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ABSTRACT

THE HILBERT SPACE OF PROBABILITY MASS FUNCTIONS
AND APPLICATIONS ON PROBABILISTIC INFERENCE

Bayramog̃lu, Muhammet Fatih

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Ali Özgür Yılmaz

September 2011, 123 pages

The Hilbert space of probability mass functions (pmf) is introduced in this thesis. A factor-

ization method for multivariate pmfs is proposed by using the tools provided by the Hilbert

space of pmfs. The resulting factorization is special for two reasons. First, it reveals the

algebraic relations between the involved random variables. Second, it determines the condi-

tional independence relations between the random variables. Due to the first property of the

resulting factorization, it can be shown that channel decoders can be employed in the solution

of probabilistic inference problems other than decoding. This approach might lead to new

probabilistic inference algorithms and new hardware options for the implementation of these

algorithms. An example of new inference algorithms inspired by the idea of using channel

decoder for other inference tasks is a multiple-input multiple-output (MIMO) detection algo-

rithm which has a complexity of the square-root of the optimum MIMO detection algorithm.

Keywords: The Hilbert space of pmfs, factorization of pmfs, probabilistic inference, MIMO

detection, Markov random fields
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ÖZ

OLASILIK KÜTLESİ FONKSİYONLARININ HİLBERT UZAYI
VE OLASILISIKSAL BİLGİ ÇIKARIMI ÜZERİNE UYGULAMALARI

Bayramog̃lu, Muhammet Fatih

Doktora, Elektrik Elektronik Mühendislig̃i Bölümü

Tez Yöneticisi : Doç. Dr. Ali Özgür Yılmaz

Eylül 2011, 123 sayfa

Bu tezde olasılık kütlesi fonksiyonlarının Hilbert uzayı sunulmaktadır. Bu Hilbert uzayının

sag̃ladıg̃ı olanaklar kullanılarak çok deg̃işkenli olasılık kütlesi fonksiyonlarını çarpanlarına

ayırmak için bir yöntem önerilmiştir. Bu yöntemden elde edilen çarpanlara ayırma iki nedenle

özeldir. İlk olarak, bu çarpanlara ayırma rastgele deg̃işkenler arasındaki cebirsel bag̃ıntıları

ortaya koyar. İkinci olarak, rastgele deg̃işkenler arasındaki koşullu bag̃ımsızlık ilişkilerini

belirler. Birinci özellik sayesinde kanal kod çözücülerinin, kod çözmekten başka olasılıksal

bilgi çıkarımı problemlerinin çözümünde de kullanılabileceg̃i gösterilebilir. Bu yaklaşım yeni

olasılıksal bilgi çıkarımı algoritmalarına ve bu algoritmaları gerçeklemek için yeni donanım

olanaklarına yol açabilir. Kod çözücülerin kod çözmekten başka bilgi çıkarımı görevlerinde

kullanılması fikrinden esinlenen algorıtmaların bir örneg̃i, karmaşıklıg̃ı en iyi algoritmanın

karekökü olan bir çok-girdili çok-çıktılı sezim algoritmasıdır.

Anahtar Kelimeler: Olasılık kütlesi fonksiyonlarının Hilbert uzayı, Olasılık kütlesi fonksiyon-

larının çarpanlara ayrılması, olasılısıksal bilgi çıkarımı, çok-girdili çok-çıktılı sezim, Markov

rastgele alanlar
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special thanks goes to my undergraduate advisor Prof. Dr. Gönül Turhan Sayan.

I would like to acknowledge the free software community. I have never needed and used any

commercial software during my Ph.D. research.

I would like to thank Dr. Jorge Cham for phdcomics which introduced some smiles to our

overly stressed lives.
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ramog̃lu. I appreciate everything she sacrificed for me. I studied on this thesis on times that

I stoled from her and she really deserves at least the half of the credit for this thesis. Her

support not only was vital for me during the Ph.D. but also will continue to be vital during the

rest of my life.

viii



PREFACE

This thesis summarizes the research work carried out in six years starting from September

2005. The research topic arose while I was trying to develop an analysis method for the con-

vergence rate of the iterative sum-product algorithm. Since the messages (beliefs) passed be-

tween the nodes in the iterative sum-product algorithm are probability mass functions (pmf), I

thought that representing the pmfs in a Hilbert space structure would prove useful in the anal-

ysis of the sum-product algorithm. Analyzing the convergence of the sum-product algorithm

would be an application of the norm in the Hilbert space of pmfs. However, later I noticed

that the inner product has much more interesting applications and preferred focusing on the

applications of the inner product to dealing with the convergence which led to this thesis.

In order to read the thesis a basic understanding of inner product spaces and finite fields is

necessary. Anybody with this background can follow the chapters from the second to the fifth.

I believe that these chapters are the core of the thesis. Chapter 6 contains some applications

from communication theory and might require a communication theory background.

This preface is an adequate place to note some observations about my country and university.

I am happy to observe that Turkey improved economically and democratically during my

graduate studies. On the other hand, I am sad to observe that Middle East Technical University

downgraded scientifically and democratically during the same time.

This thesis is related probability theory. Probability theory is an area which is close to the

border between science and belief. Although Laplace’s book on celestial mechanics misses to

mention God, my explanation on the relation between probability and willpower makes me to

believe in God and I would like to start to the rest of the thesis by a quote from the translation

of Qur’an which explains what is science to me: “Glory be to You, we have no knowledge

except what you have taught us. Verily, it is You (Allah), the All-Knower, the All-Wise”.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A linear vector space structure over a set provides algebraic tools such as addition and scaling

to carry out on the elements of the set. If a vector space can be endowed with an inner product

then it becomes an inner product space. An inner product provides geometric concepts such

as norm, distance, angle, and projections. If every Cauchy sequence in an inner product

space converges with respect to the inner product induced norm then the inner product space

becomes a Hilbert space. Needless to say a Hilbert space structure is very useful and find

application areas in diverse fields of science. Communication theory is not an exception. For

instance, the signal space representation in communication theory relies on the Hilbert space

structure constructed over the set of square integrable functions.

One of the mathematical objects that is too frequently used in communication and information

theories is the probability mass functions (pmf) which are discrete equivalents of probability

density functions. Although, pmfs are so frequently used in communication and information

theories a Hilbert space structure for them was missing. A Hilbert space of pmfs might have

many interesting applications.

A possible application for the Hilbert space of probability mass functions might be analyzing

the characteristics of a multivariate pmf. An important characteristic of a multivariate pmf is

the conditional independence relations imposed by it. The conditional independence relation

imposed by a multivariate pmf is determined by the factorization of the pmf to local functions1

as explained in [18, 19].
1 Local functions are functions (not necessarily pmfs) which have less arguments than the original multivariate

pmf.

1



The factorization structure of a multivariate pmf into local functions also determines the al-

gorithms which can perform inference on the pmf, in other words, maximize or marginalize

the pmf. The sum-product algorithm, which is also called belief propagation, and the max-

product algorithm effectively marginalize or maximize a multivariate pmf by exploiting the

pmfs’ factorization structure [1]. Modern decoding algorithms such as low-density parity-

check decoding and turbo decoding, which have become highly popular in the last decade,

relies on this fact.

Some multivariate pmfs, for instance the pmf resulting from a hidden Markov model, has

an apparent factorization structure. However, one cannot be sure whether this factorization

structure is the “best” possible factorization or not. On the other hand, some pmfs, for in-

stance the pmfs obtained empirically, might not have an apparent factorization structure at

all. Therefore, developing a method which obtains the factorization of a multivariate pmf

systematically would prove useful in many areas.

1.2 Contributions

The first contribution in this thesis is the derivation of the Hilbert space structure for pmfs.

The Hilbert space of pmfs not only provides a vectorial representation of evidence but also it

proves to be a useful tool in analyzing the pmfs.

The second contribution of this thesis is a systematic method for obtaining factorization of a

multivariate pmf. The resulting factorization is unique and is the ultimate factorization pos-

sible. Hence, we call the resulting factorization as the canonical factorization. The canonical

factorization of a multivariate pmf is obtained by projecting the pmf onto orthogonal basis

pmfs of the Hilbert space of pmfs. Hence, this factorization method heavily relies on the

Hilbert space of pmfs.

The basis pmfs mentioned in the paragraph above are special pmfs such that their value is

determined only by a linear combination of their arguments. In order to be able to talk about

linear combinations of arguments addition and multiplication must be well defined between

arguments of the pmf. Hence, the canonical factorization of a pmf can be obtained only if the

pmf is a pmf of finite-field-valued random variables. This is an important limitation of the

canonical factorization.
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The property of the basis pmfs mentioned in the previous paragraph causes an important limi-

tation but also this property leads to the third and the probably the most important contribution

of the thesis. Since the basis pmfs are functions of their arguments, the canonical factorization

reveals the algebraic dependencies between the random variables. Thanks to this fact, it can

be shown that channel decoders can be employed as an apparatus for tasks beyond decoding.

This idea leads to new hardware options as well as new inference algorithms.

The fourth contribution of the thesis is an application of the idea explained in the paragraph

above. This contribution is a multiple-input multiple-ouput (MIMO) detection algorithm

which employs the decoder of a tail biting convolutional code as a processing device. This

algorithm is an approximate soft-input soft-output MIMO detection algorithm whose com-

plexity is the square-root of that of the optimum MIMO detection algorithm.

The final contribution of the thesis is another property of the canonical factorization. It can

be shown that the conditional dependence relationships imposed by a multivariate pmf can

be determined from the canonical factorization of the pmf. In other words, the conditional

independence relationships imposed by a pmf can be determined by using the geometric tools

provided by the Hilbert space of pmfs. This property of the canonical factorization might lead

to applications in experimental fields such as bioinformatics dealing with large amounts of

data.

1.3 Comparison to earlier work

A Hilbert space of probability density functions is first presented in literature in a very dif-

ferent area of science, stochastic geology, in [4]. Their derivation is for a class of continu-

ous probability density functions. On the other hand our derivation is for pmfs. Although,

the resulting Hilbert space structures in both their and our derivations are quite similar, our

derivation is independent of theirs. Furthermore, we provide many applications of the Hilbert

space of pmfs on probabilistic inference.

The canonical factorization proposed in this thesis can be compared to the factorization of

pmfs provided by the Hammersley-Clifford theorem [18, 19]. Both the Hammersley-Clifford

theorem and the canonical factorization can completely determine the conditional indepen-

dence relationships imposed by a pmf. But Hammersley-Clifford theorem does not highlight
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the algebraic dependence relationships between random variables while the canonical factor-

ization does. Moreover, the canonical factorization is unique whereas the factorization of the

Hammersley-Clifford theorem is not.

The results obtained in this thesis can be located in the factor graph literature as follows. Fac-

tor graphs are bipartite graphical models which represent the factorization of a pmf [1]. The

bipartite graphs were first employed by Tanner to describe low complexity codes in [5]. A

very crucial step in achieving the factor graph representation is the Ph.D. thesis of Wiberg

[6, 7]. In his thesis Wiberg showed the connection between various codes and decoding algo-

rithms by introducing hidden state nodes to the graphs described by Tanner and characterized

the message passing algorithms running on these graphs. Local constraints in [6] are behav-

ioral constraints, such as parity check constraints. The factor graphs are the generalization of

the graphical models introduced in [6] by allowing local constraints to be arbitrary functions

rather than behavioral constraints [1].

The canonical factorization proposed in this thesis can also be represented by a factor graph.

Moreover, the factor functions appearing in the canonical factorization can be transformed

into usual parity check constraints by introducing some auxiliary variables. Therefore, the

factor graph representing the canonical factorization can be transformed into a Tanner graph

by introducing some auxiliary variable nodes which are very different from the hidden state

nodes introduced in [6]. This is essentially an explanation of the claim that the channel de-

coders can be employed for inference tasks beyond decoding.

1.4 Outline

After this chapter, the thesis continues with the introduction of the Hilbert space of pmfs in

Chapter 2. The Hilbert space of pmfs is the main tool to be used throughout the thesis. The

canonical factorization is introduced in Chapter 3. Chapter 4 investigates the properties and

special cases of the canonical factorization. Chapter 5 explains how a channel decoder can

be used for other probabilistic inference tasks other than its own purpose. This explanation

is based on the canonical factorization. Some possible consequences of this result are also

explained in Chapter 5. Chapter 6 provides some basic examples from communication theory

on the use of channel decoders for other inference tasks beyond decoding. The MIMO detec-
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tor which uses the decoder of a tail biting convolutional code is also introduced in this chapter.

Chapter 7 shows that the conditional independence relations can be completely determined

from the canonical factorization. The thesis is concluded with some possible future directions

in Chapter 8. For the sake of neatness of the thesis some proofs and derivations are collected

in the Appendix.

1.5 Some remarks on notation

Throughout the thesis we denote the deterministic variables with lowercase letters and random

variables with uppercase letters. We represent functions of multiple variables as functions of

vectors and denote vectors with boldface letters. Lowercase boldface letters denote determin-

istic vectors and capital boldface letters denote random variables. All vectors encountered in

the thesis are row vectors except a few cases in Chapter 6.

Matrices are also denoted with capital boldface letters which might lead to a confusion with

random vectors. Throughout the thesis, we used V, W, X, Y, and Z to denote random vectors.

All the other capital boldface letters are matrices.

Unfortunately, many different types of additions are included in the thesis such as finite field

addition, real number addition, vector addition, and even direct sum of subspaces. We reserve

⊕ symbol for the direct sum of subspaces for the sake of consistency with the linear algebra

literature. We use � symbol for the vectorial addition operation of pmfs which is defined in

Chapter 2. We have to use the remaining + symbol for all the rest of addition operations such

as real number addition, finite field addition, and vectorial addition in RN . Fortunately, the

type of the addition employed can be determined from the types of the operands.

A possible confusion might arise while using the summation symbol
∑

. For instance,
∑N

i=1 pi(x)

might refer to both p1(x)+ p2(x)+ . . .+ pN(x) and p1(x)� p2(x)� . . .� pN(x) which are really

two different summations. In order to avoid this confusion we denote the latter summation

with
�∑N

i=1
pi(x), although summations like the former is never encountered in the thesis.
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CHAPTER 2

THE HILBERT SPACE OF PROBABILITY MASS FUNCTIONS

2.1 Introduction

The Hilbert space of probability mass functions (pmf), which is the main tool to be employed

in the thesis, is introduced in this chapter. Throughout the thesis we are only interested in

the pmfs of the finite-field-valued random variables. Therefore, we define what a finite-field-

valued random variable is first in Section 2.2. We introduce the set of pmfs on which we

construct the Hilbert space in Section 2.3. Then we construct the algebraic and geometric

structures over this set in Section 2.4 and Section 2.5 respectively. Section 2.6 emphasizes

the differences between the Hilbert space of random variables and the Hilbert space of pmfs

in order to avoid possible confusion. Finally, in Section 2.7 the idea of the construction of the

Hilbert space is repeated on the set of multivariate pmfs.

2.2 Finite-Field-Valued Random Variables

Traditionally a random variable is a mapping from the event space to the real or complex

fields. However, in some experiments, e.g., the experiments with discrete event spaces, it

might be useful to map the outcomes of the experiment to a finite (Galois) field. Such a

mapping would allow to carry out meaningful algebraic operations between the outcomes of

different experiments, for instance as in [32]. A finite-field-valued random variable is defined

below.

Definition 1 Finite-field-valued random variable: Let Ω be the event space of an experiment

and Fq = GF(q) be the finite field of q elements. Moreover, let a function X : Ω → Fq be
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defined as

X(ω ∈ Ei) , i ∀i ∈ Fq,

where {Ei : i ∈ Fq} are events (subsets of Ω) of this experiment. The function X is called an

Fq-valued random variable if the events {Ei : i ∈ Fq} are mutually exclusive and collectively

exhaustive, i.e.,

Ei , E j =⇒ Ei ∩ E j = ∅ ∀i, j ∈ Fq,⋃
i∈Fq

Ei = Ω.

Actually, we do not need to restrict ourselves to the finite-field-valued random variables in

this chapter since the ideas presented in this chapter can be applied to any discrete random

variable. We need the concept of finite-field-valued random variables starting from the next

chapter. However, we introduce the finite-field-valued random variables starting from this

chapter in order to make the representation simpler.

2.3 The Set of Strictly Positive Probability Mass Functions

Many different experiments can be represented with an Fq-valued random variable. All these

experiments may lead to different pmfs. Furthermore, we may have different pmfs even for

the same experiment if the outcome is conditioned on some other event. Let PFq be the set of

all strictly positive pmfs that an Fq-valued random variable might possess, i.e.,

PFq ,

p(x) : Fq → (0, 1) ⊂ R s.t.
∑
x∈Fq

p(x) = 1

 . (2.1)

The Hilbert space of pmfs is going to be constructed onPFq . This set excludes the pmfs which

take value zero for some values. The reason under this restriction will be clear after scalar

multiplication is defined on this set.

We are going to represent the pmfs with lowercase letters such as p(x), r(x), or s(x). These

pmfs may represent the pmfs of random variables representing different experiments as well

as they may represent the pmfs of the same random variable conditioned on different events.
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2.3.1 The normalization operator

We employ a normalization operator to obtain pmfs from strictly positive real-valued func-

tions by scaling them. We denote this normalization operator with CFq {.} and define it as

CFq {α(x)} : FFq → PFq ,
α(x)∑

i∈Fq α(i)
, (2.2)

where the set FFq denotes the set of all functions from Fq to R+ and α(x) is a function in FFq .

An obvious property of the operator CFq {.} that we exploit frequently is given below

CFq {βα(x)} = CFq {α(x)} , (2.3)

where β is any positive number.

2.4 The Algebraic Structure over PFq

The foundation of the Hilbert space of PMFs is the addition operation. Hence, the definition

of the addition should be meaningful in the sense of probabilistic inference in order to take

advantage of the Hilbert space structure for inference problems.

The addition operation is inspired by the following scenario. Assume that we receive infor-

mation about a uniformly distributed source X via two independent channels with outputs

y1 and y2 as depicted in Figure 2.1. Let p(x) = Pr{X = x|y1}, q(x) = Pr{X = x|y2}, and

r(x) = Pr{X = x|y1, y2}. Since X is uniformly distributed, r(x) can be derived as

r(x) =
p(x)q(x)∑

x∈Fq p(x)q(x)
(2.4)

= CFq {p(x)q(x)} (2.5)

by employing the Bayes’ theorem.

The PMFs p(x) and q(x) represent the evidence about the source X when only y1 or y2 is

known respectively. On the other hand, r(x) represents the total evidence when both outputs

are known. In a way, r(x) is obtained by summing p(x) and q(x). Hence, (2.4) can be adopted

as the definition of addition. For any p(x) and q(x) in PFq their addition is denoted by � and

defined as

p(x)� q(x) , CFq {p(x)q(x)} . (2.6)
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Chn. 1

Chn. 2

X

y1

y2

Figure 2.1: The scenario for explaining the meaning of addition operation.

The definition of the addition operation is such a critical point of this thesis that the rest of the

thesis will be built upon this definition.

This definition of addition operation is the same as parallel information combining operation

as defined in [13] and message computation at variable nodes in the sum-product algorithm

[1].

Defining the addition operation also enforces the scalar multiplication to have such a form

that scalar multiplication is consistent with the addition. The scalar multiplication, which is

denoted by �, should satisfy the relation below for positive integers n

n� p(x) = p(x)� p(x)� . . .� p(x)︸                          ︷︷                          ︸
n times

= CFq

{
(p(x))n} . (2.7)

Generalizing (2.7) to any α in R leads to the definition of scalar multiplication below

α� p(x) , CFq

{
(p(x))α

}
. (2.8)

In order to be able to scale p(x) with negative coefficients it is necessary that p(x) , 0 for any

x in Fq. Hence, in the definition of PFq an open interval is used rather than a closed interval

in (2.1).

Theorem 2.1 The set PFq together with operations� and� forms a linear vector space over

R.

Proof. The closure of PFq under both operations is ensured by the normalization operators

in their definitions. The commutativity and associativity are obvious from the definition of �

operation. The neutral element with respect to (w.r.t.) the addition operation is the uniform
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distribution given by

θ(x) =
1
q

.

Consequently, the additive inverse of p(x), which is denoted by �p(x), is

�p(x) = CFq

{
1

p(x)

}
= −1� p(x).

The compatibility of scalar multiplication with the multiplication in R is obvious from (2.8).

The distributivity of multiplication over scalar and vector additions are direct consequences

of the definitions of scalar multiplication and addition. Clearly, 1 is the identity element of

scalar multiplication. Hence, PFq becomes a linear vector space over R. �

Example 2.1 The algebraic relations between some conditional pmfs is examined in this ex-

ample in which a combined experiment is taking place in a two dimensional universe.

First a fair die with three faces1 is rolled. Then one of the three urns is selected corresponding

to the outcome of the die rolling experiment. These three urns contain balls of six different

colors. The number of balls of different colors in each urn is given in the table below. A ball

is drawn from the selected urn and replaced back a few times.

Table 2.1: Number of balls in different colors in each urn mentioned in Example 2.1.

Red (R) Yellow (Y) Orange (O) Blue (B) Green (G) Purple (P)
Urn 1 1 9 9 3 1 1
Urn 2 9 1 9 1 3 1
Urn 3 9 9 1 1 1 3

Let the event space of the die rolling experiment be mapped to a F3-valued random variable

X such that the faces 1, 2, and 3 are mapped to 0, 1, and 2 in F3. Let six pmfs of X conditioned

on the color of the ball drawn be defined as follows when a single ball is drawn.

r(x) , Pr{X = x| R } y(x) , Pr{X = x| Y } o(x) , Pr{X = x| O }

b(x) , Pr{X = x| B } g(x) , Pr{X = x| G } p(x) , Pr{X = x| P }
(2.9)

For instance, assume that a ball is drawn from the selected urn and replaced back six times

and the colors of the balls drawn are B, B, G, G, G, and Y. Then the a posteriori pmf of X can

1 We can have a die with three faces in a two dimensional universe. This is the reason why the experiment
takes place in a two dimensional universe.
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be expressed by using the definitions of addition and scalar multiplication in PF3 as

Pr{X = x|B, B,G,G,G,Y} = 2� b(x)� 3� g(x)� y(x).

Now assume that the process of drawing a ball and replacing is repeated three times and the

colors of the drawn balls are R, Y, and O. Then due to the symmetry in the problem the a

posteriori pmf of X is

Pr{X = x|R,Y,O} =
1
3

.

Vectorial representation of this equation in PF3 is

r(x)� y(x)� o(x) = θ(x). (2.10)

Similarly, b(x), g(x), and p(x) are also related as

b(x)� g(x)� p(x) = θ(x). (2.11)

Now assume that the process of drawing a ball and replacing is repeated twice. The a poste-

riori pmf of X given the colors of the balls are R and Y is

Pr{X = x|R,Y} = r(x)� y(x) =


1/11 , x = 0

1/11 , x = 1

9/11 , x = 2

(2.12)

and the a posteriori pmf of X given both balls are P is

Pr{X = x|P, P} = 2� p(x) =


1/11 , x = 0

1/11 , x = 1

9/11 , x = 2

. (2.13)

Combining these last two results yields

r(x)� y(x) = 2� p(x). (2.14)

The following two relations can be obtained similarly.

r(x)� o(x) = 2� g(x) (2.15)

o(x)� y(x) = 2� b(x) (2.16)

Actually, the algebraic relations (2.10), (2.11), (2.14), (2.15), and (2.16) are all obtained

by using only the basic tools of probability and the definitions of addition and scalar mul-

tiplication in PF3 . We did not make use of the algebraic structure defined on PF3 to derive
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these relations. Further algebraic relations between the conditional pmfs defined in (2.9) can

be obtained by using (2.10), (2.11), (2.14), (2.15), and (2.16) and exploiting the algebraic

structure of PF3 . Some of these relations are given below.

o(x) = −2� p(x) y(x) = −2� g(x) r(x) = −2� b(x)

p(x) = − 1
2 � o(x) g(x) = − 1

2 � y(x) b(x) = − 1
2 � r(x)

(2.17)

Example 2.2 Since it is proven that PFq is a linear vector space we can talk about linear

mappings (transformations) from PFq to other linear vector spaces. In this example we are

going to provide a familiar example for such a mapping.

The log-likelihood ratio (LLR), which is defined for binary valued pmfs as

Λ{p(x)} , log
p(0)
p(1)

, (2.18)

is a frequently employed tool in detection theory and channel decoding. For any α, β ∈ R and

p(x), r(x) ∈ PF2 ,

Λ {α� p(x)� β� r(x)} = log
CF2

{
(p(x))α(r(x))β

} ∣∣∣∣
x=0

CF2

{
(p(x))α(r(x))β

} ∣∣∣∣
x=1

= log
(p(0))α(r(0)β)
(p(1))α(r(1))β

= αΛ{p(x)} + βΛ{r(x)}.

