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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

MATHEMATICS

JUNE 2011



Approval of the thesis:

NUMERICAL ANALYSIS OF A PROJECTION-BASED STABILIZATION METHOD

FOR THE NATURAL CONVECTION PROBLEMS
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ABSTRACT

NUMERICAL ANALYSIS OF A PROJECTION-BASED
STABILIZATION METHOD FOR THE NATURAL

CONVECTION PROBLEMS

Çıbık, Aytekin Bayram

Ph. D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Songül Kaya Merdan

June 2011, 88 pages

In this thesis, we consider a projection-based stabilization method for solving buoyancy driven

flows (natural convection problems). The method consists of adding global stabilization for all

scales and then anti-diffusing these effects on the large scales defined by projections into ap-

propriate function spaces. In this way, stabilization acts only on the small scales. We consider

two different variations of buoyancy driven flows based on the projection-based stabilization.

First, we focus on the steady-state natural convection problem of heat transport through com-

bined solid and fluid media in a classical enclosure. We present the mathematical analysis of

the projection-based method and prove existence, uniqueness and convergence of the approx-

imate solutions of the velocity, temperature and pressure. We also present some numerical

tests to support theoretical findings.

Second, we consider a system of combined heat and mass transfer in a porous medium due to

the natural convection. For the semi-discrete problem, a stability analysis of the projection-

based method and a priori error estimate are given for the Darcy-Brinkman equations in
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double-diffusive convection. Then we provide numerical assessments and a comparison with

some benchmark data for the Darcy-Brinkman equations.

In the last part of the thesis, we present a fully discrete scheme with the linear extrapolation

of convecting velocity terms for the Darcy-Brinkman equations.

Keywords: Projection-based stabilization, finite element method, natural convection equation,

error analysis, double-diffusive convection.
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ÖZ

DOĞAL KONVEKSİYON PROBLEMLERİ İÇİN
PROJEKSİYON-ESASLI KARARLILAŞTIRMA

YÖNTEMİNİN SAYISAL ANALİZİ

Çıbık, Aytekin Bayram

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Songül Kaya Merdan

Temmuz 2011, 88 sayfa

Bu tezde, kaldırma tesirli akışları (doğal konveksiyon problemleri) çözebilmek için projeksiyon-

esaslı kararlılaştırma yöntemini ele aldık. Bu yöntem global kararlılaştırmanın tüm ölçeklere

eklenmesi ve ardından uygun fonksiyon uzaylarına projeksiyon vasıtasıyla tanımlanan kalın

ölçeklerden bu etkinin geri çözünümünden ibarettir. Bu vasıta ile kararlılaştırma sadece

küçük ölçeklere tesir eder. İki farklı kaldırma tesirli akışı projeksiyon-esaslı kararlılaştırma

yöntemiyle ele aldık.

İlk olarak, klasik bir kapalı ortamda katıdan akışkana ısı transferinin durağan halli doğal

konveksiyon problemi üzerinde yoğunlaştık. Projeksiyon-esaslı kararlılaştırma yönteminin

matematiksel analizini verdik ve hız, sıcaklık ve basınç değişkenlerinin varlık, teklik ve

yakınsama özelliklerini ispatladık. Ayrıca, teorik bulguları destekleyen sayısal testleride sun-

duk.

İkinci olarak, gözenekli bir ortamda doğal konveksiyon vasıtasıyla gerçekleşen birleşik ısı ve

kütle transfer problemini ele aldık. Yarı-ayrık durumda projeksiyon-esaslı metodun kararlılık
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ve öncül hata analizini çifte çözünümlü konveksiyonda Darcy-Brinkman denklemleri için

verdik. Ardından Darcy-Brinkman denklemleri için bazı referans değerlerle kıyaslama ya-

pan sayısal ölçümleri verdik.

Tezin son kısmında Darcy-Brinkman denklemleri için konvektif hız terimlerinin lineer dışdeğerlerini

içeren tam ayrık bir şemayı sunduk.

Anahtar Kelimeler: Projeksiyon-esaslı kararlılaştırma, sonlu elemanlar yöntemi, doğal kon-

veksiyon denklemi, hata analizi, çifte dağılımlı konveksiyon.
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CHAPTER 1

INTRODUCTION

This thesis deals with the analysis of the natural convective flows inside enclosures. Such

flows occur by the effect of body forces which are formed due to the density differences along

with the gravitational impacts. In other words, as the fluid touches to a hot or cold surface, a

density difference occurs due to the temperature gradients near the vicinity of the mentioned

surfaces. Thus, the lighter fluid moves upward and the denser fluid moves downward. Finally,

a natural convective flow occurs due to the gravity effect on a such kind of a density gradient.

In contrast to the case of forced convection, in which the flow is driven by some external

effects i.e. a pump or a fan, density differences causing the flow formation arise as a result of

temperature changes in the system. Along with the temperature differences, some additional

effects which change fluid density, like concentration differences, could also be seen on some

natural convective systems. The mentioned body forces are referred as buoyancy forces and

so the flows affected by these forces are called buoyancy driven flows.

We consider two different type of buoyancy driven flows in this thesis. The first one is a

classical natural convection problem in a closed non-porous cavity. The buoyancy force forms

by the effect of temperature differences. For the second one, we study on porous enclosures

in which concentration difference accompanies temperature differences to change the fluid

density. Those kind of natural convective flows are known as double-diffusive, thermohaline

or thermosolutal convection. For both cases, the flows are convection dominated and coupling

between velocity, temperature and concentration fields is pretty strong. So, various kinds

of stabilization techniques are developed to approximate these flows. Departing from these

forewords about the character of buoyancy driven flows, we separate this chapter into three

main parts to make explanations for each topic in detail.
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1.1 Classical Natural Convection in Non-Porous Media

1.1.1 Physical mechanism

The flow in natural convection is induced by the buoyancy force arising from the temperature

differences. Although the flow motion due to the natural convection is slower than the forced

convection, flow character formed near the heat transfer surfaces are similar. In general,

there are two different configurations for natural convection occurring in an enclosure. In

first one, the system is heated from below and cooled from above. Such kind of natural

convection is called the Rayleigh-Benard convection. If one heats the system from above and

cools from below, the character of the flow will change totally. In such kind of a system, a

convective flow is not observed due to the gravity effect. The denser fluid will always be at

the bottom and there is no flow motion opposing with the gravity effect. The heat transfer

coefficient equals to unity and the heat transfer occurs only by conduction. In the case of

Rayleigh-Benard convection, the heavier fluid will be on top of the lighter fluid, and there

will be a tendency for the lighter fluid to topple the heavier fluid and rise to the top, where

it will come in contact with the cooler surface and cool down [13]. When the Rayleigh

number exceeds 1708, the buoyant force overcomes the fluid resistance and initiates natural

convection currents, which are observed to be in the form of hexagonal cells called Benard

cells [13]. In second configuration, horizontal boundaries of the enclosure are adiabatic, one

of the vertical wall kept cold and the other wall kept hot. In contrast to the Rayleigh-Benard

convection, altering the hot and cold walls do not change the flow character since the gravity

will always be perpendicular to temperature gradients. Double pane window problem is a

typical example which gives rise to such a system. Fluid motion which forms in natural

convective heat transfer in pane cavities is driven by the buoyancy force. This force depends

on the temperature difference between indoor and outdoor environment, and is characterized

by a rising fluid at the cavity hot wall and a descending fluid at the cavity cold wall, [71]. Thus,

the system models a rectangular enclosure in which vertical walls present indoor and outdoor

panes, where the top and bottom sections are adiabatic parts. The effect of wall conductance

has to be considered carefully for this kind of problems. Neglecting the thickness of the solid

body outside the fluid results in different systems than the one considered here. If the solid is

not included, subtracting the heated boundary adds an extra term on the right hand side of the

energy equation. This term can be avoided only when the solid region is included [11].
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1.1.2 Governing equations

The total system of equation consists of a Navier-Stokes system coupled with an energy equa-

tion. We stick on a steady-state formulation for natural convection flows. The Navier-Stokes

system for a viscous incompressible fluid is build up from a combination of mass balance

equation and a momentum equation [55]. The main difference in a natural convection system

comes from the body force term and coupling of an energy equation. The key point in the

system we study is the assumption of Boussinesq approximation. It states that, we neglect the

density differences seen on the system unless they are multiplied with the gravity. We now

explain the derivation of the equations of a natural convection system for a 2-D flow in detail.

We use a control volume for the formulations we derive and they can be extended to general

cases trivially.

Basically, the principle of mass conservation states that mass can neither be created nor de-

stroyed. For a steady flow, the quantity of mass inside the control volume stays unchanged.

Assume that the flow enter from left side of the volume and exit from right side of the volume

with the velocity v = (vx, vy) and density ρ. Entering mass flow rate to the volume is ρvxdy

and ρvydx for x and y directions respectively. Exiting mass rate to the volume is ρ
(
vx +

∂vx
∂x

)
dy

and ρ
(
vy +

∂vy

∂y

)
dx for x and y directions respectively. Thus, using the principle of mass con-

servation we have

ρvxdy + ρvydx = ρ

(
vx +

∂vx

∂x

)
dy + ρ

(
vy +

∂vy

∂y

)
dx. (1.1)

Simplifying (1.1) and dividing both sides with dxdy, one finally arrives,

∂vx

∂x
+
∂vy

∂y
= 0

which is the equation of continuity.

We state the momentum equation next. Newton’s second law of motion states that ”the net

force acting on the control volume is equal to the mass times the acceleration of the fluid

element within the control volume, which is also equal to the net rate of momentum outflow

from the control volume” [56]. One can express this statement in mathematical way as M.a =

F, where M is the mass of the fluid, a is the acceleration and F is the net force. Let us

redefine these quantities in means of our system now. Total mass M is given by M = ρ dxdy,

total derivative becomes dvx =
∂vx
∂x dx+ ∂vx

∂y dy, acceleration is ax = vx
∂vx
∂x + vy

∂vx
∂y in x direction.
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The force contains viscous, pressure and body forces. These forces in our volume become,

ν∂
2vx
∂y2 − ∂P∂x +ρ f in x direction with pressure P, kinematic viscosity ν and body force ρ f . Finally,

reformulating the Newton’s law with these new definitions gives us the momentum equation

in x direction, which is

ρ

(
vx
∂vx

∂x
+ vy
∂vx

∂y

)
= ν
∂2vx

∂y2
− ∂P
∂x
+ ρ f . (1.2)

Derivation of same equations in y direction, assumption of Boussinesq approximation, de-

parting from control volume to general case and rewriting the system in a compact form gives

(v · ∇) v = −∇P + ν∇2u + ρ f (1.3)

∇ · u = 0 (1.4)

along with the continuity equation. The body force term ρ f is of great importance. This

buoyancy force could be expressed as ρ f = ρg. The variation of the density of a fluid with

respect to the temperature at a constant pressure, namely the thermal expansion coefficient β

could be formulated in terms of density and temperature differences of the system as

β =
−1
ρ

ρ0 − ρ
T0 − T

(1.5)

where ρ0 and T0 denotes the reference density and temperature. Thus, one arrives ρ f =

β g (T − T0) after some modifications on (1.5) and assumption of Boussinesq approximation.

The final equation to derive is the energy equation. The energy balance of a natural convection

system could be expressed as: the total difference of energies that enters and exits the system

is zero. In other words, the amount of the total energy convected by the fluid out of the

system and the amount of the energy installed into the system by heat conduction are equal.

Assuming a constant pressure and a negligible viscous dissipation, we give this fact in terms

of a mathematical relation as

−cp T∇ · (ρu) + ∇ ·
(
ρ cp Tu

)
= ∇ · (κ∇T ) + γ (1.6)

where cp is the thermodynamics coefficient, κ is the thermal conductivity parameter and γ is a

heat source. So, one gets a system of natural convection via combining (1.3), (1.4) and (1.6).

There are various non-dimensionalizations of this kind of systems. We use the one given in

[11] with a very detailed process of non-dimensionalization.
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1.1.3 Real life applications and previous work

Due to the wide range of applications, many scientists are increasingly attracted to natural

convection flows. Some of the commonly used buoyancy-driven flows are observed in nature;

such as atmospheric fronts, katabatic winds etc., and in industry; such as dense gas dispersion,

natural ventilation, solar collectors, insulation with double pane window, cooling of electronic

equipments, cooling of nuclear reactors and so on. In solar collectors, heat exhaustion must

be prevented to make the system work efficiently. Natural convection occurs between the

solar heat absorber and the conductive covers. One should minimize such kind of natural

convection to prevent the energy loss. Consideration of natural convection in a double pane

window system is also crucial. The distance between the panes must be arranged appropri-

ately to block the natural convection. Cooling of electronic equipment is due for making them

work properly. Natural convection is preferred for cooling such kind of equipments since it

is cheap, safe and simple. Alienation of circuit boards and chips is only allowed via natural

convection and it defines the working configuration of the system [30]. Consideration of nat-

ural convective flows is also important for the arrangement of indoor air quality and selection

of appropriate heating and cooling systems in houses.

Since the system we study has too many applications in many engineering branches, the num-

ber of publications concerning the natural convection equations is almost countless. We men-

tion here which are of importance especially in point of a mathematical view. Publications

concerning the computational results rely on various numerical techniques. The most out-

standing study concerning the computational results on natural convection problem was pub-

lished by de Vahl Davis [16]. In [16], the system is solved using a finite difference scheme

based on an implicit alternating direction method (ADI) and his findings are still accepted

as benchmark results for new studies. Hortmann et al. used the finite volume method for

the problem and take a step further in terms of larger Rayleigh number in [27]. Using a

streamfunction-vorticity approach, Shu and Xue performed a differential quadrature method

in [65]. In noteworthy study of Massarotti et al. [51], a characteristic-based split (CBS)

scheme was performed in a semi-implicit form. Manzari et al. [50] studied on application of

an artificial viscosity based scheme concerning the turbulent thermal convective flows. As a

benchmark computational study, the work of Wan et al. [70] deserves the attention in which

the numerical solution of the system is studied both with a finite element method and a dis-

5



crete singular convolution. From the aspect of finite element error analysis, the studies on

natural convection equations are limited. Boland and Layton studied the finite element error

analysis of the system in [11] and [10] for steady-state and time dependent cases respectively.

In [9], Boland et al. studied the finite element error of the system along with the non-physical

dynamics induced by the discretization.

1.2 Double-Diffusive Convection in a Porous Medium

1.2.1 Porous medium

A porous medium is a material which contains tiny spaces connected to each other inside a

solid frame. A solid or a liquid may pass through these spaces. We observe so many examples

of porous media in nature and our daily lives. Sea sand, human lungs, a piece of bread and

wood are some well known instances that we encounter everyday. A typical porous media

must possess two important properties. First, it must contain minute spaces compared to its

own scale and these spaces may contain different kind of fluids and/or mixtures such as water,

oil and air. Second, the material must be permeable. In other words, any fluid could enter

from an edge of the frame and exit from the other edge. The structure of the pores in a porous

medium leads the general behavior of the medium. The most important pore properties are

the porosity, permeability and the flow channel.

Porosity is the ratio of the volume of total minute spaces to the volume of whole material. It

takes values in between 0 and 1 depending on the material properties. For instance, porosity

is bigger for heat insulation materials and fibre filters, whereas it is very small for metals

and some volcanic rocks. Permeability characterizes the amenity of the fluid flow under a

pressure gradient inside the porous medium. It was first stated by Henry Darcy in 1856 and

the unit of permeability took after his name. Permeability is a macroscopic property of the

porous medium and it is also related to the geometry of the medium. Another characteristic

property of a porous medium is the flow channel. Flow channel inside medium are mostly not

a straight line and it is longer than the length of the porous medium. The considered media

may contain more then one flow channel.

6



1.2.2 Governing equations

Conservation equations for a porous media are derived by considering means for mediums

that include so many spaces. If the space are saturated by a single fluid, the flow is said to

be single phase and if there are two distinct fluids the flow is double phased. Darcy found a

relation about the movement of fluid inside a porous medium after his experimental studies.

This is known as Darcy’s law and given by

v = −K
ν

(∇P + ρg)

where K is the permeability. Brinkman extended the Darcy’s law by consideration viscous

diffusion effects and stated it as

∇P = − ν
K

v + ν∇2v.

Today, it has still not been understood well that which model is more valid under what con-

ditions. In a recent article of J-L Auriault, the concept of this validity was discussed [3].

According to his conclusion, the Brinkman model is valid when describing flows through

swarms of fixed particles or fixed beds of fibres only, and under precise conditions. This

restriction could be the answer of the question that, why the number of studies carried out as-

suming the Brinkman law is small than the Darcy’s law. In this study, we assume the validity

of the Brinkman’s extension.

Conservation equations are derived in the same way as in the previous section. We only state

the differences for the porous medium in this part. Continuity equation is exactly same. For

the momentum equation, we have

ρ

(
1
ε

∂v
∂t
+

1

ε2
(v · ∇v)

)
= −∇P + ν∇2v − ν

K
v + ρg (1.7)

with porosity ε and permeability K. Note that this is a classical momentum equation as derived

in previous chapter except the installation of the Brinkman extended Darcy’s law.

For the energy balance, we assume an isotropic material in which the heat conduction between

the solid and fluid phases are parallel and there is no conduction of heat from one phase to

another. Thus heat balance equation becomes

σ
∂T
∂t
+ v · ∇T = ∇(γ∇T ) (1.8)
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where, σ is the specific heat ratio and γ is the thermal diffusivity. Concentration equations are

formed in a very similar manner as in the temperature cases and it takes the form

ε
∂C
∂t
+ v · ∇C = ∇(Dc∇C) (1.9)

with mass diffusivity Dc. Finally, since we are dealing with the combined heat and mass

transfer in a porous enclosure, the body force term in (1.7) becomes

ρ f = ρg = ρ0{1 − βT (T − T0) − βC (C −C0)}g (1.10)

where the subscript 0 denotes a reference density, temperature or concentration. βT and βC

stands for the thermal and solutal expansion coefficients respectively. Combining (1.7)-(1.10)

with the usual continuity equation, one gets the system of double diffusive convection in a

porous medium. We do not emphasize on non-dimensionalization again. We use the one

given in [20] for the analysis we present.

1.2.3 Real life applications and previous work

Combined heat and mass transfer in a porous medium due to the free convection, which is

also known as double-diffusive convection has begun to attract scientists from varying fields.

Especially at last three decades, as the case of pure thermal convection in a porous medium

becomes better understood, attention is now turning to systems in which the density differ-

ences causing natural convection are occurred owing to coupled thermal and solutal effects.

The extensive interest to double-diffusive convection phenomena in porous media comes from

its wide existence observed in nature and applications in industry. It usually forms in seawa-

ter flow and mantle flow in earth’s crust naturally. Furthermore, examples in astrophysics,

electrochemistry, geophysics and metallurgy are commonly encountered. Especially, it has

crucial applications in geophysics such as extraction of oil confined by porous rocky mate-

rials. Double-diffusive flows are also related to contaminant transport in groundwater and

development of geothermal sources [54].

Two different configurations are commonly seen in the literature for the system of combined

heat and mass transfer in porous media. The first one consists of a porous enclosure with dif-

ferent temperature and concentration gradients at horizontal walls. For the second, adiabatic

and impermeable horizontal walls are accompanied by vertical walls with different temper-

ature and concentration gradients. In early studies [57] and [69], linear stability analysis of
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the first configuration was studied. Solution behaviors in a cubic porous cavity were given in

[64] according to the first formulation. Studies based on second formulation is more common.

Both analytical and numerical aspects of the flow with the Darcy formulation was analyzed in

[68]. There are some other noteworthy studies with Darcy formulation which involves bound-

ary layer flows [2, 6]. A very detailed numerical treatment of the Darcy-Brinkman model was

given in [20]. The influence of boundary and inertial effects on double-diffusive convection

was studied in [38] and the onset of convection along with the stability analysis was consid-

ered in [18] again using the Darcy-Brinkman formulation. In point of a mathematical view,

number of studies on double-diffusive convection is rather limited compared to engineering

considerations. In the early study of Siegmann and Rubenfeld [66], stability of conductive

solutions of a double-diffusive system was considered. Bennacer et al. carried out a numeri-

cal study for a Darcy-Brinkman flow of double-diffusive convection within a vertical circular

annulus in [7]. A Galerkin finite element method applied to a Darcy model was given in [49].

Mohamad and Bennacer provided a numerical treatment for a Darcy-Brinkman flow in both

three and two space dimesions in [53]. Kramer et al. studied the boundary element solutions

of a Darcy-Brinkman system in [41] which is very similar to one considered here. Although

there are a wide range of publications concerning the continuous dependence and structural

stability of solutions about the double-diffusive convection in a porous medium [59, 46, 47],

topic of finite element error analysis on such kind of systems has not been considered yet. To

do authors best knowledge, the error estimates of the finite element method with a projection-

based stabilization idea applied to double-diffusive convection in porous media are not yet

available.

1.3 Stabilization Methods

Classical natural convection problem in fluid mechanics occurs in an enclosed domain, [40].

For natural convection in enclosures, a boundary layer forms near the walls. Outside this

layer, a rolling core is formed inside the enclosure. The boundary layer and the core could

not be considered independent since the core is covered by the layer. There is a coupling

between the core and the boundary layer. This coupling is the main reason of the difficulty

in solving these systems analytically. Thus, numerical methods and experimental analysis are

used frequently, [72].
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The finite element method is one of the most popular and mathematically sound variants of

numerical approximation [48]. Standard Galerkin finite element method for natural convec-

tion type problems with high Reynolds or Grashof numbers generally results with inaccurate

approximate solutions and may display global counterfeit oscillations, [21, 52, 14]. This

disappointing behavior occurs since such methods lose stability and cannot adequately ap-

proximate solutions inside layers due to the dominance of convection terms and the strong

coupling between the unknown flow characteristics.

An interesting property of the flows with small viscosity is the diversity of scales. These are

resolved small and large scales and unresolved scales. One of the main reason of failure of

non-stabilized finite element methods for turbulent flows is to attempt to define overall flow

character at once [33]. Thus the use of an appropriate stabilization mechanism for approxi-

mation of such flows is inevitable.

So many stabilization strategies are developed for finite element approximations in order

to cure mentioned disadvantages for the flow problems that we interest [63]. Among them

all, most popular ones are residual based techniques as Streamline-Upwind Petrov Galerkin

(SUPG) and Pressure-Stabilization (PSPG) methods, Large Eddy Simulation (LES) and Vari-

ational Multiscale Method (VMS). Analysis of some well-known stabilization techniques ap-

plied on a convection diffusion system was given in [15] and a comprehensive comparison of

various stabilization techniques applied on an Oseen problem was studied in [12].

In residual based techniques, numerical viscosity is added on all scales and this gives rise to

some problems due to the richness of flow scales. We refer the reader to [63] for a comprehen-

sive overview of such kind of stabilization mechanisms. Classical LES techniques attempt to

model only the character of large scales. Thus, various drawbacks like definition of appropri-

ate boundary conditions for large scales and commutations errors are encountered [48]. For a

more general discussion of LES models, see e.g., [8]. Among other stabilization mechanisms,

the emphasis of this study is on a rather new technique so called projection-based stabiliza-

tion which is a variant of (VMS) [29, 22, 45, 32]. VMS was first proposed in [29] and an

extension with a combination of Large Eddy simulation idea was given in [28] . A broad and

comparative investigation of various kinds of VMS method were studied in [37]. In classical

VMS approach, solution spaces are separated into coarse and fine scale spaces through an

overlapping sum decomposition. Here the coarse scale space is finite dimensional and fine
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scale space is infinite dimensional. Then one rewrites the variational formulation of the prob-

lem with a set of two equations for each equation component of the system. One equation

contains the test functions from coarse scale space and the other from fine scale space. So,

the fine scale equation contains infinitely many equations and in order to approximate these,

bubble functions which contains local higher order polynomials are used. An eddy viscos-

ity model is used to take into account the effect of scales which are not resolved by bubble

functions. This eddy viscosity model acts directly only on the bubble functions [36].

In this study, we consider a projection based VMS approach similar to the idea presented in

[34]. A noteworthy Guermond’s stabilization idea of subgrid viscosity concept makes the dif-

fusion acts only on the finest resolved mesh scale, [22], with the definition of solution spaces

via bubble functions. Based on the ideas developed in [22, 29], several multiscale decompo-

sitions have been proposed in the literature, [32, 35, 45]. Since then, considerable progress

has been made for the use of projection-based stabilization method both in mathematical and

computational analysis in past years, [25, 39]. The philosophy of the projection-based stabi-

lization is to use projections into appropriate function spaces in order to decompose solution

scales. In this way, the stabilization is added in different ways. In the method we use, finite

element spaces for all variables are defined for all resolved scales first. Then the large scale

spaces are defined via L2 projections. For turbulent flows, the effect of unresolved scales onto

resolved small scales are considered through a turbulence model. Examples regarding the

projection-based stabilization and the VMS applied on the natural convection problems are

very limited. The recent study of Löwe and Lube [48] discussed the error analysis of a varia-

tional multiscale scheme applied on a non-stationary system. A projection based stabilization

idea performed for the stationary case was considered in [14].

