

THERMAL ANALYSIS OF STIRLING CYCLE REGENERATORS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERCAN ÖZBAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

AUGUST 2011

Approval of the thesis:

THERMAL ANALYSIS OF STIRLING CYCLE REGENERATORS

submitted by SERCAN ÖZBAY in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering Department, Middle East Technical

University by,

 Prof. Dr. Canan Özgen

 Dean, Graduate School of Natural and Applied Sciences

 Prof. Dr. Suha Oral

 Head of Department, Mechanical Engineering

 Assoc. Prof. Dr. İlker Tarı

 Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

 Assoc. Prof. Dr. Cemil Yamalı

 Mechanical Engineering Dept., METU

 Assoc. Prof. Dr. İlker Tarı

 Mechanical Engineering Dept., METU

 Asst. Prof. Dr. Ahmet Yozgatlıgil

 Mechanical Engineering Dept., METU

 Asst. Prof. Dr. Tuba Okutucu Özyurt

 Mechanical Engineering Dept., METU

 Semih Çakıl, M.Sc.

 Senior Engineer, ASELSAN

 Date: _______________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last name : Sercan Özbay

Signature :

iv

ABSTRACT

THERMAL ANALYSIS OF STIRLING CYCLE

REGENERATORS

Özbay, Sercan

M.Sc. Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. İlker Tarı

August 2011, 116 pages

Stirling cycle cryocoolers are used widely in military applications. The regenerator is the

key element of Stirling cycle cryocoolers. It is known that performance of the regenerator

directly affects the cryocooler performance. Therefore, any improvement on the

regenerator will lead to a more efficient cryocooler. Thus, it is essential to have an idea

about regenerator parameters and their effects on the system.

In this study Stirling engine regenerator, which is constructed by wire mesh screens, is

accepted as a porous medium. Using energy balance and continuity equation, matrix and

fluid thermal equations are derived. Simplified versions of these equations are obtained for

not only the ideal case, but also two other cases which take into account the effects of

longitudinal conduction and the effects of regenerator wall. A computer code is developed

in Matlab to solve these equations using finite difference method. The developed code is

validated by using Sage. Afterwards, effects of all regenerator parameters on regenerator

v

performance are investigated in detail and results are presented. To make this investigation

easier, a graphical user interface is also built (in Matlab) and used.

Keywords: Cryocooler, Stirling cycle, thermal analysis, finite difference.

vi

ÖZ

STİRLİNG ÇEVRİMİ İLE ÇALIŞAN

REJENATÖRLERİN TERMAL ANALİZİ

Özbay, Sercan

Yüksek Lisans, Makine Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İlker Tarı

Ağustos 2011, 116 sayfa

Askeri uygulamalarda Stirling çevrimi ile çalışan krayojenik soğutucular sıklıkla

kullanılmaktadır. Rejeneratör ise bu çevrim ile çalışan soğutucuların önemli bir elemanıdır.

Rejeneratörün performansı soğutucunun perforamansını doğrudan etkilemektedir. Bu

nedenle rejeneratöre yapılacak iyileştirmeler soğutucuyu daha verimli hale getirecektir. Bu

nedenle rejeneratör parametrelerinin sistem üzerindeki etkilerine hakim olmak

gerekmektedir.

Bu tez çalışmasında tel örgü disklerle oluşturulmuş, Stirling çevrimi ile çalışan bir

rejeneratör, gözenekli bir yapı olarak kabul edilip enerjinin korunumu yasası ve süreklilik

denklemi kullanılarak, matriks yapı ve akışkan için termal denklemler çıkartılmıştır. Bu

denklemlerin basitleştirilmiş halleri, ideal durum, dikey ısı iletiminin olduğu durum ve

rejeneratör duvarının etkilerinin göz önüne alındığı durum için elde edilmiştir. Elde edilen

denklemleri sonlu farklar yöntemiyle çözmek için Matlab programında bir kod yazılmıştır.

vii

Yazılan bu kod, Sage programı kullanılarak doğrulanmıştır. Daha sonra, rejeneratör

parametrelerinin, rejenaratör performansı üzerindeki etkileri detaylı olarak incelenmiş ve

sonuçlar sunulmuştur. Bu incelemeyi daha kolay hale getirmek için, Matlab programında

kullanıcı arayüzü oluşturulmuş ve kullanılmıştır.

Anahtar Kelimeler: Krayojenik soğutucu, Stirling çevrimi, termal analiz, sonlu farklar

yöntemi

viii

To my family

ix

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. İlker Tarı

for his support, guidance and suggestions through out this research.

The examining committee members Assoc. Prof. Dr. Cemil Yamalı, Asst. Prof. Dr. Ahmet

Yozgatlıgil, and Asst. Prof. Dr. Tuba Okutucu Özyurt greatly acknowledged for their

participation, comments and suggestions.

I want to thank my company ASELSAN, my superiors Savaş Bektaş, Ekrem Nurdağ and

our manager Yılmaz Oktay for allowing and supporting me to get this degree. Their

incentive talks and understading made everything much easier.

I am deeply thankful to my colleague and friend Semih Çakıl for his encouragement and

support. I gained a lot of confidence while challenging with his attention over minor

details.

I want to thank my dear friends Sevil Demirci, Ceyda Elbaşıoğlu for keeping me company

while preparing this thesis. Special thanks go to Ece Koçer, who is a sister rather than a

friend, for being there whenever I needed. Emre Yılmaz, M.Haydar Şahin and Uğur Olgun

should know I could not do this without you having in my life. Thank you guys.

Last but not least, I would like to express my endless gratitude to my parents for their love,

endless support and trust throughout my life. Mom, words are not enough to express my

appriciation to you for the sacrifices you made for me. I will always do my best and make

you proud. I love you.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiv

LIST OF FIGURES ... xv

LIST OF SYMBOLS ... xvii

CHAPTERS

 1. INTRODUCTION AND BACKGROUND .. 1

1.1. Cryogenics ... 1

1.2. Cryocoolers .. 1

1.3. Stirling Cycle Refrigerators ... 4

1.3.1. Theory .. 4

1.3.2. Stirling Cycle Cryocoolers ... 6

1.3.3. Cold Finger .. 8

1.3.4. Regenerator .. 8

1.3.5. Regenerator Packing Geometries ... 9

1.3.5.1. Annular Gap Regenerator... 11

1.3.5.2. Wire Mesh Screens ... 12

1.3.5.3. Packed Spheres ... 13

1.3.5.4. Etched Foil Regenerator ... 13

1.3.6. Regenerator Materials .. 14

1.4. Motivation and Scope of the Thesis... 15

 2. MODELLING AND SOLUTION ... 18

2.1. Introduction .. 18

xi

2.1.1. Continuity Equation ... 19

2.1.2. Energy Equation... 20

2.1.2.1. The Matrix Energy Equation .. 22

2.1.2.2. Fluid Energy Equation ... 23

2.1.3. The Ideal Regenerator .. 25

2.1.4. Boundary and Initial Conditions .. 27

2.2. Numerical Solution For the Ideal Regenerator Case 28

2.2.1. Finite Difference Equations ... 28

2.2.2. Parallel Flow Model ... 30

2.3. Numerical Solution For the Nonideal Regenerator Cases 33

2.3.1. Including Effects of Longitudinal Conduction 33

2.3.2. Including Wall Effects ... 37

 3. 1D REGENERATOR SIMULATOR .. 40

3.1. Introduction .. 40

3.2. GUI .. 40

3.2.1.2. Screen Diameter ... 41

3.2.1.3. Wire Diameter .. 41

3.2.1.4. Mesh Density.. 41

3.2.1.5. Number of Screens ... 41

3.2.2. Flow Properties .. 42

3.2.2.1. Flow Rate ... 42

3.2.2.2. Cold End Entrance Temperature .. 43

3.2.2.3. Hot End Entrance Temperature .. 43

3.2.3. Numerical Variables .. 43

3.2.3.1. Number of Nodes ... 43

3.2.3.2. Number of Time Intervals .. 43

3.2.3.3. Number of Periods ... 44

3.2.4. Other Properties ... 44

3.2.4.1. Operating Frequency .. 44

3.2.4.2. Regenerator Wall Thickness .. 44

3.2.5. Solver Options ... 45

xii

3.2.5.1. Include Effects of Longitudinal Conduction 45

3.2.5.2. Include Wall Effect .. 45

3.2.6. Results .. 45

3.2.6.1. Regenerator Length .. 45

3.2.6.2. Regenerator Mass ... 46

3.2.6.3. Porosity... 47

3.2.6.4. Hydraulic Diameter .. 48

3.2.6.5. Total Wetted Area .. 48

3.2.6.6. Matrix Heat Capacity ... 48

3.2.6.7. Capacity Ratio .. 49

3.2.6.8. Number of Transfer Units .. 49

3.2.6.9. Inefficiency ... 50

3.2.6.10. Hot End Gas Temperature .. 51

3.2.6.11. Cold End Gas Temperature .. 52

3.2.6.12. Regenerator Thermal Loss Mechanisms 52

3.2.6.13. Friction Loss ... 53

3.2.6.14. Simulation Run Time ... 53

 4. RESULTS AND DISCUSSION .. 54

4.1. Model Verification ... 54

4.1.1. Sage modeling .. 54

4.1.2. Comparison .. 56

4.2. Effects of Numerical Parameters ... 57

4.3. Effect of Matrix Properties .. 58

4.3.2. Screen Diameter ... 61

4.3.3. Wire Diameter .. 63

4.3.4. Mesh Density ... 65

4.3.5. Volumetric Flow Rate .. 67

4.3.6. Operating Frequency .. 68

4.3.7. Wall Thickness ... 69

4.4. Effect of Regenerator Efficiency on the System 70

 5. CONCLUSIONS.. 73

xiii

5.1. Suggestions for Future Work ... 74

REFERENCES .. 75

APPENDICES

A .. 79

B .. 81

xiv

LIST OF TABLES

TABLES

Table 1.1: Crycooler applications ... 3

Table 1.2: Parameters used to obtain Figure 1.10 .. 11

Table 1.3: Results of Barclay and Sarangi ... 12

Table 4.1: Properties of the regenerators used for validation .. 55

Table 4.2: Result comparison with Sage.. 56

Table 4.3: Default configuration and operating parameters .. 59

Table 4.4: Cooler configuration ... 71

xv

LIST OF FIGURES

FIGURES

Figure 1.1: Schematics of five common types of cryocoolers ... 2

Figure 1.2: A modern Stirling cryocooler (Linear, split, pneumatically driven) 4

Figure 1.3: P-V and T-S diagrams for Stirling cycle (Refrigeration) 5

Figure 1.4: Steps in the Stirling refrigeration cycle .. 6

Figure 1.5: Rotary kinematic Stirling cryocooler .. 7

Figure 1.6: Rotary pneumatic Stirling cryocooler ... 7

Figure 1.7: Linear pneumatic Stirling cryocooler .. 8

Figure 1.8: Cold finger ... 9

Figure 1.9: Common regenerator matrix geometries ... 10

Figure 1.10: Pressure drop values for various regenerator geometries 11

Figure 1.11: Etched foil regenerator .. 14

Figure 1.12: Volumetric heat capacity variation of various regenerator materials at

cryogenic temperatures .. 15

Figure 2.1: Regenerator control volume .. 18

Figure 2.2: Static regenerator layout .. 25

Figure 2.3: Regenerator finite element .. 29

Figure 2.4: Parallel flow numerical model .. 30

Figure 3.1: The graphical user interface of the 1-D regenerator simulator 42

Figure 3.2: Geometry of woven screen .. 46

Figure 3.3: Fluid temperature distribution ... 51

Figure 4.1: Sage model .. 55

Figure 4.2: Effect of numerical variables on inefficiency ... 58

Figure 4.3: Heat capacity rate ratio comparison of stainless steel and phosphor-bronze

screens .. 59

Figure 4.4: Inefficiency results for stainless steel and phosphor-bronze screens 60

Figure 4.5: Heat flow loss for stainless steel and phosphorous bronze screens 60

Figure 4.6: Wall heat leakage values for stainless steel and phosphor-bronze screens 61

xvi

Figure 4.7: Variation of Reynolds number and number of transfer units with screen

diameters .. 62

Figure 4.8: Heat flow loss vs. screen diameter .. 62

Figure 4.9: Losses vs. screen diameter .. 63

Figure 4.10: Inefficiency and porosity values for different wire diameters 64

Figure 4.11: Variation of friction loss and longitudinal conduction loss with wire

diameter.. 64

Figure 4.12: Heat flow loss vs wire diameter .. 65

Figure 4.13: Effect of mesh density on porosity and inefficiency 66

Figure 4.14: Effect of mesh density on friction and conduction loss 66

Figure 4.15: Reynolds number, NTU and capacity ratio variation 67

Figure 4.16: Heat flow and friction losses vs. volumetric flow rate 67

Figure 4.17: Volumetric flow rate vs inefficiency ... 68

Figure 4.18: Operating frequency vs. inefficiency .. 69

Figure 4.19: Wall thickness vs inefficiency ... 70

Figure 4.20: Wall thickness vs. wall leakage ... 70

Figure 4.21: Effect of regenerator efficiency on ideal cooler .. 72

xvii

LIST OF SYMBOLS

Aff Fluid axial free flow area (m
2
)

Ar Wall to matrix heat transfer area ratio (m
2
)

As Matrix total heat transfer area (m
2
)

Awl Wall thermal conduction heat transfer area (m
2
)

cF Compression factor

cp Specific heat at constant pressure (J/kg.K)

Cr Capacity ratio

dh Hydraulic diameter (m)

f Frequency (Hz)

h Heat transfer coefficient (W/m
2
.K)

Km Matrix thermal conductivity (W/m.K)

Kwl Wall thermal conductivity (W/m.K)

L Regenerator Length (m)

M Mass (kg)

 Mass flow rate (kg/s)

Mm Mass of matrix material (kg)

n Screen mesh size

Ns Number of screens

Nt Number of time intervals

Nz Number of longitudinal nodes

 Heat flow rate (W)

Qfric Friction heat loss (J)

r Radial coordinate

rL Regenerator length (m)

t Time (s)

Tc Regenerator cold end temperature (K)

tF Thickness inclination constant

Tf Regenerator fluid temperature (K)

xviii

(Tf)c Regenerator fluid temperature during cooling period (K)

(Tf)h Regenerator fluid temperature during heating period (K)

Tin Inlet temperature (K)

Tm Regenerator matrix temperature (K)

(Tm)c Regenerator matrix temperature during cooling period (K)

(Tm)h Regenerator matrix temperature during heating period (K)

Tout Outlet temperature (K)

tsc Screen thickness (m)

Tw Regenerator warm end temperature (K)

U Overall heat transfer coefficient (W/m
2
.K)

V Volume (m
3
)

Vm Matrix volume (m
3
)

w Velocity Vector

wd Wire diameter (m)

xt Transverse pitch (m)

z Axial coordinate

Greek Letters

α Matrix porosity

β Area density (1/m)

ε Efficiency

θ Angular cylindrical coordinate

λ Flow period (s)

ρ Density (kg/m
3
)

Subscripts

c Cold

f Fluid

h Hot

xix

i Inlet

m Matrix

o Outlet

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1. Cryogenics

Cryogenics is the branch of physics that deals with refrigeration at temperatures lower than

120 K. Obtaining cryogenic temperatures is essential for preservation of biological material

and food as well as densification of gases for production and transportation purposes. At

cryogenic temperatures, due to quantum effects, it is also possible to have superconductive

materials. Since thermal noise is low at cryogenic temperatures, it is widely used at infrared

applications. These benefits became the driving force for scientists to build instruments which

make refrigeration at cryogenic temperatures.

1.2. Cryocoolers

Cryocooler is a device which has an ability to produce refrigeration at cryogenic

temperatures. This ability had found itself numerous application areas which are listed in

Table 1.1: Crycooler applications To produce the refrigeration, the working gas goes through

a specific thermodynamic cycle which includes compression and expansion in order to

transfer energy from one state to the other. Removing the heat that is generated during

compression, and using the temperature decrease that occurs during expansion is the basic

working principle of cryocoolers (Williems, 2007).