Hence, the LLR is a linear mapping from PF2 to R.

2.5 The Geometric Structure over PFq

The geometric structure over a vector space is defined by means of an inner product. We are

going to define an inner product on PFq by first mapping the vectors of PFq to Rq and then

borrowing the usual inner product (dot product) on Rq. Such a mapping should posses the

properties stated in the following lemma.

Lemma 2.2 LetM{.} be a mapping from PFq to Rq and a function σ(., .) : PFq × PFq → R

be defined as

σ(p(x), r(x)) ,<M{p(x)} ,M{r(x)} >Rq , (2.19)

where < ., . >Rq denotes the usual inner product on Rq. σ(p(x), r(x)) is an inner product on

PFq ifM{.} is linear and injective (one-to-one).
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The proof of this lemma is given in Appendix A.1.1.

We propose the following mapping fromPFq to Rq and show later that it is linear and injective

L {p(x)} ,
∑
i∈Fq

log p(i) −
1
q

∑
j∈Fq

log p( j)

 ei, (2.20)

where ei is the ith canonical basis vector of Rq2. The proposal for L {.} is inspired by the

meaning of angle between two pmfs. The details of arriving at the definition of L {.} is given

in Appendix A.1.2.

Lemma 2.3 The mapping L {.} : PFq → Rq as defined in (2.20) is linear and injective.

The proof is given Appendix A.1.3.

It is a common practice to map pmfs to log-probability vectors in the turbo decoding and sum-

product algorithm literature. The main difference between those mappings and the mapping

L {.} that we propose is the normalization (−1
q
∑

j∈Fq log p( j) ) in the definition of L {.}. This

normalization is necessary to make the operator L {.} linear and consequently allows us to

borrow the inner product on Rq. In other words, it is this normalization which allows us to

construct a geometric structure on PFq . We believe that omitting this normalization in the

literature hindered discovering the geometric relations between pmfs.

Obviously, the mapping L {.} is not the only mapping which satisfies the conditions imposed

by Lemma 2.2. However, L {.} exhibits a symmetric form. This symmetry leads us to a useful

geometric structure on PFq .

Theorem 2.4 The function < ., . >: PFq × PFq → R defined for any p(x), r(x) ∈ PFq as

< p(x), r(x) >,< L {p(x)} ,L {r(x)} >Rq , (2.21)

where L {.} is defined in (2.20), is an inner product on PFq .

The proof directly follows from Lemma 2.2 and Lemma 2.3.

2 The canonical basis vectors of Rq are usually enumerated with integers from 1 up to q. In this thesis we
enumerate the canonical basis vectors of Rq with the elements of Fq. Since there are q canonical basis vectors of
Rq and q elements in Fq there is not any problem in this enumeration.

13



The definition of the inner product on PFq can be simplified as follows.

< p(x), r(x) > = < L {p(x)} ,L {r(x)} >Rq

=
∑
i∈Fq

log p(i) −
1
q

∑
j∈Fq

log p( j)


log r(i) −

1
q

∑
j∈Fq

log r( j)

 (2.22)

=
∑
i∈Fq

log p(i) log r(i) −
1
q

∑
i∈Fq

log p(i)


∑

i∈Fq

log r(i)

 (2.23)

The equation above resembles the covariance of two random variables. Indeed, it is possible to

express the definition of inner product in the form of a covariance of two real-valued random

variables, which is shown in Appendix A.1.4.

The vector spacePFq evolves into an inner product space by the definition of the inner product

in (2.21). Although we haven’t shown what dimPFq is yet, we can conclude that PFq is

finite dimensional since there exist an injective mapping from PFq to Rq 3. It is well known

from functional analysis theory that any finite dimensional inner product space is complete.

Therefore, PFq is a Hilbert space.

2.5.1 The norm, distance, and angle on PFq

The inner product on PFq induces the following norm on PFq

‖p(x)‖ ,
√
< p(x), p(x) > (2.24)

=

√√√√√∑
i∈Fq

(
log p(i)

)2
−

1
q

∑
i∈Fq

log p(i)


2

. (2.25)

A distance function between two pmfs can be obtained by combining this norm with the

definition of subtraction in PFq as in

D(p(x), r(x)) , ‖p(x)� r(x)‖ (2.26)

=

√√√√√∑
i∈Fq

(
log

p(i)
r(i)

)2

−
1
q

∑
i∈Fq

log
p(i)
r(i)


2

. (2.27)

Since ‖.‖ is a proper norm, this distance is a metric distance. In other words, it is nonnegative,

symmetric, and it satisfies the triangle equality.

3 We are going to show that dimPFq = q − 1 in Theorem 2.7

14



Similar to any Hilbert space, the angle between any two pmfs p(x), r(x) in PFq is given by

∠(p(x), r(x)) , arccos
< p(x), r(x) >
‖p(x)‖ ‖r(x)‖

. (2.28)

2.5.2 The pseudo inverse of L {.}

Lemma 2.5 For any p(x) in PFq

L {p(x)} ⊥ 1, (2.29)

where 1 denotes the all one vector in Rq.

The proof is given Appendix A.1.5.

Since L {p(x)} is always orthogonal to 1 it is not a surjection (onto). Consequently, it is not

a bijection (injection and surjection). A mapping which is not a bijection does not have an

inverse. Nonetheless, a pseudo inverse for L {.} exists which satisfies

L+ {L {p(x)}} (x) = p(x),

where L+ {.} (x) denotes the pseudo inverse of L {.}.

L+ {.} (x) is a mapping from Rq to PFq . We propose the following definition for L+ {.} (x)

L+ {p} (x) , CFq

{
exp

(
−

1
2
‖p − s(x)‖2

)}
, (2.30)

where p is any vector in Rq and s(x) is the vector-valued function from Fq to Rq given by

s(x) , ex −
1
q

1. (2.31)

The definition of L+ {.} (x) can be interpreted as in

L+ {p} (x) = Pr{X = x|s(X) + N = p}, (2.32)

where N is random vector whose components are all independent, real, zero-mean Gaussian

random variables with unit variance. Furthermore, notice that the function s(x) maps the

elements of Fq to Rq as in the simplex modulation.

Lemma 2.6 L+ {.} (x) : Rq → PFq defined in (2.30) satisfies

L+ {L {p(x)}} (x) = p(x) (2.33)
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for all p(x) in PFq . Moreover,

L
{
L+ {p} (x)

}
= p (2.34)

if p ⊥ 1.

The proof is given in Appendix A.1.6.

Theorem 2.7 PFq is a q − 1 dimensional Hilbert space, i.e..

dimPFq = q − 1 (2.35)

Proof. Due to the rank-nullity theorem in linear algebra

dimPFq = dim im {L} + dim ker {L} ,

where im {L} and ker {L} denote the image and kernel (null space) of L {.} respectively. Since

L {.} is shown to be an injection in Lemma 2.3, ker {L} only contains 0. It can be deduced

from Lemma 2.5 that the image (range space) of L {.} is a subset of 1⊥, where 1⊥ is the

subspace of Rq given by

1⊥ ,
{
p ∈ Rq :< p, 1 >Rq= 0

}
(2.36)

The second part of Lemma 2.6 improves this result as it clearly shows that the image of L {.}

is exactly equal to 1⊥. Therefore,

dimPFq = dim 1⊥ + dim{0}

= q − 1, (2.37)

which completes the proof. �

2.5.3 A set of orthonormal basis pmfs for PFq

A set of q−1 linearly independent vectors are necessary to form a basis for PFq . An orthonor-

mal basis for PFq can be obtained by finding a set of orthonormal vectors in 1⊥ and then by

mapping these vectors to PFq via L+ {.} (x). Let q − 1 vectors in Rq be defined as

s1 , [ 1√
2

− 1√
2

0 . . . 0 ]

s2 , [ 1√
6

1√
6

− 2√
6

. . . 0 ]
...

...
...

...
. . .

...

sq−1 , [ 1√
q(q−1)

1√
q(q−1)

1√
q(q−1)

. . . −
q−1
√

q(q−1)
]

. (2.38)
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Clearly, all of these vectors are all in 1⊥ and they are all mutually orthonormal. q − 1 pmfs in

PFq can be obtained by mapping these vectors to PFq via L+ {.} (x) as follows.

si(x) , L+ {si} (x) for i = 1, 2, . . . , q − 1. (2.39)

Due to the definition of the inner product and the second part of Lemma 2.6,

< si(x), s j(x) > = < L {si(x)} ,L
{
s j(x)

}
>Rq

= < si, s j >Rq

=

 1 , for i = j

0 , for i , j
. (2.40)

Therefore, {s1(x), s2(x), . . . , sq−1(x)} is an orthonormal basis for PFq .

Example 2.3 In Example 2.1 basic algebraic relations between six pmfs, which are in PF3 ,

is investigated. An orthonormal basis for PF3 is composed of two pmfs. s1(x) and s2(x) given

below forms such a basis for PF3 .

s1(x) = L+

{[
1√
2
− 1√

2
0

]T
}

(x)

'


0.57598, x = 0

0.14002, x = 1

0.28400, x = 2

(2.41)

s2(x) = L+

{[
1√
6

1√
6
− 2√

6

]T
}

(x)

'


0.43595, x = 0

0.43595, x = 1

0.12810, x = 2

(2.42)

The coordinates of a pmf in PF3 , with respect to (w.r.t.) the basis {s1(x), s2(x)} is simply the

inner product of the pmf with s1(x) and s2(x). For instance, r(x) mentioned in Example 2.1

can be expressed as

r(x) = < r(x), s1(x) > �s1(x)� < r(x), s2(x) > �s2(x)

' −1.5537� s1(x)� −0.89701� s2(x). (2.43)

The coordinates of all the pmfs mentioned in Example 2.1 are given in the table below and

depicted in Figure 2.2.
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Table 2.2: Coordinates of the pmfs mentioned in Examples 2.1 and 2.3

r(x) y(x) o(x) b(x) g(x) p(x)
s1(x) −1.55367 1.55367 0 0.77684 −0.77684 0
s2(x) −0.89701 −0.89701 1.79403 0.44851 0.44851 −0.89701

s2(x)

s1(x)
0

b(x)

y(x)
p(x)r(x)

g(x)

o(x)

1.5536-1.5536

-0.897

1.794

0.448

Figure 2.2: Plot of the pmfs mentioned in Examples 2.1 and 2.3

2.6 Relation to the Hilbert space of random variables

The Hilbert space of probability mass functions of finite field-valued random variables might

be confused with the Hilbert space of random variables with a finite second order moment

which is already well known [31]. However, these two Hilbert spaces are quite different

from each other. First of all, the vectors of the former Hilbert space are pmfs of the random

variables whereas the vectors of the latter Hilbert space are the random variables themselves.

Second, the former Hilbert space is related to the finite-field valued random variables whereas

the latter is related to the complex-valued random variables. Finally, the former is meaningful

in the Bayesian detection sense whereas the latter is not.

Although this thesis is about the Hilbert space of the pmfs of finite field-valued random vari-

ables, it is adequate to summarize the Hilbert space of random variables. The set of complex-

valued random variables forms vector space with the usual random variable addition and

scaling over C. This vector space can be endowed with the following inner product which is
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nothing but the autocorrelation between two random variables.

< X,Y >= E
[
XY∗

]
, (2.44)

where X and Y are two complex-valued random variables and E [.] denotes the expectation.

The set of complex-valued random variables with finite second order moment is complete

w.r.t. the norm induced by the inner product above. Therefore, this set forms a Hilbert space

over C with the usual random variable addition, scaling, and the inner product given in (2.44).

Many important algorithms, such as the Wiener filter, relies upon the orthogonality in this

Hilbert space.

Notice that the Hilbert space structure over random variables is constructed over complex-

valued random variables. Although it is also possible to construct a similar vector space over

the set of finite field-valued random variables, the vector space of finite field-valued random

variables does not have an inner product. In other words, the set of Fq-valued random vari-

ables forms a vector space with the usual random variable addition and scaling over Fq. On

the contrary to complex-valued random variable case, the expected value is not a well de-

fined concept for finite field-valued random variables. Consequently, autocorrelation between

two Fq-valued random variables is not well defined either. Therefore, we cannot construct a

Hilbert space structure over the set of Fq-valued random variables as we could for the complex

valued random variables. If we had a Hilbert space structure over the set of Fq-valued random

variables then we would have decoding algorithms for linear channel codes with polynomial

complexity.

2.6.1 Comparison between the convergence of random variables and pmfs

Another possible confusion might arise between the convergence of finite field-valued random

variables and the convergence of pmfs of finite field-valued random variables. As explained

above expectation is not well defined for finite field-valued random variables. Therefore, con-

vergence in the mean square sense is not well defined for finite field-valued random variables

either. On the other hand, convergence modes such as convergence almost everywhere and

convergence in probability can still be well defined. However, due to the topological nature

of the finite fields these two convergence modes are essentially equivalent. Convergence of a

sequence of finite-field-valued random variables in probability is formally defined below.

19



Definition 2 Convergence of a sequence of finite-field-valued random variables in proba-

bility: A sequence of Fq-valued random variables, {Xn}
∞
n=1, converges in probability to an

Fq-valued random variable X if and only if for each ε > 0 there exist an integer N such that

n > N =⇒ Pr{Xn = X} > 1 − ε (2.45)

and this convergence is denoted by

lim
n→∞

Pr{Xn = X} = 1. (2.46)

Convergence of Fq-valued random variables in probability, might be confused with the con-

vergence of pmfs in PFq . The following example aims to clarify the distinction between these

two convergences.

Example 2.4 Let the event space of an experiment Ω be [0, 1] ⊂ R and each outcome of the

experiment is equally likely, i.e.

Pr{ω ≤ c} = c, (2.47)

where ω denotes the outcome of the experiment. A sequence of F2-valued random variables,

{Xn}
∞
n=1, are assigned to this experiment as follows.

Xn(ω) ,

 0, ω ∈ [0, 1 − 2−n]

1, ω ∈ (1 − 2−n, 1]
(2.48)

Clearly, the sequence {Xn}
∞
n=1 converges in probability to a random variable X which is de-

fined as

X ,

 0, ω ∈ [0, 1]

1, ω ∈ ∅
(2.49)

In other words,

lim
n→∞

Pr{Xn = X} = 1. (2.50)

Let a sequence {pn(x)}∞n=1 of pmfs in PF2 be defined as

pn(x) , Pr{Xn = x}

=

 1 − 2−n, x = 0

2−n, x = 1
(2.51)
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and p(x) denote Pr{X = x}. Due to the basic axioms of probability

p(x) =

 1 , x = 0

0 , x = 1
. (2.52)

It might appear at a first glance that the sequence {pn(x)}∞n=1 converges to p(x). However, this

would contradict with the completeness of PF2 since p(x) < PF2 . The truth is {pn(x)}∞n=1 is not

a Cauchy sequence in PF2 . This fact can be shown as follows. For any m > n > 0

D(pm(x), pn(x)) =

√√√√∑
i∈F2

(
log

pm(i)
pn(i)

)2

−
1
q

∑
i∈F2

log
pm(i)
pn(i)

2

=
1
√

2

(
log

pm(0)
pn(0)

+ log
pn(1)
pm(1)

)
.

Since pm(0) > pn(0)

D(pm(x), pn(x)) >
1
√

2

(
log

pn(1)
pm(1)

)
=

log 2
√

2
(m − n). (2.53)

Therefore, {pn(x)}∞n=1 is not a Cauchy sequence and the limit limn→∞ pn(x) does not exist. This

example demonstrates that convergence of a sequence of random variables in probability does

not imply the convergence of their pmfs.

2.7 The Hilbert space of multivariate pmfs

The construction of the Hilbert space on PFq can be applied to the set of multivariate (joint)

pmfs as well. Basically, we should replace the indeterminate variable x in the Hilbert space

of pmfs with a vector x while constructing the Hilbert space structure on multivariate pmfs.

Let X = [X1, X2, . . . , XN] be a random vector where Xi is a Fq-valued random variable. Fur-

thermore, let PFN
q

denote the set of all strictly positive pmfs that X might posses, i.e.

PFN
q
,

p(x) : FN
q → (0, 1) ⊂ R,

∑
x∈FN

q

p(x) = 1

 . (2.54)

The addition and scalar multiplication on PFN
q

can be defined for any p1(x), p2(x), p(x) ∈ PFq

and α ∈ R as

p1(x)� p2(x) , CFN
q
{p1(x)p2(x)} (2.55)

α� p(x) , CFN
q

{
(p(x))α

}
(2.56)
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The normalization operator in the multivariate case, which is denoted by CFN
q
{.} above, maps

any strictly positive function of FN
q , α(x), to a pmf in PFN

q
as follows.

CFN
q
{α(x)} ,

α(x)∑
i∈FN

q
α(i)

(2.57)

Similar to the univariate case, PFN
q

together with the� and� operations forms a vector space

over R.

The analogue of the mapping L {.} in the multivariate case is denoted by LN {.} and maps the

pmfs in PFN
q

to R(qN ). Before giving the definition of LN {.} we need to establish a one-to-one

matching between the vectors in FN
q and the canonical basis vectors of R(qN ). We can do this

matching since FN
q contains qN vectors which is equal to the dimension of R(qN ). Since the

mapping LN {.} is going to be employed in borrowing the inner product in R(qN ) the order of

matching is not important.

Using this matching LN {.} is defined as

LN {p(x)} : PFN
q
→ R(qN ) ,

∑
i∈FN

q

log p(i) −
1

qN

∑
j∈FN

q

log p(j)

 ei, (2.58)

where ei denotes the canonical basis vector of R(qN ) matched to i ∈ FN
q . LN {.} is a linear and

injective mapping as L {.}. Then the inner product of any two p(x), r(x) ∈ PFN
q

becomes

< p(x), r(x) > , < LN {p(x)} ,LN {r(x)} >R(qN ) (2.59)

=
∑
i∈FN

q

log p(i) log r(i) −
1

qN

∑
i∈FN

q

log p(i)


∑

i∈FN
q

log r(i)

 . (2.60)

The definition of inner product makes PFN
q

an inner product space. Since PFN
q

is definitely

finite dimensional it is also a Hilbert space.

The pseudo inverse of LN {.} is

L+
N {p} (x) : R(qN ) → PFN

q
, CFN

q

{
exp

(
−

1
2
‖p − sN(x)‖2

)}
, (2.61)

where sN(x) is

sN(x) , ex −
1

qN 1. (2.62)

The vector 1 above denotes the all one vector in R(qN ). Similar to the univariate case it can be

shown that L+
N {.} (x) satisfies

L+
N {LN {p(x)}} (x) = p(x) ∀p(x) ∈ PFq (2.63)

LN
{
L+

N {p} (x)
}

= p ∀p ∈ 1⊥ ⊂ R(qN ). (2.64)

22



Consequently,

im {LN} = 1⊥ ⊂ R(qN ) (2.65)

Theorem 2.8 PFN
q

is a qN − 1 dimensional Hilbert space, i.e.

dimPFN
q

= qN − 1. (2.66)

Proof. Due to the rank-nullity theorem in linear algebra

dimPFN
q

= dim ker {LN} + dim im {LN} (2.67)

= qN − 1. (2.68)

�

As a minor consequence of this theorem we can conclude that PFN
q

is isomorphic to PFqN .

This is a quite expected result since FN
q is isomorphic to FqN .
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CHAPTER 3

THE CANONICAL FACTORIZATION OF

MULTIVARIATE PROBABILITY MASS FUNCTIONS

3.1 Introduction

The factorization of a multivariate pmf is important in many aspects. For instance, the condi-

tional dependence of the random variables distributed by a pmf can be determined by how the

pmf factors. Existence of low complexity maximization and marginalization algorithms for a

multivariate pmf, such as Viterbi and BCJR, also depends on the factorization of the pmf. A

very special factorization of multivariate pmfs which we call as the canonical factorization is

introduced in this chapter.

This chapter begins with representing the factorization of a pmf in PFN
q

. Then we introduce

the soft parity check constraints using which we decompose PFN
q

into orthogonal subspaces.

Finally, we obtain the canonical factorization of pmfs as the projection of pmfs onto these

subspaces.

3.2 Representing the factorization of pmfs

The Hilbert space PFN
q

provides a suitable environment for analyzing the factorization of

multivariate pmfs. Suppose that a pmf in PFN
q

can be factored as

p(x) =

K∏
i=1

φi(x). (3.1)

Each φi(x) function appearing above may be called a factor function, a local function, a con-

straint, or an interaction. The factor functions are not necessarily pmfs but they can be as-
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sumed to be positive. Hence, we can obtain a pmf in PFq by scaling the factor functions as

in

ri(x) = CFN
q
{φi(x)} (3.2)

=
1
γi
φi(x), (3.3)

where γi =
∑

i∈FN
q
φi(x). After this normalization the factorization in (3.1) becomes

p(x) =

K∏
i=1

γiri(x) (3.4)

= CFN
q

 K∏
i=1

ri(x)

 , (3.5)

which can be represented using the addition in PFq as

p(x) =

K
�∑

i=1

ri(x). (3.6)

This representation suggests that a multivariate pmf in PFN
q

can be factored by expressing it

as a linear combination of some basis vectors (pmfs) in PFN
q

. If these basis pmfs are chosen

to be orthogonal then we can employ the inner product on PFN
q

to determine the expansion

coefficients. However, the basis pmfs should be selected in such a way that the resulting

factorization becomes useful.

We know from the literature on the sum-product algorithm [1, 2, 6, 7] and Markov random

fields [17, 18, 19, 20] that the factorization of p(x) given in (3.1) is useful if the factor func-

tions on the right hand side of (3.1) are local. A factor function of p(x) is said to be local if it

depends on some but not all of the components of the argument vector x. Therefore, the basis

functions mentioned in the paragraph above should also be selected to be as local as possible.

3.3 The multivariate pmfs that can be expressed as a function of a linear

combination of their arguments

In this section we propose a special type of multivariate pmfs which will serve as basis vectors

to obtain a factorization of pmfs in PFq . We show in the next chapter that the factorization

obtained using these basis pmfs is quite useful. These basis pmfs are inspired by the parity

check relations in Fq. Suppose that the components of an FN
q -valued random vector X =
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[X1, X2, . . . , XN] satisfy the following parity check relation

a1X1 + a2X2 + . . . + aN XN = 0, (3.7)

where ai is a constant in Fq. If all configurations satisfying this relation are assumed to be

equiprobable then the joint pmf of X, which is denoted by p(x), is

p(x) =


1

qN−1 ,
∑N

i=1 aixi = 0

0, otherwise
. (3.8)

This pmf can be expressed in a more compact form as

p(x) =
1

qN−1 δ(axT ) (3.9)

= CFN
q

{
δ(axT )

}
, (3.10)

where a is [a1, a2, . . . , aN] and δ(.) denotes the Kronecker delta.

The multivariate pmfs which can be expressed in the form as in (3.10) are called parity check

or zero-sum constraints. A parity check constraint depends only on the variables which have

nonzero coefficients associated with them. Hence, they posses local function properties as

we desire from a basis pmf. Therefore, parity check constraints could be good candidates

for being basis pmfs if they were elements of PFN
q

. However, parity check constraints are not

elements of PFN
q

, since their value is zero for the configurations which do not satisfy the parity

check relation.

We can obtained a “softened” version of the parity check constraints as follows. Suppose that

the components of the random vector X satisfy the following relation instead of (3.7)

a1X1 + a2X2 + . . . + aN XN = U, (3.11)

where U is an Fq-valued random variable distributed with an r(u) ∈ PFq . If all configurations

resulting with the same value of U are assumed to be equiprobable then joint pmf of X in this

case becomes

p(x) =



1
qN−1 r(0),

∑N
i=1 aixi = 0

1
qN−1 r(1),

∑N
i=1 aixi = 1

...
...

1
qN−1 r(q − 1),

∑N
i=1 aixi = q − 1

(3.12)
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which can be expressed in a more compact form as

p(x) =
1

qN−1 r(axT ) (3.13)

= CFN
q

{
r(axT )

}
. (3.14)

Definition 3 A multivariate pmf p(x) in PFN
q

is called a soft parity check (SPC) constraint if

there exist a r(x) ∈ PFq and a vector a = [a0, a1, . . . , aN−1] ∈ FN
q such that

p(x) = CFN
q

{
r(axT )

}
. (3.15)

The vector a is called the parity check coefficient vector of the SPC constraint p(x).

The difference between parity check and SPC constraint is the distribution of the weighted

sum of the random variables X0, X1, . . ., XN−1, which is denoted by U in (3.11). U is dis-

tributed with δ(u) in the parity check case whereas it is distributed with a r(u) in PFq in the

SPC constraint case. The term “soft” arises from the fact that the weighted sum can take all

values with some probability rather than guaranteed to be zero. Therefore, unlike parity check

constraints SPC constraints are in PFN
q

, since all configurations have nonzero probabilities.

