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ABSTRACT

A COMPARISON OF TIME-SWITCHED TRANSMIT DIVERSITY AND SPACE-TIME

CODED SYSTEMS OVER TIME-VARYING MISO CHANNELS

Köken, Erman

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Ali Özgür Yılmaz

September 2011, 78 pages

This thesis presents a comparison between two transmit diversity schemes, namely space-

time coding and time-switched transmit diversity (TSTD) over block-fading and time-varying

multi-input single-output (MISO) channels with different channel parameters. The schemes

are concatenated with outer channel codes in order to achieve spatio-temporal diversity. The

analytical results are derived for the error performances of the systems and the simulation

results as well as outage probabilities are provided. Besides, the details of the pilot-symbol-

aided modulation (PSAM) technique are investigated and the error performances of the sys-

tems are analyzed when the channel state information is estimated with PSAM. It is demon-

strated using the analytical and simulation results that TSTD have a comparable error perfor-

mance with the space-time coding techniques and it even outperforms the space-time codes

for some channel parameters. Our results indicate that TSTD can be suggested as an alterna-

tive to space-time codes in some time-varying channels especially due to the implementation

simplicity.

Keywords: space-time coding, TSTD, PSAM, block-fading, time-varying channel
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ÖZ

ZAMAN ANAHTARLAMALI GÖNDERİM ÇEŞİTLEMESİ VE UZAY-ZAMAN KODLU

SİSTEMLERİN ZAMANDA DEĞİŞKEN ÇOK-GİRDİLİ TEK-ÇIKTILI

KANALLARDAKİ KARŞILAŞTIRMASI

Köken, Erman

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ali Özgür Yılmaz

Eylül 2011, 78 sayfa

Çalışmada iki gönderim çeşitleme tekniği, uzay-zaman kodlaması ve zaman anahtarlamalı

gönderim çeşitlemesi (TSTD), blok sönümlemeli ve zamanda değişken sürekli sönümlemeli

çok-girdili tek-çıktılı (MISO) kanallarda kanal parametreleri ile karşılaştırılmıştır. Gönderim

çeşitleme teknikleri, uzay-zamansal çeşitlemeyi elde etmek amacıyla kanal kodlarıyla bir-

likte kullanılmıştır. Sistemlerin hata başarımlarının analitik olarak incelenmiş, simülasyon

sonuçları ve kesinti olasılıkları da çalışmada verilmiştir. Ayrıca, pilot sembol yardımlı kipleme

(PSAM) ayrıntılı biçimde incelenmiş ve sistemlerin PSAM kullanıldığı durumdaki başarımı

da analiz edilmiştir. TSTD’nin uzay-zaman kodlar ile yakın başarım sağladığı hatta bazı

durumlarda daha iyi çalıştığı, analitik ve simülasyon sonuçları ile gösterilmiştir. Böylece,

kolaylıkla uygulanabilen TSTD tekniğinin zamanda değişken sönümlemeli kanallarda uzay-

zaman kodlarına alternatif olabileceği gösterilmiştir.

Anahtar Kelimeler: uzay-zaman kodlama, TSTD, PSAM, blok sönümleme, zamanda değişken

kanal
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CHAPTER 1

INTRODUCTION

The employment of multiple antennas for wireless communication systems has gained a sub-

stantial interest after the landmark paper [1] demonstrated that multiple-antenna wireless com-

munication links promise very high data rates with low error probabilities. Utilization of mul-

tiple antennas can either enable increasing the data rate with the aid of spatial-multiplexing

or increasing the spatial diversity by transmitting redundant signals on different transmit an-

tennas and collecting the replicas of the signal at different receive antennas. Some examples

of the spatial multiplexing techniques are Bell Labs Layered Space-Time (BLAST) archi-

tectures, i.e., vertical BLAST (V-BLAST) and diagonal BLAST (D-BLAST) [2]. Receive

diversity techniques have been well-documented since 1950s, whereas the transmit diversity

techniques emerged in late 1990s with space-time codes. Two prominent examples of the

space-time codes are the space-time trellis codes (STTC) [3] and the space-time block codes

(STBC) [1].

STBC’s have attracted huge interest due to the linear processing in the receiver which renders

simple detection available. Being the only full-rate STBC, the Alamouti scheme [4] is widely

used and has been accepted in telecommunication standards such as UMTS, WiMAX, etc.

Albeit the benefits of the space-time codes, their implementations as well as of other MIMO

systems have certain drawbacks. For example, multiple RF-chains are required which leads

to an increased cost. Furthermore, the employment of multiple RF-chains may entail more

sensitivity against the impairments encountered in practice.

The time-switched transmit diversity (TSTD) technique was proposed in [5] and offers a low

cost implementation for achieving transmit diversity due to its capability of being imple-

mented with a single RF-chain. Especially used in the synchronization channels of UMTS

1



systems, the capabilities and the advantages of the TSTD technique over the STBC’s should

be investigated. This thesis mainly discussed this issue and compares the error performances

of two transmit diversity schemes, namely TSTD and the Alamouti scheme, under certain con-

ditions such as channel estimation imperfections, variation of the channel gain coefficients in

time, etc.

The thesis is organized as follows. In Chapter 2 the important features of space-time codes

are provided. The quasi-static MIMO channel model is explained and the MIMO capacity as

well as the space-time code design criteria are provided. We elaborate on the encoding and

detection structures of the STBC’s with two transmit antennas, namely the Alamouti scheme

and differential space-time block codes (DSTBC). Moreover, other space-time codes that are

studied in the literature are mentioned.

Chapter 3 is devoted to the comparison of TSTD and STBC systems over 2x1 MISO block-

fading channels. Both concatenated with blockwise maximum distance separable (MDS)

convolutional codes, the error performances of the transmit diversity schemes are compared

with different numbers of block realizations. The simulations are verified with the analytical

results and the outage probabilities of the techniques are given. The comparison is also done

with differential techniques, i.e., TSTD with DPSK and DSTBC.

The main features of a channel estimation technique widely used for time-varying flat-fading

channels, namely PSAM, are explained in Chapter 4. The performance of the technique is

provided with different channel parameters such as Doppler spread, pilot spacing and num-

ber of interpolators. The detrimental effects of time-variation and channel estimation error

on the performances of the Alamouti scheme and DSTBC with two transmit antennas are

demonstrated with simulation and analytical results.

In Chapter 5 the detrimental effects of the time-variation and the channel estimation error

on the performances of the coherent and differential transmit diversity schemes concatenated

with convolutional codes over time-varying 2x1 MISO channels are investigated. The spatio-

temporal diversity provided by the time-varying channel is exploited by using the encoding

structures that are designed for block-fading channels and that are explained in Chapter 3.

The comparison is performed with different channel parameters and TSTD is shown to have

better performance than STBC with two transmit antennas under some conditions.

2



In Chapter 6 we point out the main points and conclude the thesis.
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CHAPTER 2

SPACE-TIME CODES

2.1 MIMO Transmission Model

We consider a discrete-time symbol model for a narrowband multi-input multi-output (MIMO)

wireless communication system in which Nt transmit antennas and Nr receive antennas are

employed. At each time epoch t, the signals xti (1 ≤ i ≤ Nt) are transmitted simultaneously

each from the ith transmit antenna. At time t, the signal received at the jth receive antenna is

the sum of the symbols sent from the transmitters scaled by a multiplicative channel gain and

perturbed by complex Gaussian noise. Along with a rich scattering environment, the antenna

spacing is assumed to be large enough so that the channel gain coefficients between transmit

and receive antennas are independent. The coefficient hi j represents the unit power Rayleigh

distributed channel gain between the ith transmit antenna and the jth receive antenna. The

probability density function (pdf) of hi j is

p
(

hi j
)

=
1

π
e−|hi j|

2

(2.1)

for all i and j. The received signal at time t at the jth receive antenna can be represented as

yt j =

√

Es

Nt

Nt
∑

i=1

hi jxti + nt j (2.2)

where nt j denotes spatially and temporally white zero mean circularly symmetric complex

Gaussian noise samples observed at the jth receive antenna at time t. Each noise sample has

a variance N0/2 per dimension. The energy of symbols are confined to
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Nt
∑

i=1

E
{

|sit |2
}

= Es (2.3)

for all t. Hence the transmit energy at each epoch is Es. We assume that the channel is

quasi-static, i.e., the channel gain coefficients are constant for a long time and then change

independently. We also assume that the channel is frequency nonselective.

For convenience, we will put the signals within T symbol durations (epochs) and the corre-

sponding gain coefficients into a matrix form. Since the channel is quasi-static, the channel

gain coefficients are assumed to be constant for 1 ≤ t ≤ T . The transmission model where the

noise is normalized, i.e., N0 = 1, is given as

Y =

√

γ

Nt

XH + N (2.4)

where

X =





















































x11 x12 . . . x1Nt

x21 x22 · · · x2Nt

...
...

. . .
...
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




















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














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





∈ CT×Nt (2.5)

is the transmitted symbol matrix,

H =





















































h11 h12 . . . h1Nr

h21 h22 · · · h2Nr

...
...

. . .
...
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


















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


















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

∈ CNt×Nr (2.6)

is the channel gain matrix,

Y =
























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
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








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

















∈ CT×Nr (2.7)
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is the received signal matrix and

γ =
Es

N0

(2.8)

is the signal-to-noise ratio (SNR).

We only investigate an open-loop system, i.e., the channel state information (CSI) is not

available at the transmitter and there is no feedback link. We will assume that the channel

state information is perfectly known at the receiver up until Section 2.5.

2.2 MIMO Capacity

In [2, 1], it is shown that coherent MIMO channels offer a substantial increase in the capac-

ity. In a quasi-static fading channel with independent fading paths where the CSI is perfectly

known at the receiver side but not known by the transmitter, the capacity-achieving proba-

bility density function (pdf) of input signal at each transmit antenna is shown to be that of

independent zero mean circularly symmetric Gaussian distribution with equal energy.

