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ABSTRACT

MODERN MATHEMATICAL METHODS IN MODELING AND DYNAMICS OF
REGULATORY SYSTEMS OF GENE-ENVIRONMENT NETWORKS

Defterli, Özlem

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Songül Kaya Merdan

Co-Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

August 2011, 150 pages

Inferring and anticipation of genetic networks based on experimental data and environmental

measurements is a challenging research problem of mathematical modeling.

In this thesis, we discuss gene-environment network models whose dynamics are represented

by a class of time-continuous systems of ordinary differential equations containing unknown

parameters to be optimized. Accordingly, time-discrete version of that model class is studied

and improved by using different numerical methods. In this aspect, 3rd-order Heun’s method

and 4th-order classical Runge-Kutta method are newly introduced, iteration formulas are de-

rived and corresponding matrix algebras are newly obtained.

We use nonlinear mixed-integer programming for the parameter estimation and present the

solution of a constrained and regularized given mixed-integer problem. By using this solution

and applying the 3rd-order Heun’s and 4th-order classical Runge-Kutta methods in the time-

discretized model, we generate corresponding time-series of gene-expressions by this thesis.

Two illustrative numerical examples are studied newly with an artificial data set and a real-

world data set which expresses a real phenomenon. All the obtained approximate results are

compared to see the goodness of the new schemes. Different step-size analysis and sensitivity
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tests are also investigated to obtain more accurate and stable predictions of time-series results

for a better service in the real-world application areas.

The presented time-continuous and time-discrete dynamical models are identified based on

given data, and studied by means of an analytical theory and stability theories of rarefication,

regularization and robustification.

Keywords: dynamical systems, gene-environment regulatory networks, discretization meth-

ods and comparisons, mixed-integer nonlinear programming, regularization
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ÖZ

GEN-ORTAM AĞLARININ DÜZENLEYİCİ SİSTEMLERİNİN DİNAMİKLERİ VE
MODELLEMESİNDE MODERN MATEMATİKSEL YÖNTEMLER

Defterli, Özlem

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Songül Kaya Merdan

Ortak Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Ağustos 2011, 150 sayfa

Deneysel verilere ve çevresel ölçümlere dayanarak genetik ağların çıkarımının ve tahmininin

yapılması ilgi çekici bir matematiksel modelleme araştırma problemidir.

Bu tezde, dinamiği bir sınıf zaman-sürekli ve optimize edilmesi gereken parametreler içeren

adi diferansiyel denklem sistemleri kullanılarak ifade edilmiş gen-ortam ağ modelleri üzerinde

tartıştık. Buna göre, bu model sınıfının zaman-ayrık versiyonları çalışılmış ve farklı sayısal

yöntemler kullanılarak geliştirilmiştir. Bu yönde, üçüncü dereceden Heun metodu ve dördüncü

dereceden klasik Runge-Kutta yöntemi yeni olarak tanıtılmış, iterasyon formülleri türetilmiş

ve ilgili matris cebiri yeni elde edilmiştir.

Parametre tahmininde doğrusal olmayan karma-tamsayılı programlama kullandık ve verilen

kısıtlı, düzenlenmiş karma-tamsayılı bir problemin çözümünü sunduk. Bu tezle çalışmasıyla,

bu çözümü kullanarak ve zaman-ayrıklaştırılmış modelde üçüncü dereceden Heun metodunu

ve dördüncü dereceden klasik Runge-Kutta metodlarını uygulayarak, gen-ekspresyonlarının

ilgili zaman serilerini oluşturduk. Hem yapay bir veri dizisi ve hem de gerçek-dünyadan

gerçek bir fenomeni ifade bir veri dizisi kullanılarak iki aydınlatıcı sayısal örnek bu tezde yeni

olarak incelenmiştir. Bu yeni yöntemlerin etkinliğini görmek için de, elde edilen tüm yaklaşık
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sonuçlar karşılaştırılmıştır. Gerçek dünyadaki uygulama alanlarında daha iyi hizmet vermek

adına zaman-serilerinin tahmin sonuçlarının daha kesin ve kararlı elde edilmesi amacıyla

farklı adım boyutları analizleri ve duyarlılık testleri incelenmiştir.

Sunulan zaman-sürekli ve zaman-ayrık modellerin verilen verilere göre tespiti yapılmış, anal-

itik teorisi ve kararlılık teorileri sağlamlaştırma ve düzenleme yönü ile çalışılmıştır.

Anahtar Kelimeler: dinamik sistemler, gen-çevre düzenleyici ağları, ayrıklaştırma yöntemleri

ve karşılaştırmaları, doğrusal olmayan karma-tamsayılı programlama, düzenleme
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CHAPTER 1

INTRODUCTION

System biology is one of the most interesting and important scientific fields of the new

century. There still exist open problems based on the analysis and reconstruction of biological

systems. In order to develop models with simulations for this purpose, a detailed under-

standing of regulation processes at the molecular level is required. Such a work can be

successful with interdisciplinary cooperations between biologists, mathematicians and com-

puter scientists where also experimental techniques are needed [1].

Modern Deoxyribonucleic acid (DNA) sequencing methods analyze large DNA sequences

within a reasonable time and they serve the fundamental information to determine the poten-

tial components of regulatory networks. High-throughput techniques, i.e., DNA-microarray

technology, allow to measure concentrations of all gene products of a cell simultaneously.

By using the data obtained from these measurement techniques, construction of models for

predicting the global behavior of a biological system have a great importance and interest for

the future [1].

1.1 Gene-Regulatory Networks and the Modeling Approaches

The development of the high-throughput techniques gives the possibility to go further in bi-

ological research and do investigations on a system-level approach rather than single cell

components, which aims at an understanding of interactions between these cell components.

This objective requires modeling and analysis methods for these regulatory networks [1].

With the cooperation of biochemical and genetics studies and user friendly computer tools,

various mathematical models have been constructed to describe gene interactions and to make
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predictions in a systematic way [2]. Additionally, the development of new mathematical meth-

ods for the analysis of these highly interconnected systems allows a deeper understanding in

the dynamic behavior and the topological aspects of complex regulatory systems appearing

not only in biology, but also in finance, engineering and environmental sciences. Modeling

gene networks and network reconstruction from experimental data can be seen further in the

reviews [2, 3, 4, 5, 6, 7, 8].

The modeling approaches can be summarized as:

• Modeling by graphs,

• Bayesian networks,

• Boolean networks,

• Dynamic models derived from ordinary differential equations or piecewise linear dif-

ferential equations and hybrid system modeling.

Modeling by graphs is a very common way of modeling gene regulatory networks by repre-

senting them as directed graphs. A directed graph (or network) is expresses by G = (V, A)

consisting a finite set of nodes (vertices), V , and a subset A of arcs of the cross product V × V

[9]. Here, an arc a ∈ A is defined as an ordered pair of distinct nodes (v1, v2) ∈ V × V in the

directed graph. In a genetic network, the nodes refer to genes and the arcs (edges) refer to the

relationships between the genes. The pair a = (v1, v2) of nodes is an arc which connects two

nodes (genes), v1 and v2, and weighted with a value. This value represents the influence of the

first node v1 (gene 1) on the second node v2 (gene 2). Moreover, this associated weight can

be positive or negative which denotes for an activation effect or inhibition effect, respectively,

between gene 1 and gene 2 [10].

By looking at the operations on the regulatory networks, we can get information about bio-

logical features. These operations can be the pathways between two predefined genes, cycles,

connectivity, etc., which give us some hints about missing regulatory relations, connectivity,

structures (components and clusters) and about redundancy in the network [11].

Boolean networks are deterministic dynamic models and firstly studied by Kauffman [12] in

order to model gene regulation. From that time, these models have commonly been used to

describe the dynamic of gene regulatory networks [13, 14, 15, 16, 17, 18]. The advantage
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of Boolean networks is that they can present a rich variety of dynamic behaviors such as

convergence to a stable steady state, multi-stationarity, oscillations, switch-like behavior or

hysteresis [19, 20]. Since Boolean networks are in the class of deterministic models, they

cannot capture the stochastic nature of gene expression and do not account for noise in the

measurements. Many extensions of Boolean networks have been proposed in order to over-

come some of its limitations (for explanations, see [1] and its cited references). Among these

extensions, the most important are probabilistic Boolean networks [21] which were developed

to be able to consider and include the stochastic fluctuations in the regulation processes [1].

Bayesian networks are firstly used by Murphy and Mian [22] to model gene interactions.

These network models are still frequently used to reconstruct interactions among genes by

using expression data [23, 24]. Getting information for a Bayesian network from experimental

data is related with estimating the joint probability distribution which defines the structure of

the corresponding directed acyclic graph [1]. Bayesian networks are stochastic systems. They

consider stochastic effects and so account for stochastic fluctuations in regulation processes

and noisy measurements. On the other hand, they can not express the evolution over time

since they are static models. Also, the underlying interaction graph has to be acyclic in order

to obtain a well-defined joint probability distribution. These are the limitations of Bayesian

networks to model complex phenomena such as oscillations, multi-stationarity and hysteresis

[5, 19, 20]. Dynamic Bayesian networks [22, 24] are developed by various scientists in order

to deal with these restrictions [1].

Further information and more references about these modeling techniques can be seen from

[1, 2, 11, 25]. The methods listed above have both advantages and disadvantages [2, 26] with

respect to the goodness of data fit, computation time, capturing dynamics, stability and other

qualitative or quantitative aspects.

Modeling with ordinary differential equations is developed in recent years, to represent the

dynamic behavior of gene regulatory networks quantitatively. This type of models leads to a

better understanding of underlying mechanisms causing certain kinds of dynamic behaviors in

comparison to previously mentioned Boolean and Bayesian networks. Different parametriza-

tions of the right-hand side function of the initial value problem have been suggested. The

parameters in the model refer directly to reaction rates, binding affinities or degradation rates,

which are useful both for a reasonable restriction of the parameter space and the interpretation
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of inference results [1].

A linear ordinary differential equation model is firstly proposed by Chen et al. [27] for the

reconstruction of gene interactions from measured gene expression data. Further extensions

of ordinary differential equation models include piecewise linear and nonlinear approaches,

hybrid system approach (see [11, 25, 28, 29, 30, 31, 32, 33] and references therein), stochastic

kinetic approaches, partial differential equations and delay differential equations [34]. In [28],

the mixed continuous-discrete model is introduced to contain the most relevant regulating

interactions in a cell as a complementary approach to the one firstly given by [27] and later

on by [11, 25, 35]. In this model, a complete description of the dynamics is given by a hybrid

system.

Various mathematical methods which have been developed for the construction and analy-

sis of such networks can be seen in [6, 9, 10, 11, 25, 27, 28, 36, 37, 38, 39, 40, 41, 42]

and related citations. In [11, 25, 29, 31, 32, 42], a more sophisticated model of differential

equations is studied by the inclusion of an additive shift term which leads into an extended

space of model functions. Gene-environment networks and embedding of the genetic net-

works into them are newly introduced in [32, 39, 40]. Here, the new nodes are environmental

items such as, e.g., toxins, radiation in terms of biology. Moreover, in the application ar-

eas of gene-environment networks, the possible environmental factors can be poison in soil,

groundwater, air and food, global warming, different types of radiation and electro-magnetic

waves. Furthermore, welfare and general items of lifestyle in a society, but also education

and campaigns for a more healthy lifestyle can also be regarded as environmental items.

Since advanced high technology methods, like DNA microarray technology, are very valu-

able but also affected with various uncertainties, noise and measurement errors, then those

errors are also included in gene-environment network models by considering different kinds

of uncertainties. Those uncertainty and error sets are in the types of interval, polyhedral and

ellipsoidal uncertainty sets where bounds on the uncertain variable are imposed (see for ex-

ample [29, 30, 43, 44, 45, 46, 47] and cited references therein). Finally, the robust versions of

considered gene-environment network models are newly studied by the application of most

modern methods in [48, 49].

In this thesis, we consider the dynamical modeling approach for the representation of the

system dynamics of regulatory networks where it is represented by the system of ordinary
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differential equations.

1.2 Aspects of Rarefication, Regularization on the Level of

Modeling these Networks

Mathematically speaking, in the solution of inverse problems, sometimes we can face with

ill-posed problems in the case of continuous systems, or ill-conditioned in the case of discrete

linear systems. It is usually possible to stabilize the inversion process by imposing additional

constraints that bias the solution. Such a process is generally called as regularization. which

is a common method to deal with an ill-posed or ill-conditioned inverse problem [50].

A problem is defined as ill-posed problem if a solution is not existing or not unique or if it

is not stable under perturbation on data. Tikhonov regularization is the most common and

well-known form to make these problems regular and stable [51].

In the usual descriptions of modeling of gene regulatory networks by systems, the variables

denote concentrations of gene products, that are messenger ribonucleic acids (mRNA)s or

proteins, and the data set contains microarray gene expression measurements. The inference

of gene regulatory networks can be formulated as an optimization problem with a given space

of state variables, a set of conditions, model functions and observations.

The aim of the network inference problem is to select a model which fits better with the

given data which is generally sparse. This sparsity means that the number of network com-

ponents is large whereas the number of different conditions, or time points, is small at the

same time. Hence, there is a fitting problem of a high-dimensional function to only a few

data points. Therefore, the corresponding optimization problems are ill-posed. Various regu-

larization methods have been developed to overcome this problem. Some of the well-known

regularization methods for stochastic models are the Akaike information criterion (AIC) and

the Bayesian information criterion (BIC) [10, 28, 36, 37, 55] which include the negative log-

arithm of the likelihood function and penalized term having a large number of parameters.

The motivated approaches restrict the parameter space by considering biological knowledge

in the optimization process. This can be done by introducing constraints into the optimization

problem such as upper bounds for single parameters. As another way, penalty terms can be

added to the likelihood function [1].
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Therefore, these models have to be constructed by taking into account the specific biological

knowledge in order to have more reliable predictions [1].

1.3 Scope of the Thesis

In this thesis, the aim is to contribute to a further development of mathematical modeling,

dynamical systems and optimization theory in the fields of computational biology, engineer-

ing and environmental sciences, which are among the most challenging and emerging re-

search areas. In the modeling, prediction and optimization of target-environment and gene-

environment regulatory networks, which appear in the mentioned real-world areas, we con-

sider the dynamical modeling approach. We start with time-continuous models to express

the evolvement in time of various expression levels of target variables, including their inter-

actions with the environmental variables in the network, and then turn to the time-discrete

case. Different and most modern numerical discretization schemes are studied, applied and

compared in order to obtain more accurately generated time-series predictions of expression

levels of targets. The step-size analysis and sensitivity tests are analyzed. By this thesis work,

we give a contribution to the methodology in mathematics in the aspect of improved modeling

of target-environment and gene-environment regulatory networks, including their rarefication

which may be regarded as a regularization, and to the numerical solution of their dynamics.

We present many new ideas and approaches both in the theoretical and applied study of gene-

environment networks under mathematical and interdisciplinary considerations. This thesis

study gives a mathematical contribution that joins the given toolboxes and methodologies of

statistics and data mining.

The new results obtained in this thesis require further improvements of the algorithms and

different kinds of rarefication and combined methods, which have to be computationally val-

idated, together with the comparative studies. The studied real-world example can be con-

sidered as a first-step implementation of our newly derived explicit numerical methods on

real-world data, again with a comparative study. We will combine our new numerical meth-

ods with the concepts of correlation, uncertainty and robustness to make modeling and pre-

diction both more accurate and more stable in order to give a better service in the real-world

application areas.
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These studies mean innovations in the biological and environmental subjects under consid-

eration, and lead to advances in mathematical and applied sciences. Indeed, the areas of

applications go much further than gene-environment networks, but enter various other areas,

such as finance, which we also regard as an area of the environment with respect to biological

and health states. The thesis contributes to the mathematical sciences, while also supporting

medical and living conditions of the people.

During the study of this thesis, I have learned and actively applied how to model the time

evolution of gene-environment networks (e.g., linear, nonlinear) both in time-continuous and

time-discrete cases. Moreover, the original contributions are listed below:

• Time-discretization of the dynamics of the studied model class is improved with most

modern numerical schemes. In this respect, 3rd-order Heun’s method and 4th-order

classical Runge-Kutta method are newly introduced and implemented to time-discrete

version of the dynamic model class of gene-environment networks,

• Numerical applications and comparisons of these newly introduced methods are firstly

studied both with artificial data and real-world data,

• Sensitivity tests and step-size analysis of the time discrete models via numerical simu-

lation are newly investigated in the field,

• Numerical optimization in the solution of the dynamics of that models are done, mainly

by nonlinear mixed-integer programming with employing most modern codes,

• As a new approach, process version of generalized partial linear modeling is introduced

for gene-environment networks,

• Detection and introduction of a promising research direction for the future is done. We

explored and briefly demonstrated future research potentials in the use of algorithmic

stability theory, and in the theories of classification and regression under various forms

of uncertainty.
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1.4 Outline of the Thesis

This thesis is comprised of five main chapters. Mainly, the contents are organized as follows:

Chapter 1 introduces the brief history about the modeling of gene-environment networks as

regulatory systems. Then, the notion of regularization of these network models is given.

Additionally, the objectives and plan of the study are listed.

Chapter 2 includes the preliminaries part of the thesis. The fundamental biological knowledge

is given about gene expressions, regulation mechanisms of gene expression, protein produc-

tion, DNA microarray analysis and effects of environmental factors. Some basic notions of

regression is presented together with a brief introduction about regression methods and some

regression models which are needed for the parameter estimation problem. The necessary

optimization tools are also mentioned.

In Chapter 3, the dynamical modeling approach is presented for the time evolution of reg-

ulatory systems, e.g., gene-environment networks, target-environment networks. The model

class which is based on a system of ordinary differential equations is presented with the fun-

damental descriptions. The time-continuous and time-discrete versions of the models are also

listed.

This thesis mainly emphasizes and originally contributes on the numerical methods used for

the time discretization of the dynamics of gene-environment regulatory systems for a bet-

ter and more stable long-time predictions of the gene expression values. In Chapter 4, two

new numerical methods are studied for this purpose. Their formalizations and correspond-

ing matrix algebras are newly derived based on the most general form of the model class for

gene-environment networks. Moreover, the performance and comparison of these two newly

implemented numerical methods are examined by the study of two illustrative examples on

a given set of data. The nonlinear mixed-integer least-squares problem is formulated and

solved as an optimization problem for the parameter identification of the considered gene-

environment network model. In one of the examples, an artificial data set is used containing

four different types of behavior. Different step-size analysis and sensitivity tests of these nu-

merical methods are performed on the artificial data and obtained results are presented with

the help of figures. In the second numerical example, a real-world data set is used coming

from real biological phenomena. Before applying the new numerical methods on this real-
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data set, a data analysis is conducted in such a way that a small subset from the whole data set

is selected and corresponding biological properties are analyzed based on some biological and

mathematical techniques. These properties and information representing the behavior of the

considered system are used for the construction of the constraints in the corresponding non-

linear mixed-integer optimization problem. A relaxed version and so a more general version

of this optimization problem is also studied by extending the constraints. Then, the selected

subset of the real-world data is used for the comparison of the new numerical methods. The

discussion parts includes the comments made on the obtained numerical results which are

unbounded and with a weak fitting property. So, this real-world example requires further con-

siderations and improvements in the continuation of the computational study. In both of these

examples, the considered data sets belong to gene-networks without environmental factors

and a linear model is studied to represent these systems.

Chapter 5 is organized as an introduction to the study of robustification of regulatory sys-

tems. In fact, Generalized Partial Linear modeling is presented and newly developed for the

gene-environment networks and target-environment networks. The robustified version of this

approach is even announced for the inclusion of the uncertainty concept. As a future work, a

new research agenda is presented via Generalized Partial Linear Models for the robust identi-

fication of regulatory networks including the computational validation on a given set of data.

Finally, conclusions and an outlook to some further studies are stated in the last chapter.
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CHAPTER 2

PRELIMINARIES

In this chapter, some basic notions and tools which are needed throughout the thesis will be

briefly introduced.

2.1 Basics of Natural and Environmental Sciences

2.1.1 Gene Expressions, Regulation Processes and

DNA-Microarrays

Proteins are fundamental elements in the organization of different processes within a cell.

