decision of the maximum
of p(r|sy) is considered. Suppose the received signal is passedytitba channel matched

filter and the bank oM matched filters. Thus, at the output of ikéh matched filter we have

Yi(t) = r(t) = ho(—t) = s'(-t) (2.31)
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Figure 2.6: Optimum receiver block scheme

These matched filter outputs are sampled at T, the end of the symbol interval. This

response can be separated into two parts: the signal comipame: the noise component:

Yi=24+n (2.32)

The noise component is

mi = W(t) * hg(=t) + § (-Dh=t (2.33)

wheren; are almost independent sinsg are nearly orthogonal. The signal component is

given by

Z = Um(t) = hg(=t) = 5 (Y=t (2.34)

These terms represent the projection of the received simmaM possible transmitted signal
waveforms. Then, the outputs of tiv filters are compared and the largest one is selected.

This decision rule detects the sigrsg]that is closest in distance to the received sig@l It
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is also referred as minimum distance detection [2].

Since the transmitted word contaibssymbols, at the input of the detector, the following

decision variables are produced:

N

Yi = D T h(-1) # S (Dt T=1,2,..., M (2.35)
k=1

According to these decision variables, the detector estisid symbols by picking up the

symbol matched filter with a largest correlation value infresygmbol interval separately.

Furthermore, it can be shown that a RAKE receiver is actuailyiemented by the channel
matched filter: Reference [4] states that a RAKE receiveraeid multipath replicas with
several correlators and performs maximum ratio combingiggudelay and weighting sum-
mation. It is known that a RAKE receiver features a channekhed filter which comple-
ments the channel impulse response and removesfdet of fading multipaths in a channel.
Also, the CMF in this receiver structure enables the redaabf the receiver complexity and

removes the channelffects as much as possible in the input of the code correlators.

2.4 THE SYSTEM STRUCTURE USED IN THIS THESIS

2.4.1 Code Selection

For exploring M-ary orthogonal signaling, practical splieg codes are used in place of
orthogonal signals. There are many choices with regardreEaging sequences. In previous
sections, details about spreading codes were describguhrticular, the codes set size, the
cross-correlation property, the sequence length are deres in the code selection to use in

M-ary orthogonal signaling structure.

Now we can analyze spreading codes. It is known that for idehbgonal signals,

> slKIs[k =0 for i#] (2.36)
k

wheres[k] are orthogonal sequences consisting of plus and minus ones
Walsh-Hadamard codes are orthogonal sequences. Howegse todes have some draw-
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Table 2.2: Comparison of Orthogonal, Kasami and Gold codes

Code Type Length | Constraint ofm | Code Set Siz€ Rmax
Orthogonal Sequences N.A. N.A. N.A. 0
Gold Sequences 2m_1 modd 2m 4+ 1 2me1)2 g
Gold Sequences 2m_1 meven 2Mm 41 2m+2)/2 4 1
Large set of Kasami Sequence™ — 1 meven ~ 2%m/2 22+l g
Small set of Kasami Sequence2™ — 1 meven 2m/2 2W2 41

backs: Although the full-sequence cross-correlation @énitally zero, this does not hold
for partial sequence cross-correlation function. Moreotleese codes possess poor auto-
correlation property. These codes can easily fiected by multipath channel which results

in interference. The consequence is that the advantagenf aghogonal codes is lost.

The other spreading codes examined in the previous seati@ngot orthogonal but they

possess good correlation properties. Hence, we can cortsidese these codes in place
of orthogonal signals. Possible spreading codes mentiompdevious sections are Barker
codes, m-sequences, Gold codes and Kasami codes. Barlkes @@dnot suitable for M-ary

orthogonal signal structure because there are only on@gegqor each length. M-sequences
have worse cross-correlation properties than Gold and rdiasades. Table 2.2 compares
Kasami, Gold codes with ideal orthogonal codes in terms efsiquence length, code set

size and maximum cross-correlation value.

The Welch lower bound is approximated Raax > VN whenN and M is large. For Gold

and Kasami sequenceds,= 2™ — 1 and the bound becomes

Rmax~ 2™2 (2.37)

As seen in table 2.2, the peak cross-correlation value féd Gades is larger byy2 for odd
mand by 2 for everm in comparison to Welch lower bound. Furthermore, for thgdaset
of Kasami sequences, the peak correlation value betweepainyn this set is larger than
Welch lower bound. However, the maximum cross-correlatiaioie for codes in a small set

of Kasami sequences is

Rmax=2"2+1 (2.38)
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This value approximately satisfies the Welch lower boundi stay be stated that Kasami
codes are the best choice. Therefore, the small set of Kassquences is employed as M-ary

code set in our work.

2.4.2 Kasami Code Generation

In the previous section, the small set of Kasami codes has tleesen for M-ary signaling
structure. In this work, we choodéd = 8. A small set of Kasami codes produced from an m-
sequence, has™® members. Since 8 Kasami sequences are generated, the mofnsbage

of the m-sequence is

and the length of each Kasami code is
N=2"-1=63

Firstly, an m-sequence must be produced to generate Kasates.c The m-sequence is de-
rived from the linear shift register with feedback taps deiaed by a generator polynomial

that must be primitive. Some primitive polynomials for threlerm = 6 are as follows

X8+ x+1
X+ x0+1 (2.39)

X+ +x+x+1

In this work, we choose

G =x+x°+1 (2.40)

The linear feedback shift register corresponding to theeg®or polynomial expressed in

equation 2.40 is shown in Figure 2.7.

By using this shift register model, an m-sequence, called generated. 7 more sequences
must be generated for a small set of Kasami sequences. Bwfolj the procedures in section

2.2.2.3, firstly a new sequenbes generated by sampling every 9 elements of the m-sequence
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Figure 2.7: Linear feedback shift register for related potyial

a. Then, other 7 elements of the small set are generated bygtakodulo 2 sum of the m-
sequencea with all cyclic shifts ofb. The generated Kasami sequences are shown in table
2.3.

The auto-correlation of the m-sequereés shown in Figure 2.8. Since the sequemrcs
an original m-sequence, the auto-correlation functiory dakes on values 63, the length
of the m-sequence, andl as shown in this figure. Also, some auto-correlation andszro
correlation functions of the generated Kasami sequenaestenwn in Figures 2.9 and 2.10.
It can easily be observed that the cross-correlation arm@urtelation functions of Kasami
sequences take on values from the set (-1,-9,7). Howewsetbalculations are conducted
by considering that the generated Kasami sequences witigthlef 63 are periodic, that is,
the sequence is repeated periodically. However, it is radistec to consider the sequence to
be periodic. Therefore, we consider the generated Kasajuesees in an aperiodic fashion,
that is to say, generated finite sequences are not repeatedigaly. The auto-correlation
and cross-correlation functions corresponding to aparig@dsami sequences are shown in
Figures 2.11 and 2.12. Itis observed that the auto-coivela@ind cross-correlation functions

also take low values, the maximum value being 13.

Autocorrelation Function

|
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o
I
N
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~ok

20 40 60

Figure 2.8: Autocorrelation function of the generated musacea
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Table 2.3: Generated Kasami sequences of leNgth63

1,
1,

1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-
-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,1, 1, -1,

-1,1,1,1,1,1

l,-4,111-1-,-1-1,11,-1,11,-1,-1,-1,1, -1, 311,

-14-1,-1,-,-111-11,-1,1,1,-1,-3,1,-1,-1, 1, 1,

-1,-1,-1,-1, 1,1

1,1

1

1
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,-1,111
, -1, -1,31
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—
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Figure 2.9: Autocorrelation function of one of the genedat@sami sequences
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2.4.3 Complete System Block Diagram

The general block diagram of the structure used in this $hesihown in Figure 2.13.

