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ABSTRACT

NUMERICAL ANALYSISOF A PROJECTION-BASED
STABILIZATION METHOD FOR THE NATURAL
CONVECTION PROBLEMS

Cibik, Aytekin Bayram
Ph. D., Department of Mathematics
Supervisor : Assoc. Prof. Dr. Songul Kaya Merdan

June 2011, 88 pages

Inthisthesis, we consider aprojection-based stabilization method for solving buoyancy driven
flows (natural convection problems). The method consists of adding global stabilization for all
scales and then anti-diffusing these effects on the large scales defined by projections into ap-
propriate function spaces. In thisway, stabilization acts only on the small scales. We consider

two different variations of buoyancy driven flows based on the projection-based stabilization.

First, we focus on the steady-state natural convection problem of heat transport through com-
bined solid and fluid mediain a classical enclosure. We present the mathematical analysis of
the projection-based method and prove existence, unigqueness and convergence of the approx-
imate solutions of the velocity, temperature and pressure. We aso present some numerical

tests to support theoretical findings.

Second, we consider asystem of combined heat and mass transfer in a porous medium due to
the natural convection. For the semi-discrete problem, a stability analysis of the projection-

based method and a priori error estimate are given for the Darcy-Brinkman equations in
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double-diffusive convection. Then we provide numerical assessments and a comparison with

some benchmark data for the Darcy-Brinkman equations.

In the last part of the thesis, we present a fully discrete scheme with the linear extrapolation

of convecting velocity terms for the Darcy-Brinkman equations.

Keywords: Projection-based stabilization, finite element method, natural convection equation,

error analysis, double-diffusive convection.
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DOGAL KONVEKSIYON PROBLEMLERI ICIN
PROJEK SIYON-ESASLI KARARLILASTIRMA
YONTEMININ SAYISAL ANALIZI

Cibik, Aytekin Bayram
Doktora, Matematik Bolumu
Tez Yoneticis : Dog. Dr. Songul Kaya Merdan

Temmuz 2011, 88 sayfa

Butezde, kaldirmatesirli akiglari (dogal konveksiyon problemleri) cozebilmek icin projeksiyon-
esadl| kararlilastirma yontemini ele aldik. Bu yontem global kararlilastirmanin tim olceklere
eklenmesi ve ardindan uygun fonksiyon uzaylarina projeksiyon vasitasiyla tanimlanan kalin
Olceklerden bu etkinin geri ¢oziniminden ibarettir. Bu vasita ile kararlilastirma sadece
kiicik Olceklere tesir eder. ki farkll kaldirma tesirli akisi projeksiyon-esasli kararlilastirma
yontemiyle ele aldik.

Ik olarak, klasik bir kapall ortamda katidan akiskana Is transferinin duragan halli dogal
konveksiyon problemi {izerinde yogunlastik. Projeksiyon-esadi kararlilastirma yonteminin
matematiksel analizini verdik ve hiz, sicaklik ve basing degigkenlerinin varlik, teklik ve
yakinsama ozelliklerini ispatladik. Ayrica, teorik bulgulari destekleyen sayisal testleride sun-
duk.

Ikinci olarak, gozenekli bir ortamda dogal konveksiyon vasitasiyla gerceklesen birlesik 1si ve
kitle transfer problemini ele aldik. Yari-ayrik durumda projeksiyon-esasli metodun kararlilik

Vi



ve Oncil hata analizini cifte cozuniml konveksiyonda Darcy-Brinkman denklemleri igin
verdik. Ardindan Darcy-Brinkman denklemleri icin bazi referans deferlerle kiyasama ya

pan sayisal olcumleri verdik.

Tezin son kisminda Darcy-Brinkman denklemleri icin konvektif hiz terimlerinin lineer disdegerlerini

iceren tam ayrik bir semay1 sunduk.

Anahtar Kelimeler: Projeksiyon-esadli kararlilastirma, sonlu elemanlar yontemi, dogal kon-
veksiyon denklemi, hata analizi, cifte dagilimli konveksiyon.
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CHAPTER 1

INTRODUCTION

This thesis deals with the analysis of the natural convective flows inside enclosures. Such
flows occur by the effect of body forces which are formed due to the density differences along
with the gravitational impacts. In other words, as the fluid touches to a hot or cold surface, a
density difference occurs due to the temperature gradients near the vicinity of the mentioned
surfaces. Thus, the lighter fluid moves upward and the denser fluid moves downward. Finally,
anatural convective flow occurs due to the gravity effect on asuch kind of a density gradient.
In contrast to the case of forced convection, in which the flow is driven by some external
effectsi.e. apump or afan, density differences causing the flow formation arise as aresult of
temperature changes in the system. Along with the temperature differences, some additional
effects which change fluid density, like concentration differences, could aso be seen on some
natural convective systems. The mentioned body forces are referred as buoyancy forces and

so the flows affected by these forces are called buoyancy driven flows.

We consider two different type of buoyancy driven flows in this thesis. The first one is a
classical natural convection problem in aclosed non-porous cavity. The buoyancy force forms
by the effect of temperature differences. For the second one, we study on porous enclosures
in which concentration difference accompanies temperature differences to change the fluid
density. Those kind of natural convective flows are known as double-diffusive, thermohaline
or thermaosolutal convection. For both cases, the flows are convection dominated and coupling
between velocity, temperature and concentration fields is pretty strong. So, various kinds
of stabilization techniques are developed to approximate these flows. Departing from these
forewords about the character of buoyancy driven flows, we separate this chapter into three

main parts to make explanations for each topic in detail.



1.1 Classical Natural Convection in Non-Porous M edia

1.1.1 Physical mechanism

Theflow in natural convection isinduced by the buoyancy force arising from the temperature
differences. Although the flow motion due to the natural convection is slower than the forced
convection, flow character formed near the heat transfer surfaces are similar. In general,
there are two different configurations for natural convection occurring in an enclosure. In
first one, the system is heated from below and cooled from above. Such kind of natural
convection is called the Rayleigh-Benard convection. If one heats the system from above and
cools from below, the character of the flow will change totally. In such kind of a system, a
convective flow is not observed due to the gravity effect. The denser fluid will always be at
the bottom and there is no flow motion opposing with the gravity effect. The heat transfer
coefficient equals to unity and the heat transfer occurs only by conduction. In the case of
Rayleigh-Benard convection, the heavier fluid will be on top of the lighter fluid, and there
will be atendency for the lighter fluid to topple the heavier fluid and rise to the top, where
it will come in contact with the cooler surface and cool down [13]. When the Rayleigh
number exceeds 1708, the buoyant force overcomes the fluid resistance and initiates natural
convection currents, which are observed to be in the form of hexagonal cells called Benard
cells [13]. In second configuration, horizontal boundaries of the enclosure are adiabatic, one
of the vertical wall kept cold and the other wall kept hot. In contrast to the Rayleigh-Benard
convection, altering the hot and cold walls do not change the flow character since the gravity
will always be perpendicular to temperature gradients. Double pane window problem is a
typical example which gives rise to such a system. Fluid motion which forms in natural
convective heat transfer in pane cavities is driven by the buoyancy force. This force depends
on the temperature difference between indoor and outdoor environment, and is characterized
by arising fluid at the cavity hot wall and adescending fluid at the cavity cold wall, [71]. Thus,
the system models arectangular enclosure in which vertical walls present indoor and outdoor
panes, where the top and bottom sections are adiabatic parts. The effect of wall conductance
has to be considered carefully for this kind of problems. Neglecting the thickness of the solid
body outside the fluid results in different systems than the one considered here. If the solid is
not included, subtracting the heated boundary adds an extra term on the right hand side of the

energy equation. This term can be avoided only when the solid region isincluded [11].
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1.1.2 Governing equations

Thetotal system of equation consists of a Navier-Stokes system coupled with an energy equa-
tion. We stick on a steady-state formulation for natural convection flows. The Navier-Stokes
system for a viscous incompressible fluid is build up from a combination of mass balance
equation and a momentum equation [55]. The main difference in a natural convection system
comes from the body force term and coupling of an energy equation. The key point in the
system we study is the assumption of Boussinesq approximation. It states that, we neglect the
density differences seen on the system unless they are multiplied with the gravity. We now
explain the derivation of the equations of a natural convection system for a2-D flow in detail.
We use a control volume for the formulations we derive and they can be extended to general

cases triviadly.

Basically, the principle of mass conservation states that mass can neither be created nor de-
stroyed. For a steady flow, the quantity of mass inside the control volume stays unchanged.
Assume that the flow enter from left side of the volume and exit from right side of the volume
with the velocity v = (vy, V) and density p. Entering mass flow rate to the volume is pvydy
and pvydx for xand y directions respectively. Exiting massrate to thevolumeisp (vx + 52 ) dy
and p (vy + aa—\;f) dx for x and y directions respectively. Thus, using the principle of mass con-

servation we have
oV, vy
pVxdy + pwdx = p (vX + 6—;) dy +p (vy + 8_y) dx. (1.2)

Simplifying (1.1) and dividing both sides with dxdy, one finally arrives,

M, Ny _

oxX 8y0

which is the equation of continuity.

We state the momentum equation next. Newton’s second law of motion states that ” the net
force acting on the control volume is equal to the mass times the acceleration of the fluid
element within the control volume, which is also equal to the net rate of momentum outflow
from the control volume™ [56]. One can express this statement in mathematical way as M.a =
F, where M is the mass of the fluid, a is the acceleration and F is the net force. Let us

redefine these quantities in means of our system now. Total mass M is given by M = p dxdy,

o
ay

dy, acceleration isay = vy 2% + v, 2 in x direction.

total derivative becomes dvy = Z%dx+ s e



The force contains viscous, pressure and body forces. These forces in our volume become,

vy
v

reformulating the Newton’s law with these new definitions gives us the momentum equation

- % +p¢ in x direction with pressure P, kinematic viscosity v and body force p. Finally,

in x direction, which is

OVy OVy 9%vy  OP
L rvw—|= - — . 1.2
P(Vx ax T W 8y) Yo ax TP 1.2)

Derivation of same equations in y direction, assumption of Boussinesq approximation, de-

parting from control volume to general case and rewriting the system in a compact form gives

(v-V)v = —VP+vV2U+ps (1.3)

V-u

0 (1.9

along with the continuity equation. The body force term p¢ is of great importance. This
buoyancy force could be expressed as ps = pg. The variation of the density of afluid with
respect to the temperature at a constant pressure, namely the thermal expansion coefficient 8

could be formulated in terms of density and temperature differences of the system as

-1lpo-p
g= 2 F 15
o To—-T (39

where pg and Ty denotes the reference density and temperature. Thus, one arrives p; =

Bg(T — Tp) after some modifications on (1.5) and assumption of Boussinesg approximation.

Thefinal equation to derive isthe energy equation. The energy balance of anatural convection
system could be expressed as. the total difference of energies that enters and exits the system
is zero. In other words, the amount of the total energy convected by the fluid out of the
system and the amount of the energy installed into the system by heat conduction are equal.
Assuming a constant pressure and a negligible viscous dissipation, we give thisfact in terms

of amathematical relation as
~Cp TV (pu) + V- (pCp Tu) = V- (xVT) +y (1.6)

where ¢, is the thermodynamics coefficient, « isthe thermal conductivity parameter and y isa
heat source. So, one gets a system of natural convection via combining (1.3), (1.4) and (1.6).
There are various non-dimensionalizations of this kind of systems. We use the one given in

[11] with avery detailed process of non-dimensionalization.

4



1.1.3 Real lifeapplications and previous work

Due to the wide range of applications, many scientists are increasingly attracted to natural
convection flows. Some of the commonly used buoyancy-driven flows are observed in nature;
such as atmospheric fronts, katabatic winds etc., and in industry; such as dense gas dispersion,
natural ventilation, solar collectors, insulation with double pane window, cooling of electronic
equipments, cooling of nuclear reactors and so on. In solar collectors, heat exhaustion must
be prevented to make the system work efficiently. Natural convection occurs between the
solar heat absorber and the conductive covers. One should minimize such kind of natural
convection to prevent the energy loss. Consideration of natural convection in a double pane
window system is also crucial. The distance between the panes must be arranged appropri-
ately to block the natural convection. Cooling of electronic equipment is due for making them
work properly. Natural convection is preferred for cooling such kind of equipments since it
is cheap, safe and simple. Alienation of circuit boards and chips is only allowed via natural
convection and it defines the working configuration of the system [30]. Consideration of nat-
ural convective flowsis aso important for the arrangement of indoor air quality and selection

of appropriate heating and cooling systems in houses.

Since the system we study has too many applications in many engineering branches, the num-
ber of publications concerning the natural convection equations is almost countless. We men-
tion here which are of importance especially in point of a mathematical view. Publications
concerning the computational results rely on various numerical techniques. The most out-
standing study concerning the computational results on natural convection problem was pub-
lished by de Vahl Davis [16]. In [16], the system is solved using a finite difference scheme
based on an implicit alternating direction method (ADI) and his findings are still accepted
as benchmark results for new studies. Hortmann et a. used the finite volume method for
the problem and take a step further in terms of larger Rayleigh number in [27]. Using a
streamfunction-vorticity approach, Shu and Xue performed a differential quadrature method
in [65]. In noteworthy study of Massarotti et al. [51], a characteristic-based split (CBS)
scheme was performed in a semi-implicit form. Manzari et a. [50] studied on application of
an artificial viscosity based scheme concerning the turbulent thermal convective flows. Asa
benchmark computational study, the work of Wan et a. [70] deserves the attention in which

the numerical solution of the system is studied both with a finite element method and a dis-

5



crete singular convolution. From the aspect of finite element error analysis, the studies on
natural convection equations are limited. Boland and Layton studied the finite element error
analysis of the system in [11] and [10] for steady-state and time dependent cases respectively.
In[9], Boland et a. studied the finite element error of the system along with the non-physical
dynamics induced by the discretization.

1.2 Double-Diffusive Convection in a Porous M edium

1.2.1 Porous medium

A porous medium is a material which contains tiny spaces connected to each other inside a
solid frame. A solid or aliquid may pass through these spaces. We observe so many examples
of porous media in nature and our daily lives. Sea sand, human lungs, a piece of bread and
wood are some well known instances that we encounter everyday. A typica porous media
must possess two important properties. First, it must contain minute spaces compared to its
own scale and these spaces may contain different kind of fluids and/or mixtures such as water,
oil and air. Second, the material must be permeable. In other words, any fluid could enter
from an edge of the frame and exit from the other edge. The structure of the poresin a porous
medium leads the general behavior of the medium. The most important pore properties are

the porosity, permeability and the flow channel.

Porosity is the ratio of the volume of total minute spaces to the volume of whole material. It
takes values in between 0 and 1 depending on the material properties. For instance, porosity
is bigger for heat insulation materials and fibre filters, whereas it is very small for metals
and some volcanic rocks. Permeability characterizes the amenity of the fluid flow under a
pressure gradient inside the porous medium. It was first stated by Henry Darcy in 1856 and
the unit of permeability took after his name. Permeability is a macroscopic property of the
porous medium and it is also related to the geometry of the medium. Another characteristic
property of a porous medium isthe flow channel. Flow channel inside medium are mostly not
a straight line and it is longer than the length of the porous medium. The considered media

may contain more then one flow channel.



1.2.2 Governing equations

Conservation equations for a porous media are derived by considering means for mediums
that include so many spaces. If the space are saturated by a single fluid, the flow is said to
be single phase and if there are two distinct fluids the flow is double phased. Darcy found a
relation about the movement of fluid inside a porous medium after his experimental studies.

Thisisknown as Darcy’s law and given by
V= K (VP + pQ)
4

where K is the permeability. Brinkman extended the Darcy’s law by consideration viscous

diffusion effects and stated it as
VP = —%v + vV,

Today, it has still not been understood well that which model is more valid under what con-
ditions. In arecent article of JL Auriault, the concept of this validity was discussed [3].
According to his conclusion, the Brinkman model is valid when describing flows through
swarms of fixed particles or fixed beds of fibres only, and under precise conditions. This
restriction could be the answer of the question that, why the number of studies carried out as-
suming the Brinkman law is small than the Darcy’s law. In this study, we assume the validity

of the Brinkman's extension.

Conservation equations are derived in the same way as in the previous section. We only state
the differences for the porous medium in this part. Continuity equation is exactly same. For

the momentum eguation, we have

lov 1 2 v
p(zﬁ+z(\/.v\/))_—vp+vv V- eVEeg (1.7)

with porosity € and permeability K. Notethat thisisaclassical momentum equation as derived

in previous chapter except the installation of the Brinkman extended Darcy’s law.

For the energy balance, we assume an isotropic material inwhich the heat conduction between
the solid and fluid phases are parallel and there is no conduction of heat from one phase to

another. Thus heat balance equation becomes

o-% +V-VT = V(yVT) (18)



where, o~ isthe specific heat ratio and y isthe thermal diffusivity. Concentration equations are

formed in avery similar manner asin the temperature cases and it takes the form

6%—? +V - VC = V(DcVC) (L9)

with mass diffusivity D.. Finally, since we are dealing with the combined heat and mass

transfer in a porous enclosure, the body force termin (1.7) becomes

pt =pg = potl -1 (T - To) - Bc (C - Co)}g (1.10)

where the subscript 0 denotes a reference density, temperature or concentration. St and Sc
stands for the thermal and solutal expansion coefficients respectively. Combining (1.7)-(1.10)
with the usual continuity equation, one gets the system of double diffusive convection in a
porous medium. We do not emphasize on non-dimensionalization again. We use the one

given in [20] for the analysis we present.

1.2.3 Real lifeapplications and previous work

Combined heat and mass transfer in a porous medium due to the free convection, which is
aso known as double-diffusive convection has begun to attract scientists from varying fields.
Especially at last three decades, as the case of pure therma convection in a porous medium
becomes better understood, attention is now turning to systems in which the density differ-
ences causing natural convection are occurred owing to coupled thermal and solutal effects.
The extensive interest to double-diffusive convection phenomenain porous media comes from
its wide existence observed in nature and applications in industry. It usualy formsin seawa-
ter flow and mantle flow in earth’s crust naturally. Furthermore, examples in astrophysics,
electrochemistry, geophysics and metallurgy are commonly encountered. Especialy, it has
crucia applications in geophysics such as extraction of oil confined by porous rocky mate-
rials. Double-diffusive flows are aso related to contaminant transport in groundwater and

development of geothermal sources [54].