Long folded chains of amino acids construct proteins as macromolecules. There are 20 amino

acids which the life is composed of. Proteins carry out many functions which are crucial and

fundamental for the survival of the cell. DNA encodes the entirety of proteins that a cell can

produce. DNA is a sequence of four kinds of nucleotides which are adenine (A), guanine (G),

cytosine (C) and thymine (T). The parts of this sequence that encode proteins are called genes.

The order of nucleotides in a gene carries the needed information for producing a functional

protein [1].

Gene expression is the process of protein synthesis which happens in two steps. The first

step is called transcription where the nucleotide sequence of a gene is transcribed into an

intermediate product called messenger RNA (mRNA). The second step in protein production

is translation in which mRNA carries the genetic information from the chromosomes to the

ribosomes, a cell structure containing ribosomal RNA (rRNA) and protein base pairs. So,

mRNA serves as a template in this process. Shortly, the transfer of genetic information from
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DNA to RNA is called transcription and the passing of information from RNA to proteins

called translation. The route of this flow of information is called central dogma of biology

which is depicted in Figure 2.1 (see [1, 11] and their references).

Figure 2.1: Central dogma of biology [52]

The measure of gene expression can be determined from the genomic analysis at the mRNA

level [53]. Genomic and environmental factors influence the gene expression levels. For

example, the environmental factors including stress, light, temperature and other signals cause

some changes in hormones and in enzymatic reactions that affect the gene expression level.

Therefore, mRNA analysis tells us information about the genetics of an organism and also

about the dynamic changes in environment of that organism. The experimentalists usually

measure mRNA levels to determine the future predictions [1, 11].

The rate of gene expression is highly regulated at different levels and can change in a wide

11



range. This gives the flexibility of adaptation to external conditions, such as nutrition supply,

salinity, temperature, and also ability to respond to the perturbations for survival.

A gene expression pattern is defined as a snapshot of gene product (mRNA or protein) concen-

trations. The expression pattern of a cell is determined by the tissue and can be influenced by

external conditions. A typical mRNA expression pattern for an organism or a tissue is called

transcriptome while a protein concentration pattern is called proteome [1]. Transcriptional

regulation usually happens at the transcription initiation and it affects directly the concentra-

tions of mRNAs, which are measured in microarray experiments. Transcription factors are

defined as the proteins that bind to the DNA and influence transcription. There has been a

huge work to understand binding mechanisms of transcription factors. The models which

represent regulation of transcription initiation by binding of proteins to the DNA are referred

to as gene regulatory networks [1].

In usual methods of molecular biology, the expression level of one gene is obtained in one

experiment which results very limited throughput and the whole picture of gene expression

is hard to obtain. On the other hand, a new method is developed recently that is called DNA

microarray technology [53, 54]. By this technique, the expression of thousands of genes can

be monitored in one experiment which also leads to obtain a detailed picture of the interactions

between thousands of genes simultaneously [55].

As one of the most interesting problems of molecular and cellular biology, the researchers

aim to infer the underlying gene regulatory networks at the system level. This mathematically

means a graph consisting of vertices as genes and of edges connecting the genes. Various

techniques exist to define a genetic network. In general, a genetic network is described as a

collection of molecular components such as a group of genes in which the individual gene can

influence or change the activity of other genes [56, 57]. A cellular function is then carried out

collectively by the interaction among these genes [10].

A lot of effort has been performed to infer gene regulatory networks and different mathemat-

ical methods have been developed for modeling a genetic network mathematically such as

differential equation models [27, 36, 58, 59], linear models [60], stochastic models [2, 61],

neural networks [62], Bayesian networks [63], and Boolean networks [6].
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2.1.2 Effects of the Environment

Interaction between genes and environment is frequently characterized as epigenetic, which

refers to stable changes of gene expression patterns in response to environmental factors

without any mutations in the DNA sequence. DNA methylation, acetylation, ethylation and

phosphorylation are some of epigenetic factors providing important epigenetic regulations

[32, 64, 65]. The fact that the frequency of an epigenetic effect is higher than genetic se-

quence mutations gives importance to the studies on epigenetics. Therefore, to bring a better

explanation of the complexity of nature, the genetic networks cannot be studied alone without

taking into consideration the environmental factors which affect epigenetic patterns and, thus,

gene expression patterns [42].

Nowadays, it is clearly understood that environmental factors form an important group of

regulating components and by including these additional variables the models’ performance

can be significantly improved [44]. Such a consideration gives advantage as it is presented

in [66], where it is shown that prediction and classification performances of supervised learn-

ing methods for the most complex genome-wide human disease classification can be greatly

improved by considering environmental aspects. Various examples from biology and life

sciences, e.g., metabolic networks [43, 67, 68], immunological networks [69], social and eco-

logical networks [70], refers to target-environment and gene-environment regulatory systems

where environmental effects are strongly involved (see [44] and its cited references for de-

tails).

2.2 Parameter Estimation

For the inference of the regulatory networks, which appears in system biology, environmental

sciences, education and economy, it is important to identify, predict and model the relationship

among the components (variables).

Regression is one of the common approach used in the literature for this purpose. There

exist various methods to handle regression problems but the mostly preferred ones are the

Maximum Likelihood Estimation (MLE) and Least-Squares Estimation (LSE). These methods

are quite newly used for the parameter identification of the gene-environment networks and

target-environment networks, as regulatory systems, in many studies with different approaches
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and extensions (see [11, 28, 29, 30, 31, 32, 36, 37, 45] and the cited references inside).

2.2.1 Regression

As one of the mathematical and statistical methods, regression analysis is very useful for

many types of problems appearing in the areas of engineering and science. Mainly, it an-

alyzes and tries to model the relationship between the dependent variable and one or more

independent variables. Regression analysis is widely used for both prediction and estimation,

and most commonly estimates the conditional expectation of the dependent variable given the

independent variables. The target of the estimation is the regression function, which is called

the function of independent variables [71, 72].

There are many regression models in the literature, with applications from different fields (see

[74, 79, 80, 81, 82] and references therein), like:

• Linear regression models,

• Nonlinear regression models,

• Generalized linear models,

• Nonparametric regression models,

• Additive models,

• Generalized additive models.

2.2.1.1 Linear Regression

As a statistical method, linear regression correlates the amount of change in the dependent

(response or target) variable to the independent (regressor or predictor) variable(s). Here, the

model is not necessarily linear in the independent variables but it depends linearly on the

unknown parameters and has a linearly additive relationship. In general, the form of a Linear

Regression Model (LRM) [71, 72, 75, 80] with k regressor variables x1, x2, . . . , xk is given as

follows:

Y = β0 + β1x1 + β2x2 + . . . + βk xk + ε, (2.1)
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where ε is a random error with zero mean and unknown varianceσ2, Y is the response variable

and xi (i = 1, 2, . . . , k) represent the independent variables. Additionally, the random errors

corresponding to different observations are uncorrelated random variables and assumed to be

normally distributed. The conditional expected value of Y for each value of xi, i.e., by the

vector X, is given as

E(Y | X) = β0 + β1x1 + β2x2 + . . . + βk xk. (2.2)

We can clearly define the N observations in the sample as

yi = β0 +

k∑
j=1

β jxi j + εi (i = 1, 2, . . . ,N), (2.3)

where N is the number of the data, the errors εi are assumed to be uncorrelated random

variables with zero mean and variance σ2 [73, 80].

In order to estimate unknown regression parameters in the above regression problems, one

can use MLE and LSE methods where the latter one is the easiest and most common. If the

distribution of the errors is known, then MLE is an alternative estimation method which is

more general and in some cases more efficient. With both methods the aim is to obtain the

line which best predicts the response variable from a given set of data [50, 72, 76].

One can use the LSE method to find the unknown parameters of the general linear regression

problem given in (2.3) by minimizing the function of the residual sum of the squares (RSS)

between yi and its expected values:

RS S (β) =
N∑

i=1

(yi − β0 −
k∑

j=1

xi jβ j)2, (2.4)

Here, RS S (β) is a quadratic function of the parameters. The matrix form of Eq. (2.4) can be

written as [76]:

y = Xβ + ε, (2.5)

where y is the (N × 1)-vector of dependent variables, ε is the (N × 1) random error vector,

β is the (k + 1) × 1-vector of unknown parameters, β = (β0, β1, . . . , βk)T , and X is the N ×

(k + 1) (design) matrix of the independent variable and defined by the input data xi, j (i =

1, 2, . . . ,N; j = 1, 2, . . . , k):

X =



1 x11 · · · x1k

1 x21 · · · x2k
...
...

...

1 xN1 · · · xNk


. (2.6)
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We note that (2.4) can be rewritten in terms of the Euclidean norm, ∥ · ∥2, in the following

way [76]:

RS S (β) = (y − Xβ)T (y − Xβ) =∥ y − Xβ ∥22 . (2.7)

Then, corresponding normal equations can be obtained and solved accordingly (see [50, 76]

for more details).

LRM is a regression model which is commonly used. A first extension of the linear model-

ing which permits the models to fit with the data having probability distributions other than

the normal distribution are the generalized linear models. Most of the important and useful

statistical models such a with Poisson, binomial, Gamma or normal distributions can be rep-

resented as generalized linear models by selecting an appropriate link function and a response

probability distribution. The ordinary linear models are recovered as a special case when the

identity function is chosen as the link along with the normal distribution [74, 77, 80, 81].

Both linear models and generalized linear models are influenced by multi-collinearity, miss-

ing variables and outliers in the given data. It is not easy to process generalized linear models

for choosing important predictors and their interactions [80, 81]. All these difficulties can be

managed by using data mining which is an interdisciplinary and difficult scientific research

works on the outcomes of the experiments and all other kinds of measurements. By using the

tools of data mining, high-level categorical predictors are handled efficiently. As an adaptive

procedure, Multiple Adaptive Regression Spline (MARS) is one of the important data mining

tool which is very useful and effective for high-dimensional problems. It does not force to

have any specific relation among the predictor and dependent variables. However, it is able

to estimate the contributions of basis functions and so both the additive and interaction ef-

fects of the independent variables can identify the dependent variable. Using MARS together

with generalized linear models makes the model-building process relatively faster and more

efficient (see [79, 80, 81, 82] and the related references therein).

(i) Generalized Linear Models

In various areas of prediction, regression and even classification problems Generalized Linear

Models (GLMs) are applicable. GLM approach is used in the case the normality and constant

variance assumptions are not satisfied [75]. It has an advantage like the flexibility in address-

ing a variety of statistical problems and also in the case of the availability of many software
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packages.

GLM allows the mean value of a dependent variable, to depend on a linear predictor through

a nonlinear link function and allows the probability distribution of the response variable Y ,

to be any member of an exponential family of distributions. The fundamental formulation of

GLM is as follows (see [74, 77, 80, 81] and their references):

ηi = H(µi) = xT
i β (i = 1, 2, . . . ,N), (2.8)

where H is a smooth monotonic link function, µi = E(Yi) expected value of the response

variables Yi, xi is the vector of observed value of explanatory variable for the ith-case, β is the

vector of unknown parameters, and N is the number of data.

After having introduced GLM next, we will go one step further by the class of generalized

partial linear models.

(ii) Generalized Partial Linear Models

Since GLM is a linear approach like linear modeling, it can not be used for the representa-

tion of any system that contains linear and nonlinear items together. Therefore, Generalized

Partial Linear Models (GPLMs) are developed having an important advantage that consists

in some grouping which could be done for the input dimensions or features in order to assign

appropriate submodels specifically. This kind of particular representation of submodels gives

more accurate and stable (regular) results in the existence of noise in the data (see [74] and

the references mentioned there).

A particular type of semiparametric models are the GPLMs, which are the extended version

of the GLMs obtained by adding a single nonparametric component to the usual parametric

terms. The GPLM is defined by:

E(Y | X,T) = G(XTβ + ς(T)), (2.9)

with ς(·) as a smooth function to be estimated, G := H−1 is a known link function which

links the mean of the response variable, µ = E(Y | X,T), to the predictors. Moreover, β is a

(m × 1)-vector of unknown parameters β = (β1, β2, . . . , βm)T , X is an (m × 1)-random vector

representing (typically discrete) covariates and T is an (q × 1)-random vector of continuous

covariates where both X and T comes from a decomposition of explanatory variables [74, 78,

80, 81].
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Then, the general version of the model can be written as follows [74, 78, 80, 81, 82]:

H(µ) = η(X,T) = XTβ + ς(T) =
m∑

j=1

X jβ j + ς(T), (2.10)

with observation values yi, xi and ti (i = 1, 2, . . . ,N),

µi = G(ηi), ηi = H(µi) = xT
i β + ς(ti). (2.11)

Various methods exist for the estimation of GPLMs (see [74, 79, 80, 81, 82] and the references

inside).

2.2.1.2 Nonlinear Regression

The systems which has nonlinear interactions among the components can not be represented

efficiently and fitted with the data by LRMs. Those systems commonly appear in real-life

situations and can be estimated by nonlinear regression [83].

In linear regression models, the function relating the mean of response variables to the inde-

pendent variables is linear in the parameters. When the model contains at least one nonlinear

parameter, then it is called as a nonlinear model which means that there exists at least one

derivative with respect to a parameter must include that parameter. In nonlinear regression

models, the function relating the mean of response variables to the independent variables is

nonlinear in its parameters [73].

The general form of nonlinear regression models is given as [75]:

Y = f (x,γ) + ε, (2.12)

in which f (x,γ) represents the expectation function for the nonlinear regression model, γ is a

(k × 1)-vector of unknown parameters γ = (γ1, γ2, . . . , γk)T , x is a (k × 1)-vector of regressor

variables x = (x1, x2, . . . , xk)T and ε is an uncorrelated random error with zero mean and

variances σ2
i (i = 1, 2, . . . ,N). The same model with N observations can be expressed in

terms of vector notation as the system below [80]

y = φ(γ) + ε, (2.13)

where φ(γ) := ( f (x1,γ), f (x2,γ), . . . , f (xN ,γ))T with the vector of residual ε. In literature,

different methods exist for nonlinear regression models, e.g., Nonlinear Regression meth-

ods, Maximum Likelihood Estimation method, the Gauss-Newton method and the Levenberg-

Marquardt Method [82].

18



2.3 Some Mathematical Programming Tools

In the modeling and optimization of target-environment (gene-environment) regulatory sys-

tems, the following optimization tools are some of the methods which are recently used by the

researchers [28, 29, 30, 31, 32, 36, 37, 40, 42, 43, 45, 46, 49, 65, 84, 85] to obtain improved

results. Among these tools, the conic quadratic programming with GPLM approach will be

studied in the continuation of this thesis as a new and promising idea. The starting point of

this new idea is presented in Chapter 5, Section 5.2, for robustification purposes.

2.3.1 Conic Quadratic Programming

In [86], it is mentioned that there can be always a way to pass from an optimization problem

to an equivalent one with a linear objective. Then, the corresponding conic quadratic repre-

sentation of the original problem can be written if it contains one of the following functions

and sets: a constant function, an affine function, the fractional-quadratic function, hyperbola,

the Euclidean norm, the squared Euclidean norm. Hence, the linear least-squares problem can

be converted to conic quadratic form when the Euclidean norm is used and the constraints of

the optimization problem is defined inside a second-order cone. Then, these type of problems

can be solved by conic quadratic programming (CQP).

Definition 2.3.1 [86] An m-dimensional second-order (or Lorentz or ice-cream) cone Lm is

defined as

Lm = {x = (x1, . . . , xm)T ∈ Rm | xm ≥
√

x2
1 + . . . + x2

m−1}, m ≥ 2. (2.14)

Definition 2.3.2 [86] A conic quadratic problem is a conic problem

min
x

cT x,

subject to (s.t.) Ax − b ≥K 0, (2.15)

where x is the design vector, c is a given vector of coefficients of the objective function cT x, A

is the given constraint matrix, b is the given right hand side vector of the constraints and the

cone K is a direct product of many second-order cones, K = Lm1 × Lm2 × · · · × Lmr . Here, ≥K

stands for Ax − b ∈ K.
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A CQP problem is an optimization problem with linear objective function and finitely many

ice-cream constraints

Aix − bi ≥Lmi 0 (i = 1, 2, . . . , r).

Hence, a CQP can be rewritten as

min
x

cT x,

s.t. Aix − bi ≥Lmi 0 (i = 1, 2, . . . , r). (2.16)

Note that, linear programming, conic quadratic programming and semi-definite programming

are all particular cases of conic programming.

2.3.2 Generalized Semi-Infinite Programming

As one of the optimization problems class, semi-infinite programming (SIP) problems consist

of infinitely many constraints and finitely many variables. During the last thirty years, SIP

has been studied and improved in many directions through its theory and numerical methods

[87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 106]. In recent years, generalized semi-infinite

programming (GSIP) is developed and important properties and applications are analyzed by

the researchers [92, 97, 100, 101, 102, 103, 105, 106] (see also their cited references).

Definition 2.3.3 [102, 103] A GSIP is an optimization problem having the form

GS IP : min f (x) s.t. x ∈ M,

with M = { x ∈ Rn| g(x, y) ≤ 0 for all y ∈ Y(x) },

and Y(x) = { y ∈ Rm| v j(x, y) ≤ 0, for all j ∈ Q }. (2.17)

All defining functions f , g, v j ( j ∈ Q = {1, . . . , q}), are assumed to be real-valued and at least

twice continuously differentiable on their respective domains. Moreover, we assume that the

set-valued mapping Y : Rn ⇒ Rm is locally bounded, that is, for each x̄ ∈ Rn there exists a

neighborhood U of x̄ such that
∪

x∈U Y(x) is bounded in Rm.

Here, the possibly infinite index set Y(x) of the semi-infinite inequality constraint is allowed

to vary with x in a GSIP. On the contrary, in a standard semi-infinite optimization problem the

index set is fixed, that is, we have Y(x) ≡ Y , and if Y is described by functional constraints,

then the vector function v does not depend on x [102, 103].
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Note that, SIP was from early stages of its development related with Chebyshev approxi-

mation [87, 88, 99]. On the other hand, reverse Chebyshev approximation can be modelled

by GSIP [97, 104]. Both approximations are used in some of the recent works [29, 30, 31,

32, 40, 42, 43, 45, 46] for a better modeling and anticipation of biological, environmental,

economical complex systems when the given experimental data contains error or uncertainty.

2.3.3 Nonlinear Mixed-Integer Programming

The study and solution of linear integer programs is one of the central and important topic of

discrete optimization. Linear integer programming has an increasing usage in the modeling

of many problems that arise in the fields of science, technology, society and business. There

are different methodologies for the solutions of integer programming problems, see [107, 108,

109, 110] and their references.

Definition 2.3.4 [110] An integer program or more general a mixed integer program (MIP)

is defined in the form

z MIP = min cT x,

s.t. Ax

≤=
 b,

l ≤ x ≤ u,

x ∈ ZN × RC ,

(2.18)

where A ∈ QM×(N∪C), c ∈ QN∪C , b ∈ QM. The sets M,N and C are non-empty and finite

sets with N and C are disjoint. Here, N and C have the following elements as numbers, i.e.,

N = {1, . . . , p} and C = {p + 1, . . . , n}, without loss of generality. l ∈ (Q ∪ {−∞})N∪C ,u ∈

(Q ∪ {∞})N∪C are the vectors which are called lower and upper bounds on x, respectively. A

variable x j, j ∈ N ∪ C, is unbounded from below (above), if l j = −∞ (u j = ∞). An integer

variable x j ∈ Z with l j = 0 and u j = 1 is called binary.

Different notions can also be used for (2.18) as follows:

linear program or LP, if N = ∅,

integer program or IP, if C = ∅,
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binary mixed integer program, 0 − 1 mixed integer program or BMIP, if all variables x j

( j ∈ N) are binary,

binary integer program, 0 − 1 integer program or BIP, if (2.18) is a BMIP with C = ∅.

In reality, the formulation of the same problem appears in applications may not be unique.

So, it is important to find the appropriate formulation. Sometimes we may not even have the

problem itself but just get the problem formulation as given in (2.18). Hence, the appropriate

information, to find the solution, have to be taken from the constraint matrix A, the right-hand

side vector b and the objective function c, which is called a preprocessing phase of mixed

integer programming solvers. Then, the problem is still in the type of (2.18), but containing

more information about the inherit structure of the problem. After that, preprocessing also

tries to find and eliminate unnecessary information from a MIP solver’s point of view [110].