The ergodic capacity of the MIMO channel is

Cerg = E
{

log2

(

det

(

INr
+
γ

Nt

HHH

))}

(2.9)

where E {.} is the expectation operator. The expectation is evaluated in [1] as

Cerg =

∫ ∞

0

log2

(

1 +
γ

Nt

ζ

) N1−1
∑

k=0

k!

(k + N2 − N1)!

(

L
N2−N1

k
(ζ)

)2
ζN2−N1e−ζdζ (2.10)

where

LA
k (ζ) =

1

k!
eζζA

dk

dζk

(

e−ζζA+k
)

(2.11)

is the associated Laguerre polynomial of order k, N2 = max (Nt,Nr), and N1 = min (Nt,Nr).

When Nr = 1, the law of large numbers implies as Nt increases that
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1

Nt

HHH→ 1. (2.12)

Hence for large Nt, the capacity can be expressed as

Cerg ≈ log2(1 + γ) (2.13)

which is approximately equal to the additive white Gaussian noise (AWGN) channel capacity.

In [6], the capacity is approximated in high SNR as

C ≈ min (Nt,Nr) log2

(

γ

Nt

)

+

min(Nt ,Nr)
∑

k=|Nt−Nr |+1

log2 χk (2.14)

where χk is a chi-square random variable with 2k degrees of freedom.

Equation (2.14) implies that the capacity increases by min (Nt,Nr) bits per channel use at high

SNR with each 3 dB increase in the SNR.

The channel capacity of MIMO channel when the channel state information is not available

at either side is discussed in Section 2.6.

2.3 Space-Time Code Design Criteria

Following the notation in (2.4), we can express the maximum likelihood (ML) detector in

MIMO channel as

X̂ = arg max
Xi

p
(

Y | Xi,H
)

(2.15)

where the conditional probability is

p
(

Y | Xi,H
)

=
1

(πN0)TNr
exp

















−tr





























Y −
√

Es

Nt

XiH













H 











Y −
√

Es

Nt

XiH













































(2.16)

in which tr(.) is the trace operator.

Since it is cumbersome to track the probability of error, it is convenient to analyze the pairwise

error probability (PEP) between two codewords. The PEP between any two codewords Xkand

Xm is provided in [3] as
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PEP
(

Xk → Xm | H
)

= Q

(√

γ

2Nt

tr
(

(DkmH)H (DkmH)
)

)

(2.17)

where Dkm = Xm − Xk.

Average PEP can be found by averaging the conditional PEP in (2.17) over all channel real-

izations:

PEP
(

Xk → Xm
)

= EH

(

PEP
(

Xk → Xm | H
))

. (2.18)

For high SNR a tight upper bound in high SNR is derived in [3] as

PEP
(

Xk → Xm
)

≤ 4rNr

(

∏r
n=1 λn

)Nr
γrNr

(2.19)

where r is the rank of Dkm and λkmn ’s are the non-zero eigenvalues of Akm = Dkm
HDkm. For

high SNR, any PEP in fading channels can be approximated as [7]

PEP
(

Xk → Xm
)

≈
(

Gkm
c

γ

4Nt

)−Gkm
d

(2.20)

in which Gkm
c is represents coding gain and Gkm

d
represents diversity gain of PEP between Xk

and Xm. Following this approximation, diversity and coding gains are compactly given as

Gkm
d = Nrrank Dkm, (2.21)

Gkm
c =

(
∏

λn
)rank Dkm

. (2.22)

Considering PEP’s between all of the codewords, the overall diversity gain is

Gd = min
k,m

Gkm
d (2.23)

and the overall coding gain is

8



Gc = min
k,m;G=Gd

Gkm
c . (2.24)

Based on these results the following criteria are proposed to design space time codes:

• In order to increase the diversity gain, the minimum of rank Dkm should be maximized

over all k , m .

• In order to increase the coding gain, the product of λkmn ’s should be maximized over all

k , m with minimum diversity.

If Gd equals to NtNr, the space time code is said to be full diversity.

2.4 Space-Time Block Codes

Space-time block codes are designed to achieve full diversity with a simple encoding struc-

ture and low decoding complexity. A sequence of P symbols s1, s2, .., sP, that are elements

of a specific constellation set such as phase shift keying (PSK) or quadrature amplitude mod-

ulation (QAM), are mapped into a TxNt transmitted matrix X entries of which are the linear

combinations of s1, s2, .., sP (and s∗
1
, s∗

2
, .., s∗

P
if a complex constellation is chosen). This map-

ping operation is referred to as space-time block encoding. The symbol rate is denoted as R

with

R =
P

T
(2.25)

symbols per channel use. If R equals one, the code will be declared as a full-rate or rate-one

code. The criteria in Section 2.3 indicates that the design of transmitted signals does not

depend on the number of receive antennas. Multiple receive antennas provide only additional

diversity gain with a very simple decoding structure.

STBC’s are usually designed with the orthogonality property [8] so that the detection of the

symbols s1, s2, .., sP are decoupled with a simple linear processing and the decision statistics

are obtained separately for each symbol. STBC’s are aimed to achieve full-diversity with a
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rate as large as possible. A comprehensive description of STBC’s and their properties can be

found in [8].

2.4.1 Alamouti Scheme

The Alamouti scheme [4] is a full-rate full-diversity (FRFD) orthogonal STBC (OSTBC) with

Nt = 2 and T = 2. The transmitted signal matrix is

X = S(s1, s2) =





















s1 s2

−s∗
2

s∗
1





















(2.26)

where s1 and s2 are elements of a specific constellation set. For the moment, we will assume

that Nr = 1. Ignoring the receive antenna index j, (2.4) becomes





















y1

y2





















=

√

Es

2





















s1 s2

−s∗
2

s∗
1









































h1

h2





















+





















n1

n2





















. (2.27)

We will derive the ML estimations of s1 and s2. The estimated symbols can be found from

(ŝ1, ŝ2) = arg min
s1,s2



















∣

∣

∣

∣

∣

∣

∣

y1 −
√

Es

2
(h1s1 − h2s2)

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

y2 −
√

Es

2

(

h2s
∗
1 − h1s

∗
2

)

∣

∣

∣

∣

∣

∣

∣

2


















(2.28)

which corresponds to

(ŝ1, ŝ2) = arg min
s1,s2

∣

∣

∣

∣

Es,hs1 −
(

h∗1y1 + h2y
∗
2

)

∣

∣

∣

∣

2
+

∣

∣

∣

∣

Es,hs2 −
(

h∗2y1 − h1y
∗
2

)

∣

∣

∣

∣

2
(2.29)

where Es,h equals to
(

|h1|2 + |h2|2
)

√

Es

2
. This suggests that the statistics for ŝ1 and ŝ2 can be

obtained separately. Eq. 2.27 can also be rewriten as





















y1

y∗
2





















=

√

Es

2
Θ





















s1

s2





















+





















n1

n2





















(2.30)

where

Θ =





















h1 h2

h∗
2
−h∗

1





















. (2.31)
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Note that the columns of Θ are orthogonal, thus





















r1

r2





















= ΘH





















y1

y∗
2





















= Es,hI





















s1

s2





















+





















ñ1

ñ2





















(2.32)

where ñ1 and ñ2 are independent Gaussian variables obeying CN
(

0,
(

|h1|2 + |h2|2
)

N0

)

.

Now let us consider the case with Nr > 1





















r1

r2





















=

Nr
∑

j=1





















r1 j

r2 j





















(2.33)

where





















r1 j

r2 j





















= ΘH
j





















y1 j

y∗
2 j





















(2.34)

Θ j =





















h1 j h2 j

h∗
2 j
−h∗

1 j





















. (2.35)





















r1

r2





















= Es,HI





















s1

s2





















+





















w̃1

w̃2





















(2.36)

where Es,H =
∑Nr

j=1

(

∣

∣

∣h1 j

∣

∣

∣

2
+

∣

∣

∣h2 j

∣

∣

∣

2
) √

Es

2
. Note that (2.33) corresponds to maximum ratio

combining.

The uncoded BPSK error probability for the Alamouti scheme is [6]

Ps =
1

2





















1 −
√

γ

γ + 2

2Nr−1
∑

c=0





















2c

c





















(

1

2 (γ + 2)

)c




















(2.37)

Since generalization to multiple receive antenna case is straight forward, we will assume that

Nr = 1 in the next two subsections.
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2.4.2 Orthogonal STBC

Note that the facility to extract the statistics for symbols separately is due to the orthogonality

of the columns of Θ, which is in turn due to the orthogonality of the columns of X. If the

symbols s1, s2, ..., sP are elements of a real constellation set like pulse amplitude modulation

(PAM) or binary phase shift keying (BPSK), it is shown in [8] that for any Nt, a FRFD or-

thogonal STBC (OSTBC) can be found for a suitable T , as a function of Nt, with the aid

of orthogonal signal sets. Although it is possible to find FRFD OSTBC’s using real con-

stellations for any Nt, there are bounds on symbols per channels use R of the full-diversity

OSTBC’s when we extend the constellation to complex domain. It is shown in [9] that R is

upper-bounded by 3/4 for full-diversity OSTBC if Nt > 2.

2.4.3 Other Space-Time Codes

Space time trellis codes (STTC) [3] were proposed in 1998. It can be considered as the gener-

alization of trellis coded modulation (TCM) to multiple antenna systems. Main disadvantage

of the scheme is that the complexity of the trellis decoder increases exponentially with the

transmission rate and the antenna number.

Since it is not possible to generate FRFD OSTBC’s for complex constellations, STBC’s that

are not orthogonal are also considered in the literature. In [10], quasi-orthogonal STBC’s

are proposed. Some columns are not pairwise orthogonal, and this renders separate decoding

impossible. Moreover QOSTBC cannot attain full diversity unless some of the symbols are

rotated[11]. Threaded algebraic STBC which is a generalization of the BLAST architecture

[12] and space-time shift keying [13] may be given as other examples.

