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ABSTRACT 

 

FORM FINDING AND STRUCTURAL ANALYSIS OF 

CABLES WITH MULTIPLE SUPPORTS 

Demir, Abdullah 

M.Sc. in Department of Civil Engineering 

Supervisor : Assoc. Prof. Dr. Mustafa Uğur Polat 

September 2011 ; 111 pages 

 

Cables are highly nonlinear structural members under transverse loading. This 

nonlinearity is mainly due to the close relationship between the final geometry under 

transverse loads and the resulting stresses in its equilibrium state rather than the 

material properties. In practice, the cables are usually used as isolated single-segment 

elements fixed at the ends. Various studies and solution procedures suggested by 

researchers are available in the literature for such isolated cables. However, not much 

work is available for continuous cables with multiple supports. 

In this study, a multi-segment continuous cable is defined as a cable fixed at the ends 

and supported by a number of stationary roller supports in between. Total cable 

length is assumed constant and the intermediate supports are assumed to be 

frictionless. Therefore, the critical issue is to find the distribution of the cable length 

among its segments in the final equilibrium state. Since the solution of single-

segment cables is available the additional condition to be satisfied for multi-segment 

continuous cables with multiple supports is to have stress continuity at intermediate 

support locations where successive cable segments meet. A predictive/corrective 

iteration procedure is proposed for this purpose. The solution starts with an initially 

assumed distribution of total cable length among the segments and each segment is 

analyzed as an independent isolated single-segment cable. In general, the stress 
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continuity between the cable segments will not be satisfied unless the assumed 

distribution of cable length is the correct distribution corresponding to final 

equilibrium state. In the subsequent iterations the segment lengths are readjusted to 

eliminate the unbalanced tensions at segment junctions. The iterations are continued 

until the stress continuity is satisfied at all junctions. Two alternative approaches are 

proposed for the segment length adjustments: Direct stiffness method and tension 

distribution method. Both techniques have been implemented in a software program 

for the analysis of multi-segment continuous cables and some sample problems are 

analyzed for verification. The results are satisfactory and compares well with those 

obtained by the commercial finite element program ANSYS. 

 

Keywords: Single-segment cable, multi-segment continuous cable, continuous cable 

with multiple supports, tension distribution for continuous cables, Newton-Raphson 

iterations 
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ÖZ 

 

ÇOK MESNETLĐ KABLOLARIN 

YAPISAL ANALĐZĐ VE ŞEKĐL TAYĐNĐ 

Demir, Abdullah 

Yüksek Lisans, Đnşaat Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Mustafa Uğur Polat 

Eylül 2011 ; 111 Sayfa 

 

Kablolar yanal yük altındaki davranışı yüksek derecede doğrusal olmayan yapı 

elemanlarıdır. Bu durum kabloların malzeme özelliklerinden çok uygulanan yükler 

altındaki denge koşulları ile son denge konumundaki geometrisi arasındaki direkt 

ilişkiden kaynaklanmaktadır. Uygulamada kablolar genellikle uç noktalarından 

sabitlenmiş tek bir eleman olarak kullanılmakta ve bu şekilde analiz edilmektedir. 

Literatürde böyle iki ucundan mesnetli tek parça kabloların analizi için birçok 

çalışma ve çözüm önerileri mevcuttur. Ancak çok mesnetli sürekli kablolar için 

fazlaca bir çalışma bulunmamaktadır. 

Bu çalışmada her iki ucundan mesnetlenmiş ve bu mesnetler arasına yerleştirilmiş 

sabit makaralı mesnetler ile desteklenmiş çok açıklıklı ve çok mesnetli sürekli 

kabloların analizi için bir çözüm yöntemi geliştirilmiştir. Kablo sisteminin toplam 

boyunun sabit, ara mesnetlerin ise sürtünmesiz makaralar şeklinde olduğu kabul 

edilmektedir. Uç noktalarından mesnetlenmiş ve sabit boydaki kablolar için çözüm 

yöntemi bilindiğinden sürekli kablolar için çözülmesi gereken problem, sistemin son 

denge konumunda, toplam kablo boyunun açıklıklar arasındaki dağılımının 

belirlenmesidir. Bunun için sürekli kablo sisteminde tek açıklıklı izole kablo 

çözümüne ilave olarak sağlanması gereken temel koşul ara mesnet noktalarındaki 

kablo gerilmelerinin sürekliliğidir. Önerilen iteratif çözüm yönteminde analize kablo 
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toplam boyunun açıklıklar arasına makul bir dağılımı ile başlanmakta ve herbir 

açıklıktaki kablo izole tekil bir kablo olarak çözülmektedir. Daha sonra kablo 

boyunun açıklıklar arasındaki dağılımı ara mesnet noktalarında ardaşık kablo 

bölümleri arasında oluşan gerilme farkını sıfırlayacak şekilde yeniden belirlenmekte 

ve iterasyonlara sistem denge konumuna ulaşana kadar devam edilmektedir. Bu 

amaçla iki farklı yaklaşım önerilmektedir: Direkt rijitlik yöntemi ve gerilme dağıtma 

yöntemi. Çok mesnetli sürekli kabloların analiz amacı ile her iki yöntemi de kullanan 

bir yazılım geliştirilmiş ve değişik yapıdaki örnek kablo sistemler çözümlenmiştir. 

Elde edilen sonuçlar tatmin edici olup ticari bir sonlu elemanlar yazılımı olan 

ANSYS programı ile elde edilen sonuçlar ile uyum içinde olduğu görülmektedir. 

 

Anahtar Kelimeler: Tek açıklıklı kablo, çok açıklıklı sürekli kablo, çok mesnetli 

sürekli kablo, sürekli kablolar için gerilme dağıtma yöntemi, Newton-Raphson 

iterasyonu 
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CHAPTERS 

CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 General 

Cables, having negligible shear, flexural and torsional rigidities and zero-buckling 

load, are invaluable members for structural engineering. They are used in many 

structures like guyed towers, cable-stayed bridges, marine vehicles, offshore 

structures, cable roofs, transmission lines, pre-stressing applications and tensegrity 

works. Mostly, cables are used for large span distances and/or pre-stressing works. 

Nonlinearity is a problem for almost all structural elements. In basic, these 

nonlinearities occur due to geometrical and material properties of the member. Both 

of them are valid for almost all structures. If the member is adequately stiff in lateral 

direction, the geometrical nonlinearity could be ignored due to small P-∆ effect. 

However, cable is a structural element which has a very small stiffness in lateral 

direction because of its tangential geometry. Steel is used as a material for 

fabrication of cable. Therefore, cable has the nonlinearity of steel material. Besides, 

tangential geometry of the cable gives the cable element another nonlinearity due to 

squeeze which could not be classified as purely geometrical or material nonlinearity. 

Thus, cable is a nonlinear structural element due to its geometry and material 

properties. In this study, modulus of elasticity of the cable material is taken constant. 

Only geometric nonlinearity is taken into account. 

In structures, both in designing stage and application stage, cables are used as 

supported between the two end points. According to this design, cables have a fixed 

unstretched length between those supports. The lengthening is only due to  stresses 

applied on it. However, if cables are designed monolithically and supported by a 

number of roller supports, there will be a change in unstretched length of cable for 
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each segment due to loads applied on it. This behavior of cable adds another 

nonlinearity to the problem. 

In practice, cables are designed as a single-segment and assumed to be linear 

structural members. For example, a type of pre-stressing work, shown in Figure 1.1, 

is a completely single-segment multi-support cable problem. A monolithic tendon 

placed between two end points and supported by a number of roller supports along 

its span is a truly nonlinear problem. However, the cable is usually assumed as a 

linear member to ease the calculations for this pre-stressing work. Although, the 

weight of the cable is negligible for small-scale problems like this example, the cable 

cannot be classified as a linear structural member for large scale problems. 

 

 

Figure 1.1 Pre-stressing by draping the tendons. 

 

In brief, depending on the way they are used in structures, the cable behavior under 

transverse loading is a nonlinear problem. In many situations, they are supported not 

only at their end points but also at some points along their spans. This, in turn, 

further increases the level of nonlinearity due to presence of contact problem. 

However, in practice, they are usually treated as single-segment systems and 

assumed as linear structural members supported at their end points. This research 

gives a different point of view to the analysis of cables supported along their spans. 
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1.2 Purpose 

Extensive research has been made under the constraint that loads are applied to some 

predefined points on the cable or successive cables are designed separately. This 

design logic restricts engineers to design more integrated systems. Because there 

could be a number of cable elements in a structure and these cables are designed as 

single-segment. All cable elements should be designed and lengths of them should be 

determined individually. Besides that restriction of engineer aspect, there are many 

structures designed as single-segment cable systems although being multi-segment 

continuous cable systems. As an example, draglifts are systems having multi-

segments cable. Instead of the constraint of single-segment cable systems, research 

was made to see the behavior of cables placed on roller supports. This approach will 

give engineers a wide aspect for designs and research. Also it makes convenient 

designs possible. Previous studies and objective study are illustrated in Figure 1.2 

and Figure 1.3, respectively.  

 

 

 

 

 

 

Figure 1.2 Single-segment cable profile. 
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Figure 1.3 Multi-segment continuous cable profile. 

1.3 Previous Studies  

Being a useful member for structural systems, make cables more attractive for 

researchers. Despite being an important material, it is hard to analyze the cables 

because cables are highly nonlinear structural components. These nonlinearities are 

due to its material characteristic and behavior under applied loads. Although these 

are denoted in different ways, they could not be distinguished. Also, this association 

makes the problem more complex. Besides, having many types make cable analysis 

harder. Convoluted geometry and some types of cables are shown in Figure 1.4 and 

Figure 1.5. These complicated characteristics of cables have been studies of 

researchers for a half century. Studies, which have been carried out previously, are 

processed into that order; material characteristics of cable, equivalent modulus 

approach, finite element approach, single-segment and multi-segment studies. 

 

 

Figure 1.4 Cross-section and layout of 7 wire strands 
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Figure 1.5 Some types of strands 

 

Stress - strain relationship of cables are hard to determine. Its response under some 

stresses shows discrepancy between under low stresses and high stresses. Cables 

show relaxation under stresses due to its tangential geometry. If a strain controlled 

test is made for cables, it will be seen that relationship with stress is not linear and 

the stress - strain graph shows typical inclinations for different types of cables. These 

inclinations are illustrated in Figure 1.6. Analyses on stress-strain relationship of 

cables were made by several authors. The earlier study was made by Costello [1], 

then by Kumar and Cochran [2]. They tried some theoretical approaches related with 

cables’ tangential geometry and found some formulas modeling the behavior of 

cables. These formulas were compared with stress – strain analysis and accuracy of 

them were determined.  
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Figure 1.6 Typical stress-strain relationship of cable 

 

Behavior under applied loads and self weight is another nonlinearity of cable 

analysis. Although there were studies made before 1950s, there was no tangible 

research for cables and their nonlinear behavior. They assumed linear behavior for 

cable. Some researchers tried to make cable analysis after 1950s, nevertheless studies 

had not been solved the nonlinear behavior of cables, precisely, until 1980s. 

Between 1950s and 1980s, researchers only made some assumptions to minimize the 

nonlinear behavior. Researchers performed catenary cable analysis by some 

approaches. Equivalent modulus of elasticity is an approach for reaching the catenary 

behavior of the cables before computers. This approach was first discussed by F. 

Dischinger [3]. Positioning the catenary cable’s shape as parabola instead of its real 

shape and neglecting the cable weight are assumptions made in equivalent modulus 

of elasticity approach. Equivalent secant modulus of elasticity is another approach, 

formulated by Ernst [4]. Hajdin et al. [5] redefined the cables’ equivalent modulus in 

1998. 
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Dischinger’s formula [3]; 
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Computer, being a milestone for structural engineering in 1980s, makes some 

calculations possible, easy and accurate. This is valid for cable analysis. Computer 

makes nonlinear analysis easy and possible. Finite element modeling was used for 

nonlinear analysis after the invention of computer. 

Finite element method is a model, originally introduced by Turner et al. [6]. FEA is a 

numerical technique for approximate solutions of complex problems. These 

complexities were called as “real world” problems by Madenci et al. [7]. Some 

material, shape and boundary condition properties of problem cause complexities. 

All complexities or nonlinearities are valid for cable problem. 

 The basis of FEA is decomposition of system to find out the solution of the total 

system. Each decomposed member of system is called as finite element. Although 

Turner et al. [6] established the element matrix assembly; the “finite element” term 

was first used by Clough [8]. Idea of FEA does not change; nevertheless there are 

lots of finite element types and solution types for problems. The solution will be 

approximate, changing with solution techniques e.g. finite element length and shape 

function. However, the finite element solutions will approach to the correct result 

with the mesh refinement. 

The first realistic single-segment cable solution was made by Michalos and Brinstiel 

[9]. Skop and O’Hara [10,11] made similar analysis. Approach of this study is a 

finite element analysis having trial and error procedure. Procedure of the study is: 
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Cable having supports at both ends is an indeterminate structure, so system  is 

assumed as one end supported cable to make system statically determinate. Then, 

cable layout is formed by finite element analysis procedures. First support’s reactions 

are changed by some iterative procedures till cable’s other cusp ends on second 

support.  

The iterative procedure used by Skop and O’Hara [10,11] is called Method of 

Imaginary Reactions. Some research were made on this iterative procedure 

technique. Newton Raphson Method was introduced by Polat M.U. in his master 

thesis [12] by the supervision of Yılmaz Ç.. Method of Imaginary Reactions and 

Newton Raphson Method has same technique in positioning of cable, they differ in 

iteration phase. Newton Raphson Method is used in this thesis to decreases the 

number of iterations. 

Various computer programs have been developed for analysis of cable till now. 

Peyrot and Goulois developed one of them [13]. Also, Fleming J.F. [14] coded a 

program for nonlinear static analysis of cable-stayed bridge structures which includes 

cable analysis. Almost all of them were written by finite element modeling. Also, 

CABPOS is finite element modeling computer program for cable analysis developed 

within this theses. Except that affinity, CABPOS solves multi-segment continuous 

cable systems, while others deal with single-segment cable solutions. 

Multi-segment continuous cables are used in daily life. Cable lift, Barriers for 

highways, ski tows and teleskis are systems work with cables having multi-segments. 

These systems were analyzed by the logic of single-segment cable analysis. Charland 

J.W. et all deal with multi-segment continuous cable problems [15] by breaking 

cable into segments. They dealed with wood logging systems as seen in Figure 1.7. 

There are two supports and a roller support. Charland J.W. called end supports as 

Skyline anchor point and roller support as Intermediate support. They coped with this 

cable problem by some assumptions. These assumptions are;  

1- Cables are assumed to be massless and inextensible. 

2- Friction is ignored in the formulation. 

3- Tension in each cable is considered to be constant along the cable. 
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4- Intermediate support is a support which does not make any interaction 

between two successive supports. 

5- Length of cable at segments does not change. 

 

 

Figure 1.7 Illustration of cable logging system by Charland J.W.[15] 

 

Briefly, Charland J.W. [15] defined a multi-segment continuous cable problem in 

1994; however solution of the system is not achieved correctly. The assumptions 

made by Charland J.W. simplify the system and made it single-segment cable. 

 Aufaure M. [16] also defines a multi-segment continuous cable problem. Researcher 

dealed with an electricity cable problem having three supports. In this study, a cable 

element having three nodes N1, N2, N3 is defined. N1 and N2 are fixed nodes. N3 is 

the node which coincides with roller support. This coincidence is found by the 

continuity of the tension in the cable. Aufaure M. also made some assumptions. The 

most important assumption is: Node N3 must remain between N2 and N1. If not, 

convergence does not been reached and new length for an element must be selected. 

So, this solution depends on cable element length. Therefore, longer elements will be 
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needed for slack cable problems. Another handicap of the solution is that; this 

solution technique is valid for two segment cable systems.  

Kwang Sup Chung et all [17] studied on a cable-stayed bridge which has multi-

segment continuous cable system. In their study, they worked on a bridge having 

cable with a roller support. This bridge is a cable-stayed bridge having saddle 

anchorage, which can be called roller support, in Austria. They used finite element 

model for the solution of cable system. They consider the sliding effect on roller 

support. Two type of sliding effect is defined by the authors. These are roller sliding 

without friction and frictional sliding. Finally, they define a new problem faced on 

cable-stayed bridges and solve it. This problem is a nonlinearity of usage of multi-

segment continuous cables on structures. However this solution was also a single-

segment cable solution. They did not deal with the interchange of the cable on the 

roller support. Their solution is for friction problem. 

The photos of that bridge taken by the author of that study are shown in Figure 1.8 

and Figure 1.9. This type of roller supports could be seen on lots of structures mostly 

in bridges. For instance, pylons of suspension bridges commonly consist a roller 

support. However the effect of roller support does not considered also for those 

examples. 

 

Figure 1.8 Whole view of the bridge [17] 
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Figure 1.9 View of the saddle [17] 

 

Kyoung-Bong H. and Sun-Kyun P. [18] defined another multi-segment continuous 

cable system. They tried to increase the load-carrying capacity of truss system. They 

applied a multi-segment continuous cable system to truss system with the logic of 

post-tensioning. A monolithic cable was used for those systems, because it was 

applied to an existing structural system. Thus, post-tensioning should be applied by 

one jacking operation. They made a parametric study on this system. Many types of 

cable configurations were given in the study. One example of those is in Figure 1.10. 