M-ary

Information Orthogonal Multipath
———=|  Signaling RIRC Channel m
bits (Pick one of filter he(t) L/
si(t)
’—‘ Y1 /lr ’—|
Re Si'(t)
L™ ] | ]
Y2 |
Re T S2 ()
Select | rt)
the | y RRC
he(-t) |—
Most filter
y:
Likely e " s L
Sequence I_l | \_I
. o .
|
-
|
Vs N
Re Ss ()
L | T

t= KT

Figure 2.13: Structure used in this work

In order to convey information bits, 8 Kasami sequences widngthN = 63 are generated
as described in section 2.4.2 and are used as transmittmgaty. At the transmitter, the
data is grouped intk = logpM = 3 bits block. This 3-bit block represents the symbol with
a symbol durationls which isk times the bit duratioi,. According to each 3-bit block
in the input data, a signal waveform is selected from the £8tkasami sequences as the
transmitted symbol. Each transmitted symbol consists ef 63 chips and each chip has a

duration ofT¢:

Ts=3Tp = 63T, (2.41)

The transmitted waveform in baseband is expressed as
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X(t) = > ag(t—kTo) (2.42)
k

whereay are chips belonging to the transmitted symbol g(tllis the pulse shape. We use a
Raised Cosine Filter for the overall pulse shaping. Roos&hCosine Filters (RRC) are used

in both the transmitter and the receiver in order to obtaims&d Cosine Filter as a resultant.

The frame structure of a transmitted packet is shown in 2Th& training sequence is used
for frame synchronization and channel estimation. Therm#tion data part consists of 17

symbols (51 bits).

xmit(i) xmit(i+1)

------ TrainingData| Information Data TrainingDar,a‘ Information Data S e e e

Figure 2.14: Frame structure of a transmitted word

The channel impulse response consisting of L taps is exguiess

L
he(t) = > hi(®)s(t - 7)) (2.43)
i=1

whereh; is the complex gain and; is the time delay corresponding to related gain. The

channel output is corrupted by white Gaussian noigd,
The receiver is the one already described in section 2.3

In simulations, the packet shown in Figure 2.14 is sent feh@eansmission burst. In each
packet, the information data consists of 17 symbols eachhiéiwis represented by one of
the generated Kasami sequences. The received signal inaibtay passing the transmitted
word through a channel and corrupting it by the white noisierthe demodulation process
at the receiver, the detector estimates the transmitted ddten, the estimated bits and the
transmitted bits are compared to detect the number of lor®in the received data. This

process is repeated until thefcient bit error number is reached.
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Moreover, the performance of the proposed structure isoegg@lby simulations carried out
in MATLAB. Since simulations are conducted in discrete tjite analog signals involved in
the system diagram are sampled at a rate greater than tesgonding Nyquist rate. In most

of the simulations, the sampling rate is chosen as 16 timeship rate:

116

_— = — 2.44
Tsampling Tc ( )

fsam pling=
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CHAPTER 3

PERFORMANCE UNDER IDEAL CONDITIONS

3.1 INTRODUCTION

In Chapter 2, M-ary quasi-orthogonal signaling system gis{@asami codes has been pro-
posed. Kasami codes are not orthogonal but they take love-wmselation values. Hence
they can be treated as nearly orthogonal signals. In thigtehahe performance of M-ary
Kasami code signaling is explored by using the proposedvercstructure under AWGN
channel. Moreover, Kasami codes are used in an M-ary bigatia structure by including
negatives of Kasami codes as a transmitted symbol. Thempetiermance of this structure

is observed and compared with the M-ary Kasami codes sigmali

3.2 |IDEAL M-ARY ORTHOGONAL SIGNALING

In order to explore the performance of our proposed M-argaligg system using quasi or-
thogonal codes, itis needed to compare our simulationtsawith the exact M-ary orthogonal
modulation under ideal conditions. In Chapter 2, detaildledry orthogonal signaling are
described. As mentioned in Chapter 2, fdrequal-energy orthogonal signals the symbol

error probability is

e o Lol o ]

The bit error probability can be derived from the symbol epoobability. Each symbol

dy (3.1

conveysk bits of information wherek = log,M and the average number ofbit errors per

k-bit symbol is expressed as follows:
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K k-1
E{n bit errorg = Z (E)ZPM =k 2 Pwm (3.2)
n=1

k_1~ "2k-1

Then the bit error probability is

21 Pw

szzk_lPMzT k>>1 (3.3)

The graphs of the bit error rate as a function of SNR perjtiNg are shown in Figure 3.1

for M = 2,4,8,16, 32.

Probability of Bit Error for Orthogonal Signals
10 ¢ T T

——M=2
——M=4

Probability o Bit Error

Eb\NO

Figure 3.1: Probability of bit error of M-ary orthogonal sags for diferent M values

3.2.1 Simulations and Comparisons

First, the performance of the proposed M-ary signalingcstme using Kasami codes is in-
vestigated. For this purpose, Monte-Carlo simulationsehzeen carried out for the AWGN
channel assuming perfect synchronization. The exact Mydinpgonal signaling, the formula
of which is given in equation (3.1), can be used as a referemcempare our simulation re-
sult. The number of Kasami codes used in our proposed systdn= 8 with or N = 63

chips. Figure 3.2 shows the performance of M-ary Kasami €atmaling.

As seen in Figure 3.2, the performance of the proposed syssamg Kasami codes is better

than M-ary orthogonal modulation. This performance improent is attributed to the cross
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Figure 3.2: Performance of M-ary signaling system usingak@sodes

correlation property of Kasami sequences: Since the atival of any two Kasami sequences

can take negative values, the distance between symbolsré&ased.

3.3 M-ARY BIORTHOGONAL SIGNALING

M-ary biorthogonal signaling which is deduced from M-aryhamgonal signaling can be used
in digital communication systems. A set bf biorthogonal signals can be constructed from
M/2 orthogonal signals by including negatives of orthogoighals [2]. Hence in order to
construct a set oM biorthogonal signalN = M/2 dimensions are required. Signal space

diagrams for some biorthogonal signals are shown in FigLge 3

The complexity of the receiver is reduced for biorthogorghaling, since in M-ary biorthog-
onal signaling the receiver is implemented wikty2 correlators or matched filters while in
orthogonal signalingV correlators are required. In [2] an expression for the poditya of

correct decision of M-ary biorthogonal signaling is dedve

oo VZe/N M/2-1
Pe = f [_1 e e‘xz/zdx] eV'/2dy (3.4
—V2eNo \ V271t J-(v+ v2eg)

The symbol error probability for M-ary biorthogonal sigads then found as
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Figure 3.3: Signal space diagrams of biorthogonal sigraldti=4, N=2 and M=6, N=3

Py =1-P; (3.5)

Figure 3.4 illustrates the symbol error rate as a functioBMR per bit for dfferent values of

M.

Symbol Error Rate

3
Eb/NO

Figure 3.4: Probability of symbol error for biorthogonadisals
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3.3.1 Simulations and Comparisons

In this section we investigate the performance of Kasamesadd biorthogonal structure.
We have totally 16 sequences with lendgth= 63 to transmit information by considering
negatives of 8 generated Kasami sequences. Mrot 16, logoM = 4 bits are conveyed
by each sequence. In contrast, in M-ary orthogonal siggalsing Kasami codes 3 bits are
conveyed by each sequence. In order to see the performamdeanf biorthogonal signal-
ing using Kasami codes, the same structure for M-ary orthalgsignaling shown in Figure
2.13 is used. Again, in the demodulator part, real parts @stmbol matched filter outputs
are used for decision. Symbol matched filters are matchedkasdmi sequences. At the
receiver, the detector first selects the related matchedt bif picking up the maximum of
the absolute value of matched filter outputs. Then the tratesinsymbol is determined by
looking for the sign of the selected symbol matched filtepatit The implementation of the
receiver is similar to the structure used for M-ary orthagjasignaling. The only dference
between these receiver structures is that the absolute whlmatched filter outputs in M-
ary biorthogonal signaling are used instead of themseli#ence the advantage of having

negative cross-correlation value between the Kasami dedest.

The performance of M-ary biorthogonal signals fr= 16 is illustrated in Figure 3.5. The
theoretical result given in Figure 3.4 is used as a referéem@mpare the performance of

M-ary biorthogonal modulation using Kasami codes.