Two different configurations are commonly seen in the literature for the system of combined
heat and mass transfer in porous media. The first one consists of a porous enclosure with dif-
ferent temperature and concentration gradients at horizontal walls. For the second, adiabatic
and impermeable horizontal walls are accompanied by vertical walls with different temper-

ature and concentration gradients. In early studies [57] and [69], linear stability analysis of

8



the first configuration was studied. Solution behaviors in a cubic porous cavity were given in
[64] according to thefirst formulation. Studies based on second formulation is more common.
Both analytical and numerical aspects of the flow with the Darcy formulation was analyzed in
[68]. There are some other noteworthy studies with Darcy formulation which involves bound-
ary layer flows[2, 6]. A very detailed numerical treatment of the Darcy-Brinkman model was
given in [20]. The influence of boundary and inertial effects on double-diffusive convection
was studied in [38] and the onset of convection along with the stability analysis was consid-
ered in [18] again using the Darcy-Brinkman formulation. In point of a mathematical view,
number of studies on double-diffusive convection is rather limited compared to engineering
considerations. In the early study of Siegmann and Rubenfeld [66], stability of conductive
solutions of a double-diffusive system was considered. Bennacer et a. carried out a numeri-
cal study for a Darcy-Brinkman flow of double-diffusive convection within avertical circular
annulusin [7]. A Galerkin finite element method applied to a Darcy model was given in [49].
Mohamad and Bennacer provided a numerical treatment for a Darcy-Brinkman flow in both
three and two space dimesions in [53]. Kramer et a. studied the boundary element solutions
of a Darcy-Brinkman system in [41] which is very similar to one considered here. Although
there are a wide range of publications concerning the continuous dependence and structural
stability of solutions about the double-diffusive convection in a porous medium [59, 46, 47],
topic of finite element error analysis on such kind of systems has not been considered yet. To
do authors best knowledge, the error estimates of the finite element method with a projection-
based stahilization idea applied to double-diffusive convection in porous media are not yet

available.

1.3 Stabilization Methods

Classical natural convection problem in fluid mechanics occurs in an enclosed domain, [40].
For natural convection in enclosures, a boundary layer forms near the walls. Outside this
layer, arolling core is formed inside the enclosure. The boundary layer and the core could
not be considered independent since the core is covered by the layer. There is a coupling
between the core and the boundary layer. This coupling is the main reason of the difficulty
in solving these systems analytically. Thus, numerical methods and experimental analysis are

used fregquently, [72].



The finite element method is one of the most popular and mathematically sound variants of
numerical approximation [48]. Standard Galerkin finite element method for natural convec-
tion type problems with high Reynolds or Grashof numbers generally results with inaccurate
approximate solutions and may display globa counterfeit oscillations, [21, 52, 14]. This
disappointing behavior occurs since such methods lose stability and cannot adequately ap-
proximate solutions inside layers due to the dominance of convection terms and the strong

coupling between the unknown flow characteristics.

An interesting property of the flows with small viscosity is the diversity of scales. These are
resolved small and large scales and unresolved scales. One of the main reason of failure of
non-stabilized finite element methods for turbulent flows is to attempt to define overall flow
character at once [33]. Thus the use of an appropriate stabilization mechanism for approxi-

mation of such flowsisinevitable.

So many stabilization strategies are developed for finite element approximations in order
to cure mentioned disadvantages for the flow problems that we interest [63]. Among them
al, most popular ones are residual based techniques as Streamline-Upwind Petrov Galerkin
(SUPG) and Pressure-Stabilization (PSPG) methods, Large Eddy Simulation (LES) and Vari-
ationa Multiscale Method (VMS). Analysis of some well-known stabilization techniques ap-
plied on a convection diffusion system was given in [15] and a comprehensive comparison of

various stabilization techniques applied on an Oseen problem was studied in [12].

In residual based techniques, numerical viscosity is added on al scales and this gives rise to
some problems due to the richness of flow scales. Werefer the reader to [63] for acomprehen-
sive overview of such kind of stabilization mechanisms. Classical LES techniques attempt to
model only the character of large scales. Thus, various drawbacks like definition of appropri-
ate boundary conditions for large scales and commutations errors are encountered [48]. For a
more genera discussion of LES models, seee.g., [8]. Among other stabilization mechanisms,

the emphasis of this study is on a rather new technique so called projection-based stabiliza-

tion which is a variant of (VMS) [29, 22, 45, 32]. VMS was first proposed in [29] and an
extension with a combination of Large Eddy simulation idea was givenin [28] . A broad and
comparative investigation of various kinds of VMS method were studied in [37]. In classica

VMS approach, solution spaces are separated into coarse and fine scale spaces through an

overlapping sum decomposition. Here the coarse scale space is finite dimensiona and fine
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scale space isinfinite dimensional. Then one rewrites the variational formulation of the prob-
lem with a set of two equations for each equation component of the system. One equation
contains the test functions from coarse scale space and the other from fine scale space. So,
the fine scale equation contains infinitely many equations and in order to approximate these,
bubble functions which contains local higher order polynomials are used. An eddy viscos-
ity model is used to take into account the effect of scales which are not resolved by bubble
functions. This eddy viscosity model acts directly only on the bubble functions [36].

In this study, we consider a projection based VMS approach similar to the idea presented in
[34]. A noteworthy Guermond'’s stabilization idea of subgrid viscosity concept makes the dif-
fusion acts only on the finest resolved mesh scale, [22], with the definition of solution spaces
via bubble functions. Based on the ideas developed in [22, 29], severa multiscale decompo-
sitions have been proposed in the literature, [32, 35, 45]. Since then, considerable progress
has been made for the use of projection-based stabilization method both in mathematical and
computational analysisin past years, [25, 39]. The philosophy of the projection-based stabi-
lization is to use projections into appropriate function spaces in order to decompose solution
scales. In this way, the stabilization is added in different ways. In the method we use, finite
element spaces for al variables are defined for al resolved scales first. Then the large scale
spaces are defined via L? projections. For turbulent flows, the effect of unresolved scales onto
resolved small scales are considered through a turbulence model. Examples regarding the
projection-based stabilization and the VMS applied on the natural convection problems are
very limited. The recent study of Lowe and Lube [48] discussed the error analysis of avaria-
tional multiscale scheme applied on a non-stationary system. A projection based stabilization

idea performed for the stationary case was considered in [14].

Themain aim of thisthesisisto upgrade the numerical models developed for buoyancy driven
flows in enclosures through making use of projection-based stabilization idea. Our another
goad is the transmission of the successful variational multiscale ideas which are presented
for turbulent Navier-Navier stokes equations in the literature and open a way to understand

turbulent natural convection phenomena better in the future.
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1.4 Chapter Descriptions

This thesis consists of four chapters.

Chapter 2 presents the analysis of classical natural convection problem in a non-porous
enclosure. In particular, a stationary system of equations of heat transport through combined
solid and fluid mediais considered. After introducing the system, we present the mathematical
preliminaries and the scheme. Existence, uniqueness and stability issues of the problem are
discussed in the next section. After providing a priori error analysis for the velocity and
temperature variables, we give the error estimations for the pressure. Numerical assessment

of the problem will aso be given by the end of this chapter.

Chapter 3 provides the finite element analysis of a natura convection problem, namely
double-diffusive convection in a confined porous enclosure. We present the mathematical
preliminaries and the projection-based stabilization scheme. We then investigate the stability
and error estimation of the semi-discrete problem. We perform some numerical tests to verify
both the theory and the effectiveness of the method next. A fully discrete scheme aong with

acomprehensive error analysis follows.

Chapter 4 isdedicated to address the conclusions and discuss some possihilities for future

investigations.
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CHAPTER 2

NATURAL CONVECTION PROBLEM

In this chapter, we provide afinite element error analysis of the projection-based stabilization
method for solving steady-state natural convection equations. We consider the same type
projection-based stabilization technique of the steady-state Navier Stokes equations, [39]. As
in [39], we aso define the large scale spaces on a coarser grid for the solution scales. Main
difference in the present work comes from the technical point of view, which isthe coupling of
the Navier-Stokes equation to the energy equation. We first present stabilized finite element
scheme and give comprehensive error analysis of this coupled problem. We derive error
estimations for the velocity, temperature and pressure and show that these errors are optimal
with respect to the mesh sizes along with the choices of viscosity parameters. To evaluate the

performance and accuracy of the method, we provide numerical experiments.

Ma  Insulated
L

outdoor indoor

Cy

[ Insulated

Figure 2.1: Typical geometry of a double pane window problem.

One of the most common uses of thefluidsisto transfer heat to solid bodies. So, it is necessary

to consider a coupled domain where the solid is included. We consider herein heat transport

13



between solid and fluid media. This complex phenomena can be formulated as follows: let
Qs, Q¢ be disjoint polyhedral domainsin Q c RY(d = 2, 3) where Q is the regular bounded
open set. The steady-state natural convection equations including solid media are governed

by

—PrAu+ (u-V)u+Vp PrRaTe in Qj,

V-u 0 in Qgy,

u 0 on 9Q¢, u=0 In Q-Q5 =Qq, (2.1

=V -(kVT)+ (Uu-V)T vy in Q

T

oT
O on I'';,; — =0 on I,
LA B

where I't = dQ\I'g where I'g is a regular open subset of 9Q. u, p, T denote the velocity,
pressure and temperature fields, respectively, y is aforcing function, e is a unit vector in the
direction of gravitational acceleration and Pr, Ra, « > O refer to the Prandtl, Rayleigh numbers
and thermal conductivity parameter, respectively. Furthermore, we consider the casex = kg in
Q; and k = ks in Qs Where k; and ks are positive constants. Figure 2.1 illustrates the geometry

of the problem we study on.

System (2.1) presents severe computational problems for large Rayleigh numbers. It is well
known that, the solution of (2.1) is unique under some restrictions on the Rayleigh and Prandtl
numbers. Uniqueness is lost for high Rayleigh numbers, [61]. We use the rigorous finite

element method for solving this system numerically.

2.1 Notation, Mathematical Preliminaries and Scheme

We use the standard notations used for Sobolev and L ebesgue spaces in Adams [ 1] throughout

the entire thesis. The Sobolev space WX'(Q) on adomain Q c RY withd = 2,3 isgiven as
WET(Q) = (¢ € L'(Q) : VISl < k, 8% € L"(Q)).

We denote usual inner product and norm in L2(Q) by (-,-) and ||-|| respectively. The norm
and semi-norm in a Sobolev space W' (Q) is also given by [/l and |-|y,. For the special
caser = 2, the norm in the space WK2(Q) = HX(Q) is shown by ||lx. The space HX(Q) is of
special interest and we use it frequently throughout the thesis. The norm in H(Q) is given by

llully = (lull + [IVul)Y/2.
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We remark that the vector-valued functions are denoted with boldface character. Given a
vector valued function ¢, its gradient V¢ = (%’; is called a tensor and the product of tensors

A,Bisgivenby A : B = Zi,injBij-

The following well-known functional vector spaces are considered to define a variational

formulation of (2.1) .

X := H(Qr) (ueHYQf):u=0 on 89},

W :

{(SeHYQ):S=0 on TIg},

Q:
—pyl

peL2@): [ pax=ol
Q
{lueX:V-u=0 in Qjf}

We introduce the following bilinear and trilinear forms, for u,v,w e X, T,Se Wandq e Q:

ag(U,V) = fg | Vu : Vvdx (2.2)
a(T,S) = fg VT - VSdx (2.3)
bv,q) = - o qv - vdx (2.4)
co(U,w,v) = % fg | ((u-V)v-w—(u-V)w-v)dx (2.5)
ca(u,T,S) = % fg | ((u-V)TS - (u-V)ST)dx (2.6)
d(T,v) = fg | Te- vdx. 2.7)

The variationa formulation of (2.1) reads asfollows: seek u € X, pe Q, T € W such that

Pr ag(u,Vv) + co(u,u,v) + b(v,p) = PrRad(T,v)

b(u, a)
a.]_(T, S) + C]_(U, T, S)

0 (2.8)

(r.S)

foral (v,q,S) € (X, Q,W). The notations in equations (2.8) are inspired by the work in [11],
in which the standard Galerkin finite element method for (2.8) is studied.

The scheme introduces the addition of global stabilization and then subtracts its effect onto

large scales of the coupled equations for both velocity and temperature spaces. In this way,
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stabilization acts only on the smallest resolved scales of both scales. Let 7, G be a con-
forming triangulation of Q and let ", G be arefinement of #H,6X,i.e. H > hand K > k
respectively. Let X" ¢ X, WK ¢ W and Q" c Q be conforming finite element spaces satis-
fying the discrete inf-sup condition (2.20) and L, MX denote the finite element subspaces
of (L2(Q))". The discretization we investigate adds additional diffusion acting on all discrete
velocity and temperature scales and then anti-diffuses on the scales resolvable on #H, GK as

follows: find uM e X", p" e Q", Tk € WK, FH € LH and GX € MK such that

Pr ag(u", v") + (@2(Vu" = F™), v + co@u, u", v + bv", pM Pr Rad(T*,v"(2.9)

b(u", o)

0

(FH - wul, 1M 0 (2.10)

ar(TX, S5 + ap(V(T* - GX), VSK) + ¢y (U, T, SY) (v, S¥) (2.11)

(GK = vTK mK)

0, (2.12)

for al (v, g, 17, Sk mX) e (XN, Q", LM, WK, MK) where a1 := a1(h) and as = a(K) are
non-negative constant functions and user selected stabilization parameters. These parameters

can be thought of as an additional viscosity in the coarse space.

Remark 2.1 Multiscale decomposition requires selection of large scale spaces for both ve-
locity and temperature, L™ and MX, respectively. If both of them are selected as zero sub-
spaces, then Galerkin formulation is recovered in [11]. We employ LH = vXH and MX =
VWK choices of [45] for the large scale spaces to obtain the bounds in this paper. Some other

possible choices for these spacesare LM ¢ VX" and MK ¢ VWK (see[35]).

Let VM = (V" e XH : (¢", V- V") = 0, foral " € Q"} be the space of discretely divergence
free functions. It is easy to verify the following: (2.10) and (2.12) imply that F™ and GX are
L2 projections of Vu" and VTK onto LH and MK, respectively. If we denote these projections
with Py and Py, respectively, the properties of the projection operator give the reformulations

of (2.9)-(2.12) in V" asfollows: find u" € V", TX € WK such that

Ao(u", V") + co(u, ul, v Pr Rad(Tk, v (2.13)
Ag(TK S + ¢, TK SK) = (5,8%) (2.14)
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for al (v, SK) e (V", WK) where

Ao(ul, v Prag(u", v + a1 ((I = Pr)VU", (I = Py)WW") (2.15)

A(TX, %)

a(TX, S + ax((l = P)VTK, (I = P)VSK). (2.16)

For vanishing boundary values, we define Hé(Q) and its dual space, H™1(Q) and its norm is
defined by

I, V)
fll_; = su
IFll-2 = 073y

where (-, -) denotes the duality pairing.

We make use of well-known Sobolev embedding theorem for the following spaces: if Q is

bounded and has a Lipschitz boundary then H1(Q) — L*(Q), that is

llulla < Cllullz. (2.17)

Inequalities which are used frequently are
Young's inequality,

t t=a/

p
abs—pap+qu, ab,pgteRR, +§=1, p.ge (1, ), t>0, (2.18)

1
p
and Poincar€'s inequdlity in X,

VIl < ClIVv]] (2.19)

for al v e X with C = C(Q).

We assume that finite element spaces have the following properties. The discrete spaces
X", Q" satisfy the usual approximation theoretic conditions and theinf-sup condition or Babuska-

Brezzi condition i.e. there is a constant 8 independent of the mesh size h such that

@, v-vh

—— >5>0. 2.20
a'eQ ynexn | VPGP | P (2.20)

For examples of such compatible spaces see e.g., [23] and [19].

Definition 2.2 Let V and V" denote respectively the divergence free subspaces of X and X":

V:={veX:(q,V-v)=0,Yqge Q},

V= (e XM (" v-vh) = 0,vg" e QM.
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Although typically VP C V, it is known that under the discrete inf-sup condition (2.20),
functions in V are well approximated by onesin V", [19].

We consider X" and WK to be spaces of continuous piecewise polynomials of degreer and Q"
is the space of continuous piecewise polynomials of degreer — 1. We also make the standard
assumptions that the spaces X", Q" and WK satisfy the following approximation properties for

agiveninteger 1 < s<r:

inf

it [0 = VOl + P9 = V)l bilp = o'} < Ch™H(1utlsea + WPl (222)
h >

Jnf T = S < KTl (2.22)
for (u, p,T) € (X N HS(Q), Q N HY(Q), W N H3(Q)).
We also use the fact that L2 orthogonal projections of LM and MK satisfy
IG-P,Gll<CuGls, u=H.K 1<s<r (2.23)
for G € (L2(Q) N HY(Q)) .
We define the following weighted norms.

Definition 2.3 For u € X, T € W, the weighted norms of functionsu : Q; - R, T: Q - R
are defined by

Uz, = alul®+blIVull® + a1 [i(I - Pu)Vull?

TG, = allTlI?+bIVTIZ +ezll(l - Pk)VTI

where a,b > 0 are constants and a1, a are stabilizing parameters.

From now on, we denote min(k+, ks) as kmin and max(k+, ks) aS kmax for the sake of simplicity.

Lemma 2.4 The bilinear forms Ag(-,-), A1(:, ) are continuous and coercive with respect to

corresponding weighted norms. That is, for u,v € X, T, S € W, we have

Ao(u,v) < ullipr IVIlLpr

Ao(u,u) > ullcpy e

AT, S) < Tl sy ISk
2

AT, T) > ||T||CKMH’% .
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Proof. We give the proof of continuity and coercivity of Ag now. The results for A; follows
analogously. Using Cauchy-Schwarz inequality, addition of some extra terms and Definition

2.3, one obtains the continuity relation for Ag asfollows.

Ao (u,v) < PrIVUllIVVI + ax I(1 = Pr)Vullli(1 = Pr)VV]|
< (Ilull + VPr(Ivull + vaz It = Pu)Vull) (VI + VPrIIVvi + var li(l - Pr)vvil)

< ullepr IVIl2pr -
For coercivity, making use of Poincaré€'s inequality gives
2 2_Pr 2 Pr 2 2
Ao (u,u) = PriVUll® + ax i1 = Pr)Vull® = S IVUll® + - [IVUll" + a1 [I(1 = Pr)Vul
Pr
> CPr[lulf® + = IVUll® + a1 (1 = Pu)Vull* = lullcp &
which completes the proof. O

Throughout this chapter, the constant C is generic constant which depends on the domain Q

and independent from h, k, H, K, a1 and @, unless stated otherwise.

We now emphasize on the trilinear forms defined by (2.5)-(2.6). In the continuous case, the
standard form of the convective term and skew-symmetric form of trilinear form are identical
if V.u = 0andif uvanishes on the boundary. Since standard convective terms are not
divergence free on the finite element spaces, we use the modified ones, [19]. The following
important properties of trilinear forms could be obtained by making use of integration by

parts.
co(u,v,w) = —co(u,w,Vv), ci(u,T,S)=-c1(u,S,T)
and
co(u,v,v) =0, ¢1(u, T, T)=0 (2.29)

foralu,v,we X T,SeW

Lemma25 Let Q c RY withd = 2,3. The skew-symmetric trilinear forms then satisfy the
following estimation with finite constants C;(Q)(i = 1, 2, 3, 4).

IA

Co(U, v, W) CallVull Vv Vw]] (2.25)

c1(u,T,S)

IA

CalVullIVTIHIVS]] (2.26)
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for all u,v,we Xand T, S € W. Furthermore, if d=3 we have

IA

co(U, v, W) Callull?[[Vull*?| Vv [[Vw]| (2.27)

c1i(u, T,S) < CallulM2vulM2 v Ivs| (2.28)

A

forall u,v,we XandT,S € W.