However, cable is assumed as a linear element and interchange on roller supports is 

not considered.  

 

 

Figure 1.10 Post-tensioned truss bridge [18] 
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Cable has two segments and/or the structural system is symmetric or cable is 

assumed as linear element in almost all structural systems mentioned above. 

Although there are various types of solutions and techniques for cable analysis, these 

could only give a solution for single-segment cable or partially for multi-segment 

continuous cable. 
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CHAPTER 2 

 

2. SINGLE-SEGMENT CABLE 

 

2.1 General 

Cables are highly nonlinear in their response under applied transverse loading. The 

nonlinearity is mainly due to interaction between its deformed geometry and the 

resulting stresses in its final equilibrium state. Early researchers have tried to analyse 

cables by adjusting the mechanical properties after some simplifying assumptions 

and completely ignoring the geometric component of nonlinearity. However, the 

resulting Equivalent Modulus Approach was, naturally, far from yielding satisfactory 

results. Correct solutions were obtained by the Method of Imaginary Reactions [10] 

and nonlinear finite element analysis using Newton-Raphson iterations. These 

analysis techniques are the extension of the Theory of Consistent Deformations. 

Although they give approximate solutions, these techniques use no simplifying 

assumption and result in the final correct equilibrium state of the cable. Newton-

Raphson method is used in this study. Formulas related to this technique are briefly 

explained below. 

2.2 Cable Equilibrium Equations 

A cable, having total unstressed length UL  and stressed length SL , is supported 

between points A and B. The view of the cable in space is shown in Figure 2.1. 

As illustrated in Figure 2.1, AP
�

 and BP
�

 are the position vectors of cable supports. Let 

M  be any point on the cable defined by the following parameters;  

ul ; unstressed arc length form point A  to M . 

sl ; stressed arc length from point A  to M . 
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BP
�

AP
�

( )uP l
�

( ) ( )u uP l dP l+
� �

udl

ul

A B

M

X

Y

Z

 

Figure 2.1 Configuration of single-segment cable in space. 

 

The unit tangent along the cable, ˆ( )ulτ , can be defined as; 

( )
ˆ( ) u

u

s

dP l
l

dl
τ =

�

         (2.1a)
 

or 

ˆ( ) ( )u u sdP l l dlτ= −
�

        (2.1b) 

The unknowns in Eq. 2.1b are; ˆ( )ulτ  and the differential stressed arc length of the 

cable sdl . 

The unit tangent along the cable can also be defined as 

( )
ˆ( )

( )
u

u

u

R l
l

T l
τ =

�

         (2.2)
 

where ( )uR l
�

 is reaction vector at ul  , T(lu) is tension at ul  and udl is the original 

differential length of the cable.  

So, the elongation of the differential element is 
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u s ul dl dl∆ = −          (2.3) 

The strain of this element is the elongation divided by the original length. 

( ) s u
u

u

dl dl
l

dl
ε

−
=          (2.4) 

From Eq. 2.4 the stressed length of the element can be written as
 

[ ]1 ( )s u udl l dlε= +         (2.5)
 

Substituting Eq. 2.5 into Eq. 2.1b 

[ ]ˆ( ) ( ) 1 ( )u u u udP l l l dlτ ε= − +
�

       (2.6a) 

[ ]( )
ˆ( ) 1 ( )u

u u

u

dP l
l l

dl
τ ε= − +

�

       (2.6b) 

Finally, writing Eq. 2.6b in integral form
 

[ ]
0

( )
( ) (0) 1 ( )

( )

ul

u u

R x
P l P l dx

T x
ε= − +∫

�
� �

      (2.7a) 

Since (0) AP P=
� �

, 

[ ]
0

( )
( ) 1 ( )

( )

ul

u A u

R x
P l P l dx

T x
ε= − +∫

�
� �

      (2.7b) 

Consequently, AR
�

, which is equal to 0( )R l
�

, is the only unknown in this equation and 

it can be regarded as the initial condition of the problem. 

2.3 Stiffness Matrix 

If a virtual displacement, BP∆
�

, is given to support B, there will be a change in the 

reactions at the other support, AR∆
�

. The relation between these parameters are 

explained by the stiffness matrix, [ ]S . 
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[ ]A BR S P∆ = ∆
� �

         (2.8) 

The stiffness matrix is determined by using the variational approach as follows: 

From variation of Eq. 2.7b, BP∆
�

 is determined. 

[ ]
0

( )
1 ( )

( )

UL

u
B u u

u

R l
P l dl

T l
ε

 
∆ = − ∆ + 

 
∫

�
�

 

       
0

1 ( ) 1 ( )
( ) ( )

( ) ( )

UL

u u
u u u

u u

l l
R l R l dl

T l T l

ε ε + +
= − ∆ + ∆ 

 
∫

� �
    (2.9) 

Unknowns are ( )uT l , ( )uR l∆
�

 and 
1 ( )

( )
u

u

l

T l

ε+
∆  in Eq. 2.9. 

[ ] [ ]
2

1 ( ) ( ) 1 ( ) ( )1 ( )

( ) ( )
u u u uu

u u

l T l l T ll

T l T l

ε εε ∆ + − + ∆+
∆ =  

                
[ ]
2

( ) ( ) 1 ( ) ( )

( )
u u u u

u

l T l l T l

T l

ε ε∆ − + ∆
=      (2.10) 

Thus, unknowns are ( )uT l , ( )uT l∆ , ( )uR l∆
�

, ( )ulε∆  in Eq. 2.9. 

Tension in cable is 

1/ 2

( ) ( ) ( )
u u u

T l R l R l =  
� �
i        (2.11) 

In variational form, ( )uT l∆  

1/ 2

( ) ( ) ( )1
( )

2 ( ) ( )

u u u

u

u u

R l R l R l
T l

R l R l

 ∆ + ∆ ∆ =
  

� � �
i
� �
i

      (2.12) 

Or 

( ) ( )
( )

( )
u u

u

u

R l R l
T l

T l

∆
∆ =

� �
i

       (2.13) 
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A

M M

AR
�

( )uR l−
�

( )uR l
�

W
�

 

Figure 2.2 Reactions on cable 

 

Many external forces e.g. wind force, could be applied to the cable. If no external 

load is applied, there will be only self-weight of the cable. 

( )ext u uF l Wl=
� �

         (2.14) 

From the free body diagram of cable element shown in Figure 2.2, reaction at point 

M is; 

( ) ( )u A ext uR l R F l= +
� � �

        (2.15a) 

For the whole cable 

( ) ( )U A ext UR L R F L= +
� � �

       (2.15b) 

( )B UR R L=
� �

         (2.16) 

Substituting Eq. 2.16 into Eq. 2.15b 

( )B A ext uR R F L= +
� � �

        (2.17) 

From variation of Eq. 2.17 

( )u A BR l R R∆ = ∆ = ∆
� � �

        (2.18) 
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The strain can also be expressed by the stress-strain relationship as
 

( )
( ) u
u

T l
l

EA
ε υ=         (2.19)

 

( )uT l  is the tension at M and E , A  and υ  are material properties of cable. 

The variational form of strain, ( )ulε∆ , from Eq. 2.4 

1
( ) ( )

( ) u u
u

T l T l
l

EA EA

υ

ε υ
−
∆ ∆ =   

       (2.20a) 

           
2

( ) ( )
( )

( )
u u

u

u

R l R l
l

T l
υε

∆
=

� �
i

       (2.20b) 

So, substituting Eq. 2.11 Eq. 2.13 and Eq. 2.20b into Eq. 2.10 

[ ]2

2

( ) ( ) ( ) ( )
( ) ( ) 1 ( )

1 ( ) ( ) ( )

( ) ( )

u u u u
u u u

u u u

u u

R l R l R l R l
l T l l

l T l T l

T l T l

υε ε
ε

∆ ∆
− +

 +
∆ = 
 

� � � �
i i

 

                       
( )

3

1 1 ( )
( ) ( )

( )
u

u u

u

l
R l R l

T l

υ ε+ −
 = − ∆ 
� �
i     (2.21) 

Finally, substituting Eq. 2.18 and Eq. 2.21 into Eq. 2.9 

3
0

1 ( ) 1 (1 ) ( )
( ) ( )

( ) ( )

UL

u u
B A u A u u

u u

l l
P R R l R R l dl

T l T l

ε υ ε + + −  ∆ = − ∆ − ∆    
∫

� � � � �
i   (2.22) 

In global coordinate directions Eq. 2.22 will be 

1 2 3 4

0

ˆ ˆ
UL

BX AX uP i C R i C C C dl ∆ = − ∆ − ∫       (2.23a) 

1 2 3 4

0

ˆ ˆ
UL

BY AY uP j C R j C C C dl ∆ = − ∆ − ∫       (2.23b) 
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1 2 3 4

0

ˆ ˆ
UL

BZ AZ uP k C R k C C C dl ∆ = − ∆ − ∫       (2.23c) 

Where 

1

1 ( )

( )
u

u

l
C

T l

ε +
=  
 

 

2 3

1 (1 ) ( )

( )
u

u

l
C

T l

υ ε + −
=  
 

  

[ ]3 ( ) ( ) ( )X u AX Y u AY Z u AZC R l R R l R R l R= ∆ + ∆ + ∆   

4
ˆˆ ˆ( ) ( ) ( )X u Y u Z uC R l i R l j R l k = + +   

Writing Eq. 2.23a,b,c in the form of Eq. 2.8 

[ ] 1
BX AX

BY AY

BZ AZ

P R

P S R

P R

−

∆ ∆   
   
∆ = ∆   

   ∆ ∆   

       (2.24) 

Where the stiffness matrix is 

[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

2
1 2 2 2

0 0 0

2
2 1 2 2

0 0 0

2
2 2 1 2

0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

e e e

e e e

e e

L L L

X u u X u Y u u X u Z u u

L L L

Y u X u u Y u u Y u Z u u

L L

Z u X u u Z u Y u u Z u

C C R l dl C R l R l dl C R l R l dl

S C R l R l dl C C R l dl C R l R l dl

C R l R l dl C R l R l dl C C R l d

 − − − − 

 = − − − − 

 − − − − 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫
0

eL

ul

 
 
 
 
 
 
 
 
 
 

∫

 

Inverse of stiffness matrix is the flexibility matrix, [ ] [ ] 1
F S

−
= .  
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So, Eq. 2.8 can be rewritten as 

[ ] 1

B A
P S R

−
∆ = ∆         (2.25a) 

or 

[ ]B AP F R∆ = ∆         (2.25b) 

2.4 Newton-Raphson Method 

The Newton-Raphson method is an iterative technique for solving equations 

numerically. The solution procedure of this method is based on making linear 

approximations to find a solution for nonlinear systems or equations in each step. It 

is aimed to achieve the target linearly. Nevertheless, solutions are always 

approximate. Newton-Raphson method is an appropriate method to find a solution 

for cable positioning due to its nonlinear behavior. 

It will be seen that the position of cable is a function of AR
�

 from Eq. 2.7b. However, 

the reaction at support A  for the solution case, ,A solR
�

, is not know. Newton-Raphson 

method is used to find that reaction. A linear approximation is made for each 

iteration to reach the solution. 

 

The step-by-step procedure to find the unknown support reactions of cable is 

explained below and described schematically in Figure 2.3 

1. Make an initial approximation for the reactions at support A , [ ]i
AR
�

 ,where [i] 

shows the iteration number which is 0 for the initial guess. 

2. Determine the cable configuration by Eq. 2.7b. The end of the cable position 

is [ ] ( )i

UP L
�

. Also calculate the stiffness matrix [ ]i
S 
  . 

3. Determine the misclose vector and the error as 

[ ] [ ]( )i i

B UM P P L= −
� �

       (2.27) 
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[ ] [ ]i i
E M=

�
        (2.28) 

4. Calculate a better approximation for the support reactions at A. 

[ ] [ ] [ ] [ ]1
1i i i i

A A
R R S M

−+  = +  
�

      (2.29) 

5. Go to step 2 and continue iterations until [ ]i
E ERR≤ . where ERR  is the target 

error for approximate result. 

 

It can be easily comprehended that initial guess for the support reactions is an 

important step. A convenient initial support reaction will decrease the iteration 

number considerably. 

[0]
AR
�

[1]
AR
�

[2]
AR
�

[ ]actual

AR
� AR

�

( )SP L
�

[0]( )SP L
�

[1]( )SP L
�

[2]( )SP L
� BP

�

[0]M
�

[1]M
�

[2]M
�

[0]S
�

[1]S
�

 

Figure 2.3 Newton Raphson Method in schematic form for single segment cable. 
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CHAPTER 3 

 

3. MULTI-SEGMENT CONTINUOUS CABLE 

 

3.1 General 

Similar to continuous beams, multi-segment continuous cables are monolithic cables 

with multiple intermediate supports. It is assumed that the intermediate supports are 

also stationary but the cable is free to slide over them without facing any frictional 

resistance. There is a continuous interaction between the segments and a continuous 

load path along the cable when it is loaded. As a result, the final equilibrium 

configuration and the resulting stresses under loading are controlled by the behavior 

of each segment. Therefore, the solution algorithm of previous chapter for a single 

cable segment can also be used iteratively for the analysis of multi-segment 

continuous cables. For this purpose, the cable segments are divided into a number of 

elements and each segment is analyzed as an independent single-segment cable. The 

stress continuity requirement between the adjacent cable segments is enforced in 

each iteration until complete equilibrium is reached. The equilibrium state is reached 

when the stress discontinuity between the adjacent segments is less than a preset 

small value. 

The only unknowns for the multi-segment continuous cable are the unstressed 

lengths of each cable segment between the successive supports. In general, a 

predictive/corrective iterative algorithm is employed for the nonlinear analysis. In 

each iteration, a predictive solution is obtained based on the initially assumed 

distribution of the unstressed length of cable between its segments. The unbalanced 

reactions or cable tension at each internal support are then used in the corrective step 

for a corrected distribution of cable length among the segments. If the reaction or 

cable tension differences are reasonably small, the equilibrium state is said to be 

reached for the given segment length distribution. Otherwise, prediction / correction 
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iterations are continued. Two alternative schemes are employed in this study for the 

correction iterations. These are explained below. 

3.2 Direct stiffness approach 

A cable having an unstressed length 
U
L and stressed length 

S
L  is suspended between 

two fixed supports at its ends and supported by a number of stationary roller supports 

in between, as illustrated in Figure 3.1 

In the equilibrium state of the cable, the stressed and unstressed lengths of its ith 

segment are denoted by ( )s i
l  and ( )u i

l , respectively. 

 

 

 

 

Figure 3.1 Configuration of multi-segment continuous cable. 

 

Therefore, 

( )
1

n

U u i

i

L l
=

=∑          (3.1a) 

( )
1

n

S s i

i

L l
=

=∑          (3.1b) 

where; “n” is the number of segments in the continuous cable system.  

In general, a predictive solution based on the initially assumed distribution of the 

total unstressed cable length between its segments leads to some unbalanced 

reactions or cable tensions at internal supports unless the system is in complete 

(4)ul  
(3)ul  (2)ul  

(1)ul  

1 
2 

3 
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equilibrium. The situation is shown in Figure 3.2 for support i where the unbalanced 

reactions and cable tensions are 

( ) ( 1) ( )i F i L iR R R+∆ = −
� � �

        (3.2a)  

( ) ( 1) ( )i F i L iT R R+∆ = −
� �

        (3.2b) 

in which  

( 1)F iR +

�
 is the cable tension vector at start node of segment i+1 

( )L iR
�

 is the cable tension vector at end node of segment i 

( )iR∆
�

 is the unbalanced reaction vector at support i 

( )iT∆  is the unbalanced cable tension at junction of cable segments (support i) 

 

 

 

Figure 3.2 Reactions (cable tensions) at support i. 

 

However, there is always a set of unstressed length adjustments { }UL∆  between the 

neighboring segments which will bring the cable system into complete equilibrium. 

Each of the unstressed length adjustment, ( )U iL∆ , is such that at any support i where 

the cable segments i and i+1 are attached 

( ) ( )
segment

U i U iL L∆ = −∆         (3.3a) 

( 1) ( )
segment

U i U iL L+∆ = ∆         (3.3b) 

( ) ( 1) 0segment segment

U i U iL L +∆ + ∆ =        (3.3c) 

( )L iR
�

 

( 1)F iR +

�
i 
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in which ( )
segment

U iL∆  and ( 1)
segment

U iL +∆  are the changes in unstressed lengths of segments i 

and i+1, respectively, and ( )U iL∆  is the adjustment applied to cable segments at 

support i. 

