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ABSTRACT 

 

IMPROVING THE SUB-CORTICAL GM SEGMENTATION USING 

EVOLUTIONARY HIERARCHICAL REGION MERGING 

 
 

 
Çiftçioğlu, Mustafa Ulaş 

M.Sc., Department of Medical Informatics 

Supervisor : Assist. Prof. Dr. Didem Gökçay 

 
 

June 2011, 119 pages 
 

 Segmentation of sub-cortical Gray Matter (GM) structures in magnetic 

resonance brain images is crucial in clinic and research for many purposes such as 

early diagnosis of neurological diseases, guidance of surgical operations and 

longitudinal volumetric studies. Unfortunately, the algorithms that segment the brain 

into 3 tissues usually suffer from poor performance in the sub-cortical region. In 

order to increase the detection of sub-cortical GM structures, an evolutionary 

hierarchical region merging approach, abbreviated as EHRM, is proposed in this 

study. Through EHRM, an intensity based region merging is utilized while merging 

is allowed to proceed among disconnected regions. Texture information is also 

incorporated into the scheme to prevent the region merging between tissues with 
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similar intensity but different texture properties. The proposed algorithm is tested on 

real and simulated datasets. The performance is compared with a popular 

segmentation algorithm, which is also intensity driven: the FAST algorithm [1] in 

the widely used FSL suite. EHRM is shown to make a significant improvement the 

detection of sub-cortical GM structures. Average improvements of 10%, 36% and 

22% are achieved for caudate, putamen and thalamus respectively. The accuracy of 

volumetric estimations also increased for GM and WM. Performance of EHRM is 

robust in presence of bias field. In addition, EHRM operates in O(N) complexity. 

Furthermore, the algorithm proposed here is simple, because it does not incorporate 

spatial priors such as an atlas image or intensity priors. With these features, EHRM 

may become a favorable alternative to the existing brain segmentation tools. 

 

Keywords: subcortical, region merging, MRI, brain, segmentation. 
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ÖZ 
 

KORTEKS ALTI GRĐ MADDE BÖLÜTLEMESĐNĐ EVRĐMSEL HĐYERARŞĐK 

BÖLGE KAYNAŞTIRMASI KULLANARAK GELĐŞTĐRMEK 

 

Çiftçioğlu, Mustafa Ulaş 

Yüksek Lisans, Sağlık Bilişimi 

Tez Yöneticisi : Yrd. Doç. Dr. Didem Gökçay 

 

Haziran 2011, 119 sayfa 
 

 Manyetik rezonans beyin görüntülerinde korteks-altı gri madde yapıların 

bölütlenmesi, klinikte ve araştırmada, nörolojik hastalıkların erken tanısı, cerrahi 

operasyonların yönlendirilmesi ve longitudinal hacimsel çalışmalar gibi birçok amaç 

için çok önemlidir. Malesef beyni 3 dokuya bölütleyen algoritmalar genellikle 

korteks-altı bölgedeki zayıf performanstan zarar görmektedir. Bu çalışmada, 

korteks-altı gri madde yapıların tespitini artırmak için, EHRM olarak kısaltılan 

evrimsel hiyerarşik bölge kaynaştırması yaklaşımı önerilmektedir. EHRM ile 

birlikte, intensite temelli bir bölge kaynaştırması, kaynaşmanın bağlantısız bölgeler 

arasında da ilerlemesine izin verilerek, yararlanılmıştır. Örgü bilgise de intensite 

açısından benzer fakat örgü özellikleri farklı dokular arasındaki kaynaşmaların 

engellenmesi için şemaya dahil edilmiştir. Önerilen algoritma gerçek ve simule 

edilmiş veri setlerinde test edilmiştir. Performans, yaygınca kullanılan FSL 

paketindeki intensite dayalı popüler bir bölütleme algoritması olan FAST 
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algoritması[1]  ile karşılaştırılmıştır. EHRM’in korteks-altı gri madde yapıların 

tespitinde anlamlı bir iyileştirme yaptığı gösterilmistir. Kaudat, putamen ve talamus 

için sırasıyla 10%, 36% ve 22% ortalama iyileşme sağlanmıştır. Gri madde ve beyaz 

madde için hacimsel kestirim doğruluğu da artmıştır. EHRM’in performansı, 

manyetik alan sapması varlığında dayanıklıdır. Ek olarak, EHRM O(N) 

kompleksitede çalışmaktadır. Ayrıca, burda önerilen algoritma basittir çünkü atlas 

görüntü gibi uzaysal önbilgi veya intensite önbilgisi dahil etmemektedir. Bu 

özelliklerle, EHRM mevcut beyin bölütleme araçlarına uygun bir alternatif haline 

gelebilir.               

 

Anahtar Kelimeler: korteks-altı, bölge kaynaştırması, Manyetik Rezonans 

Görüntüleme, beyin, bölütleme 
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CHAPTER 1 

 

INTRODUCTION 

 

 Magnetic Resonance Imaging (MRI) has changed the era of medical imaging 

in clinics and research beginning from late 1980s. Its non-invasiveness, high soft 

tissue contrast, high spatial resolution are the major reasons why MRI became so 

popular. Today, MRI is not only utilized for anatomical imaging, but also used for 

functional imaging (functional MRI (fMRI)), the imaging of movements of water 

molecules on biological tissues (diffusion MRI, diffusion tensor imaging (DTI)), 

real time imaging (Real Time MRI), guiding interventional operations 

(interventional MRI), imaging blood vessels (MR Angiography (MRA)).  

 MRI depends on the detection of the net magnetic field created by the 

nuclear spins. The spins, which are randomly oriented in the absence of an external 

magnetic field, can produce a detectable net magnetic field when a strong DC 

magnetic field is applied. The manipulation of this magnetic field with gradient 

magnetic fields and Radio Frequency (RF) excitation pulses enables the detection of 

signals dependent on the tissue properties. The flexibility in the application of 

gradient fields and RF excitation, together with the several properties of tissues, 

enables the usage of MRI for different applications. 

    Brain, which is the center of the nervous system, is composed of soft 

tissues (see Appendix A for main brain structures). MR is a very suitable modality 

for brain imaging due to its high soft tissue contrast. Also its non-invasiveness 

allows MR to be used more freely in comparison to other popular modalities like 

Computed Tomography (CT) which produces ionizing radiation. Therefore, the 

usage of MR for research purposes is possible and the clinical usage does not have 
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certain limitations such as time of scanning and maximum number of scans due to 

radiation exposure. 

 High resolution and good contrast anatomic MR brain images contain rich 

information but the utilization of this rich information is limited if the images are 

only inspected visually by the radiologists as in traditional radiology. However, this 

rich information can be utilized when different tissues and structures can be 

analyzed separately. The separation of the brain into parts of interest enables 

accurate volumetric analysis, better 3-D visualization of anatomy, the detection of 

abnormalities and detection of changes in longitudinal studies. All this information 

can then be utilized for many purposes, such as early diagnosis of neurological 

diseases, guiding the interventions, measuring the progress of therapies, finding 

markers of diseases, mapping functions to anatomical structures and understanding 

the anatomy of the brain. 

 Separation of the brain into desired regions can be performed manually by 

following manual segmentation procedures. The quality of such a segmentation can 

be very good but this procedure requires high labor and time. The wide utilization of 

these segmentations is not feasible due to these stated limitations. In order to 

increase the utilization of MR images, many semi-automated and fully automated 

procedures are proposed beginning from early 1990s. 

 The automated algorithms can work quite successfully for some cases but 

their performance can degrade especially when the properties of the images are 

different than the images that are used to train or optimize the algorithm. 