Example 3.1 Let two pmfs in PF2
3

are given with a slight abuse of notation as

p1(x0, x1) =
1
30


3 6 1

6 1 3

1 3 6


p2(x0, x1) =

1
157


12 30 1

10 6 48

12 8 30

 ,

where pk(x0 = i, x1 = j) is given by the entry in the (i + 1)th row and the ( j + 1)th column of

the corresponding matrix.

Notice that p1(x0, x1) can be expressed as

p1(x0, x1) =
1
3

r(x0 + x1)

= CF2
3
{r(x0 + x1)}
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where r(x) ∈ PFN
3

is

r(x) =


0.3, x = 0

0.6, x = 1

0.1 x = 1

.

Therefore, p1(x0, x1) is an SPC constraint with parity check coefficient vector [1, 1]. On the

other hand, we cannot find a similar expression for p2(x0, x1). Hence, p2(x0, x1) is not an

SPC constraint.

Notice that we exploited the field structure of Fq in the discussion above. Parity check re-

lations could also be described in finite rings but the number of configurations satisfying a

parity check relation depends on the parity check coefficients in a finite ring. Therefore, the

SPC constraints in a finite ring would not be in a nice form as above.

In the rest of this chapter we are going to show that SPC constraints form a complete set

of orthogonal basis functions for PFN
q

. The first step of this process is the following lemma

which analyzes the inner product of two SPC constraints.

Lemma 3.1 Inner product of two SPC constraints: Let p1(x), p2(x) ∈ PFN
q

are two SPC

constraints such that

p1(x) = CFN
q

{
r1(axT )

}
(3.16)

p2(x) = CFN
q

{
r2(bxT )

}
,

where r1(x), r2(x) ∈ PFq . If a and b are both nonzero vectors in FN
q then

< p1(x), p2(x) >=

 qN−1 < r1(x), r2(αx) >, ∃α ∈ Fq : b = αa

0, otherwise
(3.17)

The proof of this lemma is given in Appendix A.2.1.

3.4 Orthogonal Subspace Decomposition of PFN
q

Generating an SPC constraint in PFN
q

based on a pmf in PFq and a parity check coefficient

vector a can be viewed as a mapping from PFq to PFN
q

parameterized on a as given below.

Sa {p(x)} : PFq → PFN
q
, CFN

q

{
p(axT )

}
(3.18)
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Any SPC constraint with parity check coefficient vector a is in im {Sa}. The first of the fol-

lowing pair of lemmas states that im {Sa} is a subspace of PFN
q

and the second one investigates

the relation between two such subspaces.

Lemma 3.2 For any nonzero parity check coefficient vector a in FN
q , im {Sa} is a q−1 dimen-

sional subspace of PFN
q

.

Lemma 3.3 For any two nonzero parity check coefficient vectors a,b ∈ FN
q

∃α ∈ Fq : a = αb =⇒ im {Sa} = im {Sb} (3.19)

@α ∈ Fq : a = αb =⇒ im {Sa} ⊥ im {Sb} (3.20)

The proofs of this lemmas are given in Appendix A.2.2 and Appendix A.2.3 respectively.

Lemma 3.3 suggests that PFN
q

can be decomposed into orthogonal subspaces by using a suffi-

cient number of parity check coefficient vectors which are all pairwise linearly independent.

Fortunately, we can borrow such a set of parity check coefficient vectors from coding theory

as explained by the following theorem.

Theorem 3.4 There exists a set H of pairwise linearly independent parity check vectors in

Fq of length N such that ⊕
a∈H

im {Sa} = PFN
q

. (3.21)

where
⊕

denotes orthogonal direct summation.

Proof. For all nonzero a, im {Sa} is a subspace of PFN
q

. Orthogonal direct sum of subspaces is

again a subspace of PFN
q

. Therefore, we can complete the proof by finding anH which makes

dim
⊕
a∈H

im {Sa} = dimPFN
q

. (3.22)

Let the elements of H be selected by transposing the columns of the parity check matrix of

the Hamming code in Fq with N rows. It is known from coding theory that the parity check

matrix of such a Hamming code consists of qN−1
q−1 columns all of which are pairwise linearly

independent [11]. Therefore, H contains qN−1
q−1 pairwise linearly independent vectors. Since

these vectors are pairwise linearly independent, for any a,b ∈ H

im {Sa} ⊥ im {Sb} (3.23)
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due to Lemma 3.3. Hence,

dim
⊕
a∈H

im {Sa} =
∑
a∈H

dim im {Sa} , (3.24)

since these subspace are all orthogonal. im {Sa} is a q−1 dimensional subspace due to Lemma

3.2. Therefore,

dim
⊕
a∈H

im {Sa} =
∑
a∈H

(q − 1)

= |H|(q − 1)

= qN − 1

= dimPFN
q

, (3.25)

which completes the proof. �

3.5 The Canonical Factorization

Corollary 3.5 (The fundamental result of the thesis:) Any multivariate pmf in PFN
q

can be

expressed as a product of functions that depend on a linear combination of their arguments.

Proof. LetH be set of parity check vectors satisfying (3.21), existence of which is guaranteed

by Theorem 3.4. Let the vectors inH be enumerated as a1, a2, . . . , a|H|. Then any p(x) ∈ PFN
q

can be expressed as

p(x) =

|H|
�∑

i=1

pi(x) (3.26)

where pi(x) is the projection of p(x) onto im
{
Sai

}
. Since pi(x) is in im

{
Sai

}
, there exist an

ri(x) ∈ PFq such that

pi(x) = CFN
q

{
ri(aixT )

}
. (3.27)

Then p(x) can be expressed as

p(x) =

|H|
�∑

i=1

CFN
q

{
ri(aixT )

}
. (3.28)

Employing the definition of addition in PFN
q

yields the desired factorization.

p(x) = CFN
q


|H|∏
i=1

ri(aixT )

 (3.29)

=
1
γ

|H|∏
i=1

ri(aixT ), (3.30)

30



where γ is equal to
∑
∀i∈FN

q

∏|H|
i=1 ri(aixT ). �

Definition 4 The canonical factorization: A factorization of a multivariate pmf is called the

canonical factorization of the pmf if all factor functions are SPC factors and parity check

coefficient vectors of all SPC factors are pairwise linearly independent.

The canonical factorization of a multivariate pmf in PFN
q

can be obtained by projecting the

pmf onto the subspaces im
{
Sai

}
for ai ∈ H . In order to compute this projection a set of

orthonormal basis pmfs for im
{
Sai

}
is required. We can derive such a set of orthonormal basis

pmfs from the orthonormal basis pmfs for PFq given in Section 2.5.3 by using the first part

of Lemma 3.1. The inner product of two SPC constraints CFN
q

{
s j(aixT )

}
and CFN

q

{
sk(aixT )

}
which are derived from s j(x) and sk(x) defined in (2.39) is

< CFN
q

{
s j(aixT )

}
,CFN

q

{
sk(aixT )

}
>= qN−1 < s j(x), sk(x) > (3.31)

due to Lemma 3.1. Consequently,

< CFN
q

{
s j(aixT )

}
,CFN

q

{
sk(aixT )

}
>=

 qN−1, k = j

0
(3.32)

Therefore, the set given below is a set of orthonormal basis pmfs for im
{
Sai

}
.{

q−
N−1

2 � CFN
q

{
s1(aixT )

}
, q−

N−1
2 � CFN

q

{
s2(aixT )

}
, . . . , q−

N−1
2 � CFN

q

{
sq−1(aixT )

}}
(3.33)

Then the projection of p(x) onto im
{
Sai

}
, which is denoted by CFN

q

{
ri(aixT )

}
, can be obtained

as

CFN
q

{
ri(aixT )

}
=

q−1
�∑

j=1

q−(N−1)� < CFN
q

{
s j(aixT )

}
, p(x) > �CFN

q

{
s j(aixT )

}
. (3.34)

Moreover, due to the linearity of the mapping Sai {.}

ri(x) =

q−1
�∑

j=1

q−(N−1)� < CFN
q

{
s j(aixT )

}
, p(x) > �s j(x). (3.35)

Example 3.2 Suppose that we are required to find the canonical factorization of p2(x0, x1)

given in Example 3.1. We can decompose PF2
3

into orthogonal subspaces with a set H con-

taining 32−1
3−1 = 4 pairwise linearly independent parity check vectors of length two. Such anH

can be selected as

H = {[1, 0], [0, 1], [1, 1], [1, 2]} (3.36)
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The subspaces of PF2
3

based on these parity check vectors are

im
{
S[1,0]

}
=

p(x0, x1) =
1
3

r(x0) =
1
3


r(0) r(0) r(0)

r(1) r(1) r(1)

r(2) r(2) r(2)

 : r(x) ∈ PF3


im

{
S[0,1]

}
=

p(x0, x1) =
1
3

r(x1) =
1
3


r(0) r(1) r(2)

r(0) r(1) r(2)

r(0) r(1) r(2)

 : r(x) ∈ PF3



im
{
S[1,1]

}
=

p(x0, x1) =
1
3

r(x0 + x1) =
1
3


r(0) r(1) r(2)

r(1) r(2) r(0)

r(2) r(1) r(0)

 : r(x) ∈ PF3


im

{
S[1,2]

}
=

p(x0, x1) =
1
3

r(x0 + 2x1) =
1
3


r(0) r(1) r(2)

r(2) r(0) r(1)

r(1) r(2) r(0)

 : r(x) ∈ PF3


Let the projections of p2(x0, x1) onto these subspaces be denoted with 1

3 r1(x0), 1
3 r2(x1), 1

3 r3(x0 + x1),

and 1
3 r4(x0 + 2x1) respectively. These pmfs can be computed using (3.35) as

r1(x) =


0.2, x = 0

0.4, x = 1

0.4, x = 2

, r2(x) =


1
3 , x = 0
1
3 , x = 1
1
3 , x = 2

r3(x) =


0.4, x = 0

0.5, x = 1

0.1, x = 2

, r4(x) =


0.3, x = 0

0.6, x = 1

0.1, x = 2

.

Finally, it can be verified that

p2(x0, x1) =
1500
157

r1(x0)r2(x1)r3(x0 + x1)r4(x0 + 2x1).
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CHAPTER 4

PROPERTIES AND SPECIAL CASES OF

THE CANONICAL FACTORIZATION

4.1 Introduction

The canonical factorization deserves its name by possessing some important properties. This

chapter explains these properties first and then some special cases of the canonical factoriza-

tion is derived. These special cases will be important while applying the canonical factoriza-

tion to communication theory problems in Chapter 6. This chapter begins with introducing

a matrix notation to represent local functions in Section 4.2. Then it is shown in Section 4.3

that the canonical factorization is the ultimate factorization possible. The uniqueness of the

canonical factorization is explained Section 4.4. The canonical factorization of pmfs with

known alternative factorizations is derived in Section 4.5. This chapter ends with deriving the

canonical factorization of the joint pmf a random vector obtained by linear transformation of

another random vector.

4.2 Representation of local functions

In the rest of the thesis we deal frequently with local functions. We adopt a matrix notation

to indicate the variables that a factor function depends. We use Fq-valued diagonal matrices

such that some of their entries on the main diagonal are 1 and the rest are all 0. For instance,

p(x) = p(xD) (4.1)

indicates that the pmf p(x) depends on only to the components of x associated with a 1 on

the diagonal of the matrix D. We call such matrices dependency matrices. Some special
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dependency matrices we use in the thesis are Ei, I, and O. Ei denotes the dependency matrix

with a 1 only on the ith entry of its diagonal. The other two matrices are the identity matrix

and the all-zeros matrix respectively.

A local pmf is orthogonal to some SPC constraints as shown by the following lemma. This

lemma is quite useful not only in this chapter but also in Chapter 7.

Lemma 4.1 For any p(x) ∈ PFN
q

, any nonzero a ∈ FN
q , and any dependency matrix D

p(x) = p(xD) ∧ aD , a =⇒ p(x) ⊥ im {Sa} . (4.2)

The proof is given in Appendix A.3.1.

4.3 Ultimateness of the canonical factorization

The ultimate goal of any mathematical factorization operation is to factor the mathematical

object to its most basic building blocks. For instance, the goal of integer factorization is

to express a natural number as a product of prime numbers. Similarly, the ultimate goal of

polynomial factorization is to express a polynomial as a product of irreducible polynomials.

In the case of factoring a strictly positive multivariate pmf into strictly positive factor func-

tions, it is difficult to set an ultimate goal or to describe the most basic building blocks of

multivariate pmfs. Since, any factor function in any factorization can still be expressed as

a product of other positive factor functions, a multivariate pmf can be factored arbitrarily in

many different ways and the factorization operation can continue indefinitely. In this aspect,

factoring a strictly positive pmf is similar to trying to factor a real number.

However, not every factorization is useful in practice. A factorization of a multivariate pmf

is useful if it expresses the pmf as a product of local functions. Therefore, it is reasonable to

continue to factor a multivariate pmf if any factor function can still be expressed as a product

of more local factor functions. For instance, let a factor function φ(xD) of p(x) be expressed

as

φ(xD) = φ1(xD1)φ2(xD2)

where Di , D but DDi = Di for i = 1, 2. Since φ1(.) and φ2(.) have less number of arguments

than φ(.) has, the ultimate factorization of p(x) should contain the product φ1(xD1)φ2(xD2)
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rather than φ(xD). In this point of view, the canonical factorization is the ultimate factorization

that one can achieve as stated by the following theorem.

Theorem 4.2 An SPC factor function with a nonzero norm cannot be factored further to

functions having less number of arguments.

Proof. Assume that an SPC constraint, CFN
q

{
r(axT )

}
, with a nonzero norm can be factored to

functions having less number of arguments. In other words, assume that CFN
q

{
r(axT )

}
can be

expressed as

CFN
q

{
r(axT )

}
= φ1(xD1)φ2(xD2)

= CFN
q
{φ1(xD1)}� CFN

q
{φ2(xD2)} , (4.3)

where D1 and D2 are such dependency matrices that aD1 , a and aD2 , a. CFN
q
{φ1(xD1)} and

CFN
q
{φ2(xD2)} are orthogonal to CFN

q

{
r(axT )

}
due to Lemma 4.1. Then (4.3) is only possible

if

CFN
q

{
r(axT )

}
= CFN

q
{φ1(xD1)} = CFN

q
{φ2(xD2)} = θ(x),

which is a contradiction completing the proof. �

4.4 Uniqueness of the canonical factorization

Recall that we need a set H composed of qN−1
q−1 pairwise linearly independent vectors in FN

q

to derive the canonical factorization of a pmf in PFN
q

. There are 2N − 1 nonzero vectors in

FN
2 all of which are pairwise linearly independent. Hence, the set H should contain all the

nonzero vectors in FN
2 . Consequently, the set H required in the derivation of the canonical

factorization of a pmf in PFN
2

is unique. Moreover, the canonical factorization obtained from

such a setH is also unique.

If the Fq is not the binary field then there are qN − 1 nonzero vectors in FN
q . Hence, we can

have more than one distinct sets which contain qN−1
q−1 pairwise linearly independent vectors in

FN
q if q is not equal to two. Let H1 = {a1, a2, . . . , aM} and H2 = {b1,b2, . . . ,bM} be two

distinct sets containing M =
qN−1
q−1 pairwise linearly independent vectors in FN

q . Using these

two sets we can obtain two different canonical factorizations of a multivariate pmf p(x) ∈ PFN
q
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as in

p(x) = CFN
q

 M∏
i=1

ri(aixT )

 , (4.4)

p(x) = CFN
q

 M∏
i=1

ti(bixT )

 , (4.5)

where ri(aixT ) and ti(bixT ) denote the projections of p(x) onto im
{
Sai

}
and im

{
Sbi

}
respec-

tively. Notice that any ai in H1 is definitely linearly dependent with one of the bi vectors in

H2. In other words for any ai ∈ H1 there exist a b j ∈ H2 such that

b j = αai. (4.6)

Consequently, im
{
Sai

}
is equal to im

{
Sb j

}
due to Lemma 3.3. Therefore, the projection of

p(x) onto these same subspaces should also be equal, i.e.,

ri(aixT ) = t j(b jxT ), (4.7)

which means that the factorizations in (4.4) and (4.5) are essentially the same factorization

although they appear different. Since different sets of parity check coefficient vectors leads to

the same canonical factorization, we can conclude that the canonical factorization of a given

pmf is unique. Since the selection of the vectors in H does not affect the resulting canonical

factorization, in the rest of the thesis we use H to denote any set containing qN−1
q−1 pairwise

linearly independent vectors in FN
q .

4.5 The canonical factorization of pmfs with alternative factorizations

In the most general case, the canonical factorization of a multivariate pmf in PFN
q

is composed

of |H| SPC factors. However, for some special pmfs some of these |H| SPC factors are

essentially constants. For these pmfs less than |H| SPC factors may suffice to express the

canonical factorization.

The first group of these special types of pmfs consists of pmfs which depend on only a subset

of their arguments. The canonical factorization of these types of pmfs is investigated in the

following lemma.

Lemma 4.3 LetD be a subset ofH defined for a dependency matrix D as

D , {ai ∈ H : aiD = ai}. (4.8)
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The canonical factorization of a multivariate pmf p(x) ∈ PFq is in the form of

p(x) = CFN
q

∏
ai∈D

ri(aixT )

 (4.9)

if and only if

p(x) = p(xD). (4.10)

Proof. Due to Theorem 3.4 any pmf in PFN
q

can be expressed as

p(x) =
�∑

ai∈H

CFN
q

{
ri(aixT )

}
(4.11)

=
�∑

ai∈D

CFN
q

{
ri(aixT )

}
�

�∑
ai∈H\D

CFN
q

{
ri(aixT )

}
, (4.12)

where CFN
q

{
ri(aixT )

}
is the projection of p(x) onto im {Sa}. But p(x) is orthogonal to im

{
Sai

}
for ai ∈ H \ D due to Lemma 4.1. Hence,

CFN
q

{
ri(aixT )

}
= θ(x), (4.13)

for ai ∈ H \ D. Consequently,

p(x) =
�∑

ai∈D

CFN
q

{
ri(aixT )

}
(4.14)

= CFN
q

∏
ai∈D

ri(aixT )

 , (4.15)

which is the desired factorization to prove the theorem in the forward direction.

The proof in the backward direction is straight forward. If p(x) can be factored as in (4.9)

then

p(xD) = CFN
q

∏
ai∈D

ri(aixT )


∣∣∣∣∣∣
x=xD

(4.16)

= CFN
q

∏
ai∈D

ri(aiDT xT )

 . (4.17)

Since D is symmetric and aiD = ai for ai ∈ D,

p(xD) = CFN
q

∏
ai∈D

ri(aixT )

 (4.18)

= p(x), (4.19)
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which completes the proof. �

This lemma tells in practice that any pmf satisfying the relation p(x) = p(xD) can be expressed

as a product of |D| SPC factors rather than |H| SPC factors. Moreover, parity check coefficient

vectors of these SPC factors satisfy the relation a = aD. We do not need to compute the

projection of p(x) onto im {Sa} if a is not in D, since the result of that projection would be

θ(x) definitely.

The next theorem investigates the canonical factorization of pmfs with known alternative

factorizations.

Theorem 4.4 If a multivariate pmf p(x) ∈ PFN
q

can be factored as

p(x) = CFN
q


K∏

j=1

φ j(xD j)

 , (4.20)

where D1, D2, . . ., DK are dependency matrices then the canonical factorization of p(x) is in

the form of

p(x) = CFN
q


K∏

j=1

∏
ai∈D j

ri(aixT )

 , (4.21)

whereD j is the subset ofH given by

D j , {ai ∈ H : aiD j = ai}. (4.22)

Proof. This theorem is actually a direct consequence of Lemma 4.3. Let t j(x) ∈ PFN
q

be

t j(x) , CFN
q

{
φ j(xD j)

}
. (4.23)

Since t j(x) is equal to t j(xD j),

t j(x) =
�∑

ai∈D j

ri(aixT ), (4.24)

due to Lemma 4.3. Then p(x) is

p(x) =

K
�∑

j=1

t j(x) (4.25)

=

K
�∑

j=1

�∑
ai∈D j

ri(aixT ) (4.26)

= CFN
q


K∏

j=1

∏
ai∈D j

ri(aixT )

 , (4.27)
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which completes the proof. �

The practical consequence of this theorem is that the canonical factorization of a pmf with an

alternative factorization can be derived by obtaining the canonical factorization of the factor

functions in the alternative factorization. This approach significantly simplifies the derivation

of the canonical factorization for such pmfs and extensively used in Chapter 6.

4.6 The effect of reversible linear transformations on the canonical factoriza-

tion

If two random vectors are related with a reversible linear transformation then the canonical

factorization of the pmf of the one of random vectors can be derived from the canonical fac-

torization of the other random vector’s pmf. Let X be an FN
q -valued random vector distributed

with p(x) ∈ PFN
q

. Moreover, let Y be another FN
q -valued random vector which is related to X

as in

Y = XB (4.28)

where B is an reversible matrix in FN×N
q . Since B is reversible, for each y ∈ FN

q there is one

and only one x ∈ FN
q vector satisfying y = xB, which is given by x = yB−1. Hence,

Pr{Y = y} = Pr{X = yB−1} (4.29)

= p(yB−1). (4.30)

If the canonical factorization of p(x) is as given in

p(x) =
∏
ai∈H

ri(aixT ) (4.31)

then the canonical factorization of Pr{Y = y} is simply

Pr{Y = y} =
∏
ai∈H

ri(aixT )
∣∣∣∣x=yB−1

(4.32)

=
∏
ai∈H

ri
(
ai(B−1)T yT

)
(4.33)

If B was not reversible then Pr{Y = y} would be zero for some y vectors in FN
q . Hence,

Pr{Y = y} would not be a multivariate pmf in PFN
q

and consequently we could not talk about

the canonical factorization of Pr{Y = y}.
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An interesting question about the linear transformations of FN
q -valued random vectors might

be whether there exists a linear transformation K for a random vector X such that the com-

ponents of the vector Y = XK are statistically independent. If such a transformation exists it

would prove useful in computing the marginal pmfs of the components of the random vector

X. The canonical factorization of Pr{Y = y} given in (4.33) provides a clue to this question.

Theorem 4.5 There exist a matrix K in FN×N
q for an FN

q -valued random vector X such that

the components of the random vector Y given by

Y = XK (4.34)

are statistically independent if the canonical factorization of the pmf of X is composed of at

most N SPC factors whose parity check coefficient vectors are all linearly independent.

Proof. The proof is constructive. Let p(x) be the pmf of X and the canonical factorization of

p(x) be denoted as

p(x) = CFN
q

∏
ai∈K

ri(aixT )

 (4.35)

where K is a subset of H containing at most N linearly independent vectors. Let Kc be a

subset of H such that it is a superset of K and it contains exactly N linearly independent

vectors. Since ri(aixT ) is equal to θ(x) for ai ∈ Kc \K , the canonical factorization of p(x) can

also be expressed as

p(x) = CFN
q

 ∏
ai∈Kc

ri(aixT )

 (4.36)

We may define a matrix Kc whose rows are the elements of Kc. Using this matrix Kc the

canonical factorization of p(x) becomes

p(x) = CFN
q


N∏

j=1

ri( j)(f jKcxT )

 , (4.37)

where f j is the jth canonical basis vector of FN
q and i( j) is the index of the vector ai when

ai = f jKc. Then we may define the matrix K as

K , (K−1
c )T . (4.38)
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With this definition of K, the canonical factorization of Pr{Y = y} becomes

Pr{Y = y} = CFN
q


N∏

j=1

ri( j)(f jKcxT )


∣∣∣∣∣∣
x=yK−1

(4.39)

= CFN
q


N∏

j=1

ri( j)
(
f jKc(K−1)T yT

) (4.40)

= CFN
q


N∏

j=1

ri( j)(f jyT )

 (4.41)

= CFN
q


N∏

j=1

ri( j)(y j)

 , (4.42)

where y j is the jth component of y. Since Pr{Y = y} is separable, the components of Y are

statistically independent. Moreover, the distribution of the jth component of Y is simply

Pr{Y j = y} = ri( j)(y). (4.43)

�

In the general case, the marginal pmfs of the components of an FN
q -valued random vector X

can be computed via the marginalization sum whose complexity is qN . If the multivariate

pmf of X obeys the condition imposed in Theorem 4.5 then X can be related to Y, whose

components are statistically independent, as

X = YK−1. (4.44)

This means that any component of X is equal to a linear combination of N statistically inde-

pendent random variables. Hence, the marginal pmfs of the components of X can be computed

via N − 1 circular convolutions over Fq instead of the marginalization sum. Consequently, the

complexity of computing a single marginal pmf is Nq2 and the complexity of computing all

marginal pmfs is N2q2 instead of qN for such random vectors1.