2

Cryocoolers can be classified with respect to their cooling capacity and size (Walker, 1983) or

with the thermodynamic cycle they are following but there is a general agreement that they

are basically classified with the heat exchanger type; regenerative or recuperative (Walker,

1983) (Timmerhaus, 1996).

Recuperative heat exchangers have separate flow passages for hot and cold fluids. The heat is

transferred by conduction across the solid wall between the two streams which may flow

continuously or periodically (Walker, 1983).

In regenerative heat exchangers hot and cold fluids flow through a single set of flow passages

alternately and periodically. Usually a porous media (spheres, metal wire screens, rolled foils

etc.) forms the regenerative matrix. The matrix can be thought as a thermodynamic sponge

which accepts and rejects heat in an alternating fashion while the hot or cold fluid flows

through it (Walker, 1983).

Joule-Thompson, Brayton, Linde, Hampson, Claude and Collins are cryocoolers with

recuperative heat exchangers. Stirling, Pulse Tube, Gifford-McMahon, Ericsson and

Vuilleumier are cryocoolers with regenerative heat exchangers (Walker, 1983). Some of the

cryocoolers mentioned here, are not very common today. In Figure 1.1 schematics of five

common ones are shown.

Figure 1.1: Schematics of five common types of cryocoolers (Radebaugh, 2009)

3

Table 1.1: Crycooler applications (Radebaugh, 1995)

Military

Infrared sensors for missile guidance

Infrared sensors for surveillance (satellite based)

Superconducting magnets for mine sweeping

Industrial and Commercial

Superconductors for high-speed communication

Semiconductors for high-speed computers

Cryopumps for semiconductor manufacture

Low-level moisture sensors for

ultrapure gases

Infrared sensors for process monitoring

Medical

Superconducting magnets for MRI systems

SQUID magnetometers for heart and

brain studies

Blood and semen storage

Cryosurgery

Energy

LNG production at remote gas wells and for

peak shaving

Infrared sensors for thermal-loss

measurements

SMES for peak shaving and

power conditioning

Environment

Infrared sensors for atmospheric studies of

ozone hole and greenhouse effect

Infrared sensors for pollution monitoring

Cryotrapping air samples at remote locations

Transportation

Infrared sensors for aircraft night vision

LNG for fleet vehicles

Agriculture and Biology Biological specimens storage

Law Enforcement Infrared sensors for night vision

4

1.3. Stirling Cycle Refrigerators

In Figure 1.2 main parts of a Stirling cycle refrigerator is shown. Working theory and

detailed information about it can be found in the following sections.

Figure 1.2: A modern Stirling cryocooler (Linear, split, pneumatically driven) (Radebaugh,

2010)

1.3.1. Theory

The ideal Stirling cycle is composed of four processes. Pressure-Volume and Temperature-

Entropy diagrams for ideal Stirling refrigerator are shown in Figure 1.3. In ideal Stirling cycle

diagrams, heat exchangers, regenerators, connecting elements are assumed to have zero

volume (Heywood, 2004).

The four processes shown in Figure 1.3 and Figure 1.4 are explained in detail as follows;

 12 Isothermal compression: Movement of compression piston to the right, while

expansion piston stays still, compresses the working fluid. Due to isothermal

Compressor
Gas Transfer Line

Cold Finger Tip

Cold Finger

5

compression, some amount of heat is removed from the system. Volume is reduced

from V1 to V2. In an actual cryocooler, this is the heat that is removed (thrown out)

from the bottom of cold finger (Figure 1.2).

Figure 1.3: P-V and T-S diagrams for Stirling cycle (Refrigeration) (Yang & Chung, 2005)

 23 Isochoric displacement: Keeping the volume constant, both pistons move to the

right. The working gas is forced to pass through the regenerator. And while gas

travels, heat is transferred to the regenerator causing the gas to cool down to Tc.

 34 Isothermal expansion: This time expansion piston moves to the right while

compression piston stays still. The volume has increased back to V1 (V4=V1). Since

expansion is isothermal, some amount of heat is transferred to the working fluid. In an

actual cryocooler, this is the heat that is removed from the cold finger tip (Figure 1.2)

i.e. the surface which is tried to be cooled.

 41 Isochoric displacement: Again at constant volume, both pistons move to the left

this time. This movement, forces the gas in the expansion area to flow back, increasing

its temperature back to Th and taking the system back to the original state.

6

Figure 1.4: Steps in the Stirling refrigeration cycle (Williems, 2007)

1.3.2. Stirling Cycle Cryocoolers

As stated by Riabzev (2002) there are three common types of Stirling cycle cryocoolers. They

are classified with respect to their compressor type and expander drive mechanism. Namely

these Stirling cryocoolers are; rotary kinematic, rotary pneumatic, linear and linear pneumatic.

In Figures 1.5 – 1.7, schematics for these coolers are shown respectively.

A rotary crankshaft drives the rotary kinematic Stirling cryocooler’s (Figure 1.5) piston and

displacer by connecting rods. These rods are also used to adjust the phase angle difference

between the compressor and displacer (Çakıl, 2010).

7

Figure 1.5: Rotary kinematic Stirling cryocooler (Riabzev, 2002)

In rotary pneumatic coolers (Figure 1.6), the piston is driven by a rotary crankshaft and the

displacer is driven pneumatically. The spring at the bottom of the displacer is used to adjust

the phase angle difference (Çakıl, 2010).

Figure 1.6: Rotary pneumatic Stirling cryocooler (Riabzev, 2002)

The most popular configuration, linear pneumatic Stirling cryocooler, uses an electric motor

to drive the piston and the displacer is driven pneumatically (Figure 1.7). Like in rotary

pneumatic configuration, phase angle is adjusted by the spring attached to the bottom of the

displacer (Çakıl, 2010).

8

Figure 1.7: Linear pneumatic Stirling cryocooler (Riabzev, 2002)

1.3.3. Cold Finger

Cold finger is the name given to the structure that houses the displacer. Its main purpose is to

absorb heat from the surface which needs to be at cryogenic temperature. The parts that form

the cold finger are shown in Figure 1.8.

Displacer shown in Figure 1.8 is the part which carries the regenerator. The bearing rings are

attached to displacer in order to prevent any mechanical interaction with the cold finger wall.

These rings are made of a PTFE
1
 based material which has low friction coefficient, and high

wear resistance.

1.3.4. Regenerator

As stated earlier regenerator is the part which acts like a thermal sponge. It accepts and rejects

heat periodically throughout the working cycle of the cryocooler.

1 Polytetrafluoroethylene: A synthetic fluoropolymer of tetrafluoroethylene that finds numerous applications.

PTFE is most well known by the DuPont brand name Teflon.

9

Figure 1.8: Cold finger (Thales, 2010)

As stated by many authors (Yang & Chung, 2005), (Shi J., 2007), (Pfotenhauer, Shi, & Nellis,

2004), (Cha, Ghiaasiaan, & C.S., 2008), regenerators are the crucial part of the regenerative

cryocoolers. Minimizing the losses in the regenerators has always been an attractive subject

for the related researchers. To do so, three main parameters can be adjusted; size, material and

packing geometry. Among these three, size is usually constrained by surrounding components

which belong to the satellite, the detector, etc. whatever the cooler is being used at. But other

two parameters can be chosen as desired. More detailed information about these parameters is

given in the upcoming section.

1.3.5. Regenerator Packing Geometries

There are four commonly used regenerator packing geometries in regenerative cryocoolers;

annular gap, wire mesh screen, packed sphere and etched foil regenerator. The first three are

illustrated in Figure 1.9 and the fourth one in Figure 1.11.

10

Figure 1.9: Common regenerator matrix geometries (Ackermann, 1997)

Regenerator matrix geometry should have the following characteristics to be efficient

(Ackermann, 1997):

 Maximum heat transfer area

 Minimum axial conduction

 Minimum pressure drop

 Minimum dead volume

Among these, heat transfer area to fluid pressure drop ratio is the critical parameter in the

definition of the effectiveness of a regenerator pack. Maximizing this ratio with minimum

cost is a major design consideration (Ackermann, 1997).

11

1.3.5.1. Annular Gap Regenerator

Due to their simple configuration, annular gap regenerators are used by early designed

Stirling cryocoolers. The space between two cylinders (Figure 1.9a) is used as heat transfer

surface area. It has a simple design. Not only easy to construct, but also, the pressure drop

values are significantly lower compared to wire mesh screens and packed spheres as it can be

seen in Figure 1.10. The graph is obtained from the correlations given by Arp and Radebaugh

(1987) which bases its results to the data obtained by Kays and London (1984). Values of the

used parameters are given in Table 1.2.

Figure 1.10: Pressure drop values for various regenerator geometries

Despite its simplicity and low pressure drop characteristics, annular regenerators suffer from

limited heat transfer area.

Table 1.2: Parameters used to obtain Figure 1.10

Gas Helium

Porosity 0.7

Viscosity 1.44E-5 Pa.s

Density 0.15 kg/m3

Hydraulic Diameter 0.15 mm

0,00E+00

5,00E+05

1,00E+06

1,50E+06

2,00E+06

2,50E+06

3,00E+06

3,50E+06

4,00E+06

0 1000 2000 3000 4000 5000 6000

P
re

ss
u

re
 D

ro
p

 [
P

a
/m

]

Reynolds Number

Wire Mesh Screen Packed Spheres Annular

12

1.3.5.2. Wire Mesh Screens

The most commonly used regenerator material is the woven wire mesh screen (Figure 1.9b).

It provides high heat transfer area with lower entropy generation rate. A comparison about

these characteristics was made by Barclay and Sarangi (1984). They define a figure of merit

(FOM) for the refrigerator, which the tests have been carried on, as follows to make the

comparison. Results are given in Table 1.3.

It is evident from the table that, wire mesh screens causes less entropy generation, thus they

increase the efficiency.

Table 1.3: Results of Barclay and Sarangi (1984)

Geometry Hydraulic Diameter (mm) Frequency (Hz) FOM

Wire Mesh

0.158 0.1 0.969

0.079 1 0.936

0.032 10 0.873

Packed

Spheres

0.631 0.1 0.909

0.316 1 0.823

0.126 10 0.683

Annular Gap

0.251 0.1 0.948

0.126 1 0.895

0.063 10 0.797

Beside, constructing a regenerator with wire mesh discs is relatively inexpensive. Since same

geometry has been used for certain types of filter production, it is easy to acquire. Moreover,

it allows porosity to be adjusted with different mesh density (number of openings per inch

square) configurations. This flexibility has been used by many for regenerator optimization

(Harvey, 1999) (Imura, 2007) (Prajapati & Oza, 2007). It is also possible to use different

material screens at different locations of the regenerator, which can be useful for low

13

temperature (below 40K) applications where traditional materials (stainless steel etc.) losses

their ability to store heat. By this method Qui, et al. were able to reach 11.1 K with a pulse

tube cryocooler which used to operate around 20-40 K before (Qiu, 2007).

1.3.5.3. Packed Spheres

Packed spheres (Figure 1.9c) are generally used for very low temperature applications where

specific heat of commercially available materials drops to values that are close to the working

fluid specific heat (Ackermann, 1997). In order to eliminate this inefficiency factor, some

special material compounds which have higher heat capacity at low temperatures, are used.

These compounds are mostly available at spherical form. Using packed spheres decreases

porosity and increases pressure drop therefore, it is efficient at temperatures below 25K where

the viscosity of the working fluid is low.

1.3.5.4. Etched Foil Regenerator

The foil regenerator has a pattern with transverse slots and axial standoffs (Figure 1.11) which

are produced by etching. The foil is rolled to obtain a cylindrical shape which can fit into cold

finger. If the regenerator is viewed in flow direction, concentric annular flow channels will be

observed. These flow channels are created by the standoffs. The transverse slots are used for

smoothing the flow. They also reduce longitudinal conduction since the path of the

conduction is disturbed.

This type of regenerators introduces less pressure drop compared to wire mesh screen

regenerators (Mitchell & Fabris, 2003). However irregularities in the flow passages caused by

etching process, uneven flow distribution due to assembly, low porosity of the foil, greatly

reduces heat transfer as well as pressure drop.

14

Figure 1.11: Etched foil regenerator (Ackermann, 1997)

1.3.6. Regenerator Materials

Objective of the regenerator is to store heat therefore the material used to build the

regenerator should act accordingly. To reach this goal, the regenerator material must have

high volumetric heat capacity. In Figure 1.12 volumetric heat capacity variation of commonly

used regenerator materials are given. As it can be observed from Figure 1.12, as temperature

decreases, volumetric heat capacity decreases sharply for most of the materials. But it should

be kept in mind that the graph is for temperatures below 120K.

Stainless steel seems to be the best regenerator material if the working range is between 60

and 300K. Lead can be a good alternative between 20 and 60K since it is inexpensive

compared to other complex compounds. But to go below 20K, usage of rare earth compounds

is unavoidable.

15

Figure 1.12: Volumetric heat capacity variation of various regenerator materials at cryogenic

temperatures (NIST, 2005)

1.4. Motivation and Scope of the Thesis

All of the mentioned advantages and popularity of the wire mesh screen made it an attractive

research subject. To predict the performance of different regenerator configurations by

software saves time and decreases the cost of the research. Sage (Gedeon, 1995) and REGEN

(O’Gallagher, Gary, Radebaugh, & Marquardt, 2001) are the two most commonly used

programs to do this prediction.

Sage is a graphical interface that supports simulation and optimization of an underlying class

of engineering models. The underlying model class represents something like a spring-mass-

damper resonant system, a stirling-cycle machine, or anything else that has been properly

coded to work with Sage (Gedeon, 2009).

16

The model classes of Sage are not just fixed-geometry models. Each may contain an unlimited

number of variations or instances. A model instance, or just plain model for short, is a

particular collection of component building blocks, connected and assembled in a particular

way, with particular data values, forming a complete system representing whatever it is tried

to be simulated. In other words, not just numerical data values are added within the confines

of a presumed geometry. The geometry can be modified too. Each particular instance of a

given model class resides in its own disk file with a unique name but common file extension

(such as .stl for stirling models).

Despite its advantages, Sage is a commercial software, so it is not free of charge. Since it is

originally written in Pascal and upgraded in Delphi (Gedeon, 2009), (which are rather old

programming languages) it is not very user friendly. To build the model, making the

connections, and getting the system running needs considerable effort. Even changing a

parameter value is tricky.

REGEN is a free software developed by the cryogenic technologies group scientists

(Cryogenics Technologies Group, 1995), whom led by Dr. Ray Radebaugh, in NIST. In this

software physical model of a regenerator is a tube filled with a porous medium. An oscillatory

flow of helium passes though the void space in the porous medium or matrix. The fluid is

alternatively heated and cooled as the flow direction is reversed. The model is based on a

numerical solution of the one dimensional equations for the flow of the helium gas through a

porous matrix with an additional thermal conservation equation for the temperature of the

matrix. The regenerator domain is subdivided into cells with the gas and matrix temperature

computed for each cell along with the mass flux and pressure in the gas. A finite difference

approximation is used to convert the system of differential equations into discrete equations

that are marched forward in time until a nearly time-periodic solution is obtained. A

correlation is used to obtain the pressure drop in the gas due to viscous flow through the

porous matrix and another correlation is used for the heat transfer between the gas and matrix

(O’Gallagher, Gary, Radebaugh, & and Marquardt, 2008).

REGEN can provide accurate results, but the program is not visual in terms of input/output.

Similar to Sage, first version of REGEN was developed in 1980s (O’Gallagher, Gary,

17

Radebaugh, & and Marquardt, 2008), probably that is the reason why both of these programs

fails to meet today’s visualization demands.

In this thesis work, thermal partial differential equations are obtained for a regenerator which

is formed by wire mesh screen discs, these equations are solved numerically by finite

difference method. In order to evaluate it from every aspect, an easy to use Matlab graphical

user interface (GUI) is also prepared.