The main aim of this thesis is to upgrade the numerical models developed for buoyancy driven

flows in enclosures through making use of projection-based stabilization idea. Our another

goal is the transmission of the successful variational multiscale ideas which are presented

for turbulent Navier-Navier stokes equations in the literature and open a way to understand

turbulent natural convection phenomena better in the future.
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1.4 Chapter Descriptions

This thesis consists of four chapters.

Chapter 2 presents the analysis of classical natural convection problem in a non-porous

enclosure. In particular, a stationary system of equations of heat transport through combined

solid and fluid media is considered. After introducing the system, we present the mathematical

preliminaries and the scheme. Existence, uniqueness and stability issues of the problem are

discussed in the next section. After providing a priori error analysis for the velocity and

temperature variables, we give the error estimations for the pressure. Numerical assessment

of the problem will also be given by the end of this chapter.

Chapter 3 provides the finite element analysis of a natural convection problem, namely

double-diffusive convection in a confined porous enclosure. We present the mathematical

preliminaries and the projection-based stabilization scheme. We then investigate the stability

and error estimation of the semi-discrete problem. We perform some numerical tests to verify

both the theory and the effectiveness of the method next. A fully discrete scheme along with

a comprehensive error analysis follows.

Chapter 4 is dedicated to address the conclusions and discuss some possibilities for future

investigations.
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CHAPTER 2

NATURAL CONVECTION PROBLEM

In this chapter, we provide a finite element error analysis of the projection-based stabilization

method for solving steady-state natural convection equations. We consider the same type

projection-based stabilization technique of the steady-state Navier Stokes equations, [39]. As

in [39], we also define the large scale spaces on a coarser grid for the solution scales. Main

difference in the present work comes from the technical point of view, which is the coupling of

the Navier-Stokes equation to the energy equation. We first present stabilized finite element

scheme and give comprehensive error analysis of this coupled problem. We derive error

estimations for the velocity, temperature and pressure and show that these errors are optimal

with respect to the mesh sizes along with the choices of viscosity parameters. To evaluate the

performance and accuracy of the method, we provide numerical experiments.

���������������	����

Figure 2.1: Typical geometry of a double pane window problem.

One of the most common uses of the fluids is to transfer heat to solid bodies. So, it is necessary

to consider a coupled domain where the solid is included. We consider herein heat transport
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between solid and fluid media. This complex phenomena can be formulated as follows: let

Ωs,Ω f be disjoint polyhedral domains in Ω ⊂ Rd(d = 2, 3) where Ω is the regular bounded

open set. The steady-state natural convection equations including solid media are governed

by

−PrΔu + (u · ∇)u + ∇p = Pr Ra Te in Ω f ,

∇ · u = 0 in Ω f ,

u = 0 on ∂Ω f , u ≡ 0 in Ω −Ω f = Ωs, (2.1)

−∇ · (κ∇T ) + (u · ∇)T = γ in Ω,

T = 0 on ΓT ,
∂T
∂n
= 0 on ΓB,

where ΓT = ∂Ω\ΓB where ΓB is a regular open subset of ∂Ω. u, p, T denote the velocity,

pressure and temperature fields, respectively, γ is a forcing function, e is a unit vector in the

direction of gravitational acceleration and Pr,Ra, κ > 0 refer to the Prandtl, Rayleigh numbers

and thermal conductivity parameter, respectively. Furthermore, we consider the case κ ≡ κ f in

Ω f and κ ≡ κs inΩs where κ f and κs are positive constants. Figure 2.1 illustrates the geometry

of the problem we study on.

System (2.1) presents severe computational problems for large Rayleigh numbers. It is well

known that, the solution of (2.1) is unique under some restrictions on the Rayleigh and Prandtl

numbers. Uniqueness is lost for high Rayleigh numbers, [61]. We use the rigorous finite

element method for solving this system numerically.

2.1 Notation, Mathematical Preliminaries and Scheme

We use the standard notations used for Sobolev and Lebesgue spaces in Adams [1] throughout

the entire thesis. The Sobolev space Wk,r(Ω) on a domain Ω ⊂ Rd with d = 2, 3 is given as

Wk,r(Ω) = {φ ∈ Lr(Ω) : ∀|s| ≤ k, ∂sφ ∈ Lr(Ω)}.

We denote usual inner product and norm in L2(Ω) by (·, ·) and ‖·‖ respectively. The norm

and semi-norm in a Sobolev space Wk,r(Ω) is also given by ‖·‖k,r and |·|k,r. For the special

case r = 2, the norm in the space Wk,2(Ω) = Hk(Ω) is shown by ‖·‖k. The space H1(Ω) is of

special interest and we use it frequently throughout the thesis. The norm in H1(Ω) is given by

‖u‖1 = (‖u‖ + ‖∇u‖)1/2 .
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We remark that the vector-valued functions are denoted with boldface character. Given a

vector valued function φ, its gradient ∇φ = ∂φi
∂φ j

is called a tensor and the product of tensors

A, B is given by A : B =
∑

i, j Ai jBi j.

The following well-known functional vector spaces are considered to define a variational

formulation of (2.1) .

X := H1
0(Ω f ) = {u ∈ H1(Ω f ) : u = 0 on ∂Ω f },

W : = {S ∈ H1(Ω) : S = 0 on ΓB},

Q : = {p ∈ L2(Ω) :
∫
Ω

p dx = 0},
V := H1

0,div(Ω f ) = {u ∈ X : ∇ · u = 0 in Ω f }

We introduce the following bilinear and trilinear forms, for u, v,w ∈ X, T, S ∈ W and q ∈ Q:

a0(u, v) =
∫
Ω f

∇u : ∇vdx (2.2)

a1(T, S ) =
∫
Ω

κ∇T · ∇S dx (2.3)

b(v, q) = −
∫
Ω f

q∇ · vdx (2.4)

c0(u,w, v) =
1
2

∫
Ω f

(
(u · ∇)v · w − (u · ∇)w · v

)
dx (2.5)

c1(u, T, S ) =
1
2

∫
Ω f

(
(u · ∇)TS − (u · ∇)S T

)
dx (2.6)

d(T, v) =
∫
Ω f

Te · vdx. (2.7)

The variational formulation of (2.1) reads as follows: seek u ∈ X, p ∈ Q, T ∈ W such that

Pr a0(u, v) + c0(u, u, v) + b(v, p) = Pr Ra d(T, v)

b(u, q) = 0 (2.8)

a1(T, S ) + c1(u, T, S ) = (γ, S )

for all (v, q, S ) ∈ (X,Q,W). The notations in equations (2.8) are inspired by the work in [11],

in which the standard Galerkin finite element method for (2.8) is studied.

The scheme introduces the addition of global stabilization and then subtracts its effect onto

large scales of the coupled equations for both velocity and temperature spaces. In this way,
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stabilization acts only on the smallest resolved scales of both scales. Let F H ,GK be a con-

forming triangulation of Ω and let F h,Gk be a refinement of F H ,GK, i.e. H ≥ h and K ≥ k

respectively. Let Xh ⊂ X,Wk ⊂ W and Qh ⊂ Q be conforming finite element spaces satis-

fying the discrete inf-sup condition (2.20) and LH,MK denote the finite element subspaces

of (L2(Ω))d. The discretization we investigate adds additional diffusion acting on all discrete

velocity and temperature scales and then anti-diffuses on the scales resolvable on F H ,GK as

follows: find uh ∈ Xh, ph ∈ Qh, Tk ∈ Wk,FH ∈ LH and GK ∈ MK such that

Pr a0(uh, vh) + (α1(∇uh − FH),∇vh) + c0(uh, uh, vh) + b(vh, ph) = Pr Ra d(Tk , vh)(2.9)

b(uh, qh) = 0

(FH − ∇uh, lH) = 0 (2.10)

a1(Tk, S k) + α2(∇(Tk −GK),∇S k) + c1(uh, Tk, S k) = (γ, S k) (2.11)

(GK − ∇Tk,mK) = 0, (2.12)

for all (vh, qh, lH , S k,mK) ∈ (Xh,Qh, LH ,Wk,MK) where α1 := α1(h) and α2 := α2(k) are

non-negative constant functions and user selected stabilization parameters. These parameters

can be thought of as an additional viscosity in the coarse space.

Remark 2.1 Multiscale decomposition requires selection of large scale spaces for both ve-

locity and temperature, LH and MK, respectively. If both of them are selected as zero sub-

spaces, then Galerkin formulation is recovered in [11]. We employ LH = ∇XH and MK =

∇WK choices of [45] for the large scale spaces to obtain the bounds in this paper. Some other

possible choices for these spaces are LH ⊆ ∇Xh and MK ⊆ ∇Wk (see [35]).

Let Vh = {vh ∈ XH : (qh,∇ · vh) = 0, for all qh ∈ Qh} be the space of discretely divergence

free functions. It is easy to verify the following: (2.10) and (2.12) imply that FH and GK are

L2 projections of ∇uh and ∇Tk onto LH and MK, respectively. If we denote these projections

with PH and PK , respectively, the properties of the projection operator give the reformulations

of (2.9)-(2.12) in Vh as follows: find uh ∈ Vh, Tk ∈ Wk such that

A0(uh, vh) + c0(uh, uh, vh) = Pr Ra d(Tk, vh) (2.13)

A1(Tk, S k) + c1(uh, Tk, S k) = (γ, S k) (2.14)
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for all (vh, S k) ∈ (Vh,Wk) where

A0(uh, vh) = Pr a0(uh, vh) + α1((I − PH)∇uh, (I − PH)∇vh) (2.15)

A1(Tk, S k) = a1(Tk, S k) + α2((I − PK)∇Tk, (I − PK)∇S k). (2.16)

For vanishing boundary values, we define H1
0(Ω) and its dual space, H−1(Ω) and its norm is

defined by

‖f‖−1 = sup
v∈X
|(f, v)|
‖∇v‖

where (·, ·) denotes the duality pairing.

We make use of well-known Sobolev embedding theorem for the following spaces: if Ω is

bounded and has a Lipschitz boundary then H1(Ω) ↪→ L4(Ω), that is

‖u‖4 ≤ C‖u‖1. (2.17)

Inequalities which are used frequently are

Young’s inequality,

ab ≤ t
p

ap +
t−q/p

q
bq, a, b, p, q, t ∈ R, 1

p
+

1
q
= 1, p, q ∈ (1,∞), t > 0, (2.18)

and Poincaré’s inequality in X,

‖v‖ ≤ C‖∇v‖ (2.19)

for all v ∈ X with C = C(Ω).

We assume that finite element spaces have the following properties. The discrete spaces

Xh,Qh satisfy the usual approximation theoretic conditions and the inf-sup condition or Babuška-

Brezzi condition i.e. there is a constant β independent of the mesh size h such that

inf
qh∈Qh

sup
vh∈Xh

(qh, ∇ · vh)

|| ∇vh || || qh || ≥ β > 0. (2.20)

For examples of such compatible spaces see e.g., [23] and [19].

Definition 2.2 Let V and Vh denote respectively the divergence free subspaces of X and Xh:

V : = {v ∈ X : (q,∇ · v) = 0,∀q ∈ Q},
Vh : = {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

17



Although typically Vh � V , it is known that under the discrete inf-sup condition (2.20),

functions in V are well approximated by ones in Vh, [19].

We consider Xh and Wk to be spaces of continuous piecewise polynomials of degree r and Qh

is the space of continuous piecewise polynomials of degree r − 1. We also make the standard

assumptions that the spaces Xh,Qh and Wk satisfy the following approximation properties for

a given integer 1 ≤ s ≤ r:

inf
vh∈Xh,qh∈Qh

{
‖(u − vh)‖ + h‖∇(u − vh)‖ + h‖p − qh‖

}
≤ Chs+1(‖u‖s+1 + ‖p‖s), (2.21)

inf
S k∈Wk

‖T − S k‖ ≤ ks+1‖T‖s+1 (2.22)

for (u, p, T ) ∈ (X ∩ Hs+1(Ω),Q ∩ Hs(Ω),W ∩ Hs+1(Ω)).

We also use the fact that L2 orthogonal projections of LH and MK satisfy

‖G − PμG‖ ≤ Cμs|G|s, μ = H,K, 1 ≤ s ≤ r (2.23)

for G ∈ (L2(Ω) ∩ Hs(Ω)) .

We define the following weighted norms.

Definition 2.3 For u ∈ X, T ∈ W, the weighted norms of functions u : Ω f → R, T : Ω → R

are defined by

‖u‖2a,b = a ‖u‖2 + b ‖∇u‖2 + α1 ‖(I − PH)∇u‖2

‖T‖2a,b = a ‖T‖2 + b ‖∇T‖2 + α2 ‖(I − PK)∇T‖2

where a, b > 0 are constants and α1, α2 are stabilizing parameters.

From now on, we denote min(κ f , κs) as κmin and max(κ f , κs) as κmax for the sake of simplicity.

Lemma 2.4 The bilinear forms A0(·, ·), A1(·, ·) are continuous and coercive with respect to

corresponding weighted norms. That is, for u, v ∈ X, T, S ∈ W, we have

A0(u, v) ≤ ‖u‖1,Pr ‖v‖1,Pr ,

A0(u, u) ≥ ‖u‖CPr, Pr
2
,

A1(T, S ) ≤ ‖T‖1,κmax
‖S ‖1,κmax

,

A1(T, T ) ≥ ‖T‖2
Cκmin ,

κmin
2
.
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Proof. We give the proof of continuity and coercivity of A0 now. The results for A1 follows

analogously. Using Cauchy-Schwarz inequality, addition of some extra terms and Definition

2.3, one obtains the continuity relation for A0 as follows.

A0 (u, v) ≤ Pr ‖∇u‖ ‖∇v‖ + α1 ‖(I − PH)∇u‖ ‖(I − PH)∇v‖
≤

(
‖u‖ + √Pr ‖∇u‖ + √α1 ‖(I − PH)∇u‖

) (
‖v‖ + √Pr ‖∇v‖ + √α1 ‖(I − PH)∇v‖

)

≤ ‖u‖1,Pr ‖v‖1,Pr .

For coercivity, making use of Poincaré’s inequality gives

A0 (u, u) = Pr ‖∇u‖2 + α1 ‖(I − PH)∇u‖2 = Pr
2
‖∇u‖2 + Pr

2
‖∇u‖2 + α1 ‖(I − PH)∇u‖2

≥ CPr ‖u‖2 + Pr
2
‖∇u‖2 + α1 ‖(I − PH)∇u‖2 = ‖u‖CPr, Pr

2

which completes the proof. �

Throughout this chapter, the constant C is generic constant which depends on the domain Ω

and independent from h, k, H, K, α1 and α2 unless stated otherwise.

We now emphasize on the trilinear forms defined by (2.5)-(2.6). In the continuous case, the

standard form of the convective term and skew-symmetric form of trilinear form are identical

if ∇ · u = 0 and if u vanishes on the boundary. Since standard convective terms are not

divergence free on the finite element spaces, we use the modified ones, [19]. The following

important properties of trilinear forms could be obtained by making use of integration by

parts.

c0(u, v,w) = −c0(u,w, v), c1(u, T, S ) = −c1(u, S , T )

and

c0(u, v, v) = 0, c1(u, T, T ) = 0 (2.24)

for all u, v,w ∈ X T, S ∈ W

Lemma 2.5 Let Ω ⊂ Rd with d = 2, 3. The skew-symmetric trilinear forms then satisfy the

following estimation with finite constants Ci(Ω)(i = 1, 2, 3, 4).

c0(u, v,w) ≤ C1‖∇u‖ ‖∇v‖ ‖∇w‖ (2.25)

c1(u, T, S ) ≤ C2‖∇u‖ ‖∇T ‖ ‖∇S ‖ (2.26)
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for all u, v,w ∈ X and T, S ∈ W. Furthermore, if d=3 we have

c0(u, v,w) ≤ C3‖u‖1/2‖∇u‖1/2‖∇v‖ ‖∇w‖ (2.27)

c1(u, T, S ) ≤ C4‖u‖1/2‖∇u‖1/2‖∇T ‖ ‖∇S ‖ (2.28)

for all u, v,w ∈ X and T, S ∈ W.

Proof. For the first part, using Hölder’s inequality we have

c0(u, v,w) ≤ C1‖u‖4 ‖∇v‖ ‖w‖4

and thus the the result is obtained by using (2.17). For the second part, we use the relation

c0(u, v,w) ≤ C ‖u‖1/2 ‖v‖1 ‖w‖1 (2.29)

which is given in [67]. An interpolation inequality implies

‖u‖1/2 ≤ C ‖u‖1/2 ‖∇u‖1/2 . (2.30)

The final result is obtained through combining (2.29) and (2.30) and the use of Poincaré’s

inequality. The results for c1(u, T, S ) are obtained analogously. �

The following well-known theorems are useful for the proof of existence of solution. We

present them here without proofs.

Theorem 2.6 (Lax-Milgram) Given a Hilbert space X with its norm ‖·‖X, its dual X
′
and the

duality pairing < ·, · >, consider the problem

a (u, v) =< f , v > ∀v ∈ X

in which a (u, v) is a bilinear form defined on X × X and f ∈ X
′
.

Suppose that, the bilinear form a is continuous and coercive on X with finite positive constants

C, β, i.e.,

i) |a (u, v) | ≤ C(Ω) ‖u‖X ‖v‖X

ii) a (u, u) ≥ β ‖u‖2X

for all u, v ∈ X. Then the problem, a (u, v) =< f , v > ∀v ∈ X, has a unique solution u in X.
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Theorem 2.7 (Leray-Schauder fixed point theorem) For a Hilbert space Y, let φ : Y → Y be

a continuous and compact mapping such that the set

{y ∈ Y : y = λφ(y) f or some λ ∈ [0, 1]}

is bounded. Then φ has a fixed point.

Now, we also define the finite constant Nh which used throughout the thesis frequently:

Nh = sup
{
c0(uh, vh,wh) : ‖∇vh‖ = ‖∇uh‖ = ‖∇wh‖ = 1, uh, vh,wh ∈ Vh

}
.

2.2 Existence and uniqueness results of discrete problem

Throughout this section, we consider the existence, uniqueness and stability properties of the

discrete projection-based natural convection problem. These results without extra stabiliza-

tion terms of continuous natural convection problem have been established in [11]. Using

Lemma 2.4, similar results for continuous problem with stabilization can be established in

the same way. For completeness, we only state and prove the existence and uniqueness of the

discrete problem.

Theorem 2.8 (Existence) The problem (2.13)-(2.14) has at least one solution.

Proof. The proof consists of applying Lax-Milgram Theorem and Leray-Schauder Princi-

ple. Lax-Milgram Theorem guarantees the existence and uniqueness of Tk in the solution of

(2.14). Note that the approximate temperature Tk depends on the velocity field uh. Thus we

may define a mapping Fhk : Vh → Wk by Fhk
(
uh

)
= Tk.

Now, we show that there is at least one uh ∈ Vh satisfying,

A0(uh, vh) + c0(uh, uh, vh) = Pr Ra d(Tk, vh) (2.31)

for all vh ∈ Vh. From Lemma 2.4, A0(uh, vh) is a continuous elliptic bilinear form on Vh ×Vh

and

| − c0(uh, uh, vh) + Pr Ra d(Fhk(uh)| ≤
(
C‖∇uh‖2 + Pr Ra‖Fhk(uh)‖

)
‖∇vh‖

for all vh ∈ Vh. Thus, we may define a mapping Gh : Vh → Vh by

A0(Gh
(
uh

)
, vh) = −c0(uh, uh, vh) + Pr Ra d(Fhk

(
uh

)
, vh).
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Note that uh is a solution of (2.31) if it is a solution of

Gh
(
uh

)
= uh. (2.32)

Thus, it suffices to show that there exists at least one solution to the fixed point problem (2.32).

Leray-Schauder Principle guarantees the existence of a fixed point under two conditions: (i)

Gh should be completely continuous (ii) there exists θ > 0 such that for every λ ∈ [0, 1] and

vh ∈ Vh with

λGh(vh) = vh, (2.33)

vh should satisfy ‖∇vh‖ ≤ θ.

Since Vh is finite dimensional, Gh is continuous and compact and thus completely continu-

ous. This proves part (i). To prove the second condition, we consider only λ ∈ (0, 1] with

λGh(vh) = vh. Then, we have

λ−1A0(vh, vh) = −c0(vh, vh, vh) + Pr Ra d(Fhk
(
vh

)
, vh)

and

λ−1Pr‖∇vh‖2 + λ−1α1‖(I − PH)∇vh‖2 ≤ Pr Ra‖∇Fhk(vh)‖‖∇vh‖ ≤ Pr Ra κ−1
min‖γ‖−1‖∇vh‖.

Hence

‖∇vh‖ ≤ λRaκ−1
min‖γ‖−1

which completes the proof. �

Before considering the uniqueness issue, we present some stability results.

Lemma 2.9 (Stability of the velocity, temperature and pressure) The finite element approxi-

mation of (2.13) - (2.14) is stable in the following sense:

(i) κmin‖∇Tk‖2 + 2α2‖(I − PK)∇Tk‖2 ≤ κ−1
min‖γ‖2−1,

(ii) Pr‖∇uh‖2 + 2α1‖(I − PH)∇uh‖2 ≤ Pr Ra2‖Tk‖2−1,

(iii) Pr‖∇uh‖2 + 2α1‖(I − PH)∇uh‖2 ≤ Pr Ra2κ−2
min‖γ‖2−1,

(iv) ‖ph‖ ≤ Cβ−1κ−1
min‖γ‖−1

(
Pr Ra +

√
Prα1Ra + Ra2Nhκ

−1
min‖γ‖−1

)
.
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Proof. To prove (i), we set S k = Tk in (2.14) and apply the Young’s inequality. For (ii), we

set uh = vh in (2.13) and use a similar argument as in (i). Combination of the parts (i) and (ii)

gives (iii).

To prove part (iv), consider the equation (2.13) in Xh:

(ph,∇ · vh) = A0(uh, vh) + c0(uh, uh, vh) − Pr Ra d(Tk, vh).

Cauchy-Schwarz inequality and (3.6) yield

(ph,∇ · vh) ≤ Pr‖∇uh‖‖∇vh‖ + α1‖(I − PH)∇uh‖‖(I − PH)∇vh‖ + Nh‖∇uh‖2‖∇vh‖
+Pr Ra‖Tk‖−1‖∇vh‖.

Making use of the stability bounds for the velocity and temperature gives,

(ph,∇ · vh)

‖∇vh‖ ≤ Pr Raκ−1
min‖γ‖−1 +

√
Prα1

2
Raκ−1

min‖γ‖−1 + NhRa2κ−2
min‖γ‖2−1 + Pr Raκ−1

min‖γ‖−1.

Taking supremum over vh ∈ Xh and using the inf sup condition (2.20) yield the desired result.

�

Corollary 2.10 Existence and uniqueness of ph is guaranteed by part (iv) of Lemma 2.9 and

the inf-sup condition (2.20), [19].

We are now in a position to prove the global uniqueness condition of the discrete solution,

which is the same as with the continuous case in [11]. First, by using the solution operator

Fhk in Theorem 3.5, we define the following constant:

Mhk = sup

{
d(Fhk(uh) − Fhk(vh), uh − vh)

‖∇(uh − vh)‖2 , uh � vh, uh, vh ∈ Vh
}
. (2.34)

Theorem 2.11 Suppose Nh‖∇uh‖ + Pr RaMhk < Pr . Then, uh and Fhk(uh) = Tk are unique

solutions.

Proof. Let uh,wh ∈ Vh and uh � wh be two solutions. Writing the equation (2.13) for uh and

wh, and subtracting them give

A0(uh − wh, vh) = c0(wh,wh, vh) − c0(uh, uh, vh) + Pr Ra d(Fhk(uh) − Fhk(wh), vh)(2.35)
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for all vh ∈ Vh. Setting vh = uh −wh in (2.35), using Cauchy-Schwarz inequality, adding and

subtracting terms, using (2.24) and (2.34) lead us to

Pr‖∇(uh−wh)‖2+α1‖(I−PH)∇(uh−wh)‖2 ≤ Nh‖∇(uh−wh)‖2‖∇uh‖+Pr Ra‖∇(uh−wh)‖2Mhk.

So,

(
Pr − (Nh‖∇uh‖ + Pr RaMhk)

)
‖∇(uh − wh)‖2 + α1‖(I − PH)∇(uh − wh)‖2 ≤ 0

Since (Nh‖∇uh‖ + Pr RaMhk) < Pr, we have a contradiction. Therefore, uh = vh.

�

Remark 2.12 If one uses the results of Lemma 2.9, global uniqueness condition, Nh‖∇uh‖ +
Pr RaMhk < Pr can be reformulated as Raκ−1

min‖γ‖−1(Nh + Pr C2κ
−1
min) < Pr in terms problem

data.

Furthermore, global uniqueness condition of the discrete problem ensures uh to be a fixed

point of a contractive map in Vh, [44].

2.3 A priori error estimation

This section states a priori error estimation for the velocity and temperature. Before giving the

main theorem, we define so-called modified Stokes projection operators. Lemma 2.4, hence

Lax-Milgram theorem guarantees the existence of such projection operators for both velocity

and temperature. When we split the errors into approximation terms and a finite element

remainder for u and T , the use of such operators simplifies the approximation terms and so

the error estimations. We first state the stability of these projections and give the related error

bounds.

