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ABSTRACT 

 

 

 

 

RANGE DATA RECOGNITION: SEGMENTATION, MATCHING, AND SIMILARITY 

RETRIEVAL 

 

 

Yalçın Bayramoğlu, Neslihan 

  Ph.D., Department of Electrical and Electronics Engineering 

  Supervisor: Prof. Dr. A. Aydın Alatan 

 

 

September 2011, 132 pages 

 

The improvements in 3D scanning technologies have led the necessity for managing range 

image databases. Hence, the requirement of describing and indexing this type of data arises. 

Up to now, rather much work is achieved on capturing, transmission and visualization; 

however, there is still a gap in the 3D semantic analysis between the requirements of the 

applications and the obtained results. In this thesis we studied 3D semantic analysis of range 

data. Under this broad title we address segmentation of range scenes, correspondence 

matching of range images and the similarity retrieval of range models. Inputs are considered 

as single view depth images. First, possible research topics related to 3D semantic analysis 

are introduced. Planar structure detection in range scenes are analyzed and some 

modifications on available methods are proposed. Also, a novel algorithm to segment 3D 

point cloud (obtained via TOF camera) into objects by using the spatial information is 

presented. We proposed a novel local range image matching method that combines 3D 

surface properties with the 2D scale invariant feature transform. Next, our proposal for 

retrieving similar models where the query and the database both consist of only range 

models is presented. Finally, analysis of heat diffusion process on range data is presented. 

Challenges and some experimental results are presented 

 

 

 

Keywords: Range image, segmentation, similarity retrieval, correspondence matching, 3D 

data, semantic scene analysis. 
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ÖZ 

 

 

 

 

DERİNLİK VERİLERİNİN TANINMASI: BÖLÜTLEME, EŞLEME VE BENZERLİK 

ÇIKARIMI 

 

 

Yalçın Bayramoğlu, Neslihan 

  Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

  Tez Yöneticisi : Prof. Dr. A. Aydın Alatan 

 

 

Eylül 2011,   132 sayfa 

 

 

3B tarama teknolojilerinin gelişmesi, derinlik görüntüsü veri tabanlarının yönetilmesi 

ihtiyacını doğurmuştur. Bu nedenle, bu tip verilerin tanımlanması ve indekslenmesi 

gereksinimleri ortaya çıkmıştır. Günümüze kadar çoğunlukla 3B verilerinin elde edilmesi, 

iletimi ve görüntülenmesi üzerinde çalışmış, ancak hala 3B verilerin anlamsal analizi 

açısından uygulamaların ihtiyaçları ve eldeki sonuçlar arasında bir boşluk bulunmaktadır.. 

Bu tezde 3B derinlik görüntülerinin anlamsal analizi çalışılmıştır. Bu geniş başlık altında 

derinlik görüntülerinin bölütlenmesi, karşılık eşleşmesi ve derinlik modellerinin benzerlik 

çıkarımı konuları incelenmiştir. Tezde ele alınan görüntüler tek bakışlı derinlik 

haritalarından oluşmaktadır. Öncelikle 3B verilerin anlamsal analizi ile ilgili olası araştırma 

konuları tanıtılmıştır. Düzlemsel yapıların belirlenmesi araştırılmış, varolan yöntemler için 

değişiklikler önerilmiştir. Uçuş zamanı kameralarından elde edilen nokta kümesi verilerinin 

uzamsal bilgilerinin kullanılarak bölütlenmesi için özgün bir yöntem de tezde 

önerilmektedir. Ayrıca derinlik görüntülerinin eşleşmesi için 3B yüzey  özelliklerinin 2B 

değişimsiz özellik dönüşümü ile birleştirilmesi önerilmiştir. Sonra, derinlik görüntülerinin 

benzerlik çıkarımı için önerilen yöntem sunulmuştur. Son olarak derinlik görüntülerinde ısı 

transferi incelenmiş, problemler ve deneysel sonuçlar sunulmuştur. 

 

 

 

Anahtar Kelimeler: Derinlik görüntüsü, bölütleme, benzerlik çıkarımı, karşılık eşleme, nokta 

kümesi,  anlamsal sahne analizi. 
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CHAPTER 1  

 

 

INTRODUCTION 

The motivation of semantically describing and representing objects arise from the fact that 

there is a significant need for recognizing, organizing, classifying and searching the content 

of visual data. Since capturing, displaying and storing the 3D media increased rapidly and 

3D data takes place in our daily life, such as TV (3DTV), laptops, chemistry (e.g. protein 

modeling), archeology (museum data), medicine, geography, military, industry (CAD), 

computer games, architecture, medical surgery, virtual reality programs, education and 

entertainment.  Up to now, rather much work is achieved on capturing, transmission and 

visualization; however, there is still a gap in the 3D semantic analysis between the 

requirements of the applications and the obtained results. 

 

Semantic information retrieval from 3D data is a broad title containing many different 

problems within. Segmentation, correspondence matching, verification (self matching), 

similarity retrieval (indexing), and classification can be considered in the first place (Figure 

1-1). Problem variety also increases as the 3D input type (polygon mesh, point cloud, range 

image) vary. According to this difference, some possible research areas are presented in 

Table 1. This dissertation addresses segmentation, correspondence matching and similarity 

retrieval problems, where the input data are range images. Methods proposed to solve these 

problems are evaluated based on their performances on the single view depth images. 

However, we focus exclusively on similarity retrieval of range models with an extensive 

survey on the corresponding literature.  

 

If the input is a scene containing numerous 3D objects with occlusions and clutter then the 

segmentation is inevitable for further processing. It is an important step that needs to be 
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performed prior to the object recognition, model fitting, tracking, indexing, etc.. For range 

data analysis, segmentation can be defined as the process of labeling range measurements 

belonging to the same surface or region with the same label. Segmentation is an ill-posed, 

open ended and a quite complex research within computer vision community regardless of 

the input type. One of the main reasons is the ambiguity in defining the ground truth. 

 

Correspondence matching can be considered as an intermediate step during verification. 

Pose normalization and tracking type of application would also benefit from correspondence 

matching. Simply, locally similar points are matched among the two inputs. Typically, 

scaled, rotated and/or translated version of a particular object is presented to both of the 

inputs. Local descriptors are utilized for finding correspondences.  

 

 

Figure 1-1. Steps and differences in 3D shape verification, classification and similarity retrieval 

methods  
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Table 1. Possible research topics related to 3D recognition 
SELF MATCHING (VERIFICATION) 

 Input Compared Data Type Output Type Comments 

1A 

A 3D Mesh Model 

 

Database  Consisting of Mesh Models

 

Verified (+Matched 

Model) or Not Verified 

VERIFIED  

Global methods are 

certainly superior to 

local methods 

1B 

  Single Range Model 

 

Database  Consisting of Mesh Models  

 

Verified (+Matched 

Model) or Not Verified 

VERIFIED  

Registration Type 

Methods (i.e. ICP) 

can be adopted. 

Slow but accurate. 

Major Problems: 

Scale 

Self Occlusion 

1C 

  Single Range Model 

 

Database  Consisting of Range Models 

 
Nuance: Range image of a rotated query will 

be verified or not? Self matching or partial 

matching? 

Verified (+ Matched 

Model + % overlapping) 

or Not Verified 

VERIFIED, %20 Overlap 

 

Registration Type 

Methods 

Major problems: 

-Partial information 

on both side 

-Self Occlusion 

-Rotation, -Scale 

 

1D 

  Single Range Model 

 

Database  Consisting of Range Scenes 

 

List of Scenes Containing 

Query 

 

Problems: 

Self Occlusion 

Rotation 

Scale 

Segmentation 

Boundary 

Occlusion 

Clutter 

SIMILARITY RETRIEVAL 

 Input Compared Data Type Output Type Comments 

2A A 3D Mesh Model Database  Consisting of Mesh Models Ranked List 
Global methods should be 

considered. 

2B 
Single Range 

Model 
Database  Consisting of Mesh Models Ranked List 

Scale  and  Self Occlusion  are 

major problems 

2C 
Single Range 

Model 
Database  Consisting of Range Models Ranked List 

A very challenging problem. 

Local matching could a solution 

with many existing difficulties 

2D 

Single Range 

Model 

 

Database  Consisting of Range Scenes 

 

Ranked List 

 

Problems: Self Occlusion, 

Rotation, Scale, Segmentation, 

Boundary, Occlusion, Clutter 

CLASSIFICATION 

 Input Compared Data Type Output Type Comments 

3A 

A 3D Mesh Model 

 

Database  Consisting of Classes of Mesh 

Models 

 

Class ID 

Chair Class 

Similar to problem-2A, but 

utilization of class properties is 

an advantage. 

  

3B 
Single Range 

Model 

Database  Consisting of Classes of Mesh 

Models 
Class ID 

Similar to problem-2B but 

utilization of class properties 

can be an advantage. 

3C 

Single Range 

Model 

 

Database  Consisting of Classes of  

Range Models Class ID 

 

 

 

Face Class 

 

A very challenging problem. 

Local matching seems to be a 

solution with  many difficulties 
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Today information retrieval in web and other databases, such as library, personal 

computers, medical records are mainly achieved on the basis of text comparison. A word is 

usually given as the input to the algorithm (query) and the records containing the query text 

are voted according to some similarity measure and enumerated, accordingly, which is 

called indexing.  Research on similarity retrieval of shapes has some common properties 

with text retrieval research and some different properties from it. A 3D model possess 

properties including shape, color and texture. Among these properties, shape is the most 

characteristic one. Color and texture can also be used for identifying objects, but they have 

limited use. Thus, in order to discriminate 3D models, a comparison is conducted between 

their shapes. Existing 3D model retrieval methods primarily use geometric properties; 

however, depending on the application, more information can be gathered, if color and 

texture are also used.  

 

Available feature based 3D retrieval systems can be implemented as in Figure 1-2. They 

usually have an offline (training) and an online phase. During the training phase, the 

descriptors of each model are calculated; the system will go into this phase once and works 

on the resulting feature vector at the end of this stage by the following steps: When a query 

is placed, the online phase starts by calculating the descriptor of the query object. Next, the 

descriptor of the query and descriptors of the database models are compared. Comparison is 

simply the calculation of distance between the feature vectors. Several distance functions, 

which will be explained in detail in subsequent chapters, are available and must be selected 

according to the descriptor properties and considering the whole system.   

 

Existing systems depend on synthetic models that are usually polygon meshes consisting of 

vertex and face information. Besides, these models should not appear in a scene or they must 

be segmented before the processing. In fact, in real life scenarios, objects appear in scenes, 

they do not lie alone in space and most of the time their shape is partially available to the 

viewer. However, it should be noted that 3D retrieval would be a necessity for applications 

using or manipulating real life data. As an example, researchers are studying in the field of 

3D television for years and it gives promising results such that in the very near future, most 

of the consumers are expected to watch 3D television and record programs to their own 

storage disks. Three dimensional televisions currently operate on depth (range) data and 

objects are not fully described with their vertices and corresponding faces. Another example 

could be the systems getting data from laser scanning devices. This type of data is 
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considered as 2.5D data (range data, range image, depth data, 2.5D data are used 

interchangeably throughout the dissertation).  

 

Figure 1-2. Basic steps in descriptor based 3D shape retrieval systems 

Similarity retrieval of range data has unique problems. Occlusions, partial information and 

affine transformations are some of the major challenges. Although range data contains 3D 

information, similarity retrieval of range data differs significantly from 3D mesh similarity 

retrieval.  

1.1 Contributions of the Thesis 

The following contributions are achieved within this thesis: 

 Efficient planar structure detection is proposed. The performance of the proposed 

Recursive Hough Transform in finding planar structures in range images is shown 

to be superior to the classical Hough Transform. While the proposed modification in 

Hough Transform introduces additional complexity in space and time, it is quite 

successful in detecting planar structures in range data.  This is mainly due to 

eliminating the fine parameter discretization ambiguity that emerges in the classical 

Hough Transform. 
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 A novel algorithm to segment 3D point cloud (obtained via TOF camera) into objects 

by using the spatial information is presented. The proposed algorithm exploits the 

fact that many objects stand orthogonal to the ground plane due to the gravity and 

the projection of 3D points onto this plane could be equivalent to Fisher Linear 

Discriminant methodology. The projection of 3D points is followed by a kernel 

density estimation process in which a saliency map is generated. Salient regions that 

represent the most probable object locations have high values in the generated map. 

Then the points with a probability value larger than some certain threshold are 

assigned to the closest local maxima segmented into objects. The experimental 

results show that the locations of the objects are determined quite accurately. 

Compared to the tested methods the proposed algorithm is less sensitive to the 

noise, less parameter dependent and leads more accurate segmentation results. 

 We also developed a technique for correspondence matching in depth data. Shape 

index is utilized with scale invariant transform for matching. The proposed local 

surface description method does not require any initial segmentation step; it can also 

handle affine transformations up to a scale. The experimental results indicate that 

the proposed approach outperforms the recent two state-of-the-art methods. 

Moreover, clutter and occlusion do not significantly affect the efficiency of the 

proposed method.  

 Lossless global description of range data by Spherical Harmonic for similarity 

retrieval is proposed. We utilize Spherical Harmonic Transform for 2.5D range 

images by representing the models in a reciprocal world observed from the camera. 

The difference, as well as the advantage of our algorithm, is being information 

lossless. In other words, the available shape information is completely exploited for 

obtaining the descriptor, whereas other mesh retrieval applications utilizing SHT 

‚approximate‛ the shape that yields information loss. The descriptor is invariant to 

rotations about z-axis. The proposed technique is tested on a large database having 

high diversity and its performance is superior to the performance of popular D2 

distribution and the classical SHT.  

 Analysis of heat diffusion process on range data is presented. Challenges and some 

experimental results are presented. Also some future directions are proposed. 
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1.2 Outline of the Thesis 

In Chapter 2, possible descriptor based 3D similarity retrieval basics are introduced. 

Representation formats (3D data types), challenges, distance measures and evaluation 

metrics are defined. Classification of similarity retrieval methods is made and a 

comprehensive literature survey is presented. 

 

In Chapter 3, segmentation of range scenes is evaluated. A sub problem of the segmentation 

is planarity detection. The chapter begins by planar structure detection. Problem definition, 

proposals, modifications on available methods and results are presented. Later, state-of-the-

art methods in segmentation is adapted for real range scenes, where the inputs are the Time 

of Flight Camera outputs. Color information is integrated with the spatial information and 

its effects on the performance of the segmentation methods are evaluated. Several local 

surface properties, such as curvatures, surface variances, normals are utilized with region 

growing. Finally, a novel range scene segmentation algorithm depending on the kernel 

density estimation method is proposed and results are presented.  

 

In Chapter 4, correspondence matching of range images is examined. A method for keypoint 

matching is proposed. Range image is represented with its corresponding shape index 

image. This representation magnifies salient regions by the nonlinearity structure in the 

shape index function. Keypoint selection and description is performed using scale invariant 

feature transform.  

 

In Chapter 5, a global description that relies on Spherical Harmonics Transformation (SHT) 

is proposed. Although SHT is a relatively mature concept in shape retrieval research, we 

propose to utilize it for range images by representing the models in a reciprocal world 

observed from the camera. The difference and advantage of our algorithm is being 

information lossless in this manner. The descriptor is invariant to scale and rotations about 

z-axis. Proposed method is tested on a large database having high diversity.  

 

In Chapter 6, heat diffusion theory and the usage in shape analysis is presented. The 

challenges of this approach in case of range image description are presented.   
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In Chapter 7, the conclusions of this thesis are presented, as well as some future research 

directions.  
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CHAPTER 2  
 

 

 

 

3D SIMILARITY RETRIEVAL 

This chapter introduces representation formats of 3D data and reviews challenges in 3D 

shape retrieval research. Classification of similarity retrieval methods is proposed and a 

comprehensive literature survey is presented. Common resources of 3D data are also 

addressed at the end of this chapter. 

2.1 3D Representations 

 A taxonomy of 3D object (or scene) representations is given in Figure 2-1  [1-3]: 

Figure 2-1. Classification of 3D data formats 

Figure 2-1 covers nearly all state-of-the-art representations and the examples of point cloud, 

triangular mesh, and range data representation are given in Figure 2-2. Point cloud 

representation is the simplest format; it can be considered as 3D point samples hooked in 3D 

3D Data

Raw Data

Point Cloud

Range Data

Polygon Soup

Surface

Mesh

Parametric

Implicit

Subdivision

Volume

Voxel

Sweep

Superquadrics

Others

Constructive 
Solid Geometry

Binary Space 
Partition Tree
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space with no other information. It is important to develop retrieval algorithms, which are 

capable of supporting point clouds, since other formats can easily be converted into this 

representation. Range sensors and computer vision algorithms, such as 3D reconstruction 

from multiple views, are the sources of point cloud models. Range data can also be 

considered as raw data, since it is a 2D image, where each pixel value represents the distance 

of that scene point to the sensor. Outputs of some scanning devices, such as Time of Flight 

(TOF) cameras, are typical range data. Haphazard polygon models are named as polygon 

soups, which are one step ahead from being raw.  

 

Figure 2-2 Samples of 3D formats of polygon mesh, range image, and point cloud from left to right 

In Computer Aided Design (CAD) systems, Constructive Solid Geometry (CSG) and 

parametric surfaces are preferred. Parametric surfaces can be formulized by mathematical 

equations; they are easily sampled and used for generating realistic models [1]. The most 

popular parametric representation is non-uniform rational B-Spline format (NURBS) [4, 5]. 

 

Voxel-based applications are usually used in medical imaging. Voxel is simply a volumetric 

element; its counterpart in a 2D image is pixel. Voxel does not carry position information, 

however, it might contain multiple values. Medical resonance imaging, ultrasound imaging, 

and computed tomography devices works with voxel data [6].  

 

The most popular representation is the polygon mesh representation especially the 

triangular mesh. There are various formats for polygon mesh representation. Virtual Reality 

Modeling (VRML) is used commonly, object file format (OFF), object file format (OBJ) 

developed by WaveFront Technologies company, polygon model format (PLY), 3D studio 

format (3DS) developed by Autodesk Media and Entertainment company can be taken as 

other popular formats. The idea behind every model is simple; each model consists of 

polygon surfaces (usually called as faces) which are connected to each other and each 
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polygon consists of some number of 3D points (vertices).  Triangle mesh format is the easiest 

one to handle and usually polygon mesh models are converted to triangle mesh format 

before processing. Conversion is done without an effort. More detailed information on other 

3D representation formats can be found in [1, 2].   

 

Every format includes 3D information, while it differs in some aspects. Some of the 

differences between point cloud format, mesh representation and range imaging are:  

 

 Density. The number of points describing the object. This criterion usually depends on the 

application. Laser scanned data (unorganized point cloud) are typically the most 

discriminative among the others in terms of density. High resolution polygon mesh 

models can also be generated in artificial environments. Practical 3D acquisition 

systems (i.e. TOF cameras) for range imaging are able to capture quite low frame-rates 

at present. On the other hand, dense depth estimation algorithms can produce high 

resolution range images from multi-views. 

 Completeness and View Dependency. The amount of the information about the geometry of 

the object contained in the data. The most descriptive type is the mesh format. They 

contain the full geometry of the objects. Besides, normal estimation can be achieved 

easily, which is another important clue for shape identification. Certainly, parts of a 

full model can be represented by using mesh format; although information is partial it 

is view independent. On the other hand, laser scanned data or range images that are 

obtained in various ways could only contain partial information about the geometry 

of the object. This view dependent information yields loss in the geometry 

information mainly due to projection and self occlusions. 

 Signal to Noise Ratio (SNR). As mentioned previously, the mesh models are usually 

synthetic objects and can be made noise free easily; however, in real life, noise is 

unavoidable for 3D applications. High SNR prohibits accurate local feature (i.e. 

normal, curvature) estimation. 

 Neighborhood Relations. Information of the connectivity of a point with the other object 

points. Mesh models consist of polygon structures and provide vertex coordinates plus 

edge information. Neighborhood of a point could be extracted precisely. Unorganized 

point clouds and range images lack such information. In these situations, neighboring 

relations are determined by spatial closeness. However, occlusion, view dependency 
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and other objects might lead grouping points belonging to different parts as 

neighbors. 

2.2 Background and Related Work in 3D Object Retrieval 

There are various precious surveys [1, 7, 8], and theses [9-12] on 3D object retrieval and will 

be referred through this dissertation. There are many 3D retrieval methods, while precise 

classification of these approaches does not exist. In [9], a five-class taxonomy is adopted, 

which are histogram-based, transform-based, graph-based, and 2D image-based. Moreover, 

there are unclassified methods which are considered under the others label. Iyer et al [13] 

classified 3D shape searching methods in five categories: global feature based, 

manufacturing feature recognition based, graph based, histogram based, and 3D object 

recognition based. We adopt a grouping similar to [9]. 

 

For comparing and matching 3D shapes, the adopted method is describing models 

mathematically by a compact formulation, which is called the description of the model, and 

matching the query by comparing its descriptor with the models’ descriptor in the database 

by some distance metrics. Representing the shape geometry by a mathematical formulation 

such as a function or a vector is desired.  If it could be achieved, it would be practical, fast, 

easy to manipulate, less space consuming, easy to compare and easily adapted to new object 

classes.  

 

The task is hard and complicated and there are many technical challenges. As mentioned 

previously, there is plenty of 3D representation formats; hence, constructing a representation 

independent retrieval system is a challenge all by itself; thus, usually a preprocessing step is 

required. Next difficulty is related to the orientation and scale variations. Different pose and 

geometric ratios between models constitutes huge problems during comparison steps. 

Describing an object in an effective and efficient manner is also another challenge. The 

correct comparison metric is another unanswered question for the 3D object retrieval 

methods. The last problem is segmentation which emerges from the cluttered scenes.  

Registration, in the case of different views to be combined for obtaining a single 3D model, is 

another challenge to work upon. 
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2.3 Challenges  

2.3.1 Representation Formats 

Since there are many 3D representation formats, it is not possible to obtain a representation 

independent method. Some of them work with triangular meshes that requires triangulation 

of other formats; some of them work with voxel data, especially medical applications; thus, 

requiring voxelization. Absolutely a format must be adopted in a retrieval system; however, 

an obligatory condition is converting the system easily in such a way that it can work with 

other representation modalities. Thus, a point cloud is the fundamental structure in all of 

these formats and it is important to develop a point cloud based retrieval method. 

2.3.2 Alignment 

A well-known dictionary [6] defines to the word shape as  

‚part of space occupied by the object as determined by its external boundary — 

abstracting from other aspects the object may have such as its color, content, or the 

substance of which it is composed, as well as from the object's position and 

orientation in space, and its size‛.  

It is highly important having an orientation and scale invariant descriptor, which is called 

invariance. However, it is claimed in [9] that forcing to make an invariant descriptor leads 

sacrificing from being discriminative. We argue that scale information can only be 

discriminative if the true dimensions are known. For example, geometrically similar shapes 

belonging to different classes such as a book and a door can be distinguished by their scales. 