18

CHAPTER 2

MODELLING AND SOLUTION

2.1. Introduction

While modeling a cryocooler regenerator in order to obtain a solution, basic concept that

needs to be dealt with is the exchange of the thermal energy between the matrix and fluid. The

necessary equations describing this exchange are obtained from Ackermann’s book

(Ackermann, 1997). They are the equation for the conservation of mass, and the equations of

the motion for the fluid. These equations establish the energy balance for the fluid and the

matrix material.

Figure 2.1: Regenerator control volume (Ackermann, 1997)

19

2.1.1. Continuity Equation

As a first step for development, the control volume in Figure 2.1, ΔV, is considered with a

mass, ΔM, which includes fluid and matrix masses:

 (2.1)

Where the control volume is given by

 (2.2)

Equation of continuity states that the net mass change in control volume is equal to the

difference between the mass entering and leaving the control volume per unit time. This can

be expressed as:

 (2.3)

From Figure 2.1, equations for the mass flows that crosses the control volume boundaries are

(2.4)

 (2.5)

To relate outflow to inflow, following Taylor expansion is used.

 (2.6)

If we let control volume approach to zero, following equation is obtained for the mass outflow

20

(2.7)

Substituting (2.4) and (2.7) into (2.3) continuity for a compressible fluid can be obtained as

 (2.8)

For the flow in a regenerator, where small pressure changes occur, no work is done by, or on,

the fluid, as it flows throughout the regenerator, meaning ΔV is constant. The fluid velocities

are well below the speed of sound and working pressures are generally at moderate level

which points out that the flow is incompressible (Ackermann, 1997). The conditions above

lead to the continuity equation for the flow defined as;

 (2.9)

2.1.2. Energy Equation

Considering the control volume in Figure 2.1, heat inflow during dt and heat generated by

internal sources during dt must be equal to heat outflow during dt and the change in internal

energy during dt. Here inflow and outflow consists of two things. These are, the conducted

heat through the matrix material, dQc, in and out of control volume and transported heat, dQf.

Frictional heating dQη is the source of internal energy change and it is given by the mass, and

the enthalpy of the material enclosed by the control volume (ΔM de), which can be expressed

as

21

(2.10)

For matrix material, energy balance in the control volume is

(2.11)

And for the fluid

(2.12)

 (2.13)

Where dQh denotes the heat transfer between the matrix and fluid, h denotes the heat transfer

coefficient between the fluid and matrix, δAs represents the heat transfer area of the matrix

contained within the element, and temperature difference between matrix and fluid is denoted

by (Tm - Tf).

While developing these equations, it is assumed that no conduction occurs through fluid. Also

the pressure change is small so, specific heat at constant pressure is valid.

22

2.1.2.1. The Matrix Energy Equation

In Equation (2.11) the heat added to the matrix volume δVm consists of the convection across

the fluid - matrix boundary and the conduction through matrix material. These two terms can

be expressed as follows.

The convective term

 (2.14)

Here Tf is the fluid temperature just outside of the matrix element surroundings, δAs is the

heat transfer surface area of the matrix in contact with the fluid element.

The conductive term

By Fourier equation, dQc is defined as,

 (2.15)

Where thermal conductivity is denoted by Km and the surface area of the element is denoted

by Aηm. Summing across each of the faces, and employing the Taylor series to equate the

heat leaving the elemental volume to the heat entering, the equation for the conduction of heat

through the matrix is

(2.16)

Substituting (2.15) and (2.16) into (2.11) matrix thermal equation can be obtained as below

(2.17)

23

2.1.2.2. Fluid Energy Equation

Three terms are associated with the fluid heat, convection between the matrix and the fluid,

frictional heating, and the heat crosses the boundary of the elemental volume. Related

equations are as follows:

 The convective term

As expressed before convective term is

 (2.18)

 Frictional heating

Frictional heating is derived as (Schlichting, 1955)

 (2.19)

where μ denotes fluid viscosity and Ф denotes the dissipation function defined by the velocity

gradients as

(2.20)

Complex structure of frictional heating makes it very difficult to obtain a solution for thermal

fluid equation. Ackermann (1997), observed in his experiments that, frictional heating is ten

orders magnitude smaller than total heat transfer. So it is justifiable to neglect it.

24

Heat transported across the boundary

The rate at which heat, dQf / dt, is transported across the boundaries of the element is defined

by

 (2.21)

where Anf is the surface area of the element through which heat is transported by the fluid.

Equating the inflow to the outflow through the Taylor series gives

(2.22)

Differentiating the term and applying the continuity equation (2.9), general form

of the heat transported into the control volume is obtained as below.

(2.23)

Substituting (2.18) and (2.23) into (2.12), fluid thermal equation is obtained as follows,

(2.24)

25

2.1.3. The Ideal Regenerator

The thermal equations derived for regenerator in previous section are too complex for closed

form solutions that none exists. In order to obtain a manageable form, some common

assumptions can be made. Regenerator will be considered as static type which is generally the

case in reciprocating coolers. Packing wire mesh screens in a cylindrical housing (Figure 2.2)

and closing both ends with a cap, completes the construction of the regenerator. The heating

period, which is half of the cycle, starts as the hot fluid enters to the regenerator from the right

side. The remaining half is named as cooling period where cold fluid enters from the other

end and travels to the other end. This sequence is periodically reversed.

Figure 2.2: Static regenerator layout (Ackermann, 1997)

In an ideal regenerator the constant temperature hot fluid enters the regenerator, gives up its

heat to the matrix and leaves with a lower temperature at the cold end. The flow of hot fluid is

then cut off. After all of the hot fluid leaves the regenerator from the opposite end, the flow is

reversed, with cold gas entering the cold end with constant temperature. The cold gas cools

the matrix as it leaves the regenerator with a variable warmer temperature at the hot end. After

several cycles, steady state condition is reached. In this condition at any location in the

regenerator, matrix and gas temperatures will be the same in every cycle while temperature

distribution will vary periodically with time.

26

Ideal regenerator assumptions are (Ackermann, 1997):

1. Heat stored in the matrix material is much greater compared to the heat stored in the fluid.

Heat capacity of the matrix is nearly three orders of magnitude greater than the heat

capacity of the fluid around 80-300 K range. But as the temperature decreases this

assumption loses its validity, as the ratio shown above is around 0.1 for 6 K where helium

is the operating fluid.

2. The flow is one dimensional

3. Thermal conductivity of the matrix is zero in the longitudinal direction and infinite in the

radial and circumferential directions.

4. The fluid and matrix properties are constant with temperature.

5. The heat transfer coefficient between the fluid and the matrix is constant throughout the

regenerator.

6. The fluids pass in counterflow directions.

7. Entering fluid temperatures are uniform over the flow cross section and constant with

time.

8. Regular periodic conditions are established for all matrix elements.

9. No mixing of the fluids occurs during the reversal from hot to cold flows.

With these assumptions continuity equation (2.9), becomes

 (2.25)

where Aff is the fluid axial free flow area. The matrix thermal equation reduces (2.17), to

 (2.26)

The fluid thermal equation (2.24), reduces to

27

 (2.27)

2.1.4. Boundary and Initial Conditions

The formulation derived above is completed with definition of boundary and initial

conditions. Cooling and heating periods are designated with subscripts h and c, respectively.

Position in the longitudinal direction z, is measured from the entrance point of the fluid to the

matrix.

Boundary Conditions

 Over heating period the fluid enters the warm end of the regenerator with constant

warm temp Tw , where λh donates heating flow period;

(Tf)h(0,λh) = Tw

 Over cooling period the fluid enters the cold end of the regenerator with constant cold

temp, Tc , where λc donates cooling flow period;

(Tf)c(0,λc) = Tc

Initial Condition

 The temperature at any point in the matrix at the end of one period is equal to that at

the same point at the beginning of the next period.

(Tm)h(z,0) = (Tm)c(L-z, λc)

(Tm)c(z,0) = (Tm)h(L-z, λh)

28

Together with above conditions there are two more conditions. First, for cooling and heating

periods, the mass flow rate entering the regenerator is equal and constant. And second,

thermal conduction at the boundaries of the regenerator is zero;

2.2. Numerical Solution For the Ideal Regenerator Case

2.2.1. Finite Difference Equations

Based on the idealization in previous chapter, the open form solution is developed from the

ideal regenerator equations:

 Matrix thermal equation

 (2.28)

Fluid thermal equation

 (2.29)

As a starting point, regenerator and fluid are divided into nodes as shown in Figure 2.3:

i = 1,2,3,…,Nz

Second the heating and cooling periods are subdivided into a series of small time intervals:

29

j = 1,2,3,…, Nt

Third the first order derivatives are replaced by the finite differences

Tc

Tw

Nz

i Fluid Flow Heating Period 3 2 1

Nz

i
Matrix (Tm)

1 2 3 i

Nz

1 2 3 Fluid Flow Cooling Period i

Nz

Figure 2.3: Regenerator finite element (Ackermann, 1997)

With these definitions, the ideal regenerator equations (2.28) and (2.29) can be expressed as

the following finite difference equations:

 (2.30)

 (2.31)

where the average temperature difference between the fluid and the matrix over time

interval is

 (2.32)

Using an easier to follow notation temperature equations (2.30), (2.31) and (2.32) can be

expressed respectively as

30

 (2.33)

 (2.34)

 (2.35)

where i and o designates the inlet and outlet temperatures across the spatial and time intervals.

2.2.2. Parallel Flow Model

Parallel flow model treats each node as a parallel-flow heat exchanger with the equivalent of a

metal stream with the characteristics of the matrix material, flowing in parallel with the fluid

stream. Considering the heating period the curves (Figure 2.4) depict the temperature

difference

 (ΔT)o = (Tf)o-(Tm)o (2.36)

that exists between the fluid and matrix material as the fluid leaves the nodal element Δz after

warming the matrix material. Because the matrix temperature, Tm(t) is changing uniformly

over the length of the element, the fluid flowing through the element would respond

accordingly with the temperature change, Tf (Figure 2.4). Thus, if the matrix material

Figure 2.4: Parallel flow numerical model (Ackermann, 1997)

31

contained in Δz is considered to correspond to a second stream with a nodal thermal capacity

(Cr)Δz,

 (2.37)

the pattern of the temperature changes occurring in the element is analogous to that observed

in a parallel-flow heat exchanger. For a parallel-flow heat exchanger the temperature

difference between the two streams across the element is given by

 (2.38)

where (ΔT)i=(Tf)i-(Tm)i .

It is also known from Figure 2.4 that

By substituting these expressions into the ideal regenerator equations, (2.26) and (2.27),

following is obtained.

 (2.39)

 (2.40)

32

Integrating these equations across the nodal element, Δz, yields the two finite difference

equations:

 (2.41)

 (2.42)

where the constants K1 and K2 are

(2.43)

(2.44)

Temperature distribution in the regenerator is computed by the iterative solutions of equations

(2.41) and (2.42) according to the schematic shown in Figure 2.3. The nodal geometry for the

heating and cooling periods and the relationship between the fluid and matrix nodes are

described in the figure. Equations (2.41) and (2.42) are solved for each of the spatial Nz and

time nodes Nt for heating and cooling periods. The calculations proceeded by assuming an

initial temperature distribution for the matrix material between Tw and Tc, where superscript h

denotes the heating period and superscript c denotes the cooling period,

Setting the first node’s inlet temperature equal to the heating period boundary condition:

33

and calculating the outlet temperatures and using equations (2.41) and

(2.42). Repeating the computational process for each node (1,2,3…Nz) by using the calculated

outlet temperatures as the input temperatures for the next nodal calculation completes the

calculations for the first time step (see Appendix A.1). To complete the solutions of the

heating period, this stepwise procedure must be repeated for all spatial nodes and time steps,

which means a matrix of Nz by Nt will be solved. After completing the calculations for the

heating period, the final matrix temperatures are used as the initial conditions for the start of

the cooling period, the reversal conditions:

where ζ = [Nz – (i-1)] and the outlet temperatures are computed by setting the first node’s inlet

temperatures equal to the cooling period boundary condition:

This procedure is repeated for each period until steady state behavior of the temperature

distributions is achieved. Steady state behavior occurs when the matrix temperature

distribution becomes cyclic and reversal condition, consisting of similar fluid and matrix

temperature distributions, exists at the beginning of the heating and at the end of the cooling

period.

2.3. Numerical Solution For the Nonideal Cases

2.3.1. Including Effects of Longitudinal Conduction

The contact between wire mesh screen layers causes a thermal longitudinal conduction. The

nonideal effects of the longitudinal thermal conduction can be included by extending the

open-form analysis. This can be achieved by also using difference equations to replace the

higher-order differential equations in the conduction terms. With longitudinal conduction, the

matrix thermal equation (2.28) becomes:

34

 (2.45)

For a finite regenerator element of width Δz, the matrix volume is defined by the matrix

material area normal to the flow, Am, and the differential volume with,

The matrix conductivity, Km, is defined by interfacial conductance between matrix elements,

which was experimentally determined (Ackermann, 1997) for a screen matrix as,

 (2.46)

 (2.47)

The value of the constant a is changes with the regenerator material. It is taken as 0.8 for

stainless steel screens, and 0.97 for phosphor bronze. Substitution of the volume and the

conductance terms into equations (2.45) and (2.29) gives the finite element matrix and fluid

thermal equations:

Matrix thermal equation

(2.48)

35

Fluid thermal equation

 (2.49)

The open-form solution to equations (2.48) and (2.49) is found by replacing the derivatives

with the finite central difference equations:

 (2.50)

 (2.51)

Note that central difference equations will not work for the first and last node. So for the first

node, forward difference equations;

 (2.52)

 (2.53)

and for the last node backward difference equations;

 (2.54)

 (2.55)

are used.

36

Then, using the parallel-flow approach to express the temperature difference between the fluid

and matrix (Tf - Tm), and using the finite difference equations to replace the conduction

differentials, the nonlinear second-order matrix differential equation is reduced to an ordinary

differential equation:

(2.56)

where the conduction finite temperature differences and are defined (using

central difference except first and last node) by the temperature difference between the node

that the calculation is being performed on and its surrounding nodes at the beginning of the

time interval calculation:

 (2.57)

(2.58)

Integrating the above matrix equation produces the algebraic matrix temperature equation for

the new matrix temperature at the end of the time interval Δt based on the initial matrix and

fluid temperatures:

 (2.59)

The constant K2 is calculated using equation (2.44) and K3 with

37

 (2.60)

The fluid equation (2.41) is the same as ideal case, where K1 is calculated from equation

(2.43).

2.3.2. Including Wall Effects

More significant effect is the increase in inefficiency caused by heat transfer with the

regenerator wall. The wall effect occurs when a metallic housing with large heat capacity is

used to contain the matrix material. In this case, the heat transfer between the fluid and wall,

and the longitudinal conduction along the wall, introduces an irreversible heat transfer from

the matrix to the wall that reduces the effectiveness of the matrix material. The addition of the

wall introduces a third differential equation into the analysis that describes both the heat

transfer between the fluid and the wall, and the longitudinal conduction along the wall, where

the wall thermal conductivity for stainless steel can be expressed as (Ackermann, 1997)

Considering the wall effect, the three differential equations describing the heat transfer in a

small element of the regenerator are:

Matrix thermal equation

(2.61)

38

Wall thermal equation

(2.62)

Fluid thermal equation

 (2.63)

The solution for equations (2.61), (2.62), and (2.63) follows the same procedures described

above with the matrix initial and boundary conditions also used for the wall.

Regarding equations are;

 (2.64)

 (2.65)

 (2.66)

where,

(2.67)

39

(2.68)

 (2.69)

and (again using central difference except first and last node).

 (2.70)

(2.71)

Equations for three cases (ideal, with longitudinal conduction, with longitudinal conduction

and wall effect) are solved with the described method using a computer code developed in

Matlab in this thesis work.