2.5 Differential Space-Time Block Codes

Differential STBC [14] can be considered as a generalization of differential phase shift keying

(DPSK) to multiple transmit antenna case. Similar to DPSK, differential STBC systems does

not need CSI neither at the transmitter not at the receiver side. Since the generalization of

multiple receive antenna case is straightforward as in the coherent STBC, we will assume

Nr = 1 without loss of generality.
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For Nt = 2, two input symbols, st and st+1, that are from a PSK constellation, are mapped into

an A, B pair. This mapping is not unique. Different mappings with the same error performance

may lead to different transmitted symbol constellations.

A = (st + st+1) /2, B =
(

−s∗t+1 + s∗t
)

/2. (2.38)

Symbols are differentially encoded based on the A, B pair with





















ct

ct+1





















= A





















ct−2

ct−1





















+ B





















−c∗
t−1

c∗
t−2





















. (2.39)

Note that ct ’s are always on the same constellation with st, which is a result of the mapping,

i.e., for a mapping other than given in (2.38) with the same error performance, differentially

encoded symbols would not be on the unit circle. The codeword matrix that is to be transmit-

ted within time t and t + 1 is

X =





















ct ct+1

−c∗
t+1

c∗t





















. (2.40)

This part of the encoding is equivalent to coherent Alamouti transmission scheme.

Since the symbols are differentially encoded with respect to two previous symbols, the es-

timation is performed using four observations, r = [rt−2rt−1rtrt+1]T . The equation for the

received vector in a compact form is





















































rt−2

r∗
t−1

rt

r∗
t+1





















































=

√

Es

2





















































h1 h2 0 0

h∗
2
−h∗

1
0 0

0 0 h1 h2

0 0 h∗
2
−h∗

1


































































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


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
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
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


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














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ct

ct+1





















































+





















































nt−2

n∗
t−1

nt

n∗
t+1





















































. (2.41)

The pair is found with the ML receiver:

(

Â, B̂
)

= arg max
A,B

p (r | A, B) (2.42)

where the conditional probability equals to
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p (r | A, B) =
1

|πR|e
−rHR−1r. (2.43)

The autocorrelation function R is a function of A, B, Es, and N0

R = E
{

rrH
}

= N0





















































γ + 1 0 γA∗ −γB

0 γ + 1 γB∗ γA

γA γB γ + 1 0

−γB∗ γA∗ 0 γ + 1





















































. (2.44)

Using the matrix property [15]





















αI M

M αI





















−1

=





















(

αI − MMH

α

)−1
−

(

αI − MMH

α

)−1
M
α

−MH

α

(

αI − MMH

α

)−1
I
α
+ MH

α

(

αI − MMH

α

)−1
M
α





















(2.45)

with

α = γ + 1,M =





















γA∗ −γB

γB∗ γA





















, (2.46)

the inverse of R, R−1, can be found as

R−1 =
1

N0





















































γ+1

2γ+1
0 − γ

2γ+1
A∗ γ

2γ+1
B

0
γ+1

2γ+1
− γ

2γ+1
B∗ − γ

2γ+1
A

− γ

2γ+1
A − γ

2γ+1
B

γ+1

2γ+1
0

γ

2γ+1
B∗ − γ

2γ+1
A∗ 0

γ+1

2γ+1





















































. (2.47)

Note that the determinant of R, |R| ,is equal for all A,B pairs. Therefore

(

Â, B̂
)

= arg min
A,B

rHR−1r (2.48)

as γ goes to infinity. Assuming SNR is high, Eq. 2.48 becomes

(

Â, B̂
)

= arg min
A,B

(

|RA − A|2 + |RB − B|2
)

(2.49)

14



where

RA = r∗
t−2

rt + rt−1r
∗
t+1
,

RB = −r∗t−1
rt + rt−2r

∗
t+1
.

(2.50)

The A,B pair should be jointly detected. The statistics for symbols st and st+1, s̃t and s̃t+1can

be separately obtained by

s̃t = RA + R
∗
B, s̃t+1 = R∗B − RA (2.51)

which is the inverse of the mapping in (2.38).

This scheme achieves full diversity with full rate. Similar to the comparison of coherent PSK

and DPSK, differential space time modulation with Nt = 2 has 3dB performance degradation

as compared to the coherent Alamouti scheme. The bit error rates (BER) for the two schemes

are depicted in Figure 2.5.
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Coh.STBC. vs. Dif STBC, N
t
=2, N

r
=1, BPSK

B
E

R

SNR (dB)

 

 

Coherent STBC

Differential STBC

Figure 2.1: The performance resultes for coherent and differential STBCs

Generalization to multiple transmit antenna with Nt > 2 is investigated in [16]. By using

a FRFD OSTBC with real constellation it is shown that a half rate full diversity differential
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STBC can be generated with complex constellation for the same transmit antenna number.

Systematic constructions for BPSK FRFD differential STBC’s are also exist.

2.6 Unitary Space-Time Modulation

In [17] , capacity of a noncoherent MIMO system where the channel is constant for T symbol

durations is analyzed. It is shown that an increase in Nt does not provide a capacity improve-

ment if Nt > T . Moreover, capacity achieving input signals are shown to be the product of

isotropically distributed unitary matrix and a diagonal real nonnegative matrix. Also in [18],

a geometrical approach is suggested and the capacity is shown to increase by V(1−V/T ) with

each 3dB increase in SNR where V = min(Nt,Nr, ⌊T/2⌋). Inspired by the capacity achiev-

ing input distribution, unitary space-time modulation [19] and differential unitary space-time

modulation [20] were proposed. An efficient receiver structure for diagonal unitary space-

time modulation is given in [21] which has polynomial complexity in the number of antennas

and rate. The complexity of the receiver of differential space-time modulation is exponential

in the rate and number of antennas while differential STBC’s in [14] and [16] possess linear

decoding complexity.

2.7 Conclusion

In this chapter we gave some basic information about the space-time codes that are used in

our scenarios in which we compare them with another transmit diversity technique. Space-

time codes were proposed in late 1990’s and since then there has been an extensive literature

work on this subject. They rely on utilizing multiple transmit antennas and only optionally

multiple receive antennas. Redundant replicas of data are transmitted in order to compensate

for fading and noise so that spatial diversity the channel provides be achieved. Some of the

space-time codes that are designed to achieve spatial diversity can also be used for achiev-

ing temporal diversity. Space-time codes are also extended to frequency selective channels,

OFDM systems, and wireless networks in which distributed space-time codes are proposed.
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CHAPTER 3

COMPARISON OF TSTD AND STBC OVER BLOCK-FADING

MISO CHANNELS

In this chapter, we compare the performances of two transmit diversity schemes, namely,

time-switched transmit diversity (TSTD) and the Alamouti scheme, both concatenated with

an outer channel coding over multiple-input single-output (MISO) block-fading channels. The

comparison is done in coherent and noncoherent channels with Nt = 2 transmit and Nr = 1

receive antennas. The performance analyses for BER, packet-error-rate (PER) and outage

probabilities of two schemes are provided for coherent channels as well.

3.1 Coherent Block-Fading MISO Channels

In a MIMO block-fading (BF) channel with Nt transmit and Nr receive antennas, the chan-

nel gains are constant over L consecutive symbol durations and then change independently

in each block. In order to exploit the spatio-temporal diversity the channel provides, channel

coding (and interleaving if necessary) may be used. Codewords span a time duration occu-

pying a number of blocks, namely B blocks. The B value may be constrained by the system

allowances, frequency hopping rate, delay, etc.

The received signal at the jth receive antenna at time (b − 1)L + t, yb
t j

is given as

ybt j =

√

Es

Nt

Nt
∑

i=1

hbi jx
b
ti + n

b
t j, 1 ≤ b ≤ B, 1 ≤ t ≤ L (3.1)

where hb
i j

is the independent unit power Rayleigh distributed channel gain between the ith
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transmit antenna and the jth receive antenna within bth block, nb
t j

denotes the noise sample

received at the jth antenna at time (b − 1) L + t (at the bth block). The noise samples are

independent samples of zero-mean circularly symmetric complex Gaussian (ZMCSCG) ran-

dom variables each with variance N0/2 per dimension. xb
ti

is the signal transmitted from ith

antenna at time (b − 1)L + t. Note that (3.1) can be put into matrix form as

Yb =

√

γ

Nt

XbHb + Nb, 1 ≤ b ≤ B (3.2)

where Yb, Xb, Hb, and Nb are equivalent to Y, X, H, and N respectively in 2.4 except with

block index b and T replaced with L. Up until Section 3.9, we will assume that the CSI is

perfectly known at the receiver, though not at the transmitter.

3.2 Time Switched Transmit Diversity

Time switched transmit diversity (TSTD) [5] is a technique which aims to achieve transmit

diversity. TSTD is used in Universal Mobile Telecommunications System (UMTS) particu-

larly on synchronization channels [22, 23, 24]. The main idea behind TSTD is to alternate

the transmit antennas according to a predefined hopping pattern so that the data is transmitted

from one antenna at a time. By using this technique, space diversity is turned into temporal

diversity. The main advantage of TSTD is facilitating an implementation with only a single

radio-frequency (RF) chain for multiple transmit antennas. The work in the thesis concentrate

on 2x1 MISO BF channels without loss of generality, therefore we will give a quantitative ex-

planation about the technique accordingly.

The signals are transmitted only on the 1st antenna during the first half of a block and only the

2nd antenna is activated during the second half. Thus the receiver signal at time (b − 1)L + t

equals

ybt =



























√
Esh

b
1
xbt + n

b
t 1 ≤ t ≤ L/2

√
Esh

b
2
xbt + n

b
t L/2 + 1 ≤ t ≤ L

. (3.3)

With no loss of generality we will assume that all xbt ’s are elements of a specific constellation.