Therefore, inputs should be acquired from a device such as TOF (Time of Flight) camera, 

LIDAR ((Light Detection and Ranging; or Laser Imaging Detection and Ranging, also 

LADAR) or Microsoft Kinect sensor [14] that measures the true dimensions. The methods, 

which are not invariant to the pose and size, normalize their 3D object model before 

processing. This normalization is usually achieved by using principal component analysis 

(PCA) method (Karhunen Loeve Transform, KLT, or Hotelling Transform).  PCA is used to 

find the major axis (principal axis) of the model. It can be summarized as follows [15, 16]: 

1. Center of mass is translated to the origin 

2. Calculate the covariance matrix 

 𝐶 =  

𝑐𝑜𝑣(𝑥, 𝑥) 𝑐𝑜𝑣(𝑦, 𝑥) 𝑐𝑜𝑣(𝑧, 𝑥)
𝑐𝑜𝑣(𝑥, 𝑦) 𝑐𝑜𝑣(𝑦, 𝑦) 𝑐𝑜𝑣(𝑧, 𝑦)

𝑐𝑜𝑣(𝑥, 𝑧) 𝑐𝑜𝑣(𝑦, 𝑧) 𝑐𝑜𝑣(𝑧, 𝑧)
  2.1 
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3. Calculate the eigenvectors and eigenvalues of the covariance matrix 

4. Eigenvector corresponding to the largest eigenvalue is the major axis; perform 

rotation according to this direction.  

Drawbacks of the PCA algorithm are its time and space complexity and being unstable for 

symmetric objects. 

2.3.3 Descriptor Requirements  

Following properties are desirable for a good descriptor: 

 Discriminative (effective): it should capture details fine enough to differentiate 

objects belonging to different classes 

 Stable (Robust): small shape changes would result small alterations in the descriptor. 

This constraint is necessary to classify similar objects. Within class variations should 

also be small.  

 Low Dimensional (efficient): in order to retrieve objects faster, it should be low 

dimensional. 

These properties sometimes contradict with each other. There is a tradeoff between 

being discriminative and robust. Similarly, effectiveness and low dimensionality are 

mostly opposing conditions.   

2.3.4 Similarity Measure 

Decision on the similarity measure is a critical question. A distance function, or a norm, is 

selected as a dissimilarity measure. Usually trial and error approach is used for deciding the 

proper distance function. To be on the safe side, distance between descriptors should be 

metric. In other words, the following properties should hold: 

Let M be the metric space and d is the distance function defined on M, then 

 Positivity  

𝑑 𝑥 ≥ 0   𝑓𝑜𝑟 ∀ 𝑥 𝜖 𝑀                                                                             

 Identity  

 𝑑 𝑥, 𝑦 = 0     𝑖𝑓𝑓 𝑥 = 𝑦, 𝑓𝑜𝑟 ∀𝑥, 𝑦 𝜖 𝑀 

 Symmetry 

𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥     𝑓𝑜𝑟 ∀𝑥, 𝑦 𝜖𝑀 

 Triangle Inequality 

 𝑑 𝑥, 𝑧 < 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧    𝑓𝑜𝑟 ∀𝑥, 𝑦, 𝑧 𝜖 𝑀 
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Some measures (some of them are not metric) that are used in content based retrieval 

algorithms are as follows: 

 Minkowski Norms, [17-23] 

 Histogram Intersection, [24, 25] 

 Kullback-Leibler Divergence, [20, 25-27] 

 Jensen-Shannon Divergence, [22, 28, 29] 

 Log-Probability Distance,  

 Manhattan Distance (L1), 

 Chebyshev Distance (L∞), 

 Quadratic Form distance, [30] 

 Earth Mover’s Distance, [20, 31-33] 

 Chi Squared, [22, 23, 34] 

 Bhattacharyya Distance, [20, 23] 

 Mahalanobis Distance, [35, 36] 

 Hausdorff Distance, [37] 

 

Minkowski Norms 

The most commonly used distance metric is the Minkowsky norms defined as: 

 𝑑 𝑥, 𝑦 =    𝑥𝑖 − 𝑦𝑖  

𝑁

𝑖=1

 

1
𝐿

 2.2 

 

where N is the dimension of the vectors x and y, and L is the degree of the norm. L1 and L2 

norms have a special name, called the city block distance (Manhattan) and Euclidean 

distance, respectively. These metrics are preferred due to their simplicity and successive 

performance. 

 

Kullback-Leibler Divergence & Jensen–Shannon Divergence 

Kullback-Leibler divergence (KL) is a non-symmetric measure of similarity between two 

probability distributions P and Q. It is defined as follows: 

 𝐾𝐿(𝑃, 𝑄) =  𝑃𝑖 𝑙𝑜𝑔
𝑃𝑖
𝑄𝑖

𝑖

 
2.3 
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KL divergence is not symmetric so it is not a metric, that is KL(P,Q) ≠ KL(Q,P).  Based on this 

idea, symmetrized and smoothed version of KL divergence, namely Jensen-Shannon 

Diverge (JS) is proposed. JS is defined as follows: 

 𝐽𝑆 𝑃, 𝑄 = 0.5 𝐾𝐿 𝑃,𝑀 + 0.5 𝐾𝐿 𝑄,𝑀  2.4 

where M = 0.5(P+Q) as in [23], shape retrieval algorithms that utilize shape distributions 

generally prefer this measure. 

 

Log-Probability Distance 

A new metric, Log-Probability (LP) Distance metric [38] is proposed for comparing two 

distributions. It is defined as follows: 

 𝐿𝑃(𝑃, 𝑄) =    𝑙𝑜𝑔
𝑃𝑖
𝑄𝑖
−  

1

𝑁
 𝑙𝑜𝑔

𝑃𝑗

𝑄𝑗
𝑗

  

2
𝑁

𝑖=1

 2.5 

Unlike to the KL divergence and JS divergence, LP distance is a metric satisfying positivity, 

identity, symmetry and triangle inequality properties. This recent distance has not been 

utilized in computer vision algorithms due to its originating discipline (information theory). 

 

Chi Squared: 

The Chi-Squared distance (denoted by 𝜒2) is used to compare histograms and defined by the 

following equation: 

 𝑑(𝑥, 𝑦) =  
(𝑥𝑖 − 𝑦𝑖)

2

𝑥𝑖 + 𝑦𝑖

𝑁

𝑖=1

 2.6 

Bhattacharyya Distance: 

Another measure which is also used to compare probability distributions is Bhattacharyya 

distance defined by the following equation: 

 𝑑 𝑥, 𝑦 =   𝑥𝑖𝑦𝑖
𝑖

 
2.7 
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2.3.5 Segmentation 

Independent of the application, segmentation is a great challenge all by itself, since it 

requires an intelligence. Geometry and color information, which are usually available, are 

not sufficient for obtaining any desired segmentation result. Clustering techniques are 

applied prior to processing to identify objects, since infinite number of object combinations 

could be present in a single scene. Region growing, K-means [39], Gaussian Mixture Models 

[40], Mean-shift [41], and graph based method Normalized Cuts [42] are the powerful image 

segmentation methods. Some of them can be modified to n-dimensional space; thus, 

applicable to 3D segmentation. However, in this case, the sole spatial information (color and 

texture usually are not available for 3D inputs) introduces some extra challenges.  

 

2.3.6 Registration 

The most popular algorithm used in registration of point clouds is iterative closest point 

(ICP) method [43]. There are many variations on this algorithm [44, 45]. Main steps of the 

algorithm are given as follows: i) selecting random points on models, ii) matching these points to 

the closest samples on the other model (correspondences), iii) calculate error with a weighting by some 

metric iv) minimize the error.  

 

2.3.7 Evaluation Metrics 

In order to compare and evaluate the retrieval algorithms there are various performance 

evaluation tools. Each performance measure favors a property of the algorithms which will 

be explained in detail later. SHREC shape retrieval contest [46] evaluates competitor 

retrieval systems comparing each evaluation tools. These are Precision-Recall, Nearest 

Neighbor, First-tier and Second-tier, E-Measure, Discounted Cumulative Gain (DCG), 

Normalized Discounted Cumulative Gain (DCG): 

 

 Precision-Recall:  

The most commonly used statistics for measuring the performance of retrieval 

algorithms is the Precision-Recall values. Precision is defined as the ratio of the 

number of relevant items that are retrieved (namely true positives) to the number of 

items that is retrieved as a result of a search. Ideally it should be equal to one; that is 
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all retrieved items should be (or preferably are) similar to the query that is being 

searched. Recall is the ratio of the number of the retrieved items that are similar to 

the query to the total number of similar items (true positives plus false negatives) be 

in the database. Ideally recall should be equal to one, in other words, all items that 

are similar to the query should be retrieved from the database as a result of a search.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
 

 

 Nearest Neighbor: 

It is the percentage of the first closest retrieved models that belongs to the same class 

of the query. Ideally it should be 100% that is each item belonging to the same class 

with the query appears as an outcome of the search at first top places. 

 

 First-tier and Second-tier: 

First-tier is the percentage of the matches belonging to same class of the query which 

appears at the top N matches where N is the number of items in the query’s class. 

Second-tier is the percentage of the top relevant matches (items that are in the same 

class with the query) appear in the top 2*N matches. Ideal value for both First-tier 

and Second-tier is 100%. In this context query is assumed to lie in the test data not in 

the training set. 

 𝐹𝑖𝑟𝑠𝑡 𝑇𝑖𝑒𝑟 =
#𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑎𝑝𝑝𝑒𝑎𝑟 𝑎𝑡 𝑡𝑕𝑒 𝑡𝑜𝑝 𝑁 𝑚𝑎𝑡𝑐𝑕𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑞𝑢𝑒𝑟𝑦 𝑐𝑙𝑎𝑠𝑠 = 𝑁
𝑥100 2.8 

 

 𝑆𝑒𝑐𝑜𝑛𝑑 𝑇𝑖𝑒𝑟 =
#𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑎𝑝𝑝𝑒𝑎𝑟 𝑎𝑡 𝑡𝑕𝑒 𝑡𝑜𝑝 2𝑁 𝑚𝑎𝑡𝑐𝑕𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑞𝑢𝑒𝑟𝑦 𝑐𝑙𝑎𝑠𝑠 = 𝑁
𝑥100 2.9 

 

 E-Measure: 

It is defined as follows: 

 𝐸 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑅𝑒𝑐𝑎𝑙𝑙

 
2.10 
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In the ideal case E-Measure must be equal to one, (precision=1, recall=1). While 

calculating precision and recall for computing E-Measure, number of retrieved items 

is considered to be 32. This is due to the fact that people making a search will be 

interested in the limited number of top retrieved results [47]. 

 

 Discounted Cumulative Gain (DCG): 

It is introduced by Järvelin & Kekäläinen [48]. This is a weighted measure, taking 

into consideration the ranking of the results. Consider two matches where the first 

one is a true negative (irrelevant match) appearing at the first place and the second 

one is also a true negative appearing at the end of the list. Seriousness of appearing 

an irrelevant match at the top of the list is larger than appearing at the end. Similar 

arguments hold for true positives (relevant matches). A relevancy array is used to 

calculate DCG where the value of the array element is equal to one if the top 

corresponding index match is relevant with the query. The relevancy array (RA) is 

defined as: 

𝑅𝐴𝑖 =  
1    𝑖𝑓 𝑡𝑕𝑒 𝑚𝑎𝑡𝑐𝑕 𝑎𝑡 𝑡𝑕𝑒 𝑖𝑡𝑕  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠 𝑤𝑖𝑡𝑕 𝑡𝑕𝑒 𝑞𝑢𝑒𝑟𝑦

0   𝑖𝑓 𝑡𝑕𝑒 𝑚𝑎𝑡𝑐𝑕 𝑎𝑡 𝑡𝑕𝑒 𝑖𝑡𝑕𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡                                              
  

Then DCG at the ith rank is given by the following equation: 

 𝐷𝐶𝐺𝑖 =  

𝑅𝐴𝑖                                    𝑖 = 1

𝐷𝐶𝐺𝑖−1 +
𝑅𝐴𝑖

log2 𝑖
          𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  2.11 

Final DCG value for a query is: 

 𝐷𝐶𝐺 =
𝐷𝐶𝐺𝑖𝑚𝑎𝑥

1 +  
1

log2 𝑖
𝑁
𝑖=2

 , 
2.12 

where imax is the maximum index number (i.e. total number of objects in the 

database) and first N matches is relevant with the query. Higher values indicate 

better performance. 

Example: 

Search Result: 

Rank 1 2 3 4 5 6 7 8 9 10  

Match Relevance, R:Relevant, 

IR: Irrelevant 
R R R IR IR R IR R R IR  

𝑅𝐴 = [1,1,1,0,0,1,0,1,1,0] 
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𝐷𝐶𝐺𝑖𝑚𝑎𝑥 = 1 +
1

log2 2
+

1

log2 3
+

0

log2 4
+

0

log2 5
+ ⋯⋯+

0

log2 10
≅ 3.2797 

𝐷𝐶𝐺 =
3.2797

1 +
1

log2 2
+

1
log2 3

+ ⋯+
1

log2 10
= 5.2544

≅ 0.624 

 Normalized Discounted Cumulative Gain (NDCG): 

Normalized Discounted cumulative gain is usually used in comparing retrieval 

algorithms. It scores both the relevancy and the position of matches as does DCG 

but also when used by a standard database it will yield a quick idea about the 

performance of a retrieval algorithm among the competitors. In fact it indicates the 

statue of the algorithm among others. To achieve this aim, DCG of an algorithm i is 

divided by the average of DCG values of all algorithms and one is subtracted from 

this fraction. If an algorithm’s NDCG value is positive it can be concluded that its 

retrieval performance is above the average and vice a versa if it is negative. It is 

defined by the following formula: 

 𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺𝑖
𝐷𝐶𝐺𝑎𝑣𝑔

− 1 2.13 

2.3.8 Additional Challenges in Range Image Description 

In range image similarity indexing research, challenges are not limited with the 

aforementioned ones. Occlusions (self-occlusions) are another problem in surface 

description. Moreover, due to view-dependent structure of range imaging, affine 

transformations introduce some other difficulties which are not present in complete 3D 

mesh retrieval research. Detailed discussions about range image descriptor challenges are 

presented in Chapter 5.  

2.4 Literature Survey on 3D Retrieval 

After a brief introduction about the retrieval tools, in this part some significant works on 3D 

object retrieval will be explained in detail. Our taxonomy for 3D shape matching methods is 

shown in Figure 2-3 and Figure 2-4. Two survey papers [7, 8] are mainly utilized in this 

section. We use multiple classifications for algorithms, instead of a single taxonomy, 

according to : i) descriptor properties, ii) mathematical methods they exploit.  
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The vast majority of algorithms are statistically described global geometric based techniques. 

Other classifications can be achieved according to their complexity, partial similarity 

support, and dependency on the 3D model format (mesh, range, or point cloud).  

 

Figure 2-3. Classification of 3D shape retrieval methods depending on the descriptor properties 

 

Figure 2-4 Classification of 3D shape retrieval methods depending on the mathematical methodology 

In the following paragraphs some significant works of 3D shape description literature will 

be explained in detail. At the end, some of the publications that utilize local surface 

properties are listed (Table 2). Some of the significant works such as Spherical Harmonics 

Transform and Heat Kernel Signature is not presented in this section intentionally, since 

they will be explored in detail in the upcoming chapters. 
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Extended Gaussian Imaging (EGI):  

EGI is proposed by Horn [49] in 1984. It is a spherical histogram based surface descriptor 

method. Histogram is obtained by cumulating surface normals direction for each surface 

(usually used with mesh models) where normal directions are regularly spaced on sphere 

(each bin is represented by (𝜃, 𝜑), no radial information is used). Figure 2-5 is an example of 

Gauss sphere mapping of surface normals for a rectangular pyramid. It is weighted 

histogram with a weight equal to the area of the corresponding surface. It is invariant to 

translation and can easily be made scale invariant; however, it is not invariant to rotation. 

On the other hand, EGI approach owns a nice property about rotation of the model inducing 

the same rotation in the histogram. However, EGI is not a suitable descriptor for partial 

shape matching and point cloud representations.  

 

Figure 2-5. Extended Gaussian Imaging of a Prism 

Complex Extended Gaussian Imaging (CEGI): 

Kang and Ikeuchi [50] improved the EGI by including radial information. CEGI histogram is 

composed of complex numbers 𝛼 + 𝑗𝛽, where 𝛼 denotes the area of the surface and 𝛽 

denotes the distance of the surface to the origin. Figure 2-5 show a mapping of surface 

normals of a rectangular prism onto a Gaussian sphere with EGI principle, if CEGI is used 

then weights (A1,A2,A3 which are real numbers, areas of surfaces of prism in the EGI 

representation)  will be complex containing surface position information. Similar to EGI, 

CEGI is not a discriminative descriptor for partial, noisy and occluded object indexing. 
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Cord and Angle Histograms: 

This method is proposed by Paquet et al. [51, 52]. Cord is defined as a vector joining the 

center of mass of the model with the surface point. Surface point is selected as the center of 

mass the triangle for mesh models; a weight measure is used as the area of the triangle. 

Normalized histograms of three properties of cords are generated: i) length of cords, ii) the 

angle between the cord and principal axis, iii) the angle between the cord and the second 

principal axis; and used as the descriptor of the model.  Method is noise sensitive, invariant 

to rotation and translation, but not scaling.  Non-star shaped objects will be represented by 

its convex-hull resulting loss in details.  

Moments: 

Moments, especially Hu moments are popular tools in 2D image recognition. Also 3D 

counterparts are proposed and utilized for 3D shape retrieval: geometric moments [53], 

Zernike moments [54], spherical moments [55]. Moments are scalar quantities describing the 

distribution of the points belonging to models. They are simple descriptors, whereas not 

invariant to rotation scaling and translation. Low order moments capture coarser details 

hence, they are not powerful in discriminating; however, increasing the order improves the 

discriminative ability of any such descriptor. There is a tradeoff between the order of 

moments and the efficiency in terms of space and time and noise sensitivity. Geometric 

moments formulation is given with the following general formula [56]: 

 𝜇𝑖𝑗𝑘 =    𝑤𝑝𝑥𝑝
𝑖 𝑦𝑝

𝑗
𝑧𝑝
𝑘

𝑝∈𝑀    , 2.14 

where p is the point in model M. 

 

Shape Histograms: 

Histogram based classification method shape histograms are introduced by Ankerst et al. 

[57]. Method divides space into shells (concentric spheres), sectors or combination of the two 

so called spiderweb (Figure 2-6). In the first one, namely shell model, boundary sphere of the 

model is divided into concentric spheres, while each sphere is an accumulator for the points, 

whose distance to the center of mass lies within the sector’s radii range. It can be easily 

observed that shell model is invariant to rotation and translation, but not invariant to scale 

changes. This approach can be accepted as a simple and a weak descriptor in terms of 

distinguishability as it is shown in [47] it finds a place at the bottom of the Precision-Recall 
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graph of 12 algorithms. Sector model gives the distribution of the area of the models as a 

function of spherical angle. Sector model is better than the shell model according to the 

experiments represented in [47]. The best effort comes from the combined model. 

 

Figure 2-6 Shell, sector model and 2D projections of shell, sector and compound model respectively 

Spin Images: 

A local shape descriptor method, namely spin images is introduced by Johnson and Hebert 

[58]. About an interest point on the surface of the model 2D histograming is obtained. 

Normal vector for interest point p is required; thus, the method cannot be directly applied to 

point cloud representations. Algorithm can be summarized as follows: given set of surface 

points and corresponding normal vectors 𝑆 =   𝑝𝑖 , 𝑛𝑖  𝑖 = 1,2, … , 𝑘  , accumulate surface 

points which are (𝛼𝑖 , 𝛽𝑖) distant from the interest point. A cylindrical coordinate frame is 

assigned whose origin is the interest point p, and z axis points along the normal vector. 

Radius and elevation components are discretized to obtain histograms where 𝛽𝑖  the distance 

is measured along z axis and 𝛼𝑖  is the radial distance (Figure 2-7). For a given 3D model, the 

descriptor is the set of 2D histograms that is computationally costly and space requiring. The 

authors [58] suggest compression techniques to reduce the number of  spin images for an 

object to make an efficient comparison. However, this technique has the following 

disadvantages: it is not scale invariant, it requires high storage and results multiple 

ambiguous correspondences, since spin images of near points are similar; i.e. spin images 

are not unique [59]. 
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Figure 2-7.  Illustration of radial (α) and axial (β) distance in spin image generation 

Shape Distributions: 

Osada et al. [23] propose to use shape features’ distributions as a descriptor. For various 

features of an object algorithm calculates histograms and comparison is done using several 

metrics (χ2, Bhattacharya, Minkowsky LN norms). Distributions of the following features are 

selected: 

 A3:  Angle between three random points selected on the surface of the model. 

 D1: Distance between a fixed point and one random point on the surface. They use center of 

mass of the boundary of the model as the fixed point. 

 D2: The distance between two random points on the surface. 

 D3: The square root of the area of the triangle between three random points on the surface. 

 D4: The cube root of the volume of the tetrahedron between four random points on the 

surface 

Sampling of the surface points is achieved randomly. D2 distribution is similar to the cord 

histograms [51, 52] but as reported in Akgül et al.’s study [9, 60] random sampling over the 

surface improves the performance.  

 

Similar to Osada’s work [23] , Akgül [9] extracts density based 3D descriptors. However they 

use probability density estimation by using kernels instead of using directly histograms. 

They use three local geometric features, as shown in Figure 2-8: 

i) Radial feature: is a four-tuple including distance of surface point to the origin 

and unit vector pointing that point,  

ii) Tangent plane-based feature:  is a four-tuple including the normal vector at the 

surface point and the component along this normal of the distance between the 

point and the origin (center of mass). 
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iii) Cross-product feature: aims to give a relation between previously mentioned 

features, simply the cross product of the radial and tangential features.  

 

Figure 2-8. Shape features used in [9, 60] 

According to their experiments, their DCG values for their combined feature descriptor is 

the best among 13 other algorithms. However, in that comparison the combined feature 

descriptor of Osada [23] is not available, whereas only D2 feature based descriptor 

performance is included. 

Light Fields: 

This method is a multi-view approach for indexing 3D models proposed by Cheng et al. [61]. 

All models in the database are viewed from the predetermined point of views and a number 

of silhouettes (2D images) are obtained. Then, for each silhouette, a feature vector is 

calculated, so that set of features constitutes the shape descriptor. They use a large number 

of views exactly  one hundred orthogonal projections of an object. These silhouettes are then 

described by their Zernike moments and Fourier transformations. According to the 

experiments conducted by the authors, LigthField descriptor provides considerable 

improvements over existing methods, such as spherical harmonics [61]. Similar to Light 

Fields idea, the approaches described in [62-64] and [28] are view based 3D retrieval 

methods. 

 

Reeb Graphs: 

Graph based method Reeb graphs introduced by Hilaga et al. [65] is a topological descriptor. 

Skeletal structure of an object is represented in a graphical way and used for matching and 

retrieval. Basically, an object is divided into partitions according to some criteria, called  

function (e.g., curvature value of the point or geodesic distance at that point), each partition 
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corresponds to a node in the graph structure. Links between the nodes represent a  function 

relations of adjacent partitions.  