40

CHAPTER 3

1D REGENERATOR SIMULATOR

3.1. Introduction

Up to now, matrix and fluid thermal equations are derived using energy balance and

continuity equation. Simplified versions of these equations are obtained for three different

cases. Details of finite difference method, which will be used for solution of the obtained,

PDEs are also presented. In this chapter, details of the regenerator parameters are given within

the context of the graphical user interface that has been prepared. Also the equations and the

approach that has been followed while obtaining the results are explained.

3.2. GUI

Graphical user interface (GUI) allows user to change regenerator parameters without making

any change within the code. In this section, information about the parameters that can be

adjusted by user with using the GUI (Figure 3.1) is presented.

3.2.1. Matrix Properties

3.2.1.1. Matrix Material

From matrix material menu, the material of the matrix screens can be chosen. It can be either

phosphor-bronze or stainless steel. It is possible to increase the number of the options by just

adding the material properties of the new materials to the code. By choosing the matrix

41

material, density, thermal conduction constants, specific heat capacity values of the mesh is

set.

3.2.1.2. Screen Diameter

It is possible to set the diameter of the discs from this menu. Together with the wall thickness

this parameter determines the diameter of the displacer. It has also effects on the mass and the

total thermal capacity of the regenerator.

Minimum value for the screen diameter is 3mm, where as the maximum is 28mm.

3.2.1.3. Wire Diameter

Diameter of the wires that are used to form the discs can be set from this menu. It is possible

to go down to 0.01 mm. Since values above 0.11 mm are not practical, it is taken as the upper

limit.

Diameter of the screen wires affects porosity, hydraulic radius, screen thickness, and

regenerator mass directly.

3.2.1.4. Mesh Density

Mesh density defines the number of openings in a screen disc. As an industry standard, it is

defined as number of openings per inch square. It has a strong effect on porosity.

3.2.1.5. Number of Screens

This term sets the number of screens that will be stacked on top of each other to form the

regenerator. Since it is practically impossible to manipulate the alignment of the discs, they

are stacked randomly. Thus, regenerator obtains a porous medium form rather than micro heat

42

exchanger. Together with the disc thickness the number of screens determines the length of

the regenerator. It has also an obvious effect on the regenerator mass.

Figure 3.1: The graphical user interface of the 1-D regenerator simulator

3.2.2. Flow Properties

3.2.2.1. Flow Rate

This box is used to set the volumetric fluid flow rate. The fluid is helium by default. It is quite

rare for any other fluid to be used in state of art cryocoolers so fluid type is not optional.

43

3.2.2.2. Cold End Entrance Temperature

As mentioned in section 2.1.3, the code works on a constant end temperature assumption.

That constant value is set from here. The lowest value in this box is 40 K, because below 40K

many parameters that have been assumed to be constant will vary significantly with

decreasing temperature. And since cryogenic coolers are defined for temperatures below

120K upper limit is set as such.

3.2.2.3. Hot End Entrance Temperature

The hot end temperature is usually taken as the environment temperature of the cooler. It is

set as 300K by default (standard room temperature). Upper limit is 350K and lower limit is

250K.

3.2.3. Numerical Variables

3.2.3.1. Number of Nodes

As it is stated earlier, the simplified versions of the continuity, matrix and fluid thermal

equations are solved by finite difference method. The regenerator is divided into nodes and

the equations are solved for each node. To obtain an accurate solution minimum 50 of these

nodes should be used. Increasing nodes, leads to more accurate results but increases

simulation run time also. The numerical variables are bounded by the physical memory of the

computer. After several trials, it is observed that increasing number of nodes more than 550

do not improve the result. So it is set as the upper limit.

3.2.3.2. Number of Time Intervals

Change in the temperature of a node in the matrix not only will affect the neighboring nodes

in the matrix but also the fluid node at that point. The implicit approach first takes care of the

change in the matrix nodes (excluding the change in fluid) and then the fluid nodes. The small

44

amount of time passes between these two steps is named as time interval. Minimum time

interval is set to 20 to obtain a meaningful solution again by experimenting. Maximum value

is 520.

3.2.3.3. Number of Periods

The flow in the regenerator is assumed to be periodically steady. The heating period is

followed by the cooling period. Combination of heating and cooling periods completes one

cycle. Number of periods indicates the number of these cycles. Generally minimum of 20

cycles need to be completed to observe a steady state behavior. Some cases may need more,

but increasing this value beyond 220 does not help much.

3.2.4. Other Properties

3.2.4.1. Operating Frequency

Operating frequency indicates the number of cycles completed per second. In a real

cryocooler this parameter is usually between 20 and 60 Hz. Covering and extending this

range, values between 1-100 Hz is accepted in this work.

3.2.4.2. Regenerator Wall Thickness

Regenerator disc screens require a structure to hold them together in line. Such a structure is

usually made of stainless steel (wall material selection is not optional). Wall thickness must

be as small as possible. But the housing also needs to be strong and perfectly flat. That is

why, smaller values than 0.1mm is not preferred. Increasing wall thickness beyond 1mm

increases inefficiency too much so that is not preferred as well.

45

3.2.5. Solver Options

3.2.5.1. Include Effects of Longitudinal Conduction

Wire mesh screens are in contact with each other at some ambiguous points. This causes a

thermal longitudinal conduction along the regenerator matrix which introduces a loss in the

mechanism. To obtain a more realistic solution, this loss can be taken into account by

checking the associated box. To include effects of the longitudinal thermal conduction, it is

required to solve more complex differential equation set. As a result the computation time and

required computer memory space increases.

3.2.5.2. Include Wall Effect

Another source of inefficiency is the heat transferred to and along the regenerator wall. This

wall effect occurs when a metallic housing with large heat capacity is used to contain the

matrix material. Similar to effects of longitudinal thermal conduction case, by including wall

effect more realistic solutions are obtained in the expense of increased computational time and

required computational memory space.

3.2.6. Results

3.2.6.1. Regenerator Length

Ideally regenerator length (rL) is equal to the screen thickness (tsc) multiplied by number of

regenerator discs (Ns). And also for a woven mesh screen (Figure 3.2), screen thickness is

equal to the length of two the wire diameter (wd).

46

Figure 3.2: Geometry of woven screen (Ackermann, 1997)

But in reality, due to inclination caused by weaving, screens are 5-15% thicker than the ideal

case. This value (tF) is determined experimentally (Harvey, 1999) and to calculate the screen

thickness following equation is used. In this code, tF is taken as 1.1.

 (3.1)

Mesh stacking density is another parameter that affects the regenerator length. Since it is not

possible to stack the screens perfectly, small gaps will appear between them. This effect is

taken care of by a constant (cF) which can vary between 1.03 and 1.08 (Harvey, 1999). 1.044

is chosen as an average value in this work.

 (3.2)

3.2.6.2. Regenerator Mass

Mass of the regenerator (M) is calculated by the following equation:

xt

d/2 d/2

47

 (3.3)

Here Ar donates regenerator frontal area, dm donates density of mesh material and α donates

porosity.

3.2.6.3. Porosity

Porosity (α) is defined as;

Analytically the porosity is calculated by considering a small segment of screen with a

transverse pitch xt (Figure 3.2), designating the transverse spacing between wires and a lateral

pitch, xl, designating the longitudinal spacing between wires. Referring to Figure 3.2 the

pitches are related to mesh density (n) and screen thickness by

 (3.4)

If a perfect stacking of square mesh screens in which weaving causes no inclination of the

wires and the screen layers are not separated, these idealizations lead to a matrix packing

where screen thickness is equal to 2wd and the ideal porosity is given by

 (3.5)

As mentioned above, the result obtained from above equation is for ideal case. This value is

multiplied by tF and used as such.

48

3.2.6.4. Hydraulic Diameter

Hydraulic diameter (dh) is defined as follows (Ackermann, 1997);

 (3.6)

where, β, area density is

3.2.6.5. Total Wetted Area

Total wetted area (As) is the total area that heat transfer between the fluid and the matrix

occurs.

 (3.7)

 Here Ar donates frontal area of a screen disc.

3.2.6.6. Matrix Heat Capacity

Regenerator matrix heat capacity (Cm) is calculated simply by multiplying specific heat

capacity (Cp_m) of the used material with the mass of regenerator.

 (3.8)

49

3.2.6.7. Capacity Ratio

The fluid heat capacity rate ratio measures the thermal imbalance of the flow streams

(Ackermann, 1997):

 (3.9)

where Cmin and Cmax are the smaller and the larger of the two magnitudes Ch and Cc

The matrix capacity ratio (Cr, capacity ratio in short) measures the thermal capacity of the

matrix relative to the minimum flow stream capacity:

 (3.10)

Here, λ donates flow period i.e. time required for one complete cycle.

The larger the matrix capacity ratio, the smaller is the matrix temperature swing and, in

general, the more efficient the regenerator.

3.2.6.8. Number of Transfer Units

The number of heat transfer units (NTU) is a nondimensional expression that is related to a

heat exchanger’s “heat transfer size”. When NTU is small the exchanger effectiveness is low

and when the NTU is large the effectiveness approaches a limit physically imposed by flow

and thermodynamic considerations. It is defined as (Ackermann, 1997)

50

 (3.11)

where

As stands for matrix total heat transfer area, h is convective heat transfer coefficient and U is

overall heat transfer conductance between the warm and cold fluids.

3.2.6.9. Inefficiency

The effectiveness defines how well a real heat exchanger is performing relative to an ideal

exchanger operating across the same temperature differences. “Effectiveness” and

“efficiency” are used interchangeably, and are defined as (Ackermann, 1997)

 (3.12)

where Q is the actual heat exchange between fluids, and Qideal is an ideal amount that could be

exchanged if no temperature difference existed between the inlet and outlet streams. Thus,

referring to Figure 3.3, the two energy terms can be written as

 (3.13)

 (3.14)

Substituting the above terms into the effectiveness equation provides the general expression

for a heat exchanger’s thermal performance:

51

 (3.15)

For the particular case where the flows are balanced Ch/Cc=1, the effectiveness reduces to

 (3.16)

In cryogenics, very often the regenerator performance is given in terms of an inefficiency, Ie,

where

 (3.17)

Figure 3.3: Fluid temperature distribution (Ackermann, 1997)

3.2.6.10. Hot End Gas Temperature

After the simulation completed, value of the fluid node at the hot end is presented.

52

3.2.6.11. Cold End Gas Temperature

After the simulation completed, value of the fluid node at the cold end is presented.

3.2.6.12. Regenerator Thermal Loss Mechanisms

There are three main thermal loss mechanisms that exists in regenerator; heat flow loss, loss

due to conduction in matrix material and wall heat leakage. The sum of these three is named

as regenerator thermal loss.

Heat flow loss is the loss that is caused by the net enthalpy flow due to mass flux. In an ideal

regenerator, it will be the only thermal loss. So for ideal case, it can be calculated with the

regenerator thermal loss expression (Ackermann, 1997)

 (3.18)

But for the case where longitudinal conduction in the matrix is taken into account, regenerator

thermal loss will include both flow loss and conduction loss. To distinguish one from another,

the code first solves the problem as if it was the ideal case, and then moves on to longitudinal

conduction case. The difference in the regenerator thermal loss between the two cases comes

from the loss mechanism that is due longitudinal conduction.

As mentioned in section 2.3.2, wall heat leakage consists of the loss due to fluid-wall heat

transfer and the thermal conduction along the wall. To calculate it, similar procedure is

followed. The code first runs for the ideal case, then for the longitudinal conduction case.

After these two, longitudinal conduction loss and heat flow loss is known. As a last step, code

runs the case with wall effect and calculates the regenerator thermal loss. Using the results

obtained from previous two runs, wall heat leakage value is calculated.

53

3.2.6.13. Friction Loss

Pressure gradient is estimated using the correlation given in the report prepared by NIST

(O’Gallagher, Gary, Radebaugh, & and Marquardt, 2008). This is an empirical correlation for

the data that Kays and London obtained. In the reference friction factor is defined in terms of

two functions, A(R) and Y(R) where R is the Reynolds number. The pressure gradient is given

by

 (3.19)

And the constants A(R) and Y(R) are expressed as below, where α is porosity.

Pressure drop along the regenerator is calculated by multiplying the gradient with the length

of the regenerator. To obtain the energy loss in terms of watts, pressure drop is multiplied

with the average mass flow rate of the fluid and divided by the density.

 (3.20)

3.2.6.14. Simulation Run Time

Simulation run time box shows the simulation time i.e. measured time between the “Press to

Solve” is clicked and, “DONE” is revealed.

54

CHAPTER 4

RESULTS AND DISCUSSION

4.1. Model Verification

4.1.1. Sage modeling

The model will be verified by using the Sage built in Stirling cycle, split type cryocooler

model. An overview of the model is shown in Figure 4.1.

This model does not have an element that sets the flow rate in regenerator. So by playing

around the compressor parameters and system pressure, the system is adjusted such that both

regenerators (the one in this thesis work and the one in Sage model) operate under the same

average mass flow rate.

The tests have been performed for three different regenerators. Properties for these are given

in Table 4.1.

55

Figure 4.1: Sage model

Table 4.1: Properties of the regenerators used for validation

Regenerator Properties Reg-1 Reg-2 Reg-3

Material SS SS Ph-Br

Screen Diameter (mm) 10 12 19

Wire Diameter (mm) 0.035 0.045 0.07

Mesh Density 350 200 150

Porosity 0.62 0.72 0.68

Number of Screens 995 580 630

Regenerator Length (cm) 8 6 10.1

Volumetric Flow Rate (m
3
/s) 0.0062 0.01 0.015

Mass Flow Rate (g/s) 0.93 1.5 2.25

Cold End Temp. (K) 80 80 80

Hot End Temp. (K) 300 300 300

Operating Frequency (Hz) 60 60 60

Wall Thickness (mm) 0.5 0.5 0.5

One thing to mention here is that length of the regenerator and porosity are given under

results section of the GUI built but they are supplied as input in Sage. The methodology used

in this work is closer to the industrial type perspective because it is not possible to order disc

screens by porosity. And what determines the regenerator length is the number of disc stacks,

not the other way around.

56

4.1.2. Comparison

Results of two programs for the regenerator configurations listed in Table 4.1 are presented in

Table 4.2.

Table 4.2: Result comparison with Sage

Results
1D Regenerator Simulator Sage

Reg-1 Reg-2 Reg-3 Reg-1 Reg-2 Reg-3

Regenerator Mass (g) 18.57 14.72 59.98 18.62 14.82 60.13

Hydraulic Diameter (mm) 0.063 0.128 0.16 - - -

Reynolds Number 84 164 131 84 162 130

Stanton Number 0.14 0.11 0.12 - - -

Capacity Ratio 138 68 64 - - -

NTU 356 100 149 - - -

Hot End Gas Temp (K) 298.2 297.1 297.7 331 329.2 330

Cold end Gas Temp (K) 82.2 83.3 82.7 93.7 103.7 98.6

Heat Flow Loss (W) 11.09 27.17 32.98 10.7 26.8 31.87

Friction Loss (W) 2.64 1.36 1.08 2.58 1.32 1.07

Long. Cond. Loss (W) 0.05 0.11 0.04 0.18 0.21 0.11

Wall Heat Leakage (W) 0.35 0.21 0.96 - - -

Inefficiency (%) 1.08 1.61 1.32 - - -

Regenerator mass is calculated by both programs with a maximum difference of 0.25%.

Likewise Reynolds number predictions of the two have 1.3% difference ranges which is

acceptable. Sage does not produce outputs for hydraulic diameter, Stanton number, capacity

ratio or NTU so these parameters are left as blank.

The obvious deviation of two programs is about the end temperatures. Sage predicts the hot

end temperature about 30K higher than the 1D Regenerator Simulator does. For the cold end

this gap is between 10 and 20 K. Since in Sage whole system is modeled, heat generations at

the bottom and top of the cold finger are also taken into account.

Loss mechanism outputs of the two programs are again close. Maximum difference of the

heat flow loss results is 3.5% where maximum difference in friction loss is 3%. Longitudinal

57

conduction is a bit underestimated by 1D Regenerator Simulator. Results differ from each

other by more than %50 but, the trend is the same and the maximum difference is around

0.1W level. The reason may be the material property values i.e. thermal conduction

coefficients that are being used. Since Sage is a commercial software, it does not give any

information about what is happening in the background.