Generalization is an important problem for brain segmentation algorithms because 

the MR devices, MR sequences and sequence parameters are not standard. Also 

noise, bias field, inter-subject anatomical variability and tissue property variability 

among subjects change the properties of the MR images. All these factors are 

challenges for the development of accurate automated brain segmentation 

algorithms. The only property that can be accepted as common in MR brain images 

are the order of the intensity levels of tissue for a certain weighted image. For 
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instance, in a conventional T1 weighted anatomical brain image, the intensity levels 

of WM tend to be higher than GM and the intensity levels of GM is expected to be 

higher than CSF. 

 Although the robustness of algorithms is an important issue, satisfactory 

results can be usually obtained in certain brain areas. The cortical regions, which 

have good contrast in most cases are segmented successfully the algorithms such as 

FSL FAST [1]. The effect of bias field can be removed by incorporating the bias 

field into the segmentation model, which improves the segmentation quality in 

cortical regions. Bias field is the change of intensity levels in different locations of 

an image due to the practical problems related with MRI hardware. The 

inhomogeneity formed by the receiver and RF excitation coils is the main reason of 

bias field. On the other hand, segmentation in the sub-cortical region of the brain is 

usually not satisfactory for the algorithms that segment the brain into only 3 tissues, 

CSF, GM and WM. The anatomical complexity of the sub-cortical region is the 

major reason for the poor performance. The tissue properties of some sub-cortical 

GM structures are different than the cortical GM. GM structures like putamen, 

thalamus and globus pallidus contain WM fibers, with close intensities to WM 

intensities. Therefore, the contrast is lower and the boundaries between tissues are 

smooth. The segmentation of such structures becomes a real challenge for the 

algorithms that segment the whole brain into 3 tissues. Significant parts of these GM 

structures are segmented as WM.  

 There are also algorithms like [2] which segment to the brain into each 

anatomical structure separately. These approaches can detect the sub-cortical GM 

structures much better but they have some disadvantages. The algorithms are more 

complex and harder to implement. Their computational demand and running time is 

quite high (on the order of several hours). They often necessitate the usage of strong 

computers. Also, the incorporation of spatial priors can be a challenge for the 

robustness when images which have quite different anatomy than the training 

images are tried to be segmented.  
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1.1 Objective of The Study 

 The sub-cortical GM structures have particular functions in the brain. The 

volume, the shape or other properties of these structures can be used as diagnostic 

markers for some diseases [2]. Unfortunately, poor performance of the general 

purpose segmentation algorithms limits the utilization of segmentation in the sub-

cortical region.  

 In this study, the aim is to develop an algorithm to improve the segmentation 

in sub-cortical region and to increase the detection of sub-cortical GM structures. 

The desired properties of such an algorithm can be listed as follows: 

• Robustness to 

o Inter-subject anatomical variability 

o Bias field 

o Noise 

o Different scanners, sequences and sequence parameters 

• Feasible computation time 

• Applicability to images with any weighting 

• Operability with multispectral images 

• Improvement in the detection sub-cortical GM structures 

• Better volumetric estimations 

To realize these objectives, an evolutionary hierarchical region merging 

(EHRM) algorithm, which only operates in the sub-cortical region, is proposed. The 

algorithm does not necessitate any preprocessing steps and utilizes only intensity 

information. The texture information is also incorporated into the framework to 

control region merging. The algorithm does not incorporate any prior information 
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from training images, which makes the algorithm insensitive to inter-subject 

anatomical variability.   

1.2 Outline of The Thesis 

 In the 2nd chapter, major approaches to the brain segmentation problem are 

presented. The FAST[1] and Freesurfer[2] approaches are analyzed in more detail 

because in our study, FAST is used for comparison of performance and Freesurfer is 

used as the gold standard for the real dataset for which the manual segmentation is 

not available. In Chapter 3, the proposed algorithm is explained in detail. Also the 

evolutionary segmentation algorithm proposed by Veenman et al. [3], which is the 

starting point for the proposed algorithm, is presented and discussed. The results are 

presented in Chapter 4, and operation of the algorithm is illustrated. The comparison 

of performance of EHRM with FAST on 3 datasets is also presented in this section. 

In Chapter 5, the conclusions are stated and a discussion on future work is presented. 
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CHAPTER 2 

 

OVERVIEW ON AUTOMATIC SEGMENTATION OF BRAIN 

 

 Magnetic Resonance (MR) became a very popular and widely used modality 

for brain imaging starting from late 1980s due to its non-invasiveness, higher soft 

tissue contrast and higher spatial resolution. Segmentation is one of the most critical 

processing steps which enables the usage of rich information in MR images. Manual 

segmentation can form a highly reliable segmentation but it requires high labor and 

time. In addition, as spatial resolution increases with the development of MR 

technology, fully manual segmentation will become infeasible for many 

applications. As a result, the development of semi or fully automated segmentation 

algorithms is reinforced.  

There are many approaches proposed in literature that handle the brain 

segmentation problem. Due to the enormous amount of literature that has 

accumulated over the last 20 years, it is very hard to find comprehensive review 

articles. In [4] and [5], useful reviews of this field can be found.  

If the approaches are classified with an integrative view, two aspects of the 

algorithms can be considered: 1. purpose, 2. the computational approach. 

In this section, a brief overview of the current brain segmentation approaches 

in terms of the stated 2 aspects is given. Then, 2 popular algorithms used for 

comparison in the current study are analyzed in more detail, which are FSL 

FAST[1], and the Freesurfer software sub-cortical segmentation algorithm[2]. 
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2.1 Classification According to Purpose 

 The type of information that is desired from a brain image depends on the 

particular application. Therefore, the segmentation algorithms change accordingly 

with their purpose. While some approaches intend to classify the brain image into 3 

tissue types, CSF, GM and WM, some others aim to detect specific anatomical 

structures separately. For instance, Chupin et al. [6] proposed an algorithm for the 

automatic segmentation of hipoocampus and amygdala, which are neighboring 

structures placed in the temporal lobe.  The volumetric changes at these structures 

can be important indicators for Alzheimer’s disease and epilepsy even at the 

beginning stages of the diseases. The method first constructs a probabilistic atlas 

from images with manually segmented hippocampus and amygdala structures. This 

probabilistic atlas provides the necessary spatial and intensity information for the 

construction of initial estimates of 2 structures after the registration of the atlas 

space to the subject’s native space. Then the anatomical landmarks at the borders are 

iteratively updated to optimize the boundaries of the structures via smooth 

deformations. Specific algorithms are also proposed for the segmentation of brain 

tumors in [7] and [8]. These specific approaches are out of the scope of the current 

study, since our interest lies at the level of the whole brain. 

2.1.1 Tissue Classification Algorithms 

  These algorithms aim to segment the brain into the 3 main type tissue types, 

CSF, GM and WM aiming to calculate the corresponding volumes. This type of 

volumetric information is associated with some diseases, abnormalities and aging. 

Segmentation into a few tissue types is relatively simpler than detection of specific 

structures because the usage of spatial information and nonlinear registration 

techniques is not necessitated. Therefore, these methods are usually easier to 

implement and faster to run.  

The algorithms proposed by Zhang et al. [1], Wells et al. [9], Shattuck et al. 

[10], Yi et al. [11], Ashburner and Friston [12], Tohka et al. [13], Mayer and 

Greenspan [14], Xuan et al. [15], Kapur et al. [16], Shen et al. [17] and Greenspan et 
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al [18] are only a few approaches falling into this category. Different aspects of 

some of these methods are analyzed in the related section. 

The approach proposed in this study falls in this category, aiming to segment 

the sub-cortical region into 3 tissues, with special emphasis on improving the 

detection of sub-cortical GM structures.  