Mixed integer programming problems are in the category of NP-hard (non-deterministic

polynomial-time hard) problems [111] with respect to their complexity. The mostly preferred

way for solving optimally an NP-hard problem like (2.18) is to attack it from two sides. As

a first step, the dual part of the problem has to be considered and a lower bound on the ob-

jective function has to be obtained by relaxation. To eliminate some parts of the problem like

constraints and/or variables, which make it more difficult and complex, is the central point of

relaxation methods. Various methods exist and can be selected according to the part which

will be eliminated and how it will be reintroduced. Relaxing the integrality constraints is a

mainly used technique to obtain a linear program and reintroduce the integrality by adding

cutting planes [110].

There are different methods to solve MIPs where semi-definite programming is also included.

One should notice that, semi-definite programming can be interpreted as a special case of

standard semi-infinite programming [112, 113]. Moreover, as a modern and recent approach

(generalized) semi-infinite programming relaxation and extension of MIP is studied for the

identification of the unknown parameters which appear in the gene-environment (or target-

environment) network models in the case of uncertainty is included (see [29, 30, 31, 32, 40,

42, 43, 45, 46] and the references inside).
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Definition 2.3.5 [84] Mixed-integer nonlinear programs (MINLP) are models of the general

form

z = min f (x), (2.19a)

s.t. g(x) ≤ 0, (2.19b)

x ∈ Zp × Rn−p, (2.19c)

where f : Rn → R is an objective function, and g : Rn → Rm is a constraint system.

In this definition, the functions f and g are assumed to be continuous and that X := {x ∈

Zp × Rn−p : g(x) ≤ 0} is a compact set with p ∈ N0, n ∈ N. This implies that f attains its

minimum for some x ∈ X and therefore (2.19) is a well-defined problem. The question is how

to actually solve a problem of the form (2.19) numerically [84].

The function f can be assumed as linear, without loss of generality. If not, we can introduce

a new variable y and add the constraint f (x) ≤ y to the constraint system (2.19b). Together

with the new objective function min y we then obtain a problem that is equivalent to (2.19),

but with a linear objective function. If g is differentiable and p = 0, then (2.19) is a pure

nonlinear optimization problem, and techniques from constrained nonlinear optimization can

be applied. If g fulfills further regularity assumptions, the Karush-Kuhn-Tucker (KKT) con-

ditions provide necessary conditions for a solution to be (local) optimal; see [114]. These

techniques originate from numerical analysis and yield only stationary points or local optima,

if no further convexity assumption is made. Moreover, in the case of p > 0, they are not able

to handle integrality restrictions on the variables. However, in case of a convex optimization

problem, that is, if X is a convex set and f is a convex function, they are able to find a global

optimum (see [84] and references therein).

For a general MINLP with a non-convex set X there are several methods described in the

literature in order to relax (2.19) to a convex and continuous problem, such that a proven

global optimum can be achieved at least for the relaxed problem [115, 116, 117]. For a

solution of MINLP by relaxation and with branch-and-bound process, we refer to [84] and

references therein.
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CHAPTER 3

DYNAMICAL MODELS OF GENE-ENVIRONMENT

NETWORKS

Dynamical systems play an important role in mathematical modeling. A huge number of

phenomena from various fields of science and engineering were successfully described by

using the powerful methods and techniques from this field.

In this chapter, the general concept of dynamical systems will be introduced briefly, then

through the thesis we will concentrate on the dynamical modeling approach, based on systems

of ordinary differential equations, to represent the dynamics of gene-environment regulatory

systems. Differential equations are frequently used for modeling formalisms in mathematical

biology. Ordinary differential equations offer a deterministic time and state continuous de-

scription of a given system. The evolution of the state x ∈ Rn in time t ∈ T is defined by the

following function:

φ : R × Rn → Rn, x(t) = φ(t, x(t0)), (3.1)

which is assumed to be the solution of an initial value problem given below

ẋ(t) = f(x(t)), x(t0) = x0, (3.2)

where x0 ∈ Rn is a given state at a time t0, f ∈ C1(Rn → Rn) and x = (x1, x2, . . . , xn)T denotes

the state whose components corresponds to states xi of each component of the system. In gene

regulatory networks, xi (i = 1, 2, . . . , n) correspond to concentrations of network components

[1]. In autonomous dynamic models, the states x depend on time, x = x(t), and the set T

describes a set of different time points. In time-discrete models, T = {t0, t1, . . . , tN} contains

a set of discrete time points, in time-continuous models, T is usually chosen to be the set of

real numbers, T = R.
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The temporal behavior of a state x(t) of a system which is considered to model a regulatory

network is given as a function φ(t, x(0)) of the initial state x(0) and the time t. Moreover, we

assume that x(t) satisfies the following initial value problem

ẋ(t) = f(x(t)), x(t) ∈ D, x(0) = x0, (3.3)

with an open set D ⊆ Rn and a function f ∈ C1(D → Rn) [1]. The following theorem states

the existence and uniqueness of the solution of a given initial-value problem.

Theorem 3.0.6 [118] Let D be an open subset of Rn containing x0 and assume that f ∈

C1(D). Then there exists an a > 0 such that the initial value problem ẋ(t) = f(x(t)) with initial

value x(0) = x0 has a unique solution x(t) on the time interval [−a, a].

Definition 3.0.7 [118] A dynamical system on D is a C1-map

φ : R × D→ D, (3.4)

where D is an open subset of Rn, and if φt(x) := φ(t, x(t)) then

1. φ0(x) = x, for all x ∈ D, and

2. (φt ◦ φs)(x) = φt+s(x) for all s, t ∈ R and x ∈ D.

The relation between a dynamical system and an initial value problem can be stated in such a

way that [1]:

When φ(t, x(t)) is a dynamical system defined on D ⊆ Rn, then

f(x) =
d
dt
φ(t, x)|t=0 (3.5)

defines a C1-vector field on D, and φ(t, x0) solves the initial value problem in (3.3) for each

x0 ∈ D. φ(t, x0) can also be considered as the motion of the set D through the state space, so

it can be called as flow of the differential equation [118].

Dynamical systems are divided to two major classes as linear and nonlinear depending on the

form of the right hand side function in (3.3) with respect to x. The results for the stability

of fixed points of linear systems can be transferred to analyze the stability of fixed points

of nonlinear systems [118]. In the following we present the definitions of an equilibrium

point and its stability which is important for analyzing the long-term dynamic behavior of a

dynamical system.
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Definition 3.0.8 [118] A point x∗ ∈ Rn is called an equilibrium point of a system ẋ = f(x)

if f(x∗) = 0. An equilibrium point x∗ is called a hyperbolic equilibrium point if none of the

eigenvalues of the Jacobian matrix Jf(x∗) has zero real part. The linear system ẋ = Jf(x∗)x is

called the linearization of (3.3) at x∗.

In the case that x∗ is an equilibrium point of ẋ = f(x) and φt is the flow of the system, then

φt(x∗) = x∗ ∀t ∈ R, and x∗ is called a fixed point or a steady state.

Definition 3.0.9 [118] Let φt(x) represent the flow of the differential equation ẋ = f(x) ∀t ∈

R. An equilibrium point x∗ of this system is stable if ∀ϵ > 0 ∃ δ > 0 such that ∀x ∈ Nδ(x∗)

and all t ≥ 0, φt(x) ∈ Nϵ(x∗) holds.

The equilibrium point x∗ is unstable if it is not stable, and asymptotically stable if ∃ δ > 0

such that limt→∞ φt(x) = x∗ ∀x ∈ Nδ(x∗).

3.1 Time-Continuous Model Class of Gene-Environment Networks

Differential equations are commonly used for modeling formalisms in mathematical biology.

The main reasons for that are: modeling of regulatory interactions by differential equations

can provide a more accurate understanding and explanation of the physical systems, and there

exist many well developed approaches like dynamical systems theory for analyzing these

models and capturing their dynamical behavior. Also, considering that the biological systems

developed in continuous time, it is preferred to use systems of differential equations which can

allow to do instantaneous changes on their right-hand sides [119]. In general, a differential

relation among n variables of gene networks is represented by the following equation

dxi

dt
= fi(x) (i = 1, 2, . . . , n), (3.6)

where each function fi : Rn → R is nonlinear and the vector x = (x1, x2, . . . , xn)T represents

the positive concentrations of proteins, mRNAs, or small components.

Firstly proposed dynamical model for gene regulation is given by Chen et al. [27] with a

system of linear differential equations having a constant coefficient matrix, then, in [120, 121,

122], a discretized linear model is used to infer the structure of regulatory networks. Although

linear models may not be enough to represent the whole dynamics of the system, they are
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still frequently used to infer regulations between cell components (we refer the following

references [122, 123, 124, 125, 126, 127]). The general aim of mentioned works and the other

related ones was the inference of the structure of the interaction graph rather than capturing

the dynamic behavior. In [128], it was argued that regulation functions can usually be well

approximated by their linearization. Also in [129], linear models were used together with a

discussion of its advantages and disadvantages. In the problem of parameter estimation from

experimental data, linear models provide several advantages [128]. These models can be

solved analytically and the minimization of the sum of squared errors between measurements

and model predictions is an optimization problem having a quadratic objective function. On

the other hand, linear models cannot represent the whole of dynamic behaviors observed

in regulatory networks like periodic behavior, multi stationarity and hysteresis (see [1] for

examples and further details). In [1], it is observed that linear models have only one single

isolated equilibrium point which can be stable or unstable. If the equilibrium point is stable,

then it is globally stable and convergence to that point is reached from all initial conditions.

Moreover, a linear system is unstable meaning that it does not omit unbounded solutions.

More detailed information about qualitative behavior of linear models, analysis of limit sets

and stability of equilibrium points of nonlinear models can be found in [1].

In the literature, the firstly introduced time-continuous models to represent the dynamical

behavior of gene-environment networks were given by the following systems of ordinary

differential equations (ODEs) of the time-autonomous form

Ė = F(E), (3.7)

where E = (E1,E2, . . . ,Ed)T is the d-vector of positive concentration levels of proteins (or

mRNAs, or small components) and of certain levels of the environmental factors. Here,

E = E(t) where the time t is in the interval I where I = (a, b) ⊆ R. The first n entries of the

vector E refer to the genes, whereas the remaining part, with d − n components, refers to the

environmental factors. Ė (= dE
dt ) represents a continuous change in the gene-expression data,

and Fi : Rd → R are nonlinear coordinate functions of F,i.e., F = (F1(E), F2(E), . . . ,Fd(E))

[10, 27, 35, 36, 55, 58, 59]. The estimation of parameters associated and contained in the def-

inition of F is studied by considering the experimental data vectors Ē of these levels which are

obtained from microarray experiments and from environmental measurements at the sample

times. The vectors Ē are just approximate data to the actual states E at the sample times of

the experiments, so they may contain some errors, noise and uncertainties coming from the
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measurements [29, 30, 43, 44, 45, 46]. Here, E(t0) = E0 denotes the initial values, where

E0 = Ē0. Moreover, Ei(t) stands for the gene-expression level (concentration rate) of the ith-

gene at time t, and Ei(t) denotes anyone of the first n coordinates in the d-vector E of genetic

and environmental states. We write G := {1, 2, . . . , n} for the set of genes [84].

There is a collection of improved types of Eq. (3.7) representing the dynamical system on the

gene-expressions and having the following forms given in [10, 11, 25, 27, 28, 35, 36, 37, 41,

42, 59, 130]:

(i) Chen et al. [27] proposed the first time-continuous model consisting of system of first

order ODEs

Ė =ME, (3.8)

to model time-series gene expression patterns, where M is an (n × n)-constant matrix

as a transition matrix representing regulatory interactions for both genes and proteins,

and E is the (n × 1)-vector representing the expression level of individual genes. Later

on, Hoon et al. [58, 59] studied another continuous model similar to this model, but

they consider only mRNA concentrations and AIC was used to identify the places and

number of nonzero parameters in the coefficient matrix M. Sakamoto and Iba [35]

suggest a more flexible model as

Ė j = F j(E1, E2, . . . , En)T ( j = 1, 2, . . . , n), (3.9)

where F j are functions of E = (E1, E2, . . . , En)T determined by genetic programming

and least-squares methods.

(ii) The above models were refined and new ideas are introduced by [10, 36, 37, 41, 131] for

the improvement. Gebert et al. [10] use a constant gene interaction matrix in the model

Ė = ME and use discrete least-squares approximation [132] for the estimation of pa-

rameters appearing in the regulatory relations. In [36], authors suggested the following

nonlinear or, say, quasi-linear model

Ė =M(E)E. (3.10)

with its deterministic matrix multiplicative form. This multiplicative form becomes

an iterative multiplicative one in the corresponding time-discrete dynamics which is

presented in the next section.
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In this formulation, the interaction matrix M depends on the current metabolic state E.

In this way, nonlinear interactions between network variables were taken into account

but the solution space is restricted by imposing bounds on the number of regulating

factors for each gene. The reason behind was to identify a unique regulatory network.

This dynamical system refers to the n genes and their interaction alone so that the

matrix M is an (n × n)-matrix with entries as functions of polynomials, exponential,

trigonometric, splines or wavelets containing some parameters to be optimized. In the

matrix M, each row and column corresponds to one gene in the genetic network. The

value of each entry of the matrix refers to the interaction between genes. If these entries

have zero value, this means that there is no interaction between the genes. The smaller

the absolute value of the matrix entries, the less is the influence or interaction between

genes [10].

(iii) In [25], an extended version of the model given by Eq. (3.10) is derived to emphasize

the nonlinear interactions with the environment. The model is represented as

Ė = F(E), (3.11)

where F(E), given as F = (F1, F2, . . . , Fn)T , consists of a sum of quadratic functions

(also covers constant and linear case)

F j(E) = f j,1(E1) + f j,2(E2) + . . . + f j,n(En) ( j = 1, 2, . . . , n). (3.12)

Yılmaz [25] also added affine linear shifts terms to this model and extend it.

(iv) To keep the recursive iteration idea, that is presented in [37], by these shifts, Eq. (3.10)

is reconstructed below from the following system that includes an affine addition [11,

130]:

Ė = M(E)E + C(E). (3.13)

Here, C(E) is an additional column vector representing environmental perturbations

or contributions and provides a more accurate data fitting (cf. [25, 41] for the case

of a constant C). The shift term C(E) does not need to reveal E as a factor while

M(E)E reveals E as a factor, but it can be, e.g., exponential, trigonometric, also splines

[43, 29]. In the extended model [11, 25, 39, 41, 42, 130] represented by Eq. (3.13),

the dimension of the vector E is increased to n + m by considering the m-vector Ě(t) =
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(Ě1(t), Ě2(t), . . . , Ěm(t))T , which represents m environmental factors affecting the gene-

expression levels and their variation. To represent the weights of the effect of the jth-

environmental factor Ě j on the gene-expression data Ei, the (n×m)-weight matrix M̌(E)

is introduced so that the vector C(E) can be written as C(E) = M̌(E)Ě, where

M̌(E) =


c11(E) · · · c1m(E)
...

. . .
...

cn1(E) · · · cnm(E)

 (3.14)

is called as the gene-environment matrix. Its entries ci j are the weights. Therefore, the

gene-environment network described by the dynamic equation in (3.13) becomes

Ė = M(E)E + M̌(E)Ě. (3.15)

Finally, the extended initial value problem can be written in a multiplicative form as

follows:

Ė = M(E)E, E0 = E(t0) =

 E0

Ě0

 , (3.16)

where

E :=

 E

Ě

 , M(E) :=

 M(E) M̌(E)

0 0

 , (3.17)

are an (n + m)-vector and (n + m) × (n + m)-matrix, respectively. The other versions of

the extended gene-environment network in Eq. (3.13) are studied in [29, 42, 43].

Another version of the extended gene-environment network in Eq. (3.13) is studied in [29,

38, 42, 43] by splitting the shift C(E) as C(E) =W(E)Ĕ+V(E) and increasing the dimension

to m + 2n. Here, V(E) stands for all the cumulative effects of the environmental items and Ĕ

is a specific m-vector, representing the levels of the m-environmental factors.

As a system of ordinary differential equations, Eq. (3.8) - Eq. (3.13), hence, Eq. (3.16) are

all autonomous, which means that the right-hand side depends on the state E only, but not on

time t. This implies that trajectories do not cross themselves (see [36] for details).

The models given by the continuous dynamical equations in (i), (ii), (iii) and (iv) can be

written in general as ([29, 42, 43, 46])

Ė = M(E)E, (3.18)
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with the initial value E0 = E(t0), where E and E0 are (d× 1)-vectors. The (d× d)-matrixM(E)

has entries which contain parameters to be estimated, see [50, 76]. The entries ofM(E), which

can be polynomial, trigonometric, exponential, logarithmic, hyperbolic, spline, etc., represent

the growth, cyclicity or other kinds of changes in the genetic or environmental concentration

rates that is supposed by any kind of a priori information, observation or assumption [36].

The form of system in (3.18) allows a time-discretization such that the dynamics is given by a

step-wise matrix multiplication. This recursive property is an important advantage of the this

form in terms of algorithmic stability analysis (see [11, 130] and cited references).

3.2 Corresponding Time-Discrete Models

The discretization process can be defined as transferring continuous models and equations

to discrete counterparts. A numerical solution is generated by simulating the behavior of a

system that is expressed by ordinary differential equations. It is initiated at the starting time

point t0 with a given initial value E0 and approximates the solution at discrete time points

during the given time interval. The approximate value of the solution at a state is generated

from the value at the previous states iteratively. Here, the main concerns are the stability and

precision of the simulated approximate results [11, 133]. By using discretization methods,

we can discretize a continuous process and so that we can obtain the approximate solutions

E0, E1, . . . , EN−1 at discrete time points t0, t1, . . . , tN−1 and then compare them with the given

experimental values Ē0, Ē1, . . . , ĒN−1. The comparison of Euler’s and Runge-Kutta methods,

as discretization methods (schemes), is studied in [133] for a concrete example of system of

differential equations and stated that Euler’s scheme produce unstable results compared with

the exact solution. It is slow and inaccurate. Euler’s method is the simplest discretization

scheme and based on 1st-order Taylor series expansion, so it is an approximation by a straight

line [11, 133].

When numerical methods are used for the approximate solutions of ordinary differential

equations, rounding errors and truncation errors can be faced with because of finite preci-

sion of floating-point arithmetic and number of iterations. Euler’s method approximate the

derivative, appearing in ordinary differential equations, at the beginning of each subinter-

val [tk, tk+1] of the discretized time domain while Runge-Kutta methods use midpoints [11].

Runge-Kutta methods provide more advantage in stability, accuracy and programmability.
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Moreover, Runge-Kutta methods are more sensitive to infinitesimal numerical changes [141].

These methods has geometric meaning as the “average of slopes” and they have both explicit

and implicit versions. Explicit Runge-Kutta methods can be derived by using Taylor series

expansion of order p to produce a method of order p (we refer to [141] and cited references for

more details). Euler method can also be considered as 1st-order explicit Runge-Kutta method.

The general formulation of the explicit Runge-Kutta methods with ν-stages (ν-slopes) applied

to the system of ordinary differential equations of the form ẋ(t) = f (x(t)) in (3.6), is given as

follows:

x(k+1) = x(k) +

ν∑
i=1

ωiKi, where

Ki = h f (tk + cih, x(k) +

i−1∑
j=1

ai jK j),

with arbitrary coefficients ci, ai j and ωi (i = 1, 2, . . . , ν; j = 1, 2, . . . , i − 1) and c1 = 0.

In [11, 25, 29, 41, 42, 43, 46, 130], Euler’s method and 2nd-order Heun’s method (as a 2nd-

order Runge-Kutta method or 2-stage Runge-Kutta method) are applied for the time-discrete

dynamics of gene-environment (target-environment) regulatory systems listed in Section 3.1

together with the derived matrix algebra correspondingly. For the most general form of gene-

environment (target-environment) network model expressed in Eq. (3.18), Euler’s method is

applied to discretize the time-continuous process as follows (see [11, 25, 38, 41, 130] and

references therein):

Ė(k) :=
E(k+1) − E(k)

hk
= M(E(k))E(k), (3.19)

⇔ E(k+1) = (I + hkM(E(k)))E(k), (3.20)

where Ė(tk) ≈ Ė(k), for all k ∈ N0, hk = tk+1 − tk is the step-size and tk < tk+1.