Proof. For the first part, using Holder’s inequality we have
Co(u, v, W) < Callulla IV VI [Iwll4
and thus the the result is obtained by using (2.17). For the second part, we use the relation
Co(u, v,w) < Cllully/2 [IVIly Iwllg (2.29)
which isgiven in [67]. Aninterpolation inequality implies
Iully /2 < ClUIM2 [[vul*/2. (2:30)

The final result is obtained through combining (2.29) and (2.30) and the use of Poincar€'s
inequality. Theresults for c1(u, T, S) are obtained analogously. O

The following well-known theorems are useful for the proof of existence of solution. We

present them here without proofs.

Theorem 2.6 (Lax-Milgram) Given a Hilbert space X with its norm ||-||x, its dual X and the

duality pairing < -, - >, consider the problem
a(uv)=<f,v> VveX
in which a(u, v) isa bilinear form defined on X x X and f € X'.

Suppose that, the bilinear form a is continuous and coercive on X with finite positive constants
C,p,i.e,

i) fau,v) | < C(Q) [lullx IVl

i) a(u,u) > Bl

for all u,v € X. Then the problem, a(u,v) =< f,v> Vv e X, hasaunique solution uin X.
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Theorem 2.7 (Leray-Schauder fixed point theorem) For a Hilbert space Y, let¢ : Y — Y be

a continuous and compact mapping such that the set
{yeY:y=2a¢(y) forsomead e ]0,1]}

is bounded. Then ¢ has a fixed point.

Now, we aso define the finite constant Ny, which used throughout the thesis frequently:

Nh = sup {eo(u™, v, w") : VW] = [Vu"l] = VW] = 1u" v, w" e V).

2.2 Existence and uniqueness results of discrete problem

Throughout this section, we consider the existence, uniqueness and stability properties of the
discrete projection-based natural convection problem. These results without extra stabiliza-
tion terms of continuous natural convection problem have been established in [11]. Using
Lemma 2.4, similar results for continuous problem with stabilization can be established in
the same way. For completeness, we only state and prove the existence and uniqueness of the

discrete problem.
Theorem 2.8 (Existence) The problem (2.13)-(2.14) has at least one solution.

Proof. The proof consists of applying Lax-Milgram Theorem and L eray-Schauder Princi-
ple. Lax-Milgram Theorem guarantees the existence and uniqueness of T* in the solution of
(2.14). Note that the approximate temperature T* depends on the velocity field u". Thus we
may define amapping F: VI — Wk by F* (uh) = T,

Now, we show that there is at least one u" € V" satisfying,
Ao(U" VM + cou", uf, v = Pr Ra d(Tk, v (2.31)

for al v € VM. From Lemma 2.4, Ag(u", v") is a continuous elliptic bilinear form on V" x V"
and
| = co(u, u", V") + Pr Rad(F™(uM)| < (CIIVu"|? + Pr RallF™(uM)f) [1vv"]|

for al v € V. Thus, we may define amapping G" : VM — V" by
Ao(G" (u") V") = —co(u™, u", v + Pr Ra d(F™ (u"), v").
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Note that u" is a solution of (2.31) if it isa solution of
G"(u") = u". (2.32)

Thus, it suffices to show that there exists at |east one solution to the fixed point problem (2.32).
L eray-Schauder Principle guarantees the existence of afixed point under two conditions: (i)
G" should be completely continuous (ii) there exists # > 0 such that for every 1 € [0, 1] and
vl e VI with

AGNVM) = V", (2.33)
v should satisfy ||V < 6.

Since V" is finite dimensional, G is continuous and compact and thus completely continu-
ous. This proves part (i). To prove the second condition, we consider only A € (0, 1] with

AGN(V") = VM. Then, we have
A AV V) = —co(v, v, 1) + Pr Ra d(F™ (V") V)
and
APV + A alI(1 = Pr) VY2 < Pr RallVE ™R (W)[IVVM < Pr Raxqlyli-1l V.

Hence

MVl < ARaw; i yll-1
which completes the proof. O
Before considering the unigqueness issue, we present some stability results.

Lemma 2.9 (Sability of the velocity, temperature and pressure) The finite element approxi-

mation of (2.13) - (2.14) is stable in the following sense:

() kminllVTHIZ + 2a2ll(1 = P)VTHIP < i 12,
(if) Priivu"|? + 2a4]l(1 — Pw)Vu"|[? < PrRa?TX|2,,
(iii) PriIvun|? + 2a4]l(1 — Pr)Vu"|? < Pr Ra’x, 2 Iyl

(V) 1P"l < CB Yk lIyll-1 (Pr Ra+ VPrarRa+ RNk [yll-1)-
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Proof. To prove (i), we set SK = TK in (2.14) and apply the Young's inequality. For (i), we
set u" = v in (2.13) and use asimilar argument asin (i). Combination of the parts (i) and (ii)

gives (iii).
To prove part (iv), consider the equation (2.13) in X"

(P, V- V) = Ag(u, V") + co(u™, uP, V) - Pr Ra d(T¥, V™).
Cauchy-Schwarz inequality and (3.6) yield

(P, V-V < PV + all( = PR)VUMIE = P)VVL+ NRlIVUP)iZ vt

+Pr Ral[TX|I_1/IVVI.

Making use of the stability bounds for the velocity and temperature gives,

_ Pra/l _
< PrRax i lIyll-1 + TRaKm:iLn

-2
min

(ph’ V : Vh)

e %, + Pr Rax i [yll-1.

lIyll-1 + NnRa?«

Taking supremum over v € X" and using the inf sup condition (2.20) yield the desired result.

O

Corollary 2.10 Existence and uniqueness of p" is guaranteed by part (iv) of Lemma 2.9 and
the inf-sup condition (2.20), [19].

We are now in a position to prove the global uniqueness condition of the discrete solution,
which is the same as with the continuous case in [11]. First, by using the solution operator
Fk in Theorem 3.5, we define the following constant:

d(Fhk(Uh) _ Fhk(Vh), uh _ Vh)
IV(uh - vh)|2

Mk = sup{ VL RVANTLRVANC Vh}. (2.34)

Theorem 2.11 Suppose Ny||[Vu"|| + Pr RaMp < Pr . Then, u" and F™(u") = TX are unique

solutions.

Proof. Let u",w" € V" and u" # w" be two solutions. Writing the equation (2.13) for u" and
w", and subtracting them give
Ao —wh VM = oW, wh, v — co(u, u, v + Pr Rad(F™(uM) - FMw"), W3.35)
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for al vM e VM. Setting v" = uM — wh in (2.35), using Cauchy-Schwarz inequality, adding and
subtracting terms, using (2.24) and (2.34) lead usto

Pr([V(U" w2 +a1ll(1 - Prp) V(U =wW")|? < NolIV(u—w")[12[Vul|+Pr Ral[v(u—w")|?Mp.
So,
(Pr — (NlIVU"ll + Pr RaMpg)) [V (u" = w")I? + @all(1 = Pr)V(u" - w")|* < 0

Since (Nh||Vul|| + Pr RaMpy) < Pr, we have a contradiction. Therefore, u" = v,

Remark 2.12 If one uses the results of Lemma 2.9, global uniqueness condition, Np||Vu"|| +
Pr RaMp, < Pr can be reformulated as Rax_ - [|yll-1(Nh + Pr Cox 1) < Pr in terms problem

data.

Furthermore, global uniqueness condition of the discrete problem ensures u" to be a fixed

point of a contractive map in V", [44].

2.3 Apriorierror estimation

This section states a priori error estimation for the velocity and temperature. Before giving the
main theorem, we define so-called modified Siokes projection operators. Lemma 2.4, hence
Lax-Milgram theorem guarantees the existence of such projection operators for both velocity
and temperature. When we split the errors into approximation terms and a finite element
remainder for u and T, the use of such operators simplifies the approximation terms and so
the error estimations. We first state the stability of these projections and give the related error

bounds.

Definition 2.13 (Modified Stokes projections for the velocity and temperature) The opera-
tor of the modified Stokes projection for the velocity and pressure, Ps, is defined by; Ps :

(X, Q) —» (X", Q", Ps(u, p) = (@, p) where

Ao(u = U, v") + b(", p - )
b(u -0, q"

I I
o o
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for all (v, g") € (X", Q"). Inthe discretely divergence free space V' and in the pressure space

Q", this definition reduces to
Ao(u—@,v") +b(v", p-q") = 0 (2.36)

for all v e V. The modified Stokes projection operator for the temperature, P, is defined
by Pr : W — WK, P1(T) = T where

A(T-T,8% = 0 (2.37)

for all Sk e WK,

Lemma 2.14 (Sability of modified Stokes projections) The modified Stokes projections de-
fined by (2.36) and (2.37) are stable in the following sense:

PriIVal2 + agli(l = Pp)VaI? < C(PrlVull? + aall(l = Py)Vull? + Prijp - %)

(2.38)
2
CEM=X) VT2 4 agll(1 — P)VTIR). (2.39)

min

kninl VT 12 + a2ll(l = Pe)VT1?

IA

Proof. For the proof of (2.38), first set v = {i in (3.47) and use Cauchy-Schwarz inequality:

Prival? + aall(l = PR)VAIP < PriVulllvall + eall(l - Pr)Vullll(l — Pa)Va)I

+lp - gV - Tll.

Young's inequality and combining terms give the result.

The stability of the modified Stokes projection of temperature is established by writing S¥ = T

in (2.37) and using similar arguments asin the first part.

The next lemma states the error in those projection operators.
Lemma 2.15 (Error in modified Stokes projections) Suppose the discrete inf-sup condition
(2.20) holds. Then (@i, T) exists uniquely in (X", Q", WK) and satisfies
PrIIV(u - D) + (1 = Pu)V(u — 8)I* < C(inf IV(u - )|
+aq inf ||(1 = Pa)V(u—0)I> + Pr~t inf |Ip—=q"I?), (2.40)
fexh thQh
kinll V(T = I+ a2l = POV(T = DI < Cliakin Inf V(T - T
€

7

+ao inf ||(I = P)V(T = T)IP). (2.41)
TeWk
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Proof. To prove (2.40), let e = u — {i and decompose the error e = 5 — ¢", where p = u —

¢ = i — 0. Here (i isthe approximation of u in V". Thus (2.36) reads as

Pr(Ve", W) + a1((l = Pu)Ve", (I — Py)VV")

= Pr(V, W") + a1((l = Pu)Va. (I = Pu)VW") + (p— o', V.v") (242)

Setting v = ¢" in (2.42) and applying Cauchy-Schwarz and Young's inequalities direct us to
Pr -

ZIV8"IP + (1 = Pu)V9"I> < CPHIAIP + S = Pu)ValP + Prtip - o). (249

Since { is an approximation of u in V", we can take infimum over V" in (2.43). Recall that
under the discrete inf-sup condition (2.20) and V - u = 0, the infimum can be replaced by X",
[19]. The stated error estimate now follows from the triangle inequality.

Toprove (2.41), defineT-T = &= (T-T)—(T -T) = y—& where T approximates T in WK.
Asin the first part, if one sets SK = &K and uses Cauchy-Schwarz and Young's inequalities,

the following estimation is obtained:

kiinllVEXIIZ + a2ll(l = Pe)VE? < Creaekimn IVXIZ + aall(l = Pi) V2.

Taking infimum over WK and applying the triangle inequality complete the proof. O

We now give our main theorems. Since the equations are coupled in (2.13)-(2.14), the error

estimations are aso coupled. Now we first state the error estimation for T — TX in terms of

the error inu — uM.

Theorem 2.16 Theerror for T — TK satisfies

min -~

Kininll V(T = T2 + a2ll(l = Pr)V(T = TP < Clirs inf IVul?V(T = T)II?
Te

_ 2
+a2ll(l = P)VTIP) + Caii I, [V u — uM|

Proof. Making use of (2.8) and (2.14) gives the error eguation:
A8 S") + e1(u, T, S — e (U, T 8% = ao((1 - PVT, (1 - PVSY)  (244)

for all SK e WK where = T — TX. Decompose the error as an approximation term and afinite

element remainder: & = (T —T) — (TK-T) = y — &k Here, T denotes the modified Stokes
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projection of T defined by (2.39). Now, set SK = &K into the error equation (2.44). With a

rearrangement of terms, we obtain
ALER, £ < fen(u, T, 5 — co(u, TH &9 + laa((l - PR)VT. (I = P)VES).  (2.45)

Note that Ai(y, &) = 0 due to the definition of the modified Stokes projection. Now, let us
bound each term on the right hand side of (2.45):

lca(u, T, &) = co(u, T, &%) = 1ea(u, v, &) = cr(u — ul, TK &9
K
< C VUV ll? + "‘”an 11 + CokanlIV(u — UMV T2,

ja2((1 = P)VT, (I = Px)VE) < 7”(! ~ PRVTIP + %n(l — P)VEP.
Thus, bounding the terms as shown above for (2.45) resultsin

K (0%)
”"”nvg 1>+ —= U Pk)VEN? < Ci L IVUI[VxII? + Cokoib IV (u — uM)|2|vTH)2

a
#5710 = POVTI?

Combination of terms and application of the triangle inequality yield the stated error estima-
tion. O

The error estimation for the velocity is proved next. This error estimation uses Theorem 2.16.

Theorem 2.17 Under the condition Rax-1 [lyll-1(Nn + 3C2Pr Rax_3 [lyl2,) < Pr, the error

satisfies

Priiv(u — uMI? + a4li(l - Pr)V(u - uM/?

< C{Ml [ inf [[V(u - Q)12 + Prtay inf ||(I = Py)V(u - 0)|> + Pr=2 inf ||p- qh||2]
iexh iexh gheQn

K—?n |nf (T - IZ + «H

+M2

min

az inf |I(1 = P)V(T — f)nz]
TeWwk

+aq|(l = Pp)Vull? + Pr Ra%kL all(1 — PK)VT||2}
where C, isasin (2.26) and M1 and M, are also constants which are defined below explicitly:

My = C[Pr-tk;2 Ra?lyl2, + Pr RaZkqinlvllZ, |

2
4Kmax 12
PrRa® X 12,

min

My, =C
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Proof. The use of (2.8) and (2.13) results with the error equation:

Ao(e. V") + co(u, u, V") — co(u, u, V) + bW, p - o)
= Pr Ra d(@& V") + a1((I = Py)Vu, (I — Py)VV") (2.46)

foral (v, d") e (V",Q" wheree=u—-uPand&= T - TK. Splittheerrorsase = 5 — ¢"
wherep=(Uu-10), ¢"=@uM-0)andé&=y-&wheey=(T-T), &= (Tk-T). Note
that {i and T denote the modified Stokes projections of u and T, respectively. Now, writing
vh=¢" in (2.46) yidds;

AO(¢h’ ¢h) = AO(”’ ¢h) + b(¢h’ p- qh) + CO(U’ u, ¢h) - CO(uh’ uh’ ¢h)

+a1((I = Py)Vu, (I = Py)Ve") + Pr Ra d(& ¢"). (2.47)

Note that, Ag(17, ¢") + b(¢", p — ") = 0 by the definition of the modified Stokes projection.
To bound the terms on the right hand side of (2.47), we first consider the nonlinear terms.

Adding, subtracting terms and observing the skew-symmetry of convective term yield
Ico(u, u, ") — co(u”, u, $")| = Ico(u, 7, ¢") + co(n, U", ") — co(g", u", ¢").
Inequalities Cauchy-Schwarz, (2.25) and Young's give

_ Pr
Ico(u, 3, ¢™)| < CPrVull|IVal? + Enw“nz,
_ Pr
Ico(np, u", @) < CPr=2va|2||Vul|? + Enw“nz,

Ico(@", u", g™ < NnlIVg"2IVun.
Similarly, consistency term and the last term on the right hand side of (2.47) are bounded with
a a
l1((1 = PH)VUL (1 = Pr) V8" < 11 = Pr)Vull? + (1 = Pr) V"I
and
K by _ 3 2 k2 . PTiohi2

IPrRad(T-T5¢") < §Pr Ra“|T-T ||_1 + €||V¢ <.

Combining all the terms involving ¢" on the left hand side gives,

Pr 103
(7 - Nh||Vu“||)||V¢“||2 + 71||(I — Pr)Ve"|I?

3
< CrIval* (IVulf? + IVU"?) + aall(1 — Pr)VulP) + SPr Ra?IT — T2 (2.48)
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Clearly, the next step we should follow isto find abound for the term || T — Tkllﬁl. In order to
do that, we write u — u" = 57 — ¢" in the statement of Theorem 2.16 and plug in estimation in
(2.48). Rearranging the termsyields

Pr 3 i
— = NnllVu"ll = SPr Re*Cliinlyil? 1) V"7 + (1 = Pr) V"I
< C(PrY|vyll? (||Vu||2 +IVu"lI) + aall(l - PH)Vun2 + Pr R I, IVal?

+Pr Ra2c 2 [IVUll(IVxlI? + Pr Ra?k it aall(l — Pe)VTI). (2.49)

Let us consider the coefficient of the term ||V¢h||2. Making use of the uniqueness bound and

the assumption of the theorem, we have

Pr Pr 3 2
7 5 NhRax; n||7|| 1- EPF Ra’C ||7|| (2.50)

Plugging (2.50) into (2.49) and writing the stability bounds for the terms we have,

PrIVe"|2 + agll(l — Pr)Ve"? < C(Pr-1k 2 Rallyl*,[IVal?
+Pr Ra2ih IVIPIVlI% + Pr R i llylZ 1 [IVxI? + aall(l = Pr)Vull?

+Pr Ra?k L aoll(1 = Pe)VTI?). (2.51)

Substituting the error bounds of Lemma 2.15 into (2.51) and applying the triangle inequality
complete the proof. O

One might see also that the addition of the extra term in (2.13)-(2.14) does not degrade the

order of convergence. To see this, we give the following Remark.

Remark 2.18 If we assumetheregularity assumptions, (u, p, T) € (XnHS*(Q), QNH3(Q), Wn
HS*1(Q)) and the use of the estimations (2.21), (2.22) and (2.23) yield

PriIV(u—u"|? + all(l = Pr)V(u - uMi? < My((h®u, (1 + Prtag) + Pro2h?|p2)

+ Mok KT, (ki + @2)) + arHZUZ, | + 02K [T, ). (2.52)

min
Here h, k are given and by equilibrating the orders of convergence, appropriate values for the
mesh scales H, K and parameters a1, a» are chosen. That is, the error is optimal for a1H?S =
h?s and a,K?S = k?s. For instance, let us consider the case for s = 2 and use Taylor-Hood

finite element pairs, satisfying the inf-sup condition (2.20), which are given below explicitly
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along with the choices of LH = VX" and MK = ywK :

XN = (veCYQ):via € Pa(A), VA € FN),
WK = (SeCY%Q): Sla € Pa(A), VA € GY,
Q" = {(veCY%Q): Vi e Pi(A), YA € FN),
LH = (" e L2(Q) : I1M)s € P1(A), VA € 71,

MK = (mf e L2(Q) : mN|s € P1(A), VA € GX),
If we make the same assumptions as in Theorem 2.17 and consider (2.52), one can imply that
along with the choices of (a1, H) = (W2, h'/?) the error
IV(u - u")ll = O + K)
is optimal for the velocity.