1 These complexities can be reduced even more to Nq log2 q and N2q log2 q by computing the convolutions
via FFT if Fq is an extension field of the binary field [10].
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CHAPTER 5

EMPLOYING CHANNEL DECODERS FOR INFERENCE

TASKS BEYOND DECODING

5.1 Introduction

This chapter explains subjectively the most important consequence of the canonical factor-

ization which allows the decoders of the linear error correction codes to be utilized in other

inference tasks.

This chapter starts with an overview of channel decoders. Then how a maximum likelihood

(ML) decoder can be used to maximize a multivariate pmf is explained. It is shown in Section

5.4 that symbolwise decoders can be employed to marginalize multivariate pmfs. Section 5.5

highlights that the decoders of the dual Hamming code can be used as universal inference

machines. Special cases are analyzed in Section 5.6. The material presented in this chapter

is summarized with graphical models in 5.7. This chapter ends with explaining the possible

applications of employing channel decoders for inference tasks beyond decoding.

5.2 An overview of channel decoders

A channel decoder is specified by a code and a channel through which the coded symbols are

transmitted. A code C over a finite field Fq of length L is defined as a subset of FL
q . The code

is called a linear code if C is a subspace of FL
q . For linear codes there exists a matrix H which

satisfies

HxT = 0 ∀x ∈ C. (5.1)

The matrix H is called the parity check matrix of the code.
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A channel is a system which maps a Fq-valued symbol to an element of the output alphabet

in a probabilistic manner 1. We assume that the channel decoders used in the rest of this

chapter are designed for a specific channel. This channel relates the inputs to the outputs via

the following relation

Yi = s(Xi) + Zi, (5.2)

where Zi is a noise vector consisting of independent, zero-mean, real Gaussian random vari-

ables with unit variance and s(.) denotes the simplex mapping as defined in (2.31). The like-

lihood function, which is a conditional probability density function of a continuous random

vector, of this channel is

fYi |Xi{Yi = yi|Xi = xi} ∝ exp
(
−

1
2
‖yi − s(xi)‖2

)
(5.3)

∝ L+ {yi} (xi). (5.4)

The reasoning behind the selection of this channel model is explained in Section 5.6.2.

Let X = [X1, X2, . . . , XL] denote a codeword belonging to the codeC and Y = [Y1,Y2, . . . ,YL]

denote the output of the channel when X is transmitted through this channel. If all codewords

are equally likely then the a posteriori probability (APP) of X is

Pr{X = x|Y = y} = CFL
q

1C (x)
L∏

i=1

fYi |Xi{Yi = yi|Xi = xi}

 (5.5)

= CFL
q

1C (x)
L∏

i=1

L+ {yi} (xi)

 , (5.6)

where x = [x1, x2, . . . , xL], y = [y1, y2, . . . , yL], and 1C (.) denotes the indicator function i.e.,

1C (x) ,

 1, x ∈ C

0, x < C
. (5.7)

If the code C is a linear code with the parity check matrix H consisting of M rows then

1C (x) =

M∏
i=1

δ(hixT ), (5.8)

where hi denotes the ith row of H. Consequently, the APP of X is

Pr{X = x|Y = y} = CFL
q

 M∏
i=1

δ(hixT )
L∏

i=1

L+ {yi} (xi)

 . (5.9)

1 This definition of channel includes the modulator when necessary.
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There are two decoding problems that can be associated with a code and the channel model

defined above [33]. The first one of these decoding problems is the codeword decoding prob-

lem which is the task of inferring the transmitted codeword. This task is accomplished by

finding the codeword which maximizes the APP Pr{X = x|Y = y}. Hence, this decoding is

called the maximum a posteriori (MAP) codeword decoding. The MAP codeword decoding

can be formally defined as

x̂MAP , arg max
x∈C

Pr{X = x|Y = y}. (5.10)

If all codewords are equally likely then the MAP codeword decoding problem is equal to

the maximum likelihood (ML) codeword decoding problem which maximizes the likelihood

function fY|X{Y = y|X = x} instead of the APP, i.e.,

x̂ML , arg max
x∈C

fY|X{Y = y|X = x} (5.11)

= arg max
x∈C

Pr{X = x|Y = y} (5.12)

= x̂MAP. (5.13)

Both MAP and ML codeword decoding problems can be solved by the min-sum (max-

product) algorithm, the most famous example of which is the Viterbi algorithm [2, 6, 7, 33].

The second decoding problem is the symbolwise decoding problem which aims to produce a

soft prediction about the individual coded symbols. This task is accomplished by marginaliz-

ing the APP as in

Pr{Xi = xi|Y = y} =
∑
∼{xi}

Pr{X = x|Y = y} (5.14)

where ∼{xi} is the summary notation introduced in [1] and indicates that the summation runs

over the variables x1, x2, . . ., xi−1, xi+1, xi+2, . . ., xN . The symbolwise decoding problem

is solved by the sum-product algorithm whose most famous example is the BCJR algorithm

[24, 33].

5.3 Maximizing a multivariate pmf by using an ML codeword decoder

We begin this section with the following example. This example might be impractical but it is

the simplest possible example to demonstrate the idea. We will generalize the idea after this

example.
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Example 5.1 Suppose that we are required to implement a device which finds the configu-

ration maximizing a pmf p(x1, x2) ∈ PF2
2
. This device is supposed to return the pair (x1, x2)

which maximizes p(x1, x2) after receiving the values p(0, 0), p(0, 1), p(1, 0), and p(1, 1) as in-

put. Assume that while implementing this device we can use a handicapped processor which

can only add two numbers, negate a number, and compute the logarithm of a number but can-

not compare two numbers. Further assume that to compensate the handicap of the processor

we are given the ML codeword decoder hardware of the linear code with the parity check

matrix

H = [ 1 1 1 ], (5.15)

which is designed for the channel model described in Section 5.2.

If the processor at our hand was a regular processor which could compare two numbers then

the solution of this problem would be obvious. Since this processor cannot compare two

numbers, we need to figure out another solution by employing the ML codeword decoder. In

this solution we should use the processor to compute the three input vectors2 to be applied to

the decoder from inputs applied to the whole system.

We sketch a solution as follows. Let the input vectors applied to the decoder be y1, y2, and

y3. By (5.9) this decoder will return the following x̂ML = [x̂1, x̂2, x̂3] vector

x̂ML = arg max
[x1,x2,x3]∈C

δ(x1 + x2 + x3)
3∏

i=1

L+ {yi} (xi). (5.16)

Since x3 = x1 + x2 for every codeword in C,

x̂ML = arg max
[x1,x2,x3]∈C

L+ {y1} (x1)L+ {y2} (x2)L+ {y3} (x1 + x2). (5.17)

Due to Corollary 3.5 we know that any p(x1, x2) ∈ PF2
2

can be expressed as

p(x1, x2) = CF2
2
{r1(x1)r2(x2)r3(x1 + x2)} . (5.18)

Hence, if we apply yi = L {ri(x)} to the decoder then the decoder computes

x̂ML = arg max
[x1,x2,x3]∈C

r1(x1)r2(x2)r3(x1 + x2) (5.19)

= arg max
[x1,x2,x3]∈C

p(x1, x2). (5.20)

The first two components of the x̂ML is the result we are looking for.

2 Recall that the channel model given in (5.2) maps each bit to a vector in R2
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p(0,0) p(0,1) p(1,0) p(1,1)

Processor

y1

ML codeword decoder of H

x1^ x2^ x3^

Computes y1, y2, and y3

y2 y3

Desired
Result

Ignore

Figure 5.1: The block diagram of the solution to problem in Example 5.1.

The only missing component of the solution is computing yi = L {ri(x)}. These vectors can be

derived using the discussion in Chapter 3 as

y1 = [ log p(0, 0) + log p(0, 1) − log p(1, 0) − log p(1, 1) ][ 1 −1 ]

y2 = [ log p(0, 0) − log p(0, 1) + log p(1, 0) − log p(1, 1) ][ 1 −1 ] (5.21)

y3 = [ log p(0, 0) − log p(0, 1) − log p(1, 0) + log p(1, 1) ][ 1 −1 ].

Fortunately, our handicapped processor can be programmed to accomplish this subtask. The

block diagram of the solution is depicted in Figure 5.1.

An ML codeword decoder can be utilized to maximize a multivariate pmf t(x) if it can be

expressed as a product of parity-check (zero-sum) constraints and degree one factors as in

t(x) =

M∏
i=1

δ(hixT )
L∏

i=1

φi(xi). (5.22)

The decoder which can maximize this pmf is the decoder of the linear code with the parity

check matrix H given by

H =



h1

h2
...

hM


. (5.23)
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If yi = L
{
CFN

q
{φi(x)}

}
is applied as the ith input to the decoder then the ML codeword decoder

performs the following maximization

x̂ML = arg max
x∈C

M∏
i=1

δ(hixT )
L∏

i=1

L+ {yi} (xi) (5.24)

= arg max
x

M∏
i=1

δ(hixT )
L∏

i=1

φi(xi) (5.25)

= arg max
x

t(x), (5.26)

which is the desired maximization.

Unfortunately, most of the pmfs cannot be factored as in (5.22). Therefore, it might seem

that utilization of an ML codeword decoder for maximizing a pmf has limited applicability.

However, for any pmf in PFN
q

we can find a substitute pmf which factors as in (5.22) and can

be used to maximize the original pmf. Consequently, ML codeword decoders can be utilized

in the maximization of a broad range of pmfs.

We derive such a substitute pmf based on the canonical factorization. Let p(x) ∈ PFN
q

be the

multivariate which we want to maximize by using an ML codeword decoder. Due to Corollary

3.5, p(x) can be expressed as a product of SPC constraints as in

p(x) = CFN
q


|H|∏
i=1

ri(aixT )

 , (5.27)

whereH is {a1, a2, . . . , a|H|} and CFN
q

{
ri(aixT )

}
is the projection of p(x) onto im

{
Sai

}
. Recall

that the set H consists of qN−1
q−1 pairwise linearly independent parity check vectors. Since all

of these parity check coefficient vectors are pairwise linearly independent, N of them have to

be of weight one. Without loss of generality we may assume that these weight one vectors are

the first N parity check vectors in H , i.e. a1, a2, . . ., aN . Then we may define a matrix A by

using the remaining parity check coefficient vectors inH as

A ,



aN+1

aN+2
...

a|H|


. (5.28)

We will use A while defining the substitute pmf for p(x). This substitute pmf has an extended

argument vector xE consisting of L components where L is equal to |H|. This extended

argument vector is defined as

xE , [x xA], (5.29)

47



where x and xA are given by

x , [x1 x2 . . . xN], (5.30)

xA , [xN+1 xN+2 . . . xL]. (5.31)

Finally, we propose the substitute pmf for p(x) as

tp(xE) ,

 p(x), if xT
A = AxT

0, otherwise
. (5.32)

Clearly, tp(xE) achieves its maximum value at a configuration xE,MAX which is equal to

xE,MAX , arg max
xE

tp(xE) (5.33)

= [xMAX xMAXAT ] (5.34)

where xMAX is the configuration maximizing p(x). Due to this property any device which de-

termines the configuration maximizing tp(xE) also determines the configuration maximizing

p(x) at the same time.

Now we need to show that tp(xE) can be maximized by an ML codeword decoder. As a

first step, we can obtain an equivalent alternative definition of tp(xE) with using parity check

constraints as

tp(xE) = p(x)
L∏

i=N+1

δ(aixT − xi). (5.35)

Inserting the canonical factorization of p(x) into the equation above yields

tp(xE) = CFL
q

 L∏
i=1

ri(aixT )
L∏

i=N+1

δ(aixT − xi)

 (5.36)

= CFL
q

 N∏
i=1

ri(aixT )
L∏

i=N+1

ri(aixT )δ(aixT − xi)

 . (5.37)

Recall that we assumed the first N ai vectors to be of weight one while defining the matrix A.

Hence, we may safely assume further that these N ai vectors are the canonical basis vectors

of FN
q . With this assumption the factorization of tp(xE) becomes

tp(xE) = CFL
q

 N∏
i=1

ri(xi)
L∏

i=N+1

ri(aixT )δ(aixT − xi)

 . (5.38)
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The only remaining step to obtain a factorization as in (5.22) is to replace ri(aixT )δ(aixT − xi)

with ri(xi)δ(aixT − xi) which yields

tp(xE) = CFL
q

 N∏
i=1

ri(xi)
L∏

i=N+1

ri(xi)δ(aixT − xi)

 (5.39)

= CFL
q

 L∏
i=1

ri(xi)
L∏

i=N+1

δ(aixT − xi)

 . (5.40)

Since all the factor functions above are either degree one factor functions or parity-check

constraints, an ML decoder of a linear code can be utilized to maximize tp(xE).

The parity check matrix of the linear code which can be used to maximize tp(xE) and conse-

quently p(x) at the same time can be found as follows. Let a parity check coefficient vector hi

of length L be defined as in

hi ,
[
ai+N 01×(i−1) − 1 01×(L−i−N)

]
for 1 ≤ i ≤ L − N. (5.41)

Equation (5.40) can be expressed using hi as

tp(xE) = CFL
q

 L∏
i=1

ri(xi)
L−N∏
i=1

δ(hixT
E)

 . (5.42)

Hence, the parity check matrix H of the code whose ML codeword decoder can be used to

maximize tp(xE) and p(x) is

H ,



h1

h2

. . .

hL−N


(5.43)

=
[
A − I(L−N)×(L−N)

]
. (5.44)

The L input vectors that should be applied to maximize p(x) and tp(xE) are

yi = L {ri(x)} for 1 ≤ i ≤ L. (5.45)

To sum up, with these input vectors ML codeword decoder of the linear code with parity

check matrix H returns

x̂E,ML = arg max
xE

L∏
i=1

ri(xi)
L−N∏
i=1

δ(hixT
E) (5.46)

= arg max
xE

tp(xE). (5.47)
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L {r1(x)}

ML codeword decoder of

H = [A − I]

L {r2(x)} L {rL(x)}

x1 x2 xN xN+1 xL

Desired
result

Ignore

Figure 5.2: Summary of the utilization of an ML codeword decoder for maximizing a pmf

Due to (5.34) the leading N components of x̂E,ML is the xMAX vector maximizing p(x) which

we are seeking for. We can ignore the rest of the x̂E,ML vector. The whole process of finding

the configuration maximizing p(x) is summarized in Figure 5.2.

It is well known that ML codeword decoding problem is a special instance of maximization of

multivariate pmf problems. In this section, we showed that there exists a special ML codeword

decoding problem which can handle the maximization task of an arbitrary multivariate pmf.

Hence, the reverse of the well known statement above is also true. Therefore, we can conclude

that ML codeword decoding and maximization of multivariate pmfs are equivalent problems.

5.4 Marginalizing a multivariate pmf by using a symbolwise decoder

Let an Fq-valued random vector X = [X1, X2, . . . , XN] be distributed with a p(x) ∈ PFN
q

. The

marginal pmf of Xi is

Pr{Xi = xi} =
∑
∼{xi}

p(x). (5.48)

A symbolwise decoder can perform this marginalization if p(x) can be factored into degree

one factor functions and parity-check constraints, which is not possible for a strictly positive

pmf. However, as we did in the previous section, for each p(x) ∈ Fq we can obtain a substitute

multivariate pmf which has the desired factorization and can be used in the marginalization

of p(x).
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We can follow a more straightforward path to obtain this substitute pmf when compared to the

previous section. Inserting the canonical factorization of p(x) into the marginalization sum

above yields

Pr{Xi = xi} =
∑
∼{xi}

CFN
q

 L∏
i=1

ri(aixT )

 (5.49)

= CFq

∑
∼{xi}

L∏
i=1

ri(aixT )

 (5.50)

= CFq

∑
∼{xi}

N∏
i=1

ri(xi)
L∏

i=N+1

ri(aixT )

 , (5.51)

where we make the same assumptions as in the previous section about the canonical factor-

ization of p(x). This equation shows that N of the factor functions are already of degree one.

The remaining factor functions, which are SPC constraints, can be expressed by using the

sifting property of the Kronecker delta function as

ri(aixT ) =
∑
∀xi∈Fq

δ(aixT − xi)ri(xi) for N + 1 ≤ i ≤ L. (5.52)

Since i is greater than N, xi above is not a component of vector x and is just a dummy variable.

Using this identity in the marginalization sum gives

Pr{Xi = xi} = CFq

∑
∼{xi}

N∏
i=1

ri(xi)
L∏

i=N+1

∑
∀xi∈Fq

δ(aixT − xi)ri(xi)

 (5.53)

= CFq


∑
∼{xi}

∑
∀xA∈FL−N

q

L∏
i=1

ri(xi)
L∏

i=N+1

δ(aixT − xi)

 , (5.54)

where xA is as defined in (5.31). Thanks to the summary notation the summation running over

xA can be merged to the first summation which yields

Pr{Xi = xi} = CFq

∑
∼{xi}

L∏
i=1

ri(xi)
L−N∏
i=1

δ(hixT
E)

 , (5.55)

where xE and hi are defined in (5.29) and (5.41) respectively. Notice that the two products

above is the factorization of tp(xE), which is defined in (5.32), given in (5.42). Therefore,

Pr{Xi = xi} = CFq

∑
∼{xi}

tp(xE)

 (5.56)

=
∑
∼{xi}

tp(xE). (5.57)
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This result shows that the marginal probability of Xi, Pr{Xi = xi}, can be computed either by

marginalizing p(x) or by marginalizing tp(xE).

Similar to the maximization of tp(xE), marginalization of tp(xE) can be accomplished by

the symbolwise decoder of the linear code with parity check H defined in (5.43). When

input vectors yi = L {ri(x)} is applied to this symbolwise decoder it returns the marginal

probabilities associated with the APP

Pr{XE = xE |Y = y} = CFL
q

 L∏
i=1

ri(xi)
L−N∏
i=1

δ(hixT
E)

 , (5.58)

which is equal to tp(xE). Hence, this decoder is capable of both marginalizing tp(xE) and

consequently p(x) at the same time.

We could achieve the result given in (5.57) through a much shorter path if we started from the

definition of tp(xE) given in (5.32). We preferred the path followed above to this shorter path,

since the path above explains how we reached to the proposed definition of tp(xE) which is

the most critical part of the previous section.

It is very well known that symbolwise decoding is an instance of marginalization problems in

general. In this section we showed that marginalization of multivariate pmfs can be expressed

as a particular symbolwise decoding problem. Hence, it can be concluded that symbolwise

decoding and marginalization are equivalent problems.

5.5 The decoder of the dual Hamming code as the universal inference machine

In the previous two sections we have shown that the ML codeword and symbolwise decoders

of the linear code with parity check matrix H can be used to maximize and marginalize any

pmf in PFN
q

. This parity check matrix belongs to the dual code of a very well known code

from coding theory. Recall that the matrix H is as defined as

H =
[
A − I(L−N)×(L−N)

]
(5.59)

=



aN+1 −1 0 · · · 0

aN+2 0 −1 · · · 0
...

...
...

. . . 0

aL 0 0 · · · −1


. (5.60)
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The generator matrix of this code is

G =
[
IN×N AT

]
. (5.61)

In Section 5.3 we assumed that the first N ai vectors are the canonical basis vectors of FN
q .

Therefore, the generator matrix can be written as

G =
[
aT

1 aT
2 · · · aT

L

]
. (5.62)

Recall that all ai vectors were pairwise linearly independent and L was equal to qN−1
q−1 . There-

fore, the generator matrix G given above is actually the parity check matrix of the Hamming

code in Fq of length L. Hence, the parity check matrix H given in (5.59) is the parity check

matrix of the dual Hamming code in Fq of length L. Consequently, the ML codeword decoder

of the (L,N) dual Hamming code can be configured by adjusting its inputs to maximize any

pmf in PFN
q

. Similarly, the symbolwise decoder of the (L,N) dual Hamming code can be used

as an apparatus to marginalize any pmf in PFN
q

. Therefore, the decoders of the dual Hamming

codes are universal inference machines.

5.6 Performing inference on special pmfs by decoders

In the previous sections we have shown that the decoders of the (L,N) dual Hamming code

designed for the channel model given in (5.2) can be used to perform inference on any pmf in

PFN
q

. The analysis presented in the previous sections is for the most general case. Decoders

of shorter codes designed for simpler channel models can be employed to perform inference

on some pmfs enjoying special properties in their canonical factorization.

5.6.1 Performing inference with the decoders of shorter codes

In Chapter 4 we investigated the canonical factorizations of some special pmfs. The canonical

factorization of these special pmfs consisted of less than qN−1
q−1 SPC factors. We can perform

inference on these special pmfs by using the decoders of the codes whose parity check matri-

ces are the sub-matrices of the (L,N) dual Hamming code.

Suppose that we would like to perform inference on a special pmf p(x) ∈ PFN
q

whose canonical
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factorization can be expressed as

p(x) = CFN
q

∏
ai∈D

ri(aixT )

 , (5.63)

where D is a subset of H and ri(aixT ) is the projection of p(x) onto im
{
Sai

}
. Let B be a

subset of D which consists of all of the parity check coefficient vectors in D of weight two

or more. Moreover, let B be a |B| × N matrix whose rows are the vectors in B. Then we may

define the substitute pmf tp(xF) which can be used to perform inference on p(x) as

tp(xF) ,

 p(x), if xT
B = BxT

0, otherwise
. (5.64)

where xB and xF are given by

xB , [xN+1 xN+2 . . . x|B|+N], (5.65)

xF , [x xA]. (5.66)

It can be shown through a similar path to the one in Section 5.3 and Section 5.4 that we can

maximize or marginalize tp(xF) if we wish to determine the configuration maximizing p(x) or

marginalize p(x). Moreover, we can use the ML codeword and symbolwise decoders of the

linear code with parity check matrix

HS , [B − I] (5.67)

to maximize or marginalize tp(xF). Hence, these decoders can be used to maximize or

marginalize p(x).

As in Section 5.3 and Section 5.4, the ML codeword and symbolwise decoders of the linear

code described by parity check matrix HS should be configured to perform inference on p(x)

by applying a certain set of inputs. The ith of these inputs is L+ {vi(x)} (x) where vi(bixT ) is

the projection of p(x) onto im
{
Sbi

}
, and bi is the ith canonical basis vector of FN

q if i is less

than or equal to N and (i − N)th row of B otherwise.

Since D is a subset of H , B is a sub-matrix of A defined in (5.28). Consequently, HS is a

sub-matrix of H defined in (5.43). Therefore, implementing the decoder associated with HS

is easier than implementing the decoder associated with H.

Actually, there are many linear codes whose decoders can be employed to perform inference

on tp(xF) and p(x) at the same time. For instance the decoders of the linear codes with parity

54



check matrices in the form given below can be used in performing inference on p(x),

HS E , [C − I], (5.68)

where C is a sub-matrix of A such that it contains all rows of B and some more. The linear

code with parity check matrix HS is the one with the shortest length among these codes. At a

first glance preferring the decoder of a longer code to a shorter one might seem useless while

solving the same inference problem. However, in the next chapter we are going to provide

some examples in which choosing the decoder of the longer code might be advantageous.

If a linear code has a parity check matrix which can be obtained by permuting the columns

of HS E then the decoders of this code can also be employed in maximizing or marginalizing

p(x). However, in order to obtain the desired result we need to apply permuted inputs.

5.6.2 Performing inference by decoders designed for simpler channels

Let Y be the output alphabet of a communication channel which might be a finite set, real

field, complex field, or a vector space. If there exists a sequence of channel outputs y1, y2, . . .,

y|H| in Y such that a multivariate pmf p(x) ∈ PFN
q

can be expressed as

p(x) = CFN
q

∏
ai∈H

Pr{Y = yi|X = aixT }

 , (5.69)

where Pr{Y = y|X = x} denotes the likelihood function of the channel, then the decoder of the

dual Hamming code designed for this channel can be employed to perform inference on p(x).

The inputs that should be applied to this decoder to perform inference on p(x) are obviously

y1, y2, . . ., y|H|.

In some problems preferring other channel models to the one described in (5.2) might be

simpler. We selected the channel model therein since for each r(x) ∈ Fq there exists a y ∈ Rq

such that r(x) = CFq {Pr{Y = y|X = x}}. Consequently, the decoders of the dual Hamming

code designed for this channel can be employed to perform inference on any pmf p(x) ∈ FN
q .
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5.7 The Generic Factor Graph and Equivalent Tanner graph

In Chapter 3, it is shown that the canonical factorization of any multivariate pmf p(x) in PFN
q

exists which is given by

p(x) = CFN
q

 L∏
i=1

ri(aixT )

 . (5.70)

In this chapter, we made some assumptions on ai. We assumed without loss of generality that

the first N parity check coefficient vectors, a1, a2, . . ., aN , are the canonical basis vectors of

FN
q . Therefore, the canonical factorization of any p(x) becomes

p(x) = CFN
q

 N∏
i=1

ri(xi)
L∏

i=N+1

ri(aixT )

 . (5.71)

The factor graph representing this factorization is shown in Figure 5.3-a. This factor graph

can represent any pmf in PFN
q

since all of the pmfs in PFN
q

has a factorization given above.

