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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

JULY 2011



Approval of the thesis:

SERVICE MODELS FOR AIRLINE REVENUE MANAGEMENT PROBLEMS
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Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Sinan Kayalıgil
Head of Department, Industrial Engineering

Assoc. Prof. Dr. Zeynep Müge Avşar
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ABSTRACT

SERVICE MODELS FOR AIRLINE REVENUE MANAGEMENT PROBLEMS

Eroğlu, Fatma Esra

M.Sc., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Zeynep Müge Avşar

July 2011, 165 pages

In this thesis, the seat inventory control problem is studied for airlines from the per-

spective of a risk-averse decision maker. There are only a few studies in the revenue

management literature that consider the risk factor. Most of the studies aim at finding

the optimal seat allocations while maximizing the expected revenue and do not take

the variability of the revenue and hence a risk measure into account. This study aims

to decrease the variance of the revenue by increasing the capacity utilization called

load factor in the revenue management literature. In addition to expected revenue,

load factor is an important performance measure the state companies work with. For

this purpose, two types of models with load factor formulations are proposed. This

thesis is the first study in the revenue management literature for the airline industry

that uses the load factor formulations in the mathematical models. It is an advantage

to work with load factor formulations since the models with load factor formulations

are much easier to formulate and solve as compared to other risk sensitive models in

the literature. The results of the proposed models are evaluated by using simulation

for a sample network under different scenarios. The models we propose allow us to
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control the variability of revenue by changing the used capacity of the aircraft. This

is at the expense of a decrease in the revenue under some scenarios. The models we

propose perform satisfactorily under all scenarios and they are strongly recommended

to be used especially for the small-scale airline companies and state companies and

for scheduling new flights even in large scale, well established airline companies.

Keywords: Revenue Management, Seat Inventory Control, Load Factor, Risk, Math-

ematical Models
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ÖZ

HAVAYOLU GELİR YÖNETİMİ PROBLEMLERİ İÇİN SERVİS MODELLERİ

Eroğlu, Fatma Esra

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Zeynep Müge Avşar

Temmuz 2011, 165 sayfa

Bu tezde, havayolu ağları için koltuk stok kontrolü problemi risk almak istemeyen

bir karar vericinin bakış açısıyla incelenmektedir. Havayolları için gelir yönetimi lit-

eratüründe risk faktörünü göz önüne alan sadece birkaç çalışma bulunmaktadır. Bu

çalışmaların birçoğu beklenen gelir için en yüksek değeri bulmaya çalışırken, en uy-

gun koltuk dağılımını bulmayı amaçlamaktadır ve gelirin değişkenliğini ve dolayısıyla

bir risk ölçütünü dikkate almamaktadır. Bu çalışma gelir yönetimi literatüründe dolu-

luk oranı olarak adlandırılan kapasite kullanımını arttırarak, gelirin değişkenliğini

azaltmayı amaçlamaktadır. Beklenen gelire ek olarak doluluk oranı devlet kontrolündeki

havayolu şirketlerinin kullandığı önemli bir peformans ölçütüdür. Bu amaçla, dolu-

luk oranlarının modellendiği iki tip matematiksel model önerilmektedir. Bu tez,

havayolları için gelir yönetimi literatüründeki matematiksel modellerde doluluk oranı

formülasyonlarını kullanan ilk çalışmadır. Doluluk oranı formulasyonlarıyla çalışmak,

bu modellerin literatürdeki diğer riske duyarlı çalışmalarla karşılaştırıldığında çok

daha kolay modellenmesi ve çözülmesi açısından bir avantajdır. Önerilen modeller-

den elde edilen sonuçlar örnek bir havayolu ağı için, farklı senaryolar altında simülasyon
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kullanılarak değerlendirilmektedir. Bu simulasyon çalışmalarının sonuçlarına göre

önerdiğimiz modeller uçağın kullanılan kapasitesini arttırarak gelirin değişkenliğini

kontrol altında tutulmasına olanak sağlamaktadır. Öte yandan, bu durum bazı senary-

olar altında gelirde bir azalmayı da beraberinde getirebilmektedir. Önerdiğimiz mod-

eller bütün senaryolar altında tatmin edici bir performans göstermektedir ve özellikle

küçük ölçekli havayolu şirketleri ve devlet kontrolündeki havayolu şirketleri ile yeni

uçuş çizelgelemesi yapacak olan büyük ölçekli, oturmuş havayolu şirketleri için şiddetle

tavsiye edilmektedir.

Anahtar Kelimeler: Gelir Yönetimi, Koltuk Stok Kontrolü, Doluluk Oranı, Risk,

Matematiksel Modeller
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CHAPTER 1

INTRODUCTION

Revenue management (RM) is defined as a tool to maximize the revenue via demand

management decisions. Revenue management is also called as Yield management

(YM). There are many definitions for RM in the airline industry but the most common

one is due to the American Airlines: “Selling the right seats to the right people at

the right time.” According to Pak and Piersma (2002), RM is defined as “the art of

maximizing profit generated from a limited capacity of a product over a finite horizon

by selling each product to the right customer at the right time for the right price.”

Revenue management dates back to the deregulation of the airline industry in USA in

1970s. That is why revenue management is most successfully applied in the airline

industry. To state it more clearly, the following typical characteristics of the airline

industry, which enable a successful application of RM, are listed.

• The products are perishable. That is, the unsold seats at the departure time of

the flight cannot be sold later.

• The main component of the airline operating costs is the fixed costs of the flight,

such as fuel costs, airport costs and personnel costs. That is, the marginal cost

of an extra passenger is very low when compared to the fixed costs. Therefore,

the marginal cost of a passenger is assumed to be zero.

• Passengers have different characteristics. Therefore, revenue maximization is

done by finding the right combination of the passengers.

Besides the airline industry, RM has a wide application area. The industries, where
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the demand decisions are critical, define the application area of the revenue man-

agement. Hotels, media and broadcasting, natural gas storage and transmission, car

rental, retailing, air cargo, theaters, restaurants, sport events, electricity generation

and transmission are the examples for the RM application areas.

As Pak and Piersma (2002) state in their study, “RM is a powerful strategy in the

markets, where the companies try to sell a fixed amount of product in a limited season

and there are customers willing to pay different amounts of money for the products.”

Customer segmentation and price discrimination are mostly used strategies in those

environments. Product differentiation is done by offering different prices for differ-

ent customer segments and change the available mix of the prices during the selling

period.

The scope of this thesis is the revenue management applications in the airline industry.

The RM problem in the airline industry is defined as managing the flight capacities

in a network. The objective of the airline RM problem is to maximize the revenue

of the already scheduled flights. Flight scheduling is a structural decision for airline

companies and is out of the scope of the revenue management.

The flights in a network can be in local or connecting traffic. In a local traffic, there is

a direct flight from one node to another node. In a connecting traffic, however, there is

a node called the hub of the network, which is an airport that an airline uses to transfer

the passengers to their intended destination. The journey between an origin node and

a destination node is called an itinerary. A product is defined as an origin-destination-

fare combination and abbreviated as ODF. In single-leg flights (local traffic), there

is only one origin destination pair and therefore the products are defined for the fare

classes. However, the number of origin destination pairs increases in network (con-

necting) traffic. Therefore, network traffics is more complex.

Customer segments determine the fare classes in the airline industry. The type of

customers and the condition of the tickets may differ from one customer segment

to another. There are basically two customer types: business traveler and leisure

traveler. The base of this customer segmentation is done according to the arrival time

of the customers. Leisure travelers arrive earlier than business travelers, in general.

Customer types can also be classified according to the location of the seats in the
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aircrafts, such as first, business and economy class.

The conditions of the tickets are also important in defining the customer segments.

The fare is one of the factors to determine the condition of the tickets. The tickets

are classified as low price tickets (discounted fares) and high price tickets (full fare

tickets). Low price tickets are generally offered to leisure travelers to attract them at

the beginning of the booking horizon and to increase the used capacity of the flight.

High fare tickets are generally offered to the business travelers. Another factor to

determine the condition of the tickets is the options they have. Cancellation, refund,

overnight stay and advance purchase are the examples of those options. The high fare

tickets generally have some options such as cancellation and partial/full refund. Can-

cellation enables a customer to cancel his/her ticket and get a partial or full refund.

Some passengers do not arrive at the time of departure without cancellation. This is

called no-show.

The load factor is defined as the ratio of the seats filled on a flight to the total number

of seats available and is an important performance measure for the airline companies.

Offering discounted fares increases the load factor. On the other hand, offering full

fare tickets increases the revenue earned per passenger, which is also a performance

measure for the airline companies. As can be seen, RM aims at constructing a strat-

egy to balance the conflicting objectives. In order to prevent empty departure of the

aircrafts, overbooking is used. Overbooking means selling more tickets than capacity.

Overbooking is used to cope with cancellations and no-shows.

There are two approaches for RM problems in the airline industry: capacity alloca-

tion, also called seat inventory control and dynamic pricing. Talluri and Van Ryzin

(2005) define the former as the Quantity based RM and the latter as Price Based

RM. In the seat inventory control approach, the decision maker is responsible for de-

termining the capacity allocations. Based on the capacity allocations, the decision

maker accepts or rejects the incoming ticket requests. The tickets are multi-type and

differ in options, in terms of trade and/or in price. The changing parameter for the

customer is the availability of the tickets during the booking period. That is, the tick-

ets are opened for sale at the beginning of the booking period and, as the time to the

flight departure gets shorter, the classes are closed. On the contrary to the seat inven-
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tory control approach, in dynamic pricing approach there is only one product and the

changing parameter for the customer is the price of it. The price of the ticket changes

throughout the booking period depending on the realized demand.

The application area of the aforementioned two approaches is directly related to the

characteristics of the market. For a market like online retailing, where the price flex-

ibility is high, dynamic pricing can be considered as an appropriate approach. Price

felexibility refers to the ease of manipulation of the prices. That is, price flexible

markets are able to change or update the prices of the products easily. For restaurants

or that kind of markets, however, the price flexibility is low but the supply flexibility

is high. Supply flexibility refers to the ease of manipulation of the availibility of the

products. That is, the availibility of the products in restaurants or that kind of mar-

kets is easier to manipulate or update than the prices of the products. Therefore, seat

inventory control is a more appropriate approach in such markets. Most of the airline

companies prefer to work with the seat inventory control. They announce their prices

over a given time interval and do not update them frequently. Moreover, the only

variable that must be stored and announced is the status of the product, whether it is

open or close. Therefore, seat inventory control is easy to implement and is mostly

preferred by the airline companies. This thesis also focuses on seat inventory control.

There are two main headings under seat inventory control: Single Leg Seat Inventory

Control and Network Seat Inventory Control. In the single-leg seat inventory control,

there is only one origin destination pair isolated from the other flights in the network.

This approach is far from being realistic since it optimizes the booking limits locally.

In real life however, the airline companies aim to maximize the revenue for the whole

network. In order to defeat this disadvantage of single-leg control, network seat in-

ventory control deals with all of the legs in a network simultaneously. However, as

the size of the network increases, the complexity of the network seat inventory control

also increases, which is its main disadvantage.

It is expected that the decision maker implements the optimal seat allocations in a

framework to decide on accepting or rejecting an arriving request for a product. The

mentioned framework is drawn by the control polices. There are three control poli-

cies used for the RM problems in airline industry: Partitioned Control Policy, Nested
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Control Policy and Bid Price Control Policy. In partitioned control policy, each fare

class has a separate booking limit or protection level, which means a seat allocated to

a fare class cannot be booked for another fare class. In nested booking limit control

policy, the fare classes are ordered according to some criteria and the seats that are

available for a low ranked fare class are also available for higher ranked ones. In bid

price control policy, a request is accepted if the fare of the class exceeds the opportu-

nity cost of selling the corresponding itinerary. The opportunity cost of an itinerary

is defined as the expected loss in the revenue from using the capacity now rather than

reserving it for future use. The opportunity cost is approximately calculated as the

sum of the bid prices of the flight legs that the itinerary uses. A bid price is defined

as the net value of an incremental seat on a particular flight leg in the airline network.

Similarly, shadow price is defined as an increment in the revenue in case one more

seat is allocated to a particular ODF when all other allocations remain unchanged.

In bid price control policy, the class is open without any limit as long as the fare of

the ODF exceeds the opportunity cost of selling the corresponding itinerary. This is

the main difference between bid price control policy and the other control policies

working with booking limits or protection levels.

The mathematical models developed for RM problems in airline industry are of two

types: deterministic models and probabilistic models. Deterministic models assume

that the demand of a particular ODF is equal to the expected value. Probabilistic

models, on the other hand, include the probabilistic nature of the demand.

Most of the RM studies in the literature assume that the decision makers are risk-

neutral. These studies mostly aim at maximizing the expected revenue. Therefore,

the variability of revenue or any other risk factor such as competition in the market

and the utility functions of the customers are not taken into account. However, it

is quite important in the short term to include the risk factor especially for small-

scale airline companies or for new flights. Small-scale airline companies are more

vulnerable to risk as compared to large-scale, well established companies. They can

change their routes according to the variations of demand whereas large scale, well

established airline companies are not highly affected from demand variations. As

Terciyanlı (2009) states in his study, the fares are relatively close and no spesific or-

der of arrival is assumed in small-scale airline companies different than large-scale,
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well established airline companies. Therefore, small-scale companies try to increase

the capacity utilization to increase the revenue earned. Large-scale companies, on

the other hand, may achieve the same revenue as small-scale companies do by much

lower fill rate with the help of the difference between fares. This situation also in-

creases the risk for small-scale companies. Moreover, new flights can be more risky

when compared to the existing ones even for the large scale airline companies. Iso-

lating the risk factor from the framework of the problem results in the ignorance of

the decision maker behavior. Without considering the behavior of the decision maker,

the decision makers are treated as if they all have the same risk reaction pattern. As a

result, the solution of the problem diverges from the reality.

The scope of this thesis is to handle a network seat inventory control problem by

taking the risk factor into account. By incorporating the risk factor, the risk reaction

pattern of the decision maker is taken into account in this thesis. The assumptions

used in this study are as follows.

• Overbooking, cancellations and no-shows are not allowed.

• A shift between classes do not occur. That is, customers make their decisions

for the fare class that they request.

• Batch booking is not allowed. That is, individual customers are assumed to

arrive sequentially.

Two types of mathematical models are proposed in this thesis to find the optimal

seat allocations by incorporating the load factor into the models. Although the load

factor is an important performance measure considered to compare other alternative

approaches, there is no study in the literature that directly uses the load factor for-

mulations in the mathematical models. That is, this thesis is the first study in the

RM literature for the airline industry that uses the load factor formulations in the

mathematical models. The results of the numerical analysis in this thesis justify the

observations of Terciyanlı (2009) regarding the relation between the load factor and

the variance of the revenue. That is, the variance of the revenue and the load factor

are negatively correlated. As Terciyanlı (2009) states in his study, “decreasing risks

causes an increase in the load factors”. In accordance with these observations due
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to Terciyanlı (2009), it is shown in this thesis that the variance of the revenue can be

controlled by increasing the load factor. It is an advantage to work with load factor

formulations to control the variance of the revenue since the models with load factor

formulations are much easier to formulate and solve as compared to the models due to

Çetiner (2007) and Terciyanlı (2009). Moreover, linearity is maintained in this thesis

by load factor formulations. The maximization of the capacity utilization is an impor-

tant performance measure that is used especially by the state airline companies under

government regulation. Therefore, direct use of load factor for these airline compa-

nies is also appropriate. For airline RM problems, there exists a trade-off between

the expected revenue and the capacity utilization of the aircraft, in general. Both the

expected revenue and the capacity utilization are tried to be maximized. However,

these objectives mostly conflict. In order to resolve this trade-off, both expected rev-

enue and expected load factor are incorporated into mathematical models proposed in

this thesis. That is, this thesis contibutes to the literaute about MCDM (Multi Criteria

Decision Making). There are two criteria to be maximized: expected load factor and

expected revenue. As a result of the numerical analysis, it is observed that there exists

an efficient frontier for these objectives.

One type of the models we propose in this thesis aim at maximizing the expected

revenue while working with service level constraints on the expected load factors. In

these models, the service level is a predetermined threshold level. The other type of

models we propose aim at maximizing a weighted average of the expected load factors

of the network legs or maximizing the minimum expected load factor of the legs in the

network while ensuring that the expected revenue is always above a predetermined

threshold level. The variability of the revenue is taken into account in these two

types of models by investigating the relation between load factor and risk aversion

of the decision makers. The risk aversion is evaluated on the basis of the variation.

Standard deviation and coefficient of variation of the revenue are two risk measures

used in this thesis. The impact of a change in the load factor on these risk measures

is investigated to take the variability of the revenue into account. The main advantage

of the proposed models is the simplicity of their application since they are easy to

formulate and solve. The models we propose do not have non-linear formulations.

Moreover, no approximation is needed to solve the models we propose different than
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the models proposed by Terciyanlı (2009). We only use LP relaxations to solve the

proposed models due to integrality constraints. The probabilistic nature of demand is

taken into account in those proposed mathematical models.

The organization of the thesis is as follows: In Chapter 2, the related literature for RM

problems is reviewed by introducing the notation that is used throughout the thesis.

After mentioning the single-leg RM problems briefly, network seat inventory control

models are presented in more detail. The risk sensitive models we propose are given

in Chapter 3. In Chapter 4, we propose the bound models to determine the range of

the threshold levels that are used in two types of models we propose in Chapter 3.

The numerical ranges for the threshold levels in the proposed models are determined

in Chapter 5 for a sample network due to de Boer (1999). Moreover, the numerical

analysis and interpretations of our proposed risk sensitive models are also presented

in this chapter. Chapter 6 is devoted to the simulation studies. In this chapter, the

seat allocations and the bid prices obtained from the mathematical models are studied

in simulation models for partitioned, nested and bid price controls. Moreover, the

models we propose are compared to the existing models in the literature in Chapter

6. The thesis ends with the concluding remarks and suggestions for future research in

Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

When the literature for the revenue management is reviewed from its point of origin

in the airline industry, it is seen that the revenue management problems are handled

basically in two ways: either by manipulating the capacity allocations of the airline

flights, which is called seat inventory control or by manipulating the prices of the

flight tickets, which is called dynamic pricing. Talluri and van Ryzin (2005) classify

these two approaches as Quantity based RM and Price based RM, respectively.

As mentioned in Chapter 1, seat inventory control and dynamic pricing approaches

differ in the following points of view.

• The aim of the decision maker is to determine the seat allocations in the seat

inventory control and the changing parameter for customers is the availability

of the products (tickets) during the booking period. On the other hand, the

aim of the decision maker is to determine the price of the products (tickets) in

dynamic pricing and the changing parameter for customers is the price.

• In seat inventory control, there are multiple types of tickets that differ in options.

There is only one product in dynamic pricing.

• In seat inventory control, the decision of accepting or rejecting an incoming

request is based on the seat allocations. In dynamic pricing, this decision is

based on the price of the tickets, that changes throughout the booking period

depending on the realized demand and the remaining time.

• The characteristics of the market determine the application area of these two

approaches. As stated in Chapter 1, for markets having high price flexibility,
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dynamic pricing is an appropriate approach. On the other hand, for markets

having low price flexibility but high supply flexibility, seat inventory control is

appropriate.

Although both of the seat inventory control and dynamic pricing approaches are used

in the airline industry, seat inventory control is a more preferred approach. The fol-

lowing observations are due to Talluri and van Ryzin (2005). In the airline industry,

most of the companies announce their price lists over a given time interval and do not

update them frequently due to three reasons. One of them is the advertising concerns:

announcing new prices to customers increases the operational costs. The second rea-

son is the fact that the prices are not solely under the control of the company itself

but are affected by the strategies of other companies. Therefore, it can be deducted

that the prices are, in a way, determined by the market, especially for small scale

companies. The last reason is the easy implementation of the approach since the

only parameter to be stored is the availability information of the products. Since the

scope of this thesis excludes price manipulation, our interest in this chapter is on the

literature of seat inventory control problems.

There are two main research areas for seat inventory control problems in the literature:

Single-Leg Seat Inventory Control and Network Seat Inventory Control. In single-leg

seat inventory control problems, only a single flight leg is considered. In the network

seat inventory control problems, a number of itineraries having connecting flights are

considered aiming at the optimization for the whole network. Network seat inventory

control problems gained popularity at the beginning of the 1990’s by the changing

environment of airline industry. Network traffics including connecting flights began

to be used instead of single leg flights. Improvement in computational skills via

computers started enabling the optimization of the network.

In this chapter, firstly the studies on single-leg seat inventory control problems are

summarized in Section 2.1. The studies on the network seat inventory control prob-

lems are reviewed in Section 2.2. The studies that take the risk factor into account are

presented in Section 2.3. Section 2.4 is devoted to the review of three control policies

applied for network seat inventory control; namely, partitioned control, nested control

and bid price control. The notation introduced in this chapter is used throughout the
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thesis.

2.1 Single-Leg Seat Inventory Control Problems

The concern of the single-leg inventory control problems is to allocate the seats of a

single-leg flight to different customer types. In the literature, this problem is handled

either with static or dynamic controls. For the static control case, the main assumption

is the sequential arrival of the customers. For the dynamic control case, this assump-

tion is relaxed. The assumptions for the static control case are listed by McGill and

Talluri van Ryzin (1999) as follows:

1. single flight leg,

2. sequential arrival of different customer classes,

3. low-before-high arrival pattern (a low fare class customer books earlier than all

of the passengers from higher fare classes),

4. statistically independent demands of the booking classes,

5. no cancellation, no-show and overbooking,

6. no batch booking.

The first study in the area of seat inventory control is due to Littlewood (1972). It is

the first study that aims at maximizing the expected revenue by using mathematical

formulations. In his study, all of the six assumptions of the static control case are

considered for only two fare classes. In this study, it is suggested that a request of a

lower fare class customer should be rejected in case the expected revenue of selling

that seat to a higher fare class customer exceeds the lower fare.

The study of Littlewood (1972) inspired later studies in the literature. Mayer (1976)

extends the study of Littlewood (1972) by updating the rule more than once through-

out the booking period before the departure time via a simulation study. The assump-

tion of low-before-high arrival pattern is relaxed in this study. Thereafter, Belobaba
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(1987) extends the study of Littlewood (1972) for more than two fare classes. More-

over, he develops a heuristic called Expected Marginal Seat Revenue (EMSR) in order

to determine the booking limits for each fare class. The booking limits obtained by

using the EMSR heuristic may turn out to be much different than the optimal book-

ing limits. However, Curry (1990), Wollmer (1992), Brumelle and McGill (1993)

and Robinson (1995) observe that the revenue obtained by using the heuristic is quite

close to the optimal revenue.

Curry (1990), Wollmer (1992), Brumelle and McGill (1993) also derive optimal

booking limits for different fare classes by using the six assumptions for static control

case. However, the demand distributions are different in these studies. For instance,

Curry (1990) considers a continuous demand distribution and gives a recursive equa-

tion in order to determine the booking limits for each fare class. Wollmer (1992) uses

real life discrete demand data while trying to determine the booking limits for fare

classes. In the study of Brumella and McGill (1993), a booking limit control policy

is developed that takes both continuous and discrete demand data into account.

Robinson (1995) relaxes the assumption of low-before-high arrival pattern for the

multiple fare class problem. In his study, he assumes that all of the customers of a

fare class book before any customers of another fare class. The main assumption of

the static control is relaxed for the dynamic control: low-before-high arrival pattern.

The first study on dynamic control is due to Lee and Hersh (1993). In this study, the

batch booking assumption is also relaxed and it is allowed to book more than one seat

for a request. Moreover, a discrete-time dynamic programming model is developed

and the expected revenue is determined via a recursive function.

Lautenbacher and Stidham (1999) use a finite horizon Markov Decision Process to

present the similarities and differences between static and dynamic control for single

leg problems. In this study, cancellations, no-shows and overbooking are not allowed.

Subramanian et al. (1999) extend the study of Lee and Hersh (1993) by incorporating

cancellation, no-shows and overbooking. They show that the problem can be handled

as a queuing system and the optimal booking policy is characterized by determining

booking limits for the fare classes that are both time and state dependent. Their study

reveals that the booking limits need not to be monotonic. Moreover, it is observed that
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it may be optimal to accept a low fare class rather than high one due to probability of

cancellation.

Gosavi et al. (2002) consider a Semi Markov Decision Process and use the technique

called Reinforcement Learning. In this study, random cancellation, overbooking and

concurrent demand arrivals from different fare classes are allowed.

2.2 Network Seat Inventory Control Problems

As mentioned previously, the single-leg seat inventory control problems started to

lose their popularity as the structure of the airline industry changes dramatically. With

this structural change in the airline industry, it has become difficult to fly from one

point to another directly. Transfer centers, which are called hubs, began to be used

to transfer the passengers from one flight to another. The concern in the network

inventory seat control problems is to allocate the seats of different flight legs in a

network to different customer segments.

The mathematical models that are used for the network seat inventory control prob-

lems are classified into two groups: deterministic models and probabilistic models.

The deterministic models assume that the demand of an ODF is the same as its ex-

pected value. In probabilistic models, on the other hand, probabilistic nature of the

demand is taken into account.

In Section 2.2.1, the notation and assumptions used for the network seat inventory

control problems are provided. The studies in the literature that are performed on

network seat inventory control are reviewed in Section 2.2.2.

2.2.1 Notation

The legs between origins and destinations are defined as resources. m denotes the

resources in a network. As defined in Chapter 1, a product which is called as ODF,

refers to an origin-destination-fare combination and n denotes the number of products

offered on those legs in the network. Demand of each ODF is assumed to be inde-

pendent of the others. The passengers are not allowed to switch from one fare class
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to another fare class. The fares of the products are assumed to be known and they are

constant throughout the reservation period. Recall that an itinerary is a trip from an

origin to a destination.

The notation used in the network seat inventory control is as follows:

j : index for the products (ODFs) in the network, j = 1, ..., n,

l : index for the resources of the network, which are the flight legs, l = 1, ...,m,

S l : set of ODFs that use flight leg l,

T j : set of flight legs that are on the route of ODF j,

Cl : available capacity of flight leg l,

f j : the fare of ODF j,

D j : random variable for demand of ODF j in the booking period.

2.2.2 An Overview of the Studies

The first study for network seat inventory control is due to Buhr (1982) with two legs

and one fare class. In this study, the notion of expected marginal revenue of a seat

is defined. A network A-B-C with legs AB and BC is used as the sample network in

this study.

Glover et al. (1982) performs the first study in the literature on a large network.

Demand is assumed deterministic and integer programming is used to model a maxi-

mum profit network flow. The suggested integer programming is called Deterministic

Mathematical Programming (DMP) and is given below. This model is a “constrained

knapsack” problem.

DMP : Maximize
n∑

j=1

f jx j (2.1)

subject to∑
j∈S l

x j ≤ Cl for l = 1, ...,m, (2.2)

x j ≤ E(D j) for j = 1, ..., n, (2.3)

x j ≥ 0 and integer for j = 1, ..., n. (2.4)

The only decision variable of the model, x j, represents the number of seats allocated

14



to ODF j. Constraint (2.2) is the capacity constraint. The sum of the allocations for

all ODFs on a particular leg is forced to be smaller than or equal to the capacity of that

leg via constraint (2.2). Recall that S l represents the set of ODFs using leg l. E(D j)

in (2.3) is the expected demand of ODF j and it is required to be an upper bound

for allocation of ODF j. The model maximizes the total revenue. DMP is a simple

model and can be used to find the seat allocations for ODFs. However, it does not

take the stochastic nature of the demand into account and that is the major drawback

of it. That is why it is called a deterministic model. It is an interesting observation

that DMP gives higher revenues when compared to the other probabilistic models in

the literature. This phenomena is widely discussed in the literature. Almost all of

the studies agree on the fact that deterministic as well as probabilistic models ignore

nesting due to computational complexities. Nesting is incorporated by the simulation

models. However this ignorance in the optimization models results in more severe re-

sults in probabilistic models. That is why DMP outperforms the probabilistic models.

It is important to note that the demand forecasting quality affects the performance of

the model.