2.1.2 Structure Segmentation Algorithms 

These approaches aim to segment the whole brain not just into 3 basic tissues 

but also to some specific anatomical structures of interest. Sub-cortical GM 

structures are the target structures most of the time because each have a different 

function. Changes in particular structures can be diagnostic tools for neurological 

diseases. Therefore, these structures must be separated to be able to conduct an 

individual analysis. The models falling into this category are quite complex because 

they should combine the registration and segmentation steps in a single framework. 

They are hard to implement and their computational complexity is higher. 

Their performance is usually better than the algorithms segmenting the brain 

into 3 tissues because they incorporate more information to the segmentation. The 

approaches proposed by Pham and Prince [19], Patenaude et al. [20], Fischl et al. 

[2], Zhou and Rajapakse [21], Corso et al. [22], Tu et al.[23], Barra and Boire [24], 

Sabuncu et al. [25], Morra et al. [26] are some of such approaches for the 

segmentation of sub-cortical structures. 

The information regarding the gyri and sulci on the cortical surface is crucial 

for some applications. Therefore, cortical segmentation algorithms are also 

proposed. For instance, Fischl et al. [27] proposed a cortical parcellation algorithm 

to segment   the cortical structures with an anisotropic Markov Random Field 

(MRF) Model. This algorithm is also the basis for the parcellation method in the 

widely used Freesurfer software [28]. 
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2.2 Classification According to Computational Approach 

 Many approaches from Image Processing, Pattern Recognition and other 

fields are utilized for automatic brain segmentation.  A brief overview and some 

example studies are presented in this section. 

2.2.1 Finite Mixture Models (FMM) 

 FMM’s are one of the most popular approaches for the segmentation of 3 

tissues. These approaches model the intensity histogram of the brain as a collection 

of 3 components, which represent the contribution of each tissue. It is assumed that 

each tissue has a probability density function and a weighting, which represents its 

volume in the brain. The probability density functions can be either modeled by 

some parametric distribution or by nonparametric distributions derived from the 

image itself or an atlas brain. Often, the tissues are modeled with a Gaussian 

distribution as in [1] and [12]. 

 Ashburner and Friston [12] proposed a segmentation approach that is unified 

with the registration of atlas to incorporate spatial information. The tissues are 

modeled with Gaussian distributions. Starting with random initialization for the 

tissue parameters, the bias field, atlas deformation parameters and the tissue 

parameters are iteratively updated by keeping 2 of them constant during the update 

of the 3rd one. The bias field is modeled by a small number of parameters used as the 

coefficients of smooth basis functions. The deformations on the probabilistic atlas 

are also modeled with discrete cosine transform (DCT) basis functions [59]. The 

simplicity in these models makes the optimization process much easier. This 

algorithm is accessible as a part of the MATLAB based Statistical Parametric 

Mapping (SPM) software [29]. 
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2.2.2 Fuzzy Logic 

 Fuzzy C means is utilized for the segmentation of brain into 3 tissues. Pham 

and Prince [19] proposed the adaptive fuzzy segmentation algorithm that 

incorporates the bias field into the fuzzy c means clustering algorithms. In the 

traditional fuzzy c means algorithm, the cost function is formulated as the sum of 

squared differences of voxels to the class centroids weighted with the membership 

for each class. The bias field is incorporated with a multiplicative model and also 

regularization terms are used to constrain the bias field as a smooth field. After the 

initial estimations of centroids are performed, the memberships of each voxel are 

calculated and then the bias field is estimated. With an iterative approach, the bias 

field and the memberships are updated to find the bias field and final membership 

levels of the voxels. Shen et al. [17] utilized the fuzzy c means algorithm with the 

incorporation of local neighborhood information. The intensity similarity and the 

distance of the neighbors, which regularize the smoothness of segmentation, are 

incorporated to the cost function as a multiplicative component. The weighting of 

these two local features are determined by an Artificial Neural Network.  

 Fuzzy logic is also used for sub-cortical structure segmentation in the 

method proposed by Zhou and Rajapakse [21]. Three types of information are 

extracted first from the manually segmented brains to form fuzzy maps of these 

features. These are intensity, spatial location and the relative location of sub-cortical 

structures.  The fuzzy atlas maps are linearly registered to a new brain by a 12 

parameter affine transform for the standardization of anatomical coordinates. Then 

the 3 fuzzy features of voxels are fused to a single membership value for each 

structure. A maximum membership classification and then thresholding are used to 

finalize the segmentation. The approach seems very similar to the Freesurfer 

approach to be explained in Section 2.4. The former uses fuzzy logic framework 

while the latter uses probability and parametric distributions utilizing the same 

features. 
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2.2.3 Graphical Models 

 Several graphical models are utilized in the brain segmentation problems. 

Markov Random Field (MRF) is very popular for the incorporation of neighborhood 

information. For instance, FAST [1] uses an isotropic MRF to impose a smoothness 

expectation on the voxel labels. In Freesurfer sub-cortical segmentation algorithm, 

MRF carries the information regarding the relative orientation of the anatomical 

structures. 

 A hierarchical graphical model is also proposed for the segmentation of sub-

cortical structures by Corso et al. [22]. The merging of voxels and regions forms a 

hierarchy of regions in the image. Then the overall energy function dependent on the 

voxel intensity and local neighborhood information is minimized efficiently using 

iterations called graph shifts. The shift which decreases the energy most is 

performed and the effected parts are updated. This iterative produce provides an 

efficient way to find a feasible solution of the segmentation. 

2.2.4 Morphological Image Processing 

 Some basic image processing tools are combined to provide a framework for 

brain tissue segmentation. In the study proposed by Xuan et al. [15], Canny edge 

detection is performed first. Then region growing is performed iteratively to obtain a 

supervoxel representation of the image. Then these small supervoxels are merged to 

form larger regions. The outputs of edge detection and region merging are joined to 

eliminate the false boundaries and correct the boundaries of regions.  

2.2.5 Shape Based Methods 

 Shape based models try to detect the structures by the finding their boundary. 

FSL FIRST [20] is a recent approach that uses deformable models for sub-cortical 

structure segmentation. Initially, two steps of linear registrations are performed. The 

first registration is on the whole brain and the second one is restricted to the sub-

cortical region derived from the atlas. Manually labeled images are used to model 

the properties and the variability of the surface structures. The quality of fit of the 
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surface to the image is maximized by iteratively deforming the surface. The method 

is accessible by operating the related function from the command line as a part of 

FSL.      

2.2.6 Clustering Approaches 

 Top-down or bottom-up clustering approaches are utilized in brain 

segmentation. In the adaptive mean shift algorithm proposed by Mayer and 

Greenspan [14], the coordinate and intensity features of voxels are clustered. First, 

the density estimation is performed by a Parzen window Kernel density estimator, 

which is then used to find the dense regions of the feature space. The dense points 

are expected to represent the pieces of the brain. The number of regions is decreased 

with region merging dependent on the pairwise Mahalanobis distances. As the final 

step, a derivative of K means clustering is performed to obtain the 3 tissue 

segmentation.      

 Another interesting approach is proposed by Greenspan et al. [18]. The 

image is assumed to be composed of smooth pieces which can be modeled by 

Gaussians. Both intensity and spatial information is modeled are Gaussian 

distributions. The initialization is performed by intensity thresholding. Then 

connected component analysis produces the regions. The minimum ellipsoids 

covering the regions are determined. Then the ellipsoids are checked for 

homogeneity. The regions which cover other tissue voxels more than a predefined 

threshold and high number of outlier voxels are divided to smaller regions. This 

splitting is a K means clustering dependent only to the spatial information. When the 

splits are finished, the segmentation is obtained. The approach aims to provide 

smoothness and robustness to the noise.  