Definition 2.13 (Modified Stokes projections for the velocity and temperature) The opera-

tor of the modified Stokes projection for the velocity and pressure, PS , is defined by; PS :

(X,Q)→ (Xh,Qh), PS (u, p) = (ũ, p̃) where

A0(u − ũ, vh) + b(vh, p − p̃) = 0,

b(u − ũ, qh) = 0
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for all (vh, qh) ∈ (Xh,Qh). In the discretely divergence free space Vh and in the pressure space

Qh, this definition reduces to

A0(u − ũ, vh) + b(vh, p − qh) = 0 (2.36)

for all vh ∈ Vh. The modified Stokes projection operator for the temperature, PT , is defined

by PT : W → Wk, PT (T ) = T̃ where

A1(T − T̃ , S k) = 0 (2.37)

for all S k ∈ Wk.

Lemma 2.14 (Stability of modified Stokes projections) The modified Stokes projections de-

fined by (2.36) and (2.37) are stable in the following sense:

Pr‖∇ũ‖2 + α1‖(I − PH)∇ũ‖2 ≤ C(Pr‖∇u‖2 + α1‖(I − PH)∇u‖2 + Pr−1‖p − qh‖2)

(2.38)

κmin‖∇T̃ ‖2 + α2‖(I − PK)∇T̃ ‖2 ≤ C(
κ2max

κmin
‖∇T‖2 + α2‖(I − PK)∇T‖2). (2.39)

Proof. For the proof of (2.38), first set vh = ũ in (3.47) and use Cauchy-Schwarz inequality:

Pr‖∇ũ‖2 + α1‖(I − PH)∇ũ‖2 ≤ Pr‖∇u‖‖∇ũ‖ + α1‖(I − PH)∇u‖‖(I − PH)∇ũ)‖
+‖p − qh‖‖∇ · ũ‖.

Young’s inequality and combining terms give the result.

The stability of the modified Stokes projection of temperature is established by writing S k = T̃

in (2.37) and using similar arguments as in the first part. �

The next lemma states the error in those projection operators.

Lemma 2.15 (Error in modified Stokes projections) Suppose the discrete inf-sup condition

(2.20) holds. Then (ũ, T̃ ) exists uniquely in (Xh,Qh,Wk) and satisfies

Pr‖∇(u − ũ)‖2 + α1‖(I − PH)∇(u − ũ)‖2 ≤ C( inf
û∈Xh
‖∇(u − û)‖2

+α1 inf
û∈Xh
‖(I − PH)∇(u − û)‖2 + Pr−1 inf

qh∈Qh
‖p − qh‖2), (2.40)

κmin‖∇(T − T̃ )‖2 + α2‖(I − PK)∇(T − T̃ )‖2 ≤ C(κ2maxκ
−1
min inf

T̂∈Wk
‖∇(T − T̂ )‖2

+α2 inf
T̂∈Wk

‖(I − PK)∇(T − T̂ )‖2). (2.41)

25



Proof. To prove (2.40), let e = u − ũ and decompose the error e = η − φh, where η = u − û,

φ = ũ − û. Here û is the approximation of u in Vh. Thus (2.36) reads as

Pr(∇φh,∇vh) + α1((I − PH)∇φh, (I − PH)∇vh)

= Pr(∇η,∇vh) + α1((I − PH)∇η, (I − PH)∇vh) + (p − qh,∇.vh) (2.42)

Setting vh = φh in (2.42) and applying Cauchy-Schwarz and Young’s inequalities direct us to

Pr
2
‖∇φh‖2 + α1

2
‖(I − PH)∇φh‖2 ≤ C(Pr‖∇η‖2 + α1

2
‖(I − PH)∇η‖2 + Pr−1‖p − qh‖2). (2.43)

Since û is an approximation of u in Vh, we can take infimum over Vh in (2.43). Recall that

under the discrete inf-sup condition (2.20) and ∇ · u = 0, the infimum can be replaced by Xh,

[19]. The stated error estimate now follows from the triangle inequality.

To prove (2.41), define T − T̃ = ẽ = (T − T̂ )− (T̃ − T̂ ) = χ−ξk where T̂ approximates T in Wk.

As in the first part, if one sets S k = ξk and uses Cauchy-Schwarz and Young’s inequalities,

the following estimation is obtained:

κmin‖∇ξk‖2 + α2‖(I − PK)∇ξk‖2 ≤ Cκ2maxκ
−1
min‖∇χ‖2 + α2‖(I − PK)∇χ‖2.

Taking infimum over Wk and applying the triangle inequality complete the proof. �

We now give our main theorems. Since the equations are coupled in (2.13)-(2.14), the error

estimations are also coupled. Now we first state the error estimation for T − Tk in terms of

the error in u − uh.

Theorem 2.16 The error for T − Tk satisfies

κmin‖∇(T − Tk)‖2 + α2‖(I − PK)∇(T − Tk)‖2 ≤ C(κ−1
min inf

T̃∈Wk
‖∇u‖2‖∇(T − T̃ )‖2

+α2‖(I − PK)∇T‖2) +C2
2κ
−3
min‖γ‖2−1

∥∥∥∇(u − uh)
∥∥∥2

Proof. Making use of (2.8) and (2.14) gives the error equation:

A1(ẽ, S k) + c1(u, T, S k) − c1(uh, Tk, S k) = α2((I − PK)∇T, (I − PK)∇S k) (2.44)

for all S k ∈ Wk where ẽ = T −Tk. Decompose the error as an approximation term and a finite

element remainder: ẽ = (T − T̃ ) − (Tk − T̃ ) = χ − ξk. Here, T̃ denotes the modified Stokes
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projection of T defined by (2.39). Now, set S k = ξk into the error equation (2.44). With a

rearrangement of terms, we obtain

|A1(ξk, ξk)| ≤ |c1(u, T, ξk) − c1(uh, Tk, ξk)| + |α2((I − PK)∇T, (I − PK)∇ξk)|. (2.45)

Note that A1(χ, ξk) = 0 due to the definition of the modified Stokes projection. Now, let us

bound each term on the right hand side of (2.45):

|c1(u, T, ξk) − c1(uh, Tk, ξk)| = |c1(u, χ, ξk) − c1(u − uh, Tk, ξk)|
≤ Cκ−1

min‖∇u‖2‖∇χ‖2 + κmin

4
‖∇ξk‖2 +C2

2κ
−1
min‖∇(u − uh)‖2‖∇Tk‖2,

|α2((I − PK)∇T, (I − PK)∇ξk)| ≤ α2

2
‖(I − PK)∇T‖2 + α2

2
‖(I − PK)∇ξk‖2.

Thus, bounding the terms as shown above for (2.45) results in

κmin

2
‖∇ξk‖2 + α2

2
‖(I − PK)∇ξk‖2 ≤ Cκ−1

min‖∇u‖2‖∇χ‖2 +C2
2κ
−1
min‖∇(u − uh)‖2‖∇Tk‖2

+
α2

2
‖(I − PK)∇T‖2

Combination of terms and application of the triangle inequality yield the stated error estima-

tion. �

The error estimation for the velocity is proved next. This error estimation uses Theorem 2.16.

Theorem 2.17 Under the condition Raκ−1
min‖γ‖−1(Nh +

3
2C2

2Pr Raκ−3
min‖γ‖3−1) < Pr, the error

satisfies

Pr‖∇(u − uh)‖2 + α1‖(I − PH)∇(u − uh)‖2

≤ C

{
M1

[
inf

ũ∈Xh
‖∇(u − ũ)‖2 + Pr−1α1 inf

ũ∈Xh
‖(I − PH)∇(u − ũ)‖2 + Pr−2 inf

qh∈Qh
‖p − qh‖2

]

+M2

[
κ−2

min inf
T̃∈Wk

‖∇(T − T̃ )‖2 + κ−1
minα2 inf

T̃∈Wk
‖(I − PK)∇(T − T̃ )‖2

]

+α1‖(I − PH)∇u‖2 + Pr Ra2κ−1
minα2‖(I − PK)∇T‖2

}
.

where C2 is as in (2.26) and M1 and M2 are also constants which are defined below explicitly:

M1 = C
[
Pr−1κ−2

minRa2‖γ‖2−1 + Pr Ra2κ−4
min‖γ‖2−1

]
,

M2 = C

⎡⎢⎢⎢⎢⎢⎣PrRa4 κ
2
max

κ6min

‖γ‖2−1

⎤⎥⎥⎥⎥⎥⎦ .
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Proof. The use of (2.8) and (2.13) results with the error equation:

A0(e, vh) + c0(u, u, vh) − c0(uh, uh, vh) + b(vh, p − qh)

= Pr Ra d(ẽ, vh) + α1((I − PH)∇u, (I − PH)∇vh) (2.46)

for all (vh, qh) ∈ (Vh,Qh) where e = u − uh and ẽ = T − Tk. Split the errors as e = η − φh

where η = (u − ũ), φh = (uh − ũ) and ẽ = χ − ξk where χ = (T − T̃ ), ξk = (Tk − T̃ ). Note

that ũ and T̃ denote the modified Stokes projections of u and T , respectively. Now, writing

vh=φh in (2.46) yields;

A0(φh,φh) = A0(η,φh) + b(φh, p − qh) + c0(u, u,φh) − c0(uh, uh,φh)

+α1((I − PH)∇u, (I − PH)∇φh) + Pr Ra d(ẽ,φh). (2.47)

Note that, A0(η,φh) + b(φh, p − qh) = 0 by the definition of the modified Stokes projection.

To bound the terms on the right hand side of (2.47), we first consider the nonlinear terms.

Adding, subtracting terms and observing the skew-symmetry of convective term yield

|c0(u, u,φh) − c0(uh, uh,φh)| = |c0(u, η,φh) + c0(η, uh,φh) − c0(φh, uh,φh)|.

Inequalities Cauchy-Schwarz, (2.25) and Young’s give

|c0(u, η,φh)| ≤ CPr−1‖∇u‖2‖∇η‖2 + Pr
6
‖∇φh‖2,

|c0(η, uh,φh)| ≤ CPr−1‖∇η‖2‖∇uh‖2 + Pr
6
‖∇φh‖2,

|c0(φh, uh,φh)| ≤ Nh‖∇φh‖2‖∇uh‖.

Similarly, consistency term and the last term on the right hand side of (2.47) are bounded with

|α1((I − PH)∇u, (I − PH)∇φh)| ≤ α1

2
‖(I − PH)∇u‖2 + α1

2
‖(I − PH)∇φh‖2

and

|Pr Ra d(T − Tk,φh)| ≤ 3
2

Pr Ra2‖T − Tk‖2−1 +
Pr
6
‖∇φh‖2.

Combining all the terms involving φh on the left hand side gives,

(Pr
2
− Nh‖∇uh‖

)
‖∇φh‖2 + α1

2
‖(I − PH)∇φh‖2

≤ C(Pr−1‖∇η‖2
(
‖∇u‖2 + ‖∇uh‖2

)
+ α1‖(I − PH)∇u‖2) +

3
2

Pr Ra2‖T − Tk‖2−1(2.48)
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Clearly, the next step we should follow is to find a bound for the term ‖T − Tk‖2−1. In order to

do that, we write u − uh = η − φh in the statement of Theorem 2.16 and plug in estimation in

(2.48). Rearranging the terms yields

(
Pr
2
− Nh‖∇uh‖ − 3

2
Pr Ra2C2

2κ
−4
min‖γ‖2−1

)
‖∇φh‖2 + α1

2
‖(I − PH)∇φh‖2

≤ C(Pr−1‖∇η‖2(‖∇u‖2 + ‖∇uh‖2) + α1‖(I − PH)∇u‖2 + Pr Ra2κ−4
min‖γ‖2−1‖∇η‖2

+Pr Ra2κ−2
min‖∇u‖2‖∇χ‖2 + Pr Ra2κ−1

minα2‖(I − PK)∇T‖2). (2.49)

Let us consider the coefficient of the term ‖∇φh‖2. Making use of the uniqueness bound and

the assumption of the theorem, we have

Pr
2
<

Pr
2
− NhRaκ−1

min‖γ‖−1 − 3
2

Pr Ra2C2
2κ
−4
min‖γ‖2−1. (2.50)

Plugging (2.50) into (2.49) and writing the stability bounds for the terms we have,

Pr‖∇φh‖2 + α1‖(I − PH)∇φh‖2 ≤ C(Pr−1κ−2
minRa2‖γ‖2−1‖∇η‖2

+Pr Ra2κ−4
min‖γ‖2−1‖∇η‖2 + Pr Ra4κ−4

min‖γ‖2−1‖∇χ‖2 + α1‖(I − PH)∇u‖2

+Pr Ra2κ−1
minα2‖(I − PK)∇T‖2). (2.51)

Substituting the error bounds of Lemma 2.15 into (2.51) and applying the triangle inequality

complete the proof. �

One might see also that the addition of the extra term in (2.13)-(2.14) does not degrade the

order of convergence. To see this, we give the following Remark.

Remark 2.18 If we assume the regularity assumptions, (u, p, T ) ∈ (X∩Hs+1(Ω), Q∩Hs(Ω), W∩
Hs+1(Ω)) and the use of the estimations (2.21), (2.22) and (2.23) yield

Pr‖∇(u − uh)‖2 + α1‖(I − PH)∇(u − uh)‖2 ≤ M1((h2s|u|2s+1(1 + Pr−1α1) + Pr−2h2s|p|2s )
+M2(κ

−1
mink2s|T |2s+1(κ−1

min + α2)) + α1H2s|u|2s+1 + α2K2s|T |2s+1). (2.52)

Here h, k are given and by equilibrating the orders of convergence, appropriate values for the

mesh scales H,K and parameters α1, α2 are chosen. That is, the error is optimal for α1H2s =

h2s and α2K2s = k2s. For instance, let us consider the case for s = 2 and use Taylor-Hood

finite element pairs, satisfying the inf-sup condition (2.20), which are given below explicitly
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along with the choices of LH = ∇XH and MK = ∇WK :

Xh = {v ∈ C0(Ω̄) : v|Δ ∈ P2(Δ),∀Δ ∈ F h},
Wk = {S ∈ C0(Ω̄) : S |Δ ∈ P2(Δ),∀Δ ∈ Gk},
Qh = {v ∈ C0(Ω̄) : v|Δ ∈ P1(Δ),∀Δ ∈ F h},
LH = {lH ∈ L2(Ω) : lH |Δ ∈ P1(Δ),∀Δ ∈ F H},
MK = {mK ∈ L2(Ω) : mK |Δ ∈ P1(Δ),∀Δ ∈ GK},

If we make the same assumptions as in Theorem 2.17 and consider (2.52), one can imply that

along with the choices of (α1,H) = (h2, h1/2) the error

‖∇(u − uh)‖ � O(h2 + k2)

is optimal for the velocity.

If we plug the results obtained for velocity into Theorem 2.16 and carry out similar computa-

tions, we have

‖∇(T − Tk)‖ � O(h2 + k2).

Similarly, for the choices of (α2,K) = (k2, k1/2) we have the optimal error for the temperature.

2.4 Error estimation for pressure

This section deals with the estimation of the error for the discrete pressure in the L2 norm.

Theorem 2.19 (Error estimate for pressure) Suppose that the assumptions of the Theorem

2.17 hold. Then the error p − ph satisfies

‖p − ph‖ ≤ C
(
(Pr + ‖∇u‖)‖∇(u − uh)‖ + ‖∇(u − uh)‖2 + α1‖(I − PH)∇(u − uh)‖

+ inf
qh∈Qh

‖p − qh‖ + Pr Ra‖(T − Tk)‖−1 + α1‖(I − PH)∇u‖
)
.

Proof. To prove this, we consider (2.46). Let p − ph = (p − p̃) − (ph − p̃), where p̃ is an

approximation of the pressure in Qh. (2.46) reads as;

b(vh, ph − p̃) = A0(e, vh) + (c0(u, u, vh) − c0(uh, uh, vh)) + b(vh, p − p̃) − Pr Ra d(ẽ, vh)

−α1((I − PH)∇u, (I − PH)∇vh).
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We first consider here the nonlinear terms. Adding and subtracting terms and using (2.25)

yield

|c0(u, u, vh) − c0(uh, uh, vh)| = | − c0(e, e, vh) + c0(e, u, vh) + c0(u, e, vh)|
≤ C(‖∇e‖ + ‖∇u‖)|‖∇e‖‖∇vh‖.

Bounds for the other terms are obtained in a similar manner as in the estimation of the error

‖∇(u − uh)‖. Hence

|b(vh, ph − p̃)| ≤ C‖∇vh‖(Pr‖∇e‖ + α1‖(I − PH)∇e‖ + (‖∇e‖ + ‖∇u‖)‖∇e‖
+‖p − p̃‖ + Pr Ra‖T − Tk‖−1 + α1‖(I − PH)∇u‖) (2.53)

Notice that (2.20) implies,

(ph − p̃,∇ · vh) ≥ β‖∇vh‖‖ph − p̃‖

and using this relation yields,

‖p − ph‖ ≤ ‖p − p̃‖ + ‖p̃ − ph‖ ≤ ‖p − p̃‖ + β−1 |b(vh, ph − p̃)|
‖∇vh‖ . (2.54)

Substituting (2.53) into (2.54) taking infimum over Qh give us the desired result. �

Remark 2.20 Making use of Taylor-Hood elements as in Remark 2.18 with the choices (α1,H) =

(h2, h1/2) and (α2,K) = (k2, k1/2) and using the approximation results (2.21)-(2.22) for the ve-

locity and temperature errors, we have

‖p − ph‖ � O(h2 + k2)

which is the optimal error.

2.5 Numerical Studies

In this section, numerical studies are given in order to show the effectiveness of the method

and validate the obtained theoretical results. The projection-based stabilization method for

steady natural convection problem has been assessed on two numerical examples in two di-

mensions. The first example is a well-known test case for the natural convection codes which

is called buoyancy-driven cavity problem. For the other test case, we consider a known par-

ticular analytical solution in order to check the error rates.
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All computations are carried out by using the software FreeFem + + [24]. In both examples,

we use conforming Taylor-Hood finite element pairs. It is well known that these pairs fullfill

the inf-sup condition (2.20) (see [23]). Finite element spaces are given in Remark 2.18 and

Remark 2.20 with the algorithmic choices for the size of the meshes and the parameters:

H ∼ h1/2 and K ∼ k1/2, α1 = h2, α2 = k2. Since we solve the problem on the same mesh, we

let h = k and H = K.

To handle the nonlinearity of the system, the Newton method of [23] is used. The algorithm

consists of starting with an initial guess (u(0), T (0)) and then generate the sequence of iterates

(u(m) ∈ Xh, p(m) ∈ Qh and T (m) ∈ Wk) for m ≥1 by solving the sequence of linear systems

Pr a0(u(m), vh) + c0(u(m−1), u(m), vh) + c0(u(m), u(m−1), vh) + b(vh, p(m)) = Pr Ra d(T (m), vh)

+c0(u(m−1), u(m−1), vh) − α1((I − PH)∇u(m−1), (I − PH)∇vh)

b(u(m), qh) = 0

a1(T (m), S k) + c1(u(m), T (m−1), S k) + c1(u(m−1), T (m), S k) = (γ, S k) + c1(u(m−1), T (m−1), S k)

−α2((I − PH)∇T (m−1), (I − PH)∇S k)

for all (vh, qh, S k) ∈ (Xh,Qh,Wk).

This scheme is known to be locally convergent at least either or both T and u · n are specified

at every point of the boundary.

2.5.1 Buoyancy-Driven Cavity Problem

The problem of buoyancy-driven cavity is used as a suitable benchmark for testing the natural

convection codes in the literature. The simplicity of geometry and clear boundary conditions

make this problem attractive. The domain consists of a square cavity with differentially heated

vertical walls where right and left walls are kept at TC and TH , respectively, with TH > TC .

The remaining walls are insulated and there is no heat transfer through them. The bound-

ary conditions are no-slip boundary conditions for the velocity at all four walls (u = 0) and

Dirichlet boundary conditions for the temperature at vertical walls. As the horizontal walls

are adiabatic, we employ ∂T∂n = 0 here. Figure 2.2 shows the physical domain of the buoyancy-

driven cavity flow problem. In the test case, we take κ = 1, γ = 0, TC = 0 and TH = 1. While

we consider the air as the cavity filling fluid in our model, we take the fixed value Pr = 0.71.

We have performed our computations for Rayleigh number varying from 103 to 106. The
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performance of the projection-based stabilization is compared with the famous benchmark

solutions of de Vahl Davis [16] and some other authors such as Massarotti et al. [51], Man-

zari [50], and the more recent study of Wan et al. [70]. From these benchmark solutions, [16]

used second-order central approximations to solve natural convection problem in a square

cavity. [51] developed a semi-implicit form of the characteristic-based split scheme and [50]

employed an explicit finite element algorithm. Recently, [70] used discrete singular convo-

lution for the solution of the problem. We also include the results for the classical Galerkin

Finite Element Method (GFEM) where we keep the same mesh sizes for the proposed method

and GFEM. Numerical simulations are obtained for three uniform grids of 11 × 11, 21 × 21

and 32 × 32.

Figure 2.2: The physical domain with its boundary conditions

We start our illustrations by giving peak values of vertical velocity at y = 0.5 and horizontal

velocity at x = 0.5. Table 2.1 and Table 2.2 summarize the maximum vertical velocity values

at mid-height and at mid-width for different Rayleigh numbers. For quantitative assessment,

we also include those velocity values obtained by [16], [51], [50] and [70].

Table 2.1: Comparison of maximum vertical velocity at y = 0.5 with mesh size used in
computation.

Ra GFEM Present Study Ref. [16] Ref. [51] Ref. [50] Ref. [70]

104 16.41(11×11) 19.91(11×11) 19.51(41×41) 19.63(71×71) 19.90(71×71) 19.79(101×101)
105 51.22(21×21) 70.60(21×21) 68.22(81×81) 68.85(71×71) 70.00(71×71) 70.63(101×101)
106 201.20(32×32) 228.12(32×32) 216.75(81×81) 221.60(71×71) 228.00(71×71) 227.11(101×101)
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As can be observed, the results of our computations are in an excellent agreement with the

benchmark data even at coarser grid. We also see that as the Rayleigh number increases,

GFEM yields results which are not so close to the benchmark solutions.

Table 2.2: Comparison of maximum horizontal velocity at x = 0.5 with mesh size used in
computation.

Ra GFEM Present Study Ref. [16] Ref. [50] Ref. [70]

104 15.70(11×11) 15.90 (11×11) 16.18(41×41) 16.10(71×71) 16.10(101×101)
105 41.00(21×21) 33.51(21×21) 34.81(81×81) 34.00(71×71) 34.00(101×101)
106 80.25(32×32) 65.52(32×32) 65.33(81×81) 65.40(71×71) 65.40(101×101)

We also present the vertical velocity distribution at the mid-height and horizontal velocity

distribution at the mid-width in Figure 2.3, respectively, which are very popular graphical

illustrations in the study of buoyancy-driven cavity type tests. These profiles are also com-

parable with the similar ones in [70]. It is obvious that as Rayleigh numbers increases, the

differences in the profiles presented in Figure 2.3 and Figure 2.4 are getting larger. For higher

Rayleigh number circulation gets more pronounced but with decreasing viscous effects, the

flow becomes more and more restricted to the walls for higher velocity gradients established

near the walls.
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Figure 2.3: Variation of vertical velocity at mid-height for varying Rayleigh numbers.

A very important property of the natural convection flows, especially for engineers, is the rate
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Figure 2.4: Variation of horizontal velocity at mid-width for varying Rayleigh numbers.

of heat transfer along the vertical walls of the cavity. The dimensionless parameter called

Nusselt number stands for this quantity. The local Nusselt number can be calculated as

Nulocal = ±∂T
∂x

The negative sign means heat transfer at the hot wall and the positive sign means heat transfer

at the cold wall. The local Nusselt number at the cavity hot wall is used for comparison

with benchmark problems in the literature frequently. As in the velocity components case,

we calculate the average Nusselt numbers with GFEM and our method. The benchmark data

results are also included to compare the average Nusselt numbers values with the presented

study. The results are given in Table 2.3.

Table 2.3: Comparison of average Nusselt number on the vertical boundary of the cavity at
x = 0 with mesh size used in computation.

Ra GFEM Present Study Ref. [16] Ref. [50] Ref. [51] Ref. [70]

104 2.40(11×11) 2.15 (11×11) 2.24(41×41) 2.08(71×71) 2.24(71×71) 2.25(101×101)
105 5.11(21×21) 4.35(21×21) 4.52(81×81) 4.30(71×71) 4.52(71×71) 4.59(101×101)
106 6.00(32×32) 8.83(32×32) 8.92(81×81) 8.74(71×71) 8.82(71×71) 8.97(101×101)

As we can understand from the Table 2.3, there is a very good agreement with the benchmark

solutions and the present study, which can still capture reasonable results for rather coarser
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grid. The variation of the Nusselt number along the hot wall and cold wall of the cavity

for different Rayleigh numbers are depicted in Figure 2.5 and Figure 2.6 respectively. These

profiles are also look reasonable when compared with those reported in [16], [50], [51] and

[70]. We can also observe from Figure 2.5 and Figure 2.6 that, largest Nusselt number is

obtained at the range of highest temperature gradients naturally. That is, these are the ranges

where the coolest fluid is first exposed to the hot surface or the warmest fluid first hits to the

cold surface. Also high Ra causes higher Nu or increased heat transfer as expected.
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Figure 2.5: Variation of local Nusselt number at cavity hot wall.