The linear relaxation of this model is considered by Williamson (1992) and it is called

Deterministic Linear Programming (DLP). The model is relaxed by allowing the de-

cision variable, x j, to take values between 0 and 1. The need for the relaxation stems

from the integrality of the decision variable, x j. Integrality causes computational

burden and increases the solution time. However, a meaningful solution for a seat al-

location would be an integer. At that point Williamson (1992) claims that DLP model

provides integer solutions when integer expected demand values are used in the model

since the upper and lower bounds on the decision variables are integer. However, de

Boer (1999) disproves the claim of Williamson (1992) by a counterexample where

the bounds on each variable are integer but the solution is not.

DMP and its relaxed model DLP are the only deterministic models in the literature.

Other models in the literature on network seat inventory control take the stochastic

nature of the demand into account and, therefore, they are called the “Probabilistic

Models”. The first probabilistic model introduced is called Probabilistic Mathemati-

cal Programming Model and its abbreviation is PMP. The model is also called PNLP

(Probabilistic Non-Linear Programming) due to its non-linear characteristics. The
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model is given below.

PMP : Maximize E(
n∑

j=1

f j min{x j,D j}) (2.5)

subject to∑
j∈S l

x j ≤ Cl for l = 1, ...,m, (2.6)

x j ≥ 0 and integer for j = 1, ..., n. (2.7)

As in the DMP model, the decision variable x j represents the number of seats allo-

cated to ODF j. Actually, the definitions given for the DMP model is common for all

of the models to be given in this chapter. The probabilistic nature of this model stems

from the inclusion of the probability distribution of demand in the objective function

by selecting the minimum of seats allocated to a particular ODF j and the demand

realized for that ODF j. In case the realized demand exceeds the number of seats

allocated, all of the allocated seats are sold. In the opposite case, the number of seats

sold is just equal to the realized demand.

Due to its non-linearity, PMP is hard to solve. There are efforts in the literature to re-

lax the model. However, the mentioned relaxation is a remedy only for the integrality

of the decision variable x j but not for the non-linear characteristics of the objective

function. As mentioned before, Williamson (1992) shows that deterministic model

DLP outperforms the probabilistic models in terms of obtained revenue since both

deterministic and probabilistic models ignore a nested environment. When this phe-

nomenon is viewed in terms of PMP, the tendency of the probabilistic models can

be better perceived. The probabilistic models allocate more seats to high fare class

customers in order to obtain upward potential of high fare demand. This fact results

in overprotection in terms of revenue. Since the uncertainty of demand is not incorpo-

rated into the deterministic models, they do not have such a tendency like allocating

more seats to high fare classes and this fact becomes an advantage for them in a nested

environment.

Wollmer (1986) proposes a linear probabilistic model for a multi-leg, multi-fare class

problem. The model is based on the expected marginal revenues of the seats and is

called Expected Marginal Revenue (EMR) model. The model is given below.
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EMR : Maximize
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) (2.8)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (2.9)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j. (2.10)

Different from DMP and PMP, a binary decision variable, x j(i), is introduced in this

model. The definition of the new decision variable is given as follows:

x j(i) =

 1 if i or more seats are allocated to ODF j,

0 otherwise.
(2.11)

x j can be expressed in terms of x j(i) as follows:

x j =

B j∑
i=1

x j(i), (2.12)

where B j is the maximum number of seats that can be allocated to ODF j. There are

alternative ways to determine the value of B j. As Terciyanlı (2009) summarizes in his

study, the capacities of the legs which are used by ODF j are taken into consideration

while determining the value of B j. Mostly, the maximum capacity of the legs which

are used by ODF j is accepted as the value of B j in case overbooking is not allowed.

That is,

B j = max
l∈T j
{Cl}. (2.13)

The EMR model maximizes the expected total marginal revenues of seats in the ob-

jective function. The only constraint is the capacity constraint. The model is hard

to solve since it contains large number of binary variables. Williamson (1992) sug-

gests to use the linear relaxation (LP) of the model and claims that the relaxation also

provides integer solutions that are in accordance with the definition in (2.11). The

following remark is useful in showing that the LP relaxation of the EMR model gives

also integer results.

Remark 2.2.2.1 (due to Williamson 1992) P(D j ≥ i) is a monotonically decreasing

function of i. This functional behavior ensures the following for an optimal solution
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of EMR and its LP relaxation: x j(i + 1) cannot take a positive value unless x j(i) is

equal to 1. In other words, x j(i + 1) can take a positive value only if x j(i) is equal to

1.

Although the integrality problem is solved with the relaxation, EMR is still hard to

solve for large networks due to large number of variables.

de Boer (1999) proposes a stochastic model, Stochastic Linear Programming (SLP),

in which she uses the demand aggregation. In this sense, SLP is proposed as an

approximation of EMR. In her study, de Boer (1999) partitions the demand into inter-

vals rather than considering each value of demand separately. The formulation of the

model is as follows:

S LP : Maximize
n∑

j=1

f jx j −
n∑

j=1

f j

κ j∑
k=1

P(D j < d j(k))x j(k) (2.14)

subject to∑
j∈S l

x j ≤ Cl for l = 1, ...,m, (2.15)

x j =

κ j∑
k=1

x j(k) for j = 1, ..., n, (2.16)

x j(1) ≤ d j(1) for j = 1, ..., n, (2.17)

x j(k) ≤ d j(k) − d j(k − 1) for j = 1, ..., n, and k = 2, ..., κ j, (2.18)

x j(k) ≥ 0 for j = 1, ..., n, and k = 1, ..., κ j. (2.19)

Recall that B j in EMR is defined as the maximum capacity of the legs which are used

by ODF j. Similarly, κ j in SLP is the maximum number of demand groups. The

decision variable x j(k) represents the number of seats allocated to the demand that

falls in the interval (d j(k − 1), d j(k)). The sum of x j(k)s over k is equal to x j used in

DLP and PMP. The first term in the objective function represents the total revenue

that would be generated if all of the allocated seats are sold. The second term is a

correction factor for the uncertainty of the demand. de Boer et al. (2002) show that

the linear relaxation of EMR is just a special case of SLP, where each demand interval

is of unit size. For this special case, the objective function of SLP can be rewritten as
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follows:

n∑
j=1

κ j∑
k=1

f jP(D j ≥ d j(k))x j(k) (2.20)

by letting (d j(k + 1) − d j(k)) = 1 and d j(1) = 1 for all j and k. In this case, κ j = B j.

SLP can be simplified by increasing the number of aggregation groups. However, the

solution quality decreases in that case.

Until the study of Simpson (1989), booking limit controls are used in order to deter-

mine the allocation of seats. Simpson (1989) is the first one to develop the concept of

bid price control for seat allocation decisions. Recall from Chapter 1 that bid price is

defined as the net value for an incremental seat on a particular flight leg in the airline

network. In the bid price control, a seat is sold if the fare of the class exceeds the op-

portunity cost of selling the corresponding itinerary. As mentioned in Chapter 1, the

opportunity cost is approximately calculated as the sum of bid prices of the legs that

the itinerary uses. Simpson (1989) and Williamson (1992) use deterministic linear

programming models to obtain the bid prices. They suggest to use the dual prices of

the capacity constraints as the bid prices of the network legs.

Williamson (1992) develops the concept of bid price control policy. Demand ag-

gregation and simulation are the techniques that Williamson (1992) benefits from in

her study. Her study reveals that the deterministic models perform better than the

probabilistic models as mentioned before. In that sense, her study has inspired the

following studies in the literature.

Talluri and van Ryzin (1998) also study on bid price control and derived the structure

of the dynamic optimal control policy. In this study, they mostly analyze the theoreti-

cal basis of the control policy. One of the important result of this study is that the bid

price control is not optimal in general when leg capacities and sales volumes are not

large enough. It is revealed that the bid prices are asymptotically optimal for large

networks. They propose a model which is called Randomized Linear Programming

(RLP). This model is the randomized version of DLP. In this model, a set of demand

realizations are considered and the model is solved for every demand realization. It is

claimed that RLP provides a slight improvement in revenue when compared to DLP.

The formulation of the model is as follows:
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RLP : Maximize
n∑

j=1

f jx j (2.21)

subject to∑
j∈S l

x j ≤ Cl for l = 1, ...,m, (2.22)

0 ≤ x j ≤ d j for j = 1, ..., n. (2.23)

where d j is the specific demand realization. Via RLP, Talluri and van Ryzin (1998)

obtain approximate bid price of leg l by taking the average of dual variables of (2.22)

for a specified set of demand realizations. The set of demand realization used is big

enough to ensure the reliability of the results.

Another research area in the network seat inventory control is overbooking. As de-

fined in Chapter 1, overbooking is allowing the total sales volume to be greater than

the capacity of the flight. In spite of including a risk factor, overbooking increases

the capacity utilization significantly due to presence of random cancellations and no-

shows. The first study on overbooking is due to Beckmann (1958). In this study, a

non-dynamic optimization model is proposed. Shlifer and Vardi (1975) propose an

overbooking model, which is used for a single-leg flight with a single type of passen-

ger. They develop this model also for a single-leg flight with two types of passengers

and for two-leg flight. McGill and van Ryzin (1999) also perform related studies on

overbooking. Biyalogorky et al. (1999) suggest to accept a high fare customer even

if there is no remaining capacity and to cancel the ticket of a low fare class customer

by paying a compensation. Ringbom and Shy (2002) propose the so called adjustable

curtain strategy, which enables overbooking in favor of high fare customers. In this

strategy, economy and business classes are adjusted before boarding. Karaesmen and

van Ryzin (2004) propose a two-stage optimization in order to determine the over-

booking levels. The requests are accepted in the first stage with the probabilistic

knowledge of cancellations. In the second stage, the passengers who do not cancel

their tickets are assigned to several inventory classes and the assignment penalties are

minimized.
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2.3 An Overview of the Risk-Sensitive Studies

All of the studies reviewed so far in this chapter aim at maximizing the revenue by

determining the seat allocations and they do not take the risk factor into account.

However, one may prefer to work with risk sensitive approaches according to the

market conditions and this is mostly the case for real life situations. This thesis also

has the consideration of the risk factor.

Incorporating risk factors is a relatively new research area for revenue management

although it is studied for many inventory control problems. There are only a few risk

sensitive revenue management studies in the literature that incorporate the variability

of the revenue, the utility functions of the customers or the competition in the mar-

ket. Most of the risk sensitive revenue management studies are on dynamic pricing.

The studies due to Feng and Xiao (1999), Lancester (2003), Weatherford (2004) and

Chen et al. (2006), Barz and Waldman (2007) and Levin et al. (2008) are risk sensi-

tive revenue management studies on dynamic pricing. Since the scope of this thesis

excludes the price manipulation of the products, only the studies on risk sensitive seat

inventory control are reviewed in this section.

One of the risk sensitive studies is due to Lancester (2003). He uses sensitivity anal-

ysis rather than a direct incorporation of risk aversion into the mathematical models.

Weatherford (2004) and Chen et al. (2006) aim at maximizing the expected utility

instead of expected revenue. Barz and Waldmann (2007) propose a Markov Decision

Process for static and dynamic single leg revenue management problem by using the

exponential utility functions. Levin et al. (2008) study optimal dynamic pricing of

perishable goods and products.

There are only two studies in the literature on network seat inventory control that

directly take the risk factor into account in the models. These studies have inspired the

study in this thesis. One of those studies due to Çetiner (2007) and Çetiner and Avşar

(2011) incorporates variance of the revenue into the models. The authors propose

two SLP based models. The first model proposed, EMVLP-1, aims at maximizing the

expected revenue while penalizing the variance of the revenue by a given factor. The
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model is given below.

EMVLP − 1 : Maximize
n∑

j=1

κ j∑
k=1

f jP(D j ≥ k)x j(k)

−θ
n∑

j=1

κ j∑
k=1

x j(k) f 2
j P(D j ≥ k)P(D j < k) (2.24)

subject to∑
j∈S l

κ j∑
k=1

x j(k) ≤ Cl for l = 1, ...,m, (2.25)

x j(1) ≤ d j(1) for j = 1, ..., n, (2.26)

x j(k) ≤ d j(k) − d j(k − 1) for j = 1, ..., n, and k = 2, ..., κ j,(2.27)

x j(k) ≥ 0 for j = 1, ..., n, and k = 1, ..., κ j. (2.28)

First term of the objective function is the expected marginal revenue. The second

terms is the penalty that is applied on the variance of the revenue by the penalty

factor θ. Note that the formulation for variance is an approximation and is given for

the independent demand case. All of the constraints are the same as the one that is

used in SLP. That is why we call this model an SLP based model. By changing the θ

values, expected revenue and its variation can be controlled. However, it is not easy

to set or determine the θ values. Therefore, the model is not practical to use for every

day operational decisions.

The second model proposed by Çetiner (2007) and Çetiner and Avşar (2011), EMVLP-

2, aims at maximizing the total expected revenue. The variance of the revenue is
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incorporated into the model using a constraint. The model is given below.

EMVLP − 2 : Maximize
n∑

j=1

κ j∑
k=1

f jP(D j ≥ k)x j(k) (2.29)

subject to∑
j∈S l

κ j∑
k=1

x j(k) ≤ Cl for l = 1, ...,m, (2.30)

x j(1) ≤ d j(1) for j = 1, ..., n, (2.31)

x j(k) ≤ d j(k) − d j(k − 1)for j = 1, ..., n, and k = 2, ..., κ j,(2.32)
n∑

j=1

κ j∑
k=1

x j(k) f 2
j P(D j ≥ k)P(D j < k) ≤

ρ
∑

j

∑
k

x j(k) f jP(D j ≥ k), (2.33)

x j(k) ≥ 0 for j = 1, ..., n, and k = 1, ..., κ j. (2.34)

Different than EMVLP-1, the penalty factor with θ is dropped from the objective

function in EMVLP-2. The constraint on the ratio of the expected value and the

variance of the revenue is used. Çetiner and Avşar (2011) propose to use the two

models together in a procedure. EMVLP-1 is solved first and the ratio of the expected

value and variance of the total revenue is found as the output of the model. Thereafter,

EMVLP-2 is solved by using the output of EMVLP-1 as the ρ value on the right hand

side of its additional constraint to find optimal seat allocations and bid prices. The

results of both models are compared to our models proposed in this thesis in Chapter

6.

The second risk sensitive study in the literature on network seat inventory control is

due to Terciyanlı (2009). Terciyanlı (2009) proposes a lexicographic optimization

approach using two models, namely PMP-RM-1 and PMP-RM-2. The abbreviation

PMP-RM stands for Probabilistic Mathematical Programming with Risk Measure.

Terciyanlı (2009) proposes to solve two models sequentially. PMP-RM-1, which

minimizes the probability that the revenue is less than a threshold level, is solved

first. The set of optimal solutions of PMP-RM-1 is used as the set of feasible region

of PMP-RM-2 and PMP-RM-2 is solved over this feasible region. The models are
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given below.

PMP − RM − 1 : Minimize
∑

d

p(d)v(d) (2.35)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (2.36)

Mv(d) ≥ −
∑

(i, j)∋d j≥i

f jx j(i) + L for all d, (2.37)

M(1 − v(d)) ≥
∑

(i, j)∋d j≥i

f jx j(i) − L for all d, (2.38)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (2.39)

v(d) ∈ {0, 1} for all d. (2.40)

For a given seat allocation x, v(d) is the conditional probability that total revenue is

less than L given that the demand is equal to d = (d1, · · · , dn). v(d) is defined as a

binary decision variable since it is an indicator function. p(d) is the probability that

the demand vector is equal to d. M is a big number. Via constraints (2.37) and (2.38),

it is ensured that v(d) > 0 when total revenue is less than L for a given demand d.

PMP − RM − 2|v : Maximize
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) (2.41)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (2.42)

Mv(d) ≥ −
∑

(i, j)∋d j≥i

f jx j(i) + L for all d, (2.43)

M(1 − v(d)) ≥
∑

(i, j)∋d j≥i

f jx j(i) − L for all d, (2.44)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j. (2.45)

The set of optimal solutions of PMP-RM-1 is used as the feasible region of PMP-

RM-2 and the expected revenue is maximized in this feasible region. The optimal

v(d) values obtained from PMP-RM-1 are used as parameters in PMP-RM-2.

It must be noted here that there may exist an optimal allocation x* for PMP-RM-1 such

that x∗j(i
′) = 0 and x∗j(i

′′) = 1 for some j although i′′ > i′. This situation contradicts
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with Remark 2.2.2.1. However, Terciyanlı (2009) proves that there exists at least one

optimal allocation for PMP-RM-1 model and that is also a proper allocation in terms

of the definition of x j(i).

Terciyanlı (2009) proposes an approximation for PMP-RM models since they contain

high number of binary variables and therefore they are difficult to solve. Three ap-

proximations are used by Terciyanlı (2009). One of them is to use a given number

of demand realizations instead of considering all d. A set Ψ is defined as the set of

sample demand realizations. |Ψ| is the total number of demand realizations. Then, the

objective function in PMP-RM-1 becomes
∑

d∈Ψ
v(d)
|Ψ| . The other approximation used is

to relax the integrality constraints on x j(i) and v(d) both in PMP-RM-1 and PMP-

RM-2. The last approximation is rounding positive v(d) values that are less than 1 to

1 when PMP-RM-1 is solved without integrality constraints. Terciyanlı (2009) con-

siders the second and third approximations together and call the approximate model

obtained as PLP-RM, which stands for Probabilistic Linear Programming with Risk

Measure.

In order to decrease the computational time in solving the approximate PLP-RM mod-

els, the models are reformulated with aggregate demands as in SLP due to de Boer

(1999). The resulting models are called SLP-RM which stands for Stochastic Linear

Programming with Risk Measure.

Besides the lexicographic approach, Terciyanlı (2009) proposes another model PMP-

RC, which stands for Probabilistic Mathematical Programming with Risk Constraint.

The same risk measure, the probability that revenue is less than a threshold level

L, is used in the constraint while the expected revenue is maximized. The same

assumptions and approximations as the ones in the lexicographic approach are used
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in this model. The model is given below.

PMP − RC : Maximize
n∑

j=1

f jx j −
n∑

j=1

f j

κ j∑
k=1

P(D j ≤ d j(k))x j(k) (2.46)

subject to∑
j∈S l

κ j∑
k=1

x j(k) ≤ Cl for l = 1, ...,m, (2.47)

x j =

κ j∑
k=1

x j(k) for j = 1, ..., n, (2.48)

x j(1) ≤ d j(1), (2.49)

x j(k) ≤ d j(k) − d j(k − 1) for k = 2, ..., κ j, (2.50)∑
d∈ψ

v(d)
|ψ| < ρ, (2.51)

Mv(d) ≥ −
∑

(i, j)∋d j≥i

f jx j(i) + L for d ∈ Ψ, (2.52)

M(1 − v(d)) ≥
∑

(i, j)∋d j≥i

f jx j(i) − L for d ∈ Ψ, (2.53)

x j(k) ≥ 0 for j = 1, ..., n, and k = 1, ..., κ j, (2.54)

x j ≥ 0 for j = 1, ..., n, (2.55)

v(d) ∈ {0, 1} for d ∈ Ψ. (2.56)

ρ is a predetermined constant number between 0 and 1. Terciyanlı (2009) argues

that PMP-RC model is disadvantageous when compared to the SLP-RM models. The

following observations are due to Terciyanlı (2009). For a detailed discussion, the

reader is referred to Terciyanlı and Avşar (2011).

• Since PMP-RC is an integer programming formulation, it is harder to solve and

requires more computational time when compared to the SLP-RM models.

• In the SLP-RM models, there is only one parameter, L, to be determined. How-

ever, in PMP-RC both L and ρ should be determined.

• Dual prices, which are used as the bid prices, cannot be obtained via PMP-RC

due its integrality characteristics.

Terciyanlı (2009) also proposes a Randomized Risk Sensitive Procedure, whose ab-

breviation is RRS Procedure. The procedure is proposed not only for risk sensitive
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but also for risk taking decision makers. The procedure finds two bid prices for risk

sensitive and risk taking decision makers. The level of risk sensitivity can be changed

by adjusting the threshold level L. This study reveals the fact that risk sensitive deci-

sion makers tend to use lower bid prices as compared to risk taking decision makers.

The results of the models proposed by Terciyanlı (2009) are compared to our models

proposed in this thesis in Chapter 6.

2.4 Control Policies for Network Revenue Management Problems

In Section 2.1, 2.2 and 2.3, the studies on the revenue management are reviewed and

the mathematical models for network seat inventory control problems are presented.

The common aim of all those mathematical models presented is to obtain the opti-

mal seat allocations, which are also called booking limits and/or optimal bid prices.

This is called the optimization step of RM. It is expected that the decision maker im-

plements the optimal seat allocation solution and bid prices in a framework to make

acceptance-rejection decisions for an arriving request of a product (ODF). This step

is called the control step. The aforementioned framework is drawn by the control

policies that are studied in this section. These control policies are namely partitioned

booking limit control, nested booking limit control and bid price control. As an alter-

native to the booking limits, one may work with the protection levels.

2.4.1 Partitioned Control

This control policy is the simplest and the most straightforward control policy since

it directly uses the optimal seat allocations that are obtained from the mathemati-

cal models. As mentioned in the previous sections, the mathematical models do not

take the nested environment into account. Therefore, they automatically provide opti-

mal solutions for a partitioned environment. In partitioned booking limit control, the

booking limits are used only for the corresponding ODF. The unsold capacity of an

ODF cannot be sold to other ODFs even if they have higher fares. This is the major

drawback of the partitioned control policy. The revenue gained via partitioned control

policy is generally lower than the revenue obtained by nested and bid price control
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polices. Moreover, the load factor values obtained under the partitioned control is

generally less than the load factor values under nested or bid price control policies.

As Terciyanlı (2009) states in his study, one can overcome these drawbacks by updat-

ing the booking limits frequently. However, to update the booking limits one should

re-optimize the system and re-forecast the future demand. Therefore, the implemen-

tation of this control policy is impractical for airline industry and it is rarely used

despite its simplicity of implementation.

2.4.2 Nested Control

Recall that the major drawback of the partitioned control policy is not to allow selling

the unused capacity of an ODF to other ODFs, even if they have higher fares. Nested

booking limit control overcomes this drawback by ranking the fare classes. The main

philosophy of this ranking is to sell the unsold capacity of an ODF with a low ranked

fare to other ODFs with higher ranked fares. Therefore, the allocated seats of an ODF

with the lowest ranked fare is open to sale for all other higher ranked fare classes. The

booking limit of the ODF with the highest ranked fare class is equal to the capacity

of the aircraft.

Although it sounds simple to implement, it is a handicap to determine the rule of rank-

ing and this is the major difficulty encountered under this control policy. Williamson

(1992) proposes three ranking methods: nesting by fare classes, nesting by fares and

nesting by shadow prices. In the first, the ranking of the fare classes is done according

the class types. A full fare class is ranked higher than a low fare class for an itinerary.

That is, the allocated seats of a low fare class ODF can be sold to an ODF with full

fare class. This ranking does not take the following fact into consideration: the rev-

enue to be gained from a low fare class passenger with a long path can be higher than

the revenue to be gained from a full fare class passenger with a short path. Therefore,

the revenue to be gained from a low fare class passenger is sacrificed in order to gain

probably less revenue from a full fare class passenger. Due to this drawback, this

ranking generally gives poor results and is not preferred in the airline industry.

In the second ranking method, fare classes are ranked according to their fares. This

method was first proposed by Boeing Commercial Airplane Company. The itinerary
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which has the highest fare is ranked in the first position. In contrast to the first method,

the long path itineraries are ranked higher than the short path itineraries. However,

this does not mean that the long path itineraries contribute more to the revenue. The

fact that the long path itineraries may contribute less to the revenue is not taken into

account and it is the major drawback of this method since the low yield itineraries

with long paths can have access to an important amount of seats although they have

small number of seat allocations in the optimization models. Therefore, this method

also gives poor results for RM problems.

In the third method, ranking is performed according to the shadow prices. Recall

from Chapter 1 that shadow price is an increment in the revenue in case one more

seat is allocated to a particular ODF when all other allocations remain unchanged.

The assumption under this method is that the itineraries with high shadow prices con-

tribute to the revenue more than the itineraries with low shadow prices. Therefore,

the itineraries with high shadow prices are ranked higher than the itineraries with low

shadow prices. The determination of shadow prices for deterministic models such as

DLP is quite simple. The dual prices of the demand constraints can be used as the

shadow prices since there is a demand constraint associated with each ODF. How-

ever, it is not the case for probabilistic models due to the lack of demand constraints

associated with each ODF. de Boer et al. (2002) propose that an estimate can be

calculated for the shadow price of an ODF by using the dual prices of the capacity

constraints in the probabilistic models. The sum of dual prices of the legs that are

on the itinerary, which is used by an ODF, is accepted as the opportunity cost of that

ODF. The opportunity cost obtained is then subtracted from the fare of the ODF and

the net contribution of the ODF to the revenue is found.

The ranking methods proposed by Williamson (1992) are hard to implement. There-

fore, heuristics are developed. de Boer et al. (2002) propose a heuristic method for

nesting, which is also used in this thesis. The heuristic method works as follows.

• First of all, the capacities and number of booking requests that have been ac-

cepted so far are set to the initial values.

• A booking request arrives and is taken into consideration for acceptance.
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• The number of available seats for sale are calculated for each leg on the itinerary

that the ODF j uses. These seats are protected for fare classes that are ranked

higher than the current ODF j.

• The number of all available seats are found considering all legs on ODF j

by summing up the individual available seats on each leg. This seat number

obtained is compared to the remaining capacity of the flight. If the result of

the comparison is higher than zero, then the booking request is accepted and

capacity is decreased for the legs of ODF j by one. Finally, the number of

booking requests that are accepted is increased by one.

2.4.3 Bid Price Control

As an alternative to partitioned and nested control policies, Simpson (1989) and

Williamson (1992) propose bid price control policy for RM problems. The main

idea of this control policy is to set a threshold level and compare it to the fare of the

demand request. If the fare of the demand request is higher than the threshold level,

then the request is accepted. Otherwise, it is rejected and the fare class for this ODF

is called closed. The threshold level is calculated by summing up the dual prices of

the capacity constraints of the legs that the ODF uses. This threshold level definition

is the same as the definition of opportunity cost given by de Boer et al. (2002). Opti-

mality of such threshold levels results from the analysis of the dynamic programming

formulations in RM for investigating the structure of the optimal policy.

Bid price control is easy to implement since there are only two necessary information

to be kept: remaining capacity and class status. However, there is also a drawback of

the bid price control since there is no limit for accepting the demand requests as long

as its fare exceeds the bid price. Therefore, most of the capacity can be allocated to

a fare class, which has small contribution to the revenue. Williamson (1992) shows

that the results of partitioned booking limit control policy and bid price control policy

are quite close when the bid prices are updated frequently. However, frequent update

is generally impractical for airline industry since it is time consuming.
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CHAPTER 3

THE PROPOSED RISK-SENSITIVE APPROACH

As mentioned in Chapter 2, there are only a few studies in the airline industry that

take the risk factor into the account. Most of the studies aim at finding the optimal seat

allocations while maximizing the expected revenue and do not take the variability of

the revenue and hence a risk measure into account. Isolating the risk factor from the

framework of the problem results in ignoring the decision maker behavior. Without

considering the behavior of the decision maker in this respect, the decision makers

are treated as if they all have the same risk reaction pattern and as if they are risk

neutral. However, a decision maker may be risk-averse or risk-taking. As a result, the

solution of the problem diverge from the reality.

Recall that there are some studies available on risk aversion in the literature. Barz and

Waldmann (2007) propose a Markov Decision Process for static and dynamic single

leg revenue management problem by using the exponential utility functions. Levin et

al. (2008) study on optimal dynamic pricing of perishable goods and products, but

their field of study is not the airline industry. Different than those studies, this thesis

focuses on network structure rather than single leg applications and aims to determine

the optimal seat allocations without manipulating the prices of the products.

The study in this thesis is inspired by two studies on risk aversion for airline network

revenue management problems. One of these studies is due to Çetiner (2007) which

is the first study on seat allocation problems in the airline industry that takes the vari-

ability of the revenue into account. The other study is due to Terciyanlı (2009) which

restricts the probability that the revenue is less than a predetermined threshold level

for airline network revenue management problems. The relation between the studies
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due to Çetiner (2007), Terciyanlı (2009) and the study in this thesis is explained in

the subsequent paragraphs.