The only difference between any two factor graphs representing two different joint pmfs are

the factor functions in the factor graph.

In this chapter, we showed that performing inference on p(x) is equivalent to performing

inference on tp(xE) which is defined in (5.32). The factorization of tp(xE) given in 5.40 is

represented by the Tanner graph shown in Figure 5.3-b.in Hence, this Tanner graph is the

equivalent Tanner graph representing the canonical factorization. While transforming the

factor graph in Figure 5.3-a to the Tanner graph in in Figure 5.3-b, auxiliary variable nodes

representing the variables xN+1, xN+2, . . ., xL are added. These auxiliary variables are very

different from the hidden state nodes introduced in the Wiberg style Tanner graphs [6].

5.8 Importance

Using channel decoders for inference tasks beyond decoding is important mainly in two as-

pects. Firstly, using a channel decoder for an inference task provides new hardware options in

the solution of the inference problems. Among these hardware options the analog probability

propagation technique is important in particular [14]. Secondly, new approximate algorithms

for the solution of the inference problems can be developed by using the sub-optimal decoders

of the codes, which have been studied for a long time.
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Figure 5.3: (a) The generic factor graph which can represent any p(x) in PFN
q

. (b) The equiv-
alent Tanner graph of the generic Tanner graph.
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5.8.1 Performing inference with probability propagation in analog VLSI

The semiconductor devices such as transistors and diodes are the most primitive building

blocks of any electronic device today. By their very nature these devices are nonlinear. Over

the last few decades engineers developed ways to cope with this nonlinearity. While designing

analog circuitry engineers restrict the operation of the circuit to such a region in which these

devices behave almost linearly. Another way to cope with nonlinearity of these devices is

avoiding analog circuits as much as possible and trying to implement everything in digital.

The signals flowing in a digital circuit are so large that transistors behave like switches. Hence,

digital circuits are robust against the nonlinearity of the transistors. Digital circuits are also

robust against other factors such as component mismatch and noise. Due to these and some

other advantages digital circuits are usually preferred to analog circuits.

However, Carver Mead, who is one of the pioneers of the VLSI revolution, claimed in his

book [34] that digital computation is inefficient and analog computation is the way to achieve

the capacity and the efficiency of the brains of the animals. Moreover, he claimed that analog

computation can be made as robust as digital computation to the factors such as noise and

component mismatch. He provided many practical examples to support his claims in his

book.

A decade after Mead’s book, another evidence arise from coding theory to support his claims.

Just two operations are sufficient to perform soft-input soft-output decoding. These operations

are addition, which can be easily implemented with analog circuitry, and the hyperbolic tan-

gent function [1]. Since the differential pair exhibits tangent hyperbolic function this second

function can also be implemented with analog circuits. Motivated with this idea, Loeliger and

his group designed and tested analog circuits to perform decoding of channel codes [15, 14].

They report that their analog decoding circuitry consumes two orders of magnitude less power

than their digital counterparts. This efficiency arises from the fact that their analog decoding

circuit does not fight with the nonlinearities of the transistors but exploits those nonlinearities

[15]. They also report that these circuits are robust to component mismatch.

Loeliger’s “probability propagation in analog VLSI” has an important limitation. This ap-

proach can be applied to probabilistic inference problems if a condition related to the factor-

ization of the multivariate pmf under concern is satisfied. This condition states that the pmf
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should be able to be expressed as a product of zero-one valued functions and functions of

degree one [14]. Although this condition is satisfied in decoding problems, it is not satisfied

in other problems arising in communication theory such as channel equalization and MIMO

detection. Hence, equalizers or MIMO detectors could not be built directly with their brilliant

idea whereas decoders could. A pure decoder implemented with probability propagation in

analog is not very useful without implementing the equalizer or detector in analog since the

interface required between the decoder and the equalizer (or detector) would cancel all the

efficiency of the analog decoder.

In this chapter, we showed that inference problems can be solved by using channel decoders.

Hence, it is possible to solve the equalization or MIMO detection problems by decoders.

Consequently, the results presented in this chapter, allows us to implement channel equalizers

or MIMO detectors with the very efficient analog probability propagation approach. It is

reasonable to expect, based on the experience on analog decoding, that such receiver blocks

would be two orders of magnitude smaller in size and consumes two orders of magnitude less

power than current receivers. Probably this aspect will be the most important contribution of

this thesis.

5.8.2 New approximate inference algorithms

The iterative sum-product algorithm running on loopy Tanner graphs is proven to be efficient

decoding algorithm for various codes. The sum-product algorithm is characterized by the

Tanner graph representing the code. A code might be represented with many different parity

check matrices. For each parity check matrix, more than one Tanner graphs might be obtained

representing the code. Hence, for each code we have various alternative Tanner graphs to

represent the code. Consequently, we may have various versions of the sum-product algorithm

to decode the same code. Each of these alternative versions have different characteristics in

terms of complexity and performance [7]. Therefore, employing a channel decoder to perform

an inference task allows us to choose among different sum-product algorithm versions to

handle the inference task. Hence, new approximate inference algorithms can be developed in

this manner. We provide an example on MIMO detection in the next chapter.

59



CHAPTER 6

USING CHANNEL DECODERS AS DETECTORS

6.1 Introduction

This chapter contains examples to the idea presented in Chapter 5 by showing how to employ

channel decoders as the detectors of communication receivers. One of these examples which

is MIMO detection by using the decoder of a tail biting convolutional code demonstrates

that new inference algorithms with low complexity can be developed by employing channel

decoders for other purposes.

Unfortunately, some of the derivations presented in this chapter might appear quite tedious,

Sections 6.3, 6.4, and 6.5 in particular. Actually, the derivations in these sections are straight-

forward applications of the methods presented in the previous chapter. Most of these deriva-

tions are so straight forward that they can be derived with symbolic programming. Indeed, we

used the GiNaC symbolic programming library in C++ while deriving some of the cumber-

some derivations presented in this chapter. Hence, reporting and following these derivations

is much more difficult than deriving them. However, these sections include examples to make

the subject more concrete. These examples also demonstrate how the same decoder can be

used for different purposes by changing its inputs.

This chapter begins with analyzing the multiple-input single-output (MISO) detection. Then

the results obtained in Section 6.2 are used to derive the channel decoder which can be used in

the detection of naturally mapped pulse amplitude modulation (PAM) signals in Section 6.3.

Section 6.4 explains the detection of gray mapped PAM signals by using channel decoders.

Section 6.5 investigates the multiple-input multiple-output (MIMO) detection of QPSK signal

by using decoders. Special attention is paid to the MIMO detection of QPSK signals by using
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the decoders of tail biting convolutional codes in Section 6.6. This section also includes

some simulation results. This chapter ends with briefly reporting that the Viterbi and BCJR

decoders of the convolutional codes can be used channel equalizers.

6.2 MISO detection of q-ary PSK signaling with prime q by using a channel

decoder

The MISO detection of q-ary PSK signaling under additive Gaussian noise is the simplest

task (in terms of derivation) to be handled by a decoder. Moreover, analyzing this case first

helps to transform other detection problems to decoding problems. ML MISO detection task

is finding the most likely input sequence given the received symbol. This task can be handled

by ML codeword decoders. Soft output MISO detection is the computation of marginal a

posteriori probabilities. This task can be handled by symbolwise decoders.

6.2.1 Signal Model

Let µq (x) be a function from Fq to C representing the q-ary PSK 1 mapping, i.e.

µq (x) , exp
(

j
2π
q

int(x)
)

, (6.1)

where int(.) denotes the usual mapping from Fq to N. Let a complex-valued random variable

Y be related to an Fq-valued random vector X = [X1, X2, . . . , XN] as

Y ,
N∑

i=1

hiµq (Xi) + Z (6.2)

where hi is a complex constant and Z is a zero mean circularly symmetric complex Gaussian

noise with E [ZZ∗] = 2σ2. Clearly, Y models the received symbol after the symbols X1, X2,

. . ., XN are modulated with q-ary PSK and passed through a 1 × N multi-input single output

(MISO) channel with channel coefficients hi. With these assumptions the a posteriori pmf X

is

Pr{X = x|Y = y} = CFN
q

exp

−
∣∣∣y −∑N

i=1 hiµq (xi)
∣∣∣2

2σ2


 , (6.3)

where x = [x1, x2, . . . , xN]. We assume perfect channel information is known at the receiver

side.
1 q-ary PSK is not the same as QPSK.
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6.2.2 The canonical factorization of the joint a posteriori pmf

The first step in determining the linear code whose ML codeword (symbolwise) decoder can

be used to maximize (marginalize) the a posteriori pmf Pr{X = x|Y = y} is obtaining the

canonical factorization of the a posteriori pmf of X. The generic procedure of obtaining this

canonical factorization is explained in detail in Chapter 3, which could have been prohibitively

tedious for this problem. Fortunately, the joint a posteriori pmf in this problem, Pr{X = x|Y =

y}, enjoys many special properties so that deriving its canonical factorization is easier.

Let p(x) denote Pr{X = x|Y = y}. As shown in Appendix A.4.1, p(x) can be factored as in

p(x) = CFN
q


N∏

i=1

exp

2Re
{
yh∗i µq (xi)∗

}
2σ2

 N∏
j=2

j−1∏
i=1

exp

−2Re
{
hih∗jµq (xi) µq

(
x j

)∗}
2σ2


 . (6.4)

Since we have a known factorization for p(x), we can apply Theorem 4.4 to obtain the canon-

ical factorization of p(x) as explained below.

Let two functions γ(ω; ρ, σ) and θ(ω1, ω2; χ, σ) be defined as in

γ(ω; ρ, σ) , exp

2Re
{
ρµq (ω)∗

}
2σ2

 , (6.5)

θ(ω1, ω2; χ, σ) , exp

−2Re
{
χµq (ω1) µq (ω2)∗

}
2σ2

 , (6.6)

for ω, ω1, ω2 in Fq, σ in R, and ρ, χ in C. The function γ(ω; ρ, σ) is nothing but the likelihood

function ofωwhen it is modulated with q-ary PSK, passed through an additive white Gaussian

noise (AWGN) channel with power spectral density (PSD) N0/2 = σ2, and given that the

value at the output of the matched filter is ρ. Using these functions the factorization of p(x)

becomes

p(x) = CFN
q


N∏

i=1

γ(xi; yh∗i , σ)
N∏

j=2

j−1∏
i=1

θ(xi, x j; hih∗j , σ)

 . (6.7)

Notice that the factorization of p(x) given above is composed of degree one and degree two

factors only 2. Therefore, the canonical factorization of p(x) should be composed of SPC

factors of degree one and two due to Theorem 4.4. The SPC factors of degree one composing

p(x) are simply the normalizations of γ(xi; yh∗i , σ)’s.

The SPC factors of degree two composing p(x) can be derived by obtaining the canonical

factorization of θ(xi, x j; hih∗j , σ). The straightforward way of deriving the canonical factoriza-

2 We regard ρ, χ and σ as parameters of functions γ(.; .) and θ(.; .), not their arguments.
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tion of θ(xi, x j; hih∗j , σ) might be projecting this function onto the subspaces im
{
S(fi+αf j)

}
for

all nonzero α ∈ Fq, where fi is the ith canonical basis vector of FN
q . However, the required

canonical factorization can be obtained in a simpler way by exploiting the fact that q is as-

sumed to be a prime number in this section. Since q is a prime number, Fq is a prime field.

Consequently, the subtraction in Fq is the subtraction modulo q. Due to this fact,

µq (ω1) µq (ω2)∗ = µq (ω1 − ω2) . (6.8)

Therefore,

θ(ωi, ω j; χ, σ) = exp

−2Re
{
χµq (ω1 − ω2)

}
2σ2

 (6.9)

= γ(ω1 − ω2;−χ, σ). (6.10)

Inserting this result into (6.7) yields,

p(x) = CFN
q


N∏

i=1

γ(xi; yh∗i , σ)
N∏

j=2

j−1∏
i=1

γ(xi − x j;−hih∗j , σ)

 . (6.11)

We can define pmfs in PFq by scaling γ(x; yh∗i , σ) and γ(x;−hih∗j , σ) as in

ri(x) , CFq

{
γ(x; yh∗i , σ)

}
, (6.12)

ri, j(x) , CFq

{
γ(x;−hih∗j , σ)

}
. (6.13)

The factorization of p(x) can be expressed by using these pmfs as

p(x) = CFN
q


N∏

i=1

ri(xi)
N∏

j=2

j−1∏
i=1

ri, j(xi − x j)

 (6.14)

= CFN
q


N∏

i=1

ri(fixT )
N∏

j=2

j−1∏
i=1

ri, j(ai, jxT )

 , (6.15)

where ai, j is

ai, j , fi − f j. (6.16)

Notice that all the factor functions in factorization above are SPC factors. Moreover, the parity

check coefficient vectors of all SPC factors are pairwise linearly independent. Hence, due to

Definition 4, the factorization of p(x) given in (6.15) is the canonical factorization of p(x).

6.2.3 The decoders which are able to perform inference on the joint a posteriori pmf

As explained in Section 5.5 the ML codeword and symbolwise decoders of the dual Hamming

code of length qN−1
q−1 can perform inference on p(x). However, since the canonical factorization
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of p(x) given in (6.15) consists of less than qN−1
q−1 SPC factors, the ML codeword or symbol-

wise decoders of a shorter code can be employed for maximizing and marginalizing p(x) as

discussed in Section 5.6. Following the discussion in Section 5.6 the parity check matrix of

this code whose decoder can be employed in the demodulation of 1 × N MISO system is

HqPS K(N) ,



a1,2

a1,3

a2,3
...

a1,N

a2,N
...

aN−1,N

− I N(N−1)
2 ×

N(N−1)
2



. (6.17)

For a neater representation of HqPS K(N), we define a matrix parameterized on i and N K(i,N)

as

K(i,N) ,
[
Ii×i − 1i×1 0i×(N−i−1)

]
. (6.18)

Then HqPS K(N) can be expressed as

HqPS K(N) =



K(1,N)

K(2,N)
...

K(N,N)

− I N(N−1)
2 ×

N(N−1)
2


. (6.19)

The complete specification of a decoder of a linear code consists of a parity check matrix and a

channel model. The parity check matrix of the decoders which can detect received symbols of

1×N MISO system are explained above. As the channel model we can use the one described

in (5.2). However, we can use a more natural channel model in this case as explained in

Section 5.6.2. Recall that the factorization of p(x) given in (6.11) is composed of likelihood

functions of the channel which first modulates an Fq-valued symbol with q-ary PSK and then

passes through an AWGN channel with PSD N0/2 = σ2. Therefore, the received symbols of

1 × N MISO system can be detected with the decoders of the code with parity check matrix

HqPS K which is designed for q-ary PSK modulation and AWGN channel with variance σ2.

In order to achieve the desired detection inputs that should be applied to these decoders are
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components of the vector given below.

[yh∗1 yh∗2 . . . yh∗N − h1h∗2 − h1h∗3 − h2h∗3 . . . − h1h∗N − h2h∗N . . . − hN−1h∗N]

We can also use a modification of the same decoder which is designed for standard noise with

σ2 = 1. In this case all of the inputs given above should be scaled by 1
σ .

Example 6.1 This example demonstrates how can we employ a symbolwise decoder to com-

pute the marginal APPs in a 1× 4 MISO system. Let a complex-valued random variable Y be

given as

Y =

4∑
i=1

hiµq (Xi) + Z (6.20)

where Xi is an Fq-valued random variable and Z is the circularly symmetric Gaussian noise

with E [ZZ∗] = 2. Our aim is to compute Pr{Xi = xi|Y = y} by using a symbolwise decoder.

As explained above the parity check matrix of this decoder is

HqPS K(4) =


K(1, 4)

K(2, 4)

K(3, 4)

− I6×6

 (6.21)

=



1 −1 0 0 −1 0 0 0 0 0

1 0 −1 0 0 −1 0 0 0 0

0 1 −1 0 0 0 −1 0 0 0

1 0 0 −1 0 0 0 −1 0 0

0 1 0 −1 0 0 0 0 −1 0

0 0 1 −1 0 0 0 0 0 −1


. (6.22)

The input vector that should be applied to this decoder is

[yh∗1 yh∗2 yh∗3 yh∗4 − h1h∗2 − h1h∗3 − h2h∗3 − h1h∗4 − h2h∗4 − h3h∗4].

Notice that configuring the demodulator for a new observation and new set of channel coeffi-

cients requires only changing the inputs to the decoder. This example is illustrated in Figure

6.1.

6.3 Channel decoders as detectors of naturally mapped M-PAM

In this section we show how to demodulate the naturally mapped M-PAM modulation by using

a channel decoder. Let ηN (x) be a function from FN
2 to R which maps binary valued vectors
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h2

X3
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modulator

h4

Z

Y

(a)

HqPSK(4)Symbolwise decoder of

yh1
* yh2

* yh3
* yh4

* -h1h2
* -h1h3

* -h2h3
* -h1h4

* -h2h4
* -h3h4

*

Marginal APPs of
X1, X2, X3, and X4

Ignore

(b)

Figure 6.1: 1×4 MISO system. (a) The system model. (b) Demodulating the received symbol
by using a symbolwise decoder.
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of length N to M , 2N real amplitude values as in the naturally mapped PAM modulation,

i.e.

ηN (x) ,
N∑

i=1

2i−1β (xi) , (6.23)

where x = [x1, x2, . . . , xN] and β (x) denotes binary antipodal mapping given in

β (x) ,

 1, x = 0

−1, x = 1
. (6.24)

Assume that ηN (X) is transmitted through a discrete additive Gaussian noise channel and Y

is received. In other words,

Y = ηN (X) + Z, (6.25)

where X = [X1, X2, . . . , XN] and Z is a real Gaussian random variable with variance σ2.

Inserting the definition of ηN (X) into (6.25) yields

Y =

N∑
i=1

2i−1β (Xi) + Z. (6.26)

Since β (Xi) is equal to µq (Xi) for q = 2 and 2 is a prime number, (6.26) is a special case of

(6.2). Consequently, naturally mapped M-PAM detection is a special case of MISO detection

of binary phase shift keying (BPSK) with channel coefficients hi = 2i−1. Hence, the parity

check matrix of the code whose decoder can demodulate M-PAM is H2PS K(log2 M). Since

−1 is equal to 1 in the binary field, all of the minus ones in H2PS K(log2 M) can be replaced

with ones. The input vector that should applied to the decoder in order achieve demodulation

of M-PAM is[ y
σ

2y
σ

. . .
2N−1y
σ

−
2021

σ
−

2022

σ
−

2122

σ
−

2023

σ
−

2123

σ
−

2223

σ
. . .

. . . −
202N−1

σ
−

212N−1

σ
. . . −

2N−22N−1

σ

]
,

where y denotes the received value.

Implementing an ML M-PAM detector by using the ML codeword decoder of the code with

parity check matrix H2PS K(log2 M) might not be practical since there are simpler ways to

implement such a detector. However, implementing a soft output M-PAM detector by using

the symbolwise decoder of the same code might be of practical importance.

Example 6.2 This example shows how to compute marginal APPs of four bits which are

modulated with naturally mapped 16-PAM and passed through an AWGN channel with PSD

N0/2 = σ2. Constellation diagram of the naturally mapped 16-PAM is shown in Figure 6.2-a.
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Figure 6.2: (a) Constellation diagram of naturally mapped 16-PAM modulation. (b) Comput-
ing marginal APPs from the received symbol by using the symbolwise decoder of H2PS K(4).

The parity check matrix of the code whose symbolwise decoder can be used to compute

marginal APPs of the individual bits is

H2PS K(4) =



1 1 0 0 1 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0

0 1 1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 1


. (6.27)

Notice that this parity check matrix is a special case of the HqPS K(4) matrix given in the

previous example for q = 2. Since −1 is equal to 1 in the binary field, minus ones in that

matrix are replaced with plus ones.

If the received value is denoted with y then the input vector that should be applied to this

decoder is

[
y
σ

2y
σ

4y
σ

8y
σ

−
2
σ

−
4
σ

−
8
σ

−
8
σ

−
16
σ

−
32
σ

]
.

This example is illustrated in Figure 6.2.
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6.4 Channel decoders as the detectors of gray mapped M-PAM

Naturally mapped M-PAM , whose detection by using a decoder is investigated in the previous

section, suffers from the fact that more than one bits may differ between two adjacent symbols.

This problem is overcome with the gray mapping in which a one bit differs between two

adjacent symbols. In this section detection of gray mapped M-PAM by using a decoder is

investigated. Let κN (x) be a function from FN
2 to R which maps binary valued vectors of

length N to M , 2N real amplitude values as in the gray mapped M-PAM, i.e.

κN (x) ,
N∑

i=1

2i−1β

 N∑
j=i

x j

 , (6.28)

where x = [x1, x2, . . . , xN] and the summation inside the β(.) function takes places in F2.

Unfortunately, due this summation inside the β(.) function, detection of gray mapped M-PAM

is not a special case MISO detection of BPSK as opposed to the detection of naturally mapped

M-PAM. Hence, in order to determine the parity check matrix and inputs of the decoder to

detect the M-PAM we need to obtain the canonical factorization of the joint a posteriori pmf.

Assume that κN (X) is transmitted through a discrete additive Gaussian noise channel and Y

is received. In other words,

Y = κN (X) + Z, (6.29)

where X = [X1, X2, . . . , XN] and Z is real Gaussian random variable with variance σ2. Let

p(x) denote the joint a posteriori probability Pr{X = x|Y = y}. The canonical factorization of

p(x) can be obtained by following the generic procedures explained in Chapter 3. However,

the canonical factorization of p(x) can be obtained more easily by exploiting the relation

between κN (x) and ηN (x).

The relation between κN (x) and ηN (x) can be expressed as in

κN (x) = ηN (xG(N)) , (6.30)

where G(N) is the N × N matrix defined as

G(N) ,



1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 1 . . . 1


. (6.31)
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Since G(N) is a reversible matrix, the canonical factorization of p(x) can be derived from the

canonical factorization of the APP Pr{W = w|ηN (W) + Z = y} by following the discussion in

Section 4.6.

Let t(w) be the shorthand notation for the APP Pr{W = w|ηN (W) + Z = y}. Since t(w)

represents the APP in the naturally mapped M-PAM case, its canonical factorization is a

special case of the canonical factorization given in (6.15) with channel coefficients hi = 2i−1

and µq (w) = β (w). The γ(w; ρ, σ) function for the BPSK modulation is

γ(w; ρ, σ) = exp
(
2ρβ (w)

2σ2

)
. (6.32)

Consequently, ri(w) and ri, j(w) in this specific case of (6.15) are

ri(w) = CFq

{
γ(w; 2i−1y, σ)

}
= CFq

{
exp

(
2i−1yβ (w)

2σ2

)}
, (6.33)

ri, j(w) = CFq

{
γ(w;−2i−12 j−1, σ)

}
= CFq

{
exp

(
−

2i+ j−2β (w)
2σ2

)}
. (6.34)

Finally, the canonical factorization of t(w) is

t(w) = CFN
q


N∏

i=1

ri(fiwT )
N∏

j=2

j−1∏
i=1

ri, j(ai, jwT )

 . (6.35)

Consequently, due to the discussion in Section 4.6 the canonical factorization of p(x) is

p(x) = CFN
q


N∏

i=1

ri(fiG(N)T xT )
N∏

j=2

j−1∏
i=1

ri, j(ai, jG(N)T xT )

 . (6.36)

Let bi, j defined as

bi, j ,
j∑

k=i

fk. (6.37)

fiG(N)T and ai, jG(N)T can be expressed by using bi, j as

fiG(N)T = bi,N , (6.38)

ai, jG(N)T = bi, j−1. (6.39)

Consequently,

p(x) = CFN
q


N∏

i=1

ri(bi,NxT )
N∏

j=2

j−1∏
i=1

ri, j(bi, j−1xT )

 (6.40)

= CFN
q

rN(fNxT )
N−1∏
i=1

ri,i+1(fixT )
N−1∏
i=1

ri(bi,NxT )
N∏

j=2

j−2∏
i=1

ri, j(bi, j−1xT )

 . (6.41)
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This last form of the factorization clearly shows which parity check coefficient vectors are of

weight two or more. Then, following the discussion in Section 5.6 the parity check matrix of

this code whose decoder can be employed in the detection of gray mapped M-PAM is

HGRAY (N) ,



b1,2

b1,3

b2,3
...

b1,N

b2,N
...

bN−1,N

I N(N−1)
2 ×

N(N−1)
2



. (6.42)

Notice that the sizes of HGRAY (N) and HqPS K(N) are same.

