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ABSTRACT

IMPLEMENTATION AND EVALUATION OF A SYNCHRONOUS TIME-SLOTTED
MEDIUM ACCESS PROTOCOL FOR NETWORKED INDUSTRIAL EMBEDDED
SYSTEMS

Gozcii, Ahmet Korhan
M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Senan Ece Schmidt

September 2011, 74 pages

Dynamic Distributed Dependable Real-time Industrial communication Protocol family (D°RIP),
has been proposed in the literature considering the periodic or event-based traffic character-
istics of the industrial communication networks. In particular, D*RIP is designed to dynami-
cally adapt the bandwidth allocation for distributed controller nodes depending on the instan-

taneous communication requirements.

D3RIP framework consists of two protocol families: Interface Layer (IL) protocol family,
which is responsible for providing the accurate time-division multiple access (TDMA) on
top of a shared-medium broadcast channel, and Coordination Layer (CL), which is defined
to fulfill the external requirements of IL. In this thesis, the hardware adaptations of the two
protocols, Real-time Access Interface Layer (RAIL) and Time-slotted Interface Layer (TSIL),
of the IL protocol family, are implemented. Their performance on both personal computers

(PC) and development kits (DK) are observed.
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0z

SEBEKELENMIS ENDUSTRIYEL GOMULU SISTEMLER iCIN SENKRON ZAMAN
OLUKLU ORTAMA ERISIM PROTOKOLU GERCEKLENMESI VE
DEGERLENDIRILMESI

Gozcii, Ahmet Korhan
Yiiksek Lisans, Elektrik-Elektronik Miihendisligi Bolimii

Tez Yoneticisi : Yar. Dog. Dr. Senan Ece Schmidt

Eyliil 2011, 74 sayfa

Literatiirdeki Dinamik Dagitilmis Giivenilir Gercek Zamanl Endiistriyel Iletisim Protokolii
ailesi (D’RIP), endiistriyel iletisim aglarinin periyodik ya da olay tabanli olan trafik 6zellikleri
g6z Oniine alinarak tasarlanmistir. Ozellikle, D*RIP, anlik iletisim gereksinimlerine bagh
olarak, dagitilmig denetleyici diigiimler icin dinamik olarak bant genisligi tahsisini adapte

edecek sekilde tasarlanmustir.

D3RIP sistemi iki protokol ailesinden olusur: paylasilan bir orta yaym kanalmin iistiinde
dogru ¢alisan zaman bdlmeli ¢oklu erisimin (TDMA) saglanmasindan sorumlu olan Arayiiz
Katmani (IL) protokol ailesi, ve ILin dig gereklerini yerine getirmek icin tamimlanmig olan
Koordinasyon Katmani (CL). Bu tez caligmasinda, IL protokol ailesinin iki protokolii olan,
Gergek Zamanli Erisim Arabirim Katmani (RAIL) ve Zaman Oluklu Arayiiz Katmaninin
(TSIL), donanim iizerinde uyarlamalar1 gerceklenecektir. Bunlarin hem kigisel bilgisayarlar

(PC) hem de gelistirme kitleri (DK) {izerindeki performanslari gdzlenecektir.
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CHAPTER 1

INTRODUCTION

As the technology improves, industrial control applications become increasingly complex
and large-scale. The data volumes to be transmitted on the industrial networks are increas-
ing rapidly, which causes a demand for faster communication techniques. Traditional indus-
trial communication techniques, i.e., proprietary fieldbuses such as Controller Area Network
(CAN), LonWorks and Profibus, could not satisfy these needs of the industry, because of their
high cost, low speed, incompatibility with different data bus technologies, and unadaptable

structure for improvements.

Ethernet becomes the primary alternate for the replacement of the fieldbuses, which are inad-
equate to meet the demands of the industry. Having low cost and high speed, being widely
used and successful; put Ethernet ahead of other candidates. Thus, nowadays many of the

industrial control devices are being manufactured with Ethernet network interface cards.

Apart from these advantages, Ethernet has a major deficiency, which is being nondetermin-
istic. This randomness is caused by the truncated binary exponential backoff algorithm [1],
which is used when a collision occurs. According to this algorithm, the nodes, sending the
messages that collide, wait an amount of time chosen randomly from a definite interval. Thus,
it is impossible to calculate an upper bound for the waiting time before a message is success-
fully transmitted from one station to another. It is only possible to derive the probability that
this waiting time will exceed a given value, which is not adequate for control applications that

require hard bounds on the waiting time.
To overcome this problem of Ethernet, many solution techniques are proposed in the literature.

Some techniques like Ethercat [2], SERCOS I [3] and ProfiNet [4], suggest altering the



MAC layer by adapting Ethernet network interface hardware. These types of solutions carry
the disadvantages of the fieldbuses like high cost hardware needs and being incompatible with

similar data busses.

MODBUS RTPS [5] and PROFINET SRT [4], on the other hand, aims to decrease the col-
lision probability and reaction times, which only improve the performance and could not

provide real-time (RT) guarantees.

To prevent collisions, using switches is another type of solution, as proposed in Ethernet/Ip
(EIP) [4]. However, it leads to other problems such as queuing delays and message loss

because of the limited queue size.

Final and most preferred technique to get rid of the randomness of Ethernet is adding an ad-
ditional layer, that prevents simultaneous access to the shared medium (SM) and thus avoids
collisions, on top of the MAC layer. This additional layer could use master-slave (Powerlink
(EPL) [4]), token passing (Time Critical Control Network (TCNet) [4]), or static Time Divi-
sion Multiple Access (TDMA) (Ethernet for Plant Automation (EPA) [4]) solutions. Each of
these techniques carries different disadvantages. Master-slave solutions have single point of
failure, undistributed structure and low efficiency. Token passing solutions lack dependability,
especially in the case of losing the token. Static TDMA solutions have low efficiency due to

the guard periods and error recovery precautions.

The major reason for the inefficiency of the techniques mentioned is that they ignore the spe-
cial requirements of the control-purpose applications by simply modifying the solutions used
for home and office networks. Unlike home and office networks, which have random traffic,
the messages in the industrial communication networks are generated in either periodic or
event-based, i.e., sporadic manner. Besides, in industrial control systems, the communication
requirements of the system components are known at any moment, since automation con-
trol applications work in a deterministic way. However, the solutions in the literature make
worst-case assumption, such as all messages sent at the same time, to meet the needs of hard
real-time industrial control system applications, and capacity allocation is done accordingly.

For this reason, the capacity allocation is inefficient.

Dynamic Distributed Dependable Real-time Industrial communication Protocol family (D°RIP),

on the other hand, has been developed in [6] considering these characteristics of the industrial



communication networks. Thus it proposes a TDMA solution with dynamic slot assignment
according to the communication needs of the system components, which are known at any

moment.

In this thesis, the protocols in the Interface Layer (IL) protocol family of D3RIP framework,
which are Real-time Access Interface Layer (RAIL) and Time-slotted Interface Layer (TSIL),
are implemented on real hardware. The IL is responsible for providing the accurate TDMA

on top of a shared-medium broadcast channel.

During the implementation of IL, seven challenges are faced. Four of them are already defined

in [6], but needed to be detailed.

minimizing the guard periods in the time slots

frame fragmentation and reassembly

interfaces with Shared Medium (SM)

interfaces with Coordination Layer (CL)

The other three challenges are not mentioned in [6]. They occur as implementation require-

ments.

e obtaining synchronization over TDMA structure
e prioritizing synchronization packets over nRT packets

e starting the TDMA structure simultaneously

By overcoming these challenges, this thesis contribute to the detailed description of the D*RIP

framework.

The rest of the thesis is organized as follows. In Chapter 2, first, industrial network is de-
scribed in terms of its communication needs and differences from home and office networks.
By explaining the traditional fieldbuses’ inefficiency, the Ethernet based solution techniques
are inspected. Finally, the D’RIP, which is a new synchronous time-slotted medium access
solution that is proposed in [6], in the light of the deficiencies of the Ethernet based solutions

in the literature is mentioned.



In Chapter 3, the challenges in the implementation of the protocols of the IL protocol family of
D?RIP framework are described. Besides some performance metrics that are used to measure

the performance of these protocols are explained.

Chapter 4, describes the implementation of these protocols on real hardware by explaining

how the challenges described in the Chapter 3 are overcame.

In Chapter 5, the performance of these implementations is analyzed in terms of the perfor-

mance metrics defined in Chapter 3.

Finally, in Chapter 6, discussions and conclusions are presented. In addition, some future

works are suggested.



CHAPTER 2

RELATED WORK

2.1 Industrial Communication Networks

Unlike home and office networks, which pay attention mostly to throughput and operate as
a best effort delivery, industrial communication networks have deterministic behavior, due
to the deterministic operation of the control applications. In industrial areas, networks are
composed of different components with different communication needs; such as, sensors,

actuators, controllers, supervisory stations, remote controllers, and diagnostic viewers.

Sensors and actuators are among the components of the industrial networks that need least in-
telligence. Sensors continuously gather data to the controller and it operates actuators accord-
ing to these data. Thus, they work in a predefined periodic manner. Therefore, the commu-
nication between sensors-controllers and controllers-actuators need periodic messages with

deadlines.

Supervisory stations, on the other hand, are the most intelligent part of the industrial com-
munication systems. Supervisory station refers to the servers and software responsible for
the hierarchical communication of the systems that are in hierarchically different levels, with
the purpose of coordination. They mostly use event-based messages that need deterministic
response time. Still, the messages to be used can be known earlier according to the state of

the system, by using the systems dynamic model.

Apart from these messages with RT needs, there are also non-Real-time (nRT) messages in
the industrial communication networks. These are needed by the remote controllers, which
are responsible for the remote management of the system and diagnostic viewers, which are

used for the monitoring purposes. These nRT messages are also event-based, like supervisory



control messages.

Control systems with distributed components described above are used since 1980’s in in-
dustrial area. To accomplish the requirements of the messages described, initially all of the
components were connected to each other by wires. This communication technique gives its
place to industrial communication networks, because of its high cost of wires and difficulty

of adding a new component.

The first industrial communication networks are proprietary fieldbuses such as CAN, Lon-
Works and Profibus [7]. These techniques seem not bringing long-term solutions as their high

cost hardware needs, being slow, hard to improve and incompatible with similar data busses.

2.2 Industrial Ethernet

As a result of the disadvantages of the fieldbuses that mentioned in the previous chapter, they
are replaced by Ethernet-based networks such as Profinet [4] and Ethernet Power Link (EPL)
[8]. The main reason behind using Ethernet as a solution is its widely and successive usage.
Since Ethernet is a widely used communication technique used in home and office networks, it
draws attention of both academic and industrial researchers. Therefore, many improvements
are made in the Ethernet which results in very cheap and fast communication, when compared

with the fieldbuses.

Apart from these advantages of Ethernet, it has a major deficiency that is its nondeterministic
behavior. The reason of this nondeterministic behavior is as a result of the truncated binary
exponential backoff algorithm used for retransmitting a packet after a collision, which occurs
when more than one node tries to transmit a message to a shared medium. According to the
truncated binary exponential backoftf algorithm [1], each node exposed to collision retransmits
its message after waiting an amount of time chosen randomly from a definite interval. After
each collision that the same message encounters, the upper limit for this wait duration doubles.

This random waiting process after a collision causes Ethernet’s nondeterministic behavior.

To overcome this problem of Ethernet and provide RT characteristics to it, different ap-

proaches are developed.

One technique is altering the Medium Access Control (MAC) layer by adapting Ethernet



network interface hardware. In this way, nondeterministic message transmission function of
the Ethernet can be modified, as in Ethercat [2], SERCOS III [3] and ProfiNet [4]. Since this
technique needs modification on the hardware, it carries the disadvantages of the proprietary

fieldbuses, such as, high cost hardware needs and being incompatible with similar data busses.

Another technique is improving the performance of the Ethernet by decreasing the collision
probability and reaction times. MODBUS RTPS [5] and PROFINET SRT [4] are some exam-
ples using this technique. Disadvantage of this technique is that it only improves performance

to obtain near RT characteristics. Thus it could not provide hard RT guarantees.

Using switches is another technique that removes collision probabilities. Since switches put
all the incoming messages to the queue before transmitting to other nodes. This controlled
transmission prevents collision; however, it leads other problems such as queuing delays and
message loss because of the limited queue size. Ethernet/Ip (EIP) [4] is among the protocols

that use this technique.

Probably the most popular technique to bring RT characteristics to the Ethernet is adding an
additional layer on top of the MAC layer. This additional layer avoids collisions by providing
deterministic access to the shared medium. The most used solution types using this additional

layer are master-slave solutions, token passing solutions, and TDMA solutions.

In master-slave solutions, a dedicated master is in the control of the communication. It contin-
uously enquiry each slave, and if the slave has a message to send, it will respond to the enquiry
with its message. The dummy enquiries, even in the absence of message to be transmitted,
cause the efficiency of the protocol to drastically fall down. For example, the efficiency of the
Powerlink (EPL) [4], which uses this type of solution, is calculated as 25% in [9]. Having

single point of failure is another disadvantage of the master-slave type solutions.