 

Curvature histogram (Surface Curvature, shape Spectrum): 

In this method, descriptor depends on the distribution of the curvatures. The method is 

proposed by Zaharia and Preteux [66] within the MPEG-7 framework for multimedia 

retrieval. Shape spectrum description is obtained by histograming the shape index values for 

the surface points. The shape index is introduced by Koenderink [67] is defined as a function 

of the two principal curvatures. The maximum and minimum values of the normal 

curvature at a point on a regular surface are called as principal curvatures 𝜅1 and 𝜅2. Then, 

shape index (SI) is defined as follows: 

 𝑆𝐼 =
1

2
−  

2

𝜋
 𝑎𝑟𝑐𝑡𝑎𝑛  

𝜅1 + 𝜅2

𝜅1 − 𝜅2

  2.15 

The descriptor is invariant to translation and rotation. Scale invarince is not satisfied, if the 

underlying geometry is estimated from the local point samples. Since estimation is 

dependent on the size of local patch. However, for parametric surfaces, SI is scale invariant. 

Figure 2-9 represent shape index values for some basic shapes. 

 

a) Spherical Cup (0)     b) Rut (0.25)        c) Minimal Saddle (0.5)   d) Ridge (0.75)      e)Spherical Cap(1.0) 

Figure 2-9. Shape index values of basic shapes 

Fourier Transform Descriptor: 

Fourier Transformation is a popular descriptor in 2D content based image retrieval. Vranic 

and Saupe [68] is adapted this technique to three dimensional case. Simply, a model is 

represented in frequency domain, a vector descriptor is obtained from the Fourier 

transformation coefficients while ignoring the high frequency components. The lowest 

frequency components capture the models’ major topology, whereas the high frequency 

components contain details. Vranic and Saupe use 172 components at maximum. 
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A voxelization step is required before processing and since descriptor is not invariant to 

rotation and scaling, pose normalization (using a modified version of PCA, called 

continuous PCA in [68]) is performed afterwards. In spite of preprocessing steps, which are 

disadvantages of the algorithm, it is efficient in terms of space, and as reported in [10], it is 

also efficient in terms of discrimination power. Fourier transformation on the voxelized and 

normalized data 𝑔 (𝑔𝑖𝑗𝑘  represents a single voxel at position ijk of a 3D array) is given by the 

following equation [68]: 

 𝑓𝑢𝑣𝑤 =
1

 𝑁32    𝑔𝑖𝑗𝑘

𝑁
2
−1

𝑘=−
𝑁
2

𝑁
2
−1

𝑗=−
𝑁
2

𝑁
2
−1

𝑖=−
𝑁
2

𝑒−𝑗
2𝜋
𝑁

(𝑖𝑢+𝑗𝑣+𝑘𝑤)
 2.16 

 

Fourier Mellin Transformation: 

Another frequency domain representation is Fourier Mellin transformation (FMT) which 

combines the spherical harmonics with the Mellin transformation. Resulting descriptor is 

rotation, scale and translation invariant. The underlying theory takes place in [69], but no 

experimental study is presented. Mellin transform of a function is given by the following 

equation: 

 𝐹(𝑚) =  𝑓 𝑥 𝑥−𝑗𝑚
𝑑𝑥

𝑥

∞

0

 2.17 

The Mellin transform of a scaled function 𝑓 𝛼𝑥  is equal to 𝐹𝛼 𝑚 = 𝛼 𝑗𝑚 𝐹(𝑚) however the 

influence of the scaling is reflected only the phase; thus, scale invariance is obtained after 

taking the modulus and rotation invariance is achieved by applying spherical harmonics 

transformation. FMT of a continuous function f, in polar coordinates is given by: 

 𝐹𝐹𝑀𝑇 (𝑘, 𝑙, 𝑚) =
1

2𝜋2
   𝑓(𝑟, 𝜃, 𝜙)𝑟−𝑗𝑚 𝑒𝑗𝑘𝜃 𝑒−𝑗𝑟𝜙

𝑑𝑟

𝑟
𝑑𝜃𝑑𝜙

𝜋
2

−
𝜋
2

2𝜋

0

∞

0

 2.18 

Due to numerical difficulties in computing the Fourier-Mellin transform, the Analytical 

Fourier-Mellin Transform [70], which adopts polar coordinate instead of the Log-polar 

coordinate, is proposed by the following formulation: 

 𝐹𝐴𝐹𝑀𝑇 (𝑘, 𝑙, 𝑚) =
1

2𝜋2
   𝑓(𝑟, 𝜃, 𝜙)𝑟𝜍−𝑗𝑚 𝑒−𝑗𝑘𝜃 𝑒−𝑗𝑟𝜙

𝑑𝑟

𝑟
𝑑𝜃𝑑𝜙

𝜋
2

−
𝜋
2

2𝜋

0

∞

0

 2.19 
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Coefficients’ amplitudes of of low order frequency components are used as to obtain 

rotation, scale and translation invariant shape descriptors. 

 

Structural Indexing: Efficient 3-D Object Recognition 

In this early work [71] Stein and Medioni detects interest points at high curvature values. In 

the vicinity of these interest points, they form the ‚splash‛ structure. For a given interest 

point, P, on a surface, a contour, which is  distant from the point, is formed. The 

distribution of the normals on the contour is called as “splash”.  Definition of the surface 

normals can be understood from the Figure 2-10. For every sample point of a splash, they 

obtain a pair v()=((),()) and mapping this parameterization to a 3D space (,,) they 

obtain a 3D curve . Then straight line segments are fitted to this 3D curve. Finally 3D curve is 

encoded using curvature and the torsion angles.  

  

 

Figure 2-10 Splash and 3D curve 

Point Signatures: A New Representation for 3D Object Recognition 

Chua and Jarvis [72] inspired their work from that of Stein and Medioni [71]. The authors 

place a sphere centered at the interest point. Intersection of the sphere and the surface forms 

a contour. By Principal Component Analysis of this contour, a plane is fitted. This is the 
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plane, where the distance from the points on the contour to the plane is minimum. Normal 

vector at the interest point is assumed as the normal vector of that plane. The plane is 

translated to the interest point. Then, a 1D parametric curve d(), descriptor of the region, is 

formed from the signed distances from the points on the contour to the plane.  

 

Figure 2-11 Surface and the corresponding ‚Point Signature‛ function 

Recognizing Objects in Range Data Using Regional Point Descriptors 

Frome et al. [73] extends the shape context idea from 2D to 3D. It is similar to ‚Shape 

Histograms‛ [30]. It is simply a 3D histogram accumulating the shape points by using their 

spherical coordinates (,,R). For scale invariance, the volume is partitioned into 15 equal 

divisions along the radial direction.  Since the composed histogram is not rotation invariant, 

shape is rotated about its azimuth direction in L different positions and L different 

histograms are stored as the descriptor of the object.  As an obvious solution to this rotation 

invariance problem, they also propose harmonic shape context description, which is a 

Spherical Harmonic Transform (SHT) of the 3D shape context matrix. The descriptor is a 

vector of the amplitudes of this transformation. As a similarity measure, L2 distance for 3D 

shape contexts and the inverse of the normalized correlation for harmonic shape contexts are 

used. In the presence of clutter and noise, 3D shape context and harmonic shape context 

outperforms spin image method.  

 

Salient Geometric Features for Partial Shape Matching and Similarity 

Ran and Daniel [74] fit implicit quadric surface locally such that f(x,y,z)=0 by using least 

squares minimization. Then, for each vertex in the mesh, they find the projections onto this 

surface. After that for each vertex they compute the Gaussian curvature. A region growing 

considering the vertex Gaussian curvature values is performed and local pathes are formed. 

Then, a ‚saliency grade‛ function over the regions is assigned. Later, again with region 
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growing clusters are formed that maximizes the saliency grade of the cluster. Clusters with 

the highest grades gives the salient geometric features of the given shape. Hence, they 

extract the top 10% features.  

 

Distinctive Regions of 3D surfaces 

The main emphasis of the paper [75] is to find the distinctive regions of object classes. This 

aim is achieved by analyzing the classified database. The algorithm can be summarized as 

follows: Random points on the surfaces are selected, spheres at different scales are placed  

from regions, spheres are centered at those points, then for every region spherical harmonic 

transform is applied to obtain a local shape description. After these steps, the authors 

compare all pairs of descriptors and rank them from the best result to the worst. Then, this 

ranking is examined for finding the most discriminating parts of the classes. These parts are 

the regions from the same class of objects whose descriptors appear at the top of their ranked 

list.  Next, they represent the mesh in the database with its most distinctive shape 

descriptors. In this approach, as an important constraint, the database should be classified 

and the intra-class similarity should be low. 

 

3D free-form object recognition in range images using local surface patches 

Chen and Bhanu [76] build up a range image recognition sytem. Authors initially fit a 

quadric surface, f x, y = ax2 + by2 + cxy + dx + ey + f , to a local window by using least 

squares method. Then, for each surface point Gaussian, Mean, and principal curvature values 

are calculated analytically. After obtaining those values, shape index values at every point is 

computed and local maxima and local minima of this mapping are selected as the salient 

points of the object.  Finally, local descriptor is formed as a 2D histogram around these 

salient points. 2D histogram accumulates the shape index values and the angle between the 

normal of the interest point and that of its neighbors. 

 

Thrift: Local 3D Structure Recognition 

Thrift approach [77] makes a strong emphasis on the repeatability of the interest point 

(keypoint, salient point and interest point is used interchangeably throughout the 

dissertation). The authors first estimate the density function, say f(x,y,z) (surface points) by 

regular sampling method and obtain a voxel representation of the surface . Then, construct a 
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scale space by convolving the voxel F (3D matrix) by down sampling at each time with a 3D 

Gaussian Kernel.  

 S x, y, z, σ =  F ⊗ g σ   x, y, z   where g x, y, zσ = exp⁡(
−x2 − y2 − z2

2σ2
) 2.20 

In order to locate an interest point, the authors use determinant of the 3D Hessian matrix. 

Gradient vector for three principal directions should be large. In fact, they use the term 

curvature, but the proposed term corresponds to the gradient vector magnitude.   

 𝐻 𝑝, 𝜍 =  

𝑆𝑥𝑥 (𝑝, 𝜍) 𝑆𝑥𝑦 (𝑝, 𝜍) 𝑆𝑥𝑧 (𝑝, 𝜍)

𝑆𝑥𝑦 (𝑝, 𝜍) 𝑆𝑦𝑦 (𝑝, 𝜍) 𝑆𝑦𝑧 (𝑝, 𝜍)

𝑆𝑥𝑧 (𝑝, 𝜍) 𝑆𝑦𝑧 (𝑝, 𝜍) 𝑆𝑧𝑧 (𝑝, 𝜍)

 ,    𝑤𝑕𝑒𝑟𝑒 𝑆𝑥𝑥  𝑝, 𝜍 =
𝜕2

𝜕𝑥2
𝑆(𝑝, 𝜍) 2.21 

 

Finally, the interest points become the local maxima of |det(H)|. They use the normal vector 

as the descriptor of the salient point. Their work presents the repeatability of this interest 

point detector about %50 in the presence of a 10% percent noise. However, matching results 

are relatively poor and conducted on few examples, which are not obvious. 

 

Part Analogies in Sets of Object: 

In this study [78], 3D models are partitioned into parts and a signature based on the 

geometric characteristics and its relation to the complete model is associated to them. First of 

all, the algorithm starts by evaluating the Shape Diameter Function (SDF) for each point on 

the model. Let p be a point on the surface of the mesh and let n be the normal vector. A cone 

is centered around, inward normal direction is placed and rays from the point p are sent to 

the other side of the mesh within the cone. Mean value of all lengths of the rays are 

calculated and the ones within one standard deviation of the mean are selected.  SDF is 

calculated as the weighted average of the lengths of the selected rays. Weights are the 

inverse of the angles between the ray and the center of the cone.  The cone angle is specified 

in their earlier work [79] as 120.  

 

After evaluating SDF values for each point, mesh is partitioned. They utilize the Gaussian 

Mixture Model by fitting k different Gaussians to the histogram of SDF values. They select k 

as 5 during their experiments.  Signature of a part consists of the normalized SDF histogram 
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of the corresponding part and the ratio of the part to the whole model. The local description 

of the method requires full model; hence, it cannot be applied to the range imaginary. User 

specified segment numbers can be argued and the method works fine with articulated 

objects.  

 

Table 2 gives a summary of the literature which utilizes local surface properties for keypoint 

selection, description, and matching. Some of them are already explained in detail in the 

previous paragraphs; however, included in the list for the sake of completeness. 

 

Table 2. Summary of a some of the local surface description studies 

 Name Authors Year Methodology & Keywords Data Format 

1.  

Structural Indexing: 

Efficient 3-D Object 

Recognition [71] 

Fridtjof Stein, 

Gerard 

Medioni 

1992 3D curve and Splashes Range Scenes 

2.  

Point Signatures: A New 

Representation for 3D 

Object Recognition [72] 

Ching Seng 

Chua, Ray 

Jarvis 

1997 Signed Distance Range Scenes 

3.  

Using spin images for 

efficient object 

recognition in cluttered 

3D scenes [58]  

Andrew E. 

Johnson, 

Martial 

Hebert 

1999 Spin images 
Laser Scanned 

Scenes 

4.  

3D Object Recognition 

From Range Images 

Using Local Feature 

Histograms [29] 

Günter 

Hetzel et al. 
2001 

Global histograms are 

computed using local 

features: Normal, depth, 

Shape Index 

Range Models 

5.  

A New Paradigm for 

Recognizing 3-D Object 

Shapes from Range Data 

[80]  

Salvador 

Ruiz Correa 

et al. 

2001 

Manual keypoint selection, 

Spin image Description, 

SVM training 

Range Scenes 

6.  

Multi-scale Feature 

Extraction on Point-

Sampled Surface [81] 

Mark Pauly 

et al. 
2003 

Surface variation 

calculation at different 

neighborhood sizes (scale), 

not for matching 

NA 

7.  

Recognizing Objects in 

Range Data Using 

Regional Point 

Descriptors [73] 

Andrea 

Frome et al. 
2004 

3D shape context and 

harmonic shape context, 

pick random local points  

Laser Scanned 

Scenes 

8.  

Salient Geometric 

Features for Partial Shape 

Matching and Similarity 

[82] 

Ran Gal, 

Daniel 

Cohen-Or 

2006 Saliency Grade, Curvature Full Models 
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Table 2. Continued. Summary of a some of the local surface description studies 

 

9.  

Rapid Object Indexing 

Using Locality Sensitive 

Hashing and Joint 3D-

Signature Space 

Estimation [83] 

Bogdan 

Matei et al. 
2006 

KeyPoint Selection: High 

surface variation, 

description: Spin images 

Laser Scanned 

Scenes 

10.  
Distinctive Regions of 3D 

surfaces [75] 

Philip 

Shilane, 

Thomas 

Funkhouser 

2007 

Random sampling, Scale 

Space, Spherical Harmonic 

Transform 

Full Mesh 

Models 

11.  

3D free-form object 

recognition in range 

images using local 

surface patches [76] 

Hui Chen, 

Bir Bhanu 
2007 

Surface fitting, shape 

index, histogram 
Range Models 

12.  
Thrift: Local 3D Structure 

Recognition [77] 

Alex Flint et 

al. 
2007 

3D Hessian, Surface 

Normal vector. Keypoint 

repeatability. 

Laser Scanned 

Scenes 

13.  

3D object recognition 

from range images using 

pyramid matching [84] 

Xinju Li, Igor 

Guskov 
2007 

Scale Space in 3D Spatial 

movement along normal 

direction, Spin image 

Range Models 

14.  

Multi-scale Feature 

Extraction for 3D Surface 

Registration Using Local 

Shape Variation [85] 

Huy Tho Ho, 

Danny 

Gibbins 

2008 
Scale Space using surface 

variation, Spin image 
Range Models 

15.  

Sparse points matching 

by combining 3D mesh 

saliency with statistical 

descriptors [86] 

U. Castellani 

et al. 
2008 

Scale Space, Spatial 

movement along normal 

direction, principal 

curvatures, HMM 

Range Models 

16.  

Salient Region Detection 

and Feature Extraction in 

3D Visual Data [87] 

Min Dong, 

Yanhua Chen 
2008 

Scale Space, Gradient 

location orientation 

histogram in 3D 

Volumetric 

MRI images 

17.  
Part Analogies in Sets of 

Object [78] 

S. Shalom et 

al. 
2008 

Shape diameter function, 

Normalized Histogram of 

SDF 

Requires Full 

Models 

18.  

Local Feature Extraction 

and Matching on Range 

Images: 2.5D SIFT [88] 

Tsz-Wai 

Rachel Lo, J. 

Paul Siebert 

2009 
Range-> Sift -> keypoint 

localization->shape index 
Range Models 

19.  

On the Repeatability and 

Quality of Keypoints for 

Local Feature-based 3D 

Object Retrieval from 

Cluttered Scenes [89] 

A. Mian et al. 2009 

Keypoint selection based 

on symmetric deviation 

(k1/k2), depth histogram 

Range Models 
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2.5 Discussion on 3D Shape Retrieval Techniques 

Histogram based methods, such as EGI, CEGI, shape histograms, shape distributions, and 

shape spectrum, are sensitive topology changes and are not discriminative for partial 

similarity indexing. View based approaches, such as Light-Fields, requires multi-view 

images of the query, which is not available in single depth searching. Graph based methods, 

such as Reeb graphs, are constructed on the connectivity of the parts. Range images usually 

contain occlusion and self-occlusion resulting in numerous disconnected regions. This 

property makes graph based approached non-practical in range image description. 

Transform based approaches, e.g., DFT and Spherical Harmonics, are also sensitive to global 

characteristics of the shape, but represents all available information in the frequency 

domain. It is a way of changing the representation domain of the signal. With this property, 

transform based methods differ from the previous ones in terms of discrimination.   

 

Based on these discussions, Spherical Harmonics Transform is adapted for range model 

similarity indexing (Chapter 5). Other local surface properties studied in the aforementioned 

works, such as normals, curvatures, and shape index, are also utilized during segmentation, 

keypoint selection and correspondence matching stages. 
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CHAPTER 3  
 

 

 

 

SEGMENTATION OF RANGE DATA 

With the increase in the performance of the range detector technologies, and the decrease in 

costs of off-the-shelf hardware for 3D sensing and computing, 3D systems are applied to a 

number of different applications, such as 3D television, robotics, virtual reality. Most of 

these applications are utilized in the real-world environments in which the object and 

semantic models are far from their synthetic counterparts. The differences between the 

objects residing in the scene and their synthetic models make the segmentation process a 

crucial and prerequisite step for further tasks such as recognition, tracking, shape retrieval. 

 

Many methods have attempted to solve the segmentation problem in range images [90]. 

Most of these methods exploit the local surface properties and/or edge information, and 

performed on laser scanner outputs or synthetic images generated via computer graphics. 

The local surface properties and edge information can be extracted more precisely from laser 

scanners and synthetic images in compared to the data generated by Time-of-Flight (TOF) 

cameras due to the high Signal to Noise Ratio and high resolution space discretization of the 

laser scanner devices. However, the real-time performance and the small dimensions of the 

TOF camera make it also a strong candidate for sensor selection. 

 

This chapter begins with planar structure detection in range scenes. Problem definition, 

proposals, modifications on available methods and results are presented. Later, well-known 

segmentation methods are adapted for segmenting real range scenes, where the inputs are 

the Time of Flight Camera outputs. Color information is integrated with the spatial 

information and its effects on the performance of the segmentation methods are evaluated. 

Several local surface properties such as curvatures, surface variances, normals are utilized 
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with region growing. Finally, dissertation presents a novel algorithm to segment 3D point 

cloud (obtained via TOF camera) into objects by using the spatial information.  

 

In the proposed approach, initially, regions with similar surface normal and curvature 

values are segmented and planar surfaces models are estimated for these regions. Estimated 

plane with smallest residual and largest member point number is chosen as major plane 

which represents the surface that objects can be placed. Afterwards, 3D points are projected 

onto the major plane and a saliency map is generated by using direct density estimation 

method which gives likelihood of an object existing on a particular position on the major 

plane. In other words, the local peaks in the saliency map represent the most probable object 

locations. Finally, points which are closer to the local peaks over a certain threshold are 

segmented into objects.  

3.1 2.5D Data 

As mentioned previously scenes of 2.5D data are more probable to be encountered within 

the real 3D applications than the watertight 3D mesh models (e.g., robots, TV, tele-immerse 

systems, machine vision, Human-Computer interaction). With this motivation, we tested 

segmentation methods on 2.5D point clouds acquired from a range camera.  

 

We employ a time of flight (TOF) camera Swiss Ranger 3000 (SR3000) produced by Swiss 

Center for Electronics and Microtechnology (CSEM) (Figure 3-1). 

 

Figure 3-1. The CSEM SwissRanger SR3000 TOF Camera and its illumination. Second photograph is 

taken with a standard camera in night vision mode. 
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SR3000 acquires both gray level image and depth of the scene. Depending on the modulation 

frequency setting of the camera, distance range varies between 5.00-7.9 meters. Distance 

calculation of TOF cameras depend on the propagation time of the light.  

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐿𝑖𝑔𝑡𝑕 𝑋 ∆𝑡

2
, 3.1 

where the speed of light is 299792458 m.s-1 and t is the elapsed time of the specific light. 

SR3000 emits light (870nm) which is invisible with a naked eye (Figure 3-1) with 55 LEDs. A 

CMOS/CCD sensor with a spatial resolution of 176x144 active pixels senses the reflected 

light and calculates the distance. Detailed information on this calculation can be found in 

[91, 92]. 

 

There are distance resolution limitations such as thermal noise, quantization noise, reset 

noise, and electronic shot noise and practical limitations, such as noise, blur, overflow, 

reflectance, sensitivity, and multiple targets [92]. Figure 3-2 is an illustration of the multiple 

reflection problem. 

 

Figure 3-2. Multiple target case illustration and measurement errors  

Figure 3-3 shows a sample depth data in point cloud representation and its corresponding 

intensity image. As shown in Figure 3-1, which is taken with a standard camera in night 

vision mode, camera’s illumination is not ambient. Thus, intensity image of SR3000 is not 

handy.  
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Figure 3-3. Point cloud and corresponding intensity image of the scene acquired by SR3000 TOF 

camera 

3.1.1 Color Information 

Laser scanning devices or TOF cameras do not capture color image of the scene, except the 

intensity like image (Figure 3-3), which is practically useless. However, color information 

can be handy for analyzing the data. To obtain the color information of each point, we use 

TOF cameras’ intensity images and a standard camera with the calibration tool obtained 

from [93]. Due to internal and external calibration errors exact match between two views 

cannot be achieved.  

 

Figure 3-4. Point cloud obtained by  TOF camera. Color image of the same scene acquired by a 

standard camera. Calibration of both images results colored point cloud data 

3.2 3D Plane Extraction 

When we examine the surroundings around us, it could be observed that most of the (man-

made) objects have planar, nearly planar or piecewise planar geometric structure, such as 

walls, floors, doors, roads, etc. Thus, detecting and describing planar structures on a scene 

from set of 3D points could be a meaningful effort before any high level global or local 3D 

representation. We test and compare Hough Transform, RANSAC and HK segmentation 
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methods. Moreover, we propose modifications on Hough Transform and RANSAC that 

improves the performance of the planarity detection.  

 

Figure 3-5. Methods used in planar structure detection in range images 

3.2.1 Hough Transform 

Hough transform is a popular algorithm in computer vision, proposed by Hough [94] for 

line detection in 2D images, later extended for detecting circles, ellipses, and planes. Hough 

transformation for 3D object recognition is applied by Zaharia and Preteux [95, 96] and used 

to define planar structures in depth map data, LIDAR data and X-Ray data [97-99]. The 

fundamental assumption is piecewise planarity of objects. Objects, buildings, even people 

can be represented by combinations of planar surfaces. Thus detecting planar patches in 3D 

data is a fundamental step in recognizing objects. Applications working with LIDAR data 

(airborne laser scanning system) widely use Hough transform to detect planes (parks, roofs, 

etc). 