The symbolwise and ML codeword decoders of the code with parity check matrix HGRAY (N)

can be designed for BPSK modulation and AWGN channel. In order to achieve the desired

detection the inputs applied to this decoder should be a permuted version of the inputs applied

for the naturally mapped detection since the canonical factorization of p(x) is derived from

the canonical factorization of t(w). The first N of these inputs are[
−

2021

σ
−

2122

σ
. . . −

2N−22N−1

σ

2N−1y
σ

]
.

The last N − 1 of these inputs are [
y
σ

2y
σ

. . .
2N−2y
σ

]
.

The remaining (N−2)(N−1)
2 ) inputs in between are[

−
2022

σ
−

2023

σ
−

2123

σ
. . . −

202N−1

σ
−

212N−1

σ
. . . −

2N−32N−1

σ

]
.

Example 6.3 This example shows how to compute marginal APPs of four bits which are

modulated with gray mapped 16-PAM and passed through an AWGN channel with PSD

N0/2 = σ2. Constellation diagram of the 16-PAM modulation with gray mapping is shown

in Figure 6.3-a. This example demonstrates an interesting property of demodulating gray

mapped M-PAM modulation with decoders.
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The parity check matrix of the code whose symbolwise decoder can be used to compute

marginal APPs of the individual bits is

HGRAY (4) =



1 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0

0 1 1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 1


. (6.43)

If the received value is denoted with y then the input vector that should be applied to this

decoder is

[
−

2
σ

−
8
σ

−
32
σ

8y
σ

−
4
σ

−
8
σ

−
16
σ

y
σ

2y
σ

4y
σ

]
.

It is well known that carrying out row operations on the parity check matrix of a code does not

alter the code. Hence, we can carry out row operations on HGRAY (4) and obtain an alternative

parity check matrix for the code. Let H′ be the parity check matrix derived from HGRAY (4) by

adding the first row onto second and fourth rows and then adding sixth row onto fourth and

fifth rows, i.e.

H′ =



1 1 0 0 1 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0

0 1 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1

0 0 1 1 0 0 0 0 0 1


. (6.44)

Since H′ and HGRAY (4) are the parity check matrices of the same code, we can use the de-

coder designed for either H′ or HGRAY (4) to compute soft outputs in gray mapped 16-PAM

modulation.

Notice that all rows H′ are of weight 3. Moreover, four columns of H′ are of weight 3 and

the remaining six columns are of weight one. H′ shares these properties with H2PS K(4).

Furthermore, let H′′ be the parity check matrix derived from H′ by replacing the first column
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with fifth and fourth column with tenth, i.e.

H′′ =



1 1 0 0 1 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0

0 1 1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 1


. (6.45)

H′′ describes a code whose codewords are permuted form of the codewords of the code de-

scribed by H′. Hence, we can also use the decoder designed for H′′ to compute soft outputs

in gray mapped 16-PAM modulation. In order to achieve this demodulation it is necessary

to permute the inputs applied to the decoder designed for HGRAY (4) before applying to the

decoder designed for H′′ in the same order as the column permutations applied while passing

from H′ to H′′. Hence, the inputs that should be applied to this decoder are

[
−

4
σ

−
8
σ

−
32
σ

4y
σ

−
2
σ

−
8
σ

−
16
σ

y
σ

2y
σ

8y
σ

]
.

The interesting point in here is that H′′ is equal to H2PS K(4). Therefore, the symbolwise

decoder of the parity check matrix H2PS K(4) can be used to compute marginal APPs for both

naturally mapped and gray mapped 16-PAM modulation. The decoder can be configured to

natural mapping or gray mapping by permuting the inputs. Computing the soft outputs in of

gray mapped 16-PAM modulation depicted in Figure 6.3-c.

The example above shows that the decoder of H2PS K(4) can be used to demodulate both

naturally mapped and gray mapped 16-PAM modulation. The following theorem states that

this is true not only for 16-PAM but for any M-PAM modulation.

Theorem 6.1 There exist a sequence of row operations such that performing these row oper-

ations on HGRAY (N) leads to H2PS K(N) with some columns permuted.

A constructive proof is given in Appendix A.4.2.
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Figure 6.3: (a) Constellation diagram of gray mapped 16-PAM modulation. (b) Computing
marginal APPs from the received symbol by using the symbolwise decoder of HGRAY (4). (c)
Computing marginal APPs by using the symbolwise decoder of H2PS K(4).
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6.5 MIMO detection by using channel decoders

In this section we show how to employ channel decoders for multiple-input multiple-output

(MIMO) detection. The analysis is presented for QPSK modulation but is straightforward to

extend method to any other PAM or QAM modulation.

6.5.1 System Model

Let a random vector Xk = [X2k−1, X2k] is mapped to a complex symbol Wk via the function

ν (.) as in

Wk , ν (Xk) , (6.46)

where ν (.) represents the gray mapped QPSK modulation and defined as

ν (x) ,



1, x = [0 0]

j, x = [0 1]

−1, x = [1 1]

− j, x = [1 0]

, (6.47)

and j is the square root of −1. The constellation diagram of gray mapped QPSK modulation

is shown in Figure 6.4. Furthermore, let a random vector W = [W1,W2, . . . ,WNt ]
T is passed

through an Nr×Nt MIMO channel with independent circularly symmetric Gaussian noise and

the received vector is Y. In other words,

Y = HcW + Z, (6.48)

where Hc is the Nr×Nt channel coefficient matrix, Z is the Nr×1 noise vector consisting of in-

dependent, zero mean, circularly symmetric normal distributed random variables of variance

2σ2.

ML MIMO detection is the task of determining the configuration x maximizes the likelihood

function Pr{Y = y|X = x} where X is

X , [X1 X2 . . . XNt ]. (6.49)

We assume that all X is uniformly distributed. Hence, ML MIMO detection is equivalent to

finding the configuration maximizing the APP Pr{X = x|Y = y}. Soft output MIMO detection

is the task of computing the marginal APPs Pr{Xk = x|Y = y}.

75



0 I

Q

00

01

11

10

Figure 6.4: The QPSK constellation with gray mapping

6.5.2 The decoders which can be used in MIMO detection with QPSK signaling

The first step in determining the parity check matrix of the decoders which can be employed as

MIMO demodulators is determining the canonical factorization of the APP. The APP Pr{X =

x|Y = y} is

Pr{X = x|Y = y} = CF2Nt
q

{
exp

(
−
‖y −Hcw‖2

2σ2

)}
(6.50)

where x is [x1, x2, . . . , xNt ], xk is [x2k−1, x2k], and w is [ν (x1) , ν (x2) , . . . , ν
(
xNt

)
]T . As shown

in Appendix A.4.3, this APP can factored as

Pr{X = x|Y = y} ∝
Nt∏

k=1

γ

(
x2k−1;

Re {uk} + Im {uk}

2
, σ

)
γ

(
x2k;

Re {uk} − Im {uk}

2
, σ

)

·

Nt∏
k=2

k−1∏
l=1

γ

(
x2k−1 + x2l−1;−

Re
{
(R)k,l

}
2

, σ

)
γ

(
x2k−1 + x2l;−

Im
{
(R)k,l

}
2

, σ

)

·

Nt∏
k=2

k−1∏
l=1

γ

(
x2k + x2l−1;

Im
{
(R)k,l

}
2

, σ

)
γ

(
x2k + x2l;−

Re
{
(R)k,l

}
2

, σ

)
,

(6.51)

where R and u are

R , HH
c Hc, (6.52)

u , HH
c y, (6.53)

and (R)k,l denotes k by lth entry of R and uk is the kth component of u.
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The factorization above can be expressed by using the ak,l vectors defined in (6.16) as

Pr{X = x|Y = y} ∝
Nt∏

k=1

γ

(
f2k−1xT ;

Re {uk} + Im {uk}

2
, σ

)
γ

(
f2kxT ;

Re {uk} − Im {uk}

2
, σ

)

·

Nt∏
k=2

k−1∏
l=1

γ

(
a2k−1,2l−1xT ;−

Re
{
(R)k,l

}
2

, σ

)
γ

(
a2k−1,2lxT ;−

Im
{
(R)k,l

}
2

, σ

)

·

Nt∏
k=2

k−1∏
l=1

γ

(
a2k,2l−1xT ;

Im
{
(R)k,l

}
2

, σ

)
γ

(
a2k,2lxT ;−

Re
{
(R)k,l

}
2

, σ

)
.

(6.54)

The only remaining step in the derivation of canonical factorization is to normalize all of the

factor functions existing above. We omit this obvious step for the sake of neatness. This

factorization leads to the parity check matrix of the decoder which can be used in MIMO

detection given in

HMIMO,QPS K(Nt) ,



L(1,Nt)

L(2,Nt)

. . .

L(Nt − 1,Nt)

I2Nt(Nt−1)×2Nt(Nt−1)


, (6.55)

where L(k,Nt) is

L(k,Nt) ,



a1,2k+1

a2,2k+1

. . .

a2k,2k+1

a1,2k+2

a2,2k+2

. . .

a2k,2k+2



. (6.56)

As in the previous sections we can use a decoder designed for BPSK modulation and AWGN

channel for MIMO detection. The inputs that should be applied to this decoder to achieve

MIMO detection are the first parameters after the semicolon divided by the second parameters

of the γ(.; ., .) functions in the factorization given in (6.54).

Example 6.4 This example shows how to compute marginal APPs of four bits which are first

modulated with QPSK modulation and passed through a 2 × 2 MIMO channel with channel
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Figure 6.5: Computing the marginal APPs in a MIMO system by using two different decoders.
(a) By using the decoder of HMIMO,QPS K(2). (b) By using the decoder of H2PS K(4).

coefficient matrix Hc and noise variance 2σ2. The parity check matrix of the symbolwise

decoder which can be used for this purpose is

HMIMO,QPS K(2) =



1 0 1 0 1 0 0 0

0 1 1 0 0 1 0 0

1 0 0 1 0 0 1 0

0 1 0 1 0 0 0 1


. (6.57)

Let the vector t = [t1, t2, . . . , t8] be

t =

[Re {u1} + Im {u1}

2σ
Re {u1} − Im {u1}

2σ
Re {u2} + Im {u2}

2σ
Re {u2} − Im {u2}

2σ

−
Re

{
(R)1,2

}
2σ

−
Im

{
(R)1,2

}
2σ

Im
{
(R)1,2

}
2σ

−
Re

{
(R)1,2

}
2σ

]
,

(6.58)

where R = HH
c Hc and u = Hcy. This t vector is the vector that must be applied to the decoder.

Notice that HMIMO,QPS K(2) is a sub-matrix of H2PS K(4). Therefore, the symbolwise decoder

of H2PS K(4) can also be used to compute marginal APP probabilities in MIMO detection. The
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inputs that must be applied in this case are given below.[Re {u1} + Im {u1}

2σ
Re {u1} − Im {u1}

2σ
Re {u2} + Im {u2}

2σ
Re {u2} − Im {u2}

2σ

0 −
Re

{
(R)1,2

}
2σ

−
Im

{
(R)1,2

}
2σ

Im
{
(R)1,2

}
2σ

−
Re

{
(R)1,2

}
2σ

0
]
,

(6.59)

Notice that we added two zeros to the input vector when compared to the vector t. These zeros

correspond the missing columns in HMIMO,QPS K(2) when compared to H2PS K(4). Computing

the marginal APPs with these two decoders is depicted in Figure 6.5.

It is worth emphasizing that in Examples 6.2, 6.3, and 6.4 the decoder of H2PS K(4) is used for

three different purposes.

6.6 Usage of decoders of tail biting convolutional codes as approximate MIMO

detectors

Trellis representation is mainly used for representing convolutional codes. However, it is also

possible to represent block codes with trellises [33]. Block codes can also be represented

with a special type of trellis which is the tail biting trellis. Maximum trellis width in a tail

biting trellis might be as low as the square root of the maximum width of the ordinary trellis

representing the same code [11, 6].

If a block code has a parity check matrix as in the form given below

H =



((Lr×c))0

((Lr×c))1

. . .

((Lr×c))c−1

Irc×rc


, (6.60)

where Lr×c is any r× c matrix and ((L))i denotes cyclically shifting the columns of L towards

right i times, then it is called a tail biting convolutional code of rate 1/(r + 1). For instance,

the Golay code is of this type [11]. Tail biting convolutional codes can be encoded by the

encoders of the convolutional codes by applying the data bits cyclically.

The tail biting convolutional codes have simple approximate decoders enjoying low complex-

ity [11, 6]. Hence, there are many studies and standards, such as LTE, exploiting this reduc-

tion in complexity and simplicity of the tail biting trellises. Even an analog implementation

of such a decoder is proposed in [14].
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In this section we show that the MIMO detection problem can be handled by the decoder of

a tail biting convolutional code. The characteristics of this code depend on the number of

transmitting antennae and modulation used. We are going to analyze the MIMO detectors for

QPSK modulation as we did in the previous section, although it is possible to generalize the

technique to other QAM and PAM modulations as well.

We are going to use the same channel model and notation as in the previous section. That

model lead us the parity check matrix HMIMO,QPS K(N) given in (6.55). This parity check

matrix hardly looks like the parity check matrix of a tail biting convolutional code.

Let a permutation matrix P is defined as in

P ,
[
fT
1 fT

3 . . . fT
2Nt−1 fT

2 fT
4 . . . fT

2N

]
. (6.61)

Furthermore, let V be obtained by permuting X as in

V , XP. (6.62)

Since V is a permutation of X, maximizing (marginalizing) the APP Pr{X = x|Y = y} is

equivalent to maximizing (marginalizing) the APP Pr{V = v|Y = y}. Let t(v) be a short-

hand notation for Pr{V = v|Y = y}. Then the factorization of t(v) can be derived from the

factorization (6.54) as

t(v) ∝
Nt∏

k=1

γ

(
f2k−1PvT ;

Re {uk} + Im {uk}

2
, σ

)
γ

(
f2kPvT ;

Re {uk} − Im {uk}

2
, σ

)

·

Nt∏
k=2

k−1∏
l=1

γ

(
a2k−1,2l−1PvT ;−

Re
{
(R)k,l

}
2

, σ

)
γ

(
a2k−1,2lPvT ;−

Im
{
(R)k,l

}
2

, σ

)

·

Nt∏
k=2

k−1∏
l=1

γ

(
a2k,2l−1PvT ;

Im
{
(R)k,l

}
2

, σ

)
γ

(
a2k,2lPvT ;−

Re
{
(R)k,l

}
2

, σ

)
, (6.63)

since (P−1)T = P. Consequently, a parity check matrix whose ML codeword (symbolwise)

decoder can be employed in maximization (marginalization) of Pr{V = v|Y = y} is

HV(Nt) ,
[
B(Nt) I2Nt(Nt−1)×2Nt(Nt−1)

]
(6.64)

where B(N) is

B(N) ,



L(1,N)P

L(2,N)P

. . .

L(N − 1,N)P


. (6.65)
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Figure 6.6: The encoder of the tail biting convolutional code whose decoder can be used as the
detector MIMO system with Nt transmit and Nr receiving antennae. Notice that as opposed
to ordinary convolutional encoders the encoder does not initiate from the all zero state. Tail
biting nature of the decoder arises from the fact that after all the input sequence is applied the
decoder returns to its initial condition.

Other alternative parity check matrices whose decoder can be employed in performing infer-

ence on Pr{V = v|Y = y} are in the form of

[
B′(Nt) I2Nt(Nt−1)×2Nt(Nt−1)

]
,

where B′(Nt) is derived from B(Nt) by permuting rows (not columns this time). Fortunately,

there exists a special row permutation which forms B(Nt) into the form given in

BT B(Nt) ,



(( LT B(Nt) 0(Nt−1)×Nt ))0

(( LT B(Nt) 0(Nt−1)×Nt ))1

. . .

(( LT B(Nt) 0(Nt−1)×Nt ))2Nt


, (6.66)

where LT B(N) is

LT B(N) ,
[
I(Nt−1)×(Nt−1) 1(Nt−1)×1

]
. (6.67)

Consequently, the decoders of the parity check matrix given in

HT B,MIMO(Nt) =
[
BT B(Nt) I2Nt(Nt−1)×2Nt(Nt−1)

]
(6.68)

can be employed in performing inference on Pr{V = v|Y = y}. HT B,MIMO(Nt) is the parity

check matrix of the tail biting convolutional code of rate (1/(Nt)) and constraint length Nt,

whose encoder is shown in Figure 6.6.
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Example 6.5 In this example we are demonstrate that BT B(Nt) can be derived from B(Nt) by

permuting rows for cases Nt = 2 and Nt = 3.

For Nt = 2, B(Nt) is equal to L(1, 2)P. By (6.56), L(1, 2) is

L(1, 2) =



1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1


. (6.69)

Consequently, B(2) is

B(2) =



1 1 0 0

0 1 1 0

1 0 0 1

0 0 1 1


. (6.70)

Changing the places of third and fourth rows gives BT B(2), which is

BT B(2) =



1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1


. (6.71)

The Tanner graph of the resulting HT B,MIMO(2) = [BT B(2) I4×4] is shown in Figure 6.7-a.

For Nt = 2, B(Nt) is equal to

 L(1, 3)

L(2, 3)

 P where

 L(1, 3)

L(2, 3)

 is

 L(1, 3)

L(2, 3)

 =



1 0 1 0 0 0

0 1 1 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

0 0 0 1 1 0

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 1

0 0 0 1 0 1



. (6.72)
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Then B(3) is

B(3) =



1 1 0 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 0 0 1 1 0

1 0 1 0 0 0

0 0 1 1 0 0

0 1 1 0 0 0

0 0 1 0 1 0

1 0 0 0 0 1

0 0 0 1 0 1

0 1 0 0 0 1

0 0 0 0 1 1



. (6.73)

Finally carrying the 5th, 7th, 2nd, 6th, 8th, 4th, 10th, 12th, 3rd, 9th, 11th, and 1st rows to 1st, 2nd,

. . ., 12th rows gives BT B(3) as in

BT B(3) =



1 0 1 0 0 0

0 1 1 0 0 0

0 1 0 1 0 0

0 0 1 1 0 0

0 0 1 0 1 0

0 0 0 1 1 0

0 0 0 1 0 1

0 0 0 0 1 1

1 0 0 0 1 0

1 0 0 0 0 1

0 1 0 0 0 1

1 1 0 0 0 0



. (6.74)

The Wiberg style Tanner graph of the resulting HT B,MIMO(3) = [BT B(3) I12×12] is shown in

Figure 6.7-b.
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Figure 6.7: The Tanner graphs of HT B,MIMO(Nt) for Nt = 2 and Nt = 3. (a) Tanner graph of
HT B,MIMO(2). (b) Wiberg style Tanner graph of HT B,MIMO(3)
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6.6.1 Using the decoding algorithms of tail biting convolutional codes for MIMO de-

tection

Since a tail biting trellis does not have a starting or ending state, Viterbi and BCJR algorithms

cannot be run on such trellises directly. To process a tail biting trellis with Viterbi algorithm

we need to run the Viterbi algorithm ν times on the trellis where ν denotes the trellis width. In

each run, the Viterbi algorithm determines a candidate path which is the most probable path

among the paths starting and ending on a certain state on the trellis. Then the most probable

path can be chosen among the ν candidate paths. Since the complexity of each running of the

Viterbi algorithm is O(Lν), where L denotes the length of the trellis, the complexity of deter-

mining the most possible path with Viterbi algorithm is O(Lν2). Recall that the complexity

would be O(Lν) if the trellis were an ordinary trellis. Similar arguments are true for the BCJR

algorithm as well.

The complexity of ML codeword and exact symbolwise decoders of HT B,MIMO(Nt) is O(Nt22Nt )

as explained in the previous paragraph. The complexity of the trivial MIMO detection algo-

rithm is O(22Nt ). Hence, using the exact decoders of HT B,MIMO(Nt) for MIMO detection does

not make sense.

Fortunately, tail biting convolutional codes have an approximate symbolwise decoder. This

decoder operates by running BCJR algorithm on the tail biting trellis iteratively. Equivalently,

this decoder can be viewed as the iterative sum-product algorithm running on the Wiberg

style Tanner graph an example of which is shown in Figure 6.7-b. Usually, a few iterations

are sufficient to converge [6]. We propose implementing an approximate soft output MIMO

detector by using this approximate symbolwise as the decoder HT B,MIMO(Nt). Such a MIMO

detector is also capable of using any a priori information available since it uses the BCJR

algorithm. The block diagram of this approximate soft output MIMO detector is shown in

Figure 6.8.

6.6.2 Complexity issues

There are two subtasks when the decoder mentioned above is employed as an approximate soft

ouput MIMO detector. These tasks are the computation of the inputs applied to the decoder

and processing the decoder trellis.
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Figure 6.8: Block diagram of the proposed approximate soft output MIMO detector which
uses the approximate decoder of a tail biting convolutional code.

As explained in Section 6.5, the inputs that must be applied to the decoder of HT B,MIMO

are the components of u and the entries of R defined in (6.52) and (6.53) respectively. The

computation of u has a complexity O(NrNt) whereas the computation of R has a complexity

O(N2
t Nr).

Processing the decoding trellis with the BCJR algorithm has a complexity O(Nt2Nt ). This

complexity is almost the square root of the complexity of the trivial ML and soft output MIMO

detectors which is O(22Nt ). From a computer scientific point of view, this last component of

the complexity might be dominant to the complexity of the computation of R. However, in

an engineering point of view computing R is a more computationally demanding task than

processing the decoding trellis for two reasons. First, in a practical scenario Nr and Nt is eight

at most. Hence, Nt2Nt and N2
t Nr are comparable in practical scenarios. Second, the decoding

trellis processing involves only additions and maximizations3 whereas computing R involves

complex multiplications which require much more complex hardware than addition. There-

fore, computing R is the most computationally demanding subtask of the proposed method.

However, it should be noted that R is computed only once for a constant Hc.

The proposed technique, which employs a tail biting decoder as the MIMO detector, is com-

parable to other sub optimal methods such as minimum mean square error (MMSE) or zero

forcing (ZF) detectors in terms of hardware complexity which both have a complexity O(N3)

if Nt = Nr = N. Furthermore, other sub optimal methods require matrix inversion. Although,

matrix inversion have complexity O(N3), it requires complex number divisions which require

even more complex hardware than multiplication. Hence, the proposed technique still has an

advantage in terms of hardware complexity over MMSE and ZF detectors.
3 We assume Max-Log-MAP approximation is used for the BCJR algorithm running on the trellis.
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Figure 6.9: BER performances of the MIMO detector using the decoder of a tail biting convo-
lutional code, the symbolwise MAP MIMO detector, and the linear MMSE MIMO detector
in a Rayleigh fading 8 × 8 MIMO channel.

6.6.3 Simulation Results

We simulated the proposed approximate soft output MIMO detector for the 8 × 8 Rayleigh

fading MIMO channel. In this channel entries of Hc are independent, zero-mean, circularly

symmetric Gaussian random variables where the variances of the real and imaginary parts are

1/2. We assumed that Hc changes for every transmitted MIMO symbol and perfectly known

at the receiver side. The noise vector added at the receiver also consists of independent, zero-

mean, circularly symmetric Gaussian random variables where the variances of the real and

imaginary parts are N0/2. The signal to noise ratio (SNR) per receiving antenna is Eb/N0.

Since there are Nr receiving antennae in a MIMO system the convention is to use NrEb/N0 as

SNR [37].

The bit error rate (BER) performance of the proposed algorithm is shown in Figure 6.9. These

results show that the proposed method has an unexpected poor performance when compared

to the symbolwise MAP MIMO detector. Moreover, the proposed method exhibits an error

floor as early as 2 × 10−2 level. The performance of the proposed algorithm is better than the
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linear minimum mean square error (MMSE) MIMO detector [43] until 16 dB. After 16 dB the

performance of the linear MMSE becomes better due to the early error floor of the proposed

MIMO detector. We provide some comments on this unexpected performance in the next

section and propose an improvement in Section 6.6.5.

6.6.4 Comments on the convergence of the sum-product algorithm on factor graphs

with a single cycle

The Wiberg style Tanner graph that represents the tail biting trellis contains only a single loop,

as in Figure 6.7-a. There are many studies in the sum-product algorithm literature which claim

that the sum-product algorithm running on Tanner graph with a single cycle always converges

such as [38, 39, 40]. These studies also claim that the approximate marginals computed by

the sum-product algorithm is close to the exact marginals when the sum-product runs on these

graphs. According to these studies, our proposed MIMO detector was supposed to converge

at all times and it was expected to yield good results. However, our empirical results shown

in Figure 6.9 do not agree with these expectations.