In token passing solutions, a signal called a token is passed between the nodes. The node,
which takes this token, is authorized to communicate. Thus, only one node is allowed to
transmit at a time, which provides collision avoidance. Time Critical Control Network (TC-
Net) [4] can be given as an example that uses token passing as a collision avoidance solution
in Ethernet based industrial systems. One major disadvantage of token passing is that when a

failure occurs, causing the token to be lost, the communication will stop.

In TDMA solutions, time is divided into time-slots and each node in the system is assigned



to a set of these slots. This unique assignment of time slots avoids collisions. This fully
deterministic structure of TDMA provides robustness. On the other hand, this determinism
can be quickly lost in the presence of errors and that the solutions are highly inefficient. For
example, in [10], it is shown that a maximum of only 4% of the bandwidth is usable to carry
useful traffic, when implementing a TDMA on switched gigabit Ethernet hardware. Also it

explains that the major reason of this inefficiency is the Ethernet switches.

Ethernet for Plant Automation (EPA) [4], is an example using TDMA technique to bring
RT characteristics to Ethernet. This protocol uses two phase TDMA structure. In the first
phase, time-slots are statically assigned to the RT messages of each node. These slots belong
to the node even if it has no message to send. In the second phase, which is used for nRT
communication, the time-slots are assigned to the nodes according to their announcement,
which is done at the end of the RT messages in the first phase. The static assignment of time
slots to the nodes forces each node to transmit its synchronous traffic at the same frequency,

which in turn reduces the efficiency and limits the applicability.

2.3 D’RIP

As explained in the section 2.1, industrial communication networks do not have a random
traffic. Instead, the messages in the industrial area are generated in either periodic or event-
based, i.e., sporadic manner. However, the industrial network protocols in the literature ignore
this situation. They are developed by only modifying the solutions used for home and office
networks according to the needs of the applications. Therefore, these approaches use network

capacity inefficiently.

D?RIP framework proposed in [6], on the other hand, has arised to fill the gap between the
industrial needs and the academic solutions. This framework and the protocols in it, consider
the information from the control application, which is available via the application protocol
interface, to dynamically know about the communication requirements of nodes and the tim-
ing of the messages. To provide a fully distributed structure, which provides robustness by
preventing having a single point of failure, this information will be broadcasted on the shared
medium and coordinated over all nodes on the network. Thus, the knowledge about the de-

terministic system behavior will be available to all nodes, which makes it possible to provide



RT guarantees and dependability, to compute the required maximum network bandwidth and
to dynamically allocate the capacity among the nodes based on the communication require-
ments. In addition, the knowledge about the communication requirements allows using the

remaining capacity after sending the RT messages for the nRT traffic.

As knowing about the communication requirements of the nodes and the timing of the mes-
sages, D*RIP can schedule the RT messages. Thus, TDMA, which is more appropriate than
master-slave and token passing, is chosen to bring RT characteristics to Ethernet. Since this
scheduling is dynamically updated via the knowledge from the control application, the slot as-
signment in the TDMA structure is made in such a way to adopt these changes. This dynamic
assignment of slots for RT messages and not using switches will overcome the inefficiency

problem of the TDMA, mentioned in section 2.2.



CHAPTER 3

PERFORMANCE METRICS and IMPLEMENTATION
CHALLENGES

3.1 Problem

D?RIP framework consists of two protocol layers; Interface Layer (IL) and Coordination
Layer (CL). IL is responsible for providing the accurate TDMA structure on top of a shared-
medium broadcast channel, whereas CL is defined to fulfill the external requirements of IL.
In this thesis, the hardware adaptations of the two protocols of the IL protocol family, which
are RAIL and TSIL, are implemented. The implementation of these protocols are on both

personal computers (PC) and development kits (DK).

3.2 Performance Metrics

After the hardware implementation of the RAIL and TSIL protocols on both PC and DK, their
performance are measured. The numerical performance metrics to be used for this measure-

ment are given and described below:

Throughput: This corresponds to the amount of RT and nRT traffic that can be carried over
the network per unit time (in bps, frames/sec etc). For the computation of this metric,
the minimum slot duration, including the guard periods, is calculated. Then the time
needed for a message with maximum length to be transmitted on the shared medium is
calculated. The ratio of the message’s transmission time to the total slot duration gives

the throughput of the implementation.

10



Maximum RT Throughput: Since D*RIP framework is an industrial communication net-
work, it focus on RT packet transmission. Still, some of the bandwidth should be
allocated to the synchronization packets. To calculate this metric, first, the minimum
number of slots needed for accurate synchronization is calculated. By multiplying the
ratio of these slots to all slots, with the throughput, and subtracting the result from the

throughput, the maximum RT throughput of the implementation is obtained.

Efficiency: This corresponds to the ratio of the effective throughput for RT packets to the
total throughput of the shared medium. It is calculated by simply dividing maximum

RT throughput to the exact throughput of the transmission line used.

Minimum RT Message Deadline: The most important need for the RT messages in the in-
dustrial communication networks is being able to put an upper bound for the time
needed for the transmission. As D’RIP framework assigns the slots dynamically ac-
cording to the needs of the control application, when an urgent message is ready, it will
be transmitted with the next RT slot. Still, according to the scheduling, this message
will wait during the nRT slots before a RT slot came. Therefore, to calculate this metric,
first the maximum wait time for a RT slot is calculated. By adding the time needed for
the transmission of the message to the CL of the receiver nodes (dS lot — rem) to this

time, achievable minimum RT message deadline is calculated.

3.3 Challenges

During the implementation of the protocols in the IL protocol family of D*RIP framework,

six major challenges are faced. The definitions of these challenges are defined below.

Synchronization over TDMA Structure The most important requirement of running a cor-
rect TDMA structure is the accurate synchronization of the clocks on the nodes in the
system. In general, synchronization is implemented on a separate line other than the
one uses TDMA structure. However, this is not valid in D’RIP framework case, since
it is defined as a generic solution working on a shared medium only. Therefore, the

solution described in subsection 4.3.1 is proposed.

Prioritizing Synchronization Packets over nRT Packets Inimplementations that are using

nRT synchronization application, if the nRT traffic is very high, the synchronization
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messages could be timed out. Therefore, the synchronization packets should have pri-
ority over other nRT packets. The prioritizing of the IEEE1588 synchronization packets

is realized as described in subsection 4.3.2.

Minimizing the Guard Periods in the Time Slots To have a good performance from a TDMA
structure, the guard periods in the time slots should be as small as possible. To minimize
the guard periods, the accurate timing of the actions defined in the IL protocol (Sec.4.2)

is crucial. The studies on obtaining accurate timings are described in subsection 4.3.3.

Starting the TDMA Structure Another important necessity of operating an accurate TDMA
structure is to start it on all the nodes in the system simultaneously. Thus, each node will
number the time slots same. The works on the simultaneous start of TDMA structure

can be found in subsection 4.3.4.

Frame Fragmentation and Reassembly In D3RIP framework, the slot sizes are defined
constant. The size of the slots can be chosen according to the longest RT message
which is known in each application. Still, the nRT packets coming from the upper layer
applications can be greater than the longest RT message. Therefore; long nRT pack-
ets should be divided into frames of appropriate size that can be reassembled at the

destination. The designs of the fragmenter and the reassembler are given at Sec.4.4.

Interface with Shared Medium (SM) For the communication between SM and IL, transmit
and receive functions should be defined. These functions should be as close to the
shared medium as possible, in order to transmit and receive with minimum delay, which
will increase the performance of the TDMA structure. The proposed solution for this

challenge is described in Sec.4.5.

Interface with CL. Another interface of IL is between CL. The needs of this interface is
signalling for an action and transferring data. The speed of the techniques to be used
for signalling and data transferring also affects the performance of D*RIP framework.

The studies on these techniques are given in Sec.4.6.
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CHAPTER 4

D*RIP’s IL IMPLEMENTATION

4.1 Detailed Description of the DRIP

Dynamic Distributed Dependable Real-time Industrial communication Protocol family, D3RIP,
defines a new real-time communication framework. The main difference of this framework
from the previous ones is that it uses the information that comes from the control applications
to arrange the scheduling of the messages. By doing so, D*RIP adapts the communication

network according to the needs of the control applications.

Another important feature of this framework is its completely distributed structure. All mes-
sages in the system are broadcasted and so, all communication nodes of the framework keep
exactly the same scheduling. This distributed structure of D’RIP makes it possible to pro-
vide real-time guarantees and dependability by letting all nodes know about the deterministic
system behavior. Besides, making the framework completely distributed increases the de-
pendability of the system since it avoids having a single point of failure as opposed to relying

on the correct functionality of a dedicated master node [11].

D3RIP framework defines two protocol families, Interface Layer (IL) and Coordination Layer
(CL), to communicate over a Shared Medium (SM) (Fig. 4.1). IL is responsible for putting
up the TDMA structure by adjusting the timings of the slots. CL, on the other hand, by using
the correct time slotted operation served by IL, dynamically allocates bandwidth to the RT

applications, according to their needs.

SM, in the D3RIP framework, is a generic broadcast channel for shared-medium networks,
like Ethernet. It transmits the message m that comes from any of the connected device’s IL

via the m.2sm(m) and broadcasts it to all connected ILs via the sm2mw.(m). (Fig. 4.2) Message
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Figure 4.1: Overview of D3RIP Framework
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Figure 4.2: Message Transmission between IL and SM

transmission starts with the n.2sm(m) action, which passes the message m from IL to SM.
After this action occurs from any of the connected devices, the SM will be busy until the
transmission of the message m finishes. During this period none of the IL’s connected should
try to transmit another message to avoid collision, which is a stop condition for SM as can
be seen in Appendix A.1. Collision avoidance is in the scope of IL, which provides the time-

slotted operation.

Interface Layer (IL), which stays between SM and CL, provides a correct time-slotted opera-
tion by assigning time slots to unique devices in the system. It also decides the type of the slot,
i.e., if the slot is reserved to transmit an RT message or an nRT message. The determination
of the type of the slots and their assignments to unique nodes is done by processing both the
local information in the IL and the arguments passed from the CL as a response to the request
from IL. Besides time-slotted operation, another task of IL is passing messages from CL and
nRT applications to SM and vice versa. While passing messages to SM, IL is responsible

for the division of the big messages into sub-frames in order to fit them into the transmission
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window. IL should of course combine these sub-frames on the receiver sides before sending

them to the upper layers.

Further details of the IL protocol family will be discussed in the next section. Besides, RAIL
and TSIL, which are the two protocols in this protocol family, will be detailed. Therefore;

that much information is enough to understand a general overview of the D*RIP framework.

The last part of the D’RIP framework is the Coordination Layer (CL) protocol family. CL’s
basic duty is to guarantee the real-time needs of the connected applications by using the
time-slotted medium access offered by IL. To fulfill these RT requirements, CL processes
and broadcasts RT messages, which includes both the data that comes from the RT appli-
cations and the parameters related to CL protocol. CL uses these parameters to arrange the
scheduling information of the time-slots. CL arranges the scheduling according to the dead-

line constraints of the messages of the RT applications.

Whenever a request is issued by IL, CL returns with information about the ownership and the
type of the slot, i.e., if it is RT or not. CL also puts a boundary to the delay between IL’s

request and CL’s response, in order to guarantee the protocol specific requirements.

Under the Coordination Layer protocol family, two different protocols are defined. The first
one is the Dynamic Allocation Real-time Protocol (DART), which assigns allocated RT slots
to specific controller devices and dynamically updates the ownership of the slots depending
on the state of the control application. The other one is the Urgency-Based Real-time Protocol
(URT), which uses a priority queue to dynamically update the right to transmit of each device
considering their communication requests. Since CL implementation is out of the scope of

this thesis, no further information is given, except the TIOA description in Appendix A.3

4.2 Detailed Description of the IL

As briefly explained in the previous section, IL’s main task is transmitting both RT messages
that come from CL and nRT messages that come from the non-Real-time applications, in
a collision avoiding time-slotted behavior. In the D3RIP framework, IL protocol family is

defined explicitly in terms of input, output, and internal actions and variables.
The variables of IL protocol family consists of the protocol related variables; now, next, myIL,
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Figure 4.3: Message Transmission of IL Protocol Family

vIL, and the variables used to store messages; TXRT, RxRT, TxnRT, RxnRT. For storing RT
messages, buffers with one message length (TXRT and RxRT) are used, whereas for nRT mes-
sages, FIFO-queues (TxnRT and RxnRT) are used. (Fig. 4.3) The reason of this choice is
that RT messages are transmitted one at a time in a well-defined behavior, as explained later
in this section. nRT messages, on the other hand, are sent and received by the upper layer

applications at any time, unaware of the IL protocol.

The two of the protocol related variables, now and next are timing variables. The only real
variable, now, shows the current time and used to activate the actions in each time slot. (Fig.
4.4) The integer variable, next, on the other hand, holds the end of the current time-slot, which

is also the beginning of the next one.

The other two variables, myIL and RTIL are used to determine the properties of the time-slot.
RTIL, indicates if the slot will be used for RT communication or nRT communication. On the
other hand, myIL holds the ownership of the slot, i.e., if it will be used by this device or it is

owned by another one.