—e—MBOK structure using kasami codes for M=16

10° E T
£ : —=—MBOK theoretical result for M=16

.
e,
T

=
o
&
T

Probability of symbol error
= .
S, S
T \

10°

10 L

Figure 3.5: Performance of M-ary biorthogonal structuragi&asami codes
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It is seen in Figure 3.5 that the performance of biorthogaigtaling using Kasami codes is

worse than the biorthogonal signaling using orthogonaiagas expected.

We also compare the performance of M-ary biorthogonal $iiggaising Kasami codes with
M-ary Kasami code signaling. For this comparison, we eqtrealimensions of both modu-

lations to 8. The number of sequences is:

IVlorth =8 IVlborth =16

The performance comparison for these signaling schemebecamade by examining Figure

3.6.

10" ¢ T : ‘ .
£ : —=—MOK Structure Using Kasami Codes for M=8
——MBOK Structure Using Kasami Codes for M=16

10° E : p E
10~ E . - . B E

10’3 E . B . B e

Probability of symbol error

10~ 1 1 1 1 1 1 1

Figure 3.6: Comparison of M-ary signaling and M-ary biogboal structure using Kasami
codes

As seen in Figure 3.6, performances of these systems arelesegyto each other. One of the
advantages of M-ary biorthogonal signaling is that higheadransmission rate is achieved
which means higher spectrdfieiency. In an equal symbol time interval, the number of bits

conveyed by a Kasami symbol is

logoMorth = 3 for M-ary orthogonal structure (3.6)
log> Mporth = 4 for M-ary biorthogonal structure .

Hence, in M-ary biorthogonal signaling, more bits can begnaitted in a symbol. This allows

us to use error correction codes in M-ary biorthogonal diggavith the same information bit
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rate as the uncoded M-ary orthogonal signaling. Theretbeeperformance can be improved

by M-ary biorthogonal signaling.

35



CHAPTER 4

A SIMPLE SYMBOL SYNCHRONIZER

4.1 INTRODUCTION

In communication systems, the parameters required by necstvers are the carrier fre-
guency, the carrier phase and the symbol timing of the redesignal [18]. The carrier fre-
guency of the received signal may béeient from that of the nominal value of the transmitter
carrier frequency. This discrepancy could be due to theadievi of the transmitter oscillator
and the receiver oscillator from the nominal frequency d®dRoppler €ect. In reality, the
information-bearing signal travels from the transmitthe receiver within a finite amount
of time. This transmission delay introduces a mismatch betwthe symbol timing at the
transmitter and that at the receiver. The matched filterudutpeds to be sampled at an exact
time in order to optimize the receiver performance. Theieaphase of the received signal
is the sum of three major components, namely, the randonmeptas to the mismatch be-
tween the local oscillators of the transmitter and the kexethe channel phase response and
the phase stemming from the transmission delay. In thistehape focus on estimation of
symbol timing. Since the prorogation delay from the trartmito the receiver is unknown
at the receiver, the symbol timing must be derived from tleeiked signal in order to sample
the demodulator output synchronously. The process of @kigathe clock for determining
the accurate location of the symbol timing at the receivealied symbol synchronization or
symbol timing recovery [2]. A system that is able to estingteh locations is called a timing

(or) clock synchronizer.
Suppose the channel delays the signal transmitted throagll icorrupts the signal by adding
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Gaussian noise. Hence, the received signal is

r(t) = s(t — 7) + w(t) (4.1)

wherer is the propagation delay amgt) is the white Gaussian noise with two-sided spectral

densityNg/2. The transmitted signa(t) in equation 4.1 is given by

s(t) = > ag(t - kT) (4.2)
k

whereay are data symbols belonging to tMe-ary alphabet and g(t) is the pulse shape with a
time intervalT. In general, the typical block diagram of a baseband recewth a symbol

synchronizer is indicated in Figure 4.1.

=

r(t) RECEIVER| *(1) X(KT) !
e DETECTOR |—»

TIMING
RECOVERY

Figure 4.1: Block diagram of a baseband receiver

After the incoming waveform is filtered in order to remove the-of-band noise, the output
of the filter is sampled periodically at T-spaced instarftat ist = kT + 7. Via these samples,
the detector derives estimat@sof the transmitted data. The timing recovery function aitns a
generating optimum sampling instants which amount to themam eye opening at the out-
put of the receiver filter [11]. Hence, by using these es@daamples the receiver achieves

a bit error rate as close as possible to optimum.

Mengali and D’ Andrea in [11] state two topologies used fag #ymbol synchronization
in digital communication systems, i.e. feedback(closamb)aonfiguration and feedforward
(open loop) configuration. Figures 4.2 and 4.3 illustratefigurations pertaining to these
topologies. In both cases, the received signal applies t& fnti-Aliasing Filter) which

limits the bandwidth of the received signal. Sampling istoalted by a fixed clock whose

ticks are not locked to the incoming data. The bulk of the @slsaping is performed in the
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matched filter whose location is not necessarily that shawthe figures. Timing correction
is similar to the operation of a voltage controllable delmeland produces synchronized

samples to be used for decision and synchronization pusgad¢

To data
() x(l) x(kT) | MATCHED | WAT) | TIMING detector
* AAF T " FILTER "l CORRECTOR
i 3
LT,
Flf“el‘j @ TIMING
cloc ESTIMATOR
Figure 4.2: Feedforward configuration
To data
" AAF |0, xKL) | MATCHED |yAT)| TIMING dogiE
£ FILTER CORRECTOR 2
LU,
Fixed A ;
) LOOP efk)
clock =~ FILTER TED

Figure 4.3: Feedback configuration

In feedforward configuration, an estimate of the timing indation is derived by processing
received signal samples. Whereas, in feedback configaratiiming corrector feeds a timing
error detector (TED) the purpose of which is to generate eor signale(k) in proportion to
the diference between the prorogation detagnd its current estimate. Symbol synchroniza-
tion methods can be classified into two groups: Decisiornctiae methods and non-decision

directed methods.

In this chapter, a new symbol timing synchronizer suitableM-ary signaling is proposed

and the performance of this synchronizer is explored.
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4.2 PROPOSED SYMBOL SYNCHRONIZATION

In this work, a non-decision directed timing recovery schamproposed in order to derive
symbol timing information. The proposed timing synchremihas its roots from the Maxi-

mum Likelihood (ML) estimation of the timingftset. The likelihood function is given by

A7) = CLf r(t)s(t — 7)dt (4.3)
To
for estimating the time of arrival of known signal s(t) in AWGThus, the likelihood function

is just a correlation process. The most likely timinfsettysset is the value ofr"which

maximizes the likelihood function:

tAof fset= argrna)f\(%) (4-4)

For M-ary signaling, eaclog,M bit block is conveyed by one of M specific waveforms.
Suppose the transmitted signal is delayed by the channet@mdpted by Gaussian noise.

Hence, the received signal is given by

K
YO = ) s (t=KTs = 1) + w(t) (4.5)
k=0
wherely represents one of M symbols. The sequentially transmitgatbsls are denoted by
| vector:
L={lnl2..... 1k} (4.6)

In our proposed timing recovery, the timin§setr is estimated by maximizing the probabil-

ity density functionp(yir, I) with respect to unknown signal parametemnd| as follows:

{I.7) = argmap(ylr. 1) (4.7)
7l -
~ K (k+1)Ts
(i, #) = argmaxy f y(t)s,, (t — KT — 7)dt (4.8)
T,l kZO kTS
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{i,7) = argmasz: o (4.9)
ol ico

wherey'x7 is the matched filter output of k-th symbol with a certain tidedayr. The symbol

timing offset may be estimated by looking for the timing instant whieeerhaximum of the

correlation between the received signal and referencalsiggmobtained. This is the optimal

decoding method. However, this method is rather complenxcesihere ar®1 matched filters,

the process in equation 4.8 is repealdli times in order to estimate the timingfset. One

can simplify this optimal decoding by using suboptimal sty symbol decision:

K
(7} = argmaxZ maxy'k” (4.10)
T Ik
k=0

In this suboptimal decoding, the complexity to make symlaalision reduces since the pro-
cess in equation 4.10 is repeafdd K times. This correlation function may also be evaluated
as the output of a filter matched to the reference signal. Faryvsignaling, we usé/ fil-
ters each of which is matched to one of the possMisignals. After the received samples
are passed through the matched filters each of which matohedignal in the sef(t), the

matched filter outputs resemble those shown in Figure 4.4.