2.3 FSL FAST Algorithm 

FAST is an unsupervised algorithm which uses the Hidden Markov Random 

Field (HMRF) model. It is easily accessible as a part of the FSL software [30] and 
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segments the brain into 3 tissues. This method is analyzed in detail because the 

method proposed in the current study is compared with FAST.  

2.3.1 The Image Model 

 The tissues are assumed to be generated from Gaussian distributions. There 

is no information about the tissue labels at the beginning. Therefore, the parameters 

of these distributions and the bias field are not known a priori. The image voxels are 

considered as random variables in a markov random field. The states of the random 

variables are the class labels and they are not directly observed.  However, these 

states can be estimated through the intensity information in the image, which makes 

the model a Hidden Markov Random Field (HMRF) model.  

 The reason behind the utilization of Markov random field is the 

incorporation of neighborhood label information. The main assumption is that 

neighboring voxels tend to contain similar labels, derived from the smoothness of 

brain tissues. This assumption is quite reasonable for most brain structures, 

especially when the resolution is high. With the incorporation of neighborhood 

information, the likelihood of voxel labels are modeled as the multiplication of two 

terms: 1. an intensity based likelihood derived from the tissue parameters and 2. a 

probability term derived from the clique potentials between the neighboring voxel 

pairs. If the neighbors have different labels, the change in the clique potentials 

decreases the likelihood of that segmentation. Although such a segmentation cannot 

compensate for the neighboring label differences by high intensity likelihood terms, 

the segmentation is forced to be smoother. This kind of modulation is especially 

important for the segmentation of images with high noise. 

 The algorithm uses global class parameters for each tissue so the bias field 

should be removed during the segmentation. The bias removal method proposed by 

Guillemaud and Brady [31] is incorporated into the segmentation. In this method, 

the bias field is modeled as a multiplicative field. The likelihood of bias field is 

composed of 2 components. The first component is the likelihood derived from the 

image intensities which is a measure of the bias field to represent the variations in 
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different parts of the image. The second term is a regularization term which imposes 

smoothness constraint on the bias field.  

2.3.2 Initialization of the Model 

  As the first step, the image is segmented into 3 classes neglecting the effect 

of bias field. A thresholding method proposed by Otsu [32] is used for the optimal 

initialization of the segmentation. This thresholding method aims to minimize the 

intraclass variances while maximizing the interclass variances. The Gaussian 

distribution parameters of the tissues are then calculated from the thresholded image.  

This initial segmentation is also utilized for the initial estimation of bias field 

distribution.  

 2.3.3 Optimization 

 After the initial labels and bias field distribution are obtained, the bias field 

removed image is constructed. Then the posteriori probability of the segmentation is 

maximized. The posterior probability of the segmentation is modeled as the 

multiplication of the posterior probability of individual voxels, assuming that the 

posterior probabilities of the voxels are independent. The maximization is conducted 

by updating the class labels of voxels.  The Iterated Conditional Modes method 

proposed by Besag [33] is utilized to update the class labels. At the end of this 

maximization, the segmentation is expected to be smoother due to the contribution 

of clique potentials. After the labels are updated, the tissue parameters are updated 

with the local Maximum Likelihood estimations using the Expectation 

Maximization (EM) algorithm. The bias field is also updated by the EM algorithm to 

find its Maximum a Posteriori (MAP) estimate. By updating the class labels, tissue 

parameters and the bias field in an iterative manner, the algorithm converges to a 

local maximum point of the segmentation probability function. 

 The smoothness level of the segmentation can be adjusted by the weighting 

of the clique potentials. When the Signal-to-Noise Ratio (SNR) is high and the 

images are sharp, smoothness can be disadvantageous due to the elimination of 
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small anatomical details by the effect of clique potentials. However, in noisy 

images, the clique potentials play an important role in suppressing the effect of 

noise. The smoothness can be regulated by the related parameter if the fast 

command is operated from the command line.  

2.3.4 Performance 

 The segmentations are quite smooth and especially successful in the cortex 

because there is usually sufficient contrast between the tissues. However, the 

segmentations of sub-cortical GM structures like thalamus and putamen are very 

poor. Main reasons for this are the modeling of all GM structures with a single 

Gaussian distribution and weak boundaries between GM and WM in the sub-cortical 

region. The intensity levels of sub-cortical GM structures are within the range of the 

cortical GM and WM intensity levels, therefore the intensity based likelihood is not 

much likely to contribute to the segmentation of these structures as GM. In addition, 

if the initial label estimates of these structures are WM after the thresholding, the 

bias field may be modeled accordingly to compensate the intensity levels of these 

structures to approach to the intensity levels of WM. The problem gets worse in 

such cases and the possibility of correcting WM labels into GM becomes almost 

impossible.  

 The first thresholding step is not robust, which can often produce 

unacceptable segmentation results. The quality of brain extraction is very critical at 

this point. The inclusion of non-brain tissue which can be regarded as a separate 

peak in the histogram is problematic for the initial thresholding step. Although this 

problem is not observed in the test images presented in this study, the case is 

observed in some cases where the peaks of tissue components are highly fused.  

 In terms of time, for a conventional scan with 1mm resolution cubic voxels, 

it takes about 10-15 minutes on a desktop with a 4GB RAM and a 4 GHz processor. 

In terms of flexibility, the algorithm also operates with multispectral images. The 

performance often improves as compared to the single weighted case because the 
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missing contrast information in one weighting can be compensated with the 

information from another weighting. 

2.4 Freesurfer Software Sub-cortical Segmentation Algorithm    

The method proposed by Fischl et al. [2] is a popular sub-cortical 

segmentation algorithm and is available in the widely known Freesurfer software, 

which is capable of doing different analyses, from cortical surface analysis to sub-

cortical structure segmentation. The performance of the method is shown to be 

comparable with manual labeling and the volumetric derivations from the 

segmentations are shown to detect the differences with control and Alzheimer 

Disease groups in some sub-cortical structures and ventricles. Due to its successful 

segmentation, this method is used to form the gold standard segmentations for the 

real data where the manual segmentations are not available. This method also 

depends on a Markov Random Model as FSL FAST algorithm. 

2.4.1 Construction of Probabilistic Atlas 

 The intensity information is itself not sufficient to discriminate the different 

anatomical structures because of the high overlaps in the intensity histogram. 

Therefore, spatial information is also necessary. 

 Manually segmented images are collected and aligned linearly to each other 

first because spatial information is useless when the anatomical spaces of images are 

different. Then for each voxel location, the probability of each structure is calculated 

by simply finding the percentages of observations of the structures in that 

anatomical coordinate. Also the intensity distributions for each class are modeled by 

Gaussian distributions at each voxel location. The neighborhood information is also 

taken into consideration with the MRF framework. The anisotropic modeling of 

MRF enables to encode the information regarding the relative orientations of 

anatomical structures, which is quite consistent among different individuals. The 

utilization of relative orientations of structures is very crucial for reducing the 

complexity of the problem and better representation of structures.  
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2.4.2 Formulation of the Optimization Problem 

 The objective function is formulated as a Bayesian probability of the 

segmentation labels for a given image. Three kinds of information determine the 

probability: the intensity likelihood of a voxel for a structure, the spatial likelihood 

that determines the probability of a class being in a certain atlas coordinate and the 

label relationships between the 1st order neighbor voxels with direction information. 

The incorporation of higher order neighborhoods would have been preferred but this 

is regarded as infeasible due to memory requirements. 