 

Introducing Hough Transformation for line detection is a good starting point for explaining 

3D Hough Transformation (3DHT). It is a voting scheme, each point in a set of points 𝑆 =

 𝑃1 , 𝑃2 , … , 𝑃𝑛  , votes for the lines passing through it. For a continuous space, there would be 

infinite number of lines (Figure 3-6), yet, we usually discretize the space.  

 

Figure 3-6. Line Detection using Hough Transformation 
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A line can be represented with the following equation:  

 𝑦 = 𝑚𝑥 + 𝑛 3.2 

Our aim is to find all (m,n) pairs for each (x,y) pair in our point set. However, the equation 

𝑚 =
𝑦−𝑛

𝑥
 or equivalently n= 𝑦 −𝑚𝑥 has a problem for a constant x. In order to overcome this 

problem, parametric line equation is suggested, instead of the previous one having the 

following form: 

 𝑥 cos 𝜃 + 𝑦 sin 𝜃 = 𝜌 3.3 

 

Figure 3-7. Parametric line equation 

Thus, histograming (counting number of points voting for this line) is achieved in the 

parameter space (𝜃, 𝜌) where  

 
–
𝜋

2
≤ 𝜃 ≤

𝜋

2
 

−( |𝑥|𝑚𝑎𝑥
2 + |𝑦|𝑚𝑎𝑥

2 ) ≤ 𝜌 ≤ ( |𝑥|𝑚𝑎𝑥
2 + |𝑦|𝑚𝑎𝑥

2  
3.4 

Similarly, plane equation can be given in both Euclidean space and in parametric space: 

 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑 

𝑥 cos 𝜃 cos 𝜑 + 𝑦 sin 𝜃 cos𝜑 + 𝑧 sin𝜑 = 𝜌 
3.5 

Each point P=(x,y,z) votes for several (𝜃, 𝜑, 𝜌) trio depending on the space discretization. 

Coarser parameter space division will result erroneous planes, whereas finer discretizing 

costs time and space. Thus, decision is achieved in a trial and error fashion. Parameters for 

the best plane are the ones taking maximum votes, i.e. the most probable plane contains the 

maximum number of points (in Figure 3-6 best line is l1 with a maximum vote of three, while 

l2, l3, and l4 takes two votes each which are the next most probable lines). Applications 

working with watertight models compare histograms, accumulators, to obtain a similarity 

measure. 
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Hough Transform with a fine parameter discretization works well for finding the major 

plane in our data; in this context, a major plane is the flat surface owing plenty portion of the 

scene points. However, Hough Transformation is not successful for finding ‚distinct” 

remaining planar structures in a scene, even with a finer parameterization. The reason is 

illustrated in Figure 3-8; human perception for planar structures in a point cloud (first 

image) results with the two planes shown in second image of Figure 3-8, but Hough 

transformation will come up with a different decision, a probable one is shown in third 

image of the figure. 

 

Figure 3-8.(Left to Right): point cloud, expected plane extraction, probable plane detection with Hough 

transformation 

 
Figure 3-9. Hough Transformation parameter sensitivity  

In fact, Hough algorithm exactly fulfills what is expected from itself, since it is demanded for 

the planes which have higher votes. As shown in Figure 3-9 maximum vote does not always 

correspond to our perception. 

 

Based on our experience, we could argue that primary plane can be detected by Hough, 

whereas remaining ones might fail. Thus, we modify the algorithm to obtain a recursive one 

as follows: 

 Apply 3D Hough Transformation (3DHT) on the 3D point cloud 

 Detect the plane that has the maximum vote 

 Remove points belonging to this plane 
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 Run 3DHT with the remaining points until the number of points is smaller than a 

threshold. 

Recursive Hough transformation results are shown in Figure 3-11. Scenes used in this study 

are shown in Figure 3-10 (First scene is used only in segmentation section). 

 
     Data1     Data2             Data3       Data4 

 
Data5 

Figure 3-10. Scenes used in plane extraction and segmentation tests 

 

 

Figure 3-11. (Top Row) Planes obtained by standard Hough Transformation, side views are used for 

easy comprehension, (Bottom Row) Planes obtained by Recursive Hough transformation 

 

Figure 3-12. Planes obtained by Hough Transformation after colored K-Means Segmentation 
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Another technique to improve Hough Transformation is to import color information. There 

can be two alternatives for intensity assisted Hough Transformation for plane detection.  

The first approach can be summarized as follows: 

 Segment regions according to their intensities, and 

 Run 3DHT on each segment. 

For segmentation, we prefer to use K-Means.  The results for colored K-Means segmented 

Hough Transformation are shown in Figure 3-12. Details of segmentation algorithms and 

their performance measures will be given in the next section and they are shown in Figure 

3-18 and in Figure 3-19. 

The second approach has also two main steps: 

 Obtain a 4D Hough Matrix consisting of (,,, rgb), i.e. a point can vote for a plane 

with the ones having similar intensity values, and 

 Find the maximum of 4D Hough Matrix. 

At first glance, the second approach seems to be more effective, while it is more complex; 

whereas, the first approach might suffer from the segmentation errors in spite of its time and 

space efficiency. The second approach is left as a future study. 

 

3.2.2 Random Sample Consensus (RANSAC)  

Random Sample Consensus (RANSAC) is a general outlier removal approach that could also 

be exploited for finding planar structures in 3D [100-103]. The algorithm can be summarized 

as follows: 

 Select three non-collinear points (pi, pj, pk) randomly from the input set S={p1, p2, …, 

pn}; 

 These three non-collinear points forms a triangle. From these points plane 

parameters are extracted and the number of points is calculated which belong to this 

plane (i.e., if the distance of a point to the plane is smaller than a user defined 

threshold t, than the point belongs to the model); 

 If the number of points is above a threshold, again a user defined parameter, then 

the model is accepted. 

Algorithm finds numerous noisy planes, since our data is noisy and there are many 

combinations of triple non-collinear points. Selection of initial triangle is critical and affects 
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results significantly. Hence, we insert some constraints for initial plane (triangle) selection 

besides the non-collinearity: 

 Select points (pi, pj, pk) such that distance(pi, pj)>t, distance(pi, pk)>t, and distance(pj, pk)>t, 

i.e. edges are not too small compared to the scene’s maximum dimensions (Figure 

3-13) and nearly equilateral; distance(pi, pj)  distance(pi, pk)  distance(pj, pk). 

 Select points if their colors are similar (ri  rj  rk, gi  gj  gk, bi  bj  bk) 

 

Figure 3-13. Triangle selection for RANSAC 

The results are shown in Figure 3-14. Performance of the algorithm is similar to the recursive 

Hough. In spite of the constraints, RANSAC is not stable for our input. At each run, the 

method detects different planes for the same scene. This result is due to numerous 

combinations of the initial triangle selection. For reducing the number of triangle candidates, 

more elegant constraints should be introduced.  

 

Figure 3-14. Ransac plane fitting results 
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3.2.1 HK Segmentation 

Some local surface properties can be identified by utilizing differential geometry. Signs of 

the Mean Curvature (H) and Gaussian Curvature (K) provides us classifying each scene 

point into geometric classes shown by Figure 3-15, [104]. 

H\K negative 0 positive  K H Shape Class 

negative 

 

  0 0 Plane 
0 + Concave cylindrical 

0 
 

 
0 - Convex cylindrical 
+ + Concave elliptic 
+ - Convex elliptic 

positive   - Any hyperbolic 

Figure 3-15 Shape classes according to the HK curvatures [104] 

Mean curvature (H) and Gaussian Curvature (K) is defined as follows: 

 

𝑲 =
𝑕𝑥𝑥𝑕𝑦𝑦 − 𝑕𝑥𝑦

2

(1 + 𝑕𝑥
2 + 𝑕𝑦

2 )2
 

𝟐𝑯 =
 1 + 𝑕𝑥

2 𝑕𝑦𝑦 − 2𝑕𝑥𝑕𝑦𝑕𝑥𝑦 + (1 + 𝑕𝑦
2 )𝑕𝑥𝑥

(1 + 𝑕𝑥
2 + 𝑕𝑦

2 )3/2
 

3.6 

where h is the range data, 𝑕𝑥 is the first and 𝑕𝑥𝑥  is the second derivative along the ‚x” 

direction, similar notation holds for 𝑕𝑦  and 𝑕𝑦𝑦 . These derivatives can be evaluated by surface 

fitting and direct differentiation. However, noisy measurements should be avoided, since it 

affects the HK segmentation. Besides a threshold should be utilized for zero values, since H 

and K is hardly equal to zero. Due to low SNR in our inputs, surface fitting is preferred to 

estimate derivatives. 

3.2.1.1 Surface Fitting  

Like all other sensors, laser scanners and Time of Flight cameras introduce noise over the 

input data. For reducing the effect of this poor quality surface representation, one could 

apply quadric surface fitting. Many efforts are put forward for surface fitting to point clouds 

[74, 105-107]. In these studies, the B-Spline and the quadric surface fitting are usually 

adapted after utilizing the Least Squares Estimation (LSE) method.  

 

Considering the piecewise continuous nature of the surfaces appearing in the typical scenes, 

we fit quadratic surfaces to local patches. Mathematical details of the surface fitting can be 

found in the appendix. When we find the polynomial coefficients we can directly calculate 
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the local surface properties like curvature and the normal by differentiation. Experimental 

results for this estimation will be presented in the following sections. 

 

  

Figure 3-16. (Left to Right) TOF intensity image, H curvatures values mapped to gray level, K 

curvature values mapped to gray level, Planar regions shown in white (binary images) 

Figure 3-16 illustrates the mapping H and K curvatures values to gray level for two test 

images. Planar regions obtained according to the HK values are shown in white in the last 

column. Even the HK values are calculated by surface fitting, which smoothes the surface, 

results are noisy. Due to noisy structure of the input and the noise sensitivity of the H and K 

computations, planarity structures are not detected directly by examining the HK values. A 

post processing such as region growing should be performed. 

3.3 3D Object Segmentation 

3.3.1 K-Means 

K-means is one of the classical iterative clustering methods. It can be summarized as follows: 

1. Assign initial random mean vector with K values (m1, m2, m3, …, mK); 

2. Cluster data according to the initial mean vector (assign data to a class whose mean 

is closest to it);  

3. Calculate mean value for each cluster mean and update mean vector; 

4. Assign data according to the new mean vector; 

5. Repeat third and fourth steps until there is no change in the cluster mean values. 

Essentially, K-means try to minimize total cluster variance and can be formulated by: 
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 𝐷 =    𝑥𝑗
𝑖 −𝑚𝑖 

2
𝑛

𝑗=1

𝐾

𝑖=1

, 3.7 

where 𝑥𝑗
𝑖  represents the jth data in the ith cluster and 𝑚𝑖  denotes the ith cluster’s mean. Initial 

mean assignment is the critical step in the algorithm and effects results considerably. The 

accustomed strategy is picking up random K samples from the data set. The desired 

property of the algorithm is ability to handle different types of data. 

 

We supplied only the spatial information of the point clouds to the implemented K-means 

algorithm. Figure 3-10 shows the tested scenes that we use throughout the experiments and 

Figure 3-17 presents the point cloud representation of the scenes acquired by TOF camera 

and their ground truth for segmentation. The results for K-means are shown in Figure 3-18. 

With the calibration of TOF and standard camera, we can access the color information of the 

points. Thus, modified the algorithm such that sample vectors are in the form of 𝑝𝑖 =

 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑟𝑖 , 𝑔𝑖 , 𝑏𝑖 . Since spatial and color space is different, they are normalized to have a 

maximum value of one. The simulation results of Colored K-means algorithm is also shown 

in Figure 3-18.  

 

3.3.2 Mean-Shift 

In Mean-Shift paradigm, the local peaks of a probability density function is tried to be 

estimated from the observed samples out of this density. For this probability density 

function, Mixtures of Gaussian distributed points are usually assumed and their related 

parameters (means) are estimated. Dense regions in the input space correspond to local 

maxima in the probability density functions (called modes). Modes of input points are 

obtained and clusters around these modes are generated [108]. A formal definition of the 

algorithm can be summarized as follows: 

Given k input points 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑘 , in d dimensional space 𝑅𝑑 , then the density 

estimation with the window size w is : 

 𝑓 𝑥 =
1

𝑘𝑤𝑛
 𝐾 

𝑥 − 𝑥𝑖
𝑤

 

𝑖=𝑘

𝑖=1

, 3.8 

where K(x) is the kernel function (usually Gaussian). The modes of the density 

function are located at the zeros of the gradient function ∇𝑓 𝑥 = 0.  It can be shown 

that [41] the displacement between ensemble average of the samples within an 
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arbitrary window and the center of this window always points in the direction of the 

mode; hence, a window moves toward the mode of the density, if the center of the 

window is shifted towards the ensemble average position . For segmentation 

purposes, this paradigm is exploited by grouping the starting points (pixels) whose 

modes turn out to be the same [41]. 

Mean-shift segmentation is implemented with and without the color information of the 

points. Mean shift segmentation results are shown in Figure 3-19. 

In order to evaluate segmentation performance of the algorithms, we segment the regions 

manually to obtain the ground truth and compare them against the result of the algorithms. 

Let 𝑐 =  𝑐1, 𝑐2 , … , 𝑐𝑘  be the regions that are obtained by the segmentation algorithm where  

𝑐𝑖 =  𝑝1 , 𝑝2 , … , 𝑝𝑤   is a list of points constituting the region and let 𝑠 =  𝑠1 , 𝑠2 , … , 𝑠𝑛   be the 

ground truth regions where 𝑠𝑖 =  𝑝1 , 𝑝2 , … , 𝑝𝑚  . Then, for each segment in 𝑐, one should 

decide the corresponding region in the ground truth by looking at the which region majority 

of the points in this region fall in  and obtain correspondence vector 𝑐𝑠 =  𝑐𝑠1 , 𝑐𝑠2 , … , 𝑐𝑠𝑘 . 

Then, the error is computed as follows: 

 𝑒𝑟𝑟𝑜𝑟(𝑖𝑛  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑖 𝑛𝑡𝑠 ) =   𝑑 𝑖, 𝑝𝑗  , 𝑤𝑕𝑒𝑟𝑒 𝑑 𝑖, 𝑝𝑗   
1           𝑖𝑓   𝑝𝑗  ∉ 𝑠𝑐𝑠𝑖   

0          𝑜. 𝑤.                 
 

𝑗=𝑤

𝑗=1

𝑖=𝑘

𝑖=1

 3.9 

 

Figure 3-17. Point cloud captured by TOF camera and ground truth (each segment colored with 

different color) 
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Figure 3-18. K-means and Colored K-Means Results. Error is given as the ratio of the number of points 

segmented incorrectly to the total number of scene points.  

 

Figure 3-19. Mean Shift and Colored Mean Shift Segmentation Results. Error is given as the ratio of the 

number of points segmented incorrectly to the total number of scene points. Difference of the number 

of regions between the ground truth segmentation and the Mean Shift segmentation is given in 

parentheses. 
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First data set is quite noisy and occlusion is distinct; therefore error values for this data set is 

high. For evaluation of average error ratio, other data and corresponding error values are 

used and shown in Table 3. According to this table, color information improves the 

segmentation quality and both colored K-means and colored Mean Shift segmentation 

algorithms achieve around 10% error. 

Table 3. Performance of the segmentation methods 

Error (Number of 

misclassified points / 

Total num. Points x 100) 

K-Means 
Colored 

K-Means 

Mean 

Shift 

Colored 

Mean Shift 

Data2 15 % 13% 19% 13% 

Data3 9% 6% 18% 6% 

Data4 7% 5% 9% 4% 

Data5 20% 16% 22% 18% 

Average 12.75% 10% 17% 10.25% 

 

3.3.3 Region Growing 

Rabbani [109], proposed a segmentation algorithm based on the surface normals. The author 

preferred surface normals over curvature, because of the high rates of over-segmentation 

due to the unreliable estimation of the curvature from noisy point clouds. However, both of 

these surface characteristics are considered in this work for geometric information. The 

proposed segmentation method consists of two main stages; normal and residual estimation, 

and region growing.  

 

Point clouds can be used to find geometric information in the scene, since they explicitly 

represent the surfaces. However, surface properties, surface normals and curvatures, of the 

points in the point cloud are defined by their local neighbors rather than a single point. 

Therefore, local surface properties must be estimated from the local neighborhood of a query 

point. Eigen analysis of the covariance matrix of a local neighborhood can be used to 

estimate local surface properties [110] [111]. 

3.3.3.1 Local Surface Properties 

 Normal Estimation 

In their survey paper [112] Dey et al. compare different normal estimation methods for point 

clouds. Weighted plane fitting (WPF), adaptive plane fitting and big Delaunay balls (BDB) 
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methods are considered and tested for their performances. Their conclusions of the authors 

about these three methods are as follows: the observed performances are almost equal 

(though WPF gives the best results) to each other, when the noise level is low and the point 

cloud samples the surface more or less evenly. By following their conclusion, their 

experimental results and the resolution of MESA range camera (176x144) we decided to 

focus on WPF (weighted plane fitting) method to estimate the surface normals. 

 

The estimated normal n of the point p in the point cloud data can be approximated with the 

normal of the local neighborhood of p. The normal of local neighborhood of p can be found 

by estimating the best plane fitting to the local patch. 

 

Figure 3-20. Tangent Plane Estimation 

Let oi is the center point of the point cloud (p1,p2,p3,p4,p5) 

The distance of a point to the plane (error):  

 

𝑑𝑖 =  𝑝 𝑖 − 𝑜 𝑖 . 𝑛 𝑖  

𝑑𝑖 = 𝑛 𝑖
𝑇(𝑝 𝑖 − 𝑜 𝑖)

𝑙𝑒𝑡 𝑣 𝑖 = 𝑝 𝑖 − 𝑜 𝑖
𝑑𝑖 = 𝑛 𝑖

𝑇𝑣 𝑖

 
3.10 

Sum of Squared distances: 

 

𝐷2 =  𝑑𝑖
2

𝑛

𝑖=1

 

𝐷2 =  (𝑛 𝑖
𝑇𝑣 𝑖)

2

𝑛

𝑖=1

 

𝐷2 =  𝑛 𝑖
𝑇𝑣 𝑖𝑣 𝑖

𝑇𝑛 𝑖

𝑛

𝑖=1

 

3.11 

 𝐶 ≜ 𝑣 𝑖𝑣 𝑖
𝑇

𝑛

𝑖=1

> 0 3.12 
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𝐷2 = 𝑛 𝑖

𝑇  ( 𝑣 𝑖𝑣 𝑖
𝑇)  𝑛 𝑖 = 𝑛 𝑖

𝑇  𝐶 𝑛 𝑖    𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡  𝑛𝑖 = 1

𝑛

𝑖=1

 

min 𝐷2 = min 𝑛 𝑖
𝑇𝐶𝑛 𝑖  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑛 𝑖

𝑇𝑛 𝑖 = 1 

3.13 

Introducing the Lagrangian multiplier is equivalent to minimize Lagrangian 

 𝐿 𝑥 =  𝑛 𝑖
𝑇  𝐶 𝑛 𝑖 + 𝜆(𝑛 𝑖

𝑇𝑛 𝑖 − 1) 3.14 

Differentiation and equating to zero gives: 

 𝐶 𝑛 𝑖 = 𝜆 𝑛 𝑖  3.15 

Meaning that 𝑛 𝑖  is an eigenvector of C and the solution is: 

 ∴ 𝑛 𝑖 = 𝑐0 3.16 

where 𝑐0 is the eigenvector corresponding to the minimum eigenvalue  𝜆0  of the covariance 

matrix C.  

The weighted covariance matrix from the points pi of the local neighborhood where i=1...k is: 

 𝐶 =  𝑤𝑖(𝑝𝑖 − 𝑝 )𝑇(𝑝𝑖 − 𝑝 )

𝑘

𝑖=1

 3.17 

The weight wi  for point pi is defined as: 

 𝑤𝑖 =  
exp −

𝑑𝑖
2

𝜇2
       𝑖𝑓 𝑝𝑖  𝑖𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟

1                       𝑖𝑓 𝑝𝑖  𝑖𝑠 𝑖𝑛𝑙𝑖𝑒𝑟

  3.18 

where  is the mean distance from the query point p to all its neighbors pi, and di is the 

distance from point p to a neighbor pi. This weighting method reduces the effect of the 

outliers in the surface normal calculation process. 

 Curvature Estimation  

Surface curvature (surface variance) estimated at point p is computed using the following 

equation, called surface variation, 

 𝑐 =
𝜆0

𝜆0 + 𝜆1 + 𝜆2

,    𝜆0 ≤ 𝜆1 ≤ 𝜆2 , 3.19 

by comparing the three eigenvalues 𝜆𝑖  that are obtained from Principle Component Analysis 

(PCA) of the local neighborhood of the query point p. Since C is symmetric and positive 

semi-definite covariance matrix, its corresponding eigenvalues are real and nonnegative 

[113]. Eigenvalues 𝜆𝑖  measure the variation of the point set 𝑝𝑖  along the associated 

eigenvector.  Thus, 𝜆0 estimates how much the points deviate from the tangent plane (Figure 

3-21). As a result surface variation is closely related with curvature [111]. If 𝜆0=0 then surface 

variation results in 0 which can be interpreted as a zero curvature (all points lie on a planar 

surface). 
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Figure 3-21. Curvature Estimation 

Segmentation via region growing algorithm explained in [114] returns a set of labeled pixels, 

meeting the adjacency and similarity criteria. The iterative algorithm is as follows: 

1) Begin with the center pixel at (i; j).  

2) Consider the pixels at 4 or 8 neigbourhood of the center pixel. Is that pixel 'similar' 

to the center pixel? If yes, push it onto the stack. 

3) Mark the center pixel so it will not be considered again 

4) Pop the stack to choose a new center pixel, thus redefining i and j. 

5) If the stack is empty, stop. The set of marked pixels constitutes the region. 

6) If the stack is not empty, go to the step two. 

Previously defined local surface properties in the scene are considered as 'similarity 

measures', which are mentioned in step two. Therefore, region growing algorithm uses the 

point curvatures, normals and their residuals, in accordance with user specified parameters 

to group points belonging to the similar surfaces. The points in a segment should make a 

locally smooth surface, in which the normal vectors do not vary "significantly" from each 

other. This constraint would be enforced by having a threshold th on the angles between the 

current seed point and the points added to the region. Additionally, a threshold on residual 

values rth makes sure that the smooth areas are broken on the edges. A smoothness threshold 

in terms of the angle between the normals of the current seed and its neighbors is selected. If 

the smoothness angle threshold is expressed in radians, it can be enforced through dot 

product, as follows 

 𝑛𝑝 ∙ 𝑛𝑠 ≥ cos⁡(𝜃𝑡𝑕) 

As the direction of normal vector has a 180° ambiguity the absolute value of the dot product 

is considered. 
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Segmentation results of the region growing method are shown in Figure 3-22, Figure 3-23, 

Figure 3-24, and Figure 3-25. Since planar regions are clustered separately even they belongs 

to the same object, object segmentation is not achieved, whereas partial segmentation is 

successful with region growing via surface normals and spatial closeness. 