Matched Filter
Output 1

|
|
Matched Filter ‘
Output 2 }
f
|

Matched Filter
Qutput 3

[

|

° [

, |

. |

|

|

Matched Filter |
Output M | |
Il

|

|

|

42)T, +

Figure 4.4: Matched filter outputs
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As seen in the matched filter outputsffdient matched filter outputs give maximum correla-
tion values afl s-spaced instants with a propagation detay-or the estimation of the timing
offset as expressed in equation 4.10, we construct a functiahughcalled “comb” function.
The “comb” function comprises a kind of time-gate functiohigh has a periodic structure

and a certain timeftset as shown in Figure 4.5.

Comb Function

Amplitude

0
T +T, 2T,

Time

Figure 4.5: “Comb” Function

The “comb” function is used to look for the timing instant wleve obtain the maximum
value at the channel matched filter outputs. For this purgbese‘comb” function is applied
to matched filter outputs to sample the matched filter outgiiise timer + kTs. Functionally,
at time instances + kTs all matched filter outputs are sampled, the one with maximaimev
att + kTs is chosen and all these maximum values are added to get thiofuia value at
the time delayr. This process is repeated for allkOr < Ts. Finally, the valuer for which

the “comb” function is maximum is declared the estimatedetiofset. This timing @set

estimation process is shown in Figure 4.6.
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Matched Filter
Output 1

time

Medehea piller MWWMWM
QOutput M

time

1 st iteration ‘ ‘

KT, e1m, (2T, time

1
2 nd iteration

time

KT+t k)Tt o (k2T

s
3 rd iteration ‘

time

KT.+T, (k+1)To+ T, (k#2)Ts+ T,

Figure 4.6: Timing recovery process: In each iteration, tmenb” function is shifted in time
by a certain time fisetr and all matched filter outputs are sampled at v + kTs. After
choosing the sample with maximum valuet at v + kTs, these maximum values are added.
After completing all iterations, the sum values obtainee@dth iteration are compared and
the largest sum value is chosen. The vatughere the “comb” function is maximum is the
estimated time fiset.

In the following part of this section, in order to apply th@posed timing recovery the written

matlab code is given:

%matched filter outputs are combined in a function by seigdtie maximum valued sample

between the samples of all matched filter outputs.

for i=1:length(rl)
wl(i)=max(r1(i),r2(i));
w2(i)=max(wl(i),r3(i));
w3(i)=max(w2(i),r4(i));
w4 (i)=max(w3(i),r5(i));
w5(i)=max(w4(i),r6(i));
w6 (i)=max(w5(i),r7(i));
s(i)=max(w6(i),r8(i));

end

%create the “comb” function which is equal to 1 at=t mTs where m= 0,1,2..., total

symbol numberl.
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combfunc=zeros(1l,16*length(k1)+1);
for z=1:1:17
combfunc((z-1)*length(k1)+1)=1; % length(kl)=symbol time

end

%multiply the terms of s[k] by the terms of a time shifted clumt[k] and add them up. All
sum values are compared and the symbol timjfigedis estimated by picking up the time shift

with the largest sum value.

for i=1:1:1ength(k1)*2-1)
a=s(i:1:(i+16*length(k1l))) .* combfunc;
b(1)=sum(a);

end

[maxnumber,sampletime]=max (b);

4.3 MODIFIED CRAMER-RAO BOUND [11][12]

Cramer-Rao Bound (CRB) is a useful tool which gives a lowembon the error variance of

any parameter estimator [13].

Suppose that the complex envelope of the received signaléa by

r(t) = (t) + w(t) (4.11)

where

s(t) = exp[2av(t — to) + 6] )" ag(t - KT —7) (4.12)
k

and w(t) is the complex valued additive white Gaussian noliee4.12,v is the carrier fre-
guency dfset,0 is the carrier phase at some reference tinsety andr is the symbol time
delay. These three parametgrs, r are unknown and should therefore be estimated at the re-
ceiver. In this work, we focus on estimating the symbol tighaftsetr. CRB defines a bound

for a variance of any parameter estimation error. Let a sieigment ofv, 6, 7 be denoted
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by A which is assumed to be deterministic (nonrandom). All ofjemameters and the data
are gathered in a vecter having a known probability density functiop(u). If A(r) is any

unbiased estimate af then the CRB is given by

1

TP

Var[1-A(r)] = CREW) = (4.13)

or equivalently,

S L)

The Cramer-Rao Bound expression given in equations (4riBj§414) provides a bound for

CRE() = — (4.14)

the variance of the estimation error. It is known that no aebd estimator can provide a
lower variance than that established by CRB. Although tbisnal provides a lower limit for
the estimation error, the computation (f |1) contains some mathematicaftulties. The

probability density functiorp(r|) is derived by averaging out the unwanted parameters from

p(ru, 2):

BT 1) = f "~ p(riu. ) p(u)du (4.15)

Unfortunately, in most cases of practical interest, the matation of the CRB formula is
difficult since either the integration in equation 4.15 cannotdied out analytically or
there are obstacles risen in calculating the expectati@giration 4.14 [12]. Another lower
bound to the variance of the estimation error is the Modifiedn@r-Rao Bound (MCRB)

[11] [12]. MCRB is much easier to employ but it is generallpser than CRB.

MCRB is a variant of CRB and it is derived by using Jensen’'sjiradity in the CRB formula.
MCRB by [12] for the variance of — A(r) is as follows

1

olnp(riu, 2) 2\’
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whereu represents a set of nuisance parameters.

The relationship betwee@RB1) andMCRB2) is

Var[1-1(r)| = CRE1) > MCRE(1) (4.17)

In Figure 4.7, examples &ERB1) and MCRB) are drawn as a function of the signal to
noise ratioEs/Ng in case MCRB is looser, i.e. too low in comparison to the evariances
of good estimators. MCRB and CRB become identical when utedaparameters in are

perfectly known or there are no unknown parameters.

CRB (T)

~ MCRB (T)
| 1 1 | | |

Figure 4.7: Example curves: Actual error variance, CRBICRB(1) [11]

In this study, we consider the estimation of the symbol tgnilelayr. In order to compute
MCRB for the separate estimation{af 0, v} following assumptions are made: While deriving
MCRB\), 1 is considered as a fixed parameter and the vectocluding unwanted param-
eters and data symbolg;} is considered as a random vector. Suppbdsev. In computing
MCRByV), we considew as a fixed parameter ang = {r,0, a;} as a random vector. Simi-

lar assumptions are made for= 7, 1 = 6 and their associated unwanted parameter vectors
u = {v,0,a} anduy = {r,v,a}. In addition, there are some assumptions made on statistics
of parameterdr, 0,v, a}. It is assumed that the timing epoehin u, and uy is uniformly
distributed between 0 and symbol intervial Data symbolsy are zero mean independent

random variables. Finally, synchronization parametectuded in any of the vectons,, u,,
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Uy are independent.

In this thesis, only the estimation of timing delays considered. In [12], the MCRB faris
given by
B.T T2

MCRaT) = H‘:—ES/NO

(4.18)

where¢ is a codficient depending on the pulse shas:

fwT2f2|G(f)|2df
£ = (4.19)

foo IG(f))?df

In equation 4.18, the equivalent noise bandwiiths:

BL=— (4.20)

whereLT equals the observation time intervigy.

The bound in equation 4.18 will be used as a reference in pediace comparisons in the

sequel.