In the course of iterative solution process for the equilibrium state of cable system, 

there is always a need for some correction in the currently assumed distribution of 

total cable length among its segments. This is necessary to move closer to the 

equilibrium state by minimizing the unbalanced reactions between cable segments. It 

can be achieved, if a quasi-linear behavior of the system is assumed at the end of 

each predictive solution step. With this assumption, we can set up a relationship 

between the anticipated unstressed length adjustment ( )U jLδ  at any support j and the 

corresponding change it would create in the unbalanced reactions at support i. This 

change in unbalanced reactions, ( )iTδ , can be expressed as follows 

( ) ( )i ij U jT K Lδ δ= ⋅         (3.7a) 

or in a matrix form for adjustments at all internal supports as 

{ } [ ] { }UT K Lδ δ= ⋅         (3.7b) 

where  

 { }

(1)

(2)

( )n

T

T
T

T

δ
δ

δ

δ

 
 
 

=  
 
  

⋮
 

 { }

(1)

(2)

( )

U

U

U

U n

L

L
L

L

δ
δ

δ

δ

 
 
 

=  
 
  

⋮
 

11 1

1

n

n nn

K K

K

K K

 
 =  
  

⋯

⋮ ⋱ ⋮

⋯
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and the coefficient matrix [ ]K  can be regarded as a stiffness matrix with each term 

ijK  giving the change in unbalanced reactions, ( )iTδ , at support i due to a change in 

unstressed length ( )U jLδ  at support j between cable segments j and j+1. 

The tangential stiffness matrix [ ]K  in Eq. 3.7b can be constructed column-by-

column by adjusting the unstressed lengths of cable segments at support j by a small 

amount Lδ  and calculating the resulting changes in the unbalanced reactions at all 

support locations from the reanalysis of the cable system with the changed segment 

lengths at support j. The jth column of [ ]K  is then obtained as 

( ) /ij iK T Lδ δ= ∆  ( 1, 2,..., )i n=       (3.8) 

In the correction step, the objective is to find the required amount of length 

adjustment at each support to eliminate the current values of unbalanced reactions at 

supports. This is obtained from Eq. 3.7b as 

{ } [ ] { } [ ] { }1

UL K T F T
−

∆ = ⋅ ∆ = ⋅ ∆       (3.9) 

where the matrix [ ]F  can be regarded as a kind of flexibility matrix giving the 

changes in cable segment lengths for a set of axial forces applied along the cable at 

internal supports (segment junctions). If the cable behavior were linear as assumed, 

the length adjustments { }UL∆  of Eq. 3.9 would eliminate the unbalanced reactions at 

internal supports and bring the cable system into true equilibrium. However, in 

general, this will not be the case since the cable behavior is nonlinear and some 

additional iterations will be needed before reaching the final equilibrium. Therefore, 

Newton-Raphson iterations are continued in this predictive/corrective algorithm to 

reach the final equilibrium state. 

3.3 Relaxation (tension distribution) method 

A relaxation approach similar to moment distribution method commonly used for the 

analysis of continuous beams can also be used for the nonlinear analysis of multi-

segment continuous cables. This is a special form of the stiffness method described 
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above. The basic difference is in the way the cable segment lengths are adjusted for a 

better approximation to equilibrium state. In the direct stiffness method, the influence 

of segment length adjustment at a joint on every other joint is calculated first. Hence, 

a coupled coefficient matrix is constructed for length adjustments and the adjustment 

is applied at all joints simultaneously. Whereas, in the tension distribution approach, 

the length adjustments are introduced at each internal support, in turn, while keeping 

all other segment lengths as they are. Therefore, in the corrective stage following a 

predictive solution, an influence (stiffness) coefficient is calculated at a selected joint 

first by introducing a virtual adjustment at the joint and the actual amount of 

adjustment required to eliminate the unbalanced reaction at the joint is determined 

based on this information. The procedure is repeated cyclically for all internal joints 

until an equilibrium state is reached where the unbalanced reactions at internal 

supports become negligibly small.  

Cable system is analyzed joint by joint at internal supports where cable segments 

meet. Therefore, the set of equations in Eq. 3.9 reduces to a single equation as; 

UL f T∆ = ⋅∆          (3.10) 

where the unbalanced cable tension at the junction, T∆ , is as defined in Eq.3.2b. and  

the joint flexibility coefficient f  can be found from Eq. 3.8 as 

/f L Tδ δ= ∆          (3.11) 

Eq. 3.10 is used for each roller support to calculate the require amount of 

adjustments. As explained in direct stiffness approach, the adjustments applied will 

not yield the solution due to nonlinear characteristic of the cable. Therefore, Newton-

Raphson iterations are still needed to reach the final equilibrium state of the system. 

3.4 Newton-Raphson iterations 

The unknowns for the multi-segment continuous cables are the unstressed lengths for 

the segments. Therefore, equilibrium state can be reached by adjusting the length of 

each segment so that the unbalanced reactions at internal joints (supports) are 

minimized. 
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Assuming some initial lengths [0]
( )u il  for each segment turns the multi-segment 

continuous cable into a set of independent single-segment cables with stationary end 

points. Newton-Raphson iterations are performed by assuming a linear behavior after 

each cycle of Direct Stiffness or Tension Distribution calculations. This is continued 

until an equilibrium state of cable segments is reached at which the unbalanced 

reactions at all segment junctions are negligibly small. 

The procedure is explained schematically in Figure 3.3 and its steps can be 

summarized as follows. 

 Assume a set of initial values, [ ]
( )
m

u il , for the unstressed length of cable segments 

where m is the iteration number starting with m=0 for the first iteration. 

 

1. For a predictive solution, analyze each cable segment as an independent 

structure and determine the error or the unbalanced reaction (cable tension) at 

every junction i as 

 
[ ] [ ]
( ) ( )
m m

i iE T= ∆        (3.12)  

 

2. Stop Newton-Raphson iterations if the unbalanced cable tension of Eq. 3.12 

at all junctions is less than a preset error tolerance, ERR. Otherwise, continue 

with the following correction step. 

 

3. Determine the amount of length adjustment, ( )U iL∆ , to be applied at each 

junction by using either the Direct Stiffness or the Tension Distribution 

approach. and apply the segment length corrections as.  

 

[ 1] [ ]
( ) ( ) ( )
m m

u i u i U il l L+ = ∆∓       (3.13a) 

[ 1] [ ]
( ) ( ) ( )
m m segment

u i u i U il l L+ = + ∆       (3.13b) 

 

and go to Step 2.  
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Plus or minus signs in Eq. 3.13a imply that if the unstressed length of cable 

segment i is increased, that of the next segment i+1 is decreased by the same 

amount. This way, the total unstressed length of cable system remains 

unchanged. 

 

Note that choosing the starting values for the unstressed length of each segment is a 

crucial step. A good distribution of the cable length among its segments will decrease 

the number of iteration considerably. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Newton Raphson method in schematic form for multi segment continuous 

cable. 
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3.5 Comparison of Direct Stiffness and Relaxation Approaches. 

In essence, both procedures described above can be used for the solution of multi-

segment continuous cables. They lead to an equilibrium state after a number of 

iterations. However, as far as their effectiveness is concerned, there are certain 

circumstances under which one of them is more effective than the other. 

Tension distribution method is a discrete calculation method. A correction is applied 

though a length adjustment at a joint to reduce the reaction imbalance at the relevant 

support. The adjacent equilibrium states of cable segments are then recalculated. 

After repeating similar length adjustments and calculations at all other internal 

support locations, one round of calculations will be completed. At this point, the 

cable system will be closer to its final equilibrium state. However, in general, the 

cable system as a whole will not be in equilibrium since the correction applied at one 

joint will upset the possible equilibrium state at the far ends of the cable segments 

involved. Therefore, this predictive/corrective algorithm is applied cyclically at all 

joints one by one until convergence is achieved at all support locations. On the other 

hand, length adjustments in the correction phase are all applied simultaneously in the 

Direct Stiffness approach. Then, all segments are reanalyzed and the convergence is 

checked in the predictive phase for the next iteration. 

Normally, if the length of a tight cable is decreased for a given segment, the end 

reactions will increase. However if the length of a very slack cable is decreased, the 

end reactions may also decrease. A cable having a changing length is supported 

between two fixed supports will have minimum support reactions for a specific 

length and the corresponding degree of slackness. The term very slack cable refers to 

a cable with a degree of slackness beyond this limit. Therefore, based on this limit 

state and for the purpose of analysis, a cable can be classified as either a tight or 

slack cable or a very slack cable. These explanations could be easily seen in Figure 

3.4. Curvature in Figure 3.4 is obtained for a cable having 0.05m diameter supported 

at (0,0,0), (0,50,0) coordinates. 
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Figure 3.4 Typical slackness curve of a cable 

 

Whether the Direct Stiffness or the Tension Distribution approach is used, a common 

difficulty encountered in the analysis of slack cable systems is the overshooting 

problem. The problem comes up when a cable segment turns into very slack cable 

condition or just on the limit state in any iteration phase. In this case, the predicted 

amount of length adjustment to be applied on these segments may become 

excessively high since the calculations are based on the joint stiffnesses and 

assumption of quasi-linear behavior of cable. This leads to oscillations between very 

large corrections in either direction and finally divergence of the 

prediction/correction iterations. In order to avoid the occurrence of such situations a 

damping ratio of 0.5 is used in the correction step and half of the predicted 

corrections are applied at the joints. 

Although this damping ratio decreases the occurrence of those extreme situations, it 

is still possible to see an extreme situation for some cable systems. So, corrections 

should be checked  in each iteration  not to create a cable with a negative length. 

Corrections are checked and revised for each joint in Tension Distribution method. 

However, this revision is not possible for Direct Stiffness method, because Direct 

Stiffness method finds corrections for the whole system. Therefore, if a problem is 
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encountered at a joint, revision of that joint correction should be distributed to all 

segments. However, this could lead to problems at other joints and so on. 

Stiffness matrix of the system will not be suitable if any one of the segments with the 

highest degree of slackness turns into very slack cable state or around the limit state 

in any iteration phase of calculation. Therefore stiffness method, which makes 

calculations with the stiffness matrix of the whole system, is not appropriate for 

systems which can have very slack cable segments. Tension distribution method is 

better suited for such cable systems. 

At the onset of analysis there are two options to choose as a solution procedure. One 

choice is to start with the Direct Stiffness approach and switch to Tension 

Distribution if a problem with the stiffness matrix and so corrections is detected. 

Another choice is to decide on the degree of slackness of the cable system first 

before proceeding with the initial cycle of corrections and continue accordingly. If 

preliminary calculations reveal that the degree of slackness of multi-segment 

continuous cable is less than a preset limit, the Direct Stiffness approach is utilized. 

Otherwise, the subsequent iterations are continued with the Tension Distribution 

approach.  

Determination of the degree of slackness is not possible for multi segment 

continuous cables although it is possible for single segment cables. Because 

corrections and/or cable distribution to segments is not known in any iteration as 

described above. In the software developed  in this study for the analysis of multi-

segment continuous cable systems, CABPOS, the following approach is taken. Given 

the total unstressed length of cable and the location of the support points, the total 

length is distributed among the segments in proportion to their spans. An unstressed 

length higher than 10% of the span is used as a limiting value for system to regard it 

as a very slack cable This limit for the classification of a cable system as very slack 

for the purpose of analysis appears to be a reasonable and safe value since no 

difficulties are encountered with this assumed limit in the various sample analyses 

carried out for verification. 
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The algorithm explained above for the solution of multi-segment continuous cables is 

implemented in a FORTRAN program called CABPOS and used for the analysis of a 

set of multi-segment continuous cable systems for verification. 
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CHAPTER 4 

 

4. VERIFICATION FOR SINGLE-SEGMENT CABLES 

 

4.1 General 

Multi-segment continuous cable analysis algorithm is first used for the solution of 

some single-segment cables for verification. The results obtained by the program 

CABPOS are compared with those obtained by the widely used commercial finite 

element program ANSYS [19]. The input data for ANSYS program of the sample 

single-segment cable system is given in Appendix B1. The cable is analyzed in five 

different configurations in space using a range of mesh densities. The final support 

reactions and the cable geometry are used for comparison. 

A numerical iterative algorithm is proposed for the solution of cable systems. 

Consequently, the predicted solution will only be an approximation to the exact 

equilibrium state. Therefore, the convergence characteristic of the algorithm as well 

as its ability to produce the final equilibrium state accurately is of concern. The 

convergence characteristic of the algorithm is verified by changing the cable 

configuration in space and its degree of slackness. The accuracy of the predicted 

results is checked by the mesh density used for the cable. 

4.2 Description of the Problem 

• Material properties of cable 

Density of the cable   : 7.85E3 kg/m3 

Modulus of elasticity   : 200E9 N/m 

Thermal expansion coefficient : 1.2E-5 / ºC 
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• Physical properties of cable ; 

Total cable length   : 18 m 

Diameter of cable   : 0.05 m 

• Environmental properties 

Temperature change   : +40 ºC 

• Program constraint 

Precision    : 1E-6 m (ERR , the target error) 

There are five different cable configurations. One of them is tight and the others are 

slack cables. Support locations are given in Table 4.1. One end of cable is supported 

at point A and other end is supported at point B. Each cable is solved for a range of 

mesh densities of 50, 100, 250, 500, 1000 and 10000 elements. 

 

Table 4.1 Support locations 

Supports 
X coordinate 

(m) 
Y coordinate 

(m) 
Z coordinate 

(m) 
A 0.0 0.0 0.0 

B1 10.0 0.0 10.0 

B2 9.0 3.0 11.0 

B3 11.0 6.0 9.0 

B4 11.0 9.0 11.0 

B5 11.0 9.1 11.0 
 

4.3 Solution by CABPOS 

Data related with cable supported at A and B3 will be given in this section. Other 

solutions will not be shown. 

Final coordinates, length and reactions of cable A-B3 are shown in Table 4.2, Table 

4.3, Table 4.4, Table 4.5, Table 4.6 and Table 4.7.  
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Table 4.2 Data for cable A-B3 solved with 50 elements. 

Number of finite elements 50 
Supports (m) A(0,0,0) B3(11,6,9) 

X Coordinate (m) 0 10.9999994 
Y Coordinate (m) 0 6.0000003 
Z Coordinate (m) 0 8.9999996 

Reactions (N) 1269.62 2216.84 
Final Cable Length (m) 18.0087 

 

Table 4.3 Data for cable A-B3 solved with 100 elements. 

Number of finite elements 100 
Supports (m) A(0,0,0) B3(11,6,9) 

X Coordinate (m) 0 10.9999992 
Y Coordinate (m) 0 6.0000003 
Z Coordinate (m) 0 8.9999993 

Reactions (N) 1277.81 2204.86 
Final Cable Length (m) 18.0087 

 

Table 4.4 Data for cable A-B3 solved with 250 elements. 

Number of finite elements 250 
Supports (m) A(0,0,0) B3(11,6,9) 

X Coordinate (m) 0 10.9999991 
Y Coordinate (m) 0 6.0000003 
Z Coordinate (m) 0 8.9999993 

Reactions (N) 1282.75 2197.66 
Final Cable Length (m) 18.0087 

 

Table 4.5 Data for cable A-B3 solved with 500 elements. 

Number of finite elements 500 
Supports (m) A(0,0,0) B3(11,6,9) 

X Coordinate (m) 0 10.9999991 
Y Coordinate (m) 0 6.0000003 
Z Coordinate (m) 0 8.9999993 

Reactions (N) 1284.39 2195.25 
Final Cable Length (m) 18.0087 
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Table 4.6 Data for cable A-B3 solved with 1000 elements. 

Number of finite elements 1000 
Supports (m) A(0,0,0) B3(11,6,9) 

X Coordinate (m) 0 10.9999991 
Y Coordinate (m) 0 6.0000003 
Z Coordinate (m) 0 8.9999993 

Reactions (N) 1285.22 2194.05 
Final Cable Length (m) 18.0087 

 

Table 4.7 Data for cable A-B3 solved with 10000 elements. 

Number of finite elements 10000 
Supports (m) A(0,0,0) B3(11,6,9) 

X Coordinate (m) 0 10.9999991 
Y Coordinate (m) 0 6.0000003 
Z Coordinate (m) 0 8.9999992 

Reactions (N) 1285.97 2192.96 
Final Cable Length (m) 18.0087 

 

The reaction data of cable A-B3 can be seen in Table 4.8. 

 

Table 4.8 Support reactions for A-B3 given by CABPOS. 

A-B3 
Number of 
elements 

First Support 
Reaction (N) 

Second Support 
Reaction (N) 

50 1269,62 2216,84 
100 1277,81 2204,86 
250 1282,75 2197,66 
500 1284,40 2195,53 
1000 1285,22 2194,05 
10000 1285,97 2192,96 

 

The convergence of the solution of cable A-B3 for different number of elements is 

shown in Figure 4.1 and Figure 4.2. 
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Figure 4.1 Reactions at first support given by CABPOS. 

 

 

 

Figure 4.2 Reactions at second support given by CABPOS. 
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It is seen in above figures that, reactions at supports converge to a value.  There is a 

0.6% error between 50 and 100 element solution. However, between 1000 and 10000 

element solution, 0.06% error occurs. So, if this trend goes on, there would probably 

be a 0.005% error for 100000 elements. Although it will converge a little to the real 

value for reaction, this solution does not change reaction a lot. 

4.4 Solution by ANSYS 

ANSYS solve the problem as continuum between the end supports. Therefore, the 

cable ends are always coincident with the supports. 

Support reactions of cable A-B3 for different number of elements are given in Table 

4.9  

 

Table 4.9 Support reactions for cable A-B3 given by ANSYS. 

A-B3 
Number of 
Elements 

First Support 
Reaction (N) 

Second Support 
Reaction (N) 

50 1285,97 2192,70 
100 1286,03 2192,84 
250 1286,04 2192,85 
500 1286,05 2192,86 
1000 1286,05 2192,86 
10000 1286,05 2192,86 

 

The convergence of the solution for different number of elements can be seen in 

Figure 4.3 and Figure 4.4. 
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Figure 4.3 Reactions at first support given by ANSYS. 