If we plug the results obtained for velocity into Theorem 2.16 and carry out similar computa-
tions, we have

IV(T = TX)| = O + K2).

Smilarly, for the choices of (a2, K) = (k?, k%/?) we have the optimal error for the temperature.

2.4 Error estimation for pressure

This section deal's with the estimation of the error for the discrete pressure in the L2 norm.
Theorem 2.19 (Error estimate for pressure) Suppose that the assumptions of the Theorem
2.17 hold. Thenthe error p — p" satisfies

lIp = Pl < C((Pr + IVUIDIV(u = u"Il + IV (u = uMI? + ali(l = Pr)V(u — u")]|

+ inf [Ip— "l + Pr Rall(T = T)ll-1 + aall(l — Pr)Vull).
gheQn
Proof. To prove this, we consider (2.46). Let p— p" = (p - p) — (p" - f), where pisan
approximation of the pressure in Q". (2.46) reads as;

bv™, p = B) = Ao(e V") + (Co(u, u, V") — co(u™, u™, V) + bW, p — ) — Pr Ra d(& v")

—a1((1 = Py)Vu, (I = Py)VW").
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We first consider here the nonlinear terms. Adding and subtracting terms and using (2.25)
yield

Ico(u, u, V") = co(u", u", V)] = | - co(e, & V") + co(e, U, V") + co(u, & V")
< C(IvVel| + IVul)lIVell vVl

Bounds for the other terms are obtained in a similar manner as in the estimation of the error

IV(u — uM)||. Hence

Ib(v", p" - )| < CIVV"[I(Pr([Vel| + ell(l = Py)Vel| + (IVe] + [IVul)lIVel

+lp = Pl + Pr Ral|T = TX|I_1 + all(I = Pr)Vull) (2.53)
Notice that (2.20) implies,

(P" = B,V -V > gIwlip" - i

and using this relation yields,
L bV ph-p
Ip— Pl < llp—fll+ 11— p"l < llp— Pl + B8 1W- (2.54)
Substituting (2.53) into (2.54) taking infimum over Q" give us the desired result. O

Remark 2.20 Making use of Taylor-Hood elements asin Remark 2.18 with the choices (a1, H) =
(h?, h/2) and (a2, K) = (k?, k}/?) and using the approximation results (2.21)-(2.22) for the ve-

locity and temperature errors, we have
Ip— Pl = O(F* + k%)

which isthe optimal error.

2.5 Numerical Studies

In this section, numerical studies are given in order to show the effectiveness of the method
and validate the obtained theoretical results. The projection-based stabilization method for
steady natural convection problem has been assessed on two numerical examples in two di-
mensions. The first example isawell-known test case for the natural convection codes which
is called buoyancy-driven cavity problem. For the other test case, we consider a known par-

ticular analytical solution in order to check the error rates.
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All computations are carried out by using the software FreeFem + + [24]. In both examples,
we use conforming Taylor-Hood finite element pairs. It iswell known that these pairs fullfill
the inf-sup condition (2.20) (see [23]). Finite element spaces are given in Remark 2.18 and
Remark 2.20 with the algorithmic choices for the size of the meshes and the parameters:
H ~ h'2 and K ~ kY2, a1 = h?, a» = k?. Since we solve the problem on the same mesh, we

leth=kand H = K.

To handle the nonlinearity of the system, the Newton method of [23] is used. The algorithm
consists of starting with an initial guess (U@, T(Q) and then generate the sequence of iterates

(UM e XM pM e Q" and T™M e WK) for m >1 by solving the sequence of linear systems

Pr ag(u™, v + co(u™D, u™ v + o™, u™D vy + bv", p™) = Pr Rad(T™, v")
+couM™D um™D vy — o ((1 = PR)VU™D, (1 - PL)VVD)

bu™,g" =0

ar (T, S%) + ¢y (™, TMD Sk 1 ¢ (u™D, T 5Ky = (3, S4) + ¢y (U™, TMD Sk

~ap((1 = Py)VT™D (1 - Py)vSH)

for al (v, g, SX) e (XM, Q", WK).
This schemeis known to be locally convergent at least either or both T and u - n are specified

a every point of the boundary.

2.5.1 Buoyancy-Driven Cavity Problem

The problem of buoyancy-driven cavity is used as a suitable benchmark for testing the natural
convection codes in the literature. The simplicity of geometry and clear boundary conditions
make this problem attractive. The domain consists of asquare cavity with differentially heated
vertical walls where right and left walls are kept at Tc and Ty, respectively, with Ty > Tc.
The remaining walls are insulated and there is no heat transfer through them. The bound-
ary conditions are no-slip boundary conditions for the velocity at al four walls (u = 0) and
Dirichlet boundary conditions for the temperature at vertical walls. As the horizontal walls
are adiabatic, we employ % = O here. Figure 2.2 showsthe physical domain of the buoyancy-
driven cavity flow problem. Inthetest case, wetakexk =1,y =0, Tc = 0and Ty = 1. While
we consider the air as the cavity filling fluid in our model, we take the fixed value Pr = 0.71.

We have performed our computations for Rayleigh number varying from 103 to 10°. The
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performance of the projection-based stabilization is compared with the famous benchmark
solutions of de Vahl Davis [16] and some other authors such as Massarotti et a. [51], Man-
zari [50], and the more recent study of Wan et al. [70]. From these benchmark solutions, [16]
used second-order central approximations to solve natural convection problem in a square
cavity. [51] developed a semi-implicit form of the characteristic-based split scheme and [50]
employed an explicit finite element algorithm. Recently, [70] used discrete singular corvo-
lution for the solution of the problem. We aso include the results for the classical Galerkin
Finite Element Method (GFEM) where we keep the same mesh sizes for the proposed method
and GFEM. Numerical simulations are obtained for three uniform grids of 11 x 11,21 x 21
and 32 x 32.

u=0 Insulated
L .

u=0 u=0

Tu=1

\ N \

u=0 Insulated

Figure 2.2: The physica domain with its boundary conditions

We start our illustrations by giving peak values of vertical velocity at y = 0.5 and horizontal
velocity at x = 0.5. Table 2.1 and Table 2.2 summarize the maximum vertical velocity values
at mid-height and at mid-width for different Rayleigh numbers. For quantitative assessment,
we aso include those velacity values obtained by [16], [51], [50] and [70].

Table 2.1: Comparison of maximum vertical velocity at y = 0.5 with mesh size used in
computation.

Ra GFEM Present Study Ref. [16] Ref. [51] Ref. [50] Ref. [70]

10° | 16.41(11x11) | 19.91(11x11) | 19.51(41x41) | 19.63(71x71) | 19.90(71x71) | 19.79(101x101)
105 | 51.22(21x21) | 70.60(21x21) | 68.22(81x81) | 68.85(71x71) | 70.00(71x71) | 70.63(101x101)
10° | 201.20(32x32) | 228.12(32x32) | 216.75(81x81) | 221.60(71x71) | 228.00(71x71) | 227.11(101x101)
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As can be observed, the results of our computations are in an excellent agreement with the

benchmark data even at coarser grid. We aso see that as the Rayleigh number increases,

GFEM vyields results which are not so close to the benchmark solutions.

Table 2.2: Comparison of maximum horizontal velocity at x = 0.5 with mesh size used in

computation.
Ra GFEM Present Study Ref. [16] Ref. [50] Ref. [70]
10" | 15.70(11x11) | 15.90 (11x11) | 16.18(41x41) | 16.10(71x71) | 16.10(101x101)
10° | 41.00(21x21) | 33.51(21x21) | 34.81(81x81) | 34.00(71x71) | 34.00(101x101)
10° | 80.25(32x32) | 65.52(32x32) | 65.33(81x81) | 65.40(71x71) | 65.40(101x101)

We aso present the vertical velocity distribution at the mid-height and horizontal velocity
distribution at the mid-width in Figure 2.3, respectively, which are very popular graphical
illustrations in the study of buoyancy-driven cavity type tests. These profiles are also com-
parable with the similar ones in [70]. It is obvious that as Rayleigh numbers increases, the
differences in the profiles presented in Figure 2.3 and Figure 2.4 are getting larger. For higher
Rayleigh number circulation gets more pronounced but with decreasing viscous effects, the
flow becomes more and more restricted to the walls for higher velocity gradients established

near the walls.

0 025 05 075 1

x-coord.

Figure 2.3: Variation of vertical velocity at mid-height for varying Rayleigh numbers.

A very important property of the natural convection flows, especially for engineers, istherate
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Horizontal Velocity

Figure 2.4: Variation of horizontal velocity at mid-width for varying Rayleigh numbers.

of heat transfer along the vertical walls of the cavity. The dimensionless parameter called
Nusselt number stands for this quantity. The local Nusselt number can be calculated as

oT
N = +—
Uocal = £ X

The negative sign means heat transfer at the hot wall and the positive sign means heat transfer
at the cold wall. The local Nusselt number at the cavity hot wall is used for comparison
with benchmark problems in the literature frequently. Asin the velocity components case,
we calculate the average Nusselt numbers with GFEM and our method. The benchmark data
results are aso included to compare the average Nusselt numbers values with the presented
study. Theresults are given in Table 2.3.

Table 2.3: Comparison of average Nusselt number on the vertical boundary of the cavity at
x = 0 with mesh size used in computation.

Ra | GFEM Present Study | Ref. [16] Ref. [50] Ref. [51] Ref. [70]

10° | 2.40(11x11) | 2.15 (11x11) | 2.24(41x41) | 2.08(71x71) | 2.24(71x71) | 2.25(101x101)
105 | 5.11(21x21) | 4.35(21x21) | 4.52(81x81) | 4.30(71x71) | 4.52(71x71) | 4.59(101x101)
10° | 6.00(32x32) | 8.83(32x32) | 8.92(81x81) | 8.74(71x71) | 8.82(71x71) | 8.97(101x101)

Aswe can understand from the Table 2.3, there is avery good agreement with the benchmark

solutions and the present study, which can still capture reasonable results for rather coarser
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grid. The variation of the Nusselt number along the hot wall and cold wall of the cavity
for different Rayleigh numbers are depicted in Figure 2.5 and Figure 2.6 respectively. These
profiles are also look reasonable when compared with those reported in [16], [50], [51] and
[70]. We can aso observe from Figure 2.5 and Figure 2.6 that, largest Nusselt number is
obtained at the range of highest temperature gradients naturally. That is, these are the ranges
where the coolest fluid is first exposed to the hot surface or the warmest fluid first hits to the

cold surface. Also high Ra causes higher Nu or increased hest transfer as expected.

0 5 10 15 20
Nusselt Number

Figure 2.5: Variation of local Nusselt number at cavity hot wall.

Characters of the flow patterns for increasing Rayleigh numbers are seen very often in the
study of natural convection problems. Diagrams showing the streamlines and temperature
isolines are very popular among the convective heat transport illustrations. We present these
patterns in the Figure 2.7. It is clear from the streamline patterns that, as Rayleigh number
increases circular vortex at the cavity center begin to deform into an ellipse and then break up
into two vortices tending to approach to the corners differentially heated sides of the cavity. So
we can conclude that, the flow is swifter as the thermal convection is concentrated. Through
the increase in Rayleigh number, parallel behavior of the temperature isolines is distorted and
these lines seem to have a flat behavior in the central part of the region. Near the sides of

the cavity, isolines tend to be vertical only. With Ra = 10°, the temperature slopes at the
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Figure 2.6: Variation of local Nusselt number at cavity cold wall.

corners of the differentially heated sides are more immersed then the cases of lower Rayleigh
number. We aso note that these graphics are also perfectly comparable with the ones given

in the investigations of [16], [51], [50] and [7Q].

25.2 Numerical Convergence Study

An assessment of the convergence of the numerical simulation is presented in this subsection.
We consider the problem (2.1) in the domain Q = [-1, 1] x [-1, 1]. The forcing function y
and boundary values of the temperature are given so that the prescribed solution of the system

is given by:

u=((xz—l)zy(yz—1),—(x2—1)x(y2—1)2)
p=%(y4—y6+y2—1) (P - 1)+ oy S (Y - 1)
(4y3 8y)x3+ (y6 V- y2+1)x +(10y 4y3)
3
400(2y3 3y5+y)xg+ﬁ>(3y5 2= y) ¥+ 55 100(y3 y5 )

1
25(3y2 )X3+ﬁ)(3y5 2y% - )x +—(3y“ 12y2+8)
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Figure 2.7: Streamlines (upper left to right) and isotherms (lower l€ft to right) for with Ra =
10%, 10%, 10°, 108, respectively

In (2.1), nonzero Neumann boundary condition for T onI'g and Dirichlet boundary condition
for u are chosen so that (u, p, T) is the solution of the system. Note that, using the non-zero
Neumann boundary condition for the variable T affect the stability bounds given in Lemma
2.9 and hence the main theorems. Although this replacement changes some terms and con-
stants in the error analysis, it does not degrade the order of errors given in Remark 2.18 and

Remark 2.20.

We use the same settings as in Remark 2.18 and Remark 2.20 with Pr = 1, Ra = 100 and
k = 1. We compute the errors between exact solution and computed numerical solution for the
variables u, p and T. Then, we compare error rates with the theoretical expectations. Table
2.4 presents the corresponding total degree of freedomsfor u, T and p, errors and convergence
rates for different mesh sizes. We first compute the errors for the coarsest mesh of h = 1/4

and then refine the mesh to obtain finer ones. The theory predicts the error ratesin Table 2.4,

Table 2.4: Total degree of freedoms, numerical errors and convergence rates for each variable.

Mesh #ofdof. | lu-u"l | Rate [ [Vu—u"| | Rate | |[p—p" | Rate | [[V(T —T¥)|| | Rate
h=1/4 374 0.0170 - 0.3712 - 0.3521 - 0.2922
h=1/8 1318 0.0021 2.85 0.0905 2.02 0.0951 1.92 0.0767 1.95
h=1/16 4934 2.434e-04 | 2.92 0.0222 2.01 0.0215 1.94 0.0187 2.02
h=1/32 19078 2.722e-05 | 2.99 0.0054 2.01 0.0054 1.98 0.0042 2.10

O(h) for the L? norm for u, and O(h?) for the L? norm for p and O(h?) in energy norm for
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the temperature. Note that the behavior of the error is exactly as anticipated by the theory.
Thus we can conclude that the projection-based stabilization does not degrade the order of the

errorsfor all variables.

39



CHAPTER 3

DOUBLE-DIFFUSIVE CONVECTION IN POROUSMEDIA

In this section, we consider a projection-based stabilized finite element method for the double-
diffusive convection in porous media modeled by Darcy-Brinkman formulation. Stabilization
idea introduced in Chapter 2 is applied to a new system here. Although this new system of
equations seem similar to one dealt with in previous chapter, the main difference comes from
the dependency to the time and coupling of one more equation, namely the concentration
equation. We present the scheme first and then consider the stability issues. After emphasizing
the existence and uniqueness results of the problem, we pass to the semi-discrete apriori error
analysis. We give a fully discrete scheme for the system and a detailed stability and error
analysis are presented. Asin previous chapter, we perform some numerical tests to measure

the efTectiveness of the method.

Double-diffusion phenomena in a confined porous enclosure is modeled by the non-linear

time dependent Darcy-Brinkman eguations which read in dimensionless form

HU—-2V-Du+Uu-Viu+Dalu+Vp = (BrT+BcC)g in (0,t] xQ,
Viu = 0 in (Ot]xQ,
u = 0 on (0,t]x0Q,
8T +U-VT = AT in (O,t]xQ

C+u-VC = DAC in (0,t"] xQ, (3.2
oT aC
an’ an
ui0,x) = ug, T(O,X)=Ty, C(OXx)=Cpop in Q.

T,C = 0 on I, =0 on Ip,

Here Q be a regular bounded open set in RY with (d = 2,3), 9Q = I't U T'g is a polygonal

boundary, and u, p, T, C denote the velocity, pressure, temperature and concentration fields,
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respectively. The kinematic viscosity isv > 0, the thermal diffusivity y > 0O, the mass diffu-
sivity D¢ > 0, the Darcy number Da, the gravitational acceleration vector is g, the velocity
deformation tensor is Du = (Vu + VuT) /2 and the thermal and solutal expansion coefficients
are B, Bc, respectively. Some important dimensionless parameters which could be seen fre-

guently in relevant publications are the therma Grashof number Grt = QB%ZTHS and the

solutal Grashof number Gre = QB%ZCH:%, the buoyancy ratio N = §$§$ the Prandtl number
Pr = % the Schmidt number Sc = DLC, the Lewis number Le = E—f and the Darcy number
Da = % with given cavity height H, a permeability K, AT and AC are the characteristics

temperature and concentration differences along the enclosure, respectively.

Asin the cases of thermal natural convection in porous and non-porous enclosures, formation
of boundary layers near the boundaries of the enclosure is seen on double-diffusive case too.
In contrast with the thermal case, three kinds of layers are formed. These are thermal, solutal
and hydrodynamic layers and thickness of each layer leads the rate of heat and mass transfer
and the dynamics of the overall flow [54, 58, 68]. The coupling of different boundary layers
and circulating main core inside the enclosure is the fundamental difficulty in solving these
systems analytically. Hence, numerical methods have to be devel oped. The dominance of the
convection and coupling of the variables in the system leads the general behavior of the flow

and approximation of the solution between mentioned boundary layers fails.

3.1 Notation, Mathematical Preliminaries and Semi-Discrete Scheme

In this section, we only give notations and mathematical results which are not given in section
2 of Chapter 2. We define norms or other additional properties here only if they are not defined
before.

Let Y be a Banach space and for 0 < t < oo, the space LP(0,t;Y) consists of all functions

u(0, t) x X for which the norm

L P
IullLeioeyy o= ( 0||u||Y) . pelle),

isfinite and with the usual modification in the definition of this space for p = c. Throughout
this chapter, symbol K stands for generic positive constant and may have different values at
different places, but it does not depend on mesh sizes and other important parameters unless

stated otherwise.
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We consider the following functional vector spaces associated with the boundary conditions

for the variational formulation of (3.1):

X = H3(Qr) fueHY(Q):u=0 on 9Q), Q:={pe LZ(Q):fpdx:O},
Q

W : (SeHYQ):S=0 on Ig}, V¥:={@®eHYQ):®=0 on I}

The variational form of the system (3.1) isas follows: findu : [0,t*] —» X, p : (O,t*] —
QT:[0,t*] > WandC: [0,t*] » ¥ satisfying

(8yu, V) + (2vDu, DV) + co(u, u, V) + (Da~tu,v) — (p, V - v) Bt(gT, V) + Bc(9C, v)

(32)

@V-u) = 0 (33)

T, S) + (U, T.S) + (YVT,VS) = 0 (3.4)
(0C, @) + Co(u, C, @) + (DVC, V) = 0 (35)

fordl (v,q, S, @) € (X, Q, W, ¥). Herethetrilinear skew-symmetric forms of convective terms

are
co(u,v,w) = % fg ((u-V)v-w—(u-V)w-v)dx (3.6)
ca(u,T,S) = % fg ((u-V)TS - (u-V)ST)dx (3.7)
c(U,C @) = % fg ((u-V)C - (u- V)@C)dx. (3.8)

An aternative and useful definition of these forms are also given as follows

co(u,v,w) = fQ((u-V)v«w+%(V-u)v~w)dx 3.9
ca(u,T,S) = fg ((u-V)TS+%(V-u)TS)dx (3.10)
(U, C, @) = fQ ((u-V)Cd)+%(V~u)C(D)dx (3.11)

With the use of integration by parts, one can show cy(u, v,Vv) = Oforal u,v e X, c1(u, S, S) =
Oforal (u,S) e Xx W, and c(u, @, ®) = Ofor al (u,®) € X x V.