Characters of the flow patterns for increasing Rayleigh numbers are seen very often in the

study of natural convection problems. Diagrams showing the streamlines and temperature

isolines are very popular among the convective heat transport illustrations. We present these

patterns in the Figure 2.7. It is clear from the streamline patterns that, as Rayleigh number

increases circular vortex at the cavity center begin to deform into an ellipse and then break up

into two vortices tending to approach to the corners differentially heated sides of the cavity. So

we can conclude that, the flow is swifter as the thermal convection is concentrated. Through

the increase in Rayleigh number, parallel behavior of the temperature isolines is distorted and

these lines seem to have a flat behavior in the central part of the region. Near the sides of

the cavity, isolines tend to be vertical only. With Ra = 106, the temperature slopes at the
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Figure 2.6: Variation of local Nusselt number at cavity cold wall.

corners of the differentially heated sides are more immersed then the cases of lower Rayleigh

number. We also note that these graphics are also perfectly comparable with the ones given

in the investigations of [16], [51], [50] and [70].

2.5.2 Numerical Convergence Study

An assessment of the convergence of the numerical simulation is presented in this subsection.

We consider the problem (2.1) in the domain Ω = [−1, 1] × [−1, 1]. The forcing function γ

and boundary values of the temperature are given so that the prescribed solution of the system

is given by:

u = ((x2 − 1)2y(y2 − 1),−(x2 − 1)x(y2 − 1)2)

p =
1
8

(
y4 − y6 + y2 − 1

)
x8 +

1
2

(
y6 − y4 − y2 + 1

)
x6 +

6
5

yx5 +
3
4

(
y4 − y6 + y2 − 1

)
x4

+
(
4y3 − 8y

)
x3 +

1
2

(
y6 − y4 − y2 + 1

)
x2 +

(
10y − 4y3

)
x

T =
1

400

(
2y3 − 3y5 + y

)
x8 +

1
100

(
3y5 − 2y3 − y

)
x6 +

3
250

x5 +
3

100

(
y3 − 3

2
y5 +

1
2

y

)
x4

+
1
25

(
3y2 − 2

)
x3 +

1
100

(
3y5 − 2y3 − y

)
x2 +

1
50

(
3y4 − 12y2 + 8

)
x
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Figure 2.7: Streamlines (upper left to right) and isotherms (lower left to right) for with Ra =
103, 104, 105, 106, respectively

In (2.1), nonzero Neumann boundary condition for T on ΓB and Dirichlet boundary condition

for u are chosen so that (u, p, T ) is the solution of the system. Note that, using the non-zero

Neumann boundary condition for the variable T affect the stability bounds given in Lemma

2.9 and hence the main theorems. Although this replacement changes some terms and con-

stants in the error analysis, it does not degrade the order of errors given in Remark 2.18 and

Remark 2.20.

We use the same settings as in Remark 2.18 and Remark 2.20 with Pr = 1, Ra = 100 and

κ = 1. We compute the errors between exact solution and computed numerical solution for the

variables u, p and T . Then, we compare error rates with the theoretical expectations. Table

2.4 presents the corresponding total degree of freedoms for u, T and p, errors and convergence

rates for different mesh sizes. We first compute the errors for the coarsest mesh of h = 1/4

and then refine the mesh to obtain finer ones. The theory predicts the error rates in Table 2.4,

Table 2.4: Total degree of freedoms, numerical errors and convergence rates for each variable.

Mesh # of d.o.f. ‖u − uh‖ Rate ‖∇(u − uh)‖ Rate ‖p − ph‖ Rate ‖∇(T − T k)‖ Rate
h = 1/4 374 0.0170 – 0.3712 – 0.3521 – 0.2922
h = 1/8 1318 0.0021 2.85 0.0905 2.02 0.0951 1.92 0.0767 1.95
h = 1/16 4934 2.434e-04 2.92 0.0222 2.01 0.0215 1.94 0.0187 2.02
h = 1/32 19078 2.722e-05 2.99 0.0054 2.01 0.0054 1.98 0.0042 2.10

O(h3) for the L2 norm for u, and O(h2) for the L2 norm for p and O(h2) in energy norm for
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the temperature. Note that the behavior of the error is exactly as anticipated by the theory.

Thus we can conclude that the projection-based stabilization does not degrade the order of the

errors for all variables.

39



CHAPTER 3

DOUBLE-DIFFUSIVE CONVECTION IN POROUS MEDIA

In this section, we consider a projection-based stabilized finite element method for the double-

diffusive convection in porous media modeled by Darcy-Brinkman formulation. Stabilization

idea introduced in Chapter 2 is applied to a new system here. Although this new system of

equations seem similar to one dealt with in previous chapter, the main difference comes from

the dependency to the time and coupling of one more equation, namely the concentration

equation. We present the scheme first and then consider the stability issues. After emphasizing

the existence and uniqueness results of the problem, we pass to the semi-discrete a priori error

analysis. We give a fully discrete scheme for the system and a detailed stability and error

analysis are presented. As in previous chapter, we perform some numerical tests to measure

the effectiveness of the method.

Double-diffusion phenomena in a confined porous enclosure is modeled by the non-linear

time dependent Darcy-Brinkman equations which read in dimensionless form

∂tu − 2ν∇ · Du + (u · ∇)u + Da−1u + ∇p = (βT T + βCC)g in (0, t∗] ×Ω,
∇ · u = 0 in (0, t∗] ×Ω,

u = 0 on (0, t∗] × ∂Ω,
∂tT + u · ∇T = γΔT in (0, t∗] ×Ω,
∂tC + u · ∇C = DcΔC in (0, t∗] ×Ω, (3.1)

T,C = 0 on ΓT ,
∂T
∂n
,
∂C
∂n
= 0 on ΓB,

u(0, x) = u0, T (0, x) = T0, C(0, x) = C0 in Ω.

Here Ω be a regular bounded open set in Rd with (d = 2, 3), ∂Ω = ΓT ∪ ΓB is a polygonal

boundary, and u, p, T,C denote the velocity, pressure, temperature and concentration fields,
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respectively. The kinematic viscosity is ν > 0, the thermal diffusivity γ > 0, the mass diffu-

sivity Dc > 0, the Darcy number Da, the gravitational acceleration vector is g, the velocity

deformation tensor is Du =
(
∇u + ∇uT

)
/2 and the thermal and solutal expansion coefficients

are βT , βC , respectively. Some important dimensionless parameters which could be seen fre-

quently in relevant publications are the thermal Grashof number GrT =
gβT�T H3

ν2
and the

solutal Grashof number GrC =
gβC�CH3

ν2
, the buoyancy ratio N = βC�C

βT�T , the Prandtl number

Pr = ν
γ , the Schmidt number S c = ν

Dc
, the Lewis number Le = S c

Pr and the Darcy number

Da = K
H2 with given cavity height H, a permeability K, �T and �C are the characteristics

temperature and concentration differences along the enclosure, respectively.

As in the cases of thermal natural convection in porous and non-porous enclosures, formation

of boundary layers near the boundaries of the enclosure is seen on double-diffusive case too.

In contrast with the thermal case, three kinds of layers are formed. These are thermal, solutal

and hydrodynamic layers and thickness of each layer leads the rate of heat and mass transfer

and the dynamics of the overall flow [54, 58, 68]. The coupling of different boundary layers

and circulating main core inside the enclosure is the fundamental difficulty in solving these

systems analytically. Hence, numerical methods have to be developed. The dominance of the

convection and coupling of the variables in the system leads the general behavior of the flow

and approximation of the solution between mentioned boundary layers fails.

3.1 Notation, Mathematical Preliminaries and Semi-Discrete Scheme

In this section, we only give notations and mathematical results which are not given in section

2 of Chapter 2. We define norms or other additional properties here only if they are not defined

before.

Let Y be a Banach space and for 0 < t < ∞, the space Lp(0, t; Y) consists of all functions

u(0, t) × X for which the norm

‖u‖Lp(0,t;Y) :=
( ∫ t

0
‖u‖pY

)1/p
, p ∈ [1,∞),

is finite and with the usual modification in the definition of this space for p = ∞. Throughout

this chapter, symbol K stands for generic positive constant and may have different values at

different places, but it does not depend on mesh sizes and other important parameters unless

stated otherwise.

41



We consider the following functional vector spaces associated with the boundary conditions

for the variational formulation of (3.1):

X := H1
0(Ω f ) = {u ∈ H1(Ω) : u = 0 on ∂Ω}, Q := {p ∈ L2(Ω) :

∫
Ω

p dx = 0},
W : = {S ∈ H1(Ω) : S = 0 on ΓB}, Ψ := {Φ ∈ H1(Ω) : Φ = 0 on ΓB},

The variational form of the system (3.1) is as follows : find u : [0, t∗] → X, p : (0, t∗] →
Q, T : [0, t∗]→ W and C : [0, t∗]→ Ψ satisfying

(∂tu, v) + (2νDu,Dv) + c0(u, u, v) + (Da−1u, v) − (p,∇ · v) = βT (gT, v) + βC(gC, v)

(3.2)

(q,∇ · u) = 0, (3.3)

(∂tT, S ) + c1(u, T, S ) + (γ∇T,∇S ) = 0 (3.4)

(∂tC,Φ) + c2(u,C,Φ) + (Dc∇C,∇Φ) = 0 (3.5)

for all (v, q, S ,Φ) ∈ (X,Q,W,Ψ). Here the trilinear skew-symmetric forms of convective terms

are

c0(u, v,w) =
1
2

∫
Ω

(
(u · ∇)v · w − (u · ∇)w · v

)
dx (3.6)

c1(u, T, S ) =
1
2

∫
Ω

(
(u · ∇)TS − (u · ∇)S T

)
dx (3.7)

c2(u,C,Φ) =
1
2

∫
Ω

(
(u · ∇)CΦ − (u · ∇)ΦC

)
dx. (3.8)

An alternative and useful definition of these forms are also given as follows

c0(u, v,w) =
∫
Ω

(
(u · ∇)v · w + 1

2
(∇ · u)v · w

)
dx (3.9)

c1(u, T, S ) =
∫
Ω

(
(u · ∇)TS +

1
2

(∇ · u)TS
)
dx (3.10)

c2(u,C,Φ) =
∫
Ω

(
(u · ∇)CΦ +

1
2

(∇ · u)CΦ
)
dx (3.11)

With the use of integration by parts, one can show c0(u, v, v) = 0 for all u, v ∈ X, c1(u, S , S ) =

0 for all (u, S ) ∈ X ×W , and c2(u,Φ,Φ) = 0 for all (u,Φ) ∈ X × Ψ.

We study semi-discretization approach in space first i.e., only the continuous-in-time is con-

sidered. Let τh be an admissible triangulation of the domain Ω and the mesh τh results from a

coarser mesh τH by refinement for which H ≥ h. We introduce the conforming finite element

spaces Xh ⊂ X,Qh ⊂ Q,Wh ⊂ W and Ψh ⊂ Ψ. We also assume that a pair of finite element
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spaces (Xh,Qh) satisfies the discrete inf-sup condition. Furthermore, we again introduce the

discretely divergence-free subspace of Xh,

Vh = {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

The projection-based stabilization method uses the following coarse or large scale spaces. Let

LH ,MH,KH are the coarse finite spaces of the deformation tensor, the temperature gradient

and the concentration gradient, respectively, i.e. with

LH ⊆ DXh ⊆ L := {li j ∈ [L2(Ω)]d×d |li j = l ji}
MH ⊆ ∇Wh ⊆ M := {mi ∈ [L2(Ω)]d}
KH ⊆ ∇Ψh ⊆ K := {ki ∈ [L2(Ω)]d}.

Remark 3.1 In the limit case, the choices, LH = DXh, MH = ∇Wh and KH = ∇Ψh, yield

a standard Galerkin finite element formulation. In addition the choices LH = {0},MH = {0}
and KH = {0} yield an artificial viscosity method.

There are two natural ways to define the coarse finite element spaces: on a coarser grid or

by low order finite elements on the finest grid. For the error analysis, choose LH to be a

particular subspace for the velocity, namely, LH = DXH, so that it contains the discontinuous

piecewise polynomials on the coarse mesh finite space XH.

Let the relevant L2 orthogonal projection operators for those coarse finite element spaces are

Pu
L : L→ LH

PT
M : M → MH

PC
K : K → KH .

By using the same ideas in Chapter 2, the projection-based stabilized method for Darcy-

Brinkman equations with the additional viscosities α1 := α1(h), α2 := α2(h), α3 := α3(h)

becomes: find uh : [0, t∗]→ Vh, Th : [0, t∗]→ Wh,Ch : [0, t∗]→ Ψh

(∂tuh, vh) + (2νDuh,Dvh) + α1((I − Pu
L)Duh, (I − Pu

L)Dvh) + c0(uh, uh, vh) + (Da−1uh, vh)

= βT (gTh, vh) + βC(gCh, vh) (3.12)

(∂tT
h, S h) + c1(uh, Th, S h) + (γ∇Th,∇S h) + α2((I − PT

M)∇Th, (I − PT
M)∇S h) = 0 (3.13)

(∂tC
h,Φh) + c2(uh,Ch,Φh) + (Dc∇Ch,∇Φh) + α3((I − PC

K)∇Ch, (I − PC
K)∇Φh) = 0 (3.14)
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for all (vh, qh, S h,Φh) ∈ (Vh,Qh,Wh,Ψh). Here α1, α2, α3 are non-negative constant functions

and user selected stabilization parameters. Note that the operators (I−Pu
L), (I−PT

M) and (I−PC
K)

represent small scales or fluctuations of the deformation Duh, the temperature gradient ∇T

and the concentration gradient ∇C, respectively.

Convective terms defined via (3.6)-(3.8) satisfy the same properties as in Chapter 2. The only

different term is c2(u,C,Φ) and it is treated exactly as c1(u, T, S ). So Lemma 2.5 could be

extended with c2(u,C,Φ) directly.

We make several common assumptions about the finite element spaces that we will use. We

assume that the finite element spaces Xh,Wh and Ψh rely on quasiuniform triangulations of

Ω and contain piecewise continuous polynomials of degree m and the space Qh contains

continuous piecewise polynomials of degree m−1. In addition, the spaces satisfy the following

approximation properties: for a given integer 1 ≤ s ≤ m:

inf
vh∈Xh,qh∈Qh

{
‖(u − vh)‖ + h‖∇(u − vh)‖ + h‖p − qh‖

}
≤ Chs+1(‖u‖s+1 + ‖p‖s), (3.15)

inf
S h∈Wh

‖T − S h‖ ≤ hs+1‖T‖s+1 (3.16)

inf
Φh∈Ψh

‖C − Φh‖ ≤ hs+1‖C‖s+1 (3.17)

for (u, p, T,C) ∈ (X ∩ Hs+1(Ω),Q ∩ Hs(Ω),W ∩ Hs+1(Ω),Ψ ∩ Hs+1(Ω)).

We choose the coarse finite element spaces LH = DXH, MH and ΨH containing the space of

discontinuous polynomials of degree m − 1 on a coarse mesh.

The L2 orthogonal projections of LH ,MH and KH satisfy

‖G − P
κ

μG‖ ≤ CHs|G|s, μ = L,M,K; κ = u, T,C; 1 ≤ s ≤ m (3.18)

for all G ∈ (L2(Ω) ∩ Hs(Ω)) . The following lemma is used in the error analysis of the

semi-discrete problem.

Lemma 3.2 Assume that the domain Ω has a quasiuniform triangulation and velocity coarse

scale space LH satisfies LH = DXH. Then we have

‖Pu
L∇φh‖ ≤ CH−1‖φh‖ (3.19)

for all φh ∈ Vh .
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Proof. Defining the elliptic projection PH : X → XH for velocity large scales, it is shown in

[32] that Pu
LDv = D(PHv) ∀ v ∈ X. Thus we have,

‖Pu
L∇φh‖ = ‖D(PHv)‖ .

Assumption on quasiuniform triangulation allows us to use inverse estimates for the finite

element function φ, so we reach

‖Pu
L∇φh‖ = ‖D(PHv)‖ ≤ CH−1‖PHφ

h‖ (3.20)

Finally, assuming the L2 stability of elliptic projection for functions in Vh i.e., ‖PHφ
h‖ ≤

C‖φh‖, ∀φh ∈ Vh and combining this result with (3.20), the final estimate is obtained. �

Since the velocity deformation tensor is used in this section, we need Korn’s inequality which

states

‖∇v‖ ≤ K‖Dv‖ (3.21)

for all v ∈ X with K = K(Ω)

Throughout the finite element error analysis of this section, we use the following weighted

norms.

Definition 3.3 For u ∈ X, T ∈ W, C ∈ Ψ, the weighted norms of functions u : Ω f → R,

T : Ω→ R and C : Ω→ R are defined by

‖u‖2a,b = a ‖u‖2 + bν ‖Du‖2 + α1

∥∥∥(I − Pu
L)Du

∥∥∥2

‖T‖2a,b = a ‖T‖2 + b ‖∇T‖2 + α2

∥∥∥(I − PT
M)∇T

∥∥∥2

‖C‖2a,b = a ‖C‖2 + b ‖∇C‖2 + α3

∥∥∥(I − PC
K)∇C

∥∥∥2

where a, b, c > 0 are constants and α1, α2, α3 are stabilizing parameters.

We now give the following version of Gronwall’s Lemma which is given in [62].

Lemma 3.4 (Gronwall’s Lemma) Let λ be a non-negative function and Fi ∈ L1(0, t∗) with∫ t

0 Fi(s)ds continuous and non decreasing on [0, t∗] for i = 1, 2, 3. Then

∂tλ + F1(t) ≤ F2(t) + F3(t)λ(t) a.e. in [0, t∗]

implies for almost all t ∈ [0, t∗]

λ(t) +
∫ t

0
F1(s)ds ≤ exp

(∫ t

0
F3(s)ds

) (
λ(0) +

∫ t

0
F2(s)ds

)
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Proof. We refer [60] for the proof. �

3.2 Semi-Discrete A Priori Error Analysis

This section gives a finite element error analysis for the discrete solutions of (3.12)-(3.14). We

state the stability and then give the main convergence result. Finite element approximation

results follow.

3.2.1 Stability of the method

We first prove the stability results for discrete solutions of (3.12)-(3.14), i.e., the solutions

uh, Th and Ch are bounded a priori by the data of the problem.

Lemma 3.5 (Stability) Let u0 ∈ (L2(Ω))d, T0,C0 ∈ L2(Ω). Then the solution (uh, Th,Ch) ∈
(Vh,Wh,Ψh) of (3.12)-(3.14) fulfills uh ∈ (L∞(0, t∗; L2))d,Duh ∈ (L2(0, t∗; L2))d×d, Th ∈
L∞(0, t∗; L2), ∇Th ∈ (L2(0, t∗; L2))d×d,Ch ∈ L2(0, t∗; L2),∇Ch ∈ (L2(0, t∗; L2))d×d.

Proof. Setting S h = Th in (3.13), Φh = Ch in (3.14) and skew-symmetry of c1(·, ·, ·) and

c2(·, ·, ·) imply that

1
2
∂t‖Th‖2 + γ‖∇Th‖2 + α2‖(I − PT

M)∇Th‖2 = 0

1
2
∂t‖Ch‖2 + Dc‖∇Ch‖2 + α3‖(I − PC

K)∇Ch‖2 = 0.

Integrating the above two equations over from (0, t) with t ≤ t∗ yield

‖Th‖2L∞(0,t,L2) + 2Dc‖∇Th‖2L2(0,t,L2) + 2α2‖(I − PT
M)∇Th‖2L2(0,t,L2) ≤ ‖T0‖2 (3.22)

‖Ch‖2L∞(0,t,L2) + 2γ‖∇Ch‖2L2(0,t,L2) + 2α3‖(I − PC
K)∇Ch‖2L2(0,t,L2) ≤ ‖C0‖2. (3.23)

For the velocity equation set vh=uh in (3.12), then we have

1
2
∂t‖uh‖2 + 2ν‖Duh‖2 + α1‖(I − Pu

L)Duh‖2 + Da−1‖uh‖2

≤ ‖g‖∞
(
βT ‖Th‖‖uh‖ + βC‖Ch‖‖uh‖

)
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Making use of Young’s inequality, integration over (0, t) and the stability estimations of Th

and Ch in (3.22)-(3.23) yield

‖uh‖2L∞(0,t,L2) + 4ν‖Duh‖2L2(0,t,L2) + 2α1‖(I − Pu
L)Duh‖2L2(0,t,L2) + Da−1‖uh‖2L2(0,t,L2)

≤ Da‖g‖2∞
(
β2

T ‖T0‖2 + β2
C‖C0‖2

)
+ ‖u0‖2,

from which the statement of the result follows. �

Remark 3.6 The continuous solution of (3.1) is stable in the same sense that of discrete case.

The proof of the stability of u, T,C can be established by using the same idea of Lemma 3.5.

For the error analysis, we now state the regularity assumptions:

∇u ∈ L4(0, t∗; L2(Ω)), ∂tu ∈ L2(0, t∗; H−1(Ω), ∇T ∈ L4(0, t; L2(Ω)), (3.24)

∂tT ∈ L2(0, t∗; H−1(Ω)), ∇C ∈ L4(0, t; L2(Ω)), ∂tC ∈ L2(0, t∗; H−1(Ω)) (3.25)

Note that the assumptions ∇u in (3.24) are natural regularity assumptions for the Navier-

Stokes equations. These assumptions imply that Serrin’s condition is fulfilled. From these

assumptions, the uniqueness is guaranteed, [67], [17]. This type of existence-uniqueness

results are well known for the Navier-Stokes type problems which could be easily adapted to

the uncoupled Navier-Stokes case.

3.2.2 A Priori Error Estimation

In this part, we state and prove main error estimation theorem. The proof contains same

strategy by Rannacher and Heywood [26].