The last variable defined in the IL protocol family, is the protocol specific variable vIL. It
is a structure containing additional information about the scheduling of the time slots. Since
the contents of vIL changes according to the chosen IL protocol (RAIL or TSIL), details are

given later in this section, while explaining these protocols.
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Figure 4.4: Actions in IL Protocol Family during one Time Slot

The six actions that are used to transmit messages are: IL2CLRT(m, f), CL2ZILRT(b 1, by, m), IL2APNRT(g),
AP2ILNRT(m), 1.2sM(m), sm2m(m). The former three are output actions, i.e., triggered by IL
and used to pass the message to CL or SM. The later three, on the other hand, are input actions

triggered by either CL or SM, and used to transfer message from them to IL. (Fig. 4.3)

Beside these six actions, used for message transmission, there are two other actions defined
in the IL protocol family. The first one is the internal action upPDATE, that describes how to
update the internal variables. The other one is the REQRrT, used to request information from
CL, which is replied by the cL2iLrT(b1, by, m) action that carries information about the type

(b1) and ownership (b,) of the next time slot, apart from the RT message (m). (Fig. 4.4)

Each slot in the IL protocol family’s TDMA structure starts with the i.2sm(m) action. In this
action, the device that owns the slot according to myIL variable sends the message m to SM.
This message will be a RT message taken from TxRT, if the RTIL variable indicates that the
time slot is a RT slot, or an nRT message received from TxnRT queue, otherwise. In either

case, no message will be transmitted if the related buffer or queue is empty.

After dSlot — rem space of time, which is enough for all devices to receive the transmit-
ted message, sM21L(m) action will take place, passing the received message m from SM to
IL. Again, according to the variable RTIL, the received message will be put either RxRT or
RxnRT. If the message is put to the RxRT buffer, right after, i.2cLrT(m, f) will occur, passing

the message to the CL and cleaning the RxRT buffer.

The actions after this message transmission differ for protocols RAIL and TSIL, even their

occurance stay same as shown in Fig. 4.4. Therefore, the rest of the time slot is explained in
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two parts.
RAIL:

RAIL protocol assigns separate time slots statically for RT and nRT messages. This is done
via the RTSet and nRTSet elements of the protocol specific structure vIL. vIL.RTSet is same
for all devices in the system, setting those slots as RT slots, and the ownership of these slots
are determined by the variable b,, coming from CL, later with the cL2iLrT(b{, by, m) action.
The remaining slots are set as nRT slots and the devices in the system share them by uniquely

including in their vIL.nRTSet.

This slot assignment repeats after vIL.cyc slots. In each uPDATE action, next slot’s start time

18 set as

next = next + dS lot “4.1)

and vIL.cnt increases with modulo vIL.cyc to count the time slots. If vIL.cnt is an element
of vIL.RTSet, reqIL variable is set to trigger REQRT action to request information from upper
layer, after cmp time, which is needed for actions sm2m.(m), IL2CL(m) and uppate. CL, as a
response to REQRT, informs IL about if the next slot will be used for a RT message transmission
(b1) and if that RT message (m) is sent by this device (b;), via the cL2iLrT(b1, by, m) action.
This action should occur at most rem — cmp time after REQRT action, which is the dedicated
duration for upper layer computations. Finally, the RT message will be transmitted with the

next time slot, when now becomes equal to next.

If vIL.cnt is not an element of the vIL.RTSet, reqIL is not set and no REQRT action will be
issued. Instead, in uppaTE action vIL.cnt is checked to see if it is in the vIL.nRTSet, which
indicates that the next slot is assigned for this device’s nRT message transmission. If so, when
now becomes equal to next, the start of the next time slot, this time a message from TxnRT

queue will be transmitted, if there is any.
TSIL:

Unlike the RAIL protocol, which assigns the type (RT or nRT) of the slots statically, TSIL
protocol allows the CL to decide the type of each slot. Therefore, in each UPDATE action,

reqIL variable is set to trigger the REQRT action to request information from CL about the
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scheduling of the RT slots. CL, as a response to REQRT, issues the cL21LrT(b1, by, m) action to
inform TSIL about the type (b1) and the ownership (b,) of the next slot. The timings of the

actions REQRT and cL2ILRT(b |, by, m) are still same as the ones in the RAIL. (Fig. 4.4)

The scheduling of the nRT slots, on the other hand, are done statically as the one in RAIL pro-
tocol. The slot counter vIL.cnt is increased with again modulo vIL.cyc, but only in the nRT
slots. Therefore, vIL.cyc, this time indicates after how many nRT slots the nRT slot assign-
ment repeats. These nRT slots are again shared uniquely between the devices in the system
by including the slot numbers in their vIL.nRTSet. The remaining parts of the protocol are

just same as the ones in RAIL.

4.3 Time-Slotted Implementation

As explained in the previous section, IL protocol family is responsible for message transmis-
sion in an accurate time-slotted operation. In the subsections of the present section, first the
synchronization technique used for the implementation of TDMA (Time Division Multiple
Access) structure of IL is explained briefly. Then, the best method to be used for accurate
timings of the slots is chosen among the two alternatives: polling and interrupt. Finally, by

describing how to start the TDMA structure simultaneously, this section is finalized.

4.3.1 Synchronization

Synchronization is the essential part of the TDMA structure. For implementing a correct time-
slotted operation in a distributed system, all the nodes in the system should have their clocks
synchronized as accurate as possible. In D3RIP framework [6], the IEEE1588 [12], which is
a standard defining a protocol enabling precise synchronization of clocks in measurement and

control systems, is proposed as the synchronization technique.

The details of the IEEE1588 is out of the scope of this thesis, still a brief introduction is
given to explain the modifications needed in the implementation of IL, for properly running

an IEEE1588 application over a TDMA structure.

In IEEE1588 protocol, to calculate offset between the clocks there are four messages are

defined (Fig. 4.5). Initially, the master node sends a S ync message, and while transmitting
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Figure 4.5: Messages of IEEE1588

this message takes a timestamp (#;). When the slave node receives this message, it takes
another timestamp (#;). Then the master node send its timestamp (#) via the Follow_Up

message. At this point the offset between the clocks can be calculated by

Of fsetFromMaster = (t; — t1) — MeanPathDelay 4.2)

where MeanPathDelay is the message transmission delay between slave and the master node

and should be calculated by

MeanPathDelay = ((t — t1) + (t4 — t3))/2 “4.3)

where f3 is the timestamp taken by slave while transmitting the Delay_Req message and 14
is the timestamp taken by the master when receiving that message. The timestamp (#1) will
be transmitted to the slave via the Delay_Resp message to calculate the offset and arrange its

clock [13].

To run the IEEE1588 protocol as an nRT application, while implementing the IL protocol
family, some modifications are necessary to the timestamping mechanism. In ideal case, this
timestamping should be made as close to the shared medium as possible for precise syn-
chronization. Therefore, the IEEE1588 applications take the timestamps just before sending
to the network stack of the operating system. In the D*RIP framework case, on the other
hand, the IEEE1588 messages will not be transmitted immediately as they are sent out from

the application, since the system runs over a TDMA structure. They will wait in the TxnRT
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queue until a proper nRT slot arrives. This queuing delay is nondeterministic as it changes
according to the nRT traffic and the time application sends the message. For example, if the
synchronization application luckily sends the message just before the nRT slot that belongs
to the device it runs. In this case, the message will be transmitted with the start of the slot
and there will be no delay. If the it unfortunately sends the message just after the nRT slot
that belongs to the device it runs, on the other hand, the message will wait for the next nRT
slot that belongs to the device it runs, and this waiting duration depends on the scheduling.
This jitter in the queuing delay results in fluctuations in the delay values of the IEEE1588 and

results in malfunctioning in the synchronization.

To solve this problem, the queuing delay for the messages S ync and Delay_Req are notified
to the IEEE1588 application. The details of this solution are explained in subsection 4.4.1
while describing the Fragmenter. Note that, there is no modification need for other messages

of IEEE1588, as the received messages are immediately sent to the upper layers.

4.3.2 Prioritizing nRT Packets

In implementations that are using nRT synchronization application, the nRT traffic density
carries a great danger on the proper operation of the TDMA structure. If the nRT traffic
is very high, the synchronization messages could be timed out. This situation will cause
problems in the synchronization of the nodes and thus will result in the collapse of the whole

TDMA structure.

To avoid this threat, synchronization packets should have priorities over other nRT packets.
This prioritizing is accomplished by using two queues; one for nRT packets with high priority

and one for the other ones.

When a nRT packet comes from Linux network stack to the first part of the transmit function
of the Ethernet driver (see Fig.4.9), in the ”Send Packet to Fragmenter” step, if the packet is
an IEEE1588 packet, it will be put to the high priority queue. Otherwise, it will be put to the

low priority queue.

When a nRT slot for a device comes, in the popping a nRT packet from queue part (see
Fig.4.12), IL Thread will first check the high priority queue. If it is empty, this time the IL

Thread will check the low priority one.
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4.3.3 Timing Accuracy

Apart from synchronization, which involves clocks of all the nodes in the system, each node
should know its own time accurately. More accuracy in timings means less guard periods for
time slots, which in turn increases throughput and decreases minimum achievable deadline

for RT messages.

To decide the way to determine the time as exact as possible, firstly the two high resolution
POSIX clock types of the Linux 2.6 kernel, i.e. "CLOCK_REALTIME” and ”"CLOCK_MONOTONIC”
are examined. Then, three different methods to perform an action at the desired time are pro-

posed and the best method is chosen.

4.3.3.1 High Precision Timer Types

The two virtual clocks inside the Linux 2.6 kernel are CLOCK_REALTIME and CLOCK_MONOTONIC

[14]. The technical differences between these timers are given below in the Table 4.1.

CLOCK REALTIME:

It is a virtual POSIX clock, which represents the machine’s best-guess as to the current wall-

clock, i.e., time-of-day time.

CLOCK_MONOTONIC:

It is a virtual POSIX clock, which represents the absolute elapsed wall-clock time since some

arbitrary, fixed point in the past. It is not affected by changes in the system time-of-day clock.

Table 4.1: CLOCK_REALTIME vs. CLOCK_MONOTONIC

Timer Type CLOCK_REALTIME | CLOCK_MONQOTONIC
Can Jump YES NO
Can Slew YES YES
Can Generate Interrupt YES YES
Can Be Set To A Desired Value YES NO

As it can be observed from the Table 4.1 that CLOCK_MONOTONIC cannot be set to a de-

sired value. In the previous section, it is indicated that to synchronize the clocks of the nodes
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in the system, the offset between them is calculated; and according to this calculation, the
clocks of the slave nodes should be modified. Therefore, the clock source for the implemen-

tation should be CLOCK_REALTIME.

4.3.3.2 Timing Methods

To perform an action at the desired time, two different methods are proposed: Polling the clock

continuously until it reaches the desired time, and setting a timer interrupt to the desired time.
Polling:

Polling is another method to perform an action at a desired time. In this method, the time
value of the clock is continuously read until the predefined desired time value is reached. This
method achieves the best result in the means of accuracy; however, it keeps the processor busy
until the desired time is reached. The IL implementation will have the greatest priority, since
it provides services to the CL, which provides services to the RT applications. Therefore,
keeping the processor all the time means that CL, RT applications and also nRT applications
would not work; since in the implementation Linux with RT-preemption patch, which makes
tasks with higher priority preempts those with lower priority, is chosen as the operating system
as explained in Appendix B. As a result, this method is inappropriate to be used in the IL

implementation.
Interrupt:

Last method to perform an action at a desired time is using a timer interrupt. In this method,
a high resolution timer is connected to one of the clock sources mentioned in the subsection
4.3.3.1. When the pre-defined clock event, which can be an absolute time or a duration,
occurs, the timer will raise an interrupt. In the interrupt handler of the timer, the thread
waiting for performing an action can be informed either by a semaphore or a wait_queue.

Then the thread will perform the action.

The performance of this timer interrupts is highly improved as the high-resolution timers get
into the Linux kernel tree with the version 2.6.24. Besides, this method is not keeping the
processor busy like polling method. Therefore, it is the best option for determining the time

of an action to be performed.
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4.3.4 Simultaneous Start of TDMA Operation

Apart from synchronization and timing accuracy, another issue for implementing a proper
time-slotted structure is starting simultaneously, i.e., all nodes in the system should start the
TDMA operation at the same time. Being a distributed system, in D*RIP all the nodes keeps
exactly the same scheduling. Thus, all the nodes know in which slot they will transmit.
By implementing accurate synchronization and timing, the slot start times become close.
Still if the nodes start the slotted behavior at different times, there will be shift between the

scheduling of the nodes leading to collisions.

To overcome this problem, one of the nodes utilized as master node (similar to [15]) temporar-
ily, to send a special SYNC message to identify the start of the communication cycle. This
choice is done by the user, while setting up the industrial communication network. Therefore,
using a temporary master for the start-up of the system does not violate the non-master-slave

behavior of the real operation.

