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ABSTRACT

FACIAL SOFT TISSUE SEGMENTATION IN MRI USING UNLABELED
ATLAS

Rezaeitabar,Yousef

M.Sc., Department of Biomedical Engineering
Supervisor: Assist. Prof. Dr. Ilkay Ulusoy
Co-Supervisor: Assoc. Prof. Dr. Ozlem Ugok

August 2011, 98 pages
Segmentation of individual facial soft tissues has received relatively little attention
in the literature due to the complicated structures of these tissues. There is a need to
incorporate the prior information, which is usually in the form of atlases, in the
segmentation process. In this thesis we performed several segmentation methods
that take advantage of prior knowledge for facial soft tissue segmentation. An atlas
based method and three expectation maximization — Markov random field (EM-
MRF) based methods are tested for two dimensional (2D) segmentation of masseter
muscle in the face. Atlas based method uses the manually labeled atlases as prior
information. We implemented EM-MRF based method in different manners;
without prior information, with prior information for initialization and with using
labeled atlas as prior information. The differences between these methods and the
influence of the prior information are discussed by comparing the results. Finally a
new method based on EM-MREF is proposed in this study. In this method we aim to
use prior information without performing manual segmentation, which is a very

complicated and time consuming task.
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10 MRI sets are used as experimental data in this study and leave-one-out technique
is used to perform segmentation for all sets. The test data is modeled as a Markov
Random Field where unlabeled training data, i.e., other 9 sets, are used as prior
information. The model parameters are estimated by the Maximum Likelihood
approach when the Expectation Maximization iterations are used to handle hidden
labels. The performance of all segmentation methods are computed and compared to
the manual segmented ground truth. Then we used the new 2D segmentation
method for three dimensional (3D) segmentation of two masseter and two

temporalis tissues in each data set and visualize the segmented tissue volumes.

Keywords: Facial soft tissue, segmentation, prior information, Markov random

field, atlas, unlabelled atlas
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YUZ BOLGESI YUMUSAK DOKUSUNUN ATLAS TEMELLI
SEGMENTASYONU

Rezaeitabar,Yousef

Yiiksek Lisans, Biyomedikal Miihendisligi Anabilim Dali
Tez Yoneticisi: Yrd. Dog. Dr. Ilkay Ulusoy
Ortak Tez Yoéneticisi: Dog. Dr. Ozlem Ugok
Agustos 2011 , 98 sayfa

Yumusak yliz dokularmin tek tek boliitlenmesi isi, bu dokularin karmasik yapilari
yliziinden, ilgili diger konularla karsilastirilacak olursa, literatiirde simdiye kadar
pek ragbet gérmemis konulardan birisidir. Bu tek tek boliitleme isini basarmak igin,
genellikle atlas formunda bulunan 6n bilgileri boéliitleme sathasina katmak bir
gereksinim olarak karsimiza ¢ikmaktadir. Bu yiizden, bu tezde, oncelikle, yumusak
yiiz dokular1 hakkindaki 6n bilgilerden faydalanan birtakim bdliitleme yontemleri
uygulanmaktadir. Bu yontemler, atlaslara dayanan bir metod ve EM-MRF’e
dayanan bir metodun tii¢ farkli sekilde uygulanmasindan olusmaktadir ve bu
metodlar, performans 6l¢iimii icin, yiizdeki ¢igneme(masseter) kasinin iki boyutlu
boliitlenmesinde test edilmektedir. Atlaslara dayanan ilk metod, 6n bilgi olarak elle
isaretlenmis atlaslar1 kullanmaktadir. Diger bir yandan, EM-MRF’e dayanan metod,
az once bahsedildigi gibi li¢c farkli bicimde uygulanmaktadir: 6n bilgi kullanmadan,
sadece baslangic icin 6n bilgi kullanarak ve on bilgi olarak isaretlenmis atlaslar

kullanarak. Testlerden sonra, tiim bu yoOntemlerin sonuglar1 birbiriyle

vi



karsilastirilmakta ve sonuglar arasindaki farklar ile 6n bilgilerin bu sonuclara etkisi
tartisilmaktadir. Daha sonra, bu tezde, EM-MRF’e dayanan yeni bir metod
onerilmektedir. Bu metodun amaci, boliitleme isini, cokga karmasik olan ve oldukca
zaman alan elle isaretlemeyi kullanmadan yaratilan on bilgiyi kullanarak

basarmaktir.

Bu calismada, deneysel veri olarak 10 MRI seti kullanilmaktadir. Her bir setin
boliitlenmesi, sadece, o seti, egitim verisi diginda birakarak gergeklestirilmektedir.
Test verisi, Markov Rassal Alanlar(Markov Random Field) olarak modellenmekte
ve geriye kalan etiketlenmemis 9 setten olusan egitim verisi, Oon bilgi olarak
kullanilmaktadir. Modelin parametreleri, Azami Olabilirlik (Maximum Likelihood)
yaklasimi ile hesaplanmakta ve yinelemelei beklenti en iyilestirme ile gizli etiketler
incelenmektedir.. Uygun parametreler bulunduktan sonra, bahsedilen tiim béliitleme
algoritmalarinin  performanslar1 hesaplanmakta ve bu performanslar, elle
isaretlenmis kesin referans(ground truth) ile karsilastiriimaktadir. Daha sonrasinda,
bu tezde Onerilen yeni iki boyutlu boliitleme yontemi, her veri setindeki iki adet
cigneme(masseter) ve iki adet sakak atardamari(temporalis) dokusunun ii¢ boyutlu

boliitlenmesinde kullanilmakta ve boliitlenmis doku kisimlar1 gosterilmektedir.

Anahtar Sozciikler: Yumusak yiiz dokulari, 6n bilgi, Markov Rassal Alanlar, atlas,

isaretlenmemis atlas
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CHAPTER 1

INTRODUCTION

1.1. Motivation of the Thesis

Recent advances in medical imaging have enabled the derivation of useful
information about different body parts and tissues. As two major imaging
modalities, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)
are commonly used as a source to extract anatomical structures. Despite CT scans
specialize in hard tissues, such as bone, MR images are well known for good quality
in soft tissues. Magnetic resonance imaging is a commonly preferred source of data
for evaluating the presence and extent of the soft tissue volumes such as brain, heart,
etc.

Nowadays doctors and clinical specialists take the advantage of these
imaging modalities in gathering anatomical information about a patient and are able
to use this information in diagnosis and prognosis. The further step is to involve
artificial intelligence to automate this diagnosis/ prognosis process. In order to be
able to use medical images in an automatic clinical system, the first thing that
should be done is to segment target tissues which means that the structure of the
target tissue should be extracted in the whole image.

Currently, there are many researches that perform segmentation in medical
images. Most of the soft tissue segmentation methods in the literature consider
tissues like brain, heart and lung as target tissues and there are very few works about

Facial Soft Tissue (FST) segmentation. Considering the key role of the face in



human life and the huge increase in craniofacial surgeries around the world, FST
segmentation has become more important in recent days.

Planning before a facial surgery by performing the modifications virtually
prior to the actual operation is very important to increase the overall success of the
actual operation. Also, for patients seeking for surgical treatment, it would be very
beneficial to have a means to predict the post-surgical appearance of their face. For
these to be done, the first step is to obtain an anatomic model of the patient’s face.
Such a complicated computer model should include segmented hard (i.e. skull) and
soft tissues (i.e, muscles, skin and fat). Besides, each FST (e.g, a muscle) should
also be segmented from the others when the operation has an effect on such a tissue.
Only then, the operation can be planned realistically and even simulated on the

computer model before the actual operation.

1.2. Scope of the Thesis

In this thesis, we test the accuracy of several state of art methods for FST
segmentation and propose a new method for this purpose which requires very little
user interaction. Soft tissue segmentation is very complicated due to the fact that
soft tissues do not have a constant shape. Moreover, segmentation becomes more
complicated when the soft tissues interfere with each other and this is always the
case for FSTs. Thus, most of the soft tissue segmentation methods are not
appropriate for FST segmentation.

To solve these problems, additional information is needed besides image
intensities. Prior information is commonly used in different manners to improve
segmentation quality.

By prior information, we mean the knowledge that we take from different
individual MRI scans which can be used to determine prior shapes and locations of
the target tissues. This is quite like the method when a specialist doctor extracts the
target tissue in a new image based on his/her past experience of viewing thousands
of similar images. The prior information is usually incorporated in the form of

atlases, where information from many manually segmented data sets is combined to



construct a deterministic or probabilistic atlas. The atlas can be used in several
manners. The standard atlas based segmentation method is to register the labeled
atlas to the test MRI set and apply the labeling to the test set based on the
transformation in the registration process. The atlas can also be used as the prior
labeling information in a Markov Random Field (MRF) statistical model to optimize
the segmentation.

Currently these methods are tested for tissues other than FST but we
employed these methods to segment several facial soft tissues for the first time. We
implemented representative examples of the methods in the literature and compared
them for the purpose of segmentation of four different FSTs (left masseter, right
masseter, left temporalis and right temporalis). Also, we proposed a new method,
which is very different from all these previous approaches, to perform 3D
segmentation on these four tissues. Our method is also MRF based but we did not
use manually labeled atlases but, instead, we used unlabeled images as hidden
atlases for the purpose of evaluating the effect of unlabeled prior information. The
main reason in using the unlabeled prior information is that manual labeling of tens
of medical image data sets is a very complicated and time consuming task and is
prone to error.

Different from the previous approaches, the prior knowledge was used in our
MRF structure via a novel energy function and we tried to optimize the
segmentation results iteratively by using Expectation Maximization (EM) algorithm.
Finally, we compared our segmentation method with the previously mentioned
segmentation methods and evaluate the advantages and disadvantages of each of the

methods.

1.3. Thesis Outline

This Thesis is organized as follows: In the 1st chapter the scope and
motivation of the thesis are introduced. A survey of current studies in medical image
segmentation fields is presented in the 2nd chapter. In the 3rd chapter theoretical

aspects of the thesis are explained and the mathematical solutions for the problem



are presented. In the 4th chapter, used datasets, segmentation algorithms and the
implementation of each method are explained. The performance evaluation of the
presented methods is presented in chapter 5.

Finally, the overall conclusion of the research and the potential future work

are described in chapter 6.



CHAPTER 2

LITERATURE SURVEY

2.1. Soft Tissue Segmentation

Today, medical imaging technologies have greatly increased knowledge of
normal and diseased anatomy of tissues so that this information serves as the basis
for medical diagnosis and prognosis. These imaging modalities provide specialized
image data that can be used in different aspects of medical research and clinical
applications. Common imaging techniques include X-RAY, Computed Tomography
(CT), Ultrasound and Magnetic resonance imaging (MRI). CT and MRI are most
preferred imaging modalities in anatomical researches because they provide three-
dimensional (3D) data with high contrast. CT is a sophisticated form of X-ray
imaging that provides clear shape information about hard tissues. MRI, on the other
hand, is a non-invasive imaging technique that provides high spatial resolution and
contrast of human soft tissue anatomy. However, since the amount of data is too
much for manual analysis (such as segmentation), automatic or semi-automatic
techniques of computer-aided image analysis are necessary.

Tissue segmentation in MRI scans is a method to extract structural
information from the image data. Automatic segmentation of tissues can help
clinical specialists detect the human body parts fast and precisely. The segmented
data compared with a database of previously segmented images can also help

doctors in detecting any tissue disorders. Different segmentation methods are

5



applied to medical images due to the variations in tissue types and desired
objectives. These methods mainly target important soft tissues in human body such
as brain and heart.

Because of the critical role of human face, morphological information about
human Facial Soft Tissues (FST) like muscles and fats has a great importance. Once
the structural shape of target facial tissues are segmented successfully, the resulting
model can be used in several medical fields like diagnosis of craniofacial disorders
[1], the planning of computer assisted surgery (CASP) [2]and the prediction of
post-operative facial appearance [3].

Although there are plenty of methods that perform soft tissue segmentation
in the literature, Facial Soft Tissue (FST) segmentation has received relatively little
attention. Considering the visualization similarities between FST and other soft
tissues like brain, the segmentation process can be the same theoretically but due to
different characteristics of these tissues, such as more complicated and interfered
structure of FSTs, they need more precise and powerful segmentation methods.

Facial soft tissues are usually small and surrounded with other tissues that
share the same intensity values with them [1]. Different but neighboring tissues are
interfering with each other in some cases that makes tissue detection a hard work
even for a specialist doctor. Other than that, unlike other tissues like brain that have
a specific shape model, FSTs do not have a specific shape but they may have
different shapes in different individuals. All these difficulties make the
segmentation process a hard work and thus the requirement of additional
information is inevitable.