Our experimental results verify that the sum-product algorithm running on a Tanner factor

graph with a single cycle always converges. However, in some cases this convergence require

as few as two or three iterations to converge whereas in some other rare cases it might require

thousands of iterations. A detailed analysis of the experimental results shows that the rela-

tively high error floor in Figure 6.9 is caused by the cases in which the sum-product algorithm

requires thousands of iterations to converge. Therefore, the sum-product algorithm produces

good approximations of the exact marginals only if it converges in a few iterations. Other-

wise, the results generated by the sum-product algorithm is not a good approximation. We

provide a numerical example in which sum-product algorithm requires thousands of iterations

to converge below.

Example 6.6 We provide the example for the Tanner graph shown in Figure 6.7-a which is a

factor graph with just a single cycle and contains only binary variable nodes. Let the inputs

applied to the decoder represented by the Tanner graph shown in Figure 6.7-a designed for

BPSK modulation and AWGN channel be

[−55 60 − 25 − 20 40 55 40 − 55] (6.75)
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If one runs the sum product algorithm on the Tanner graph shown in Figure 6.7-a with these

inputs, it can be observed that the sum-product algorithm achieves a reasonable convergence

at least after 3000 iterations. Such an input settings can be observed in a scenario in which

that decoder is employed as a MIMO detector for a 2 × 2 channel with coefficients

Hc =

 1.5 j 1 − 0.5 j

1 + 0.5 j −0.5 − 1.5 j


and a sequence [− j, 1] is transmitted when noise has a variance σ2 = 0.01.

We would like to note that the likelihoods given above are very unlikely to be observed in a

real channel decoding problem. Therefore, such likelihoods is probably never observed in [38,

39, 40]. Hence, they claimed that the sum-product algorithm produces good approximations

for exact marginals if the sum-product algorithm converges. Unfortunately, this claim is not

quite true as this counter example shows.

Even if the sum-product algorithm produced good approximations in cases requiring thou-

sands of iterations to converge, a practical MIMO detection algorithm cannot wait that much

to complete the demodulation of a single MIMO symbol. Therefore, this late convergence

problem requires a solution to develop a practical MIMO detection algorithm with tail biting

decoders which we provide in the next section.

6.6.5 Performance Improvements by using tail biting convolutional codes of longer

constraint length

Recall that the tail biting decoder of HT B,MIMO(Nt) is used for performing inference on Pr{V =

v|Y = y} where V was a permutation of X given by (6.62). This decoder can only perform

inference for this specific permutation of X.

We define an extended version of parity check matrix HT B,MIMO(Nt) as in

HET B,MIMO(Nt) ,
[
CT B(Nt) I2N2

t ×2N2
t

]
, (6.76)
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where CT B(Nt) is

CT B(Nt) ,



(( LT B(Nt+1) 0Nt×(Nt−1)))0

(( LT B(Nt+1) 0Nt×(Nt−1)))1

. . .

(( LT B(Nt+1) 0Nt×(Nt−1)))2Nt


. (6.77)

Notice that HET B,MIMO(Nt) is the parity check matrix of a tail biting convolutional code of

rate 1/(Nt + 1) and of constraint length Nt + 1 and can be derived from HT B,MIMO(Nt) by

adding 2Nt more parity checks.

As opposed to the decoder of HT B,MIMO(Nt), which can perform inference only on Pr{V =

v|Y = y} , the decoder of HET B,MIMO(Nt) can be used to perform inference on Pr{VA = v|Y =

y} where VA is any permutation of X.

An improved soft output MIMO detector can be implemented by using the approximate sym-

bolwise detector of HET B,MIMO(Nt) instead of HT B,MIMO(Nt). The main advantage of the

detector with extended tail biting decoder when compared original tail biting decoder is that

it can work with any permutation of X. Moreover, a certain permutation can work better for a

given Hc and noise realization while another permutation can work better with another Hc and

noise realization. This flexibility comes at the cost of increasing trellis processing complexity

by two which is acceptable.

We propose a soft output MIMO detection algorithm by using the approximate symbolwise

decoder of the extended tail biting code as follows.

1. Select a permutation PA from a set P of permutations.

2. Apply the inputs properly permuted with the permutation PA to the approximate sym-

bolwise decoder of HET B,MIMO(Nt).

3. Run the BCJR algorithm iteratively on the tail biting trellis until it converges or a max-

imum number of iterations reached.

4. If the iterative BCJR algorithm converges declare its result as the output of the MIMO

detector and halt.

5. If the iterative BCJR algorithm does not converge select another permutation PA from

P and goto Step 2. If there is not any remaining permutation in P then declare a failure.
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Figure 6.10: BER performance of the MIMO detector using the extended tail biting decoder
with different permutations together with the MIMO detector with the normal tail biting de-
coder and symbolwise MAP MIMO detector in Rayleigh fading 8 × 8 channel.

.

We tested this algorithm on the 8×8 MIMO channel described in Section 6.6.3. The set P we

used in this simulations consists of 15 specific permutations among 16! possible permutations.

These permutations are given Appendix A.4.4. BER performance of this MIMO detector is

given in Figure 6.10. These results show that the MIMO detector using the extended tail

biting decoder improves the error floor performance by an order of magnitude. Furthermore,

the BER performance before reaching the error floor is also improved significantly. The

improved MIMO detector is just 2dB away from the optimum algorithm when it reaches the

error floor.

Recall that this MIMO detector is capable of using a priori information and produces soft

output. Hence, it can be easily used in a iterative detection-decoding scheme. In order esti-

mate the possible performance of the improved MIMO detector in such an iterative scheme,

we computed extrinsic information transfer (EXIT) curves [35, 36, 37]. The area under the

EXIT curve of a MIMO detector is an approximate estimation of the maximum possible rate

of the code which can be used in an iterative detection-decoding scheme and can achieve ar-

bitrarily small error rate. In this aspect the area under exact soft output MIMO detector is an
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Figure 6.11: EXIT curves of the approximate MIMO detector using extended tail biting de-
coder and the exact soft output MIMO detector at NrEb/N0 = −0.96dB
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Figure 6.12: EXIT curves of the approximate MIMO detector using extended tail biting de-
coder and the exact soft output MIMO detector NrEb/N0 = 1.25dB
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Figure 6.13: EXIT curves of the approximate MIMO detector using extended tail biting de-
coder and the exact soft output MIMO detector NrEb/N0 = 6.02dB

approximate estimation of the MIMO channel capacity [36].

We computed the EXIT curves at three different SNR values. These results are shown in

Figures 6.11, 6.12, and 6.13. Since the area between the two EXIT curves in Figure 6.11

is negligible, the proposed algorithm can be used in an iterative detection-decoding scheme

with the same code as the optimum algorithm at low SNR or in the power limited region.

The EXIT curves shown in Figure 6.12 lead to similar conclusion. The area between the two

EXIT curves becomes 0.04 in Figure 6.13. This means that the proposed algorithm can also

be used in the bandwidth limited region but at the cost of a rate loss of 0.04bits which is quite

acceptable.

6.7 Usage of the decoders of the convolutional codes as channel equalizers

Let X(t) be a stochastic process defined as follows.

X(t) =
∑

n

ηN (Xn) f (t − nT ), (6.78)
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where f (t) is the impulse response of a pulse shaping filter and Xn is a random vector consist-

ing of N bits. Furthermore, let Y(t) be

Y(t) = X(t) ∗ g(t) + Z(t) (6.79)

=
∑

n

ηN (Xn) ∗ h(t) + Z(t), (6.80)

where Z(t) is a zero mean white Gaussian noise process with power spectral density N0
2 , ∗

denotes convolution, g(t) is the impulse response of a causal channel, and h(t) is the convolu-

tion of the g(t) and f (t). Then it can be shown by following similar procedures applied in the

previous sections that the Viterbi and BCJR decoders of a certain convolutional code C can

be used as ML sequence estimator and marginal APP receiver for this inter-symbol interfer-

ence system respectively. This code C is the non-recursive systematic convolutional code of

rate 1/NL and of constraint length NL where L is the smallest integer such that h(t) = 0 for

t > LT . The generator polynomials of this code are 1, 1 + x, 1 + x2, . . ., 1 + xNL−1.

The inputs that must be applied to these decoders to achieve the desired results consists of

samples taken from the output of the matched filter i.e. y(t) ∗ h(−t) with sampling period

T , where y(t) is the received signal, samples taken from the time autocorrelation function

h(t) ∗ h(−t) again with sampling period T , and scaling of these samples with 2’s powers 4.

The Viterbi decoder of the mentioned code above actually works as an alternative device to

compute the Ungerboeck’s metric [41]. Therefore, this result would be much more interesting

if we achieved it before Ungerboeck. However, using a Viterbi decoder as an alternative

device to compute Ungerboeck’s might still be of practical importance since this approach

takes all of the multiplications outside of the Viterbi data path.

We have also empirically verified that the BCJR decoder of the convolutional code mentioned

above with the mentioned inputs returns the exact marginal APPs of the transmitted bits.

4 We dropped conjugations since ηN (Xn) is real
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CHAPTER 7

DETERMINING CONDITIONAL INDEPENDENCE

RELATIONS FROM THE CANONICAL FACTORIZATION

7.1 Introduction

Investigating the conditional independence relations of random variables is important in many

different disciplines [17, 21]. These conditional independence relationships are well rep-

resented by a graphical model called Markov random field (MRF) or undirected graphical

model. In this section we show that the MRF representing a joint pmf can be determined from

the projections of the joint PMF onto the subspaces described in Chapter 3.

This chapter begins with introducing the relation between conditional independence of two

random variables and the canonical factorization. Then we explain how to determine Markov

blankets from the canonical factorization. This chapter ends with comparing the canonical

factorization with the Hammersley-Clifford Theorem.

7.2 Conditional Independence of Two Random Variables

Suppose that it is desired to determine the conditional independence relations between the

components of the random vector X = [X1, X2, . . . , XN] which is distributed with a p(x) ∈

PFN
q

. Then a random variable Xi is said to be conditionally independent of X j given all the

other components of X if and only if the following relation is satisfied:

Pr
{
Xi = xi|X\{i} = x\{i}

}
= Pr

{
Xi = xi|X\{i, j} = x\{i, j}

}
(7.1)
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where X\I (x\I) denotes the vector obtained by removing the components having indices in

I from X (x). The following theorem states the necessary and sufficient conditions for the

conditional independence of two random variables in terms of the canonical factorization.

Theorem 7.1 Let X be a random vector distributed with p(x) in PFq . Xk and Xl are condi-

tionally independent given X\{k,l} if and only if p(x) can be factored as

p(x) = CFN
q

 ∏
ai∈Kk∪Kl

ri(aixT )

 (7.2)

where Kk and Kl are defined as

Kk ,
{
ai ∈ H : fkaT

i = 0
}

Kl ,
{
ai ∈ H : flaT

i = 0
}

.

The proof is given Appendix A.5.1.

The forward statement of this theorem asserts that if none of the SPC factors composing the

canonical factorization of p(x) depend on both xi and x j simultaneously then Xi and X j are

conditionally independent given X\{i, j}. Actually, this result is true not only for the canonical

factorization but also for any factorization.

The backward statement of Theorem 7.1 states that if an SPC factor of p(x) with nonzero norm

depends on xi and x j simultaneously then Xi and X j are definitely conditionally dependent

given X\{i, j}. On the other hand, in an ordinary factorization a factor function may depend on

xi and x j together but Xi and X j can still be conditionally independent given X\{i, j}. Therefore,

the backward statement of Theorem 7.1 is specific to the canonical factorization and does not

hold for all factorizations in general. This fact is another reason why we call the proposed

factorization the canonical factorization.

7.3 Determining Markov Blankets and the Markov Random Field

The Markov blanket of a random variable Xi, which is denoted with ∂Xi, is the smallest

possible set containing the components of X\{i} which satisfies

Pr{Xi|X\{i}} = Pr{Xi|∂Xi}. (7.3)
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Clearly, ∂Xi consists of variables X j which are not conditionally independent of Xi given

X\{i, j}. Based on Theorem 7.1, ∂Xi can be obtained in terms of projections onto the SPC

constraints as follows.

Corollary 7.2 Let the canonical factorization of p(x) be given by

p(x) = CFN
q

∏
ai∈H

ri(aixT )

 . (7.4)

Xk is in ∂Xl if and only if there exist a parity check coefficient vector ai ∈ H such that

fkaT
i , 0

flaT
i , 0

and

‖ri(x)‖ > 0.

Proof. If such a vector a exist then p(x) cannot be factored as in (7.2) and hence, Xi and X j

are conditionally dependent given X\{i, j} due Theorem 7.1.

If there is no such a then p(x) can be factored as in (7.2), which means that Xi and X j are

conditionally independent given X\{i, j}. �

The MRF is an undirected graphical model representing a probability distribution where each

variable is represented with a node. The node representing Xi is connected to the node rep-

resenting X j in the MRF if X j is in ∂Xi. Since the Markov blankets of every variable can

be determined from the canonical factorization by Corollary 7.2, the MRF can also be deter-

mined from the canonical factorization.

Notice that every argument (arguments associated with nonzero parity check coefficient) of a

non-constant SPC factor are in the Markov blankets of the other arguments of the SPC factor.

Therefore, the nodes representing these variables in the MRF are all pairwise connected. In

graph theoretic terminology, these nodes form a clique in the MRF. Hence, SPC factors are

functions of the cliques (not necessarily maximal) of the MRF.
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7.4 Comparison to the Hammersley-Clifford Theorem

The relation between the factorization of a multivariate PMF and Markov properties is first

established by Hammersley and Clifford in [18, 19]. In this work they show that any strictly

positive multivariate PMF can be expressed as

p(x) =
1
C

∏
D∈DC

φD(Dx), (7.5)

where each element of DC is associated with a clique in the MRF. Moreover, their proof is

constructive. The factor functions are given as

φD(Dx) ,
∏

D′:D′D=D′
p(D′x + (I − D′)xB)

(
(−1)|D−D′ |

)
(7.6)

where xB is a fixed configuration 1. Although both in our and their approaches the factor func-

tions appear to be the functions of the cliques of the MRF, our approach differs significantly

from theirs in many aspects.

First of all, the dependencies between the random variables imposed by factor functions in

(7.6) are rather arbitrary. SPC factors, on the other hand, impose an algebraic form of de-

pendency. In other words, SPC factors explain how a random variable is related to a linear

combination of other variables. This property is quite important and allows us to express an

inference problem as a decoding problem.

Second, the factor functions defined in (7.6) depend on a certain fixed configuration xB. A

different factorization is obtained for each different xB. Therefore, the factorization proposed

by Hammersley and Clifford is not unique. On the other hand, the canonical factorization is

unique as explained in Section 4.4.

In addition, there is at most one factor function per clique in the factorization given in (7.5)

whereas there may be more than one SPC factors depending on the same set of variables in

non-binary fields.

Finally, the applicability of our approach is more restricted than that of the Hammersley and

Clifford’s. Our method is applicable only if the event space of the combined experiment can

be mapped to FN
q whereas the Hammersley-Clifford theorem is applicable to any strictly pos-

itive pmf. Moreover, it should be emphasized that both approaches are applicable to strictly

positive pmfs only.
1 This configuration corresponds to the all-black coloring in [18, 19].
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CHAPTER 8

Conclusions and Future Directions

8.1 Summary

In this thesis the Hilbert space of pmfs is introduced. Then the tools provided by this Hilbert

space, is utilized to develop an analysis method for multivariate pmfs. The aim of this anal-

ysis method is to obtain a factorization of the multivariate pmf. The resulting factorization

from this analysis method possess some important properties. First of all it is the ultimate

factorization possible. Secondly, it is unique. Thirdly, the conditional independence relations

can be determined completely from this factorization. Probably the most important property

of the resulting factorization is the fact that it reveals the algebraic dependencies between the

involved random variables. Thanks to this fact probabilistic inference problems can be trans-

formed into channel decoding problems and channel decoders can be used for other tasks

beyond decoding. Many examples are provided in thesis on how channel decoders can be

used as detectors of communication receivers. It is also shown that the decoders of tail biting

convolutional codes can be used as a MIMO detector. This approach results in a significant

reduction in complexity while maintaining good performance.

8.2 Future directions

The application of the Hilbert space of pmfs is presented in this thesis is the canonical fac-

torization. We believe that the Hilbert space of pmfs might lead to further applications in

communication theory, information theory, and probabilistic inference.

The most important consequence of the canonical factorization is that it shows how to em-
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ploy channel decoders for other purposes. The MIMO detector which uses the decoder of

a tail biting convolutional code demonstrates that new detection and probabilistic inference

algorithms can be developed by using channel decoders for tasks beyond decoding.

Employing channel decoders for other tasks also allows to apply the analog probability prop-

agation method proposed in [14, 15] for other probabilistic inference problems. In particular,

by implementing channel equalizers and MIMO detectors with analog probability propaga-

tion much more power efficient communication receivers can be implemented. We anticipate

that this direction will be the most important application area of this thesis.

Some other possible future directions are summarized below.

8.2.1 Applications on machine learning

Estimating the factorization of a joint pmf from samples generated from the pmf is an im-

portant problem in machine learning, e.g. [20]. A straightforward approach after this thesis

could be estimating the joint pmf first and obtain the canonical factorization by applying the

procedure explained in Chapter 3. However, such an approach both require too many sam-

ples to estimate the joint pmf accurately and extensive computational resources to obtain the

canonical factorization. A more interesting solution to this problem might be proposed by

combining the results obtained in this thesis and the results presented in [32]. By combining

these results it can be concluded that the necessary algorithm for estimating the factorization

of a joint pmf from samples is exactly the inverse of the sum-product algorithm.

As it is explained in Section 4.3 the ultimate factorization of a pmf is the canonical factoriza-

tion. The equivalent Tanner graph representing the canonical factorization is shown in Figure

5.3-b. Hence, estimating the canonical factorization is equivalent to estimating all of the local

evidences in this Tanner graph.

Let X = [X1, X2, . . . , XN] be distributed with a p(x) in PFN
q

. Estimating all the marginals

Pr{Xi = xi} from experimental data is much easier than estimating the joint distribution p(x)

from data. Let

Xi , aiXT , fori = N + 1,N + 2, . . . , |H|,

where aN+1, aN+2, . . ., a|H| are the elements of H of weight two or more as we assumed in

Chapter 5. Since Xi for i > N is completely determined by X, the marginal distributions of Xi
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for i > N can also be estimated from the data. Consequently, the marginal distributions of X1,

X2, . . ., X|H| can be easily estimated from the experimental data.

However, what we need to estimate the canonical factorization are not the marginal distri-

butions of the random variables X1, X2, . . ., X|H| but the local evidences in Figure 5.3-b.

Therefore, we need an algorithm which computes the local evidences from the marginals.

Notice that, this task is exactly the inverse of the sum-product algorithm as the sum-product

algorithm computes the marginals from local evidences.

A question might arise on the existence and uniqueness of the set of the local evidences

corresponding to a set of marginals. Indeed, if the Tanner graph in Figure 5.3-b represented

an arbitrary code then we might not find a set of local evidences resulting in a given set of

marginal distributions at all or might find more than one set of local evidences resulting in

the same set of marginal distributions. Any linear combination of the vector X is equal to

αXi for an α ∈ Fq and 1 ≤ i ≤ |H|. Massey showed in [32] that the marginal distributions

of the linear combinations of a sequence of random variables is enough to specify their joint

distribution. Hence, the marginal distributions of X1, X2, . . ., X|H| uniquely specifies p(x) and

consequently its canonical factorization.

To the best of our knowledge, neither exact nor approximate versions of the inverse of the

sum-product algorithm is known. As explained above, developing the inverse of the sum-

product algorithm solves an important problem in machine learning.

8.2.2 Using channel decoders for channel estimation

In the examples presented in Chapter 6, we assumed that the channel coefficients are com-

pletely known at the receiver. In a practical communication receiver, the channel coefficients

must be estimated. Employing channel decoders for channel estimation would be very inter-

esting.

Actually, the channel estimation problem does not perfectly fit into the framework presented

in this thesis since the channel coefficients take samples from a continuous alphabet rather

than a finite alphabet. The apparent solution to this problem might be quantizing the channel

coefficients. However, such an approach would lead to a factor graph topologically equivalent

to the one in [42] which contains too many short cycles. Hence, such an approach probably
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will not be useful.

While employing decoders for detection, we observed that the channel coefficients and the

channel outputs appeared as the parameters of the canonical factorization of the transmitted

bits. Therefore, a more interesting approach might be bypassing the channel estimation step

and estimating the canonical factorization of the joint pmf of the transmitted bits and the quan-

tized channel outputs directly from a pilot sequence. This approach transforms the channel

estimation problem into a machine learning problem a solution to which is conjectured in the

previous section.
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APPENDIX A

PROOFS AND DERIVATIONS

A.1 Proofs and derivations in Chapter 2

A.1.1 Proof of Lemma 2.2

The function σ(p(x), r(x)) defined in (2.19) is an inner product on PFq if it satisfies three inner

product axioms stated below.

• Symmetry: This property of σ(., .) is directly inherited from the inner product on Rq.

• Linearity w.r.t. first argument: IfM{.} is linear this property is also inherited from the

inner product on Rq.

• Positive definiteness: For any p(x) ∈ PFq

σ(p(x), p(x)) = <M{p(x)} ,M{p(x)} >

≥ 0

due to the non-negativity of the inner product on Rq. The equality is satisfied only if

M{p(x)} equals to 0. SinceM{.} is linear and an injectionM{p(x)} is equal to 0 if and

only if p(x) = θ(x).
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A.1.2 Rationale behind the proposal for L {.}

The trivial way of mapping a pmf p(x) ∈ PFq by a vector p ∈ Rq is making the ith 1 component

of p equal to p(i). Let this trivial mapping be denoted by T {.}, i.e.,

T {p(x)} ,
∑
i∈Fq

p(i)ei.

Although this mapping is injective, it is obviously nonlinear. Therefore, T {.} does not satisfy

one of the two requirements imposed by Lemma 2.2 and consequently it cannot be employed

as a tool for borrowing the inner product on Rq. However, we can define a notion of an-

gle between pmfs using T {.} and then reach a proposal for a mapping which satisfies the

requirements of Lemma 2.2.

Whatever the definition of the angle between two pmfs is, the sine of the angle should be kept

constant if two pmfs are scaled by some nonzero scalars. In other words, for any p(x), r(x) ∈

PFq and α, β ∈ R \ {0}

sin∠(p(x), r(x)) = sin∠(α� p(x), β� r(x)),

where ∠(p(x), r(x)) denotes the angle between p(x) and r(x). This property of angle imposes

that the angle between two pmfs should be a function of the two parametric curves on Rq

based on p(x) and r(x) as follows.

cp(t) , T {t � p(x)} ,

cr(t) , T {t � r(x)} .

For t = 0 both of these curves pass through 1
q 1. An example consisting of a pair of such

curves for PF3 is depicted in Figure A.1. Then we can reasonably define the angle between

p(x) and r(x) as the angle between cp(t) and cr(t) at their intersection point.

In order to derive the angle between cp(t) and cr(t), we need to derive vectors tangent to these

curves at t = 0. The expression defining cp(t) can be simplified as

cp(t) =
∑
i∈Fq

(p(i))t∑
j∈Fq(p( j))t ei

=
∑
i∈Fq

∑
j∈Fq

exp
(
t
(

log p( j) − log p(i)
))
−1

ei.

1 We enumerate the components of the vector with the elements of Fq instead of positive integers.
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1

1

1

(1/3,1/3,1/3)
e1

e0

e2

cr(t)cp(t)

Figure A.1: A pair of parametric curves obtained by scaling two pmfs in PF3 and then map-
ping them to R3 via the trivial mapping.

Let tp denote the vector which is tangent to cp(t) at t = 0. Then tp can be derived using

derivation as

tp =
∑
i∈Fq

q log p(i) −
∑
j∈Fq

log p( j)

 ei.

Having inspired from this equation, We proposed the mapping L {.} as

L {.} =
1
q

tp

=
∑
i∈Fq

log p(i) −
1
q

∑
j∈Fq

log p( j)

 ei.