Note that, utilizing antenna hopping, a 2x1 MISO block fading channel with B independent
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blocks each of which span L symbol durations is equivalent to a single-input single-output

(SISO) block fading channel with 2B independent blocks each spanning L/2 symbol durations.

3.3 Alamouti Scheme

As explained in Section 2.4, two signals are mapped into a 2x2 transmission matrix and

the matrix is sent within 2 symbol durations. The receiver signals at time (b − 1) L + t and

(b − 1) L + t + 1 in a 2x1 channel are equal to





















ybt

yb
t+1





















=

√

Es

2





















xbt xb
t+1

−xb∗
t+1

xb∗t









































hb
1

hb
2





















+





















nbt

nb
t+1





















(3.4)

where t is an odd number. Note that the symbol pair are transmitted within the same block b.

3.4 Channel Coding and Interleaving

The purpose of channel coding is not seeking coding gain but rather exploiting the available

diversity gain by extending the codeword such that it spans several blocks. To exemplify,

TSTD transforms spatial diversity into temporal diversity and this diversity advantage can

be benefitted from by using relevant channel coding and interleaving [25]. In the Alamouti

scheme, the channel coding is expected to obtain only temporal diversity gain, since full

spatial diversity is already gained.

The maximum achievable diversity gain d∗ in a SISO-BF channel is upper-bounded by the

generalized Singleton bound for finite constellations, which is shown below [25]:

d∗ ≤ 1 +

⌊

B

(

1 − Rb

log2 |V|

)⌋

(3.5)

where Rb is the bit rate, V is the constellation alphabet of the tranmitted symbols, and |V| is

the cardinality ofV. In [26], the upper bound for the maximum achievable diversity gain for

BPSK constellation on a NtxNr MIMO channel is derived as
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d∗NtxNr
≤ Nr

(

1 +

⌊

NtB

(

1 − Rb

Nt

)⌋)

. (3.6)

The transmit diversity techniques that we mention above further restrict the maximum achiev-

able diversity. Using BPSK constellation, the upper bounds for the maximum achievable di-

versity in a 2x1 MISO channel, a TSTD system and an Alamouti encoded system are given

as

d∗2x1 ≤ 1 +

⌊

2B

(

1 − Rb

2

)⌋

, (3.7)

d∗TSTD ≤ 1 + ⌊2B (1 − Rb)⌋ , (3.8)

d∗ALA ≤ 2 (1 + ⌊B (1 − Rb)⌋) , (3.9)

respectively.1 Figure 3.4 depicts the upper bounds for achievable diversity gains when BPSK

is used with B = 4. Note that, for any B > 1 and Rb > 1/2B, dMISO is greater than d∗
ALA

and

d∗
TSTD

. The three upper bounds are equal only if Rb ≤ 1/2B.

In the following we explain the coding and interleaving structures that we used in order to

compare TSTD and the Alamouti scheme.

A sequence of Q input bits a1a2...aQ are convolutionally coded into BL log2 |V| bits z1z2...zBL log2 |V|

with a coding rate 1/2B, after the number of memory order M zero bits are padded. The out-

put bits z1z2...zBL log2 |V| are periodically interleaved into the sequence u1u2...uBL log2 |V| such

that

ui = zα(i) (3.10)

where

1 Inequalities (3.8) and (3.9) are also valid for general symbol constellations when Rb is replaced with

Rb/ log2 |V|.
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Figure 3.1: Upper bounds for the achievable diversity gains in a 2x1 MISO channel
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α (i) = 2BmodL log2 |V|/2 (i − 1) +
⌊

2i/L log2 |V|
⌋

+ 1. (3.11)

The block interleaver structure is depicted in Table 3.1. Note that output bits corresponding to

the same state transition are transmitted at different channel realizations, when TSTD is used

for transmit diversity.

z1 z2 z3 · · · z2B

z2B+1 z2B+2 z2B+3 · · · z4B

...
...

...
...

zB(L log2 |V|−2)+1 zB(L log2 |V|−2)+2 zB(L log2 |V|−2)+3 · · · zBL log2 |V|

Table 3.1: The periodic block interleaver

In the next step, consecutive log2 |V| interleaved bits are grouped and the sequence u1u2...uBL log2 |V|

are modulated to form v1v2...vBL according to the symbol constellation with Gray encoding.

Note also that

Q =
L log2 |V|

2
− M (3.12)

and

Rb =
Q

BL
. (3.13)

The symbols v1v2...vBL are transmitted according to (3.3) or (3.4), when TSTD or Alamouti

scheme is used respectively, and xbt = v(b−1)L+t. The transmitter end is illustrated in Figure

3.2.

We should point out that not all of the convolutional codes with rate 1/2B can achieve full

diversity 2B in a 2x1 channel with the TSTD technique. Some of the convolutional codes

as well as other channel codes that achieve full diversity 2B and the codes that achieve the

Singleton bound for SISO BF channels can be found in [27, 26, 25].

Note that d∗
TSTD

is determined by the minimum block Hamming distance between the code-
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Figure 3.2: Transmitter end for the coherent case

words D∗
mbHd,TSTD

, i.e., the number of block/antenna realizations in which some of the sym-

bols of two codewords differ, in a TSTD system. The minimum block Hamming distance

between the codewords of the same outer code over an equivalent Alamouti encoded 2x1

block-fading channel D∗
mbHd,ALA

is lower bounded by D∗
mbHd,ALA

≥
⌊

D∗
mbHd,TSTD

/2
⌋

. Note

also that the code achieves a diversity gain is of 2xD∗
mbHd,ALA

. Since this is also restricted by

the upper bound (3.9), an outer code that achieves the Singleton bound for TSTD (3.8) also

achieves the Singleton bound for the Alamouti scheme (3.9).

In [26], some nonconcatenated codes that achieve the Singleton bound in MIMO-BF channel

(3.6) are proposed and it is shown that concatenated codes fail to gain the maximum achiev-

able diversity. In [28], the convolutional codes which have a good performance with phase

uncertainity in the BF channels are proposed.

3.5 Receiver End

3.5.1 Receiver End for TSTD

As explained in Section 3.4, the groups of log2 |V| bits are modulated into symbols in the

constellation V. Suppose that ui along with log2 |V| − 1 adjacent bits are Gray mapped into
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v(b−1)L+t.

The approximate bit log-likelihood-ratio (LLR), which is introduced in [29], for ui is extracted

from the observed signal ybt as

λu (i) = ln
maxv(b−1)L+tǫSi p

(

ybt | v(b−1)L+t

)

maxv(b−1)L+tǫSci p
(

ybt | v(b−1)L+t

) (3.14)

where Si is a subset of the symbol constellation V such that the i’th bit of the inverse Gray

mapping of the elements of S is ’0’. For BPSK constellation, the exact LLR for u(b−1)L+t is

equivalent to

r(b−1)L+t =



















(

hb
1

)∗
ybt 1 ≤ t ≤ L/2

(

hb
2

)∗
ybt L/2 + 1 ≤ t ≤ L

. (3.15)

For PSK constellations,

λu (i) = min
v(b−1)L+tǫSi

∣

∣

∣r(b−1)L+t − v(b−1)L+t

∣

∣

∣

2 − min
v(b−1)L+tǫSci

∣

∣

∣r(b−1)L+t − v(b−1)L+t

∣

∣

∣ .2 (3.16)

The approximate LLR’s λu (i) are deinterleaved and λz (i) ’s are fed into the Viterbi decoder

to find

(

â1â2...âQ
)

= max
a1a2...aQ

BL log2 |V|
∑

i=1

ξ (zi) λz (i) (3.17)

where

ξ (zi) =



























1

−1

zi = 0

zi = 1

. (3.18)

3.5.2 Receiver End for Alamouti

In the Alamouti scheme, the decisions for the symbols can be obtained by using linear pro-

cessing. The scaled statistics for v(b−1)L+t and v(b−1)L+t+1 are
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(3.19)

where t is odd.

As in TSTD technique, if BPSK is used (3.38), and if any PSK constellation is used (3.16),

holds for the approximate LLR’s in the Alamouti receiver.

3.6 Performance Analysis

For a quasi-static or an additive white Gaussian noise (AWGN) channel, the BER perfor-

mances of the convolutional codes can be easily evaluated with the aid of transfer function,

T (D,N). A comprehensive description about tranfer function can be found in [30].

In [31], the transfer function is generalized to be used on a SISO-BF channel with BPSK con-

stellation. Due to the feature of the coding and the interleaver, each output bit corresponding

to the same state transition is sent from a different block/antenna realization in the TSTD tech-

nique. In the calculation of the generalized transfer function T
(

D1,1,D2,1, ...,D1,B,D2,B,N
)

the label of the branches are in the form:

η = Ni0

B
∏

b=1

D
i1,b
1,b

D
i2,b
2,b
. (3.20)

Here the index of D represents the block and the transmit antenna at which the symbol is

sent. Since the input bit number in convolutional code that we use is 1 and each output bit

is sent from different antennas/blocks, i0, i1,b’s, and i2,b’s are either one or zero. An example

of the labeling of the branches in a state transition diagram for the convolutional coding with

the generator polynomial (5,7) in the octal form, which is used for single block 2x1 MISO

channels, is illustrated in Figure 3.3. With an abuse of notation, branch indices b are neglected.

In the figure, the solid line indicates that the input bit corresponding to the state transition is

’1’ and the dotted line indicates that the input bit is ’0’.