In this chapter, we will discuss soft tissue segmentation studies that are
related to our work and we also try to cover all segmentation methods that can be
applied to FSTs. There are plenty of methods to segment an image, that is, to assign
an appropriate label to each of its pixels or voxels. For different type of image
modalities and targets, different kinds of segmentation methods should be applied.
Simple segmentation methods like thresholding [4] or region growing are usually

inefficient in medical image segmentation. Instead, improved state of art



segmentation methods are applied. Fuzzy clustering algorithms [5] group the image
based on intensity similarities between the images.

Standard fuzzy c-means method is not very successful in medical images
because of the amount of noise present especially in soft tissue MR images. New
studies apply some modifications to the standard methods mentioned above to deal
with this problem. In, [6] a fuzzy c-means algorithm is applied for brain MRI
segmentation. The objective function of the standard c-means algorithm is modified
with weighted bias estimation to decrease the effect of intensity inhomogeneties in
tissues. A new weighting exponent is proposed in [7] for fuzzy c-means algorithm.
The method is tested in breast MRI segmentation. The number of clusters has a key
role in these kind of clustering methods that makes these methods inefficient for
FST segmentation.

In [8], a subject-specific dynamical model (SSDM) is developed to segment
the structural shape of the left ventricle. The starting slice is segmented manually
and the algorithm proceeds through the slices and applies the segmentation based on
the prediction from the previous slice. The main idea of this method is to use the
prior information from a set of training shapes. Patterns of variations in shapes and
spatial relationships between successive slices of the training shapes are used to
perform the segmentation in the target slice.

An unsupervised method for segmentation of MR images is introduced in
[9]. The method is based on Maximization of the Evidence (ME). Two different
models are examined for brain tissues and the model parameters are estimated using
ME algorithm.

These purely intensity-based segmentation and classification methods assign
a label to each pixel in the image and require only intensity information that is
routinely generated by the MR imaging device. However, in medical image
segmentation, different anatomical structures may have the same intensity values or
distributions that cannot be distinguished from one another by looking at their
intensity values in the image.

In such cases, extra information should be considered and included in the

segmentation process. Spatial information like neighborhood relationships between



pixels can be very useful in segmenting individual tissues. In addition to
geometrical constraints, relationships between several different but similar data sets
can also be considered. The additional data that is used in a segmentation process is
called as the prior information. Soft tissue segmentation methods usually use prior
information in different manners to improve the segmentation accuracy. The prior
information is included mostly in the form of single or multiple atlases. An atlas can
be presented as a single manually segmented data (2D image or 3D voxel volume or
2D/3D sequences) or can be formed from multiple manually segmented data [10].
For example, 70 infant brain MRI [11], 275 brain dataset [12] and 14 cardiac image
sequences [13] were used to construct atlases.

Atlas can be constructed and used in the segmentation process with four
different strategies: segmentation with one single individual atlas, segmentation with
varying single individual atlases, segmentation with an average shape atlas, and
simultaneous segmentation with multiple atlases [14]. A brief overview of each
strategy is shown in Figure 2.1. Several studies show that segmentation methods
using multi atlas outperform the ones using single atlas [15-16] .

As the number of atlases fused increases, the average segmentation accuracy
increases [15] . Fusion of a large number of atlases is more likely to create a smooth
estimate of the structure. However, construction of multi atlas is very hard because
it requires manual segmentation on tens of data. In addition, increased
computational cost of registering large numbers of atlases to the query image is an
immediate practical problem. There are some solutions proposed for this problem in
literature. In [16], adaptive multi atlas is proposed where local atlas based
operations are performed. The proposed algorithm automatically selects the most
appropriate atlases for a target image and automatically stops registering atlases
when no further improvement is expected.

Another problem of multiple atlases occurs when structure can have two
totally different shapes. When all possibilities are fused, a shape, which is not
possible, may result in the final atlas. As a solution to this problem, a suitable atlas
among the possible ones is used as the prior information. In [17], an appropriate

atlas is selected based on the scale resemblance of the atlas and the query data.



Atlases should be registered to the query data before the segmentation
process. Segmentations in atlases are transformed to the query data and
subsequently fused or combined. Fusion can be done in various ways which can be
categorized into four groups: Simple atlas registration, atlas registration with linear
interpolation, atlas registration based on active contours and MRF based methods.
Studies related with each method are explained in the following section.

Although atlas based methods proved to be powerful in soft tissue
segmentation, making an atlas set that covers all possible shapes is a huge work and

needs a lot of manual segmentation.
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2.2. Simple atlas registration

One way of atlas registration is to transform the atlas segments to the test
data by using nearest neighbor interpolation so that each atlas provides a discrete

labeling for each voxel. The final label can then be decided by ‘majority vote’ [14].

2.3. Atlas registration with linear interpolator

In this method, individual labels are transferred and an array of values for a
given voxel is formed as a probabilistic estimate. The array elements represent the
confidence levels or probabilities of the possible labels assigned to the voxel at the
current segmentation step. Then, different rules can be used to generate a consensus
estimate among the array elements.

In [18], the prior information is represented by a probabilistic atlas. A
probabilistic atlas is a structure that includes probability of each voxel to belong to
each tissue type. Then, maximum likelihood approach is used to assign a label to

each voxel for brain segmentation .

2.4. Atlas registration based on active contours

The third method is to integrate the statistical knowledge of intensity and
position information of the atlas into a shape model and match the test data with this
model, usually by active contours. An active contour model is proposed in [17] to
perform lung segmentation for MRI scans. Gradient Vector Flow (GVF) is used to
modify Partial Differential Equation (PDE) and attract shape contours to the actual
shape model. The method also takes the advantage of prior information about the
object location. In [19], an active contour scheme is developed for cardiac MRI
segmentation. The main advantage of this method is the utilization of the region-
based information as well as the edge information to decrease the sensitivity of the
active contour method to the initial contours. In [20], a method based on simplex

meshes is proposed for musculoskeletal segmentation and registration. A generic
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model is introduced initially and the prior shape information such as smoothness
and curvature is used during segmentation. The shape and deformation of the model
are controlled by a deformable framework. This method is one of the first attempts
in this field and need a manual initialization and user interaction makes this method
less automatic. In [21], a shape model is constructed for masseter muscle by the help
of several shape determinative slices. By using shape determinative slices authors
try to address the problem of similar intensity values of neighbor tissues in some of
MRI slices. These slices are specified and segmented manually. Then a hybrid
method based on B-Spline and distance map is proposed to perform interpolation of
the shape components. This study shows that the number of determinative slices
highly effects the segmentation accuracy. The accuracy is 83% when 5 slices are
used and it increases to 90% when 10 slices are used.

All these methods are highly dependent to initial shape model and initial

contour locations. Prior knowledge is mostly introduced by manual segmentation.

2.5 MRF models

Fourth way is to incorporate the atlas as the initial labeling in a MRF
(Markov Random Field) or a HMRF (Hidden Markov Random Field) model. MRF
models are commonly used for unsupervised segmentation of medical data since
smoothness constraint can easily be incorporated to the model by neighboring
relations among the pixels to be segmented. The first studies of brain segmentation
use the basic MRF-HMRF formulation where smoothness is defined based on the
resemblance of the neighbors [22-23]. Then iterative methods like ICM (Iterated
Conditional Model) are used to find the most probable labeling. In soft tissue
segmentation, standard MRF modeling may not be applied directly since the
parameters of the model need to be tuned for each new image. To improve standard
MRF models, segmentation and registration are joined in [24]. This method aims to
improve segmentation and registration accuracy by incorporating registered MRI
sets in a combined MRF model and estimating the labels in a registration criterion.

It is shown that by using this combination, the computational cost of registration is
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reduced and there is a sizable improvement in segmentation of human brain and
mouse heart. However this method needs the initial prior models to be set precisely.

In [25], distributed MRF segmentation is proposed to cope with spatially
varying intensity distributions. Three different distribution classes are defined for
MRI brain segmentation. The main problem in this approach is to find a partition
that only includes these three classes. A new template for infant brain and the
corresponding probabilistic atlas is constructed in [26]. The probability of each
voxel for each class is determined by defining a HMRF model. Then a Maximum a
Posteriori (MAP) is achieved by alternating among the classifications.

In [27], MRF distribution parameters are defined based on fuzzy MRF
modeling and then the parameters of each class are estimated by using a nonlinear
conjugate gradient method. The authors used the proposed method for detection of
prostate cancer from MRI scans.

However the usual way of improving the MRF performance in segmentation
is to use parametric model where the parameters are learned from the image usually
by EM (Expectation Maximization) algorithm [25,27,28]. A HMRF model is
developed in [28] to segment brain MR images where the EM algorithm is used to
estimate the HMRF model parameters by solving Maximum Likelihood (ML)
problem. Since there is no prior information used in this method, the algorithm is
highly sensitive to noise and therefore is not robust. A commonly preferred method
to incorporate the prior information to the MRF models is to register the atlas to the
test image and to define the initial segment labels of the test image by the
transformed atlases.

In [29], a probabilistic atlas is constructed by using manually segmented
train images. Then this atlas is used in initialization and also in expectation step of
the EM algorithm. In [30], each tissue type is appeared based on the transformed
atlas to obtain the probability of each tissue type for each voxel. The initial class
labels are assigned by choosing the maximum probability tissue type. Then the
classification algorithm is used to locally maximize mutual information by changing

the class of each voxel. The mutual information is defined based on Markov
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probability density function (PDF). Initial class labels are used as the prior
probability of the labels for brain segmentation.

Similarly, in [16], the brain atlas represents the prior probability of each
voxel in the test set to belong to a particular structure. Then the Maximum
likelihood function is defined by using Bayesian formulation so that the mutual
information between the MRF model and the intensity distribution of the labeled
atlas is maximized. In both studies, atlases are formed by manual segmentation.

A manually constructed probabilistic atlas is used in [13] to estimate the
initial model parameters which are used as the priori information in the
classification process. The segmentation algorithm incorporates spatial and temporal
contextual information by using 4D Markov Random Fields. Finally, the
expectation maximization (EM) algorithm is used to perform segmentation on
cardiac MR images. In [31], atlas is used as a guide to perform population
segmentation through population deformable registration. The atlas is registered to
all of the test sets and the sets are deformed toward the atlas to achieve population
segmentation. All sets are also registered and deformed to each other. The
deformation is defined based on discrete MRF as pairwise potentials. Different
from these studies, in [32], a latent atlas is used as the prior information where
spatial priors are not in the form of probabilistic atlas. The atlas is initialized by a
manual segmentation and then updated to be as the average of the segmentation
result at each step of the level set segmentation.

Graph cuts are used to solve MRF problems in recent studies. This method
can be used in medical image segmentation with some modifications so that the
prior information can be included. In [33], a probabilistic atlas is first constructed by
registering manually segmented training sets. The probabilistic atlas information is
included in the energy function of the MRF formulation. The segmentation is
achieved by an adaptive graph cut algorithm iteratively. A similar method is used in
[34] but the tissue model is estimated directly from the test image and a mixture of
Gaussians model is used to model different structures in the background. Both

methods use manually segmented atlases to classify brain MRI to four classes.
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In the literature, using the atlas as the prior probability of the labels is the
most commonly chosen method to incorporate the prior information to the
segmentation. However, this requires manually segmented atlases to be prepared. In
this study, we propose another way for this cooperation where no manually labeled

atlas is required.

2.6. Facial soft tissue segmentation

All methods mentioned above perform segmentation for soft tissues such as
brain, lungs and cardiac. Very few studies considered Facial Soft Tissue (FST)
segmentation for MR images.

In the literature, FST segmentation is mostly done for clinical purposes with
manual or other simple segmentation methods where human interaction is required.
In [35], manual segmentation of pelvic MRI scans is performed by -clinical
specialists and 3D models are reconstructed to identify pelvic disorders. Similar to
that, in [36], extraocular muscles and corresponding cranial nerves are investigated
with manual segmentation in patients with special forms of strabismus. Manual
segmentation can also be combined with the help of segmentation tools as in [37-
38] where Finite Element Model(FEM) of the face is constructed from facial MRI
scans. In [39], a clinical study is presented which performs manual segmentation to
investigate the differences in facial soft tissues between MuSK-MG patients and
healthy people.

Anatomical visualization is another application of FST segmentation. In
[40], one observer performs semi-automatic segmentation using the editor module
of the 3D Slicer software [41] to segment lip muscles and reconstructs 3D models.
Similarly in [42], the correlation between jaw muscle volume and vertical
craniofacial dimensions are investigated. In this study Masseter and Medial
Pterygoid (facial muscles) volumes and surfaces are segmented by semi-automatic
segmentation tools.