As mentioned in Chapter 1, expected revenue and capacity utilization are two con-

flicting criteria, which are aimed to be maximized simultaneously. However, there

exists no such study in the literature that handles both objectives together. So, it is

a trade-off whether to maximize the expected revenue or the capacity utilization of

the aircraft. This thesis deals with multi criteria decision making in order to resolve

this dilemma by handling expected revenue and expected load factor together. That

is, this thesis contributes to the multi criteria decision making literature while taking

the risk aversion into consideration.

In this chapter, two types of models are proposed to find the optimal seat alloca-

tions by incorporating the load factor into the risk neural models that maximize the

expected revenue. Although the load factor is an important performance measure

considered to compare alternative approaches, there is no existing study in the lit-

erature that direfctly uses the load factor formulations in the mathematical models.

The study in this thesis is inspired from the following observations due to Terciyanlı

(2009). Terciyanlı (2009) reveals in his study that the variability of the revenue de-

creases as load factor increases. That is, a negative correlation between the variability

of revenue and the load factor is observed in his study. Therefore, Terciyanlı (2009)

proposes the usage of load factor in the mathematical models in order to manage the

risks. The usage of load factor in the formulations provides an important advantage

for the decision makers since it is easier to formulate and solve as compared to the

models due to Çetiner (2007) and Terciyanlı (2009). No approximation method is

needed to solve the models we propose. We only use LP relaxation to overcome the

integrality. Moreover, linearity is maintained by load factor formulations. Two types

of models are proposed based on this premise. One of the models we propose aims

at maximizing the expected revenue while working with service level constraints on

the expected load factors of the network legs or a single service level constraint on

a weighted average of the expected load factors of the legs. In this model, the ser-

vice level is a predetermined threshold level. The other model we propose aims at

maximizing a weighted average of the expected load factors of the network legs or

the minimum expected load factor of the legs in the network while ensuring that the
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expected revenue is always above a predetermined threshold level.

These two types of models are considered for risk averse decision makers by inves-

tigating the relation between load factor and variability of the revenue. The impact

of a change in the load factor on standard deviation and coefficient of variation of the

revenue is investigated. Recall that the expected revenue and the expected load factor

are two criteria in the proposed models. In these two types of models we propose, one

criterion is aimed to be maximized while the other criterion is forced to stay above a

threshold level. The proposed models are found promising because they yield satis-

factory results in terms of variability of the revenue and are much easier to formulate

and solve in terms of computational burden than the other risk sensitive models due

to Çetiner (2007) and Terciyanlı (2009).

The load factor is formulated in Section 3.1. Section 3.2 is devoted to the proposed

models.

3.1 Load Factor

In the airline terminology, load factor is defined as the ratio of seats sold on a flight

to the total number of seats available. In this section, the load factor and its expected

value are formulated.

Let the random variable LFl(x1, ..., xn) denote the load factor for leg l when the given

seat allocation is (x1, ..., xn). Here, we consider two formulations for load factor; LFl(1)

and LFl(2) are expressed in terms of the random variables Z j(i) and Y j, respectively.

In Lemma 3.1, it is shown that the two formulations are equivalent.

Formulation 1.

• The load formulation LFl(1) in terms of Z j is

LFl(1)(x1, ..., xn) =
1
Cl

∑
j∈S l

Z j, (3.1)

where Z j = min{D j, x j}. Recall that D j is the demand for ODF j and x j is the

number of seats allocated for ODF j as in the existing models in the literature.
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That is, Z j denotes the number of tickets sold for ODF j. As a result, the ratio

of the sum of Z j over all js in S l and Cl gives the load factor for leg l.

• For the load factor formulation LFl(2), we define the random variable Y j(i) as

seen below.

Y j(i) =

 1 if D j ≥ i,

0 otherwise.
(3.2)

If the demand for ODF j is greater than i and the ith seat is allocated to ODF

j, then the gain in load factor for that seat is equal to 1/Cl. Otherwise, the gain

is 0. Then, the total load factor for leg l can be obtained for the network by

summing up the marginal load factors, Y j(i)
Cl

, of the seats.

That is,

LFl(2)(x) =
1
Cl

∑
j∈S l

B j∑
i=1

Y j(i)x j(i), (3.3)

where x is a given seat allocation such that x = (x1, ..., xn), x j = (x j(1), ..., x j(B j))

and x j(i) is defined in Chapter 2 as follows:

x j(i) =

 1 if if i or more seats are allocated to ODF j,

0 otherwise.
(3.4)

�
Note that LFl(1)(x1, ..., xn) and LFl(2)(x) are two alternative formulations for the

load factor. In Lemma 3.1, it is shown that LFl(1) is equal to LFl(2) for a given

allocation.

Lemma 3.1: LFl(1)(x1, ..., xn) = LFl(2)(x) for a given allocation x such that |xj| = x j

for j = 1, ..., n.

Proof. By using the definition of Y j(i),

LFl(2)(x) =
1
Cl

∑
j∈S l

(
D j∑
i=1

1 · x j(i) +
B j∑

i=D j+1

0 · x j(i)) =
1
Cl

∑
j∈S l

D j∑
i=1

x j(i). (3.5)

Recall that x j =
∑B j

i=1 x j(i). Also, by definition, x j(i + 1) cannot be 1 unless x j(i) is

equal to 1. Then,
∑D j

i=1 x j(i) in (3.5) can be rewritten as follows:

D j∑
i=1

x j(i) =

 D j if D j ≤ x j,

x j if D j > x j.
(3.6)
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That is,
∑D j

i=1 x j(i) = min{D j, x j} which is defined as Z j and used for LFl(1)(x1, ..., xn).

�

Next, the expected load factor is formulated. Note that LFl is a random variable that

is formulated as a function of either Z j or Y j.

Formulation 2.

• Using the load factor formulation in (3.1), the expected load factor is given as

follows:

E(LFl(x1, ..., xn)) = E(
1
Cl

∑
j∈S l

Z j)

=
1
Cl

∑
j∈S l

E(Z j)

=
1
Cl

∑
j∈S l

E(min(D j, x j)). (3.7)

This expected value function is a non-linear function of x js. That is, when

this formulation is used in a mathematical programming model to find seat

allocations, x js, one is to work with this non-linear function. On the other

hand, the expected value obtained by working with the load factor formulation

in (3.3) does not have this drawback as seen below.

• Using the load factor formulization in (3.3), the expected load factor is given as

follows:

E(LFl(x)) = E(
1
Cl

∑
j∈S l

B j∑
i=1

Y j(i)x j(i))

=
1
Cl

∑
j∈S l

B j∑
i=1

E(Y j(i))x j(i)

=
1
Cl

∑
j∈S l

B j∑
i=1

[1 · Pr(D j ≥ i) + 0 · Pr(D j < i)]x j(i)

=
1
Cl

∑
j∈S l

B j∑
i=1

Pr(D j ≥ i)x j(i). (3.8)

�
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Based on the equivalence result in Lemma 3.1, we drop superscripts (1) and (2) in the

load factor notation to denote load factor of leg l for a given allocation. From now on,

LFl will be used. We use the expected load factor formulation in (3.8) in the proposed

models given in Section 3.2.

3.2 Proposed Models

For the decision makers in the airline industry, there is sometimes a trade-off between

reserving the tickets for the high income customers who generally arrive later in the

booking horizon with the expectation of obtaining high income and selling the tickets

more easily to the low fare customers who arrive earlier in the booking horizon in

order to avoid having a low load factor. At first glance, one can consider two obvious

strategies. The first one is to allocate more seats for high fare classes because they

are more profitable. In this strategy, the revenue is aimed to be maximized by taking

the risk of low load factor since most of the requests of lower fare class customers

are rejected. However, the number of high fare class customers may not be enough to

achieve a high total revenue level. In the second strategy, the decision maker accepts

the requests for low fare class customers and reserves fewer tickets for future high

fare class customers. In this strategy, the decision maker aims at maximizing the

load factor and takes the risk of lower total revenue since most of the requests of

lower fare class customers are accepted and fewer tickets are reserved for higher fare

class customers. However, the high fare class customers may be lost by selling more

tickets to low fare class customers and the number of low fare class customers may

not be enough to achieve a high load factor level. This discussion reveals the relation

between total revenue and load factor.

The probabilistic nature of the demand determines the best strategy to be used. As de

Boer et al. (2002) mention, the revenue loss resulting from the decreased load factor

of the flights could be larger than the increase in the revenue obtained from higher

fare class customers. From this perspective, it can be seen that the effort of using

the flight capacity as much as possible and increasing the revenue can be handled

together. With that purpose, we propose two models and their variations: RLF and

LFR. The acronym of RLF stands for Revenue under Load Factor Constraint and the
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acronym of LFR is used for the Load Factor under Revenue Constraint.

RLF aims at maximizing the expected revenue under the following constraint: the ex-

pected load factor of each leg is required to be greater than a predetermined threshold

level. This model is called a service model where the service measure is the expected

load factor and the service level is the threshold. A variation of RLF is RLF-M, which

stands for Load Factor Constraint-Modified. RLF-M also aims at maximizing the

expected revenue under the following constraint: a weighted average of the expected

load factors of the network legs is required to be greater than a predetermined thresh-

old level. LFR maximizes the weighted average of the expected load factors of the

network legs while ensuring that the expected revenue is always above a predeter-

mined threshold level. A variation of LFR is MaxminLF, which stands for Maximize

the Minimum Load Factor. MaxminLF aims at maximizing the expected load factor

of the leg which has the smallest expected load factor value. RLF and its variations are

proposed as an alternative to LFR and its variations. The objectives and the distinctive

constraints of the proposed models are summarized in Table 3.1.

Table 3.1: Proposed Models

Proposed Model Objective Function Distinctive Constraint

RLF Max. E(R) E(LFl) ≥ S Ll

RLF-M Max. E(R) weighted avg. E(LF) ≥ S L

LFR Max. weighted avg. E(LF) E(R) ≥ RL

MaxminLF Max. min. E(LFl) E(R) ≥ RL

With the proposed models, we expect to increase the revenue while not compromising

the capacity utilization. The variance of the revenue is also expected to be kept at ac-

ceptable levels so that the risk-averse inclination of the decision maker is supported.

In other words, the decreased variability is expected to be implied as a result of re-

solving the trade off between expected revenue and expected load factors of the legs.

The performance of the models is evaluated under different booking control policies

and a comparison with the models in the literature is given in Chapter 6.
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The numerical studies in this thesis consist of two stages. In the first stage, we con-

sider the optimization by solving the proposed mathematical models to obtain the

optimal seat allocations and bid prices. The method of obtaining the bid prices of

RLF and RLF-M is given in Section 3.2.2.

In the second stage of the numerical studies, we use the optimal seat allocations and

bid prices obtained by solving the optimization models in a simulation model for

implementation of different control polices; namely, partitioned booking limit control

policy, nested booking limit control policy and bid price control policy.

The bound models to determine the range of the allowable threshold levels for the

proposed models; namely, the service level (SL) for RLF and its variations and the

revenue level (RL) for LFR and MaxminLF are proposed in Chapter 4.

The numerical threshold levels for the proposed models, namely; the service level

(SL) for RLF and its variations and the revenue level (RL) for LFR and its variations

are determined in Chapter 5 for a sample network. Moreover, the numerical anal-

ysis and the interpretations of the optimization results of the proposed models are

presented.

The results of the simulation studies of the proposed models are reported in Chapter

6.

3.2.1 The Models with Constraints on Expected Load Factors

RLF is obtained by incorporating an additional set of constraints to the EMR model

presented in Chapter 2. These additional constraints are for the expected load factors

of the legs; the expected load factor of each leg l is required to be greater than a pre-

determined service level, S Ll. Depending on the preference of the decision maker or

the structure of the airline network, different service levels can be used for the legs.

Differentiating the service level requirements of the legs is more realistic when the

real life situation is taken into account. One may appreciate that some legs are de-

manded more and it is easier for them to satisfy higher service levels when compared

with the ones that have fewer customer intensity. However, to be able to differentiate

the service level requirements of legs on a reasonable ground, more data about the leg
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characteristics are needed. The decision maker may identify such characteristics and

set ranges for service levels accordingly. The following characteristics may be used

in the determination of sets.

• Dominating customer profile of the leg (business or leisure traveler).

• Seasonality factors (for instance touristic destinations may attract more cus-

tomers on specific seasons).

• Characteristics of the demand data.

• Competition in the market (for some origin-destination pairs, there may be

harsh competition in the market so that it is not easy to satisfy a high service

level for that leg).

The differentiation of the service level requirements of the legs by taking the above

mentioned characteristics into account is not within the scope of this thesis and so it

remains as a future work.

In our numerical analysis in Chapter 5, the case where the service levels of the legs

are the same is investigated. The case where the service levels of the legs are different

is also investigated and the impact of service level differentiation is analyzed via

numerical outputs in Chapter 5.

RLF : Maximize
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) (3.9)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (3.10)

1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) ≥ S Ll for l = 1, ...,m, (3.11)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j. (3.12)

The only difference between RLF and EMR is constraint (3.11) in RLF. Due to the

binary the decision variable x j(i), RLF is hard to solve. Therefore, LP relaxation of
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the model is considered by replacing (3.12) with 0 ≤ x j(i) ≤ 1 for j = 1, ..., n, and

i = 1, ..., B j. LP relaxation of RLF is used for numerical analysis throughout the rest

of the thesis whenever the output of RLF model is required.

For RLF, it is worth to check the impact of the separate leg control on the network.

Recall that, in RLF, there is an expected load factor constraint on each leg. What if

the expected load factor of the whole network is required to be greater than or equal

to a single, predetermined service level? Towards that end, the following modified

version of RLF can be considered: the load factor measure considered for the whole

network is a weighted average of the expected load factors of the legs.

RLF − M : Maximize
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) (3.13)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (3.14)

m∑
l=1

wl

Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) ≥ S L, (3.15)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j. (3.16)

The parameter, wl, stands for the weight of each leg. That is, 0 ≤ wl ≤ 1 and∑m
l=1 wl = 1. The weights for the legs should be determined according to the net-

work characteristics. However, the determination of the weights may be difficult and

cumbersome. The scope of this thesis excludes the determination of the weights and

leaves it as a future work.

The weighted average of the expected load factors of the legs is used as the load

factor measure in RLF-M. Different load factor measures can also be considered for

the whole network, which remains as a future work.

As in the case of RLF, its modified version is also hard to solve due to the integrality

constraints on the decision variables. Therefore, the relaxed version of RLF-M is

solved for the numerical analysis in Chapter 6.

Remark 3.2.1. RLF-M with SL is a relaxation of RLF with S Ll=S L for all l. (3.11)

in RLF with S Ll=S L can be written as wl
Cl

∑
j∈S l

∑B j

i=1 P(D j ≥ i)x j(i) ≥ wlS Ll. By
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summing up these inequalities over all l, we obtain (3.15) in RLF-M.

�
The following remark is given to show why it is ensured that there exist solutions

obtained by the proposed RLF and RLF-M models and their relaxations that are in

accordance with the definition of the decision variable x j(i) in (3.4).

Remark 3.2.2. For each of RLF, RLF-M and their relaxations, there exists an optimal

solution x such that x j(i + 1) takes a positive value only if x j(i)=1 for all i and j.

This observation results from the behaviour of the objective function in the aforemen-

tioned models: f jP(D j ≥ i) decreases in i as for every j (recall Remark 2.2.2.1 given

for EMR with the same objective function).

�

3.2.2 Determination of Bid Prices for RLF and RLF-M

Recall from Chapter 1 and Chapter 2 that bid price is introduced as the threshold level

to make the acceptance/rejection decision for a ticket request. It is the expected value

of an incremental seat. In other words, it is the opportunity cost of accepting the ticket

request. Bid price is compared with the fare of the ticket requested, e.g., f j, and the

acceptance/rejection decision is made accordingly.

Simpson (1989) and Williamson (1992) propose to sum up the dual prices of the

capacity constraints of the legs used by product j in order to obtain the bid price of

product j. For RLF and RLF-M due to the existence of the service level constraint(s),

it is not possible to work with only the dual prices of the capacity constraints. In

this case, the duals of the capacity constraints are adjusted (corrected) by considering

also the impact of the service level on the expected revenue in the objective function

as explained below in Remark 3.2.3. Note that the service level constraint is also

a function of the capacities, Cl, of the legs. The impact of a unit change of Cl on

the optimal expected revenue is determined not only by the dual prices of capacity

constraints but also the dual prices of the service level constraint(s).

41



Remark 3.2.3.

• Consider the LP relaxation of RLF. Rewrite the service level constraint in (3.11)

as follows: 1
S Ll

∑
j∈S l

∑B j

i=1 P(D j ≥ i)x j(i) ≥ Cl. Let yl and vl be the dual variables

of the capacity and service level constraints, respectively. Let u j(i) be the dual

variable of the constraint x j(i) ≤ 1.

Then, the objective function of the dual is

Minimize
∑m

l=1 Cl(yl + vl) +
∑n

j=1
∑B j

i=1 u j(i).

Consider the objective function of the dual problem for the LP relaxation of

EMR. The only difference between this objective and the one in given above is

the additional term
∑m

l=1 Clvl in the objective function above due to the service

level constraints. That is, the change in the optimal expected revenue that re-

sults from a unit increase in Cl is given by yl + vl in the case of RLF unlike only

yl in the case of EMR. Note that yl ≥ 0 and vl ≤ 0. That is, vl is a correction term

for including the service level constraint of leg l in the proposed RLF model.

• An alternative way to calculating the bid prices of RLF is as follows. Consider

the LP relaxation of RLF by keeping the service level constraint as in (3.11).

Define y j and u j(i) as in the previous item above. Let v̄l be the dual variable of

the service level constraint for leg l. Then, the objective function of the dual

problem is

Minimize
∑m

l=1(Clyl + S Llv̄l) +
∑n

j=1
∑B j

i=1 u j(i).

Rearranging the
∑m

l=1 S Llv̄l, we obtain

Minimize
∑m

l=1 Cl(yl +
S Llv̄l

Cl
) +
∑n

j=1
∑B j

i=1 u j(i),

where the correction term for the dual price yl is S Llv̄l
Cl

. That is, the bid price of

RLF is yl+
S Llv̄l

Cl
.

Note that yl ≥ 0 and vl ≤ 0.

• The bid prices of RLF-M are given proceeding as in the second item above.

Consider the LP relaxation of RLF-M. Let yl and v̄ be the dual variables of the

capacity constraints and the service level constraints, respectively. Let u j(i) be

the dual variable of the constraint x j(i) ≤ 1. Then, the objective function of the

dual problem is
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Minimize
∑m

l=1(Clyl) + S Lv̄ +
∑n

j=1
∑B j

i=1 u j(i).

Rewriting the second term as

S Lv̄ = SLv̄
∑m

l=1
Cl
Cl

m

=
∑m

l=1 Cl( S Lv̄
mCl

),

the correction term for the dual price yl is obtained as S Lv̄
mCl

for leg l. That is, the

bid price of RLF-M is yl+
S Lv̄
mCl

.

Note that yl ≥ 0 and vl ≤ 0.

�

3.2.3 The Models with a Constraint on Expected Revenue

LFR is also an EMR-based model, where a weighted average of the expected load

factors of the network legs is maximized while ensuring that the expected revenue is

always above a predetermined threshold level, RL.

LFR : Maximize
m∑

l=1

wl

Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) (3.17)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (3.18)

n∑
j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) ≥ RL, (3.19)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j. (3.20)

As in the case of RLF, the LFR model also contains integrality constraints that need

to be relaxed for numerical analysis. The LP relaxation of LFR is used for numer-

ical analysis throughout the rest of the thesis whenever the output of LFR model is

required.

In LFR, a weighted average of the expected load factors of the network legs is used

in the objective function. However, different load factor measures can also be used

in the objective. For example, we propose the model MaxminLF. As an alternative to
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the weighted average of the expected load factors of the network legs, the expected

load factor of the leg which has the smallest expected load factor value is maximized

in MaxminLF. This is a max(min) type of problem. The objective of MaxminLF is

formulated as

max
x

min
l

(
1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i)). (3.21)

The MaxminLF model is given below.

MaxminLF : Maximize z (3.22)

subject to

1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) ≥ z for l = 1, ...,m, (3.23)

∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (3.24)

n∑
j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) ≥ RL, (3.25)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (3.26)

z ≥ 0. (3.27)

In this model, the expected load factor of each leg is forced to be greater than or

equal to the decision variable z and then z is maximized. Different from LFR, it is not

necessary to determine a weight for each leg, which is an advantage of MaxminLF.

As in the case of LFR, its modified version is also hard to solve due to the integrality

constraints. Therefore, the relaxed version of MaxminLF is solved for numerical

analysis presented in Chapter 6.

The following remark is analogous to Remark 3.2.2; it is ensured that there exist

solutions obtained by the proposed LFR and MaxminLF models and their relaxations

that are in accordance with the definition of x j(i) in (3.4). Note that the remark gives

a sketch of the proof.

Remark 3.2.4. For each of LFR, MaxminLF and their LP relaxations, there exists an

optimal solution x such that x j(i + 1) takes a positive value only if x j(i)=1 for all i

and j. a) For LFR, this observation results from the rearrangement of the objective

function: P(D j ≥ i)
∑

l∈T j

wl
Cl

decreases in i for every j. b) For MaxminLF, the result

44



follows from the analysis of E(LFl) for a maxx minl problem: P(D j ≥ i) in E(LFl)

decreases in i for all j ∈ S l and for all l.
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CHAPTER 4

DETERMINATION OF THE THRESHOLD BOUNDS

Recall that the service level of each leg in RLF, the network service level in RLF-M,

the revenue level in LFR and MaxminLF are the threshold levels considered in this

thesis. The bound models for determining the ranges of numerical threshold values

for a given network are presented in this chapter. The range excludes inappropriate

assignments to the threshold levels by the decision maker and hence prevents infea-

sibility. Also, by working with different threshold levels over the allowable range,

we can see the impact of a change in the threshold level on the system performance

measures like expected revenue and expected load factor. A range is defined by a

lower bound and an upper bound. An upper bound is the value for the threshold level,

above which the proposed models RLF, RLF-M, LFR and MaxminLF from Chapter 3

are infeasible. On the other hand, a lower bound is the value for the threshold level,

where the solution of the proposed models in Chapter 3 starts to diverge from the

results of the unconstrained models in terms of S Ll, S L and RL.

The bound models to be used for determining the range of the service levels for ex-

pected load factors are presented in Sections 4.1 and 4.2 for RLF and RLF-M, re-

spectively. The bound models for determining the range of the threshold level for

expected revenue are presented in Sections 4.3 and 4.4 for LFR and MaxminLF, re-

spectively. Some of the bound models we propose give exact bounds for the threshold

levels whereas some of them serve the purpose of finding approximate bounds for the

threshold levels. In Chapter 5, the range of the service levels for the expected load

factors and the range of the threshold level for an expected revenue are determined

numerically by using the proposed bound models for a sample network. To avoid

integrality constraints, LP relaxations of the proposed bound models are solved for
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numerical analysis. Also, the numerical results of the proposed models in Chapter 3

are analyzed as a function of the threshold levels in Chapter 5 for a sample network.

In Chapter 6, the resulting seat allocations and the bid prices obtained by the pro-

posed models are used in the simulation studies for different control policies, and the

proposed models and the models in the literature are compared.

The bound models proposed in this section to determine the ranges for the threshold

levels to be used in the proposed models (RLF, RLF-M, LFR and MaxminLF) are

summarized in Table 4.1 and 4.2.

Table 4.1: Bound Models for RLF and RLF-M.

Proposed Model Lower Bound of Service Level Upper Bound of Service Level

RLF with S Ll , S L EMR, MinmaxSL MaxminLF-M

RLF with S Ll = S L for all l EMR with equal E(LFl) MaxELF

RLF-M EMR with WLF MaxWLF

Table 4.2: Bound Models for LFR and MaxminLF.

Proposed Model Lower Bound of Revenue Level Upper Bound of Revenue Level

LFR LFR-M EMR

MaxminLF MinRL EMR

The following remark is to ensure that there exist solutions obtained by the bound

models that satisfy (3.4) for x j(i)s.

Remark 4.1. For each of the bound models and their relaxations, there exists an

optimal solution x such that x j(i+1) takes a positive value only if x j(i)=1 for all i and

j. For EMR, EMR with equal E(LFl) and EMR with WLF, the result follows Remark

3.2.2. For MaxWLF and LFR-M, the result follows Remark 3.2.4 (a). For MaxminLF-

M, MaxELF and MinRL, the result follows Remark 3.2.4 (b). For MinmaxSL, the

result is similar to Remark 3.2.4 (b).
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4.1 Service Levels for RLF

Recall that RLF aims at maximizing the expected revenue under a service level con-

straint on the expected load factor of each leg. In this section, we propose bound

models to determine the range of the service levels that are to be considered for nu-

merical tests. Two cases considered in the following subsections are the following:

(1) S Ll = S L for all l and (2) allowing S Ll to take different values for different legs.

LS L and US L denote the lower bound and the upper bound of the service level, SL,

respectively, used in (1). LS Ll and US Ll denote the lower bounds and upper bounds

of the service levels, S Ll, respectively, used in (2).

4.1.1 RLF with Unequal S Ll

The lower bounds on the service levels to be used in RLF with S Ll , S L are de-

termined by the EMR model. The bound model we propose to determine the upper

bound to be used in RLF with S Ll , S L is similat to the MaxminLFmodel.

In order to determine the lower bounds on the service levels to be used in RLF, firstly

the results of the EMR model are investigated. Recall that RLF is obtained by in-

corporating an additional constraint to EMR to keep the expected load factor of each

leg to be greater than a specified service level. That is why the expected load factors

corresponding to the optimal allocation obtained by EMR can be considered as the

lowest expected load factor values to be used in RLF as the service levels. In order to

evaluate the expected load factor value obtained by EMR for each leg, the following

model is used by incorporating (4.3) to the original EMR model. Note that this model

is not different than EMR. This model allows us to evaluate E(LFl) for each leg for the

optimal seat allocation obtained by EMR by using the decision variable ELFl. The

values of the decision variables ELFl obtained from this model can be used in RLF
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as the lower bounds, LS Ll, of the service levels.

Maximize
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) (4.1)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.2)

ELFl =
1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) for l = 1, ...,m, (4.3)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (4.4)

ELFl ≥ 0 for l = 1, ...,m. (4.5)

As an alternative to the use of EMR, one can think of using the following model

to find the lower bounds for service levels in RLF. The model is called MinmaxSL,

which stands for Minimize the Maximum Service Level.

MinmaxS L : Minimize z (4.6)

subject to

ELFl ≤ z for l = 1, ...,m, (4.7)
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) = r, (4.8)

∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.9)

ELFl =
1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) for l = 1, ...,m, (4.10)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (4.11)

ELFl ≥ 0 for l = 1, ...,m, (4.12)

z ≥ 0. (4.13)

This model is a min-max type of model. Expected revenue is forced to be equal to

r, which is the optimal expected revenue value obtained by EMR. This model aims

at minimizing the maximum expected load factor of the network while equating the

expected revenue to the value obtained by EMR. The values of the decision variable

ELFl obtained from this model can also be used in RLF as the lower bounds, LS Ll,

for the service level as long as the solution obtained satisfies (3.4).
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To sum up, for decision makers who intend to use RLF, it is suggested to solve EMR

to obtain lower bounds of the service levels that can be used in RLF.

In order to determine the upper bounds on the service levels to be used in RLF with

unequal S Ll, the bound model we propose is comparable with the MaxminLF model

given in Section 3.2.3. The proposed bound model is given below, which is called

MaxminLF-M, where M stands for Modified. We do not need the revenue constraint

(3.25) of MaxminLF to find upper bounds for the service levels. Therefore, this con-

straint is eliminated. In order to evaluate the expected load factor value, E(LFl), for

each leg for the optimal solution of this bound model, the additional constraint set

(4.17) is introduced. The optimal value of the decision variable ELFl can be used in

RLF as the upper bound, US Ll, of the service level for leg l.

MaxminLF − M : Maximize z (4.14)

subject to

ELFl ≥ z for l = 1, ...,m, (4.15)∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.16)

ELFl =
1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) for l = 1, ...,m, (4.17)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (4.18)

ELFl ≥ 0 for l = 1, ...,m, (4.19)

z ≥ 0. (4.20)

4.1.2 RLF with Equal S Ll

In order to determine the lower bound on the service level to be used in RLF with

S Ll = S L for all l, again the results of EMR are investigated for the case of equal

E(LFl) for all l. In this section, the following model is used by incorporating con-

straint (4.23) to the original EMR model. This model allows us to evaluate the ex-

pected load factor value by forcing the legs in the network to take equal S Ll values.