 

 

 

Figure 4.4 Reactions at second support given by ANSYS. 
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ANSYS gives approximately the correct results with a reasonable number of 

elements. Slope of the convergence curve is zero from 1000 to 10000 elements, as 

shown above. Zero slope means that there is no need to further refine the element 

mesh. 

4.5 Comparison of results 

Comparison of solutions is made on reaction difference as said above. The 

comparison could be made in a lot of different ways. However, stresses have much 

importance for structural systems. 

Convenient number of elements should be selected for each problem. It could be 

made in a way that changing mesh density and comparing the results gotten from 

each. 10000 elements is used for this problem, because, there won’t be much change 

in result for further increase in finite element number. 

Reaction results of each five configuration having 10000 elements are sorted in 

Table 4.10. 

 

Table 4.10 Reaction results for different configurations. 

10000 elements 
First Support 
Reaction (N) 

Second Support 
Reaction (N) 

B1 
CABPOS 1613,27 1613,50 
ANSYS 1613,42 1613,42 

B2 
CABPOS 1416,98 1870,60 
ANSYS 1417,06 1870,50 

B3 
CABPOS 1285,97 2192,96 
ANSYS 1286,05 2192,86 

B4 
CABPOS 9993,01 11353,20 
ANSYS 9993,24 11353,40 

B5 
CABPOS 302203,43 303577,66 
ANSYS 302371,56 303744,94 
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Related error of percentages are tabulated in Table 4.11. 

 

Table 4.11 Error of percentages for single-segment cable solutions. 

Configurations First support error Second support error 
Maximum 

error 

A-B1 0,010% 0,005% 0,010% 

A-B2 0,006% 0,006% 0,006% 

A-B3 0,007% 0,005% 0,007% 

A-B4 0,002% 0,002% 0,002% 

A-B5 0,056% 0,055% 0,056% 

  

It could be easily seen that there is very little difference between the solutions of 

CABPOS and ANSYS. Average of maximum error of this problem is approximately 

0.02%. It is known that both programs made errors related with finite element 

number and rounding off. Another known matter is that structural systems are not 

exquisite. So, 0.02% error is enough approximation for this type of problems.  

Profile of cable A-B3 is given in Error! Reference source not found. by the 

coordinates obtained from both programs CABPOS and ANSYS. 
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Figure 4.5 Profile of cable A-B3
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CHAPTER 5 

 

5. VERIFICATION FOR MULTI-SEGMENT CONTINUOUS CABLES 

 

5.1 General 

The solution methods for multi-segment continuous cable are explained in Chapter 3. 

According to these methods, if single-segment cable solution of CABPOS is correct 

or approximately correct, the multi-segment continuous cable solution can be 

verified by solving cable segment by segment. Reactions of each segment could be 

found by single-segment cable solution of CABPOS with the lengths found from 

multi-segment solution of CABPOS. Thus, reactions of successive segments can be 

compared whether they are same. Although this technique could be called a valid  

verification, ANSYS is used for verification.  

Problem is solved in ANSYS by using contact elements. These contact elements 

have zero tangent stiffness. Thus, these contacts could be classified as roller 

supports. Monolithic cable is modeled as fixed supported at both ends and roller 

supports are defined between these fixed supports. Different cable configurations are 

obtained by displacing the one end of cable. Code of the program written in ANSYS 

is given on Appendix B2. 

The verification of multi-segment continuous cable solution is made on support 

reactions as made in single-segment verification. All contact reactions and fixed 

support reactions are compared. 

5.2 Description of Problem 

Cable having 0.05 m diameter was used in single-segment solution verification. 

Cable is assumed 0.02 m diameter having an ice cover through the cable for multi-

segment continuous cable verification. The ice cover has a 0.05 diameter from the 
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center of the cable. So, this ice cover gives an extra load. This extra load is applied 

by increasing density of cable which corresponds to 4 times density of steel. 

• Material properties of cable ; 

Weight of the cable   : 4*7.85E3 kg/m3 (including ice) 

Modulus of elasticity   : 200E9 N/m 

Thermal expansion coefficient : 1.2E-5 / ºC 

• Physical properties of cable ; 

Total cable length   : 76.2 m 

Diameter of cable   : 0.02 m 

• Environmental properties ; 

Thermal change   : +40 ºC 

• Program constraint ; 

Precision    : 1E-6 m (ERR , the target error.) 

There are 3 different cable configurations. One of them is tight and others are slack 

cables. These different cable configurations are obtained by giving displacement to 

one end of the cable. Coordinates of supports are shown in Table 5.1  

Solutions of three different cable configurations are made for different number of 

finite elements which are 100, 500, 1000 and 5000. Data related with cable supported 

at F1 and F2c will be shown on this section. 
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Table 5.1 Coordinates of supports. 

Supports 
Coordinates (m) 

X Y Z 

F1 0 0 0 

R1 10 -1 0 

R2 20 -3 0 

R3 30 -6 0 

R4 40 -10 0 

R5 50 -15 0 

R6 60 -21 0 

F2a 70 -21 0 

F2b 70 -27 0 

F2c 70 -28 0 
 

5.3 Solution of CABPOS 

The reaction data of cable F1- F2c solved by CABPOS can be seen in Table 5.2. 

 

Table 5.2 Support reactions of cable F1-F2c given by CABPOS. 

F1-F2c 
Number of elements 100 500 1000 5000 

S
up

po
rt

 r
ea

ct
io

ns
 (

N
) F1  224218,18 224219,66 224219,83 224219,97 

R1  22846,55 22854,39 22855,37 22856,15 
R2  22007,92 22015,76 22016,74 22017,52 
R3  20861,23 20869,06 20870,04 20870,82 
R4  19509,22 19517,046 19518,02 19518,80 
R5  18051,54 18059,36 18060,33 18061,11 
R6  16571,70 16579,51 16580,49 16581,27 
F2c  221520,18 221521,53 221521,69 221521,81 

 

The convergence of the solution for different mesh densities is shown in Figure 5.1. 

Sum of the reactions vs. number of finite elements is graphed instead of showing 

graph for each support. 
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Figure 5.1 Sum of support reactions for cable F1-F2c given by CABPOS. 

 

The reaction difference between 1000 and 5000 element solution is approximately 5 

N. This difference corresponds to 0.0006% error which means that 5000 element is 

enough for this problem. 

5.4 Solution of ANSYS 

The reaction data of cable F1- F2c solved by ANSYS can be seen in Table 5.3. 

Table 5.3  Support reactions of cable F1-F2c given by ANSYS. 

F1-F2c 
Number of elements 100 500 1000 5000 

S
up

po
rt

 R
ea

ct
io

ns
 (

N
) F1 226230,43 224685,73 224448,29 224270,94 

R1 23037,47 22980,46 22920,09 22867,71 
R2 22689,94 22053,53 22058,93 22021,56 
R3 20718,40 20975,65 20870,25 20878,30 
R4 19763,40 19510,54 19548,75 19527,77 
R5 18350,37 18049,64 18042,16 18059,45 
R6 16624,45 16686,45 16648,23 16591,25 
F2c 223536,87 221968,07 221744,43 221583,08 
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The convergence of the solution for different number of elements is shown in Figure 

5.2. 

 

 

Figure 5.2 Sum of support reactions for cable F1-F2c given by ANSYS. 

 

There is 481N difference between 1000 and 5000 element solution. This corresponds 

to 0.085% error.  

5.5 Comparison 

Comparison is made in the same way as in chapter 4. Maximum number of element, 

which is 5000, is used for solution of both programs. Reactions at supports are 

compared for all configurations. 

Reaction results of each three configuration having 5000 elements are sorted in Table 

5.4, Table 5.5 and Table 5.6. 
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Table 5.4 Support reactions for cable F1-F2a. 

F1-F2a 
Solution types CABPOS ANSYS 

S
up

po
rt

 r
ea

ct
io

ns
 (

N
) F1 2861,03 2859,14 

R1 1239,51 1240,29 
R2 1212,78 1212,07 
R3 1177,38 1177,65 
R4 1139,48 1139,42 
R5 1118,15 1118,53 
R6 596,13 596,49 
F2a 831,34 831,01 

 

Table 5.5 Support reactions for cable F1-F2b. 

F1-F2b 
Solution types CABPOS ANSYS 

S
up

po
rt

 r
ea

ct
io

ns
 (

N
) F1 4621,47 4618,39 

R1 1408,52 1408,76 
R2 1374,28 1374,32 
R3 1327,64 1327,74 
R4 1273,07 1272,53 
R5 1215,29 1215,65 
R6 977,02 977,30 
F2b 2011,53 2008,40 

 

Table 5.6 Support reactions for cable F1-F2c. 

F1-F2c 
Solution types CABPOS ANSYS 

S
up

po
rt

 r
ea

ct
io

ns
 (

N
) F1 224219,97 224270,94 
R1 22856,15 22867,71 
R2 22017,52 22021,56 
R3 20870,82 20878,30 
R4 19518,80 19527,77 
R5 18061,12 18059,45 
R6 16581,27 16591,25 
F2c 221521,81 221583,08 
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Related percentages of errors are tabulated below in Table 5.7. 

 

Table 5.7 Error of percentages for single-segment cable solution. 

Error of percentages 

Supports 
Cable configurations 

F1-F2a F1-F2b F1-F2c 
F1 0,0664% 0,0666% 0,0227% 
R1 0,0633% 0,0165% 0,0505% 
R2 0,0586% 0,0029% 0,0183% 
R3 0,0232% 0,0078% 0,0358% 
R4 0,0067% 0,0429% 0,0459% 
R5 0,0340% 0,0301% 0,0092% 
R6 0,0611% 0,0291% 0,0602% 
F2 0,0402% 0,1555% 0,0277% 

 

ANSYS and CABPOS give approximately same results for all cable configurations. 

Average errors for F1-F2a, F1-F2b and F1-F2c configurations are 0.0442%, 0.0439% 

and 0.0338% respectively. These amounts of errors are admissible for a structural 

member. 

Profile of cables F1-F2a, F1-F2b and F1-F2c are shown in Error! Reference source 

not found., Error! Reference source not found., Error! Reference source not 

found. respectively. 
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Figure 5.3 Profile of cable F1-F2a 
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Figure 5.4 Profile of cable F1-F2b 
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Figure 5.5 Profile of cable F1-F2c 
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CHAPTER 6 

 

6. COMPUTER PROGRAM: CABPOS (CABLE POSITIONING) 

 

6.1 General 

CABPOS is a program which is build for the purpose of analyzing and positioning of 

cables having different support conditions. Lots of routines have been written by 

programmers in the past. Those programs analyze only the single-segment cable 

problems having 2 fixed supports at the ends of the cable. CABPOS is a further 

program for cable analysis. It analysis not only the single-segment cables but also the 

multi-segment continuous cables. Multi-segment continuous cable is a cable which is 

supported by two fixed support at both ends, in addition, it is supported by roller 

supports between the ends. 

FORTRAN programming language is used for building CABPOS. It is based on a 

main program which runs many subroutines. Main program and subroutines will be 

introduced later. Before these, main procedure will be defined. Code of CABPOS is 

given on Appendix A. 

6.2 Procedure 

Basically, program has three input and five output text files. Program gets the cable 

properties, environment conditions, coordinates of supports and data for modulus of 

elasticity from input and gives the nodal coordinates of cable, support reactions, final 

coordinates of roller supports, lengths for each segment and end forces of cable for 

each segment. In those input text files data should be written in consistent units. 

Solution is found by two methods. These are direct stiffness method and tension 

distribution method. Direct stiffness method is used for tight cable and tension 

distribution method is used for slack cable problems. Although tension distribution 
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method solves both problems, it takes lots of time for solution. Besides, direct 

stiffness method could not solve slack cable problems, because of a property of cable 

explained before.  

Principle of direct stiffness method is basis on changing length of each segment. 

Change in reaction difference of cable on each support is found by changing length 

of each segment. Stiffness matrix is formed by the data of change in reaction 

difference of cable on each support. The increment of length for each segment is 

found form stiffness matrix analysis. This procedure is made several iterations of 

Newton-Raphson method, because of nonlinear behavior of cable. 

Principle of tension distribution method is same as direct stiffness method. Stiffness 

method makes a total calculation on the other hand; tension distribution method 

makes calculations between two successive segments. It founds the increment of 

length for successive segments by changing the length of cables connected on a roller 

support. This calculation is made for each roller support. 

6.3 Main Program 

The main program of CABPOS get the input data from the text file and checks 

whether the system is a single-segment cable problem or multi-segment continuous 

cable problem. Accordingly it leads. Then it checks whether the cable is tight or 

slack. After that classification of the problem, program runs the subroutines 

MSPFTC and MSPFSC respectively.  

Operation of checker for tightness basis on a simple principle; It firstly, calculate the 

total direct length of the path, which cable should keep, by the subroutine 

COTLOES. Secondly, it checks whether total cable length is greater than 1.1 times 

of total direct length of the path. The number 1.1 is an experimental constant made 

on this computer program. 

MSPFTC is a subroutine for direct stiffness method MSPFSC is a subroutine for 

tension distribution method. After the solution of main subroutines MSPFTC and 

MSPFSC, program gives the output. 
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Subroutines used in main program are: 

• MSPFTC(LOES,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN,SX,SY,SZ,X,Y,

Z,FLOC,R) 

• MSPFSC(LOES,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN,SX,SY,SZ,X,Y,

Z,FLOC,R) 

• INPUT1(TCL,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN) 

• INPUT2(NOS,SX,SY,SZ) 

• COTLOES(NOS,SX,SY,SZ,TLOES,TTLOC) 

• COSCLOES(NOS,TLOES,TTLOC,TCL,LOES) 

• DOS(NOS,SY,TLOES,TCL,TTLOC,LOES) 

• ALAI(NOS,IOLFT,IIOL,LOES) 

• AIOES(l,NOS,IIOL,LOES) 

• AIOESS(k,l,NOS,IIOL,LOES) 

• ACOFPFES(k,NOS,CC,C1,C2) 

• COOS(k,l,NOS,X1,Y1,Z1,X2,Y2,Z2,CL,DOC,WOC,MOE,TEC,TC,PLP,FE

N,X,Y,Z,FLOC,R,IR) 

• GIFTFP(X1,X2,Z1,Z2,SR) 

• ACOFP(X1,Y1,Z1,IX,IY,IZ) 

• ARAIOFP(SR,IIOR,IRX,IRY,IRZ,IR) 

• FEC(i,WOC,FEN,FEL,MOE,AOC,TEC,TC,IR,IRX,IRY,IRZ,IX,IY,IZ,IFLO

C) 

• FMEC(FEN,IX,IY,IZ,IXX,IXY,IXZ,IYX,IYY,IYZ,IZX,IZY,IZZ,X2,Y2,Z2,

FM,DTT) 
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• FRM(l,k,NOS,FEN,IR,R1,RLP) 

• FRMS(l,k,NOS,FEN,IR,R1,RLP) 

• TIB(l,NOS,IIOL,LOES) 

• TIBS(l,k,NOS,IIOL,LOES) 

• SMS(NOS,R1,RLP,DR,DDR) 

• MATINV(NSTRE,AMATX) 

• MATMULT(NSTRE,MATX1,MATX2,MATX3) 

• OUTPUT1(NOS,FEN,X,Y,Z,FLOC,R) 

• ICAAI(i,NOS,IIOL,R1,RLP,LOES) 

• SOD(l,k,i,NOS,FEN,IX,IY,IZ,IR,IFLOC,X,Y,Z,R,FLOC) 

• MODULUS(STRESS,STRAIN) 

• OUTPUT2(NOS,FEN,X,Y,Z,FLOC,R) 

6.4 Subroutines 

Some of the subroutines, which are important, are introduced. The functions of those 

subroutines are explained. Some important variables are given by their definitions. 

6.4.1 MSPFTC 

MSPFTC is a subroutine which gives solution for tight cable problems. Program 

inputs are initial length of cable of each segment, material and coordinate properties 

of cable. Outputs are nodal coordinates of cable, final length of cable of each 

segment and nodal reactions of cable. Program runs using nested three loops. First 

one is iteration loop, second one is incrementation loop and the last one is segment 

loop.  

Under the control of iteration loop stiffness matrix calculations are made by 

subroutines SMS, MATINV and MATMULT. After matrix calculations, check for 
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the reaction differences between successive segments is made. If check fails, new 

lengths will be assigned by subroutine ALAI. 

Assigning increment and taking them back is made by subroutines AIOES and TIB 

in incrementation loop. 

In the segment loop, firstly, coordinates of first and last point of each segment are 

assigned by subroutine ACOFPFES. Secondly it runs the subroutine COOS which 

makes one segment calculation. Finally, first and last nodal reactions are formed. 

Variable  Definition 

R1   Reaction of first point of each segment. 

RLP   Reaction of last point of each segment. 

DR Reaction difference between successive cables on each roller 

support for each increment.  

DDR Change in DR between nonincremented solution and 

incremented solution on each roller support for each iteration. 

IOLFT   Solution for change in length for each segment. 

6.4.2 MSPFSC 

Work done by MSPFSC is same with MSPFTC, however, procedures are different. 