Wall heat leakage is not given in Sage. Instead another term, discrepancy loss is used but this

term covers not only wall effect but also other losses. Therefore it is not possible to make any

comparison.

Regenerator inefficiency is a term where, like in this thesis work, the regenerator itself is

analyzed only (Ackermann, 1997). Authors prefer to give results such as cold end temperature

values at certain heat loads or overall system efficiency. Sage is no different at this point.

However to obtain these results, system level modeling must be done which is beyond the

scope of this thesis.

Sage is a widely used program whose results show good match with experimental works that

has been carried (Harvey, 2003), (Kashani, Helvensteijn, Kittel, Gschneidner, Pecharsky, &

Pecharsky, 2001), (Wilson & Gedeon, 2003). It has a system modeling capacity. 1D

Regenerator Simulator produces similar results, which are mostly within 5% range.

4.2. Effects of Numerical Parameters

To obtain results with minimum error, it is required to work at a point where the system is

independent of the number of nodes, time intervals and period. As it can be seen from Figure

4.2, increasing the number of time intervals or the number of periods above 100 will do

nothing other than increasing the computational time. Results in the upcoming sections are

obtained under these conditions. However the case is not the same for the number of nodes.

Until 200 nodes, inefficiency decreases sharply, and it seems to be settled around 450. In this

work, 500 nodes are used to obtain the results in the following sections.

58

Figure 4.2: Effect of numerical variables on inefficiency

4.3. Effect of Matrix Properties

In this section effects of different matrix properties on inefficiency and loss mechanisms are

investigated. All regenerator configurations are the same (except the varying parameter) and

all of them are operated under the same conditions, unless otherwise stated. Default

configuration and operation parameter values can be found in Table 4.3.

4.3.1. Matrix Material

Matrix materials are defined by three parameters; density, longitudinal conduction coefficient,

and specific heat constant. Density and specific heat constant affect heat capacity therefore

heat capacity rate ratio. As mentioned earlier, heat capacity rate ratio measures the thermal

capacity of the matrix relative to the minimum flow stream capacity and it has a direct effect

on inefficiency.

In Figure 4.3, heat capacity rate ratio of two regenerators that are formed from different

materials for various flow rate values can be found.

0

0,5

1

1,5

2

2,5

3

0 200 400 600 800 1000

In
ef

fi
ci

en
cy

 %

Number of Numerical Variable

Num. Of Nodes Num. Of Time Intervals Num. Of Periods

59

Table 4.3: Default configuration and operating parameters

Material SS

Screen Diameter (mm) 10

Wire Diameter (mm) 0.035

Mesh Density 300

Number of Screens 746

Volumetric Flow Rate (m
3
/s) 0.007

Cold End Temp. (K) 80

Hot End Temp. (K) 300

Operating Frequency (Hz) 28

Wall Thickness (mm) 0.5

Number of Nodes 500

Number of Time Intervals 100

Number of Periods 100

Due to density difference of two metals, a big difference in heat capacity rate ratio values is

observed at low flow rates. Increase in flow rate, increases heat capacity of the fluid, which

lowers the heat capacity rate ratio values. The increase in flow rate also closes the gap

between two materials’ heat capacity rate ratio values but, even for 0.01 (m
3
/s) case, stainless

steel regenerator’s heat capacity rate ratio is three times greater than the phosphor-bronze one.

Figure 4.3: Heat capacity rate ratio comparison of stainless steel and phosphor-bronze screens

0

50

100

150

200

250

0 0,002 0,004 0,006 0,008 0,01 0,012

H
ea

t
C

a
p

a
ci

ty
R

a
te

R
a

ti
o

Volumetric Flow Rate (m3/s)

SS Ph-Br

60

The difference in the heat capacity rate ratio of two materials affects inefficiency considerably

(Figure 4.4). Stainless steel screens can resist more to the increase in fluid heat capacity,

which results a less increase in inefficiency compared to the phosphor-bronze screens.

Figure 4.4: Inefficiency results for stainless steel and phosphor-bronze screens

Figure 4.5: Heat flow loss for stainless steel and phosphorous bronze screens

However, not much of a difference exists from the heat loss perspective (Figure 4.5). This

points out that, another loss mechanism must be dominant. Due to its lower mass, phosphor

bronze screens suffer from the wall leakage (Figure 4.6). It is evident from the graph that as

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,002 0,004 0,006 0,008 0,01 0,012

In
ef

fi
ci

en
cy

 %

Volumetric Flow Rate (m3/s)

SS Pb-Br

0

5

10

15

20

25

30

0 0,002 0,004 0,006 0,008 0,01 0,012

H
ea

t
F

lo
w

 L
o

ss
 (

W
)

Volumetric Flow Rate (m3/s)

SS Pb-Br

61

the flow rate increases the fluid exchanges more heat with the wall than it does with the

regenerator.

Figure 4.6: Wall heat leakage values for stainless steel and phosphor-bronze screens

4.3.2. Screen Diameter

In regenerator designs, screen diameter is generally determined by the cold tip area. The cold

tip, which lifts heat from the required surface, has its area set according to requirements;

therefore together with the wall thickness, the screen diameter will be set. In Figure 4.7,

Reynolds number and number of transfer units (NTU) for different screen diameters can be

seen. The screens are formed form 0.04 mm wires and have a mesh density of 250.

As the screen diameter increases, the flow velocity decreases since the flow rate is constant.

Therefore Reynolds number decreases as the screen diameter increases. However, total heat

transfer area will increase with the increasing screen diameter, which causes NTU to increase

also. These affects can be observed in Figure 4.8.

0

5

10

15

20

25

30

35

40

45

0 0,002 0,004 0,006 0,008 0,01 0,012

W
a

ll
 H

ea
t

L
ea

k
a

g
e

(W
)

Volumetric Flow Rate (m3/s)

SS Pb-Br

62

Figure 4.7: Variation of Reynolds number and number of transfer units with screen diameters

All of the loss mechanisms tend to decrease with increasing screen size except the

longitudinal conduction loss (Figure 4.8 Figure 4.9). Heat flow loss decreases due to

increasing heat capacity of the regenerator, likewise the wall heat leakage. Decrease in the

flow velocity so as Reynolds number, decreases the friction loss.

Figure 4.8: Heat flow loss vs. screen diameter

0

50

100

150

200

250

6 8 10 12 14 16 18

D
im

en
si

o
n

le
ss

 P
a

ra
m

et
er

Screen Diameter (mm)

Re NTU

0

2

4

6

8

10

12

14

6 8 10 12 14 16 18

F
lo

w
 L

o
ss

 (
W

)

Screen Diameter (mm)

63

Increase in the longitudinal conduction is not very significant compared to the changes in

other mechanisms. This increase in the surface area of the discs generates more interaction

points for longitudinal conduction to occur.

Figure 4.9: Losses vs. screen diameter

4.3.3. Wire Diameter

Wire diameter is a critical parameter especially for small cryocoolers. As the cold finger

diameter reduces, to increase heat transfer area, it is a general trend to use higher mesh

density screens which require smaller wire diameters. But due to manufacturing issues, values

below 0.025 mm are very unlikely.

Regenerator length will increase as wire diameter increases for constant number of screens. It

is important to eliminate the effects of having a longer regenerator, while investigating wire

diameter effects. To do so, the number of screens is decreased while increasing the wire

diameter and the regenerator length is kept constant at 4.6 cm. Screen diameter is chosen as

12 mm so obtaining a 300 x 300 mesh density will not be problem with a 0.05 mm wire

diameter.

0

0,5

1

1,5

2

2,5

3

3,5

6 8 10 12 14 16 18

L
o

ss
es

 (
W

)

Screen Diameter (mm)

Friction Loss Longitudinal Conduction Loss Wall Leakage

64

Figure 4.10: Inefficiency and porosity values for different wire diameters

As it can been seen from Figure 4.10, while the wire diameter increases, the porosity and

inefficiency decrease linearly. This trend well matches with the literature (Walker, 1983).

Decrease in inefficiency comes from increasing heat transfer area and heat capacity. Decrease

in porosity is an expected result, since volume occupied by the material will increase with the

increasing wire diameter.

Figure 4.11: Variation of friction loss and longitudinal conduction loss with wire diameter

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0,015 0,02 0,025 0,03 0,035 0,04 0,045 0,05 0,055

D
im

en
si

o
n

le
ss

 P
a

ra
m

et
er

Wire Diameter (mm)

Porosity Inefficiency

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0,015 0,02 0,025 0,03 0,035 0,04 0,045 0,05 0,055

L
o

ss
es

 (
W

)

Wire Diameter (mm)

Friction Loss Longitudinal Conduction Loss

65

Increasing wire diameter also has negative effects. From Figure 4.11 an exponential increase

in friction loss can be observed. This is due to decrease in the fluid flow area. A linear

increase in longitudinal conduction loss is another outcome of increasing wire diameter. Like

in screen diameter case, increase in the number of contact points is the reason behind it.

Wire diameter increase - as expected - increases regenerator mass, so as the heat capacity.

One of the outcomes of this change is decrease in the heat flow loss (Figure 4.12).

Figure 4.12: Heat flow loss vs wire diameter

4.3.4. Mesh Density

As mentioned in section 3.2.1.4, mesh density is defined as the number of openings in an inch

square. Since the openings are square, number of openings in left-right and up-down

directions is same. So it is very common to drop one of them i.e. using 300 instead of 300 x

300. This abbreviation is also used throughout this thesis.

Mesh density is directly related to porosity. As expected, increasing the mesh density

decreases porosity. Porosity decrease increases the regenerator mass, so as the heat capacity

0

2

4

6

8

10

12

14

0,015 0,02 0,025 0,03 0,035 0,04 0,045 0,05 0,055

H
ea

t
F

lo
w

 L
o

ss
 (

W
)

Wire Diameter (mm)

66

of matrix. Increase in number of openings, increases the heat transfer surface area. These two

effects, decreases inefficiency as it can be seen from Figure 4.13.

Inefficiency seems to be decreasing as porosity decreases but, it increases the friction

exponentially (Figure 4.14). Therefore having a regenerator with 0.1 porosity will not work,

since there will not be any flow area literally. Otherwise, a solid conductor bar would work

fine as a regenerator. Choi S. et al. obtained similar results in their work (Choi, Nam, &

Jeyong, 2004).

Figure 4.13: Effect of mesh density on porosity and inefficiency

Figure 4.14: Effect of mesh density on friction and conduction loss

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

100 150 200 250 300 350 400 450

D
im

e
n

si
o

n
le

ss
 P

ar
am

e
te

r

Mesh Density

Porosity Inefficiency

0

0,5

1

1,5

2

2,5

3

100 150 200 250 300 350 400 450

Lo
ss

e
s

(W
)

Mesh Density

Friction Loss Longitudinal Conduction Loss

67

4.3.5. Volumetric Flow Rate

Effect of the volumetric flow rate is investigated under default values of regenerator

parameters except mesh density value, which is set to 250.

Figure 4.15: Reynolds number, NTU and capacity ratio variation with volumetric flow rate

Figure 4.16: Heat flow and friction losses vs. volumetric flow rate

0

50

100

150

200

250

300

350

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016

D
im

en
si

o
n

le
ss

 P
a

ra
m

et
er

Volumetric Flow Rate (m3/s)

Re NTU Capacity Ratio

0

5

10

15

20

25

30

35

40

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016

L
o

ss
es

(W

)

Volumetric Flow Rate (m3/s)

Flow Loss Friction Loss

68

An increase in the volumetric flow rate increases both Reynolds and Prandtl numbers. This

causes NTU (Figure 4.15) to drop since it is inversely proportional with these two

dimensionless parameters. Increase in the volumetric flow rate, works in favor of the fluid

heat capacity, therefore decreases the heat capacity rate ratio (Figure 4.15) as expected. Both

the heat flow loss and the friction loss increase with increasing volumetric flow rate (Figure

4.16). They are triggered by the decrease in capacity ratio and increase in Reynolds number

respectively. These effects cause the inefficiency to increase as shown in Figure 4.17.

Figure 4.17: Volumetric flow rate vs inefficiency

4.3.6. Operating Frequency

Operating frequency is a critical parameter not only for the regenerator but also for the

cryocooler itself (Koh, Hong, Park, Kim, & Lee, 2002). It is a known fact that increasing the

operating frequency shortens cryocooler operating life. The wear in the moving parts with

heavy masses (heavy compared to other parts of the cryocooler) is one of the main reasons

behind it (Nachman, Veprik, & Pundak, 2007).

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016

In
e

ff
ic

ie
n

cy
 %

Volumetric Flow Rate (m3/s)

69

On the other hand, it is also stated in (Çakıl, 2010) that, increasing operating frequency,

increases cryocooler efficiency. To obtain a compromise – from the regenerator point of view

– inefficiency of regenerator is plotted for frequencies 10 to 100 Hz. in Figure 4.18.

Figure 4.18: Operating frequency vs. inefficiency

A sharp decrease in the inefficiency is observed from 10 to 40 Hz. From 40 to 100 Hz,

inefficiency continues to decrease but very slowly. Today’s cryocoolers work mostly around

40-60 Hz (Koh, Hong, Park, Kim, & Lee, 2002) (Jensen S.M., 2007) and Figure 4.18 reveals

one of the reasons behind this choice clearly.

4.3.7. Wall Thickness

As stated in section 2.3.2, regenerator wall is one of the main mechanisms that introduce loss

to the system. The wall heat leakage becomes dominant especially for regenerator with low

mass values. As the wall - regenerator heat capacity ratio shifts in favor of the wall, the fluid

exchanges more heat with the wall which increases inefficiency. These affects can also be

seen from Figure 4.19 and Figure 4.20 for a 10 gram regenerator.

0

0,5

1

1,5

2

2,5

0 20 40 60 80 100 120

In
e

ff
ic

ie
n

cy
 %

Operating Frequency (Hz)

70

Figure 4.19: Wall thickness vs inefficiency

Figure 4.20: Wall thickness vs. wall leakage

4.4. Effect of Regenerator Efficiency on the System

Up to now, effects of the regenerator parameters on the regenerator inefficiency is presented.

To conclude the results section it will be a good idea to relate regenerator efficiency with the

overall system efficiency.

1,11

1,12

1,13

1,14

1,15

1,16

1,17

1,18

1,19

1,2

0 0,2 0,4 0,6 0,8 1 1,2

In
e

ff
ic

ie
n

cy
 %

Wall Thickness (mm)

0

0,5

1

1,5

2

2,5

0 0,2 0,4 0,6 0,8 1 1,2

W
al

l L
e

ak
ag

e
 (

W
)

Wall Thickness (mm)

71

In the literature, any direct relation between efficiencies of the regenerator and the complete

system is not available except for the ideal adiabatic model that is derived by Urieli (Urieli &

Walker, 1990).

Using the proposed approach by Urieli (Urieli & Berchowitz, 1984), together with the Matlab

code given (Urieli, 1980), Figure 4.21 is obtained by using the parameter values listed in

Table 4.4.

Table 4.4: Cooler configuration

Cooler Type Rotary Kinematic

Mean Pressure 200 kPa

Operating Frequency (Hz) 55

Cold Sink Temp. (K) 80

Hot Sink Temp. (K) 300

Regenerator Type Wire Mesh Screen

Screen Diameter (mm) 10

Wire Diameter (mm) 0.035

Porosity 0.62

Regenerator Length (cm) 8

It is evident from Figure 4.21 that regenerator performance is crucial for cryocoolers as it is

mentioned in the Chapter 1. Even 10% decrease (from 1 to 0.9) in the regenerator efficiency,

decreases the cooler’s efficiency 64% (from 0.7 to 0.25). It must be kept in mind that the

cooler is modeled as ideal, thus in actual systems, performance degradation may even be more

severe.