Other than manual methods, there are some other automatic or semi-

automatic methods studied for FST segmentation. Atlas based segmentation is a
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method commonly used for brain segmentation and classification. There are several
articles that use this method to segment other soft tissues. In [43], quadrates
lumborum (QL) muscle(near pelvic) is segmented with an atlas based method. First
an average atlas is constructed by affine registration of the sets and manual
segmentation. Then atlas is registered to the test set by a non rigid registration
technique and Kmeans classification algorithm is used to classify the image to
different classes and the target tissue is segmented.

The main problem with classification algorithms in FST segmentation is the
presence of several tissue types in one MRI slice. These tissue types may be
different in the same slices from different individuals MRI. Therefore, the
segmentation may result in wrong results or too many manual interactions are
needed. Another atlas based method is used in [44] for prostate segmentation. The
method is similar to [28] but an atlas selection strategy is used to select atlases that
match the test data. The mutual information is selected as a metric to select the best
matching atlases.

In [45], a novel method is proposed that uses an optimal path finding
algorithm for facial nerve and chorda tympani (in ear) segmentation. The algorithm
uses intensity and manually segmented atlas as feature values. The complete
segmentation is performed using geometric deformation model.

Ng et al. [46-49] have tested several methods for FST segmentation based on
prior knowledge. The main steps are similar in all of their studies. The process starts
with manual segmentation of the training sets. Then registration from training sets
to the test set is applied. The training images are transformed according to the
difference between the shape of the head and the target tissue in each image and
also tissue surface similarity. A tissue template is defined based on the transformed
labeling. The muscle template is employed by the morphological operators to obtain
an initial estimate of the muscle boundary. The muscle boundary then serves as the
input contour to the gradient vector flow that snake iterates to the final
segmentation. An improved method is proposed in [47] that shape determinative

slices are used as a guide in 3D segmentation. A similar method is used in [46] with
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a new method for determining the dominant slices of three human masticatory
muscles (masseter, lateral andmedial pterygoids).

All these methods needs user interaction in several steps during the
segmentation process. Also a thresholding method is used to exclude bone and fat
that makes the method less automatic.

The complete and automatic segmentation of facial soft tissues still remains
as an unsolved problem. In this work, we aim to investigate some of the methods
which have been tested in segmentation of other soft tissues and try to modify them

to be used in FST segmentation.
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CHAPTER 3

THEORETICAL BACKGROUND

3.1. Introduction

In this chapter we provide the theoretical information about the methods that
we used in this thesis. We start with the segmentation problem in medical images
and explain the Markov Random Field theory and its application in image
segmentation. Several statistical models are discussed for image target tissue
modeling and the solutions for estimating the model parameters and performing
labeling are reviewed. The role of prior information is also included in MRF
modeling. At the end, several optimization methods for parameter estimation are
explained.

Since we fused an MRF modeling with hidden atlas in our study, the
concepts and procedures of atlas based methods are also discussed in this chapter.
Since the first step of an atlas based method is the registration of the atlas and the
test data, basic information about the registration is also mentioned at the end of this

chapter after the explanation of the atlas based segmentation.
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3.2. Labeling and Neighborhood Definition

An image segmentation problem is specified in terms of assigning a label to
each member in the set of sites (pixels). Let S be a rectangular lattice for a 2D image
of sizen X n

S={G4,j)|1<i,j<n} . (3.1

Each element of S corresponds to a pixel such that the location in the image

space is specified by the indices i and j.In MRF models sites are normally treated
as an unordered set but when a 2D image is modeled then i, ] are ordered pixel

locations

S=1{l,.,m}, (3.2)

where m is the number of pixels in the image and is equal to n*. Let L be a discrete
set of M labels.

L={1,- ,M} (3.3)
Segmentation process is defined as assigning a unique value to each site in S in a
way that whole domain of S is supported. So it’s a mapping from S to L, thatis

f:S—>L. (3.4)

Then the set of labeling for all sites in S is shown as

F={F,..F }. (3.5)

As a result of segmentation, the image is partitioned into mutually exclusive
regions where each region has a different label and all pixels in one region share the
same label.

In this study we don’t consider the whole image S, but we are interested to
segmenting only a part of the image named as “the region of interest (ROI)” for
which the definition and explanation are given in part 4.5.2 step 4. This ROI is
segmented into two: target tissue and others (background). Thus, we define only two
labels in L for the ROI. The background image is assigned by label 0 and the target

tissue is assigned by 1. The total number of possible labelings for S becomes 2™

in this case.
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Markov random field (MRF) is a probabilistic theory that represents the
dependencies inside a physical phenomena [50]. It is used in visual labeling and
probabilistic presentation of the labels in this study. Within a MRF model, sites are
related to each other via a neighborhood system. A neighborhood system for S is

defined as
N = {N,|VieS}. (3.6)
The neighborhood system can be defined in several ways. Some three

dimensional (3D) neighboring systems are shown in figure 3.1 for a pixel i and N;.

In (a), 6 nearest neighbors in 3D space is shown. 8 nearest neighbors in one slice
and the neighbors in upper and lower slices are selected as neighbors in (b). In (c)
our proposed neighboring system is introduced where the neighbors are not only
from the current 3D image but also from the images of other training sets. In this
system, the corresponding voxels in the training sets are assumed as neighbors for
the current voxel and affect the labeling of this voxel. Training set is a 2
dimensional image that is registered to the test set by an affine registration so both
images share the same coordinates. The registration process is explained in part

3.6.3.

L

d--Qad

(@) (b) (c)

Figure 3.1 Neighboring systems with a) 6 neighbors, b) 10 neighbors, ¢) 19

neighbors
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A clique is a group of voxels which are fully connected. A double clique ¢

for S and N is defined as a subset of sites S which has 2 neighboring sites.
¢, ={{i,i"}]i" e N;,i e S} (3.7)

Cliques have different cites but only single and pair-wise cliques are considered in

this study.

3.3. Markov Random Field and Gibbs distribution

3.3.1. Markov Random Field

Let F={F1,...,Fm} be a family of random variables defined on the set S,
each F, takes a value f; in L. We call the family F a random field. F, = f, refers
to the event where F, takes the value f, and the donation (F, =f,,...,F_=f ) is
used to denote the joint event. For simplicity, a joint event is shown as F = f . The
probability that random variable F, takes the value f; is abbreviated as P(f,), and
the joint probability is denoted and abbreviated as P(f). Random field F is said to
be MRF on S with neighborhood system N if and only if:

1. P(f)>0,vf e F (3.8)
2. P(f[fe_ ) = P(F]fy)
An MRF is said to be homogeneous if P( fi‘fNi) is regardless of the relative

position of site i in S .
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3.3.2. Gibbs Random Field

A set of random variables F is said to be a Gibbs random field (GRF) with
respect to N if and only if its configurations obey a Gibbs distribution. A Gibbs

distribution takes the following form

,iu(f)
P(f)=Z"xe™ (3.9)

where T is a constant named temperature, and U(f) is the energy function. Z is
the normalization term that is defined as
1
—U(f)
Z=>YeT . (3.10)
feF

The energy function is the sum of clique potentials V_( ) over all possible cliques.

U(f)=>V.(f) (3.11)

ceC

WhenV,_(f) is independent of the relative position of the clique ¢ in S, the GRF is
said to be homogeneous and when V_is independent of the orientation of c, it is

said to be isotropic.

For discrete labeling problems, if f_ =(f,, f., f,) be the local configuration

M4

on a triple-clique ¢ = {i,i'i"}, then V_ (f) can be specified by a finite number of
parameters and f; takes a finite number of states.

A Markov Random Field is characterized by its local property whereas a
Gibbs Random Field is characterized by its global property. The Hammersley-
Clifford theorem [51] gives necessary and sufficient conditions under which the
equivalence of these two types of properties can be achieved. It states that F is an
MRF on S with respect to N if and only if F isa GRF on S with respectto N .
Then the energy function of the Gibbs distribution can be expressed as the sum of

several terms. Each term is described by the cliques of a certain size.

U(f)= DV (f)+ DV, (f, f)+ D Vi(fL i f)+. (3.12)

{iteC, {i,i'teC, {i,i"i"}eC,

And the conditional probability can be written as follows:
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-V (f; )+Zi,eNi Vy (£, )]

P(fi‘fNi): (3.13)

fiELe—[vl(fi)+zi,ENiv2(fi,fi,] )

Different MRF models are introduced for modeling image properties like
auto models, multi-level logistic model and hierarchical GRF Model. Auto models
are simple and have low computational cost. An auto-model is used in this study for

modeling image properties and general information about auto models are

introduced next.

3.4. MRF Models

3.4.1. Auto-Models

Auto-models are encoded in the Gibbs energy as clique potentials of up to

two sites. Then the energy function is defined as

U(H) =2 Vi(f)+2 > Va(fi. ). (3.14)

ics icS i'eN;

This energy function involves up to pair-site cliques and called a second order

energy. In the above formulation z is equal to z and ZZ is equal to
ieS {iteC, ieS i'eN;

{i,%:c2 .

Let G;(.) be an arbitrary function and f; be a constant reflecting the pair-site

interaction between i and i'. Then if V,(f;)= f,G,(f,) and V,(f, f,)= 41 f,

the energy function becomes

U(f)= Z f.G;(f)+ Zﬁi,i' fifi. (3.15)

{i}eC, {i,i"teC,
This model is called auto-models. If f,'s take on values in the discrete label set
L = {0.1}, the auto-model is said to be an auto-logistic model and the corresponding

energy function becomes as follows
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U(f)= Zai f, + Zﬂ”,fi f.. (3.16)

{iteC, {i.ineC,
When N is the nearest neighborhood system on a lattice, the auto-logistic model is
reduced to the Ising model.

If the f,'s take on values in the label set {0,l,...,M —1}and every f, has a

conditionally binomial distribution of M trails and success probability of q, the
auto-model is said to be an auto-binomial model.

M -1

P(fi\fm{ jq (I L (3.17)

i
where
eai +Zi'eNi Biirfi

q= S
l + eal Zi'eNi Bii fi

(3.18)

Then the corresponding energy function for auto-binomial model takes the
following form
M -1
U(f)=-—) In
-z,

{i}eCy

J—zai f, - Zﬂi,i' fi fi. (3.19)
{

i ileC, {i.i'}eC,
When M =1, it reduces to auto-logistic model.

When the label set L is the real line and the joint distribution is multivariate
normal, the auto-model is called auto-normal model or Gaussian MRF. In this case

the p.d.fis defined as

1 —ﬁ[ fi—m _Zi’sNi By (Fo=pi )P
e .

P(f|fy)= e (3.20)
2ro
The mean and variance parameters for this normal distribution are
ECH| ) =t = Soan, B (Fy = 1), (3.21)
var(f|fy ) =0". (3.22)

The joint probability is a Gibbs distribution
[det(B) U= B
P(f)=—e( ) e (3.23)

\JQRro®)" ’
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where B =[b;; ]is the mxminteraction matrix whose elements are unity and off-
diagonal element at (i,i")is — f,;,ie b,; =6,; — B,; with f;; =0. Then the single
site and pair site clique potential functions become in the following form

Vi(f)=(f =) /20" (3.24)
and

V, (f, f) = B (i — )(F, — )/ 20° (3.25)

3.4.2 Observation Models

An observation d ={d,,...,d,, } is a rectangular array of pixel values in low

level vision problems. In this case, each pixel in the observation set d takes a value
in set D. D is usually in 8 bit form that takes the following values
D ={0,1,...,255} , i.e., gray level pixel values.

An observation is usually not equal to the exact reality. It is a transformed
version of an MRF realization f . The transformation is due to random factors like
noise. The conditional distribution or the likelihood of f can be determined

considering these factors. We can define a general model for observation by use of a
blurring factor B, a linear or nonlinear transformation ¢ and a sensor noise & . The
general observation model then has the form of

d=¢(B(f))ee (3.26)
where ois an operation of addition or multiplication. This model can be simplified

to

d, =o(f)+¢ (3.27)
where there assumed to be no blurring, linear transformation and independent
additive Gaussian noise. Then the likelihood of f or the probability distribution of

d given f is
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P | f):m;e*‘”d‘”, (3.28)

where the likelihood energy U(d | f) is
U )= (p(f)~-d)?*/[207] (3.29)

ieS
This is a simplified version of Gibbs distribution where energy is due purely to

single-site cliques in the zero-th order neighborhood system and the clique

potentials are [¢(f,)—d.]* /[25]].
3.4.3. The Smoothness Prior

By introducing smoothness we assume that physical properties in a
neighborhood of space present some coherence and generally do not change
abruptly. Smoothness constraints are often expressed as the prior probability or

equivalently an energy term U(f) in MRF models. For discrete case, when the
solution f is locally smooth on c, that means that all labels f. on a clique ¢ take

the same value, they come over a negative clique potential (cost); otherwise, they

incur a positive potential in the energy term U ().