Due to integrality constraints, the LP relaxation of the model is solved for numerical
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analysis. The value of the decision variable ELF obtained from this model can be

used in RLF as a lower bound, LSL, for the service level.

Maximize
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) (4.21)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.22)

ELF =
1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) for l = 1, ...,m, (4.23)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (4.24)

ELF ≥ 0. (4.25)

In order to determine the upper bound on the service level to be used in RLF with

S Ll = S L for all l, the proposed bound model is MaxELF, which stands for Maximum

Expected Load Factor. Due to integrality constraints, the LP relaxation of the model

is solved for numerical analysis.

MaxELF : Maximize ELF (4.26)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.27)

ELF =
1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) for l = 1, ...,m,, (4.28)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (4.29)

ELF ≥ 0. (4.30)

The optimal value of ELF obtained by solving MaxELF can be used as an upper

bound for the service level, USL.

4.2 Service Level for RLF-M

Recall that RLF-M is proposed as a variation of RLF in Chapter 3. In this section, we

propose bound models for RLF-M in order to determine the lower bound, LSL, and

the upper bound, USL, for the service level SL.
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In order to determine the lower bound on the service level to be used in RLF-M, the

following model is used by incorporating constraint (4.33) to the original EMR model.

Note that this model is not different than EMR. This model allows us to evaluate the

weighted average of the expected load factor values for the optimal seat allocation

obtained by EMR by using the decision variable WLF. The value of WLF obtained

from this model can be used in RLF-M as a lower bound, LSL, for the service level.

Maximize
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) (4.31)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.32)

WLF =
m∑

l=1

wl

Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i), (4.33)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (4.34)

WLF ≥ 0. (4.35)

In order to determine the upper bound on the service level to be used in RLF-M,

the proposed bound model is MaxWLF, which stands for Maximum Weighted Load

Factor. Note that MaxWLF is a variation of LFR that is obtained by replacing (3.19)

in LFR with (4.38) to evaluate the maximum weighted avarege.

MaxWLF : Maximize WLF (4.36)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.37)

WLF =
m∑

l=1

wl

Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i), (4.38)

x j(i) ∈ {0, 1} for j = 1, ..., n, and i = 1, ..., B j, (4.39)

WLF ≥ 0. (4.40)

The optimal value of WLF obtained by solving MaxWLF can be used as an upper

bound, USL, for the service level.
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4.3 Revenue Level for LFR

Recall that LFR aims at maximizing a weighted average of the expected load factors

of the network legs while ensuring that the expected revenue is always above a speci-

fied threshold level. In this section, we propose bound models to determine the range

of the revenue level that is to be considered for numerical tests.

In order to determine the lower bound on the revenue level to be specified in LFR, the

LFR-M model is proposed. LFR-M is obtained by removing the revenue constraint

(3.19) from LFR, in which the revenue is forced to take values greater than or equal to

a threshold level, RL. Instead, the additional constraint (4.43) is needed to determine

the smallest RL value, LRL, that can be used in LFR.

LFR − M : Maximize
m∑

l=1

wl

Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) (4.41)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.42)

LRL =
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i), (4.43)

x j(i) ∈ {0, 1} for j = 1, ..., n and i = 1, ..., B j, (4.44)

LRL ≥ 0. (4.45)

The optimal LRL value that LFR-M gives can be used as a lower bound for the speci-

fied revenue level to be used in LFR.

The upper bound on the revenue level to be specified in LFR is the maximum expected

revenue that is obtained by solving EMR.

4.4 Revenue Level for MaxminLF

Recall that MaxminLF is proposed as an alternative to LFR in Chapter 3. In this

section, we propose bound models in order to determine the lower bound, LRL and

the upper bound, URL for the revenue level, RL, to be used in MaxminLF.

In order to determine the lower bound on the revenue level to be specified in MaxminLF,
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the following model is proposed. The model is called MinRL, which stands for Mini-

mum Revenue Level. Note that MinRL is a variation of MaxminLF that is obtained by

replacing (3.5) in MaxminLF with (4.49) to evaluate the revenue level.

MinRL : Maximize z (4.46)

subject to

1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) ≥ z for l = 1, ...,m, (4.47)

∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (4.48)

LRL =
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i), (4.49)

x j(i) ∈ {0, 1} for j = 1, ..., n and i = 1, ..., B j, (4.50)

z ≥ 0 (4.51)

LRL ≥ 0. (4.52)

The LRL value that MinRL yields can be used as a lower bound for the specified

revenue level in MaxminLF.

The upper bound on the revenue level to be specified in MaxminLF is the maximum

expected revenue that is obtained by solving EMR.
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CHAPTER 5

NUMERICAL ANALYSIS OF THE PROPOSED MODELS

In Chapter 4, the bound models are presented to determine the range of the threshold

levels used in RLF, RLF-M, LFR and MaxminLF. In this chapter, the ranges for the

threshold levels are determined numerically by using the proposed bound models for

a sample network that is commonly used in the RM literaure. The network data is

provided in Appendix A. Moreover, the optimization results of the proposed models

are investigated to reveal the relation between the service levels and performance

measures.

For the models we propose in Chapter 3 and for the bound models proposed in Chap-

ter 4, the LP relaxations of these models are coded in MATLAB for a relaxation of

the integrality constraints. The MATLAB codes of the proposed models in Chapter 3

and the bound models in Chapter 4 are provided in Appendix B.

Recall that the parameter, wl, in RLF-M and in LFR in Chapter 3, stands for the

weight of each leg. As stated in Chapter 3, different weights can be assigned to each

leg according to the characteristics of them. In this chapter, the weight of each leg is

assumed to be the same and equal to 1/m. Determination of the weights for different

legs and the use of them remain as a future work.

For the optimization and the simulation studies, the data given by de Boer (1999) for

a sample three-leg airline network is used. The network consists of 4 nodes (A, B, C,

D) and these nodes are connected with 3 identical legs (AB, BC and CD), each having

a capacity of 200 seats. There are 6 itineraries on those three legs (AB, AC, AD, BC,

BD, and CD). Each itinerary consists of 3 fare classes; that is, we have 18 origin-

destination-fare (ODF) combinations in total. The reservation period is assumed to
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be 150 days. The sample network, which is a directed graph, is illustrated in Figure

5.1. As in the study of de Boer (1999), five different scenarios are tested. First one is

Figure 5.1: Sample Network with three legs

called the base problem and is studied in this chapter. The remaining four scenarios

are studied in Chapter 6. The network data of all scenarios are provided in Appendix

A.

The ranges of the threshold levels in RLF, RLF-M, LFR and MaxminLF and the re-

lated numerical analysis of the performance measures over these ranges are in Sec-

tions 5.1, 5.2, 5.3 and 5.4, respectively. In Section 5.5, the range for the service levels

and the range for the threshold revenue level are presented under five different sce-

narios, which are “base problem”, “increased variance of low fare demand”, “smaller

differences between fares”, “realistic variations and close fares” and “low before high

arrival pattern”. The ranges found under different scenarios are used in the simulation

studies in Chapter 6.

5.1 RLF Model

The solutions of the bound models proposed in Section 4.1.1 for the case of unequal

S Ll are summarized in Table 5.1 below.

Table 5.1: Bounds for RLF with unequal S Ll

Lower Bound Model LSLAB LSLBC LSLCD

EMR 0.850427 0.849087 0.897118

MinmaxSL 0.850427 0.849087 0.897118

Upper Bound Model USLAB USLBC USLCD

MaxminLF-M 0.965798 0.965798 0.965798
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The solutions of the bound models proposed in Section 4.1.2 for the case S Ll = S L

for all l are summarized in Table 5.2 below.

The upper bound in Table 5.2 is the same as the upper bounds of the legs in Table 5.1.

This is an expected situation since all of the legs in the sample network has the same

upper bound value for SL in Table 5.1. On the other hand, the lower bound in Table

5.2 is between the minimum and maximum lower bound values in Table 5.1. This is

also an expected situation since all of the legs are forced to take equal S Ll values in

EMR to obtain the values in Table 5.2.

In order to numerically justify the solutions obtained by the bound models above, the

following model is solved by incrementally increasing the S Ll = S L values. An in-

crement of 0.0025 is used for SL in order to find the feasible range of SL numerically.

This model is not different than the LP relaxation of RLF presented in Chapter 3 and

allows us to evaluate E(LFl) for each leg for the optimal seat allocation obtained by

RLF by using the decision variable ELFl. The results obtained are summarized in

Table 5.3 for the case S Ll = S L for all l.

Maximize
n∑

j=1

B j∑
i=1

f jP(D j ≥ i)x j(i) (5.1)

subject to∑
j∈S l

B j∑
i=1

x j(i) ≤ Cl for l = 1, ...,m, (5.2)

ELFl ≥ S Ll for l = 1, ...,m, (5.3)

ELFl =
1
Cl

∑
j∈S l

B j∑
i=1

P(D j ≥ i)x j(i) for l = 1, ...,m, (5.4)

0 ≤ x j(i) ≤ 1 for j = 1, ..., n, and i = 1, ..., B j, (5.5)

ELFl ≥ 0 for l = 1, ...,m. (5.6)

Table 5.2: Bounds for RLF with S Ll = S L for all l

Lower Bound Model LSL(LSLAB=LSLBC=LSLCD)

EMR with equal E(LFl) 0.857145

Upper Bound Model USL(USLAB=USLBC=USLCD)

MaxELF 0.965798
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Table 5.3: Results of the RLF with S Ll = S L for the Base Problem

SLl=SL E(R) E(LFAB) E(LFBC) E(LFCD)

0.8000 71765.7848 0.8504 0.8491 0.8971

0.8025 71765.7848 0.8504 0.8491 0.8971

0.8050 71765.7848 0.8504 0.8491 0.8971

0.8075 71765.7848 0.8504 0.8491 0.8971

0.8100 71765.7848 0.8504 0.8491 0.8971

0.8125 71765.7848 0.8504 0.8491 0.8971

0.8150 71765.7848 0.8504 0.8491 0.8971

0.8175 71765.7848 0.8504 0.8491 0.8971

0.8200 71765.7848 0.8504 0.8491 0.8971

0.8225 71765.7848 0.8504 0.8491 0.8971

0.8250 71765.7848 0.8504 0.8491 0.8971

0.8275 71765.7848 0.8504 0.8491 0.8971

0.8300 71765.7848 0.8504 0.8491 0.8971

0.8325 71765.7848 0.8504 0.8491 0.8971

0.8350 71765.7848 0.8504 0.8491 0.8971

0.8375 71765.7848 0.8504 0.8491 0.8971

0.8400 71765.7848 0.8504 0.8491 0.8971

0.8425 71765.7848 0.8504 0.8491 0.8971

0.8450 71765.7848 0.8504 0.8491 0.8971

0.8475 71765.7848 0.8504 0.8491 0.8971

0.8491 71765.7848 0.8504 0.8491 0.8971

0.8500 71765.2508 0.8513 0.8500 0.8971

0.8525 71763.7755 0.8529 0.8525 0.8972

0.8550 71759.5472 0.8550 0.8550 0.8974

0.8575 71748.3285 0.8575 0.8575 0.8998

0.8600 71728.1412 0.8600 0.8600 0.9005

0.8625 71705.4402 0.8625 0.8625 0.9005

0.8650 71682.0248 0.8650 0.8650 0.9005

0.8655 71677.3079 0.8675 0.8675 0.9010

0.8675 71657.4593 0.8700 0.8700 0.9026

0.8700 71628.8953 0.8725 0.8725 0.9026

0.8725 71597.1128 0.8750 0.8750 0.9026

0.8750 71564.8700 0.8775 0.8775 0.9034

0.8775 71530.1841 0.8800 0.8800 0.9034

0.8800 71489.3009 0.8825 0.8825 0.9034
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Table 5.3: Results of the RLF with S Ll = S L for the Base Problem

SLl=SL E(R) E(LFAB) E(LFBC) E(LFCD)

0.8825 71446.3567 0.8850 0.8850 0.9038

0.8850 71401.4511 0.8875 0.8875 0.9054

0.8875 71355.1372 0.8900 0.8900 0.9065

0.8900 71306.1975 0.8925 0.8925 0.9069

0.8925 71253.6549 0.8950 0.8950 0.9073

0.8950 71198.3994 0.8975 0.8975 0.9073

0.8975 71141.6877 0.8975 0.8975 0.9073

0.9000 71080.9484 0.9000 0.9000 0.9065

0.9025 71013.4477 0.9025 0.9025 0.9068

0.9050 70943.0053 0.9050 0.9050 0.9059

0.9075 70869.2429 0.9075 0.9075 0.9075

0.9100 70792.2400 0.9100 0.9100 0.9100

0.9125 70709.3328 0.9125 0.9125 0.9125

0.9150 70615.9511 0.9150 0.9150 0.9150

0.9175 70521.8629 0.9175 0.9175 0.9175

0.9200 70422.7178 0.9200 0.9200 0.9200

0.9225 70311.8048 0.9225 0.9225 0.9225

0.9250 70194.9531 0.9250 0.9250 0.9250

0.9275 70074.0724 0.9275 0.9275 0.9275

0.9300 69949.6318 0.9300 0.9300 0.9300

0.9325 69819.8156 0.9325 0.9325 0.9325

0.9350 69669.7699 0.9350 0.9350 0.9350

0.9375 69509.5550 0.9375 0.9375 0.9375

0.9400 69345.1705 0.9400 0.9400 0.9400

0.9425 69162.9732 0.9425 0.9425 0.9425

0.9450 68958.6206 0.9450 0.9450 0.9450

0.9475 68737.6633 0.9475 0.9475 0.9475

0.9500 68497.2873 0.9500 0.9500 0.9500

0.9525 68221.5936 0.9525 0.9525 0.9525

0.9550 67904.5550 0.9550 0.9550 0.9550

0.9575 67536.7614 0.9575 0.9575 0.9575

0.9600 67090.9719 0.9600 0.9600 0.9600

0.9625 66522.6315 0.9625 0.9625 0.9625

0.9650 65618.8187 0.9650 0.9650 0.9650

0.9658 Infeasible
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According to Table 5.3, the upper bound, US L, is between 0.9650 and 0.9658. In

fact, the largest SL value for which there exists a feasible solution is 0.965798. Recall

that both US Ll in case of S Ll , S L in Table 5.1 and USL in case of S Ll = S L in

Table 5.2 are found as 0.965798.

According to Table 5.3, the lower bound, LSL, is between 0.8491 and 0.8500. The

E(LFl) values in Table 5.3 corresponding to SL=0.8491 are totally in accordance with

the lower bounds in Table 5.1. On the other hand, the lower bound, LSL, in Table 5.2 is

0.857145. The difference between 0.857145 and the interval (0.8491-0.8500) seems

to result from keeping E(LFl)=ELF for all l in (4.23) used for Table 5.2.

When the concern is to analyze the impact of the service levels on the expected rev-

enue and the expected load factors of the network, we can benefit from the results in

Table 5.3 which are obtained for the case S Ll = S L for all l. The influence of the

service level on expected load factors of each leg of the network and on the expected

revenue is given in Figure 5.2 and Figure 5.3, respectively.

• For service levels less than 0.8491, the expected revenue is constant at 71765.7848

and the vector of the expected load factor values of the network are constant at

[0.8504, 0.8491, 0.8971]. These are in accordance with the definition of lower

bound of SL.

• Beyond the service level 0.8491 on, the expected revenue shows a decreasing

concave behaviour. This situation is not surprising since the model has ten-

dency to accept the low fare class requests in order to increase the capacity

utilization and to reserve fewer tickets for future high fare class requests. This

is in accordance with the numerical seat allocations in Table C.1 in Appendix

C.

• The SL value at which the expected load factor is equal to the service level dif-

fers among three legs. For leg AB, the SL value where the load factor constraint

becomes binding is 0.8975. For leg BC it is 0.8975 and for leg CD it is 0.9075.

• It is observed that, for S L ≥ 0.9075, E(LFl) = E(LF) for all l. That is, for
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service level greater than or equal to 0.9075, the expected load factor value of

all legs in the sample network take the same value.

• Beyond the upper bound value of the service level, which is determined as

0.965798, it is not possible to find an allocation that satisfies the service level

constraints.
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Figure 5.2: The Relation between SL and E(LFl) (S Ll = S L for all l)

The relation between the service levels and the bid prices is also worth investigating.

Recall from Chapter 1 and Chapter 2 that bid price is defined as the net value for an

incremental seat on a particular flight leg in the airline network. The method proposed

in Section 3.2.2 is used throughout this thesis to find the bid prices of RLF and RLF-

M. In order to present the relationship between service levels and bid prices, the bid

prices of the network legs are provided in Table C.2 in Appendix C.

When the relation between the service levels and bid prices are of concern, it can be

said that bid prices generally show almost a constant pattern for low service levels.

However, for S L > 0.94 bid prices of leg AB and CD decrease and a decreasing

pattern is observed thereafter. As can be seen in Table C.2 in Appendix C, there

is a tremendous difference between the bid prices of leg CD at service levels 0.80

and 0.9600. On the other hand, for S L > 0.94 bid prices of leg BC increase and a

61



 

62000

63000

64000

65000

66000

67000

68000

69000

70000

71000

72000

73000

0.
80

00

0.
80

75

0.
81

50

0.
82

25

0.
83

00

0.
83

75

0.
84

50

0.
85

25

0.
86

00

0.
86

55

0.
87

25

0.
88

00

0.
88

75

0.
89

50

0.
90

25

0.
91

00

0.
91

75

0.
92

50

0.
93

25

0.
94

00

0.
94

75

0.
95

50

0.
96

25

Service Level (SL)

E
(R

)
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slightly increasing pattern is observed thereafter. The difference in the behavior of

bid prices of leg BC and legs AB and CD results from the leg characteristics that

differ in the input parameters. It is also worth to note that negative bid prices are

obtained for S L > 0.96. It makes sense since the contribution of an additional seat

to the expected revenue decreases as the service level increases and an additional seat

starts to contibute negatively to the expected revenue for high service levels. The

relation between the service levels and the bid price of each leg is seen in Figure 5.4.

πl denotes the bid price of leg l (optimal value of the dual variable corresponding to

the capacity constraint of leg l).

So far, the legs of the network are assumed completely identical. That is, their service

level requirements are set the same. However, it is also worth to see the results when

the legs are forced to satisfy different service levels. At this point, it is important to

decide on the service levels of the legs. When the network data of the base problem

provided by de Boer is investigated, it can be seen that the demands for leg AB and leg

CD have the same expectation and variation whereas leg BC has a smaller expectation

and variance. From this point of view, the same service levels can be used for legs

AB and CD. In our case, the service level of leg BC takes a value smaller than that of

the other two legs. The case, where leg BC has larger service level values than leg AB
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and CD may also be studied in future studies. Let SL denote the service level vector

for (S LAB, S LBC, S LCD).

In order to see the results for different service level combinations, RLF is solved for

several cases and the results in Table 5.4 are obtained. The service levels of leg l are

allowed to take values in the interval [LS Ll,US Ll] given in Table 5.1. A number of

possible combinations are considered in Table 5.4.

As a result of a limited number of numerical observations, it is seen that the service

level combinations given in Table 5.4 do not result in a remarkable difference in the

expected revenue when compared to the case of equal service levels for the legs.

Simulation study in Chapter 6 to compare the use of different service levels and the

use of equal service levels for all legs justifies this observation. Note that, for every

feasible vector of (E(LFAB), E(LFBC), E(LFCD)) that can be obtained, SL value can

be chosen as in the model allowing S L = S Ll for all l.

Table 5.4: Results of the RLF with unequal S Ll for Base Problem

SL E(LFl) πl

SLAB SLBC SLCD E(R) l:AB l:BC l:CD l:AB l:BC l:CD

0.9000 0.8500 0.9000 71211.5502 0.9000 0.8723 0.9000 52.1376 85.2410 70.5002
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Table 5.4: Results of the RLF with unequal S Ll for Base Problem

SL E(LFl) πl

SLAB SLBC SLCD E(R) l:AB l:BC l:CD l:AB l:BC l:CD

0.9025 0.8525 0.9025 71162.3938 0.9025 0.8746 0.9025 52.7852 85.1944 70.5002

0.9050 0.8550 0.9050 71109.1113 0.9050 0.8767 0.9050 53.1078 85.3303 70.5002

0.9075 0.8575 0.9075 71051.0415 0.9075 0.8769 0.9075 53.3623 85.3303 70.3985

0.9100 0.8600 0.9100 70990.0477 0.9100 0.8790 0.9100 54.2581 85.9152 70.5169

0.9125 0.8625 0.9125 70922.6056 0.9125 0.8819 0.9125 54.8821 86.4684 70.5196

0.9150 0.8650 0.9150 70851.6259 0.9150 0.8829 0.9150 54.5927 86.4684 70.8791

0.9175 0.8675 0.9175 70772.7054 0.9175 0.8847 0.9175 54.3604 86.4684 70.9507

0.9200 0.8700 0.9200 70685.9643 0.9200 0.8869 0.9200 54.1219 85.9152 71.8578

0.9225 0.8725 0.9225 70595.7033 0.9225 0.8921 0.9225 55.6883 85.3303 71.8353

0.9250 0.8750 0.9250 70496.3082 0.9250 0.8943 0.9250 54.7305 85.4235 71.9606

0.9275 0.8775 0.9275 70388.5306 0.9275 0.8945 0.9275 55.3125 85.2410 72.0913

0.9300 0.8800 0.9300 70266.7842 0.9300 0.8986 0.9300 55.7670 85.1944 72.1086

0.9325 0.8825 0.9325 70138.8545 0.9325 0.9005 0.9325 54.6557 87.1087 71.5449

0.9350 0.8850 0.9350 70004.0251 0.9350 0.9034 0.9350 54.7848 87.4121 71.0585

0.9375 0.8875 0.9375 69862.0720 0.9375 0.9082 0.9375 54.4668 87.7412 70.8887

0.9400 0.8900 0.9400 69709.3049 0.9400 0.9084 0.9400 55.6867 87.5296 69.7613

0.9425 0.8925 0.9425 69543.4195 0.9425 0.9109 0.9425 54.2560 88.4231 67.6197

0.9450 0.8950 0.9450 69365.0826 0.9450 0.9132 0.9450 55.3497 88.6115 66.7830

0.9475 0.8975 0.9475 69175.8283 0.9475 0.9149 0.9475 54.6645 88.7572 64.1281

0.9500 0.9000 0.9500 68959.3408 0.9500 0.9147 0.9500 49.5234 90.6408 57.9156

0.9525 0.9025 0.9525 68721.7651 0.9525 0.9179 0.9525 47.1795 90.5574 52.8763

0.9550 0.9050 0.9550 68454.2488 0.9550 0.9194 0.9550 43.9127 90.3974 47.7848

0.9575 0.9075 0.9575 68133.9484 0.9575 0.9203 0.9575 32.6141 90.2009 33.6434

0.9600 0.9100 0.9600 67757.6073 0.9600 0.9226 0.9600 29.2893 89.9993 8.8503

5.2 RLF-M Model

The solutions of the bound models proposed in Section 4.2 are summarized in Table

5.5 below.

Table 5.5: Bounds for RLF-M

Lower Bound Models LWL

EMR with WLF 0.865544

Upper Bound Model UWL

MaxWLF 0.968887

64



In order to numerically justify the solutions obtained by the bound models above,

RLF-M is solved by incrementally increasing the S L values in RLF-M. An increment

of 0.0025 is used for SL in order to find the feasible range of SL numerically. We

consider the case of wl = 1/m for all l. The results obtained are summarized in Table

5.6.

Table 5.6: Results of RLF-M for the Base Problem

πl

SL E(R) Weighted Avg. E(LF) l:AB l:BC l:CD

0.8500 71765.7848 0.8655 61.9916 85.3303 73.9393

0.8525 71765.7848 0.8655 59.5551 86.4263 72.8012

0.8550 71765.7848 0.8655 59.5551 86.4263 72.8012

0.8575 71765.7848 0.8655 60.9468 86.4684 72.8012

0.8600 71765.7848 0.8655 61.4999 85.9152 72.8012

0.8625 71765.7848 0.8655 61.4999 85.9152 72.8012

0.8650 71765.7848 0.8655 61.2042 84.7771 73.9393

0.8675 71763.9402 0.8675 60.1076 85.1858 74.0600

0.8700 71759.9691 0.8700 60.7182 84.6738 74.0558

0.8725 71752.4767 0.8725 58.6325 84.5106 74.5480

0.8750 71730.7988 0.8750 54.9234 83.0870 74.7611

0.8775 71703.3604 0.8775 53.0910 82.4067 73.1214

0.8800 71669.6967 0.8800 53.0363 82.3503 74.2481

0.8825 71633.1581 0.8825 53.5468 82.7554 73.1511

0.8850 71591.5427 0.8850 53.3205 83.1868 73.2537

0.8875 71548.4624 0.8875 53.1490 83.3928 73.2709

0.8900 71501.3535 0.8900 52.6500 84.4604 73.5551

0.8925 71452.2292 0.8925 52.5686 85.4262 73.9971

0.8950 71396.3691 0.8950 52.5697 85.2644 73.9167

0.8975 71336.9566 0.8975 54.1705 84.6110 74.3862

0.9000 71272.7016 0.9000 54.0635 84.5039 74.2791

0.9025 71206.3344 0.9025 54.2134 84.8140 74.4999

0.9050 71135.9302 0.9050 53.4917 85.6384 74.5510

0.9075 71059.3800 0.9075 53.7741 85.8226 74.7596

0.9100 70978.1377 0.9100 55.1038 85.0764 74.7448

0.9125 70891.4625 0.9125 54.1182 86.5192 74.8396

0.9150 70797.3889 0.9150 53.9961 86.8270 74.5277

65



Table 5.6: Results of RLF-M for the Base Problem

πl

SL E(R) Weighted Avg. E(LF) l:AB l:BC l:CD

0.9175 70698.7620 0.9175 55.8890 85.1830 74.5477

0.9200 70593.7112 0.9200 54.2597 87.2540 74.2446

0.9225 70481.5958 0.9225 54.4034 87.8556 74.0771

0.9250 70359.7190 0.9250 53.8481 88.5602 72.6089

0.9275 70230.0255 0.9275 53.6305 89.3919 70.3252

0.9300 70091.9663 0.9300 53.8056 89.5351 69.9619

0.9325 69944.2624 0.9325 55.5338 88.0290 69.5796

0.9350 69786.1641 0.9350 54.4581 89.9510 65.8893

0.9375 69617.2864 0.9375 54.5953 89.9386 65.4975

0.9400 69436.7142 0.9400 53.2253 91.7929 63.2667

0.9425 69234.2399 0.9425 53.0637 92.3728 62.2613

0.9450 69017.8570 0.9450 52.3417 94.3333 56.9601

0.9475 68779.0327 0.9475 52.7355 93.7720 53.5220

0.9500 68528.5597 0.9500 53.8519 91.2258 51.1273

0.9525 68235.2605 0.9525 49.8280 94.8871 44.8122

0.9550 67911.8030 0.9550 49.3326 94.5912 43.7175

0.9575 67543.2017 0.9575 38.7249 95.4733 30.2146

0.9600 67112.9871 0.9600 35.4424 92.5866 26.8744

0.9625 66570.3516 0.9625 20.1812 86.7167 2.0330

0.9650 65867.9759 0.9650 -9.4266 86.5032 -30.2386

0.9675 64772.2840 0.9675 -82.1376 53.6075 -133.8659

0.9700 Infeasible

• For S L < 0.8675, the RLF-M model gives exactly the same results as the EMR

model in terms of expected revenue and the weighted average expected load

factor of the network, which is in accordance with the definition of lower bound

of SL.

• For service levels equal to or greater than 0.8675, the model diverges from the

EMR model. That is, the lower bound for the service level, LWL, is between

0.8650 and 0.8675 in Table 5.6. As presented in Table 5.5, the proposed bound

model, EMR, gives 0.86558844 as LWL. That is, the numerical analysis justifies
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the bound model proposed in Section 4.2.

• The highest SL value for which RLF-M is feasible is 0.968887. Beyond this

value, the model becomes infeasible. The upper bound for service level, UWL,

is between 0.9675 and 0.9700 in Table 5.6. As presented in Table 5.5, the pro-

posed bound model, MaxWLF, gives 0.968887 as UWL. That is, the numerical

analysis justifies the bound model proposed in Section 4.2.