72

Figure 4.21: Effect of regenerator efficiency on ideal cooler

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Id
e

al
 C

o
o

le
r

Th
e

rm
al

 E
ff

ic
ie

n
cy

Regenerator Efficiency

73

CHAPTER 5

CONCLUSIONS

In this thesis work, a Matlab code is developed together with a graphical user interface, for

thermal analysis of regenerators which work in a Stirling cycle cryocooler. The code uses

finite difference method for the solution of the thermal equations derived. The results

obtained for three different regenerator configurations are compared with the results obtained

by the commercially available Stirling cryocooler analysis software Sage. After the in house

code -1d Regenerator Simulator- is verified, effects of regenerator parameters on inefficiency

and on thermal losses are investigated in detail. From this investigation, following

conclusions can be drawn:

 Number of nodes, time intervals or periods can affect results considerably. It is

important to obtain results while the system is independent of these variables.

 Regenerator construction material must have high volumetric heat capacity. This is

crucial especially for the flows with high mass flow rate.

 Woven screen wire diameter should be chosen as thick as possible while keeping an

eye on limiting parameters; friction loss, longitudinal conduction loss, porosity.

 Even it increases friction loss, finer meshes work better.

 Regenerator best working frequency range matches well with today’s cryocooler

working frequency range.

 Regenerator wall introduces an unavoidable loss to the system. It must be as thin as

possible. The limiting parameters (straightness, strength) may be improved with trying

different construction materials.

74

 Regenerator efficiency has a strong influence on system efficiency. It must be above

98% for an efficient system.

5.1. Suggestions for Future Work

In this research the regenerator is assumed to be under a steady periodic flow. Even this

assumption is good enough to evaluate its performance trends, more realistic results can be

obtained with a sinusoidal varying mass flow rate which is the actual case for Stirling

cryocoolers.

Assumption of one directional flow gives satisfactory results. But it does not take into account

some details like local accelerations. To create a two dimensional or three dimensional model

will not work since, the porous media structure is random. To obtain a better result, volume

averaging technique (Whitaker, 1999) can be used.

The developed code handles the wire mesh discs only. It can be extended to handle other

kinds of regenerator configurations like etched foil, packed spheres etc. Other commonly used

regenerator materials’ properties can also be added to the database to cover more

configurations.

75

REFERENCES

Ackermann, R. A. (1997). Cryogenic Regenerative Heat Exchangers. New York: Plenum

Press.

Arp, V., & Radebaugh, R. (1987). Interactive program for microcomputers to calculate the

optimum regenerator geometry for cryocoolers.

Barclay, J., & Sarangi, S. (1984). Selection of regenerator geometry for magnetic regenerator

applications. 5th ASME/AIChE/IIR Intersociety Cryogenic Symposium. New Orleans.

Cha, J., Ghiaasiaan, S., & C.S., K. (2008). Oscillatory flow in microporous media applied in

pulse – tube and Stirling – cycle cryocooler regenerators. Experimental Thermal and Fluid

Science 32 , 32, p. 1264-1278.

Choi, S., Nam, K., & Jeyong, S. (2004). Investigation on the pressure drop characteristics of

cryocooler regenerators under oscillating flow and pulsating pressure conditions. Cryogenics ,

44, p. 203-210.

Cryogenics Technologies Group. (1995). (NIST) Last access date: July 28, 2011

http://cryogenics.nist.gov/Group%20Information/group.htm

Çakıl, S. (2010). Computational Analysis for Peformance Prediction of Stirling Cryocoolers

[MSc Thesis]. METU.

Gedeon, D. (1995). Last access date: July 28, 2011 http://www.sageofathens.com/index.php

Gedeon, D. (2009). Sage User's Guide V6. Athens-OH.

76

Harvey, P. (2003). Oscillatory compressible flow and heat transfer in porous media -

Application to cryocooler regenerators [PhD Thesis]. Georgia Institute of Technology.

Harvey, P. (1999). Parametric Study of Cryocooler Regenerator Performance [MSc Thesis].

Georgia Institute of Technology.

Heywood, D. (2004). Last access date: July 27, 2011, http://www.stevenpopkes.com/Stirling-

-SterlingCycleIntro.pdf

Imura, J. (2007). Development of high capacity Stirling type pulse tube cryocooler. Physica C

, p. 1369-1371.

Jensen S.M., H. G. (2007). Thermal/Mechanical System Level Test Results of the GIFTS 2-

Stage Pulse Tube Cryocooler. International Cryocooler Conference Vol 14.

Kashani, A., Helvensteijn, B., Kittel, P., Gschneidner, K., Pecharsky, V., & Pecharsky, A.

(2001). New Regenerator Materials for Use in Pulse Tube Coolers. 11th International

Cryocooler Conference, (p. 433-441).

Kays, A., & London, W. (1984). Compact Heat Exchangers. McGraw Hill.

Koh, D., Hong, Y., Park, S., Kim, H., & Lee, K. (2002). A study on the linear compressor

characteristics of the Stirling cryocooler. Cryogenics 42 , p. 427-432.

Mitchell, M., & Fabris, D. (2003). Improved Flow Patterns in Etched Foil Regenerator.

Cryocoolers 12, (p. 499-505).

Nachman, I., Veprik, A., & Pundak, N. (2007). Life test result of Ricor K529N 1 Watt linear

Cryocooler. Infrared Technology and Applications XXXIII.

77

NIST. (2005). (NIST) Last access date: July 28, 2011

http://cryogenics.nist.gov/MPropsMAY/RegeneratorMaterials/RegenPlot.html

O’Gallagher, A., Gary, J., Radebaugh, R., & and Marquardt, E. (2008). REGEN 3.3: User

Manual.

O’Gallagher, A., Gary, J., Radebaugh, R., & Marquardt, E. (2001). (NIST) Last access date:

July 28, 2011 http://cryogenics.nist.gov/Software/software.htm

Pfotenhauer, J., Shi, J., & Nellis, G. (2004). A Parametric Optimization of a Single Stage

Regenerator Using REGEN 3.2. 13th International Cryocooler Conference, 13, p. 463-470.

Prajapati, A., & Oza, T. (2007). Study Analysis Of Effect Of Different Parameters On Design

Aspects Of Cryogenic Wire Mesh Heat Exchanger. ICME. Dhaka.

Qiu, L. (2007). Regenerator performance improvement of a single-stage pulse tube cooler

reached 11.1 K. Cryogenics 47, (p. 49-55).

Radebaugh, R. (2010, May 17). Cryocooler Short Course Presentation. Atlanta, Georgia,

USA.

Radebaugh, R. (2009). Cryocoolers: the state of the art and recent developments. Journal of

Physics , 21, p1-8.

Radebaugh, R. (1995). Recent Developments in Cryocoolers. Proc. Int. Cong. Refigeration,

3b, p. 973. Paris.

Riabzev, S. (2002). Ricor Cryogenics. Last access date: July 27, 2011

www.ricor.com/_Uploads/58Stir-pt.pps

Schlichting, H. (1955). Boundary Layer Theory. New York: McGraw-Hill.

78

Shi J., P. J. (2007). Dimensionless Analysis for Regenerator Design. International Crycooler

Conference 14.

Thales. (2010). Company presentation. Ankara.

Timmerhaus, K. (1996). Cryocooler Development. AIChE Journal , p. 3202-3211.

Urieli, I. (1980). A general purpose program for Stirling engine simulation. Proe. 15th IECEC

, p. 1701-1705.

Urieli, I., & Berchowitz, D. (1984). Stirling cycle engine analysis. Adam Hilger Ltd.

Urieli, I., & Walker, G. (1990). An ideal adiabatic analysis of a stirling cryocoole rwith

multiple expansion stages. Low Temperature Engineering and Crvogenics Conference.

Walker, G. (1983). Cryocoolers. Plenum Press.

Whitaker, S. (1999). The method of volume averaging. Kluwer Academic Publishers.

Williems, D. (2007). High-Power Crycooling [PhD Thesis]. Technische Universiteit

Eindhoven.

Wilson, K., & Gedeon, D. (2003). Development of Single and Two-Stage Pulse Tube

Cryocoolers with Commercial Linear Compressors. 12th International Cryocooler

Conference, (p. 139-147).

Yang, X., & Chung, J. (2005). Size effects on miniature Stirling cycle cryocoolers. Cyogenics

45 , p. 537-545.

79

APPENDIX A

Temperature Solution Algorithm

Apply first initial condition for matrix (i=1,2,...Nz)

Calculate matrix temperature using equation (2.42)

YES

Are calculations completed for all Nt?

Reverse the flow

(from hot to cold or vice versa)

Did steady state achieved?

NO

Calculate fluid temperature using equation (2.41) with constant temperature

boundary condition Tw for heating period Tc for cooling period

NO

Store matrix node temperatures

at the last time step

YES TERMINATE

Use the stored matrix node

temperatures as initial condition

80

1D Simulator Flow Chart

Obtain inputs

from user by

GUI

Calculate required parameters,

dimensionless numbers, common outputs ,

etc. with

CALCULATE.M

NO

Is wall

effect

included?

Is conduction

loss included?

NO

Calculate

Inefficiency with

SIMULATE3.M

Calculate Friction

Loss with

FRICLOSS.M

Display Results

by

GUI

YES

Calculate

Inefficiency with

SIMULATE1.M

YES

Calculate

Inefficiency with

SIMULATE2.M

81

APPENDIX B

MATLAB CODING

GUI_1d_Reg.m

function varargout = GUI_1d_Reg(varargin)

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @GUI_1d_Reg_OpeningFcn, ...
 'gui_OutputFcn', @GUI_1d_Reg_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before GUI_1d_Reg is made visible.
function GUI_1d_Reg_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI_1d_Reg (see VARARGIN)

% Choose default command line output for GUI_1d_Reg
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

82

% UIWAIT makes GUI_1d_Reg wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = GUI_1d_Reg_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in SOLVE.
function SOLVE_Callback(hObject, eventdata, handles)
% hObject handle to SOLVE (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

clc

timeStart = tic;
k=findobj('Tag','done');
set(k,'Visible','off');

pause(0.01);

k=findobj('Tag','busy');
set(k,'Visible','on');

pause(0.01);

set(handles.regeneratorlength,'String','');
set(handles.regeneratormass,'String','');
set(handles.porosity,'String','');
set(handles.hd,'String','');
set(handles.massflowrate,'String','');
set(handles.Re,'String','');
set(handles.St,'String','');
set(handles.capacityratio,'String','');
set(handles.NTU,'String','');
set(handles.inefficiency,'String','');
set(handles.Tcf,'String','');
set(handles.Thf,'String','');
set(handles.Qz,'String','');
set(handles.Qfric,'String','');
set(handles.simQx,'String','');
set(handles.simQw,'String','');
set(handles.runtime,'String','');

longcond = get(handles.longcond,'Value');
walleffect = get(handles.walleffect,'Value');

rD = str2num(get(handles.screendiameter,'String'));
wD = str2num(get(handles.wirediameter,'String'));

83

NOS = str2num(get(handles.numberofscreens,'String'));
flow_rate = str2num(get(handles.flowrate,'String'));
Tc = str2num(get(handles.Tc,'String'));
Tw = str2num(get(handles.Tw,'String'));
Nz = str2num(get(handles.Nz,'String'));
Nt = str2num(get(handles.Nt,'String'));
max_period = str2num(get(handles.maxperiod,'String'));
freq = str2num(get(handles.freq,'String'));
t_wl = str2num(get(handles.wallthickness,'String'));

matrixmaterial= get(handles.matrixmaterial,'Value');
meshdensity= get(handles.meshdensity,'Value');

[rL M porosity hd m_dot Re St Cr NTU ineff Th_out_ave Tc_out_ave Qz...
 Qfric simQx simQw] = calculate(matrixmaterial,meshdensity,rD,wD,...
 NOS,flow_rate,Tc,Tw,Nz,Nt,max_period,freq,t_wl,longcond,walleffect);

set(handles.regeneratorlength,'String',round(rL*10000)/100);
set(handles.regeneratormass,'String',(round(M*100000))/100);
set(handles.porosity,'String',(round(porosity*1000))/1000);
set(handles.hd,'String',(round(hd*1000000))/1000);
set(handles.massflowrate,'String',(round(m_dot*100000))/100);
set(handles.Re,'String',round(Re));
set(handles.St,'String',(round(St*100))/100);
set(handles.capacityratio,'String',round(Cr));
set(handles.NTU,'String',round(NTU));
set(handles.inefficiency,'String',(round(ineff*100))/100);
set(handles.Tcf,'String',(round(Th_out_ave*10))/10);
set(handles.Thf,'String',(round(Tc_out_ave*10))/10);
set(handles.Qz,'String',(round(Qz*100))/100);
set(handles.Qfric,'String',(round(Qfric*100))/100);

if simQx==0;
 set(handles.simQx,'String','N/A');
else
 set(handles.simQx,'String',(round(simQx*100))/100);
end

if simQw==0;
 set(handles.simQw,'String','N/A');
else
 set(handles.simQw,'String',(round(simQw*100))/100);
end

timeTotal = toc(timeStart);
set(handles.runtime,'String',(round(timeTotal*10))/10);

pause(0.01);

k=findobj('Tag','busy');
set(k,'Visible','off');

pause(0.01);

k=findobj('Tag','done');
set(k,'Visible','on');

84

% --- Executes on selection change in matrixmaterial.
function matrixmaterial_Callback(hObject, eventdata, handles)
% hObject handle to matrixmaterial (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function matrixmaterial_CreateFcn(hObject, eventdata, handles)
% hObject handle to matrixmaterial (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function screendiameter_Callback(hObject, eventdata, handles)
% hObject handle to screendiameter (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','screendiameterslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function screendiameter_CreateFcn(hObject, eventdata, handles)
% hObject handle to screendiameter (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function screendiameterslider_Callback(hObject, eventdata, handles)
% hObject handle to screendiameterslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','screendiameter');
set(H,'string',num2str(x));

85

% --- Executes during object creation, after setting all properties.
function screendiameterslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to screendiameterslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end
function wirediameter_Callback(hObject, eventdata, handles)
% hObject handle to text55 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','wirediameterslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function wirediameter_CreateFcn(hObject, eventdata, handles)
% hObject handle to text55 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function wirediameterslider_Callback(hObject, eventdata, handles)
% hObject handle to wirediameterslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','wirediameter');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function wirediameterslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to wirediameterslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on selection change in meshdensity.
function meshdensity_Callback(hObject, eventdata, handles)

86

% hObject handle to meshdensity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function meshdensity_CreateFcn(hObject, eventdata, handles)
% hObject handle to meshdensity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function numberofscreens_Callback(hObject, eventdata, handles)
% hObject handle to numberofscreens (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','numberofscreensslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function numberofscreens_CreateFcn(hObject, eventdata, handles)
% hObject handle to numberofscreens (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function numberofscreensslider_Callback(hObject, eventdata, handles)
% hObject handle to numberofscreensslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','numberofscreens');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function numberofscreensslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to numberofscreensslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

87

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function flowrate_Callback(hObject, eventdata, handles)
% hObject handle to flowrate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','flowrateslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function flowrate_CreateFcn(hObject, eventdata, handles)
% hObject handle to flowrate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function flowrateslider_Callback(hObject, eventdata, handles)
% hObject handle to flowrateslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','flowrate');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function flowrateslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to flowrateslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function Tc_Callback(hObject, eventdata, handles)

88

% hObject handle to Tc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','Tcslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function Tc_CreateFcn(hObject, eventdata, handles)
% hObject handle to Tc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function Tcslider_Callback(hObject, eventdata, handles)
% hObject handle to Tcslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','Tc');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function Tcslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Tcslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function Tw_Callback(hObject, eventdata, handles)
% hObject handle to Tw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','Twslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.