The transfer function of the example code above is
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Figure 3.3: The state transition diagram for the (5,7) convolutional code with a periodic inter-

leaver

T (D1,D2,N) =
−D2

1
D2

2
N

(

ND2
1
− ND2

2
+ D2

)

D2
1
N2 − D2

2
N2 + 2D2N − 1

. (3.21)

In the scenarios that we explained in the previous sections, the BER performance can be found

with the aid of the generalized transfer function. When channel gains are fixed, an upper

bound for the BER of convolutional code with T
(

D1,1,D2,1, ...,D1,B,D2,B,N
)

and R = 1/2B

over a 2x1 MISO-BF channel, collaborated with the TSTD technique, and modulated with

BPSK constellation can be found as

Pb(h1
1h

1
2...h

B
1h

B
2 ) ≤

∂T
(

D1,1,D2,1, ...,D1,B,D2,B,N
)

∂N

∣

∣

∣

∣

∣

∣

N=1,Di,b=e
−|hbi |2 Es

N0

. (3.22)

Similarly, an upper bound on the BER of the same convolutional code for the Alamouti

scheme is found as

Pb

(

h1
1h

1
2...h

B
1h

B
2

)

≤
∂T

(

D1,1,D2,1, ...,D1,B,D2,B,N
)

∂N

∣

∣

∣

∣

∣

∣

N=1,D1,b=D2,b=e
−g2

b
Es
N0

(3.23)

where gb =

√

(
∣

∣

∣hb
1

∣

∣

∣

2
+

∣

∣

∣hb
2

∣

∣

∣

2
)/2.
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It should be take into consideration that the sum of outputs for errorenous paths may not

converge to the generalized transfer function for small values of channel gains. Since the

region of convergence is complicated and is hard to be found for multidimensional systems

[32], we were not able to express the set of channel gains that the upper bound is valid.

Moreover, as B increases the generalized transfer function becomes cumbersome to find.

In order to provide the expression of the PER for convolutional codes, we encounter two

approaches to be utilized. The first approach is to limit the upper bound for PER before

averaging over the channel realizations, which is inefficient in computing due to the need for

2B fold integration [33]. In [33], the intantaneous PER is found analytically with the aid of

the BER expression. The second one is directly to find the upper bound for average PER

values [27]. In the latter approach, however, the upper bound diverges, i.e., results in very

high values for small B.

For a fixed channel realization, the PER in TSTD can be upper bounded by [27]

PER
(

h1
1h

1
2...h

B
1h

B
2

)

≤ G1,1 − 1 (3.24)

where

G = A(D1,1,D2,1, ...,D1,B,D2,B)L/2 |
Di,b=e

−|hbi |2 Es
N0

(3.25)

and A
(

D1,1,D2,1, ...,D1,B,D2,B

)

is the generalized 2Mx2M state transition matrix.

Ai, j(D1,1,D2,1, ...,D1,B,D2,B) is the entry of A(D1,1,D2,1, ...,D1,B,D2,B) at the ith row and jth

column and equals the labeling corresponding to the transition from state i to state j.

G1,1−1 corresponds to all the possible paths that start from the all-zero state and end at the all-

zero state. To exemplify, for convolutional code with the generator polynomial (5,7) followed

by the periodic interleaver, the state transition matrix is
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
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. (3.26)

Thus, the upper bound for average PER in the TSTD system is found as

PER ≤
∫

h1
1

∫

h1
2

· · ·
∫

hB
1

∫

hB
2

min
(

1, PER(h1
1h

1
2...h

B
1h

B
2 )

)

p
(

h1
1h

1
2...h

B
1h

B
2

)

dh1
1 · · · dh

B
2 . (3.27)

In order to find the upper bound for PER in the Alamouti scheme, the variables should be

modified as

D1,b = D2,b = e
−g2

b
Es
N0 . (3.28)

3.7 Outage Probabilities

In [34], it is shown that the random coding bound and the lower bound based on strong con-

verse to the coding theorem are very close to outage probability for block fading channels

with large L, and even with moderate L values. Motivated by this result, we compare outage

probabilities of two systems to investigate the limits of these two systems for BPSK constel-

lation.

For convenience will give two definitions:

y′ =

√

γ
∣

∣

∣hb
i

∣

∣

∣

2
x + n′ (3.29)

y′′ =
√

γg2
b
x + n′′ (3.30)

where n′ and n′′ are ZMCSCG noise samples with unit power.
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The outage probability for TSTD technique in a 2x1 MISO-BF with B blocks PTSTD
out equals

Pr
(

Rb > ITSTD
(

h1
1
h1

2
...hB

1
hB

2
, γ

))

where

ITSTD
(
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1
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B
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B
2 , γ

)

=
1

2B

B
∑
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2
∑

i=1

∫

y′















∑

x

q(x)p(y′ |x, hbi ) log2

p(y|s, hb
i
)

p(y|hb
i
)















dy (3.31)

is the average mutual information, x = ±1; and the probability of x is q(x) = 1/2 for all x.

For the Alamouti scheme, the outage probability PALA
out is defined similarly with

IALA
(

h1
1h

1
2...h

B
1h

B
2 , γ

)

=
1

B

B
∑

b=1

∫

y′′















∑

x

q(x)p(y|s, gb) log2

p(y|s, gb)

p(y|gb)















dy. (3.32)

3.8 Numerical Results for Coherent Channels

With the BPSK constellation, we compare the error performances and the outage probabilities

for the TSTD technique and the Alamouti scheme with the aid of Monte Carlo simulations

and the analytical results given in Sections 3.6 and 3.7. Obtained after using the encoding

and decoding structures explained in the previous sections, the results are depicted in Figures

3.4, 3.5, and 3.6 for B = 1, 2, and 3, respectively. We fix the block length as L = 100. The

convolutional codes are borrowed from [25] and the generator polynomials are given in octal

form. In the simulation minimum 400 erroneous packets are collected.

It can be seen in Figure 3.4 that the PER’s of the two systems are close to each other with the

Alamouti scheme having roughly 1dB better performance. As the outage probabilities for the

two transmit diversity schemes are close to each other, the discrepancy between the PER’s are

smaller if B = 2 or 3 as depicted in Figures 3.5 and 3.6. The closeness of the performances

of the systems is also accompanied by the closeness of the outage probabilities on the same

order. The differences between the analytic upper-bounds for the PER’s and the simulation

results for the PER’s are nearly 2 dB. Note that full spatio-temporal diversity 2B is achieved

in all cases.
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3.9 Noncoherent Block-Fading MISO Channels

So far in this chapter we assumed that the CSI is perfectly available at the receiver and com-

pared the TSTD and the Alamouti scheme under this assumption. In this section, we carry

out a similar comparison, including simulation results, when the CSI is available neither at

the transmitter nor at the receiver side. A suitable differential encoding/detection is used for

each system and no attempt is done in order to estimate the CSI.

We consider a 2x1 MISO-BF channel where the the transmit diversity techniques are con-

catenated with the rate-1/2B convolutional codes. In order to use the differential method,

2B known symbols are inserted in both systems. The number of symbols in each block is

assumed to be L + 2, where the extra two symbols are used as reference. The bit rate in the

noncoherent channel is

Rb =
Q

B (L + 2)
.

3.9.1 TSTD

After Q input bits are encoded and interleaved as explained in Section 3.4, differential phase-

shift keying (DPSK) is used for transmission. A known symbol is put just after each antenna

switch such that

xb1 = xbL/2+1 = 1. (3.33)

Representing v(b−1)L+t as the PSK modulated symbols, the transmitted signals are differen-

tially encoded as

xbt+1 =



























xbt v(b−1)L+t

xbt v(b−1)L+t−1

1 ≤ t ≤ L/2

L/2 + 1 ≤ t ≤ L + 1

. (3.34)

The statistics are found by differentially decoding as
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r(b−1)L+t =



















yb
t+1

yb∗t 1 ≤ t ≤ L/2

yb
t+2

yb∗
t+1

L/2 + 1 ≤ t ≤ L
. (3.35)

Ignoring the cross-interference noise, the approximate LLR’s are found using (3.16) and are

given to the Viterbi decoder.

3.9.2 Differential Alamouti Scheme

When the CSI is not available, differential counterpart of the Alamouti scheme, differential

STBC for Nt = 2 is used.

The encoded and modulated symbols v(b−1)L+t are mapped into the (A, B) pairs as in (2.38).

Two known symbols are inserted at the beginning of each block:

xb1 = xb2 = 1. (3.36)

The differential encoding is done via
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. (3.37)

where t is odd. As explained in Section 2.5 the statistics for A and B are

RA = yb∗
t−2

yt + y
b
t−1

yb∗
t+1

RB = −yb∗t−1
ybt + y

b
t−2

yb∗
t+1

. (3.38)

The statistics for v(b−1)L+t and v(b−1)L+t+1 are

r(b−1)L+t = A + B∗, r(b−1)L+t+1 = B∗ − A (3.39)

Ignoring the cross-interference noise, the approximate LLR’s are found using (3.16) and are

given to the Viterbi decoder.

The transmitters are illustrated in Figure 3.7.
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Figure 3.7: Transmitter End for Differential Encoding

3.9.3 Numerical Results

Like the coherent case, we use BPSK as the constellation and the encoding/interleaver ex-

plained before. The memory order of the convolutional code is M = 3. The simulation results

for B = 1, 2, and 3 are depicted in Figures 3.8, 3.9, and 3.10 respectively. In Figure 3.8 it

is seen that the error performances are close to each other. DSTBC have roughly 1 dB better

PER performance. Supporting the results in the coherent case, the discrepancy between the

error performances of the TSTD and DSTBC is smaller with B = 2,3. Note that the systems

achieve full diversity 1/2B for all B values.

Using the analytical and simulation results, it is shown that the performances of the coherent

Alamouti scheme and coherent TSTD are close to each other in the previous section. In this

section the closeness between the performances of DSTBC, the differential counterpart of the

coherent STBC, and TSTD with DPSK is verified.
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CHAPTER 4

STBC PERFORMANCE IN TIME-VARYING CHANNELS

This chapter is devoted to the analyses of the performance degradation of STBC’s due to the

channel coefficients variation in time and imperfections in the channel estimates. In contrast

to the scenario in Chapter 3, we do not utilize channel codes concatenated with the STBC’s. A

channel estimation technique for time-varying flat-fading channels and uncoded symbol error

performance in Rayleigh distributed continuous time-varying MISO channel with channel

uncertainty are given. The effect of time-variation on the symbol error performance of the

differential STBC’s is also discussed.