3.4.4 MREF Prior for Piecewise Constant Surfaces

For piecewise constant surfaces modeling, Multi level logistic models can be

used. For more than one-site cliques, the clique potential is defined as

0 if all sitesinc havethe samelabel

vc(f)={ (3.30)

g, otherwise

Here, ¢ is a negative constant dependent on C.

Clique potentials depend only on the label assigned to the site for single site cliques

V.(F)=V,(f) =g, if f=lel, (3.31)
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where ¢, is a value that controls the labeling 1. The higher ¢, causes the percentage
of sites that have | labeling, to decrease.
When V, is nonzero only for the pair-site cliques, the clique potentials become as
V. (f)=0 for #c>2 (3.32)
V. (F)=V,(f,, f.)=0,[1-0(f, - f.)] (3.33)

where o(.) is the Kronecker delta function and v,, is the parameter against non-

equal labels on two-site cliques. The prior energy is defined as the sum of all clique

potentials as follows

uf)=> Zi,eNi Ly [1-5(f, = ). (3.34)
3.4.5 MRF Texture Model

MREF texture models can be defined by the use of joint probability P(f).
P(f)is the probability of the texture pattern f to occur. Different MRF models are

used for texture modeling. For example, in the MLL model, the clique potential

functions are used to define the probability of the texture pattern f . If all the clique

potentials other than pair-wise are non-zero, the clique potential equation is as

below

B if siteson {i,i"} = c € C, have the same label

3.35
- B, otherwise (3:35)

Vy(fi, f) :{

where C, is a set of pair-size cliques and /. is the parameter that specifies the MRF
model. When all g, = f, the MRF model is anisotropic and tends to generate
texture like patterns. If £, is different for different clique sets, it generates blob-like
regions. By increasing the /[, the selected region becomes larger and has more

smooth boundaries. The clique potential function above is used to calculate the

probability P(f)using the corresponding Gibbs distribution.
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For Gaussian model we assume that the observation d; follows a Gaussian
distribution with parameters 6, ={x,,0,}. When the class label f, =1, the
probability of d; becomes

1 _((di—#ﬂz)
P, |f)=—e >

270!

(3.36)

3.5. Optimization

In computer vision process, there is a various amount of uncertainties like
noise and other degradation factors. For this reason, an exact solution for vision
problems is nearly impossible and most of them are formulated as optimization
problems. Each optimization process in computer vision has three basic issues that
should be considered: problem representation, objective function definition and
optimization algorithms. The problem representation concerns how to represent
image features and also how to represent the solution. For example in our case
(image segmentation), locations of voxels represent the solution.

The objective function measures the quality of the solution in terms of some
goodness or cost to a real number. In our MRF model, the energy function defined
for this model is the objective function that needs to be optimized. The energy
function has two important roles in optimization based vision problems: one is to
measure of the global quality of the solution and the other is to guide the optimal
solution searching. In this regard, proper formulation of the energy function is
essential in finding the correct solution. The third issue is how to optimize the
objective function to the best solution. In the following subsections we will discuss

some solutions for optimization issues.

28



3.5.1. Iterated Conditional Modes

Iterated conditional modes (ICM) is a deterministic algorithm which

maximizes local conditional probabilities sequentially. The algorithm updates each
f* into f*', by maximizing the posterior probability P(f, |d, fs_4,) with respect

to f, . The point of ICM is to maximize P(f, |d,, f,fi ) beside P(f |d).Maximizing

P(f;|d, fs_;,)is equivalent to minimizing the corresponding posterior potential as

following
f! «—argminV (f; |d;, ) (3.37)
fi
where
V(fld, fy) =D V(| £9+V(d | f) (3.38)
i'eN;

For discrete L, posterior potential is evaluated for each f, € L and the label causing

the minimum value is chosen as the f**'. In a cycle of ICM the above is applied to

each i. This process continues iteratively until the convergence.

3.5.2 Bayes Estimation

Bayes theory states that when both the prior distribution and the likelihood
function of a pattern are known, the best solution that can be estimated is the Bayes
labeling. For Bayes estimation, the posterior probability can be computed from the
prior distribution and the likelihood.

P | HP(f)

P(fld)= P(d)

(3.39)

where P(d | f)is the conditional p.d.f of the observations d and P(f)is the prior
probability of labelings f . AlsoP(d)is the density of d. Minimizing the Bayes
risk is equal to maximizing the posterior probability so the minimal Bayes risk of

estimate f "is equivalent to
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f* =argmax,_ P(f|d). (3.40)
Above function is known as the MAP estimate. When d is constant, P(f |d) is
proportional to the joint distribution.
P(f|d)e« P(f,d)=P(| f)P(f). (3.41)
Then the MAP estimate can be found by
f* =argmax,_ {P(d | f)P(f)}. (3.42)

The MAP-MREF labeling for segmentation problem can be summarized in
the following steps:
1. Define the appropriate MRF representation of the problem.
2. Define the neighborhood system, the set of cliques, clique potentials and the
likelihood energy.
3. Find the posterior energy.
4. Find the MAP solution from the posterior energy

3.5.3. MRF Parameter Estimation

After selection of the functional form of the MRF model, if the parameters
are known the optimized labeling can be estimated by the optimization methods
explained in the previous section. But if the involved parameters are not known and
should be specified, then optimization algorithms should be involved both to
estimate the model parameters and the labeling.

The estimation problem is defined as estimating the parameters, €, of a

single MRF, F, from the observed data d which is due to a clean realization, f , of

that MRF. When noise exists in the image, the unknown noise parameters should be
estimated too and this increases the complexity. Also existence of multiple textures
in the image increases the complexity as well because a separate MRF should be
used for each texture model. Sometimes, the number of the underlying MRFs is
unknown and should be determined which makes the problem even more

complicated.
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If the parameter estimation is done when data is already labeled, this is

called as the supervised estimation. Otherwise it is unsupervised.
3.5.4. Supervised Estimation with Labeled Data

When data corresponds to a previously segmented image, i.e. the labels of
the image pixels are known, the parameter estimation is done supervised. In this
case, the set of parameters, @, for each MRF model, F, are estimated using the

data which is a clean realization, f, of that MRF. Maximum Likelihood (ML)

method is a supervised method that is widely used in literature for medical image
segmentation.
When realization f of an MRF model is known, the maximum likelihood

(ML) tries to find the maximum value for conditional probability P(f | #), which is
the likelihood of @ or its log likelihood In P(f | 6).

0" = argmax P(f | 6) (3.43)
4

or

6" =argmaxInP(f | 0) (3.44)
14

For a homogeneous and isotropic auto-logistic MRF model with the 4-

neighborhood system and the parameters € = {«, 3}, the global energy function and

the local conditional probability can be defined as follows:

U(f1o)= Y of,+ > B fif, (3.45)
{iteC, {i,i"leC,
eafi+zi,ENi Bt
P(fl ’ le):7' (346)
1+e Zi’sN,ﬁ f"
The likelihood function is in the Gibbs form
1
P(f|0)=——xeV® 3.47
(f10) 20) (3.47)
with the partition function

Z@)=>Y e (3.48)

feF
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Here Z(0) is also a function of €. To maximize P(f |f) we need to compute
Z(60), but evaluation of Z(8) is intractable because of the combinatorial number of
elements in the configuration space F . Because of this difficulty, maximum

likelihood cannot be solved directly but approximate solutions are used to solve this

problem. Pseudo-likelihood is one of the frequently used approximate methods.
3.5.5. Pseudo-Likelihood

For approximation, the energy function can be written in the following form
where each node i is treated as being independent of the others given its neighbors.

This is a valid assumption for a MRF:

U(f)=2 U (f, fy) (3.49)

ieS
Here U, (f;, fy ) is based on the configuration of the cliques between i and N;. For

only single- and pair-site cliques, energy function and conditional probability can be

written as
U;(fi, fy )=V, (f)+ sz(fiafi’) (3.50)
in(0ies
and
e’Ui (fi. fn)
P( fi | fN ): ~Ui (fi,fN ) (351)
1 e 4
f;
e—Ziui (fi.f)
P(f |6’):W (3.52)
Ze iU Ty
fiel

Then the pseudo-likelihood is defined as

Ui (fi fy)

PL(H)= [T PCf 1 )=TT <

-Ui (i, )
ieS-8S ie&aszf e
i

where 0S is the set of boundary points of S in the neighbor system N . By using

(3.53)

the conditional probability (3.46) in the equation above, the pseudo-likelihood
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approximation for a homogeneous and isotropic auto-logistic model can be achieved

as follows:
afi+y | Bfifi

e
PLD) =[]+ (3.54)
et s

which is not related to the normalization term Z . In general, pseudo-likelihood is

not the true likelihood function because of the dependency between f; and f, but

it a solvable approximation.
As an example for maximum pseudo-likelihood (MPL) estimation, consider
the homogeneous and isotropic auto-logistic model described before. The logarithm
of (3.54)is
atf Y i
InPL(f[0)= > {m‘i +ﬁfi_z f,—In(l+e ' )} (3.55)
ieS-05 i'eN;
Then, the MPL estimation {&, f} is obtained by solving
OlnPL(f |, f) _

L 0 (3.56)
olnPL(f|e.p) _ (3.57)
op |

3.5.6. Mean Field Approximations

Mean field approximation can be used to approximate the behavior of MRFs

in equilibrium. In general, the mean of a random variable X is given by

<X> = ZX Xp(X). So the mean field < f > can be defined by the mean values

()= fP(F)=2"Y fief%u(” (3.58)

feF f

In this method, the following assumption is made to calculate <fi>: The actual

influence of f, (i #1i) is approximated by the influence of <fi,>. When the field is

in equilibrium, this assumption is reasonable. The equation (3.50) can be

approximated by the mean field local energy expressed as follows:
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U (F [ {fy D =V(F)+ 2V, (fu(f) (3.59)

i{i,i"}eS
and the conditional probability approximation takes the form of

Uil )

P(f [(fy ) =2"e (3.60)
where Z/ is called the mean field local partition function and defined as
1
2 =Ye o) (3.61)

fiel
The mean field approximation of the joint probability can be shown as the product
of the mean field local probabilities
*lUi fill i
POy ~TTPCf1{f, N=T]z/ e " () (3.62)
ieS ieS
Similarly, the mean field partition function can be shown as the product of the mean

field local partition functions
1
72Ul ) STRCA)
Z~7' =)e'= =[[De" (o) (3.63)
f i )
Unlike the pseudo-likelihood, in the mean field approximation, the mean values and
the mean field conditional probabilities are computed iteratively.
Another approximation method for MRF parameter estimation is to use a

least squares (LS) fit procedure that is explained with details in [50, 52].

3.5.7. Unsupervised Estimation with Unlabeled Data

In image segmentation, our data is an observation from underlying MRFs,
which is initially unlabelled. To find the MRF parameters, we should use the
realization of only that MRF so the image should be segmented. However to
segment the image, the parameters of that MRF model should be available. So the
problem is to choose between segmentation and estimation.

One strategy to solve this problem is to perform segmentation using some

other techniques like clustering and then to estimate the MRF parameters from the
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resulting labeling. This method may not result in the optimum solution because the
labeling is performed without using the correct parameter values.

An improved method is to perform labeling-estimation iteratively. The basic idea is
to choose initial labeling by using some scheme and estimate the parameters based
on this labeling. The estimated parameters are then used to find a hopefully better
labeling, and so on. A simultaneous segmentation and estimation scheme is
explained below.

Assume that Le{l,..,M} is the possible labels and f represents a
segmentation or labeling with f, € L indicating the label of pixel i. The data space
S is partitioned into M different labels by the segmentation f . In our case, M is

known and equal to 2. This means that the image includes only the target tissue and
the background. In completely unsupervised methods, M is also unknown and
should be estimated.