 

Figure 3-22. Region growing results based on distance and/or curvature similarity measure 

 

Figure 3-23. Region growing results with varying curvature estimation. (Top row) Surface variation 

estimated using different neighboring size mapped to gray level, (Bottom row) Corresponding region 

growing results 
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Figure 3-24. Region growing results based on distance and/or curvature similarity measure 

 

Figure 3-25. (Top Row) Corresponding intensity image of the input range image, curvature values 

mapped to gray level, (Second and Third Rows)  Region growing results with different parameter 

selection 
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3.3.4 Mixture of Gaussians (Expectation Maximization) 

We also consider mixture of Gaussians (MOG) based density estimation method ([115, 116]). 

However, similar problems arise with the K-means segmentation algorithm due to the 

necessity of giving number of Gaussians as the input to the algorithm. By the changing 

number of Gaussians, possible object regions are oversegmented or undersegmented 

resulting in false objects segmentation. Figure 3-26 shows MOG based segmentation with 

k=10. 

 

Figure 3-26. MOG based segmentation, number of clusters = 10 

3.4 Segmentation based on Kernel Density Estimation 

The low spatial resolution of the TOF camera decreases the accuracy of the local surface 

property estimation process and makes it more sensitive against noise. Moreover, false 

measurements due to the multiple reflections might result in significant variance in the 

estimated normal values within a small surface patch. This variance leads to oversegmented 

or undersegmented regions. Furthermore, color-based segmentation algorithms are 

ineffective, when the objects in the scene have similar color values with the background or 

consist of different colored patches. 3D information or edge based segmentation methods 

also fail due to the continuous and smooth transitions, originated from the multiple 

reflections, between object surfaces and background surfaces on which the objects are 

placed. However, utilization of the information about the background (surfaces) and the fact 

that the objects are placed on the background surfaces can be exploited to overcome most of 
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the aforementioned shortcomings. Therefore, we propose a segmentation method which 

exploits the available spatial and geometric information in the scene instead of using only 

local surface properties or only color information for segmenting surfaces.  

 

Flowchart of the proposed method is shown in Figure 3-27. First, sparse (noisy) points 

(outliers) are eliminated from the point cloud. Then, the remaining points are projected onto 

a major plane which maximizes the separation of regular shaped items from each other. 

Major plane is extracted by using the plane fitting algorithm explained in the previous 

section. Afterwards, a saliency map is generated by kernel density estimation method for 

finding the most densely populated regions on the projection plane. Afterwards, local 

maximum points in the saliency map represent the most probable object locations. Finally, 

the points with a probability value larger than some certain threshold are assigned to the 

closest local maximums and labeled as objects. 

 

Figure 3-27.  The flowchart of the proposed segmentation algorithm 

3.4.1 Outlier Removal 

Noisy measurements, especially at the object boundaries and on the relatively less visible 

surfaces, result in outliers in the point cloud. However, these outliers can be eliminated, 

since they generally situated far from their neighboring points. A small sphere with radius r 

is fitted to each point and the number of neighboring points inside the sphere is counted. If 

the number of points is greater than some certain threshold then the point is labeled as inlier. 

Otherwise, it is labeled as outlier and eliminated from the point cloud. 
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3.4.2 Kernel Density Estimation 

Due to gravity, many objects stand orthogonal to the ground plane; hence, projecting 3D 

points onto this plane can be intuitively accepted as the "optimal" projection towards the 

classification of objects in the scene. In other words, such a projection could be equivalent to 

Fishers Linear Discriminant methodology [117] in Pattern Recognition area. Almost all 

regular shaped items occupying a space in an environment generate densely populated 

regions, when their surface points are projected onto the surface that they are standing on 

which we consider as major plane (Figure 3-28). Furthermore, projection of the background 

points which belongs to the surfaces, such as tables, ground etc. is sparse. Therefore, 

evaluating the 3D point cloud of the scene after projecting the points onto a major plane 

would be a convenient way to handle separation/segmentation problem. This novel plane 

minimizes the occlusions between items (as long as the objects are placed on the major 

plane, not on top of each other).  

 

We assume that the plane with maximum number of inliers and minimum residual is the 

major plane in the scene. This plane is obtained by using the plane fitting method explained 

in Section 3.3.3.1. 3D points with similar local surface properties are grouped together and a 

plane model is estimated for each group. Then, the group with maximum number of 

members and minimum residual is considered as the major plane. When the major plane is 

not available due to some constraints (e.g when the camera's principal axis is parallel to the 

surface or the major plane cannot be found), x-z plane of the TOF camera can be considered 

as a major plane. 

 

 After projecting 3D points onto the major plane, densely populated regions represent the 

salient regions, where objects should exist. The idea of defining densely populated regions 

as salient/important regions resembles to the main idea of kernel density estimation in which 

the estimated density function has high values, where the samples are highly populated. In 

kernel density estimation method, instead of grouping observations together in bins, like in 

histogram density estimators, a small kernel is placed on each observation and summed. 

Therefore, high local peaks occur in high density regions.  
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Figure 3-28. Illustration of the proposed method 

Parzen window based saliency map generation [118] depends on estimating the probability 

density of observing objects in a non-parametrical manner, considering the density of 3D 

points projected on the major plane. Each 3D point contributes to the saliency map that has 

local (and sometimes global) maxima inside the highly dense regions.  

 

The value of the estimated function at the point x, 𝜌𝑛 𝑥  is given as: 

 𝜌𝑛 𝑥 =
1

𝑛
 

1

𝑕𝑛
𝜑(
𝑥 − 𝑥𝑖
𝑕𝑛

)

𝑛

𝑖=1

 3.20 

 

Figure 3-29. Illustration of the Parzen window approach 

where 𝜑(𝑢) is a window function and hn is the smoothing parameter called the bandwidth. 

Gaussian kernel would be a proper choice since the contribution of each 3D point to the 

density estimation is equal to each other and decreases as the distance to the point increases. 

Then, the overall contribution of the 3D points to the saliency map and the estimate of the 

probability of observing an object at a particular location x on the saliency map is given as: 

 𝜌𝑛 𝑥 =
1

𝑛
 

1

 2𝜋𝜍𝑖
𝑒
−

(𝑥−𝑥𝑖)
2

2𝜍𝑖
2

𝑛

𝑖=1

 3.21 



61 

 

where n is the number of points, xi  is the projection of point i and 𝜍𝑖  is the kernel bandwidth. 

Hence, in the estimated saliency map regions where the projected points xi are densely 

populated have high values (Figure 3-29). After generating the saliency map, modes (local 

maximums) in the map represent the possible object locations (salient regions where the 

objects can be situated).  

 

As a next step, the points with a probability value greater than some certain threshold are 

assigned to the closest local maximums and labeled. Later, labeled points are segmented into 

objects. Moreover, the 3D points belonging to the background surfaces are eliminated, since 

they have low probability values.  

 

The suitable kernel bandwidth 𝜍𝑖  must be carefully selected, since quite small bandwidth 

might result in very low resolution, while large bandwidth might lead to an over-smoothed 

density estimate. Thus, the size of the image and the average height of the arm/camera with 

respect to the ground should also be considered, while choosing the kernel bandwidth. In 

our experimental setup, we used kernel bandwidth 𝜍𝑖= 0.005 which corresponds to 5 mm on 

the major plane. 

3.5 Experimental Results and Discussions 

Various scenes are tested by using the examined segmentation algorithms. K-means and 

mean-shift segmentation algorithms, which use only 3D point coordinates fail, since the 

points do not generate separable clusters in the 3D space due to the continuous nature of the 

3D information in the scene. Integration of the color information with the spatial information 

results in minor improvements in the results which can be explained by the variation of 

color values on the object surfaces due to the shadows and direction of the light source. 

Moreover, color information would be not functional, if the objects have similar color values 

with the background or consist of different colored patches. Mean-shift algorithm has an 

advantage over K-means which is the number of the clusters are determined automatically. 

On the other hand, mean-shift algorithm is also parameter dependent and the selection of 

the hypersphere radius is critical.  
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Region growing algorithm tends to oversegment the objects, since the low spatial resolution 

and the noise of the TOF camera decreases the accuracy of the local surface property 

estimation process. Furthermore, the objects with multiple surfaces are oversegmented since 

the local surface properties significantly change at the edges, which stress the dissimilarity.  

 

Results for the proposed method are given in Figure 3-30, Figure 3-31, and Figure 3-32. 

Figure 3-30 shows the generated saliency map via kernel density estimation from different 

angles. In the last row, image with red spots represent the local maximum points where the 

objects can be placed, and the last image shows the segmentation results. Proposed 

algorithm achieved better segmentation results on tested data in compared to the other 

methods. Considering the overall performance, the advantages of this algorithm are twofold. 

Segmentation results are more accurate and less sensitive to the noise, and the algorithm is 

less parameter dependent.  

 

Proposed algorithm exploits the fact that many objects stand orthogonal to the ground plane 

due to gravity and the projection of 3D points onto this plane could be equivalent to Fisher 

Linear Discriminant methodology. The projection of the 3D points is followed by a kernel 

density estimation process in which a saliency map is generated. Salient regions which 

represents the most probable object locations have high values in the generated map. Then 

the points with a probability value larger than some certain threshold are assigned to the 

closest local maximums segmented into objects. The experimental results show that the 

locations of the objects are determined quite accurately. Compared to the tested methods 

proposed algorithm is less sensitive to the noise, less parameter dependent and leads more 

accurate segmentation results. 
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Figure 3-30. First Row: TOF camera intensity image, color image, calibrated point cloud. Second Row: 

PCA based curvature values (darker regions indicate high curvature), HK curvature (white regions 

indicate planar regions), Third Row: region growing with surface normal, region growing with surface 

normal and PCA based curvature. Fourth Row: Parzen window based segmentation results two 

different views of generated saliency map via projection and KDE. Fifth Row: Segmented object 

locations and segmentation results based on segmented object locations 
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Figure 3-31. Segmentation results of the exemplar ranges images; top images are the corresponding 

intensity images, last row shows the segmentation result of the proposed algorithm. 
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Figure 3-32. Segmentation results of the proposed method, intensity images are given in the right. 
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CHAPTER 4  
 

 

 

 

CORRESPONDENCE MATCHING IN RANGE DATA 

Correspondence matching can be defined as detecting similar structures in different views of 

a surface. Correspondence matching is the first stage in any registration attempt and can also 

be utilized in verification type of problems. This chapter presents a local range image 

matching method that combines 3D surface properties with the 2D scale invariant feature 

transform. First, proposed local surface properties are explained. Next, feature extraction 

methodology is stated, and finally matching results and comparison to the previous studies 

are presented.  

4.1 Introduction 

With the increase in the performance of the active range data generators, such as time-of-

flight cameras that are assisted with multi-view dense depth estimation algorithms, as well 

as the decrease in the cost of off-the-shelf hardware for 3D sensing, computing, and 

displaying, 3D commercial systems are becoming commercially available. This kind of data 

could be applied to a number of different applications, such as 3D television (3DTV), virtual 

reality, etc.  In case of widespread usage of these systems, the capability of searching any 

content in such range data becomes more critical. Hence, description, indexing and search 

techniques should be utilized in archive systems for 3D video, which is expected to be 

consisting of video and range data (or dense depth), considering upcoming ISO MPEG 

standards.  

 

The problem of 3D shape matching and retrieval is studied extensively in the past [8, 119]. 

There are two main approaches for shape identification: global description and local description 
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[8]. First type of approach [68, 120-122] is utilized in retrieving geometrically similar shapes 

and requires complete models. In the second type, descriptors are obtained and evaluated on 

some local keypoints and utilized for complete or partial matching. However, there are also 

some ‚partial‛ matching methods that also require global models [75, 78].  For local 

descriptions, spin images [58], splashes and 3D curves [71], point signatures [72], local feature 

histograms [29], and regional point descriptors [73] can be listed as leading efforts for local 

surface description.  

 

Unfortunately, the majority of the aforementioned methods consider objects to be isolated 

and pre-segmented. However, in many applications (3DTV archives, robotics, laser 

scanning), the objects appear as a part of the scene and only some portions are visible. These 

scenes might also contain clutter, occlusion or noise. Thus, the problem of matching objects 

in range images is more challenging compared to the conventional 3D shape matching 

problem. 

4.2 Global vs. Local Descriptions 

Firstly, it should be noted that global description of range object is only possible after 

segmentation from the scene, but segmentation is a very challenging task; besides, object 

structure is still partially available even after segmentation. Thus, global methods are likely 

to fail for the applications based on 3D video. 

  

Local description could be more promising compared global description for such problems 

in many aspects: segmentation is avoided, complete models are not necessary, occlusion and 

self occlusion can be handled more easily. Moreover, in 2D object detection and matching, 

local feature extraction methods [123] are shown to perform notably  better.   

 

There is also an important difference between these two approaches; while the global 

methods ignore shape details and gather the main properties of objects, the local descriptors 

put more emphasis on the details. As a result, the global methods perform better in 

similarity search, while local methods are more suited for matching, verification and 

identification.  The drawbacks of local descriptors in similarity retrieval of range images are 

presented in Chapter 5. 
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4.3 Local Descriptors for Range Data 

In range image recognition, surface properties, such as normal or curvatures, are widely used 

[29, 71, 76]. The early work splashes and 3D curves [71] makes use of distribution of normal 

vectors in the neighborhood of a keypoint. Although splash technique is a promising 

approach, the representation is complex. Similarly, point signatures [72] obtain a contour  by 

intersecting the surface with a sphere centered at a keypoint. Then, a plane is fitted to these 

contour points and translated to this keypoint. After this fitting, a 1D signature, which is the 

signed distances of contour points to the fitted plane, is utilized as the descriptor. However, 

both of these methods do not address the scale and rotation invariance problem. 

   

Another well-known technique, namely spin images [58], are widely used as local shape 

description method and applicable for scenes containing occlusions and clutter. It is a 2D 

histograming around a keypoint in which spatial configuration is represented by a 

cylindrical coordinate system. However, it has the following disadvantages: it is not scale 

invariant, it requires high storage and results multiple ambiguous correspondences, since 

spin images of near points are similar; i.e., spin images are not unique [59]. Yet another 

similar histograming technique is 3D shape contexts [73]. In that approach, spatial 

distributions of the surface points are accumulated utilizing their spherical coordinates. The 

same arguments for the spin images also hold for this description as well.  

4.3.1 Shape Index as a Local Descriptor 

There are two key features of the 3D surfaces: normal vector and curvature. A 3D point can be 

described by its minimum and maximum curvatures (principal curvatures) or some functions 

of these principal curvatures (1, 2) at the point of interest. One of these measures is the 

Shape Index (SI) which is introduced by Koenderink [67]. Firstly, it is used to obtain global 

description, named as shape spectrum [95]. Later, as mentioned previously, it is used both for 

local description and keypoint selection [76, 88].  

 

 The curvature values on 3D surfaces can be obtained robustly after fitting a quadric surface 

to a local patch as explained in Chapter 3. Then the shape index is calculated using principal 

curvatures as follows:    

 𝑆𝐼 =  
1

2
−  

1

𝜋
 𝑎𝑟𝑐𝑡𝑎𝑛  

𝜅1 + 𝜅2

𝜅1 − 𝜅2

  4.1 
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There are two recent studies that use SI within the context of local description. In the first 

study [76], the authors identify keypoints, where the shape index values are extremum. 

Around these keypoints, 2D histograming is formed, in which one of the dimensions 

belongs to the SI values of the neighboring pixels, whereas the other one denotes the angles 

between the normal of the keypoint and the normal of the neighboring pixels (SI-Normal-

Hist). In their work, scale invariance problem is not addressed. In a different recent effort, 

namely 2.5D Scale Invariant Feature Transform (2.5D SIFT) [88], keypoint detection is achieved 

on 2D range images similar to the Lowe’s work [123]. However, an extra preprocessing step 

is required. After this step, using the histogram of the shape index values and the range 

gradient orientations around these keypoints, a description is obtained. Both of the methods 

use isolated objects in which problematic boundary regions can be eliminated by simple 

thresholding; however, it is not applicable in range scenes due to occlusion. Besides, the 

matching performance in complicated scene with the presence of other objects, clutter and 

occlusion are not evaluated in these studies.  

4.3.2 Proposed Local Surface Descriptor 

We propose a local range image matching method which combines 3D surface properties 

with the 2D scale invariant feature transform. Figure 4-1 shows the basic steps in our 

proposal. 

 

The main difference of the proposed approach against related methods is conversion of 

range data into SI representation before exploitation of SIFT during local description. Range 

data does not have sufficient blob-like properties for SIFT keypoints. 
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Figure 4-1. Basic steps in the proposed correspondence matching method 

The most appealing property of SI is being scale, translation, and rotation invariant. 

However, in range imaging, the scale invariant property holds if and only if the ratio of the 

scale to the resolution is constant. Moreover, SI makes strong emphasis on points, where 

surfaces deviate from being smooth, even for small changes. Thus, representing the range 

image with its SI values which are mapped to 0-255 strengthen the features. Shape details 

become clearly visible. Therefore, utilization of SIFT-type features becomes more feasible.  

 

Figure 4-2 shows exemplar range images and their corresponding SI images. In Figure 4-5 

and Figure 4-6, SIFT matching results on range images without SI mapping are shown. There 

is a 15 ° rotation among one of the axis between the two ‚Face‛ models in those figures. SIFT 

parameters in [124] are utilized during matching shown in Figure 4-5 . In Figure 4-6, local 

extremum threshold of the DOG scale space is reduced, number of octaves and number of 

levels are increased, and local extrema localization threshold is decreased. This is utilized for 

detecting more keypoints, that are localized on the surface, for increasing the matching 

performance. Keypoints are mainly localized at the boundaries when SIFT is applied directly 

on the range images. Moreover, a few keypoints, which are on the surface, match with false 

keypoints on the target images. This observation is due to sharpness of the boundaries. If the 

edge threshold is further decreased, either no keypoints are detected or a few keypoints are 

detected that match incorrectly. To reduce the effect of the sharp edges present on the 
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boundaries, the intensity of the background is modified such that background has a similar 

intensity with the intensity of the object. Previous SIFT tests are performed based on this 

modification. The results are shown in Figure 4-4 and in Figure 4-7.  This modification 

further decreases the number of detected keypoints. Only a few keypoints are detected on 

the object surface.  

 

Figure 4-5 and Figure 4-8 shows SIFT matching results based on shape index mapping. The 

number of the keypoints and the number of true positives are much higher than the 

previous attempts.  Moreover, keypoints are localized across the surface.    

4.3.3 Keypoint Selection and Feature Extraction 

SIFT is an invariant 2D local descriptor which is robust to some specific transformations 

[123]. SIFT has three main steps: scale space construction, keypoint detection, and feature 

extraction. Scale space is constructed by taking the difference of the Gaussian (DoG) blurred 

images at different scales [123]. Next, keypoints are detected as the local extremum of the 

DoG images across scales. A gradient orientation histogram is computed in the 

neighborhood of the keypoint as the feature vector [123]. In this study, SIFT keypoints and 

the features are computed by using the publicly available software1.  

 

 
Figure 4-2. (Top Row) Exemplar range images, (Bottom Row) Shape index mapping 

                                                           
1 http://www.vlfeat.org/~vedaldi/ 
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Figure 4-3. SIFT matching result with Lowe’s parameters 

 
Figure 4-4. SIFT matching result with Lowe’s parameters with reduced boundary effect 

 
Figure 4-5.  SIFT matching result with Lowe’s parameters with proposed shape index mapping 

 

Figure 4-6. SIFT matching result with reduced local extremum threshold of the DOG scale space, 

increased number of octaves and increased number of levels, and decreased local extrema localization 

threshold compared to the original Lowe’s parameters 
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Figure 4-7. SIFT matching result with reduced boundary effect . Local extremum threshold of the DOG 

scale space is reduced, number of octaves and number of levels are increased, and local extrema 

localization threshold is decreased compared to the original Lowe’s parameters 

 

Figure 4-8. SIFT matching result with proposed shape index mapping . Local extremum threshold of 

the DOG scale space is reduced, number of octaves and number of levels are increased, and local 

extrema localization threshold is decreased compared to the original Lowe’s parameters 

 

4.4 Experimental Results 

Experiments are performed on range images from the Ohio State University range database2 

and range images formed by combining models collected from AIM@SHAPE repository3 

and ISDB database. 

 

 

 

                                                           
2 http://sampl.ece.ohiostate.edu/data/3DDB/RID/minolta/ 

3 http://shapes.aim-at-shape.net/ 
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Lobster      Pooh 

 
Cow      Duck 

 
Lobster2      Bird 

Figure 4-9. Matched pairs obtained by the proposed method are shown on the SI images.  

Table 4 shows the comparison of the proposed method against 2.5D SIFT [88] and SI-

Normal-Hist. [76]. The experiments are performed on the same data (Figure 4-9). Based on 

the experimental results, the number of matches and the number of correct matches are 

obtained more than three times of the number of matches that are obtained by [88]. 

Although limited comparison against LSP is achieved due to the data availability, the 

proposed method still shows a better performance. The reason for this superior performance 

could be due the fact that SIFT keypoint selection and feature extraction on SI images is 

more effective than selecting the keypoints as SI extremum and describing features as SI 

histogram around the keypoints. The former method is also more effective than applying 

SIFT directly to the range image. This result can also be explained as follows: SI comprises 

the understanding of the neighbor geometry whereas range image pixel only indicates its 

depth. Besides informative regions are visually strengthen by the nonlinearity behavior of 

the SI function. Additionally, SIFT features are considerably discriminative [123].  
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Table 4. Local descriptor matching results for proposed method, SI-Normal-Hist., and 2.5D SIFT 

Data 

(Rotation 

Angle)/ 

Method 

Total # 

Matches 

Correct 

Matches 

False 

Matches 
Lobster 

(20 ) 

   

Proposed 33 19 14 

SI-Normal-

Hist[12] 

30 13 17 

Pooh (20 )    

Proposed 37 27 10 

2.5DSIFT 

[13] 

9 8 1 

Cow (15 )    

Proposed 37 37 0 

2.5DSIFT 

[13] 

10 10 0 

Duck (20 )    

Proposed 25 19 6 

2.5DSIFT 

[13] 

6 4 2 

Lobster2 

(20 ) 

   

Proposed 32 20 12 

2.5DSIFT 

[13] 

8 8 0 

Bird(20 )    

Proposed 37 30 7 

2.5DSIFT 

[13] 

9 8 1 
 

In order to demonstrate the versatility of the proposed method in the cluttered scenes, some 

tests are also conducted (Figure 4-10). There are two other faces synthetically included into 

the first scene for obtaining more complicated scenarios and the rotated query object takes 

part in the target image; the mismatch is only 3 out of 20 matches, whereas the correct match 

ratio is higher in the second example. Although scaled and occluded query objects take part 

in the last two examples, matching results are still considerably high.  