2.4.3 Linear Registration 

  The atlas should be aligned with the new image before voxel labeling can 

start. To minimize the effect of the anatomical differences between the atlas and the 

new brain, the points of the atlas where the prior probability of a tissue is higher 

than 0.9 are sampled first. The error function minimization is only conducted for the 

error of these sample points. A 12 parameter affine transformation is conducted with 

using a Davidson – Fletcher – Powell numerical optimization. When the optimum 

transformation is reached, a final regularization including all samples of the images 

is performed to increase the match between the anatomic structure borders of 2 

images. The method is later improved with a structure specific registration 

procedure [34]. Each structure is registered linearly to the atlas separately so that the 

intensity standardization is conducted pairwise, rather than a global intensity 

standardization. This is intended to compensate the changes in intensity 

characteristics at different scanners. It is shown that the robustness of the algorithm 

on segmentation of images acquired at different types of scanners from the training 

images are significantly improved.  

 

2.4.4 Initialization 

 No label information is present at the beginning. Therefore, the initial labels 

are derived by maximizing the multiplication of individual spatial and intensity 
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likelihoods of voxels, neglecting the anisotropic MRF term. All voxels are 

independently labeled in an efficient way. 

2.4.5 Optimization 

 The optimization strategy is similar to the FSL FAST’s strategy. After initial 

labels are available, the probability of the whole segmentation is maximized through 

the update of necessary labels with the Iterated Conditional Modes algorithm [33]. 

High number of labels can be regarded as a serious challenge for optimization but 

the number of possible anatomical classes in a certain coordinate is often limited. 

Therefore the optimization is tractable. At the end of iterations, the labels converge 

and the segmentation is obtained. Small checks are performed to finalize the 

segmentation, by checking violation of neighborhood information and reassigning 

the small structures which are disconnected from the main body of that structure. 

2.4.6 Performance 

 The algorithm is expected to operate very successfully for the subjects that 

are similar with the training set of the atlas. Even in the absence of sufficient 

contrast and in the presence of high noise levels, the structures can be segmented 

quite successfully with the incorporation of rich prior information. However, the 

performance of the algorithm on subjects having significantly altered anatomy due 

to diseases is questionable because spatial priors can reduce the robustness of the 

algorithm for such cases. 

 The computational demand of this algorithm is inevitably high. In the 

Freesurfer manual, it is reported that the segmentation step can last up to 15 hours 

[35]. For the test images having 1mm cubic voxels, the computation takes about 3 

hours in a on a desktop with a 4GB RAM and a 4 GHz processor. 

In this section we have presented a restricted segmentation survey suitable 

for our target application. We chose to present methods selectively regarding to their 

wide use in the neuroimaging community. In addition, among the methods that we 

presented, the raw intensity information is used rather than a sophisticated feature 
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vector derived from multi-spectral or higher-level intensity-based data such as 

gradient or Laplacian. Needless to say, there is a plethora of methods for brain 

segmentation. Curious readers are referred to [4] or [5] for a wider review. 
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CHAPTER 3 

 

EHRM ALGORITHM 

  

Region based segmentation is one of the major segmentation approaches in 

image processing literature. In these approaches, each region is modeled as a group 

of interconnected pixels. These regions are formed directly by utilizing region 

features, differing from approaches depending on the detection of boundary between 

regions. Region shrinking, region growing, region splitting and region merging are 

some of the major strategies for obtaining the resultant regions. 

 In region shrinking, a target region is obtained by the iterative elimination of 

boundary pixels depending on some criteria. It seems less common compared to 

other methods. In a study [36], the region shrinking is utilized in a motion 

segmentation algorithm. On the other hand, region growing algorithms start with 

some initial seed regions or points. Then neighboring regions or points are joined to 

the regions subject to some criteria. This approach and its derivatives are widely 

used in biomedical applications, like automatic abdominal MRI segmentation [37]. 

The seed selection step may be either manual or automatic. 

 Region splitting algorithms aim to obtain the target regions by iteratively 

dividing larger regions into smaller regions by a split criterion like the one proposed 

in [38]. The region merging algorithms work in the opposite way by iteratively 

merging regions to obtain the final regions based on a merging criterion. A study 

utilizing the textural information of regions is presented in [39]. Split and merge 

techniques can be used together as presented in [40]. 
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 In the current study, the goal is to segment the sub-cortical brain region into 

3 tissue types, CSF, GM and WM. There exists several disconnected regions 

belonging to the same tissue type. Also, whole sub-cortical region is to be 

segmented, rather than some portion of the image as in tumor or lesion 

segmentation. In addition, the sizes of the individual regions may change 

dramatically, from very small regions having a few voxels to regions having in the 

order of 50000 – 100000 voxels in a conventional MR scan having 1mm x 1mm x 

1mm resolution. In such conditions, it is very hard to utilize region shrinking or 

growing approaches because they are more suitable when the number of regions is 

relatively lower. Manual seed selection is not practical. In addition, automatic 

selection of seed points is not straightforward but problematic when the number of 

regions is high and many small regions are present.  

 The presence of many small regions and the high volume of 3-D data of 

anatomic images are important problems in the implementation of region splitting 

algorithms in the current situation. On the other hand, region merging seems as a 

more suitable way to deal with the problem because it does not require the selection 

of any seed points and many regions having quite different sizes, arbitrary shapes 

and orientations can be implemented in a computationally more efficient way. 

 The method proposed by Veenman et al. [3] provided an inspiration for the 

method proposed in this study. The regions are formed with operations similar to 

region merging transferring border elements in an evolutionary framework. Region 

merging is performed according to the joint variance resulting from a possible 

merging of the two neighboring regions under the maximum variance threshold 

constraint. As the second operation, border pixel transfer aims to improve the region 

boundaries. In this thesis, the evolutionary region algorithm [3] is modified to 

operate in the sub-cortical region in a computationally efficient, fully automatic, 

generalized way with minimum assumptions.  

The simple flowchart of the proposed method is shown in Figure 3.1. 

Initially, an atlas brain whose sub-cortical region is already defined is linearly 
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registered to the target brain. Therefore sub-cortical region of the target brain can be 

isolated. Evolutionary Hierarchical Region Merging (EHRM) approach is then 

utilized in a local framework by region merging operations only between 

neighboring regions. When the critical point is reached, where the regions are 

considered to reach a certain level of maturity, the local nature of EHRM is turned to 

a global framework, allowing region merging operations also between disconnected 

regions. When EHRM is terminated, the regions are classified into 3 tissues, CSF, 

GM and WM, forming the final segmentation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flowchart of the proposed algorithm. 

 In this chapter, the selection of sub-cortical area is explained first. Then the 

evolutionary method proposed in [3] is presented briefly. The novel EHRM 
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approach for conducting sub-cortical region segmentation is proposed and explained 

in detail. At the end, the final step reducing the regions to 3 tissues is discussed.   

3.1 Selection of Sub-cortical Brain Region 

 The well-known ICBM template [41] is used for defining the region 

containing the sub-cortical structures. A rectangular prism is roughly defined to 

include these structures by leaving some margin for the anatomic variability among 

subjects. The target structures are sub-cortical GM structures, putamen, thalamus, 

caudate, globus pallidus, etc, which are segmented poorly by most algorithms. It is 

expected that this region includes all parts of the structures of interest. The defined 

region can be seen in Figure 3.2.  

 

          (a)          (b)                 (c) 

Figure 3.2 The sub-cortical region in 3 planes on the ICBM template.(a) a coronal 

slice, (b) an axial slice, (c) a sagittal slice.  

When a new brain is to be segmented, the ICBM template is first aligned 

linearly to this brain. The linear registration is performed by the FLIRT tool [42] of 

FSL software. FLIRT performs a 12 parameter affine transformation on the image. 

The defined sub-cortical region is transformed with the same parameters so that it 

can also represent the sub-cortical region of the new brain. Visual investigation 

across all test brains, indicate that all of the structures of interest lie in the defined 

sub-cortical region. The bounding box which defines the extracted sub-cortical area 

is defined as follows: 
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• The anterior limit is set as the most anterior part of anterior horn of 

corpus callosum. 