In terms of the MAP principles, the problem can be formulated as

(f",07,0;)=argmax P(f,0,,6, |d) (3.64)
.05 .04

where d is the observation model, 8, is a set of MRF parameters and 6, is a set of
observation parameters. Assuming that ¢, and 6, are both uniformly distributed,
there is no prior knowledge about their distributions. When 6&;and 6, are

independent of each other, the above equation is reduced to
(f*,0;,6;)= argmaxP(d | f,8,)P(f|8,)PO,)P(6,)
f,6¢ .64

= argmaxP(d | f,0,)P(f |6,)

f,0; .64

(3.65)

Maximization of the above problem is generally intractable. However this

problem is solvable when 6, can be expressed as a function &, (f,d).
Assume that the observation model is d; = ¢(f,)+ ¢, where @(f,) is the gray level
for type | = f,, for example the mean of pixels labeled as |, and &, is additive

identical independent zero-mean Gaussian noise. The image space is assumed to be

composed of piecewise constant valued regions that are governed by an MRF
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model. Then the noise variance for type | regions can be estimated as a function of

f and d

LS - a(f)? (3.66)

0;(f.dy=(c})" =
d( ) (O-I ) #S(I) “

Here #S " is the total number of pixels in type | region. When 8, is given

as a function of f and d, the (3.65) is reduced to

(f*,0:)= argmax P(d | f,0.(f,d)P(f |8,) (3.67)

f.0;
The minimization is still a difficult problem. The solution can be found by dividing
the problem into two sub-problems

f*=argmax P(d| f,0,(f,d)P(f |6;) (3.68)
f
0; =argmax P(d| f,d;(f",d))P(f"|d,8,) (3.69)
4

The estimate (f*,6;) thus can be found by iteratively alternating between the two

equations. There are several methods for solving this problem such as simulated
annealing (SA) [53], heuristic ICM and Pseudo-likelihood. The general technique
for finding maximum likelihood estimate with incomplete data is expectation-
maximization algorithm [54]. This method will be completely explained in the

following subsection.
3.5.8. Expectation-maximization

The expectation-maximization (EM) estimate is obtained from the complete

data by maximizing the likelihood function

10) (3.70)

com

6" = argmax In P(d
[

The complete data is assumed to consist of two parts, d_, ={d d hia +» Where

obs >
d s 1s the observed data and d nig 1S the hidden data. EM procedure attempts to solve

the following ML estimation problem with using only the observed data

0" =argmaxInP(d, | 0) (3.71)
4
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This problem is more general than the classic ML. Starting from some initialization
for d g and @, EM algorithm iterates between the following two steps until

convergence:
(1) Estimate the hidden data, using the current 6 and use it to form the complete

dataset d,, .

(2) Estimate the parameters &, by using d_,, and maximizing the complete-data log

m

likelihood InP(d,,,d,. | 6).

obs

The log likelihood function above is a random function of the hidden

variables f and we cannot work directly with this function. So EM algorithm tends

to use the complete-data log likelihood E[ln P(d hia » Oops | @)] Which formalizes the

obs
procedure above. The hidden data for MRF model parameter estimation is the
unobservable labeling f and the observed data is the given data d. At each
iteration, the EM algorithm consists of the following two steps:
(1) The expectation step (E-step): The following conditional expectation of the log
likelihood is computed
Q(9|6")=E[InP(f,d|6)[d,0"]
_ ® (3.72)
= > p(f|d,0V)Inp(f,d|6)

feF
(2) The maximization step (M-step): Q(@|8") is maximized to obtain the next
estimate

0" = argmax Q(0|6") (3.73)
0

In the expectation step the conditional expectation of the hidden labels f ,

given the observed data d and the current estimate 6, is computed. Then the
labels are substituted with the new ones. In the maximization step, maximum
likelihood estimation is performed assuming that the data is complete, i.e., as hidden
data had been filled in by the expectations.

For the Gaussian MRF model case, the intensity distribution function, given the

parameter set &, is
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(d-4 )2
—————p(|f
1 207 IURE

\27o} °

Here, p(I| fy, ) is the locally dependent probability of f; =1 and the parameter set

P(d, |6) = (3.74)

is @={y,o, |lelL}.

Then the Q-function becomes

Q=3P dw +C} (3.75)
ieS leL
where
_ 2
W =In pO(l| £, )~ Ino, - G =F) (3.76)
' 20,
and
C =-0.5In(27) (3.77)
The model parameters can be obtained by applying EM algorithm
2. PYdd)d,
/u|(t+1) — 1eS (378)

2. PYddy)

ZP(U(I | d;)(d, _/Ul)2
(G(Hl) )2 _ lies
| > PO]d)

ieS

(3.79)

It is shown that the EM estimates converge to the ML estimates at least

locally under some conditions .

3.6. Atlas based segmentation

Prior information is an important concept in medical image segmentation.
Atlas is the most preferred framework to include prior information to a
segmentation task. An atlas is usually referred to as a mapping A: R" — L from n-
dimensional spatial coordinates to labels from a set of classes L. To segment a new
image S, using an atlas A, a transform between them should be computed. To find

the accurate transformation, two images should be registered to each other. The
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registration from the atlas image to the target image should be non-rigid not only to
change the image linearly, but also to change the shape of the objects in the atlas in
a nonlinear way so that they can fit well to the corresponding objects in the target
image. Important concepts in an atlas based segmentation are listed as follows and
each is detailed in the following text.

- Atlas construction

- Atlas selection

- Image registration

3.6.1. Atlas construction

An atlas is usually generated by manual segmentation of training images.
The atlas can be constructed from a single image or average of many images. Thus,
construction of atlases is very time consuming and prone to error. For average atlas
construction, all of the images should be registered to a reference image so that the
corresponding objects in the image will share the same locations. This is done by an
affine registration that is explained in the next chapter. For atlas construction the
registration applies linear transformation to the images so it wouldn't affect the

shape of the objects in the image.

3.6.2. Atlas selection

Different atlas selection methods are proposed and evaluated in the

literature. Four important atlas selection strategies are shown in the figure 3.2.
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Figure 3.2 Atlas based segmentation strategies.

Segmentation with a fixed, single individual atlas is the most straight
forward strategy for selection of an atlas. In this method, a single atlas is selected
mostly randomly to perform segmentation. Usually there is a single atlas and thus
atlas construction is simple and fast but it may result in a wrong segmentation if the

objects in the atlas and the test images are very different from each other.
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Another method is to select the most similar atlas to the test image. But the problem
with this approach is that the correct segmentation for an un-segmented image is
unknown. So the best atlas is usually selected by some similarity measures that may
result in wrong answers.

Segmentation with an average shape atlas is performed by averaging several
manually segmented atlases. This method considers different images with different
shapes so that it decreases the risk an individual being an outlier in the population.
But high amount of manual segmentation and registration increases the time and
also the computational cost.

Multi atlas segmentation is done by performing segmentation for the test
image with different atlases and then generating the resultant segmentation by
combining all individual results. The simplest way to combine the individual
segmentations is averaging. However, the success of the method depends on the

performance of the fusion strategy, which could be different than only averaging.

3.6.3. Image registration

In addition to a spatial map of labels, the actual atlas also allows us to access
to the corresponding realization of the image modality. So the registration is
performed between two real images.

Image registration is to overlay two or more images with a linear or non-
linear geometrical alignment. In medical image registration, input images can be
images with different modalities from the same person. Such registration is done to
obtain more complete information about the patient. Or they can be images from
different individuals but with the same modality. Such registration is usually done to
obtain average atlases from the training sets, which are then used as the prior
knowledge in test image analysis. In this study, we consider images from different
individuals but having the same imaging modality, i.e., imaging sensors and
viewpoint of imaging.

The registration can be grouped into two general categories: rigid and non-

rigid registration. Rigid registration is performed by a rigid transform with 6 degrees
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of freedom (3 for rotation and 3 for translation). Affine registration is an improved
form of rigid registration with 9 degrees of freedom that incorporates shearing into
registration process. In rigid registration, the distance between the points remains
constant. However, in non-rigid registration, the local deformation between the
images is allowed involving a much larger number of degrees of freedom. A simple

visualization of rigid and non-rigid registration is shown in Figure 3.3.

Non-rigid

Figure 3.3 Rigid and non-rigid registration

Registration algorithms can be categorized in three groups:

e Landmark based registration: In this method, a group of landmark points
are selected in both images by the user and mapping is computed between
these corresponding points.

o Feature based registration: Some features, such as edges, corners or
regions, are detected from both images mostly automatically and matching
between these points are estimated. The mapping is computed between the
corresponding points.

o Intensity based registration: Registration is performed by minimizing the

intensity differences over the entire images.
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Although landmark based registration may result in a more accurate
transform, a large amount of human interaction is needed and the registration
performance is directly related to the number of landmarks. For feature-based
registration, some image features like edges and surfaces should be computed and
matching between these should be estimated before the registration. When these are
done automatically, performance is not very high. Manually segmented structures
may be used as features for accuracy improvement but this decreases the
automaticity of the method. Intensity based registration involves calculating the
registration transformation by optimizing some measures computed directly from
the voxel values. Choosing the proper similarity measure depends on the image
modality. The most successful similarity measure for medical images is mutual
information [55].

The mutual information of two discrete random variable X,Y is defined as

follows:

P(XY)
1(X,Y)=D D P(xY) log{—J (3.80)
YoY xex ROOP(X)

The registration is performed in a way that maximizes the mutual information
between two images. Several optimization strategies have been proposed for mutual
information maximization [56]. Some important multi resolution gradient- and non-
gradient-based methods are Powell, simplex, steepest-descent, conjugate-gradient,
quasi-Newton and Levenberg—Marquardt methods.

One of the efficient and robust intensity based registration techniques is
demons registration [57]. In demons registration, the optical flow equation is used to

find small deformations in image sequences. Let p be a point in reference image
F, f be the intensity and m be the intensity in the moving image M . Then
u=(u,,u,)is defined as the estimated displacement required for point p to match

the corresponding point M .

_ (m-=f)Vf
T VE P Hm=f)?

(3.81)
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Where Vf is the gradient of the reference image. Displacement u is based on local

approximation so to register two images, so it should be solved iteratively. Mutual

information can be used as similarity measure to optimize the registration.
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CHAPTER 4

MATERIALS AND METHODS

4.1. Intro

In this chapter, the materials and methods that we used in this study are
discussed. Our aim in this thesis is to investigate the role of prior information in
medical image segmentation. For this purpose, we apply several present
segmentation methods for two dimensional (2D) segmentation of target facial soft
tissues. These methods are chosen because they are the representatives in the
previous literature, which use prior information in some way or the other. A
comparison between these methods will clarify different aspects of prior knowledge
based segmentation methods. These methods are:

Method a. Atlas based segmentation,

Method b. MRF based segmentation with initials from region growing

algorithm,

Method c. MRF based segmentation with initials from region growing

algorithm using prior information,

Method d. MRF based segmentation using labeled atlas.

Then our newly proposed segmentation method, MRF based segmentation using
unlabeled prior information (Method e), will be introduced and applied to the same

image sets for 2D segmentation.
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At the end, we propose a new framework that performs 2D segmentation for
all of the slices of the data sets for the target tissue. As a result of this process a
segmented three dimensional (3D) shape of target tissues are constructed with our
proposed method.The methods are implemented using Matlab 7.10.0 on a computer

with Intel Xeon 3.2 GHz (2 processors) CPU and 8 GB of RAM.

4.2. Target tissues

Four different facial soft tissues (FST) are selected as target tissues in this
study: right Masseter (RM), left Masseter (LM), right temporalis (RT) and left
Temporalis (LT).

Masseter is a strong and large muscle, responsible for jaw motion. An axial
view of both right and left masseter muscles in an MR image is shown in figure 4.1.
The muscle borders are specified in green. Temporalis is also a large facial muscle
that assists in elevation of the mandible. Borders of Temporalis muscle is shown in
Figure 4.2 in green.

We performed 2D segmentation for finding right masseter tissue with our
method and other previous methods mentioned before and compared our results
with them. We also performed 3D segmentation for 10 different MRI sets belonging

to different individuals to find the four target tissues mentioned above.
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Figure 4.1 The target masseter tissues are shown by green.

Figure 4.2 The target temporalis tissues are shown by green.
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4.3. Train and test data

All the images used in this work were whole head and neck 3D MRI sets
which are obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [58]. All image sets were axial T1 weighted sets with 1.2 mm slice
thickness. Each set contain 256 slices with 256 x 217 pixels resolution. Ten
different sets are selected as experimental data. In each experiment, leave-one-out
technique is used, that is, each set is selected as the test set and the remaining sets
are used as the training set. This process is repeated for all sets. Total of four
FSTs, i.e., left masseter, right masseter, left temporalis and right temporalis,

were selected as target tissues to be segmented.