Hence, corresponding time-discrete dynamics is obtained by the following equation

E(k+1) = M(k)E(k) (k ∈ N0). (3.21)

The next state can be iteratively generated from the previous states approximately as follows

Ê(k)(:= E(k)) = M(k−1)(M(k−2) · · · (M(1)(M(0)Ē(0)))) (k ∈ N0), (3.22)

for a given initial value Ē(0)(= E(0)), where Ē(0), Ē(1), . . . , Ē(N−1) denotes the provided exper-

imental values and Ê(0), Ê(1), . . . , Ê(N−1) refers to the approximated (estimated) values. This

multiplicative form provide an important advantage both computationally and analytically.
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For the derivation of iterative formula of 2nd-order Heun’s method for the dynamics of gene-

environment networks and corresponding matrix algebra of both methods, we refer to [11,

25, 29, 38, 41, 42, 43, 46, 130, 134]. Higher order Runge-Kutta methods, namely 3rd-order

Heun’s method and 4th-order classical Runge-Kutta method, are newly derived and studied

for the dynamics of gene-environment networks in the following chapter together with their

matrix algebra.

3.2.1 Stability Analysis

The mathematical meaning of stability of dynamical systems is expressed by stationary (equi-

librium) points. In analysis, it means that being in some sufficiently small neighbourhood

of the equilibrium, the system never escape. In studied dynamic model class for gene-

environment networks and its discretized versions, the step-wise multiplicative form of the

time-discrete system becomes evaluated and interpreted as the boundedness of the dynamics

[37, 135].

Genomic stability in molecular biology refers to the ability of an organism to repair physical

and chemical damages and changes of the genome. In the model class presented in Section

3.1, gene-expressions are considered to be stable if there is not any important and sudden

changes along the time of transition process from one stable metabolic state to another [37].

The fundamental definitions and theorems stated in the following are related with the stability

of our considered time-continuous dynamic model class and its time-discretized version.

Definition 3.2.1 [119] A point E∗ ∈ Rd is called an equilibrium point of system

Ė = f (t,E), (3.23)

where (t,E) ∈ R × Rd if f (t,E∗) = 0 ∀t ∈ R. An equilibrium E∗ of the system (3.23) is called

stable (in Lyapunov sense) if for every ε > 0 there exists a δ = δ(ε) > 0 such that at time

t = t0 it satisfies ∥∥∥E(t0) − E∗
∥∥∥ < δ,

and for all t > t0 it holds ∥∥∥E(t) − E∗
∥∥∥ < ε.
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An algorithmic method in order to study stability of time-discrete versions of the models is

firstly given by [136]. Together with the relation between the stability of time-discrete and

time-continuous systems. For some time-discretization methods, this approach is studied in

[11, 130, 134, 136]. The following theorems states the strong relation between the stability of

time continuous model Ė = M(E)E and the stability of time-discrete system E(k+1) = M(k)E(k),

obtained by Euler and Runge-Kutta discretizations.

Theorem 3.2.2 [136] Let the map E 7→ M(E) be Lipschitzian. If the Eulerian time-discrete

system E(k+1) = M(k)E(k) (k ∈ N0), E(0) ∈ Rd, with some appropriate hmax > 0 being given,

is stable for any values hk ∈ [0, hmax], then the time-continuous system Ė = M(E)E is also

stable.

For the proof we refer to [136].

Theorem 3.2.3 [42] Let the map E 7→ M(E) be Lipschitzian. If the Runge-Kutta time-discrete

system E(k+1) = M(k)E(k) (k ∈ N0), E(0) ∈ Rd, with some appropriate hmax > 0 being given,

is stable for any values hk ∈ [0, hmax], then the time-continuous system Ė = M(E)E is also

stable.

For the proof we refer to [42].

3.3 Identification of Parameters

Modeling and prediction of gene-expression patterns are characterized by two different kinds

of variables: the gene-expression levels (concentration rates), and the variables (“parameters”)

that represent the dynamics of the gene-expression levels (changes in the concentration rates).

Environmental effects can also be included likewisely. In this “duality”, one class of variables

is considered as parameters perturbed and the remaining class of variables observed how to

reply to those perturbations [37, 42, 45, 46, 130]. In this way, the whole learning problem

is expressed in bilevel problems [137] of decision and optimization. In order to have a deep

understanding about state and variation of genetic (and environmental) patterns we use matri-

ces which play a dual part. These matrices are called network matrices which are important

for testing the goodness of data fitting and prediction and they are identified by least-squares
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(or maximum likelihood) estimation. They represent the dynamics of the network (system),

with behaviors of expansion, rest, contraction or cyclicity where all of these behaviors can

be comprised by stability vs. instability, respectively, and they mean time step-wise or time-

continuous. The discrete sequences (orbits) obtained by step-wise matrix multiplication have

been studied by [1, 11, 36, 37, 39, 42, 46, 55, 130, 138] algebraically by the algorithm of

Brayton and Tong [136]. This algorithm constructs and analyzes a sequence of compact

neighbourhoods of the zero point in the state space of gene-expression (and environmental)

levels, and they are chosen as bounded polyhedra; i.e., they can be encoded and dynami-

cally defined by the finite sets of their vertices, where the construction principle consists of

finite numbers of matrix multiplications in each iterations. We refer to [37, 42, 46, 130] and

references therein for further details.

Let us consider the general form of the gene-environment network given in Section 3.1 that

is represented by the dynamical equation Ė = M(E)E, where the entries of matrix M(E)

contain parameters to be estimated [50, 76]. The entries of M(E), which can be polynomial,

trigonometric, exponential, but otherwise logarithmic, hyperbolic, spline, etc., represent the

growth, cyclicity or other kinds of changes in the genetic or environmental concentration rates

that we suppose by any kind of a priori information, observation or assumption [10, 36].

Two different levels of the problem concerning the parametrized entries of the matrices can

just be distinguished: optimization and stability analysis, both of them constituting bilevel

problems (see [10, 29, 36, 37, 42, 43, 46, 138] and references therein).

The first step is the optimization problem of approximation with respect to squared errors (say,

discrete least-squares approximation):

min
y

N−1∑
κ=0

∥∥∥∥My(Ē(κ))Ē(κ) − ˙̄E(κ)
∥∥∥∥2

2
. (3.24)

where y is the vector of a subset of all the parameters, N is the number of measurements

and the ˙̄E(κ) are the difference quotients based on the κthexperimental data Ē(κ) with interval

lengths h̄κ := t̄κ+1 − t̄κ between neighbouring samplings. Note that, forward and central

difference approximations are the common choices for approximating ˙̄E(κ) as it is described

below:

˙̄E(κ) :=

 (Ē(κ+1) − Ē(κ))/h̄κ, if κ ∈ {0, 1, . . . ,N − 1},

(Ē(N) − Ē(N−1))/h̄κ, if κ = N.
(3.25)
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For the equidistant step-size, h̄κ ≡ c (c > 0), ˙̄E(κ) := (Ē(κ+1) − Ē(κ−1))/2c is a common choice

[28, 29, 36, 46].

In problem (3.24), the Euclidean norm is referred ∥ · ∥2 but the Chebychev norm ∥ · ∥∞ can

also be used in the case where uncertainty is included. The least-squares methods of linear

and nonlinear regression are used to estimate the vector y of a first part of the parameters to

fit the set of given experimental data and to characterize the statistical properties of estimates.

The second step is the stability of the dynamics investigated with respect to the remaining

parameters, as mentioned in the beginning of this section. For this a combinatorial algorithm

based on polyhedra sequences is employed to detect the regions of stability and instability

[28, 36, 37, 46].

Since real-world gene-environment networks are very large, for practical reasons one has to

simplify them by diminishing the number of arcs [42, 46]. Let us present the basic idea of

such a rarefication:

Generally used microarray gene-expression data is very noisy. This can lead the network to

have many artificial and low weighted connections. Since there are usually a few genes in

the network which are involved strongly in regulations, then those genes have high outdegree

values. In order to limit these values, a bound is introduced for every gene in the network [28]

according to which vertices are important and how that expresses itself in the bound. The

solutions which does not satisfy the bound are rejected.

Also, in provided data sets, the number of genes are bigger than the time points which re-

sults the system to be under determined and so having many optimal solutions. Therefore, a

restriction should be brought into the solution space. For this purpose, some ideas are pro-

posed [28, 36, 37] like the off-diagonal entries of network matrix M to be nonnegative. The

underlying reason is that the degradation of gene products is supposed to be proportional to

the concentration of the gene product itself and does not depend on any other variables [28].

Beyond the biological meaning, the choice of constraints and their bounds are related with

the decision making, multi-criteria optimization, rarefication and regularization. The bounds

to be added to the problem in (3.24) will form it to the mixed integer problem given in Sub-

section 4.3.1. These bounds are imposed to regularize and rarefy the gene-network in a way

of selecting the most important and meaningful elements in the network. One aspect of doing
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this is to put bounds on the objective function of the considered optimization problem and

another aspect is to put bounds on the constraints of the problem. The selection the bound is

about decision making and related with how we want to rarefy the given network (system). It

is also a matter of parametric variation. Each value of a bound should provide a solution on an

efficiency frontier (in the case of parametric variation of one bound) or an efficiency surface

(in the case of parametric variation of several bounds) (from multi-objective optimization).

Then, we can select the right or best element of the efficiency frontier, as the solution, ac-

cording to statistical comparison and performance criteria [139, 140]. That performance and

comparison criteria from statistics, but also numerical mathematics, can be employed to select

an “optimal” solution from the efficiency barrier (efficiency frontier or efficiency surface) (see

[79, 82, 139, 140] and references therein).

Complex regulatory systems generally contain a large number of interconnected components

and the target-environment and gene-environment regulatory network is highly structured

with multiple interactions among many different clusters. It may be necessary to reduce the

number of branches of the these regulatory networks for computational purposes. For this

case, bounds on the indegrees of the nodes (clusters) can reduce the complexity of the model.

Binary constraints can be used to decide whether or not there is a connection between pairs

of clusters [44]. Imposing these additional constraints to the objective function of the regres-

sion problem initiated above in Eq. (3.24), we obtain a mixed integer optimization problem

which corresponds to our network rarefication that will be formulated in details in Chapter 4,

Subsection 4.3.1.

However, binary constraints are very strict and they can even destroy the connectivity of the

regulatory network in some cases. In order to not to be faced with these difficulties, the

binary constraints can be replaced by more flexible continuous constraints leading to a further

relaxation in terms of continuous optimization (see [29, 32, 30, 31, 40, 42, 43, 45, 46] and

related references therein).
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CHAPTER 4

NEW DISCRETIZATION SCHEMES FOR GETTING

THE TIME DISCRETE MODELS WITH APPLICATIONS

To approximate the time-continuous dynamical models of regulatory networks listed in Chap-

ter 3, Section 3.1, various discretization schemes can be used to obtain the numerical solution

at a discrete set of points in time. As it is explained in Chapter 3, Section 3.2, it is impor-

tant to choose the appropriate method to be applied for this purpose. Firstly, Euler’s method

was used in the time-discretization for the gene-expression patterns; it has been seen that Eu-

ler’s method is slow and inaccurate (see [133] for further information). Then, Runge-Kutta

methods were introduced in [134] and, specifically, the 2nd-order Heun’s method was studied

in [11, 130] known as the simplest Runge-Kutta approach. In terms of rounding error and

truncation error, the choice of the method in the numerical derivations plays an important

role. Comparing with Euler’s method, Runge-Kutta methods have advantages in truncation

error, and in stability which is closer to the stability of the time-continuous model, and in

implementation [141].

In this chapter of the thesis, we newly study the 3rd-order Heun’s method and 4th-order classi-

cal Runge-Kutta method, as explicit higher order Runge-Kutta methods, for the discretization

of the time-continuous models to improve the rate of convergence and accuracy. These new

results are recently published in the articles [45, 84, 85] of the author together with the ap-

plication of 3rd-order Heun’s method on a set of artificial data. In addition to these published

works, this thesis also includes the following original results:

The application of 4th-order classical Runge-Kutta method is newly studied in this thesis

within a comparison process of all these four numerical schemes tested on the same artificial

data set. The performance of these methods are investigated with different step-sizes and also
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their sensitivity with respect to a perturbation is tested. Moreover, as a second numerical

example, a real-world application is examined for all these methods on a real data set. Anal-

ysis of considered real data and selection of constraints for the corresponding optimization

problem is studied both biologically and mathematically in order to perform a parameter es-

timation. All obtained new results of these two illustrative examples are presented with the

help of the figures. Moreover, detailed “discussions” on the numerical results are done after

each performed analysis and also in Subsubsection 4.3.1.5 and Subsubsection 4.3.2.4.

4.1 Formulation of the Numerical Schemes

In the most general model of gene-environment network that is given by Eq. (3.18), we

newly apply, by this thesis, the 3rd-order Heun’s method and 4th-order classical Runge-Kutta

method respectively and newly formulate our time-discrete models and derive their matrix

algebra correspondingly as presented in the following.

1. Using 3rd-order Heun’s method:

E(k+1) = E(k) +
hk

4
(k1 + 3k3), (4.1)

k1 = M(E(k))E(k),

k2 = M(E(k) +
hk

3
k1)(E(k) +

hk

3
k1),

k3 = M(E(k) +
2hk

3
k2)(E(k) +

2hk

3
k2).

E(k+1) = E(k) +
hk

4
M(E(k))E(k)

+M(E(k) +
2hk

3
M(T(k))T(k))

×{3hk

4
E(k) +

h2
k

2
M(T(k))E(k)

+
h3

k

6
M(T(k))M(E(k))E(k)}. (4.2)

Then, we get the time-discrete equation as

E(k+1) = M(k)E(k), (4.3)
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where

M(k) := I +
hk

4
M(E(k)) +M(E(k) +

2hk

3
M(T(k))T(k))

×{3hk

4
I +

h2
k

2
M(T(k)) +

h3
k

6
M(T(k))M(E(k))},

and T(k) = E(k) +
hk
3M(E(k))E(k) [45, 84, 85].

2. Using 4th-order classical Runge-Kutta method:

E(k+1) = E(k) +
hk

6
(k1 + 2k2 + 2k3 + k4), (4.4)

k1 = M(E(k))E(k),

k2 = M(E(k) +
hk

2
k1)(E(k) +

hk

2
k1),

k3 = M(E(k) +
hk

2
k2)(E(k) +

hk

2
k2),

k4 = M(E(k) + hkk3)(E(k) + hkk3),

which can be rewritten as

E(k+1) = E(k) +
hk

6
M(E(k))E(k)

+ {hk

3
M(Z(k)) +

h2
k

6
M(Z(k))M(E(k))}E(k)

+ {hk

3
M(V(k)) +

h2
k

6
M(V(k))M(Z(k))

+
h3

k

12
M(V(k))M(Z(k))M(E(k))}E(k)

+
hk

6
M(E(k) + hkM(V(k))E(k) +

h2
k

2
M(V(k))M(Z(k))Z(k))

× {I + hkM(V(k)) +
h2

k

2
M(V(k))M(Z(k))

+
h3

k

4
M(V(k))M(Z(k))M(E(k))}E(k), (4.5)

where Z(k) = E(k) +
hk
2M(E(k))E(k), and V(k) = E(k) +

hk
2M(Z(k))Z(k). The time-discrete

equation is obtained as

E(k+1) = M(k)E(k), (4.6)
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with the matrixM(k) defined as follows:

M(k) := I +
hk

6
{M(E(k)) + 2M(Z(k)) + 2M(V(k)) +M(T(k))}

+
h2

k

6
{M(Z(k))M(E(k)) +M(V(k))M(Z(k)) +M(T(k))M(V(k))}

+
h3

k

12
{M(V(k))M(Z(k))M(E(k)) +M(T(k))M(V(k))M(Z(k))}

+
h4

k

24
{M(T(k))M(V(k))M(Z(k))M(E(k))},

where T(k) = E(k) + hkM(V(k))V(k).

The approximate values of the next state can be obtained from the previous one by using

the above iterative formulas. The DNA microarray experimental data and the environmental

items obtained at the time-level tk are represented by the vector Ē(κ) (κ = 0, 1, . . . ,N−1; N: the

number of biological measurements) in the extended space. The approximations in the sense

of (4.3) or (4.6) are denoted by Ê(κ) (κ = 0, 1, . . . ,N − 1), and set Ê(0) = E(0). The kth- approx-

imation or prediction, Ê(k), is calculated as Ê(k)(:= E(k)) = M(k−1)(M(k−2) · · · (M(1)(M(0)E(0)))),

where hk := tk+1 − tk and k ∈ N0. We obtain our gene-environment networks by the time-

discrete dynamics using formula (4.3) or (4.6). The genes and environmental items are rep-

resented by the nodes (vertices) of our network; the interactions between them are reflected

by the edges, weighted with effects. The significant entry ofM(k), say, m(k)
i j , is the coefficient

of proportionality (i.e., multiplied by E(k)
j ). It describes that the ith- gene (or environmental

factor) becomes changed by the jth-gene (or environmental factor or the cumulative environ-

mental item) in the step from time level k to k + 1 [84].

4.2 Corresponding Matrix Algebra

We refer to the canonical form of matrix partitioning, given in [11, 42, 46, 130], for the time-

continuous model in Eq. (3.16) and Eq. (3.17) as

M(E) =

 M(E)n×n M̌(E)n×m

0m×n 0m×m

 , (4.7)

where M(E) and M̌(E) are the matrices having dimensions n × n and n × m, respectively.

Herewith, the format of the matrixM(E) is (n+m)× (n+m) and E = (ET , ĚT )T is an (n+m)-

vector. The relations of the n genes and the m environmental factors, which describe the
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structure of the gene and gene-environment network, are represented by the matrices M(k).

These matrices will be the basis of the networks. The product of two such canonical matrices

is again canonical (see [46, 11, 29, 42, 43, 130] and their references).

After some notation and simplification we find that

1. Using 3rd-order Heun’s method:

M(k) = I +
hk

4

 M(E(k))n×n M̌(E(k))n×m

0m×n 0m×m

 + 3hk

4

 An×n Ãn×m

0m×n 0m×m


+

h2
k

2

 Bn×n B̃n×m

0m×n 0m×m

 + h3
k

6

 Cn×n C̃n×m

0m×n 0m×m

 ,
where

A := M(E(k) +
2hk

3
(M(T(k))T(k) + M̌(T(k))Ť(k))),

Ã := M̌(E(k) +
2hk

3
(M(T(k))T(k) + M̌(T(k))Ť(k))),

B := M(E(k) +
2hk

3
(M(T(k))T(k) + M̌(T(k))Ť(k)))M(T(k)),

B̃ := M(E(k) +
2hk

3
(M(T(k))T(k) + M̌(T(k))Ť(k)))M̌(T(k)),

C := M(E(k) +
2hk

3
(M(T(k))T(k) + M̌(T(k))Ť(k)))M(T(k))M(E(k)),

C̃ := M(E(k) +
2hk

3
(M(T(k))T(k) + M̌(T(k))Ť(k)))M(T(k))M̌(E(k)),

(4.8)

and T := (TT , ŤT )T is an (n+m)-vector with T(k) := E(k)+
hk
3 {M(E(k))E(k)+M̌(E(k))Ě(k)},

Ť(k) := Ě(k), and I := Id is a (d × d)-unit matrix with d = n + m [45, 84, 85].