4.1 PSAM

Pilot Symbol Assisted Modulation (PSAM) is a method for channel estimation in flat-fading

channels and is particularly suitable for rapidly fading channels [35]. Instead of sending the

training sequences at the beginning of transmission, known pilot symbols are inserted between

the data symbols and the channel coefficients are estimated by the aid of transversal Wiener

filters, which are optimal in the minimum mean square error (MMSE) sense by definition. In

order to estimate the channel gain coefficient at a particular time t, K nearest pilot symbols

are used for estimation. The pilot symbols are inserted equally spaced with a pilot spacing F.

The placement of inserted pilot symbols in a SISO continuous time-varying fading channel

is illustrated in Figure 4.1, where the solid vertical lines represent the pilot symbols and the

dotted lines represent the data symbols. The channel response to the pilot symbol at t is

perturbed by a ZMCSCG noise sample nt with variance N0. Without loss of generality, we

will assume that K is even.
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Figure 4.1: Placement of the pilot symbols among the data symbols during the transmission

For the estimation of the channel coefficient ht in a SISO flat-fading channel at time t, the

interpolator vector (Wiener filter) is given as
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(4.1)

where

pt,l =
√

Eph(⌊t/F⌋+l)F + n(⌊t/F⌋+l)F (4.2)

and Ep is the pilot symbol energy. The autocorrelation function of pt is defined as

E
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ptp
H
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= Rp =
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. (4.3)

For a flat-fading channel with the Jakes’ spectrum [36] having a maximum Doppler frequency

fd, the entries of Rp becomes

ri, j = EpJ0 (2π fdn (i − j) F) + N0δi, j. (4.4)
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where fdn = fdTs, Ts is symbol duration and δi, j is the Kronecker delta function.

The cross-correlation vector is
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(4.5)

where

ci =
√

EpJ0 (2π fdn |iF − t|) (4.6)

again for fading channels with the Jakes’ spectrum. The Wiener filter coefficients are then

given as the vector

wt = R−1
p ct. (4.7)

The estimation of the flat-fading channel coefficient at time t is

ĥt = wH
t pt. (4.8)

Note that wt1 = wt2 for modF |t1 − t2| = 0 and pt1 = pt2 for ⌊|t1 − t2| /F⌋ = 0.

In order to reconstruct the channel gain coefficients of a fading channel with a band-limited

spectrum, the pilot symbols should sample the process with an adequate frequency. In order

for the pilot responses not to have an unaliased spectrum, the pilot spacing in a fading channel

with Jakes’ spectrum must satisfy the Nyquist criterion:

F ≤ 1

2 fdn
. (4.9)
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Assume for the moment that K is infinite. In this case for the continuous flat-fading channels

with a band-limited power spectrum density (PSD) of fading coefficient, the MMSE is [37, 38]

E
{

∣

∣

∣ht − ĥt
∣

∣

∣

2
}

= ξmin = 1 −
∫ B f

−B f

γpS
2
h

(v)

F + γpS h (v)
dv (4.10)

where S h (v) is the PSD of ht, B f is the positive bandwidth, and γp denotes Ep/N0. For a

fading channel with the Jakes’ spectrum, the MMSE is [39]

ξmin = 1 −
arctanh

√

1 −
(

γp
Fπ fdn

)2

π
2

√

(

Fπ fdn
γp

)2

− 1

. (4.11)

Note for infinite K that ξmin does not depend on the position (time index) of the estimated

channel coefficient with respect to the pilots, i.e., ξmin corresponding to the channel gain

coefficient at the middle of two pilot symbols and the channel gain coefficient adjacent to a

pilot symbol are the same. For a finite but sufficiently large K, the dependence of ξmin on the

position is still not significant. For example in a PSAM scheme with K = 36, F = 12, and

fdn = 0.01, the variation is less than 0.1% [40]. Provided that (4.9) holds and K is infinite,

ξmin goes to zero as γp goes to infinity.

In our scenarios we will generalize PSAM for a 2x1 system as follows. While the first transmit

antenna sends a pilot symbol, the second antenna remains silent, and visa versa at the follow-

ing time slot. Whilst the pilot symbols are sent during two symbol durations, data symbols are

transmitted during adjacent F − 2 symbol durations. Since there is no inter-transmit-antenna-

interference (ITAI), previous results for SISO channel hold.

Figure 4.2: Pilot Insertion for two transmit antennas
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4.2 Performance of the Alamouti Scheme With Channel Uncertainty

Due to the limited pilot energy the channel gain coefficients cannot be estimated perfectly

with the PSAM technique. The channel estimation error leads to performance degradation

and induces an error floor, i.e., that even if the SNR increases the error performance becomes

bounded. Note that the estimation error is orthogonal to the channel estimate and the vari-

ance of any channel estimate is smaller than the variance of the corresponding channel gain

coefficient, which equals one.

Let us assume that the channel gain coefficients in a 2xNr quasi-static Rayleigh fading channel

with unit power gain are estimated with the aid of pilot symbols having the same energy for

both antennas. As in (2.32), the symbols that are encoded with the Alamouti scheme before

transmission are detected with linear processing using the estimated channel gain coefficients

as if they are perfect. The performance degradation due to the channel uncertainty is given

analytically in [41]. Using the Alamouti scheme and linear processing at the receiver, the

BER with BPSK modulation on a quasi-static Rayleigh fading channel can then be given as

Pb =
1

4















1 −
√

A

2 + A




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





2 
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









2 +

√

A

2 + A















(4.12)

where

A =
Es

(

1 − σ2
e

)

N0 + Esσ
2
e

, (4.13)

σ2
e is the channel estimation error variance and Nr is one. It can also be generalized to the

multiple receive antenna case as [36]

Pb =










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√
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
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c

. (4.14)

Figure 4.3 illustrates the performance degradation due to the channel uncertainty in a 2x1

quasi-static Rayleigh fading channel with unit energy. The channel gains are uncorrelated

with respect to the transmit antennas. With a channel estimation error of σ2
e = 0.01 the error

floor is at 7.4x10−5, whereas the error floor is at 1.6x10−3 if σ2
e = 0.05.
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Figure 4.3: The effect of the channel estimation error on the error performance of the Alam-

outi scheme with BPSK modulation. (Nt=2, Nr=1).
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4.3 Performance of the Alamouti Scheme Over Time-Varying Channels

The linear processing operation in (2.32) presumes that the channel gain coefficients do not

change within two symbol durations. Considering (2.30), Θ in (2.31) for a time-selective 2x1

MISO channel is modified as

Θ =





















h1
t h2

t

h2∗
t+1

−h1∗
t+1





















(4.15)

where h1
t and h2

t denote the channel gain coefficients of the first and the second antennas at

time t respectively. Since ΘHΘ is non-diagonal, ITAI occurs, even if the channel coefficients

are perfectly known. Therefore, the linear processing renders the Alamouti scheme suscepti-

ble to time-variation of channel coefficients.

Consider the Alamouti scheme over a 2x1 Rayleigh, equally and independently distributed

flat-fading channel with BPSK constellation. The average BER when the correlation coeffi-

cients between adjacent channel gain coefficients are the same for h1
t and h2

t is [42]

Pb =
1

4
(1 − Υ)2 (2 + Υ) (4.16)

where

Υ =

√

2 + 2N0 − ρ2 (4.17)

and ρ is the correlation coefficient between adjacent channel gain coefficients in time for both

h1
t and h2

t . If the Doppler power spectrum of h1
t (and h2

t ) is Jakes’ spectrum,

ρ = J0 (2π fdn) . (4.18)

Along with linear processing, several alternative receiver structures for the Alamouti encoded

systems without any outer channel code have been proposed. In [43], receivers based on

zero-forcing and decision feedback have been investigated. In [44], a quasi-ML decoder
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is suggested. Another receive structure based on interference cancellation is given in [40].

However these receiver structures are not in the scope of our study.

4.4 Performance of the Alamouti Scheme Over Time-Varying Channels with

PSAM

In the Alamouti encoded systems where the channel gain coefficients are estimated with

PSAM, the combined detrimental effects of the channel estimation error and the time-variation

on the error performance must be investigated. The BER of the BPSK modulated Alamouti

scheme in a 2x1 Rayleigh time-selective fading channel is found with the aid of (4.16) where

Υ is modified as [42]

Υ =

















4
(

1 + γ−1
s

)

ε0

−
(

ε1

ε0

)2
















−1/2

(4.19)

in which

ε0 = 2ψH
0

(

Ψ0 + γ
−1
p IK

)−1
ψ0

ε1 = 2ψH
1

(

Ψ0 + γ
−1
p IK

)−1
ψ0

. (4.20)

The parameters ψ0, ψ1, and Ψe (e = 0, 1) are defined as follows. The entry at the mth row

and nth column of Ψe equals E
{

h
1,2
t+e+mh

1,2∗
t+n

}

and ψe is the K/2 + 1th column of Ψe. Since

the channel estimation error will diminish as SNR increases provided that Ep = βEs, K is

sufficiently large and (4.9) holds, it can be inferred that only the variation of channel gain

coefficients in time degrades the performance at high SNR.

4.5 Optimum Pilot Spacing

In Sections 4.2 and 4.4, it is revealed that noisy channel estimates lead to degradation in

error performance. Considering (4.10), it can be deduced that either F should be decreased

or Ep should be increased. However, both approaches leave a reduced energy for the data

symbols. Thus, there is a trade-off between better channel estimation and increased Es. The

optimization can be performed in different manners. Either F with constant Ep or Ep with
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constant F can be optimized. The parameters can be optimized jointly as well. Besides, the

parameters can be optimized with respect to the error performance or the optimization can be

done in the information-theoretic sense.