• The posterior margin is the posterior of 4th ventricle. 

• The left and right margins are determined by the most lateral parts of 

putamen. Few more slices (2-3 slices) are added to compensate inter-

subject anatomical variability. 

•  The inferior limits are determined by the most inferior parts of 

putamen and globus pallidus. Similarly, few more slices are added. 

• The superior margin is determined according to the most superior 

part of caudate. Similarly, few more slices are also added.   

3.2 A Cellular Coevolutionary Algorithm for Image Segmentation 

 The algorithm (CCA) was proposed [3] to form a generalized framework for 

image segmentation especially when the number of clusters in the image is unknown 

a priori. Homogeneous regions are aimed to be formed where the level of 

segmentation is controlled by the user-set variance threshold parameter which is the 

only user-set parameter. The segmentation task was formulated as an optimization 

problem as: 

))(__(#)(varmin∑
∈

=

Cc

ii
C

opt

i

cpixelsofxcianceC     (3.1)   

subject to the constraints 

2)(var: thresholdii ciancec σ<∀               (3.2) 

2)(var,, thresholdjiji cciancejicc σ≥∪≠∀   (3.3) 

where C represents the set of all clusters ci in the image. The objective is to obtain 

the set of clusters minimizing (3.1) subject to (3.2) and (3.3). 

Each pixel start as a region at the beginning and a set of operations between 

regions are defined to optimize the segmentation. The regions try to perform these 
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operations with their neighbor regions in an evolutionary framework which 

decreases the computational load while giving the chance of escape from local 

minimum points of the segmentation problem. In the following sections, the 

evolution process and the operations between regions are explained. Lastly, the 

advantages and disadvantages of the approach are examined. 

3.2.1 Evolution Process 

 The operation of the algorithm is divided into separate parts called “epoch” 

analogous to “iteration” in optimization problems. In 1 epoch: 

• Each region has a chance of becoming active to try operations with its 

neighbors. 

• If the region is active in an epoch, it first tries to perform “region merge” 

operation. If it cannot perform, it tries “border element transfer”. If the 

region can do one of these operations, the necessary updates are done.  

• The evolutionary nature of the algorithm is implemented within the 

probability of a region for becoming active in an epoch. 

• The activation probability of a region is determined by the success of that 

region on performing operations in a certain number of preceding trials. It is 

assumed that a region which is not able to perform operations in the last 

trials has approached to its natural borders. The activation probability of 

these regions should be decreased to prevent unnecessary trials which 

increase the computational cost. On the other hand, the regions which can 

perform operations with a high success rate are assumed to be in an 

intermediate state. The activation probabilities should be increased to fasten 

the convergence of these regions to their final state. 

• In an epoch, a region can become active if its activation probability is larger 

than a random activation threshold sampled from a uniform distribution 

between [0,1]. The activation probabilities of regions have a basal 

probability even when no successful operations are performed in the last 

trials. The presence of basal probability gives the algorithm the chance of 
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escaping local minimum points of the segmentation. The activation 

probability can be formulated as 

basalavgsuccbasalact
PPPP +×−= _)1(  (3.4) 

where Pact, Pbasal, Psucc_avg represent activation probability, basal probability 

of activation and the success ratio at a predefined number of last trials 

respectively.  

• The operation of the algorithm may be terminated either when no region can 

perform any operation for a certain number of epochs or when the total 

number of epochs reach a predefined number of epochs.  

3.2.2 Region Merge 

If a region is active in an epoch, it first tries “Region Merge” with its 

neighbors. The variance of each possible each merge is calculated. The one with 

lowest variance which also satisfy the variance constraint in (3.2) is performed. The 

region merge is illustrated in Figure 3.3 and formulated in (3.5) and (3.6). 

 

Figure 3.3 Illustration of “region merge” for regions Ai and Ap. The 

variance of each possible merge is calculated. Figure is taken from [3]. 

 

 ))))(varmin(((_Re ji
c

i cciancecMergegion
j

∪∪=

  
(3.5) 

subject to   



27 

 

2)_(Revar thresholdMergegioniance σ≤    (3.6) 

The region merges satisfying (3.5) and (3.6) are performed. Then, the neighborhood 

information of the regions in the affected area is updated. 

If a region cannot perform “Region Merge”, it tries a “Border Element Transfer”. 

3.2.3 Border Element Transfer 

The aim of “Border Element Transfer” is to decrease the cost function (3.1) 

to be optimized by transferring pixels between neighboring regions. The pixels of 

neighboring regions which are also neighboring to the boundary pixels of the active 

region are candidates for “Border Element Transfer”. Only some of these randomly 

selected points are selected for practical purposes regarding computational load. The 

active regions try to decrease the overall cost function by taking one of these pixels 

from their neighbors. The effect of possible pixel transfers to the cost function is 

calculated and the one which decreases the cost function most is performed. If there 

is none decreasing the function, “Border Element Transfer” is not performed. The 

operation is illustrated in Figure 3.4 and formulated as (3.7), (3.8) and (3.9).  

 

Figure 3.4 Illustration for “Border Element Transfer”. Some of the border pixels are 

sampled and tested for transfer to region Ai. Figure is taken from [3]. 
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where n denotes the number of pixels in a region, pj is a pixel that is tested for 

transfer to region Ai. If the change of this operation on the cost ( v∆ ) is negative, the 

transfer is listed as a candidate. Among all candidates, the one which decreases the 

cost function most is performed. If there is none, the regions are not modified. The 

necessary updates on the regions are conducted if a transfer is performed.  

After a “Border Element Transfer”, two issues regarding the definition and 

constraints of the problem should be taken into consideration. A region is defined as 

a set of interconnected pixels. After a pixel is transferred from a region, that region 

divides into 2 regions if the pixel is a cut vertex. It is investigated whether a pixel is 

a cut vertex and if so 2 new regions are created replacing the old region. 

After a transfer is performed, the variances of the regions alter. An additional 

operation on the regions which begin to violate the variance constraint in (3. 2) is 

done. To satisfy the constraint, the pixel of the region which has the feature with 

largest distance to the region mean feature is found. This pixel is removed from the 

region and a new region from this pixel is created. After the operation, the variance 

constraint is satisfied.   

3.2.4 Advantages and Disadvantages of CCA 

CCA aims to provide a general framework for image segmentation. The 

advantages of the algorithm can be listed as follows: 

• The algorithm requires only one user-set parameter, the variance threshold. 

Although the problem of automatic or adaptive determination of the 

parameter is not solved in [3], it is favorable for an algorithm to keep the 

number of such parameters as low as possible. Each parameter introduces a 
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risk for automation and robustness. There are also some more parameters in 

the algorithm but up to a certain extent they are more related with 

computational efficiency, rather than the performance of the segmentation. 

• The evolutionary framework is very useful for the efficient operation of such 

a region merging algorithm. Unnecessary trials are reduced. 

• There is no requirement for preprocessing the image. Although 

preprocessing may improve the performance in many cases, it can also 

distort the image and its automation may introduce errors. 

The algorithm and the proposed implementation [3] have the following 

limitations and disadvantages: 

• The variance feature is used as the criterion for merging and the evaluation 

of within region similarity. Variance is a statistical measure that requires the 

calculation of the squared distance of each sample in the set to the mean 

value. Therefore, the cost of variance calculation increases linearly with the 

number of pixels in the region. Although the properties of images differ a lot, 

when regions get larger as epochs advance, the average number of neighbors 

of a region is expected to increase in general. Since the total number of 

pixels in the image remain constant, the total computation required for 

testing possible merges in one epoch is expected to increase unless the 

activation probabilities of regions is not decreased significantly.  