2. Using 4th-order classical Runge-Kutta method:

M(k) = I +
hk

6

 An×n Ãn×m

0m×n 0m×m

 + h2
k

6

 Bn×n B̃n×m

0m×n 0m×m


+

h3
k

12

 Cn×n C̃n×m

0m×n 0m×m

 + h4
k

24

 Dn×n D̃n×m

0m×n 0m×m

 ,
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with

A := M(E(k)) + 2M(Z(k)) + 2M(V(k)) +M(T(k)),

Ã := M̌(E(k)) + 2M̌(Z(k)) + 2M̌(V(k)) + M̌(T(k)),

B := M(Z(k))M(E(k)) +M(V(k))M(Z(k)) +M(T(k))M(V(k)),

B̃ := M(Z(k))M̌(E(k)) +M(V(k))M̌(Z(k)) +M(T(k))M̌(V(k)),

C := M(V(k))M(Z(k))M(E(k)) +M(T(k))M(V(k))M(Z(k)),

C̃ := M(V(k))M(Z(k))M̌(E(k)) +M(T(k))M(V(k))M̌(Z(k)),

D := M(T(k))M(V(k))M(Z(k))M(E(k)),

D̃ := M(T(k))M(V(k))M(Z(k))M̌(E(k)), (4.9)

where

Z(k) := E(k) +
hk
2 {M(E(k))E(k) + M̌(E(k))Ě(k)},

V(k) := E(k) +
hk
2 {M(Z(k))Z(k) + M̌(Z(k))Ž(k)},

T(k) := E(k) + hk{M(V(k))V(k) + M̌(V(k))V̌(k)},

Ž(k) = V̌(k) = Ť(k) := Ě(k).

Note that, Z := (ZT , ŽT )T , V := (VT , V̌T )T , T := (TT , ŤT )T are (n + m)-vectors all and

I := Id is the (d × d)-unit matrix with d = n + m [84].

Therefore,M(k) in (4.8) and (4.9) has its final canonical block form as: M̃(E(k))n×n
˜M̌(E(k))n×m

0m×n Im×m

 . (4.10)
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4.3 Numerical Applications and Comparisons

This part of the thesis contains the major part of the original results of the numerical study

for the improvement in the representation and prediction of time-discrete dynamics of gene-

environment (also target-environment) regulatory networks. Two significant examples are

investigated in details by using with two different types of data sets.

4.3.1 Example with an Artificial Data Set

In this subsection of the thesis, an example with an artificial data set is studied in details in

order to apply our newly derived numerical schemes and compare them with the previously

studied schemes in the literature. In this respect, we examine their performance and behavior

firstly by applying all of the four schemes (as a class of explicit Runge-Kutta methods), Euler

method, 2nd-order Heun’s method, 3rd-order Heun’s method and 4th-order classical Runge-

Kutta method, for a fixed gene-expression data set and its approximated derivative data with

a fixed step-size. The obtained results are compared and represented in graphs. Then, we

choose different step-sizes in the implementation of all these four methods and compare the

rate of convergence. Finally, the given gene expression data is perturbed by different choices

of the perturbation value ϵ and the resulting changes in the behavior of the genes are watched

in order to detect the allowable interval for perturbations.

4.3.1.1 Studied Model

The gene network model that we discuss and consider in our examples is represented by the

differential equation

Ė =M(E)E, (4.11)

that is described in Chapter 3, Section 3.1, and where M is a constant (n × n)-matrix.

Our aim is to compute a gene network (represented by the matrix M) based on gene expression

data. In order to do this, we solve a MINLP problem that is defined in the following way.

The objective function of our MINLP problem is the following:

min
M=(mi j)

N∑
k=1

∥∥∥∥MĒ(k) − ˙̄E(k)
∥∥∥∥2

2
, (4.12)
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that means, we want to find a matrix M such that the distances between the forecasted and

the actual observed values are as small as possible with respect to the ∥ · ∥2 norm. Here,

N is the number of biological measurements and the ˙̄E(k) are the difference quotients based

on the kth-experimental data Ē(k) with step lengths hk between neighbouring sampling times

[10, 28, 36, 45, 46, 84, 85].

Because of a high degree of freedom in the problem, it is needed to restrict the solution space

according to the underlying biological motivation [28, 36, 37] and mathematical reasoning

that are explained in Section 3.3 in previous chapter. Otherwise, a very big amount of expres-

sion data is necessary to solve the minimization problem in (4.12). The values mi j for i , j

are nonnegative, since no gene consumes another one, and mi j = 0 means that the two genes

i and j do not interact at all. A constant positive vector λ ∈ Rn represents the lower bound

for the amount of decrease of the transcript concentration between two time steps which is

referred as degradation rate [28, 36, 37]. Therefore, for i, j ∈ G (where G = {1, 2, . . . , n} is

the set of genes but environmental factors could be included here, too) we have

mi j ≥

 −λ(i), i = j,

0, i , j.
(4.13)

By the above condition, a bound is imposed on self-degradation of the genes by the term −λ

and off-diagonal genes are prevented from negative regulation. This situation is a very special

case and, here, we can suppose to consider some further cases like removing the nonnegativity

condition as

mi j ≥ −λ(i), i = j, (4.14)

or adding parameters for off-diagonal elements by

mi j ≥

 −λ(i), i = j,

−δ(i, j), i , j.
(4.15)

where the positive vectors of parameters λ and δ are determined with the colleagues from

biology, medicine and from environmental sciences. All of these bounds can be regarded as

realizations of the case whose solutions are included in efficiency frontiers (in the case of

parametric variation of one bound) or efficiency surface (in the case of parametric variation

of several bounds) as mentioned in Section 3.3.

We want to emphasize that the first extended case in (4.14) is studied with a given data in

Section 4.3.2 and obtained results are presented in Subsubsection 4.3.2.3 with comparisons.
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To obtain a relatively sparse network, it is needed to limit the maximum outdegree and in-

degree of each node. In order not to lose the decomposition property of the minimization

problem by limiting the maximum outdegree, we bound the indegree of each gene i by a

given parameter degmax,i ∈ N0. So, in order to bound the indegree of each node, we introduce

binary variables yi j ∈ {0, 1} in the subsequent way [28, 36, 37]:

yi j =

 0, if mi j = 0,

1, if mi j , 0.
(4.16)

We formulate (4.16) as the following nonlinear constraints for our model:

(1 − yi j) · mi j = 0, ∀ i, j ∈ G. (4.17)

Now, the number of nonzero entries per row of the matrix M = (mi j)1≤i, j≤n can be limited by

the degree number, degmax,i, which is content of the following constraints:∑
j∈G

yi j ≤ degmax,i , ∀ i ∈ G. (4.18)

After considering all these constraints, we aim to solve the MINLP problem

(OP-I) min (4.12), s.t. {(4.13), (4.17), (4.18)}, (4.19)

to proven global optimality. Note that we recall the above MINLP problem as our original

optimization problem and denote it as (OP-I). An extended version of it, called (OP-II) is also

defined and studied in the following Subsection 4.3.2 concerning the numerical example with

real-world data.

4.3.1.2 Comparison of Methods for Fixed Step-Size

Here, we numerically solve the problem in (4.19), called (OP-I), within the model described

by (4.11). We have four different genes and their expression levels at four different times

according to the following Table 4.1 (from [36]).

We use an equally-spaced time discretization as hk = 1 ∀k = 1, 2, ...,N − 1. In [45, 84, 85],

we apply the 3rd-order Heun’s method to approximate the ˙̄E(t) according to the above given

data and obtain the following approximate derivative values

˙̄ET
1 = [0, − 50, 50, − 255],

˙̄ET
2 = [0, − 20, 20, 255],

˙̄ET
3 = [0, − 20, 20, − 255],

(4.20)
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Table 4.1: Expression scores of the genes A, B, C and D at four time points

Time / Genes A B C D

1 255 250 0 255 = ĒT
1

2 255 200 50 0 = ĒT
2

3 255 180 70 255 = ĒT
3

4 255 170 80 0 = ĒT
4

where ˙̄Ek refers to the kth- approximation for the derivative ˙̄E evaluated at the time point tk,

namely ˙̄E(tk) (k=1,2,3). The constraints in the mixed-integer problem in (4.19), are given

biologically as [36]

λ(i) = 2, degmax,i = 2, i = 1, 2, 3, 4. (4.21)

Used software: The above model was formulated using the modeling language Zimpl 3.0

[142], and solved by SCIP 1.2 [143, 144] as a branch-and-cut-framework, together with

SOPLEX 1.4.1 as our LP-solver [145]. Our problem was solved to proven optimality after

0.12 seconds. To this end, 28 branch-and-bound nodes had to be evaluated.

Solving the minimization problem in (4.19), we compute the following network matrix M:

M =



0 0 0 0

0.26 −0.46 0 0

0.19 0 −0.46 0

1 0 0 −2


, (4.22)

where the objective function value of matrix M for (4.12) is 92.31. The determinant of ob-

tained matrix M is zero and the eigenvalues are σ1 = −2, σ2,3 = −0.46, σ4 = 0.

Next, the 3rd order Heun’s time discretization formula for our model in (4.11) is derived as

follows

Ek+1 = (I + hkM +
h2

k

2
M2 +

h3
k

6
M3)Ek, (4.23)

where I is a (4 × 4)-identity matrix, M is a (4 × 4)-matrix given in (4.22) and Ek,Ek+1 are

(4×1)-vectors. Lastly, by using the obtained matrix M and the iteration formula in Eq. (4.23),

we get the approximate values of gene expressions in Table 4.2 given below [84, 85]:
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Table 4.2: Approximation and extrapolation of gene expressions

Time / Genes A B C D

1 255 250 0 255
2 255 211.0011 38.9984 85
3 255 186.4872 63.5111 141.6667
4 255 171.0782 78.9187 122.7778
5 255 161.3924 88.6032 129.0741
6 255 155.3041 94.6904 126.9753
7 255 151.4771 98.5166 127.6749
8 255 149.0715 100.9216 127.4417
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

23 255 145.0043 104.9874 127.50
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

33 255 145.0004 104.9912 127.50
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

100 255 145.0004 104.9912 127.50

According to the generated time series in Table 4.2, we can say that the structural behavior

of the obtained results is almost the same (constant first column, decreasing second column

and increasing third column) with the given data in Table 4.1. For the values presented in the

last column of Table 4.2, instead of an alternating behavior, we obtain a damped oscillatory

behavior by using the 3rd-order Heun’s discretization scheme. The results for the last column

converges to the mean value of 0 and 255 which has very important effect in order to reach

the equilibrium point of the system.

Therefore, the approximate gene-expression time-series results obtained by 3rd-order Heun’s

method have more smooth behavior and converging to the limit point

E∗ = [255, 145.0004, 104.9912, 127.5]T ,

which is the fixed point (equilibrium point) of the considered dynamical equation Ė = ME

since it satisfies the Definition 3.2.1 and so Definition 3.0.8 with the matrix calculated M in

(4.22). Here, ME∗ = [0, −0.4001840, 0.15404799, 0]T ≃ [0, 0, 0, 0]T .

As biological interpretation of the obtained results for Gene D which shows an alternating

behavior experimentally in the first four time levels, we can say that, fading oscillating gene

expression, obtained by using 3rd-order Heun’s discretization, can be observed in biological

systems. One well-known example is the damped oscillation of circadian rhythms (molecular

clock) of CO2 output in the leaves of plants after the trigger (day-light) has been removed

[146].
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We present here Figure 4.1 [45, 84, 85], in order to compare our output coming from both

Euler’s and 3rd-order Heun’s methods using the calculated matrix M in (4.22). It is seen that

the results of 3rd-order Heun’s method are convergent and we reach the stable values after a

few time steps.
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gene B − Euler
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gene D − Euler
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gene C − 3rd orderHeun
gene D − 3rd orderHeun

Figure 4.1: Approximate results of gene-expressions of all genes by using Euler’s and 3rd-
order Heun’s methods.
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As a further step, we calculated the approximate results of gene-expressions by using four

discretization methods as a class of explicit Runge-Kutta methods with the same artificial

data given in Table 4.1, then compare the obtained results among them. Therefore, we apply

the same procedure described above for Euler’s method, also for 2nd-order Heun’s method,

3rd-order Heun’s method and 4th-order classical Runge-Kutta method for the following fixed

data of ˙̄E (which is obtained by forward difference approximation):

˙̄ET
1 = [0, − 50, 50, − 255],

˙̄ET
2 = [0, − 20, 20, 255],

˙̄ET
3 = [0, − 10, 10, − 255],

(4.24)

obtained from the data in Table 4.1 and for the correspondingly calculated matrix M (with

objective function value 2.564) given in below:

M =



0 0 0 0

0 −0.20 0.38 0

0.19 0 −0.58 0

1 0 0 −2


, (4.25)

which have the determinant zero and eigenvalues σ1 = −2, σ2 = −0.20, σ3 = −0.58 and

σ4 = 0.

Then, following iterative formulas are applied for the considered model Ė = ME in order to

generate approximate time series results:

Euler’s method: E(k+1) = (I + hkM)E(k),

2nd order Heun’s method: E(k+1) = (I + hkM +
h2

k

2
M2)E(k),

3rd order Heun’s method: E(k+1) = (I + hkM +
h2

k

2
M2 +

h3
k

6
M3)E(k),

4th order classical Runge-Kutta method: E(k+1) = (I + hkM +
h2

k

2
M2 +

h3
k

6
M3 +

h4
k

24
M4)E(k).

(4.26)

In the following graphs, given in Figures 4.2-4.5, we present the obtained time series results

for the gene-expression values that we get from applying all these four different discretization

schemes given in (4.26), for the considered fixed data in Table 4.1 and derivative data in (4.24)

with step-size hk = 1.

It is seen from the calculated gene-expression results by using higher degree numerical meth-

ods have smooth behavior especially for the alternating gene, Gene D, and also they are
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converging to the limit point

E∗ = [255, 163.779131, 86.222891, 127.5]T .

which gives ME∗ = [0, 0.008872380, −1.55927678, 0]T . For the third component of

the vector there is a little difference from zero vector in order for E∗ to be the fixed point.

The reason can be the choice of approximation in the derivative, Ė. Since we take the deriva-

tive data in (4.24) which is approximated by a first order approximation (forward difference)

instead of a third order approximation like in (4.20).
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Figure 4.2: Results of Gene A using different methods for fixed data and fixed step-size

Figure 4.3: Results of Gene B using different methods for fixed data and fixed step-size
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Figure 4.4: Results of Gene C using different methods for fixed data and fixed step-size

Figure 4.5: Results of Gene D using different methods for fixed data and fixed step-size
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4.3.1.3 Different Step-Size Analysis

In this part of our numerical application, we study the same MINLP model in (4.19) that is

called (OP-I) for the same artificial data in Table 4.1 and its approximated derivative data

in (4.24). This time we apply all mentioned four numerical schemes for various step-sizes

hk = 20, 2−1, 2−2, 2−3. Our aim is to see the effect of reducing the step-size in each method,

gene-wise, to the produced approximate gene-expression results.

Here, we have the calculated network matrix M in (4.25), and then we apply each numerical

scheme listed in (4.26) for all values of hk = 20, 2−1, 2−2, 2−3. The calculated gene-expression

time-series results are presented gene by gene in the following graphs.

Note that, 50 iterations are performed for hk = 20, 100 iterations are performed for hk = 2−1,

200 iterations are performed for hk = 2−2 and 400 iterations are performed for hk = 2−3 in

each scheme. Then, obtained results for each scheme are collected at the same time level in

terms of hours (hr) in order to do the comparison so that the corresponding figures are plotted

in a meaningful way.
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(i) Different step-size analysis with Euler’s method
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Figure 4.6: Results of Gene A using different step-sizes with Euler method
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Figure 4.7: Results of Gene B using different step-sizes with Euler method
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Figure 4.8: Results of Gene C using different step-sizes with Euler method
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Figure 4.9: Results of Gene D using different step-sizes with Euler method
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(ii) Different step-size analysis with 2nd-order Heun’s method
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Figure 4.10: Results of Gene A using different step-sizes with 2nd-order Heun’s method
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Figure 4.11: Results of Gene B using different step-sizes with 2nd-order Heun’s method
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Figure 4.12: Results of Gene B with a focused view
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Figure 4.13: Results of Gene C using different step-sizes with 2nd-order Heun’s method
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Figure 4.14: Results of Gene C with a focused view
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Figure 4.15: Results of Gene D using different step-sizes with 2nd-order Heun’s method
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Figure 4.16: Results of Gene D with a focused view
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(iii) Different step-size analysis with 3rd-order Heun’s method
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Figure 4.17: Results of Gene A using different step-sizes with 3rd-order Heun’s method
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Figure 4.18: Results of Gene B using different step-sizes with 3rd-order Heun’s method
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Figure 4.19: Results of Gene B with a focused view
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Figure 4.20: Results of Gene C using different step-sizes with 3rd-order Heun’s method
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Figure 4.21: Results of Gene C with a focused view
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Figure 4.22: Results of Gene D using different step-sizes with 3rd-order Heun’s method
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Figure 4.23: Results of Gene D with a focused view
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(iv) Different step-size analysis with 4th-order classical Runge-Kutta method

0 5 10 15 20 25 30 35 40 45 50
254

254.2

254.4

254.6

254.8

255

255.2

255.4

255.6

255.8

256

time ( hr )

A
p

p
ro

xi
m

at
e 

E
xp

re
ss

io
n

 V
al

u
es

 o
f 

G
en

e 
A

w
it

h
 4

th
 O

rd
er

 R
K

M
 w

rt
 d

if
fe

re
n

t 
st

ep
 s

iz
es

 

 

h=1
h=0.5
h=0.25
h=0.125

Figure 4.24: Results of Gene A using different step-sizes with 4th-order classical Runge-Kutta
method
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Figure 4.25: Results of Gene B using different step-sizes with 4th-order classical Runge-Kutta
method
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Figure 4.26: Results of Gene B with a focused view
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Figure 4.27: Results of Gene C using different step-sizes with 4th-order classical Runge-Kutta
method
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Figure 4.28: Results of Gene C with a focused view
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Figure 4.29: Results of Gene D using different step-sizes with 4th-order classical Runge-Kutta
method
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Figure 4.30: Results of Gene D with a focused view
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According to the obtained results from different step-size analysis of all four numerical schemes,

we can observe the following:

• When we compare obtained approximate results with the used experimental data that

we have only at first four time levels (t1 = 0hr,. . ., t4 = 3hr). It is seen that, for

h = 1, Euler and 3rd-order Heun’s method produce approximate results which are more

close to the experimental values at the first four time levels. As hk starts to decrease

like h = 1/2, 1/4, 1/8 then corresponding approximate values at the first time levels

are getting more far from the experimental data. For the studied 2nd-order and 4th-

order methods, the situation happens vice versa. As hk starts to decrease, the produced

approximate results are getting more close to the experimental at the first time levels.

• Here, let us remind the definition of rate of convergence:

Suppose that we have a sequence {Ek} of iterations of gene-expression levels produced

by a numerical scheme which converge to a limit point E∗ as k → ∞. Then, the ratio

µ = lim sup
k→∞

| Ek+1 − E∗ |
| Ek − E∗ | , (4.27)

is called rate of convergence. It is called linear if the denominator is of power one, and

quadratic if that power is two. The rate of convergence is a constant value, 0 ≤ µ ≤ 1.

According to this definition we look at the linear rate of convergence µ for k = 0, . . . , 50

for the calculated approximate results of a fixed method for varying step-sizes. Then

we compare those results by looking at them from a fixed time and see how the rate µ

changes as hk changes. We repeat the same procedure for all numerical methods that

we considered.

In this way, we perform the comparison of rate of convergence among all the numerical

schemes as h decreases from 1 to h = 1/2, 1/4, 1/8, we observe that the calculated

linear rate of convergence for Euler method and 3rd-order Heun’s method increases

while for 2nd-order Heun’s method and 4th-order classical Runge-Kutta method it de-

creases by a small amount, when we look at them from the same time levels (hours).

For example: the linear rate of convergence of Euler method at time t = 3hr for h = 1

is small than the rate for h = 1/2, and similarly rate for h = 1/2 is smaller than for

h = 1/4 and so on.
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• On the other hand as important consequence of different step-size analysis, comparison

of obtained approximate results of each gene as hk decreases among each method shows

that the following:

In Euler method, results with h = 1 give an alternating behavior for Gene D, but with

h = 1/2 this behavior becomes smoother and turned to damped oscillatory behavior.