SYNC message indicates the start of the slotted structure; still the nodes will not start immedi-
ately after receiving this SYNC message, since they will receive it at different times, because
of the transmission delay, and inaccuracies in the synchronization and timing. Instead, the
receiver nodes will wait the start of the next ten seconds to start the TDMA structure. This
will solve the problem unless the reception time is very close to the beginning of the next ten
seconds. In that case, some nodes may receive the SYNC message in the next ten seconds,
which causes ten seconds shift between the scheduling. To prevent this final problem, the

master transmits the SYNC message in the middle of ten seconds.

4.4 Frame Segmentation

As D3RIP framework depends on the TDMA structure with fixed time slots, the messages
transmitted from IL to SM should have an upper boundary in size. To fulfill this requirement,
in [6], it is proposed to choose the time slot duration long enough to transmit the longest RT
message. Still nRT messages may cause trouble, since their size can be bigger than the longest
RT message. Increasing slot size for transmitting the biggest Ethernet frame is undesirable,
since it will increase the minimum delay for RT packets, which is the primary objective of

the framework. Therefore, the nRT packets bigger than the longest RT message should be
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fragmented into frames before transmission.

To fragment big packets into frames, a frame header structure is defined as shown in Fig. 4.6.
The size of this structure is tried to keep as small as possible, since it will cause an overhead

and decrease the throughput.

Frame Header

nodelD : unsigned char
packetID : unsigned char
packetLength : unsigned short int
frameNum : unsigned char
frameSeq : unsigned char

frameLength : unsigned char

Figure 4.6: Frame_Header Structure

The elements of the Frame_Header structure and their use are;

nodel D:

e Holds the ID of the source node which transmits the packet.

e Chosen to be unsigned char (8 bit), which can support up to 256 nodes.

packetlD:

e Holds the unique ID of the packet that is transmitted from the node with nodelD.

e Chosen to be unsigned char (8 bit) to identify up to 256 successive packets.

packetLength:

e Holds the total length of the unfragmented packet in Bytes.

e Chosen to be unsigned char (16 bit) to support maximum Ethernet frame, which is 1518

Byte according to [16].

frameNum:
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e Holds the total frame number that the packet will be transmitted.

e Chosen to be unsigned char (8 bit) to support up to 256 frames that a packet with

maximum length 1518 can be transmitted.

frameS eq:

e Holds the sequence number of the frame of a multi-framed packet.

e Chosen to be unsigned char (8 bit), since it can be maximum frameNum.

frameLength:

e Holds the data length in the frame in Bytes.

e Chosen to be unsigned char (8 bit) to support frames with up to 256 Byte data.

4.4.1 Fragmentation

To fragment the nRT packets, bigger than the maximum RT packet size, a Fragmenter thread
is created. This thread waits for the nRT packets that will be transmitted via the Ethernet
driver’s transmit function, which is examined in the next section. When an nRT packet comes
from the upper layer, this thread fragments it into frames and puts these frames to the TxnRT

queue according to the flowchart given in Fig.4.7.

Fragmenter thread waits for an nRT packet from Ethernet driver’s transmit function and when
a packet comes, it checks the size of the packet to decide if it is needed to be fragmented. If
the packet length is smaller or equal to the maximum RT packet size, Fragmenter puts it to
the TxnRT queue only marking the packet as non-fragmented data coming from Fragmenter,

not from the upper layer applications, to avoid it to come to Fragmenter again.

If the nRT packet’s length is greater than the maximum RT packet length, i.e., the packet is
needed to be fragmented, Fragmenter initially increases the packetlD, which is used to dis-
tinguish the successive fragmented packets coming from one node. Then, Fragmenter calcu-
lates the number of frames that the packet will be fragmented into. At this point, Fragmenter

starts preparing the frame header by assigning the elements that are common for all frames
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Figure 4.7: Flowchart of the Fragmenter Thread
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of the packet, which are nodel D, packetlD, packetLength and frameNum. Then, in a loop,
Fragmenter prepares the frames and sends them to the TxnRT queue. It, first prepares the rest
of the header by increasing and setting the frameS eq, and determining the frameLength,

which is

frameLength = maximumRT paketsize — frameheadersize 4.4)

for the initial frames and

frameLength = packetLength—(frameNum—1)+(maximumRT paketsize— f rameheadersize)

(4.5)

i.e., the remaining packet size, for the last frame. Besides, in this loop Fragmenter allocates
memory for the frame and copies the frame header and data from the packet’s remaining part.
In the final part of the loop, Fragmenter puts the prepared frame to the TxnRT queue, again
marking that it comes from Fragmenter. Finally, when the last frame is sent to the TxnRT
queue, Fragmenter breaks the loop and again waits for another packet from the Ethernet

driver’s transmit function.

4.4.2 Reassembly

To combine the fragmented packet frames coming from the Ethernet, before passing to the
upper layers, a Reassembler thread is created. This thread waits for the fragmented nRT
packet frames coming through the Ethernet driver’s receive function, which is examined in
the next section. As the Reassembler thread receives the frames, it combines these frames and
transmit them to the upper layer via again the receive function of the Ethernet driver when a

full packet is assembled, according to the flowchart given in Fig.4.8.

Reassembler thread waits for a frame of an nRT packet, which is fragmented in the Fragmenter
of the sender node. When an nRT packet frame is received by the Ethernet driver, the re-
ceiver function directly sends that frame to the Reassembler thread. After receiving a frame,
Reassembler first resolves the frame header. Then, it looks at the nodelD element of the

frame header to check if a receive session for a fragmented packet from that node contin-
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ues. If not, Reassembler allocates memory with the size of packetLength and sets that the
receive session for the packet with packetID form node nodelD started. After copying data
with size frameLength from the frame’s data part to the allocated memory for fragmented
packet, Reassembler checks if the total received data length is equal to the packetLength.
If so, Reassembler finalizes the receive session for a fragmented packet from that node and
transmits the packet to the upper layer applications using the Ethernet driver’s receive func-
tion. Just before sending the packet to the receive function, Reassembler marks that it comes

from Reassembler to prevent the packet comes to itself again.

If the receive session for a fragmented packet from the node with nodel D continues, Reassembler
first checks the packetID to verify that the received frame belongs to the packet that the re-
ceive session continues. Then Reassembler checks the frameLength to see if the remaining
part of the allocated memory is enough for the received frame’s data. In both controls, if there
is an error, Reassembler finalizes the receive session of the packet from the node with nodel D

and releases the allocated memory for that packet.

If there is no error in the checks, Reassembler copies data with size frameLength from the
frame’s data part to the allocated memory for fragmented packet. Finally, it checks if the total
received data length is equal to the packetLength. If so, Reassembler finalizes the receive
session for a fragmented packet from that node and transmits the packet to the upper layer

applications using the Ethernet driver’s receive function.

4.5 SM - IL Interface

For the communication between the SM and IL, transmit and receive functions of the Ethernet
driver functions are used. Via these functions, the IL can transmit the messages directly to
the Ethernet line and receive the packets or frames from Ethernet before they are transmitted
to the network stack of the operating system. We present the implementation details for the

transmit and receive functions in the remaining part of this Section.

Besides, these functions are used to get the nRT packets from the upper layer nRT applications
and transmit the received nRT packets to them. To provide both of these capabilities; receive
and transmit functions of the Ethernet driver are modified. Despite for different Ethernet card

providers different driver codes exist, transmit and receive functions are similar. The reason
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for this situation is that Linux operating system expectations for a network driver are uniform
as explained in [17]. Only differences between different driver codes come from extra features
provided, such as setting a maximum threshold for retransmission after a collision, provided

by Intel Gigabit Ethernet Controllers.

The IL is designed to provide collision-free operation over shared medium Ethernet. However,
incase of a fault and a subsequent failure of a device there can be collisions. By setting the
maximum threshold for retransmission to zero, the retransmission mechanism of the Ethernet,
which is a crucial threat for the correct operation of the TDMA structure, can be disabled.
According to truncated binary exponential backoft algorithm [1] defined in the CSMA/CD
standard [16], if a collision occurs, the sending node will retransmit its message after waiting
for a random duration. This causes the node to transmit a message in an undetermined time,
which causes the whole TDMA structure to be collapsed. In Intel’s Gigabit Ethernet Con-
trollers [18], there is a one Byte “’Collision Threshold (CT)” entry in the “Transmit Control
Register (TCTL)”, which determines the number of attempts at re-transmission prior to giving
up on the packet (not including the first transmission attempt). This entry gives an opportunity
to the software developer to disable retransmission mechanism and its the main reason for the
choice of Intel Gigabit Ethernet Controllers in the implementation of the D*RIP framework.
This is a simple preliminary reliability precaution. However, avoiding retransmission when
an error occurs is not enough for the reliability of the framework, and further actions should

be made to retrieve from the error condition, which is out of the scope of this thesis.

Thanks to the modular structure of Linux, these modifications do not need to be made directly
on the kernel. Instead, the driver source codes, which can be obtained from both the kernel
source codes and the driver providers web site, can be modified and build out of the kernel
tree. After the start up, the Ethernet driver module can be removed and the kernel module

output of the modified driver code can be inserted.

4.5.1 Transmit

The transmit function of the Ethernet driver is the final point of all the packets using the
network stack of the Linux operating system. Besides, it is the function that transmits the
Ethernet packets to the Ethernet line through the Ethernet controller. Therefore, with some

modifications, this function is used as both the Ap21LNRrT(m) function that receives all packets
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coming from nRT applications and .2sm(m) function that transmits RT and nRT packets to

the Ethernet line.

Since this function is used for two different purposes, three Ethernet packet types are defined

as Table 4.2.

Table 4.2: Ethernet Packet Types Defined for D°RIP Framework

Packet ID Packet Type
0x1100 IL_RT_PACKET
0x2200 IL_NRT_PACKET
0x3300 | IL_.SYNC_PACKET

The IL_RT_PACKET type is used for RT packets, IL_.NRT_PACKET is used for fragmented
nRT packet frames and IL_.SYNC_PACKET is used for the SYNC message that is used to
identify the start of the communication cycle as explained in subsection 4.3.4. As explained
in [16], the value of the Length/Type field of the Ethernet header should be greater than
1536 decimal (0x0600 hexadecimal) in order to indicate Type interpretation; otherwise, it
will indicate the number of data octets contained in the Ethernet packet. Therefore, all of
these packet types are chosen to be greater than 0x600. Besides, while choosing these values
for the packet types, paid attention to the already registered types at [19] and unique types are

assigned.

As seen in Fig. 4.9, the transmit function of the Ethernet driver is modified in such a way that
it supports the communication both before and after the Fragmenter thread is initialized. In
the function, first it is checked that if the Fragmenter thread is initialized and if it is not, the

modifications are bypassed and function acts as the original transmit function.

If the Fragmenter is initialized, then the Ethernet packet is checked if it is marked a non-
fragmented packet coming from the Fragmenter. If it is not, the packet is checked to be an
IEEE1588 packet coming from the network stack of Linux, this time. If it is an IEEE1588
Sync or Delay_Req packet, timestamp is taken for the arrival of the packet, in order to cal-
culate the queuing delay further, and it is sent to the Fragmenter to wait for its time to be
transmitted, not to be fragmented. If it is not an IEEE1588 Sync or Delay_Req packet, one

final control is made to the Ethernet packet type to understand if it is an IL_RT_PACKET or
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IL_NRT_PACKET. If so, it means that packet or frame is coming from the Fragmenter and
it is transmitted to the Ethernet line via the unmodified part of the original Ethernet driver

transmit function. (see subsection 4.3.1)

If the packet is marked as a non-fragmented packet coming from the Fragmenter, it should be
a nRT packet smaller than the biggest RT packet. As it is explained in the next chapter, all the
IEEE1588 packets are among this type of nRT packets. Even the packets are small enough that
they do not need to be fragmented, they are initially sent to the Fragmenter thread to wait for
a nRT slot to be sent. Therefore, at this point it is checked that if the packet is an IEEE1588
Sync or Delay_Req packet coming from the Fragmenter. If so, this time a timestamp is
taken for the departure of the packet. The queuing delay that these packets subject to is
calculated by the Eqn.4.6, and transmitted to the IEEE1588 synchronization application by
using file operations of char devices [20]. The application will take this delay into account
after receiving it [13]. Then, these packets are transmitted to the Ethernet line; again via
the unmodified part of the original Ethernet driver transmit function. The non-fragmented
packets coming from Fragmenter, other than IEEE1588 Sync and Delay_Req packets also
transmitted via the unmodified part of the transmit function, without any delay calculation

this time.

queuingDelay = departureTimeFromFragmenter — arrivalTimeT oFragmenter  (4.6)

4.5.2 Receive

The receive function of the Ethernet driver is the first function that all the packets or frames
coming from Ethernet controller arrives. Besides, it is the function that transmits these packets
to the upper layer applications through the network stack of the operating system. Therefore,
with some modifications, this function is used as both the sm2iL(m) function that receives all
packets or frames coming from the Ethernet line and 1.2aPNRT(g) function that transmits nRT
packets to the upper layer nRT applications. This is accomplished again by using the types
defined in Table 4.2.

As seen in Fig. 4.10, the receive function of the Ethernet driver is modified in such a way that

it supports all situations including IL protocol initialized or not, and Reassembler initialized
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or not. First it checks if the received packet or frame comes from the Reassembler. If so, the
message will be transmitted to the upper layer applications through the network stack of the

operating system, via the unmodified part of the original Ethernet driver receive function.