• The “Border Element Transfer” operation samples the border pixels and 

calculates the change in the variances of regions to capture whether there is a 

decrease in the cost function. When the regions get larger, the number of 

regions decreases and the number of pixels in a region increase. At the same, 

the number of border pixels in that region also increases, but with a slower 

rate roughly proportional to the square root of the increase in the number of 

pixels when we consider the number of pixels and the number of border 

pixels analogical with area and circumference. This assumption is valid in 2 

dimensional images and realistic when the borders of regions are smooth and 

simple.  
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The number of trials decreases accordingly but the increase in the sizes of 

regions increases the computation time of variance calculation. At this point, 

the border pixel sampling strategy plays an important role. If the number of 

sampled border pixels is proportional to the square root of the total number 

of border pixels as in the current implementation [3], the total computational 

load of the trials for one region increases roughly linearly with pixel number. 

Due to the linear decrease of region number with average region size, the 

computational cost of border element transfer stays similar as epochs 

advance. 

• The variance measure is not capable of representing a statistical difference 

between two regions. Therefore some very large homogeneous regions can 

merge with relatively smaller regions having different intensity 

characteristics than the large region because their union obeys the variance 

constraint. This type of measure restricts the possible sizes of regions. Small 

regions have a risk of joining unnecessarily to other large regions. While the 

sizes of target regions are comparable in some applications, the region sizes 

may vary significantly in many applications. 

• Variance measure is a very sensitive measure to outliers. Especially, when 

the borders between regions are very sharp, the intensity of pixels in the 

border can be very different from the mean, so they dramatically affect the 

variance, causing a misleading representation of region variance. This 

situation imposes great problems for regions having a relatively high border 

to area ratio.   

There are also important issues to be considered when the algorithm is to be 

extended for performing 3D image segmentation: 

• If there is a region as a sphere in a 3D image, the number of voxels increases 

with the 3rd power of the radius whereas the number of border voxels 

increases with the 2nd power of the radius. Therefore, it is obvious that the 

ratio of border to the number of elements in a region increases compared to 
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the 2D case. Unless the border sampling strategy is changed, this increases 

the computational load of border element transfer operation, making the 

algorithm more greedy as epochs advance. It is fair to expect that the 

algorithm should become computationally more efficient as epochs advance 

because the algorithm carries higher level information with smaller number 

of regions. However, computational time increases if the 2D implementation 

is directly extended. 

• Thin regions contain a large number of border voxels which is a great 

challenge for the utilization of variance information. 

•  Due to increase in the dimension, more complex neighbor structures can 

form and the number of trials for region merging is expected to increase 

which increases the computational load as epochs advance.  

3.3 Issues Regarding Segmentation of Sub-cortical Region 

 The aim of the current study is to develop an algorithm that can provide a 

generalized and robust framework for sub-cortical region segmentation. The 

challenges and their possible solutions are discussed in this section. 

3.3.1 Bias Field Inhomogeneity 

 Bias field inhomogeneity, also known as intensity inhomogeneity, is one of 

the most important problems for threshold based segmentation because the intensity 

levels within the same tissue type may differ significantly in the whole brain. The 

most prominent causes for this artifact are practical problems related with receiver 

and RF coils. The inhomogeneity in the receiver coil sensitivity and flip angle 

profile causes a spatially varying distribution of intensity levels in the image. 

Therefore, most widely known segmentation algorithms operating at whole brain try 

to remove bias field prior to final voxel classification. The main assumption of such 

algorithms is that the bias field is a spatially changing smooth field which can be 

modeled as a multiplicative or additive component. For instance, the bias field is 

modeled and updated iteratively together with the segmentation in the FAST 
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algorithm [1]. The reader can find a detailed review and analysis of bias field 

correction algorithms in [43]. 

 When the sub-cortical region is considered, which is a relatively small part 

about 10-15% of the whole brain in the current study, the maximum possible 

intensity variability due to bias field is limited. In practice, sharper changes in bias 

field are more observed in regions closer to the coils in the outer part of the brain. 

Sub-cortical region is located at the inner part of the head, which is more distant to 

the RF and receiver coils compared to cortical regions. Therefore, sharper changes 

due to bias field in sub-cortical area are less expected.  

 In the current region merging algorithm, the regions are represented with 

their mean intensity. When the regions get larger, the effect of bias field on mean 

intensity of regions decreases because large regions contain voxels that are from a 

wider spatial profile, decreasing the effect of bias field by the averaging out voxel 

intensities. Also, the texture constraint may prevent the merging of regions that have 

different texture characteristics while having similar intensity mean due to bias field. 

Therefore, the bias field is not a serious problem for the proposed algorithm and its 

effects can be neglected in the sub-cortical area.  

 Some bias field removal algorithms are available in most widely known 

software packages like FSL and can be utilized prior to segmentation. However, the 

modeling of bias field as a slowly changing field may corrupt the texture property in 

the sub-cortical region because these smooth anatomical changes may be perceived 

as a part of bias field and removed. Therefore, the texture information derived from 

a bias field removed image may be misleading. There are very smooth boundaries, 

textural and anatomical changes in some parts of sub-cortical region, especially in 

thalamus and internal capsule. The output of the bias removal algorithms may 

corrupt such anatomical information and complicate the segmentation process.  
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3.3.2 Partial Volume Effects 

 Partial volume effect(PVE) is observed when more than one tissue types are 

present within a voxel. Therefore, it is generally observed in the boundaries between 

tissues. This type of voxels tend to have intensity values between the intensities of 

tissues they are composed of, depending on their proportion.  

In a region merging algorithm, the mean intensity of the region may change 

significantly due to PVE especially when the border to volume ratio of a region is 

high. The intensities of PVE voxels are not informative for the intensity of a certain 

tissue type so it is better to eliminate the effect of these voxels for the determination 

of region statistics. If the regions in the image are large, these effects may be less 

prominent but for the segmentation of sub-cortical region, the target regions may be 

very small and most of the voxels of a region may be on the border. Therefore, the 

exclusion of PVE voxels becomes inevitable in the current problem. 

3.3.3 Smooth Boundaries 

 The sub-cortical region has a very complex structure which contains highly 

interconnected structures of different tissue types. In some main sub-cortical GM 

structures like thalamus, putamen and globus pallidus, which have low contrast with 

WM, the boundaries are very smooth. If the region merging criterion is fixed in all 

stages of the algorithm, it should be large enough for the segmentation of regions 

while keeping over-segmentation at a considerable level. In this case, the algorithm 

may fail to preserve the smooth boundaries in the image especially when the noise 

level is significant. 

 The flow of the algorithm should be modified to preserve weak boundaries. 

The solution is to start with a more restrictive  merging criterion. As the regions get 

larger, the criterion can be increased iteratively forming regions in a hierarchical 

manner.  As the algorithm operates, the regions get larger and carry a higher level of 

information representing more meaningful regions of the anatomy.  
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3.3.4 Disjoint Structures of Same Tissue Type 

 The aim of the sub-cortical segmentation is to classify the voxels into 3 

classes. There are structures which are composed of the same tissue type although 

there are spatially disconnected. If the merging of the regions is only performed with 

the neighboring regions, it is impossible to connect disjoint structures of the same 

tissue type. Therefore, the algorithm must also allow the merging of disconnected 

regions. Allowing this type of mergings from the beginning of the algorithm results 

in the clustering of intensities which does not impose any spatial connectivity of 

voxels. In this case, the output image is a intensity thresholded image similar to the 

output of histogram based approaches. 