4.5  Conclusions 

The proposed local surface description method does not require any initial segmentation 

step; it can also handle affine transformations up to a scale. The experimental results indicate 

that the proposed approach improve the performance of two recent methods from the 

literature. Moreover, clutter and occlusion do not affect the efficiency of the proposed 

method, significantly.  
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Figure 4-10  First two rows: (left to right) Query range images, target range images, combined shape 

index images with matched pairs.  Rotated query objects are included in the target images. Last two 

rows: (left to right) Target range images, combined shape index images with matched pairs. Scaled and 

occluded query objects are included in the target images. 
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CHAPTER 5  

 

 

LOSSLESS DESCRIPTION OF RANGE MODELS 

 

The improvements in 3D scanning technologies have led the necessity for managing range 

image databases. Hence, the requirement of describing and indexing this type of data arises. 

Since a range model has different properties compared to complete 3D models, we propose a 

novel method that relies on Spherical Harmonics Transform (SHT) for retrieving similar 

models where the query and the database both consist of only range models. Although SHT, 

is not a novel concept among shape retrieval research for 3D complete models, we utilize 

SHT for 2.5D range images by representing the models in a reciprocal world observed from 

the camera. The difference, as well as the advantage of our algorithm, is being information 

lossless. In other words, the available shape information is completely exploited while 

obtaining the descriptor. On the other hand, some other mesh retrieval applications utilizing 

SHT [121]  ‚approximates‛ the shape that yields some information loss. The proposed 

descriptor is also invariant to rotations about z-axis. The proposed technique is tested on a 

large database having high diversity and its performance of the proposed method is 

superior to the performance of popular D2 distribution.  

5.1 Introduction 

3D object description and retrieval have become popular research topics during the last 

decade. The field is attracting more and more people every day due to increasing availability 

of 3D models (with the use of highly developed scanning technologies and computer 

graphics software), increased processing power, increased storage capabilities, and the 

progress in visualization technologies, as well as the consumer penetration of 3DTV. These 
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improvements facilitate obtaining and managing large 3D model databases which arises the 

need of describing and indexing these models and similarity retrieval systems.  

 

3D object description is treated in computer vision research and also in sole shape analysis 

discipline  with some differences.  In shape analysis research, similarity retrieval and part-

based matching studies among watertight mesh models are popular with its contests (i.e. 

SHREC). Computer vision side is mainly interested in verification, self-matching, 

registration, and point correspondences; moreover, their inputs are usually obtained from 

scanners. Considering both modalities, the methods used in 3D description can be classified 

into feature based, structural-topological based, and view based approaches. Feature based 

methods can further be classified into local description and global description. Global methods 

usually preferred in similarity retrieval whereas local ones are popular in partial matching 

and point correspondences. Among the global description studies, cord and angle histograms 

[52], 3D Zernike moments [125], shape histograms [30], spherical harmonics [120, 121, 126, 127], 

shape distributions [23], and diffusion distances [22] can be listed. On the other hand, shape 

spectrum [95], splashes and 3D curves [71], point signatures [72], spin images [58], local feature 

histograms [29], multi-scale features [81, 85], auto diffusion function/ heat kernel signatures (HKS) 

[128, 129] are some notable local descriptors. Most of these local shape descriptors can be 

extended to contain more global information by adjusting the size of the local region that is 

being described. Reeb graphs [65, 130], skeletons [131], curve-skeletons [132] are structural-

topological based approaches which are efficient in articulated shape description. In view 

based methods, 3D objects are represented by several 2D images (depth buffers or 

silhouettes) obtained from various viewing angles. Lightfield descriptor [61], compact multi-view 

descriptor (CMVD) [133], bag-of-features SIFT (BF-SIFT) [134], and panoramic views [62] are 

view based studies. The literature certainly contains many other studies and we refer the 

reader to Tangelder and Veltkamp [8] and Bustos et al. [135] for  detailed surveys and 

Bronstein et al [136] for a more recent synopsis. 

 

The aforementioned approaches usually assume that complete geometric information of the 

object is available. This information contains explicit neighboring relations between points, 

surface patches or polygons, as in the case of mesh representations. Considering the growing 

and improving scanning technologies, databases consisting of range images (scanned data), 
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which are different from 3D mesh models in many ways, will arise. Our proposed technique 

address this problem by a global descriptor that relies on (SHT). 

5.2 Related Work 

To the best of our knowledge, there is no reported range image retrieval system, in which 

the query and the database consisting of only range images. The motivation for obtaining a 

range image retrieval system could be due to the some new paradigms, such as 3DTV 

archive systems or LIDAR databases. There are some similarities between range image 

similarity retrieval and partial matching or query by range image research; however, the 

differences are quite crucial. In partial matching research [74, 75], query is a part of a 3D 

model where the part is usually identified with topologically valid mesh, as well as the 

database consisting of 3D complete models. In this case, local descriptors are evaluated and 

a matching score is used to obtain a similarity degree between the query and the database 

models. Latter type of studies query range images [133, 134, 137] among a database 

consisting of complete 3D models. In this case, database models are viewed from several 

viewing angles to get a similar viewing with the query. Then, they search the best match 

among the views for indexing. The only difference between these types of study from view 

based approaches is that single view of a query is used instead of multiple views. The 

descriptors are again obtained from 2D images.  

 

If the database images and the query are both range images, then partial matching and view 

based approaches become deficient. Although range images contain 3D information, they 

are different from the actual 3D model representation. These differences are due to i) self-

occlusion (Figure 5-1, Figure 5-2), ii) transformations and iii) view dependent partial geometry. 

Self-occluded regions which are formed around the salient regions violate neighboring 

relations. This effect can be observed in when a hand model is rendered with a scanner type 

of camera (see Figure 5-1); the informative details, such as fingers, due to self-occlusion are 

lost and the convex-hull of the shape is left. Local descriptors that should be selected to 

capture highly discriminative regions contain distant region features, if they are formed 

around these salient regions. This descriptor eventually resembles to a representation of 

another local geometric structure (consider the side view of a tip of a nose).  If the salient 

regions are avoided, then the local descriptors lose their discriminative power and represent 
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only smooth regions which will be ineffective for describing shapes. Occlusion awareness 

[138] can overcome these shortcomings up to a level, since occlusion detection is not 

available in many cases and cannot be obtained easily from a single range image. 

Translation, rotation and scale changes introduce self occlusion and information loss. Fine 

details disappear as the objects become distant from the camera. Independent of the 

previous discussion local descriptors in 3D shape analysis are considered to be less 

discriminative and far from being robust. Since 3D shapes have insufficient features and 

keypoint repeatability is not satisfied [136].  

 

Figure 5-1 Effects of transformations; rotation (top), translation (bottom-left); in range image acquisition. 

(Bottom-right) Information on local structures is highly influenced by position. 

 

Figure 5-2 Self-occlusion example, (left) orientation of objects w.r.t. camera coordinate system, (right) 

range images of two objects in different classes have rather similar views. 
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We propose a method for similarity retrieval of range images that relies on a global 

description method Spherical Harmonics Transform (SHT). We use spherical harmonics with 

the view-dependent structure of the range images.  

5.3 Spherical Harmonics Transform 

The square integrable complex functions defined on two-sphere S2 form a Hilbert-space 

where the inner product of two functions 𝑓(𝜃, 𝜙) and 𝑔(𝜃, 𝜙) in this space is defined as 

follows:    

  𝑓, 𝑔 =   𝑓(𝜃, 𝜙)𝑔(𝜃, 𝜙)          𝑠𝑖𝑛𝜃𝑑𝜙𝑑𝜃

2𝜋

0

𝜋

0

 5.1 

The Spherical Harmonics 𝑌𝑙
𝑚  of degree l and order m (|m|≤ l) form an orthonormal basis in 

this space. In Figure 5-3, visual representation of spherical harmonics 𝑅𝑒𝑎𝑙{𝑌𝑙
𝑚 }2 is shown up 

to degree 3. They are related with the associated Legendre polynomials 𝑃𝑙
𝑚as follows: 

   𝑌𝑙
𝑚  𝜃, 𝜙 =  

 2𝑙 + 1  𝑙 − 𝑚 !

4𝜋  𝑙 + 𝑚 !
             

𝐾𝑙,𝑚

𝑃𝑙
𝑚  𝑐𝑜𝑠𝜃 𝑒𝑖𝑚𝜙  

5.2 

 

  𝑃𝑙
𝑚  𝑥 =

−1𝑚

2𝑙  𝑙!
 1 − 𝑥2 

𝑚
2
𝑑 𝑙+𝑚 

𝑑𝑥 𝑙+𝑚 
 𝑥2 − 1 𝑙    5.3 

Consequently any function 𝑓 𝜃, 𝜙  defined in this space can be written as a combination of 

these basis functions as follows: 

  𝑓 𝜃, 𝜙 =   𝑓  𝑙
𝑚

 𝑚 ≤𝑙

∞

𝑙=0

𝑌𝑙
𝑚  𝜃, 𝜙  5.4 

where expansion coefficients 𝑓  𝑙
𝑚  are projections of the function 𝑓(𝜃, 𝜙) on the basis 

functions. They can be obtained utilizing the inner product (Equation 5.1) defined in this 

space as follows: 

   𝑓  𝑙
𝑚 =  𝑓, 𝑌𝑙

𝑚   =    𝑓 𝜃, 𝜙 𝐾𝑙𝑚𝑃𝑙
𝑚  𝑐𝑜𝑠𝜃 𝑒−𝑖𝑚𝜙 𝑠𝑖𝑛𝜃𝑑𝜙𝑑𝜃

2𝜋

0

𝜋

0

 5.5 

If the function 𝑓(𝜃, 𝜙) is bandlimited with B then it can be written as a finite weighted 

summation of the basis functions (Discrete Spherical Harmonics Transform, DSHT). For a 
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function 𝑓(𝜃, 𝜙) sampled in an equiangular grid (2B x 2B) with a sum of 4B2 points, 

expansion coefficients 𝑓  𝑙
𝑚  are obtained  follows [139]: 

 𝑓  𝑙
𝑚 =

 2𝜋

2𝐵
  𝑤𝑗𝑓 𝜃𝑗 , 𝜙𝑘 

2𝐵−1

𝑘=0

2𝐵−1

𝑗=0

𝑃𝑙
𝑚  𝑐𝑜𝑠𝜃 𝑒−𝑖𝑚𝜙  5.6 

The coefficients 𝑓  𝑙
𝑚  is equal to zero for l ≥B for functions bandlimited with B. Consequently, 

the number of non-zero coefficients is B2. The original function can be recovered from these 

coefficients, when the inverse Spherical Harmonics Transform is applied. If the function is 

not bandlimited, then the recovered function using the expansion coefficients obtained from 

DSHT is an approximation of the original function. As B increases, the error between the 

approximate function and the original one decreases. 

 
Figure 5-3. Visual representation of spherical harmonics up to degree 3. 𝑅𝑒𝑎𝑙{𝑌𝑙

𝑚 }2 is plotted, positive 

and negative portions are colored with red and blue respectively. 

5.4 Spherical Harmonics in Shape Analysis 

Vranic et al. proposed to use Spherical Harmonics Transform in 3D model retrieval [126]. 

They describe the shape as a spherical function, 𝑓(𝜃, 𝜙) where the origin is selected as center 

of the mass of the model. The value of the function 𝑓(𝜃, 𝜙) is the length of the ray that is 

emanating from the origin and ending at the outermost intersection of the 3D model. They 

perform DSHT on this functional representation. Magnitude of the expansion coefficients are 

utilized as a feature vector. These descriptors are compared by L1 norm. Their method has 

two disadvantages: firstly, pose normalization, for this Vranic propose a modified Principal 
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Component Analysis (PCA) method, should be performed; secondly, this functional 

representation ignores interior structure of shapes. Later, Funkhouser et al. propose to 

decompose a 3D model into a collection of functions defined on concentric spheres to use 

spherical harmonics [121]. This representation preserves interior structure of shapes up to a 

level. Initially, they obtain the binary voxel grid of a model. Then, by restricting to the 

different radii, they obtain a collection of binary spherical functions. Their approach does not 

require pose normalization, since their descriptor is rotation invariant. This is achieved by a 

property of Spherical Harmonics Transformation. The amount of the energies contained at 

different frequencies does not change when the function is rotated. That is: 

    𝑓  𝑙
𝑚  

2
𝑚=𝑙

𝑚=−𝑙

 =     𝑓  𝑙,𝑅𝑂𝑇𝐴𝑇𝐸𝐷
𝑚  

2
𝑚=𝑙

𝑚=−𝑙

 5.7 

Their feature vector for each spherical function is formed by collecting these scalars for each 

frequency (l) and the overall shape descriptor is obtained by concatenating these feature 

vectors. L2 norm is used to compare two descriptors. Vranic [127] argue that many fine 

details are lost in the binary voxel grid representation and propose a ray-casting method that 

finds all points of intersection. Therefore, Vranic uses concentric spheres with ray based 

descriptor with normalization step. It is argued [127] that this method outperforms rotation 

invariant spherical harmonics descriptor based on binary voxel grid [121]. Moreover, 

Kazhdan et al. [120] used spherical harmonics as a general tool to transform rotation 

dependent shape descriptors into rotation independent ones. Apart from the 

aforementioned approaches, spherical harmonics transform is used in many other shape 

analysis studies.  

5.5  Proposed Lossless Description Technique 

Obviously, SHT can describe functions defined on two-sphere. Since many 3D shapes are 

not star shaped, i.e. spherical representations are not single valued, in literature concentric 

spheres are proposed to define shapes on spheres. In that case, information loss depending 

on the radius discretization is inevitable. However, a range image can be represented with a 

spherical function. Besides, all available information is preserved with this representation. 

Instead of describing the shape, we describe the world captured from the camera.  The main 
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steps for computing our spherical harmonics descriptor for range models is shown in Figure 

5-4: 

i. First, background is removed, 

ii. The origin of the coordinate frame is assigned as the center of the camera (Figure 

5-4), 

iii. Spherical coordinates is used and the 3D space is discretized according to the 

resolution of the input image and 𝑓(𝜃, 𝜙) is initialized with zeros, 

iv. Each point coordinate on range model is expressed with respect to the camera 

frame; associated θ, ϕ and the length of the ray connecting the point with the origin 

is calculated. The ray length is assigned as the value of 𝑓 𝜃, 𝜙 ,  

v. The maximum ray length is determined and the function is normalized such that the 

function has the maximum value of one, 

vi. For non-object parts of f θ, ϕ  the value one is assigned (Figure 5-5), 

vii. With the use of spherical harmonics transform, the function is expressed as a  finite 

weighted summation of the basis functions, 

viii. Utilizing the rotation invariant property of the spherical harmonics, the amplitude 

of the  coefficients within each frequency band (l) is computed: 

  𝑓𝑙 =    𝑓  𝑙
𝑚  

2
𝑚=𝑙

𝑚=−𝑙

 5.8 

The feature vector is formed (signature of the range model) by concatenating these 

amplitudes. The zero-order component is omitted: 

 𝑓 =    𝑓𝑙=1 ,  𝑓𝑙=2 , … ,  𝑓𝑙=𝑖 , … ,  𝑓𝑙=𝑁   5.9 

The Euclidean distance is used to compare two signatures. By assigning value one to non-

object parts; the same information is included to all range models which is a neutral element, 

besides in comparison step the zero-order coefficient is ignored. Zero-order coefficient is 

related with the sphere shaped basis shown in Figure 5-3. Rotations around the z-axis 

become invariant with this representation. The global characteristic of range models 

captured by the camera is described.  
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Figure 5-4. Main steps for computing our spherical harmonics descriptor for range models. 

 

Figure 5-5 : (Top view) Description of the world with respect to the camera. Spherical function 𝑓 𝜃, 𝜙  is 

normalized such that maximum extend is equal to one. 

5.6 Comparison with Related Techniques 

According to our knowledge, this thesis is the first attempt to test range model retrieval 

among the range model database. Previously addressed 3D similarity retrieval approaches 

usually assume that the complete geometric information of an object is available. This 

information contains explicit neighboring relations between points, surface patches or 

polygons, as in the case of mesh representations. The methods, which are suitable in 

utilizing it for similarity retrieval of point clouds, can only be tested for range data. Besides 

the SHT on ray based concentric spheres (classical SHT) proposed by Funkhouser et al. [121] 

and Vranic [127] , D2 distribution [23] is an appropriate shape descriptor among the mesh 

descriptors. It is proposed by Osada et al. [23], and corresponds to the distribution of the 

distances (Euclidean) between object points that are selected randomly (Figure 5-6, middle). 

This method can be applicable to every 3D geometric representation and it is invariant to 

transformations. Besides, in [23], it is shown that D2 shape distribution is robust to noise, 
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small cracks and holes. Osada et al. argue that robustness is satisfied with the random 

selection strategy.  

 

We tested D2 shape distribution by our database; besides, we also tested our modified 

version, namely Salient-D2 that has a modification in the point selection strategy. Instead of 

random point selection, we impose saliency constraint in Salient D2. Points which are 

informatively salient are selected and the D2 distribution is evaluated among them. On any 

surface, salient points are the ones having high or low curvature values compared to their 

local neighborhood (Figure 5-6, right). Surface curvature at point p is computed using the 

formula [140]: 

 𝑐 =  
𝜆0

𝜆0 + 𝜆1 + 𝜆2

  𝑤𝑕𝑒𝑟𝑒 𝜆0 ≤ 𝜆1 ≤ 𝜆2  5.10 

by comparing the three eigenvalues  obtained from Principle Component Analysis (PCA) of 

the local neighborhood of the surface point p. 

 

Figure 5-6 (Left to right) Range model, sample D2 distribution evalution with six distances, salient 

points  (curvature values are above a threshold value) of the range model 

5.7 Experimental Results 

For testing the proposed description method (Lossless SHT), we build our own database. It 

contains 544 range models divided into 18 classes. Representative models for each class are 

shown in Figure 5-7. Complete database is presented in the Appendix. We collect 3D models 

from Princeton Shape Benchmark, AIM@SHAPE repository, NTU shape database, and 

Konstanz University database. Then, by use of a COTS computer graphics software, we 

obtain range images of these models, as if they are acquired by a scanner. The main reason 

for generating our own database is to ensure the diversity. Despite the publicly available 
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range databases, they are not suitable for testing similarity retrieval methods due to their 

sizes (within class and overall) and their diversities.  

 

 

 

Figure 5-7.  Representative models of the database. 

Although our database consists of toy data, there are two reasons for this obligation: i) the 

number of intra class size, ii) diversity in viewing direction. Databases in shape similarity 

retrieval applications have significant effect; so for obtaining more accurate performance 

results, algorithms should be tested on a large database having high diversity. For example, 

different types of ships (including huge sized ones), helicopters (including military ones), animals 
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(including wild ones) etc. and their different viewings of them should be included in the 

database. Real scanned database containing such kind of data is not available in today’s 

possibilities. Despite the synthetic structure, our database is a challenging one. First, intra 

class similarity is quite low (mainly due to varied viewing directions). Secondly, for some 

classes, interclass similarity is considerably high (i.e. cup- pot, dog-fourleg). 

 

Our range images have a size of 256x256 and we discretize the space into a 512 x 512 grid. 

Totally, 266,144 points are defined on the sphere. We compute the spherical harmonic 

expansion coefficients using S2KIT (http://www.cs.dartmouth.edu/~geelong/sphere). We use 

l=256, so we have a signature of length 255. In the offline phase, we extract the signatures of 

the all database models, when the query is presented online phase takes place. Signature of 

the query is evaluated and compared with the signatures of the database models using L2 

norm.  

 

In the firt stage of the classical SHT, a model is translated so that its center of mass coincides 

with the coordinate origin. The the model is normalized and the radius is discretized into 32 

levels; and l=32 is used. The signature is of length 1024. 

 

To construct the D2 and the D2-Salient descriptors we utilize several sampling densities such 

as 1000, 1500, 2500 and 10^4 point pairs. Jensen-Shannon Divergence (JSD), which is a 

symmetric version of Kullback-Leibler Divergence, is used in comparing the distributions.  

 

We use ‚precision-recall‛ curve, First-Tier (FT) and Second-Tier (ST) to present the retrieval 

performance. Precision is defined as the ratio of the number of shapes retrieved correctly 

over the total number of retrieved shapes. Recall is defined as the ratio of retrieved shapes 

over the total number of relevant shapes in the database. First-tier is the percentage of the 

matches belonging to same class of the query which appears at the top N matches where N 

is the number of items in the query’s class. Second-tier is the percentage of the top relevant 

matches (items that are in the same class with the query) appear in the top 2*N matches. 

Figure 5-9 shows average precision curve for the proposed method, classical SHT and the D2 

shape distribution. A random experiment is also conducted in order give a different idea 

about the performance of the algorithm. First-Tier and Second-Tier percentages are presented 

in Table 5.  
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Figure 5-8. Average Precision-Recall curve of D2 distributions 

 
Figure 5-9. Average Precision-Recall curve of Lossless SHT, classical SHT, and D2 distribution and a 

random retrieval experiment 

[2] Classical SHT 
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The D2 distribution yields better performance by increasing sampling density up to a point. 

Further increase in sampling size decreases the discriminative power of the method. In the 

limit, the distances between all combinations of the point pairs will be included in the 

distribution. Perhaps some of them will contribute more than once. The best performance 

among D2 distribution belongs to Salient-D2 distribution with 2500 point pairs. The 

proposed modification in D2 distribution improved the performance slightly for 2500 point 

pairs. However, for 1000 pairs, Salient-D2 distribution obviously has better retrieval 

characteristic than standard D2 distribution. For time and space savings, such a modification 

could be utilized.  

 

Classical SPH perform better than D2 distribution and slightly worse than the proposed 

method. On the other hand, our proposed method, Lossless SHT, has a much better average 

precision-recall curve while the descriptor size is smaller than the classical SHT. Random 

case experiment is a good criterion for realizing the complexity and the size of the database. 

The First-Tier and Second-Tier measures of Salient-D2 and Lossless SHT for each class are 

shown in Table 1. Lossless SHT has higher performance in both FT and ST percentages for 13 

classes among the 18 classes. On the average, Lossless SHT’s FT is 26,5% and ST is 32,8% 

whereas Salient-D2 distribution’s FT is 15% and ST is 22,9%. Sample retrieval results of three 

queries are given in Figure 5-10 and  Figure 5-11. In our method, false matches belong to 

geometrically similar models, such as retrieving gun in case of human query, retrieving 

helicopter for spider query and retrieving pottery in querying cup sample. They can be 

considered as ‚good false matches”, whereas these good false matches are not presented in 

retrieval results of D2 distribution method. 

5.8 Conclusion 

We propose a global description method that relies on SHT for similarity retrieval of range 

models. Despite the challenges, which are due to the view dependent structure of the data, 

the proposed technique achieves a Second Tier measure up to 87,1% . On the other hand, the 

popular D2 distribution can achieve a maximum of 53,2% Second Tier performance. The 

performance difference is more evident in First Tier characteristics. Proposed Lossless SHT 

obtain a maximum of 61,9% First Tier performance whereas D2 distribution remains at 

29,6%. Also, Precision-Recall curve of the Lossless SHT shows a better characteristic. 
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Increased complexity in the database and the 2.5D data type challenges, which are not 

present in complete 3D mesh retrieval research, degrades the retrieval success compared to 

the ideal case. Nevertheless, experimental results are encouraging. Our method Lossless SHT 

shows satisfying performances regarding the “good false matches” and the performance of the 

other methods as well as the random case experiment. 