If the packet or frame is not coming from the Reassembler, the receive function checks if
the IL protocol is initialized, which is done by temporary master (can be chosen as one of
the devices in the system by the user) sending the special SYNC message to identify the
start of the communication cycle and other nodes receive it, as explained earlier in subsection
4.3.4. If the IL protocol is not initialized yet, the first control is checking the Ethernet packet
type to see if the received packet or frame is the SYNC message. If so, the receive function
will inform the IL protocol to initialize by sending a semaphore. If the received packet or
frame is not the IL_.SYNC_PACKET message, the packet or frame is checked that if it is an
IL_NRT_PACKET frame. Since Fragmenter and Reassembler threads are initialized earlier,

fragmented nRT packet transmission can start before the IL protocol is initialized.

If the packet or frame is an IL_LNRT_PACKET frame, it is controlled to see that if the Reassembler
is initialized, since the transmitting node can initialize the Fragmenter before the receiver
node initializes Reassembler. If the Reassembler is not initialized, the frame will be trans-
mitted to the network stack of the operating system via the unmodified part of the receive
function. As the Ethernet packet type is changed to IL_LNRT_PACKET in the Fragmenter,
the application that actually waits the packet could not receive it, which will resulted by the
network stack’s disposing the frame. If the Reassembler is initialized, the fragmented packet
frame will be sent to the Reassembler to be combined and sent to the upper layer applications

again using the receive function of the Ethernet driver.

If the packet or frame is neither IL_.SYNC_PACKET nor IL_NRT_PACKET, and IL is not
initialized, then it must be an non-fragmented nRT packet, i.e., nRT packet with a size smaller
than maximum RT packet length, and will be immediately transmitted to the upper layer
applications through the network stack of the operating system again using the unmodified

part of the receive function.

If the IL protocol is initialized, then protocol specific actions are taken into account. If the
RTIL variable is true, then the IL protocol expects a packet with type IL_RT_PACKET. If the
Ethernet packet type mismatch, which means an error occurs, the packet is disposed. If the

expected packet with type IL_LRT_PACKET comes, it will be immediately forwarded to the
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CL protocol family via the i.2cLrT(m, ) message.

If the RTIL variable is false, again the Ethernet packet type is checked. This time, since a nRT
packet or frame is expected, if a packet with type IL_RT_PACKET comes, again it means an
error occurred and the packet is discarded. If the Ethernet packet type is IL_NRT_PACKET,
which means a fragmented RT packet frame came, the frame will be sent to the Reassembler
to be combined and sent to the upper layer applications again using the receive function of
the Ethernet driver. Otherwise, the received packet is a non-fragmented nRT packet and will
be immediately transmitted to the upper layer nRT applications through the network stack of
the operating system, via the rest of the receive function, which is the unmodified part of the

original function.

4.6 1IL - CL Interface

Apart from the interfaces between SM and nRT Applications, which are both realized by
using the modified transmit and receive functions of the Ethernet driver; one other interface

that should be implemented is between CL.

As it is needed to use the driver function in order to control all outgoing packets from the
operating system, the IL protocol family is implemented in the kernel space. However, this
necessity is not valid for the CL implementation. On the contrary, implementing it in the user
space is more reasonable, since CL provides service to the RT applications and implementa-

tion in the user space is easier [21].

Table 4.3: Experimenter Setup Devices

Personal Computer (PC) Development Kit (DK)

Hardware Hardware
QuadCore Intel(R) Core(TM) 13 Intel(R) Atom(TM)
CPU 550@3.20GHz CPU 7530 @ 1.60GHz
3.6 GByte RAM 1 GByte RAM

Software Software

Ubuntu (Release 10.10) Ubuntu (Release 10.10)

Kernel Linux 2.6.33.7.2-rt30 Kernel Linux 2.6.33.7.2-rt30

We perform an experimental study to observe the timings of communication between IL and
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CL when CL is implemented in kernel space and user space. The experiments are conducted

on two devices with the properties given in Table 4.3.

The two basic requirements to be fulfilled are message passing, which means passing RT
packets from IL to CL and vice versa, and signaling, which is IL’s informing CL about its

information request and CL’s response.

4.6.1 Message Passing

Message passing is required for the RT packet transmission from CL to IL while transmitting,
and from IL to CL when receiving. If CL is implemented as a user space application, to send
messages from IL to CL copy_to_user() function should be used to copy data from kernel
space to user space. To send messages from CL to IL, on the other hand, copy_from_user()
function should be used to copy data from user space to kernel space [22]. If CL is imple-
mented in the kernel space, to transfer messages between IL and CL, the data is only needed

to copied via the generic memcpy() function.

Therefore; to compare the speed of these three functions, a small size data with the length
of 4 Bytes, a medium size data with the length of 150 Bytes and a large size data with the
length of 10000 bytes (10KByte) are copied. Timestamps are taken just before and just after
the copying process. Ten experiments are made by taking 10000 samples in each experiment
and calculating the maximum delay. The average of these maximum values for two devices

in Table 4.3 are given in Table 4.4.

Table 4.4: Data Copy Duration (in ns) with Different Techniques

PC DK
memcpy | copy-to_user | copy_from_user | memcpy | copy-to_user | copy_from_user
4 Bytes 881 18289 12745 5597 50604 82262
150 Bytes 1329 21700 17467 10127 46775 104582
10000 Bytes | 15698 20907 49347 86389 108553 314409

As it can be seen from the results in Table 4.4, memcpy() has better performance than both
copy_to_user() and copy_from_user(). This is an expected situation, since it can be seen form

the source codes of the kernel in [23] that both of these functions include memcpy() function.
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Furthermore, this functions access to the user space memory from kernel space. As stated in
[20], the user pages being addressed might not be currently present in memory, and the virtual
memory subsystem can put the process to sleep while the page is being transferred into place,
which can happen, for example, when the page must be retrieved from swap space. As the
memory being copied becomes greater, the time needed for copying becomes higher and the
the ratio of the copy_to_user() and copy_from_user() duration to memcpy() duration becomes

smaller. Still this difference should be considered in order to have a better performance.

4.6.2 Signaling

Signaling is required for CL and IL to inform each other about an action, like REQrRT and
cL2irt. If CL is implemented in the kernel space, IL and CL will notify each other via either
a semaphore or a wait queue, which are the two methods used in kernel space for interprocess

communications in Linux [24].

Otherwise, more complicated techniques should be used for communicating between kernel
space and user space. The most widely-used one among these techniques is the file descriptors
[25]. With read and write functions, CL can get data from and send data to IL, via the
copy_to_user() and copy_from_user(), explained in the previous subsection. Still, using file
descriptors directly are not enough for IL-CL communication, since there is no support for
signalling to user space from kernel space. Therefore, either a separate signalling should be

made or blocking read should be used.

As discussed in the [26], with the send_sig_inf() function a signal can be send to a specific
process in the user space. By using this signal, IL. can request upper layer information from

CL or inform it that the RT message is ready to be read.

To compare the speed of signalling between kernel space - user space and kernel space -

kernel space communications, five experiments using the methods above are conducted.

In the first two experiments, CL protocol is assumed to be implemented in the kernel space.
In the first experiment, two threads, one corresponds IL and the other one corresponds CL,
are created. One is waiting for a semaphore, which is send by the other thread. The sender
thread takes a timestamp just before sending the semaphore, and the receiver takes just after

receiving it. The difference between these timestamps gives the signalling delay
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The second experiment is almost the same as the first one. The only difference is that instead

of semaphore, the threads use wait_queue to communicate.

In the third, fourth, and fifth experiments, on the other hand, CL protocol is assumed to be
implemented in the user space. The third experiment corresponds to the CL signalling to the
IL via the write function of file descriptor. The thread, corresponding to the CL, is created
in the user space and calls write function to send a message to IL. Since in the previous
subsection the message copying delay is examined, in this experiment no copying is made.
Only a semaphore is given in the write function to the IL thread implemented in the kernel
space. In this experiment timestamps are taken just before calling the write function in the

user space, and just after taking the semaphore in the kernel space.

The fourth experiment corresponds to the IL signalling to the CL. In this case, first the kernel
thread, corresponding to IL sends a signal to the user space to inform about CL about an
action. This signal triggers a user space function to give a semaphore to the user space thread,
corresponding to the CL. Just after taking the semaphore, this thread calls read function of the
file descriptor. Again since in the previous subsection the message copying delay is examined,
in this experiment no copying is made. The timestamps are taken just before sending the

signal and just after the read function returns.

The last experiment includes the usage of blocking read functions. In this case, in the user
space, a thread is created to continuously read from the kernel space. The important point
of this read is that it is blocking, which is accomplished by waiting a for a wait_queue in
the definition of the read function in the kernel space. When the IL wants to signal CL, it
simply release the wait_queue. Then, the read function will return and the thread calling the
read function will call the user space implementation of the IL’s action. Again since in the
previous subsection the message copying delay is examined, in this experiment no copying is
made. The timestamps are taken just before releasing the wait_queue and just after the read

function returns.

Again ten experiments are made by taking 10000 samples in each experiment and calculating
the maximum delay. The average of these maximum values for two devices are given in Table

4.5.

As it can be seen from the Table 4.5, all the signalling techniques experimented have similar
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Table 4.5: Signalling Delay (in ns) with Different Techniques

PC DK
semaphore 18649 | 52492
wait_queue | 27721 | 46458

write 28230 | 50972
read 27646 | 56512
blocking read | 31295 | 50800

delay values. This shows that while communicating between user space and kernel space,

there is not much delay apart from the paging delay mentioned in the previous subsection.

4.7 1L Thread Implementation

Considering the previous sections, we decide to implement IL as shown in Fig.4.11.

CL

Linux Network Stack

Fragmenter I AP2ILNRT | IL2APNRT |Reassembler

| IL2SM SM2IL I_
I I —

IL Thread

Figure 4.11: General Overview of IL Implementation

According to this implementation, the RT messages coming from the RT applications will
follow the red line. First, they will be transmitted to the implemented CL protocol. Then,
when CL decides that the next slot will be used for that device’s RT transmission after a REQRT
from the IL, CL will send an RT message to IL. When the next slot begins, IL will send it
to the Ethernet controller via the IL2SM function, which is actually the second part of the

Ethernet driver’s modified transmit function.
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On the receive side, the RT messages follow the blue line. When an RT message comes from
the Ethernet line via the sM21L.(m) function, which is actually the second part of the Ethernet
driver’s modified receive function, only RTIL variable, which is controlled by IL and CL, is
checked. If it is true, the RT message will be directly transferred to the CL. Otherwise, an

error has occurred, and the system will stop.

The nRT messages coming from the nRT applications, on the other hand, will follow the
yellow line. All messages to be transmitted to the Ethernet line will use the network stack of
Linux, and the last point of this stack is the transmit function of the Ethernet driver. So, an
nRT message will initially come to the ap2iLNRT function, which is actually the first part of
the Ethernet driver’s modified transmit function. Here, the nRT message will be transmitted
to the Fragmenter, where it is put to the TxnRT queue of the IL Thread after being divided
into frames if it is bigger than the maximum RT packet size. When IL decides that the next
slot will be used for that device’s nRT transmission, at the start of the next slot, a message
from the TxnRT queue, if there is any, will be transmitted to the Ethernet controller via the
IL2SM function, which is actually the second part of the Ethernet driver’s modified transmit

function.

On the receive side, the nRT messages follow the green line. When an nRT message comes
from the Ethernet line via the sm2iL(m) function, which is actually the second part of the
Ethernet driver’s modified receive function, only RTIL variable, which is controlled by IL and
CL, is checked. If it is false, the nRT message will be directly transferred to the Reassembler,
where it is combined with the other frames if it a fragmented packet frame before transmitted
to the upper layer nRT applications over the Linux network stack via the i.2apNRrt function,
which is actually the first part of the Ethernet driver’s modified receive function. Otherwise,

an error has occurred, and the system will stop.

Since the general working principle of IL is same for both protocols of the IL protocol family,
RAIL and TSIL implementation realized in a similar manner. The only difference is in the IL
Thread implementation, which controls the scheduling, as mentioned in section 4.2. Still, IL
Thread implementation is not so different. As explained in the TIOA description in App.A.2,
[6] defines protocol family as generic as possible. Therefore, the IL Thread is implemented in
a generic way (Fig.4.12). The only difference between RAIL and TSIL is the implementation

of the protocol specific functions as shown in Table A.1. Since these functions are only mak-
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ing condition check and setting the corresponding variable, they do not have any difference in

running time and implementation.