• Note that the load factor constraint becomes binding at the divergence point,

0.8675. For the original RLF model, the divergence point was 0.849087 and

the service level where all of the load factor constraints become binding was

0.9075.

5.3 LFR Model

The solutions of the bound models proposed in Section 4.3 are summarized in Table

5.7 below.

Table 5.7: Bounds for LFR

Lower Bound Model LRL

LFR-M 62948.3292

Upper Bound Model URL

EMR 71765.7848

Note that, LFR-M is solved for the base problem with wl = 1/m for all legs in the

network.

In order to numerically justify the solutions obtained by the proposed bound models,

the optimization results of LFR are checked for the base problem. An increment of

250 is used for revenue level in order to find the feasible range of revenue level, RL

numerically. wl values are assumed as 1/m for all legs in the network. The results

obtained are summarized in Table 5.8.
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Table 5.8: Results of LFR for the Base Problem

RL E(R) Weighted Avg. E(LF) RL E(R) Weighted Avg. E(LF)

59000 62948.3292 0.968887 65500 65500.0000 0.965987

59250 62948.3292 0.968887 65750 65750.0000 0.965324

59500 62948.3292 0.968887 66000 66000.0000 0.964599

59750 62948.3292 0.968887 66250 66250.0000 0.963746

60000 62948.3292 0.968887 66500 66500.0000 0.962783

60250 62948.3292 0.968887 66750 66750.0000 0.961751

60500 62948.3292 0.968887 67000 67000.0000 0.960560

60750 62948.3292 0.968887 67250 67250.0000 0.959220

61000 62948.3292 0.968887 67500 67500.0000 0.957762

61250 62948.3292 0.968887 67750 67750.0000 0.956157

61500 62948.3292 0.968887 68000 68000.0000 0.954325

61750 62948.3292 0.968887 68250 68250.0000 0.952385

62000 62948.3292 0.968887 68500 68500.0000 0.950280

62250 62948.3292 0.968887 68750 68750.0000 0.947797

62500 62948.3292 0.968887 69000 69000.0000 0.945193

62750 62948.3292 0.968887 69250 69250.0000 0.942308

63000 63000.0000 0.968878 69750 69750.0000 0.935543

63250 63250.0000 0.968830 70000 70000.0000 0.931575

63500 63500.0000 0.968722 70250 70250.0000 0.927124

63750 63750.0000 0.968575 70500 70500.0000 0.922112

64000 64000.0000 0.968384 70750 70750.0000 0.916227

64250 64250.0000 0.968158 71000 71000.0000 0.909350

64500 64500.0000 0.967893 71250 71250.0000 0.900868

64750 64750.0000 0.967536 71500 71500.0000 0.890070

65000 65000.0000 0.967107 71750 71750.0000 0.872851

65250 65250.0000 0.966594 72000 Infeasible

65500 65500.0000 0.965987

According to Table 5.8, it can be seen that the lower bound for RL, is between 62750

and 63000. That is, the numerical analysis justifies the lower bound model proposed

in Section 4.3 as seen in Table 5.7: 62948.3292 ∈ (62750, 63000). According to

the results presented in Table 5.8, the upper bound for RL, is between, 71750 and

72000. In fact, the highest RL value for which there exists a feasible solution of LFR
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is 71765.7848 as seen in Table 5.7. That is, the numerical analysis justifies the upper

bound model proposed in Section 4.3.

When the concern is to analyze the impact of the threshold revenue level on the ex-

pected revenue and the weighted average of the expected load factors of the network,

we can benefit from the results presented in Table 5.7, which is obtained by assuming

wl = 1/m for all legs in the network.

• For RL below 62948.3292, the constraint on the expected revenue and the

weighted average expected load factor are constant at 62948.3292 and 0.9689,

respectively. This is in accordance with the definition of the lower bound of RL.

• The weighted average of the expected load factors show a decreasing concave

behaviour as RL increases. The reason of this pattern in the weighted average

of the expected load factors is the tendency of the model to reserve more tickets

for the future high fare class requests in order to be able to keep the revenue

above the threshold revenue level. This is in accordance with the numerical seat

allocations in Appendix C.

• As the EMR model gives the expected revenue level as 71765.7848, we would

expect that LFR model is infeasible beyond the revenue level 71765.7848. Con-

sistent with that expectation, when RL in the model is forced to be equal to or

greater than 71765.7848, the problem becomes infeasible. The highest RL for

which an optimal solution exists is 71765.7848.

The relation between the threshold revenue level, RL, and expected revenue is given

in Figure 5.5. The relation between the threshold revenue level, RL, and the weighted

average of the expected load factors of the network is given Figure 5.6.
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5.4 MaxminLF Model

The solutions of the bound models proposed in Section 4.4 are summarized in Table

5.9 below.
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Table 5.9: Bounds for MaxminLF

Lower Bound Model LRL

MinRL 62481.3044

Upper Bound Model URL

EMR 71765.7848

In order to numerically justify the solutions obtained by the proposed bound models,

the optimization results of MaxminLF-R are checked for the base problem. An incre-

ment of 250 is used for revenue level in order to find the feasible range of revenue

level, RL numerically. The results obtained are summarized in Table 5.10.
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Table 5.10: Results of MaxminLF for Base Problem

RL E(R) minl E(LFl) E(LFAB) E(LFBC) E(LFCD)

62000 63672.6378 0.965798 0.965798 0.965798 0.965798

62250 64471.4773 0.965798 0.965798 0.965798 0.965798

62500 64498.8030 0.965798 0.965798 0.965798 0.965798

62750 64428.4046 0.965798 0.965798 0.965798 0.965798

63000 63000.0000 0.965798 0.965798 0.965798 0.965798

63250 64523.5430 0.965798 0.965798 0.965798 0.965798

63500 64435.2149 0.965798 0.965798 0.965798 0.965798

63750 64565.0876 0.965798 0.965798 0.965798 0.965798

64000 64343.0930 0.965798 0.965798 0.965798 0.965798

64250 64250.0000 0.965798 0.965798 0.965798 0.965798

64500 64500.0000 0.965798 0.965798 0.965798 0.965798

64750 64750.0000 0.965798 0.965798 0.965798 0.965798

65000 65000.0000 0.965753 0.965753 0.965753 0.965753

65250 65250.0000 0.965554 0.965554 0.965554 0.965554

65500 65500.0000 0.965203 0.965203 0.965203 0.965203

65750 65750.0000 0.964728 0.964728 0.964728 0.964728

66000 66000.0000 0.964125 0.964125 0.964125 0.964125

66250 66250.0000 0.963397 0.963397 0.963397 0.963397

66500 66500.0000 0.962585 0.962585 0.962585 0.962585

66750 66750.0000 0.961581 0.961581 0.961581 0.961581

67000 67000.0000 0.960453 0.960453 0.960453 0.960453

67250 67250.0000 0.959193 0.959193 0.959193 0.959193

67500 67500.0000 0.957735 0.957735 0.957735 0.957735

67750 67750.0000 0.956073 0.956073 0.956073 0.956073

68000 68000.0000 0.954283 0.954283 0.954283 0.954283

68250 68250.0000 0.952262 0.952262 0.952262 0.952262

68500 68500.0000 0.949974 0.949974 0.949974 0.949974

68750 68750.0000 0.947365 0.947365 0.947365 0.947365

69000 69000.0000 0.944514 0.944514 0.944514 0.944514

69250 69250.0000 0.941358 0.941358 0.941358 0.941358

69500 69500.0000 0.937646 0.937646 0.937646 0.937646

69750 69750.0000 0.933687 0.933687 0.933687 0.933687

70000 70000.0000 0.929000 0.929000 0.929000 0.929000

70250 70250.0000 0.923835 0.923835 0.923835 0.923835

70500 70500.0000 0.918070 0.918070 0.918070 0.918070

70750 70750.0000 0.911287 0.911287 0.911287 0.911287
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Table 5.10: Results of MaxminLF for Base Problem

RL E(R) minl E(LFl) E(LFAB) E(LFBC) E(LFCD)

71000 71000.0000 0.902987 0.902987 0.902987 0.906500

71250 71250.000 0.892667 0.892667 0.892667 0.907040

71500 71500.000 0.879346 0.879346 0.879346 0.903425

71750 71750.000 0.857177 0.857177 0.857177 0.899453

72000 Infeasible

• MaxminLF is not feasible beyond the revenue level 72000. The highest RL

for which MaxminLF gives a feasible solution is 71765.7848. Therefore, the

numerical analysis justifies the proposed bound model as seen in Table 5.9.

• Up to RL = 64750, there is a zig-zag pattern in E(R) values, which we can

not explain. However, for RL ≥ 64250, E(R) increases as RL increases, as

expected. That is, MaxminLF reaches the stability for RL ≥ 64250.

• According to Table 5.10, the expected load factor values of leg AB, BC and CD

is equal for RL ≤ 70750, while the revenue earned changes as RL changes. The

E(LFl) values in Table 5.10 corresponding to E(LFl) = 0.965798 are totally in

accordance with the E(LFl) values of the proposed lower bound model, MinRL.

Based on this observation, it can be said that there are alternative optimal solu-

tions for MaxminLF.

• The constraint on RL in MaxminLF becomes binding at a revenue level of

64250 whereas the same constraint in LFR becomes binding in terms of rev-

enue at its lower bound 63000.

5.5 Threshold Levels under Different Scenarios

The upper and lower bounds for threshold levels used in RLF with S Ll = S L, RLF-

M, LFR and MaxminLF under different scenarios are summarized in Table 5.11. The

upper and lower bounds for the service level used in RLF with unequal S Ll under

different scenarios are summarized in Table 5.12.
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Table 5.11: Bounds on Threshold Levels under Different Scenarios

RLF with SLl=SL LFR

Scenerio LSL USL LRL URL

Base Problem 0.857145 0.965798 62948.3292 71765.7848

Increased Variance of Low Fare Demand 0.846324 0.942825 63491.6418 70679.1388

Smaller Differences Between Fares 0.901853 0.965798 56706.7123 60547.7284

Realistic Variations and Close Fares 0.924922 0.965653 62168.2883 65035.9662

Low Before High Arrival Pattern 0.857145 0.965798 62948.3292 71765.7848

RLF-M MaxminLF

Scenerio LWL UWL LRL URL

Base Problem 0.865544 0.968887 62481.3044 71765.7848

Increased Variance of Low Fare Demand 0.841761 0.944037 62811.1964 70679.1388

Smaller Differences Between Fares 0.893495 0.968887 56139.9793 60547.7284

Realistic Variations and Close Fares 0.916565 0.951410 61937.0757 65035.9662

Low Before High Arrival Pattern 0.865544 0.968887 62481,3044 71765.7848
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Table 5.12: Bounds on Threshold Levels of RLF with S Ll = S L under Different Scenarios

RLF with SLl=SL

Scenario LSLAB LSLBC LSLCD

Base Problem 0,850427 0,849087 0,897118

Increased Variance of Low Fare Demand 0,821081 0,825079 0,879122

Smaller Differences Between Fares 0,874064 0,888714 0,917708

Realistic Variations and Close Fares 0,916759 0,928640 0,944348

Low Before High Arrival Pattern 0,850427 0,849087 0,897118

RLF with SLl=SL

Scenario USLAB USLBC USLCD

Base Problem 0,965798 0,965798 0,965798

Increased Variance of Low Fare Demand 0,942825 0,942825 0,942825

Smaller Differences Between Fares 0,965798 0,965798 0,965798

Realistic Variations and Close Fares 0,965653 0,965653 0,965653

Low Before High Arrival Pattern 0,965798 0,965798 0,965798
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CHAPTER 6

SIMULATION STUDIES

This chapter includes the simulation studies performed to evaluate the performance

of the proposed models under different booking control polices as compared to the

existing models in the literature. The results of the optimization models provide just

an approximation for the performances of the models. Recall from Chapter 2, nest-

ing environment is not incorporated into the optimization models. In order defeat

this, control polices are incorporated in simulation studies and the performances of

the models under these control polices are evaluated. By simulation studies, not only

nesting control but also bid price control and even partitioned control are tested in a

more realistic environment with the help of the statistical distributions. In the simu-

lation studies, the airline network data given by de Boer (1999) is used as in Chapter

5. As mentioned in Chapter 5, the network consists of 3 legs, which are AB, BC and

CD. 4 nodes of the network are connected via these legs and there are 6 itineraries

among these nodes as represented in Figure 5.1. It is assumed that the flight legs

are identical and each has a flight capacity of 200. There are 3 fare classes for each

itinerary and therefore 18 origin-destination-fare combinations (ODF) in total. The

booking period is accepted as 150 days.

In general, the arrival process of the booking requests for RM problems is modeled

with Poisson Processes. The arrival rate of the Poisson Process is a random variable

and it is fitted with the Gamma Distribution. However, the low fare class customers

tend to arrive earlier than high fare class customers. Therefore, the arrival rate for RM

problems is not constant throughout the booking period and a Non-Homogeneous

Poisson Process (NHPP) is used in order to introduce this situation into simulation

76



models. The random arrival rate of NHPP is defined as the product of Beta and

Gamma distributed random variables. Beta density functions for different fare classes

that are used in this thesis are given in Figure A.1 in Appendix A. For the derivations

of the required distribution functions for simulation models, the reader is referred to

an overview of Terciyanlı (2009). The simulation of NHPP is not straightforward as

in the case of Poisson Process with constant rate. For the simulation techniques to

generate arrivals from NHPP, the reader is referred to the study of Law and Kelton

(2000).

Bayesian update is a frequently used method in RM problems to update the demand

distribution at certain points in time during the booking period. Bayesian update is

generally used where the historical data is not sufficient to estimate the distributions

exactly. For an overview of the adaptation of the Bayes’ formula to RM problems,

the reader is referred to Terciyanlı (2009). Bayesian update is not considered within

the scope of this thesis. The update of the bid prices is leaved as future research.

As mentioned in Chapter 5, 5 scenarios considered by de Boer (1999) are studied in

this thesis. The first scenario is the base problem on which we perform the model

interpretations in Chapter 5. The second one is the case with increased variance of

low-fare demand and, in the third case; the differences between fares are lowered.

In the fourth scenario, the realistic coefficient of variations of demand and relatively

close fares are used and the order of the arrivals is not specified. The last case is

with low-before-high arrival pattern. The chracteristics of these scenarios and the

motivation behind them is explained in the related subsections. The parameters of the

scenarios are provided in Appendix A.

The input for the simulation studies is the optimal seat allocations and the bid prices,

which are obtained by solving the optimization models. In this chapter DLP, EMR,

SLP, EMVLP, SLP-RM, PMP-RC, RLP models and RRS Procedure are compared to

our proposed models RLF with S Ll = S L for all l, RLF-M, LFR and MaxminLF. For

RLF-M and LFR, we use wl = 1/m for all l. The fact that the models we propose

are solved much more easily than the other risk sensitive models in the literature

is an advantage. It can be said that the proposed models lead to reasonable results

as compared to other models and give nearly close results to EMVLP, SLP-RM and
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PMP-RC.

Recall that, in Section 5.5, the intervals for threshold levels to be used in RLF with

S Ll=S L, RLF-M, LFR and MaxminLF are provided in Table 5.11 for different sce-

narios by solving the bound models proposed for them. The simulation intervals of

the proposed models in this chapter are in accordance with Table 5.11.

As Terciyanlı (2009) suggests, the replication number used in the simulation model

for partitioned and nested controls is taken as 10000.

We use 4 performance measures in order to evaluate the results of the optimization

models in the simulation model: sample mean (SM) and sample standard deviation

(SSD) for revenue, sample coefficient of variation (SCV) for revenue and load factor

(LF). These measures are calculated using the simulation results. The sample coeffi-

cient of variation is defined as follows:

S CV =
S S D
S M

. (6.1)

The organization of the simulation studies in this chapter is scenario-based. In Sec-

tion 6.1, the base problem is considered under partitioned, nested and bid price con-

trol policies. It is observed that the performances of partitioned and nested controls

are comparable in different respects. In addition, partitioned and nested controls are

consistent whereas bid price control exhibits inconsistencies in the expected trend of

the performance measures. Also nested control is preferred in practice to partitioned

control. Based on these observations, only nested control is evaluated for the other

problem scenarios. In this thesis, we use the nesting heuristic that is proposed by de

Boer et al. (2002). The case with increased variance of low-fare demand is studied

in Section 6.2. In Section 6.3, the third case in which the differences between fares

are lowered is investigated. The fourth scenario, where the realistic coefficient of

variations of demand and relatively close fares are used and the order of the arrivals

is not specified, is given in Section 6.4. Section 6.5 is devoted to the last case with

low-before-high arrival pattern. The concluding remarks about the simulation studies

are given in Section 6.6.
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6.1 Base Problem

According to de Boer (1999), the base problem is specified with the following char-

acteristics. The fare classes inherit huge differences among themselves. That is, the

low fare and high fare classes diverge significantly in terms of their parameters. The

low fare class customers are usually the leisure travelers and they tend to arrive earlier

than the high fare class customers do. However, there is not a strict rule about this

situation. There may be cases where a low fare class customer arrives later than a

high fare class customer. The long-haul flights are cheaper than the single-leg flights.

6.1.1 Partitioned Control Policy

The simulation results under partitioned control are given in Table 6.1. Note that,

the parameter, RL, is used in the optimization models LFR and MaxminLF whereas,

the sample mean, SM, is obtained from the simulation model. Therefore, RL and SM

values may not coincide. In accordance with this, it is observed that RL values are

mostly greater than or equal to SM values for LFR and MaxminLF.

Table 6.1: Simulation Results under Partitioned Control for the Base Problem

Model Parameter SM SSD SCV LF

DLP - 70735.10 5581.89 0.0789 0.8638

EMR - 71916.23 6243.67 0.0868 0.8669

SLP - 71744.89 5922.72 0.0826 0.8796

EMVLP θ = 0.001 71709.15 5616.34 0.0783 0.8847

θ = 0.005 67442.93 2950.30 0.0437 0.9527

SLP-RM L=60000 70830.87 4798.45 0.0677 0.9052

L=65000 70268.85 4299.09 0.0612 0.9203

L=70000 71229.74 5044.26 0.0708 0.8966

L=75000 71544.67 5660.58 0.0791 0.8780

L=80000 71772.31 6124.84 0.0853 0.8662

PMP-RC L=70000, ρ = 0.28 71899.31 6205.83 0.0863 0.8683

L=70000, ρ = 0.29 71461.74 5486.52 0.0768 0.8864

L=70000, ρ = 0.30 71791.26 5966.37 0.0831 0.8750

L=70000, ρ = 0.31 71830.97 6309.32 0.0878 0.8645
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Table 6.1: Simulation Results under Partitioned Control for the Base Problem

Model Parameter SM SSD SCV LF

RLF with S Ll = S L for all l SL=0.86 71862.81 5962.27 0.0830 0.8756

SL=0.87 71765.42 5796.44 0.0808 0.8817

SL=0.88 71596.28 5555.78 0.0776 0.8893

SL=0.89 71484.05 5327.96 0.0745 0.8980

SL=0.90 71130.30 5097.01 0.0717 0.9037

SL=0.91 70834.03 4861.06 0.0686 0.9101

SL=0.92 70378.28 4501.83 0.0640 0.9208

SL=0.93 69949.03 4216.93 0.0603 0.9314

SL=0.94 69168.97 3788.52 0.0548 0.9400

SL=0.95 68240.22 3378.41 0.0495 0.9475

SL=0.96 66891.29 2824.70 0.0422 0.9601

LFR RL=63000 62742.02 1785.81 0.0285 0.9672

RL=64000 63712.43 1949.42 0.0306 0.9667

RL=65000 64782.22 2185.34 0.0337 0.9653

RL=66000 65733.78 2461.71 0.0374 0.9628

RL=67000 66749.88 2798.81 0.0419 0.9588

RL=68000 67822.02 3171.96 0.0468 0.9529

RL=69000 68889.49 3601.72 0.0523 0.9447

RL=70000 70015.13 4208.64 0.0601 0.9309

RL=71000 71064.54 4986.30 0.0702 0.9104

RLF-M SL=0.87 71910.69 6136.20 0.0853 0.8705

SL=0.88 71797.86 5790.78 0.0807 0.8818

SL=0.89 71620.12 5550.37 0.0775 0.8913

SL=0.90 71370.99 5259.00 0.0737 0.9010

SL=0.91 71043.47 4980.67 0.0701 0.9108

SL=0.92 70617.57 4591.84 0.0650 0.9208

SL=0.93 70015.13 4208.64 0.0601 0.9309

SL=0.94 69346.81 3843.23 0.0554 0.9396

SL=0.95 68345.44 3383.29 0.0495 0.9492

SL=0.96 66887.69 2831.52 0.0423 0.9584

MaxminLF RL=63000 63034.64 1888.84 0.0300 0.9655

RL=64000 64289.75 2067.10 0.0322 0.9646

RL=65000 64830.98 2232.53 0.0344 0.9640

RL=66000 65802.96 2441.08 0.0371 0.9619
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Table 6.1: Simulation Results under Partitioned Control for the Base Problem

Model Parameter SM SSD SCV LF

RL=67000 66701.67 2765.14 0.0415 0.9592

RL=68000 67784.77 3194.22 0.0471 0.9527

RL=69000 68851.15 3642.78 0.0529 0.9436

RL=70000 69948.90 4263.56 0.0610 0.9284

RL=71000 71061.16 5056.41 0.0712 0.9046

• As can be seen form Table 6.1, the highest SM value is obtained from the EMR

model. The second highest SM value is obtained via RLF-M at S L = 0.87.

As expected, RLF-M yields higher SM values than RLF (recall Remark 3.2.1).

However, up to the service level 0.92, the RLF model gives close results to the

risk sensitive models EMVLP, SLP-RM and PMP-RC in terms of SM. When the

revenue level is at its upper bound, 71000, LFR outperforms DLP, EMVLP at

θ = 0.005 and SLP-RM at L = 60000 and L = 65000. The SM values obtained

from MaxminLF are slightly higher than those of LFR. It is observed that the

SM values obtained from our proposed risk sensitive models are quite close to

those of existing risk sensitive models. It is also observed that RLF and RLF-M

yield higher SM values as compared to LFR and MaxminLF.

• LFR yields the lowest SSD and SCV values among all other models in Table 6.1

when RL = 63000 at the cost of a considerable decrease in SM as compared to

the highest SM obtained by EMR. Also for higher RL values, LFR outperforms

all existing risk sensitive models in terms of variation of the revenue. RLF

also performs satisfactorily in terms of variation as compared to other existing

models. Especially, when S L = 0.96, RLF outperforms other existing models

in the literature in terms of SSD and SCV values. It is observed that LFR is

more effective in terms of risk sensitivity as compared to RLF. RLF-M and

MaxminLF gives higher variation values than RLF and LFR, respectively. The

highest variation is obtained via PMP-RC, when L = 70000, ρ = 0.31.

• LFR yields the highest LF value among all other models in Table 6.1 when
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RL = 63000. RLF also performs more satisfactorily than the existing models

in terms of load factor. Especially, at S L = 0.96, RLF yields higher LF value

than all of the existing models. The maximum load factor value that can be

obtained from other risk sensitive models, EMVLP, SLP-RM and PMP-RC is

0.9527. RLF-M and MaxminLF yield higher LF values than most of the existing

models as RLF and LFR do. The poorest model in terms of load factor is DLP.

Depending on the above observations, LFR is found quite effective in terms of risk

sensitivity as compared to other models including the risk sensitive ones. In addi-

tion, RLF seems to perform satisfactorily when compared to the existing models. It

is especially promising that RLF gives better than or as satisfactory results as the risk

sensitive models EMVLP, SLP-RM and PMP-RC. It is observed that RLF yields lower

variation and higher load factor values than RLF-M. Similarly, LFR yields lower vari-

ation and higher load factor values than MaxminLF.

Under partitioned policy, the lowest SSD and SCV values and the highest LF value

can be obtained by LFR, in case the sample mean of the revenue is sacrificed. How-

ever, also for higher threshold levels, variation and load factor values of LFR are

close to and even mostly better than those of the existing risk sensitive models. The

performance of RLF follows the peformance of LFR in terms of those performance

measures. To sum up, all proposed models can be used as risk sensitive models that

give reasonable revenue levels while keeping the variation at tolerable levels.

SM, SCV and LF values obtained by RLF, RLF-M, LFR and MaxminLF are presented

in Figures 6.1, 6.2, 6.3, respectively. According to these figures it can be said that the

models with a constraint on expected revenue (LFR and MaxminLF) may be prefer-

able to those models with constraints on expected load factors (RLF and RLF-M) in

terms of risk sensitivity since the former models provide lower variation but higher

load factor values as compared to latter models. Moreover, it is observed that the same

type of models exhibit a very similar behavior in terms of all performance measures.

82



61000

62000

63000

64000

65000

66000

67000

68000

69000

70000

71000

72000

73000

0.85
59000

0.87
61000

0.89
63000

0.91
65000

0.93
67000

0.95
69000

Service Level (SL ), Revenue Level (RL )

S
am

p
le

 M
ea

n
 (

S
M

)
RLF
RLF-M
LFR
MaxminLF

Figure 6.1: SM Values of Proposed Models under Partitioned Control
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Figure 6.2: SCV Values of Proposed Models under Partitioned Control

6.1.2 Nested Control Policy

The simulation results for the nested booking policy are given in Table 6.2.
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Figure 6.3: LF Values of Proposed Models under Partitioned Control

Table 6.2: Simulation Results under Nested Control for the Base Problem

Model Parameter SM SSD SCV LF

DLP - 75857.76 6791.64 0.0895 0.8964

EMR - 74440.36 6965.04 0.0936 0.8799

SLP - 74305.64 6507.56 0.0876 0.8924

EMVLP θ = 0.001 74683.00 6234.07 0.0835 0.9013

θ = 0.005 70575.22 3241.07 0.0459 0.9651

SLP-RM L=60000 74896.23 5671.38 0.0757 0.9197

L=65000 73757.56 4790.14 0.0649 0.9368

L=70000 74900.44 5784.49 0.0772 0.9147

L=75000 74841.38 6354.80 0.0849 0.8999

L=80000 74503.56 6884.54 0.0924 0.8811

PMP-RC L=70000, ρ = 0.28 74476.11 6895.56 0.0926 0.8815

L=70000, ρ = 0.29 75391.19 6181.95 0.0820 0.9081

L=70000, ρ = 0.30 74597.24 6670.12 0.0894 0.8890

L=70000, ρ = 0.31 74273.41 7091.90 0.0955 0.8752

RLF with S Ll = S L for all l SL=0.86 74606.57 6643.54 0.0890 0.8897

SL=0.87 74452.72 6437.31 0.0865 0.8950

SL=0.88 74294.31 6152.78 0.0828 0.9014

SL=0.89 74200.36 5877.27 0.0792 0.9089
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Table 6.2: Simulation Results under Nested Control for the Base Problem

Model Parameter SM SSD SCV LF

SL=0.90 73752.97 5528.66 0.0750 0.9149

SL=0.91 73442.41 5265.69 0.0717 0.9205

SL=0.92 72965.35 4856.38 0.0666 0.9300

SL=0.93 72380.52 4502.25 0.0622 0.9384

SL=0.94 71727.05 4027.01 0.0561 0.9481

SL=0.95 70974.14 3611.47 0.0509 0.9566

SL=0.96 69771.81 3086.18 0.0442 0.9662

LFR RL=63000 66759.56 2378.37 0.0356 0.9794

RL=64000 67309.29 2416.94 0.0359 0.9772

RL=65000 68121.30 2570.88 0.0377 0.9746

RL=66000 68800.96 2760.44 0.0401 0.9714

RL=67000 69622.02 3039.21 0.0437 0.9662

RL=68000 70585.24 3420.18 0.0485 0.9599

RL=69000 71660.40 3865.76 0.0539 0.9520

RL=70000 72807.43 4590.77 0.0631 0.9379

RL=71000 74051.76 5526.43 0.0746 0.9185

RLF-M SL=0.87 74554.40 6830.99 0.0916 0.8843

SL=0.88 74494.01 6440.26 0.0865 0.8950

SL=0.89 74446.40 6131.53 0.0824 0.9038

SL=0.90 74366.74 5811.00 0.0781 0.9125

SL=0.91 73960.50 5499.54 0.0744 0.9190

SL=0.92 73590.02 5043.76 0.0685 0.9292

SL=0.93 72807.43 4590.77 0.0631 0.9379

SL=0.94 72048.68 4147.41 0.0576 0.9471

SL=0.95 71004.05 3629.13 0.0511 0.9564

SL=0.96 69684.42 3071.09 0.0441 0.9657

MaxminLF RL=63000 67354.51 2512.86 0.0373 0.9763

RL=64000 68287.11 2538.66 0.0372 0.9755

RL=65000 68510.92 2622.73 0.0383 0.9743

RL=66000 68925.16 2787.03 0.0404 0.9716

RL=67000 69615.56 3023.40 0.0434 0.9667

RL=68000 70423.45 3399.30 0.0483 0.9597

RL=69000 71394.54 3873.27 0.0543 0.9504

RL=70000 72425.71 4539.91 0.0627 0.9374
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Table 6.2: Simulation Results under Nested Control for the Base Problem

Model Parameter SM SSD SCV LF

RL=71000 73643.61 5491.33 0.0746 0.9156

• The SM value of all models increases under nested control as compared to

partitioned control. The highest SM value is obtained by DLP. This is in accor-

dance with the observation due to Williamson (1992), which states that DLP

outperforms the probabilistic models in terms of obtained revenue since both

deterministic and probabilistic models ignore a nested environment. Up to

S L = 0.92, RLF and RLF-M give close SM values to existing risk sensitive

models. For those SL values, the variation and load factor values of RLF and

RLF-M are also close to those of the existing models. LFR yields lower SM

values as compared to other risk sensitive models even at its highest SM value

when RL = 71000. Under nested control, RLF yields higher SM values than

LFR as in the case of partitioned control. RLF-M and MaxminLF give close

results to RLF and LFR, respectively.