 

Table 5 Retrieval results for both Salient-D2 distribution and our Lossless SHT 

  Salient D2 Lossless SHT 

  First Tier Second 

Tier 

First Tier Second 

Tier Human 29,6% 50,6% 61,9% 87,1% 

Building 15,7% 24,7% 51,5% 74% 

Cycle 23,2% 38,9% 20,2% 26,5% 

Spider 15,2% 25,3% 36,6% 53% 

Fourleg 24,1% 35,6% 17,1% 26,8% 

Pottery 16,5% 23,1% 32,2% 47,7% 

Helicopter 16,2% 26,7% 24,4% 36,4% 

Ship 19,6% 30,6% 21,4% 31,6% 

Tank 28,4% 47,3% 19,5% 28,7% 

Dog 14,7% 23,7% 33,9% 44,3% 

Gun 14% 24,8% 13,8% 22,4% 

Car 22,8% 37,7% 27,2% 40% 

Cup 27% 42,6% 42,4% 68% 

Table 18% 26,6% 15,4% 23,4% 

Plane 12,4% 22,5% 26,9% 39,4% 

Plant 18,8% 31,6% 20,7% 29,3% 

Chair 31,9% 53,2% 34,6% 51% 

Shelf 28,3% 42,9% 38,7% 46,4% 

Average 15,0% 22,9% 26,5% 32,8% 
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Figure 5-10. Sample retrieval results of three queries belonging to three different classes human, spider, 

and cup respectively. First 16 matches are shown. Queries are also included in the database, so first 

match is always the query itself.  (Top) Retrieval results of Lossless SHT, (Bottom) retrieval results of 

classical SHT. 
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Figure 5-11. Sample retrieval results of D2 description with 2500 point pairs. Three queries belonging 

to three different classes human, spider, and cup respectively. First 16 matches are shown. Queries are 

also included in the database, so first match is always the query itself. 
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CHAPTER 6  

 

 

ANALYSIS OF HEAT DIFFUSION ON RANGE IMAGES 

6.1 Introduction 

Some feature detectors and descriptors for recognizing 3D objects are explained in      

Chapter 2. Feature based descriptors are classified into two sub-categories: global descriptors 

and local descriptors [8]. Recently a third class of 3D descriptors, multi-scale descriptors, is 

proposed [128, 129, 136, 141, 142].  The descriptor, Heat Kernel Signature (HKS) or Auto-

Diffusion function, is based on the heat diffusion process on surfaces. The heat diffusion 

process is governed by the heat kernel, H(t).  

 

Dissipation of heat over the time from a surface point onto the rest of the shape captures 

information about the shape of neighborhood for that point.  The heat kernel provides a 

multi-scale descriptor by the time parameter t. As times getting larger, the heat dissipates 

from a point gradually to a larger neighborhood of the point. The information about larger 

neighborhoods of the point x is gathered over a longer period. Similarly, the behavior of heat 

diffusion over short time reflects local shape features. Besides the multi-scale property of 

HKS, it is argued in [128] the HKS preserves all of the information about the intrinsic 

geometry of the shape. It can also be argued that HKS describes an object both from local 

and global aspects at different time instants. Due to these properties, heat diffusion process 

is receiving more interest in shape analysis of 3D mesh models [128, 129, 136, 141-146].  

 

Sharma and Horaud [144] used eigenvalues and eigenvectors of the discrete diffusion 

operator for point matches. Rustamov [147] evaluate Laplace Beltami operator for a fixed 

point and construct the feature vector of that point using eigenfunctions of the Laplace 

Beltrami operator. Later Sun et al. [128] proposed using the diagonal of the heat kernel as a 
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local descriptor and called it as Heat Kernel Signature (HKS). For each point x on the shape, 

its heat kernel signature is an n-dimensional descriptor formed by evaluating auto-diffusion 

value at n different time instants. Local and global information about the neighborhood of 

the point is captured by this description. Dey et al. utilize HKS with persistent homology for 

shape retrieval. A scale invariant version of HKS, which is called SI-HKS, is proposed by 

Bronstein et al. [136, 141]. Mahmoudi used the distribution of the diffusion distances as a 

global descriptor [22]. For a fixed point on surface S, diffusion distance between this point 

and all other points are calculated and histogram of this distribution is used as a descriptor. 

 

Besides the increasing reputation of heat diffusion descriptor among 3D mesh models, the 

theoretical and the practical analysis of heat diffusion on range data is missing in literature. 

This chapter analyses heat diffusion process on range images. Challenges and some 

experimental results are presented. Also some future directions are proposed 

6.2 The 3D Heat Equation 

Suppose there is a function of space and time T(x,t) describing the temperature at a given 

surface location x at time t. The value of this function will change over time as heat spreads 

throughout the surface. This change depends on the shape of the surface and the heat 

sources on it. Moreover, initial heat distribution and boundary conditions have effects. This 

shape dependent character of heat diffusion makes it a state-of-the-art method in shape 

description. 

The 3D heat equation is given as follows: 

 
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
−

1

𝛼

𝜕𝑇

𝜕𝑡
= 0 6.1 

Equation 6.1 is called as heat equation or diffusion equation. It is generally written in the 

following format: 

  
𝜕

𝜕𝑡
− ∆𝑀 𝑇 𝑥, 𝑦, 𝑧, 𝑡 = 0 6.2 

 

The solution of T(x,y,z,t) (partial differential equation solution) depends on the boundary 

conditions and the initial conditions, T(x,y,z,0). ∆𝑀  is the Laplace–Beltrami operator and will be 

denoted by  L after this. 
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6.3 Graph Laplacians 

In the discrete case, one can think of a 3D surface as graph. Surface points  𝑋𝑖𝜖ℝ
𝑑 , 𝑖 =

{1,2, . . 𝑛} are represented with nodes. Hence, using K-nearest neighbor a connected graph 

can be obtained. Several graph Laplacian operators are proposed for the discrete case [148-

151]:  

Combinatorial Laplacian (L) is defined as: 

 L = D-W, 6.3 

where W is the adjacency matrix and D is the diagonal degree matrix. The weight matrix W 

is defined in several ways, which will be addressed later. The ‚degree matrix‛ D is written 

as:  

 𝐷𝑖𝑖 =  𝑤𝑖𝑗

𝑛

𝑖=1

 6.4 

The normalized Laplacian (LN) is defined as follows: 

 LN= I - D
-1/2

W D
-1/2

 
6.5 

The random walk Laplacian (LR) is defined by the following relation: 

 LR= I - D
-1

W 
6.6 

Finally, Mesh Laplacian used in [128] is defined as: 

 L = A
-1

W, 6.7 

where A is a diagonal matrix where element Aii represents the area associated with vertex i. 

Moreover, the adjacency matrix W is defined in several ways: 

1. Uniform weighting or umbrella operator is  

W =  

Wij = 1           𝑖𝑓 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗     

         Wij = 0           𝑖𝑓 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗               

Wij = 0            𝑖 = 𝑗                                                                  

  

This weighting only describes the topological properties of the connectivity (mesh, point 

cloud, etc.) 

2. Cotangent weighting (Figure 6-1) 

W =

 
 
 

 
 

        

Wij =
1

2 cot αij  +  cot βij   
          𝑖𝑓 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗

Wij = 0                                              𝑖𝑓 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗

W = 0                                               𝑖 = 𝑗                                                             
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Figure 6-1. Angles used in cotangent weighting scheme for Laplacian construction 

3. Distance based weighting 

W =

 
 

 Wij = 𝑒
− 
𝑑𝑖𝑗

2

𝜍2              𝑖𝑓 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗  

         Wij = 0                    𝑖𝑓 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗           

Wij = 0                    𝑖 = 𝑗                                                               

 , 

 where 𝑑𝑖𝑗  is the Euclidean, or preferably geodesic, distance between the nodes 

 (vertices) i and  j. 

 

Properties of Graph Laplacian  

 L is a symmetric semi-definite positive matrix 𝐿 = 𝕌Λ 𝕌𝑇  

 It has eigenvalues such that 0 = 𝜆1 < 𝜆2 ≤ ⋯ ≤ 𝜆𝑛  and eigenvectors 𝑢1 = 1 , 𝑢2, … 𝑢𝑛  

which are orthogonal. Additinonally,   𝑢𝑖𝑘
𝑛
𝑘=2 = 0, ∀𝑘𝜖{2, … , 𝑛} 

 Since eigenvectors form a basis, 𝐿 can be written as 

 𝐿 =  𝜆𝑘

𝑛

𝑘=2

𝑢𝑘𝑢𝑘
𝑇  6.8 

Consider the heat equation in discrete case  
𝜕

𝜕𝑡
− 𝐿 𝑇 𝑡 = 0, with T(t) ={T1(t), T2(t),...., Tn(t)}, 

which is a vector indexed by the nodes of the graph. The solution in the discrete case is: 

 𝑇 𝑡 =  𝐻 𝑡 𝑇(0) 6.9 

where H denotes the discrete heat operator:  𝐻 𝑡 = 𝑒−𝑡ℒ, and T(0) is the initial heat 

distribution at graph nodes,  and for simplicity, it is usually given with a unit heat at single 

node 𝑇 0 = (0, …… . , 𝑇𝑖 = 1,…… . ,0). Starting with this initial condition, the heat distribution 

at t, 𝑇 𝑡 =  𝑇1 𝑡 , …… , 𝑇𝑖 𝑡 , …… . , 𝑇𝑛 𝑡  , is given by the i-th column of the heat operator. 

Computation of Heat Kernel 

𝐻 𝑡 = 𝑒−𝑡ℒ = 𝑒−𝑡𝕌Λ 𝕌𝑇 = 𝐔𝑒−𝑡Λ𝐔𝑇  

𝑒−𝑡Λ = 𝐷𝑖𝑎𝑔[ 𝑒−𝑡λ1  … 𝑒−𝑡λn  ] 

𝐻 𝑡 = 𝐔   𝐷𝑖𝑎𝑔[ 𝑒−𝑡λ1  … 𝑒−𝑡λn  ]     𝐔𝑇  
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The heat kernel has the eigenvalues 1 = 𝑒−𝑡0 > 𝑒−𝑡λ1 ≥ …  ≥ 𝑒−𝑡λn . As it can be observed 

from the above equation, the eigenvectors are same as the Laplacian matrix.  

 𝐻(𝑡) =  𝑒−𝑡λk

𝑛

𝑘=2

𝑢𝑘𝑢𝑘
𝑇  6.10 

In order to compute the heat kernel, we only need the Graph Laplacian matrix and its 

Singular Value Decomposition. To be more specific, an entry of the heat operator, that is the 

amount of heat at vertex vi and at time t, starting from a heat distribution located at a single 

vertex vj, is given by the following equation: 

 𝑕(𝑖, 𝑗, 𝑡) =  𝑒−𝑡λk

𝑛

𝑘=2

𝑢𝑖𝑘𝑢𝑗𝑘
𝑇  6.11 

The heat kernel contains redundant information and all the information is contained at the 

diagonal terms [143]. The diagonal terms of the heat operator (𝑕 𝑖, 𝑖, 𝑡 ) correspond to the 

auto-diffusion function [129] or Heat Kernel Signature (HKS), [128].  HKS function values at 

each vertex on a 3D mesh model for four different time instances is shown in Figure 6-2.  

 

 
       t1           t2              t3  t4 
Figure 6-2. HKS function on a 3D mesh model for four different time instances where t1<t2<t3<t4. The 

function values increase from blue to yellow and to red. The mapping is consistent across the shapes. 

The distance between two graph vertices, which is as an Euclidean metric, is called diffusion 

distance and is given as  

 𝑑𝑡
2 𝑖, 𝑗 = 𝑕 𝑖, 𝑖, 𝑡 + 𝑕 𝑗, 𝑗, 𝑡 − 2𝑕(𝑖, 𝑗, 𝑡) 6.12 

6.4 Heat Diffusion and Scale Space Theory  

Scale space representation of an image is first proposed by Iijima in 1959 [152, 153]. Later, 

scale-space get attention with Witkin [154]. After one year in 1984, Koenderink [155] stated 

that Gaussian scale-space representation of an image is equivalent to the solution of the heat 

diffusion equation [156] . The intensity values are considered as the initial temperature 

distribution, image is interpreted as a planar surface and the heat distribution at different 
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times are observed by changing the variance of the Gaussian kernel. In other words, the 

standard deviation of the Gaussian kernel is equal to 𝜍 = 2 𝑡. 

6.5 Heat Kernel on Range Images 

Constructing graph Laplacian on a range image is challenging. This is due to the fact that 

point connectivity is not defined explicitly as in mesh representation. The first way to 

construct adjacency relation is using pixel neighboring. This representation ignores the true 

geometry and directs the diffusion of heat to semantically meaningless directions. This case 

can be observed in Figure 6-3. The first two images represent the HKS function values with a 

RGB representation at a particular time instant on a complete mesh, whereas the third image 

shows a range image obtained from the corresponding mesh. The next one (Figure 6-3d) 

represents HKS values again with a RGB representation at a particular time instant which is 

obtained by using pixel neighboring relations.  Heat diffuses from fingers to body which will 

not be the case in reality. This is due to the self occlusions. In order to overcome this 

problem, an occlusion detection method is proposed.  

6.5.1 Occlusion Detection 

For detecting the occlusions, we generate mesh structure from range images (see  Figure 6-3 

and Figure 6-4). For this purpose, two filters are used: 

 Compare the length of the triangles with mesh resolution given by angular 

resolution of the range image and the distance of the object 

 Check the side ratio; an optimal mesh should have equilateral sides  

After occlusion detection, range image is represented with disconnected regions (meshes). 

Under these conditions, the graph Laplacian properties will no longer be valid. The 

following two theorems prove this argument: 
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  a.   b.              c.       d.             e.                 f.  

Figure 6-3. a. HKS function on a 3D complete mesh model ([157]), b. The same function on the same 

mesh is represented in a different view to give an additional information, c.  A range image of that 

model (background is removed), d. HKS function is evaluated on the range data in ‘c’ without 

occlusion detection, heat diffuses from right hand of the human model to the body directly, e. Another 

view of (d), f. HKS function on the occlusion aware mesh model obtained from the range image in ‘c’, 

some parts, such as left hand, are removed  (The function values increase from blue to yellow and to 

red. The mapping is consistent across the shapes. The function value is calculated for a small time 

instant). 

 

 

Figure 6-4. Occlusion detection examples.  

Theorem 6.1. (Disjoint Union Spectrum)[158] Given a graph G and its Laplace spectrum LG has 

eigenvectors v1,...,vn with eigenvalues λ1,...,λn,. Similary another graph H with its Laplace spectrum 

LH has eigenvectors w1,...,wn with eigenvalues μ1,...,μn, then the spectrum of the disjoint union of 

these two graphs LG+H  has eigenvectors:  

v1 ,...,vn, 
 
w1,...,

 
wn  

with corresponding eigenvalues:  

λ1,...,λn,μ1,...,μn. 

Theorem 6.2. The multiplicity of the Laplacian eigenvalue 0 is the numberof connected components of 

the graph[158]. 
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Proofs of Theorem 6.1 and Theorem 6.2 can be reached at [158]. By the help of these theories, 

we conclude that eigendecomposition of the Laplacian of the union graph will not reflect the 

connectivity and topological properties in the global sense. Heat kernel of a surface can be 

inferred from the corresponding graph Laplacian matrix of that surface, if and only if the 

graph is connected. 

 

6.5.2 Local Description 

In this section, local behavior of the heat kernel signature is investigated. For this purpose, 

some keypoints are located on range images and the regions around the local neighborhood 

of these keypoints are constructed. For key point selection, we use the previously mentioned 

curvature maxima defined as: 

𝑐 =
𝜆0

𝜆0 + 𝜆1 + 𝜆2

 ,   𝜆0 ≤ 𝜆1 ≤ 𝜆2, 

 

by comparing the three eigenvalues λi  obtained from Principle Component Analysis (PCA) 

of the  covariance matrix (C) defined on the local neighborhood of the query point p (Figure 

6-5).  

Figure 6-5 Keypoint selection, range image, surface variance mapping, keypoints as the maxima of the 

surface variance 

After keypoint selection, we use a region growing on the occlusion aware mesh constructed 

previously starting from the keypoint. This region growing ensures the unwanted short 

circuited connections.  Then, the signature of each keypoint, p(x), with an n-dimensional 

vector is constructed, similar to the Jian’s work [128]: 

p(x) = c(x)( h (x, x, t1), . . . , h (x, x,tn) ), 

where c(x) is chosen in such a way that ∥ 𝑝(𝑥) ∥2= 1. This signature captures differential 

information in a small neighborhood of a keypoint for small t  and global information about 
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the shape for large values of t . As a result, such a signature can be utilized as an multiscale 

feature descriptor.  

Jian et.al [128] compute the difference between two HKS’s to see if two points x and x′ are 

matched at the given scales specified by the time interval [t1, t2], 

𝑚𝑒𝑟𝑟 =    𝑕𝑡 𝑥, 𝑥 − 𝑕𝑡 𝑥
′ , 𝑥 ′  2  𝑑𝑡

𝑡2

𝑡1
 

1

2
. 

This measure (merr) should be zero in order to match x and x′ exactly. However, in practice, 

matching is achieved approximately and it should be selected accordingly. Jian points that 

𝑕𝑡 𝑥, 𝑥 =  𝑒−𝑡λk𝑛
𝑘=2 𝑢𝑥𝑘𝑢𝑥𝑘  decays exponentially as t increases that makes the difference at 

large scales negligible compared to those at small scales. He addresses the problem by 

scaling signature  𝑕𝑡 𝑥, 𝑥  by  𝑕𝑡 𝑥, 𝑥 𝑑𝑥
𝑀

 where is the entire manifold, M, for all t. This 

heuristic ensures that the differences between two signatures at different timescales 

contributes almost equally. Another problem that Jian points is related to the temporal 

domain. For small t values,  𝑕𝑡 𝑥, 𝑥  function variance is large, whereas it decays as t 

increases. This result is obtained since the HKS signature 𝑕𝑡 𝑥, 𝑥  is easily affected from the 

local neighborhood and is not stable. Hence, Jian scale the temporal domain logaritmically 

and obtain the following final measure: 

𝑑(𝑥, 𝑥′) =   (
 𝑕𝑡 𝑥,𝑥 −𝑕𝑡 𝑥

′ ,𝑥 ′   

 𝑕𝑡  𝑥,𝑥 𝑑𝑥𝑀

)2  𝑑𝑙𝑜𝑔𝑡
𝑡2

𝑡1
 

1

2

. 

During our experiments, we use the same keypoint description and matching strategy [128]. 

Figure 6-6 shows the matching result of a two ‚Homer‛ models. There is small rotation, four 

degrees about the z-axis, between the models.  Matching result is expected to be more 

accurate due to this small rotaion, but many false matches are resulted, since, in the presence 

of a boundary, the HKS signature is significantly affected. When three specific keypoints p1, 

p2, and p3 are examined, their multiscale HKS signature are resulted to be dissimilar for p1 

and p2 and distance between p1 and p3 is smaller than the distance between p1 and p2. 
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Figure 6-6. Two models are matched using local HKS signature. Last figure represents the matching 

result. There is a rotation of 4 degrees between two models. Three specific keypoints, p1, p2, and p3 are 

examined in detail. Keypoints p1 and p2 are expected to match; however, p1 matched with p3. Besides, 

a small rotation between the two models many false matched are presented, since the HKS behavior is 

significantly affected with the changing boundary.  

6.6 Conclusion and Future Directions 

A recent approach, heat diffusion, in shape analysis with its multi-scale character  has been 

increasingly popular for 3D shape recognition. The approach describes the behavior of heat 

diffusion on the surface overtime. The attractive property of the HKS descriptor is its multi-

scale property. However, utilization of HKS descriptor on the range data for similarity 

retrieval and correspondence matching purposes introduces some challenges. These are 

summarized as follows: 

 The heat kernel defines a shape uniquely [143] and heat kernel of two shapes will be 

same, if and only if they are isometric [143]. However, range data representations 
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are view dependent, the same heat kernel cannot be obtained for different views of a 

particular object. Even, a similar behavior of HKS values of a particular surface point 

cannot be obtained due partially available shape information.  This observation is 

due to the fact that the same point can take part in two different surfaces considering 

the viewing direction. The points can be at the boundary at some viewing direction 

or can reside in the middle of a surface for another direction. The multi-scale 

property of the HKS will be limited in such cases. The suggestion is to restrict the 

time parameter for smaller times. It should noted that in that case, only local surface 

properties can be gathered from the HKS descriptor. In addition to this proposal, 

also boundary points should be avoided for obtaining feature descriptors. 

 The heat kernel on a discrete surface can be evaluated utilizing the eigenfunctions of 

the graph Laplacian. This theorem holds, if and only if the graph is connected. Since 

the mesh representation of a range image might contain disconnected parts, 

spectrum of the corresponding graph Laplacian cannot be used in analyzing the heat 

diffusion process on range images. Each part should be analyzed separately. A bag-

of-words approach can be utilized after this step. This proposition can be applicable, 

if the segmentation is consistent among the shapes. For example, if all of the human 

models in the database are segmented into legs, arms, heads and body then the HKS 

description in each part can be utilized. In that case, some more segmentation for 

some of the parts would be required.  

 HKS descriptor is dependent on the global scale of the shape [136].  However, the 

global information is missing in range data. Evaluation the HKS descriptor on local 

surface patches seems to be the easiest suggestion for this challenge. However, the 

keypoint repeatability cannot be achieved for all times. In such cases, local patches 

that are formed around a keypoint will be different which results significantly 

different signatures. This is shown by an example in the previous section. One 

suggestion for overcoming this challenge would be using the occlusion aware mesh 

representation of range data. A range data can be described with the HKS 

description evaluated on the largest connected part of it (Figure 6-3f). The proposal 

can be feasible, if the viewing directions do not vary significantly.  
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CHAPTER 7  

 

 

 

SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

7.1 Summary  

The motivation of semantically describing and representing objects arise from the fact that 

there is a significant need for recognizing, organizing, classifying and searching the content 

of visual data. Since capturing, displaying and storing the 3D media increased rapidly and 

3D data takes place in our daily life, such as TV (3DTV), laptops, chemistry (e.g., protein 

modeling), archeology (museum data), medicine, geography, military, industry (CAD), 

computer games, architecture, medical surgery, virtual reality programs, education and 

entertainment.   

 

In this thesis we studied 3D semantic analysis of range data. Under this broad title we 

address segmentation of range scenes, correspondence matching of range images and the 

similarity retrieval of range models. Inputs are considered as single view depth images.  

 

First, possible research topics related to 3D semantic analysis are introduced. Problem 

variety and the distinction depending on the 3D data type are stated. Later, 3D 

representation formats and the differences between them are presented. Challenges, namely 

representation diversity, alignment, description requirements, similarity measure, 

registration and segmentation are defined. Performance evaluation metrics in similarity 

retrieval research are introduced. Classification of similarity retrieval methods is proposed 

and a comprehensive literature survey is presented. 
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Next chapter begins with planar structure detection in range scenes. Problem definition, 

proposals, modifications on available plane detection methods and results are presented. 

Later, the adaptations of the well-known segmentation methods for segmenting real range 

scenes, where the inputs are the Time-of-Flight Camera outputs, are presented. Integration 

of the color with the spatial information and its effects on the performance of the 

segmentation methods are evaluated. Utilization local surface properties such as curvatures, 

surface variances, and normals with region growing are presented. Finally, a novel 

algorithm to segment 3D point cloud (obtained via TOF camera) into objects by using the 

spatial information is presented. This segmentation proposal starts with estimating the 

major plane, which represents the surface that objects can be placed. Afterwards, 3D points 

are projected onto the major plane and a saliency map is generated by using density 

estimation method. The local peaks in the saliency map represent the probable object 

locations. Finally, points which are closer to the local peaks than a certain threshold are 

segmented into objects.  