MSPFSC is a subroutine which gives solution for slack cable problems. Program 

inputs are initial length of cable of each segment, material and coordinate propeties 

of cable. Output is nodal coordinates of cable, final length of cable of each segment 

and nodal reactions of cable. Program runs using nested three loops. First one is 

iteration loop, second one is roller support loop and the last one is successive 

segments’ loop. 

Iteration loop only checks whether the reaction difference between successive 

segment cables are greater than precision needed. If check fails, iteration will goes 

on. 
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Change in length between two successive supports is calculated and length of each 

segment is renewed in Roller support loop. 

The last loop is successive segments loop which makes calculations for analysis of 

successive segments connected by a roller support. This loop has two steps. In the 

first step, it analyzes two successive supports by nonincremented cable lengths. In 

the second step, same calculations are made for incremented cable lengths. 

Variable  Definition 

R1   Reaction of first point of each segment. 

RLP   Reaction of last point of each segment. 

INCR   Solution for change in length for each segment. 

6.4.3 INPUT1 

INPUT1 gathers the information from the text file about cable properties. Those 

cable properties and their variable names in program code are as follows. 

Variable  Definition 

NOS   Number of segment. 

FEN   Finite element number. 

TCL   Total cable length. 

DOC   Diameter of cable. 

WOC   Weight of cable per length. 

MOE   Modulus of elasticity. 

PLP   Precision for second support coordinates. 

TEC   Thermal expansion coefficient. 

TC   Temperature change. 



60 

 

6.4.4 INPUT2 

This subroutine gathers the coordinates of two fixed supports and roller supports. 

Fixed supports should be written in first row and last row in the text file. The data 

between those fixed support data are coordinates of roller supports. Additionally, 

cable will be positioned in the order of supports written in the text file. 

6.4.5 COTLOES 

This subroutine calculates the direct length of the path of the cable. It gives total 

direct length of the cable path and direct length of each segments’ cable path. 

Variable  Definition 

TLOES  Direct length of each segments’ cable path. 

TTLOC  Total direct length of cable path. 

6.4.6 COSCLOES 

Initial cable lengths must be given for solution. COSCLOES calculates the initial 

cable lengths for each segment to start the calculation. Total cable length is 

distributed to each segment proportional to their direct length of cable path.  

Variable  Definition 

LOES   Length of cable of each segment. 

6.4.7 DOS 

Most of the sag of the cable would be occur on the segment having less elevation. In 

other words, cable will slip on the roller supports to the lower elevations. 

This subroutine gives whole sag of the cable to the segment which has the less 

elevation. It renews the initial length of cable of each segment. The aim of this renew 

is to decrease the iteration number of the program. 
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Variable  Definition 

MINCOOR Index for segment having minimum elevation. This elevation 

is calculated by the sum of y coordinates of two supports of a 

segment. 

6.4.8 ALAI 

This subroutine adds the calculated increment to the cable length of each segment. 

6.4.9 AIOES 

This subroutine gives the imaginary increment in length of each segment. 

6.4.10 COOS 

COOS is the main subroutine of the program. It makes the calculations of one 

segment. Inputs are coordinates of supports of one segment and material properties 

of cable. Outputs are nodal coordinates, final cable length after deformation and 

nodal reactions. COOS runs with two nested loop. First one is iteration loop, second 

one is finite element loop.  

As previously introduced in chapter 2, initial reaction of first node of cable is given 

by GIFTFP to make the system determinant. Imaginary increment is applied to this 

reaction in all three directions in incrementation loop. Flexibility matrix is formed by 

FMEC by data calculated by finite element loop. Increment for each direction is 

calculated and added to the initial reaction by flexibility matrix calculations. Finally, 

check is made for last node’s coordinate whether it is approximately close to the 

second support of the segment. 

 After incrementation made in incrementation loop finite element loop processes and 

gives the nodal coordinates and reactions, and also final node’s coordinates. This 

process is made four times. First one is for nonincremented reaction solution and the 

other three is for incremented reaction solution for three global directions. 
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Variable  Definition 

FEL Finite element length: This length will change segment to 

segment. However FEN is constant for each segment. 

SR Initial reaction of first node of each segment which is renewed 

after each iteration. 

DRR Increment of reaction for each direction calculated by 

flexibility matrix. 

6.4.11 GIFTFP 

Giving initial reactions for segment calculations is made by this subroutine. An 

approximate initial reaction decreases the iteration number of program. However, it 

is very hard to predict the initial reaction of cable approximately. So, GIFTFP gives a 

small reaction according to its orientation. In other words, this subroutine only 

determines the direction of the reaction and assigns it. 

6.4.12 FEC 

Finite element calculations are made by FEC. Nodal coordinates and reactions are 

calculated in this subroutine. 

Variable  Definition 

STRAIN Strain of a finite element. 

DELTA Elongation of a finite element. 

6.4.13 FMEC 

This subroutine forms the flexibility matrix of one segment. It uses coordinates of 

final node. This coordinates are for incremented and nonicremented reactions. 

Variable  Definition 

IX, IY, IZ Coordinates of final node for nonicremented reaction case. 

IXX, IXY, IXZ Coordinates of final node for incremented reaction of X 

direction. 
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IYX, IYY, IYZ Coordinates of final node for incremented reaction of Y 

direction. 

IZX, IZY, IZZ Coordinates of final node for incremented reaction of Z 

direction. 

SOL Approximation for final node of the segment. 

6.4.14 MATINV 

Matrix inversion is made by MATINV. The given square matrix is renewed by the 

inverse of it. 

Variable  Definition 

NSTRE Dimension of matrix. 

AMATX Matrix to be inverted. 

6.4.15 MATMULT 

Multiplication of a square matrix FM1, having dimension NOS1, by vector SOL1 

having same dimension gives vector DRR1. 

6.4.16 OUTPUT1 

OUTPUT1 gives the information about final cable position and forces. Those outputs 

are as follows. 

Variable  Definition 

NOS   Number of segment. 

FEN   Finite element number. 

X,Y,Z   Coordinates of each finite element. 

FLOC   Final length of cable. 

R   Reaction of each finite element. 
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6.4.17 MODULUS 

This subroutine gets the stress strain data of cable from INPUT3 text file. Then find 

the strain value for corresponding stress value for each finite element by 

interpolation. 

Variable  Definition 

STRESS  Stress data. 

STRAIN  Strain data. 
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CHAPTER 7 

 

7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Summary 

Cables are highly nonlinear structural members under transverse loading. This 

nonlinearity is mainly due to the close relationship between the final geometry under 

transverse loads and the resulting stresses in its equilibrium state rather than the 

material properties. In practice, the cables are usually used as isolated single-segment 

elements fixed at the ends. Various studies and solution procedures suggested by 

researchers are available in the literature for such isolated cables. However, not much 

work is available for continuous cables with multiple supports. 

In this study, a multi-segment continuous cable is defined as a cable fixed at the ends 

and supported by a number of stationary roller supports in between. Total cable 

length is assumed constant and the intermediate supports are assumed to be 

frictionless. Therefore, the critical issue is to find the distribution of the cable length 

among its segments in the final equilibrium state. Since the solution of single-

segment cables is available the additional condition to be satisfied for multi-segment 

continuous cables with multiple supports is to have stress continuity at intermediate 

support locations where successive cable segments meat. A predictive/corrective 

iteration procedure is proposed for this purpose. The solution starts with an initially 

assumed distribution of total cable length among the segments and each segment is 

analyzed as an independent isolated single-segment cable. In general, the stress 

continuity between the cable segments will not be satisfied unless the assumed 

distribution of cable length is the correct distribution corresponding to final 

equilibrium state. In the subsequent iterations the segment lengths are readjusted to 

eliminate the unbalanced tensions at segment junctions. The iterations are continued 

until the stress continuity is satisfied at all junctions. Two alternative approaches are 
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proposed for the segment length adjustments: Direct stiffness method and tension 

distribution method.  

A computer program called CABPOS is developed for the analysis of multi-segment 

continuous cables and both techniques have been implemented into it. The program 

is coded in FORTRAN. The total length of the cable, material properties, the load 

and environmental data, support locations and the desired density for the finite 

element mesh is supplied to the program by the user. The program then generates the 

geometry of cable segments, internal stresses and the support reactions in the final 

equilibrium state. A brief description of the program CABPOS is given in chapter 6.  

Verification of the solutions generated by CABPOS is made by comparing the results 

with ANSYS. The results are satisfactory and compares well with those obtained by 

the commercial finite element program ANSYS. .In the ANSYS solution, the roller 

supports are defined as dimensionless and they are modeled as contact elements. The 

friction is eliminated for the contact elements by setting the tangent stiffness of the 

contact to zero.  

7.2 Conclusions 

Based on the research carried out in this study and the experienced gained from the 

analysis of various verification examples, the conclusions drawn can be summarized 

as follows: 

• A solution procedure is devised for the analysis of multi-segment continuous 

cables with multiple supports. In general, a predictive/corrective iterative 

algorithm coupled with Newton-Raphson iterations is employed for the 

nonlinear analysis. The proposed algorithm is tested with a number of 

verification examples and satisfactory results are obtained. 

• The behavior of slack cables is characteristically different from that of tight 

cables because of the order-of-magnitude difference between the cable 

stiffnesses in each case. Therefore, there is a need for a specific treatment for 

each case. Two alternative techniques are proposed for this purpose: Direct 

Stiffness method and Tension/Length Distribution method. The former is best 
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suited for tight cables whereas the latter is more appropriate for slack cables. 

The Tension/Length Distribution approach even becomes the only choice as 

the degree of slackness of the cable or any segment of it increases. 

• The use of Tension/Length Distribution approach unnecessarily increases the 

correction iterations and the use of the Direct Stiffness method causes some 

wild oscillations or even divergence before reaching the equilibrium state. 

Therefore, a proper combination of the two techniques is necessary for a 

general solution algorithm. For this purpose, a smart algorithm for the 

detection of excessive slackness in a given configuration of a cable is critical. 

7.3 Recommendations for future studies 

Although verification is made and results show that solutions are almost correct. 

Some assumptions and simplifications are made to reach the solution. Those are: 

• Modulus of elasticity of the cable is assumed constant for verification. 

Although there is an input text files for modulus of elasticity data. There must 

be experimental data of a cable to use this property of CABPOS. 

• Friction of the cable on roller supports is assumed zero. Thus equality of 

cable tensions on each roller support is enough for static equilibrium. 

• Flexural rigidity of cable is assumed zero. Because, the cables used in 

structural systems are long enough to neglect flexural rigidity. 

• 1.1 times the span of multi-segment continuous cable is used as a limit for 

classification of system as very slack cable. 

• There are some assumptions due to finite element modeling like similars 

have. 
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Therefore, some recommendations are given for further research; 

• CABPOS has tool for variable modulus of elasticity. This tool could be run 

by using stress-strain data of a cable and verification could be made by a 

computer program. 

• Some friction could be applied on roller supports and also verification could 

be made with a computer program. 

• Flexural and shear rigidities can be considered in analysis. Although it does 

not affect large scale systems, there would be effect on small scale cable 

systems. 

• Verification of the proposed methods can be made experimentally. 

• Although there is a research about the degree of slackness of a single-segment 

cable in this thesis, this study is superficial. Therefore, a parametric study 

about the degree of slackness can be carried out. 

• An empirical value of 1.1 is determined by experiences obtained through the 

solution of sample problems. This number can be revised by some well 

settled studies or another way to determine the degree of slackness of multi-

segment cable can be found. 
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APPENDICES 

APPENDIX A 

 

CODE OF CABPOS 

 

 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT LENGTH 

!TCL : TOTAL CABLE LENGTH 

!DOC : DIAMETER OF CABLE 

!WOC : WEIGTH OF CABLE 

!MOE : MODULUS OF ELASTICITY 

!TEC : THERMAL EXPANSION COEFFICIENT 

!TC : THERMAL CHANGE 

!PLP : PRECISION OF LAST POINT 

!SX,SY,SZ : COORDINATES OF EACH SUPPORT 

!X,Y,Z : COORDINATES OF EACH SEGMENT AND EACH FINITE ELEMENT 

!FLOC : FINAL LENGTH OF CABLE OF EACH SEGMENT 

!R : REACTION OF EACH SEGMENT AND EACH FINITE ELEMENT 

!IR : IMAGINARLY NONINCREMENTED REACTIONS OF EACH SEGMENT 

!TTLOC : TOTAL TRAPEZOIDAL LENGTH OF CABLE 

!TLOES : TRAPEZOIDAL LENGTH OF EACH SEGMENT 

!LOES : LENGTH OF EACH SEGMENT 

INTEGER NOS,FEN 

DOUBLE PRECISION TCL,DOC,WOC,MOE,TEC,TC,PLP 

DOUBLE PRECISION SX(100),SY(100),SZ(100) 

DOUBLE PRECISION 
X(100,10000),Y(100,10000),Z(100,10000),FLOC(100),R(100,10000),IR(10000) 
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DOUBLE PRECISION TTLOC,TLOES(100),LOES(100) 

!INPUT1 DATA 

CALL INPUT1(TCL,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN) 

!INPUT2 DATA 

CALL INPUT2(NOS,SX,SY,SZ) 

!CHECK FOR SINGLE SEGMENT 

IF (NOS.NE.1) GOTO 63 

  CALL 
COOS(1,1,NOS,SX(1),SY(1),SZ(1),SX(2),SY(2),SZ(2),TCL,DOC,WOC,MOE,TEC
,TC,PLP,FEN,X,Y,Z,FLOC,R,IR) 

  CALL OUTPUT1(NOS,FEN,X,Y,Z,FLOC,R) 

  GOTO 64 

63 CONTINUE 

!CALCULATION OF TRAPEZOIDAL LENGTH OF EACH SEGMENT 

TTLOC=0 

CALL COTLOES(NOS,SX,SY,SZ,TLOES,TTLOC) 

!CALCULATION OF STARTING CABLE LENGTH OF EACH SEGMENT 

CALL COSCLOES(NOS,TLOES,TTLOC,TCL,LOES) 

!CHECK FOR TIGHT OR SAG CABLE 

IF(TCL.GT.TTLOC*1.1)GOTO 52 

!MULTISEGMENT PROGRAM FOR TIGHT CABLE 

CALL 
MSPFTC(LOES,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN,SX,SY,SZ,X,Y,Z,FLOC
,R) 

GOTO 53 

52 CONTINUE 

!DETERMINATION OF SAG 

CALL DOS(NOS,SY,TLOES,TCL,TTLOC,LOES) 

!MULTISEGMENT PROGRAM FOR SAG CABLE 
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CALL 
MSPFSC(LOES,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN,SX,SY,SZ,X,Y,Z,FLOC
,R) 

53 CONTINUE 

!OUTPUT1 DATA 

CALL OUTPUT1(NOS,FEN,X,Y,Z,FLOC,R) 

CALL OUTPUT2(NOS,FEN,X,Y,Z,FLOC,R) 

64 CONTINUE 

END 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR MULTISEGMENT PROGRAM FOR TIGHT CABLE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT LENGTH 

!X1,Y1,Z1 : FIRST COORDINATE OF SEGMENT 

!X2,Y2,Z2 : SECOND COORDINATE OF SEGMENT 

!CL : CABLE LENGTH OF SEGMENT 

!DOC : DIAMETER OF CABLE 

!WOC : WEIGTH OF CABLE 

!MOE : MODULUS OF ELASTICITY 

!TEC : THERMAL EXPANSION COEFFICIENT 

!TC : THERMAL CHANGE 

!PLP : PRECISION OF LAST POINT 

!SX,SY,SZ : SUPPORT COORDINATES 

!LOES : LENGTH OF EACH SEGMENT 

!IIOL : IMAGINARY INCREMENTATION ON LENGTH 

!IOLFT : INCREMENTATION OF LENGTH 

!X,Y,Z : COORDINATES OF EACH SEGMENT AND EACH FINITE ELEMENT 
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!R : REACTION OF EACH SEGMENT AND EACH FINITE ELEMENT 

!FLOC : FINAL LENGTH OF CABLE OF EACH SEGMENT 

!IR : IMAGINARLY NONINCREMENTED REACTIONS OF EACH SEGMENT 

!R1 : FIRST REACTION OF EACH SEGMENT AND INCREMENTATION 

!RLP : LAST REACTION OF EACH SEGMENT AND INCREMENTATION 

!DR : REACTION DIFFERENCE ON EACH SUPPORT 

!DDR : CHANGE IN REACTION DIFFERENCE ON EACH SUPPORT FOR 
EACH INCREMENTATION 

SUBROUTINE 
MSPFTC(LOES,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN,SX,SY,SZ,X,Y,Z,FLOC
,R) 

INTEGER NOS,FEN 

DOUBLE PRECISION X1,Y1,X2,Y2,Z1,Z2,CL,DOC,WOC,MOE,TEC,TC,PLP 

DOUBLE PRECISION SX(NOS+1),SY(NOS+1),SZ(NOS+1),LOES(NOS) 

DOUBLE PRECISION IIOL,IOLFT(NOS-1,1) 

DOUBLE PRECISION 
X(NOS,FEN+1),Y(NOS,FEN+1),Z(NOS,FEN+1),R(NOS,FEN+1),FLOC(NOS) 

DOUBLE PRECISION IR(FEN+1),R1(NOS,NOS),RLP(NOS,NOS) 

DOUBLE PRECISION DR(NOS-1,NOS),DDR(NOS-1,NOS-1) 

IIOL=0.000001 

DO 48 i=1,(NOS-1) 