4.4 SIMULATIONS AND RESULTS

In this section, the performance of the proposed syncheon&investigated under AWGN
channel. For simulation of the proposed synchronizer, aahisddeveloped in MATLAB.
Hence, continuous time signals must be represented bydiseitete time samples taken at a
rate greater than the Nyquist rate in the simulation modekimulations, the discrete time

samples are taken at a reft@mping= 1/TsampingWhere

T
Tsam pling = 1_;:3

whereT, represents the chip time interval. Transmitted symbolsisbf chips belonging to

the relevant Kasami code. The block diagram of the simulatedel is shown in Figure 4.8.
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Figure 4.8: Simulated model of a receiver

The received signal is

X() = ) cng(t - nTe) + W(t) (4.21)

whereg(t) denotes the pulse shape am(tl) represents the white Gaussian noise. The proposed

symbol synchronizer produces the estimate of the samplimg t
tk =kTe+7 (4.22)

wherer’is the estimate of the symbol timindgfeet. Having sampled the received signal at the

sampling instant produced by the timing synchronizer, ipead becomes

X = > cng(KTe + 7 = NTe) + W(KTe + 7) (4.23)

Then, the receiving process continues in the manner asilbeddn Chapter 2. Initially, the
receiver model without synchronizer is considered in otddnvestigate the receiver delay
sensitivity. For this purpose, the received signal is sadpl the exact sampling time with a
known fractional delay as follows:

-
ty = KT¢ + Texact+ ml—g wherem=1,2,...,16 (4.24)

For each factional delay, the bit error performance is ofeskr Simulations that are carried

out for SNR=4 dB and SNR:6 dB are illustrated in Figures 4.9 and 4.10.
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Figure 4.9: Receiver delay sensitivity for SNRdB
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Figure 4.10: Receiver delay sensitivity for SNRdB

As seen in these figures, the receiver performance is defyrablen the €fset to the exact

sampling time is increased.

Furthermore, the receiver sensitivity to the symbol timiledpy is explored under a multipath
environment. Hilly Terrain channel model is used as an exarfithe details of this channel
model will be given in the next chapter). The simulation isrieal out for the chip duration
Te = 0.1 usecand SNR=6 dB. Also, it is assumed that the channel is known at the vecei
In order to see the receiver timing delay sensitivity in aspreee of multipath channel, the
received signal is sampled at the exact sampling time withoavk fractional delay as shown

in equation 4.24. According to the simulation result showRigure 4.11, itis illustrated that
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the receiver is less sensitive to the symbol timing in a mpatti environment when compared

to the condition where the channel is AWGN.

SNR=6 dB, Hilly Terrain Channel, 'I;:O.l usec
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Figure 4.11: Receiver delay sensitivity under a multipatirenment for SNR6 dB

Later, performance of the proposed synchronizer is tedted.this purpose, the BER per-
formance of M-ary Kasami code signaling with the symbol $yoaizer is tested and the

simulation result is presented in Figure 4.12.
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£ : —e—Symbol timing instant is known
—=—Symbol timing instant is estimated by the synchronizery
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Figure 4.12: BER performance with synchronizer

In addition to the BER performance, the synchronizer pertorce is tested by considering

the symbol timing error (also called jitter). The symbolitug error is:
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error = exact sampling time-estimated sampling time — 7

MCRB is used as a reference to test the proposed synchroiiizerMCRB formula for the

symbol timingr is given by

1 1

- - 4.25
8r°L¢ Es/No (4.29)

1
= X MCRE(r) =

wherelL is the number of observed symbols during the timifiget estimation process. Since
in each transmission burst 17 symbols are sent, the obssywebol number to estimate the
timing offset is 17. In Figure 4.13, the standard deviation of the gr@atimation error is

compared with the MCRB for the estimate of the timing error.

T
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Figure 4.13: Synchronizer timing error standard deviation

Itis seenin Figure 4.12 that the BER performance of the systith the symbol synchronizer
is very close to the performance with perfect synchroniratiThere is approximately al

dB loss due to the proposed symbol timing recovery struct@ensidering Figure 4.13 we
can conclude that the performance of the synchronizer isatat worse than the MCRB.

However the diference diminishes as the SNR increases.
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CHAPTER 5

CHANNEL ESTIMATION

5.1 INTRODUCTION

Multipath fading is one of the major concerns in wireless pamications. A multipath trans-
mission takes place when a transmitted signal arrives atedver via two or more paths with
different delays. Such multiple paths may be due to the atmasplefiection or refraction,
or reflections from buildings or other objects [15]. Eachhpe&n have a separate phase,
attenuation, delay and Doppler shift associated with itm8adverse féects of multipath
propagation are inter symbol interference (ISI) and sigmading. These fects significantly
limit the performance of a wireless communication systemRAKE receiver can be used
in order to mitigate multipath channeftfects. It is described in Chapter 2 that the channel
matched filter (CMF) is utilized in our proposed receiveusture for processing the incoming
signal and the channel matched filter provides a RAKE recé@mplementation. Obviously,
the channel matched filter needs to know the channel. Thisdgnaplished by estimating
channel parameters. Then, the receiver uses the estimgte dfiannel in order to detect the
transmitted information from the received signal. In gaherhannel estimation methods can

be classified into two groups:

e Data Aided Channel Estimation: For this estimation method, known pilot symbols,
which are also called training sequence or preamble, ansririited. At the receiver
end, the channel estimation algorithm operates on thevesteiignal along with its

stored symbols to generate an estimate of the transmiskamel.

¢ Blind Channel Estimation: This estimation process relies not on training sequence or

symbol decisions but rather on certain characteristice@htodulated signal.
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In this work, Least Square channel estimation, which is thgondata aided channel estima-
tion method, is investigated for its use in M-ary receivefer the accuracy of the channel
estimation, symbol timing information is required. In orde estimate the exact time for
the start of the transmitted signal, a frame synchronizemsloyed in our work. For a re-
ceiver to decode the incoming data stream, the receiveiresgio be synchronized with the
data streams’ frame structure. The frame synchronizai@téomplished with the aid of the
training data. The receiver knows the training data in tle®tining data stream and in the
receiver the incoming data stream is correlated with thevknivaining pattern at the known
injection interval. The receiver looks for the correlatatfmut where the largest value is at-
tained. Hence, the start time of the incoming symbol is estteeh. If the receiver is not in
synchronization with the framing pattern, the accumulaigulelation is low. Therefore, both
the Least Square channel estimator and the frame synchrare used in the receiver struc-
ture and both of them are based on the transmission of therkposamble data. In this work,
the same preamble data, which indeed consists of Kasamesees, is used for the frame

synchronization and the channel estimation.

In this chapter, we first explain the simulated model and ttrenperformance of the proposed

receiver structure is investigated.

5.2 DESCRIPTION OF THE SIMULATED SYSTEM

5.2.1 Channel Model

A wireless channel is a time-varying system in which the pesi@rs are random and liable to
change with time. From [2], the equivalent low pass respafitke channel is described by

its time varying impulse response as follows:

he(r;t) = > Ba(®)e 2O (r — (1)) (5.1)

t is the observation instant amné 7 represents the time where the impulse is appl#g¢t) is
the attenuation factor angl is the propagation delay for the n-th path. The multipatmaolea

model is shown in Figure 5.1.
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Figure 5.1: Multipath channel model

In order to characterize the multipath channel the scatjeftinction denoted b(r; f) is
used. This function procures a measure of the average dhaunipeit power as a function of
the time delayr and the Doppler frequency. Via the scattering function we can get some
important characteristics of a channel such as the powewygabfile, the power Doppler
spectrum which have an impact on the performance of a conuation system operating
over that channel. In this work, we focus on channels havegligible or no Doppler spread.

The power delay profile of the channel which is denotedPby) is given by

P(r) = f S(r; f)d (5.2)

The power delay profile, also called the multipath intengitgfile represents the average
power associated with a given multipath delay as a functfaietime delayr. The range
of values ofr over whichP(7) is nonzero is called the multipath spread of the channelsand

denoted byl .. Ty, indicates the time dispersive properties of the channel.

COST 207 [20] proposes models for the continuous delay penadile P(At) for different

areas as follows

1. For Rural (Non-hilly) area

e 92t for 0 < At < 7us
P(At) = (5.3)

0 elsewhere
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2. For Urban (Non-hilly) area

e for0< At < 7us

P(At) = (5.4)
0 elsewhere
3. For Hilly Urban area
e for 0 < At < 5us
P(At) =1 0562 for5 < At < 10us (5.5)
0 elsewhere
4. For Hilly Terrain area
g 35At for 0 < At < 2us
P(At) =< 0.1e!>2t  for 15 < At < 20us (5.6)
0 elsewhere

Figure 5.2 presents average power delay profiles for casnepg channel types.