‘ Initialize Variables ‘

I
Simultaneous Start
of TDMA Structure
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I
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Figure 4.12: Flowchart of the IL Thread

As shown in Fig.4.12, the IL Thread, initialize the protocol related variables and waits for the
simultaneous start of the TDMA structure at the start up, as explained in the subsection 4.3.4.
When the time slots start synchronically, the IL Threads wait for the uPDATE time, which is
“next — rem’”. When it is time to UPDATE, the protocol specific structure, vIL is updated via
the protocol specific update function f,,4. Then it checks if there is a need for an upper
layer information from CL by updating the variable reqIL by using another protocol specific
function f,. If the reqIL is false, which means that the next slot is not for RT transmission,
IL Thread sets RTIL false, updates myIL via the protocol specific function f,,, and updates

the next slot start time next.
On the other hand, if the reqIL is true, which means that an upper layer information is needed,
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only the next slot start time, next, is updated and the variables RTIL and myIL are not set in
the scope of uppate. Instead, IL Thread sends a request to CL, sets reqIL false and waits
until "next —dS lof”. During this period, which is "rem —cmp”, CL will responds with cL2ILRT
function, which uses protocol specific functions fzr and f,,, to set the variables RTIL and

myIL.

Then IL2SM part of the IL Thread takes place. Here, first myIL variable is checked to see if
the next slot belongs to this device. If not, since reception is made out of IL Thread, it returns

to the beginning to wait for the next UPDATE.

If myIL is true, IL Thread this time checks the RTIL variable to see if the slot belongs to an RT
message or an nRT message. If it is false, IL Thread checks the TxnRT queue and sends one
nRT packet or frame from this queue, if there is any. If it is true, on the other hand, IL Thread
sends the message in the TxRT buffer, which is filled by the CL via the cL2iLrRT function. In
both cases, the transmission is made by the Ethernet driver’s transmit function explained in

subsection 4.5.1.
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CHAPTER 5

PERFORMANCE EVALUATION and COMPARISON

5.1 Pre-Experiment Setup

Since the RAIL and TSIL protocols defined in the IL protocol family of the D*RIP framework
are implemented as explained in the previous chapter, the next step is conducting a long
experiment to evaluate their performance. In the experiment, two PC’s and two DK’s, whose

hardware and software properties are given in Table 4.3 are used.

These devices could be connected over either a switch, router of a hub. For real time commu-
nications, like ours, the time boundary for each message transfer should be explicitly known
and the delays are intolerable. In switches and routers, there are decision processes. Switches
decide the output port for the Ethernet packet according to the destination MAC addresses,
and routers on the other hand have a more complex algorithm. Both switches and routers add
some delay to the Ethernet packets because of these calculations. Also, in order to make these
calculations, they contain some buffers, which make transmission delay nondeterministic.

Therefore, they are inappropriate for real time communications.

Hubs on the other hand, are Layer 1 (Physical Layer) devices in the Open Systems Intercon-
nection (OSI) model. They do not make any calculations on the packet. They simply receive
the Ethernet frames, and broadcast these packets out from all other ports, by regenerating the
electrical signal. So, there should be no packet delay resulted by the calculations. According
to [27], the delay jitter in hubs without congestion is about 100ns at most. Since this value is
too small, hubs will not be a burden for the deadline calculations of the messages. Therefore,
hubs are the most appropriate network connection equipments. As a result, the two PC’s and

two DK’s are connected over a 10Mbps Hub.
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5.2 Assumptions

Before starting the experiment, some calculations should be made to determine the slot dura-
tion to be used in the final experiment. First thing to be calculated is the maximum message
size to be sent in one slot. Actually, this value should be equal to the maximum RT packet that
can be transmitted. Since the CL protocol family is out of the scope of this thesis, the maxi-
mum RT packet size could not be known. Therefore, another approach is made, and slot size
is chosen to be big enough for all synchronization messages, which are the only nRT packets
that are prerequisite for the operation of the TDMA structure implemented by the IL protocol
family. From the IEEE1588 synchronization message sizes given in Table 5.1, it can be seen
that the biggest message is the ANNOUNCE message, which is used to announce that a new
node is joining the synchronization network, with a length of 106 Bytes. Therefore, by round-
ing up, a slot size with a capacity to transmit 150 Bytes is assumed. Thus, by subtracting the
14 Bytes MAC header overhead (according to [16]), the maximum RT message size is 136

Bytes.

Table 5.1: Lengths of the IEEE1588 Synchronization Messages Used in the Experiments

SYNCH 86 Bytes
FOLLOW_UP | 86 Bytes
DELAY_REQ | 86 Bytes
DELAY RESP | 96 Bytes
ANNOUNCE | 106 Bytes

The second parameter to be calculated is the maximum value of rem, the part of the time
slot that is not used for message transmission. During this period, IL will update its internal
variables (uppaTe), and request information from CL (rReQrT) and wait for the response of
CL (cL2irr(b1, by, m)). Assuming that CL is implemented in application layer, and using

blockingread and write techniques to communicate, the rem duration can be approximated.

For reQrT and 1.2cLRT(m, 1), write technique is assumed to be used. To distinguish them, the
first Byte of the written data is used. Since in REQRT no message transmission is made, the
amount of the memory copied is 1 Byte. The w.2cLrt(m, f), on the other hand, copies an RT

packet of 136 Bytes. Thus the amount of the memory copied is 137 Bytes.
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Considering the maximum values (using 4 Bytes instead of 1 Byte and 150 Bytes instead of
136 Bytes) in Table 4.4 and Table 4.5 in the Sec4.6, the time for REQRT and cL21LRT(b1, b>, m)

can be approximated as:

REQRT time for PC:

28230 + 18289 = 46519ns

REQRT time for DK:

50972 + 50604 = 101576mns

cL2irT(b1, by, m) time for PC:

31295 + 17467 = 48762ns

cL2iLrt(b, by, m) time for DK:

50800 + 104582 = 155382ns

As the uppatE is only composed of basic C operations, it is negligible. Therefore, the maxi-

mum value of rem should be greater than 95281 for PC’s and 256958ns for DK’s.

The last parameter to be calculated is the maximum value of dS lot — rem, which is the time

needed for the message transmission.

Since in the experiments 10Mbps hub is used, the transmission delay should be at least

150Bytes x (8bits/1Byte) + 10000000bits/sec = 0.12msec

Apart from this transmission time, there is also a negligible propagation delay factor caused
by the used cable lengths. Besides, the mismatches in the clocks caused by the IEEE1588
synchronization tolerance, which is about 10-100us in software implementations according
to [28], should be considered. Final source of delay is the memory copying. The message
is copied from IL to SM via n.2sm(m), which uses memcpy() and a semaphore, at the trans-
mitting node and is copied from SM to IL on the receiver node via smM21L(m), which uses
memcpy() and a semaphore, and then immediately it is transferred to the CL via i.2cLrT(m, ),

which uses write as mentioned earlier.
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Considering the maximum values in Table 4.4 and Table 4.5 in the Sec4.6, the time for

1.2sm(m), sM21L(m) and iL2cLRT(m, f) can be approximated as:

.2sm(m) time for PC:

18649 + 1329 = 19978ns

.2sm(m) time for DK:

52492 4+ 10127 = 62619ns

sMm2iL(m) time for PC:

18649 + 1329 = 19978ns

sM21L(m) time for DK:

52492 + 10127 = 62619ns

IL2cLRT(m, 1) time for PC:

31295 + 21700 = 52995ns

IL2cLRT(m, t) time for DK:

50800 + 46775 = 97575ns

The total measured time needed for message transmission is 312951 ns for PC’s and 442813

ns for DK’s

Apart from these measured delays, also there are bus delays that are needed for the message
to be put on the Ethernet line after the driver’s transmit function and that are needed for the

message to be received from the Ethernet line before the driver’s receive function.

Since the experiments in Sec4.6 are short term experiments, the values should be chosen
much higher for the long-term experiment, which is conducted to obtain much precise values.
Since in the experiment both PC’s and DK’s are used, the maximum value of the rem and

dS lot — rem should be chosen according to the DK, which has worse performance.

As a result, for the experiment, the rem value is assumed to be 2 ms, which is about 8 times
greater than the measured maximum value. The dS /ot — rem value, on the other hand, is
assumed to be 8 ms, which is far greater, since there are delay sources that could not be

measured.
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As an important point, it should be kept in mind that that the parameters above are calculated
for a specific configuration with PC’s connected over a 10Mbps hub. Besides it is assumed
that the maximum RT message size is smaller than 136 Bytes. These parameters would be
different for different configurations and different maximum RT message sizes. Therefore, for

different configurations, the performance will be different.

5.3 Pre-Experiment

The purpose of this experiment is determining the slot duration of the TDMA structure gen-
erated in the IL implementation of the D’RIP framework as precise as possible. Thus, the

performance metrics defined in Sec.3.2 can be calculated in the next section.

In the experiment, in the light of the calculations in the previous section, rem and dS lot — rem
values are assumed to be smaller than the values 2 ms and 8 ms respectively. To see the per-
formance of each node in the experiment, a fair scheduling is assumed with one RT and one
nRT slot for each node (see Fig.5.1). The CL part is simulated. Therefore, RAIL protocol is
chosen to be used in the experiment in order to keep the simulation part as simple as possi-
ble. Because, in RAIL, separate time slots are assigned statically for RT and nRT messages,
whereas in TSIL, CL decides both the type and ownership of each slot. Furthermore, the
results will not differ for RAIL and TSIL, since the only difference of them is in the functions
that consist of only the basic C operations, which are negligible in terms of time needed, when

compared with the inter-protocol communications and transmission duration.

nRT Slot RT Slot nRT Slot RT Slot nRT Slot RT Slot nRT Slot RT Slot
for PC-1 for PC-1 for DK-1 for DK-1 for PC-2 for PC-2 for DK-2 for DK-2

Figure 5.1: The Fair Scheduling of the Experiment

The nRT slots are used for the synchronization messages, whereas the RT slots will be used
dummy RT messages that are time-stamped in order to measure the actual maximum values

of rem and dS lot — rem durations.

The experiment is run for 4 hours. Since the slot time is 10 ms and each node has one RT
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slot out of eight slots, each node have transmitted 180000 RT messages. Total of 720000
RT messages are time-stamped. As a result of these experiment, the maximum value of time
needed for the message transmission, i.e., dS lot—rem can be found in Table 5.2. Furthermore;

the maximum value of rem time can be found at Table 5.3.

Table 5.2: Experimentally Calculated dS lot — rem Duration(in ns)

PC-PC | PC-DK | DK-PC | DK-DK |
1323805 | 3892970 | 1239851 | 3889438 |

Table 5.3: Experimentally Calculated rem Duration(in ns)

PC DK
244361 | 850423

As it can be seen from Table 5.2 and Table 5.3, worse hardware had worse performance. In a
network consist of only PC’s, 3 ms time slot with 0.5 ms rem and 2.5 ms dS lot — rem could
work even if the maximum values are doubled. Adding only a DK, on the other hand, could
even drop the performance drastically by increasing the time slot duration to 10 ms with 2 ms

rem and 8 ms dS lot — rem, if the guard period with same ratio is used.

Therefore, in the next section, the calculations are made considering a network with good

hardware with 3 ms slot duration in order to obtain better results.

5.4 Calculations

According to the results of the experiment conducted in the previous section, the performance

metrics mentioned in Sec.3.2 are calculated separately.

5.4.1 Throughput

The minimum slot duration obtained in the previous section is 3 ms on a network that consists
of PC’s connected over a 10Mbps hub. The data transmitted in each slot is assumed to be 150

Bytes. Therefore, the throughput can be calculated as:
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(150Bytes x 8bits/Byte) +~ 0.003 = 0.4Mbps

5.4.2 Maximum RT Throughput

Even if there is no nRT communication load, some slots should be allocated for nRT trans-
mission of the synchronization packets. The default periods of the IEEE1588 synchronization

messages are given in Table 5.4.

Table 5.4: Default Periods of the IEEE1588 Synchronization Messages

SYNCH 1 second
FOLLOW_UP | 1 second
DELAY_REQ | 8 seconds
DELAY _RESP | 8 seconds

According to these values, in each 8 seconds, the IEEE1588 master node transmits 8§ S YNCH,
8 FOLLOW_UP and 1 DELAY _RES P messages, while the IEEE1588 slave nodes transmit
1 DELAY _REQ message. In a ’N” node system, total nRT slots should be allocated is:

8+8+1+(N-1)=16+N

Assuming a four node industrial communication network, at least 20 slots in 8 seconds should
be assigned to nRT packets for the correct operation of the protocol. To work with integers;
in 24 seconds (8000 slots with 3ms duration), 60 slots should be assigned to nRT messages.

Therefore, the maximum RT throughput is:

((8000 — 60) + 8000) x (0.4Mbps) = 0.397Mbps

5.4.3 Efficiency

The time that is not used for the message transmission and the time needed for the synchro-

nization message transmission drop the efficiency of the IL protocol family of the D*RIP
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framework. As calculated in the previous subsection, the maximum RT throughput can be
achieved in a four node industrial communication connected over a 10Mbps hub is 0.397

Mbps. Therefore, its efficiency is:

0.397Mbps +~ 10Mbps = 3.97%

This poor efficiency is for the specific configuration used in the pre-experiment. With some
modifications on the configuration, like using bigger RT messages and better hardware de-
vices, this value could be increased. Actually, the major reason behind this inefficiency is that
using a non-Real-time operating system. Even the RT-preemption patch is used, the overall
behavior of the Linux is nondeterministic. Because of this nondeterminism, the results of the
pre-experiment have huge jitter. Thus the biggest values of the results are used and even that

values are doubled for calculating the slot size in order to prevent possible errors.