  IOLFT(i,1)=0 

48 CONTINUE 

!ITERATION LOOP 

DO 19 m=1,100 

  !ASSIGNING LENGTH AND INCREMENTATION 

  CALL ALAI(NOS,IOLFT,IIOL,LOES) 

  !INCREMENTATION LOOP 

  DO 20 l=1,NOS  

    !ASSIGNING INCREMENTATION ON EACH SUPPORT 
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    CALL AIOES(l,NOS,IIOL,LOES)  

    !SEGMENT LOOP 

    DO 22 k=1,NOS  

      !ASSIGNING COORDINATES OF FIRST POINT FOR EACH SEGMENT 

      CALL ACOFPFES(k,NOS,SX,X1,X2) 

      CALL ACOFPFES(k,NOS,SY,Y1,Y2) 

      CALL ACOFPFES(k,NOS,SZ,Z1,Z2)  

      !CALCULATION OF ONE SEGMENT 

      CL=LOES(k) 

      CALL 
COOS(k,l,NOS,X1,Y1,Z1,X2,Y2,Z2,CL,DOC,WOC,MOE,TEC,TC,PLP,FEN,X,Y,
Z,FLOC,R,IR) 

       

      !FORMING REACTION MATRICE 

      CALL FRM(l,k,NOS,FEN,IR,R1,RLP)  

    22 CONTINUE  

    !TAKING INCREMENTATION BACK 

    CALL TIB(l,NOS,IIOL,LOES)  

  20 CONTINUE  

  !FORMING STIFFNESS MATRICE 

  CALL SMS(NOS,R1,RLP,DR,DDR)  

  !STIFFNESS MATRICE INVERSION 

  CALL MATINV((NOS-1),DDR)  

  !MATRICE MULTIPLICATION 

  CALL MATMULT((NOS-1),DDR,DR,IOLFT)  

  !CHECK FOR REACTION PRECISION 

  DO 47 n=1,(NOS-1) 

    IF((RLP(1,n)-RLP(1,n)*PLP).LT.R1(1,n+1)) GOTO 30 

    GOTO 19 



77 

 

    30 IF((RLP(1,n)+RLP(1,n)*PLP).GT.R1(1,n+1)) GOTO 47 

    GOTO 19 

  47 CONTINUE 

  GOTO 33  

19 CONTINUE 

33 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR MULTISEGMENT PROGRAM FOR SAG CABLE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT LENGTH 

!X1,Y1,Z1 : FIRST COORDINATE OF SEGMENT 

!X2,Y2,Z2 : SECOND COORDINATE OF SEGMENT 

!CL : CABLE LENGTH OF SEGMENT 

!DOC : DIAMETER OF CABLE 

!WOC : WEIGTH OF CABLE 

!MOE : MODULUS OF ELASTICITY 

!TEC : THERMAL EXPANSION COEFFICIENT 

!TC : THERMAL CHANGE 

!PLP : PRECISION OF LAST POINT 

!SX,SY,SZ : SUPPORT COORDINATES 

!IIOL : IMAGINARY INCREMENTATION ON LENGTH 

!LOES : LENGTH OF EACH SEGMENT 

!X,Y,Z : COORDINATES OF EACH SEGMENT AND EACH FINITE ELEMENT 

!R : REACTION OF EACH SEGMENT AND EACH FINITE ELEMENT 

!FLOC : FINAL LENGTH OF CABLE OF EACH SEGMENT 

!IR : IMAGINARLY NONINCREMENTED REACTIONS OF EACH SEGMENT 
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!R1 : FIRST REACTION OF EACH SEGMENT AND INCREMENTATION 

!RLP : LAST REACTION OF EACH SEGMENT AND INCREMENTATION 

SUBROUTINE 
MSPFSC(LOES,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN,SX,SY,SZ,X,Y,Z,FLOC
,R) 

INTEGER NOS,FEN 

DOUBLE PRECISION X1,Y1,X2,Y2,Z1,Z2,CL,DOC,WOC,MOE,TEC,TC,PLP 

DOUBLE PRECISION SX(NOS+1),SY(NOS+1),SZ(NOS+1) 

DOUBLE PRECISION IIOL,LOES(NOS) 

DOUBLE PRECISION 
X(NOS,FEN+1),Y(NOS,FEN+1),Z(NOS,FEN+1),R(NOS,FEN+1),FLOC(NOS) 

DOUBLE PRECISION IR(FEN+1),R1(NOS,2),RLP(NOS,2)  

IIOL=0.000001 

!ITERATION LOOP 

DO 100 m=1,1000 

  !SEGMENT LOOP 

  DO 101 k=1,(NOS-1)  

    !INCREMENTATION LOOP 

    DO 102 l=1,2  

      !ASSIGNING INCREMENTATION ON EACH SUPPORT 

      CALL AIOESS(k,l,NOS,IIOL,LOES)  

      !ASSIGNING COORDINATES OF FIRST POINT FOR EACH SEGMENT 

      CALL ACOFPFES(k,NOS,SX,X1,X2) 

      CALL ACOFPFES(k,NOS,SY,Y1,Y2) 

      CALL ACOFPFES(k,NOS,SZ,Z1,Z2)  

      !CALCULATION OF ONE SEGMENT 

      CL=LOES(k) 

      CALL 
COOS(k,l,NOS,X1,Y1,Z1,X2,Y2,Z2,CL,DOC,WOC,MOE,TEC,TC,PLP,FEN,X,Y,
Z,FLOC,R,IR)  
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      !FORMING REACTION MATRICE 

      CALL FRMS(k,l,NOS,FEN,IR,R1,RLP)  

      !ASSIGNING COORDINATES OF FIRST POINT FOR EACH SEGMENT 

      CALL ACOFPFES(k+1,NOS,SX,X1,X2) 

      CALL ACOFPFES(k+1,NOS,SY,Y1,Y2) 

      CALL ACOFPFES(k+1,NOS,SZ,Z1,Z2)  

      !CALCULATION OF ONE SEGMENT 

      CL=LOES(k+1) 

      CALL 
COOS(k+1,l,NOS,X1,Y1,Z1,X2,Y2,Z2,CL,DOC,WOC,MOE,TEC,TC,PLP,FEN,X,
Y,Z,FLOC,R,IR)  

      !FORMING REACTION MATRICE 

      CALL FRMS(k+1,l,NOS,FEN,IR,R1,RLP)  

      !TAKING INCREMENTATION BACK 

      CALL TIBS(k,l,NOS,IIOL,LOES)  

    102 CONTINUE 

    !INCREMENTATION CALCULATION AND APPLYING 
INCREMENTATION 

    CALL ICAAI(k,NOS,IIOL,R1,RLP,LOES)  

  101 CONTINUE 

  !CHECK FOR REACTION PRECISION 

  DO 103 n=1,(NOS-1) 

    IF((RLP(n,1)-RLP(n,1)*PLP).LT.R1(n+1,1)) GOTO 104 

    GOTO 100 

    104 IF((RLP(n,1)+RLP(n,1)*PLP).GT.R1(n+1,1)) GOTO 103 

    GOTO 100 

  103 CONTINUE 

  GOTO 105 

100 CONTINUE 

105 CONTINUE 
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END 

!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR INPUT1 DATA 

!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT NUMBER 

!NAME : NAME (EXPLANATION) OF DATA 

!TCL : TOTAL CABLE LENGTH 

!DOC : DIAMETER OF CABLE 

!WOC : WEIGTH OF CABLE 

!MOE : MODULUS OF ELASTICITY 

!PLP : PRECISION OF LAST POINT 

!TEC : THERMAL EXPANSION COEFFICIENT 

!TC : THERMAL CHANGE 

SUBROUTINE INPUT1(TCL,NOS,DOC,WOC,MOE,TEC,TC,PLP,FEN) 

INTEGER NOS,FEN 

CHARACTER*30 NAME(9) 

DOUBLE PRECISION TCL,DOC,WOC,MOE,PLP,TEC,TC 

OPEN(10,file='INPUT1.txt') 

  READ(10,11)NAME(1),TCL 

  READ(10,12)NAME(2),NOS 

  READ(10,11)NAME(3),DOC 

  READ(10,11)NAME(4),WOC 

  READ(10,11)NAME(5),MOE 

  READ(10,11)NAME(6),TEC 

  READ(10,11)NAME(7),TC 

  READ(10,11)NAME(8),PLP 

  READ(10,12)NAME(9),FEN 
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11 FORMAT(A30,F20.10) 

12 FORMAT(A30,I20.10) 

CLOSE(10) 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR INPUT2 DATA 

!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!SX : X COORDINATE OF SUPPORTS 

!SY : Y COORDINATE OF SUPPORTS 

!SZ : Z COORDINATE OF SUPPORTS 

SUBROUTINE INPUT2(NOS,SX,SY,SZ) 

INTEGER NOS 

DOUBLE PRECISION SX(NOS+1),SY(NOS+1),SZ(NOS+1) 

OPEN(13,file='INPUT2.txt') 

DO 14 i=1,(NOS+1) 

  READ(13,16)SX(i),SY(i),SZ(i) 

  16 FORMAT(3F20.10) 

14 CONTINUE 

CLOSE(13) 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR CALCULATION OF TRAPEZOIDAL LENGTH OF EACH 
SEGMENT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!DX,DY,DZ : DISTANCE BETWEEN COORDINATES OF SUPPORTS OF ONE 
SEGMENT 

!SX : X COORDINATE OF SUPPORTS 
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!SY : Y COORDINATE OF SUPPORTS 

!SZ : Z COORDINATE OF SUPPORTS 

!TLOES : TRAPEZOIDAL LENGTH OF EACH SEGMENT 

!TTLOC : TOTAL TRAPEZOIDAL LENGTH OF CABLE 

SUBROUTINE COTLOES(NOS,SX,SY,SZ,TLOES,TTLOC) 

INTEGER NOS 

DOUBLE PRECISION DX,DY,DZ 

DOUBLE PRECISION 
TLOES(NOS),SX(NOS+1),SY(NOS+1),SZ(NOS+1),TTLOC 

DO 17 i=1,NOS 

  DX=SX(i+1)-SX(i) 

  DY=SY(i+1)-SY(i) 

  DZ=SZ(i+1)-SZ(i) 

  TLOES(i)=DX*DX+DY*DY+DZ*DZ 

  TLOES(i)=SQRT(TLOES(i)) 

  TTLOC=TTLOC+TLOES(i) 

17 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR CALCULATION OF STARTING CABLE LENGTH OF 
EACH SEGMENT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!TCL : TOTAL CABLE LENGTH 

!TTLOC : TOTAL TRAPEZOIDAL LENGTH OF CABLE 

!TLOES : TRAPEZOIDAL LENGTH OF EACH SEGMENT 

!LOES : LENGTH OF EACH SEGMENT 

SUBROUTINE COSCLOES(NOS,TLOES,TTLOC,TCL,LOES) 

INTEGER NOS 
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DOUBLE PRECISION TCL,TTLOC,TLOES(NOS),LOES(NOS) 

DO 18 i=1,NOS 

  LOES(i)=TLOES(i)/TTLOC*TCL 

18 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR DETERMINATION OF SAG 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!MINCOOR : INDEX OF SEGMENT HAVING MINIMUM CORDINATES 

!SY : Y COORDINATE OF SUPPORTS 

!LOES : LENGTH OF EACH SEGMENT 

!TCOOR : SUM OF COORDINATES OF SUCCESSIVE ROLLER SUPPORTS Y 
DIRECTION 

!TLOES : TRAPEZOIDAL LENGTH OF EACH SEGMENT 

!TCL : TOTAL CABLE LENGTH 

!TTLOC : TOTAL TRAPEZOIDAL LENGTH OF CABLE 

SUBROUTINE DOS(NOS,SY,TLOES,TCL,TTLOC,LOES) 

INTEGER NOS,MINCOOR 

DOUBLE PRECISION 
SY(NOS+1),LOES(NOS),TCOOR(NOS),TLOES(NOS),TCL,TTLOC 

DO 54 i=1,NOS 

  TCOOR(i)=SY(i)+SY(i+1) 

54 CONTINUE 

MINCOOR=1 

DO 55 i= 2,NOS 

  IF(TCOOR(i).GT.TCOOR(MINCOOR)) GOTO 55 

  MINCOOR=i 

55 CONTINUE 
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DO 57 i=1,NOS 

  IF (MINCOOR.EQ.i) GOTO 58 

  LOES(i)=TLOES(i) 

  GOTO 57 

  58 LOES(i)=TCL-TTLOC+TLOES(i) 

57 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR ASSIGNING LENGTH AND INCREMENTATION 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!IOLFT : INCREMENTATION ON LENGTH 

!IIOL : IMAGINARY INCREMENTATION ON LENGTH 

!LOES : LENGTH OF EACH SEGMENT 

SUBROUTINE ALAI(NOS,IOLFT,IIOL,LOES) 

INTEGER NOS 

DOUBLE PRECISION IOLFT(NOS-1,1),IIOL,LOES(NOS) 

LOES(1)=LOES(1)+IOLFT(1,1)*IIOL 

DO 42 i=2,(NOS-1) 

  LOES(i)=LOES(i)-IOLFT(i-1,1)*IIOL+IOLFT(i,1)*IIOL 

42 CONTINUE  

LOES(NOS)=LOES(NOS)-IOLFT(NOS-1,1)*IIOL 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR ASSIGNING INCREMENTATION ON EACH SUPPORT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!l : INCREMENTATION LOOP 

!NOS : NUMBER OF SEGMENT 
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!IIOL : IMAGINARY INCREMENTATION ON LENGTH 

!LOES : LENGTH OF EACH SEGMENT 

SUBROUTINE AIOES(l,NOS,IIOL,LOES) 

INTEGER l,NOS 

DOUBLE PRECISION IIOL,LOES(NOS) 

IF (l.EQ.1) GOTO 21 

LOES(l-1)=LOES(l-1)-IIOL 

LOES(l)=LOES(l)+IIOL 

21 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR ASSIGNING INCREMENTATION ON EACH SUPPORT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!k : SEGMENT LOOP 

!l : INCREMENTATION LOOP 

!NOS : NUMBER OF SEGMENT 

!IIOL : IMAGINARY INCREMENTATION ON LENGTH 

!LOES : LENGTH OF EACH SEGMENT 

SUBROUTINE AIOESS(k,l,NOS,IIOL,LOES) 

INTEGER k,l,NOS 

DOUBLE PRECISION IIOL,LOES(NOS) 

IF (l.EQ.1) GOTO 21 

LOES(k)=LOES(k)-IIOL 

LOES(k+1)=LOES(k+1)+IIOL 

21 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR ASSIGNING COORDINATES OF FIRST POINT FOR 
EACH SEGMENT 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!k : SEGMENT LOOP 

!NOS : NUMBER OF SEGMENT  

!CC : SUPPORT COORDINATES 

!C1 : FIRST SUPPORT COORDINATE OF EACH SEGMENT 

!C2 : SECOND SUPPORT COORDINATE OF EACH SEGMENT 

SUBROUTINE ACOFPFES(k,NOS,CC,C1,C2) 

INTEGER k,NOS 

DOUBLE PRECISION CC(NOS+1),C1,C2 

C1=CC(k) 

C2=CC(k+1) 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR CALCULATION OF ONE SEGMENT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!FEN : FINITE ELEMENT NUMBER 

!k : SEGMENT LOOP 

!l : INCREMENTATION LOOP 

!NOS : NUMBER OF SEGMENT 

!X1,Y1,Z1 : FIRST SUPPORT COORDINATE 

!X2,Y2,Z2 : SECOND SUPPORT COORDINATE 

!CL : CABLE LENGTH 

!DOC : DIAMETER OF CABLE 

!WOC : WEIGTH OF CABLE 

!MOE : MODULUS OF ELASTICITY 

!TEC : THERMAL EXPANSION COEFFICIENT 

!TC : THERMAL CHANGE 

!PLP : PRECISION OF LAST POINT 
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!FEL : FINITE ELEMENT LEGTH 

!AOC : AREA OF CABLE 

!IFLOC : IMAGINARLY NONINCREMENTED FINITE ELEMENT LENGTH OF 
CABLE 

!IXFLOC : IMAGINARLY X INCREMENTED FINITE ELEMENT LENGTH OF 
CABLE 

!IYFLOC : IMAGINARLY Y INCREMENTED FINITE ELEMENT LENGTH OF 
CABLE 

!IZFLOC : IMAGINARLY Z INCREMENTED FINITE ELEMENT LENGTH OF 
CABLE 

!IRX,IRY,IRZ,IR : IMAGINARLY NONINCREMENTED REACTIONS OF 
EACH FINITE ELEMENT 

!IXRX,IXRY,IXRZ,IXR : IMAGINARLY X INCREMENTED REACTIONS OF 
EACH FINITE ELEMENT 

!IYRX,IYRY,IYRZ,IYR : IMAGINARLY Y INCREMENTED REACTIONS OF 
EACH FINITE ELEMENT 

!IZRX,IZRY,IZRZ,IZR : IMAGINARLY Z INCREMENTED REACTIONS OF 
EACH FINITE ELEMENT 

!IX,IY,IZ : IMAGINARLY NONINCREMENTED COORDINATE OF EACH 
FINITE ELEMENT 

!IXX,IXY,IXZ : IMAGINARLY X INCREMENTED COORDINATE OF EACH 
FINITE ELEMENT 

!IYX,IYY,IYZ : IMAGINARLY Y INCREMENTED COORDINATE OF EACH 
FINITE ELEMENT 

!IZX,IZY,IZZ : IMAGINARLY Z INCREMENTED COORDINATE OF EACH 
FINITE ELEMENT 

!SR : IMAGINARY FIRST REACTION OF EACH SEGMENT 

!IIOR : IMAGINARY INCREMENTATION ON REACTION 

!IOR : INCREMENTATION ON REACTION 

!FM : FLEXIBILITY MATRIX 

!DTT : DISTANCE TO THE TARGET 

!X,Y,Z : COORDINATE OF EACH FINITE ELEMENT 

!FLOC :FINAL LENGTH OF CABLE 
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!R : REACTION OF EACH FINITE ELEMENT 

!IR : FIRST AND LAST REACTIONS OF EACH SEGMENT 

SUBROUTINE 
COOS(k,l,NOS,X1,Y1,Z1,X2,Y2,Z2,CL,DOC,WOC,MOE,TEC,TC,PLP,FEN,X,Y,
Z,FLOC,R,IR) 