Since L {.} is defined as above, the angle between the two curves cp(t) and cq(t), which is

proposed to be the of the angle between p(x) and q(x), is equal to the angle between p(x) and

q(x) on PFq defined on (2.28).
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A.1.3 Proof of Lemma 2.3

First we are going to prove that L {.} is linear and then it is an injection. For any p(x), r(x) ∈

PFq ,

L {p(x)� r(x)} =
∑
i∈Fq

logCFq {p(x)r(x)}
∣∣∣∣
x=i
−

1
q

∑
j∈Fq

logCFq {p(x)r(x)}
∣∣∣∣
x= j

 ei

=
∑
i∈Fq

log
1
γ

p(i)r(i) −
1
q

∑
j∈Fq

log
1
γ

p( j)r( j)

 ei

=
∑
i∈Fq

log p(i) −
1
q

∑
j∈Fq

log p( j)

 ei +
∑
i∈Fq

log p(i) −
1
q

∑
j∈Fq

log p( j)

 ei

= L {p(x)} +L {r(x)} ,

where γ in the second line above is
∑

i∈Fq p(i)r(i). Hence, L {.} is additive. For any p(x) ∈ PFq

and α ∈ R,

L {α� p(x)} =
∑
i∈Fq

logCFq

{
(p(x))α

} ∣∣∣∣
x=i
−

1
q

∑
j∈Fq

logCFq

{
(p(x)α)

} ∣∣∣∣
x= j

 ei

=
∑
i∈Fq

α

log p(i) −
1
q

∑
j∈Fq

log p( j)

 ei

= αL {p(x)} .

Hence, L {.} is homogeneous and consequently a linear mapping.

A linear mapping is injective if its kernel (null space) is composed of only the additive identity.

If L {p(x)} = 0 for a p(x) ∈ Fq then

log p(i) −
1
q

∑
j∈Fq

log p( j) = 0 ∀i ∈ Fq

p(i) = exp

1
q

∑
j∈Fq

log p( j)

 ∀i ∈ Fq,

which is possible only if p(x) = 1
q or equivalently p(x) = θ(x). Since the kernel of L {.}

consists of only θ(x), which is the additive identity in PFq , the mapping L {.} is injective.

A.1.4 Expressing the inner product on PFq as a covariance

Let X be a Fq-valued random variable. Then log p(X) and log r(X) are two real-valued func-

tions of an Fq-valued random variable. Their expectations and covariance are well-defined.
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Clearly, the inner product of p(x) and r(x) can be expressed as

< p(x), r(x) > = qE
[
(log p(X) − E

[
log p(X)

]
)(log r(X) − E

[
log r(X)

]
)
]

= q
(
E

[
log p(X) log r(X)

]
− E

[
log p(X)

]
E

[
log r(X)

])
,

where E [.] denotes expectation and X is a uniformly distributed random variable in Fq, i.e.

Pr{X = x} = θ(x).

A.1.5 Proof of Lemma 2.5

For any p(x) in PFq

< L {p(x)} , 1 >Rq = <
∑
i∈Fq

log p(i) −
1
q

∑
j∈Fq

log p( j)

 ei, 1 >Rq

=
∑
i∈Fq

logp(i) −
1
q

∑
j∈Fq

log p( j)


=

∑
i∈Fq

log p(i) −
∑
j∈Fq

log p( j)

= 0,

which completes the proof.

A.1.6 Proof of Lemma 2.6

First we are going to simplify the expression defining L+ {p} (x).

L+ {p} (x) = CFq

{
exp

(
−

1
2
‖p − s(x)‖2

)}
= CFq

{
exp

(
−
‖p‖2 − 2 < p, s(x) >Rq + ‖s(x)‖2

2

)}
= CFq

{
exp

(
−
‖p‖2

2

)
exp

(
−
‖s(x)‖2

2

)
exp (< p, s(x) >Rq)

}

Since ‖p‖ and ‖s(x)‖ is constant for all x, the product exp
(
−
‖p‖2

2

)
exp

(
−
‖s(x)‖2

2

)
has no effect

due to the normalization operator. Therefore,

L+ {p} (x) = CFq

{
exp (< p, s(x) >Rq)

}
. (A.1)
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If p is equal to L {p(x)} for a p(x) in PFq then the inner product above becomes

< p, s(x) >Rq = < L {p(x)} , ex −
1
q

1 >

= < L {p(x)} , ex > −
1
q
< L {p(x)} , 1 > .

Due to Lemma 2.5 the second inner product above is zero. Inserting this result into (A.1)

yields

L+ {L {p(x)}} (x) = CFq

exp

log p(x) −
1
q

∑
j∈Fq

log p( j)




= CFq

{
exp

(
log p(x)

)}
= p(x),

where the summation in the first line above is cancelled by the normalization operator since

it is a constant. This completes the proof of the first part of the lemma.

Any p ∈ Rq can be decomposed as

p = p′ + α1,

for an α in R such that p′ ⊥ 1. Inserting this decomposition into (A.1) yields

L+ {p} (x) = CFq

{
exp

(
< p′ + α1, s(x) >Rq

)}
= CFq

{
exp

(
< p′, s(x) >Rq +α < 1, s(x) >Rq

)}
s(x) is orthogonal to 1 for all x. Therefore,

L+ {p} (x) = CFq

{
exp

(
< p′, s(x) >Rq

)}
L

{
L+ {p} (x)

}
=

∑
i∈Fq

log
1
γ

exp
(
< p′, s(i) >Rq

)
−

1
q

∑
j∈Fq

log
1
γ

exp
(
< p′, s( j) >Rq

) ei

=
∑
i∈Fq

< p′, s(i) >Rq −
1
q
< p′,

∑
j∈Fq

s( j) >Rq

 ei,

where γ =
∑

i∈Fq exp (< p′, s(i) >Rq).
∑

j∈Fq s( j) is equal to the zero vector. Therefore,

L
{
L+ {p} (x)

}
=

∑
i∈Fq

(
< p′, s(i) >Rq

)
ei

=
∑
i∈Fq

(
< p′, ei +

1
q

1 >Rq

)
ei

=
∑
i∈Fq

(
< p′, ei >Rq +

1
q
< p′, 1 >Rq

)
ei

= p′
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If p is orthogonal to 1 then p becomes equal to p′ and consequently

L
{
L+ {p} (x)

}
= p.

A.2 Proofs and derivations in Chapter 3

A.2.1 Proof of Lemma 3.1

Inserting the expressions for p1(x) and p2(x) into inner product definition yields

< p1(x), p2(x) > =
∑
i∈FN

q

log
r1(aiT )
qN−1 log

r2(biT )
qN−1 −

1
qN

∑
i∈FN

q

log
r1(aiT )
qN−1

∑
i∈FN

q

log
r2(biT )
qN−1

=
∑
i∈FN

q

log r1(aiT ) log
r2(biT )
qN−1 −

1
qN

∑
i∈FN

q

log r1(aiT )
∑
i∈FN

q

log
r2(biT )
qN−1

=
∑
i∈FN

q

log r1(aiT ) log r2(biT ) −
1

qN

∑
i∈FN

q

log r1(aiT )
∑
i∈FN

q

log r2(biT )(A.2)

First we are going to derive the inner product of the two SPC constraints if there exist an

α ∈ Fq such that b = αa. Since Fq is a field with q elements and a is nonzero there are qN−1 i

vectors satisfying the equation aiT = j for all j ∈ Fq. Hence,

< p1(x), p2(x) > = qN−1
∑
j∈Fq

log r1( j) log r2(α j) − qN−2

∑
j∈Fq

log r1( j)


∑

i∈Fq

log r2(α j)


= qN−1 < r1(x), r2(αx) > ,

which completes the proof for the first part.

In the second part, we derive the inner product of p1(x) and p2(x) when there is not any α ∈ Fq

such that b = αa. In other words, a and b are linearly independent. The first summation in

(A.2) can be regrouped for this case as follows.∑
i∈FN

q

log r1(aiT ) log r2(biT ) =
∑
j∈Fq

 ∑
i:aiT = j

log r1( j) log r2(biT )


=

∑
j∈Fq

log r1( j)
∑

i:aiT = j

log r2(biT )

=
∑
j∈Fq

log r1( j)
∑
j∈Fq

 ∑
i:(aiT = j∧biT =k)

log r2(k)


=

∑
j∈Fq

log r1( j)
∑
j∈Fq

log r2(k)

 ∑
i:(aiT = j∧biT =k)

1

 .
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Since Fq is a field with q elements and a, b are linearly independent the innermost summation

above runs qN−2 times for all j and k. Therefore,∑
i∈FN

q

log r1(aiT ) log r2(biT ) = qN−2
∑
j∈Fq

log r1( j)
∑
k∈Fq

log r2(k)

= qN−2

∑
j∈Fq

log r1( j)


∑

j∈Fq

log r2( j)

 .

Inserting this result into (A.2) yields

< p1(x), p2(x) > = qN−2
∑
j∈Fq

log r1( j)
∑
j∈Fq

log r2( j) −
1

qN

∑
i∈FN

q

log r1(aiT )
∑
i∈FN

q

log r2(biT )

= qN−2
∑
j∈Fq

log r1( j)
∑
j∈Fq

log r2( j) −

1
qN

∑
j∈Fq

log r1( j)
∑

i:aiT = j

1


∑

j∈Fq

log r2( j)
∑

i:biT = j

1


= qN−2

∑
j∈Fq

log r1( j)
∑
j∈Fq

log r2( j) − qN−2
∑
j∈Fq

log r1( j)
∑
j∈Fq

log r2( j)

= 0,

which completes the proof of the second part.

A.2.2 Proof of Lemma 3.2

First we are going to prove that im {Sa} is a subspace of PFN
q

by showing that Sa {.} is a linear

mapping from PFq to PFN
q

. For any p(x), r(x) ∈ PFq and α, β ∈ R

Sa {α� p(x)� β� r(x)} = CFN
q

{
CFq

{
(p(x))α(r(x))β

} ∣∣∣∣
x=axT

}
.

The inner normalization operator above can be cancelled since there is another normalization

outside.

Sa {α� p(x)� β� r(x)} = CFN
q

{(
(p(axT ))α(r(axT ))β

)}
.

Using the definition of addition and scalar multiplication on PFN
q

we obtain

Sa {α� p(x)� β� r(x)} = α� CFN
q

{
p(axT )

}
� β� CFN

q

{
r(axT )

}
= α� Sa {p(x)}� β� Sa {r(x)} ,

which proves that Sa {.} is a linear mapping. Since the image of any linear mapping is a

subspace of the co-domain, im {Sa} is a subspace of PFN
q

.
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Obviously, Sa {.} is an injective mapping for nonzero a. Therefore,

dim im {Sa} = dimPFq

= q − 1,

which completes the proof.

A.2.3 Proof of Lemma 3.3

If there exist an α ∈ Fq such that b = αa then for any p(x) ∈ PFq

Sb {p(x)} = CFN
q

{
p(bxT )

}
= CFN

q

{
p(αaxT )

}
= Sa {p(αx)} .

Since p(x) is in PFq , p(αx) is also in PFq . Therefore, im {Sb} ⊂ im {Sa}. Similarly, it can be

shown that im {Sa} ⊂ im {Sb}. Consequently,

im {Sa} = im {Sb}

if b is equal to αa for an α ∈ Fq.

If there is not any α such that b = αa then for any p1(x) ∈ im {Sa} and p2(x) ∈ im {Sb}

< p1(x), p2(x) >= 0

due to Lemma 3.1. Hence,

im {Sa} ⊥ im {Sb}

if there is not any α ∈ Fq such that b = αa.

A.3 Proofs and Derivations in Chapter 4

A.3.1 Proof of Lemma 4.1

We need to show that p(x) is orthogonal to CFN
q

{
r(axT )

}
for any r(x) ∈ PFq .

< p(x),CFN
q

{
r(axT )

}
> =

∑
i∈Fq

log p(iD) log
r(aiT )
qN−1 −

1
qN

∑
i∈Fq

log p(iD)
∑
i∈Fq

log
r(aiT )
qN−1

=
∑
i∈Fq

log p(iD) log r(aiT ) −
1

qN

∑
i∈Fq

log p(iD)
∑
i∈Fq

log r(aiT )
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Let j be a vector in FN
q . For each j vector there are qN−rank(D) i vectors in FN

q satisfying the

relation

jD = iD, (A.3)

where rank (D) denotes the rank of the dependency matrix D. Therefore, the first summation

in (A.3) is equal to the following nested summation.∑
i∈Fq

log p(iD) log r(aiT ) =
1

qN−rank(D)

∑
i∈FN

q

 ∑
j∈FN

q :iD=jD

log p(jD) log r(ajT )


=

1
qN−rank(D)

∑
i∈FN

q

log p(iD)

 ∑
j∈FN

q :iD=jD

log r(ajT )


The inner summation on the right hand side above can be grouped as∑

i∈Fq

log p(iD) log r(aiT ) =
1

qN−rank(D)

∑
i∈FN

q

log p(iD)

∑
k∈Fq

 ∑
j∈FN

q :iD=jD∧ajT =k

log r(ajT )




=
1

qN−rank(D)

∑
i∈FN

q

log p(iD)

∑
k∈Fq

log r(k)

 ∑
j∈FN

q :iD=jD∧ajT =k

1


 .

We have to determine how many times the innermost summation above runs. Let d1, d2, . . .,

drank(D) be the nonzero rows of D. Then the innermost summation above runs once for all j

vector satisfying the system of linear equations below.

d1

d2
...

drank(D)

a


jT =



d1iT

d2iT
...

drank(D)iT

i


Due to the definition of the dependency matrix, all nonzero rows of D are linearly independent.

Moreover, all these nonzero rows of D are also linearly independent with a, since a is not equal

to aD. Therefore, the system of linear equations above has qN−rank(D)−1 solutions. Hence,∑
i∈Fq

log p(iD) log r(aiT ) =
1
q

∑
i∈FN

q

log p(iD)
∑
k∈Fq

log r(k).

Inserting this result into (A.3) yields

< p(x),CFN
q

{
r(axT )

}
> =

1
q

∑
i∈FN

q

log p(iD)
∑
k∈Fq

log r(k) −
1

qN

∑
i∈Fq

log p(iD)
∑
i∈Fq

log r(aiT )

=
1
q

∑
i∈FN

q

log p(iD)
∑
k∈Fq

log r(k) −
1
q

∑
i∈FN

q

log p(iD)
∑
k∈Fq

log r(k)

= 0,
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which completes the proof.

A.4 Proofs and Derivations in Chapter 6

A.4.1 The factorization of a posteriori probability of X given in Section 6.2

Expanding the absolute value in (6.3) yields

p(x) = CFN
q

exp

− 1
2σ2

∣∣∣∣∣∣∣y −
N∑

i=1

hiµq (xi)

∣∣∣∣∣∣∣
2


= CFN

q

exp

− 1
2σ2

|y|2 − 2y
N∑

i=1

Re
{
h∗i µq (xi)∗

}
+

∣∣∣∣∣∣∣
N∑

i=1

hiµq (xi)

∣∣∣∣∣∣∣
2


 .

Since |y|2 does not depend on x, it can be cancelled by the normalization operator which gives,

p(x) = CFN
q

exp

 1
2σ2

 N∑
i=1

2Re
{
yh∗i µq (xi)∗

}
−

 N∑
i=1

hiµq (xi)


 N∑

i=1

h∗i µq (xi)∗





= CFN
q

exp

 N∑
i=1

2Re
{
yh∗i µq (xi)∗

}
−

∣∣∣hiµq (xi)
∣∣∣2

2σ2 −

N∑
j=2

j−1∑
i=1

2Re
{
hiµq (xi) h∗jµq

(
x j

)∗}
2σ2




Since PSK is a constant amplitude modulation,
∣∣∣µq (xi)

∣∣∣ is constant for all xi. Consequently,∣∣∣hiµq (xi)
∣∣∣2 does not depend on x. Canceling

∣∣∣hiµq (xi)
∣∣∣2 by the normalization operator yields

the desired factorization.

p(x) = CFN
q


N∏

i=1

exp

2Re
{
yh∗i µq (xi)∗

}
2σ2

 N∏
j=2

j−1∏
i=1

exp

−2Re
{
hih∗jµq (xi) µq

(
x j

)∗}
2σ2


 (A.4)

A.4.2 Proof of Theorem 6.1

The necessary row operations are listed below.

1. Add 1st row to (1 +
( j−2)( j−1)

2 )th row for j = 3 up to N.

2. For i = 4 up to N, add ( (i−1)(i−2)
2 + 3)th row to

(a) ( (i−1)(i−2)
2 + 1)th row,

(b) ( (i−1)(i−2)
2 + 2)th row,

(c) ( (i−1)(i−2)
2 + j)th row for j = 4 up to i − 1,
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(d) ( (i)(i−1)
2 + 3)th row,

(e) ( ( j−1)( j−2)
2 + 1 + i)th row for j = i + 2 up to N.

A.4.3 Derivation of the factorization in (6.51)

Pr{X = x|Y = y} = CF2Nt
q

{
exp

(
−
‖y −Hcw‖2

2σ2

)}
∝ exp

(
−

1
2σ2

(
‖y‖2 − 2Re

{
wHHH

c y
}

+ wHHH
c Hcw

))

We can cancel ‖y‖2 since it is constant for all x. Let u , HH
c y and R , HH

c Hc. Then the

factorization becomes,

Pr{X = x|Y = y} ∝ exp
(
−

1
2σ2

(
−2Re

{
wHu

}
+ wHRw

))
∝ exp

 1
2σ2

2 Nt∑
k=1

Re
{
ν (xk) u∗k

}
−

Nt∑
k=1

Nt∑
l=1

ν (xk)∗ (R)k,lν (xl)


 ,

where uk is the kth component of u and (R)k,l is the entry in the kth row and jth column of the

matrix R. Since R is hermitian symmetric,

Pr{X = x|Y = y} ∝ exp

 1
2σ2

 Nt∑
k=1

(
2Re

{
ν (xk) u∗k

}
− ‖ν (xk)‖2 (R)k,k

)


· exp

− 1
2σ2

 Nt∑
k=2

k−1∑
l=1

2Re
{
ν (xk)∗ (R)k,lν (xl)

}
 .

Since ‖ν (xk)‖2 is constant,

Pr{X = x|Y = y} ∝ exp

 1
2σ2

 Nt∑
k=1

2Re
{
ν (xk) u∗k

}
−

Nt∑
k=2

k−1∑
l=1

2Re
{
ν (xk)∗ (R)k,lν (xl)

}
. (A.5)

The function ν (xk) can be expressed in terms of β (.) function as

ν (xk) = aβ (x2k−1) + a∗β (x2k) ,

where a = 1
2 + j 1

2 . Therefore,

Re
{
ν (xk) u∗k

}
= Re

{
au∗k

}
β (x2k−1) + Re

{
a∗u∗k

}
β (x2k) . (A.6)
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Furthermore,

Re
{
ν (xk)∗ (R)k,lν (xl)

}
= Re

{
(a∗β (x2k−1) + aβ (x2k))(R)k,l(aβ (x2l−1) + a∗β (x2l))

}
= Re

{
|a|2 (R)k,lβ (x2k−1) β (x2l−1)

}
+ Re

{
(a∗)2(R)k,lβ (x2k−1) β (x2l)

}
+Re

{
a2(R)k,lβ (x2k) β (x2l−1)

}
+ Re

{
|a|2 (R)k,lβ (x2k) β (x2l)

}
=

1
2
(
β (x2k−1 + x2l−1) Re

{
(R)k,l

}
+ β (x2k−1 + x2l) Im

{
(R)k,l

}
−β (x2k + x2l−1) Im

{
(R)k,l

}
+ β (x2k + x2l) Re

{
(R)k,l

} )
. (A.7)

Inserting (A.6) and (A.7) together with the definition of the γ(.; .) function into (A.5) gives

the desired factorization.

Pr{X = x|Y = y} ∝
Nt∏

k=1

γ

(
x2k−1;

Re {uk} + Im {uk}

2
, σ

)
γ

(
x2k;

Re {uk} − Im {uk}

2
, σ

)

·

Nt∏
k=2

k−1∏
l=1

γ

(
x2k−1 + x2l−1;−

Re
{
(R)k,l

}
2

, σ

)
γ

(
x2k−1 + x2l;−

Im
{
(R)k,l

}
2

, σ

)

·

Nt∏
k=2

k−1∏
l=1

γ

(
x2k + x2l−1;

Im
{
(R)k,l

}
2

, σ

)
γ

(
x2k + x2l;−

Re
{
(R)k,l

}
2

, σ

)
.

(A.8)

A.4.4 Permutations used in the simulation in Section 6.6.5

The set P consists of the following permutations.

P1 =
[
fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15 fT
2 fT

4 fT
6 fT

8 fT
10 fT

12 fT
14 fT

16

]
P2 =

[
fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15 fT
4 fT

6 fT
8 fT

10 fT
12 fT

14 fT
16 fT

2

]
P3 =

[
fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15 fT
6 fT

8 fT
10 fT

12 fT
14 fT

16 fT
2 fT

4

]
P4 =

[
fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15 fT
8 fT

10 fT
12 fT

14 fT
16 fT

2 fT
4 fT

6

]

P5 =
[
fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15 fT
10 fT

12 fT
14 fT

16 fT
2 fT

4 fT
6 fT

8

]
P6 =

[
fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15 fT
12 fT

14 fT
16 fT

2 fT
4 fT

6 fT
8 fT

10

]
P7 =

[
fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15 fT
14 fT

16 fT
2 fT

4 fT
6 fT

8 fT
10 fT

12

]
P8 =

[
fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15 fT
16 fT

2 fT
4 fT

6 fT
8 fT

10 fT
12 fT

14

]
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P9 =
[
fT
4 fT

6 fT
8 fT

10 fT
12 fT

14 fT
16 fT

2 fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15

]
P10 =

[
fT
6 fT

8 fT
10 fT

12 fT
14 fT

16 fT
2 fT

4 fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15

]
P11 =

[
fT
8 fT

10 fT
12 fT

14 fT
16 fT

2 fT
4 fT

6 fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15

]
P12 =

[
fT
10 fT

12 fT
14 fT

16 fT
2 fT

4 fT
6 fT

8 fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15

]
P13 =

[
fT
12 fT

14 fT
16 fT

2 fT
4 fT

6 fT
8 fT

10 fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15

]
P14 =

[
fT
14 fT

16 fT
2 fT

4 fT
6 fT

8 fT
10 fT

12 fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15

]
P15 =

[
fT
16 fT

2 fT
4 fT

6 fT
8 fT

10 fT
12 fT

14 fT
1 fT

3 fT
5 fT

7 fT
9 fT

11 fT
13 fT

15

]

A.5 Proofs and Derivations in Chapter 7

A.5.1 Proof of Theorem 7.1

The proof in the forward direction is actually an implication of the cut-set independence

theorem stated in [2]. An alternative proof is given below.

Let tk(x) and tl(x) be defined as

tk(x) , CFN
q

 ∏
ai∈Kk

ri(aixT )

 , (A.9)

tl(x) , CFN
q

 ∏
ai∈Kl\Kk

ri(aixT )

 . (A.10)

Clearly,

p(x) = CFN
q
{tk(x)tl(x)} . (A.11)

Due to the definitions of Kk and Kk, tk(x) and tl(x) satisfies

rk(x) , rk(x(I − Ek)), (A.12)

rl(x) , rl(x(I − El)), (A.13)

where Ek (El) is the dependency with just a single 1 on its kth (lth) entry on the main diagonal.

An equivalent requirement on conditional independence can be obtained by multiplying both

sides of (7.1) with Pr{X\{k,l} = x\{k,l}}Pr{X\{k} = x\{l}} as follows.

p(x) Pr{X\{k,l} = x\{k,l}} = Pr{X\{k} = x\{k}}Pr{X\{l} = x\{l}} (A.14)
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The marginal distribution Pr{X\{k} = x\{k}} can be derived in terms of tk(x) and tl(x) as

Pr{X\{k} = x\{k}} =
∑
∀xk∈Fq

p(x)

= CFn−1
q

 ∑
∀xk∈Fq

rk(x)rl(x)


= CFn−1

q

rk(x)
∑
∀xk∈Fq

rl(x)

 , (A.15)

where the last line follows from (A.12). Other marginal distributions in (A.14) can similarly

be derived as

Pr{X\{l} = x\{l}} = CFn−1
q

rl(x)
∑
∀xl∈Fq

rk(x)

 (A.16)

Pr{X\{k,l} = x\{k,l}} = CFn−2
q

 ∑
∀xk∈Fq

rl(x)
∑
∀xl∈Fq

rk(x)

 (A.17)

Inserting (A.11), (A.15), (A.16), and (A.17) into (A.14) verifies that the equality in (A.14)

holds and completes the proof in the forward direction.

The proof in the backward direction starts with multiplying both sides of (7.1) with Pr{X\{k} =

x\{k}} which yields

p(x) = Pr{X\{k} = x\{k}}Pr{Xk = xk|X\{k,l} = k, l\{}}

= CFN
q
{mk(x)ml(x)} , (A.18)

where mk(x) and ml(x) are CFN
q

{
Pr{X\{k} = x\{k}}

}
and Pr{Xk = xk|X\{k,l} = k, l\{}}. Clearly,

these functions satisfy

mk(x) = mk(x(I − Ek)), (A.19)

ml(x) = ml(x(I − El)). (A.20)

Then due to Theorem 4.4 p(x) can be factored as in (7.2).
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