4.4. Bias field correction

Magnetic resonance images are usually degraded by intensity in-
homogeneity which is primarily because of the sensitivity profile of the radio
frequency coil [59]. This phenomena is named intensity bias field and is
characterized by multiplicative smooth spatial variations that modulate the intensity
of the true image data. This causes a problem in image analysis techniques like
segmentation and registration. To solve this problem, histogram equalization
method is used as explained in [60]. In this method, histogram of all images are
calculated and the average histogram is equalized. Then the intensity values of

pixels in each slice are remapped to the new intensity value.

4.5. 2D segmentation

In this part we apply segmentation methods mentioned in section 4.1 for
segmentation of masseter muscle in one single MRI slice. Each method is explained
in this section where the result of a selected slice is also shown. Ten different MRI

sets are selected as the experimental data. All these sets are registered in 3D by an
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affine registration method so the slices will correspond to each other. A single slice
is selected from each set to perform 2D segmentation, i.e., 10 slices in total. We use
leave-one-out technique where one of the slices is selected each time as the test data
to be segmented and the other 9 slices are selected as the training sets that are used
as the prior information. A sample of input image for our system is shown in figure
4.3. The visual results of each segmentation process will be shown for this particular

image.

Figure 4.3 Sample MRI slice that is used for visualization in this thesis.
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4.5.1. Method a: Atlas based segmentation

Atlas based segmentation is one of the popular methods in medical image
analysis, especially in brain soft tissue segmentation [43, 61-62]. The basic concepts
of this method are explained in part 3.6. An overview of this method is shown in

figure 4.4.
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Figure 4.4 Overview of method a.

51

Affine registration of training sets to test
set

Right masseter is segmented manually in
all corresponding slices.

Each training slice is registered to the
target tissue by demaon method

The labelings from each slice are
transformed by using the mapping in step 3

The transformed binary labels are averaged |

Pixels with value = 0.5 are chosen



The system is composed of the following steps:
Step 1: Image registration: All MRI sets are registered to a randomly selected set
with an affine registration. Normalized mutual information is used as similarity
measure in the registration process. The registration is performed by using Amira
software [63].
Step 2: Manual segmentation: The masseter muscle is then segmented in selected
slices manually. The manual segmentation is performed by a professional user.
Step 3: Non-Rigid registration: To find a mapping from each image in the training
set to the test set, a registration from the train set to the test set should be applied.
The applied registration method is the demon registration that is explained in section
3.6.3. By applying the non-rigid registration, target tissue in the training set tends to
change shape toward the shape of the tissue in the test set. This process is done for
all of the 9 training data.
Step 4: Transform the labels: In step 3, we obtained a transformation from each
train set to the target set. In this step, the obtained transforms are applied to the
corresponding labeling images. So the label image will also change the shape to fit
the test set.
Step 5: Averaging and majority voting: To obtain the overall segmentation of the
test set, an average image is made from the labels produced in step 4. The average
image is shown in figure 4.5. The bright locations that are repeated in more images
are brighter in this image. By performing majority voting procedure on the average
image, we select the pixels that are repeated more than 4 times out of total 9 images.

Manual segmentation of each slice is needed for this method that is so time
consuming and increases the overall time of segmentation. Other than that the
average time for non-rigid registration from a training set to the test set is 189
seconds. Without considering manual segmentation, the algorithm takes baout 1713
seconds to perform segmentation for one slice. The segmentation result for the input

image is shown in figure 4.6. The border of the segmented region is shown in blue.
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Figure 4.5 Average image from manually labeled training images

Figure 4.6 Result for the sample image by using method a.
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4.5.2. Method b: MRF based segmentation with initials from region growing

algorithm

Markov random field framework is a favored technique to encode spatial
information in an image through contextual constraints of neighboring pixels. We
seek to find the maximum a posteriori estimate of the segmentation by using
expectation maximization (EM) algorithm. The method is explained in section 3.5.8.
A problem in MRF based segmentation of facial soft tissues is that, in MRF
modeling, tissues with the same intensity distribution are modeled in the same
group. This method is mostly used in classification of brain soft tissues where whole
image can be classified into different classes. However in FST segmentation we
want to label a single tissue without adding the other tissues with similar
distribution. To solve this problem a rectangular region of interest (ROI) is selected
around the target tissue and the segmentation is performed only on this ROI. The
method by which the ROI is selected will be explained in part 4.5.2 step 4.

In this section, we try to perform MRF based segmentation without using
any prior information. This will help us to understand the basic MRF segmentation,
which is considered as a baseline, and the effect of prior information, when it will
be introduced later, in the MRF segmentation process. The segmentation process is
like the method used in [28] that performs segmentation for brain MR images. The
performance with this basic MRF approach is poor, because the convergence of the
EM algorithm strongly depends on the initial labeling and parameters. Thus,
different from [28], we use a region growing algorithm to find the initial labeling
and compute the initial parameters from it. In this case, we mark a single pixel on
the target tissue and we apply ordinary region growing so that an initial segment is
obtained starting from this initial point. This segmentation is used as the initial
labeling and then MRF is optimized to reach the final segmentation of the ROI. An

overview of the method is shown in figure 4.7.
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Figure 4.7 Overview of method b.

Step 1: Image registration: The same registration method as used in part 4.5.1 step
1 is also used here.

Step 2: Initial segmentation by region growing: Region Growing (RG) is one of
the basic methods in image segmentation. In this method, algorithm starts from a
starting point, called the seed point, that is selected by the user. Then the neighbors
of the selected pixel are checked to obey a criteria, i.e., to have an intensity value
similar to the selected point’s value in this study. This process continues for the
newly selected pixels and the difference between neighbor pixel intensity and the
mean intensity of the selected pixels is computed and checked to be under a certain
threshold. The process is repeated until there is no neighbor pixel left that obeys the

criteria.
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The threshold value is selected only once by the user but kept constant for
the segmentation of all other slices. This constant value can be used for the
segmentation of all slices because of the histogram equalization process that is
applied to all of the slices prior to segmentation.

To summarize, RG is a simple semi-automatic method that uses an initial
seed point and a threshold to segment a region in a 2D image by using only intensity
information. The result of this step is a binary image that includes target tissue
pixels (labeled as 1) and background pixels (labeled 0). The output of this step is
shown in Figure 4.8.

Step 3: Observation model as a Gaussian: In this step, we aim to model two
different classes of pixels for the binary image of step 3. We fit the target class and
background class into separate Gaussian distributions and compute their parameters,

i.e., mean and variance, x,o”. Together with the labeled image, this information is

passed to the next step where the segmentation process use them as the initial
estimation.
Step 4: MRF-EM segmentation: As mentioned before, the MRF-EM algorithm
performs classification for the ROIL. The ROI is selected as a rectangle 5 times
bigger than the bounding box of the initially labeled image. This size is big enough
to cover masseter tissue in all cases and small enough to avoid other similar tissues.
Although there are some other neighboring tissues with the same intensity
distribution, this is inevitable. The centroid of the ROI is selected as the centroid of
the segmented part in the labeled image.

The ROI is modeled as a Gaussian MRF as explained in part 3.4.1 with
L ={0,1}. EM algorithm is used in this step to maximize the likelihood function

defined in equation 3.29. The algorithm computes the posterior probability of the
pixels for each class in the E-step by using initial parameters and then estimates the
new Gaussian parameters using that probability in the M-step. The new parameters
are used again in the E-step and this process continues until the maximum
likelihood change between successive iterations becomes very small (i.e., less than

0.001 in this study).
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The energy function is defined as equation 3.35 and the 8 nearest neighbors
in the slice are selected as the neighboring system. This process converges to a
result that contains two classes of pixels and it is an optimized version of the initial
labeling. This method is also applied to 10 MR images from the experimental
dataset. The initial labeling process takes 1.3 seconds by using region growing
algorithm. The MRF-EM segmentation process takes 6 seconds that makes the
overall computation time of this method to be 7.3 seconds for each slice. The final
result for one image is shown in figure 4.9 where boundary of the target tissue is

shown in blue.

Figure 4.8 Initial segmentation result by region growing algorithm.
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Figure 4.9 Result for the sample image by using method b.
4.5.3. Method c: MRF based segmentation with initials from region growing

algorithm using prior information

To investigate the effect of the initial estimate in MRF based segmentation
and also to be fair in comparison between MRF-EM method and our proposed
method, we perform MRF based segmentation with initials obtained from a new
modified region growing algorithm. This method is similar to the previous method
explained in section 4.5.2 except that the region growing algorithm in this section is
a modified version of the basic form described in the previous section.

An overview of the algorithm is shown in figure 4.10. The method consists of the

following steps:
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Step 1: Image registration: The registration method is the same as the one applied
earlier.

Step 2: Initial segmentation by region growing: The region growing algorithm in
this step is a modified version of the basic region growing method to take the
advantage of prior information. In this case, region growing is done not only by
considering the neighboring pixels on the same slice but by considering the
corresponding pixels in the other data sets, i.e., training sets, although they are not
segmented a priori. Since the training sets are registered, they share the same
coordinates and hopefully have the same locations for target structures.

We assume that pixels are connected to each other through the neighboring
system shown in figure 3.1(c). This means that the current pixel is connected to the
corresponding pixels in the upper and lower slices and 9 other training images as
well as 8 nearest neighbors in the same slice. These 19 neighbor pixels effect the
classification of the current pixel. It can be said that when a pixel is being checked
in the RG algorithm, a corresponding pixel in the training set with intensity value
similar to the tissue mean should increase the probability of the current pixel to be

included to already segmented region. The new criterion U(d,) is defined in a way

that preserves the circumstances above:

Qd,)=|d; -d| (@.1)
R@)=) |d;-d| (4.2)
U(d)) =aQ(d,) + AR(,) (4.3)

Here d; is the current pixel and d; is the neighbor pixel from the neighboring set

N.. d is the intensity mean of the pixels of the already segmented region in the
current step. The term Q(d,) represents the criteria that was used in method b

region growing algorithm and involves the comparison of only the intensity value of

the current pixel. The term R(d,) represents the influence of the neighboring pixels.
Two parameters a and £ control the effect of each term Q and R. @ and f are

set manually and kept constant throughout the experiments. The algorithm checks
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U for each pixel to be lower than a preset threshold and proceeds as in the original
RG algorithm. The resultant labeling image is shown in figure 4.11.

Step 3: Observation modeling by Gaussian: This part is similar to step 3 of
section 4.5.2.

Step 4: MRF-EM segmentation: This step is similar to step 4 of section 4.5.2. The
energy function is defined only in the current slice just like the previous case and no
prior information is used in the segmentation.

Although prior information is not used in the segmentation process of this
method, it is included in initialization of the model estimation. So this method can't
be called a prior free method. The initial labeling process takes 2.2 seconds by using
the new region growing algorithm. The MRF-EM segmentation process takes 6
seconds that makes the overall computation time of this method to be 8.2 seconds
for each slice. The segmentation result is shown in figure 4.12. The boundary of the

segmented area is shown in blue in the figure.

Figure 4.11 Initial segmentation result by region growing using prior

information.
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Figure 4.12 Result for the sample image by using method c.

4.5.4. Method d: MRF based segmentation using labeled atlas

The importance of using prior information in medical image segmentation is
discussed before. In this section we want to perform a segmentation method based
on the maximum likelihood estimation for the MRF models, using prior
information. The prior information is in the form of average of labeled atlases and
EM algorithm is used for estimation of model parameters.

The method used in this part is like [29] which use probabilistic atlas in
MRF-EM segmentation and initialization . Different from MRF-EM model used in
[28], in this method, prior probability is not in the form of smoothness term. The
prior information is introduced as probabilistic atlas in the expectation step of the

EM algorithm as follows:
G(d;, u;,0)P(f; =1]Py.)

2
D G(d, 1,0 )P(F, =k |Py)

k=1

Pt+l _

s (4.4)
Here, P(f, =1] Pht‘i) is the prior probability that is equal to probabilistic atlas as
follows:

P(f, =1/ P, )=P"™

P2"® js the probability of the pixel ito have label 1. The probability is computed

by using previously registered and mapped manually segmented train images. This

probability is kept constant trough the segmentation.
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Figure 4.13 Overview of method d.
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The method can be summarized in the following steps

Step 1: Image registration: Like the previous methods, an affine registration is
applied to the experimental sets in the first step.

Step 2: Manual labeling and Probabilistic atlas: In this step, training sets are
segmented manually and the probabilistic atlas is constructed. The constructed atlas
is used in expectation step of the EM algorithm as prior information.