INTEGER FEN,k,l,NOS 

DOUBLE PRECISION 
X1,Y1,Z1,X2,Y2,Z2,CL,DOC,WOC,MOE,TEC,TC,PLP,FEL,AOC,IFLOC,IXFLO
C,IYFLOC,IZFLOC 

DOUBLE PRECISION 
IRX(FEN+1),IRY(FEN+1),IRZ(FEN+1),IX(FEN+1),IY(FEN+1),IZ(FEN+1),IR(FE
N+1) 

DOUBLE PRECISION 
IXRX(FEN+1),IXRY(FEN+1),IXRZ(FEN+1),IXX(FEN+1),IXY(FEN+1),IXZ(FEN
+1),IXR(FEN+1) 

DOUBLE PRECISION 
IYRX(FEN+1),IYRY(FEN+1),IYRZ(FEN+1),IYX(FEN+1),IYY(FEN+1),IYZ(FEN
+1),IYR(FEN+1) 

DOUBLE PRECISION 
IZRX(FEN+1),IZRY(FEN+1),IZRZ(FEN+1),IZX(FEN+1),IZY(FEN+1),IZZ(FEN+
1),IZR(FEN+1) 

DOUBLE PRECISION SR(3),IIOR(3),IOR(3),FM(3,3),DTT(3) 

DOUBLE PRECISION 
X(NOS,FEN+1),Y(NOS,FEN+1),Z(NOS,FEN+1),R(NOS,FEN+1),FLOC(NOS) 

FEL=CL/FEN 

AOC=3.14/4*DOC*DOC 

!GIVING INITIAL FORCE TO FIRST POINT 

CALL GIFTFP(X1,X2,Z1,Z2,SR) 

!ASSIGNING COORDINATES OF FIRST POINT 

CALL ACOFP(X1,Y1,Z1,IX,IY,IZ) 

CALL ACOFP(X1,Y1,Z1,IXX,IXY,IXZ) 

CALL ACOFP(X1,Y1,Z1,IYX,IYY,IYZ) 

CALL ACOFP(X1,Y1,Z1,IZX,IZY,IZZ) 

!LOOP FOR ITERATION 
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DO 13 j=1,10000 

   !ASSIGNING REACTIONS AND INCREMENTATION OF FIRST POINT 

    IIOR(1)=0 

    IIOR(2)=0 

    IIOR(3)=0 

 CALL ARAIOFP(SR,IIOR,IRX,IRY,IRZ,IR) 

    IIOR(1)=1 

    CALL ARAIOFP(SR,IIOR,IXRX,IXRY,IXRZ,IXR) 

    IIOR(1)=0 

    IIOR(2)=1 

    CALL ARAIOFP(SR,IIOR,IYRX,IYRY,IYRZ,IYR) 

    IIOR(2)=0 

    IIOR(3)=1 

    CALL ARAIOFP(SR,IIOR,IZRX,IZRY,IZRZ,IZR) 

    IFLOC=0 

   IXFLOC=0 

    IYFLOC=0     

    IZFLOC=0 

    !LOOP FOR FINITE ELEMENT METHOD 

    DO 14 i=1,FEN  

      !FINITE ELEMENT CALCULATIONONON 

        CALL 
FEC(i,WOC,FEN,FEL,MOE,AOC,TEC,TC,IR,IRX,IRY,IRZ,IX,IY,IZ,IFLOC) 

        CALL 
FEC(i,WOC,FEN,FEL,MOE,AOC,TEC,TC,IXR,IXRX,IXRY,IXRZ,IXX,IXY,IXZ,I
XFLOC) 

        CALL 
FEC(i,WOC,FEN,FEL,MOE,AOC,TEC,TC,IYR,IYRX,IYRY,IYRZ,IYX,IYY,IYZ,I
YFLOC) 
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        CALL 
FEC(i,WOC,FEN,FEL,MOE,AOC,TEC,TC,IZR,IZRX,IZRY,IZRZ,IZX,IZY,IZZ,IZ
FLOC)  

        !SORTING OUTPUT DATA 

        CALL SOD(l,k,i,NOS,FEN,IX,IY,IZ,IR,IFLOC,X,Y,Z,R,FLOC)  

    14 CONTINUE  

    !FLEXIBILITY MATRIX ELEMENT CALCULATION 

    CALL 
FMEC(FEN,IX,IY,IZ,IXX,IXY,IXZ,IYX,IYY,IYZ,IZX,IZY,IZZ,X2,Y2,Z2,FM,DT
T)  

    !FLEXIBILITY MATRIX INVERSE 

    CALL MATINV(3,FM)  

    !MATRIX MULTIPLICATION 

    CALL MATMULT(3,FM,DTT,IOR)  

    SR(1)=SR(1)+IOR(1) 

    SR(2)=SR(2)+IOR(2) 

    SR(3)=SR(3)+IOR(3)  

    !CHECK FOR PRECISION 

    IF(((X2-PLP).GT.IX(FEN+1)).OR.(IX(FEN+1).GT.(X2+PLP))) GOTO 13 

 IF(((Y2-PLP).GT.IY(FEN+1)).OR.(IY(FEN+1).GT.(Y2+PLP))) GOTO 13 

 IF(((Z2-PLP).GT.IZ(FEN+1)).OR.(IZ(FEN+1).GT.(Z2+PLP))) GOTO 13 

    GOTO 15  

13 CONTINUE 

15 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR GIVING INITIAL FORCE TO FIRST POINT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!X1,Z1 : FIRST SUPPORT COORDINATES 

!X2,Z2 : SECOND SUPPORT COORDINATES 
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!SR : IMAGINARY FIRST REACTION OF EACH SEGMENT 

SUBROUTINE GIFTFP(X1,X2,Z1,Z2,SR) 

DOUBLE PRECISION X1,X2,Z1,Z2,SR(3) 

IF(X1.EQ.X2) SR(1)=0 

IF(X1.LT.X2) SR(1)=-10 

IF(X1.GT.X2) SR(1)=10 

SR(2)=10 

IF(Z1.EQ.Z2) SR(3)=0 

IF(Z1.LT.Z2) SR(3)=-10 

IF(Z1.GT.Z2) SR(3)=10 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR ASSIGNING COORDINATES OF FIRST POINT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!X1,Y1,Z1 : FIRST COORDINATES OF EACH SEGMENT 

!IX,IY,IZ : IMAGINARLY NONINCREMENTED COORDINATE OF EACH 
FINITE ELEMENT 

SUBROUTINE ACOFP(X1,Y1,Z1,IX,IY,IZ) 

DOUBLE PRECISION X1,Y1,Z1,IX(1),IY(1),IZ(1) 

IX(1)=X1 

IY(1)=Y1 

IZ(1)=Z1 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR ASSIGNING REACTIONS AND INCREMENTATION OF 
FIRST POINT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SR : IMAGINARY FIRST REACTION OF EACH SEGMENT 

!IIOR : IMAGINARY INCREMENTATION ON FIRST REACTION 
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!IRX,IRY,IRZ,IR : IMAGINARLY NONINCREMENTED REACTIONS OF 
EACH FINITE ELEMENT 

SUBROUTINE ARAIOFP(SR,IIOR,IRX,IRY,IRZ,IR) 

DOUBLE PRECISION IR(1),IRX(1),IRY(1),IRZ(1),SR(3),IIOR(3) 

IRX(1)=SR(1)+IIOR(1) 

IRY(1)=SR(2)+IIOR(2) 

IRZ(1)=SR(3)+IIOR(3) 

IR(1)=sqrt(IRX(1)*IRX(1)+IRY(1)*IRY(1)+IRZ(1)*IRZ(1)) 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR FLEXIBILITY MATRIX ELEMENT CALCULATION 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!FEN : FINITE ELEMENT NUMBER 

!IX,IY,IZ : IMAGINARLY NONINCREMENTED COORDINATES OF EACH 
FINITE ELEMENT 

!IXX,IXY,IXZ : IMAGINARLY X INCREMENTED COORDINATES OF EACH 
FINITE ELEMENT 

!IYX,IYY,IYZ : IMAGINARLY Y INCREMENTED COORDINATES OF EACH 
FINITE ELEMENT 

!IZX,IZY,IZZ : IMAGINARLY Z INCREMENTED COORDINATES OF EACH 
FINITE ELEMENT 

!X2,Y2,Z2 : SECOND SUPPORT COORDINATE 

!FM : FLEXIBILITY MATRIX 

!DTT : DISTANCE TO TARGET 

SUBROUTINE 
FMEC(FEN,IX,IY,IZ,IXX,IXY,IXZ,IYX,IYY,IYZ,IZX,IZY,IZZ,X2,Y2,Z2,FM,DT
T) 

INTEGER FEN 

DOUBLE PRECISION IX(FEN+1),IY(FEN+1),IZ(FEN+1),X2,Y2,Z2 

DOUBLE PRECISION IXX(FEN+1),IXY(FEN+1),IXZ(FEN+1) 

DOUBLE PRECISION IYX(FEN+1),IYY(FEN+1),IYZ(FEN+1) 
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DOUBLE PRECISION IZX(FEN+1),IZY(FEN+1),IZZ(FEN+1) 

DOUBLE PRECISION FM(3,3),DTT(3) 

FM(1,1)=IXX(FEN+1)-IX(FEN+1) 

FM(2,1)=IXY(FEN+1)-IY(FEN+1) 

FM(3,1)=IXZ(FEN+1)-IZ(FEN+1) 

FM(1,2)=IYX(FEN+1)-IX(FEN+1) 

FM(2,2)=IYY(FEN+1)-IY(FEN+1) 

FM(3,2)=IYZ(FEN+1)-IZ(FEN+1) 

FM(1,3)=IZX(FEN+1)-IX(FEN+1) 

FM(2,3)=IZY(FEN+1)-IY(FEN+1) 

FM(3,3)=IZZ(FEN+1)-IZ(FEN+1) 

DTT(1)=X2-IX(FEN+1) 

DTT(2)=Y2-IY(FEN+1) 

DTT(3)=Z2-IZ(FEN+1) 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR FORMING REACTION MATRICE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!l : INCREMENTATION LOOP 

!k : SEGMENT LOOP 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT NUMBER 

!IR : IMAGINARLY NONINCREMENTED REACTIONS OF EACH SEGMENT 

!R1 : FIRST REACTION OF EACH SEGMENT AND INCREMENTATION 

!RLP : LAST REACTION OF EACH SEGMENT AND INCREMENTATION 

SUBROUTINE FRM(l,k,NOS,FEN,IR,R1,RLP) 

INTEGER l,k,FEN,NOS 

DOUBLE PRECISION IR(FEN+1),R1(NOS,NOS),RLP(NOS,NOS) 
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R1(l,k)=IR(1) 

RLP(l,k)=IR(FEN+1) 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR FORMING REACTION MATRICE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!l : INCREMENTATION LOOP 

!k : SEGMENT LOOP 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT LENGTH 

!IR : IMAGINARLY NONINCREMENTED REACTIONS OF EACH SEGMENT 

!R1 : FIRST REACTION OF EACH SEGMENT AND INCREMENTATION 

!RLP : LAST REACTION OF EACH SEGMENT AND INCREMENTATION 

SUBROUTINE FRMS(l,k,NOS,FEN,IR,R1,RLP) 

INTEGER l,k,FEN,NOS 

DOUBLE PRECISION IR(FEN+1),R1(NOS,2),RLP(NOS,2) 

R1(l,k)=IR(1) 

RLP(l,k)=IR(FEN+1) 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR TAKING INCREMENTATION BACK 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!l : INCREMENTATION LOOP 

!NOS : NUMBER OF SEGMENT 

!IIOL : IMAGINARY INCREMENTATION ON LENGTH 

!LOES : LEGTH OF EACH SEGMENT 

SUBROUTINE TIB(l,NOS,IIOL,LOES) 

INTEGER l,NOS 
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DOUBLE PRECISION IIOL,LOES(NOS) 

IF (l.eq.1) GOTO 29 

LOES(l-1)=LOES(l-1)+IIOL 

LOES(l)=LOES(l)-IIOL 

29 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR TAKING INCREMENTATION BACK 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!l : SEGMENT LOOP 

!k : INCREMENTATION LOOP 

!NOS : NUMBER OF SEGMENT 

!IIOL : IMAGINARY INCREMENTATION ON LENGTH 

!LOES : LEGTH OF EACH SEGMENT 

SUBROUTINE TIBS(l,k,NOS,IIOL,LOES) 

INTEGER l,k,NOS 

DOUBLE PRECISION IIOL,LOES(NOS) 

IF (k.eq.1) GOTO 29 

LOES(l)=LOES(l)+IIOL 

LOES(l+1)=LOES(l+1)-IIOL 

29 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR FORMING STIFFNESS MATRICE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!R1 : FIRST REACTION OF EACH SEGMENT AND INCREMENTATION 

!RLP : LAST REACTION OF EACH SEGMENT AND INCREMENTATION 
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!DR : REACTION DIFFERENCE ON EACH SUPPORT 

!DDR : CHANGE IN REACTION DIFFERENCE ON EACH SUPPORT FOR 
EACH INCREMENTATION 

SUBROUTINE SMS(NOS,R1,RLP,DR,DDR) 

INTEGER NOS 

DOUBLE PRECISION R1(NOS,NOS),RLP(NOS,NOS) 

DOUBLE PRECISION DR(NOS-1,NOS),DDR(NOS-1,NOS-1) 

DO 43 i=1,(NOS-1) 

  DO 44 j=1,NOS 

    DR(i,j)=RLP(j,i)-R1(j,i+1) 

  44 CONTINUE 

43 CONTINUE 

DO 45 i=1,(NOS-1) 

  DO 46 j=1,(NOS-1) 

    DDR(i,j)=DR(i,j+1)-DR(i,1) 

  46 CONTINUE 

45 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR STIFFNESS MATRICE INVERSION 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NSTRE : DIMENSION OF MATRIX 

!AMATX : MATRIX TO BE INVERTED 

SUBROUTINE MATINV(NSTRE,AMATX) 

INTEGER NSTRE 

DOUBLE PRECISION AMATX(NSTRE,NSTRE) 

DO 23 I=1,NSTRE 

  FACTR = 1.D0/AMATX(I,I) 

  DO 24 J=1,NSTRE 
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    AMATX(I,J) = -FACTR*AMATX(I,J) 

  24 CONTINUE 

  DO 25 K=1,NSTRE 

    IF(I.EQ.K) GOTO 25 

    DO 26 J=1,NSTRE 

      IF(I.EQ.J) GOTO 26 

      AMATX(K,J) = AMATX(K,J)+AMATX(K,I)*AMATX(I,J) 

    26 CONTINUE 

    AMATX(K,I) = FACTR*AMATX(K,I) 

  25 CONTINUE 

  AMATX(I,I) = FACTR 

23 CONTINUE 

RETURN 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR MATRICE MULTIPLICATION 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NSTRE : DIMENSION OF MATRIX 

!MATX1 : FIRST MATRIX 

!MATX2 : SECOND MATRIX 

!MATX3 : SOLUTION MATRIX 

SUBROUTINE MATMULT(NSTRE,MATX1,MATX2,MATX3) 

INTEGER NSTRE 

DOUBLE PRECISION 
MATX1(NSTRE,NSTRE),MATX2(NSTRE,1),MATX3(NSTRE,1) 

DO 27 j=1,NSTRE 

  MATX3(j,1)=0 

  DO 28 i=1,NSTRE 

    MATX3(j,1)=MATX3(j,1)+MATX1(j,i)*MATX2(i,1)/2 
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  28 CONTINUE 

27 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR OUTPUT 

!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT NUMBER 

!X,Y,Z : COORDINATES OF EACH FINITE ELEMENT 

!FLOC : FINAL LENGTH OF CABLE 

!R : REACTION OF EACH FINITE ELEMENT 

SUBROUTINE OUTPUT1(NOS,FEN,X,Y,Z,FLOC,R) 

INTEGER NOS,FEN 

DOUBLE PRECISION X(NOS,FEN+1),Y(NOS,FEN+1),Z(NOS,FEN+1) 

DOUBLE PRECISION FLOC(NOS),R(NOS,FEN+1) 

OPEN(34,file='output1.txt') 

OPEN(49,file='outputx.txt') 

OPEN(61,file='outputy.txt') 

OPEN(62,file='outputz.txt') 

DO 59 j=1,NOS 

  WRITE(34,35) 
X(j,1),Y(j,1),Z(j,1),FLOC(j),R(j,1),R(j,FEN+1),X(j,FEN+1),Y(j,FEN+1),Z(j,FEN+1
) 

  35 FORMAT(9F50.10) 

  DO 51 i=1,(FEN+1) 

    WRITE(49,50) X(j,i) 

    WRITE(61,50) Y(j,i) 

    WRITE(62,50) Z(j,i) 

    50 FORMAT(F20.10) 
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  51 CONTINUE 

59 CONTINUE 

CLOSE(34) 

CLOSE(49) 

CLOSE(61) 

CLOSE(62) 

END 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR INCREMENTATION CALCULATION AND APPLYING 
INCREMENTATION 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!i : SEGMENT LOOP 

!NOS : NUMBER OF SEGMENT 

!IIOL : IMAGINARY INCREMENTATION ON LENGTH 

!R1 : FIRST REACTION OF EACH SEGMENT AND INCREMENTATION 

!RLP : LAST REACTION OF EACH SEGMENT AND INCREMENTATION 

!LOES : LENGTH OF EACH SEGMENT 

!INCR : INCREMENTATION 

SUBROUTINE ICAAI(i,NOS,IIOL,R1,RLP,LOES) 

INTEGER i,NOS 

DOUBLE PRECISION IIOL,R1(NOS,2),RLP(NOS,2),LOES(NOS),INCR 

INCR=0 

INCR=-IIOL*(R1(i+1,1)-RLP(i,1))/((R1(i+1,2)-RLP(i,2))-(R1(i+1,1)-RLP(i,1)))!/2 
ITERATION NUMBER DECREASE TO 1/3 OF IT. 