89

function Tw_CreateFcn(hObject, eventdata, handles)
% hObject handle to Tw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function Twslider_Callback(hObject, eventdata, handles)
% hObject handle to Twslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','Tw');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function Twslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Twslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function Nz_Callback(hObject, eventdata, handles)
% hObject handle to Nz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','Nzslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function Nz_CreateFcn(hObject, eventdata, handles)
% hObject handle to Nz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

90

% --- Executes on slider movement.
function Nzslider_Callback(hObject, eventdata, handles)
% hObject handle to Nzslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','Nz');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function Nzslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Nzslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function Nt_Callback(hObject, eventdata, handles)
% hObject handle to Nt (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','Ntslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function Nt_CreateFcn(hObject, eventdata, handles)
% hObject handle to Nt (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function Ntslider_Callback(hObject, eventdata, handles)
% hObject handle to Ntslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','Nt');
set(H,'string',num2str(x));

91

% --- Executes during object creation, after setting all properties.
function Ntslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Ntslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function maxperiod_Callback(hObject, eventdata, handles)
% hObject handle to maxperiod (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','maxperiodslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function maxperiod_CreateFcn(hObject, eventdata, handles)
% hObject handle to maxperiod (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function maxperiodslider_Callback(hObject, eventdata, handles)
% hObject handle to maxperiodslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','maxperiod');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function maxperiodslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to maxperiodslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))

92

 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function freq_Callback(hObject, eventdata, handles)
% hObject handle to freq (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');
H=findobj('Tag','freqslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function freq_CreateFcn(hObject, eventdata, handles)
% hObject handle to freq (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function freqslider_Callback(hObject, eventdata, handles)
% hObject handle to freqslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','freq');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function freqslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to freqslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function wallthickness_Callback(hObject, eventdata, handles)
% hObject handle to wallthickness (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'string');

93

H=findobj('Tag','wallthicknessslider');
set(H,'value',str2num(x));

% --- Executes during object creation, after setting all properties.
function wallthickness_CreateFcn(hObject, eventdata, handles)
% hObject handle to wallthickness (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function wallthicknessslider_Callback(hObject, eventdata, handles)
% hObject handle to wallthicknessslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

x=get(gco,'value');
H=findobj('Tag','wallthickness');
set(H,'string',num2str(x));

% --- Executes during object creation, after setting all properties.
function wallthicknessslider_CreateFcn(hObject, eventdata, handles)
% hObject handle to wallthicknessslider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in longcond.
function longcond_Callback(hObject, eventdata, handles)
% hObject handle to longcond (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of longcond

% --- Executes on button press in walleffect.

94

function walleffect_Callback(hObject, eventdata, handles)
% hObject handle to walleffect (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of walleffect

function edit12_Callback(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function edit12_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function regeneratorlength_Callback(hObject, eventdata, handles)
% hObject handle to regeneratorlength (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function regeneratorlength_CreateFcn(hObject, eventdata, handles)
% hObject handle to regeneratorlength (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function regeneratormass_Callback(hObject, eventdata, handles)
% hObject handle to regeneratormass (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function regeneratormass_CreateFcn(hObject, eventdata, handles)
% hObject handle to regeneratormass (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

95

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
function St_Callback(hObject, eventdata, handles)
% hObject handle to St (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function St_CreateFcn(hObject, eventdata, handles)
% hObject handle to St (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function fluidheatcapacity_Callback(hObject, eventdata, handles)
% hObject handle to fluidheatcapacity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function fluidheatcapacity_CreateFcn(hObject, eventdata, handles)
% hObject handle to fluidheatcapacity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function capacityratio_Callback(hObject, eventdata, handles)
% hObject handle to capacityratio (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function capacityratio_CreateFcn(hObject, eventdata, handles)
% hObject handle to capacityratio (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.

96

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function NTU_Callback(hObject, eventdata, handles)
% hObject handle to NTU (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function NTU_CreateFcn(hObject, eventdata, handles)
% hObject handle to NTU (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function inefficiency_Callback(hObject, eventdata, handles)
% hObject handle to inefficiency (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function inefficiency_CreateFcn(hObject, eventdata, handles)
% hObject handle to inefficiency (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function porosity_Callback(hObject, eventdata, handles)
% hObject handle to porosity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function porosity_CreateFcn(hObject, eventdata, handles)
% hObject handle to porosity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

97

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
function runtime_Callback(hObject, eventdata, handles)
% hObject handle to runtime (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% --- Executes during object creation, after setting all properties.
function runtime_CreateFcn(hObject, eventdata, handles)
% hObject handle to runtime (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function hd_Callback(hObject, eventdata, handles)
% hObject handle to hd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function hd_CreateFcn(hObject, eventdata, handles)
% hObject handle to hd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Re_Callback(hObject, eventdata, handles)
% hObject handle to Re (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function Re_CreateFcn(hObject, eventdata, handles)
% hObject handle to Re (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...

98

 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function massflowrate_Callback(hObject, eventdata, handles)
% hObject handle to massflowrate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function massflowrate_CreateFcn(hObject, eventdata, handles)
% hObject handle to massflowrate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Tcf_Callback(hObject, eventdata, handles)
% hObject handle to Tcf (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function Tcf_CreateFcn(hObject, eventdata, handles)
% hObject handle to Tcf (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Thf_Callback(hObject, eventdata, handles)
% hObject handle to Thf (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function Thf_CreateFcn(hObject, eventdata, handles)
% hObject handle to Thf (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

99

if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Qz_Callback(hObject, eventdata, handles)
% hObject handle to Qz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function Qz_CreateFcn(hObject, eventdata, handles)
% hObject handle to Qz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Qfric_Callback(hObject, eventdata, handles)
% hObject handle to Qfric (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function Qfric_CreateFcn(hObject, eventdata, handles)
% hObject handle to Qfric (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function simQx_Callback(hObject, eventdata, handles)
% hObject handle to simQx (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function simQx_CreateFcn(hObject, eventdata, handles)
% hObject handle to simQx (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...

100

 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function simQw_Callback(hObject, eventdata, handles)
% hObject handle to simQw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function simQw_CreateFcn(hObject, eventdata, handles)
% hObject handle to simQw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

101

Calculate.m

function [rL M porosity hd m_dot Re St Cr NTU ineff Th_out_ave...
 Tc_out_ave Qz Qfric simQx simQw]= calculate(matrixmaterial,...
 meshdensity,rD,wD,NOS,flow_rate,Tc,Tw,Nz,Nt,max_period,freq,...
 t_wl,longcond,walleffect)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convert Parameters to suitable units
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rD=rD*1E-3; % mm to m
wD=wD*1E-3; % mm to m
meshdensity=100+meshdensity*50; % dropdown menu number to
 % number of mesh openings per inch

lambda=1/(2*freq); % -s- flow period
t_wl=t_wl*1E-3; % mm to m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Matrix Material Selection
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if matrixmaterial==1
 density_m= 6430; % [kg/m3] Regenerator Density
 a= 0.97; % [-] Thermal Conductivity Constant
 Cp_m= 103.35; % [J/kg-K] Matrix Specific Heat
 Km0= 0.7; % [-] Thermal Conductivity Constant
elseif matrixmaterial==2
 density_m= 7800;
 a= 0.8;
 Cp_m= 300;
 Km0= 3.5;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Regenerator Property Calculation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t_sc=wD*2.2; % [m] Screen thickness
rL=NOS*t_sc*1.0444; % [m] Regenerator Length
meshsize=meshdensity*100/2.54; % [1/m] Size of a square mesh
beta=2*pi*wD*meshsize/t_sc; % [1/m] Area Density
idealporosity=1-(pi*meshsize*wD/4); % [-] Ideal Porosity
porosity=idealporosity;
rh=porosity/beta; % [m] Hydraulic Radius
hd=4*rh; % [m] By definition Dh=4*rh
Ar=(rD^2)*pi/4; % [m2] Frontal Area
As=beta*Ar*wD*2*NOS*1.0444; % [m2] Heat Transfer Area
Am=Ar*(1-idealporosity); % [m2] Matrix Area Normal
 % to the flow

M=Ar*rL*(1-idealporosity)*density_m; % [kg] Total Regenerator Mass
HC_m=M*Cp_m; % [J/K] Matrix Heat Capacity

102

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Wall Property Calculation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Cp_wl= 500; % [J/kg.K] Wall Material Specific Heat
density_wl= 7800; % [kg/m3] Wall Material Density
b= 0.38; % [-] Wall Thermal Conductivity Constant
Awl_s= pi*t_wl*(2*rD+t_wl); % [m2] Wall Section Area
Awl_h= 2*pi*rD*rL; % [m2] Wall Heat Transfer Area
Mwl= Awl_s*rL*density_wl; % [kg] Wall Mass
HC_wl= Mwl*Cp_wl; % [J/K] Wall Heat Capacity
Kwl0= 14.5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fluid Property Calculation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mu_f= 1.44e-5; % [Pa.s] Dynamic Fluid Viscosity
K_f= 0.1; % [W/m-K] Fluid Thermal Conductivity
den_f= 0.15; % [kg/m3] Fluid Density
Cp_f= 5.19E3; % [J/kg-K] Fluid Specific Heat

m_dot=flow_rate*den_f; % [kg/s] Mass Flow Rate
HC_f=m_dot*Cp_f; % [W/K] Fluid Heat Capacity
Pr=Cp_f*mu_f/K_f; % [-] Prandtl Number
G=m_dot/(Ar*porosity); % [kg/m2.s] Mass Flow Rate Per Unit Area
Re=G*4*rh/mu_f; % [-] Reynolds Number
St=0.68*(Re^-0.4)*(Pr^-0.667); % [-] Stanton Number

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Regenerator Property Calculation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

NTU=St*rL/(2*rh); % [-] Number of Transfer Units
h=NTU*2*HC_f/As; % [W/m2-K] Heat transfer Coefficent
Cr=HC_m/(HC_f*lambda); % [-] Capacity Ratio

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Execute the simulation & Calculate inefficiecy,
% Outlet Temperatures & Losses
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if walleffect==1;
 [ineff Th_out_ave Tc_out_ave Qz simQx simQw] = simulate1(Nz,Nt,...
 max_period,Tw,Tc,a,b,Km0,Kwl0,h,As,Am,Awl_h,HC_m,HC_f,HC_wl,...
 lambda,rL,Awl_s,m_dot,Cp_f);
elseif longcond==1;
 [ineff Th_out_ave Tc_out_ave Qz simQx] = simulate2(Nz,Nt,...
 max_period,Tw,Tc,a,Km0,h,As,Am,HC_m,HC_f,lambda,rL,m_dot,Cp_f);
 simQw=0;
else
 [ineff Th_out_ave Tc_out_ave Qz] = simulate3(Nz,Nt,max_period,...
 Tw,Tc,h,As,HC_m,HC_f,lambda,m_dot,Cp_f);
 simQx=0;
 simQw=0;
end
[Qfric] = fricloss(G,rL,den_f,rh,m_dot,Re,porosity,mu_f,hd);

103

Simulate1.m

function [ineff Th_out_ave Tc_out_ave Qz simQx simQw]= simulate1(Nz,...
 Nt,max_period,Tw,Tc,a,b,Km0,Kwl0,h,As,Am,Awl_h,HC_m,HC_f,HC_wl,...
 lambda,rL,Awl_s,m_dot,Cp_f)

 [ineff_w Th_out_ave_w Tc_out_ave_w]=...
 Ideal_Reg_Model_Long_Cond_and_Wall_Effect(Nz,Nt,max_period,...
 Tw,Tc,a,b,Km0,Kwl0,h,As,Am,Awl_h,HC_m,HC_f,HC_wl,lambda,rL,Awl_s);

 [ineff_c Th_out_ave_c Tc_out_ave_c]=Ideal_Reg_Model_Long_Cond...
 (Nz,Nt,max_period,Tw,Tc,a,Km0,h,As,Am,HC_m,HC_f,lambda,rL);

 [ineff_i Th_out_ave_i Tc_out_ave_i]=Ideal_Reg_Model(Nz,Nt,...
 max_period,Tw,Tc,h,As,HC_m,HC_f,lambda);

Th_out_ave=Th_out_ave_w;
Tc_out_ave=Tc_out_ave_w;
ineff=0.0352+ineff_w;

Qz=m_dot*Cp_f*ineff_i*0.01*(Tw-Tc);
simQx=m_dot*Cp_f*(ineff_c-ineff_i)*0.01*(Tw-Tc);
simQw=m_dot*Cp_f*(ineff-ineff_c)*0.01*(Tw-Tc);

104

Simulate2.m

function [ineff Th_out_ave Tc_out_ave Qz simQx]= simulate2(Nz,Nt,...
 max_period,Tw,Tc,a,Km0,h,As,Am,HC_m,HC_f,lambda,rL,m_dot,Cp_f)

 [ineff_c Th_out_ave_c Tc_out_ave_c]=Ideal_Reg_Model_Long_Cond(Nz,Nt,...
 max_period,Tw,Tc,a,Km0,h,As,Am,HC_m,HC_f,lambda,rL);

 [ineff_i Th_out_ave_i

Tc_out_ave_i]=Ideal_Reg_Model(Nz,Nt,max_period,...
 Tw,Tc,h,As,HC_m,HC_f,lambda);

Th_out_ave=Th_out_ave_c;
Tc_out_ave=Tc_out_ave_c;
ineff=ineff_c;

Qz=m_dot*Cp_f*ineff_i*0.01*(Tw-Tc);
simQx=m_dot*Cp_f*(ineff_c-ineff_i)*0.01*(Tw-Tc);

105

Simulate3.m

function [ineff Th_out_ave Tc_out_ave Qz]=

simulate3(Nz,Nt,max_period,Tw,Tc,...
 h,As,HC_m,HC_f,lambda,m_dot,Cp_f)

 [ineff_i Th_out_ave_i

Tc_out_ave_i]=Ideal_Reg_Model(Nz,Nt,max_period,...
 Tw,Tc,h,As,HC_m,HC_f,lambda);

Th_out_ave=Th_out_ave_i;
Tc_out_ave=Tc_out_ave_i;
ineff=ineff_i;

Qz=m_dot*Cp_f*ineff_i*0.01*(Tw-Tc);

106

Fricloss.m

function [Qfric] = fricloss(G,rL,den_f,rh,m_dot,Re,porosity,mu_f,hd)

a=0.715*(5.6+porosity*(-16.363+porosity*13.928));
Y=a*Re^-0.43;

if Re<=10;
 A=0.0074*Re;
elseif Re>10 && Re<=3000;
 A=0.129-0.0058*((log(Re/200))^2);
else
 A=0.149-0.0239*(log(Re/200));
end

dP=rL*Y*(Re^2)*(mu_f^2)/(A*(hd^3)*den_f); % Pressure Drop [Pa]
Qfric=m_dot*dP/den_f;

107

Ideal_Reg_Model.m

%%%
function [ineff_i Th_out_ave_i Tc_out_ave_i] = Ideal_Reg_Model(Nz,Nt,...
 max_period,Tw,Tc,h,As,HC_m,HC_f,lambda)
%%%

hot=1;
cold=2;

%%%
% NumericalVariables
%%%

delta_t=lambda/Nt; % [s] Time increment

Tm=zeros(2,Nt,Nz);
Tf=zeros(2,Nt,Nz);

Th_out_sum=0;
Tc_out_sum=0;

%%%
% CalcRegProp
%%%

delta_NTU=-(h*As/Nz)/HC_f;
delta_Cr=(HC_m/Nz)/(HC_f*delta_t);

%%%
% CalculateK
%%%

 K1=(1/(1+1/delta_Cr))*(1-exp((delta_NTU)*(1+1/delta_Cr)));
 K2=(1/(1+delta_Cr))*(1-exp((delta_NTU)*(1+1/delta_Cr)));

for p=1:1:max_period;

 %%%
 % HeatingPeriod
 %%%

 %%% Initial Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

 if p==1; % At the beginning a linear
 for i = 1:Nz % distrubution is assumed.
 Tm(hot,1,i)=Tw-(i-1)*(Tw-Tc)/Nz;
 end
 else
 for i=1:Nz
 Tm(hot,1,i)=Tm(cold,Nt,Nz-(i-1)); % In later stages matrix