The maximization of the uncoded symbol error performance of the Alamouti encoded systems

with respect to F is analyzed in [40]. The channel gain coefficients of the 2x1 Rayleigh

channel that belong to the first and second transmit antennas are independent and have the

Jakes’ spectrum with the same fdn. The symbols are modulated M-ary PSK constellation. It

is also assumed that and Es =
F−2
F

Eblog2M and Ep = Es. The optimum pilot spacing is given

as [40]

Fopt = 2























1 +

√

1 +
1

4 fdn























. (4.21)

Note that Fopt does not depend on SNR.

4.6 DSTBC Over Time-Varying Channels

In the conventional DPSK modulated systems, each symbol is detected using two-symbol

observations without the need of CSI. The error performance deteriorates and an error floor

is induced if the flat-fading channel is not constant within two symbol durations. Average

BER for differential BPSK modulation in Rayleigh SISO fading channels with time-variation

is given as [36]

Pb =
1

2

(

1 + γs (1 − ρ)

1 + γs

)

. (4.22)

In the fading channels with Jakes’ spectrum the error floor is also approximately given as [36]

Pb, f loor ≈ 0.5 (π fdn)2 . (4.23)

In the DSTBC systems, details of which are given in Section 2.5, it is assumed the channel

gain coefficients are constant within 4 symbol durations. Like the DPSK modulated systems,
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the DSTBC is also susceptible to time-variation. The average BER of the BPSK modulated

DSTBC over 2x1 Rayleigh time-varying channel is as [45]

Pb =
1

4
(1 − µ)2 (2 + µ) (4.24)

where

µ = 1/

√

√

1 + 2















(

γs + 1

γsρ [1]

)2

− 1















. (4.25)

Actually in the derivation [45], it is assumed that channel gain coefficients are constant within

2 symbol durations and then change with the autocorrelation function of the channel. The

autocorrelation function ρ [1] is modified as

ρ [1] =
1

3

3
∑

i=1

ρ (i) (4.26)

where

ρ (i) = J0 (2π fdni) (4.27)

in order to generalize (4.24) to the symbol-to-symbol time-varying channels with Jakes’ spec-

trum.

Note that Es = Eblog2M as opposed to the Alamouti scheme with PSAM. The generalizations

of the analytic symbol error rate evaluation to other PSK constellations are also given in [45].

4.7 Numerical Results

In this section we present the simulation results of the performance of the Alamouti scheme

with PSAM and DSTBC over 2x1 Rayleigh flat-fading channels. The time-varying channel

gain coefficients with Jakes’ spectrum are independent in space, and fdn for the first and

the second antenna are the same. There is no concatenated coding and BPSK is used as

symbol constellation. For the Alamouti scheme, F is optimized as in (4.21) and it is fixed that
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Ep = Es. For different fdn values, the simulation results are accompanied with the analytical

performance results in (4.16) and (4.24).
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Figure 4.4: Performance of the coherent and noncoherent STBC’s with the BPSK modulation

with Jakes’ model, fdn = 0.001.

In Figure 4.4, the average BER values versus Eb/N0 for fdn = 0.001 are shown. Note that

full-diversity, which is 2, is achieved with both systems. DSTBC has 2.7 dB loss from the

Alamouti scheme. If the overhead energy is taken into account, the plots are consistent with

Figure 2.5. The simulation results are well matched to the analytical results. The perfor-

mances are not affected by the time-variation and the error floors are not observable at this

fdn value. Figure 4.5 depicts the performance results for fdn = 0.01. This maximum Doppler

spread corresponds to a mobile system operating at 900 MHz with 9.6 kbauds and with a

speed of approximately 110 km/h [40]. While the error floor for the Alamouti scheme is

8.3x10−7, the error floor for DSTBC is 5.4x10−5. In Figure 4.6, it is shown that the error floor

are very high if fdn = 0.03. It corresponds to the 1.9 GHz personal communications services

(PCS) system, with 6.4 kbaud symbol rate and at 110 km/h [40]. The error floor starts at

nearly 40dB for the Alamouti scheme and nearly 30 dB for DSTBC.
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with Jakes’ model, fdn = 0.01.
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with Jakes’ model, fdn = 0.03.

Since larger K values lead to increased complexity, the dependence of the performance of the

Alamouti scheme on K is important. In Figure 4.7, the performance results for the Alamouti

scheme with PSAM is given for fdn = 0.03 with different K values. For the optimum F

value of 8, increasing K to more than 4 does not provide a significant improvement in the

BER performance. For larger values of fdn, the channel coherence time is smaller. Since the

correlation between the channel gain coefficient to be detected and the pilot symbols at the

beginning and the end of the interpolator vector in (4.1) are gets smaller as fdn increases, it

can be inferred that as as the sufficient K increases with increasing fdn.
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CHAPTER 5

COMPARISON OF TSTD AND STBC OVER TIME-VARYING

MISO CHANNELS

In this chapter, we compare the BER and PER performances of the Alamouti scheme and

TSTD both concatenated with a convolutional code over 2x1 time-varying channels. Regard-

ing the time-varying channel as a block-fading channel, we utilized the encoding structures

that are designed for the block-fading channels and described in Chapter 3.

In general, time-varying flat-fading channels are modeled as block-fading channels with a

finite number of block realizations B in order to develop coding design criteria and exploit

the temporal diversity [46]. The approximation in [47] shows that a SISO Rayleigh fading

channel with the Jakes’ spectrum provides B degrees of freedom, where

B ≈ 1 + 2 fdnTp. (5.1)

The channel gain coefficients are considered to be constant for Tp/B symbol durations and

then change independently. While the time-variation of the channel provides temporal diver-

sity, it may also lead to degradation in error performance, especially at high SNR as explained

in Chapter 4. For different fdn and Tp values, Monte Carlo simulations are performed and the

error performances of the transmit diversity schemes over Rayleigh fading channels with the

Jakes’ spectrum are presented in this chapter where the CSI is assumed to be either perfectly

known or not available at all at the receiver. The simulations illustrate both improving and

detrimental effects of the time-variation on the error performance. The effects of the channel

estimation error on the performance of coherent receivers are also provided.
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5.1 Coherent Case in Time-Varying Channels

As explained in Section 4.3, inter-antenna interference, which is induced by the linear pro-

cessing in (2.32), degrades the symbol error performance of the coherent Alamouti scheme

even if the channel gain coefficients are perfectly available at the receiver. Note that TSTD

does not suffer from this phenomenon, since the symbol decisions are obtained using one

symbol observation. Motivated from the difference of the schemes on the susceptibility to the

time-variation, the Alamouti scheme is expected to fall behind TSTD in time-varying chan-

nels with high fdn. Therefore we investigate the error performances of the transmit diversity

schemes in time-varying channels with high fdn when the CSI is perfectly available at the

receiver.

In Figures 5.1 and 5.2, the simulation results for the performances of the Alamouti scheme

and TSTD with BPSK and QPSK are depicted respectively. The generator polynomial of the

rate-1/4 convolutional code is (3, 5, 7, 7)8. This code is in the family of full-diversity achieving

codes over SISO block-fading channels with 4 block realizations [25].1 We fix fdn = 0.0125

and Tp = 40 in order to satisfy B = 2. It is seen in the figures that the difference between

the BER (and PER) performances of the Alamouti scheme and TSTD is fraction of a dB

for both constellations, resembling the affinity of the error performances of the schemes in

block-fading channels.

Figure 5.3 depicts the error performances with fdn = 0.016667 and Tp = 60 corresponding to

B = 3 and with BPSK constellation. The generator polynomial of the rate-1/6 full-diversity

achieving convolutional code is (3, 5, 7, 3, 5, 7)8 [26]. In Figure 5.4 the same comparison

is shown for QPSK. The performance results for the transmit diversity techniques are very

close to each other. Note that both schemes approximately achieves the full spatio-temporal

diversity order of 6.

In Figures 5.1, 5.2, 5.3, and 5.4, it is seen that the error floors for the PERs cannot be ob-

served up until PER = 10−5, although fdn values are relatively high, i.e., 0.013 and 0.017.

It is expected with the larger constellations that the Alamouti scheme will suffer from the

time-variation of the channel gain coefficients, since the distances of the elements in the con-

1 Note that a 2x1 BF channel with 2 block realizations is equivalent to a SISO channel with 4 block realizations

in a TSTD system.
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stellation will decrease. However, it is observed in the undocumented simulation results that

a significant error floor of the PER does not occur with M-PSK constellations, M < 32,

still until PER = 10−5. Note that the TSTD technique is not also adversely affected by the

time-variation.
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Figure 5.3: B = 3, rate-1/6 convolutional code with (3,5,7,3,5,7), Tp = 60, time-varying 2x1

channel, BPSK

In Section 4.2 it is shown that the channel estimation error degrades the error performance

of the Alamouti scheme. In order to compare the Alamouti scheme and TSTD both with

concatenated coding under channel uncertainty, the BER and PER performances of the trans-

mit diversity schemes where the channel gain coefficients are obtained with the aid of the

PSAM technique are depicted in Figure 5.5. In the simulations we fix fdn = 0.0125 , γp = 1,

and F = 10. In order to investigate the effects of the channel estimation error on the error

performances at high SNR, γp is kept constant, independent of γs.

Here, how the placement of the pilots will be done is a complicated question. Since Tp is

finite, the channel gain coefficients near the edges of a packet are estimated more erroneously
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Figure 5.4: B = 3, rate-1/6 convolutional code with (3,5,7,3,5,7), Tp = 60, time-varying 2x1

channel, QPSK
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if the pilots are uniformly distributed, i.e., equally spaced, throughout the packet. In this case

the pilots may be distributed such that more pilots are inserted near the edges of the packet

as in [48]. By this way the estimation error of the channel gain coefficients near the edges

will decrease. However, the optimization of the pilot placement seems to be cumbersome.

Therefore, the channel gain coefficients and the estimation errors are generated using the

power spectrum densities (PSD) of the random variables assuming the parameters above are

valid. The pilots are assumed to be uniformly distributed and the interpolator number K is

assumed to be infinite. The PSD’s can be found in [39].