Rural Channel Urban Channel
1

Expected Power per Unit of Tim
Expected Power per Unit of Time

2 3 4 5 s 7 o T 2 3 4 S
Excess Delay Time Excess Delay Time

Hilly Urban Channel Hilly Terrain Channel

Expected Power per Unit of Time
Expected Power per Unit of Tim:

1 18 20

3 4 5 6 7 O o 0 & s 10 12 14
Excess Delay Time Excess Delay Time

Figure 5.2: Power delay profiles

5.2.2 Simulation Model

The general block diagram for M-ary Kasami code signalimgcstire has been described in
section 24.3. In this chapter, the performance of M-ary Kasami codeadigg is explored

over a multipath fading channel. The packet in each trarsamsurst is illustrated in Figure
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5.3. In simulations, the information data consists of 17 dfaissequences. Also, Kasami
sequences are used as a training data which is used in bdtairtie synchronization and the

LS channel estimation.

xmit(i)

E ]
w

Training Data Information Data

Figure 5.3: Frame structure for a transmission bus

In the simulated model, a tapped delay line (TDL) model of tihee invariant frequency

selective fading channel is used. The time-invariant eddeivt low-pass channel is given by

he(z) = " hnd(z - 77). (5.7)

The simulated channel model is shown in Figure 5.4.

L
1
w1/
|7
LT

p) 'E}'Ti

AWGN

Figure 5.4: Channel model used in simulations

While performing simulations described in this chapteglag signals involved in the system
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diagram are sampled at the chip ratg.is the time delay between the successive taps of the
tapped delay line channel model. In simulations, the timayds, is chosen as, = T. Since
the multipath spread i$,,, the number of taps K = (Tn/Tc) + 1. The tap cofficientshy
are complex, Gaussian, independent random variables w'rthncesfrﬁ which follows the

average power delay profile of the channel arﬁdsatisfy the equality:

Yot=1 (5.8)
k

in order to normalize the channel average power gain to .unéy gains are circularly symet-

ric and Gaussian:

hg = hre + jhim (5.9

whereh,e andhi, are independent and identically distributed Gaussianaranariables with

mean 0 and varianagy/2.

The simulated receiver model is illustrated in Figure 5.5.

Incoming CMF — SMF Detector

Samples

Tean + KTe

Channel
Eslimates mT,

Least Square l]
Channel
Estimator

Frame
Synchronizer

Figure 5.5: Proposed receiver structure

As shown in Figure 5.5, both the frame synchronization amrdLisast Square channel esti-
mation are performed at the receiver respectively by thehatraining sequence. Initially,
the exact point for the start of the symbol is estimated byfrdn@e synchronizer. The start of
the symbol is where the correlation of the training data &edréceived signal is maximized
in a predetermined interval. Then, the Least Square chastiehator follows the synchro-
nizer in order to estimate channel taps. In the absence ahtiiépath channel the frame

synchronizer works fine and gives the exact point for the sfethe symbol. However, in the
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presence of the multipath channel the frame synchronizetdvmot give the start time of the
incoming symbol correctly since the first path may not be thengest one. Due to this frame
synchronization error, some channel taps can not be estiiméit order to prevent this loss,
we consider the start time of the incoming sigiialyt in terms of the estimated start time

Ttrame Which is determined by the frame synchronizer as follows:

Tstart = Ttrame— 10T¢ (5.10)

5.3 LEAST SQUARE(LS) CHANNEL ESTIMATION

Least Square (LS) channel estimation approach is the pyia@proach of channel estima-
tion by using a known training sequence. The LS channel asittm algorithm which aims
to minimize the sum of the square of the error is used for thanohl estimation over the

transmitted pilot sequence. We review the LS algorithm is slection.

Suppose only the training data is transmitted. Then, theived signal can be expressed as

y=Xh+v (5.11)

whereh is the complex channel impulse response, which includess, is denoted by

h=[n h ...h] (5.12)

and X is the training sequence matrix,represents white Gaussian noise. The transmitter
sends a training data & symbols which is denoted by Xx; ...Xp-1]. The training

sequence matriX is aP x L matrix given by

X0 0 0 0
X1 X 0 0
X= %2 xx X ... O (5.13)
Xp-1 Xp-2 Xp-3 ... Xp-1-L
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LS channel estimates are formulated by using the squaredpubability:

h = argmin|ly — Xh|? (5.14)
h

Equation 5.14 is solved as follows [14]:

h=(x"x)*xty (5.15)

where (' and (! denote the Hermitian and inverse matrices, respectively.

Ideally, the training sequence is selected such that thelation matrixX"X becomes diag-

onal. If the correlation matrix is diagonal, equation 5.45implified to

1=

xHy (5.16)

Tl

As a result, channel estimates given by equation 5.16 arplsithe correlation between
the training sequence and the received signal. The perfarenaf this estimation method is

investigated in the following section.

5.4 PERFORMANCE OF LEAST SQUARE CHANNEL ESTIMATION

The LS channel estimator estimates the channel impulsemssgor each burst separately by
using the known training sequence and the received sigrmavekter, invariably, an estimation
error occurs during the channel estimation process. Sepihas the estimated channel taps

are composed of the exact channel impulse response andaheattestimation error:

1=
Il

(=3
+

1D

(5.17)

Due to this estimation error, there will be some unwantegh$en the decision variables.
The received signal is given by
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Yn= > Mlnk +Va (5.18)
k

wherely represent samples belonging to the transmitted symbolsamgresent noise sam-
ples corresponding to AWGN channel. The received signabssed through the channel
matched filter which is based on the channel estimzhmvided by the channel estimator.

The channel matched filter output is

Zo = () Mk + Vi) = (W + €7) (5.19)
k

Zo= > (e M) ok + ) (M € Dok + Vo o+ g ey (5.20)
k k

As seen in equation 5.20, the second and fourth terms areswedderms caused by the
channel estimation error. In order to see the&s of these undesired terms, initially the error
term is analyzed theoretically. L& denote the correlation matrix aml= X" X whereX

is the training sequence matrix which is shown in equatid8.5.For simulations, Kasami
codes are used as a training data and it is known that the-coossation function of any two
Kasami codes takes small values. Hence the correlatiorixtiis approximately diagonal

and it is expressed as follows

XTX = R~ Nl (5.21)
wheree. denotes the chip energy; denotes the training sequence length higthe identity

matrix of sizeN¢. Then, channel estimates are expressed as

h=R™X"y=h+e (5.22)

By considering equation 5.18, the channel estimation ésror

e=Rx"y (5.23)
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Then the variance of the channel estimation error is:

02 = (SNR x Ng)™ (5.24)

where SNR(Signal to Noise Ratio) per chip is:

SNR = =% (5.25)

As expressed in equation 5.20, there are two undesired st channel estimation error.
It is conjectured that the undesired term, which is relatecotrelation between the channel
estimation error and AWGN channel, has more advefferts on the system performance.

This undesired term is expressed by

AWGNx ChannelE stimationErroe v, = €, (5.26)

Suppose this undesired term is denotedjhy

L
b= &,y (5.27)
k=0

Because the channel estimation error and Gaussian noisedamendent, the mean square

value ofby, is:

L
Eflbal?} = > Noo (5.28)
k=0

After substitutingo-3 in equation 5.28 with an expression given in 5.24, the meaarsgvalue

of by is:

Lx N
E{lby%} = SNR—X"N (5.29)
C

As seen in equation 5.29, in order to mitigate tlfieets of the undesired terlp caused by

the correlation between AWGN and the channel estimatiaor,err
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e SNR per chip, denoted By NR=&:/No, should be large or

e L/Nc should be small. That is to say, the length of the trainingisage should be much

larger than the total channel taps number

Ne >> L (5.30)

In order to observe thefects of the channel estimation error, simulations are alsducted
for different training sequence lengths under Hilly Terrain Chihané a fixed channel with
15 taps. In simulations, the chip duration is choseias 0.1 usec Throughout the simu-
lations, the channel estimation error term and the termiseathannel matched filter output

shown in Figure 5.6 are recorded.