We study semi-discretization approach in space first i.e., only the continuous-in-time is con-
sidered. Let 7" be an admissible triangulation of the domain Q and the mesh 7" results from a
coarser mesh ™ by refinement for which H > h. We introduce the conforming finite element

spaces X" ¢ X, Q" c Q,W" c W and ¥" c . We also assume that a pair of finite element
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spaces (X", Q") satisfies the discrete inf-sup condition. Furthermore, we again introduce the

discretely divergence-free subspace of X",

V= (e xM: (", v-v" =0vq" e Q.

The projection-based stabilization method uses the following coarse or large scale spaces. Let
LH, MH, KH are the coarse finite spaces of the deformation tensor, the temperature gradient

and the concentration gradient, respectively, i.e. with

L7 ¢ DX" ¢ L = {lij € [L2(@)]%lij = 15i)
MH c VW' € M := {m € [L2(Q)]%)

KM c v c K = {k € [LA(Q)]9}.

Remark 3.1 In the limit case, the choices, LM = DX", MH = YW and KM = V¥, yield
a standard Galerkin finite element formulation. In addition the choices LH = {0}, M = {0}

and KM = {0} yield an artificial viscosity method.

There are two natural ways to define the coarse finite element spaces. on a coarser grid or
by low order finite elements on the finest grid. For the error analysis, choose L™ to be a
particular subspace for the velocity, namely, LH = DXH, so that it contains the discontinuous

piecewise polynomials on the coarse mesh finite space XH.

L et the relevant L2 orthogonal projection operators for those coarse finite element spaces are
Pl:L—L"
Py M — MH
PS K — KM
By using the same ideas in Chapter 2, the projection-based stabilized method for Darcy-
Brinkman equations with the additional viscosities a1 = a1(h), a2 = a2(h), a3 = a3z(h)
becomes: find u" : [0,t*] — V", T": [0,t"] - W",C": [0,t*] — PP
@u, v + 2vDul, DV + a1 ((1 = PYHYDUM, (I = PYDVY) + co(u”, uP, v + (Da~tul, v
= pr(@T", V") + Bc(gC" V") (3.12)
@, SN + e (U, TN, SM + (VTN VSM + an((l - PLYVTM, (1 - P[,)VS") =0  (3.13)

(BC", ") + co(ul,C", @) + (D VC", VO + as((l - PS)VCY, (I - PS)VaM) = 0 (3.14)
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for al (v, ", SP, ") e (V", Q", W, ¥"). Here a1, a», a3 are non-negative constant functions
and user selected stabilization parameters. Notethat the operators (1-PY), (I-P},) and (1-Pg)
represent small scales or fluctuations of the deformation DuP, the temperature gradient VT

and the concentration gradient VC, respectively.

Convective terms defined via (3.6)-(3.8) satisfy the same properties asin Chapter 2. The only
different term is c(u, C, @) and it is treated exactly as ci(u, T, S). So Lemma 2.5 could be
extended with c,(u, C, @) directly.

We make several common assumptions about the finite element spaces that we will use. We
assume that the finite element spaces X", W" and ¥" rely on quasiuniform triangulations of
Q and contain piecewise continuous polynomials of degree m and the space Q" contains
continuous piecewise polynomials of degree m—1. In addition, the spaces satisfy the following
approximation properties. for agiveninteger 1 < s<m:

ol I =i+ IV = VOl ilp = oY} < Ch**(ullsra + 1P, (3.15)

inf |IT - S| < hY Ty (3.16)
Shewh

inf ||C - @"| < h%*YICllss1 (3.17)
Pheyh
for (u, p, T, C) € (X N HS(Q), Q N H(Q), W N HS*L(Q), ¥ N HSL(Q)).

We choose the coarse finite lement spaces LH = DXH, MH and W™ containing the space of

discontinuous polynomials of degree m— 1 on a coarse mesh.
The L2 orthogonal projections of L™, M and KH satisfy
IIG - P;GH <CH%Gls, =L MK;x=uT,C;1l<s<m (3.18)

for all G € (L2(Q) n H(Q)) . The following lemma is used in the error analysis of the

semi-discrete problem.

Lemma 3.2 Assume that the domain Q has a quasiuniform triangulation and velocity coarse

scale space LM satisfies LM = DXH. Then we have
IPEVe"| < CHYg"| (3.19)

for all p" e V.



Proof. Defining the eliptic projection Py : X — XH for velocity large scales, it is shown in
[32] that P/Dv = D(Pnv) Vv € X. Thuswe have,

IPY V" = ID(PhV)Il.

Assumption on quasiuniform triangulation allows us to use inverse estimates for the finite

element function ¢, so we reach
IP{ V" = ID(Puv)Il < CH Y|P (3.20)
Finally, assuming the L? stability of elliptic projection for functions in V" i.e,, |[Pue"| <

Clig"l, VoM e VM and combining this result with (3.20), the final estimate is obtained. [

Since the velocity deformation tensor is used in this section, we need Korn'sinequality which
states
IVv]] < KI[Dv]| (3.21)

for al v e X with K = K(Q)

Throughout the finite element error analysis of this section, we use the following weighted

norms.

Definition 3.3 For u € X, T € W. C € ¥, the weighted norms of functionsu : Q; — R,
T:Q—->RandC: Q — R aredefined by

2
Uiz, = alul®+bv[Dul®+ e |(1 - PY)Dul

2
ITIZ, = alTI?+blVTI?+az|/(l - PI)VT|

2
ICIZ, = allCl?+blIVCI? +as]|(l - PRVC]|

where a, b, ¢ > 0 are constants and a1, @y, a3 are stabilizing parameters.
We now give the following version of Gronwall’s Lemmawhich is givenin [62].

Lemma 3.4 (Gronwall’s Lemma) Let A be a non-negative function and F; € L1(0,t*) with

fot Fi(s)ds continuous and non decreasing on [0, t*] for i = 1,2, 3. Then
Ol + F1(t) < Fa(t) + Fa(H)A(t) ae in [0,t7]

implies for almost all t € [0, t*]

A(t) + fot F1(9)ds < exp (fot F3(s)ds) (/1(0) + fot Fz(s)ds)
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Proof. We refer [60] for the proof. O

3.2 Semi-Discrete A Priori Error Analysis

This section gives afinite element error analysis for the discrete solutions of (3.12)-(3.14). We
state the stability and then give the main convergence result. Finite element approximation

results follow.

3.21 Stability of the method

We first prove the stability results for discrete solutions of (3.12)-(3.14), i.e., the solutions
uh, Th and C" are bounded a priori by the data of the problem.

Lemma 3.5 (Sability) Let ug € (L2(Q))4, To,Co € L2(Q). Then the solution (u", T",CM") €
(Vh, Wh, ¥ of (3.12)-(3.14) fulfills u" e (L*(0,t*;L?))Y, Du" e (L?(0,t*;L2)Md Th ¢
L0, t*; L?), VTN e (L2(0, t*; L2))¥d, CN e L2(0,t*; L?), VC" € (L2(0, t*; L2))dxd,

Proof. Setting S" = T" in (3.13), ®" = C" in (3.14) and skew-symmetry of ci(-, -,-) and
CZ(" ) ') Imply that

1
§at||T“||2+y||VT"||2+az||(l—F’IA)VT“H2 =0

1
56t||ch||2 + DellVCN? + agli(l - PQ)VCN? = O.

Integrating the above two equations over from (0O, t) witht < t* yield

T w012 + 2DV T o0 12 + 202011 = PIOVT I 0012 < ITol® (322)
IC" w12y + 2IVC Iz 0 12 + 203ll(l = PRIVE 220 12 < IICal. (323

For the velocity equation set v'=u" in (3.12), then we have

1 _
Eatnu“nz + 2/[DuM? + all(1 - P{)Du"? + Da~Hju"?

< Iglleo (BTITMIU + BelIC ")
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Making use of Young's inequality, integration over (0,t) and the stability estimations of T"
and C"in (3.22)-(3.23) yield

hy2 hy 2 u hy2 —1y,,h12
”U ”Loo(o,t,LZ) + 4V||DU ||L2(O,t,L2) + 20’1”(' - PL)]D)U ||L2(0,t,L2) + Da- ”U ||L2(0,t,L2)

< DallgiZ, (B3I oll* + BZIIColl?) + lluoll?,

from which the statement of the result follows. O

Remark 3.6 The continuous solution of (3.1) is stable in the same sense that of discrete case.

The proof of the stability of u, T, C can be established by using the same idea of Lemma 3.5.

For the error analysis, we now state the regularity assumptions:

Vu € L40,t"; LA(Q)), diu € L3(0,t*; HX(Q), VT € L*(0,t; LA(Q)), (3.24)

4T € L20,t"; H™1(Q)), VC € L*(0,t; L3(Q)), 4C € L3(0,t*; H(Q)) (3.25)

Note that the assumptions Vu in (3.24) are natura regularity assumptions for the Navier-
Stokes equations. These assumptions imply that Serrin’s condition is fulfilled. From these
assumptions, the uniqueness is guaranteed, [67], [17]. This type of existence-uniqueness
results are well known for the Navier-Stokes type problems which could be easily adapted to

the uncoupled Navier-Stokes case.

3.2.2 A Priori Error Estimation

In this part, we state and prove main error estimation theorem. The proof contains same

strategy by Rannacher and Heywood [26].

A priori error analysis startsin the usual way by deriving the error equations with the subtrac-
tion of (3.12) from (3.2), (3.13) from (3.4) and (3.14) from (3.5) for al test functions from
VP, WM and W, respectively. Then we obtain

(@e(u = uM), V") + (2D - u"), DV") + a1 ((1 = PYYD(U - u"), (I - PY)DV")
+(Dat(u = uM,v" + co(u, u, v = co", u VM = (p= o, V- V") (3.26)

= Br(O(T = T", V") + Bc(9(C - CM, V") + ax((1 - PY)Du, (1 - P{)DV")
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for al (v, q") € (V", Q"),
@(T =T, 8" + V(T = T, VS + ax((1 - PL)V(T = TN, (I - P},)VS")
ci(u, T,SM — ¢ (UM, T, SM) = ax((1 - PI)VT, (I - PL)VSY) (3.27)
for all S" e Wh and

(3(C = C"), @") + (DcV(C — C"), VO") + a3((I - PR)V(C - C"), (I - PR)vah)
+Co(u, C, ®") — co(u, C", @) = a3((1 - PL)VC, (I - PJ,)VO") (3.28)
for al ®" € Y". We split the error terms in two parts: the approximation errors, Ny 1T, 7C
and the finite element remainders ¢}, ¢! and ¢fX
u-u"=(u-0) - u"-0) =g, - ¢}
T-T"=T-N)-"-T=m-e
C-C"=(-0)-(C"-C) =nc-¢g.
where i € VI, T € WM and € € ¥ are the approximations of u, T and C, respectively,
which fulfill certain interpolation estimations. Revising the error equations according to these
decompositions and writing v = ¢}, S" = ¢! and ®" = ¢f1, respectively, one obtains
1 _
SOGUIE + 1D + aall(l - PP + Dar g
= (0> $0) + (2D, DY) + aa((1 - PY)Day, (1 - PY)DGY) + (Da ™ n, 41)
—aa((1 - PYDU, (I - PHDG) - (p— ", V- ¢0)) — Br(g(T — T"), 1)
~Bc(9(C - C"). 4f) + co(u, u, V) — co(u”, u", V") (3.29)
1
SOIOTIE + YIVSTIP + a2ll(l - PV
= (Oorr. ¢1) + (VT Vo) + a((1 = PV, (1 = P)Veh)
—aa((l = PI)VT, (I = P{)Vel) + c1(u, T,S") — ¢ (u", T, SM) (3.30)
and
1
50621 + DellVagI + asl(l - PR)V4LI
= (Ourc, ¢2) + (DcVne, Vo) + as((I - PY)Vne, (I — PR)Vee)
—a3((l = P{,)VC, (I — PS)VaR) + ca(u, C, 4R) — co(u, C", ) (3.31)
The next step is to estimate the terms on the right hand sides of (3.30), (3.31) and (3.29),

respectively. In the following estimations we basically use Cauchy-Schwarz (or duality pair-

ing), Korn's, Young's and Poincaré€ sinequalities. Then, the termsin the temperature equation
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(3.30) are estimated as follows:

@urr, o) < 10T -1V I < Ky Hlder]I?, + 116”“”?”2
(V. V)l < Ky YIVnr | + %nwﬂnz
(04
l@2((1 = P71 = PR)VD)| < Kazl(1 = P Varel? + 211 — PR VeI

[07
@2((1 = PWVT. (1 = PL)VOD) < Kaall(l = PRVTI + 21 ~ PR)VeR 2
The critical error estimation is the convective terms. We first split this term as follows

C2(U, T, ¢F) = Co(U", T ) = (i T, #7) — Co(@lh. T.97) + 2 7. 7). (3:32)
By using Lemma 2.5, we estimate each term on the right hand side of (3.32) separately:

(C2: T 41 < Kl V2IVm M2V CIIVORI < ZLIVORIP + Ky~ D, PV TIP
v -1 -
(c2(@. T 41 < KIglI V@M 2N THIVFI < ZIVEHIP + SIDAIR + Ky~ 21V T gl

Ic2(u, 7, M) < KUY w U Y2 v Vel < %nwﬂnz + Ky Yunmuhvyr 2

Plugging these estimation in (3.30) and arranging the termsyield
1 a _
SR + ZIVERIZ + 2211 - PLIVORIP < Kby (laanr I, + Vv P

DR IVTIZ + DRIV + UMD Va2 + vy~ v T4101?)

v
+aall(l = PL)ViTl? + azll(l = PL)VTI?) + é||D¢U||2. (333

Similar estimations are used to bound the termsin (3.31). Then for the concentration equation

(3.31), one obtains

1 D 103 _
Eatn«p?;nz + 7C||V¢?;n2 + 73“(! - POVaRIZ < K{DZ(1demcli?, + IVicll?
+HIDnPIIVCIZ + U IDuPVacli? + v DS HIVCI4IglI?)

4
+azll(l = PQ)Vicl? + azll(l - PQ)VCI?) + §||JD>¢E||2. (3.34)

The most important part of the analysisisfor the velocity variable. We use (3.2) and the result

given in [33] for the L? projection via

DYl < NI(1 - PYD@LI + CH gl (3.35)
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for ¢! € V. The estimations for velocity equation (3.29) yield

|@erry> O < Kol DI < Klldepyll-1 (11 — PYYDI + H gl

_ _ Da! 10
< K (H2Dalldun, | + a0, ) + —,— g0l + §1||(I — P)DghI1%,
3y _
V(D DPR)| < lIDGIE + Ky~ HiDm,

_ o _ _ Da! a
Da™*|(ny. #)| < K (H?Da |2 + o1 Da2lmyliZy) + —— 43P+ I ~ PP
[07
laa((1 = Py (1 = PODEY| < (1~ PODSIE + Kall(l ~ PYDa 2,

a
laa((1 = PHYDU. (1 = PODED < 11 ~ PP + Kaall(l ~ PHDUI?,

3y
< —

hy 12 “1yn 42
< 16”D¢“H +Kvllp- g5,

(R IATH]
Br(@(T = T, g1 < Briiglleo (171l + I651) A5 < KBZ 112, (Irrl2 + 16312 + I6011)
B(9(C — C"). ¢l < Belglleo (Il + o21) pfil < KBZIGIZ (Imcl® + 62117 + IphI7) -

To estimate non-linear termsin (3.29), wefirst rewrite the trilinear forms
ICo(u. U, ¢7) — Co(u", u", 1) < Co(n U, $)I + ICo(@. u. #D)I + Ico(u”, . 1)

and we bound them as

3y
< —
~ 16

3y _
ICo(m, u, $Y)I < Enmﬂnz + Ky Y Dull2[Dn, 1%,

Ico(u, i, &) D@2 + Ky~ 2Dul? D, |12,

Ico(¢0. u. @) < K (e 3IDul* + H¥ZDul)lIghi” + ell(l — PY)DU"2.)
So, from (3.29) we have

1 5v a1 Da!

OB + DG + (1 = PODSIE + —— gl <

K{H™? (Dallc?tnullgl + Da‘lllnullfl) +agt (||6mu||§1 + Da‘zllnullgl) + v Da, |2

+aa (I = PODAIP + (1 = PHDUI?) + v (11p = "I + DU D, l” + [Dul| Dy 1%)
+ (7 3IDull* + H=¥2IDull + (8% + B2)IIgIZ, ) I$0lI* + BFlIglZ, (1l + g 1)

+BENGIIZ, (IIncll® + llgg %)) (3.36)

After this point we combine (3.33), (3.34) and (3.36) and apply Lemma 3.4. To apply Gron-
wall’s Lemma, the L1(0, t*)- regularity of the appearing terms has to be studied.
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First, we combine (3.33), (3.34) and (3.36) and multiply both sides with 2,

Ot (LI + BT I” + I6217) + (24D + HIVETI + DlVEI) + (eall(l — PYYDI
+aal(1 = PL)VORIP + asl(l - PSVGRIR) + Da gl

< K{H—2 (Dalldun |2y + Datinyli?,) + a7t (I10umyli%, + Da2lipyl2y) + a1 (Il(1 - PY)Dayl>
+I(1 = PYYDUIP) + v (IDpli” + lip = I + IDUMZDa, | + DUl D))

+l1gl, (B3 lnr11? + BElncl?) + ¥ 10er ]2y + Ve lZ + D IV TIE + [ufiDu V%)
+azll(I = Py)Varll? + a2ll(l = Py)VTIZ + DIy + 1IVncli? + Doy |7 IVC?