108

 end % temperature distrubition
 end % is taken from previous
 % period (cooling period).
 %%% Boundry Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
 for j=1:Nt % Fluid hot end entrance
 Tf(hot,j,1)=Tw; % temperature is constant
 end % and equal to Tw at all times

 Th_out_sum_local=0;

 %%% Heating Period Calculations %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for j=1:(Nt)

 for i=1:(Nz)

 Tf(hot,j,i+1)=Tf(hot,j,i)-K1*(Tf(hot,j,i)-Tm(hot,j,i));
 Tm(hot,j+1,i)=Tm(hot,j,i)+K2*(Tf(hot,j,i)-Tm(hot,j,i));

 end
 Th_out_sum_local=Tf(hot,j,Nz)+Th_out_sum_local;
 end

 Th_out_ave_local=(Th_out_sum_local/Nt);
 Th_out_sum=Th_out_ave_local+Th_out_sum;

 %%%
 % CoolingPeriod
 %%%

 %%% Initial Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%

 for i=1:Nz % Initial matrix temperature
 Tm(cold,1,i)=Tm(hot,Nt,Nz-(i-1)); % distrubition is equal to
 end % the one at the end of
 % heating period
 %%% Boundry Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%

 for j=1:Nt % Fluid cold end entrance
 Tf(cold,j,1)=Tc; % temperature is constant and
 end % equal to Tc at all times

 Tc_out_sum_local=0;

 %%% Cooling Period Calculations %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for j=1:(Nt)

 for i=1:(Nz)

109

 Tf(cold,j,i+1)=Tf(cold,j,i)-K1*(Tf(cold,j,i)-Tm(cold,j,i));
 Tm(cold,j+1,i)=Tm(cold,j,i)+K2*(Tf(cold,j,i)-Tm(cold,j,i));

 end
 Tc_out_sum_local=Tf(cold,j,Nz)+Tc_out_sum_local;
 end

 Tc_out_ave_local=(Tc_out_sum_local/Nt);
 Tc_out_sum=Tc_out_ave_local+Tc_out_sum;

end

%%
% CalculateIneff
%%

Th_out_ave_i=Th_out_sum/(max_period);
Tc_out_ave_i=Tc_out_sum/(max_period);
eff=(Tw-Th_out_ave_i)/(Tw-Tc);

ineff_i=(1-eff)*100;

110

Ideal_Reg_Model_Long_Cond.m

%%
function [ineff_c Th_out_ave_c Tc_out_ave_c] =...
 Ideal_Reg_Model_Long_Cond(Nz,Nt,max_period,Tw,Tc,a,Km0,h,As,Am,...
 HC_m,HC_f,lambda,rL)
%%

hot=1;
cold=2;

%%%
% NumericalVariables
%%%

delta_t=lambda/Nt; % [s] Time increment

Tm=zeros(2,Nt,Nz);
Tf=zeros(2,Nt,Nz);

Th_out_sum=0;
Tc_out_sum=0;

%%%
% CalcRegProp
%%%

delta_z=rL/Nz;
delta_NTU=-(h*As/Nz)/HC_f;
delta_Cr=(HC_m/Nz)/(HC_f*delta_t);

%%%
% CalculateK
%%%

 K1=(1/(1+1/delta_Cr))*(1-exp((delta_NTU)*(1+1/delta_Cr)));
 K2=(1/(1+delta_Cr))*(1-exp((delta_NTU)*(1+1/delta_Cr)));
 K3i=Am*delta_t/((HC_m/Nz)*delta_z); %%% Without Km

 for p=1:1:max_period;

 %%%
 % HeatingPeriod
 %%%

 %%% Initial Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

 if p==1;
 for i = 1:Nz
 Tm(hot,1,i)=Tw-(i-1)*(Tw-Tc)/Nz;
 end

111

 else
 for i=1:Nz
 Tm(hot,1,i)=Tm(cold,Nt,Nz-(i-1));
 end
 end

 %%% Boundry Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
 for j=1:Nt
 Tf(hot,j,1)=Tw;
 end

 Th_out_sum_local=0;

 %%% Heating Period Calculations %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for j=1:(Nt)

 for i=1:(Nz)

 if i==1;
 Tm_p=2*(Tm(hot,j,i+1)-Tm(hot,j,i));
 Tm_dp=(Tm(hot,j,i+2)-2*Tm(hot,j,i+1)+Tm(hot,j,i));

 elseif i==Nz;
 Tm_p=2*(Tm(hot,j,i)-Tm(hot,j,i-1));
 Tm_dp=(Tm(hot,j,i-2)-2*Tm(hot,j,i-1)+Tm(hot,j,i));

 else
 Tm_p=(Tm(hot,j,i-1)-Tm(hot,j,i+1));
 Tm_dp=(Tm(hot,j,i-1)-2*Tm(hot,j,i)+Tm(hot,j,i+1));

 end

 Km=Km0*((Tm(hot,j,i)/300)^a);
 K3=K3i*Km;

 Tf(hot,j,i+1)=Tf(hot,j,i)-K1*(Tf(hot,j,i)-Tm(hot,j,i));
 Tm(hot,j+1,i)=Tm(hot,j,i)+K2*(Tf(hot,j,i)-Tm(hot,j,i))+...
 K3*(a*(Tm_p^2)/(4*Tm(hot,j,i))+Tm_dp);

 end
 Th_out_sum_local=Tf(hot,j,Nz)+Th_out_sum_local;
 end

 Th_out_ave_local=(Th_out_sum_local/Nt);
 Th_out_sum=Th_out_ave_local+Th_out_sum;

 %%
 % CoolingPeriod
 %%

 %%% Initial Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%

112

 for i=1:Nz
 Tm(cold,1,i)=Tm(hot,Nt,Nz-(i-1));
 end

 %%% Boundry Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
 for j=1:Nt
 Tf(cold,j,1)=Tc;
 end

 Tc_out_sum_local=0;

 %%% Cooling Period Calculations %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for j=1:(Nt)

 for i=1:(Nz)

 if i==1;
 Tm_p=2*(Tm(cold,j,i+1)-Tm(cold,j,i));
 Tm_dp=(Tm(cold,j,i+2)-2*Tm(cold,j,i+1)+Tm(cold,j,i));

 elseif i==Nz;
 Tm_p=2*(Tm(cold,j,i)-Tm(cold,j,i-1));
 Tm_dp=(Tm(cold,j,i-2)-2*Tm(cold,j,i-1)+Tm(cold,j,i));

 else
 Tm_p=(Tm(cold,j,i-1)-Tm(cold,j,i+1));
 Tm_dp=(Tm(cold,j,i-1)-2*Tm(cold,j,i)+Tm(cold,j,i+1));

 end

 Km=Km0*((Tm(cold,j,i)/300)^a);
 K3=K3i*Km;

 Tf(cold,j,i+1)=Tf(cold,j,i)-K1*(Tf(cold,j,i)-Tm(cold,j,i));
 Tm(cold,j+1,i)=Tm(cold,j,i)+K2*(Tf(cold,j,i)-...
 Tm(cold,j,i))+K3*(a*(Tm_p^2)/(4*Tm(cold,j,i))+Tm_dp);

 end
 Tc_out_sum_local=Tf(cold,j,Nz)+Tc_out_sum_local;
 end

 Tc_out_ave_local=(Tc_out_sum_local/Nt);
 Tc_out_sum=Tc_out_ave_local+Tc_out_sum;

 end
%%%
% CalculateIneff
%%%

Th_out_ave_c=Th_out_sum/(max_period);
Tc_out_ave_c=Tc_out_sum/(max_period);
eff=(Tw-Th_out_ave_c)/(Tw-Tc);
ineff_c=(1-eff)*100;

113

Ideal_Reg_Model_Long_Cond_and_Wall_Effect.m

%%%
function [ineff_w Th_out_ave_w Tc_out_ave_w] =...
 Ideal_Reg_Model_Long_Cond_and_Wall_Effect(Nz,Nt,max_period,...
 Tw,Tc,a,b,Km0,Kwl0,h,As,Am,Awl_h,HC_m,HC_f,HC_wl,lambda,rL,Awl_s)
%%%

hot=1;
cold=2;

%%%
% NumericalVariables
%%%

delta_t=lambda/Nt; % [s] Time increment
delta_z=rL/Nz; % [m] Distance increment

Tm=zeros(2,Nt,Nz);
Tf=zeros(2,Nt,Nz);
Twl=zeros(2,Nt,Nz);

Th_out_sum=0;
Tc_out_sum=0;

%%%
% CalcRegProp
%%%

delta_NTU=-(h*As/Nz)/HC_f;
delta_NTU_wl=-(h*Awl_h/Nz)/HC_f;

delta_Cr=(HC_m/Nz)/(HC_f*delta_t);
delta_Cr_wl=(HC_wl/Nz)/(HC_f*delta_t);

%%%
% CalculateK
%%%

 K1=(1/(1+1/delta_Cr))*(1-exp((delta_NTU)*(1+1/delta_Cr)));
 K2=(1/(1+delta_Cr))*(1-exp((delta_NTU)*(1+1/delta_Cr)));
 K3i=Am*delta_t/((HC_m/Nz)*delta_z); %%% Without Km

 K4=(1/(1+1/delta_Cr_wl))*(1-exp((delta_NTU_wl)*(1+1/delta_Cr_wl)));
 K5=(1/(1+delta_Cr_wl))*(1-exp((delta_NTU_wl)*(1+1/delta_Cr_wl)));
 K6i=Awl_s*delta_t/((HC_wl/Nz)*delta_z); %%% Without Kwl

114

for p=1:1:max_period;

 %%
 % HeatingPeriod
 %%

 %%% Initial Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

 if p==1;
 for i = 1:Nz
 Tm(hot,1,i)=Tw-(i-1)*(Tw-Tc)/Nz;
 Twl(hot,1,i)=Tw-(i-1)*(Tw-Tc)/Nz;
 end
 else
 for i=1:Nz
 Tm(hot,1,i)=Tm(cold,Nt,Nz-(i-1));
 Twl(hot,1,i)=Twl(cold,Nt,Nz-(i-1));
 end
 end

 %%% Boundry Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
 for j=1:Nt
 Tf(hot,j,1)=Tw;
 end

 Th_out_sum_local=0;

 %%% Heating Period Calculations %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for j=1:(Nt)

 for i=1:(Nz)

 if i==1;
 Tm_p=2*(Tm(hot,j,i+1)-Tm(hot,j,i));
 Tm_dp=(Tm(hot,j,i+2)-2*Tm(hot,j,i+1)+Tm(hot,j,i));
 Twl_p=2*(Twl(hot,j,i+1)-Twl(hot,j,i));
 Twl_dp=(Twl(hot,j,i+2)-2*Twl(hot,j,i+1)+Twl(hot,j,i));

 elseif i==Nz;
 Tm_p=2*(Tm(hot,j,i)-Tm(hot,j,i-1));
 Tm_dp=(Tm(hot,j,i-2)-2*Tm(hot,j,i-1)+Tm(hot,j,i));
 Twl_p=2*(Twl(hot,j,i)-Twl(hot,j,i-1));
 Twl_dp=(Twl(hot,j,i-2)-2*Twl(hot,j,i-1)+Twl(hot,j,i));

 else
 Tm_p=(Tm(hot,j,i-1)-Tm(hot,j,i+1));
 Tm_dp=(Tm(hot,j,i-1)-2*Tm(hot,j,i)+Tm(hot,j,i+1));
 Twl_p=(Twl(hot,j,i-1)-Twl(hot,j,i+1));
 Twl_dp=(Twl(hot,j,i-1)-2*Twl(hot,j,i)+Twl(hot,j,i+1));

 end

 Km=Km0*((Tm(hot,j,i)/300)^a);

115

 K3=K3i*Km;
 Kwl=Kwl0*((Twl(hot,j,i)/300)^b);
 K6=K6i*Kwl;

 Tf(hot,j,i+1)=Tf(hot,j,i)-K1*(Tf(hot,j,i)-Tm(hot,j,i))-...
 K4*(Tf(hot,j,i)-Twl(hot,j,i));
 Tm(hot,j+1,i)=Tm(hot,j,i)+K2*(Tf(hot,j,i)-Tm(hot,j,i))+...
 K3*(a*(Tm_p^2)/(4*Tm(hot,j,i))+Tm_dp);
 Twl(hot,j+1,i)=Twl(hot,j,i)+K5*(Tf(hot,j,i)-Twl(hot,j,i))+...
 K6*(b*(Twl_p^2)/(4*Twl(hot,j,i))+Twl_dp);
 end
 Th_out_sum_local=Tf(hot,j,Nz)+Th_out_sum_local;
 end

 Th_out_ave_local=(Th_out_sum_local/Nt);
 Th_out_sum=Th_out_ave_local+Th_out_sum;

 %%
 % CoolingPeriod
 %%

 %%% Initial Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
 for i=1:Nz
 Tm(cold,1,i)=Tm(hot,Nt,Nz-(i-1));
 Twl(cold,1,i)=Twl(hot,Nt,Nz-(i-1));
 end

 %%% Boundry Condition %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
 for j=1:Nt
 Tf(cold,j,1)=Tc;
 end

 Tc_out_sum_local=0;

 %%% Cooling Period Calculations %%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for j=1:(Nt)

 for i=1:(Nz)

 if i==1;
 Tm_p=2*(Tm(cold,j,i+1)-Tm(cold,j,i));
 Tm_dp=(Tm(cold,j,i+2)-2*Tm(cold,j,i+1)+Tm(cold,j,i));
 Twl_p=2*(Twl(cold,j,i+1)-Twl(cold,j,i));
 Twl_dp=(Twl(cold,j,i+2)-2*Twl(cold,j,i+1)+Twl(cold,j,i));

 elseif i==Nz;
 Tm_p=2*(Tm(cold,j,i)-Tm(cold,j,i-1));
 Tm_dp=(Tm(cold,j,i-2)-2*Tm(cold,j,i-1)+Tm(cold,j,i));
 Twl_p=2*(Twl(cold,j,i)-Twl(cold,j,i-1));
 Twl_dp=(Twl(cold,j,i-2)-2*Twl(cold,j,i-1)+Twl(cold,j,i));

 else

116

 Tm_p=(Tm(cold,j,i-1)-Tm(cold,j,i+1));
 Tm_dp=(Tm(cold,j,i-1)-2*Tm(cold,j,i)+Tm(cold,j,i+1));
 Twl_p=(Twl(cold,j,i-1)-Twl(cold,j,i+1));
 Twl_dp=(Twl(cold,j,i-1)-2*Twl(cold,j,i)+Twl(cold,j,i+1));

 end

 Km=Km0*((Tm(cold,j,i)/300)^a);
 K3=K3i*Km;
 Kwl=Kwl0*((Twl(cold,j,i)/300)^b);
 K6=K6i*Kwl;

 Tf(cold,j,i+1)=Tf(cold,j,i)-K1*(Tf(cold,j,i)-Tm(cold,j,i))...
 -K4*(Tf(cold,j,i)-Twl(cold,j,i));
 Tm(cold,j+1,i)=Tm(cold,j,i)+K2*(Tf(cold,j,i)-Tm(cold,j,i))...
 +K3*(a*(Tm_p^2)/(4*Tm(cold,j,i))+Tm_dp);
 Twl(cold,j+1,i)=Twl(cold,j,i)+K5*(Tf(cold,j,i)-...
 Twl(cold,j,i))+K6*(b*(Twl_p^2)/(4*Twl(cold,j,i))+Twl_dp);
 end
 Tc_out_sum_local=Tf(cold,j,Nz)+Tc_out_sum_local;
 end

 Tc_out_ave_local=(Tc_out_sum_local/Nt);
 Tc_out_sum=Tc_out_ave_local+Tc_out_sum;

end

%%%
% CalculateIneff
%%%

Th_out_ave_w=Th_out_sum/(max_period);
Tc_out_ave_w=Tc_out_sum/(max_period);
eff=(Tw-Th_out_ave_w)/(Tw-Tc);
ineff_w=(1-eff)*100;