• Under nested control, the SSD and SCV values of all models increase as com-

pared to partitioned control. The lowest SSD and SCV values are obtained by

LFR when RL = 63000. However, also for higher RL requirements, LFR gives

close or better SSD and SCV values as compared to existing risk sensitive mod-

els. RLF also yields satisfactory variation values especially for S L > 0.91.

• Under nested control, the LF values of all models increase as compared to par-

titioned control. The highest LF value is obtained by LFR when RL = 63000.

For higher RL requirements, the load factor values obtained from LFR are still

satisfactory as compared to other models. RLF also yields satisfactory LF val-

ues at reasonable SM values as compared to other existing models.

According to the simulation results, it can be said that for risk-averse decision makers

LFR and MaxminLF are preferable to RLF and its variation RLF-M since they yield
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lower variation and higher load factor values. Note that RLF and RLF-M yield higher

SM values than LFR and MaxminLF, respectively.

When we compare our proposed models to the existing models in the literature, it can

be said that all of the four proposed models give satisfactory results in terms of almost

all performance measures. Moreover, the fact that the models we propose are solved

much easier than the other risk sensitive models in the literature is an advantage.

The CPU times of the models we propose and those of existing models are given in

Table 6.7. In summary, it can be said that the proposed models do not lead to an

unacceptable result when compared to other models and give nearly close results to

that of EMVLP, SLP-RM and PMP-RC.

SM, SCV and LF values obtained by RLF, RLF-M, LFR and MaxminLF are presented

in Figures 6.4, 6.5, 6.6, respectively.
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Figure 6.4: SM Values of Proposed Models under Nested Control (Base Problem)

6.1.3 Bid Price Control Policy

Different than partitioned and nested controls, the input for the bid price control to

be evaluated in the simulation model is the bid prices obtained by solving the op-

timization models. Note that bid price control can not be considered for LFR and
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Figure 6.5: SCV Values of Proposed Models under Nested Control (Base Problem)
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Figure 6.6: LF Values of Proposed Models under Nested Control (Base Problem)

MaxminLF because the objective in these models is not revenue maximization. That

is, bid prices (dual variables) in LFR and MaxminLF are not comparable with the

fares of the products.

In this section, the RLF and RLF-M models are compared with DLP, EMR, SLP, SLP-

RM, RLP models and RRS Procedure. RLP and RRS Procedure are due to Terciyanlı
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(2009). The simulation results for the bid price control are given in Table 6.3.

Table 6.3: Simulation Results under Bid-Price Control for the Base Problem

Model Parameter SM SSD SCV LF

DLP - 72878.75 4523.30 0.0630 0.9551

EMR - 72878.75 4523.30 0.0630 0.9551

SLP - 72878.75 4523.30 0.0630 0.9551

EMVLP θ = 0.001 66896.50 3789.70 0.0550 0.9797

θ = 0.005 59843.30 3000.24 0.0525 0.9942

SLP-RM L=60000 58060.85 12671.35 0.2182 0.5200

L=65000 73846.35 7018.79 0.0955 0.8641

L=70000 59843.85 3125.44 0.0526 0.9942

L=75000 72118.35 8182.59 0.1132 0.8246

L=80000 73846.41 7018.29 0.0952 0.8641

RLP - 75968.29 5868.81 0.0772 0.9289

RRS L< 75000 72878.75 4523.30 0.0630 0.9551

L> 75000 75968.21 5868.81 0.0772 0.9291

L< 80000 72878.75 4523.30 0.0630 0.9551

L> 80000 75968.21 5868.81 0.0772 0.9291

L< 85000 75968.20 5868.81 0.0772 0.9291

L> 85000 75968.20 5868.81 0.0772 0.9291

L< 90000 75968.20 5868.81 0.0772 0.9291

L> 90000 71942.30 8272.50 0.1159 0.8269

RLF with S Ll = S L for all l SL=0.86 72878.75 4523.30 0.0630 0.9551

SL=0.87 72878.71 4523.30 0.0630 0.9551

SL=0.88 72878.71 4523.30 0.0630 0.9551

SL=0.89 72878.71 4523.30 0.0630 0.9551

SL=0.90 75968.21 5868.81 0.0772 0.9291

SL=0.91 75968.21 5868.81 0.0772 0.9291

SL=0.92 75968.21 5868.81 0.0772 0.9291

SL=0.93 75968.21 5868.81 0.0772 0.9291

SL=0.94 72878.75 4523.30 0.0630 0.9551

SL=0.95 59843.85 3125.44 0.0526 0.9942

SL=0.96 59843.85 3125.44 0.0526 0.9942

RLF-M SL=0.87 72878.75 4523.30 0.0630 0.9551

SL=0.88 72878.75 4523.30 0.0630 0.9551
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Table 6.3: Simulation Results under Bid-Price Control for the Base Problem

Model Parameter SM SSD SCV LF

SL=0.89 72878.75 4523.30 0.0630 0.9551

SL=0.90 72878.75 4523.30 0.0630 0.9551

SL=0.91 72878.75 4523.30 0.0630 0.9551

SL=0.92 75968.21 5868.81 0.0772 0.9291

SL=0.93 72878.75 4523.30 0.0630 0.9551

SL=0.94 72878.75 4523.30 0.0630 0.9551

SL=0.95 66486.35 3723.25 0.0571 0.9842

SL=0.96 59843.85 3125.44 0.0526 0.9942

Different from partitioned and nested controls, a number of alternative models yield

the highest sample mean, the lowest variation and the highest load factor values.

RLF is one of those models that yield the highest sample mean. Contrary to the

partitioned and nested controls, existing risk-sensitive models EMVLP and SLP-RM

yield the lowest variation and the highest load factor values as RLF does. That is,

EMVLP and SLP-RM improve their performance in terms of risk sensitivity under bid

price control. EMVLP, SLP-RM, RLF and RLF-M reach to their utmost load factor

value under bid price control for some instances. It is observed that there is not a

significant decrase in SM values for RLF and RLF-M as SL increases. Different than

partitioned and nested controls, there is not a continuous trend in the performance

measures obtained by bid price control for RLF and RLF-M. It is observed that for all

performance measures, the values obtained by bid price control for RLF and RLF-M

display a step-wise behaviour.

According to the simulation results, it can be said that RLF and RLF-M perform

satisfactorily under bid price control when compared to other models in the literature.

6.1.4 Comparison of the Control Policies

• When the partitioned, nested and bid price controls are evaluated, it is observed

that the nested control gives higher sample mean than partitioned control for all
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models. Bid price control yields higher sample means than the partitioned con-

trol policy for DLP, EMR and SLP. However, for EMVLP, partitioned control

performs better than bid price control in terms of sample mean. For SLP-RM,

bid price control policy gives higher sample mean than the partitioned control

at some revenue levels. Bid price control does not a have continious trend in

sample mean. It displays a step-wise behaviour. For high service levels, bid

price control policy displays a sharply decreasing trend in sample mean val-

ues for RLF and RLF-M since the opportunity cost of the products increase as

service level increases.

• For all models, nested booking limit control policy yields higher sample stan-

dard deviation and sample coefficient of variation than partitioned control. Bid

price control policy yields lower sample standard deviation and sample coef-

ficient of variation values for DLP, EMR and SLP as compared to partitioned

and nested booking control limit policies. Such a deduction is not valid for RLF

and RLF-M since the values of the performance measures obtained by bid price

control exhibit an inconsistent behaviour.

• Bid price control policy yields the highest values for the load factor for all

models.

• The behavior of RLF-M is quite similar to that of RLF under different control

policies. Similarly, MaxminLF exhibits a very close behavior to LFR under

different control policies.

The comparison of partitioned, nested and bid price controls for SM, SSD, SCV and

LF values of RLF is presented in Figures 6.7, 6.8, 6.9, 6.10, respectively. A similar

comparison for LFR is presented in Figures 6.11, 6.12, 6.13, 6.14, respectively.

6.2 Increased Variance of Low Fare Demand

In the base problem considered in Chapter 5 and in Section 6.1, the demand variance

of high fare class (class 1) is relatively higher than the demand variances of two other

low fare classes (class 2 and 3). de Boer (1999) considers increases in the demand
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Figure 6.7: SL versus SM for alternative control polices (RLF)
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Figure 6.8: SL versus SSD for alternative control polices (RLF)

variance of low fare classes according to the studies of Belobaba (1987). The data

for the “increased variance of low fare demand” case is given in Appendix A. The

seat allocations obtained from RLF, RLF-M, LFR and MaxminLF to be used in the

simulation model for nested control are provided in Appendix C.

Recall that, in Section 5.5, the intervals for threshold levels to be used in RLF with
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Figure 6.9: SL versus SCV alternative control polices (RLF)
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Figure 6.10: SL versus LF for alternative control polices (RLF)

S Ll = S L, RLF-M, LFR and MaxminLF are provided in Table 5.11 for different

scenarios by solving the bound models proposed for them. The simulation intervals

of the proposed models in this section are in accordance with Table 5.11.

Increasing low-fare demand variance results in an increase in deviations from the

mean for low-fare demands. Therefore, we expect that there is a decrease in the
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Figure 6.11: RL versus SM for alternative control polices (LFR)
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Figure 6.12: RL versus SSD for alternative control polices (LFR)

number of seats allocated for low-fare classes. As it is expected, there is a slight

decrease in seat allocations for low-fare classes. The decrease in low-fare class seat

allocations results in slight decreases in revenue and load factors for most of the

models. The simulation results under nested control are provided in Table 6.4.
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Figure 6.13: RL versus SCV for alternative control polices (LFR)
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Figure 6.14: RL versus LF for alternative control polices (LFR)

Table 6.4: Simulation Results under Nested Control for “Increased Variance of Low Fare Demand”

Case

Model Parameter SM SSD SCV LF

DLP - 76002.79 6836.85 0.0900 0.8975

EMR - 74380.88 7257.46 0.0976 0.8730
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Table 6.4: Simulation Results under Nested Control for “Increased Variance of Low Fare Demand”

Case

Model Parameter SM SSD SCV LF

SLP - 74250.58 6689.30 0.0901 0.8879

EMVLP θ = 0.001 74212.16 6189.47 0.0834 0.9036

θ = 0.005 70357.69 3311.78 0.0471 0.9634

SLP-RM L=60000 73331.47 5279.22 0.0720 0.9230

L=65000 74099.97 5257.27 0.0709 0.9274

L=70000 74225.44 5667.37 0.0764 0.9161

L=75000 74501.94 6462.15 0.0867 0.8964

L=80000 74596.30 7263.08 0.0974 0.8755

RLF with S Ll = S L SL=0.85 73987.73 6639.93 0.0897 0.8899

SL=0.86 73882.44 6421.13 0.0869 0.8960

SL=0.87 73604.36 6145.68 0.0835 0.9029

SL=0.88 73325.62 5916.14 0.0807 0.9076

SL=0.89 73072.14 5618.67 0.0769 0.9151

SL=0.90 72652.86 5272.76 0.0726 0.9227

SL=0.91 72313.48 4919.06 0.0680 0.9302

SL=0.92 71755.78 4497.68 0.0627 0.9392

SL=0.93 71071.63 3950.83 0.0556 0.9498

SL=0.94 69562.20 3118.99 0.0448 0.9648

LFR RL=64000 68155.82 2572.29 0.0377 0.9733

RL=65000 68881.16 2775.95 0.0403 0.9689

RL=66000 69367.00 3034.47 0.0437 0.9650

RL=67000 70279.34 3416.14 0.0486 0.9589

RL=68000 71093.92 3932.35 0.0553 0.9505

RL=69000 72008.09 4641.53 0.0645 0.9377

RL=70000 73199.73 5671.21 0.0775 0.9151

RLF-M SL=0.85 74319.87 7032.83 0.0946 0.8795

SL=0.86 74163.08 6488.51 0.0875 0.8952

SL=0.87 73885.73 6136.53 0.0831 0.9046

SL=0.88 73493.74 5872.42 0.0799 0.9114

SL=0.89 73493.74 5872.42 0.0799 0.9114

SL=0.90 73082.63 5427.17 0.0743 0.9212

SL=0.91 72418.65 4998.14 0.0690 0.9308

SL=0.92 71906.64 4525.48 0.0629 0.9396
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Table 6.4: Simulation Results under Nested Control for “Increased Variance of Low Fare Demand”

Case

Model Parameter SM SSD SCV LF

SL=0.93 71093.92 3932.35 0.0553 0.9505

SL=0.94 69698.21 3130.10 0.0449 0.9641

MaxminLF RL=63000 68493.57 2684.24 0.0392 0.9724

RL=64000 68493.57 2684.24 0.0392 0.9724

RL=65000 68908.07 2805.37 0.0407 0.9693

RL=66000 69562.20 3118.99 0.0448 0.9648

RL=67000 70291.58 3463.12 0.0493 0.9583

RL=68000 71071.63 3950.83 0.0556 0.9498

RL=69000 71921.21 4629.06 0.0644 0.9362

RL=70000 73121.15 5722.90 0.0783 0.9129

The following observations are made based on the comparison with the base problem.

• The SM values in Table 6.4 are smaller than the SM values in Table 6.2 for

all of the models except LFR and MaxminLF. In addition, DLP and SLP-RM

at L = 65 and L = 80 show an increase in SM values as compared to the

base problem. The highest SM value is obtained by DLP as in the case of base

problem.

• The LF values decrease for almost all of the existing models as compared to the

base problem. Only DLP, EMVLP and SLP-RM show an increase in LF values

at particular instances. The same decrease in the LF values is observed also for

LFR and MaxminLF at all RL values. On the contrary, LF values for RLF and

RLF-M show an increase at all SL values as compared to base problem.

• The SSD values increase for DLP, SLP, EMR and for all RL values of the pro-

posed models LFR and MaxminLF as compared to the base problem. On the

contrary, EMVLP and SLP-RM show a slight decrease in SSD for some in-

stances. The proposed models RLF and RLF-M have also a decrease in SSD
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values for all SL values. SCV values increase for almost all models except RLF

and RLF-M.

In case the variance of low fare classes increases, the performances of the proposed

models RLF, RLF-M and LFR, MaxminLF change in opposite directions. It can be

seen that the performance of RLF and its variation RLF-M improves in terms of risk

sensitivity when the variance of low fare classes increases as compared to the base

problem. Although the performance of LFR and MaxminLF is worse in this sense

as compared to base problem, they still provide the lowest variance and highest LF

values among all other models at RL = 63000.

SCV and LF values obtained by RLF, RLF-M, LFR and MaxminLF are presented in

Figures 6.15 and 6.16, respectively.
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Figure 6.15: SCV Values of Proposed Models under Nested Control (Increased Vari-
ance of Low Fare Demand)

6.3 Smaller Differences between Fares

de Boer (1999) considers decreasing the difference between the fare classes and in-

vestigates the impact of this change on the performances of the models in the litera-

ture. de Boer (1999) states that decreasing differences between fare classes improves
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Figure 6.16: LF Values of Proposed Models under Nested Control (Increased Vari-
ance of Low Fare Demand)

the results of the EMR-based stochastic models as compared to the deterministic DLP

model. The data for the “smaller differences between fares” case is given in Appendix

A.

The decrease in difference between fare classes is obtained by decreasing the high

fares. This situation affects the seat allocations of high fare classes in a negative way

since it is now less attractive to allocate a seat for high fare classes with lower fares.

The seat allocations obtained by RLF with S Ll = S L, RLF-M, LFR and MaxminLF to

be used in the simulation model for nested booking limit control policy are provided

in Appendix C.

Decreasing the difference between the fare classes results in a decrease both in the

expected revenue and in the standard deviation of revenue. That is, more seats are

allocated to the low fare classes that have small variations in demand when compared

to the high fare classes.

The simulation intervals of the proposed models in this section are in accordance with

Table 5.11. That is, the service levels, the corresponding seat allocations of which

are used in the simulation are chosen from the interval in Table 5.11. The simulation

results under nested control are provided in Table 6.5.
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Table 6.5: Simulation Results under Nested Control for “Smaller Differences between Fares” Case

Model Parameter SM SSD SCV LF

DLP - 75596.06 6698.37 0.0886 0.8993

EMR - 74084.68 5740.71 0.0775 0.9169

SLP - 73085.45 4920.56 0.0673 0.9366

EMVLP θ = 0.001 73191.81 4880.64 0.0667 0.9369

θ = 0.005 69622.04 3086.56 0.0443 0.9704

SLP-RM L=60000 73116.35 4296.74 0.0588 0.9500

L=65000 74571.03 5536.01 0.0742 0.9231

L=70000 73384.76 5985.59 0.0816 0.9097

L=75000 73085.45 4920.56 0.0673 0.9366

L=80000 73085.45 4920.56 0.0673 0.9366

RLF with S Ll = S L S L = 0.91 73016.15 4869.91 0.0667 0.9367

S L = 0.92 72589.56 4690.57 0.0646 0.9400

S L = 0.93 71972.61 4338.55 0.0603 0.9465

S L = 0.94 71179.26 3986.76 0.0560 0.9532

S L = 0.95 70256.24 3598.67 0.0512 0.9603

S L = 0.96 69122.97 3087.31 0.0447 0.9691

LFR RL = 57000 66329.71 2394.41 0.0361 0.9796

RL = 57500 67052.31 2471.64 0.0369 0.9779

RL = 58000 67599.18 2619.97 0.0388 0.9758

RL = 58500 68268.67 2822.63 0.0413 0.9730

RL = 59000 69204.05 3125.23 0.0452 0.9681

RL = 59500 70282.76 3526.99 0.0502 0.9618

RL = 60000 71538.23 4080.39 0.0570 0.9524

RL = 60500 73334.48 5168.58 0.0705 0.9298

RLF-M S L = 0.90 73673.60 5519.94 0.0749 0.9212

S L = 0.91 73344.27 5136.70 0.0700 0.9307

S L = 0.92 72796.03 4781.22 0.0657 0.9385

S L = 0.93 72358.77 4452.09 0.0615 0.9453

S L = 0.94 71573.00 4082.54 0.0570 0.9525

S L = 0.95 70506.70 3563.68 0.0505 0.9614

S L = 0.96 68849.74 3044.20 0.0442 0.9691

MaxminLF RL = 56500 67626.74 2585.23 0.0382 0.9777

RL = 57000 67766.29 2583.86 0.0381 0.9780

RL = 57500 68024.94 2631.50 0.0387 0.9774
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Table 6.5: Simulation Results under Nested Control for “Smaller Differences between Fares” Case

Model Parameter SM SSD SCV LF

RL = 58000 68055.21 2696.66 0.0396 0.9755

RL = 58500 68612.29 2904.55 0.0423 0.9722

RL = 59000 69329.12 3180.86 0.0459 0.9678

RL = 59500 70187.45 3499.74 0.0499 0.9622

RL = 60000 71604.07 4141.62 0.0578 0.9506

RL = 60500 73453.34 5294.98 0.0721 0.9268

• For all of the models in the literature and the proposed models, SM values

decrease as compared to the base problem. In addition, the “smaller differences

between fares” case provides lower SM values than the “increased variance of

low fare demand” case for almost all models except the proposed models RLF

and RLF-M. As in the case of the previous scenarios, DLP yields the highest

SM value in accordance with the observation due to Williamson (1992).

• The SSD and SCV values decrease for all of the models as compared to the

base problem. The SSD and SCV values obtained under this case are also lower

than the “increased variance of low fare demand” case except for the proposed

models RLF and RLF-M up to S L = 0.92.

• The load factor values increase for all of the models as compared to the base

problem.

According to the above observations, it can be stated that the performances of all of

the models improve in terms of risk sensitivity in case the difference between the fares

is lowered. Although the SM values decrease for all models, a decrease in variance

and an increase in LF values are obtained for all models.

Under nested control, the highest LF values and the lowest SSD and SCV values are

obtained by LFR at RL = 57000. Also for higher RL values, LFR gives satisfactory

results in terms of risk sensitivity. The revenue obtained from LFR, however, is less
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than but quite close to the revenue values of other models in the literature. The per-

formance of MaxminLF follows the performance of LFR in terms of effectiveness in

risk sensitivity. In addition, RLF gives results close to those of other models for all

performance measures. The gap between the lowest SM value of RLF and the SM

value of other models is not high. Therefore, RLF is also preferable by taking its ease

of use into consideration. The performance of RLF-M follows the performance of

RLF.

SCV and LF values obtained by RLF, RLF-M, LFR and MaxminLF are presented in

Figures 6.17 and 6.18, respectively.
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Figure 6.17: SCV Values of Proposed Models under Nested Control (Smaller Differ-
ences between Fares)

6.4 Realistic Variations and Close Fares

In this section, the case of realistic coefficients of variation of demand and relatively

close fares is considered. Moreover, no specific order of arrivals is assumed for this

case different than the base problem. According to the study of de Boer (1999), no

specific order of arrivals favors the occurrence of nesting. Recall that the decrease of

difference between fare classes is studied in Section 6.3. In addition to this decrease

between fare classes, the coefficient of variation of demand is set almost equal to
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Figure 6.18: LF Values of Proposed Models under Nested Control (Smaller Differ-
ences between Fares)

0.33 for all fare classes, which is stated as the realistic case by Belobaba (1987). As

Terciyanlı (2009) states in his study, this case is best suited to small-scaled airlines

which have relatively close fares and no specific order of arrival. The data for the

“realistic variations and close fares” case is given in Appendix A.

The seat allocations obtained by RLF with S Ll = S L, RLF-M, LFR and MaxminLF to

be used in the simulation model for nested control are provided in Appendix C. The

simulation intervals of the proposed models in this section are in accordance with

Table 5.11. The simulation results under nested control are provided in Table 6.6.

Table 6.6: Simulation Results under Nested Control for “Realistic Variations and Close Fares” Case

Model Parameter SM SSD SCV LF

DLP - 75343.68 7034.09 0.0934 0.8803

EMR - 74248.70 7143.41 0.0962 0.8663

SLP - 73447.83 6353.36 0.0865 0.8845

EMVLP θ = 0.001 73935.70 6592.00 0.0892 0.8806

θ = 0.005 72988.79 5485.27 0.0752 0.9076

SLP-RM L=60000 73447.83 6353.36 0.0865 0.8845

L=65000 74164.57 6270.87 0.0846 0.8943

L=70000 73450.65 6522.32 0.0888 0.8790
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Table 6.6: Simulation Results under Nested Control for “Realistic Variations and Close Fares” Case

Model Parameter SM SSD SCV LF

L=75000 74324.70 7496.49 0.1009 0.8552

L=80000 73447.83 6353.36 0.0865 0.8845

RLF with S Ll = S L SL=0.9250 73546.19 5810.37 0.0790 0.9102

SL=0.93 73323.10 5576.89 0.0761 0.9169

SL=0.9350 73069.17 5474.81 0.0749 0.9191

SL=0.94 72698.99 5361.55 0.0737 0.9222

SL=0.9450 72360.28 5135.74 0.0710 0.9276

SL=0.95 72146.83 4987.59 0.0691 0.9313

SL=0.9550 71568.15 4739.83 0.0662 0.9367

SL=0.96 71208.63 4514.91 0.0634 0.9421

LFR RL=62500 69223.05 3495.69 0.0505 0.9594

RL=63000 69618.54 3744.31 0.0538 0.9558

RL=63500 70128.55 4029.94 0.0575 0.9501

RL=64000 70761.42 4363.99 0.0617 0.9439

RL=64500 71651.95 4785.42 0.0668 0.9354

RL=65000 73630.12 5676.47 0.0771 0.9150

RLF-M SL=0.92 73682.98 5907.07 0.0802 0.9080

SL=0.9250 73682.98 5907.07 0.0802 0.9080

SL=0.93 73682.98 5907.07 0.0802 0.9080

SL=0.9350 73658.38 5692.55 0.0773 0.9145

SL=0.94 73251.93 5459.93 0.0745 0.9196

SL=0.9450 72695.02 5258.76 0.0723 0.9246

SL=0.95 72264.83 4957.56 0.0686 0.9315

MaxminLF RL=62000 70209.31 3829.56 0.0545 0.9543

RL=62500 70197.56 3885.31 0.0553 0.9538

RL=63000 70398.38 3881.66 0.0551 0.9542

RL=63500 70463.40 4098.20 0.0582 0.9500

RL=64000 70929.82 4384.34 0.0618 0.9445

RL=64500 71790.05 4901.82 0.0683 0.9329

RL=65000 73546.19 5810.37 0.0790 0.9102

• For all of the existing models, SM values decrease when compared to the base
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problem and the case of increased variance of low fare demand. On the other

hand, SM values of the proposed models RLF, RLF-M, LFR and MaxminLF

increase in the scenario under consideration. That is, this scenario contributes

to the performance of the proposed models in terms of SM values. Note that

this scenario provides higher SM values as compared to the case of smaller

differences between fares. Similar to all of the scenarios studied so far, the

highest SM value is obtained by DLP in accordance with the observation due

to Williamson (1992).

• SSD and SCV values increase for almost all of the models when compared to the

base problem. LFR outperforms all existing models in terms of variation. Even

its highest variation value at RL = 65000 is smaller than those values of other

existing models except EMVLP at θ = 0.005. The performance of MaxminLF

follows the performance of LFR in terms of variation. As in the case of the

previous scenarios, RLF and RLF-M are also effective in deceasing variation of

the revenue. Their results are mostly close to and for some instances better than

those of the existing risk sensitive models.

• The LF values decrease for all models including the proposed models as com-

pared to the base problem.

In case the difference between the fare classes decreases, the coefficient of variation is

set to a realistic value and no specific arrival order is specified, the proposed models

perform successfully. When compared to other risk sensitive models in the literature,

it can be said that the solution quality improves for the proposed models more in terms

of all performance measures. That is, especially for small-sized airline companies, the

proposed models can be applied successfully.

SCV and LF values obtained by RLF, RLF-M, LFR and MaxminLF are presented in

Figures 6.19 and 6.20, respectively.
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Figure 6.19: SCV Values of Proposed Models under Nested Control (Realistic Varia-
tions and Close Fares)
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Figure 6.20: LF Values of Proposed Models under Nested Control (Realistic Varia-
tions and Close Fares)

6.5 Low before High Arrival Pattern

In this section, the impact of a change in the arrival pattern on the performance

measures is investigated. It is assumed in the base problem that the low-fare class

customers arrive earlier than the high fare class customers. However, an important
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amount of low fare class customers arrive later than the first customer of a high fare

class in real life. Therefore, the assumption of the base problem on the arrival pat-

tern of the customers is relaxed and the impact of this relaxation on the performance

measures is investigated in this section. For this relaxation, the Beta distribution pa-

rameters of the base problem are changed as in Appendix A. The data for the arrival

rates in the ”low before high arrival pattern” case is also given in Appendix A.