As we continue to reduce the step-size hk, the limit point in this damped oscillation

is reached a few time steps before. Similarly, 3rd-order Heun’s method directly make

smooth the results of Gene D from alternating to damped oscillatory for h = 1. As hk

continue to decrease, the amplitude of these oscillations becomes smaller and the limit

point is reached in earlier time levels.

Also, in 2nd-order Heun’s method, for Gene D, a constant behavior is obtained with

h = 1 instead of original alternating behavior. This results can be thought as smooth

but it does not goes to the fixed point and also does not show the real behavior, therefore

we might obtain a ghost solution or spurious solution as described in [147]. But, when

we decrease step-size as h = 1/2, 1/4, 1/8, then Gene D smoothly converging to the

desired limit point at the end. In 4th-order classical Runge-Kutta method, for gene D,

smooth behavior is already obtained because of the high degree and accuracy of the

method. As hk decreases, the results are still converging to the limit point.
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4.3.1.4 Testing Sensitivity

In the following, we investigate the reply of approximate results obtained from considered

numerical schemes derived and listed in (4.26) (for our model Ė =ME) to a various values of

perturbations on the initial gene-expression data in Table 4.1. Here, we consider the choices

of perturbation value ϵ as ϵ = 101, 100, 10−1 and 10−2 for these genes. We solve the same

MINLP model described in (4.19), called (OP-I), for the perturbed initial artificial data given

below for each case of ϵ and for the same corresponding approximated derivative data in

(4.24) (because of difference quotient). Then we apply all considered numerical schemes for

hk = 1 in order to generate approximate time series gene-expression results.

For ϵ = 101 :
ĒT

1 = [265, 260, 10, 265],

ĒT
2 = [265, 210, 60, 10],

ĒT
3 = [265, 190, 80, 265],

ĒT
4 = [265, 180, 90, 10],

(4.28)

For ϵ = 100 :
ĒT

1 = [256, 251, 1, 256],

ĒT
2 = [256, 201, 51, 1],

ĒT
3 = [256, 181, 71, 256],

ĒT
4 = [256, 171, 81, 1],

(4.29)

For ϵ = 10−1 :
ĒT

1 = [255.1, 250.1, 0.1, 255.1],

ĒT
2 = [255.1, 200.1, 50.1, 0.1],

ĒT
3 = [255.1, 180.1, 70.1, 255.1],

ĒT
4 = [255.1, 170.1, 80.1, 0.1],

(4.30)

For ϵ = 10−2 :
ĒT

1 = [255.01, 250.01, 0.01, 255.01],

ĒT
2 = [255.01, 200.01, 50.01, 0.01],

ĒT
3 = [255.01, 180.01, 70.01, 255.01],

ĒT
4 = [255.01, 170.01, 80.01, 0.01].

(4.31)

By using the above perturbation values, the calculated approximate time series gene-expression

results of all numerical schemes are presented in the following graphs.
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(i) Perturbation analysis with Euler’s method for hk = 1

Figure 4.31: Results of Gene A with Euler method under various perturbations
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Figure 4.32: Results of Gene B with Euler method under various perturbations

Figure 4.33: Results of Gene B with a focused view
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Figure 4.34: Results of Gene C with Euler method under various perturbations

Figure 4.35: Results of Gene C with a focused view
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Figure 4.36: Results of Gene D with Euler method under various perturbations

Figure 4.37: Results of Gene D with a focused view
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(ii) Perturbation analysis with 2nd-order Heun’s method for hk = 1

Figure 4.38: Results of Gene A with 2nd-order Heun’s method under various perturbations

Figure 4.39: Results of Gene A with a focused view
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Figure 4.40: Results of Gene B with 2nd-order Heun’s method under various perturbations

Figure 4.41: Results of Gene B with a focused view
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Figure 4.42: Results of Gene C with 2nd-order Heun’s method under various perturbations

Figure 4.43: Results of Gene C with a focused view
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Figure 4.44: Results of Gene D with 2nd-order Heun’s method under various perturbations

Figure 4.45: Results of Gene D with a focused view
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(iii) Perturbation analysis with 3rd-order Heun’s method for hk = 1

Figure 4.46: Results of Gene A with 3rd-order Heun’s method under various perturbations

Figure 4.47: Results of Gene A with a focused view
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Figure 4.48: Results of Gene B with 3rd-order Heun’s method under various perturbations

Figure 4.49: Results of Gene B with a focused view
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Figure 4.50: Results of Gene C with 3rd-order Heun’s method under various perturbations

Figure 4.51: Results of Gene C with a focused view
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Figure 4.52: Results of Gene D with 3rd-order Heun’s method under various perturbations

Figure 4.53: Results of Gene D with a focused view
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(iv) Perturbation analysis with 4th-order classical Runge-Kutta method for hk = 1

Figure 4.54: Results of Gene A with 4th-order classical Runge-Kutta method under various
perturbations

Figure 4.55: Results of Gene A with a focused view
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Figure 4.56: Results of Gene B with 4th-order classical Runge-Kutta method under various
perturbations

Figure 4.57: Results of Gene B with a focused view
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Figure 4.58: Results of Gene C with 4th-order classical Runge-Kutta method under various
perturbations

Figure 4.59: Results of Gene C with a focused view
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Figure 4.60: Results of Gene D with 4th-order classical Runge-Kutta method under various
perturbations

Figure 4.61: Results of Gene D with a focused view
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According to the obtained approximate results from perturbation analysis of all four numeri-

cal schemes with respect to different choices of perturbation value ϵ, e.g., 101, 100, 10−1, 10−2,

we can observe the following:

• When we study the case ϵ = 101, the results of all studied methods are changed some-

how like a shift. But, there happens a dramatic change in Gene C which normally shows

an increasing behavior. After perturbation, this gene started to take negative values in

the first time levels and continue to have fast decreasing behavior.

• For the other genes in the network (Gene A, Gene B and Gene D) with ϵ = 101 pertur-

bation, there is a change in the results but not dramatically and in a way of preserving

their existing behavior inside each considered numerical method.

• For perturbation value ϵ = 10−1 and ϵ = 10−2, obtained approximate gene-expression

results are very much close to each other. Also, the results for ϵ = 100 does not differs

much. With all these three perturbation values, the following limit points are reached

in each numerical scheme which is close to the limit point without perturbation given

in (4.27).

E∗ = [255, 164.135967, 86.88391, 127.998047]T , for ϵ = 100,

E∗ = [255, 163.815177, 86.288322, 127.54998]T , for ϵ = 10−1,

E∗ = [255, 163.752423, 86.213687, 127.505]T , for ϵ = 10−2.

4.3.1.5 Discussion

For this numerical application, we did not change the considered data and the constraints in

the constructed MINLP in (4.19) in order to be able to compare our results with those of

[36] where only Euler method is studied and its results are given for the data in Table 4.1.

The provided data is limited in terms of the number of time points and genes, but each gene

in that network shows a special behavior (constant, decreasing, increasing and alternating)

both mathematically and biologically. For our next application studied in Subsection 4.3.2,

we use experimentally obtained gene-expression data of a huge network belonging to a real

biological phenomenon.

The detailed numerical investigation of the first illustrated example in this subsection with a
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small set of artificial data shows that as the order of the applied numerical method (scheme) is

increased from Euler method (as a 1st-order method) to 2nd-order Heun’s method, 3rd-order

Heun’s method and 4th-order classical Runge-Kutta method, which are all belong to the class

of explicit Runge-Kutta methods, the following results are obtained. Briefly, we can say that:

• more smooth behaviors are obtained for the genes which shows alternating or oscillat-

ing behaviors, especially for Gene D;

• convergence to the equilibrium point is reached in all methods, sometimes with the help

of decreasing the step-size or sometimes without depending on the special behavior of

the gene;

• the rate of convergence is improved by reducing the step-size for the numerical schemes

having odd order. Linear rate of convergence values are going to zero for some of the

genes and reaching one for the others;

• the perturbation analysis that we studied results that for all genes a common allowable

interval for the perturbation value ϵ can be taken as [0, 1] in order to keep the general

behavior of the genes among each numerical method and also to keep the convergence

to the equilibrium point or its close neighbourhood. Hence, considered methods are

stable under the perturbation ϵ ∈ [0, 1].

Regarding our performed different step-size analysis and discussion of obtained results in

Subsubsection 4.3.1.3, we can say that, when using 2nd-order Heun’s method, or any other

two or four stage (means 2nd-or-4th-order) explicit Runge Kutta schemes in numerical ap-

plications, one has to be very careful to choose the step-size sufficiently small in order not

to obtain ghost solutions or spurious solutions, as it is shown and explained in [147, 148].

In [147], the authors stated that the two stage Heun’s method is somewhat more prone such

errors than other Runge Kutta methods.
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4.3.2 Example with a Real-World Data Set

4.3.2.1 Data Analysis

In our real-world example, we have considered the data of mRNA transcript levels during

the cell cycle of budding yeast “Saccharomyces cerevisiae” [149, 150]. These cells were

collected at 17 time points taken by 10 minutes (min.) intervals in a way to cover nearly two

full cell cycles containing 5-phases. The whole yeast cell cycle data set contains 6220 genes

[149] and shows fluctuation of their expression levels during those 17 time points. From this

data set, 416 genes are identified by Cao et al. [149] based on their peak times and they are

grouped into five phases of cell cycle. Out of the 416 genes, 384 genes were classified into

only one phase (class) [151].

Since we can not consider all of the genes in this clustered network because of computational

complexity in the corresponding optimization problem and in numerical calculations, then we

choose a small subnetwork from this huge network of 384 genes in the following way:

It is stated in [149] that, there are 25 genes as landmarks in the time course data and they are

characterized with respect to a specific cell cycle phase. Those genes are used for specifying

the cell cycle phases based on morphological markers. Among these genes we could find

the data of 23 (from the whole data given at ‘http://faculty.washington.edu/kayee/model/’)

which are covering all phases of the cell. Since they are considered as landmarks, this means

that they are highly expressed genes in their cell cycle phase. Beyond the selected 23 genes,

we take 3 more genes as house keeping genes that listed in Table 4.4 with their functional

properties. The reason of including these genes can be given as follows: Each living organism

needs energy absorbed from the environment in order to perform the basic metabolism, like

the chemical events acquiring energy. Genes encoding for proteins which are involved in

such basic metabolism are called house keeping genes. Those genes are usually expressed at

a constant level and they are therefore a good tool to normalize gene expression data [152].

We identify and select those 3 house keeping genes by using a powerful and user-friendly bio-

logical web-application software called OrfMapper [152] (we refer to [152, 153] for details).

Therefore, a collection of 26 genes that we selected as our small subnetwork are listed with

their explanations in Table 4.3 (extracted from [149]) and Table 4.4 given below:
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Table 4.3: Information about selected 26 genes in the network [149]

Name of gene Cell-cycle phase Functional explanation
YLR079w Early G1 phase Cell cycle regulation
YJL194w Early G1 phase DNA replication
YLR274w Early G1 phase DNA replication
YBR202w Early G1 phase DNA replication
YGR109c Late G1 phase Cell cycle regulation
YPR120c Late G1 phase Cell cycle regulation
YPL256c Late G1 phase Cell cycle regulation
YMR199w Late G1 phase Cell cycle regulation
YER070w Late G1 phase DNA replication
YOR074c Late G1 phase DNA replication
YDL164c Late G1 phase DNA replication
YNL126w S phase Chromosome segregation
YHR172w S phase Chromosome segregation
YBL003c S phase DNA replication
YBL002w S phase DNA replication
YKL049c G2 phase Chromosome segregation
YCL014w G2 phase Directional growth
YGR108w M phase Cell cycle regulation
YPR119w M phase Cell cycle regulation
YAL040c M phase Cell cycle regulation
YGR092w M phase Chromosome segregation
YDR146c M phase Transcription factors
YLR131c M phase Transcription factors
YCR005c Early G1 phase Housekeeping genes
YCL040w Early G1 phase Housekeeping genes
YNR016c Early G1 phase Housekeeping genes

Table 4.4: Explanations for the selected housekeeping genes among 26 genes

Gene ID Metabolism Enzyme Name
YCR005C Citryte Cycle Non-mitochondrial citrate synthase
YCL040W Glycolysis Glucose phosphorylation
YNR016C Pyruvate metabolism Acetyl-CoA carboxylase
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The raw data [149] of 26 genes in our selected subnetwork is presented in the following

together with the correspondingly calculated approximate derivative data using the forward

difference approximation given in Eq. (3.25), and taking 10 minutes difference between the

time intervals in terms of hours, e.g., hk = 1/6 hour (hr.).

Table 4.5: Experimental raw data of selected 26 genes along 17 time points per 10 minutes

Name of Gene/Time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17
YLR079w 352 295 355 308 361 356 294 212 541 1286 813 595 490 398 400 389 692
YJL194w 78 246 121 88 115 149 130 108 231 265 138 162 130 151 107 123 215
YLR274w 209 262 231 140 148 165 184 271 416 465 351 243 198 162 179 252 324
YBR202w 114 273 179 125 115 145 289 491 478 530 369 218 187 176 295 483 411
YGR109c 174 333 747 312 110 120 144 88 104 392 443 297 193 197 142 112 144
YPR120c 562 785 1756 949 659 612 467 563 455 1207 1325 643 647 657 509 464 508
YPL256c 445 1620 2485 1303 916 808 738 636 303 791 1288 1624 1035 839 687 868 433

YMR199w 149 1045 1344 1305 998 1013 717 571 323 1152 1870 1388 989 1074 769 614 601
YER070w 78 502 823 456 279 197 123 90 86 334 513 524 436 313 177 163 168
YOR074c 17 59 106 93 57 37 18 18 19 28 82 90 89 36 19 12 15
YDL164c 216 356 817 500 267 242 216 172 221 627 740 535 397 418 270 239 269
YNL126w 142 147 188 238 244 279 205 123 94 56 110 153 236 211 160 91 104
YHR172w 57 83 133 135 106 121 85 52 50 53 68 73 101 89 56 49 33
YBL003c/ 723 553 1597 1753 2478 887 1362 1053 745 1205 1569 1916 1415 1720 2300 1579 1156
YBL002w/ 278 470 1444 1980 2384 868 962 877 594 850 1563 2265 1845 1982 1677 1595 968
YKL049c 255 250 465 516 595 494 427 390 329 341 382 440 487 548 521 430 357
YCL014w 39 38 32 54 97 120 162 182 120 28 47 47 71 100 93 58 89
YGR108w 49 124 90 92 149 288 391 338 323 158 134 125 148 270 340 338 310
YPR119w 92 158 122 145 259 348 489 554 422 236 185 151 218 267 365 350 365
YAL040c 1085 1013 752 750 1274 707 1376 1294 1140 2800 1352 1103 844 1087 1261 1240 1041
YGR092w 113 131 134 120 167 223 321 371 376 274 223 209 167 181 192 286 286
YDR146c 121 167 272 268 323 540 634 591 606 540 463 357 449 937 743 1024 659
YLR131c 148 113 144 209 319 360 434 411 462 398 226 187 325 433 343 466 344
YCR005c 439 250 150 172 147 143 232 500 584 506 517 655 629 436 424 281 307
YCL040w 813 302 167 229 297 208 184 283 350 659 823 682 480 539 512 484 854
YNR016c 1074 1517 1956 1619 1902 1202 1171 1011 932 1704 1464 1287 962 1139 1046 1238 1166

Table 4.6: Approximated derivative raw data of selected 26 genes

Name of Gene/Time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
YLR079w -342 360 -282 318 -30 -372 -492 1974 4470 -2838 -1308 -630 -552 12 -66 1818
YJL194w 1008 -750 -198 162 204 -114 -132 738 204 -762 144 -192 126 -264 96 552
YLR274w 318 -186 -546 48 102 114 522 870 294 -684 -648 -270 -216 102 438 432
YBR202w 954 -564 -324 -60 180 864 1212 -78 312 -966 -906 -186 -66 714 1128 -432
YGR109c 954 2484 -2610 -1212 60 144 -336 96 1728 306 -876 -624 24 -330 -180 192
YPR120c 1338 5826 -4842 -1740 -282 -870 576 -648 4512 708 -4092 24 60 -888 -270 264
YPL256c 7050 5190 -7092 -2322 -648 -420 -612 -1998 2928 2982 2016 -3534 -1176 -912 1086 -2610

YMR199w 5376 1794 -234 -1842 90 -1776 -876 -1488 4974 4308 -2892 -2394 510 -1830 -930 -78
YER070w 2544 1926 -2202 -1062 -492 -444 -198 -24 1488 1074 66 -528 -738 -816 -84 30
YOR074c 252 282 -78 -216 -120 -114 0 6 54 324 48 -6 -318 -102 -42 18
YDL164c 840 2766 -1902 -1398 -150 -156 -264 294 2436 678 -1230 -828 126 -888 -186 180
YNL126w 30 246 300 36 210 -444 -492 -174 -228 324 258 498 -150 -306 -414 78
YHR172w 156 300 12 -174 90 -216 -198 -12 18 90 30 168 -72 -198 -42 -96
YBL003c/ -1020 6264 936 4350 -9546 2850 -1854 -1848 2760 2184 2082 -3006 1830 3480 -4326 -2538
YBL002w/ 1152 5844 3216 2424 -9096 564 -510 -1698 1536 4278 4212 -2520 822 -1830 -492 -3762
YKL049c -30 1290 306 474 -606 -402 -222 -366 72 246 348 282 366 -162 -546 -438
YCL014w -6 -36 132 258 138 252 120 -372 -552 114 0 144 174 -42 -210 186
YGR108w 450 -204 12 342 834 618 -318 -90 -990 -144 -54 138 732 420 -12 -168
YPR119w 396 -216 138 684 534 846 390 -792 -1116 -306 -204 402 294 588 -90 90
YAL040c -432 -1566 -12 3144 -3402 4014 -492 -924 9960 -8688 -1494 -1554 1458 1044 -126 -1194
YGR092w 108 18 -84 282 336 588 300 30 -612 -306 -84 -252 84 66 564 0
YDR146c 276 630 -24 330 1302 564 -258 90 -396 -462 -636 552 2928 -1164 1686 -2190
YLR131c -210 186 390 660 246 444 -138 306 -384 -1032 -234 828 648 -540 738 -732
YCR005c -1134 -600 132 -150 -24 534 1608 504 -468 66 828 -156 -1158 -72 -858 156
YCL040w -3066 -810 372 408 -534 -144 594 402 1854 984 -846 -1212 354 -162 -168 2220
YNR016c 2658 2634 -2022 1698 -4200 -186 -960 -474 4632 -1440 -1062 -1950 1062 -558 1152 -432
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4.3.2.2 Studied Models

By considering the presented data above, we construct our model and so the optimization

problem. Then after obtaining the result for the corresponding network matrix, we apply our

class of numerical schemes including newly introduced ones listed in Eq. (4.26) to generate

the approximate time-series gene-expression results and to see the long-term behavior of the

system containing selected 26 genes.

The dynamic network model that we consider for this real-world application is the model Ė =

ME and the original MINLP problem in (4.19), called (OP-I), which is described in details

in Subsubsection 4.3.1.1. The constraints in the original MINLP problem are bounded by

the maximum indegree/outdegree values degmax of the considered genes and also by a lower

limit λ for the degradation rate of the genes. The underlying biological and mathematical

motivation for the selection of the bounds and constraints for the restriction of the solution

space and so the connections in the network is explained in Section 3.3. By considering this,

we can relax and extend our original MINLP problem, (OP-I), by letting the off-diagonal

network matrix entries to take negative values and formulate an extended MINLP model,

called (OP-II) only by changing the constraint (4.13) of the original MINLP model in (4.19)

in Subsubsection 4.3.1.1 with the constraint (4.14) and formulate a new optimization problem

as:

(OP-II) min (4.12), s.t. {(4.14), (4.17), (4.18)}, (4.32)

In both presented mixed-integer problems (OP-I) and (OP-II), all these bounds can be re-

garded as realizations of case whose solutions are included in efficiency frontiers (in the case

of parametric variation of one bound) or efficiency surface (in the case of parametric variation

of several bounds) [79, 82, 139, 140].