5.4.4 Minimum RT Message Deadline

This metric is highly dependent on scheduling. For TSIL protocol, for example, all scheduling
is done in the CL. Therefore, when an urgent RT message is to be transmitted, CL will allocate
the next slot for that message’s transmission. In the worst case, the urgent message will come
just after CL replied to IL’s request. At that time, since CL has already assigned the next slot,
the urgent message will wait rem duration for the start of the next slot, dS /ot time for the
transmission of the already assigned message and dS lot — rem duration for the transmission

of itself (see Eqn.5.1).

TS ILs Minimum_RT _Message_Deadline = 2 X dS lot 5.1

As a result, in the configuration described above, TSIL protocol can provide service to RT

Messages whose minimum deadline is at least:

2 X 3ms = 6ms

RAIL protocol, on the other hand, assigns separate time slots statically for RT and nRT mes-
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sages. This static allocation of nRT slots makes urgent RT messages to wait during nRT
slots. In the worst case, the urgent message will come just after CL replied to IL’s request,
and maximum number of consecutive nRT slots are scheduled after the already assigned RT
slot. At that time, since CL has already assigned the next slot, the urgent message will wait
rem duration for the start of the next RT slot, dS /ot time for the transmission of the already
assigned RT message, maximum_number_o f _consecutive_nRT _slots X dS lot duration for the
transmission of the nRT messages and dS lot — rem duration for the transmission of itself (see

Eqn.5.2).

RAILs Minimum RT _Message_Deadline = (maximum_number o f _consecutive_nRT _slots+2)xdS lot

5.2)

For example, if the scheduling of the industrial communication network is as in the Fig.5.1, in
the worst case, RAIL protocol can provide service to RT Messages whose minimum deadline

is at least:

(1+2)%X3ms =9ms

TSIL’s better performance originate from its ability to adapt the RT and nRT communication
needs of the network by assigning the slots to them dynamically. RAIL, on the other hand,
statically allocates time slots for RT and nRT communication, even if there is no message of

that kind to be sent, which drops the performance.

nRT Slot nRT Slot nRT Slot nRT Slot RT Slot RT Slot RT Slot RT Slot
for PC-1 for DK-1 for PC-2 for DK-2 for PC-1 for DK-1 for PC-2 for DK-2

Figure 5.2: The Alternative Scheduling of the Experiment

Still in RAIL, with some precautions, the performance of IL, in terms of minimum RT mes-
sage deadline, could be prevented from decreasing more. First, number of slots assigned to
nRT messages should be kept in minimum. Second, these nRT slots should not be assigned

consecutively. For example, if the scheduling is assumed to have same number of RT and nRT
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slots, but in a different sorting as shown in Fig.5.2, in the worst case an urgent RT message
will have to wait for four nRT slots. This results in a performance drop by increasing the

minimum RT message deadline to:

(4 +2)%x3ms = 18ms

Apart from TSIL’s performance advantage against RAIL, a point to be considered in TSIL
is that it is highly dependent on the CL protocol and pays minimum attention to the nRT
communication. This situation could result in a failure in the implementations that use nRT
applications for the synchronization. If the RT communication becomes dense for some time,
even the RT messages with high deadline would be transmitted instead of nRT messages.
Thus, the synchronization protocol will starve and malfunction, putting the whole TDMA

structure in danger.

5.5 Final Experiment

After determining proper values for the parameters in the previous section, a final experiment
is conducted to see the performance of the D’RIP framework in a simple industrial system. As
an industrial system example, the system with two controller and a plant, which is described

in [13], is used.

In this system, the plant is simulated on a DK and two controllers are implemented on separate
PC’s. The communication between plant-controller_A and plant-controller_B are realized
via serial connection. The communication between controller_A-controller_B, on the other
hand, is realized through 10Mbps hub by using D3RIP framework. RAIL is chosen as the
IL protocol, whereas URT is chosen as the CL protocol. The maximum RT message size is
selected to be 136 Bytes in order to use the parameters calculated in the previous section.
Therefore, slot size with 3 ms dS lot and 0.5 ms rem duration will be appropriate. The slots

in the experiment are scheduled as shown in Fig.5.3.
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nRT Slot for nRT Slot for

Controller A RT Slot Controller B RT Slot

Figure 5.3: The Scheduling of the Final Experiment

In the example industrial system used in the final experiment, there are only three RT mes-
sages using the D3RIP framework. At random times, the plant triggers the messaging shown
in Fig.5.4. In each messaging Controller_B sends a message (?mue) to the Controller_A. Con-
troller_A as a response to this message, sends another message (!mue) to the Controller_B.
Finally, Contoller_B responses this message with a different message (mue), and the mes-
saging ends until the plant trigs another one. The details of these messages can be found in

[13].

Controller
B 5
% &\
. (&)
Controller
A

Figure 5.4: The RT Messages of the Final Experiment

This experiment is run for 24 hours under full nRT packet load. From each PC, a pinging
session to the other PC with 20 ms interval and 150 Bytes total Ethernet packet size is started.
Since each PC tries to reply the ping request coming from the other one, total of 4 nRT
packet is tried to be sent in 20 ms. According to the scheduling shown in Fig.5.4 and 3 ms
slot duration, 4 nRT slots are allocated in 24 ms. Therefore, the ping packets overload the
allocated nRT slots. Even under that much nRT load, the D*RIP framework worked free of

€IT10T.

In this experiment, the latency of a RT message caused by the D*RIP framework is measured.
To measure this latency, two timestamps are taken: One is just after the application sends the

message to the URT, and the other one is just after the RAIL sends the message to the driver.
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The maximum and minimum values of this duration is given in Table 5.5.

Table 5.5: RT message latency caused by D*RIP framework (in ns)

Tmue 'mue mue
Maximum | 6572990 | 5265931 | 5399695
Minimum | 486797 | 4055472 | 4820411

In the worst case, the RT message will come just after URT replied to RAIL’s request. At that
time, since URT has already assigned the next slot, the RT message will wait rem duration
for the start of the next RT slot, dS ot time for the transmission of the already assigned RT
message, and dS lot duration for the transmission of the nRT messages before the RAIL sends

the message to the driver. Therefore, the maximum latency value is expected to be about

0.5ms + 3ms + 3ms = 6.5ms

In the best case, on the other hand, the RT message will come just before URT replies to
RAIL’s request. At that time, URT will immediately assign the next slot for the transmission
of this RT message. Therefore, it will wait only rem duration before the RAIL sends the

message to the driver. Therefore, the minimum latency value is expected to be about

0.5ms

Since the ?mue message is transmitted randomly, it catches both the worst and best cases.
However, the maximum value is measured to be a little greater than the theoretical maximum
value. This slight error is caused by the timestamping inaccuracies. Besides, the minimum
value is measured to be a little smaller than the theoretical minimum value. The reason of this
slight error, on the other hand, is the timer interrupt inaccuracy that is used to determine the

time of an action to be performed, as explained in the subsection 4.3.3.

The !mue and mue messages, on the other hand, could not catch the worst or best cases, since
they are not transmitted randomly. On the contrary, they are transmitted by the application
just after it received the ?mue and !mue messages. Therefore, they are transmitted at some

time between the start of a RT slot and dS lot — rem time after the start of a RT slot. Thus,
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these response messages will wait a time between rem and dS lot until the RT slot ends. Then
they will wait for dS lot time for the transmission of the nRT messages. So the latency values

for the !mue and mue messages is expected to be between

0.5ms + 3ms = 3.5ms

and

3ms + 3ms = 6ms

Besides, from the latency values of the !mue and mue messages, the time needed for the
transmission of these RT messages can be calculated. Since the maximum latency value is

about 5.4 ms (for mue), the RT message before that message (!mue) should be received

5.4ms — 3ms = 2.4ms

before the end of the slot. Therefore, the minimum transmission time of a RT message (!mue)

18

3ms — 2.4ms = 0.6ms

Since the minimum latency value is about 4 ms (for !mue), the RT message before that mes-

sage (?mue) should be received

dms — 3ms = 1lms

before the end of the slot. Therefore, the minimum transmission time of a RT message (?mue)

is

3ms — lms = 2ms
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CHAPTER 6

CONCLUSION and FUTURE WORK

6.1 Conclusion

The improvements in the technology make a demand in the industrial control area for faster
communication techniques. Traditional industrial communication techniques, i.e., proprietary
fieldbuses are developed in such a strict way that they could not adapt to the needs of the
industry. Hence, the recent studies on this area focus on the use of Ethernet as an industrial
communication technique. The primary reason of this choice is that Ethernet has proved its
success in the home and office for the last years, being the most widely used networking
technique. This widely usage results in an increase in the researches on Ethernet. Thus its

cost is decreasing and its speed is increasing further and further.

Still, the truncated binary exponential backoff algorithm, which is used in Ethernet after the
occurrence of a collision, causes randomness. Thus, it cannot be used in industrial communi-

cation networks as itself.

In the literature, various studies address this problem and provide different types of solutions.
Protocols such as Ethercat, SERCOS 111, and ProfiNet, suggests hardware modifications on
the MAC layer, which causes high cost and incompatibility. Protocols such as MODBUS
RTPS and PROFINET SRT, aims to decrease the collision probability and reaction times. Still
they could not provide real-time guarantees but only performance improvements. Different
from that, protocols such as Ethernet/Ip (EIP) use switches to prevent collisions. This type
of solutions, on the other hand, struggle with different problems like queuing delays and
message loss because of the limited queue size. The most common solution is the avoidance

of collisions by a specialized protocol on top of the standard Ethernet. The techniques in
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this type of solution use master-slave (EPL), token passing (TTCNet), or static TDMA (EPA)
in the additional layer. The techniques in this solution suffer from different disadvantages.
Master-slave solutions have single point of failure, undistributed structure and low efficiency.
Token passing solutions lack dependability, especially in the case of losing the token. Static

TDMA solutions have low efficiency due to the guard periods and error recovery precautions.

The reason behind the inefficiencies is that the techniques in the literature make worst-case as-
sumptions, such as all messages sent at the same time, and capacity allocation is done accord-
ingly. However, in industrial control systems, the communication requirements of the system
components are known at any time, since automation control applications work deterministi-
cally. Consequently, the D3RIP framework is developed considering these characteristics of

the industrial communication networks

In this thesis, the implementation of IL protocol family of the D*RIP framework is realized on
two different hardware platforms. The challenges encountered on the implementation, such as
synchronization over TDMA structure, prioritizing synchronization packets, minimizing the
guard periods in the time slots, starting the TDMA structure simultaneously, fragmentation
and reassembly of big nRT packets, interfaces with SM and CL, are overcome successfully as

described below.

e To realize an accurate synchronization over TDMA structure, the queuing delay that
synchronization packets expose to is calculated and the IEEE1588 application is in-

formed about this delay.

e To prioritize synchronization packets, a structure with two queues, one for high priority

packets and one for the low priority packets, is implemented for nRT packets.

o To minimize the guard periods in the time slots, the two high resolution POSIX clock
types of the Linux 2.6 kernel, i.e. "CLOCK_REALTIME” and "CLOCK_MONOTONIC”
are examined, and three different methods to perform an action at the desired time are

proposed and experimented.

e To start the TDMA structure simultaneously, one of the nodes utilized as master node
temporarily to send a special SYNC message to identify the start of the communication

cycle.
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e For providing service to the nRT packets that are greater than the slot size, frame seg-

mentation structure is constructed.

e In order to transmit and receive with minimum delay, which will increase the perfor-
mance of the TDMA structure, interface between SM and IL is constructed by modify-

ing the transmit and receive functions of the Ethernet driver.

e To realize the interface between CL and IL, three different techniques for message

passing and five different techniques for signalling are inspected and experimented.

According to the experiment conducted in Sec.5.3, even the implementation is realized in
a generic way, used hardware platform directly affects its performance. In DK, time slot

duration that can be obtained is about 10 ms; whereas on PC, this value could drop to 3 ms.

Besides, it is seen that the reason of the poor performance of 3.97% is mainly due to the used
operating system. For example, even in the implementation on good hardware devices, total
message transmission duration is about 10 times more than the actual transmission time of
the message on the Ethernet line. Because, even if RT-preemption patch is used on Linux,

Appendix B shows that it could not obtain hard real-time performance.

6.2 Future Work

6.2.1 Implementation on Different Hardware or Operating System

As explained in the conclusion section 6.1, the poor performance obtained in the experiment
in section 5.3 is mainly resulted by the used hardware and the operating system. To see the
actual performance of the D3RIP framework, it could be implemented on a real-time operating

system, such as vxWorks [29].

Furthermore, implementation of D3RIP framework could be realized on a Field Programmable
Gate Array (FPGA) based hardware instead of a processor based hardware. This implemen-
tation could be more difficult, but it will give more precise performance measures by keeping

the non-protocol related delays at minimum.
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6.2.2 Automatic Slot Duration Determination

The slot duration to be used in the D3RIP framework should be big enough to accommodate
the 1588 message and the biggest RT message and small enough to meet the deadlines. As
seen in the Chapter 5, the slot duration depends on many parameters and needed to be ex-
perimentally determined. The implementation in this thesis is realized as generic as possible.