Recall from Table 5.11 that the range of SL for RLF and RLF-M and the range of RL

for LFR and MaxminLF are the same as the ranges obtained for the base problem. The

reason of this is the fact that the input data of the “low before high arrival pattern” case

is the same as the input data of the base problem except the arrival rates. Since the

arrival pattern is not considered in the mathematical models, the seat allocations and

the bid prices obtained from the mathematical models are same for the base problem

and the scenario considered in this section.

The simulation results for the “low before high arrival pattern” are almost the same as

the results of the base problem in Table 6.2 for nested control because a seat allocated

to a low fare class customer can be used by a higher fare class customer in the nested

control. Therefore, the deductions in Section 6.1 are also valid in the “low before high

arrival pattern” case. By observing this situation, it can be concluded that a change

in the arrival pattern of the fare classes do not affect the performance measures of the

models significantly as long as nested booking limit control policy is used.

6.6 Concluding Remarks

The numerical experiments in this chapter show that the performances of the mathe-

matical models depend on the scenario considered. The concluding remarks about the

scenarios and the performances of the mathematical models are summarized below.

• The base problem and the “low before high arrival pattern” case give very simi-

lar results for all of the models under nested control. This situation results from

the fact that the input data of the two scenarios are the same except the arrival

rates of the fare classes.
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• The highest sample mean values are obtained under the base problem for all of

the models.

• The deterministic model, DLP gives the highest revenue value in base prob-

lem. However, variation value takes the smallest value and load factor takes the

highest value in the “realistic variations and close fares” case.

• The deterministic model, DLP, gives the highest sample mean values for all

of the scenarios except the base problem. This is in accordance with the ob-

servation due to Williamson (1992), which states that DLP outperforms the

probabilistic models in terms of obtained revenue since both deterministic and

probabilistic models ignore a nested environment.

• For the “realistic variations and close fares” case, the proposed models are quite

successful. That is, for small-scaled airline companies which show the charac-

teristics of the “realistic variations and close fares” case, the proposed models

are promising.

• In accordance with the simulation results, RLF is slightly more effective than

RLF-M in terms of risk sensitivity since it yields lower variation and higher

load factor values than RLF-M. Similarly, LFR is slightly more effective than

MaxminLF in terms of risk sensitivity because it gives lower revenue variation

and higher load factor values than MaxminLF. On the other hand, RLF-M and

MaxminLF give slightly higher revenue than RLF and LFR, respectively.

• LFR outperforms RLF in terms of variation and load factor for all of the sce-

narios.

• The models we propose are formulated and solved much more easily than other

risk sensitive models in the literature. The avarage CPU times of the models we

propose and those of the models proposed in the literature are given in Table

6.7. It should be noted that EMR and other bound models we propose in Chapter

4 are used in order to obtain the bounds of the threshold levels. Therefore, the

time elapsed for solving the bound models should also be taken into account.

However, as long as the bounds do not change, the bound models are used just

once. The values in Table 6.7 excludes the solving time of the bound models.
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Table 6.7: CPU Times of the Models

Model CPU Time

RLF 2.64

RLF-M 2.48

LFR 2.61

MaxminLF 2.68

SLP-RM 63.13

PMP-RC 34.48

EMVLP 2.36

RRS 1100

DLP 0.22

EMR 1.86

• In summary, it can be said that the proposed models do not lead to an unac-

ceptable result when compared to other models and give nearly close results to

EMVLP, SLP-RM and PMP-RC.

In order to visualize the relation among the scenarios, the performances of RLF and

LFR under different scenarios are given in the subsequent figures. As stated in Sec-

tion 6.1, the behavior of RLF-M is similar to that of RLF and the performance of

MaxminLF is similar to that of LFR under different alternative scenarios.
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Figure 6.21: SL versus SM for Alternative Scenarios under Nested Control (RLF)

 

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96

Service Level (SL )

S
am

p
le

 S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

 (
 S

S
D

)

Base Problem

Increased Variance of
Low Fare Demand

Smaller Differences
Between Fares

Realistic Variations and
Close Fares

Figure 6.22: SL versus SSD for Alternative Scenarios under Nested Control (RLF)
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Figure 6.23: SL versus SCV for Alternative Scenarios under Nested Control (RLF)
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Figure 6.24: SL versus LF for Alternative Scenarios under Nested Control (RLF)
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Figure 6.25: RL versus SM for Alternative Scenarios under Nested Control (LFR)
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Figure 6.26: RL versus SSD for Alternative Scenarios under Nested Control (LFR)
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CHAPTER 7

CONCLUSION

In this study, the network seat inventory problem is studied for the airline industry

from the perspective of a risk sensitive decision maker. The aim of the study is to

consider a number of objectives of the decision maker such as increasing the revenue

earned, increasing the flight capacity utilization and decreasing the risk factor or the

variability. These are sought by proposing mathematical models. By incorporating

both expected revenue and expected load factor into mathematical formulations, we

handle two conflicting objectives together in this study. By incorporating a load factor

constraint into the risk-neutral models in the literature, we control the revenue vari-

ation while maximizing the expected revenue in one type of the models we propose

(RLF and RLF-M). Moreover, in the second type of models we propose, we aim to

control the variance of the revenue by maximizing the load factor under a constraint

for a revenue target level (LFR and MaxminLF). This way, we perform multi criteria

decision making and also take the behavior of a risk-averse decision maker into ac-

count. In this sense, this thesis contributes to the risk sensitive studies in the literature

on revenue management for network seat inventory problems as well as to the MCDM

literature. Overbooking, cancellations and no-shows are not allowed in this study.

This thesis is the first study that uses the load factor directly in the mathematical

formulations. In this study, it is aimed to decrease the variance of the revenue by

increasing the capacity utilization. To increase the capacity utilization, load factor is

forced to be increased in the models we propose in this thesis. The main advantage of

working with load factor formulations to decrease the variance of the revenue is the

ease of modeling and solving the models with load factor formulations as compared
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to the models due to Çetiner (2007) and Terciyanlı (2009).

Two types of mathematical models are proposed in this thesis to find the optimal

seat allocations by incorporating the load factor into the models. Although the load

factor is an important and widely used performance measure considered to compare

alternative approaches, there is no existing study in the literature that uses the load

factor formulations directly in the mathematical models. That is, this thesis is the first

study in the RM literature for the airline industry that uses the load factor formulations

in the mathematical models. Recall that there are only a few studies on the network

seat inventory problems for the airline industry that take the risk factor into account.

One type of the models we propose in this thesis aims at maximizing the expected

revenue while working with service level constraints on the expected load factors

(RLF and RLF-M). In these models, the service level is a predetermined threshold

level. The other type of models we propose aim at maximizing a weighted average

of the expected load factors of the network legs (LFR) or maximizing the minimum

expected load factor of the legs in the network (MaxminLF) while ensuring that the

expected revenue is always above a predetermined threshold level. The variability of

the revenue is taken into account in these two types of models by investigating the

relation between load factor and risk aversion of the decision makers. The risk aver-

sion is evaluated on the basis of the variability of the revenue that can be tolerated

by the decision maker. Standard deviation and coefficient of variation of the revenue

are the two risk measures used in this thesis. The impact of a change in the load

factor on these risk measures is numerically investigated. The main advantage of the

proposed models is the simplicity of their application since they are easy to formu-

late and solve as compared to other risk-sensitive models in the literature since they

maintain linearity and do not need approximation methods.

The booking limits and the bid prices obtained from the proposed models are used in

the simulation studies. The performance of our models are compared with the per-

formances of the other models in the literature for a sample network under different

scenarios. The models we propose decrease the variability of revenue and so they

increase the used capacity of the aircraft. However, an acceptable decrease in the rev-

enue occurs as well under some scenarios. Despite this fact, there are also instances,
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where our models give higher revenues than existing risk sensitive models under dif-

ferent scenarios for specific threshold values. Our models perform well and satisfac-

torily under all scenarios. Especially for the case where the coefficients of variation

are set realistically, the difference between the fare classes is close and no specific

arrival pattern of the fare classes is determined, our models perform well. Therefore,

the models we propose are strongly recommended to be used for the small-scale air-

line companies, which have these chracretistiscs. Moreover, the models we propose

are strongly recommended also for state companies and for scheduling new flights in

large scale, well established airline companies. The reason of this recommendation is

the high risk factor in those companies and operations. Small-scale airline companies

are more vulnerable against risk as compared to large-scale ones. Competition in the

airline market and the variation of demand increases their risk. Similarly, it is risky

for large-scale airline companies to schedule a new flight due to chracteristics of the

flight leg and competition in the market. Besides, risk is an important indication of

performance especially for state companies.

The following remains as a future work.

• Recall that the parameter, wl, in RLF-M and in LFR in Chapter 3, stands for the

weight of each leg. In this study, the weight of each leg is assumed to be the

same and equal to 1/m for numerical analysis. However, different weights can

be assigned to the legs according to the characteristics of them. The weights

for the legs should be determined according to the network characteristics. De-

termination of the weights for different legs and the use of them is a research

area for future studies.

• The weighted average of the expected load factors of the legs is used as the load

factor measure in RLF-M. However, different load factor measures can also be

considered for the whole network in the future studies.

• The need of the investigation of the differentiation in the service level require-

ments of the legs are tried to be simply illustrated in this study. However a

thorough analysis is needed to analyze the impact of such a differentiation.

Investigating the network characteristics and differentiating the service level

requirements of the legs according to those network characteristics is another
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future research direction.

• The update of the bid prices is not considered within the scope of this thesis. A

further analysis is needed to investigate the impact of the update mechanism on

the performance measures.

• Recall that the sample network of de Boer (1999) is used both for the optimiza-

tion and simulation studies in this thesis. However, a larger network with a dif-

ferent structure can be used in the further studies. Evaluating the performances

of the models we propose for such a network is a future research direction.

117



REFERENCES

[1] Barz, C. and Waldmann, K.H., 2007. Risk-sensitive capacity control in revenue
management. Mathematical Methods in Operations Research 5, 43-51.

[2] Beckman, M.J. and Bobkoski, F., 1958. Airline demand: An analysis of some
frequency distributions. Naval Research Logistics Quarterly 5, 43-51.

[3] Belobaba, P.P., 1987. Air travel demand and airline seat inventory management.
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

[4] Brumelle, S.L. and McGill, J.I., 1993. Airline seat allocation with multiple
nested fare classes. Operations Research 41, 127-137.

[5] Buhr, J., 1982. Optimal Sales Limits for 2-Sector Flights. AGIFORS Sympo-
sium Proceedings 22, 291-303.

[6] Chen, X., Sim, M., Simchi-Levi, D. and Sun., P., 2007. Risk aversion in inven-
tory management. Operations Research 55, 828-842.

[7] Chiang, w.C., Chen, J., and Xu, X. 2006. An overview of research on revenue
management: current issues and future research. International Journal of Rev-
enue Management 1, 97-128.
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APPENDIX A

SIMULATION DATA

A.1 Base Problem

Figure A.1: Beta Density Functions for three Fare Classes

Table A.1: Fare Settings for the Base Problem

OD Number Origin-Destination Fare Class 3 Fare Class 2 Fare Class 1

1 A-B 75 125 250

2 A-C 130 370 400

3 A-D 200 320 460

4 B-C 100 150 330

5 B-D 160 200 420

6 C-D 80 110 235
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Table A.2: Demand Settings for the Base Problem

Fare Class 3 Fare Class 2 Fare Class 1

Itınerary p j δ E j S D j p j δ E j S D j p j δ E j S D j

AB 80 1.6 50 9.01 80 2 40 7.75 3 0.1 30 18.17

AC 80 2 40 7.75 50 2 25 6.12 2 0.1 20 14.83

AD 60 2 30 6.71 72 3 24 5.66 2 0.1 20 14.83

BC 60 2 30 6.71 40 2 20 5.48 2 0.1 20 14.83

BD 60 2 30 6.71 60 3 20 5.16 6 0.3 20 9.31

CD 80 1.6 50 9.01 80 2 40 7.75 6 0.2 30 13.42

Table A.3: Request Arrival Setting for the Base Problem

Fare Class 3 Fare Class 2 Fare Class 1

Itinerary α β α β α β

1-6 5 6 2 5 2 13

A.2 Increased Variance Of Low Fare Demand

Table A.4: Demand Settings for the “Increased Variance of Low Fare Demand” Case

Fare Class 3 Fare Class 2 Fare Class 1

Itınerary p j δ E j S D j p j δ E j S D j p j δ E j S D j

AB 20 0.4 50 13.23 20 0.5 40 10.95 3 0.1 30 18.17

AC 20 0.5 40 10.95 5 0.2 25 12.25 2 0.1 20 14.83

AD 15 0.5 30 9.49 18 0.75 24 7.48 2 0.1 20 14.83

BC 15 0.5 30 9.49 10 0.5 20 7.75 2 0.1 20 14.83

BD 15 0.5 30 9.49 15 0.75 20 6.83 6 0.3 20 9.31

CD 20 04 50 13.23 20 0.5 40 10.95 6 0.2 30 13.42
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A.3 Smaller Differences Between Fares

Table A.5: Fare Settings for the “Smaller Differences Between Fares” Case

OD Number Origin-Destination Fare Class 3 Fare Class 2 Fare Class 1

1 A-B 75 125 175

2 A-C 130 170 220

3 A-D 200 320 440

4 B-C 100 150 210

5 B-D 160 200 250

6 C-D 80 110 160

A.4 Realistic Variations and Close Fares

Table A.6: Fare Settings for the “Smaller Differences Between Fares” Case

OD Number Origin-Destination Fare Class 3 Fare Class 2 Fare Class 1

1 A-B 75 125 175

2 A-C 130 170 220

3 A-D 200 320 460

4 B-C 100 150 210

5 B-D 180 210 250

6 C-D 80 110 160

Table A.7: Demand Settings for Realistic Variations and Close Fares

Fare Class 3 Fare Class 2 Fare Class 1

Itınerary p j δ E j S D j p j δ E j S D j p j δ E j S D j

AB 80 1.6 50 9.01 80 2 40 7.75 3 0.1 30 18.17
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Table A.7: Demand Settings for Realistic Variations and Close Fares

Fare Class 3 Fare Class 2 Fare Class 1

Itınerary p j δ E j S D j p j δ E j S D j p j δ E j S D j

AC 80 2 40 7.75 50 2 25 6.12 2 0.1 20 14.83

AD 60 2 30 6.71 72 3 24 5.66 2 0.1 20 14.83

BC 60 2 30 6.71 40 2 20 5.48 2 0.1 20 14.83

BD 60 2 30 6.71 60 3 20 5.16 6 0.3 20 9.31

CD 80 1.6 50 9.01 80 2 40 7.75 6 0.2 30 13.42

Table A.8: Request Arrival Setting for Realistic Variations and Close Fares

Fare Class 3 Fare Class 2 Fare Class 1

Itinerary α β α β α β

1-6 2 2 2 2 2 2

A.5 Low Before High Arrival Pattern
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Figure A.2: Low before High Arrival Rates

Table A.9: Request Arrival Setting for Low before High Arrival Pattern

Fare Class 3 Fare Class 2 Fare Class 1

Itinerary α β α β α β

1-6 13 2 13 13 2 13
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APPENDIX B

MATLAB PROGRAMMING CODES

The MATLAB codes of the proposed models are given in this section. For the codes

of the models in the literature, the reader is referred to the studies due to Çetiner

(2007) and Terciyanlı (2009). Moreover, the simulation codes for the partitioned

control, nested control and bid price control are given in the study due to Terciyanlı

(2009).

The definitions of the MATLAB.m files are given below.

Mainpart.m: The main part for optimization models that are used to run all of the

mathematical models.

Demandpart.m: This .m file is used to calculate the probabilities of demands for all

predetermined integer values.

Input.m: Initial data for legs, seats and demand are provided in this file.

RLF.m: File for RLF Model

RLF M.m: File for RLF-M Model

LFR.m: File for LFR Model

MaxminLF.m: File for MaxminLF Model

EMR model with load factor constraint.m: File for first the model to find the

lower bound for the service level used in RLF with S Ll , S L.

MinmaxSL.m: File for second the model to find the lower bound for the service level

used in RLF with S Ll , S L.
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MaxminLF M.m: File for the model to find the upper bound for the service level

used in RLF with S Ll , S L.

EMR model with equal E(LFl).m: File for the EMR model with equal E(LFl) to

find the lower bound for the service level used in RLF with S Ll = S L.

MaxELF.m: File for the MaxELF model to find the upper bound for the service level

used in RLF with S Ll = S L.

EMR model with WLF.m: File for EMR model with WLF that is used to find the

lower bound for the service level used in RLF-M.

MaxWLF.m: File for MaxWLF model that is used to find the upper bound for the

service level used in RLF-M.

LFR M.m: File for LFR-M model that is used to find the lower bound for the revenue

level used in LFR.

MinRL.m: File for MinRL model that is used to find the lower bound for the revenue

level used in MaxminLF.

B.1 Mainpart.m

% This .m file is the main part for optimization models and used for test purposes. %

By setting test and den values and changing parameters of the models, performances

of the models are tested. % By setting ”a” values and increasing them incrementally,

the service level for RLF and the revenue level for LFR are changed for our mod-

els to see the effect of a change in the service level or in the revenue level on the

performance measures.

tic; % Used for calculating CPU time

a=170; % Set the service level for RLF or the revenue level for LFR

for test=1:1

for den=1:10 a=a+0.5; %Increase the service level for RLF or the revenue level for
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LFR incrementally.

Input % Go to Input.m file and get the input data Demandpart % Go to Demand.m

file and solve the problem revden(den,:)=rev; % Get expected revenue values bid-

den(den,:)=bid; % Get bid prices seatden(den,:)=seat; % Get seat allocations loadf-

den(den,:)=loadf; % Get the weighted average expected load factor values

loadflegden(den,:)=loadfleg; % Get the expected load factor value of each leg in the

network aden(den,:)=a; %Get the matrix for service level or revenue level maxmin-

den(den,:)=maxmin; % Get the maximized minimum expected load factor value of

the network

end

revtest(:,:,test)=revden; % Write expected revenue values to a 3-d matrix

bidtest(:,:,test)=bidden; % Write bid prices to a 3-d matrix

seattest(:,:,test)=seatden; % Write seat allocations to a 3-d matrix

end

toc; % Used for calculating CPU time

clear test den % clear variables test and den

B.2 Demandpart.m

% This .m file is used for calculating probabilities of demands for all predetermined

integer values.

%******************Calculate Pr(Dj¿=i) and Pr(Dj¡i)************************

pdfno=(0:C-1);

for i=1:D

ProbDist(:,i)=1-nbincdf(pdfno,DDODF(i,1),(DDODF(i,2)+beT(1,i))/(DDODF(i,2)+1));
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end

ProbDist=1-ProbDist;

for i=1:K

ProbDistcdf(i,:)=ProbDist(i*C/K,:); % Group demands

end

ProbDistrcdf=1-ProbDistcdf;

%************************Calculate Pr(Dj=i)***************************

pdfno=(0:C); for i=1:D

ProbDistpdf(:,i)=nbinpdf(pdfno,DDODF(i,1),DDODF(i,2)/(DDODF(i,2)+1));

ProbDistpdf(C,i)=1-nbincdf(C-1,DDODF(i,1),DDODF(i,2)/(DDODF(i,2)+1));

end

clear pdfno i ProbDist

RLF % Go to mathematical model

B.3 Input.m

% This .m file is used for describing initial values for legs, seats and demands.

%*********NETWORK STRUCTURE DATA************

C=200; % Upper bound of x variables CAPACITY=[200 200 200]; % Capacity of

the flights D=18; % Number of ODFs NL=3; % Number of legs NF=3; % Number

of fare classes K=200; % Number of demand segments Leg=[1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0;0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0;... 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1]; %

ODFs in legs

% ***************Base Problem********************
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FF=[75 125 250 130 170 400 200 320 460 100 150 330 160 200 420 80 110 235]; %

Price of tickets DDODF=[80 1.6;80 2;3 0.1;80 2;50 2;2 0.1;60 2;72 3;2 0.1;60 2;...

40 2;2 0.1;60 2;60 3;6 0.3;80 1.6;80 2;6 0.2]; % Demand parameters Inbeta=[5 6;2

5;2 13]; % Beta distribution parameters

%*******Increased Low-Fare Demand Variance******

% FF=[75 125 250 130 170 400 200 320 460 100 150 330 160 200 420 80 110

235]; % Price of tickets % DDODF=[20 0.4;20 0.5;3 0.1;20 0.5;5 0.2;2 0.1;15 0.5;18

0.75;2 0.1;15 0.5;... % 10 0.5;2 0.1;15 0.5;15 0.75;6 0.3;20 0.4;20 0.5;6 0.2]; %

Demand parameters % Inbeta=[13 2;13 13;2 13]; % Beta distribution parameters

%

% FF=[75 125 175 130 170 220 200 320 440 100 150 210 160 200 250 80 110

160]; % Price of tickets % DDODF=[80 1.6;80 2;3 0.1;80 2;50 2;2 0.1;60 2;72 3;2

0.1;60 2;... % 40 2;2 0.1;60 2;60 3;6 0.3;80 1.6;80 2;6 0.2]; % Demand parameters

% Inbeta=[13 2;13 13;2 13]; % Beta distribution parameters

%

% FF=[75 125 175 130 170 220 230 340 460 100 150 210 180 210 250 80 110

160]; % Price of tickets % DDODF=[20 0.4;20 0.5;30 1;20 0.5;5 0.2;20 1;15 0.5;18

0.75;20 1;15 0.5;... % 10 0.5;20 1;15 0.5;15 0.75;60 3;20 0.4;20 0.5;60 2]; % Demand

parameters % Inbeta=[2 2;2 2;2 2]; % Beta distribution parameters

% CAPACITY=[220 220 220]; % Capacity of the flights % C=220; % K=220;

%

% FF=[75 125 250 130 170 400 200 320 460 100 150 330 160 200 420 80 110

235]; % Price of tickets % DDODF=[80 1.6;80 2;3 0.1;80 2;50 2;2 0.1;60 2;72 3;2

0.1;60 2;... % 40 2;2 0.1;60 2;60 3;6 0.3;80 1.6;80 2;6 0.2]; % Demand parameters

% Inbeta=[13 2;13 13;2 13]; % Beta distribution parameters

for i=1:D Expdem(1,i)=DDODF(i,1)/DDODF(i,2); % Calculate expected demand

end clear i;
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B.4 RLF.m

% Our Proposed Model RLF % This model aims at maximizing the expected revenue

under the following constraint: % the expected load factor of each leg is required to

be greater than a predetermined threshold level.

% VARIABLES

xodf=sdpvar(K,D,’full’);

% CONSTRAINTS

for i=1:NL b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint end clear i;

lfbound=[a;a;a]; % RHS of the load factor constraint

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

o=sum(CAPACITY);

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(l f risk/200 ≥ l f bound);

% OBJECTİVE FUNCTION

obj=-sum(xodf*FF’)+sum((ProbDistcdf.*xodf)*FF’);

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=-double(obj); % Expected revenue

bid=dual(F(1))-((dual(F(4))*a)/200); % Bid price

seat=round(sum(double(xodf))); % Seat allocation
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loadf=double(sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY)); % Avarage

expected load factor value of the network

loadfleg=double(lfrisk)/200; % Expected load factor of each leg in the network

clear F b beT cap obj;

B.5 RLF-M.m

% The Variation of RLF: RLF-M % This model also aims at maximizing the expected

revenue under the following constraint: % the weighted average expected load factor

of the whole network is required to be greater than a predetermined threshold level.

% VARIABLES

xodf=sdpvar(K,D,’full’);

% CONSTRAINTS

for i=1:NL b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint end clear i;

lfbound=[a]; % RHS of the load factor constraint

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY); % Load factor con-

straint

o=sum(CAPACITY);

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(l f risk ≥ l f bound);

% OBJECTİVE FUNCTION

obj=-sum(xodf*FF’)+sum((ProbDistcdf.*xodf)*FF’);

% SOLVE MODEL
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solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=-double(obj); % Expected revenue

bid=dual(F(1))-((dual(F(4))*a)/600); % Bid price

seat=round(sum(double(xodf))); % Seat allocation

loadf=double(lfrisk); % Weighted average expected load factor value of the network

clear F b beT cap obj;

B.6 LFR.m

% Our Proposed Model LFR % This model maximizes the weighted average of the

expected load factor of the network while ensuring that the expected revenue is always

above a predetermined threshold level.

% VARIABLES

xodf=sdpvar(K,D,’full’);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

rb=[a]; % RHS of the revenue constraint

% Constraint Set
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F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(sum((ProbDistrcd f .∗xod f )∗
FF′) ≥ rb);

% OBJECTİVE FUNCTION

obj=-sum(lfrisk)/sum(CAPACITY);

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=double(sum((ProbDistrcdf.*xodf)*FF’)); % Expected revenue

bid=dual(F(1)); % Bid price

seat=round(sum(double(xodf))); % Seat allocation

loadf=-double(obj); % Weighted average expected load factor value of the network

clear F b beT cap obj;

B.7 MaxminLF.m

% The Variation of LFR: MaxminLF % This model aims at maximizing the expected

load factor of the leg, which has the smallest expected load factor value.

% VARIABLES

xodf=sdpvar(K,D,’full’);

z=sdpvar(1);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end
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clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

loadfleg=double(lfrisk)/200; % Expected load factor of each leg

rb=a; % RHS of the revenue constraint

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(sum((ProbDistrcd f .∗xod f )∗
FF′) ≥ rb)

+set(l f risk/200 ≥ z);

% OBJECTİVE FUNCTION

obj=-z;

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=double(sum((ProbDistrcdf.*xodf)*FF’)); % Expected revenue

bid=dual(F(1)); % Bid price

seat=round(sum(double(xodf))); % Seat allocation

maxmin=-double(obj); % Objective function

loadf=double(sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY)); % Average

expected load factor of network

loadfleg=double(lfrisk)/200; %Expected load factor of each leg in the network

clear F b beT cap obj;
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B.8 EMR Model with Load Factor Constraint.m

% EMR model with load factor constraint (LB-1 for RLF with S Ll , S L)

% An additional load factor constraint is added to the original EMR model to find the

lower bound for the service level used in RLF with S Ll , S L.

% VARIABLES

xodf=sdpvar(K,D,’full’);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/)+set(0 ≤ xod f );

% OBJECTİVE FUNCTION

obj=-sum(xodf*FF’)+sum((ProbDistcdf.*xodf)*FF’);

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=-double(obj); % Expected revenue

bid=dual(F(1)); % Bid price

seat=sum(double(xodf)); % Seat allocation
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loadf=double(sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY)); % Average

expected load factor value of the network

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

loadfleg=double(lfrisk)/200; % Expected load factor of value each leg in the network

clear F b beT cap obj xodf;

B.9 MinmaxSL.m

% MinmaxSL Model (LB-2 for RLF with S Ll , S L) % This model is a min-max

type of model. Expected revenue is forced to be equal to 71765.7848, % which is

the optimal expected revenue value obtained by the EMR model. % The maximum

expected load factor value of the network is tried to be minimized in order to find a

lower bound for the service level used in % RLF with S Ll , S L.

% VARIABLES

xodf=sdpvar(K,D,’full’);

SL=sdpvar(1);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

o=sum(CAPACITY);

rev=sum((ProbDistrcdf.*xodf)*FF’); % Expected revenue
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% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+

set(l f risk ≤ S L)+set(0 ≤ S L)+set(71765.7848 == rev);

% OBJECTİVE FUNCTION

obj=SL;

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=double(rev); % Expected revenue

bid=dual(F(1)); % Bid price

seat=round(sum(double(xodf))); % Seat allocation

maxmin=obj; % Objective function

loadf=double(sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY)); % Avarage

expected load factor of the network

loadfleg=double(lfrisk)/200; % Expected load factor of each leg in the network

clear F b beT cap obj;

B.10 MaxminLF-M.m

% MaxminLF-M model (UB for RLF with S Ll , S L) % This model is used to find

the upper bound for the service level used in RLF with S Ll , S L.