By applying the majority voting method the most probable label for each pixel is
assigned. This average atlas is a binary image that has value 1 in the pixels that are
labeled as the target tissue in more than 4 slices and has value 0 in other pixels. The
resulting average atlas is shown in figure 4.14. This atlas is used to construct initial
models in step 3.

Step 3: Gaussian MRF modeling: This part is similar to step 3 in section 4.5.2.

Initial Gaussian models are estimated from the average atlas from the previous step
and initial Gaussian model parameters, ,11,02 , are computed.

Step 4: Atlas based MRF-EM: Atlas based segmentation process is applied in this
step. As you can see in equation 4.4, the only difference between this method and
normal MRF-EM is the definition of the prior probability that includes prior
information from a probabilistic atlas. The atlas is constructed using labeled training

images in step 2. The algorithm iteratively estimate the new labeling and new

2

Gaussian parameters, u,o0", until the likelihood difference becomes very small

(Iess than 0.001).

Manual labeling is used in this method that is so time consuming. Without
considering manual segmentation time, the initial labeling process takes 0.1 seconds
by using majority voting on previously labeled training images. The MRF-EM
segmentation process takes 7 seconds that makes the overall computation time of
this method to be 7.1 seconds for each slice. The boundaries of segmentation result

for the sample image is shown in blue in figure 4.15.
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Figure 4.14 Initial segmentation by averaging manually segmented training

images.

Figure 4.15 Result for the sample image by using method d.
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4.5.5. Method e: MRF based segmentation using unlabeled prior information

In the previous sections we performed segmentation processes based on
MRF-EM approach with or without using prior information. We also implemented
the atlas based segmentation method for the same dataset. All these prior
information based methods use atlases that are constructed from manually
segmented images. Manual segmentation is a time consuming process especially for
3D segmentation and also decreases the automaticity of the method.

In this method, we try to incorporate the prior information to an MRF model
not by using a labeled atlas but by using the original unlabeled images in the
training set that can be called as the “latent atlas”. Prior information is not used as
the initial labeling of the MRF model but is included to the energy function of the
MRF model. By doing this, through the EM learning steps, the incorporation of the
atlas and the model is updated and learned until convergence. This way of
incorporation of many data sets has been considered in [32] where the incorporation
is updated at every iteration step of the level set model.

Unlike other methods that perform a MAP estimation to estimate the

labeling and use it in pair-wise clique potential computation, we define the prior

probability P(f, =1] Pht,i) without using labels. To take advantage of un-labeled

training images, we compute the difference between the mean of each class in the
current step 4 and the intensity value of the corresponding pixel i in the
neighboring set N,. We prefer the pixels with less difference to have higher clique

potentials so we subtract the difference value from 1. The value 1 is the maximum
value that the difference result can take. By performing summation over all training
images the overall prior probability for pixel i is computed. The prior probability is

defined as:
P(fi=1|Pl\tli)=1_|/ul_dNi | (4.6)
where N; is the neighboring system defined in section 3.2 that includes training sets

and | € {0,1} is the desired label.
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By using this feature, the average difference between the target tissue
distribution and the training images is computed. Figure 4.16 shows the presentation
of V for the sample image. As can be observed from the image, the prior
information gives a good estimate of the pixels that may be in the target tissue. This
image is like an imaginary image that an specialist doctor may have in her/his mind

due to seeing thousands of MRI pictures.

Figure 4.16 Presentation of clique potential for the sample image in one

segmentation step.

The important point about this picture is that the target tissue is fully
unconnected from the neighboring tissues. This feature helps the segmentation
process a lot in the segmentation of FSTs that are generally connected to the
neighboring tissues.

An overview of this method is shown in figure 4.17.
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The important steps in this method are:

Step 1: Image registration: Like the previous methods, an affine registration is
applied to the experimental sets in the first step.

Step 2: Modified region growing: In this step, modified region growing algorithm
described in part 4.5.3 step 2 is used to estimate the initial segmentation for the
proposed MRF based segmentation algorithm. In the modified region growing, not
only the pixels in the same slice but also corresponding pixels in the unlabeled
training sets are considered. The resulting initial labeling image is just like figure
4.11.

Step 3: Gaussian MRF modeling: This step is similar to step 3 from part 4.5.2.
Initial Gaussian models are estimated from the average atlas acquired in the
previous step where initial model parameters, 2,0, are computed.

Step 4: MRF-EM based segmentation: In this step, an MRF framework is
employed to model intensity distribution of two different classes of labels in the test
image. The initial estimate is computed in steps 2 and 3. The energy function is
computed by using registered unlabeled train images from step 1. The segmentation
process can be summarized in the following steps:

1. Compute the posterior probability

G(d;, u;,0)P(f; =1| Py)

2
Z G(d;, uy, o )P(f; =k | P.ii)

k=1

Pt+1 _

ij

(4.7)

where G(d;, 4,,0,)is the Gaussian distribution for | =1 in the step t as defined in
equation (3.74) and P(f, =1| P,ji ) is the prior probability defined in (4.6) over S.

2. Update the parameters

> POd)d,
(t+1) _ ieS
A TYPYae) 49
ieS
z PO d;)(d; _,Ul)z

ol = S POd,) (49

ieS
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3. Compute likelihood difference |P'(d,,x,,0,)—P''(d,,x,0,)|/P'(d,,u,,0,).
If the difference is bigger than 0.001 go to the step 1 and repeat the process
elsewhere end the algorithm.

The initial labeling process takes 2.2 seconds by using the new region
growing algorithm. The MRF-EM segmentation process takes 24.3 seconds that
makes the overall computation time of this method to be 26.5 seconds for each slice.
The result of this segmentation process is shown in figure 4.18. The boundaries of

the segmented area are shown in blue.

Figure 4.18 Result for the sample image by using method e.

4.6. 3D Segmentation

MRI scans consist of several 2D slices that together construct a 3D image of
the interested area. So, when the target tissue is segmented in a single slice,
the segmentation process can proceed through other neighboring slices so that the
3D shape of the whole tissue can be extracted. In this section, we want to
perform 3D segmentation by applying our proposed 2D segmentation method on
each slice successively but using some additional processes.

The experiment is applied to 10 MRI sets. Each time, one of them is selected
as the target set while the other 9 sets are considered as the training sets. The
starting and ending slices in a set are determined by the operator before the process

begins.
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The segmentation algorithm for the new slices is the same as in the 2D
segmentation. However, there are two initial values that the region growing
algorithm starts with: seed point and threshold. In 2D segmentation, these values
are set by the user. In 3D segmentation, these values are set by the user only for the
first slice and then for the new slices some additional processing blocks are added to
estimate these values automatically using the information in the previous slice and
the current slice.

After setting the threshold and the seed point, no manual interaction is
needed for segmentation and the process continues automatically until the last slice

is segmented. The overview of the 3D segmentation system is shown in figure 4.19.
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The 3D segmentation process is summarized in the following steps:
Step 1:Image registration: All ten image sets are registered by affine registration.
The registration process is like in the 2D method.
Step 2: 2D segmentation: The segmentation method proposed in Section 4.5.5 is

implemented in this step. The region growing algorithm starts from the seed point
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and uses the threshold set by the user for the first slice. The seed points and the
threshold values for the successive slices are estimated in steps 4 and 5. Here,
registered images are used to perform region growing where they are also used as
the prior information in MRF-EM method. The result of this block is a segmented
2D binary image.

Step 3: Decision making: In this step, algorithm checks if this is the last slice to be
segmented or there are other slices left. It ends the segmentation in the first case and
in the other case it proceeds to seed point and threshold estimation blocks to
estimate these values for the successive slice and starts segmentation in the new
slices. The starting and ending slices are set by the user at the very beginning.

Step 4: Seed point estimation: In this step, the new seed point for the segmentation
of the next slice is estimated. To find the location of the new seed point, we
assumed that the centroid of the previous segmented area coincides with the target
area of the new slice. Because of the anatomy of the target tissues and also the
resolution of the MRI images this is a realistic assumption and the centroid lays in
the target area for almost all cases.

However, because of the special characteristics of the FST texture, having
a high intensity in-homogeneity, the centroid may coincide with one of these
in-homogeneities and this halts the region growing. There may be several white
points with high intensity in the tissue that corresponds to fats inside the muscle.
When the region growing algorithm starts from that point, the process wouldn't be
able to join the neighboring pixels due to the wrong initial estimate.

To avoid this problem, 8 other seed point candidates were selected as
alternatives for the centroid. We define 8 extreme points for the previously
segmented region as top left, top right, left top, right top, left bottom, right
bottom, bottom left and bottom right. Then the new seed point candidates are
selected on the lines between the centroid and the 8 extreme points in the region as
shown in figure 4.20. When the estimated seed point intensity is abnormal
compared to the intensity model of the previous slice, the new seed point was

selected from the candidates. The intensity value of the new candidate is also
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checked to be close to the intensity model. Then the process is continued by using

the candidate as the seed point.

[ n
[ ® 0 n
B o o i
B Extreme point
@ Centroid
@ Seed point candidate
] |

Figure 4.20 Seed point estimation candidates. Extreme points are shown in

black, centroid is shown in red and the new candidates are shown in blue.

Step 5: new threshold estimation: The region growing algorithm needs another
input to start and that is the threshold value. The algorithm checks the difference
between the energy function of the new pixel and the region mean, with this
criterion. We use a learning algorithm to estimate the new threshold value. The
energy values assigned to all pixels in the already segmented region are used in this
learning method. The standard deviation of these values are computed and selected
as the threshold value for the new slice. Since the slices are normalized by a bias
field correction algorithm, the tissue intensity distribution is so close for two

neighboring slices that makes this estimation value promising.
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A simple interpolation is used to construct 3D shape of the target tissues
from 2D slices. The acquired models for the masseter and temporalis muscles are

shown in figure 4.21 and 4.22.

(a) (b)

Figure 4.21 3D segmentation result for temporalis. a. Manual segmentation

result, b. Segmentation result our method.
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(a) (b)

Figure 4.22 3D segmentation result for masseter. a. Manual segmentation

result, b. Segmentation result our method.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1. Validation

There are a few studies related to facial soft tissue segmentation and they do
not include a qualitative evaluation since there is no ground truth available for these
tissues. The validation of our segmentation method was done by comparing the
automatic segmentation results with the manual segmentation results. For this
purpose, every target tissue is segmented manually in all slices that it appears. This
process is repeated for all 10 experimental sets and these manual segmentations are
only used as the ground truth. More than 2700 slices are segmented manually to
construct the ground truth. The manual segmentation is done by taking "3D
Anatomy for Otolaryngology & Head & Neck Surgery"[64] software as reference
and under the supervision of an expert.

We used dice metric x [65] to evaluate the correspondence between the
segmentation result and the ground truth. The metric is defined as follows:

ST
S+T

K=2x x100% (5.1

where S is the segmented area and T is the ground truth.
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5.2. 2D segmentation accuracy

We performed 2D segmentation to label masseter muscle in one MRI slice
with 5 different methods. In this part we will see the accuracy of each method using

dice metric. We will discuss the advantages and disadvantages of each method.

5.2.1. Method a: Atlas based segmentation

Atlas based segmentation is known to be successful in brain tissue
classification but as you can see in table 5.1 and figure 5.1 , the results are not very
good for the masseter tissue. Human brain’s shape is mostly similar in different
individuals but facial tissues like masseter may have various shapes in different
people. This method completely depends on the atlas and when the shape and
position of the tissue of the atlas are different from the shape and position of the
tissue of the test data then the registration may result in wrong answer. The shape of
the head and face are also very affective in the registration process.

As you can see in table 5.1, the segmentation result is very poor for set 4 due
to the difference between the tissue and head shapes of the atlas and the data set 4. If
we exclude set 4, the average accuracy is increased about 5% and becomes 77.66 %.
This problem can be solved either by selecting the experimental data similar to the
atlas or by increasing the number of training images in a way that covers all the
possible shapes. Also, some supervised methods can be used to avoid wrong
registrations.

This method is simple to implement but the non-rigid registration process
and atlas construction are time consuming. There is also a lot of human interaction

in this method because of manual labeling.

Table 5.1 Accuracy results for method a.

Set Set1 | Set2 | Set3 | Set4 | Set5 | Set6 | Set7 | Set8 | Set9 Set 10 | Average

Accuracy | 66.66 | 83.23 | 76.72 | 30.24 | 84.75 | 60.98 | 81.97 | 82.16 | 83.35 79.13 72.92
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Figure 5.1 Accuracy results for 10 slices using method a.