E (fg * h:k]Lr—k + E (hy = E:k)fn—.l; +vyxh, +v,y ke,
® @ ® @®
@ Exact Channel Response x Exact Channel Response (Desired term)
@ Exact Channel Response x Channel Estimation Error {Due to incorrect channel estimation)

@ AWGN x Exact Channel Respons e (Unavoidable term)

@ AWGHN x Channel Estimation Error (Due to incorrect channel estimation)

Figure 5.6: Expression at the channel matched filter output

Simulation results are presented in tables 5.1, 5.2, 5.%ahd

According to simulation results given in these tables, theanted term due to the correlation
of white Gaussian noise and the channel estimation errambes &ective at the demodula-
tion process. The other unwanted term, caused by the ciiorelaf the channel estimation
error and the exact channel response, is also observed ifficiesu amount at the channel
matched filter output but the term related to the correlatibwhite Gaussian noise and the

the channel estimation erroffacts the system more adversely. Also, the simulation sult
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Table 5.1: Channel estimation performance under Hilly &iarchannel, training sequence

length=8 x 63 chips
S NRperbit= 5 dB Mean Variance
Channel estimation err@y, | 0.0031 - 0.0010i| 0.0142
18t term in Figure 5.6 0.0012 - 0.0000i| 0.0039
2"d term in Figure 5.6 0.0006 - 0.0010i| 0.0062
3d term in Figure 5.6 0.0171+ 0.0233i| 3.9933
4" term in Figure 5.6 0.0277-0.0032 | 18.2255

Table 5.2: Channel estimation performance under Hilly &iarchannel, training sequence

length=32 x 63 chips

S NRperbit=5 dB Mean Variance
Channel estimation err@, | 0.0003+ 0.0002i | 0.0044
18tterm in Figure 5.6 0.0041+ 0.0000i | 0.0038
2"d term in Figure 5.6 -0.0001+ 0.0002i| 0.0020
39 term in Figure 5.6 -0.0484 - 0.0339i| 5.7600
4" term in Figure 5.6 -0.0011+ 0.0036i| 6.0490

Table 5.3: Channel estimation performance under 15-tafiped channel, training sequence

length=2 x 63 chips
S NRperbit=5 dB Mean Variance
Channel estimation err@;, | -0.0208+ 0.0593i| 0.0508
18t term in Figure 5.6 0.0133+ 0.0000i | 0.0097
2"d term in Figure 5.6 -0.0159 - 0.0125i| 0.0087
39 term in Figure 5.6 -0.0470+ 0.0260i | 2.9312
4" term in Figure 5.6 0.0804+ 0.0133i | 5.0819

Table 5.4: Channel estimation performance under 15-tafiped channel, training sequence

length=16 x 63 chips

S NRperbit=5 dB Mean Variance
Channel estimation err@, | 0.0201+ 0.0130i| 0.0083
18t term in Figure 5.6 0.0133+ 0.0000i | 0.0097
2"d term in Figure 5.6 0.0032 - 0.0070i| 0.0020
39 term in Figure 5.6 -0.0026 - 0.0558i 2.8984
4" term in Figure 5.6 -0.0298 - 0.0121i 0.8407
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reveal that as the training sequence length gets largerresibect to the number of channel
taps, the channel estimation error diminishes and fieets of the undesired terms due to the

incorrect channel estimation decrease.

Additionally, these simulation results are compared witd theoretical formulas given in

equation 5.24 and 5.29. The related graphs are presentéglires 5.7, 5.8, 5.9 and 5.10.

Eb/NO0=5 dB, fixed channel with 15 taps, channel estimation length=15
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Figure 5.7: Channel estimation error variance for fixed clean
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Figure 5.8: AWGN and channel estimation error term varidocéixed channel
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Eb/NO=5 dB, HT Channel 201 taps, Channel estimation length=201
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Figure 5.9: Channel estimation error variance for Hillyraéér channel

Eb/NO=5 dB, HT Channel, 201 tap, channel estimation length=201
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Figure 5.10: AWGN and channel estimation error term vaggioc HT channel

As seen in Figures 5.7, 5.8, 5.9, 5.10, simulation and thieateesults are approximately the
same. A small dference between the simulation and the theoretical resudtspected since
the correlation matribR is assumed to be diagonal, but in reality, the correlatiotrim®& is
not exactly diagonal but similar. It is also concluded frdm simulation results that as the

training sequence length gets larger with respect to thebeumf channel taps, the channel
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estimation error and itsfiects decrease.

5.5 BER SIMULATIONS AND RESULTS

In this section, the BER performance of the proposed rece&vavestigated. The simulation
model is as described in section 5.2. Initially, simulasi@re carried out in order to test the
performance of the proposed receiver with a perfect knoydeaf the channel parameters.
In simulations, COST207 Hilly Terrain channel model is use%s it was mentioned, the
multipath spread i3, = 20 usecfor Hilly Terrain channel. The performance of the receiver
is observed for dferent chip duration$. = 10, 1, 0.1, 0.01, 0.001usecseparately. Itis known
that the total number of tapslis= Ty,/Tc+1. Furthermore, for M-ary Kasami code signaling,
each symbol consists of 63 chips. The bit error probabilitiveary Kasami code signaling
as a function of SNR per bit is illustrated separately féfetentT/Tsymnolvalues in Figure

5.11.

HT Channel, Channel is known at the receiver

—AWGN
Tmfrsymb0|:3l7.5
+Tm/Tsymbo|:3l'7
TIT 3.17
m  symbol
é —— Tm/TSymb0|:0.317
5] ——T /T =0.03
= m  symbol
a ;
©
2
E
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o
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Figure 5.11: Receiver performance under Hilly Terrain ctehifior different chip rates where
the channel characteristic is known at the receiver

The simulation results in Figure 5.11 illustrate the adagatof diversity as a means of over-
coming the severe penalty in SNR caused by the multipatindgactiannel. As seen in Figure
5.11, there is an optimum valt&,/Tsymboiat which the bit error probability is minimal. A

careful examination of these graphs reveals that the mimiriz error rate is obtained when
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Tm/Tsymbol = 3.17. After this optimum value, a degradation in the BER perfance is ob-
served. Whemm,/Tsymbol = 317.5, the system performance is degraded dramatically since
ISI seriously #&ects the receiver performance. However, a significant gaperformance is
obtained forTm/Tsymboi= 317 and 317. Therefore, it is concluded that even for large values
of multipath numbers, M-ary Kasami code signaling stillisesinter symbol interference.

This indicates the robustness of Kasami codes in a multigatironment.

Now, the performance of the proposed receiver structutadimy the frame synchronizer and
the channel estimator is investigated. Simulations argechout for the chip rat&. = 10
Mchip/sec under Hilly Terrain channel. In order to test the progaseeiver, three scenarios

are considered.

In the first scenario, the training sequence length is vddedach simulation and thefects
of this change on system performance are observed. In thigso, the channel length is
assumed to be known by the receiver. The graphs of bit erterasaa function of SNR per

bit are shown in Figure 5.12 for fliérent training sequence lengths.

Tc=0.1, HT channel, channel length is known at a receiver

10 ¢ T T

—e—64 kasami codes as a training sequence|j

8 kasami codes as a training sequence ||
——Channel is known I
—=—16 kasami codes as a training sequence ||

Probability of bit error

-4

10

Figure 5.12: Receiver performance foffdrent training sequence lengths under Hilly Terrain
channel after the channel estimation algorithm is applied

The simulation results in Figure 5.12 illustrate the immnaoent in the performance as the
training sequence length increases. When the training aataists of 64 Kasami codes,

the performance is improved by approximatel$ @B with respect to the BER performance
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which is obtained by using 8 Kasami codes as a training dathen/the training sequence
length increases, the channel estimation error decreasebha performance of the proposed

receiver is improved.