A priori error analysis starts in the usual way by deriving the error equations with the subtrac-

tion of (3.12) from (3.2), (3.13) from (3.4) and (3.14) from (3.5) for all test functions from

Vh,Wh and Ψh, respectively. Then we obtain

(∂t(u − uh), vh) + (2νD(u − uh),Dvh) + α1((I − Pu
L)D(u − uh), (I − Pu

L)Dvh)

+(Da−1(u − uh), vh) + c0(u, u, vh) − c0(uh, uh, vh) − (p − qh,∇ · vh) (3.26)

= βT (g(T − Th), vh) + βC(g(C −Ch), vh) + α1((I − Pu
L)Du, (I − Pu

L)Dvh)
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for all (vh, qh) ∈ (Vh,Qh),

(∂t(T − Th), S h) + (γ∇(T − Th),∇S h) + α2((I − PT
M)∇(T − Th), (I − PT

M)∇S h)

c1(u, T, S h) − c1(uh, Th, S h) = α2((I − PT
M)∇T, (I − PT

M)∇S h) (3.27)

for all S h ∈ Wh and

(∂t(C −Ch),Φh) + (Dc∇(C −Ch),∇Φh) + α3((I − PC
K)∇(C −Ch), (I − PC

K)∇Φh)

+c2(u,C,Φh) − c2(uh,Ch,Φh) = α3((I − PT
M)∇C, (I − PT

M)∇Φh) (3.28)

for all Φh ∈ Ψh. We split the error terms in two parts: the approximation errors, ηu, ηT , ηC

and the finite element remainders φh
u, φ

h
T and φh

C

u − uh = (u − ũ) − (uh − ũ) = ηu − φh
u

T − Th = (T − T̃ ) − (Th − T̃ ) = ηT − φh
T

C −Ch = (C − C̃) − (Ch − C̃) = ηC − φh
C .

where ũ ∈ Vh, T̃ ∈ Wh and C̃ ∈ Ψh are the approximations of u, T and C, respectively,

which fulfill certain interpolation estimations. Revising the error equations according to these

decompositions and writing vh = φh
u, S h = φh

T and Φh = φh
C , respectively, one obtains

1
2
∂t‖φh

u‖2 + 2ν‖Dφh
u‖2 + α1‖(I − Pu

L)Dφh
u‖2 + Da−1‖φh

u‖2

= (∂tηu,φ
h
u) + (2νDηu,Dφ

h
u) + α1((I − Pu

L)Dηu, (I − Pu
L)Dφh

u) + (Da−1ηu,φ
h
u)

−α1((I − Pu
L)Du, (I − Pu

L)Dφh
u) − (p − qh,∇ · φh

u)) − βT (g(T − Th),φh
u)

−βC(g(C −Ch),φh
u) + c0(u, u, vh) − c0(uh, uh, vh) (3.29)

1
2
∂t‖φh

T ‖2 + γ‖∇φh
T ‖2 + α2‖(I − PT

M)∇φh
T ‖2

= (∂tηT , φ
h
T ) + (γ∇ηT ,∇φh

T ) + α2((I − PT
M)∇ηT , (I − PT

M)∇φh
T )

−α2((I − PT
M)∇T, (I − PT

M)∇φh
T ) + c1(u, T, S h) − c1(uh, Th, S h) (3.30)

and

1
2
∂t‖φh

C‖2 + Dc‖∇φh
C‖2 + α3‖(I − PC

K)∇φh
C‖2

= (∂tηC , φ
h
C) + (Dc∇ηC ,∇φh

C) + α3((I − PC
K)∇ηC , (I − PC

K)∇φh
C)

−α3((I − PT
M)∇C, (I − PC

K)∇φh
C) + c2(u,C, φh

C) − c2(uh,Ch, φh
C) (3.31)

The next step is to estimate the terms on the right hand sides of (3.30), (3.31) and (3.29),

respectively. In the following estimations we basically use Cauchy-Schwarz (or duality pair-

ing), Korn’s, Young’s and Poincaré’s inequalities. Then, the terms in the temperature equation
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(3.30) are estimated as follows:

|(∂tηT , φ
h
T )| ≤ ‖∂tηT ‖−1‖∇φh

T ‖ ≤ Kγ−1‖∂tηT ‖2−1 +
γ

16
‖∇φh

T ‖2

|(∇ηT ,∇φh
T )| ≤ Kγ−1‖∇ηT ‖2 + γ16

‖∇φh
T ‖2

|α2((I − PT
M)∇ηT , (I − PT

M)∇φh
T )| ≤ Kα2‖(I − PT

M)∇ηT ‖2 + α2

4
‖(I − PT

M)∇φh
T ‖2

|α2((I − PT
M)∇T, (I − PT

M)∇φh
T )| ≤ Kα2‖(I − PT

M)∇T‖2 + α2

4
‖(I − PT

M)∇φh
T ‖2

The critical error estimation is the convective terms. We first split this term as follows

c2(u, T, φh
T ) − c2(uh, Th, φh

T ) = c2(ηu, T, φ
h
T ) − c2(φh

u, T, φ
h
T ) + c2(uh, ηT , φ

h
T ). (3.32)

By using Lemma 2.5, we estimate each term on the right hand side of (3.32) separately:

|c2(ηu, T, φ
h
T )| ≤ K‖ηu‖1/2‖∇ηu‖1/2‖∇C‖‖∇φh

T ‖ ≤
γ

16
‖∇φh

T ‖2 + Kγ−1‖Dηu‖2‖∇T‖2

|c2(φh
u, T, φ

h
T )| ≤ K‖φh

u‖1/2‖∇φh
u‖1/2‖∇T‖‖∇φh

T ‖ ≤
γ

4
‖∇φh

T ‖2 +
ν

8
‖Dφh

u‖2 + Kν−1γ−2‖∇T‖4‖φh
u‖2

|c2(uh, ηT , φ
h
T )| ≤ K‖uh‖1/2‖∇uh‖1/2‖∇ηT ‖‖∇φh

T ‖ ≤
γ

16
‖∇φh

T ‖2 + Kγ−1‖uh‖‖Duh‖∇ηT ‖2

Plugging these estimation in (3.30) and arranging the terms yield

1
2
∂t‖φh

T ‖2 +
γ

2
‖∇φh

T ‖2 +
α2

2
‖(I − PT

M)∇φh
T ‖2 ≤ K{γ−1(‖∂tηT ‖2−1 + ‖∇ηT ‖2

+‖Dηu‖2‖∇T‖2 + ‖Dηu‖2‖∇T‖2 + ‖uh‖‖Duh‖∇ηT ‖2 + ν−1γ−1‖∇T‖4‖φh
u‖2)

+α2‖(I − PT
M)∇ηT ‖2 + α2‖(I − PT

M)∇T‖2} + ν
8
‖Dφh

u‖2. (3.33)

Similar estimations are used to bound the terms in (3.31). Then for the concentration equation

(3.31), one obtains

1
2
∂t‖φh

C‖2 +
Dc

2
‖∇φh

C‖2 +
α3

2
‖(I − PC

K)∇φh
C‖2 ≤ K{D−1

c (‖∂tηC‖2−1 + ‖∇ηC‖2

+‖Dηu‖2‖∇C‖2 + ‖uh‖‖Duh‖∇ηC‖2 + ν−1D−1
c ‖∇C‖4‖φh

u‖2)

+α3‖(I − PC
K)∇ηC‖2 + α3‖(I − PC

K)∇C‖2} + ν
8
‖Dφh

u‖2. (3.34)

The most important part of the analysis is for the velocity variable. We use (3.2) and the result

given in [33] for the L2 projection via

‖Dφh
u‖ ≤ ‖(I − Pu

L)Dφh
u‖ +CH−1‖φh

u‖ (3.35)
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for φh
u ∈ Vh. The estimations for velocity equation (3.29) yield

|(∂tηu,φ
h
u)| ≤ K‖∂tηu‖−1‖Dφh

u‖ ≤ K‖∂tηu‖−1

(
‖(I − Pu

L)Dφh
u‖ + H−1‖φh

u‖
)
,

≤ K
(
H−2Da‖∂tηu‖2−1 + α

−1
1 ‖∂tηu‖2−1

)
+

Da−1

4
‖φh

u‖2 +
α1

8
‖(I − Pu

L)Dφh
u‖2,

|ν(Dηu,Dφ
h
u)| ≤ 3ν

16
‖Dφh

u‖2 + Kν−1‖Dηu‖2,

Da−1|(ηu,φ
h
u)| ≤ K

(
H−2Da−1‖ηu‖2−1 + α

−1
1 Da−2‖ηu‖2−1

)
+

Da−1

4
‖φh

u‖2,+
α1

8
‖(I − Pu

L)Dφh
u‖2

|α1((I − Pu
L)Dηu, (I − Pu

L)Dφh
u)| ≤ α1

8
‖(I − Pu

L)Dφh
u‖2 + Kα1‖(I − Pu

L)Dηu‖2,

|α1((I − Pu
L)Du, (I − Pu

L)Dφh
u)| ≤ α1

8
‖(I − Pu

L)Dφh
u‖2 + Kα1‖(I − Pu

L)Du‖2,

|(p − qh,∇ · φh
u)| ≤ 3ν

16
‖Dφh

u‖2 + Kν−1‖p − qh‖2,

|βT (g(T − Th),φh
u)| ≤ βT ‖g‖∞

(
‖ηT ‖ + ‖φh

T ‖
)
‖φh

u‖ ≤ Kβ2
T ‖g‖2∞

(
‖ηT ‖2 + ‖φh

T ‖2 + ‖φh
u‖2

)
,

|βC(g(C −Ch),φh
u)| ≤ βC‖g‖∞

(
‖ηC‖ + ‖φh

C‖
)
‖φh

u‖ ≤ Kβ2
C‖g‖2∞

(
‖ηC‖2 + ‖φh

C‖2 + ‖φh
u‖2

)
.

To estimate non-linear terms in (3.29), we first rewrite the trilinear forms

|c0(u, u,φh
u) − c0(uh, uh,φh

u)| ≤ |c0(ηu, u,φ
h
u)| + |c0(φh

u, u,φ
h
u)| + |c0(uh, ηu,φ

h
u)|

and we bound them as

|c0(uh, ηu,φ
h
u)| ≤ 3ν

16
‖Dφh

u‖2 + Kν−1‖Duh‖2‖Dηu‖2,

|c0(ηu, u,φ
h
u)| ≤ 3ν

16
‖Dφh

u‖2 + Kν−1‖Du‖2‖Dηu‖2,

|c0(φh
u, u,φ

h
u)| ≤ K

(
(α−3

1 ‖Du‖4 + H−3/2‖Du‖)‖φh
u‖2 + α1‖(I − Pu

L)Duh‖2.
)

So, from (3.29) we have

1
2
∂t‖φh

u‖2 +
5ν
4
‖Dφh

u‖2 +
α1

2
‖(I − Pu

L)Dφh
u‖2 +

Da−1

2
‖φh

u‖2 ≤
K{H−2

(
Da‖∂tηu‖2−1 + Da−1‖ηu‖2−1

)
+ α−1

1

(
‖∂tηu‖2−1 + Da−2‖ηu‖2−1

)
+ ν−1‖Dηu‖2

+α1

(
‖(I − Pu

L)Dηu‖2 + ‖(I − Pu
L)Du‖2

)
+ ν−1

(
‖p − qh‖2 + ‖Duh‖2‖Dηu‖2 + ‖Du‖2‖Dηu‖2

)

+
(
α−3

1 ‖Du‖4 + H−3/2‖Du‖ + (β2
T + β

2
C)‖g‖2∞

)
‖φh

u‖2 + β2
T ‖g‖2∞

(
‖ηT ‖2 + ‖φh

T ‖2
)

+β2
C‖g‖2∞

(
‖ηC‖2 + ‖φh

C‖2
)
}. (3.36)

After this point we combine (3.33), (3.34) and (3.36) and apply Lemma 3.4. To apply Gron-

wall’s Lemma, the L1(0, t∗)- regularity of the appearing terms has to be studied.
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First, we combine (3.33), (3.34) and (3.36) and multiply both sides with 2,

∂t

(
‖φh

u‖2 + ‖φh
T ‖2 + ‖φh

C‖2
)
+

(
2ν‖Dφh

u‖2 + γ‖∇φh
T ‖2 + Dc‖∇φh

C‖2
)
+

(
α1‖(I − Pu

L)Dφh
u‖2

+α2‖(I − PT
M)∇φh

T ‖2 + α3‖(I − PC
K)∇φh

C‖2
)
+ Da−1‖φh

u‖2

≤ K

{
H−2

(
Da‖∂tηu‖2−1 + Da−1‖ηu‖2−1

)
+ α−1

1

(
‖∂tηu‖2−1 + Da−2‖ηu‖2−1

)
+ α1

(
‖(I − Pu

L)Dηu‖2

+‖(I − Pu
L)Du‖2

)
+ ν−1

(
‖Dηu‖2 + ‖p − qh‖2 + ‖Duh‖2‖Dηu‖2 + ‖Du‖2‖Dηu‖2

)

+‖g‖2∞
(
β2

T ‖ηT ‖2 + β2
C‖ηC‖2

)
+ γ−1(‖∂tηT ‖2−1 + ‖∇ηT ‖2 + ‖Dηu‖2‖∇T‖2 + ‖uh‖‖Duh‖∇ηT ‖2)

+α2‖(I − PT
M)∇ηT ‖2 + α2‖(I − PT

M)∇T‖2 + D−1
c (‖∂tηC‖2−1 + ‖∇ηC‖2 + ‖Dηu‖2‖∇C‖2

+‖uh‖‖Duh‖‖∇ηC‖2) + α3‖(I − PC
K)∇ηC‖2 + α3‖(I − PC

K)∇C‖2 +
{
α−3

1 ‖Du‖4 + H−3/2‖Du‖

+‖g‖2∞(β2
T + β

2
C) + ν−1

(
γ−1‖∇T‖4 + D−1

c ‖∇C‖4
)}
‖φh

u‖2
}

To apply the Lemma 3.4, we now define and appropriate λ and Fi, i = 1, 2, 3 functions.

Clearly,

λ = ‖φh
u‖2 + ‖φh

T ‖2 + ‖φh
C‖2.

For the others, we set

F1(t) = 2ν‖Dφh
u‖2 + α1‖(I − Pu

L)Dφh
u‖2 + γ‖∇φh

T ‖2 + α2‖(I − PT
M)∇φh

T ‖2 + Dc‖∇φh
C‖2

+α3‖(I − PC
K)∇φh

C‖2 + Da−1‖φh
u‖2, (3.37)

F2(t) = K

{ (
H−2 + α−1

1

) (
‖∂tηu‖2−1 + ‖ηu‖2

)
+ α1

(
‖(I − Pu

L)Dηu‖2 + ‖(I − Pu
L)Du‖2

)

+ν−1
(
‖Dηu‖2 + ‖p − qh‖2 + ‖Duh‖2‖Dηu‖2 + ‖Du‖2‖Dηu‖2

)

+‖g‖2∞
(
β2

T ‖ηT ‖2 + β2
C‖ηC‖2

)
+ ‖∂tηT ‖2−1 + ‖∇ηT ‖2 + α2‖(I − PT

M)∇ηT ‖2

+α2‖(I − PT
M)∇T‖2 + ‖Dηu‖2‖∇T‖2 + ‖uh‖‖Duh‖‖∇ηT ‖2 + ‖∂tηC‖2−1 + ‖∇ηC‖2

+α3‖(I − PC
K)∇ηC‖2 + α3‖(I − PC

K)∇C‖2 + ‖Dηu‖2‖∇C‖2 + ‖uh‖‖Duh‖‖∇ηC‖2
}

(3.38)

and

F3(t) = K
(
α−3

1 ‖Du‖4 + H−3/2‖Du‖ + ‖g‖2∞(β2
T + β

2
C) + ν−1

(
γ−1‖∇T‖4 + D−1

c ‖∇C‖4
))
.

(3.39)

It is straightforward to show that Fi(t), i = 1, 2, 3 functions satisfy the assumptions of Gron-
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wall’s Lemma, but for convenience let us show non-trivial parts only.

∫ t

0
‖Duh‖2‖Dηu‖2 ≤ ‖Duh‖2L4(0,t;L2)‖Dηu‖2L4(0,t;L2) < ∞,∫ t

0
‖Du‖2‖Dηu‖2 ≤ ‖Du‖2L4(0,t;L2)‖Dηu‖2L4(0,t;L2) < ∞,∫ t

0
‖Dηu‖2‖∇T‖2 ≤ ‖Dηu‖2L4(0,t;L2)‖∇T‖2L4(0,t;L2) < ∞,∫ t

0
‖uh‖ ‖Duh‖ ‖∇ηT ‖2 ≤ ‖uh‖L∞(0,t;L2)‖Duh‖L2(0,t;L2)‖∇ηT ‖2L4(0,t;L2) < ∞,∫ t

0
‖Dηu‖2‖∇C‖2 ≤ ‖Dηu‖2L4(0,t;L2)‖∇C‖2L4(0,t;L2) < ∞,∫ t

0
‖uh‖ ‖Duh‖ ‖∇ηC‖2 ≤ ‖uh‖L∞(0,t;L2)‖Duh‖L2(0,t;L2)‖∇ηC‖2L4(0,t;L2) < ∞.

Note that we omit the positive finite constants in front of the integrals. These estimations are

obtained by using the Hölder inequality, Poincaré’s inequality, stability results and assump-

tions (3.24)-(3.25). Once we guarantee to apply the Gronwall’s lemma , one can obtain the

final error estimate by using Definition 3.3 and the triangle inequality. As a conclusion, we

get the following convergence theorem.

Theorem 3.7 Let (uh, Th,Ch) be the solution of (3.12)-(3.14). Suppose that (3.24), (3.25)

hold and let F2(t) and F3(t) be given as in (3.38) and (3.39) respectively. Then the error

satisfies for 0 ≤ t∗ < ∞:

‖(u − uh)‖2(Da−1,2) + ‖(T − Th)‖2(1,γ) + ‖(C −Ch)‖2(1,Dc)

≤ K

{
inf

ũh∈L2(0,t∗;Vh)
T̃ h∈L2(0,t∗;Wh)C̃h∈L2(0,t∗;Φh)

(
‖(u − ũh)‖2(Da−1 ,2) + ‖(T − T̃ h)‖2(1,γ) + ‖(C − C̃h)‖2(1,Dc)

)

+ exp

(∫ t

0
F3(s)ds

)
inf

ũh∈L2(0,t∗;Vh)
T̃ h∈L2(0,t∗;Wh),C̃h∈L2(0,t∗;Φh)

(
‖(uh − ũh)(0)‖2 + ‖(Th − T̃ h)(0)‖2

+‖(Ch − C̃h)(0)‖2 +
∫ t

0
F2(s)ds

) }

with constant K which may depend on domain Ω and independent from h, α1, α2, α3, ν, γ,Dc.

Remark 3.8 Let us study the convergence of the Theorem 3.7. The right hand side of (3.38)

includes the crucial terms α1‖(I − Pu
L)∇u‖2, α2‖(I − PT

M)∇T‖2, α3‖(I − PC
K)∇C‖2. Except,

these three terms, all other terms contain interpolation errors. The crucial terms does not

have a factor of interpolation error terms. However, they tend to zero as mesh width h → 0
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if α1, α2, α3 → 0. In this case, standard Galerkin finite element discretization is recovered

asymptotically.

In the next corollary, we present a typical example of the finite element spaces and the param-

eter choices of (αi,H) = (h2, h1/2), for i = 1, 2, 3. We note that the parameters are chosen in

such a way that the crucial terms behave at least as interpolation error.

Corollary 3.9 Assume that (u, p, T,C) ∈ (X∩Hs+1(Ω),Q∩Hs(Ω),W∩Hs+1(Ω),Ψ∩Hs+1(Ω))

and let the finite element spaces are chosen as

Xh = {v ∈ C0(Ω̄) : v|Δ ∈ P2(Δ),∀Δ ∈ τh},
Wh = {S ∈ C0(Ω̄) : S |Δ ∈ P2(Δ),∀Δ ∈ τh},
Ψh = {Φ ∈ C0(Ω̄) : Φ|Δ ∈ P2(Δ),∀Δ ∈ τh},
Qh = {v ∈ C0(Ω̄) : v|Δ ∈ P1(Δ),∀Δ ∈ τh},
LH = {lH ∈ L2(Ω) : lH |Δ ∈ P1(Δ),∀Δ ∈ τH},

MH = {mH ∈ L2(Ω) : mH |Δ ∈ P1(Δ),∀Δ ∈ τH},
KH = {kH ∈ L2(Ω) : kH |Δ ∈ P1(Δ),∀Δ ∈ τH}.

Then, the error becomes

‖D(u − uh)‖ + ‖∇(T − Th)‖ + ‖∇(C −Ch)‖ � O(h2)

along with the choices of (αi,H) = (h2, h1/2) for i = 1, 2, 3.

3.3 Numerical Studies

In this section, we perform some numerical tests to validate the effectiveness of our method.

We carry out these analysis in two different steps depending on the buoyancy ratio N. We first

consider the case N = 0 which corresponds to a system of pure thermal convection in a porous

medium. Then we investigate the performance of the method under different buoyancy ratios

with N � 0.

In our computations, we particularly select conforming Taylor-Hood finite elements which

are known to satisfy the inf-sup condition (2.20). Parameter and mesh scalings are arranged
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as H ∼ h1/2 and αi ∼ h2 for i = 1, 2, 3. The use free finite element software FreeFem++ as

in previous chapter for making these computations [24]. The following iterative scheme is

utilized for solving the system

1
τ

(u(m) − u(m−1), vh) + 2ν(Du(m),Dvh) + c0(u(m), u(m−1), vh) + c0(u(m−1), u(m), vh)

+(Da−1u(m), vh) = GrT (T (m), vh) +GrC(C(m), vh) + c0(u(m−1), u(m−1), vh)

−α1((I − Pu
L)Du(m−1), (I − Pu

L)Dvh)

(qh,∇ · u(m)) = 0

1
τ

(T (m) − T (m−1), S h) +
1
Pr

(∇T (m),∇S h) + c1(u(m−1), T (m), S h) + c1(u(m), T (m−1), S h)

= c1(u(m−1), T (m−1), S h) − α2((I − PT
M)∇T (m−1), (I − PT

M)∇S h)

1
τ

(C(m) −C(m−1),Φh) +
1

S c
(∇C(m),∇Φh) + c2(u(m−1),C(m),Φh) + c2(u(m),C(m−1),Φh)

= c1(u(m−1),C(m−1),Φh) − α3((I − PC
K)∇C(m−1), (I − PC

K)∇Φh) (3.40)

for all (vh, qh, S h,Φh) ∈ (Xh,Qh,Wh,Ψh). The scheme initializes by an initial guess (u0, T 0,C0)

and generates (um, pm, Tm,Cm). Note that we put some dimensionless numbers as GrT ,GrC,

Pr, S c in the computational scheme in order to make comparisons with published results. Ex-

plicit definition of these numbers were given in the beginning of this chapter. We also use

another dimensionless parameter namely, the thermal Rayleigh number, Ra = GrT PrDa for

comparison issues which is not put on scheme (3.40) directly.

The computational domain we use is a classical rectangle with an aspect ratio of A = H/L.

We mostly prefer the case A = 1 . Figure 3.1 illustrates the domain with its boundary condi-

tions. We employ no-slip velocity boundary conditions for whole boundary. Horizontal walls

are kept adiabatic and impermeable i.e. ∂T/∂n = ∂C/∂n = 0 at these walls. Temperature

and concentration are kept at T0,C0 for right and T1,C1 for left vertical walls with T0 < T1

and C0 < C1 respectively. We pick T0 = C0 = −1 and T1 = C1 = 1 here. In the computa-

tions, besides the other dimenionless parameters given before, we use another dimensionless

parameter namely, the thermal Rayleigh number, Ra = GrT PrDa for comparison issues.

We carry out numerical tests in two different steps depending on the buoyancy ratio N. We

first consider the case N = 0 which corresponds to a system of pure thermal convection in

a porous medium. Then we also investigate the performance of the method under different

buoyancy ratios with N � 0.
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Figure 3.1: The computational domain with its boundary conditions.

3.3.1 Case I: The Buoyancy ratio N = 0

In the case of N = 0, which is a purely thermal natural convection in a porous cavity, the

flow is solely driven by the thermal natural convection. The accuracy of the numerical results

are checked by comparing Nusselt and Sherwood numbers. We compare our results with the

well-known benchmark studies of Lauriat et al. [43], Trevisan et al. [68] and Goyeu et al.

[20]. Although this configuration does not involve solutal buoyancy force, mass transfer still

occurs due to the density differences led by thermal forces. For all values of N, the Darcy

number (Da) has a very crucial role in the analysis of such kind of flows. Even with making

use of a Brinkman extended formulation as in the present study, the model is said to be in

Darcy regime provided that the Darcy number is less than or near 10−7.

For N = 0 case, we concentrate on comparing our Nusselt and Sherwood numbers with

benchmark data. In engineering, the Nusselt and Sherwood numbers are of great importance.

Roughly, average Nusselt number is the dimensionless heat flux and average Sherwood num-

ber is dimensionless mass flux in the system which are given explicitly as

Nu =
1
A

∫ A

0

(
∂T
∂x

)
x=0

dy S h =
1
A

∫ A

0

(
∂C
∂x

)
x=0

dy.

We first give values of the Nusselt number at A = 5 for the different Da in which, both Darcy-
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Brinkman and Darcy regimes are taken into account. Table 3.1 summarizes these results

along with the results obtained by [43, 20] which enable us to make a clear comparison. A

similar computation is carried out for the case A = 1 in which, the Sherwood numbers are

also calculated additionally. Such kind of analysis was presented in benchmark studies of [68]

and [20] and we introduce our results in comparison with those studies in Table 3.2. For the

values in both tables, one can observe the excellent agreement with previously published data

even with coarser grids. We use a uniform grid of maximum 24 × 24 for A = 1 and 24 × 44

for A = 5 where a sinusoidal grid of 64 × 64, 145 × 95 was used in [20] and uniform 41 × 41,

41 × 81 was used in [43] for A = 1 and A = 5 respectively. A uniform grid of 42 × 42 was

used in [68] also. This is a significant advantage of the proposed method.

Table 3.1: Comparison of average Nusselt numbers for N = 0 at A = 5 with different Da and
thermal Rayleigh numbers.

Da 10−2 10−3 10−4 10−5 10−7

Ra=500
Present Study 7.30 9.11 10.01 10.30 10.42

Ref.[43] 7.25 9.15 9.95 10.25 10.40
Ref.[20] 7.29 9.13 10.00 10.34 10.39

Ra=1000
Present Study 9.45 12.49 14.32 15.06 15.17

Ref.[43] 9.44 12.55 14.28 14.99 15.19
Ref.[20] 9.45 12.60 14.30 14.90 15.15

Table 3.2: Comparison of average Nusselt and Sherwood numbers for N = 0, Le = 10 at
A = 1 with different thermal Rayleigh numbers (Darcy Regime).

Ra 100 200 400 1000 2000

Nu
Present Study 3.15 5.02 7.83 14.01 20.00

Ref.[68] 3.27 5.61 9.69 – –
Ref.[20] 3.11 4.96 7.77 13.47 19.90

Sh
Present Study 13.54 20.11 27.96 48.01 71.25

Ref.[68] 15.61 23.23 30.73 – –
Ref.[20] 13.25 19.86 28.41 48.32 69.29

3.3.2 Case II: The Buoyancy ratio N � 0

The case of N � 0 is identified as mass driven flow by [68] in the flow configuration. We take

N in between 0 and 35, Ra in 100 and 1000 and Le in 1 and 300 throughout our computations.