 

Correspondence matching in range images is investigated in the following chapter. We 

proposed a novel local range image matching method which combines 3D surface properties 

with the 2D scale invariant feature transform. Local surface properties that are utilized in 

this work are explained and feature extraction methodology is described. Finally matching 

results and comparison to the previous studies are presented.  

 

Next, our proposal for retrieving similar models where the query and the database both 

consist of only range models is presented. The challenges and the differences between the 

similarity retrieval of range images and the similarity retrieval of 3D mesh data are 

presented. The shortcomings in representing the range models with local descriptor are then 

stated. Our method relies on the well known Spherical Harmonics Transform. Steps in 

constructing the lossless spherical function that represents the range object is explained. 

Comparative performance results of the proposed method are presented. Tests are 

performed on a large database having high diversity and it is shown that performance of the 

proposed method is superior to the performance of popular D2 distribution.  

 

Finally, heat diffusion process on range images is analyzed in the last chapter. Challenges 

and some experimental results are presented. Also some future directions are proposed. 
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7.2 Conclusion 

The performance of the proposed Recursive Hough Transform in finding planar structures 

in range images is shown to be superior to the classical Hough Transformation. While the 

proposed modification in Hough Transform introduces additional complexity in space and 

time, it is quite successful in detecting planar structures in range image like data.  This is 

mainly due to eliminating the fine parameter discretization ambiguity that is presented in 

the classical way. Moreover, RANSAC performance is improved slightly by introducing 

constraints in the initial estimation. Also, the HK segmentation method is applied for finding 

planar regions in TOF data. It is shown to be inefficient since the curvature estimation of a 

point by utilizing the local neighborhood is excessively noise sensitive. Furthermore, we 

utilize classical Hough Transformation after segmenting the scene. Each segment is 

considered as a planar region. The experimental results indicate that, while the time and 

space complexities is lower than that of proposed Recursive Hough Transformation, the 

performance is directly related with the segmentation quality. Recursive Hough 

Transformation could achieve superior performance on the airborne LIDAR data, because 

the piecewise linearity assumption pretty holds for that kind of data, such as roofs, roads, 

lands.  

 

Various segmentation algorithms, namely K-Means, Mean-Shift, Mixture of Gaussians, and 

region growing by local surface properties are adapted for segmenting real TOF data. The 

low spatial resolution of the TOF camera decreases the accuracy of the local surface property 

estimation process and makes it sensitive against noise. Moreover, false measurements due 

to the multiple reflections might result in significant variance in the estimated normal values 

within a small surface patch. This variance leads to oversegmented or undersegmented 

regions. Furthermore, color-based segmentation algorithms are ineffective, when the objects 

in the scene have similar color values with the background or consist of different colored 

patches. 3D information or edge based segmentation methods also fail due to the continuous 

and smooth transitions, originated from the multiple reflections, between object surfaces and 

background surfaces on which the objects are placed. 

 

The proposed algorithm for segmenting range scenes is attractive, because it overcomes 

most of the aforementioned shortcomings. The proposed algorithm exploits the fact that 
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many objects stand orthogonal to the ground plane due to gravity and the projection of 3D 

points onto this plane could be equivalent to Fisher Linear Discriminant methodology. The 

projection of the 3D points is followed by a kernel density estimation process in which a 

saliency map is generated. Salient regions which represent the most probable object locations 

have high values in the generated map. Then the points with a probability value larger than 

some certain threshold are assigned to the closest local maximums segmented into objects. 

The experimental results show that the locations of the objects are determined quite 

accurately. Compared to the tested methods proposed algorithm is less sensitive to the 

noise, less parameter dependent and leads more accurate segmentation results. 

 

We also developed a technique for correspondence matching in depth data. There has been a 

little work in this area unlike the 2D case. The methods used in registering 3D point clouds 

are utilized, such as ICP, for finding correspondences in range images. Such global methods 

ignore shape details and gather the main properties of objects; thus sensitive to outliers. 

Besides, the need for segmentation is obvious. We proposed a local descriptor that puts 

more emphasis on the details which is more suitable for matching. The two recent 

aforementioned studies, which also utilize local descriptors require preprocessing step in 

removing problematic boundary regions. Such preprocessing is not needed in our proposal. 

Besides, the matching performance in complicated scenes with the presence of other objects, 

clutter and occlusion are not evaluated in those studies. In order to demonstrate the 

versatility of the proposed method in the cluttered scenes, we conducted several tests with 

complicated scenarios.  The proposed local surface description method does not require any 

initial segmentation step; it can also handle affine transformations up to a scale. The 

experimental results indicate that the proposed approach improve the performance of two 

recent methods from the literature. Moreover, clutter and occlusion do not affect the 

efficiency of the proposed method significantly.  

 

Next, our proposal for similarity retrieval of range images utilize one of the main challenges 

of range imaging, namely view dependency, as an advantage. Although, there exists a 

satisfying number of 3D mesh similarity retrieval methods, most of them are not suited for 

utilizing them in retrieving range models. Because, in contrary to the mesh data type, range 

images do not contain complete geometric information of the object, they are view 

dependent, occlusions are present, and transformations such as scale differences are not 
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easily handled. Our proposal relies on a global description method Spherical Harmonics 

Transform. Although SHT is not a novel concept in shape retrieval research for 3D complete 

models, we utilize it for 2.5D range images by representing the models in a reciprocal world 

observed from the camera. The difference, as well as the advantage of our algorithm, is 

being information lossless. In other words, the available shape information is completely 

exploited for obtaining the descriptor, whereas other mesh retrieval applications utilizing 

SHT ‚approximates‛ the shape that yields information loss. The descriptor is invariant to 

rotations about z-axis. The proposed technique is tested on a large database having high 

diversity and its performance is superior to the performances of the popular D2 distribution 

and the classical SHT.  

 

Finally, heat diffusion on range images is analyzed. It is shown that self occlusions and 

varying boundary conditions are the major challenges. Occlusion detection introduces 

disconnected parts where the spectrum of the graph laplacian fails in analyzing the heat 

diffusion process on range images. The heat diffusion analysis on the local basis is more 

challenging since boundary conditions effect the descriptor significantly.     

7.3 Future Directions 

While this dissertation addresses some of the problems in analysis of range data, many 

issues left open for future research. Some of them, which are certainly incomplete, are as 

follows;  

 The proposed methods’ performances on single view range images are evaluated. 

Utilizing multi-view depth data should improve the performances. The proposed 

segmentation method should certainly benefit from this additional information.  

 Local surface properties can be employed for planar structure detection. The 

information of normal vector, when estimated precisely, gives valuable clues for 

planarity. The angle between the normal vectors of two neighboring points should 

be zero if they are lying on a planar surface.   

 Corresponding matching and similarity retrieval proposals are tested on toy data. 

This is because of the low signal to noise ratio of available TOF cameras, and the 

necessity in ensuring the diversity of the database for similarity retrieval. As the 
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technology improves, quality and the quantity of the real scanned data will be 

improved. Therefore, the performances should be evaluated for such data. 

 The ratio of scale to the resolution is not constant in range imaging. The effects of 

scale changes are different from their 3D mesh counterparts. Fine details disappear 

as the objects become distant from the camera. Although absolute scale invariance 

cannot be reached due to the nature of the data, some negative effects can be 

reduced by resampling the objects according to their distances to the camera.  

 We utilize ‚shape index‛ which is a curvature based feature for correspondence 

matching.  The integration of 2D features could improve the matching performance. 

This can be utilized if the range data is accompanied with the corresponding color 

image. Recently high level sensors [14] provide such data.   

 SIFT keypoint selection and description is the only employed method for 

correspondence matching between ‚shape index‛ mapped images. The performance 

of other keypoint detectors and feature descriptors remain an open issue that needs 

to be examined. 

 Regarding the 3DTV archive systems, timing considerations might be critical. The 

analysis of time complexity of online phase in similarity retrieval approach is 

certainly in demand. 
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APPENDIX 

 

 

EXTRA INFORMATION 

A.1 3D Shape Databases and Contests 

Sources of 3D models for retrieval people are research groups of various universities and 

commercial repositories. Princeton Shape Retrieval and Analysis Group provide 1184 mesh 

models for scientific usage which are used throughout the thesis proposal. They also have an 

online 3D search engine, Princeton Shape Benchmark (PSB), and aiming to provide standard 

models and evaluation tools for shape retrieval [47]. PSB supplying models freely with four 

classifications which divides the models into a training set and test set with fine grained 

classes.  The base classification spans a large variety of classes including animals, plants, 

airplanes, furniture, and vehicles. Other classifications provides coarser version of the base 

classification. Similarly, National Taiwan university computer department research group 

supply a public large database with 10910 3D .obj file [61]. However, a small number of them 

are classified.  

 

National Design Repository, Geometric and Intelligent Computing Laboratory at Drexel 

University [159] supplies 3D CAD and solid models of (mostly) mechanical/machined 

engineering designs. 3D CAD Browser [160] provides over 7600 3D models mostly CAD 

models in 3ds, dxf, dwg, obj, lwo, iges formats.  These are not classified, but public 

databases.  

 

AIM@SHAPE repository [46], McGill 3D Shape Benchmark [161], Stanford Computer 

Graphics Laboratory data archives [162], Turbo Squid [163] which is a commercial database 
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of 3dsmax shape objects, and 3dxtras [164], are the leading 3D model suppliers. Almost all of 

these repositories supply watertight models, some of them offer range data and 2D samples.  

 

AIM@SHAPE organizing a 3D shape retrieval evaluation event called SHREC since 2006. 

There were seven tracks in 2007, namely watertight models, partial matching, Protein 

models, CAD models, Relevance feedback, Similarity measures, and 3D face models. SHREC 

is a scientific contest and works that are submitted are evaluated against each other within 

each track.  

A.2 Surface Fitting 

Considering the piecewise continuous nature of the surfaces appearing in the typical scenes, 

we fit quadratic surfaces to local patches.  A quadric surface equation can be written by 

F(x,y,z)=0 where implicit function F(x,y,z) is equal to: 

 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2𝑒𝑥𝑦 + 2𝑓𝑦𝑧 + 2𝑔𝑥𝑧 + 2𝑙𝑥 + 2𝑚𝑦 + 2𝑛𝑧 + 𝑑 = 0 A.1 

Each point (𝑥𝑖 ∈ 𝑆, 𝑖 = 1,2, … , 𝑛)  in the local patch should satisfy the following equation in 

the noise free case: 
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A.2 

However, as evident not all the input points will lie on the surface, implicit function will not 

vanish and result in some error F(x,y,z)= for those points. Hence, for fitting the ‚best‛ 

surface on the local patch, a minimization should be performed on F(x,y,z) such that 

∥  𝐹 𝑥, 𝑦, 𝑧 ∥2
𝑥,𝑦,𝑧  is minimum. The trivial solution of this minimization problem is 

a=b=c=d=e=….=n=0. Therefore, a constraint on the polynomial coefficients can be introduced 

such that  

 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑒2 + 𝑓2 + 𝑔2 + 𝑙2 + 𝑚2 + 𝑛2 = 1 A.3 

Now, the minimization problem can be solved using least squares subject to  𝑣𝑇𝑣 = 1. 
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min⁡(∥ 𝐹 𝑥, 𝑦, 𝑧 ∥2) = min⁡(∥ 𝐴𝑣 ∥2)

= min⁡( 𝐴𝑣 𝑇(𝐴𝑣))

= min 𝑣𝑇𝐴𝑇𝐴 𝑣          𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑣𝑇𝑣 = 1

 

Remembering the method of Lagrange multiplier in optimization, this equation states that 

the solution is the eigenvector corresponding to the smallest eigenvalue of the 𝐴𝑇𝐴 [104], i.e.  

 𝑣 ≃ 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝜆0 , 𝑤𝑕𝑒𝑟𝑒 𝜆0 ≤ 𝜆1 … ≤ 𝜆9 A.4 

Before evaluating the surface parameters normalization on the input points should be 

performed. This step is necessary due to magnitude differences between the 3D point 

coordinates. Consider the row of the matrix A in Equation A.2, let (x,y,z)=(100,100,1) then A 

becomes a ill-conditioned matrix and we cannot trust the solution 4. Hence, we have to 

normalize the coordinates of the input points such that their order of magnitudes is similar 

[165].  

The normalization step is as follows: 

 Translate points such that their mean after the translation is equal to zero 

𝑋 = 𝑋 −𝑚𝑒𝑎𝑛(𝑋), (𝑌 = 𝑌 − 𝑚𝑒𝑎𝑛(𝑌),  𝑍 = 𝑍 − 𝑚𝑒𝑎𝑛(𝑍),  

 Scale the points such that their variance is equal to one 

𝑋 =
𝑋  

𝑠𝑡𝑑  𝑋  
 , 𝑌 =

𝑌  

𝑠𝑡𝑑  𝑌  
 ,   𝑍 =

𝑍  

𝑠𝑡𝑑  𝑍  
,  std: standard deviation 

Above operations can be expressed by matrix operations: 

  

𝑋 

𝑌 

𝑍 

1

 =

 
 
 
 
 
 
 
 

1

𝑠𝑡𝑑(𝑋 )
0 0 −

𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋 )

0
1

𝑠𝑡𝑑(𝑌 )
0 −

𝑚𝑒𝑎𝑛 𝑌 

𝑠𝑡𝑑(𝑌 )

0 0
1

𝑠𝑡𝑑(𝑍 )
−
𝑚𝑒𝑎𝑛 𝑍 

𝑠𝑡𝑑(𝑍 )
0 0 0 1  

 
 
 
 
 
 
 

                           
𝑇

 

𝑋
𝑌
𝑍
1

  
A.5 

Then, if we rewrite the previous equations in the following form: 

 

 𝑥 𝑦 𝑧 1          
𝑃𝑇

    𝑇𝑇

             

𝑃𝑇 

 𝑇−𝑇   

𝑎 𝑒 𝑔 𝑙
𝑒 𝑏 𝑓 𝑚

𝑔 𝑓 𝑐 𝑛
𝑙 𝑚 𝑛 𝑑

 

           
𝑉

   𝑇−1

                 
𝑉 ′

 𝑇  

𝑥
𝑦
𝑧
1

 

 
𝑃   

𝑃 

= 0 

𝑉 = 𝑇𝑇𝑉 ′𝑇 

A.6 

We can recover the real quadric patch coefficients as in Equation A.6.  Now, we can use the 

points lying on the surface, instead of using the original point cloud. This goal can be 

achieved by projecting the input points on the surface, but the procedure is complex. Instead 

                                                           
4 http://numericalmethods.eng.usf.edu 

http://numericalmethods.eng.usf.edu/
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of projection, we preserve the x and y coordinates of the input points and obtain z 

coordinates from the surface equation. When we put x and y values in the Equation A.1 we 

obtain a second order equation in the form of: 

𝐴𝑧2 + 𝐵𝑧 + 𝐶 = 0 

We solve the equation easily and obtain two roots such that: 𝑧1,2 =
−𝐵∓∆

2𝐴
 where ∆= 𝐵2 − 4𝐴𝐶. 

We are expecting that solution of this equation is real.  However, in most of the cases it 

might be complex. This can be explained by an example in 2D: 

 

Let the function to be estimated be 𝑦2 − 𝑥 = 0. The estimation includes five parameters 

{a, b, c, d, e} which are the coefficients of the following equation 𝑎𝑦2 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑𝑦 +

𝑒 = 0. Let the estimated parameters be {a, b, c, d, e} = {1, 0,-1, 0, -2}, due to errors, that is  

𝑦2 − 𝑥 = 2. Now, we want to calculate y coordinates by putting x coordinates into the 

equation. If we put x=1 in the original equation, we can obtain two real roots y=1, and    

y=-1; however, if we put the same x in the estimated equation, we obtain complex 

conjugate y values (Figure A-1). This is due to the estimation errors, which cannot be 

avoided. Hence, we decided to use the norm of the complex solution as the z coordinate 

in our original problem in 3D. 

  

Figure A-1. Projections of the scene points on the estimated surface is not unique, since estimated 

surface may not be defined on the given coordinates. In our case, z is not defined on the given (x, y) 

pair.  

This solution can only be used for recovering smooth surfaces, but if we want to analyze the 

local surface properties, points lying on the estimated surfaces should be estimated properly. 

By experiencing the difficulties in this approach, we focuse on another model for fitting 

surfaces to 3D point clouds. Instead of F(x,y,z)=0 equation, we used z=f(x,y) for surface 

fitting. Idea is similar to the previous one; the explicit equation is: 
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 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 𝑧 A.7 

Each point (𝑥𝑖 ∈ 𝑆, 𝑖 = 1,2, … , 𝑛)  in the local patch should satisfy the following equation in 

the ideal case: 

 
 
 
 
 
𝑥1

2 𝑦1
2 𝑥1𝑦1 𝑥1 𝑦1 1

𝑥2
2 𝑦2

2 𝑥2𝑦2 𝑥2 𝑦2 1
⋮

𝑥𝑛
2 𝑦𝑛

2 𝑥𝑛𝑦𝑛 𝑥𝑛 𝑦𝑛 1 
 
 
 

                   
𝐴

 
 
 
 
 
 
𝑎
𝑏
𝑐
𝑑
𝑒
𝑓 
 
 
 
 
 

 
𝑣

=

 
 
 
 
 
𝑧1

𝑧2

..

.
𝑧𝑛 
 
 
 
 

 
𝑍

 

𝐴𝑣 = 𝑍 

A.8 

The optimal solution in the least squares sense is given by the following equation [104]: 

 𝑣 = (𝐴𝑇𝐴)−1 𝐴𝑇  𝑧 A.9 

In [104], it is suggested to use pseudoinverse of (𝐴𝑇𝐴).  However, since we cannot apply the 

normalization process that is used in the previous fitting problem, the solution is noise 

sensitive. The only normalization is using zero mean points. 

A.3 Heat Diffusion 

The main reference in this section is [166].  

Definitions:  

 Specific heat (C) is defined as the energy required to raise the temperature of a unit 

mass of a substance by one degree. 

 Let the amount of heat transferred during the process is denoted by Q. 

 The amount of heat transferred per unit time is called heat transfer rate, and is 

denoted by 𝑄 .   

 The rate of heat transfer per unit area normal to the direction of heat transfer is 

called heat flux 𝑞 =
𝑄 

𝐴
 

 The heat equation is derived from Fourier's law : the flow rate of heat energy through a 

surface is proportional to the negative temperature gradient across the surface  

 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑕𝑒𝑎𝑡 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛  ∝  
 𝐴𝑟𝑒𝑎 (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

𝑇𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 A.10 

 𝑄 𝑐𝑜𝑛𝑑 = 𝑘𝐴
 𝑇1 − 𝑇2 

∆𝑥
=  −𝑘𝐴

∆𝑇

∆𝑥
 A.11 

   in the limit 
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𝑄 𝑐𝑜𝑛𝑑 =  −𝑘𝐴

𝑑𝑇

𝑑𝑥
, A.12 

where k is the thermal conductivity and A is the area (see Figure A-2). Heat conduction 

direction is proportional to the temperature gradient in that direction. 

 

Figure A-2. Heat transfer parameters 

A.3.1 The First Law Of Thermodynamics : 

The net change (increase or decrease) in the total energy of the system during a process is 

equal to the difference between the total energy entering and the total energy leaving the 

system during that process.  

 
𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡       
𝑁𝑒𝑡  𝐸𝑛𝑒𝑟𝑔𝑦  
𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟

=  ∆𝐸𝑠𝑦𝑠𝑡𝑒𝑚       
𝐶𝑕𝑎𝑛𝑔𝑒  𝑖𝑛  𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  

𝑒𝑛𝑒𝑟𝑔𝑦

 

A.13 

If the time derivative is taken then the above equation becomes: 

 
𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡        

𝑅𝑎𝑡𝑒  𝑜𝑓  𝑛𝑒𝑡  𝐸𝑛𝑒𝑟𝑔𝑦  
𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟

=  
𝑑𝐸𝑠𝑦𝑠𝑡𝑒𝑚

𝑑𝑡     
𝑅𝑎𝑡𝑒  𝑜𝑓  𝑐𝑕𝑎𝑛𝑔𝑒  𝑖𝑛  
 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  𝑒𝑛𝑒𝑟𝑔𝑦

 
A.14 

A.3.2 One Dimensional Heat Conduction  

 

Figure A-3. Heat transfer parameters in one dimension. 
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First law of thermodynamics: 

 
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑕𝑒𝑎𝑡
𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑎𝑡 𝑥

 −  
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑕𝑒𝑎𝑡
𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑎𝑡 𝑥 + ∆𝑥

 +  
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑕𝑒𝑎𝑡

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒
𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

 =   

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐𝑕𝑎𝑛𝑔𝑒 𝑜𝑓 
𝑡𝑕𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡
𝑜𝑓 𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

   

 𝑄 𝑥 − 𝑄 𝑥+∆𝑥 + 𝐺 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
∆𝐸𝑙𝑒𝑚𝑒𝑛𝑡

∆𝑡
             A.15 

 ∆𝐸𝑙𝑒𝑚𝑒𝑛𝑡 =  𝐸𝑡+∆𝑡 − 𝐸𝑡 = 𝑚𝐶 𝑇𝑡+∆𝑡 − 𝑇𝑡 = 𝜌𝐴∆𝑥𝐶 𝑇𝑡+∆𝑡 − 𝑇𝑡       A.16 

Assume no heat source inside, that is 𝐺 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 0. 

 
𝑄 𝑥 − 𝑄 𝑥+∆𝑥 = 𝜌𝐴∆𝑥𝐶

 𝑇𝑡+∆𝑡 − 𝑇𝑡 

∆𝑡
 A.17 

Divide both sides of Equation 6. 7 by ∆𝑥𝐴 

 −
1

𝐴

𝑄 𝑥+∆𝑥 − 𝑄 𝑥
∆𝑥

= 𝜌𝐶
 𝑇𝑡+∆𝑡 − 𝑇𝑡 

∆𝑡
 A.18 

Taking the limit as ∆x → 0 and ∆t → 0  

 lim
∆x→0

𝑄 𝑥+∆ − 𝑄 𝑥
∆𝑥

=
𝜕𝑄 

𝜕𝑥
=

𝜕

𝜕𝑥
 −𝑘𝐴

𝑑𝑇

𝑑𝑥
  A.19 

Combining Equation A.18 and Equation A.19 

 −
1

𝐴

𝜕

𝜕𝑥
 −𝑘𝐴

𝜕𝑇

𝜕𝑥
 = 𝜌𝐶

𝜕𝑇

𝜕𝑡
 A.20 

Assuming constant k (thermal conductivity)  

 
𝜕2𝑇

𝜕𝑥2
=

1

𝛼

𝜕𝑇

𝜕𝑡
= 0 A.21 

This result can be imported to the 3D heat equation as follows: 

 
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
−

1

𝛼

𝜕𝑇

𝜕𝑡
= 0 A.22 
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A.4 Database 

 

Figure A-4. Database part 1 
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Figure A-5. Database part 2 
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Figure A-6. Database part 3 
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Figure A-7. Database part 4 
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