+HIu"IDUIVRC]?) + asli(l = PR)Vacl? + asli(l = PRVCIP + {e73IDuli* + H™¥2Du]

+llgl%, (8% + B2) + v~ (y HIVTII* + DHIvE]?)] ||¢B||2}

To apply the Lemma 3.4, we now define and appropriate 1 and Fi, i = 1,2, 3 functions.
Clearly,

A= [1g012 + 12 + g2,

For the others, we set

Fi(t) = 2/Dgyll* + eall(l = PO + HIVT? + azll(l = Pyp) VLI + Dl Vel
+agll(l - PR)Veel® + Da gy, (3.37)
Falt) = K{(H—2 + a7 (118l + lmll?) + a1 (1100 = PYDlI® + 111 = PY)Du?)
+v (IR + lip = P + DU PR, + [IDulP[Dn,)?)
+l1gl, (317112 + BElncl?) + 10ar]2y + IVarlZ + e2ll(l = PL)Varl?
+a2ll(I = P )VTIZ + Dy PIVTIZ + [[uPIDuIVar 2 + 10mcl?y + Vncl?
+agll(l = PR)Vncll® + asli(l - PR)VCIP + Dy, |PIVCI? + IIUhIIIIDUhIIIIVncIIZ}
(3.38)
and

Fa(t) = K (o 3IDull* + H=¥2Dull + g (87 + B2) + v (y IV TII* + DZHIVCI)).
(3.39)

It is straightforward to show that Fi(t), i = 1,2, 3 functions satisfy the assumptions of Gron-
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wall’s Lemma, but for convenience let us show non-trivial parts only.

fo IDURIDR,IR < DU s 0. 2y Do 0 2) <
fo t DUl < DUl g 1 2y PRl a0 2) < 00
fo t D PIVTI? < 1IP0I 02 IV T2y < 0
fo t U HIDUM IV < UMl 0.2 DUl 2) VT s g 2y < 0,
fo t IDAPIVEN® < D7 a2 IVClEa 12y < 0
fo DU P < UMl 2 IPU 20 3 1V 4 g 2 < -

Note that we omit the positive finite constants in front of the integrals. These estimations are
obtained by using the Holder inequality, Poincar€'s inequality, stability results and assump-
tions (3.24)-(3.25). Once we guarantee to apply the Gronwall’s lemma, one can obtain the
final error estimate by using Definition 3.3 and the triangle inequality. As a conclusion, we

get the following convergence theorem.

Theorem 3.7 Let (u", T",C" be the solution of (3.12)-(3.14). Suppose that (3.24), (3.25)
hold and let F,(t) and F3(t) be given as in (3.38) and (3.39) respectively. Then the error

satisfies for 0 < t* < oo:

I = UMEgs ) + ICT = TOIE,) + IC = CIiE o,

<K inf I = UM + 1T =TI, + I(C — CIZ
{ el vy ( ( : (b2 ( ) ) ( ) (1,DC))
TheL2(0,t;Wh)ChelL2(0,t*;dh)
t ~ ~
" exp(f F3(s)d5) inf (1" = um)I + 1T = TM(O)I?
0 iheL?0,t; vy
Thel2(0,t*;Wh),CheL2(0,t*;d)

. t
+I(C" — CMY(O)I? + fo Fz(S)dS)}

with constant K which may depend on domain Q and independent from h, a1, a2, a3, v, v, Dc.

Remark 3.8 Let us study the convergence of the Theorem 3.7. The right hand side of (3.38)
includes the crucial terms aall(I — PY)VUll?, a2ll(l = PL)VTIR, asli(l — PS)VCI. Except,
these three terms, all other terms contain interpolation errors. The crucial terms does not

have a factor of interpolation error terms. However, they tend to zero as mesh widthh — 0
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if a1, 2,03 — 0. Inthis case, standard Galerkin finite element discretization is recovered

asymptotically.

In the next corollary, we present atypical example of the finite element spaces and the param-
eter choices of (a;, H) = (h?,h/?), for i = 1, 2,3. We note that the parameters are chosen in

such away that the crucia terms behave at least as interpolation error.

Corollary 3.9 Assumethat (u, p, T, C) € (XNHS1(Q), QNHS(Q), WNHS(Q), PnHS(Q))

and let the finite element spaces are chosen as

X" = (veC%Q):vis € Po(A), VA € T,
W = (SeCYQ): S|x € Pa(A), VA € T,

PN = (@ e CYQ) : Dy € Po(A), YA € TN,

Q" = (veC%Q): Vi€ Pi(A), YA € T,

LH = (" e L2(Q) : 1", € P1(A), VA € 1),
MH = (m™ e L2(Q) : mM|A € P1(A), VA € 1),
KH = (KM e L?(Q) : kM|s € P1(A), VA € 7).

Then, the error becomes
ID(u = u")l + IV(T = Tl + IV(C - CM)|| = O(h?)

along with the choices of (a;, H) = (h?,hY?) fori = 1,2, 3.

3.3 Numerical Studies

In this section, we perform some numerical tests to validate the effectiveness of our method.
We carry out these analysis in two different steps depending on the buoyancy ratio N. Wefirst
consider the case N = 0 which corresponds to a system of pure thermal convection in aporous
medium. Then we investigate the performance of the method under different buoyancy ratios

with N # 0.

In our computations, we particularly select conforming Taylor-Hood finite elements which

are known to satisfy the inf-sup condition (2.20). Parameter and mesh scalings are arranged
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asH ~ h2 and o ~ h? fori = 1,2, 3. The use free finite element software FreeFem++ as
in previous chapter for making these computations [24]. The following iterative scheme is

utilized for solving the system

}(u(m) —u™D v 4 20@u™, DV + cou™, ul™D v + cou™D, u™, yh)

.

+(Da tu™ v = Gre(T™ v + Gre(C™, v + cou™ D, umD, v

—a1((1 - PYDU™Y, (1 - P)DV")

@ v-uM =0

%(T““) — T ghy 4 %(VT(”‘), VS" + ¢ (M, TM ghy 4 ¢ (u™, TMD shy

= ¢ (™D, TMD SM) _ (1 = PLYVT™D (1 - P])VSD)
1
T

= ¢y (™D, ™D M — as((1 - PSVC™D (1 - PS)VO") (3.40)

€™ _cmD phy 4+ s_lc (vCM VM) + co(u™Y, c™, M) + g (u™, c™D, @M

foral (v, g, S", @") e (X", Q", Wh, ¥M). The schemeinitializes by aninitial guess (u®, T°, C°)
and generates (u™, p™, T™, C™). Note that we put some dimensionless numbers as Grr, Grc,
Pr, Scin the computational scheme in order to make comparisons with published results. Ex-
plicit definition of these numbers were given in the beginning of this chapter. We aso use
another dimensionless parameter namely, the thermal Rayleigh number, Ra = GryPrDa for

comparison issues which is not put on scheme (3.40) directly.

The computational domain we use is a classical rectangle with an aspect ratio of A = H/L.
We mostly prefer the case A = 1. Figure 3.1 illustrates the domain with its boundary condi-
tions. We employ no-dlip velocity boundary conditions for whole boundary. Horizontal walls
are kept adiabatic and impermeable i.e. 0T/on = dC/dn = 0 at these walls. Temperature
and concentration are kept at Tg, Cq for right and T, C; for left vertical walls with Tg < Ty
and Cp < C; respectively. We pick To = Co = —1and T; = C; = 1 here. In the computa
tions, besides the other dimenionless parameters given before, we use another dimensionless

parameter namely, the thermal Rayleigh number, Ra = Gry PrDa for comparison issues.

We carry out numerical tests in two different steps depending on the buoyancy ratio N. We
first consider the case N = 0 which corresponds to a system of pure thermal convection in
a porous medium. Then we also investigate the performance of the method under different

buoyancy ratios with N # 0.



u=0 adiabatic and impermeable
/)
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T, g

To

C'\ CO

)
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I 1

L

Figure 3.1: The computational domain with its boundary conditions.
3.3.1 Casel: TheBuoyancyratioN =0

In the case of N = 0, which is a purely therma natural convection in a porous cavity, the
flow is solely driven by the thermal natural convection. The accuracy of the numerical results
are checked by comparing Nusselt and Sherwood numbers. We compare our results with the
well-known benchmark studies of Lauriat et a. [43], Trevisan et a. [68] and Goyeu et a.
[20]. Although this configuration does not involve solutal buoyancy force, mass transfer till
occurs due to the density differences led by thermal forces. For al values of N, the Darcy
number (Da) has avery crucia role in the analysis of such kind of flows. Even with making
use of a Brinkman extended formulation as in the present study, the model is said to be in

Darcy regime provided that the Darcy number isless than or near 1077,

For N = 0 case, we concentrate on comparing our Nusselt and Sherwood numbers with
benchmark data. In engineering, the Nusselt and Sherwood numbers are of great importance.
Roughly, average Nusselt number is the dimensionless heat flux and average Sherwood num-

ber is dimensionless mass flux in the system which are given explicitly as

1 (A(oT 1 (A(6C
Nu= Z\fo (&)x:o dy Sh N Z‘fo (&)X:O dy'

Wefirst give values of the Nusselt number at A = 5 for the different Da in which, both Darcy-
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Brinkman and Darcy regimes are taken into account. Table 3.1 summarizes these results
along with the results obtained by [43, 20] which enable us to make a clear comparison. A
similar computation is carried out for the case A = 1 in which, the Sherwood numbers are
also calculated additionally. Such kind of analysis was presented in benchmark studies of [68]
and [20] and we introduce our results in comparison with those studies in Table 3.2. For the
values in both tables, one can observe the excellent agreement with previously published data
even with coarser grids. We use a uniform grid of maximum 24 x 24 for A = 1 and 24 x 44
for A= 5where asinusoidal grid of 64 x 64, 145 x 95 was used in [20] and uniform 41 x 41,
41 x 81 was used in [43] for A = 1 and A = 5 respectively. A uniform grid of 42 x 42 was
used in [68] aso. Thisisasignificant advantage of the proposed method.

Table 3.1: Comparison of average Nusselt numbersfor N = O at A = 5 with different Da and
thermal Rayleigh numbers.

Da 10°2] 10% | 104 | 10° | 107
Present Study | 7.30 | 9.11 | 10.01 | 10.30 | 10.42
Ra=500 Ref.[43] 7.25 | 915 | 9.95 | 10.25 | 10.40
Ref.[20] 729 | 9.13 | 10.00 | 10.34 | 10.39
Present Study | 9.45 | 12.49 | 14.32 | 15.06 | 15.17
Ra=1000 Ref.[43] 9.44 | 1255 | 14.28 | 14.99 | 15.19
Ref.[20] 9.45 | 12.60 | 14.30 | 14.90 | 15.15

Table 3.2: Comparison of average Nusselt and Sherwood numbers for N = 0, Le = 10 at
A = 1 with different thermal Rayleigh numbers (Darcy Regime).

Ra 100 200 | 400 | 1000 | 2000

Present Study | 3.15 | 5.02 | 7.83 | 14.01 | 20.00
Nu Ref.[68] 327 | 561 | 9.69 - -
Ref.[20] 311 | 496 | 7.77 | 13.47 | 19.90
Present Study | 13.54 | 20.11 | 27.96 | 48.01 | 71.25
Sh Ref.[68] 15.61 | 23.23 | 30.73 - -
Ref.[20] 13.25 | 19.86 | 28.41 | 48.32 | 69.29

3.3.2 Casell: TheBuoyancy ratioN # 0

Thecase of N # Oisidentified as mass driven flow by [68] in the flow configuration. We take
N in between 0 and 35, Rain 100 and 1000 and Lein 1 and 300 throughout our computations.
Asinthecaseof N = 0, we calculate average Nusselt numbers for evaluating the performance

of the method. However, the effect of Lewis number and Darcy number on Nusselt Number
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for different N values are aso considered. Other parameters, A and Pr are kept at A = 1,
Pr = 10 throughout al simulations. The effect of Darcy number on flow patternsisillustrated
by streamline, isotherm and isoconcentration linesin Figure 3.2. For displaying these patterns,
we take N = 10,Ra = 100 and Le = 10. As could be concluded from the figure, when
the Darcy number increases and the flow character turns into Darcy-Brinkman regime from
Darcy regime, boundary layers become thicker in streamlines and concentration gradients
get smdler. This is because the Brinkman term in the system of equations turns out to be
more significant as Darcy number increases. Displayed flow patterns match perfectly with

ones given in [20] via using the coarser meshes stated in previous part. Lewis number has a

Figure 3.2: Streamlines, isotherms and isoconcentration lines for Da = 1073 (upper left
to right) and streamlines, isotherms and isoconcentration lines for Da = 10~/(lower left to
right), respectively.

crucia role on average heat and mass transfer in the system also. We know that, Nusselt and
Sherwood numbers are identical in the classical case Le = 1. We now investigate the effect of
Lewis number on average hesat transfer for different Le and N. In order to understand stated
effects, we display the Nusselt number as afunction of Lein Figure 3.3. The scale analysisin
[68] states that Nu satisfies

R 1/2
- (B
Le

One can read this situation as, the average heat transfer is directly proportional to Ra, N and it

decreases as Le increases. Clearly, Figure 3.3 supports this scaling and the same ideas stated
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in [68]. Since Le = ch, increasing Le restricts the mass transfer. So the effect of N also

gets restricted. At agiven Le, N favors inflation which also increases Nu. In order to make

A
Nu

-===- Le=10

Le=30 .

12

....... Le =100 g
- -—-Le=300 g

\4

Figure 3.3: Nusselt number as a function of Lewis number.

distinctions about Darcy and Darcy-Brinkman regimes, we present the results about the effect
of Darcy number on Nusselt number. We can conclude from Figure 3.4 that, as N increases,
Nusselt number tendsto apure conduction limit, Nu = 1, through passing to Darcy-Brinkman

regime with ahigh Lewis number of 100 [20].

As alast graphical interpretation, we give the variation of vertical velocity, temperature and
concentration at mid-height in Figure 3.5. These profiles are perfectly comparable with ones

given in [20], which isthe only available reference presenting such kind of illustration.
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Figure 3.4: Nusselt number as afunction of N with varying Darcy numbers.

3.4 A fully discrete scheme

We consider the discretization of the system (3.1) for finite element in space and Crank-
Nicolson in time in this section. Instead of usual Crank-Nicolson method, we prefer a more
accurate fully implicit version which is obtained via linear extrapolation of convecting ve-
locity terms [4, 5, 42, 31]. Before giving the algorithm, we note here that since the method
we study is a two-step method, we specify the first step individually along with the initial

conditions.

Definition 3.10 (Crank-Nicolson with Linear Extrapolation-CNLE) The CNLE scheme for

(3.1) for n > 1reads: given (uf}, p, T9, CP) € (X", Q", WM, ¥")  find (uf ,, pR, . TN ,.C". )

59



A
.50
...... Velocity
Temperature
--=-= Concentration
.40
1
1
t
1
|
4
30 |2
1 el
1
1
1
1
1
1
1
20 f)
1
1
1
1
1
1
1
i
.10 [
1
1
1
1
1
1
|
T
Vo T
0 ST
1 -
1 e
\‘\’,,/
-10 >
10 20 30 40 50
X

Figure 3.5: Vertica velocity, temperature and concentration profiles at mid-height for Da =
1073,Ra =100, Le=100a A = 1.

satisfying

h h h h h h

u' . —u ul . +u) U.,1 T Uy

(—”*1 ,vh] +2v (D—”*lz ,Dvh] +a [(I - PD-—
-

> (1 - P‘E)Dvh]
h h h h h n
ot (un+12+ u”,vh) _ [w’ v ,Vh) N CO(X(UE)a M,Vh)

2
T, +TH ch ., +Ch
=Bt (g—n+12 iy Vh] +fc [9—n+12 n Vh]

(qh’ V- U2+1) =0,

Th _Th Th 4 Th Th +Th
[ wnftin 25 )
h
n

2
h Tr?+l +Tn h
X(un), 2 ’S = 0

(3.41)

+Cy

(3.42)

ch  _ch ch 4+ch ch ., +Ch
(—”” ”,cph] +De [v(—”*lz n),V(D“) + a3 ((I - Pﬁ)v(%),(l - PE)WDh]
-

ch., +Ch
x(up). —5— ”,d>h)=0

+Cy

(3.43)
60



where T > Oisagiven time step and y(uf) = 1 (3Un - Ug—l)'

For the first time step find (uf), pfl, T\, C) satisfying

h h h h h
u, —u u,; +u +
( L O,Vh]+2v(]D) L 5 O,]D)vh)+a1((l Pﬁ)ﬂ) (| PE)]D)Vh]

"
ul + uh p? + ph uh+uh
— 1 0 . ,h 1 0 h h 1 0 .,h
+Da1( 5 ,v]—( > ,V-v]+co[uo,T,v]
T+ T N ch+cg .
2 2
(th-uh):O,
Th_Th Th+Th T +T)
[ - 0 Sh)+y[V[ 12 OJ,VS*‘]WZ[U—P{A)V[ 12 0),(|-P{,|)Vsh]
T+ T)
+c1[ug, 1 5 O,Sh}=o (3.45)

ch-ch ch+ch ch+ch
(M,@h)+DC(V( 12 )Vd)h]+a/3((l P‘,g)v( 12 °),(|—P‘,§)vq>“]
T
ch+ch
+c1[u8, 12 0,(1)“):0

with the modified stokes projection uf), Tfl, Cf) of uo, To, Co into V', W" and ‘P! respectively.

(3.46)

We now give the definition of so-called modified Stokes projection operators for our new
system. In Chapter 2, modified Stokes projection is established for velocity and temperature.
For the new system, we give it for also the concentration of the flow field. Throughout the
error analysis, choosing the modified Stokes projection of each variable for the approximation
termsin the splitting of these variables simplifies the error analysis. Wefirst state the stability
of these projections and give the related error bounds. From now on, we denote {n,1/2 =

&ndtn for any function or variable ¢.

Definition 3.11 (Modified Sokes projections) The operator of the modified Stokes projection
for the velocity and pressure, Ps, is defined by; Ps : (X, Q) — (X", Q"), Ps(u,p) = (@, p)

where

2v(D(u - ), DV + a1((1 - PY)D(u - @), (1 - PY)DV") + Dat(u - G,v") = (p- B,V -V") = 0,

@.V-(u-0)=0
for all (v, g") € (X", Q"). Inthe discretely divergence free space V' and in the pressure space
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QM, this definition reduces to

2v(D(u — T), DV + a1 ((I - PY)D(u - T), (I - PY)DV") + Da~(u-G,v") - (p— ", V-v") = 0
(3.47)
for all v € V. The modified Stokes projection operator for the temperature, Py, is defined

by Pr : W — W", Pr(T) = T where

Y(V(T = T),VS") + ax((l - PL)V(T = T),(1 - P,)VS) =0 (3.48)
for all S" e Wh.
Finally for concentration P isgiven by Pc : ¥ — ¥", Pc(C) = € where

De(V(C - €), VO") + a3((l - PS)V(C - C), (I - PV =0 (3.49)

for all ®" e yh,

Lemma 3.12 The modified Stokes projections defined by (3.47)-(3.49) are stable in the fol-

lowing sense:

2v|IDT| + aall(l - P)DG| + Da a2

IA

K (vIDulP + aali(l - P)Dulf?

+ DatfulP+ vt inf fip—- o)
gheQn

IA

AVTI? +azll(l - PYVTIZ < K(YIVTI? +e2ll(l - Py)VTIP)

DelIVCI? + agli(l - PR)VC|?

IA

K (DellVCI? + asli(l - PR)VCI?)