As in the case of N = 0, we calculate average Nusselt numbers for evaluating the performance

of the method. However, the effect of Lewis number and Darcy number on Nusselt Number
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for different N values are also considered. Other parameters, A and Pr are kept at A = 1,

Pr = 10 throughout all simulations. The effect of Darcy number on flow patterns is illustrated

by streamline, isotherm and isoconcentration lines in Figure 3.2. For displaying these patterns,

we take N = 10,Ra = 100 and Le = 10. As could be concluded from the figure, when

the Darcy number increases and the flow character turns into Darcy-Brinkman regime from

Darcy regime, boundary layers become thicker in streamlines and concentration gradients

get smaller. This is because the Brinkman term in the system of equations turns out to be

more significant as Darcy number increases. Displayed flow patterns match perfectly with

ones given in [20] via using the coarser meshes stated in previous part. Lewis number has a

Figure 3.2: Streamlines, isotherms and isoconcentration lines for Da = 10−3 (upper left
to right) and streamlines, isotherms and isoconcentration lines for Da = 10−7(lower left to
right), respectively.

crucial role on average heat and mass transfer in the system also. We know that, Nusselt and

Sherwood numbers are identical in the classical case Le = 1. We now investigate the effect of

Lewis number on average heat transfer for different Le and N. In order to understand stated

effects, we display the Nusselt number as a function of Le in Figure 3.3. The scale analysis in

[68] states that Nu satisfies

Nu ∼
(RaN

Le

)1/2

.

One can read this situation as, the average heat transfer is directly proportional to Ra, N and it

decreases as Le increases. Clearly, Figure 3.3 supports this scaling and the same ideas stated
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in [68]. Since Le = γ
Dc

, increasing Le restricts the mass transfer. So the effect of N also

gets restricted. At a given Le, N favors inflation which also increases Nu. In order to make

�

��

Figure 3.3: Nusselt number as a function of Lewis number.

distinctions about Darcy and Darcy-Brinkman regimes, we present the results about the effect

of Darcy number on Nusselt number. We can conclude from Figure 3.4 that, as N increases,

Nusselt number tends to a pure conduction limit, Nu � 1, through passing to Darcy-Brinkman

regime with a high Lewis number of 100 [20].

As a last graphical interpretation, we give the variation of vertical velocity, temperature and

concentration at mid-height in Figure 3.5. These profiles are perfectly comparable with ones

given in [20], which is the only available reference presenting such kind of illustration.
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Figure 3.4: Nusselt number as a function of N with varying Darcy numbers.

3.4 A fully discrete scheme

We consider the discretization of the system (3.1) for finite element in space and Crank-

Nicolson in time in this section. Instead of usual Crank-Nicolson method, we prefer a more

accurate fully implicit version which is obtained via linear extrapolation of convecting ve-

locity terms [4, 5, 42, 31]. Before giving the algorithm, we note here that since the method

we study is a two-step method, we specify the first step individually along with the initial

conditions.

Definition 3.10 (Crank-Nicolson with Linear Extrapolation-CNLE) The CNLE scheme for

(3.1) for n ≥ 1 reads: given (uh
n, p

h
n, T

h
n ,C

h
n) ∈ (Xh,Qh,Wh,Ψh) find (uh

n+1, p
h
n+1, T

h
n+1,C

h
n+1)
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Figure 3.5: Vertical velocity, temperature and concentration profiles at mid-height for Da =
10−3, Ra = 100, Le = 100 at A = 1.

satisfying⎛⎜⎜⎜⎜⎜⎝uh
n+1 − uh

n

τ
, vh

⎞⎟⎟⎟⎟⎟⎠ + 2ν

⎛⎜⎜⎜⎜⎜⎝Duh
n+1 + uh

n

2
,Dvh

⎞⎟⎟⎟⎟⎟⎠ + α1

⎛⎜⎜⎜⎜⎜⎝(I − Pu
L)D

uh
n+1 + uh

n

2
, (I − Pu

L)Dvh

⎞⎟⎟⎟⎟⎟⎠
+Da−1

⎛⎜⎜⎜⎜⎜⎝uh
n+1 + uh

n

2
, vh

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝ ph

n+1 + ph
n

2
,∇ · vh

⎞⎟⎟⎟⎟⎟⎠ + c0

⎛⎜⎜⎜⎜⎜⎝χ(uh
n),

uh
n+1 + uh

n

2
, vh

⎞⎟⎟⎟⎟⎟⎠
= βT

⎛⎜⎜⎜⎜⎜⎝gTh
n+1 + Th

n

2
, vh

⎞⎟⎟⎟⎟⎟⎠ + βC
⎛⎜⎜⎜⎜⎜⎝gCh

n+1 +Ch
n

2
, vh

⎞⎟⎟⎟⎟⎟⎠ (3.41)

(
qh,∇ · uh

n+1

)
= 0,⎛⎜⎜⎜⎜⎜⎝Th

n+1 − Th
n

τ
, S h

⎞⎟⎟⎟⎟⎟⎠ + γ
⎛⎜⎜⎜⎜⎜⎝∇

⎛⎜⎜⎜⎜⎜⎝Th
n+1 + Th

n

2

⎞⎟⎟⎟⎟⎟⎠ ,∇S h

⎞⎟⎟⎟⎟⎟⎠ + α2

⎛⎜⎜⎜⎜⎜⎝(I − PT
M)∇

⎛⎜⎜⎜⎜⎜⎝Th
n+1 + Th

n

2

⎞⎟⎟⎟⎟⎟⎠ , (I − PT
M)∇S h

⎞⎟⎟⎟⎟⎟⎠
+c1

⎛⎜⎜⎜⎜⎜⎝χ(uh
n),

Th
n+1 + Th

n

2
, S h

⎞⎟⎟⎟⎟⎟⎠ = 0 (3.42)

⎛⎜⎜⎜⎜⎜⎝Ch
n+1 −Ch

n

τ
,Φh

⎞⎟⎟⎟⎟⎟⎠ + Dc

⎛⎜⎜⎜⎜⎜⎝∇
⎛⎜⎜⎜⎜⎜⎝Ch

n+1 +Ch
n

2

⎞⎟⎟⎟⎟⎟⎠ ,∇Φh

⎞⎟⎟⎟⎟⎟⎠ + α3

⎛⎜⎜⎜⎜⎜⎝(I − PC
K)∇

⎛⎜⎜⎜⎜⎜⎝Ch
n+1 +Ch

n

2

⎞⎟⎟⎟⎟⎟⎠ , (I − PC
K)∇Φh

⎞⎟⎟⎟⎟⎟⎠
+c1

⎛⎜⎜⎜⎜⎜⎝χ(uh
n),

Ch
n+1 +Ch

n

2
,Φh

⎞⎟⎟⎟⎟⎟⎠ = 0 (3.43)
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where τ > 0 is a given time step and χ(uh
n) = 1

2

(
3uh

n − uh
n−1

)
.

For the first time step find (uh
1, p

h
1, T

h
1 ,C

h
1) satisfying

⎛⎜⎜⎜⎜⎜⎝uh
1 − uh

0

τ
, vh

⎞⎟⎟⎟⎟⎟⎠ + 2ν

⎛⎜⎜⎜⎜⎜⎝Duh
1 + uh

0

2
,Dvh

⎞⎟⎟⎟⎟⎟⎠ + α1

⎛⎜⎜⎜⎜⎜⎝(I − Pu
L)D

uh
1 + uh

0

2
, (I − Pu

L)Dvh

⎞⎟⎟⎟⎟⎟⎠
+Da−1

⎛⎜⎜⎜⎜⎜⎝uh
1 + uh

0

2
, vh

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝ ph

1 + ph
0

2
,∇ · vh

⎞⎟⎟⎟⎟⎟⎠ + c0

⎛⎜⎜⎜⎜⎜⎝uh
0,

uh
1 + uh

0

2
, vh

⎞⎟⎟⎟⎟⎟⎠
= βT

⎛⎜⎜⎜⎜⎜⎝gTh
1 + Th

0

2
, vh

⎞⎟⎟⎟⎟⎟⎠ + βC
⎛⎜⎜⎜⎜⎜⎝gCh

1 +Ch
0

2
, vh

⎞⎟⎟⎟⎟⎟⎠ (3.44)

(
qh,∇ · uh

1

)
= 0,⎛⎜⎜⎜⎜⎜⎝Th

1 − Th
0

τ
, S h

⎞⎟⎟⎟⎟⎟⎠ + γ
⎛⎜⎜⎜⎜⎜⎝∇

⎛⎜⎜⎜⎜⎜⎝Th
1 + Th

0

2

⎞⎟⎟⎟⎟⎟⎠ ,∇S h

⎞⎟⎟⎟⎟⎟⎠ + α2

⎛⎜⎜⎜⎜⎜⎝(I − PT
M)∇

⎛⎜⎜⎜⎜⎜⎝Th
1 + Th

0

2

⎞⎟⎟⎟⎟⎟⎠ , (I − PT
M)∇S h

⎞⎟⎟⎟⎟⎟⎠
+c1

⎛⎜⎜⎜⎜⎜⎝uh
0,

Th
1 + Th

0

2
, S h

⎞⎟⎟⎟⎟⎟⎠ = 0 (3.45)

⎛⎜⎜⎜⎜⎜⎝Ch
1 −Ch

0

τ
,Φh

⎞⎟⎟⎟⎟⎟⎠ + Dc

⎛⎜⎜⎜⎜⎜⎝∇
⎛⎜⎜⎜⎜⎜⎝Ch

1 +Ch
0

2

⎞⎟⎟⎟⎟⎟⎠ ,∇Φh

⎞⎟⎟⎟⎟⎟⎠ + α3

⎛⎜⎜⎜⎜⎜⎝(I − PC
K)∇

⎛⎜⎜⎜⎜⎜⎝Ch
1 +Ch

0

2

⎞⎟⎟⎟⎟⎟⎠ , (I − PC
K)∇Φh

⎞⎟⎟⎟⎟⎟⎠
+c1

⎛⎜⎜⎜⎜⎜⎝uh
0,

Ch
1 +Ch

0

2
,Φh

⎞⎟⎟⎟⎟⎟⎠ = 0 (3.46)

with the modified stokes projection uh
0, T

h
0 ,C

h
0 of u0, T0,C0 into Vh,Wh and Ψh respectively.

We now give the definition of so-called modified Stokes projection operators for our new

system. In Chapter 2, modified Stokes projection is established for velocity and temperature.

For the new system, we give it for also the concentration of the flow field. Throughout the

error analysis, choosing the modified Stokes projection of each variable for the approximation

terms in the splitting of these variables simplifies the error analysis. We first state the stability

of these projections and give the related error bounds. From now on, we denote ζn+1/2 =

ζn+1+ζn
2 for any function or variable ζ.

Definition 3.11 (Modified Stokes projections) The operator of the modified Stokes projection

for the velocity and pressure, PS , is defined by; PS : (X,Q) → (Xh,Qh), PS (u, p) = (ũ, p̃)

where

2ν(D(u − ũ),Dvh) + α1((I − Pu
L)D(u − ũ), (I − Pu

L)Dvh) + Da−1(u − ũ, vh) − (p − p̃,∇ · vh) = 0,

(qh,∇ · (u − ũ)) = 0

for all (vh, qh) ∈ (Xh,Qh). In the discretely divergence free space Vh and in the pressure space
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Qh, this definition reduces to

2ν(D(u− ũ),Dvh)+α1((I − Pu
L)D(u− ũ), (I − Pu

L)Dvh)+Da−1(u− ũ, vh)− (p− qh,∇ · vh) = 0

(3.47)

for all vh ∈ Vh. The modified Stokes projection operator for the temperature, PT , is defined

by PT : W → Wh, PT (T ) = T̃ where

γ(∇(T − T̃ ),∇S h) + α2((I − PT
M)∇(T − T̃ ), (I − PT

M)∇S h) = 0 (3.48)

for all S h ∈ Wh.

Finally for concentration PC is given by PC : Ψ→ Ψh, PC(C) = C̃ where

Dc(∇(C − C̃),∇Φh) + α3((I − PC
K)∇(C − C̃), (I − PC

K)∇Φh) = 0 (3.49)

for all Φh ∈ Ψh.

Lemma 3.12 The modified Stokes projections defined by (3.47)-(3.49) are stable in the fol-

lowing sense:

2ν‖Dũ‖2 + α1‖(I − Pu
L)Dũ‖2 + Da−1 ‖ũ‖2 ≤ K

(
ν‖Du‖2 + α1‖(I − Pu

L)Du‖2

+ Da−1 ‖u‖2 + ν−1 inf
qh∈Qh

‖p − qh‖2 )

γ‖∇T̃ ‖2 + α2‖(I − PT
M)∇T̃ ‖2 ≤ K

(
γ‖∇T‖2 + α2‖(I − PT

M)∇T‖2
)

Dc‖∇C̃‖2 + α3‖(I − PC
K)∇C̃‖2 ≤ K

(
Dc‖∇C‖2 + α3‖(I − PC

K)∇C‖2
)

Proof. Setting vh = ũ in (3.47) and using the Cauchy-Schwarz inequality yield

2ν‖Dũ‖2 + α1‖(I − Pu
L)Dũ‖2 + Da−1 ‖ũ‖2 ≤ 2ν‖Dũ‖‖Du‖ + α1‖(I − Pu

L)Dũ‖‖(I − Pu
L)Du‖

+Da−1 ‖ũ‖ ‖u‖ + ‖p − qh‖ ‖∇ · ũ‖

thanks to the homogeneous boundary conditions, we have ‖∇ · ũ‖ ≤ ‖∇ũ‖ and the result is

directly obtained through the application of Young’s and Korn’s inequalities. Setting S h = T̃

in (3.48) and following similar steps as above, one gets

γ‖∇T̃ ‖2 + α2‖(I − PT
M)∇T̃ ‖2 ≤ γ‖∇T̃ ‖‖∇T‖ + α2‖(I − PT

M)∇T̃ ‖‖(I − PT
M)∇T‖

and an application of Young’s inequality gives the desired result for temperature variable.

The result for the concentration part could easily be obtained by setting Φh = C̃ in (3.49) and

employing exactly same manipulations performed for the temperature variable. �

The next lemma states the error in those projection operators.
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Lemma 3.13 (Error in modified Stokes projections) Suppose the discrete inf-sup condition

(2.20) holds. Then (ũ, T̃ , C̃) exists uniquely in (Xh,Wh,Ψh) and satisfies

‖D(u − ũ)‖2 + α1‖(I − Pu
L)D(u − ũ)‖2 + Da−1‖(u − ũ)‖2 ≤ K inf

û∈Xh,qh∈Qh
(ν‖D(u − û)‖2

+α1‖(I − Pu
L)D(u − û)‖2 + Da−1‖(u − û)‖2 + ν−1‖p − qh‖2), (3.50)

γ‖∇(T − T̃ )‖2 + α2‖(I − PT
M)∇(T − T̃ )‖2 ≤ K inf

T̂∈Wh
(γ‖∇(T − T̂ )‖2

+α2‖(I − PT
M)∇(T − T̂ )‖2). (3.51)

Dc‖∇(C − C̃)‖2 + α3‖(I − PC
K)∇(C − C̃)‖2 ≤ K inf

Ĉ∈Ψh
(Dc‖∇(C − Ĉ)‖2

+α3‖(I − PC
K)∇(C − Ĉ)‖2). (3.52)

Proof. To prove (3.50), decompose the error u − ũ = η − φh, where η = u − û, φ = ũ − û

where û approximates u in Vh. Thus (3.47) becomes

2ν(Dφh,Dvh) + α1((I − Pu
L)Dφh, (I − Pu

L)Dvh) + Da−1(φh, vh)

= 2ν(Dη,Dvh) + α1((I − Pu
L)Dη, (I − Pu

L)Dvh) + Da−1(η, vh) + (p − qh,∇.vh)(3.53)

Setting vh = φh in (3.53) and applying Cauchy-Schwarz, Young’s and Korn’s inequalities

yield

‖Dφh‖2 + α1‖(I − Pu
L)Dφh‖2 + Da−1‖φh‖2 ≤ K inf

û∈Xh,qh∈Qh
(‖D(u − û)‖2

+ α1‖(I − Pu
L)D(u − û)‖2

+ Da−1‖(u − û)‖2 + ν−1‖p − qh‖2). (3.54)

Since û is an approximation of u in Vh, we can take infimum over Vh in (3.54). The final error

estimate for velocity now follows from the triangle inequality. In order to prove (3.51) and

(3.52), split the relevant errors for each variable as (T −T̃ ) = (T −T̂ )−(T̃−T̂ ) = ηT −φT where

T̂ approximates T in Wh and (C − C̃) = (C − Ĉ) − (C̃ − Ĉ) = ηC − φC where Ĉ approximates

C in Ψh. As in the first part, we have

γ(∇φT ,∇S h) + α2((I − PT
M)∇φT , (I − PT

M)∇S h) ≤ γ(∇ηT ,∇S h)

+ α2((I − PT
M)∇ηT , (I − PT

M)∇S h)

(3.55)
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for the temperature and

Dc(∇φC ,∇Φh) + α3((I − PC
K)∇φC , (I − PC

K)∇Φh) ≤ γ(∇ηC ,∇Φh)

+ α3((I − PC
K)∇ηC , (I − PC

K)∇Φh)

(3.56)

for the concentration parts. We now let S h = φT andΦh = φC in (3.55) and (3.56) respectively.

Final results are obtained via following the same steps in the velocity part. �

Corollary 3.14 Let the regularity assumptions, (u, p, T,C) ∈ (X ∩ Hs+1(Ω),Q ∩ Hs(Ω),W ∩
Hs+1(Ω),Ψ ∩ Hs+1(Ω)) holds. Then the use of the estimations (3.15)-(3.18) in (3.50)-(3.52)

yield

2ν‖D(u − ũ)‖2 + α1‖(I − Pu
L)D(u − ũ)‖2 + Da−1‖(u − ũ)‖2

≤ K
(
νh2s‖u‖2s+1 + α1h2s‖u‖2s+1 + Da−1h2s+2‖u‖2s+1 + ν

−1h2s‖p‖2s
)

(3.57)

γ‖∇(T − T̃ )‖2 + α2‖(I − PT
M)∇(T − T̃ )‖2 ≤ K(γ + α2)(h2s‖T‖2s+1) (3.58)

Dc‖∇(C − C̃)‖2 + α3‖(I − PC
K)∇(C − C̃)‖2 ≤ K(Dc + α3)(h2s‖C‖2s+1) (3.59)

Before beginning the analysis of the method, we give some preliminary lemmas which we

use frequently during this section.

Lemma 3.15 Let λ(·, t) be a function, the time step τ = tn+1 − tn and tn+1/2 =
tn+1+tn

2 . The

following estimates hold true under the stated conditions.

1. If (∂tλ) ∈ C0(0, t∗; L2(Ω)) then
∥∥∥∥λ(·,tn+1)−λ(·,tn)

τ

∥∥∥∥ ≤ K
∥∥∥∂tλ(·, t̃)

∥∥∥ for t̃ ∈ (t0, t∗).

2. If (∂2
t λ) ∈ C0(0, t∗; L2(Ω)) then

∥∥∥∥λ(·,tn+1)+λ(·,tn)
2 − λ(·, tn+1/2)

∥∥∥∥ ≤ Kτ2
∥∥∥∂2

t λ(·, t̃)
∥∥∥ and

∥∥∥ 3
2λ(·, tn) − 1

2λ(·, tn−1) − λ(·, tn+1/2)
∥∥∥ ≤ Kτ2

∥∥∥∂2
t λ(·, t̃)

∥∥∥ for t̃ ∈ (t0, t∗).

3. If (∂3
t λ) ∈ C0(0, t∗; L2(Ω)) then

∥∥∥∥λ(·,tn+1)−λ(·,tn)
τ − ∂tλ(·, tn+1/2)

∥∥∥∥ ≤ Kτ2
∥∥∥∂3

t λ(·, t̃)
∥∥∥ for

t̃ ∈ (t0, t∗)

Proof. These estimates are direct results of Taylor series expansion of the function λ(·, t). �

The following lemma on skew-symmetric trilinear forms is useful on some parts of the proof

of main theorem of the fully discrete error analysis.
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Lemma 3.16 Let vh,∇vh, Th,∇Th,Ch,∇Ch ∈ L∞ (Ω). Then the skew-symmetric trilinear

forms satisfy the following estimations with finite constants K which depend on Ω

c0(uh, vh,wh) ≤ K
(
‖vh‖L∞(Ω) + ‖∇vh‖L∞(Ω)

)
‖uh‖ ‖∇wh‖ (3.60)

c1(uh, Th, S h) ≤ K
(
‖Th‖L∞(Ω) + ‖∇Th‖L∞(Ω)

)
‖uh‖ ‖∇S h‖ (3.61)

c2(uh,Ch,Φh) ≤ K
(
‖Ch‖L∞(Ω) + ‖∇Ch‖L∞(Ω)

)
‖uh‖ ‖∇Φh‖ (3.62)

for all uh, vh,wh ∈ Xh, Th, S h ∈ Ψh and Ch,Φh ∈ Wh.

Lastly, we state the so called discrete Gronwall’s Lemma.

Lemma 3.17 (Discrete Gronwall). Let xn, yn, zn,wn, P, τ be non-negative integers for n ≥ 0

such that for N ≥ 1, if

xN + τ

N∑
n=0

yn ≤ τ
N−1∑
n=0

wnxn + τ

N∑
n=0

zn + P

then we have

xN + τ

N∑
n=0

yn ≤ exp(τ
N−1∑
n=0

wn)

⎛⎜⎜⎜⎜⎜⎜⎝τ
N∑

n=0

zn + P

⎞⎟⎟⎟⎟⎟⎟⎠
for all τ ≥ 0.

Proof. See e.g.,[26] for a proof. �

We state the unconditional stability of the scheme in the next theorem. By mentioning uncon-

ditionally, we mean that there is no restriction on time step for our scheme to be stable. Also,

we have no restrictions on problem data to obtain stability.

Theorem 3.18 (Stability). The scheme (3.44)-(3.46) and (3.41)-(3.43) are unconditionally

stable in the sense that,

‖uh
n+1‖2 + τ

n∑
i=0

(
4ν‖D

(
uh

i+1/2

)
‖2 + 2α1‖(I − Pu

L)D
(
uh

i+1/2

)
‖2 + Da−1‖uh

i+1/2‖2
)

≤ ‖uh
0‖2 + KDa‖g‖2∞

(
β2

Tγ
−1‖Th

0 ‖2 + β2
CD−1

c ‖Ch
0‖2

)
,

‖Th
n+1‖2 + 2τγ

n∑
i=1

(
‖∇

(
Th

i+1/2

)
‖2 + α2‖(I − PT

M)∇
(
Th

i+1/2

)
‖2

)
≤ ‖Th

0 ‖2,

‖Ch
n+1‖2 + 2τDc

n∑
i=1

(
‖∇

(
Ch

i+1/2

)
‖2 + α3‖(I − PC

K)∇
(
Ch

i+1/2

)
‖2

)
≤ ‖Ch

0‖2
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Proof. We start with the first time step. Setting S h = Th
1/2 in (3.45) gives

‖Th
1 ‖2 − ‖Th

0 ‖2
2τ

+ γ‖∇(Th
1/2)‖2 + α2‖(I − PT

M)∇
(
Th

1/2

)
‖2 ≤ 0 (3.63)

so we have

‖Th
1 ‖2 + 2τγ‖∇

(
Th

1/2

)
‖2 + 2τα2‖(I − PT

M)∇
(
Th

1/2

)
‖2 ≤ ‖Th

0 ‖2 (3.64)

through multiplying both sides of (3.63) with 2τ, which is the stability result of the tempera-

ture equation for the first time step. Similarly setting Φh = Ch
1/2 in (3.46) gives the stability

result

‖Ch
1‖2 + 2τDc‖∇

(
Ch

1/2

)
‖2 + 2τα3‖(I − PC

K)∇
(
Ch

1/2

)
‖2 ≤ ‖Ch

0‖2 (3.65)

for the concentration part. Finally for the velocity equation set vh = uh
1/2 in (3.44) and obtain

the inequality

‖uh
1‖2 − ‖uh

0‖2
2τ

+ 2ν‖D
(
uh

1/2

)
‖2 + α1‖(I − Pu

L)D
(
uh

1/2

)
‖2 + Da−1‖uh

1/2‖2

≤ βT ‖g‖∞‖Th
1/2‖‖uh

1/2‖ + βC‖g‖∞‖Ch
1/2‖‖uh

1/2‖. (3.66)

We now employ the Young’s inequality for terms at the right-hand side of (3.66) as follows.

βT ‖g‖∞‖Th
1/2‖‖uh

1/2‖ + βC‖g‖∞‖Ch
1/2‖‖uh

1/2‖ ≤ KDaβ2
T ‖g‖2∞‖Th

1/2‖2 +
Da−1

4
‖uh

1/2‖2

+ KDaβ2
C‖g‖2∞‖Ch

1/2‖2 +
Da−1

4
‖uh

1/2‖2

(3.67)

Using Poincaré’s inequality and previous stability bounds obtained for the temperature and

concentration parts give

KDa‖Th
1/2‖2 ≤ K(2τγ)−1‖Th

0 ‖2, KDa‖Ch
1/2‖2 ≤ K(2τDc)

−1‖Ch
0‖2. (3.68)

Updating the right-hand side of (3.66) through using (3.67) and (3.68) and multiplying both

sides with 2τ gives

‖uh
1‖2 + 4τν‖D(uh

1/2)‖2 + 2τ|(I − Pu
L)D(uh

1/2)‖2 + τDa−1‖uh
1/2‖2

≤ ‖uh
0‖2 + KDa‖g‖2∞

(
β2

Tγ
−1‖Th

0 ‖2 + β2
CD−1

c ‖Ch
0‖2

)
(3.69)

which completes the proof of the stability for the first time step. Now consider the case n ≥ 1.