IF(((INCR.GT.0).AND.(INCR.LT.LOES(i))).OR.((INCR.LT.0).AND.(-
INCR.LT.LOES(i+1))))GOTO 106 

INCR=-(LOES(i+1)-LOES(i))/2 

106 LOES(i)=LOES(i)-INCR 

LOES(i+1)=LOES(i+1)+INCR 
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END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR SORTING OUTPUT DATA 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!l : INCREMENTATION LOOP 

!k : SEGMENT LOOP 

!i : FINITE ELEMENT LOOP 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT NUMBER 

!IX,IY,IZ : IMAGINARLY NONINCREMENTED COORDINATE OF EACH 
FINITE ELEMENT 

!IR : IMAGINARLY NONINCREMENTED REACTION OF EACH FINITE 
ELEMENT 

!IFLOC : IMAGINARLY NONINCREMENTED FINAL LENGTH OF CABLE  

!X,Y,Z : COORDINATES OF EACH SEGMENT AND EACH FINITE ELEMENT 

!FLOC : FINAL LENGTH OF CABLE OF EACH SEGMENT 

!R : REACTION OF EACH SEGMENT AND EACH FINITE ELEMENT 

SUBROUTINE SOD(l,k,i,NOS,FEN,IX,IY,IZ,IR,IFLOC,X,Y,Z,R,FLOC) 

INTEGER l,k,i,NOS,FEN 

DOUBLE PRECISION IX(FEN+1),IY(FEN+1),IZ(FEN+1),IR(FEN+1),IFLOC 

DOUBLE PRECISION 
X(NOS,FEN+1),Y(NOS,FEN+1),Z(NOS,FEN+1),R(NOS,FEN+1),FLOC(NOS) 

IF(l.NE.1) GOTO 60 

X(k,1)=IX(1) 

Y(k,1)=IY(1) 

Z(k,1)=IZ(1) 

R(k,1)=IR(1) 

X(k,i+1)=IX(i+1) 

Y(k,i+1)=IY(i+1) 

Z(k,i+1)=IZ(i+1) 
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R(k,i+1)=IR(i+1) 

FLOC(k)=IFLOC 

60 CONTINUE 

END 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR MODULUS OF ELASTICTY 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!STRESS : STRESS OF CABLE ELEMENT 

!STRAIN : STRAIN OF CABLE ELEMENT 

!S1 : STRESS DATA 

!S2 : STRAIN DATA 

!MMM : TANGENT MODULUS OF ELASTICY 

SUBROUTINE MODULUS(STRESS,STRAIN) 

DOUBLE PRECISION STRESS,STRAIN 

DOUBLE PRECISION S1(1000),S2(1000),MMM 

INTEGER INDEX 

OPEN(67,file='INPUT3.txt') 

DO 68 i=1,1000 

  READ(67,69)S1(i),S2(i) 

  IF (S1(i).GT.STRESS) INDEX=i 

    GOTO 70 

  69 FORMAT(2F20.10) 

68 CONTINUE 

70 CONTINUE 

MMM=(S2(INDEX)-S2(INDEX-1))/(S1(INDEX)-S1(INDEX-1)) 

STRAIN=MMM*(STRESS-S1(INDEX-1))+S2(INDEX-1) 

CLOSE(67) 

END 
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!!!!!!!!!!!!!!!!!!!!!! 

!SUBROUTINE FOR OUTPUT 

!!!!!!!!!!!!!!!!!!!!!! 

!NOS : NUMBER OF SEGMENT 

!FEN : FINITE ELEMENT NUMBER 

!X,Y,Z : COORDINATES OF EACH FINITE ELEMENT 

!FLOC : FINAL LENGTH OF CABLE 

!R : REACTION OF EACH FINITE ELEMENT 

!REACX : REACTION OF ROLLER SUPPORTS ON X DIRECTION 

!REACY : REACTION OF ROLLER SUPPORTS ON Y DIRECTION 

!REACZ : REACTION OF ROLLER SUPPORTS ON Z DIRECTION 

!REACFX : FIRST END FORCE OF CABLE IN X DIRECTION 

!REACFY : FIRST END FORCE OF CABLE IN Y DIRECTION 

!REACFZ : FIRST END FORCE OF CABLE IN Z DIRECTION 

!REACLX : LAST END FORCE OF CABLE IN X DIRECTION 

!REACLY : LAST END FORCE OF CABLE IN Y DIRECTION 

!REACLZ : LAST END FORCE OF CABLE IN Z DIRECTION 

SUBROUTINE OUTPUT2(NOS,FEN,X,Y,Z,FLOC,R) 

INTEGER NOS,FEN 

DOUBLE PRECISION X(NOS,FEN+1),Y(NOS,FEN+1),Z(NOS,FEN+1) 

DOUBLE PRECISION FLOC(NOS),R(NOS,FEN+1) 

DOUBLE PRECISION REACX(NOS+1),REACY(NOS+1),REACZ(NOS+1) 

DOUBLE PRECISION REACFX(NOS),REACFY(NOS),REACFZ(NOS) 

DOUBLE PRECISION REACLX(NOS),REACLY(NOS),REACLZ(NOS) 

DO 71 i=1,NOS 

  REACFX(i)=-((X(i,2)-X(i,1))/(FLOC(i)/FEN))*R(i,1) 

  REACFY(i)=-((Y(i,2)-Y(i,1))/(FLOC(i)/FEN))*R(i,1) 

  REACFZ(i)=-((Z(i,2)-Z(i,1))/(FLOC(i)/FEN))*R(i,1) 
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  REACLX(i)=((X(i,FEN+1)-X(i,FEN))/(FLOC(i)/FEN))*R(i,FEN+1) 

  REACLY(i)=((Y(i,FEN+1)-Y(i,FEN))/(FLOC(i)/FEN))*R(i,FEN+1) 

  REACLZ(i)=((Z(i,FEN+1)-Z(i,FEN))/(FLOC(i)/FEN))*R(i,FEN+1) 

71 CONTINUE 

REACX(1)=REACFX(1) 

REACY(1)=REACFY(1) 

REACZ(1)=REACFZ(1) 

DO 72 i=1,NOS-1 

  REACX(i+1)=REACLX(i)+REACFX(i+1) 

  REACY(i+1)=REACLY(i)+REACFY(i+1) 

  REACZ(i+1)=REACLZ(i)+REACFZ(i+1) 

72 CONTINUE 

REACX(NOS+1)=REACLX(NOS) 

REACY(NOS+1)=REACLY(NOS) 

REACZ(NOS+1)=REACLZ(NOS) 

OPEN(73,file='output2.txt') 

DO 75 i=1,NOS+1 

  WRITE(73,74)i,REACX(i),REACY(i),REACZ(i) 

  74 FORMAT(I5,3F20.10) 

75 CONTINUE 

CLOSE(73) 

E 
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APPENDIX B 

 

CODE OF ANSYS MODEL OF SINGLE-SEGMENT CABLE 

 

 

FINISH   !CLEAR    

/CLEAR 

/TITLE, SINGLE SEGMENT CABLE 

/PREP7   !PREPROCESSOR DATA SECTION IS OPENED 

ET,1,LINK10  !ELEMENT TYPE IS LINK10 

KEYOPT,1,2,2  !SMALL STIFFNESS IS ASSIGNED TO SLACK 

CABLE FOR BOTH LONGITUDINAL AND PERPENDICULAR MOTIONS 

KEYOPT,1,3,0  !TENSION ONLY CABLE OPTION 

R,1,0.001963495408,0 !CROSS-SECTION AREA OF CABLE IS 

"0.001963495" AND "0" FOR INITIALLY SLACK CABLE 

MP,EX,1,200E9  !MODULUS OF ELASTICITY IS "200E6" 

MP,DENS,1,7.85E+3 !DENSITY IS "7.85E3" 

MP,ALPX,1,12E-6  !THERMAL COEFFICIENT IN X DIRECTION "12E-

6" 

MP,ALPY,1,12E-6  !THERMAL COEFFICIENT IN Y DIRECTION "12E-

6" 

MP,ALPZ,1,12E-6  !THERMAL COEFFICIENT IN Z DIRECTION "12E-

6" 

K,1,0,0,0   !DEFINITION OF KEYPOINTS 

K,2,18,0,0 

LSTR,1,2  !DEFINITION OF STRAIGT LINE    

LESIZE,ALL,,,10000 !NUMBER OF ELEMENTS IS "100" 
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LMESH,ALL  !MESHING 

FINISH   !PREPROCESSOR IS FINISHED 

/SOLU   !SOLUTION SECTION IS OPENED 

ANTYPE,STATIC  !TYPE OF ANALYSIS IS STATIC 

ACEL,0,9.81  !ACCELERATION IN X DIRECTION IS "9.81" 

TREF,0   !REFFERENCE TEMPERATURE IS "0" 

TUNIF,40  !UNIFORM TEMPERATURE IS "40" 

DK,1,ALL,0   !DISPLACEMENT ON FIRST KEYPOINT IS "0" IN ALL 

DIRECTIONS 

DK,2,UX,-8  !DISPLACEMENT ON SECOND KEYPOINT IN X 

DIRECTION 

DK,2,UY,0  !DISPLACEMENT ON SECOND KEYPOINT IN Y 

DIRECTION 

DK,2,UZ,10  !DISPLACEMENT ON SECOND KEYPOINT IN Z 

DIRECTION 

!D,ALL,UZ,0  !DISPLACEMENT ON ALL NODES IS "0"  

!F,50,FY,300  !FORCE APPLIED ON ANY NODE 

SSTIF,ON  !STRESS STIFFENING ON 

NSUBST,300  !NUMBER OF SUBSTEPS IS "300" 

NEQIT,200  !NUMBER OF EQUILIBRIUM ITERATIONS IS "200" 

KBC,0   !STEPPED LOADING WITHIN A LOAD STEP IS USED 

INSTEAD OF RAMPED LOADING 

EQSLV,SPARSE  !SPARCE DIRECT SOLVER IS USED FOR 

EQUATION SOLVER DUE TO ILL CONDITION OF PROBLEM 

NLGEOM,ON  !LARGE DEFLECTIONS EFFECT IS CONSIDERED 

AUTOTS,ON  !AUTO TIME STEPPING IS ON 

SOLVE   !SOLUTION 

FINISH   !SOLUTION SECTION IS FINISHED 
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/POST1   !GENERAL POSTPROCESSORS SECTION IS 

OPENED 

PLDISP,1  !DISPLAY DEFORMED SHAP
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APPENDIX C 

 

CODE OF ANSYS MODEL OF MULTI-SEGMENT CONTINUOUS CABLE 

 

 

FINISH      ! CLEAR PREVIOUS DATA  

/CLEAR 

/TITLE, MULTI-SEGMENT CONTINUOUS CABLE 

/PREP7      ! PREPROCESSOR DATA 

SECTION IS OPENED 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ELNUM=1000     ! Number of elements 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITION OF ELEMENTS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ET,1,LINK10      ! ELEMENT TYPE IS LINK10 

WHICH IS USED TO MODEL CABLES 

KEYOPT,1,2,2     ! SMALL STIFFNESS IS 

ASSIGNED TO SLACK CABLE FOR BOTH LONGITUDINAL AND 

PERPENDICULAR MOTIONS 

KEYOPT,1,3,0     ! TENSION ONLY CABLE 

OPTION 

ET,2,CONTA175     ! NODAL CONTACT IS 

DEFINED AS CONTA175 

KEYOPT,2,2,4     ! LAGRANGE MULTIPLIER 

ON CONTACT NORMAL AND PENALTY ON TARGET OPTION IS USED 

ET,3,TARGE169     ! TARGET SURFACE IS 

DEFINED AS TARGE169 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITION OF REAL CONSTANTS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

R,1,0.000314,0     ! CROSS-SECTION AREA OF 

CABLE IS "0.001963495" AND "0" FOR INITIALLY SLACK CABLE 

!R,2,,,,,,,,,,,,100000,,,,0.00000001,      

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITION OF MATERIAL PROPERTIES 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

MP,EX,1,200E9     ! MODULUS OF ELASTICITY 

IS "200E6" 

MP,DENS,1,(4*7.85E+3)    ! DENSITY IS "7.85E3" 

MP,ALPX,1,12E-6     ! THERMAL COEFFICIENT IN 

X DIRECTION "12E-6" 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITION OF KEYPOINTS AND LINES 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

K,1,0,0,0 

K,2,76.2,0,0 

LSTR,1,2 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!ASSIGNING ELEMENTS AND MESHING 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

TYPE,1      ! DEFINITION OF CABLE 

AND MESHING 

MAT,1 

REAL,1  

LESIZE,1,,,ELNUM 
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LMESH,1 

N,(ELNUM+2),10,-1 

N,(ELNUM+3),20,-3 

N,(ELNUM+4),30,-6 

N,(ELNUM+5),40,-10 

N,(ELNUM+6),50,-15 

N,(ELNUM+7),60,-21 

TYPE,2      ! DEFINITION OF CONTACT 

ELEMENTS 

REAL,2 

E,(ELNUM+2) 

E,(ELNUM+3) 

E,(ELNUM+4) 

E,(ELNUM+5) 

E,(ELNUM+6) 

E,(ELNUM+7) 

TYPE,3      ! DEFINITION OF TARGET 

AND MESHING 

MAT,1 

REAL,2 

TSHAPE,LINE 

E,3,4 

EGEN,(ELNUM-2),1,(ELNUM+7) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

FINISH      ! PREPROCESSOR IS 

FINISHED 

/SOLU      ! SOLUTION SECTION IS OPENED 
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!DEFINITION OF ENVIROMENT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ANTYPE,STATIC     ! TYPE OF ANALYSIS IS 

STATIC 

ACEL,0,9.81     ! ACCELERATION IN X DIRECTION 

IS "9.81" 

TREF,0      ! REFFERENCE 

TEMPERATURE IS "0" 

TUNIF,40     ! UNIFORM TEMPERATURE IS "40" 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!ASSIGNING DISPLACEMENTS TO KEYPOINTS AND ELEMENTS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

DK,1,ALL,0 

DK,2,UX,-6.2 

DK,2,UY,-28 

DK,2,UZ,0 

D,(ELNUM+2),ALL,0 

D,(ELNUM+3),ALL,0 

D,(ELNUM+4),ALL,0 

D,(ELNUM+5),ALL,0 

D,(ELNUM+6),ALL,0 

D,(ELNUM+7),ALL,0 

D,ALL,UZ,0     ! ALL DISPLACEMENTS IN Z 

DIRECTION IS 0 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITION OF SOLUTION OPTIONS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

SSTIF,ON     ! STRESS STIFFENING ON 
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NSUBST,30     ! NUMBER OF SUBSTEPS IS "300" 

NEQIT,10000     ! NUMBER OF EQUILIBRIUM 

ITERATIONS IS "200" 

KBC,0      ! STEPPED LOADING WITHIN A 

LOAD STEP IS USED INSTEAD OF RAMPED LOADING 

EQSLV,SPARSE     ! SPARCE DIRECT SOLVER IS 

USED FOR EQUATION SOLVER DUE TO ILL CONDITION OF PROBLEM 

NLGEOM,ON     ! LARGE DEFLECTIONS 

EFFECT IS CONSIDERED 

AUTOTS,ON     ! AUTO TIME STEPPING IS ON 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

SOLVE      ! SOLUTION 

FINISH      ! SOLUTION SECTION IS 

FINISHED 

/POST1      ! GENERAL 

POSTPROCESSORS SECTION IS OPENED 

PLDISP,1     ! DISPLAY DEFORMED SHAPE 