5.2.2. Method b: MRF based segmentation with initials from region growing

algorithm

The important concepts in MRF-EM based segmentation are defining a
proper MRF model that fits the observed data and setting an appropriate initial
estimation. The region growing algorithm is used to perform initial labeling in this
method. Prior information from training sets is totally ignored in this method to see
the influence of it on segmentation accuracy. Only a single point is marked on the
tissue to be segmented.

The accuracy results are shown in table 5.2 and figure 5.2. The segmentation
is very successful in most cases, such as sets 1,2,3,8, but in some cases, such as sets

4 and 5, segmentation results are poor.
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Table 5.2 Accuracy results for method b.

Set Set1l | Set2 | Set3 | Set4 | Set5 | Set6 | Set7 | Set8 | Set9 Set 10 | Average

Accuracy | 88.24 | 86.12 | 88.01 | 49.92 | 19.34 | 75.3 | 68.97 | 92.65 | 82.4 68.25 71.92
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Figure 5.2 Accuracy results for 10 slices using method b.

To investigate this issue, we checked the initial labeling for the worst result
(i.e., set 5) and the best result (i.e., set 8). The region growing outcome for set 5 and
8 are shown on the original image in figure 5.3. As you can see, the initial labeling
is so poor in case of set 5 that ends in poor overall segmentation where case 8 starts

with a good estimate and results in more than 92% accuracy.

80




Figure 5.3 Left. Initial labeling for the worst case (set 5) Right. Initial labeling
for the best case (set 8).

The only input information that we used in this method is the intensity
values of the current slice. So, the region growing or MRF-EM algorithms may add
neighbor tissues with similar intensity or may exclude some parts of the tissue

because of intensity dissimilarity.

5.2.3. Method c: MRF based segmentation with initials from region growing

algorithm using prior information

In this experiment, we tried to solve the problem of initial labeling where a
modified region growing algorithm was used for initialization. As you see in table
5.3 and figure 5.4, there is about 12% improvement in the segmentation accuracy.
This emphasis the importance of initial labeling in MRF-EM segmentation and also
using prior information in region growing algorithm. The prior information used
here is unlabeled raw training images.

Although there is an overall improvement in the segmentation performance,
in some cases accuracy decreases. For example, for previously investigated sets 5
and 8, although the accuracy is improved about 59% for set 5, there is about 17%

decrease for set 8.
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Table 5.3 Accuracy results for method c.

Set Set 1 Set2 | Set3 Set4 | Set5 | Set6 | Set7 | Set8 Set 9 Set 10 | Average
Accuracy | 86.87 | 93.33 | 84.18 | 82.86 | 78.9 | 77.56 | 74.38 | 75.68 | 90.71 92.89 83.74
MRF with our RG
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Figure 5.4 Accuracy results for 10 slices using method c.

The initial labeling with modified RG for sets 5 and 8 are shown in figure

5.5. The improvement in set 5 and decrement in set 8 are very clearly observed. The

prior information brings improvement for set 5 where there is an intensity in-

homogeneity but it is not useful for set 8, which has a shape different than the

training sets. However the overall improvement is noticeable and there isn't any big

decline for different cases as can be seen in figure 5.4.
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Figure 5.5 Left. Initial labeling for set 5 Right. Initial labeling for set 8.

In this kind of segmentation methods, keeping the balance between the
intensity information and the prior information is an important issue. Another
important concept in using the prior information in the RG algorithm is that the
resulting segmented regions are continuous and smooth, as can be seen in figure 5.5.
We want to mention once more that the MRF-EM process for this method is the
same as the previous one and the improvement is only because of initial labeling

which includes prior information.

5.2.4. Method d: MRF based segmentation using labeled atlas

The accuracy results for this method is shown in table 5.4 and figure 5.6.
Here, labeled training images are selected as prior information. Also initial
estimation is derived from the labeled training sets. The initial labeling is the same
for all images. Although this constant labeling makes the method so simple and fast,
it may cause some wrong estimation in the beginning.

As you can see in table 5.4 the segmentation performance is close to the
MRF based segmentation with modified region growing method (Method c) but it is
about 1% lower. Despite the large amount of manual interaction required for the
prior information in MRF-EM part, this method shows lower accuracy than the

previous method. This is mostly because of the initial estimation.
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Table 5.4 Accuracy results for method d.

Set Set 1 Set2 | Set3 Set4 | Set5 Set6 [ Set7 | Set8 | Set9 Set 10 | Average

Accuracy | 86.98 | 93.37 | 71.56 | 82.68 | 84.16 | 59.88 | 71.89 | 89.14 | 94.69 | 91.05 82.54

Atlas based MRF
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Figure 5.6 Accuracy results for 10 slices using method d.

5.2.5. Method e: MRF based segmentation using unlabeled prior information

Finally, we want to discuss the results of our proposed method for masseter
segmentation. The accuracy values are shown in table 5.5 and figure 5.7. This
method shows the best overall performance among all tested methods. In 6 out of
ten slices, the accuracy of this method is over 90%. The worst results are for sets 6
and 7 which also cause poor results by using normal EM-MRF method (Method c)
in part 4.5.3. So we can conclude that, poor initialization is the problem for these
cases. But this comment is not true for other low accuracies for sets 2 and 4.

The main problem is in finding a generic solution that results in a good
accuracy for all of the images. But this requires that the training set should be big
enough to overlap all possible shapes. Another problem is due to the affine

registration which also may sometimes cause poor initialization.
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However this method has acceptable overall accuracy for masseter tissue. It

is important to note that these results are achieved without using any manual

segmentation. The only manual interaction is the selection of a seed point and a

threshold for region growing algorithm. The threshold value is kept constant

because of the previousely applied histogram equalization algorithm. The rest of the

method is fully automatic.

Table 5.5 Accuracy results for method e.

Set

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Set 8

Set 9

Set 10

Average

Accuracy

93.07

83.74

90.03

78.39

90.67

77.23

66.49

93.4

96.11

96.07

86.52
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Figure 5.7 Accuracy results for 10 slices using method e.

5.3. Overall 2D results

The results of 2D segmentation for different methods are shown together in

table 5.6, figure 5.8 and figure 5.9 for better visualization.
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Table 5.6 Overall accuracy results for all methods.

Set Atlas based | Atlas based MRF with MRF with Our Method
Method MRF normal RG our RG
Set 1 66.66 86.98 88.24 86.87 93.07
Set 2 83.23 93.37 86.12 93.33 83.74
Set 3 76.72 71.56 88.01 84.18 90.03
Set 4 30.24 82.68 49.92 82.86 78.39
Set 5 84.75 84.16 19.34 78.9 90.67
Set 6 60.98 59.88 75.3 77.56 77.23
Set 7 81.97 71.89 68.97 74.38 66.49
Set 8 82.16 89.14 92.65 75.68 93.4
Set 9 83.35 94.69 82.4 90.71 96.11
Set 10 79.13 91.05 68.25 92.89 96.07
Average 72.92 82.54 71.92 83.74 86.52
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Figure 5.8 Accuracy results using 5 different methods.
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Figure 5.9 Comparison of accuracy between different methods.

5.4. 3D segmentation results

The same dice metric is used for performance evaluation as in equation 5.1.
In this section, the metric measure is evaluated by comparing volumes of the
segmented tissues and the ground truth. The results for the target tissues are shown
in table 5.7. The average accuracy of masseter is higher than temporalis tissue. This
is because of the uncommon shape of the temporalis muscle in most of the slices

whereas masseter usually has a simpler shape.
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Table 5.7 3D segmentation accuracy results for 4 different tissues.

Set left . right ) left right Average
temporalis temporalis masseter masseter
Set 1 80.63 83.56 89.35 88.84 85.595
Set 2 71.5 81.39 82.07 82.8 79.44
Set 3 84.9 84.35 90.3 88.36 86.9775
Set 4 78.2 76.28 77.37 78.93 77.695
Set S 85.87 83.85 80.22 84.86 83.7
Set 6 80.84 82.19 81.95 83.07 82.0125
Set 7 82.25 81.6 85.61 80.15 82.4025
Set 8 84.4 84.27 84.64 86.18 84.8725
Set9 84.62 86.98 88.98 87.01 86.8975
Set 10 81.52 78.74 82.64 88.73 82.9075
Average 81.473 82.321 84.313 84.893

A chart of the 3D segmentation results is shown in figure 5.10. The
accuracies of different tissues are related to each other according to the chart. So a

set with higher masseter accuracy usually has a higher accuracy in temporalis also.

100
90

80
70 A
60
50 -
40

W left temporalis
M righttemporelis
= left masseter
30 1 W right masseter
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Figure 5.10 3D segmentation accuracy results for 10 different sets.
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CHAPTER 6

CONCLUSION

6.1. Conclusion

In this study, we tested four different state of the art methods for 2D facial
soft tissue segmentation on magnetic resonance images. These methods are: Atlas
based segmentation (Method a), MRF based segmentation with initials from region
growing algorithm (Method b), MRF based segmentation with initials from region
growing algorithm using unlabeled atlas (Method c), MRF based segmentation
using labeled atlas (Method d).

We then proposed a new segmentation method named MRF based
segmentation using unlabeled prior information (Method e).

Our main interest in this work was to investigate the role of prior
information in FST segmentation by using different methods. We applied all these
methods on 10 different MRI slices belonging to different individuals and aimed to
segment the masseter muscle in them. The experimental MRI sets were registered 3
dimensionally before the segmentation so the slices corresponded to each other.

Method a is fully based on registration of labeled training images to the test
image. The average accuracy of this method for 10 different sets is 72.92%. In the
second method (Method b), an MRF-EM based segmentation method with initials

from region growing is applied to perform the same work. No prior information is
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used in this method and the acquired average accuracy is 71.92 %. Although the
first method uses labeled prior information, the accuracy of the second method is
very close to the first one. This shows that atlas based methods are not as successful
as expected in segmentation of FSTs. The most important reasons for this failure are
the variation of the tissue shape among the sets and the existence of similar tissues
in the neighborhood of the target tissue.

Method c is similar to Method b, except the fact that the region growing
algorithm is improved in a way that it uses prior information in Method c. The
accuracy is improved to 83.74 % which emphasizes the importance of initial
estimate in MRF-EM process and also the importance of using prior information in
initialization.

In Method d, the similar MRF-EM framework is used but this time the
labeled training images are implemented in segmentation and also in initial model
estimation. The method reaches 82.54% accuracy that is close to Method d which
doesn't use manual labeling. We may conclude that determining the target tissue
with a seed point and a threshold (like we did in Method c) is more informative for
MRF-EM framework than labeled atlases.

In the end, we proposed a method that uses unlabeled prior information both
in initial estimation and during MRF-EM optimization. This method is just like an
experienced anatomist’s segmenting a tissue. While he is trying to segment a tissue,
he uses all of his past experiences of observing many similar data, although they
were not segmented. The average accuracy for this method is 86.52% which is
better than the performance of Method d that requires extra manual labeling. The
proposed method starts from the same initial estimates as Method ¢ but it uses prior
information inside the MRF-EM process that causes about 4% improvement in the
final segmentation accuracy. The importance of using prior information can be
shown better when we compare Method b with our proposed method where using
prior information causes about 15% improvement.

Finally, we used the proposed 2D segmentation method to perform 3D
segmentation of 4 different facial soft tissues in 10 MRI sets. The sets are

segmented slice by slice with some additional tasks such as seed point and threshold
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estimations for the successive slices. The segmentation process could also be
performed three dimensionally but it increases the complexity of the problem.
This method achieved 81.47% and 82.32% accuracy results for right and left
temporalis respectively and 84.31% and 84.89% for right and left masseter
respectively. Considering the difficulties of 3D segmentation, these results seem to

be acceptable for FST segmentation.

6.2. Future work

In the current work, we introduced an MRF framework that includes prior
information in tissue modeling. This is like a network where the training sets are
connected to the test set and have affect on it. In the future, we aim to add some
other information to this network to improve the learning algorithm and make the
system more similar to a decision making system in a specialist’s brain. These
additional information can be anatomical such as “every muscle is connected to
bone”, can be morphological, “a bigger head has bigger muscles”, or it can be
based on biomechanical interactions between the tissues.

We also want to improve the mathematical aspects of defining the problem
and the model that fits the desired network.

The registration was a serious problem in the current work in most of the
unsuccessful segmentations. The registration process needs to be improved. It can
be changed according to the characteristics of the test images.

The main difficulty of this work was the lack of high resolution, full head
MRI sets. We believe that existence of high quality images will improve the
segmentation performance. A common project with a hospital or clinical institute is

considered to be beneficial for this purpose.
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