We set S h = Th
n+1/2 in (3.42) and Φh = Ch

n+1/2 in (3.43) to have

‖Th
n+1‖2 + 2τγ

n∑
i=1

(
‖∇(Th

i+1/2)‖2 + α2‖(I − PT
M)∇(Th

i+1/2)‖2
)
≤ ‖Th

1 ‖2 ≤ ‖Th
0 ‖2

(3.70)
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and

‖Ch
n+1‖2 + 2τDc

n∑
i=1

(
‖∇(Ch

i+1/2)‖2 + α3‖(I − PC
K)∇(Ch

i+1/2)‖2
)
≤ ‖Ch

1‖2 ≤ ‖Ch
0‖2 (3.71)

which prove the stability for T and C. For u, we vh = uh
n+1/2 in (3.41) then use similar

estimations done for the first time step and get the stability result

‖uh
n+1‖2 + τ

n∑
i=0

(
4ν‖D(uh

i+1/2)‖2 + 2α1‖(I − Pu
L)D(uh

i+1/2)‖2 + Da−1‖uh
i+1/2‖2

)

≤ ‖uh
1‖2 + KDa‖g‖2∞

(
β2

Tγ
−1‖Th

0 ‖2 + β2
CD−1

c ‖Ch
0‖2

)

≤ ‖uh
0‖2 + KDa‖g‖2∞

(
β2

Tγ
−1‖Th

0 ‖2 + β2
CD−1

c ‖Ch
0‖2

)
.

�

We are now in a position to give the main theorem of this section.

Theorem 3.19 Assume that u, ∂tu ∈ L2
(
0, t∗; Hs+1(Ω)2

)
, T,C, ∂tT, ∂tC ∈ L2

(
0, t∗; Hs+1(Ω)

)
,

∂2
t u ∈ L2

(
0, t∗; H2(Ω)2

)
, ∂2

t T, ∂2
t C ∈ L2

(
0, t∗; H2(Ω)

)
∂3

t u, ∂3
t T, ∂

3
t C ∈ C0(0, t∗; L2(Ω)) p ∈

L2 (0, t∗; Hs(Ω)) ∂2
t p ∈ L2

(
0, t∗; L2(Ω)

)
and let K1Daβ2

T ‖g‖2∞τ ≤ 1
2 , K2Daβ2

C‖g‖2∞τ ≤ 1
2 . Then

the error satisfies

∥∥∥u(tn+1) − uh
n+1

∥∥∥2
+

∥∥∥T (tn+1) − Th
n+1

∥∥∥2
+

∥∥∥C(tn+1) −Ch
n+1

∥∥∥2

+τ

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

(
2ν‖D

(
u(ti+1) − uh

i+1

)
‖2 + γ‖∇

(
T (ti+1) − Th

i+1

)
‖2 + Dc‖∇

(
C(ti+1) −Ch

i+1

)
‖2

)⎞⎟⎟⎟⎟⎟⎠
+τ

n∑
i=1

(α1‖(I − Pu
L)D

(
u(ti+1) − uh

i+1

)
‖2 + α2‖(I − PT

M)∇
(
T (ti+1) − Th

i+1

)
‖2

+α3‖(I − PC
K)∇

(
C(ti+1) −Ch

i+1

)
‖2) + τ

n∑
i=1

Da−1‖
(
u(ti+1) − uh

i+1

)
‖2

≤ K(h2s + (α1 + α2 + α3)H2s + τ4)

with constants K,K1,K2 depending on u, p, T,C, ν, α1, α2, α3, βT , βC , g,Da, γ,Dc.

Proof. We have to construct error equations for each variable first. We split each error term

as shown below.

eu
n = u(tn) − uh

n = (u(tn) − ũ) − (uh
n − ũ) = ηu

n − φu
n (3.72)

eT
n = T (tn) − Th

n = (T (tn) − T̃ ) − (Th
n − T̃ ) = ηTn − φT

n (3.73)

eC
n = C(tn) −Ch

n = (C(tn) − C̃) − (Ch
n − C̃) = ηCn − φC

n (3.74)
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where ũ, T̃ , C̃ are Modified Stokes projections of u, T,C respectively. Recall here that for any

function or variable ζ, ζn+1/2 is defined as ζn+1/2 =
ζn+1+ζn

2 . Subtracting (3.41) from (3.2),

(3.42) from (3.4) and (3.43) from (3.5) at time level t = tn+1/2 for test functions vh ∈ Xh, S h ∈
Ψh,Φh ∈ Wh gives respectively

⎛⎜⎜⎜⎜⎜⎝∂tu(tn+1/2) − uh
n+1 − uh

n

τ
, vh

⎞⎟⎟⎟⎟⎟⎠ + 2ν
(
Du(tn+1/2) − Duh

n+1/2,Dvh
)

+α1

(
(I − Pu

L)D(u(tn+1/2) − uh
n+1/2), (I − Pu

L)Dvh
)
+ Da−1

(
u(tn+1/2) − uh

n+1/2, v
h
)

−
(
p(tn+1/2) − ph

n+1/2,∇ · vh
)
+ c0

(
u(tn+1/2), u(tn+1/2), vh

)
− c0

(
χ(uh

n), uh
n+1/2, v

h
)

= βT

(
g
(
T (tn+1/2) − Th

n+1/2

)
, vh

)
+ βC

(
g
(
C(tn+1/2) −Ch

n+1/2

)
, vh

)

+α1

(
(I − Pu

L)Dun+1/2, (I − Pu
L)Dvh

)
(3.75)

⎛⎜⎜⎜⎜⎜⎝∂tT (tn+1/2) − Th
n+1 − Th

n

τ
, S h

⎞⎟⎟⎟⎟⎟⎠ + γ (∇(T (tn+1/2) − Th
n+1/2),∇S h

)

+α2

(
(I − PT

M)∇(T (tn+1/2) − Th
n+1/2), (I − PT

M)∇S h
)
+ c1

(
u(tn+1/2), T (tn+1/2), S h

)

−c1(χ(un
h), Th

n+1/2, S
h) = α2

(
(I − PT

M)∇Tn+1/2, (I − PT
M)∇S h

)
(3.76)

⎛⎜⎜⎜⎜⎜⎝∂tC(tn+1/2) − Ch
n+1 −Ch

n

τ
,Φh

⎞⎟⎟⎟⎟⎟⎠ + Dc

(
∇(C(tn+1/2) −Ch

n+1/2),∇Φh
)

+α3

(
(I − PC

K)∇(C(tn+1/2) −Ch
n+1/2), (I − PC

K)∇Φh
)
+ c2

(
u(tn+1/2),C(tn+1/2),Φh

)

−c1

(
χ(un

h),Ch
n+1/2,Φ

h
)
= α3

(
(I − PC

K)∇Cn+1/2, (I − PC
K)∇Φh

)
(3.77)

we add add and subtract
(
u(tn+1) − u(tn)

τ
, vh

)
+ 2ν

(
D

u(tn+1) + u(tn)
2

,Dvh
)
+ Da−1

(
u(tn+1) + u(tn)

2
, vh

)

+α1

(
(I − Pu

L)D
u(tn+1) + u(tn)

2
, (I − Pu

L)Dvh
)

+c0

(
u(tn+1/2) + χ(u(tn)) + χ(uh

n),
u(tn+1) + u(tn)

2
, vh

)
−

(
p(tn+1) + p(tn)

2
,∇ · vh

)

−βT

(
g
(
T (tn+1) + T (tn)

2

)
, vh

)
− βC

(
g
(
C(tn+1) +C(tn)

2

)
, vh

)

to (3.75),
(
T (tn+1) − T (tn)

τ
, S h

)
+ γ

(
∇T (tn+1) + T (tn)

2
,∇S h

)

+α2

(
(I − PT

M)∇T (tn+1) + T (tn)
2

, (I − PT
M)∇S h

)

+c1

(
u(tn+1/2) + χ(u(tn)) + χ(uh

n),
T (tn+1) + T (tn)

2
, S h

)
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to (3.76) and (
C(tn+1) −C(tn)

τ
,Φh

)
+ Dc

(
∇C(tn+1) +C(tn)

2
,∇Φh

)

+α3

(
(I − PC

K)∇C(tn+1) +C(tn)
2

, (I − PC
K)∇Φh

)

+c2

(
u(tn+1/2) + χ(u(tn)) + χ(uh

n),
C(tn+1) +C(tn)

2
,Φh

)

to (3.77) and finally obtain the error equations(
eu

n+1 − eu
n

τ
, vh

)
+ 2ν

(
Deu

n+1/2,Dvh
)
+ α1

(
(I − Pu

L)Deu
n+1/2,Dvh

)
+ Da−1

(
eu

n+1/2, v
h
)

−
(

p(tn+1) + p(tn)
2

− qh,∇ · vh
)
+ c0

(
χ(uh

n), eu
n+1/2, v

h
)
− c0

(
χ(eu

n),
u(tn+1) + u(tn)

2
, vh

)

= βT

(
g(eT

n+1/2), vh
)
+ βC

(
g(eC

n+1/2), vh
)
+ α1

(
(I − Pu

L)Dun+1/2, (I − Pu
L)Dvh

)
+G1

(3.78)

⎛⎜⎜⎜⎜⎝eT
n+1 − eT

n

τ
, S h

⎞⎟⎟⎟⎟⎠ + γ (∇eT
n+1/2,∇S h

)
+ α2

(
(I − PT

M)∇eT
n+1/2, (I − PT

M)∇S h
)

+c1

(
χ(uh

n), eT
n+1/2, S

h
)
− c1

(
χ(eu

n),
T (tn+1) + T (tn)

2
, S h

)
(3.79)

= α2

(
(I − PT

M)∇Tn+1/2, (I − PT
M)∇S h

)
+G2

⎛⎜⎜⎜⎜⎜⎝eC
n+1 − eC

n

τ
,Φh

⎞⎟⎟⎟⎟⎟⎠ + Dc

(
∇eC

n+1/2,∇Φh
)
+ α3

(
(I − PC

K)∇eC
n+1/2, (I − PC

K)∇Φh
)

+c2

(
χ(uh

n), eC
n+1/2,Φ

h
)
− c2

(
χ(eu

n),
C(tn+1) +C(tn)

2
,Φh

)
(3.80)

= α3

(
(I − PC

K)∇Tn+1/2, (I − PC
K)∇Φh

)
+G3

for u, T,C respectively. Here the functions G1,G2,G3 are given as

G1 =

(
u(tn+1) − u(tn)

τ
− ∂tu(tn+1/2), vh

)
+ 2ν

(
D

u(tn+1) + u(tn)
2

− Du(tn+1/2),Dvh
)

+α1

(
(I − Pu

L)D

(
u(tn+1) + u(tn)

2
− u(tn+1/2)

)
, (I − Pu

L)Dvh
)

+Da−1
(
u(tn+1) + u(tn)

2
− u(tn+1/2), vh

)
+ c0

(
u(tn+1/2),

u(tn+1) + u(tn)
2

− u(tn+1/2), vh
)

−c0

(
χ(u(tn)) − u(tn+1/2),

u(tn+1) + u(tn)
2

, vh
)
−

(
p(tn+1) + p(tn)

2
− p(tn+1/2),∇ · vh

)

−βT

(
g
(
T (tn+1) + T (tn)

2
− T (tn+1/2)

)
, vh

)
− βC

(
g
(
C(tn+1) +C(tn)

2
−C(tn+1/2)

)
, vh

)
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G2 =

(
T (tn+1) − T (tn)

τ
− ∂tT (tn+1/2), S h

)
+ γ

(
∇

(
T (tn+1) + T (tn)

2
− T (tn+1/2)

)
,∇S h

)

+α2

(
(I − PT

M)∇
(
T (tn+1) + T (tn)

2
− T (tn+1/2)

)
, (I − PT

M)∇S h
)

+c1

(
u(tn+1/2),

T (tn+1) + T (tn)
2

− T (tn+1/2), S h
)

−c1

(
χ(u(tn)) − u(tn+1/2),

T (tn+1) + T (tn)
2

, S h
)

G3 =

(
C(tn+1) −C(tn)

τ
− ∂tC(tn+1/2),Φh

)
+ Dc

(
∇

(
C(tn+1) +C(tn)

2
−C(tn+1/2)

)
,∇Φh

)

+α3

(
(I − PC

K)∇
(
C(tn+1) + T (tn)

2
−C(tn+1/2)

)
, (I − PT

M)∇Φh
)

+c2

(
u(tn+1/2),

C(tn+1) +C(tn)
2

−C(tn+1/2),Φh
)

−c2

(
χ(u(tn)) − u(tn+1/2),

C(tn+1) +C(tn)
2

,Φh
)
.

We start our analysis by the temperature error equation. Decomposing the error term as in

(3.73) and writing S h = φT
n+1/2 in (3.79) lead us to

‖φT
n+1‖2 − ‖φT

n ‖2
2τ

+ γ‖∇φT
n+1/2‖2 + α2‖(I − PT

M)∇φT
n+1/2‖2 ≤∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎝η
T
n+1 − ηTn
τ

, φT
n+1/2

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣ +

∣∣∣∣γ (∇ηTn+1/2,∇φT
n+1/2

)
+ α2

(
(I − PT

M)∇ηTn+1/2, (I − PT
M)∇φT

n+1/2

)∣∣∣∣
+

∣∣∣∣∣∣c1

(
χ(uh

n), eT
n+1/2, φ

T
n+1/2

)
− c1

(
χ(eu

n),
T (tn+1) + T (tn)

2
, φT

n+1/2

)∣∣∣∣∣∣
+

∣∣∣∣α2

(
(I − PT

M)∇Tn+1/2, (I − PT
M)∇φT

n+1/2

)∣∣∣∣ + ∣∣∣G2(φT
n+1/2)

∣∣∣ . (3.81)

We have to bound each term at the right-hand side of (3.81). Firstly, note that due to the

definition of Modified Stokes projection T̃ , the term

∣∣∣∣γ (∇ηTn+1/2,∇φT
n+1/2

)
+ α2

(
(I − PT

M)∇ηTn+1/2, (I − PT
M)∇φT

n+1/2

)∣∣∣∣
vanishes. For the other linear terms we have

∣∣∣∣∣∣
⎛⎜⎜⎜⎜⎝η

T
n+1 − ηTn
τ

, φT
n+1/2

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣ ≤ Kγ−1‖η

T
n+1 − ηTn
τ

‖2 + γ
18
‖∇φT

n+1/2‖2
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∣∣∣∣α2

(
(I − PT

M)∇Tn+1/2, (I − PT
M)∇φT

n+1/2

)∣∣∣∣ ≤ Kα2

∥∥∥(I − PT
M)∇Tn+1/2

∥∥∥2
+
α2

4

∥∥∥(I − PT
M)∇φT

n+1/2

∥∥∥2

which are obtained by using Cauchy-Schwarz, Young’s and Poincaré’s inequality. Bounding

nonlinear terms is the most challenging part of this analysis. We first write the difference as∣∣∣∣∣∣c1

(
χ(uh

n), eT
n+1/2, φ

T
n+1/2

)
− c1

(
χ(eu

n),
T (tn+1) + T (tn)

2
, φT

n+1/2

)∣∣∣∣∣∣
≤

∣∣∣∣c1

(
χ(uh

n), eT
n+1/2, φ

T
n+1/2

)∣∣∣∣ +
∣∣∣∣∣∣c1

(
χ(eu

n),
T (tn+1) + T (tn)

2
, φT

n+1/2

)∣∣∣∣∣∣ . (3.82)

For the first term in (3.82) we have c1

(
χ(uh

n), eT
n+1/2, φ

T
n+1/2

)
= c1

(
χ(uh

n), ηTn+1/2, φ
T
n+1/2

)
, since

the term c1

(
χ(uh

n), φT
n+1/2, φ

T
n+1/2

)
vanishes. Adding and subtracting c1

(
χ(u(tn), ηTn+1/2, φ

T
n+1/2

)
to this remaining term we have

∣∣∣∣c1

(
χ(uh

n), eT
n+1/2, φ

T
n+1/2

)∣∣∣∣ ≤
∣∣∣∣c1

(
χ(ηu

n), ηTn+1/2, φ
T
n+1/2

)∣∣∣∣ +
∣∣∣∣c1

(
χ(φu

n), ηTn+1/2, φ
T
n+1/2

)∣∣∣∣
+

∣∣∣∣c1

(
χ(u(tn), ηTn+1/2, φ

T
n+1/2

)∣∣∣∣ .
So we go now term by term. The first one is bounded in a standard way with the help of the

definition of χ as follows

∣∣∣∣c1

(
χ(ηu

n), ηTn+1/2, φ
T
n+1/2

)∣∣∣∣ ≤ K
∥∥∥Dχ(ηu

n)
∥∥∥ ‖DηTn+1/2‖‖∇φT

n+1/2‖ ≤
γ

18
‖∇φT

n+1/2‖2

+Kγ−1
(
‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
‖∇ηTn+1/2‖2.

For the second one we assume an inverse inequality holds i.e. for all v ∈ Xh there exists a

constant K independent from h satisfying

‖∇v‖ ≤ Kh−1‖v‖.

So we have

∣∣∣∣c1

(
χ(φu

n), ηTn+1/2, φ
T
n+1/2

)∣∣∣∣ ≤ K‖χ(φu
n)‖1/2‖∇χ(φu

n)‖1/2‖∇ηTn+1/2‖‖∇φT
n+1/2‖

≤ K
(
h−1‖χ(φu

n)‖2
)1/2 ‖∇ηTn+1/2‖‖∇φT

n+1/2‖
≤ Kh−1γ−1

(
‖φu

n‖2 + ‖φu
n−1‖2

)
‖∇ηTn+1/2‖2 +

γ

18
‖∇φT

n+1/2‖2.

The third term is bounded using the regularity assumption on u as

∣∣∣∣c1

(
χ(u(tn)), ηTn+1/2, φ

T
n+1/2

)∣∣∣∣ ≤ γ18
‖∇φT

n+1/2‖2 + Kγ−1‖∇ηTn+1/2‖2.

The second term in (3.82) could be written as∣∣∣∣∣∣c1

(
χ(eu

n),
T (tn+1) + T (tn)

2
, φT

n+1/2

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣c1

(
χ(ηu

n),
T (tn+1) + T (tn)

2
, φT

n+1/2

)∣∣∣∣∣∣
+

∣∣∣∣∣∣c1

(
χ(φu

n),
T (tn+1) + T (tn)

2
, φT

n+1/2

)∣∣∣∣∣∣
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and these are bounded as∣∣∣∣∣∣c1

(
χ(ηu

n),
T (tn+1) + T (tn)

2
, φT

n+1/2

)∣∣∣∣∣∣ ≤ Kγ−1
(
‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
+
γ

18
‖∇φT

n+1/2‖2

∣∣∣∣∣∣c1

(
χ(φu

n),
T (tn+1) + T (tn)

2
, φT

n+1/2

)∣∣∣∣∣∣ ≤ Kγ−1
(
‖φu

n‖2 + ‖φu
n−1‖2

)
+
γ

18
‖∇φT

n+1/2‖2

through the regularity of T , (3.62) and the definition of χ. It only remains the bound G2 for

the analysis of the temperature part. Making use of Lemma 3.15 and usual estimations, we

bound each component of G2 as follows.
(
T (tn+1) − T (tn)

τ
− ∂tT (tn+1/2), φT

n+1/2

)
≤ Kγ−1τ4‖∂3

t T (t̃)‖2 + γ
18
‖∇φT

n+1/2‖2(
∇

(
T (tn+1) + T (tn)

2
− T (tn+1/2)

)
,∇φT

n+1/2

)
≤ Kγ−1τ4‖∂2

t ∇T (t̃)‖2 + γ
18
‖∇φT

n+1/2‖2

α2

(
(I − PT

M)∇
(
T (tn+1) + T (tn)

2
− T (tn+1/2)

)
, (I − PT

M)∇φT
n+1/2

)

≤ Kα2τ
4‖(I − PT

M)∂2
t ∇T (t̃)‖2 + α2

4
α2‖(I − PT

M)∇φT
n+1/2‖2

c1

(
u(tn+1/2),

T (tn+1) + T (tn)
2

− T (tn+1/2), φT
n+1/2

)

+c1

(
χ(u(tn)) − u(tn+1/2),

T (tn+1) + T (tn)
2

, φT
n+1/2

)
≤ Kγ−1τ4‖∂2

t ∇T (t̃)‖2 + γ
18
‖∇φT

n+1/2‖2

Putting all the bounds in (3.81) results with

‖φT
n+1‖2 − ‖φT

n ‖2
2τ

+
γ

2
‖∇φT

n+1/2‖2 +
α2

2
‖(I − PT

M)∇φT
n+1/2‖2 ≤ K

{
γ−1 ( ‖η

T
n+1 − ηTn
τ

‖2

+
(
1 + ‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
‖∇ηTn+1/2‖2 + h−1

(
‖φu

n‖2 + ‖φu
n−1‖2

)
‖∇ηTn+1/2‖2

+
(
‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
+

(
‖φu

n‖2 + ‖φu
n−1‖2

)
+ τ4

(
‖∂3

t T (t̃)‖2 + ‖∂2
t ∇T (t̃)‖2

)
)

+τ4α2‖(I − PT
M)∂2

t ∇T (t̃)‖2 + α2‖(I − PT
M)∇Tn+1/2‖2

}
. (3.83)

One gets the following estimate for C by writing Φh = φC
n+1/2 in (3.80) and performing exactly

same analysis done for T .