% VARIABLES

xodf=sdpvar(K,D,’full’);

z=sdpvar(1);
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% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(l f risk/200 ≥ z);

% OBJECTİVE FUNCTION

obj=-z;

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=double(sum((ProbDistrcdf.*xodf)*FF’)); % Expected revenue

bid=dual(F(1)); % Bid price

seat=round(sum(double(xodf))); % Seat allocation

maxmin=-double(obj); % objective function

loadf=double(sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY)); %total Ex-

pected Load factor of network

loadfleg=double(lfrisk)/200; % Expected load factor of each leg

clear F b beT cap obj;
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B.11 EMR with equal E(LFl).m

% EMR model with equal E(LFl) (LB for RLF with SLl=SL) % An additional load

factor constraint is added to the original EMR model to find a lower bound for the

service level used in RLF with SLl=SL.

% VARIABLES

xodf=sdpvar(K,D,’full’);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’;

loadfleg=double(lfrisk)/200;

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(lfrisk(1,1)==

lfrisk(2,1))+set(lfrisk(2,1)==lfrisk(3,1));

% OBJECTİVE FUNCTION

obj=-sum(xodf*FF’)+sum((ProbDistcdf.*xodf)*FF’);

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=-double(obj); % Expected revenue
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bid=dual(F(1)); % Bid price

seat=sum(double(xodf)); % Seat allocation

loadf=double(sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY)); % Average

expected load factor value of the network

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

loadfleg=double(lfrisk)/200; % Expected load factor of value each leg in the network

clear F b beT cap obj xodf;

B.12 MaxELF.m

% MaxELF Model (UB for RLF with SLl=SL) % This model is used to find the upper

bound for the service level used in RLF with SLl=SL.

% VARIABLES

xodf=sdpvar(K,D,’full’);

ELF=sdpvar(1);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(l f risk/200 ≥ ELF)+set(lfrisk(1,1)
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==lfrisk(2,1))+set(lfrisk(2,1)==lfrisk(3,1));

% OBJECTİVE FUNCTION

obj=-ELF;

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=double(sum((ProbDistrcdf.*xodf)*FF’)); % Expected revenue

bid=dual(F(1)); % Bid price

seat=round(sum(double(xodf))); % Seat allocation

maxmin=-double(obj); % objective function

loadf=double(sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY)); %total Ex-

pected Load factor of network

loadfleg=double(lfrisk)/200; % Expected load factor of each leg

clear F b beT cap obj;

B.13 EMR with WLF.m

% EMR model with load factor constraint (LB for RLF-M ) % This model is used to

find a lower bound for the service level used in RLF-M.

% VARIABLES

xodf=sdpvar(K,D,’full’);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint
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end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f );

% OBJECTİVE FUNCTION

obj=-sum(xodf*FF’)+sum((ProbDistcdf.*xodf)*FF’);

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=-double(obj); % Expected revenue

bid=dual(F(1)); % Bid price

seat=sum(double(xodf)); % Seat allocation

lfrisk=sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY); % Load factor con-

straint

loadf=double(lfrisk);

clear F b beT cap obj xodf;

B.14 MaxWLF.m

% MaxWLF Model (UB for RLF-M ) % This model is used to find the upper bound

for the service level used in RLF-M.

% VARIABLES

xodf=sdpvar(K,D,’full’);
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WLF=sdpvar(1);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum(sum((ProbDistrcdf.*xodf)*Leg’)’)/sum(CAPACITY); % Load factor con-

straint

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(l f risk/200 ≥ WLF);

% OBJECTİVE FUNCTION

obj=-WLF;

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=double(sum((ProbDistrcdf.*xodf)*FF’)); % Expected revenue

bid=dual(F(1)); % Bid price

seat=round(sum(double(xodf))); % Seat allocation

maxmin=-double(obj); % objective function

loadf=double(lfrisk); %total Expected Load factor of network

% son=double(z);
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clear F b beT cap obj;

B.15 LFR-M.m

% LFR-M Model (LB for LFR) % This model is used to find the lower bound for the

revenue level used in LFR.

% VARIABLES

xodf=sdpvar(K,D,’full’);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f );

% OBJECTİVE FUNCTION

obj=-sum(lfrisk)/sum(CAPACITY);

% SOLVE MODEL

solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=double(sum((ProbDistrcdf.*xodf)*FF’)); % Expected revenue

bid=dual(F(1)); % Bid price
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seat=round(sum(double(xodf))); % Seat allocation

loadf=-double(obj); % Average expected load factor of the network

clear F b beT cap obj;

B.16 MinRL.m

% MinRL Model (LB for MaxminLF ) % This model is used to find a lower bound

for the revenue level used in MaxminLF.

% VARIABLES

xodf=sdpvar(K,D,’full’);

z=sdpvar(1);

% CONSTRAINTS

for i=1:NL

b(i,1)=CAPACITY(1,i); % RHS of the capacity constraint

end

clear i;

cap=sum(xodf*Leg’)’; % Capacity constraint

lfrisk=sum((ProbDistrcdf.*xodf)*Leg’)’; % Load factor constraint

% Constraint Set

F=set(cap ≤ b)+set(xod f ≤ C/K)+set(0 ≤ xod f )+set(l f risk/200 ≥ z);

% OBJECTİVE FUNCTION

obj=-z;

% SOLVE MODEL
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solvesdp(F,obj,sdpsettings(’solver’,’glpk’));

% OUTPUT

rev=double(sum((ProbDistrcdf.*xodf)*FF’)); % Expected revenue

bid=dual(F(1)); % Bid price

seat=round(sum(double(xodf))); % Seat allocation

loadf=-double(obj); % objective function= avarage Expected Load factor of total sys-

tem

clear F b beT cap obj;
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APPENDIX C

OPTIMIZATION RESULTS OF THE MATHEMATICAL

MODELS FOR DIFFERENT SCENARIOS

C.1 BASE PROBLEM

C.1.1 RLF with SLl=SL for all l

Table C.1: Optimal Seat Allocations of RLF with S Ll = S L for Base Problem

ODF RLF with SLl=SL

Itinerary Class 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96

AB 3 44 44 43 43 42 42 41 41 40 40 41

2 40 39 39 38 38 37 37 36 36 35 34

1 38 37 35 34 33 32 30 29 27 25 22

AC 3 1 4 8 12 17 20 20 20 21 24 27

2 19 19 19 19 18 18 18 17 17 17 17

1 20 20 19 18 17 16 15 14 13 12 10

AD 3 0 0 0 0 0 1 6 12 16 18 21

2 21 21 21 21 20 20 20 19 19 19 19

1 17 16 16 15 15 14 13 12 11 10 9

BC 3 23 23 22 22 22 21 21 21 21 20 19

2 19 18 18 18 17 17 16 16 16 15 14

1 26 25 23 23 21 20 19 19 17 16 14

BD 3 17 17 18 18 18 18 18 18 18 19 22

2 16 16 15 15 15 15 15 15 14 14 14

1 21 21 21 20 20 20 19 18 17 16 15

CD 3 37 38 38 39 40 40 39 38 39 40 42

2 36 36 36 37 37 37 36 35 35 35 34
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Table C.1: Optimal Seat Allocations of RLF with S Ll = S L for Base Problem

ODF RLF with SLl=SL

Itinerary Class 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96

1 35 35 35 35 35 35 34 33 31 28 24

C.1.2 Bid Prices of RLF with SLl=SL for all l

Table C.2: Bid Prices of RLF for Base Problem

Bid Price for Leg l Bid Price for Leg l

SLl=SL l:AB l:BC l:CD SLl=SL l:AB l:BC l: CD

0.8000 59.5551 86.4263 72.8012 0.8850 53.0854 87.4121 72.8012

0.8025 60.9468 86.4684 72.8012 0.8875 52.7277 87.7412 72.3745

0.8050 60.9468 86.4684 72.8012 0.8900 53.6974 87.5296 70.9289

0.8075 60.9468 86.4684 72.8012 0.8925 53.3539 88.4231 70.5536

0.8100 60.9468 86.4684 72.8012 0.8950 53.0170 88.6115 70.5536

0.8125 59.5551 86.4263 72.8012 0.8975 52.8551 88.7572 70.5002

0.8150 59.5551 85.9152 72.8012 0.9025 52.7852 90.5574 70.5002

0.8200 61.9916 84.7771 73.9393 0.9050 53.1078 90.3974 70.5002

0.8225 59.5551 86.4684 72.8012 0.9075 53.3623 90.2009 70.3985

0.8250 61.9916 85.4235 73.9393 0.9125 54.8821 90.4120 70.5196

0.8300 61.9916 85.3303 73.9393 0.9150 54.5927 90.4691 70.8791

0.8325 61.4999 85.9152 72.8012 0.9175 54.3604 90.7458 71.8578

0.8375 60.9468 86.4684 72.8012 0.9225 55.6883 90.3272 71.8353

0.8400 59.5551 85.9152 72.8012 0.9275 55.3125 90.3730 72.0913

0.8450 60.6511 85.3303 73.9393 0.9300 55.7670 89.5176 72.1086

0.8475 61.9916 85.4235 73.8461 0.9325 54.6557 92.4282 71.5449

0.8500 60.7658 85.2410 73.9393 0.9350 54.7848 92.4625 71.0585

0.8525 60.8055 85.1944 73.9393 0.9375 54.4668 92.1152 70.8887

0.8550 61.9916 85.3303 73.9393 0.9400 55.6867 90.1914 69.7613

0.8575 61.9916 85.3303 73.9393 0.9425 54.2560 92.8249 67.6197

0.8600 61.4999 85.9152 72.8012 0.9450 55.3497 90.4304 66.7830

0.8625 59.5551 86.4684 72.8012 0.9475 54.6645 91.0428 64.1281
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Table C.2: Bid Prices of RLF for Base Problem

Bid Price for Leg l Bid Price for Leg l

SLl=SL l:AB l:BC l:CD SLl=SL l:AB l:BC l: CD

0.8650 60.9468 86.4684 72.8012 0.9500 49.5234 94.7283 57.9156

0.8675 59.5551 86.4684 72.8012 0.9525 47.1795 94.8899 52.8763

0.8700 60.6511 85.3303 73.9393 0.9575 32.6141 98.8483 33.6434

0.8750 61.9916 85.4235 73.8461 0.9600 29.2893 98.6319 8.8503

0.8775 60.7658 85.2410 73.9393 0.9625 15.3393 102.9723 -21.1226

0.8800 60.8055 85.1944 73.9393 0.9650 -4.0411 102.6050 -211.0228

0.8825 53.1495 87.1087 72.8012 0.9675 0.0000 0.0000 0.0000

C.1.3 RLF with unequal SLl

Table C.3: Optimal Seat Allocations of RLF with unequal S Ll for Base Problem

ODF RLF with unequal SLl

Itinerary Class 0.90-0.85-0.90 0.91-0.86-0.91 0.92-0.87-0.92 0.93-0.88-0.93 0.94-0.89-0.94 0.95-0.90-0.95 0.96-0.91-0.96

AB 3 42 42 42 41 41 40 40

2 37 37 36 36 35 34 34

1 31 30 28 27 25 23 21

AC 3 9 8 9 13 17 23 27

2 19 18 18 18 18 17 17

1 18 17 17 15 15 14 12

AD 3 7 13 16 17 18 19 21

2 21 20 20 20 19 19 19

1 16 15 14 13 12 11 9

BC 3 22 22 20 17 12 6 1

2 18 18 18 18 17 17 17

1 26 26 26 25 24 24 24

BD 3 7 7 7 10 15 18 22

2 16 15 15 15 14 14 15

1 21 21 20 19 19 18 16

CD 3 40 39 39 40 40 40 41

2 37 36 36 35 34 34 33

1 35 34 33 31 29 27 24

C.1.4 RLF-M
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Table C.4: Optimal Seat Allocations of RLF − M for Base Problem

ODF RLF-M

Itinerary Class 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96

AB 3 42 44 43 43 42 42 41 41 40 40

2 40 40 39 39 38 38 37 36 35 34

1 40 38 37 35 34 32 30 28 26 23

AC 3 0 2 2 2 4 7 11 16 22 27

2 19 19 19 19 18 18 18 17 17 17

1 21 20 19 19 18 16 15 14 12 10

AD 3 0 0 4 8 12 14 17 18 19 21

2 21 21 21 20 20 20 19 19 19 19

1 17 16 16 15 14 13 12 11 10 9

BC 3 23 23 23 23 22 22 21 21 20 20

2 19 18 18 18 17 17 17 16 15 14

1 27 25 24 23 22 21 19 18 16 13

BD 3 16 19 19 19 19 19 19 19 20 21

2 16 16 15 15 15 15 14 14 14 14

1 21 21 20 19 19 18 18 17 16 15

CD 3 38 38 38 38 37 37 38 40 41 42

2 36 36 35 35 34 34 34 34 34 34

1 35 33 32 31 30 30 29 28 27 25

C.1.5 Bid Prices of RLF-M

Table C.5: Bid Prices of RLF-M for Base Problem

πl

SL l: AB l: BC l: CD

0.87 60.7182 84.6738 74.0558

0.88 53.0363 82.3503 74.2481

0.89 52.6500 84.4604 73.5551

0.90 54.0635 84.5039 74.2791

0.91 55.1038 85.0764 74.7448
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Table C.5: Bid Prices of RLF-M for Base Problem

πl

SL l: AB l: BC l: CD

0.92 54.2597 87.2540 74.2446

0.93 53.8056 89.5351 69.9619

0.94 53.2253 91.7929 63.2667

0.95 53.8519 91.2258 51.1273

0.96 35.4424 92.5866 26.8744

C.1.6 LFR

Table C.6: Optimal Seat Allocations of LFR for Base Problem

ODF LFR

Itinerary Class 63000 64000 65000 66000 67000 68000 69000 70000 71000

AB 3 43 42 41 41 40 40 40 41 42

2 34 34 34 34 34 35 36 37 38

1 15 17 19 20 22 24 27 30 34

AC 3 32 31 30 29 28 24 18 11 3

2 19 18 18 18 17 17 17 18 19

1 7 7 8 9 10 11 13 15 18

AD 3 24 24 23 22 21 20 19 17 12

2 19 19 19 19 19 19 19 19 20

1 7 8 8 8 9 10 11 12 14

BC 3 22 22 20 20 19 19 20 21 22

2 14 14 14 14 14 15 16 17 17

1 5 7 9 11 13 15 17 19 22

BD 3 24 23 23 22 21 20 20 19 19

2 15 15 15 14 14 14 14 14 15

1 12 12 13 14 15 16 16 18 19

CD 3 44 43 43 43 42 41 40 38 37

2 35 35 34 34 34 34 34 34 34

1 20 21 22 24 25 26 27 29 30
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C.1.7 MaxminLF

Table C.7: Optimal Seat Allocations of MaxminLF for Base Problem

ODF MaxminLF

Itinerary Class 63000 64000 65000 66000 67000 68000 69000 70000 71000

AB 3 35 38 41 41 41 40 40 41 42

2 34 35 34 34 34 35 35 36 38

1 17 18 19 20 22 24 26 30 33

AC 3 33 30 29 28 27 25 22 20 18

2 20 18 17 17 17 17 17 17 18

1 8 9 9 9 10 11 13 14 17

AD 3 25 25 24 23 21 20 17 11 0

2 19 19 19 19 19 18 19 19 20

1 6 8 8 8 9 10 11 12 14

BC 3 16 15 17 17 19 19 20 21 22

2 15 15 13 14 14 15 15 16 17

1 4 9 11 12 13 15 16 19 21

BD 3 24 24 24 23 22 20 19 18 18

2 16 16 16 15 14 14 14 15 15

1 12 12 13 14 15 16 17 18 20

CD 3 43 43 43 42 42 41 39 38 40

2 34 34 34 34 34 34 34 36 37

1 19 19 19 22 24 27 30 33 36
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C.2 INCREASED VARIANCE OF LOW FARE DEMAND

C.2.1 RLF with SLl=SL for all l

Table C.8: Optimal Seat Allocations of RLF with S Ll = S L for “Increased Variance of Low Fare

Demand”

ODF RLF with SLl=SL for all l

Itinerary Class 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94

AB 3 40 40 39 39 38 38 38 38 39 41

2 39 38 38 37 37 36 35 35 34 33

1 38 37 36 35 33 33 31 29 26 21

AC 3 7 9 12 15 17 20 22 24 26 30

2 14 14 13 13 13 12 12 12 13 14

1 21 20 19 18 18 16 15 14 13 11

AD 3 4 5 7 8 10 12 14 17 19 22

2 20 20 20 19 19 19 19 18 18 18

1 17 17 16 16 15 14 14 13 12 10

BC 3 21 21 21 20 20 20 20 19 19 18

2 18 17 17 17 16 16 15 15 14 13

1 25 25 24 23 22 21 20 19 17 14

BD 3 16 16 16 17 16 16 16 17 18 21

2 15 15 14 14 14 14 14 14 14 14

1 22 21 21 21 20 20 19 18 17 15

CD 3 35 35 35 35 35 35 35 36 38 41

2 35 35 35 35 35 35 35 34 34 33

1 36 36 36 36 36 35 34 33 30 26
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C.2.2 RLF-M

Table C.9: Optimal Seat Allocations of RLF-M for “Increased Variance of Low Fare Demand”

ODF RLF-M

Itinerary Class 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94

AB 3 41 40 39 39 39 38 38 38 39 40

2 40 39 38 38 38 37 36 35 34 34

1 40 38 36 35 35 34 32 30 27 23

AC 3 1 2 6 9 9 13 19 22 25 29

2 15 14 14 13 13 13 12 12 13 14

1 22 21 20 19 19 18 16 15 13 11

AD 3 2 10 11 13 13 14 15 17 19 21

2 21 20 20 19 19 19 19 18 18 18

1 18 16 16 15 15 14 13 13 12 10

BC 3 22 21 21 20 20 20 19 19 19 20

2 18 18 17 17 17 16 15 15 14 14

1 27 25 24 24 24 22 21 19 17 13

BD 3 17 17 17 17 17 18 18 18 19 21

2 15 15 14 14 14 14 14 14 14 14

1 22 21 20 20 20 19 19 18 17 15

CD 3 35 34 35 36 36 36 37 38 39 41

2 35 34 34 34 34 34 34 34 34 34

1 35 33 33 32 32 32 31 30 28 26

155



C.2.3 LFR

Table C.10: Optimal Seat Allocations of LFR for “Increased Variance of Low Fare Demand”

ODF LFR

Itinerary Class 64000 65000 66000 67000 68000 69000 70000

AB 3 42 41 40 39 39 38 38

2 33 33 33 34 34 35 37

1 19 20 23 25 27 31 35

AC 3 31 30 29 28 25 21 12

2 15 15 14 13 13 12 13

1 9 10 11 12 13 15 18

AD 3 23 22 22 20 19 17 13

2 19 19 18 18 18 18 19

1 9 10 10 11 12 13 15

BC 3 21 20 20 19 19 19 20

2 13 13 13 14 14 15 16

1 9 10 12 14 17 20 23

BD 3 23 22 22 21 19 18 17

2 15 15 14 14 14 14 14

1 13 14 15 16 17 18 20

CD 3 42 41 41 40 39 38 36

2 34 33 33 34 34 34 34

1 22 24 25 26 28 30 32
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C.2.4 MaxminLF

Table C.11: Optimal Seat Allocations of MaxminLF for “Increased Variance of Low Fare Demand”

ODF MaxminLF

Itinerary Class 63000 64000 65000 66000 67000 68000 69000 70000

AB 3 41 41 41 41 40 39 38 38

2 33 33 33 33 34 34 35 37

1 17 17 18 21 23 26 30 34

AC 3 33 33 31 30 28 26 23 16

2 16 16 15 14 14 13 12 13

1 9 9 10 11 12 13 15 18

AD 3 23 23 23 22 20 19 16 10

2 19 19 19 18 18 18 18 19

1 9 9 10 10 11 12 13 15

BC 3 16 16 18 18 19 19 19 20

2 14 14 12 13 13 14 15 16

1 10 10 12 14 15 17 19 23

BD 3 22 22 22 21 20 18 17 16

2 15 15 14 14 14 14 14 14

1 14 14 14 15 16 17 18 20

CD 3 42 42 41 41 40 38 36 35

2 33 33 33 33 33 34 34 35

1 23 23 24 26 28 30 34 36
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C.3 SMALLER DIFFERENCES BETWEEN FARES

C.3.1 RLF with SLl=SL for all l

Table C.12: Optimal Seat Allocations of RLF with S Ll = S L for “Smaller Differences between

Fares”

ODF RLF with SLl=SL

Itinerary Class 0.91 0.92 0.93 0.94 0.95 0.96

AB 3 44 43 42 42 41 41

2 39 38 38 37 36 35

1 30 29 27 26 24 21

AC 3 13 16 20 21 23 26

2 20 19 19 18 18 18

1 12 11 10 9 8 8

AD 3 5 7 8 13 17 21

2 21 21 21 20 20 19

1 16 16 15 14 13 11

BC 3 23 23 22 22 21 19

2 19 19 18 18 17 16

1 20 19 18 17 16 14

BD 3 19 17 17 18 18 21

2 16 16 16 15 15 15

1 16 16 15 15 14 13

CD 3 40 40 40 39 40 41

2 37 37 37 37 35 35

1 30 30 30 29 27 24
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C.3.2 RLF-M

Table C.13: Optimal Seat Allocations of RLF-M for “Smaller Differences between Fares”

ODF RLF-M

Itinerary Class 0.90 0.91 0.92 0.93 0.94 0.95 0.96

AB 3 44 44 43 42 41 41 40

2 40 40 39 39 38 37 36

1 35 33 32 30 28 26 23

AC 3 8 7 10 10 13 19 26

2 20 20 19 19 19 18 18

1 13 13 12 11 10 9 7

AD 3 0 5 8 14 17 18 20

2 22 21 21 20 20 20 19

1 18 17 16 15 14 12 11

BC 3 25 25 24 24 23 22 21

2 19 19 19 18 18 17 16

1 21 20 19 18 17 15 12

BD 3 21 21 21 20 20 21 22

2 16 16 16 16 15 15 15

1 17 16 15 15 14 14 13

CD 3 39 39 39 38 39 40 41

2 37 36 36 35 35 35 35

1 30 29 28 27 26 25 24
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C.3.3 LFR

Table C.14: Optimal Seat Allocations of LFR for “Smaller Differences between Fares”

ODF LFR

Itinerary Class 57000 57500 58000 58500 59000 59500 60000 60500

AB 3 42 42 41 41 40 41 41 43

2 34 34 35 35 36 37 38 40

1 16 18 19 21 23 26 28 34

AC 3 32 31 30 28 25 20 14 7

2 19 18 18 18 18 18 19 20

1 6 7 7 7 8 8 10 13

AD 3 24 23 22 21 20 18 16 5

2 19 19 19 19 19 20 20 21

1 8 8 9 10 11 12 14 17

BC 3 22 22 21 21 21 22 23 25

2 14 14 15 16 16 17 18 19

1 6 8 9 11 13 15 17 20

BD 3 24 23 23 22 21 21 20 21

2 15 15 15 15 15 15 15 16

1 11 12 12 12 13 14 14 16

CD 3 43 43 42 42 41 40 39 39

2 35 35 35 35 35 35 35 36

1 21 22 23 24 25 25 27 29
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C.3.4 MaxminLF

Table C.15: Optimal Seat Allocations of MaxminLF for “Smaller Differences between Fares”

ODF MaxminLF

Itinerary Class 56500 57000 57500 58000 58500 59000 59500 60000 60500

AB 3 38 38 39 42 41 41 41 42 44

2 36 36 35 35 35 35 36 37 40

1 19 18 19 19 21 22 24 27 33

AC 3 31 30 30 28 27 26 23 20 11

2 18 18 18 18 18 18 18 19 20

1 7 8 9 7 7 8 8 10 12

AD 3 24 25 24 23 22 20 18 11 1

2 19 19 19 19 19 19 20 20 22

1 8 8 8 9 10 11 12 14 17

BC 3 14 15 15 17 18 19 21 22 24

2 16 16 16 15 16 16 17 18 19

1 9 9 9 12 13 15 16 18 21

BD 3 25 24 25 24 22 21 18 18 20

2 16 16 16 15 15 15 15 15 16

1 12 12 12 13 13 13 14 15 17

CD 3 43 43 43 43 42 41 40 40 40

2 34 34 34 34 35 35 35 37 37

1 19 19 19 20 22 25 27 30 30
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C.4 REALISTIC VARIATIONS AND CLOSE FARES

C.4.1 RLF with SLl=SL for all l

Table C.16: Optimal Seat Allocations of RLF with S Ll = S L for ”Realistic Variations and Close

Fares”

ODF RLF with SLl=SL

Itinerary Class 0.9250 0.9300 0.9350 0.9400 0.9450 0.9500 0.9550 0.9600

AB 3 41 40 40 39 39 38 38 38

2 38 38 37 37 35 35 34 34

1 31 31 30 30 29 29 28 27

AC 3 0 3 5 9 12 15 18 21

2 14 14 14 13 13 12 12 12

1 17 17 17 16 16 16 15 15

AD 3 18 18 18 17 17 17 17 18

2 21 20 20 20 20 20 19 18

1 20 19 19 19 19 18 18 17

BC 3 20 20 19 18 18 17 17 16

2 18 18 17 17 17 16 16 15

1 21 21 21 21 20 20 19 19

BD 3 18 18 18 18 17 17 17 18

2 15 14 14 14 14 14 14 14

1 18 18 18 18 17 17 17 17

CD 3 27 29 29 30 32 32 34 37

2 33 34 34 34 34 35 34 33

1 30 30 30 30 30 30 29 28
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C.4.2 RLF-M

Table C.17: Optimal Seat Allocations of RLF-M for “Realistic Variations and Close Fares”

ODF RLF-M

Itinerary Class 0.9200 0.9250 0.9300 0.9350 0.9400 0.9450 0.9500

AB 3 39 39 39 40 39 39 38

2 40 40 40 40 38 37 37

1 33 33 33 32 32 31 30

AC 3 0 0 0 0 3 7 11

2 14 14 14 14 14 13 13

1 17 17 17 17 17 16 16

AD 3 16 16 16 19 18 18 18

2 21 21 21 20 20 20 19

1 20 20 20 19 19 19 18

BC 3 21 21 21 21 21 20 20

2 18 17 18 18 17 17 16

1 21 21 21 21 20 20 19

BD 3 19 19 19 19 19 19 19

2 15 15 15 15 15 14 14

1 18 17 18 18 17 17 17

CD 3 27 27 27 29 30 32 33

2 34 34 34 33 33 32 33

1 30 30 30 29 29 29 29
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C.4.3 LFR

Table C.18: Optimal Seat Allocations of LFR for “Realistic Variations and Close Fares”

ODF LFR

Itinerary Class 62500 63000 63500 64000 64500 65000

AB 3 38 38 37 36 38 41

2 31 32 32 34 36 39

1 24 25 26 28 29 32

AC 3 28 27 25 22 15 0

2 13 12 12 11 12 14

1 14 14 14 15 15 17

AD 3 21 20 20 19 18 18

2 17 17 18 18 19 20

1 14 15 16 17 18 19

BC 3 19 18 17 18 19 21

2 11 12 13 14 15 18

1 13 15 16 17 19 21

BD 3 21 21 20 19 19 19

2 14 14 13 14 14 15

1 15 15 16 16 17 18

CD 3 40 40 38 37 35 29

2 32 32 32 32 32 33

1 26 26 27 28 28 29
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C.4.4 MaxminLF

Table C.19: Optimal Seat Allocations of MaxminLF for “Realistic Variations and Close Fares”

ODF MaxminLF

Itinerary Class 62000 62500 63000 63500 64000 64500 65000

AB 3 31 33 33 37 37 38 41

2 33 33 34 33 33 35 38

1 25 26 25 26 27 29 31

AC 3 28 27 26 24 22 17 0

2 13 11 12 12 12 12 14

1 15 15 15 14 15 15 17

AD 3 22 22 22 21 19 17 18

2 18 18 18 18 18 19 21

1 15 15 15 16 17 18 20

BC 3 10 11 12 14 15 17 20

2 13 13 14 14 15 16 18

1 14 15 15 17 18 20 21

BD 3 22 22 22 21 19 18 18

2 14 14 14 14 14 14 15

1 16 16 16 16 16 17 18

CD 3 39 39 39 38 37 33 27

2 30 30 30 31 33 35 33

1 24 24 24 25 27 30 30
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