In the second scenario, the channel length is unknown aridStebannel estimator estimates

L taps. Simulations are performed under Urban channel arlg Frain channel. The
simulation is repeated for filerent training sequence lengths and the results are cothpare
with the condition in which the channel is known at the reeeiM he bit error probability as

a function of the number of estimated taps is presented aré#&5.13, 5.14, 5.15, 5.16 .

Channel Estimation Length Selection, Eb/N0=8 dB, Tc=0.1, HT Channel
10" ¢ T T

—e—Exact channel knowledge
—=—Channel Estimation, 16 kasami sequence as a preamble

Probability of bit error

10 1 1 1 1
0 50 100 150 200 250

# of taps used in channel estimation

Figure 5.13: Receiver performance under Hilly Terrain ctedrior different estimated chan-
nel lengths

For simulations carried out under Hilly Terrain channegeén in Figures 5.13, 5.14 that fluc-
tuations occur in the error rate performance of M-ary sigigalvhile the number of estimated

tapsL increases. For Hilly Terrain channel, there are two sepdretgions over which the

power is spread; together, the spread is much longer for t@tlions as seen in Figure 5.2.
Between these two regions, the Hilly Terrain channel inetudo taps. However the channel
estimator estimates the channel impulse response in casedle nonzero taps. Hence, the
noisy taps are estimated to be processed in the channeledditter which causes the degra-

dation in the performance. As a result, fluctuations in peménce are observed due to the
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Channel Estimation Length Selection, Eb/N0O=8 dB, Tc=0.1, HT Channel
100 ¢ T T

—e—Exact channel knowledge
—=—Channel Estimation, 32 kasami sequence as a preamble

Probability of bit error

10~ 1 1 1 1

100 150 200 250
# of taps used in channel estimation

Figure 5.14: Receiver performance under Hilly Terrain ctedrior different estimated chan-
nel lengths

Eb/N0=9 dB, Tc=0.1, Urban Channel

10° :

—e—Exact channel knowledge
—=—Channel estimation, 16 kasami sequence as a preamble

Probability of bit error

_g| I I
0 50 100 150
# of taps used in channel estimation

10

Figure 5.15: Receiver performance foffdrent estimated channel lengths under Urban chan-
nel

characteristic of Hilly Terrain channel. For simulatiorerformed under Urban channel, it is
seen in Figures 5.15, 5.16 that as the number of estimatsdtagets larger, the performance
gets better initially and then the performance is stahdliaeound a certain value. However,
whenL is larger than the number of exact channel taps, the perfurenaf the estimator

decreases, therefore, the system performance is degradspected.

68



Eb/N0=9 dB, Tc=0.1, Urban Channel

10° ¢ l

Probability of bit error

—e—Exact channel knowledge

—=—Channel estimation, 32 kasami sequence as a preamble

# of taps used in channel estimation

150

Figure 5.16: Receiver performance foffdrent estimated channel lengths under Urban chan-

nel

In the third scenario, it is assumed that the channel lersgimown at the receiver and the

channel estimator selects,ax Strongest taps from the estimated taps to be processed in the

channel matched filter. Since most of the signal energy isemnated on the strongest taps, it

is thought that taking only these into account and not ugiegmeak ones, better performance

can be achieved. In the following simulations, Urban chamme Hilly Terrain channel

models are used. Simulation results are presented in Bigut&, 5.18, 5.19 and 5.20.

69



Order Selection, Eb/N0=8 dB; Tc=0.1, HT Channel,
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—e—Channel estimation, 16 training sequence as a preamble
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Figure 5.17: Hects of the number of selected strongest taps in channehag&in on the
receiver performance under Hilly Terrain channel using Hami sequences as a training

data

Eb/N0=8 dB; Tc=0.1, HT Channel
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Figure 5.18: Hects of the number of selected strongest taps in channehag&in on the
receiver performance under Hilly Terrain channel using 2®ani sequences as a training

data

As seenin Figure 5.17 and 5.18, the performance gets betitawertain value. o, at which

the bit error probability is minimal. When the number of stdel strongest taps is greater than

Lopt, it is concluded that more noisy taps are included in theveged taps which degrades

the receiver performance. The generation of noisy taps ammél estimation is due to the

Hilly Terrain channel characteristic.
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Eb/NO=9 dB; Tc=0.1, Urban Channel, 71 tap,
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Figure 5.19: Hects of the number of selected strongest taps in channehag&in on the
receiver performance under Urban channel using 16 Kasajuesees as a training data
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Figure 5.20: Hects of the number of selected strongest taps in channehagin on the
receiver performance under Urban channel using 32 Kasajuesees as a training data

When simulation results for Urban channel in Figure 5.190%re observed, it is seen that
the BER performance is similar to the case in which the chaisnenown at the receiver.

Furthermore, there is an optimum vallugy after which significant variations in bit error rate
of M-ary Kasami code signaling are not observed. It is cahetlthat most of the channel

energy is contained in the,,; strongest channel taps.

71



CHAPTER 6

CONCLUSIONS

In this thesis study, the performance of M-ary orthogonatutation has been investigated.
For exploring M-ary orthogonal signaling, practical sgleg codes have been explored in
order to use them in place of orthogonal codes. The analyzezhding codes are Barker
codes, m-sequences, Gold codes, Kasami codes and Walsimidaticodes. Kasami codes
are chosen to use in place of orthogonal codes, since theyduaxelation properties similar
to orthogonal codes and they almost satisfy the Welch bowhith is a lower bound on the

cross-correlation between any pair of sequences.

For the demodulation process, an optimal receiver stregiven in the literature has been
used. In the receiver structure, the channel matched fltetilized to process M-ary signals

as a RAKE receiver which is adopted in this study to equatizechannel #ects.

Initially, M-ary Kasami code signaling performance is cargd with M-ary orthogonal sig-
naling. The results showed that M-ary Kasami code signgheigorms better than M-ary
orthogonal signaling in terms of bit error rate, since thetatice between symbols is in-
creased. The distance is increased because the crossionréunction of Kasami codes
can take negative values. M-ary biorthogonal signalinggig¢asami codes has also been
examined. It was seen from the results that the advantagdiofitnegative cross-correlation
values for Kasami codes is lost because the absolute valtleeahatched filter outputs is
taken into consideration during the demodulation procdssvever, M-ary biorthogonal sig-
naling have some advantages over M-ary orthogonal signalihe data transmission rate for
M-ary biorthogonal signaling is higher. In addition, thee&er complexity is reduced for

biorthogonal signaling sinckl/2 correlators are shicient at the receiver.

Secondly, the symbol timing recovery for M-ary signalings iseen investigated. A non-
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decision directed symbol synchronizer was proposed tmagti the symbol timing. It was
seen through simulations that the BER performance of theweicusing the timing provided
by the proposed synchronizer is extremely close to that @caiver operating with exact

symbol clock.

Furthermore, the receiver sensitivity to the timing delag heen explored for the transmission
of signals over a multipath channel. The simulation reseftgaled that the receiver is quite

insensitive to the symbol timing in the presence of multipat

The final part of this thesis is on channel estimation to bel uisehe M-ary receiver. We
considered a receiver consisting of a frame synchronizérchannel estimator based on the
training sequence operation. The estimated channel is instg channel matched filter.
We have tested the proposed system in COST 207 Hilly Tertznmel and Urban channel
environment models. Extensive simulations showed thasyiseem works well even under
channel conditions causing significant ISI. We also ingagéd the use of certain number of
the strongest estimated taps instead of the full set of tapgas seen that this approach can

give better performance while reducing the complexity abersbly.

The following list provides insight to future work:

e M-ary signaling systems may be investigated fdfedent spreading codes.

e Error detection and correction techniques may be congiddefects of the usage of

error correction codes on the system performance may berexpl

¢ Inthis study, BPSK s used. Berent digital modulation methods such as QPSK, 8PSK,

QAM may be explored on the same framework in M-ary signals.

¢ MAP channel estimation methods may be applied to estimatetiannel impulse re-

sponse.

e The performance of M-ary Kasami code signaling under cafrégjuency &set may

be investigated
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