Proof. Setting v ={in (3.47) and using the Cauchy-Schwarz inequality yield
2VIDGI? + aall(l ~ PHDEI + Datd> < 2/DaAIDull + eqll(l - PHDEI( ~ PY)Du]
+Da[[d] jull + [1p — g1V - &

thanks to the homogeneous boundary conditions, we have ||V - ]| < ||V{|| and the result is
directly obtained through the application of Young's and Korn's inequalities. Setting S" = T

in (3.48) and following similar steps as above, one gets
YIVTIZ + a2ll(l = PL)VTI? < yIVTIIVTI + a2li(l = PL)VTIN = PL)VTI

and an application of Young's inequality gives the desired result for temperature variable.
The result for the concentration part could easily be obtained by setting ®" = € in (3.49) and

employing exactly same manipulations performed for the temperature variable. O
The next lemma states the error in those projection operators.
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Lemma 3.13 (Error in modified Stokes projections) Suppose the discrete inf-sup condition

(2.20) holds. Then (@i, T, €) exists uniquely in (X", W", ¥") and satisfies

ID(u - ) + all(l - PHYD(U - T)I° + Daf(u - )P <K inf (DU - G)|I2
deXh gheQh

+aqll(l = PHYD(u - )7 + Da~i(u - a)I? + v~Yip - d"?), (3.50)

HIVT = DI + a2ll(l = Py)V(T = DI < K inf (Av(T - T)I*
€

+azll(l = Pi)V(T - T)I?). (3.51)

DellV(C - O)IF + a3l - PYV(C - C)IF <K inf (DV(C - O
S

+azl|(l - PQ)V(C - C)I%). (3.52)
Proof. To prove (3.50), decompose the error u — i = 7 — ¢", wherep = u -0, ¢ = 0 - {
where 0 approximates u in V. Thus (3.47) becomes

2v(Dg", DV + a1 ((1I — PY)Dg", (I — PYYDV") + Da (4", v")

= 2v(Dn, DV") + a1 ((1 = PY)Dy, (I = PYDVY) + Da (i, v") + (p - g, V.v"X3.53)

Setting V" = ¢" in (3.53) and applying Cauchy-Schwarz, Young's and Korn's inequalities
yield

D" + aqll(l — P)Dg"|[> + Da g2

IA

K inf  (ID(u-0)?
texh,gheQn

a1ll(l = P)D(u - G)|?

+

Da Y|(u — Q)I% + v~ YIp - ). (3.54)

+

Since (i isan approximation of uin V", we can take infimum over V" in (3.54). Thefinal error
estimate for velocity now follows from the triangle inequality. In order to prove (3.51) and
(3.52), split therelevant errorsfor each variableas (T-T) = (T=T)— (T =T) = n1—¢1 Where
T approximates T in WM and (C — €) = (C - C) = (€ - C) = nc — ¢c where C approximates
Cin¥". Asin thefirst part, we have

Y(Vor. VS") + aa((I = PR)Vor. (I - PRVSY) < ¥(Vyr,VS")
+ az(() - Py)Var, (I - Py,)Vs")

(3.55)
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for the temperature and
De(Vee, VO") + as((l - PR)Vée, (I = POVO") < ¥(Vic, Vo'
+ ag((l - PQ)Vne. (I - PRV
(3.56)

for the concentration parts. Wenow let S" = ¢1 and ®" = ¢c in (3.55) and (3.56) respectively.

Final results are obtained via following the same steps in the velocity part. O

Corollary 3.14 Let the regularity assumptions, (u, p, T,C) € (X N HS*{(Q), Q n HS(Q), W n
HS(Q), ¥ N H3*1(Q)) holds. Then the use of the estimations (3.15)-(3.18) in (3.50)-(3.52)
yield

2vID(u — W) + aall(l - PY)D(u - O)|* + Da Yi(u - 0)I?

<K (vh2$||u||§+1 +arh®|ul2,; + Da th®*2|uli?, , + v—1h2$||p||§) (3.57)
YIV(T =TI + azll(l = PRV(T = TP < K(y + a2)(W*SITIZ, ) (3.58)
DclIV(C - O + asll(l = PRV(C - C)II* < K(D¢ + az)(h*|[CI2, ) (359)

Before beginning the analysis of the method, we give some preliminary lemmas which we

use frequently during this section.

Lemma3.15 Let A(-,t) be a function, the time step 7 = tn1 — ty and tny12 = 2410, The

following estimates hold true under the stated conditions.

1 If (91) € CO0, 1" L3(Q)) then HM

<Kot b)) for fe (to,t7).

2. 1f (822) € C°(0,t*; L3(Q)) then ||M —/l(~,tn+1/2)” < K72 |a2a( §)|| and

H%/l(’ tn) - %/l(’ tn—l) - /1(7 tn+1/2)” < KTZ Hatz/l(’ f)” for fe (th t*)
3. 1f (934) € CO(0,t*; L2()) then HM e tn+1/2)H < K72|[aBAC, By for
fe (to, 1)
Proof. These estimates are direct results of Taylor series expansion of the function A(-,t). O

The following lemma on skew-symmetric trilinear formsis useful on some parts of the proof

of main theorem of the fully discrete error analysis.
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Lemma3.16 Let v, V", Th, vT" Ch VC" € L®(Q). Then the skew-symmetric trilinear

forms satisfy the following estimations with finite constants K which depend on Q

CoU VW) < K (IIV sy + 9V sy ) IUPHIVW (3.60)
U, TS < K(IT i) + VT sy ) Il VS| (3.61)
Co(u",C" ") < K (IC Iy + IVC vy ) UM V"] (362)

for all ul, v\, wh e X", Th She ¥hand C", oM e W
Lastly, we state the so called discrete Gronwall’s Lemma.

Lemma 3.17 (Discrete Gronwall). Let Xn, Yn, Zn, W, P, 7 be non-negative integers for n > 0
such that for N > 1, if

N N-1 N
XN +TZyn STZWan+TZZn+ P
n=0 n=0 n=0

then we have

N N-1 N
XN +TZyn < exp(Tan) TZZn +P
n=0 n=0 n=0

for all T > 0.

Proof. See e.g.,[26] for aproof. 0

We state the unconditional stability of the scheme in the next theorem. By mentioning uncon-
ditionally, we mean that there is no restriction on time step for our scheme to be stable. Also,

we have no restrictions on problem data to obtain stability.

Theorem 3.18 (Sability). The scheme (3.44)-(3.46) and (3.41)-(3.43) are unconditionally

stable in the sense that,

n

U ol2 +7 " (VD (Ul 4 ) 1 + 20li(1 = PEYD (Ul ) 12 + Darull  ,l1)
i=0

< |lugli® + KDallglZ, (87 ITHI” + BEDSHICI).

n
TR 42+ 20y > (I (Th2) IP + all(t = PRV (TR ) IP) < TSI,
i=1
n

ICh, 41 +2eDc > (IIV (ClL 1) IP + all(1 = PR)V (ChLy2) IP) < IICHIP
i=1
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Proof. We start with the first time step. Setting S" = Tf/z in (3.45) gives

T3 = ITgI? .
— 5 AV + a2ll(l = PV (T1,) IP < 0 (3.63)
so we have

TR + 20411V (T2,) I + 2rali(l - PV (T],) 17 < T2 (3.64)

through multiplying both sides of (3.63) with 27, which is the stability result of the tempera-
ture equation for the first time step. Similarly setting ®" = 1/2 in (3.46) gives the stability
result

ICRI + 2rDellV (CY ) IP + 2rasli(l = PR)V (CY ) 1P < lICqII? (3.65)

for the concentration part. Finally for the velocity equation set v = u*l‘ 12

in (3.44) and obtain
the inequality
(Ul = flufi?
27
< Brligleol T MU 2l + BellgllsolICY Ml 1l (3.66)

+ 201D (uf) ) 1 + el = PHD (uf ) 17 + Dajjuf 5112

We now employ the Young's inequality for terms at the right-hand side of (3.66) asfollows.
Brigllsl T ollIuT ol + BellalleoICT plllIUY ol < KDaBZligiZ T ol + ||u1/2||

Da1
+ KDEBRIGIAICY ol + —— Il
(3.67)

Using Poincaré€'s inequality and previous stability bounds obtained for the temperature and

concentration parts give
KDal[T] ,l* < K(2ry) HiTgl?.  KDallC] ,II* < K(2rDe) HICI. (3.69)

Updating the right-hand side of (3.66) through using (3.67) and (3.68) and multiplying both
sides with 27 gives

IUIiZ + 4rviD(uf )I7 + 2711 = PHD(U] I + rDa |l , |17

< lluli® + KDallglZ, (87 ITHI” + B&DSHICHI) (3.69)

which completes the proof of the stability for the first time step. Now consider the casen > 1.

Weset S" =T/ ,in(342) and " = C! , ,in(3.43) to have

ITh, 1%+ ZTyZ IV(TH 1 I + a2ll(l = PY)V(TRL )IP) < ITHIE < T
i=1
(3.70)
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and

n
ICh, 4117+ 2tD¢ D" (IV(CfL4 I + asli(l = PRV(CIy IP) < ICTIP < IIChI? (3.72)
i=1

which prove the stability for T and C. For u, we v = uf

ni1/2 1N (3:41) then use similar

estimations done for the first time step and get the stability result

n

U, ol + 7 " (4D, I + 201 = POD(UY, 3,)I7 + Daluf 1)
i=0

< |lufli* + KDallglZ, (87 HIToII” + B2 DSHICHIP)

< |lugll® + KDallgl, (87 IToI” + BEDSHICGI) -

We are now in a position to give the main theorem of this section.

Theorem 3.19 Assumethat u, du € L2(0,t"; H(Q)?), T,C.4T.oC € L2(0,t*; HS*1(Q)),
92u € L2(0,t° H2(Q)?), 92T, 02C € L2(0,t"; HX(Q)) 8fu, 33T, 93C e CO(0.t"; LA(Q)) p €
L2 (0.t H(Q)) 67p € L?(0,1*; L2()) and let Ky Dag2||gli 7 < 3, KoDaBZllgli2,7 < 3. Then
the error satisfies

utaes) - U2+1H2 +[[T(tasa) - Tr?+l”2 + [|Ctne1) - Crr1]+1||2

n

7| > (24D (Utisn) = uflq) 1P + AV (T(tia) = Tihy) 1P + DIV (Cltiza) - CL4 ) IP)

i=1
+7 ) (@all(l = PYD (U(tisn) = uffy ) IP + ell(t = PV (T (tia) = Tihy) 1P
i=1
+aall(l = PRV (Cltian) = Clby) IP) +7 ) Darf (utics) - ufly ) IP

i=1
< K(WS + (a1 + a2 + a3)H® + %)

with constants K, K1, K, depending onu, p, T, C, v, a1, a2, a3, 87, 8¢, 9, Da, v, D¢.

Proof. We have to construct error equations for each variable first. We split each error term

as shown below.

e = u(th) - ufl = (u(ts) - 0) — (uh - 0) = 1 — ¢t (3.72)
g = Tt)-Th=Tt)-T) - T -T)=nl - ¢} (3.73)
& = C(tn)-Ch=(C(tn)-C) - (Ch-C) = 1§ - ¢§ (3.74)
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where (i, T, C are Modified Stokes projections of u, T, C respectively. Recall here that for any
function or variable ¢, {ni1/2 is defined as Znp12 = 2370, Subtracting (3.41) from (3.2),
(3.42) from (3.4) and (3.43) from (3.5) at time level t = ty,1/» for test functions v € X", SM e
wh d" e W gives respectively

h h
uh . —u
OtU(tny1/2) — % v+ 2y (Du(tn+1/2) - Duﬂﬂ/z, ]Dvh)

+ay ((l - PE)D(U(tnﬂ/Z) - U2+1/2)7 (I- PE)DVh) + Da” (U(tn+1/2) n+1/2 Vh)
- (p(tn+1/2) - p2+1/27 V. Vh) + Co (U(tn+1/2)a U(tn+1/2), Vh) —Co (X(Un)7 Un+1/2, Vh)
=pr (g (T(tn+l/2) - Trr11+1/2) > Vh) +pBc (g (C(tn+l/2) - CE.;.]_/Z) > Vh)

+a1 ((1 = PY)DUpeas2. (1 — PY)DV") (3.75)

Th _Th
(mml/z) S ]+7<V<T<tn+m> T2 V")

+az ((I = P)V(T (tne12) = Th1 /). (| = PRVS") + 1 (U(thia/2), T(tnsa/2), S)

—CL(e(UR). Toy12- S = 2 ((1 = PY)VTnsas2, (1 = P)VS") (3.76)

ch . —ch
(6tc(tn+l/2) - %a (Dh) + Dc (V(C(tn+l/2) - C2+1/2), V(Dh)

+a3((1 = POV(Cltnir/2) = Chy ), (1 = PRVO") + €2 (U(ths1/2), Cltnsaj2), @)

—c1 () (D). Ch, 1. ") = a3 ((1 = PR)VCnyy2. (I - PR)VO") (3.77)
we add add and subtract

(u(tml)T— u(tn),vh) . zv( u(tn+1)2+ () )+ - (u(tn+1)2+ ) )

+a1((| - PE)]D)—U(t"”); ultn) | _ poypy )

Ut + )+ (), o), ) P £ ) g )

s (g (T(tn+1)2+ T(tn)) | Vh) e (g (C(tn+1)2+ C<tn)) | Vh)

to (3.75),

(T(tn+1) - T(tn) Sh) N y(VT(tml) + T(tn) VSh)
T ’ 2 ’

+ao ((I - P{A)Vw,(l - P{A)Vsh)
+C1 (U(tn+1/2) + x(U(tn)) + x(up), w sh)
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to (3.76) and

(C(tn+l) - C(tn) q)h) +D (V C(ths1) + C(tn) V(Dh)
T ’ ¢ 2 ’
C(th+1) + C(tn)

+as ((| - PQ)V 5

N Pﬁ)Vth)

+cs (u(tm/z) () + (. Lol L), @h)

to (3.77) and finally obtain the error equations
(eun+1 - éf:]l

- Vh) +2v (Deﬁﬂ/z, ]D)Vh) +a ((' - PODe, 12, Dvh) +Dat (enu+1/2’vh)

tn+ tn u U tn+ tn
~ ( p( 1)2+ p(tn) v Vh) +Co (U, &1 V1) - Co()((en), u( 1)2+ u( ),Vh)
= B (96, 1/2)- V") + B (9(€5, 1/2), V") + @ (1 = PY)DUnsa/2, (I = PHDV") + Gy
(3.78)
Msfw (Vel,1/. vS") | - PL)Vel ;.. (I - Pl)vsh
— Y (V120 +taz (( m)Ven /2 ( m) )
T(tnea) + T(tn
+01 (¢(u). €L, S") ~ &1 (m%), %,s“) (379)
= az((1 = PY)VTnas2. (I - Py)VS") + G,
M(D“+D(VC V") + a3 ((1 = PVES, . (1 - PV
— c|\ V€12 as (( K)VET 12 ( K) )
Cltns1) + Clty
2 (M(UD). €€, 1. ") - (x(eﬁ), o) o) @“) (3.80)

= a3 ((I - PO)VTaas2. (I - PRVE") + Gg

for u, T, C respectively. Here the functions G4, G,, G3 are given as

Gy = (M U(tn+1) + U(tn)

— 0tU(tny1/2), Vh) +2v (D
T 2

- Du(tni1/2), Dvh)

+ay ((I — PY)D (w - u(tn+1/2)) (- Pﬁ)Dvh)

U(tn+1) + u(tn)

u(t + u(t,
+Dat (M U(the12) ———5——

- u(tn+1/2) \Y )

o - UV
U(tn+1) + U(tn) ) (p(tn+1) + p(tn)
Bc

—CO(X(U(tn)) = Uty ), LWrt) + Ulto) = Pine2), V-V )

pr (g(w T(tn+1,2)) ) ((C(tml)w(tn) C(tml/z)) )
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Gy (M T (the1/2), sh) +y( (w —T(tn+1/2)),VSh)
+a/2( PTM)V(T(t”+1)2+ T(t) T(tn+1/2)) (- PTM)VSh)
st T (. )
o (X(uan» (), T2l ) s“)
Gz = (M — 3C(tn1/2), cph) + D¢ (V(w - C(tn+1/2)) : chh)
+a3 ((| - P%)V(M - C(tn+1/2)) N PL')VCDh)
C(tn+1) + C(tn)

+Cp (U(tn+1/2), >

— C(tns1/2), d)h)

Cltnsa) + Clto) q)h).

- ) - uttna). 2

We start our analysis by the temperature error equation. Decomposing the error term asin

(3.73) and writing S" = ¢T . in (3.79) lead usto
n+1/2

lpr, 1117 = 1l 112

5 + VIVl + aall(l = Pl Ven. ol <
T T
T 0 6T o ||+ Py (Va2 V0L2) + a2 (1 = PI)Virh, 1. (1 = PLOVAT,y )
- »Pni1/2 Y (Vini1y2> Vonir2) + @2 M/ VTni1/2s M) VPni1)2
T(tn+a) + T(tn)
+|C1 (X(UH), e;1I-+1/2, ¢I+1/2) -G (X(eﬂ), %, ¢I+1/2
+ ‘a'g (0 = PI)VTner2. (1 = PROVT, /2)‘ +|Ga(@T. 1)) - (3.81)

We have to bound each term at the right-hand side of (3.81). Firstly, note that due to the
definition of Modified Stokes projection T, the term

T T Tyo. . T T T
‘7 (V’7n+1/27 V¢n+1/2) +az ((l = Pm)Vipq)0. (1 = PM)V¢n+1/2)’
vanishes. For the other linear terms we have

T T T T
Moaer =1 1M1 T
’( n+lT L s ¢-r|;+1/2) < K’)/ 1“ L L “2

Y T 2
15100
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|a/2 (1 = Pl VT2 (1 - P{A)v¢1+l/2)| < Ka ||(1 = PR)VTnaso|” + % 0 = PLVer, o)

which are obtained by using Cauchy-Schwarz, Young's and Poincar€'s inequality. Bounding

nonlinear termsis the most challenging part of this analysis. We first write the difference as

T tn+ T tn
C1 (X(UH), e-nr+1/2, ¢;|1-+1/2) -G (X(enu)a %, ¢-nr+1/2)
T (ths T(tn
< ‘01 (X(UH), & 1/2 ¢I+1/2)‘ +| (X(%ul % ¢I+1/2) : (3.82)

For the first term in (3.82) we have ¢y (y(Uh), €7, 1 . 81,1 5) = c1 (x(UR). 7)1 . 81,1 ). since

theterm ¢y (x(uf). 41, @1, ,) vanishes. Adding and subtracting ¢y (x(u(tn). 75,5 @11 2)

to this remaining term we have
hy oT T T T T T
|Cl (X(Un)’ €120 ¢n+1/2)| = |C1 (X('Iﬁ)’ Mhe1/20 ¢n+1/2)| + |Cl (X(¢ﬁ), Mn+1/2> ¢n+1/2)|
+ |Cl (X(u(tn), n-rl;+]_/2’ ¢-r|‘;+]_/2)| .