For the selection of the corresponding bounds, degmax and λ, in the constraints of both original

MINLP problem in (4.19) and extended MINLP problem in (4.32), we have used a graphical

clustering software BioLayout Express3D [154]. This software provides the visualization of

the considered network together with some statistics about the network, e.g., connectedness,

indegree, outdegree, network diameter values, and so on. A Markov clustering tool is also

available in it.
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The raw data of our selected 26 genes, given in Table 4.5, are introduced into this program

by the corresponding correlation matrix. So, we firstly calculate the correlation matrix cor-

responding to our gene-wise raw data. Then, we specify a matrix cut-off value to define the

threshold above which relationships in the network will be shown. After that, we obtained

through this software some informations about indegree-outdegree values and also a visual-

ization of our selected small subnetwork as shown in Figure 4.62 for different choices of the

matrix cut-off values.
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(a)

(b)

(c)

Figure 4.62: By using BioLayout Express3D software, indegree and outdegree analysis of
selected 26 genes by the corresponding correlation matrix having (a) cut-off value= 0, (b)
cut-off value= 0.5 and (c) cut-off value= 0.7
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In order to choose the matrix cut-off value, we briefly look at the correlation matrix, its inverse

and covariance matrices of our raw gene data. Then, we select the possible cut-off values as

0.5, 0.7, 0.8 in order not to loose some nodes (genes) of the network but also to eliminate

some weak relations (edges) among the genes. According to the obtained statistical results

from that software, we took the corresponding maximum indegree value, that can be common

for all genes in our subnetwork, as degmax,i = 6, for i = 1, 2, . . . , 26.

As the next bound for our network, we have to decide the a lower limit of the degradation rate

λ corresponding to our subnetwork. For this purpose, we perform log-like linear regression

analysis for each gene in our subnetwork. Then, we look at the slope of each regression

line that is obtained in log2-scale and select the average value as our common limit for the

degradation rate. Hence, we specify λ(i) = 12 for i = 1, 2, . . . , 26.

Therefore, after all these steps and analysis which can be called as preprocessing, we decide

to take the bounds in the constraints of the original and extended MINLP problems as follows

λ(i) = 12, degmax,i = 6 (i = 1, 2, . . . , 26). (4.33)

We are now be able to study both original and extended MINLP problems for our network

with the selected bounds of the constraints in (4.33) and then apply all our numerical schemes

listed in Eq. (4.26) for the gene data in Table 4.5 and derivative data in Table 4.6 to obtain

time-series predictions.

Used software: For solving the original MINLP model (OP-I) and extended MINLP model

(OP-II), we have used the IBM ILOG CPlex Optimizer and the Gurobi Optimizer tools in

order to prove global optimality.

4.3.2.3 Numerical Results

By considering the data given in Table 4.5 and Table 4.6, we calculated the following network

matrices M1 and M2 as the solutions of the studied original MINLP model and extended

MINLP model, respectively. The calculated matrices M1 and M2 have both 6 real and 20

complex (distinct) eigenvalues being both negative and positive.

After we obtained the network matrices M1 and M2 as the solutions of two optimization prob-

lems, we apply all four numerical methods presented in Eq. (4.26) to generate approximate
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gene-expression values. Comparison of the approximate results produced by all these numer-

ical schemes is done for the original MINLP model. Additionally, we compare the results of

original MINLP model and extended MINLP model by fixing the used numerical scheme as

Euler’s method. In both comparisons, the step-size is taken as hk = 1/6 (hr). For each gene

of our subnetwork, all corresponding results are presented in the following graphs in part (i)

and (ii).
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(i) Comparison of the results of all numerical methods for hk = 1/6 with original model

Figure 4.63: Results of all 4 schemes for Gene YLR079w by considering original model

Figure 4.64: Results of all 4 schemes for Gene Y JL194w by considering original model

100



Figure 4.65: Results of all 4 schemes for Gene YLR274w by considering original model

Figure 4.66: Results of all 4 schemes for Gene YBR202w by considering original model
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Figure 4.67: Results of all 4 schemes for Gene YGR109c by considering original model

Figure 4.68: Results of all 4 schemes for Gene YPR120c by considering original model
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Figure 4.69: Results of all 4 schemes for Gene YPL256c by considering original model

Figure 4.70: Results of all 4 schemes for Gene Y MR199w by considering original model
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Figure 4.71: Results of all 4 schemes for Gene YER070w by considering original model

Figure 4.72: Results of all 4 schemes for Gene YOR074c by considering original model
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Figure 4.73: Results of all 4 schemes for Gene YDL164c by considering original model

Figure 4.74: Results of all 4 schemes for Gene YNL126c by considering original model
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Figure 4.75: Results of all 4 schemes for Gene YHR172w by considering original model

Figure 4.76: Results of all 4 schemes for Gene YBL003c by considering original model
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Figure 4.77: Results of all 4 schemes for Gene YBR002w by considering original model

Figure 4.78: Results of all 4 schemes for Gene YKL049c by considering original model

107



Figure 4.79: Results of all 4 schemes for Gene YCL014w by considering original model

Figure 4.80: Results of all 4 schemes for Gene YGR108w by considering original model
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Figure 4.81: Results of all 4 schemes for Gene YPR119w by considering original model

Figure 4.82: Results of all 4 schemes for Gene YAL040c by considering original model

109



Figure 4.83: Results of all 4 schemes for Gene YGR092w by considering original model

Figure 4.84: Results of all 4 schemes for Gene YDR146c by considering original model
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Figure 4.85: Results of all 4 schemes for Gene YLR131c by considering original model

Figure 4.86: Results of all 4 schemes for Gene YCR005c by considering original model
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Figure 4.87: Results of all 4 schemes for Gene YCL040w by considering original model

Figure 4.88: Results of all 4 schemes for Gene YNR016c by considering original model
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(ii) Comparison of the results of original and extended models with Euler method for hk = 1/6

presented for some of the genes

Figure 4.89: Results of Gene YLR079w obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6
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Figure 4.90: Results of Gene YPR120c obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6

Figure 4.91: Results of Gene YDR164c obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6

114



Figure 4.92: Results of Gene YBL003c obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6

Figure 4.93: Results of Gene YCL014w obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6
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Figure 4.94: Results of Gene YPR119w obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6

Figure 4.95: Results of Gene YDR146c obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6
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Figure 4.96: Results of Gene YCL040w obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6

Figure 4.97: Results of Gene YNR016c obtained by the solution of original and extended
model and approximately generated by Euler method with hk = 1/6
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4.3.2.4 Discussion

The calculated gene-expression predictions from this numerical experience using real-world

data can be presented and explained with possible underlying reasons in the following way:

• It seems that the computational results have smoothed the experimental results. Due to

this smoothing, the trends of the expression values becomes visible, which the models

then extrapolate to the future,

• On the other hand, Euler method gives approximate results more close to experimental

values in the first iterations; then, it holds that the higher the degree of the methods, the

worse the approximated time series results in earlier iterations,

• The strengths of higher degree methods are in learning: the more convincing the model

itself is, the better the higher-degree methods become (in terms of prediction error at

various times of the iteration). Especially, if the quality of the models encounters future

features (e.g., via periodicity, growth rate of the model functions, etc.), the predictive

power is considered to increase.

Here, the model class selection should at first consider the expected behavior of the

modeled system. In fact, a cell cycle is evidently a cyclic process and will not have a

fixed point but it is likely to converge a cyclic attractor. As the possible choices for fur-

ther real-world problems, either we can select a wider model class which can model the

cyclic behavior or we can select a homeostasis problem like glucose regulation mecha-

nism. Furthermore, we can model the deviation from an expected periodic attractor.

As another approach, the discrete algorithmical technique and analysis with polytopes,

that is presented in [11, 36, 37, 39, 55], can be employed in future as a methodology to

study the qualitative behavior of the dynamics.

• Actually, in the considered subnetwork, the selected data set is sparse and also very

small with respect to the whole network so that one cannot conclude very much. A

bigger subnetwork or the whole network can be considered for the future improvements

of this real-world example,

• Accuracy is anyway just one of our goals, the other one is stability and expresses itself

in some regularization and smoothing, which is especially true for possible outliers

[157].
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• We note that there can be outliers in the experimental data, and our higher degree meth-

ods serve to dampen them within our modeling and prediction. Data often contain

outliers or influential observations. Outliers can be defined as one or more than one

observation that are inconsistent with the rest of the data. Let us notice that, they may

come from the errors of measurements and intrinsic variability. Existence of outliers

in the data causes errors in parameter estimations, a misleading result and, hence, a

less useful analysis. Robust methods from statistics can be used to deal with such kind

of data together with the optimization tools as MARS and conic MARS (for details

see [157]). In this way, methods from statistical learning, inverse problems and opti-

mization are, and will further be, combined in order to obtain more efficient and stable

results in the presence of outliers.

• Biologically, since we selected genes of our small network as landmarks which are the

highly expressed genes in their cell-cycle phases, those genes may effect the production

of some other proteins (genes) in a positive or negative way. So, continuously increas-

ing production may happen. Also, we tried to model the whole metabolism (system) by

looking at a small number of genes which are all highly expressed.

For the future improvement of the obtained results, we suggest the following methodology in

order to obtain better results for this real-world application:

Since the predicted gene-expression values do not lie in a bounded region, and provided that

for biological reasons unstable solutions refers to an unsatisfactory fitting, more refined statis-

tical learning has to be performed [76]. Furthermore, additional biological knowledge has to

be included by the help of experimentalist and biologists in order to specify the representative

constraints and bounds for the restriction of the network and so the solution space. More-

over, it is not only a biological problem - but also a parametric one on getting an efficiency

frontier or efficiency plane [139, 140]. All these kinds of analysis are included in a so-called

preprocessing step which should be performed carefully with the data before any further task

is tackled. At this step, the selection of parameters is very important and it greatly effect the

solutions, especially, for the large-scaled gene-expression data, as stated with results in [158].

Because of the detected unboundedness of the generated discrete orbit, which can mean a

contradiction, the studied model needs to be changed and, in fact, improved by doing neces-

sary refinements or by considering new classes of model functions [42]. In this sense, we can
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add a penalty term to the studied objective function in the sense of Tikhonov regularization as

it is studied with the same data in [150], or we can consider a nonlinear model. In addition to

these approaches, we can use multivariate adaptive regression splines based models as men-

tioned in Chapter 5 and studied with its robust conic version in [49]. They are “adaptive”,

i.e., they are statistically and, now, mathematically, “learning” to get into the given data set.

In this thesis, we support this learning by mathematical methods, especially, by optimization.
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CHAPTER 5

EXTENSIONS TOWARDS THE INCLUSION OF

UNCERTAINITY THROUGH ROBUSTIFICATION

The questions about robustness come to the minds when an optimization problem is subject

to uncertain data. The existence of uncertainty arise naturally in most of the real-life phenom-

ena. Therefore, robust optimization has important applications and gains a lot of attention by

scientists in recent years.

The data coming from a real-world system may include noise, e.g., both in input and out-

put variables of the corresponding regression (fitting) problem. This means that the data of

the regression problem are not exactly known or may not be exactly measured, or the ex-

act solution of the problem may not be carried out because of intrinsic inaccuracy of the

devices [166]. Also, the data may contain small changes by variations in the optimal ex-

perimental design. All these situations results uncertainty in the objective function and in

possible constraints of the corresponding optimization problem. Various algorithms (see

[73, 74, 79, 82, 165, 166, 168, 170] and references therein) are defined and combined from

the important robust optimization method developed in [159, 161, 162, 167] in order to deal

with this problem.

Robust Optimization has gained importance both theoretically and practically as a modeling

framework for immunizing against parametric uncertainties in mathematical optimization.

As a modeling methodology, robust optimization treats optimization problems in which data

are uncertain, and are only known to belong to some uncertainty set, except for outliers.

Robust optimization aims to find an optimal or near optimal solution which is feasible for

every possible realization of the uncertain scenarios [165, 170]. This approach makes the

optimization model robust with respect to constraint violations by solving robust counterparts
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of these problems within pre-specified uncertainty sets for the uncertain parameters [114,

169]. For the worst-case realization of those uncertain parameters, the mentioned counterparts

are solved based on appropriately determined uncertainty sets for the random parameters.

Robust optimization problems can be solved more efficiently if the considered uncertainty

set has a special shape geometrically, like polyhedral or ellipsoid (see [79] and related cited

references therein). When the ellipsoidal uncertainty is considered, robustification process

will produce better results, on the other hand it increases the complexity of the optimization

problem [166].

5.1 Robust Optimization

Optimization gains a lot importance in the recent years in various fields like engineering,

finance and control design. In most of the applications from these fields, it is assumed to

have complete knowledge of the data of the optimization problem, which means that the

input data are assumed to known exactly and equal to some nominal values in developing

models. However, there may be significant sensitivity of the solutions to the perturbations

in the parameters of the problem, thus, often a computed solution is highly infeasible or

suboptimal. As a result, optimization influenced by parameter uncertainty is a central problem

of the scientists in mathematical programming, and there is certainly a need to overcome

uncertain data arises to develop models when optimization results are combined within real-

world applications [163, 164, 165]. The scope of robust optimization is to find an optimal or

near optimal solution that is feasible for every possible realization of the uncertain scenarios

[165].

The general optimization problem under uncertainty is stated as follows [79]:

max
x

αT x,

s.t. fi(x,Di) ≥ 0 ∀i ∈ I,

x ∈ X, (5.1)

where x is the design vector, α is a given vector of coefficients of the objective function,

fi(x,Di) (i ∈ I) are given constraint functions, X is a given set and Di (i ∈ I) is the vector of

random coefficient. In [160, 161, 167, 168] an important further step is taken to develop the

theory for robust optimization. There, the below robust optimization problem is proposed to
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be solved

max
x

αT x,

s.t. fi(x,Di) ≥ 0 ∀Di ∈ Ui, ∀i ∈ I,

x ∈ X, (5.2)

in which Ui (i ∈ I) denotes the given uncertainty sets corresponding to the ith-constraint.

Here, the aim is to find a solution of the stated problem in (5.2) which “immunizes” the

problem (5.1) against parameter uncertainty. In the robust optimization literature, the un-

certainty sets under consideration has the following standard types [160, 161, 167, 168],

when the constraints fi(x,Di) (i ∈ I) are taken linear as Ax − b with [A, b] ∈ U and

Ui = {[ai,bi] | [A,b] ∈ U}, where

Ui = {[ai,bi] = [a0
i , b

0
i ] +

K∑
k=1

uk[ak
i , b

k
i ] | u ∈ Zi}; (5.3)

here, the set Zi (i ∈ I) determines what type of uncertainty set we have. These sets may be

one of the following:

box uncertainty set: Zi = {u ∈ RK | ∥u∥∞ ≤ 1},

convex combination of scenarios: Zi = {u ∈ RK | ui ≥ 0 (i = 1, 2, . . . ,K), eT u ≤ 1},

ellipsoid uncertainty set: Zi(c,Σ) = {u ∈ RK , Σ1/2u + c | ∥u∥2 ≤ 1}, (5.4)

where Σ ∈ RK×K a symmetric nonnegative definite configuration matrix, c ∈ RK is the center

of the ellipsoid and Σ1/2 is any matrix square root [171]. In (5.4), the first two uncertainty set

definitions belongs to the polyhedral uncertainty type.

5.2 Robustified Process Version of Generalized

Partial Linear Model Approach

In the recent paper [49], Weber, Ozmen, Cavusoglu and Defterli have presented a newly

developed robust conic GPLM method with a real-world application in finance to predict

the default probabilities in emerging markets. Additionally, as a further possible and new

application field of robust conic GPLM, regulatory network models, e.g., eco-finance network

and gene-environment network models are discussed in the introductory level. This new and

challenging application field is introduced firstly in this work as the basis of this section of
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the thesis and the corresponding formulations are initiated originally. The new technique of

solving and optimizing the models that contain nonlinearity and uncertainty is discussed in

[49] by using robust conic GPLM and robust conic MARS. An implementation on a different,

especially, time-dependent area, namely, regulatory systems is introduced newly where such

systems appear in environmental protection, education, system biology, medicine, financial

sector, banking.

In the following part of this thesis, it is newly demonstrated [49] that the GPLM, and in fact,

conic GPLM and robust conic GPLM approaches can also be implemented with the dynamical

modeling of target-environment regulatory systems (see [11, 27, 29, 30, 35, 36, 39, 42, 43,

44, 46, 48, 59] and the references therein), that are considered as a subclass of regulatory

networks, in order to obtain better results for the system identification. This subclass also

contains eco-finance networks [30, 48] and gene-environment networks.

Regulatory networks usually contain a large number of variables and parameters, that brings

complexity into the system. Therefore, in the study of such systems, there is always a need

for advanced methods, which will reduce the complexity, produce more efficient and stable

solutions and make it easier to deal with the problem.

Target-environment regulatory systems appear in many application areas like financial sector,

economy, environmental sciences, computational biology, medicine in which they are often

referred to gene-environment or eco-finance networks. One of our examples in this context

is given by the process of the Kyoto Protocol (see [30] and its references). Modeling and

prediction of such regulatory systems and the problem of identifying the regulating effects

and interactions between the targets and other components of the network have a significant

importance in the mentioned areas [11, 27, 29, 30, 35, 36, 39, 42, 43, 44, 46, 47, 48, 59].

As one of the modeling approaches applied to the target-environment regulatory networks,

the time-autonomous system of ordinary differential equations has been earlier introduced

and studied in [27, 35, 59]. By using the process version of GPLM, the same system of

equations form can be reformulated in the following way [49]:

Ẋ = F(X), (5.5)

where Fi : Rd → R are nonlinear coordinate functions of F in X1, X2, . . . , Xd (d = m + n),

and X = X(t) = (XT ,TT )T with time t ∈ I and the interval I = (a, b) ⊆ R. In that model, the
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first n components of the d-vector X = (X1, X2, . . . , Xn,T1,T2, . . . , Tm)T denote expression or

concentration values of the n targets (also in the sense of players or genes) in the network,

whereas the remaining m components denote the concentrations of environmental factors at a

time t. Furthermore, Ẋ stands for the change rates of X in time. The parameters appearing in

the function are identified by using the experimental data vectors X̄, which are coming from

real-world experiments and environmental measurements at the sample times [27, 35, 36, 39,

59]. A class of models has been derived from this idea in the papers [11, 29, 36, 42, 43, 46],

where we can represent their generalized multiplicative form with our GPLM approach as

follows [49]:

Ẋ =M(X)X, with X :=

 X

T

 , M(X) :=

 M1(X)n×n M1(T)n×m

M2(T)m×n M2(X)m×m

 . (5.6)

While the (n×1)-vector X represents the expression levels of targets, (m×1)-vector T consists

of environmental factors which affect the targets in the network. The weight functions that

represent these interactions are the entries of the (d×d)-matrix M(X) and they contain param-

eters to be estimated. In the above representation M is written as the chosen block structure.

The matrix M(X) is called as network matrix whose entries can be polynomial, trigonometric,

exponential, logarithmic, hyperbolic, spline, and it can be identified by solving the following

least-squares (or maximum likelihood) estimation problem:

min
ρ

N−1∑
k=0

∥∥∥∥∥Mρ(X̄(k))X̄(k) − ˙̄X
(k)
∥∥∥∥∥2

2
, (5.7)

N being the number of experiments and X̄(k) denotes the experimental data obtained at the

kth-sample time. In the above problem, ρ is some vector of unknowns, especially, parameters,

involved in the functional form of M = Mρ, and ˙̄X
(k)

is some difference quotient of the

values X̄(k) [36]. The dynamics of the system is described by matrices M(X) which are also

the basis for testing the goodness of data fitting and prediction, and of a stability analysis

[11, 27, 29, 30, 36, 39, 42, 43, 44, 46, 48].

Identification of such regulatory networks from given real-world data is an important mathe-

matical problem to be solved both theoretically and computationally, especially, when there

exist noise and uncertainty in the data [48]. In case of having a large number of variables

and parameters to be identified, and nonlinear functions in the entries of the network matrix

M(X), there is an increase in the complexity of such regulatory systems. Since a GPLM di-

vides a nonlinear model into two parts and gives us the opportunity to study on the linear and
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the nonlinear part separately, this idea can also be implemented for the nonlinear dynamical

models of eco-finance networks as a subclass of target-environment regulatory systems. In

that case, any dynamical model represented by the system of ordinary differential equations

in the form of Eq. (5.6) may have linear and nonlinear entries together inside of M(X). It is

assumed that nonlinear effects may come through the environmental factors. Therefore, we

apply a process version of GPLM approach for the optimization of such a kind of dynamical

systems, by considering all the linear entries of M(X) collected in one term and the remaining

nonlinear entries in the second term, in the absence of collinearity between the independent

variables X and T as mentioned in Subsubsection 2.2.1.1. In this way, we newly adopt the

formulation given with Eq. (2.10) in Section 2.2 for our dynamical system defined in Eq.