Using (4.11), we deduce that the PSAM parameters lead to a ξmin of 0.192. The parameter

fdn and Tp = 40 are chosen so that B = 2 and the generator polynomial of the rate-1/4

convolutional code is (3, 5, 7, 7)8. Note that the induced error floor of the Alamouti scheme is

larger than the error floor of the TSTD technique.
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Figure 5.5: The effects of channel estimation error and time-variation on the performances

of both transmit diversity schemes where the channel gain coefficients are estimated via the

PSAM technique.
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5.2 Noncoherent Case in Time-Varying Channels

In this section the comparison of the TSTD technique with DPSK and DSTBC where no

CSI available at the receiver is given. The encoding/interleaving and receiver structures are

explained in Chapter 3.

It is demonstated in Section 4.6 that time-variation degrades both the error performances

of DPSK and DSTBC. In DPSK two adjacent channel gain coefficients are assumed to be

equal, whereas the channel gain coefficients in DSTBC are assumed to be constant for 4

symbol durations. The correlation coefficient between two adjacent channel gain coefficients

corresponding to the same antenna in a time-varying MISO channel with Jakes’ spectrum is

0.9961 when fdn = 0.02. The correlation coefficient equals 0.9648 when the channel gain

coefficients are separated by 3 symbol durations. Besides, the two-symbol observation ML

symbol receiver2 for uncoded DPSK over time-varying channels is equivalent to the case with

quasi-static channel [49]. However, ML receiver for uncoded DSTBC can be derived from

(2.42) and is not equivalent to the receiver over quasi-static channel. Therefore DSTBC is

expected to be more susceptible against time-variation than TSTD with DPSK is.

In Figure 5.6 the simulation results for fdn = 0.020833, Tp = 24, and B = 2 are depicted.

Since the comparison is done with high fdn and B = 2, such a small value of Tp is chosen ac-

cording to (5.1) which is actually impractical. The bits are coded with a rate-1/4 convolutional

code having the generator polynomial (3, 5, 7, 7)8, and modulated with 8-PSK constellation.

Note that the performance results are almost the same. The error floor is not observable in the

range of display even with a relatively high fdn and a moderately large PSK constellation.

When the coding rate of the outer channel code increases, the performances of the transmit

diversity techniques are expected to deteriorate. In order to observe the detrimental effects of

time-variation, the rate of the outer channel code is increased to 1/2 over a 2x1 time-varying

channel with B = 4, fdn = 0.03125, and Tp = 48. Using (3.8) and (3.9), it can be seen that

TSTD can achieve a diversity order of 5 whereas the Alamouti scheme can achieve a diversity

order of 6 on an equilavent block-fading channel. The convolutional code having the generator

polynomial (26,74) is used, which achieves the Singleton bound (3.6) on a SISO block-fading

chanel with B = 8. Note that the outer channel code that achieves the Singleton bound (3.8)

2 Classical DPSK receiver
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Figure 5.6: B = 2 rate-1/4 convolutional code (3,5,7,7) Tp = 24 8-PSK
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with TSTD, also achieves (3.9) with the Alamouti scheme as explained in Section 3.4. In

Figure 5.7, the transmit diversity schemes are compared with BPSK constellation. Enjoying

the diversity advantage over TSTD, DSTBC have a better error performance.
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Figure 5.7: B = 4, rate-1/2, convolutional code (62,72), Tp = 48, BPSK

In Figure 5.8, the schemes are compared with QPSK. Since the distances between the ele-

ments of the QPSK constellation are smaller than that of BPSK, QPSK is more susceptible to

time-variation in both differential schemes, more intensely in DSTBC as explained before. It

is seen that TSTD scheme outperforms DSTBC at SNR values higher than 19 dB.

To see the effects of even higher rate convolutional codes, we present the simulation results

for a rate 5/8 outer code. The outer code is not known to guarantee (3.8) and (3.9). Since

the rate is rather odd, no Singleton bound achieving code could be found in the literature.

In Figures 5.9, 5.10, and 5.11 the performance results of the DSTBC and TSTD over 2x1

time-varying channel with B = 4 are depicted for different fdn values. The transmit diversity

schemes are concatenated with a 5/8 convolutional code. The output bits corresponding to
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Figure 5.8: B = 4, rate-1/2 convolutional code (26,74), Tp = 48, QPSK
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a state transition in the trellis are sent from different channel realizations. The generator

polynomial of the convolutional code is [50]





















320 026 213 034

116 270 065 377





















. (5.2)

The constellation set is chosen as 8-PSK. Note that both systems achieve at most a diversity

order of 4 on an equilavent block-fading channel, as illustrated in Figure 3.4.

In Figure 5.9 fdn equals 0.017045 and Tp = 88. The error performances of the systems are

equal to each other at 35 dB SNR. Below this SNR value DSTBC outperforms the TSTD

technique with DSTBC having roughly a 4 dB better performance at 10−3 PER. When fdn is

increased to 0.023438 with Tp = 64, DSTBC outperforms the TSTD for Es/N0 < 23 dB as

demonstrated in Figure 5.10. However the error floor of DSTBC is higher than the error floor

of TSTD. The error performances with fdn = 0.03125 and Tp = 48 are illustrated in Figure

5.11. Clearly TSTD has better performance.

Considering the figures it can be deduced as fdn increases that TSTD becomes more advanta-

geous than DSTBC scheme with respect to the error performance.

5.3 Further Results

Lastly, we compare the transmit diversity schemes in a large message size over 2x1 time-

varying channels. The outer convolutional codes are judiciously chosen with respect to their

free distances d f ree. The B values are chosen as 32 or 64 and the packet length Tp is 640. The

interleaver for the Alamouti scheme is as follows. The output bits corresponding to a state

transition in the trellis of the convolutional code is transmitted at different block realizations.

In TSTD, the output bits are transmitted at different block/antenna realizations as explained

in Chapter 3. Thus TSTD achieves a diversity gain of d f ree whereas the diversity order of the

Alamouti scheme is expected to be 2d f ree.

In Figure 5.12 TSTD and the coherent Alamouti scheme are compared where CSI is per-

fectly available at the receiver. The parameters are chosen as B = 16 and fdn = 0.011719.
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Figure 5.9: B = 4 rate-5/8 convolutional code Tp = 88 8-PSK
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Figure 5.10: B = 4 rate-5/8 convolutional code Tp = 64 8-PSK
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Figure 5.11: B = 4 rate-5/8 convolutional code Tp = 48 8-PSK
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The schemes are concatenated with a (54,74) convolutional code. The free distance of the

convolutional code is 6.
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Figure 5.12: B = 16 rate-1/2 convolutional code (54,74) Tp = 640 BPSK

In Figure 5.13 a (551,641) convolutional code is used. The free distance of the code is 10.

In Figures 5.14 and 5.15 rate-1/2 convolutional codes with generator polynomials (554,774)

and (64,74) are used respectively. The CSI is not known at either side. While the expected

diversity orders are approximately achieved with coherent receivers, TSTD with DPSK and

DSTBC cannot achieve the expected diversity. This phenomenon is another topic of study.
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Figure 5.13: B = 32 rate-1/2 convolutional code (551,641) Tp = 640 BPSK
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Figure 5.14: B = 32 rate-1/2 convolutional code (554,774) Tp = 640 QPSK
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Figure 5.15: B = 32 rate-1/2 convolutional code (64,74) Tp = 640 QPSK
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5.4 Additional Notes

Several techniques aiming to achieve temporal diversity over a time-varying channel are also

proposed in the literature. For example, temporal diversity is exploited with the aid of linear

constellation precoding as in [51]. With the techniques in [52], the spatio-temporal diversity

is turned into frequency diversity with the aid of digital phase sweeping and FFT matrices.

The temporal diversity achieving differential coding schemes are given in [53] and [54]. The

main idea behind the schemes is to use differential diagonal unitary space-time modulation

[19], by regarding the block realizations in time as antenna realizations.

The error performances of the differential schemes can be improved with multiple symbol

differential detection (MSDD) [55] or decision feeedback detection (DFD) on time-varying

channels. While the techniques yield coding gain and reduce the error floor, they lead to extra

decoding complexity. A comprehensive survey can be found in [49] for SISO channels and

in [56] for differential unitary signaling in MIMO channels. Futhermore iterative systems are

also proposed for differential schemes [57].
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In the thesis we compared the space-time codes and TSTD over block-fading and time-varying

channels with various channel parameters. The thesis includes some basic information about

the space-time codes and the TSTD technique and the elaboration on the PSAM technique

over time-varying MIMO channels. Furthermore, the detrimental effects of the channel es-

timation error and time-variation on the Alamouti scheme and TSTD are investigated. The

performance analysis of the DSTBC and TSTD with DPSK over time-varying channels are

also provided.

It is shown in Chapter 3 that TSTD, being a simply implemented system, has a similar error

performance with the Alamouti scheme in block-fading channels when the concatenated code

has a coding rate of 1/2B. The difference between the error performances of the differential

counterparts of the schemes are shown to be close to each other. In Chapter 5, the transmit

diversity schemes are compared in the time-varying channel with the same channel codes that

are used in the block-fading channel and the error performances are seen to be close to each

other in this case as well.

It is demonstrated that TSTD can even outperform the space-time codes in some cases. For

example, TSTD have a better performance when noisy channel estimates are used. Besides,

TSTD has a lower error floor than DSTBC which makes TSTD advantageous in fast-fading

channels when CSI not available at the receiver. When the results are combined, TSTD, being

implemented with only a single RF-chain, can be seen as a good alternative to the space-time

codes for which multiple RF-chains need to be utilized.

In the future work, we may derive upper bounds on the error performances of differentially

encoded transmit diversity schemes. The performance results may also be analyzed with
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different types of outer channels codes, including turbo codes, LDPC codes, etc. The gener-

alization to the multiple antenna case with Nt > 2 may be another topic of study.
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