‖φC
n+1‖2 − ‖φC

n ‖2
2τ

+
Dc

2
‖∇φC

n+1/2‖2 +
α3

2
‖(I − PC

K)∇φC
n+1/2‖2 ≤ K

{
D−1

c ( ‖η
C
n+1 − ηCn
τ

‖2

+
(
1 + ‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
‖∇ηCn+1/2‖2 + h−1

(
‖φu

n‖2 + ‖φu
n−1‖2

)
‖∇ηCn+1/2‖2

+
(
‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
+

(
‖φu

n‖2 + ‖φu
n−1‖2

)
+ τ4

(
‖∂3

t C(t̃)‖2 + ‖∂2
t ∇C(t̃)‖2

)
)

+τ4α3‖(I − PC
K)∂2

t ∇T (t̃)‖2 + α3‖(I − PC
K)∇Cn+1/2‖2

}
. (3.84)
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We now proceed to the analysis for u. Setting vh = φu
n+1/2 in (3.78) gives

‖φu
n+1‖2 − ‖φu

n‖2
2τ

+ 2ν‖Dφu
n+1/2‖2 + α1‖(I − Pu

L)Dφu
n+1/2‖2 + Da−1‖φu

n+1/2‖ ≤∣∣∣∣∣∣
(
ηu

n+1 − ηu
n

τ
,φu

n+1/2

)∣∣∣∣∣∣ +
∣∣∣∣2ν (Dηu

n+1/2,Dφ
u
n+1/2

)
+ α1

(
(I − Pu

L)Dηu
n+1/2, (I − Pu

L)Dφu
n+1/2

)

+Da−1
(
ηu

n+1/2,φ
u
n+1/2

)
−

(
p(tn+1) + p(tn)

2
− qh,∇ · vh

)∣∣∣∣∣∣ +
∣∣∣∣c0

(
χ(uh

n), ηu
n+1/2,φ

u
n+1/2

)∣∣∣∣
+

∣∣∣∣∣∣c0

(
χ(ηu

n),
u(tn+1) + u(tn)

2
,φu

n+1/2

)∣∣∣∣∣∣ +
∣∣∣∣∣∣c0

(
χ(φu

n),
u(tn+1) + u(tn)

2
,φu

n+1/2

)∣∣∣∣∣∣
+βT

(
g(ηTn+1/2),φu

n+1/2

)
+ βC

(
g(ηCn+1/2),φu

n+1/2

)
+ βT

(
g(φT

n+1/2),φu
n+1/2

)

+βC
(
g(φC

n+1/2),φu
n+1/2

)
+

∣∣∣∣α1

(
(I − Pu

L)Dun+1/2, (I − Pu
L)Dφu

n+1/2

)∣∣∣∣ + ∣∣∣G1(φT
n+1/2)

∣∣∣ . (3.85)

We first bound the linear terms again. Clearly,

∣∣∣∣2ν (Dηu
n+1/2,Dφ

u
n+1/2

)
+ α1

(
(I − Pu

L)Dηu
n+1/2, (I − Pu

L)Dφu
n+1/2

)
+ Da−1

(
ηu

n+1/2,φ
u
n+1/2

)

−
(

p(tn+1) + p(tn)
2

− qh,∇ · vh
)∣∣∣∣∣∣ = 0

by the property of Modified Stokes projection. For the others,
∣∣∣∣∣∣
(
ηu

n+1 − ηu
n

τ

)∣∣∣∣∣∣ ≤ Kν−1

∥∥∥∥∥∥
ηu

n+1 − ηu
n

τ

∥∥∥∥∥∥
2

+
ν

20
‖DφT

n+1/2‖2

∣∣∣∣α1

(
(I − Pu

L)Dun+1/2, (I − Pu
L)Dφu

n+1/2

)∣∣∣∣ ≤ Kα1

∥∥∥(I − Pu
L)Dun+1/2

∥∥∥2
+
α1

4
‖(I − Pu

L)Dφu
n+1/2‖2

∣∣∣∣βT

(
g(ηTn+1/2),φu

n+1/2

)∣∣∣∣ ≤ KDaβ2
T ‖g‖2∞‖ηTn+1/2‖2 +

Da−1

14
‖φu

n+1/2‖2

∣∣∣∣βT

(
g(φT

n+1/2),φu
n+1/2

)∣∣∣∣ ≤ KDaβ2
T ‖g‖2∞‖φT

n+1/2‖2 +
Da−1

14
‖φu

n+1/2‖2

∣∣∣∣βC (
g(ηCn+1/2),φu

n+1/2

)∣∣∣∣ ≤ KDaβ2
C‖g‖2∞‖ηCn+1/2‖2 +

Da−1

14
‖φu

n+1/2‖2

∣∣∣∣βC (
g(φC

n+1/2),φu
n+1/2

)∣∣∣∣ ≤ KDaβ2
C‖g‖2∞‖φC

n+1/2‖2 +
Da−1

14
‖φu

n+1/2‖2

are obtained through standard estimates. We now pass to nonlinear terms. The first term is

decomposed into three terms as in the temperature case as

∣∣∣∣c0

(
χ(uh

n), ηu
n+1/2,φ

u
n+1/2

)∣∣∣∣ ≤
∣∣∣∣c0

(
χ(u(tn)), ηu

n+1/2,φ
u
n+1/2

)∣∣∣∣ +
∣∣∣∣c0

(
χ(ηu

n), ηu
n+1/2,φ

u
n+1/2

)∣∣∣∣
+

∣∣∣∣c0

(
χ(φu

n), ηu
n+1/2,φ

u
n+1/2

)∣∣∣∣ (3.86)
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and

∣∣∣∣c0

(
χ(u(tn)), ηu

n+1/2,φ
u
n+1/2

)∣∣∣∣ ≤ Kν−1‖Dηu
n+1/2‖2 +

ν

20
‖Dφu

n+1/2‖2 (3.87)

∣∣∣∣c0

(
χ(ηu

n), ηu
n+1/2,φ

u
n+1/2

)∣∣∣∣ ≤ ν20
‖Dφu

n+1/2‖2 + Kν−1‖Dηu
n+1/2‖2

(
‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
(3.88)

∣∣∣∣c0

(
χ(φu

n), ηu
n+1/2,φ

u
n+1/2

)∣∣∣∣ ≤ ν20
‖Dφu

n+1/2‖2 + Kν−1h−1‖Dηu
n+1/2‖2

(
‖φu

n‖2 + ‖φu
n−1‖2

)
(3.89)

are obtained similarly as done before. The bounds for remaining nonlinear terms are obtained

via the help of (3.60) and regularity assumptions on u and are given below.
∣∣∣∣∣∣c0

(
χ(φu

n),
u(tn+1) + u(tn)

2
,φu

n+1/2

)∣∣∣∣∣∣ ≤
ν

20
‖Dφu

n+1/2‖2 + Kν−1
(
‖φu

n‖2 + ‖φu
n−1‖2

)
(3.90)

∣∣∣∣∣∣c0

(
χ(ηu

n),
u(tn+1) + u(tn)

2
,φu

n+1/2

)∣∣∣∣∣∣ ≤
ν

20
‖Dφu

n+1/2‖2 + Kν−1
(
‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
. (3.91)

Hence the last term we should bound is G1. We bound it term by term as follows

(
u(tn+1) − u(tn)

τ
− ∂tu(tn+1/2),φu

n+1/2

)
≤ Kν−1τ4‖∂3

t u(t̃)‖2 + ν
20
‖Dφu

n+1/2‖2

2ν

(
D

u(tn+1) + u(tn)
2

− Du(tn+1/2),Dφu
n+1/2

)
≤ Kτ4ν‖∂2

t Du(t̃)‖2 + ν
20
‖Dφu

n+1/2‖2

α1

(
(I − Pu

L)

(
D

u(tn+1) + u(tn)
2

− Du(tn+1/2)

)
, (I − Pu

L)Dφu
n+1/2

)

≤ Kα1τ
4‖(I − Pu

L)∂2
t Du(t̃)‖2 + α1

4
‖(I − Pu

L)Dφu
n+1/2‖2

Da−1
(
u(tn+1) + u(tn)

2
− u(tn+1/2),φu

n+1/2

)
≤ KDa−1τ4‖∂2

t u(t̃)‖2 + Da−1

14
‖φu

n+1/2‖2

(
p(tn+1) + p(tn)

2
− p(tn+1/2),∇ · φu

n+1/2

)
≤ Kτ4ν−1‖∂2

t p(t̃)‖2 + ν
20
‖Dφu

n+1/2‖2

βT

(
g
(
T (tn+1) + T (tn)

2
− T (tn+1/2)

)
,φu

n+1/2

)
≤ KDaβ2

T ‖g‖2∞τ4‖∂2
t T (t̃)‖2 + Da−1

14
‖φu

n+1/2‖2
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βC

(
g
(
C(tn+1) +C(tn)

2
−C(tn+1/2)

)
,φu

n+1/2

)
≤ KDaβ2

C‖g‖2∞τ4‖∂2
t C(t̃)‖2 + Da−1

14
‖φu

n+1/2‖2

+c0

(
u(tn+1/2),

u(tn+1) + u(tn)
2

− u(tn+1/2),φu
n+1/2

)

+c0

(
χ(u(tn)) − u(tn+1/2),

u(tn+1) + u(tn)
2

,φu
n+1/2

)
≤ Kτ4ν−1‖∂2

t Du(t̃)‖2 + ν
20
‖Dφu

n+1/2‖2.

Now rearranging the obtained bounds give

‖φu
n+1‖2 − ‖φu

n‖2
2τ

+ ν‖Dφu
n+1/2‖2 +

α1

2
‖(I − Pu

L)Dφu
n+1/2‖2 +

Da−1

2
‖φu

n+1/2‖2 ≤

K

{
ν−1

∥∥∥∥∥∥
ηu

n+1 − ηu
n

τ

∥∥∥∥∥∥
2

+ ν−1 ( ‖Dηu
n+1/2‖2

(
1 + ‖Dηu

n‖2 + ‖Dηu
n−1‖2

)
+

(
‖Dηu

n‖2 + ‖Dηu
n−1‖2

)

+
(
‖φu

n‖2 + ‖φu
n−1‖2

)
+ h−1‖Dηu

n+1/2‖2
(
‖φu

n‖2 + ‖φu
n−1‖2

)
) + α1

∥∥∥(I − Pu
L)Dun+1/2

∥∥∥2

+Daβ2
T ‖g‖2∞

(
‖ηTn+1/2‖2 + ‖φT

n+1/2‖2
)
+ Daβ2

C‖g‖2∞
(
‖ηCn+1/2‖2 + ‖φC

n+1/2‖2
)

+τ4
(
ν−1‖∂3

t u(t̃)‖2 + (ν−1 + ν)‖∂2
t Du(t̃)‖2 + α1‖(I − Pu

L)∂2
t Du(t̃)‖2 + Da−1‖∂2

t u(t̃)‖2

+ν−1‖∂2
t p(t̃)‖2 + Daβ2

T ‖g‖2∞‖∂2
t T (t̃)‖2 + Daβ2

C‖g‖2∞‖∂2
t C(t̃)‖2

) }
(3.92)

Now, we combine the resulting inequalities by adding (3.83) and (3.84) to (3.92) side by side

and finally get

⎛⎜⎜⎜⎜⎜⎝‖φ
u
n+1‖2 − ‖φu

n‖2
2τ

+
‖φT

n+1‖2 − ‖φT
n ‖2

2τ
+
‖φC

n+1‖2 − ‖φC
n ‖2

2τ

⎞⎟⎟⎟⎟⎟⎠ + ν‖Dφu
n+1/2‖2 +

γ

2
‖∇φT

n+1/2‖2

+
Dc

2
‖∇φC

n+1/2‖2 +
Da−1

2
‖φu

n+1/2‖ +
α1

2
‖(I − Pu

L)Dφu
n+1/2‖2 +

α2

2
‖(I − PT

M)∇φT
n+1/2‖2

+
α3

2
‖(I − PT

M)∇φT
n+1/2‖2 ≤ K

{
ν−1

∥∥∥∥∥∥
ηu

n+1 − ηu
n

τ

∥∥∥∥∥∥
2

+ γ−1

∥∥∥∥∥∥
ηTn+1 − ηTn
τ

∥∥∥∥∥∥
2

+ D−1
c

∥∥∥∥∥∥∥
ηCn+1 − ηCn
τ

∥∥∥∥∥∥∥
2

+
(
ν−1‖Dηu

n+1/2‖2 + γ−1‖∇ηTn+1/2‖2 + D−1
c ‖∇ηCn+1/2‖2

) (
1 + ‖Dηu

n‖2 + ‖Dηu
n−1‖2

)

+(ν−1 + γ−1 + D−1
c )

(
‖Dηu

n‖2 + ‖Dηu
n−1‖2 + ‖φu

n‖2 + ‖φu
n−1‖2

)
+ h−1

(
‖φu

n‖2 + ‖φu
n−1‖2

)

×
(
ν−1‖Dηu

n+1/2‖2 + γ−1‖∇ηTn+1/2‖2 + D−1
c ‖∇ηCn+1/2‖2

)
+ τ4

(
ν−1‖∂3

t u(t̃)‖2

+(ν + ν−1)‖∂2
t Du(t̃)‖2 + α1‖(I − Pu

L)∂2
t Du(t̃)‖2 + Da−1‖∂2

t u(t̃)‖2 + ν−1‖∂2
t p(t̃)‖2

+Daβ2
T ‖g‖2∞‖∂2

t T (t̃)‖2 + Daβ2
C‖g‖2∞‖∂2

t C(t̃)‖2 ) + τ4 ( γ−1‖∂3
t T (t̃)‖2 + γ−1‖∂2

t ∇T (t̃)‖2

+α2‖(I − PT
M)∂2

t ∇T (t̃)‖2 ) +τ4
(
D−1

c ‖∂3
t C(t̃)‖2 + D−1

c ‖∂2
t ∇C(t̃)‖2 + α3‖(I − PC

K)∂2
t ∇C(t̃)‖2

)

+Daβ2
T ‖g‖2∞

(
‖ηTn+1/2‖2 + ‖φT

n+1/2‖2
)
+ Daβ2

C‖g‖2∞
(
‖ηCn+1/2‖2 + ‖φC

n+1/2‖2
)

+α1

∥∥∥(I − Pu
L)Dun+1/2

∥∥∥2
+ α2‖(I − PT

M)∇Tn+1/2‖2 + α3‖(I − PC
K)∇Cn+1/2‖2

}
. (3.93)

75



After this point, we use the approximation properties (3.15)-(3.18) to finalize the convergence

result. We should point out that, first three term at the right-hand side of (3.93) need special

treatment. We only show the first one since the others will follow analogously.

Clearly

∥∥∥∥∥∥
ηu

n+1 − ηu
n

τ

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
1
τ

∫ tn+1

tn
∂tη

udt̂

∥∥∥∥∥∥
2

.

Using the Cauchy-Schhwarz and generalized triangle inequality, one gets

∥∥∥∥∥∥
ηu

n+1 − ηu
n

τ

∥∥∥∥∥∥
2

≤
(
1
τ

∫ tn+1

tn
1 · ‖∂tη

u‖2dt̂

)2

≤
∫ tn+1

tn
12dt̂

τ

(
1
τ

∫ tn+1

tn
‖∂tη

u‖2dt̂

)
.

Next, using the standard interpolation estimates as in [42] we have

ν−1

∥∥∥∥∥∥
ηu

n+1 − ηu
n

τ

∥∥∥∥∥∥
2

≤ Kν−1h2s+2‖∂tu‖2L2(0,t∗;Hs+1(Ω)). (3.94)

Similarly, for ηT and ηC we have

γ−1

∥∥∥∥∥∥
ηTn+1 − ηTn
τ

∥∥∥∥∥∥
2

≤ Kγ−1h2s+2‖∂tT‖2L2(0,t∗;Hs+1(Ω)) (3.95)

and

D−1
c

∥∥∥∥∥∥∥
ηCn+1 − ηCn
τ

∥∥∥∥∥∥∥
2

≤ KD−1
c h2s+2‖∂tC‖2L2(0,t∗;Hs+1(Ω)). (3.96)

Now, multiplying both sides of (3.93) with 2τ, summation over the time levels from 1 to n,

making use of approximation properties and inserting (3.57)-(3.59) and (3.94)- (3.96) yield
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(
‖φu

n+1‖2 + ‖φT
n+1‖2 + ‖φC

n+1‖2
)
+ τ

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

(2ν‖Dφu
i+1/2‖2 + γ‖∇φT

i+1/2‖2 + Dc‖∇φC
i+1/2‖2)

⎞⎟⎟⎟⎟⎟⎠
+τ

n∑
i=1

(α1‖(I − Pu
L)Dφu

i+1/2‖2 + α2‖(I − PT
M)∇φT

i+1/2‖2 + α3‖(I − PC
K)∇φC

i+1/2‖2)

+τ

n∑
i=1

Da−1‖φu
i+1/2‖2

≤ K

{ (
‖φu

1‖2 + ‖φT
1 ‖2 + ‖φC

1 ‖2
)
+ h2s+2

(
ν−1‖∂tu‖2L2(0,t∗;Hs+1(Ω)) + γ

−1‖∂tT‖2L2(0,t∗;Hs+1(Ω))

+D−1
c ‖∂tC‖2L2(0,t∗;Hs+1(Ω))

)
+ h2s ( ν−1‖u‖2

L2(0,t∗;Hs+1(Ω)) + γ
−1‖T‖2

L2(0,t∗;Hs+1(Ω))

+D−1
c ‖C‖2L2(0,t∗;Hs+1(Ω)) )

(
1 + h2s‖u‖2

L2(0,t∗;Hs+1(Ω))

)
+ (ν−1 + γ−1 + D−1

c )

×
(
h2s‖u‖2

L2(0,t∗;Hs+1(Ω))

)
+ τ4

(
ν−1‖∂3

t u‖2
L2(0,t∗;L2(Ω)) + (ν + ν−1)‖∂2

t Du‖2
L2(0,t∗;L2(Ω))

+α1‖(I − Pu
L)∂2

t Du‖2
L2(0,t∗;L2(Ω)) + Da−1‖∂2

t u‖2
L2(0,t∗;L2(Ω)) + ν

−1‖∂2
t p‖2

L2(0,t∗;L2(Ω))

+Daβ2
T ‖g‖2∞‖∂2

t T‖2
L2(0,t∗;L2(Ω)) + Daβ2

C‖g‖2∞‖∂2
t C‖2L2(0,t∗;L2(Ω)) ) + τ4 ( γ−1‖∂3

t T‖2
L2(0,t∗;L2(Ω))

+γ−1‖∂2
t ∇T‖2

L2(0,t∗;L2(Ω)) + α2‖(I − PT
M)∂2

t ∇T‖2
L2(0,t∗;L2(Ω)) ) + τ4 ( D−1

c ‖∂3
t C‖2L2(0,t∗;L2(Ω))

+D−1
c ‖∂2

t ∇C‖2
L2(0,t∗;L2(Ω)) + α3‖(I − PC

K)∂2
t ∇C‖2

L2(0,t∗;L2(Ω)) ) + Daβ2
T ‖g‖2∞(h2s‖T‖2

L2(0,t∗;Hs+1))

+Daβ2
C‖g‖2∞(h2s‖C‖2

L2(0,t∗;Hs+1)) + H2s
(
α1‖u‖2L2(0,t∗;Hs+1(Ω)) + α2‖T‖2L2(0,t∗;Hs+1(Ω))

+α3‖C‖2L2(0,t∗;Hs+1(Ω))

)
+ h−1τ

n∑
i=1

(
ν−1|u(ti+1/2)|2s+1 + γ

−1|T (ti+1/2)|2s+1 + D−1
c |C(ti+1/2)|2s+1

)

×
(
‖φu

i−1‖2 + ‖φu
i ‖2

)
+ (ν−1 + γ−1 + D−1

c )τ
n∑

i=1

(
‖φu

i−1‖2 + ‖φu
i ‖2

)

+Daβ2
T ‖g‖2∞τ

n∑
i=1

(
‖φT

i ‖2 + ‖φT
i+1‖2

)
+ Daβ2

C‖g‖2∞τ
n∑

i=1

(
‖φC

i ‖2 + ‖φC
i+1‖2

) }
(3.97)

Using the regularity of u, T,C, i.e. u, T,C ∈ L∞
(
0, t∗; Hs+1(Ω)

)
, we can combine last three

summation terms as follows.

h−1τ

n∑
i=1

(
ν−1|u(ti+1/2)|2s+1 + γ

−1|T (ti+1/2)|2s+1 + D−1
c |C(ti+1/2)|2s+1

) (
‖φu

i−1‖2 + ‖φu
i ‖2

)

+(ν−1 + γ−1 + D−1
c )τ

n∑
i=1

(
‖φu

i−1‖2 + ‖φu
i ‖2

)
≤ Kτ(ν−1 + γ−1 + D−1

c + h2s−1)
n∑

i=1

‖φu
i ‖2

(3.98)

Daβ2
T ‖g‖2∞τ

n∑
i=1

(
‖φT

i ‖2 + ‖φT
i+1‖2

)
≤ Daβ2

T ‖g‖2∞τ‖φT
n+1‖2 + Daβ2

T ‖g‖2∞τ
n∑

i=1

‖φT
i ‖2 (3.99)
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and

Daβ2
C‖g‖2∞τ

n∑
i=1

(
‖φC

i ‖2 + ‖φC
i+1‖2

)
≤ Daβ2

C‖g‖2∞τ‖φC
n+1‖2 + Daβ2

C‖g‖2∞τ
n∑

i=1

‖φC
i ‖2. (3.100)

So the only remaining thing we have to do is to estimate ‖φu
1‖2 + ‖φT

1 ‖2 + ‖φC
1 ‖2. We point out

here that ũ0 is chosen to be uh
0, T̃0 = Th

0 and C̃0 = Ch
0 to give φu

0 = φ
T
0 = φ

C
0 = 0. Note that

the error equations and estimations for φu
1, φ

T
1 and φC

1 are same as for time step n except the

nonlinear terms. Illustratively, we bound nonlinear terms of velocity equation and the others

will follow analogously.

To begin the estimation, we add and subtract c0

(
uh

0 − u(t0), u(t0)+u(t1)
2 , vh

)
to have

∣∣∣∣∣∣c0

(
u(t1/2), u(t1/2), vh

)
+ c0

(
uh

0, e
u
1/2, v

h
)
+ c0

(
eu

0,
u(t0) + u(t1)

2
, vh

)

−c0

(
u(t0),

u(t0) + u(t1)
2

, vh
)∣∣∣∣∣∣ ≤

∣∣∣∣∣∣c0

(
u(t1/2), u(t1/2), vh

)
− c0

(
u(t0),

u(t0) + u(t1)
2

, vh
)∣∣∣∣∣∣

+

∣∣∣∣∣∣c0

(
uh

0, e
u
1/2, v

h
)
+ c0

(
eu

0,
u(t0) + u(t1)

2
, vh

)∣∣∣∣∣∣ .
and set vh = φu

1/2. The second term in (3.101) is treated exactly as in (3.87)- (3.91). For the

first term we write

∣∣∣∣∣∣c0

(
u(t1/2), u(t1/2),φu

1/2

)
− c0

(
u(t0),

u(t0) + u(t1)
2

,φu
1/2

)∣∣∣∣∣∣ ≤ Kτ2
∣∣∣∣c0

(
u(t0), ∂2

t u(t0),φu
1/2

)∣∣∣∣
+ Kτ

∣∣∣∣c0

(
∂tu(t0), u(t1/2),φu

1/2

)∣∣∣∣
through the help of a Taylor expansion. Clearly,

Kτ2
∣∣∣∣c0

(
u(t0), ∂2

t u(t0),φu
1/2

)∣∣∣∣ ≤ K
(
ν‖φu

1/2‖2 + ν−1τ4
)
.

For the other term we use (3.9) and the third part of Lemma 3.16 to have

τ
∣∣∣∣c0

(
∂tu(t0), u(t1/2),φu

1/2

)∣∣∣∣ ≤ τ
(‖∂tu(t̃)‖‖Du(t1/2)‖L∞(Ω) + ‖∂tDu(t̃)‖‖u(t1/2)‖L∞(Ω)

) ‖φu
1/2‖

≤ K
(
τ3 + ‖φu

1‖2
)

thanks to the fact that φu
1/2 =

1
2φ

u
1. Putting these bounds obtained for nonlinear terms into the

error equations for the first time level and combining the inequalities as in time level n yield

‖φu
1‖2 + ‖φT

1 ‖2 + ‖φC
1 ‖2 ≤ K(h2s + (α1 + α2 + α3)H2s + τ4) (3.101)

where K depend on u, p, T, C, ν, α1, α2, α3, βT , βC , g.
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Finally, using the theorem assumptions KDaβ2
T ‖g‖2∞τ ≤ 1

2 , KDaβ2
C‖g‖2∞τ ≤ 1

2 and writing

(3.101) back into (3.97) give us

(
‖φu

n+1‖2 + ‖φT
n+1‖2 + ‖φC

n+1‖2
)
+ τ

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

(2ν‖Dφu
i+1/2‖2 + γ‖∇φT

i+1/2‖2 + Dc‖∇φC
i+1/2‖2)

⎞⎟⎟⎟⎟⎟⎠
+τ

n∑
i=1

(α1‖(I − Pu
L)Dφu

i+1/2‖2 + α2‖(I − PT
M)∇φT

i+1/2‖2 + α3‖(I − PC
K)∇φC

i+1/2‖2)

+τ

n∑
i=1

Da−1‖φu
i+1/2‖2 ≤ K(h2s + (α1 + α2 + α3)H2s + τ4)

+Kτ
n∑

i=1

(
‖φu

i ‖2 + ‖φT
i ‖2 + ‖φC

i ‖2
)
.

The result is thus obtained via the application of discrete Gronwall’s Lemma and a triangle

inequality. �
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CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH

This thesis studied the finite element analysis of projection-based stabilization method for the

steady-state natural convection equations in a classical enclosed domain including the solid

media and the Darcy-Brinkman model of time dependent double-diffusive convection equa-

tions in a confined porous medium. By means of this method, global stabilizations are added

for both velocity variable, temperature variable for both systems and additionally for con-

centration variable for double-diffusive convection equation and these effects are subtracted

from the large scales. We established the rigorous finite element error analysis of the scheme

for the velocity, temperature, concentration and pressure and proved that with the appropriate

choices of mesh scales and the stabilization parameters, the optimal errors can be obtained.

We examined performance and accuracy of the method and compared the results with other

published data. The numerical results revealed excellent agreement with other published data

and validation of theoretical results.

There are some possible research directions that could be inspired from this thesis. Firstly,

the stabilization idea proposed here could be applied on some other buoyancy driven systems

such as natural convective flows under a magnetic field or thermal convective flows under

influence of mechanical vibrations in porous media. One could adopt the method for a natural

convection system of two immiscible fluids in an appropriate enclosure.

Also, domains considered here for both systems should be extended and new numerical tests

should be carried out. L-shaped domains, backward facing steps and rectangular domains

with infinite length are some examples of interest.

We carry out all the estimations with continuous finite elements in this study. A combination

of Discontinuous Galerkin (DG) methods, which are known to have several advantages on
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continuous finite element schemes, with the projection based stabilization idea applied on

buoyancy driven flows could be more effective than the one studied here. Lastly, a very

interesting and effective method, namely the defect correction method should be tried on

natural convection systems presented in this study.
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[40] Korpela, S. A., özüm, D. G., and Baxi, C. B. On the stability of the conduction regime
or natural convcetion in avertical slot. Int. J. Heat Mass Transfer.

[41] Kramer, J., Jecl, R., and S̆kerget, L. Boundary domain integral method for the study
of double diffusive natural convection in porous media. Eng. Anal. Bound. Elem. 31
(2007), 897–905.

[42] Labovsky, J., Layton, W. J., Manica, C. C., Neda, M., and Rebholz, L. G. The sta-
bilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations.
Comput. Methods Appl. Mech. Engrg. (2009), 958–974.

[43] Lauriat, G., and Prasad, V. Natural convection in a vertical porous cavity: a numerical
study for Brinkman extended Darcy formulation. J. Heat Transfer 109 (1987), 688–696.

[44] Layton, W. Introduction to finite element methods for incompressible, viscous flows.
SIAM publications, 2008.

[45] Layton, W. J. A connection between subgrid scale eddy viscosity and mixed methods.
Appl. Math. Comput. 133 (2002), 147 – 157.

[46] Lin, C., and Payne, L. E. Structural stability for the Brinkman equations of flow in
double diffusive convection. J. Math. Anal. Appl. 325 (2007), 1479–1490.

[47] Lin, C., and Payne, L. E. Continuous dependence on the Soret coefficient for double
diffusive convection in Darcy flow. J. Math. Anal. Appl. 342 (2008), 311–325.
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