(5.6) which can be rewritten as

 Ẋ

Ṫ

 =
 M1(X) M1(T)

M2(T) M2(X)


 X

T

 =
 M1(X)

M2(T)

X +

 M1(T)

M2(X)

T :=



βT
1 X + ς1(T)

βT
2 X + ς2(T)
...

βT
d X + ςd(T)


.

(5.8)

Therefore, for each row of the matrix representation in (5.8), we represent the process version

of the GPLM formulation from Eqn (2.10) in Section 2.2 in the following way:

Ẋi = β
T
i X + ςi(T) (i = 1, 2, . . . , d). (5.9)

In the above row-wise expression, the linear terms of the each row of the system in (5.6), so

in (5.8), are collected into the linear part βT
i X which depends on X as the vector of variables

of the linear terms; similarly, the nonlinear terms are collected separately into the nonlinear

part ςi(T) which depends on T as the vector of variables of the nonlinear terms. Here, each

βi is a vector of parameters corresponding to the linear part and similarly, αi is a vector

of parameters corresponding to the nonlinear part of the above expression. Therefore, ρ =

(βT ,αT )T can be expressed as the vector of unknown parameters appearing inside of M(X)

which can be collected separately in the described way.

In this thesis study we additionally bring the following new ideas in the solution of the new

modeling problem that is implemented above for regulatory networks:

For the solution process of newly implemented process version of GPLM approach used for

modeling the dynamics of regulatory networks, one can use any appropriate linear program-
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ming technique for the estimation of linear part of the model described in (5.9) and a nonlinear

programming method for the nonlinear part correspondingly. We can offer to use, in our future

applications with a given data, previously mentioned MINLP (in Section 2.3) for the nonlin-

ear part of the estimation of GPLM together with a chosen linear programming technique

according to the form of the network matrix M.

An advanced case for target-environment networks takes place, when the entries of the matrix

M contain spline functions, then process version of conic GPLM approach [173] can be used.

The least-squares problem in (5.7) can be converted to the conic form and solved by CQP

mentioned in (2.3).

Moreover, when there exist uncertainty in the expression data, where the uncertainty sets are

defined like in (5.4), then process version of robust conic GPLM technique [49] can be applied

and solved by appropriate linear and nonlinear programming (optimization) tools in order

to study a robustification of our target-environment and gene-environment networks. Also,

further comparison of the estimation results can be done by considering different methods,

like GSIP extension of MIP (mentioned in (2.3)), in the solution of the same robustification

problem. Thus, for each row of the matrix equation in (5.8), we represent the process version

of the robust GPLM case of (5.9) in the subsequent manner [49]:

˙̆Xi = β
T
i X̆ + ςi(T̆) (i = 1, 2, . . . , d). (5.10)

The right-hand sides of Eqs. (5.9) and (5.10) have the descriptions of our time-continuous

dynamics, which can be regarded and further analyzed as normal forms in the sense of,

e.g., singularity theory, catastrophe theory, differential equations and optimization theory

[104, 135, 137, 172]. Mathematically, normal forms can be considered for finding an ad-

ditive decomposition of the right-hand side where the terms are ordered according to their

degrees. Moreover, they give rise to time-discretized dynamics in very particular block struc-

tures studied in [11, 42, 46].

One can notice that, Eq. (5.10), which is different from Eq. (5.9), handles uncertainty, and

the same is true for the time-discretized versions. In Eq. (5.10), uncertainty is included both

in the input and output variables. In order to define and interpret derivatives of difference

quotients in the presence of uncertainty, i.e., in the set-valued case, different concepts exist

(see [29, 39, 43, 44, 46, 47]).
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By this part of the thesis, we have introduced a new and promising implementation area

of GPLM by a dynamical modeling of regulatory networks, which also include eco-finance

networks and gene environment networks. By using GPLM, better results can be obtained

for the parameter estimation and anticipation of these regulatory systems where they also

arise in the financial sector, for example, Basel II and Basel III standards for banks are the

regulating effects (“regulatory”) on risk and capital management, bank capital adequacy and

bank liquidity of the countries in the world (“network”).

In the case of existence of uncertainty and noise in real-world data, this new model approach

gains importance to reduce complexity and variance of estimation. In future studies, we will

work on the newly introduced process version of GPLM for modeling, optimization and ro-

bustification of target-environment networks together with real-world applications to validate.

Since there are different kinds of estimation methods for GPLM, we can choose the appropri-

ate one according to the form of the entries of network matrix M [49].

128



CHAPTER 6

CONCLUSION

The analysis of huge amounts of time-series gene expression data, which are obtained from

DNA-microarray chip experiments, and reconstruction of a genetic regulatory network from

these data are a challenging problem, which has significant application areas. In this problem,

one of the difficulties is that the data sets have a huge number of genes but a limited number of

sampling time points. Therefore, there is an important need for effective mathematical models

and efficient numerical algorithms for inferring genetic regulatory networks using such data

sets [2, 3].

In this thesis, we introduce and analyze time-discrete target-environment regulatory systems,

especially, for gene-environment networks in which the target variables represent the expres-

sion levels of the n genes, whereas the m environmental items stand for external factors (e.g.,

toxins or radiation). This thesis study widens the existing mathematical toolbox by introduc-

ing other numerical schemes of time-discretization into the study where they all belong to

the higher order explicit Runge-Kutta methods. We newly derive and implement 3rd-order

Heun’s method and 4th-order classical Runge-Kutta method together with their formulations

for the considered dynamic model class and also corresponding matrix algebras.

Beyond these formulations and obtained algebras of the schemes, we apply them on two

different sets of gene-expression data, i.e., firstly, an artificial data set containing 4 genes with

4 sample times and secondly, a real-world data set containing 26 genes with 17 sample times

as a subnetwork of a huge gene-environment network. In order to see the performance of these

newly considered schemes together with the existing Euler and 2nd-order Heun’s method,

we perform two illustrative examples with these two kinds of data sets. We investigate the

behavior of all of these explicit Runge-Kutta method class with respect to different choices
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of step-sizes and also to various perturbations. In this way, comparisons among these four

numerical methods are studied in many ways and detailed discussions about the obtained

results are provided in Subsubsections 4.3.1.3 - 4.3.1.5 and also in Subsubsection 4.3.2.4.

In our numerical examples studied in Chapter 4, we consider the linear dynamical model

Ė = ME (to express the gene interactions) for both of our illustrative examples and then for-

mulate corresponding MINLP problems as our optimization problems for the identification of

parameters appearing in that models. Therefore, we present and study the MINLP problems

for two cases, e.g., by including negative regulation effect in the network or by omitting this

effect. We recall these two types of MINLP problems as original MINLP model and extended

MINLP model. In the constructions of these problems the choices of the bounds in the con-

straints play an important role in the solution. In our application with artificial data these

bound and constraints are already specified in [36, 37]. But, in our second application with

real-world data, we tried to identify and select the corresponding bounds of the constraints

according to the biological behavior of the considered data and so the network. For this pur-

pose, we first selected a subnetwork from the huge network of this real-world data, represen-

tatively, for diminishing the computational complexity. Then, we worked on some statistical

and biological properties of the genes in this selected subnetwork and calculate their inde-

gree, outdegree values and degradation rates to be used as the bounds in the corresponding

MINLP problems. After solving both original and extended optimization problems, we apply

our class of numerical schemes to generate the approximate time series of gene-expression

results for the further time levels and try to predict the long-time behavior.

From the results that we obtained from two examples, we can conclude that the performance

of newly studied higher order numerical methods are better than the Euler and 2nd-order

Heun’s method in terms of accuracy and smoothing, if the chosen model is stable, compatible

with the general behavior and the considered data is not noisy or without outliers [157].

For our first example with artificial data, reducing the step-size have improved the rate of con-

vergence in Euler and 3rd-order Heun’s method but did not effect much the results of 4th-order

classical Runge-Kutta method since it has already smoothen the results of all genes and let

them to reach the limit point. For the 2nd-order Heun’s method, it improves the results of the

genes which have alternating behavior and make them to converge to the limit point. Our per-

turbation analysis in Subsection 4.3.1 gives us a possible interval for an allowed perturbation
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value which will not change the general behavior of the gene inside the considered numerical

scheme and preserving the smooth and converging behavior.

The considered higher-order Runge-Kutta methods takes the values at each discrete time,

from other neighbouring discrete times (both by past and future time points), which has a

smoothing effect. These higher-order methods contribute to the entire basic concept of the

thesis in the regard of regularization, rarefication and smoothing and they are borrowing from

the theory of inverse problems, which is now understood and applied in the sense of dynamics.

In this thesis work, we finally introduced into the involvement of uncertainty in gene-expression

data where the uncertainty or errors are coming from microarray experiments and measure-

ments of the environment. Robustification is announced in order to deal with the inclusion

of uncertainty in the model. Here, we even open a long-term research project by introducing

a new and challenging implementation of a generalized partial linear modeling approach on

gene-environment networks and its robustified version.

By this extended numerical methods for the time discrete dynamics of regulatory systems and

introduced new ideas of modeling with GPLM approach, including its robustified version in

the case uncertainty, we aim at being better prepared for the modeling, prediction, stability,

regularization and robustification of our networks for a better service in the real-world areas.

These areas are, e.g., the study of gene and metabolic networks, diminishing negative effects

of the environment (also life style and living conditions) on health, surveying the effects of

medical treatments, Kyoto protocol and other environmental campaigns and even financial

markets.

Future study;

In our future work which we plan and propose, we continue to investigate our real-world

example with an appropriate regularization method in order to overcome unbounded gene-

expression results and to represent the behavior of the considered real data in a much better

way as explained in Subsubsection 4.3.2.4. Moreover, we will include environmental effects

into our applications by introducing a nonlinear dynamical model of the type Ė = M(E)E.

By the help of a detailed learning process combined with a stable model, our new numerical

schemes can produce better predictions for the long-term behavior these systems (networks).

The stability research of the models could be continued by us even more systematically, which
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is left as a possible future research. Indeed, in the earlier studies on stability [1, 11, 36, 37, 39,

55], both stable and unstable behaviors are investigated based on parametric variations of the

model of the dynamics and employing an Euler discretization. In those studies, analytically,

Lyapunov functions and their discrete orbits are followed which are generated by stepwise

applying system matrices (in the sense of after discretization) on compact neighborhoods

of the zero state vector. The authors also investigated the orbits boundedness (stability) or

unboundedness (instability). Since the (numerically) determined boundary between stability

and instability can be detected by using any desired precision [39], this approach can be

undertaken in future with our newly elaborated 3rd-order Heun’s discretization scheme. In

this respect, some further studies can be carried out by extending the work performed in this

thesis already.

As another aspect of future study, we will obtain the detailed formulations of the (process

version of) GPLM approach and its robustification that are newly introduced in Chapter 5.

Then, we will apply them on a given set of data to validate the performance and efficiency

together with the new directions and ideas presented in the last part of the same chapter.

Herewith, we naturally come into our domain of dynamical modeling and overcoming of

uncertainty as introduced in Chapter 5.
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to analyze stability of gene-expression pattern, Discrete Applied Mathematics, 154(7),
1140-1156, (2006).
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timization of gene-environment networks in the presence of errors and uncertainty with
Chebychev approximation, TOP, 16(2), 284-318, (2008).

[44] Kropat, E., Weber, G.-W. and Pedamallu, C.S. Regulatory networks under ellipsoidal
uncertainty-optimization theory and dynamical systems, Preprint 22, Institute of Applied
Mathematics, METU, (2009) (submitted to SIAM Journal on Optimization).

[45] Weber, G.-W., Defterli, O., Kropat, E. and Alparslan-Gök, S.Z. Modeling, inference
and optimization of regulatory networks based on time series data, European Journal Of
Operational Research, 211(1), 1-14, (2011).
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669-877-7, 279-284, (2008).

2. O. Defterli, A. Fugenschuh, G.W. Weber. New discretization and optimization techniques with
results in the dynamics of gene-environment networks, In: Proceedings of the 3rd Global Con-
ference on Power Control and Optimization (PCO 2010), February 2-4, 2010, Gold Coast,
Australia, Editors: N. Barsoum, P.Vasant, R. Habash, ISBN: 978-983-44483-1-8, (2010).
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PRESENTATIONS IN INTERNATIONAL SCIENTIFIC MEETINGS

(i) Talks Presented:

1. Modern Tools for the Discretization and Optimization of Dynamical Models for Gene-Environment
Networks - 3rd International Conference on Nonlinear Science and Complexity - Ankara, Turkey,
July 28 - 31, 2010.

2. Talks given through the ERASMUS activities: Series of seminars given in the Department of
Mathematics of the University of Aveiro (Portugal) during the visit under the “Erasmus Teach-
ing Staff Exchange Program” in the period of September 14 - 18, 2009.

3. Two Dimensional Fractional Optimal Control Problem Using a Direct Numerical Scheme -
3rd International IFAC Workshop on Fractional Differentiation and its Applications - Ankara,
Turkey, November 05 -07, 2008.

4. Direct Numerical Scheme for Fractional Optimal Control Problems in Multi Dimensions -
8thPortuguese Conference on Automatic Control - Vila Real, Portugal, July 21-23, 2008.

5. Chain by Chain Method and Projector Quantization Approach for Systems with Second-Class
Constraints - 15th International Colloquium on Integrable Systems and Quantum Symmetries -
Prague, Czech Republic, June 15 - 17, 2006.

6. Hidden Symmetries of Two Dimensional Superintegrable Systems - Mathematical Methods in
Engineering, International Symposium - Ankara, Turkey, April 27 - 29, 2006.

7. Projector Quantization Method of Systems with Linearly Dependent Constraints - 14thInternational
Colloquium on Integrable Systems and Quantum Groups - Prague, Czech Republic, June 16 -
18, 2005.

8. Geometrical Aspects of Superintegrability in Two Dimensional Space of Non-Constant Curva-
ture - 3rd Geometry Symposium - Eskisehir, Turkey, July 4 - July 6, 2005. (National conference)

9. Killing - Yano Tensors and Superintegrable Systems - 13th International Colloquium - Integrable
Systems and Quantum Groups - Prague, Czech Republic, June 17 - 19, 2004.

10. About Killing -Yano Tensors, Superintegrable Systems and Surface Terms - International Work-
shop on Global Analysis - Ankara, Turkey, April 15 - 17, 2004.

11. Geometrical Aspects of the Surface Terms, (Poster) - 8thInternational Summer School in Global
Analysis and Applications (Geometrical Structures in the Calculus of Variations) - Brno, Czech
Republic, August 4 - 8, 2003.

(ii) Talks Co-Authed:

1. G.-W. Weber, O. Defterli, L. Özdamar, C.S. Pedamallu, B. Temoçin, Y. Yildiz, Recent Ad-
vances in Mathematical Prediction of Dynamics under Different Assumptions on Time and Un-
certainty, 23th International Conference on Systems Research, Informatics and Cybernetics,
Baden-Baden, Germany, August 1-5, 2011.

2. G.-W. Weber, A. Özmen, Z. Çavuşoğlu, O. Defterli, The New Robust Conic GPLM Method with
an Application to Finance and Regulatory Systems: Prediction of Credit Default and a Process
Version, 9th EUROPT Workshop on Advances in Continuous Optimization, Ballarat, Australia,
July 8-9, 2011.

3. G.-W.Weber, S.Z. Alparslan-Gök, E. Kropat, O. Defterli, F. Yerlikaya Özkurt, A. Fügenschuh,
Research Progress and New Applications of Eco-Finance Networks and Cooperative Game
Theory, International Seminar on Operational Research, Medan, Indonesia, July 27-28, 2011.
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4. G.-W. Weber, A. Özmen, Z. Çavuşoğlu, O. Defterli, Prediction of Default Probabilities in
Emerging Markets and of Dynamical Regulatory Networks by New Robust Conic GPLMs and
Their Optimization, International Seminar on Operational Research, Medan, Indonesia, July
27-28, 2011.

5. O. Defterli, G.-W. Weber, E. Kropat, S.Z. Aparslan Gök and A. Fügenschuh, Modeling, Infer-
ence and Optimization of Regulatory Networks Based on Time Series Data, OR 2010 - Interna-
tional Conference on Operations Research, Munich, September 1-3, 2010 .

6. G.-W. Weber, O. Defterli and A. Fügenschuh, New Advances in Prediction of Gene-Environment
Networks by Applied Mathematics Tools, 5th International Summer School Achievements and
Applications of Contemporary Informatics, Mathematics and Physics, National University of
Technology of the Ukraine, Kiev, Ukraine, August 3-15, 2010.

PARTICIPATION IN INTERNATIONAL SCIENTIFIC MEETINGS

1. 3rd International Conference on Nonlinear Science and Complexity (NSC’10), Ankara, Turkey,
July 28 - 31, 2010.

2. International Conference on New Trends in Nanotechnology and Nonlinear Dynamical Systems
(NNDS’10), Ankara, Turkey, July 25 - 27, 2010.

3. 3rd International IFAC Workshop on Fractional Differentiation and its Applications (FDA’08),
Ankara, Turkey, November 05 - 07, 2008.

4. International Workshop on New Trends in Science and Technology (NTST’08), Ankara, Turkey,
November 03 - 04, 2008.

5. 8th Portuguese Conference on Automatic Control (CONTROLO’08), Vila Real, Portugal, July
21 - 23, 2008.

6. Mathematical Methods in Engineering (MME’06), International Symposium, Ankara, Turkey,
April 27 - 29, 2006.

7. The Jubilee 15th International Colloquium on Integrable Systems and Quantum Symmetries
(ISQS-15), Prague, Czech Republic, June 15 - 17, 2006.

8. 14th International Colloquium on Integrable Systems, Prague, Czech Republic, June 16 - 18,
2005.

9. 13th International Colloquium - Integrable Systems and Quantum Groups, Prague, Czech Re-
public, June 17 - 19, 2004.

10. International Workshop on Global Analysis (IWGA), Ankara, Turkey, April 15 - 17, 2004.

11. Geometrical Structures in the Calculus of Variations - 8th International Summer School in
Global Analysis and Applications, Brno, Czech Republic, August 4 - 8, 2003.

12. NATO ASI programme on Computational Noncommutative Algebra with Applications, Tus-
cany, Italy, July 6 - 19, 2003.

PARTICIPATION IN NATIONAL SCIENTIFIC MEETINGS

1. 6th Ankara Mathematics Days, Hacettepe University, Ankara, Turkey, June 02-03, 2011.

2. 5th Ankara Mathematics Days, TOBB ETU, Ankara, Turkey, June 03-04, 2010.

3. 4th Ankara Mathematics Days, METU, Ankara, Turkey, June 04-05, 2009.

4. 3rd Geometry Symposium, Osmangazi University, Eskisehir, Turkey, July 04-06 July 6, 2005.

5. 2nd Geometry Symposium, Sakarya University, Turkey, June 30-July 03, 2004.
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CONFERENCE ORGANIZATION

1. Member of the Organizing Committee of the 3rd International IFAC Workshop on Fractional
Differentiation and its Applications -FDA’08, Ankara-Turkey, November 05-07, 2008.

2. Member of the Organizing Committee of the New Trends in Nanotechnology and Nonlinear
Dynamical Systems - NNDS 2010, Ankara, Turkey, July 25 - 27, 2010.

3. Member of the Organizing Committee of the 3rd International Conference on Nonlinear Science
and Complexity - NSC 2010 - Ankara, Turkey, July 28 - 31, 2010.

4. Special Symposia Organizer, Parallel Session Chair: in the 3rd International Conference on
Nonlinear Science and Complexity - NSC 2010 - Ankara, Turkey, July 28 - 31, 2010.
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