Still, the slot duration to be used will differ for different applications and hardware.

In real life, the user of D’RIP framework would not want to deal with so many experiments
and calculations. To ease the use of this framework, the experiments and calculations made
in the Chapter 4 and Chapter 5, could be realized in the implementation of the IL. The user
will only give the maximum RT message to be used as an input. Before starting the TDMA
structure, IL implementation will conduct the experiments and make the calculations for the

dS lot and rem durations, as done in the Chapter 5.

6.2.3 Token Passing Based Solution

In the current situation, the IL, divides the time into fixed-length time slots, called transmis-
sion window. The length of these slots is determined by considering the longest RT message,

since in [6], it is assumed that all messages fit into the transmission window, i.e.,
m.length < dSlot — rem

for all messages where, rem is the time needed for the protocol related computations of the

IL and the CL.

This is the theoretical limit for the transmission window. In practice, there are many delay
parameters that should be considered in the calculation of the transmission window, like timer
accuracy, synchronization accuracy, propagation delay, etc. These delay parameters should be
considered with their maximum value to calculate the time slot size to handle the worst case
scenarios. To obtain these maxima values, many experiments should be conducted. Since
some of these parameters, like timer accuracy, do not have theoretical maximum values, the
experimentally obtained maximums would not be 100%. Therefore some guard values should

be added.
As an improvement, instead of calculating the theoretical slot size and dividing the time into
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transmission windows via timers, using message reception to start the next transmission is
suggested. In other words, instead of implementing a TDMA based medium access, token

passing based solution could be used.

This suggestion depends on the broadcast transmission of messages and distributiveness of the
D3RIP framework protocol. In D3RIP framework, all nodes have the same scheduling of the
whole system, i.e., all nodes know which node owns the next slot. Since D’RIP framework
uses a shared-medium broadcast channel, like Ethernet, messages are received by all nodes.
So, when the nodes receive the message, the owning node will send the next message after

waiting some guard period, and the other nodes will wait it.

The reason of the guard period is that the nodes will not receive the messages at the same
time, because of the propagation delay. The amount of this guard period will be found by
exchanging messages between each node pairs, and finding the maximum propagation delay

in the system.

The transmission windows obtained by this technique will be more deterministic than the one
that uses timer, since both guard period (i.e. propagation delay) and the transmission time
are constant values that depend on physical properties of the medium and are theoretically
calculable. The only periods that will vary are the time needed for the message to be put
on the medium and to be received from the medium, which is also a delay parameter in the

current solution.

The only point that should be cautiously considered is that if there is no nRT packets for one
node, when it is scheduled a nRT slot. In this case, the total system will wait for a nRT packet
to arrive. Therefore, the whole system would stop. To solve this problem, the nodes could

send dummy messages even if there is no nRT messages when they are assigned an nRT slot.
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Appendix A

TIOA DESCRIPTION FOR D’RIP

A.1 TIOA Description For SM

TIOA S M(dNumber, M) where dNumber € N

Variables X
mess? € M (empty)
collle B (false)
nextd e R (0)
now? € R (0)
Tansitions D
input w.2sm(m);
effect:
if mess is empty
mess? = m
next! = now? + m.length
else
colld = true
next! =0
set mess® empty
Tajectories T

stop when

now® = next? A mess? not empty

Actions A
input n.2sm(m);, m € M,
1 <i < dNumber

output sm21.(m), m € M

output sm21L(m)
precondition:

now? = nextd

effect:
m = messd
setmess? empty
nextd =0
evolve
d(now?®) =1
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A.2 TIOA Description For IL

TIOA IL;(dS lot, rem,cmp, M, Q,A;r)

Variables X
now; € R (0)
next! € R (dS lor)
TxRT§i € M (empty)
TxnRT¢ € Q (empty)
RxRTEj € M (empty)
RanT;i € Q (empty)
RTILY € B (false)
myILEll € B (false)
vIL € Ay (InitV)
d
reqIL? € B (false)
Transitions D
internal UPDATE;
precondition:
now’=next? - rem
RxRT§i empty
effect:
vILS =
fupa(VILY, RTILY)
rquLEi = freq(vIL?)
if ﬂrquL?
RTILY = false
myIL§i =
Fry(VILS, RTILY, by, i)
next! = next! + dSlot
output 1L2cLRT(m, NOW?);
precondition:
now’=next{ - rem

ﬂ(RxRT? empty)

Actions A

input sm2i.(m),m € M
input AP2ILNRT(m);, me M
input cL.2nrT(b1, by, m);,
meM,by,by €B

input 1.2ApNRT(g);, g € O
output 1.2cLrt(m, t);,
meM,teR

output .2sm(m);, m € M
internal UPDATE;

output REQRT(?);, f € R

input sm21.(m)
effect:
if RTILY
RXRT¢ = m
else
RanT?.Push(m)
output 1.2sm(m);
precondition:
(now? = next§j —dSlot)A
myILS
(—|(TxRT? empty)A
RTILY) V (-RTILIA
ﬂ(TanT?.Top empty))
effect:
if RTILY
setm = TXRT?

set TxRT§1 empty
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effect:

setm = RxRT§i

set RkRTY empty
output REQRT(nOW?);
precondition:

reqILd = true

now; = nextf1 —dS lot—

rem + cmp
effect:

reqIL! = false
input IL2APNRT(RXHRT?)i
effect:

set RxnRT; empty
Trajectories T

stop when

now; = nextfl —dSlot A myIL;?1

now! = next! — rem

if -RTIL!

setm = TanT?.Top

d
TxnRT;.Pop

myILY = false

input cL2nrT(by, by, m);

effect:

RTILY=frr(VILY, by)

myIL =

fry(VILY, RTILY, by, i)

TxRTY = m

input AP2ILNRT(1m1);

effect:

TanT?.Push(m)

evolve

(now? = next?l —dSlot — rem + cmp) A rquL?l

d(now?) = 1

Table A.1: Protocol Specific Functions for IL

RAIL

TSIL

fapa(VILY, RTILY)

(vILd.cnt + 1) mod vILS.cyc

vILl.cnt  if RTILY
(vIL?.cnt +1)
mod vIL?.cyc otherwise

true if vIL?.cnt € vIL?.RTset

true

freq(VIL?) false otherwise
true if vIL?.cnt € vIL?.RTset true if by = true
Srr(VILY, by) Ab; = true
false otherwise false otherwise
b, ifRTILY b, ifRTILY

Soy(VILY, RTILY, by, i)

true  if =RTILIA
vIL?.cnt € vIL?.nRTSet
false otherwise

true  if =RTILIA
vIL?.cnt € vIL?.nRTSet
false otherwise

68




A.3 TIOA Description For CL

TIOA CLi(deli, M, Q, V,ACL), deli eR

Variables X Actions A
send; € R (del;) input ar2ci(dat, p, ch);, dat
Txl?1 € V (empty) € M.data, p € M.par,ch e N

Rx? € Q (empty)
RTCLY € B (false)
myCLEll € B (false)
ch! e N (0)
reqCL! € B (false)
vCL{ € AcL (InitCL)
Transitions D
input apr2cr(dat, p, ch);
effect:
Tx![ch].data = dat
Tx¢[ch].par = p
input REQRT(?);
effect:
RTCLY =
grr(VCLY, RTCLY, 1)
(myCLY, ch) =
Smy(VCLY, RTCLY, 7,)
send? = 0
reqCL! = true
input CLZAP(RX?),-
effect:

set Rx§i empty

Trajectories T

stop when

(send] = del;) A reqCL;

input c1.2ap(q);, g € O
input n.2cirt(m, t);, m € M,
telR

input REQRT(?);, f € R
output

CL21LRT(RTCL?, myCL?, m);

input 1.2cLr1(m, 1);
effect:
Rx¢ Push(im)
VCLY = gupa(VCLY,
m.par, )
output
CLZILRT(RTCL?, myCL?, m);
precondition:
reqCL{ A (send? < del;)
effect:
if myCL;.1
set m = TxY[chf]
set Tx?[ch?] empty
else
set m empty

reqCLfl = false

evolve

d(send?) = 1
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Table A.2: Protocol Specific Functions for CL

DART URT
gupd(vCL?,m.par, 1)) (vCL?.cnt + 1) mod vCL?.cyc (vCL?.cnt + 1) mod vCL?.cyc
true if vCLY.cnt € vCLY.alloc[k].slots .
gRT(VCL?, RTCL?, 1)) for sorlne k ' true if vCL;.PQ.Top.eT <t
false otherwise false otherwise
(true,c) if vCL?.cnt € vCL?.alloc[k].slots (true,a) if PQ;. Top.b =i ART;
gmy(vCL;?‘, RTCL;,t,10) /\VCL?.alloc[k].used =(,c0) = true APQ;.Top.c = a
(false,0) otherwise (false,0) otherwise
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Appendix B

OPERATING SYSTEM CHOICE

B.1 Introduction

Since D3RIP framework is a real-time communication protocol, the choice of the operating
system, which this protocol will run on, is crucial. The primary characteristic of real-time
communications is that the messages should be delivered within a predetermined period, i.e.,
they should meet their deadlines. So, the operating system that provides services to the pro-

tocol also should have RT characteristics.

In academic world, Linux become a widely used operating system, as its advantages, like
being open source, having community support, and being free; cannot be obtained from any

other operating system.

Apart from these advantages, Linux has a crucial deficiency: It is not real-time. Linux, is
developed as a general-purpose operating system, and just like any other general-purpose
operating system, it is tuned to maximize average throughput even at the expense of latency.
Real-time operating systems, on the other hand, attempt to minimize, and place an upper

bound on, latency, sometimes at the expense of average throughput.

According to Doug Abbott [30], standard Linux is not suitable for real-time use for five rea-
sons:

e Coarse-grained Synchronization — Kernel system calls are not preemptive

e Paging — Swapping pages in and out of virtual memory is unbounded

e Fairness in Scheduling — Low priority process may run even though a higher-priority

process is ready.
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e Request Reordering

e Batching

For resolving these deficiencies, some modifications are imported into new kernel versions.

For example, to improve latencies, new scheduling policies; SCHED_FIFO and SCHED_RR,
are proposed instead of the default Linux time-sharing scheduling policy, SCHED_OTHER,

which uses a fairness algorithm and gives all processes using this policy the lowest priority.

Another improvement in the Linux kernel is the preemption improvement. With version 2.5.4-
pre6, the preemption improvements, using spinlocks to support symmetric multi-processing
(SMP), are merged into the main kernel tree. With this improvement, maximum process
latency, which is in the order of tens of milliseconds for a standard kernel, reduced to one or

two milliseconds.

Still, these improvements do not provide a fully preemptive kernel, so they only help us
to achieve soft real-time behavior. To improve Linux’s performance to near hard real-time

performance, more drastical changes should be applied to the kernel.

There are three famous ways to achieve real-time performances from Linux:

1. RTLinux [31]

2. RTAI [32]

3. RT-preempt patch [33]

B.2 RTLinux

RTLinux, become a commercial product and only old versions can be downloaded and used
freely. The last free version of RTLinux is 3.1 and the latest Linux kernel that it supports is

2.6.9. Therefore, RTLinux is no longer a preferred real-time Linux support in academic area.
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B.3 RTAI

Being a community product and free makes RTAI a better option than RTLinux. Neverthe-
less, of the late years, new versions are not being released frequently (RTAI 3.7.1 released
in 06/15/2009 - RTAI 3.8 released in 02/16/2010) [32], and they only support 1386 seriously.
Also, RTATI’s lack of stability and industrial maturity (since the development is driven by the
immediate needs of its maintainer) and using different Application Programming Interface
(API) from the traditional Linux API (RTAI API) discourages the Linux users, who want to

obtain RT support from Linux.

B.4 RT-preempt patch

As desire for getting real-time performance from Linux arise, many real-time patches have
been released. These patches got into the basic Linux kernel tree with time. Some of these

improvements and the Linux kernel versions that include these modifications are given below:

High-resolution timer — 2.6.24

Preemptive Read-Copy Update — 2.6.25

IRQ Threads — 2.6.30

Raw Spinlock Annotation — 2.6.33

Open Source Automation Development Lab’s (OSADL)[33] Realtime Linux project con-
tribute to these improvements by supporting the evolution of the realtime preempt patch main-
tained by Ingo Molnar, and Thomas Gleixner. The advantages of these patches is that they are
still free and following current progresses in the Linux kernel. With the latest real-time patch
[33], complete (real-time) preemption had achieved, which overcome a critical problem. Still

there are some shortages to obtain hard real-time performance, such as [34]:

o Though being preemptible, kernel services, like memory allocation, do not have a guar-

anteed latency yet.
e Kernel drivers are not developed for real-time constraints.
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e There are binary-only drivers which somehow should be recompiled for RT preempt.

B.5 Conclusion

Being a widely used operating system, Linux draw attention of the areas that use embedded
technology. The biggest disadvantage of Linux is that it is developed as a general-purpose op-
erating system and modifications should be made in order to use in real-time embedded areas.
Latest real-time patches, greatly improved the performance of Linux. Also following latest
advancements in Linux kernel closely makes these patches a good candidate for obtaining a

Linux with nearly hard real-time performance.
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