So we go now term by term. The first one is bounded in a standard way with the help of the

definition of y asfollows

. T T T Y T 2
1 (0. sz Shn)| < K D] 1D 2193 21 < 2191
+Ky L (D2 + DRy 12) 1975, 1,1

For the second one we assume an inverse inequality holds i.e. for al v e X" there exists a

constant K independent from h satisfying
Vv < Kh2pv.
So we have

o1 (K (@), 1172 D jo)| < KIKBRIFAITX @MV, 1 oIV, 1l
3 1/2
< K (0 @mI?) 1908, 1,0lV 0,1 o

< Kty (Ighl? + g olP) V70,1217 + %3||V¢L1/2n2.
The third term is bounded using the regularity assumption on u as

<L

< 75IV8heasall + Ky Vg, 1l

o1 (r(UCt). 1,172 0L,110)

The second term in (3.82) could be written as

T(th) +T(tn) 7 )

C1 (X(enu), - 5 Pni1/2 =

T (thy T(tn
C1 (X(ﬂﬁ)v % ¢I+1/2)

T(ths T(tn
C1 (X (#n): % ¢I+1/2)

+
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and these are bounded as

T(ths T(tn
C1 (X(ﬂﬁ)v % ¢I+1/2)

< Ky ™ (IDRIP + 1Dy oIP) + 25967, ol

T(tnea) + T(ta) 1 )

C1 (X(¢H), R Gnage | < Ky (1931 + 1164 41P) + 151960 ol

through the regularity of T, (3.62) and the definition of y. It only remains the bound G, for
the analysis of the temperature part. Making use of Lemma 3.15 and usual estimations, we

bound each component of G, as follows.

(T (tn+1) - T(tn)

- — 0T (tns1/2), ¢I+1,2) < Ky 17T (@)1 + %IIWLUZIIZ

T (ths T(tn -
(v(% - T(tml/z)) , V¢L1,2) < Ky M0V T @I + ZelIV8h, P
T(the1) + T(tn
s ((l _ PKA)V(% — T(tn+1/2)) , (I - P-,[A)V(p-rl;_'_l/z)

[07
< Kagr?(I - Py)aEvT (@)1 + fazn(l — PiVeL 10l

T(t + T(t
C (U(tn+1/2)7 M = T(ths1/2), ¢I+1/2)

5 ,¢I+1,2) < Ky 02V T (@)1 + 118||V¢L1/2u2

+ty (X(uan)) U2,

Putting all the bounds in (3.81) results with

g, 117 = llgnll?
2t

+ (1 + DRI + IDm_y P) V7], ol + 072 (Il + I 1P) 1V, 112
+ (IDmp? + Dy I7) + (Ipl® + ligh_ol1%) + = (15T @1 + 197V T ©1F) )

+t%aall(1 = PR)OZVT I + e2ll(l - PIA)VTnﬂ/zllz}- (3.83)

T T
a2 _ Maer =1
+ 2194112l + 210 = PVl < K{y e

. . “ . h _ . .
One getsthe following estimate for C by writing ®" = ¢ﬁ+1 21N (3.80) and performing exactly

same analysis done for T.

S, 1117 = ll65112 , D
2t 2

+ (1 + IDmI? + IDm_yP) V7S, o7 + b2 (I + i 1) 1V7S, 112

+ (IDmg? + Dy I7) + (Igil® + lighy_11%) + 74 (IGFC O + 107YCDIP) )

+lagll(l - PR)OZVT @) + esll(l — P%)VC,M/ZHZ}. (3.84)

C C
a3 _ n -n
1945 1/2l? + S = PRVEE, 1ol < K{Dcl( =
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We now proceed to the analysis for u. Setting v = Pniq 121N (3.78) gives

g, 4112 = ligplI?
2t

']34.1 - qﬁ u
T ’ ¢n+1/2

+ 2Dy, 1 ol” + aall(l = P, o I + Da iy, 1 oll <

+ ‘ZV (Dﬂgu/za D¢g+1/2) tay ((l - PE)D’]gH/z’ (- PE)D‘%H/Z)

_ t + p(t
+Da! (’Ig+1/z’ ¢ﬁ+1/2) B ( P1) + Pltn) n+1)2 P _ Q" v 'Vh)

tn+ tn u
Co (X(ﬂﬂ)a w ¢n+1/2)

+ |Co (e (U, 75,12 ¢ﬁ+1,2)|

+ +

tn+ tn u
Co (X(¢ﬁ)a w ¢n+1/2)

+BT (g(n-nr+l/2)’ ¢ﬁ+1/2) +pfc (9(77%+1/2)7 ¢ﬁ+1/2) +p7 (9(¢I+1/2)a ¢ﬁ+1/2)

+Bc (g(¢ﬁ+1/2)7 ¢ﬁ+1/2) + ’al ((I - PE)DUnﬂ/Z, (I - PE)D¢ﬁ+1/2)’ + |G1(¢-r|1-+1/2)| : (3-85)

We first bound the linear terms again. Clearly,

-1
|2V (D"g+1/2’ D¢ﬁ+1/2) ta ((l - PE)D’?ﬁJrl/z’ (- PLLJ)D¢g+1/2) +Da (Uﬁﬂ/z’ ¢ﬁ+1/2)

B ( P(thi1) + p(tn)

> —qh,V-vh)zo

by the property of Modified Stokes projection. For the others,
sy = TIn
T

o1 ((1 = POYD U2, (1 = PIDY,, )| < Kaw (1 = POD Ul + 10 = PODY, 1 1P

Ma-mlF v
< Ky b o4 z)HWLl/zllz

Da!
Br (90,1/2)- Fherj2)| < KDABZNGIE g, 0l + =7 194,121

Da!
B (981, 1/2)- Bs12)| < KDaBZIIGIZ o1 o2 + 7 195 2ll°

Da!
Be (9015, 1/2): Bsj2)| < KDBBRIGIZ NG, 1l + =7 18012l

Da1
e (9(05,1/2): Baaj2)| < KONG5, 1 /21 + =580, 11217

are obtained through standard estimates. We now pass to nonlinear terms. The first term is

decomposed into three terms as in the temperature case as

‘CO (X(UH), Mhi1/2> ¢ﬁ+1/2)‘ < ’CO (X(u(tn))’ Mhi1/2: ¢ﬁ+1/2)‘ + ’CO (X(ﬂﬁ), Mhi1/2> ¢ﬁ+1/2)‘

- |C° (@) 12 ¢ﬁ+1/2)| (3.86)
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and

_ 4
|Co(X(U(tn)),'Iﬁ+1/2, ¢ﬁ+1/2)| <Ky 1||Dﬂﬁ+1/2||2 + E)”D¢g+1/2”2 (3.87)
)4 _
[0 (). .1 22 B112)| < 551082l + Ky I, I (DRI + 1Dy ) (388)

4 11—
00 (X (#2). 7.1/ Bs110)| < 55D n.1/2ll” + Ky M Dy ol (IR + gy 4 17) (3.89)

are obtained similarly as done before. The bounds for remaining nonlinear terms are obtained

viathe help of (3.60) and regularity assumptions on u and are given below.

U(tns1) + U(tn)

4 _
‘CO(MH), f,(pﬁﬂ,z) < Z)nmﬁﬂ,znz + Ky (IIgpll7 + lighoI7)  (3.90)

tn+ tn u
‘Co (X(Ug), w ¢n+1/2)

v —
< ogIPPhes2ll® + K™ (IDhlf + Doy 7). (3:92)

Hence the last term we should bound is G1. We bound it term by term as follows

(U(tn+1) - u(tn)

— 4
- — BU(tns12), ¢ﬁ+1,2) < Kt Itu@IP + 551D, ol

U(thsa) + U(tn)

4
2y (D 5 - Du(tn+1/z),D¢ﬁ+1/2) < KeWgg DU + 55 1D¢n, 1

a1 ((I -P) (Dw - Du(tn+1/2)) (- PE)D‘ﬁﬁJrl/z)

a
< Kaxr(1 - POEDUDI? + 21 — PG, P

Da-1 (U(tn+1)2+ u(tn)

_ Da?
- u(tn+1/2),¢ﬁ+1/2) < KDa 'rlgzu(®)I” + ?Wﬁu/z“z

t + p(t
(M = Pltne1/2). V - ¢ﬁ+1,2) < K Hagp®I> + %umﬁwnz

2
T(the1) + T(t Da!
Br (g(% - T(tn+1/z)) : ¢ﬁ+1,2) < KBTS T IO TN + =7 1195, 1/2l1°
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C(tns1) + C(t Dat
Be (g(% - C(tn+1/2)) : ¢ﬁ+1/2) < KDaEIIgE 1o COI + — =, ol

U(tns1) + U(t
+Co (U(tn+1/2), M = U(tn+1/2), ¢ﬂ+1/2)

u(t, + u(t _ %
+CO(X(U(tn)) — U(tn+1/2), w ¢g+1/2) < Key H162Du@)l? + %nmngn?

Now rearranging the obtained bounds give

i, 111 — lighll> o Dat
— Dl + 71“(! = PODGR 1ol + = 9h,0)0l” <
K{V_l

2
M1~ T _
|+ (Dl (1 + DRI + 1Dy ) + (Dl + IDag_y1)
_ 2
+ (IRl + 14 117) + D, 1l (Il + d_111%) ) + @a [|(1 = PE)DUnsas2]|
+DaBF 012, (I, 1/l + kpm,1,211%) + DABZNGIZ, (1175, 10l + 165, 1,11%)

+74 (v HIRU®IZ + 7 + WIGZDU@IP + eall(l - PYIZDuU)I? + DaHloZu )

+v 167 p@I? + DaBF gl Io7T @17 + Daﬂé||g||§o||at20(t7||2)} (392

Now, we combine the resulting inequalities by adding (3.83) and (3.84) to (3.92) side by side
and finally get

I9haall® ~ gl on,ll® — il NGl —WRI®) oy o v o
2r + 2 + o7 + VD, 1l +§” P12l
D Da_l 1 a?
+7C||V¢ﬁ+1/2”2+ > 6121l + 7”(' - PE)]D)¢ﬁ+1/2||2 + 7”(' - P-II\-/I)V‘]):;+1/2“2
u o _ U2 T _ T2 c _.c|?
220 —P{,I)V¢I+l/2||zs|<{v—1 Toa ZWnfl -1 T ") ya et 0
T T

+ (v DRy, 17 + Y IV 10l + DEHIVNS, 1 l7) (1 + IDhIP + DA, 1)

+(t 7+ DY (IDnHP + Dy + BRI + ligh_y17) + 7 (gl + llgh_y %)

X (v HIDmg, 1 ol + ¥ M IVIR, 10l + DEHIVIS, 1 l7) + 74 (v HIGPU@)IP

+( + v FTDU@I? + aall(t - PHIDU@I® + DaafudI? + v~ 4107 p)I
+Dagz gz 107 T ®)IF + Das2 gz IoFCOIF ) + 7% (y T +y o7 vT @)1
+all(l = PRAZVT®I7 ) +74 (DHIGTC®IP + DSHIGZVCDIP + ell() — PRIZVCHI)
+D3B7 012, (Im,1/0l1% + lom,1,211%) + DABZNGIZ, (1175, 10117 + 165, 1,11%)

2
+a1 [|(1 = P)DUneas2||” + e2ll(l = PR)VTneasall® + asll(l - P%)chl/zllz}- (3.93)
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After this point, we use the approximation properties (3.15)-(3.18) to finalize the convergence
result. We should point out that, first three term at the right-hand side of (3.93) need special

treatment. We only show the first one since the others will follow analogously.

Clearly

u u 2
Mhir —Tn

T

2 t
1 n+1
[
T tn

Using the Cauchy-Schhwarz and generalized triangle inequality, one gets

u u
,’n+]_ - ’In
T

thi1 L
2 ths 2 12df ti
1 ! A 1 A
s(— | 1-||atn“||2dt) SR (— [ toareet).
T T T

th th

S~——

Next, using the standard interpolation estimates asin [42] we have

u ui2
M1~ 7n

T

yt < Kv‘1h25+2||6tu||fz(o,t*;HM(Q)). (3.94)

Similarly, for n" and n° we have

-
y_l % < K’y_lhzs—'—zllat-rllﬁz(o’t*;Hs+1(Q)) (395)
and
77C 1 77% ’
-1 n+ —1j2s+2 2
D | 2| < KD IR g s - (3.96)

Now, multiplying both sides of (3.93) with 2r, summation over the time levels from 1 to n,

making use of approximation properties and inserting (3.57)-(3.59) and (3.94)- (3.96) yield
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n
(I sl + Nl 1117 + 1S, 1) + 7 [Z(2v||ID>¢:Ll/2||2 + V196,121 + Dell V(i lI°)
i=1

n
+7 ) (@ll(l = YYD, 57 + aall(l = Py)VeL, ol + asli(l = PRVES, %)
i=1

n
+7 )" Da gl I
i=1

K{ (IS + g1 117 + T 11%) + hM( YOIz 0 psrsgay) + ¥ IO T I 20 103000

+DgYocCl? +h?S (v Hjull?

L2(ot; H5+1(Q))) L2(0t;Hs+1()) ty ||T||L2(Ot* JHS(Q)

+DSUIC o o) ) (L P gy ) + 072+ 97+ DEY

(h Ul (o, HM(Q))) ( ORIz 02y *+ O+ VN DUIE 1 20y
+aall(l = PYIDUIZy 0, 2y + DA ORIz g 2y + Y IOEPIR 2001 200y
+DABTNGIZNITI2 o0 2y + DIENNGNITCI g 2 ) + 7 (Y I Tz 00120

+y Y02VTI? +agll(l = P)OVTI ) + 74 (DZHeECI?

L2(0.t;L2(%2)) L2(0t;L2(Q2)) L2(0t;L2(Q))

D MOEVCI 012y + @l = PRITTVCI g 2y ) + DI ITI 2 1 1501))
+DaﬂCHg”2 (hZSHC”LZ(Ot* Hs+1)) + H2 (allluHLz(Ot* HS+1(Q)) + QZHTHLZ(Ot* HS+1(Q))

n

+3l[Cll o, HM(Q)))+ Wt > (v Hutiaa2)l g + ¥ T (Gea/2)l2,, + DgHIC(ta1/2)l2,1)

i=1
X (Il + 1611%) + (7 + 72+ DMyr > (g4 117 + i)
i=1
+DagFldlZT ) (ke 1P + gl 1I) + DaBZligli%7 > (IoC11° + ||¢F+1||2)} (3.97)
i=1 i=1

Using the regularity of u, T,C, i.e. u,T,C € L™ (O, t: H5+1(Q)), we can combine last three
summeation terms as follows.

n

e > (Vi) + ¥ T (Gea/2)l3,1 + DGHCtaas2)I2. ) (164417 + 16111%)
i=1
n

n

+0hy DT Y (I8P + 19117) < Ke(v ™t + 75+ DGt + 1250 ) [P
i=1 i=1

(3.98)

n

n
Das? g% ) (6 I7 + 1g1,111%) < DaBZIgli%7lig,lI° + DaBF g% > ligf 1P (3.99)
i=1

i=1
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and

n

n
Dag2llgli?, 7 Y (I6C1 + 154 11%) < Das2ligl 7ligS, ;I + Das2ligizr > I#CI. (3.100)

i=1 i=1

So the only remaining thing we have to do isto estimate (|41 + ll¢1 [I* + 116 |°. We point out
here that o is chosen to be uf}, To = T§ and Co = Cl) to give ¢ = ¢] = ¢ = 0. Note that
the error equations and estimations for ¢, ¢I and ¢§ are same as for time step n except the
nonlinear terms. lllustratively, we bound nonlinear terms of velocity equation and the others

will follow analogously.
To begin the estimation, we add and subtract co (ug — u(to), YWeltuty), vh) to have

t t
‘Co (U(t]_/z), U(t]_/z), Vh) + Co (UB, el]J_/Z, Vh) + Co (eg’ w, Vh)

(U(t) M ) < |co (ultay2). u(ty2). V") - (u(t) M, )

+

u(te) + u(t
Co (uf, € 5. V") + 00(98, ulto) + ufty . (1),vh) .

and set v = ¢‘{/2. The second term in (3.101) is treated exactly as in (3.87)- (3.91). For the

first term we write

‘CO (u(te/2), u(t2), 85)5) — Co (u(to) M

¢1/2) < Kr? |Co (u(to), 6t2u(to), ¢2/2)|

+ K [co (o), ultsya), 84,
through the help of a Taylor expansion. Clearly,
K12 |co (uto). Pu(to). ¢%,)| < K (VIS ol +v77).
For the other term we use (3.9) and the third part of Lemma 3.16 to have

T ’CO (atU(tO), u(tl/Z)’ ¢T/2)‘

IA

T(IBu@DU(ty2)lii=(@) + IFDU@lIuts2)liL=(e)) 15,

< K(2+11g41?)

A

thanks to the fact that ¢}, = 14! Putting these bounds obtained for nonlinear terms into the

error equations for the first time level and combining the inequalities asin timelevel nyield
1317 + llp1 11 + 116517 < K(h?® + (@1 + @2 + az)H*® + 7%) (3.101)
where K depend onu, p, T, C, v, a1, a2, a3, BT, Bc, -
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Finally, using the theorem assumptions KDas2||gll%,r < 3

< 1, KDgg2|lgllZr < % and writing
(3.101) back into (3.97) give us

n
(Ip 2l + llgg, 12 + 118, 1%) + 7| D" @AIDGY, 1 ol + VIV, 1 ol + DelIVES 3 lIP)
i=1

n
+7 3 (el = PG,y ,lI7 + all(l = PRIV, ol + asli(l = PROVSS, 5117
i=1

n
+TZ Da_1||¢iu+1/2||2 < K(h23 + (a1 +ap + CL’3)H2S + T4)
i=1
n

+KT " (I8P + g 112 + 11gC12)

i=1
The result is thus obtained via the application of discrete Gronwall’s Lemma and a triangle

inequality. 0
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CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH

Thisthesis studied the finite element analysis of projection-based stabilization method for the
steady-state natural convection equations in a classical enclosed domain including the solid
media and the Darcy-Brinkman model of time dependent double-diffusive convection equa
tions in a confined porous medium. By means of this method, global stabilizations are added
for both velocity variable, temperature variable for both systems and additionally for con-
centration variable for double-diffusive convection equation and these effects are subtracted
from the large scales. We established the rigorous finite element error analysis of the scheme
for the velocity, temperature, concentration and pressure and proved that with the appropriate
choices of mesh scales and the stabilization parameters, the optimal errors can be obtained.
We examined performance and accuracy of the method and compared the results with other
published data. The numerical results revealed excellent agreement with other published data
and validation of theoretical results.

There are some possible research directions that could be inspired from this thesis. Firstly,
the stabilization idea proposed here could be applied on some other buoyancy driven systems
such as natural convective flows under a magnetic field or thermal convective flows under
influence of mechanical vibrations in porous media. One could adopt the method for a natural

convection system of two immiscible fluidsin an appropriate enclosure.

Also, domains considered here for both systems should be extended and new numerical tests
should be carried out. L-shaped domains, backward facing steps and rectangular domains

with infinite length are some examples of interest.

We carry out all the estimations with continuous finite elements in this study. A combination

of Discontinuous Galerkin (DG) methods, which are known to have several advantages on
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continuous finite element schemes, with the projection based stabilization idea applied on
buoyancy driven flows could be more effective than the one studied here. Lastly, a very
interesting and effective method, namely the defect correction method should be tried on
natural convection systems presented in this study.
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