  The stated problem can be solved with a hybrid approach. Up to a certain 

stage, the algorithm must merge the neighboring voxels of same tissue types. After a 

certain level of maturation is achieved in the formation of local regions, the regions 

should be allowed to merge with other similar regions removing the neighborhood 

criterion to merge. 

3.3.5 Region Features 

 The intensity is the prominent feature for a region because it is a function of 

tissue parameters. Intensity can be a sufficient feature for the separation of regions 

which have high contrast but in the main structures of sub-cortical region, the 

contrast between GM and WM is relatively low. Therefore, the usage of intensity as 

the only feature may not be sufficient to prevent the merging of structures having 

low contrast. 

 Additional features can be incorporated into merging criterion in this case. 

These features should be informative and robust to variations in scanners, scan 

protocols, scan parameters, artifacts, noise and inter-subject variability of anatomy. 

A feature having an anatomical meaning is a good candidate for the necessary robust 

feature. It is also known that the sub-cortical GM structures contain various nuclei 

and WM in a dispersed manner, making their tissue properties different than the 
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cortical GM. The heterogeneity in the tissue of these structures can be an 

informative texture feature. If this texture feature can be extracted reliably, it can be 

valuable to control the merges, preventing the merging of regions having similar 

intensities but different texture properties. 

 For the efficient operation of the algorithm, the features should be easily 

calculated to test all possible merges efficiently. It would be very advantageous if 

the features of the union of two regions can be estimated by using the individual 

statistics of regions. Mean intensity is already such a feature that can be estimated 

with the number of voxels and mean intensity of individual regions.  

3.3.6 Termination of Segmentation 

 Incorporating the texture information in region merging can be quite useful 

for the separation of structures having low contrast. However, as the threshold 

criterion for region merging is increased in the late stages of the algorithm, the risk 

of merging regions of different tissues increases. In the algorithm, a single threshold 

for merging is used to separate the tissue throughout the whole sub-cortical region. It 

is also known that the intensity level differences between different tissues may vary 

significantly. For instance, the sub-cortical GM has a low contrast with WM while 

GM has a relatively better contrast with CSF in general. In this case, using a 

merging threshold to obtain 3 regions at the end of segmentation has a high risk of 

merging regions of different tissues. Therefore, the increase in threshold must be 

limited or a certain minimum number of regions should be preserved to eliminate 

false merges. This results in over-segmentation of the image, having more than 3 

regions. 

 The over-segmented image formed at the end of region merging process 

should then be reduced to 3 classes to obtain the final segmentation. This final 

classification must also be a robust approach.  
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3.4 EHRM 

 The developed algorithm, Evolutionary Hierarchical Region Merging 

(EHRM), aims to provide a generalized framework for sub-cortical region 

segmentation. The issues discussed in the preceding section are taken into account 

with a robust and computationally efficient approach. The details of the algorithm 

are explained in detail in this section. 

3.4.1 Region Features 

 There are two features controlling the flow of region merging process. These 

are intensity and texture heterogeneity.  

3.4.1.1 Intensity 

 As previously stated, the most informative feature of a region regarding its 

tissue type is the intensity. The intensity feature, denoted by “M”, is defined as the 

mean intensity of all voxels in the region as: 
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where n, v, R and I represent the number of voxels in the region, a voxel, all voxels 

of the region and intensity respectively. 

 In larger regions, the effect of PVE voxels in the M feature of the region may 

corrupt the intrinsic M of the region especially when the surface to volume ratio of 

the region is high. Therefore, the border voxels are discarded from the calculation of 

M. This type of elimination is only performed in intermediate and large regions. 

These types of regions have a number of voxels more than a certain threshold, 

denoted by “n_inter”. In the default operation, the border voxels are eliminated if the 

number of interior voxels which are not a part of the boundary is above 25% of the 

n_inter parameter. For a scan with a conventional resolution (1x1x1mm), this 

number is about 50 voxels, which is expected to generate a statistically reliable M 

feature in the vicinity of border voxels. 
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3.4.1.2 Texture Heterogenity 

   Texture heterogeneity is expected to represent the differences in texture 

between the tissues having low contrast. The variance of intensity values of voxels 

in a region is one of the basic features that can be considered first. However there 

are some practical problems that can be listed as follows: 

• The PVE voxels tend to have slightly different intensities than the mean 

intensity. Therefore, their effect on variance feature may dominate the 

feature, corrupting the intrinsic tissue heterogeneity. Also the surface to 

volume ratio has a strong effect on the parameter. The nature of boundaries 

in terms of smoothness also affects the variance. 

•  Some regions are larger and some are smaller. The spatial distance between 

voxels within the same large region may increase very much. Although such 

voxels are from the same tissue type, their intensity may change due to bias 

field inhomogeneity and regional intensity changes within a tissue. In the 

presence of such effects, larger regions inevitably have larger variance, 

which is a misleading texture heterogeneity feature.  

The local image properties can provide a much more robust estimation of texture 

properties because they are less affected by bias field and regional intensity level 

changes within a tissue type. One of the most widely used texture features are 

known as the Haralick texture features proposed in [44] which are derived from the 

co-occurrence matrix. Although these 14 features carry rich textural information, the 

incorporation of so many features in the region merging criteria complicates the 

decision of region merging process. The separate testing of each feature is infeasible 

because it is very difficult to match a high number number of features even for the 

right and left of the same structure. All texture features can be reduced in a single 

feature but in this case the training of this feature would be another issue. Also the 

normalization and fusion of so many features is not straightforward to automate 

because each one carries a different type of information. Manually segmented 

images as training sets can be used to fuse these features and determine the texture 
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criterion but it is very hard to generalize these criteria due to variability in MR 

images like noise, bias field, resolution, sequence, sequence parameters, inter-

subject anatomic differences, etc. 

At this stage, a single robust feature which also carries anatomical information 

seems as the best way to represent and test texture heterogeneity in the tissues. Local 

image properties are used to realize this texture feature. The proposed feature is a 

modification of the angular second moment from Haralick texture features. Now, let 

us consider the 6 neighborhood system in a 3D image as shown in Figure 3.5.  

 

 

 

 

 

       

 

Figure 3.5 The neighborhood system in a 3D image. 2 neighboring voxels in 

each direction, resulting at 6 total neighbors. “V” denotes the voxel and “G” 

represents the gap between two voxels.  

 The gap “G” between two neighboring voxels is defined as the absolute 

intensity difference between these voxels as 
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 To calculate the text heterogeneity feature, all gaps which are defined 

between the interior voxels of a region are calculated and collected in a histogram. 

The effect of border voxels are removed from the calculation because they may have 

different intensities, forming gaps which have high values. This inevitably produces 
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a bias in the calculation of texture heterogeneity. It is expected the distribution of all 

gaps is a normal distribution. In fact, the normal distribution is one sided because the 

absolute value of the intensity differences between neighboring voxels are taken. 

The normal distribution is represented with its 2 parameters, the mean and the 

standard deviation (or variance). The peak of the distribution is expected to be 0 

ideally because smaller gaps are more frequently observed whereas larger gaps are 

less frequent. If the histogram of gaps is a wider distribution, the variance of the 

modeled normal distribution is higher. Then it can be inferred that the texture 

heterogeneity increases as the gap distribution gets more distributed.  

This measure of wideness of a distribution can be estimated by the variance 

but the direct variance calculation would be very sensitive to outliers in this case. 

Therefore, the feature should estimate the variance in a robust manner. A feature 

which reflects the sum of squared probabilities of the probability density function of 

the gaps can be used as measure of the wideness of the histogram, which can then be 

utilized as a heterogeneity feature for a large region. In heterogeneous regions, the 

neighboring voxels tend to have more variable intensities, which can be considered 

as a clue for local tissue heterogeneity, vice versa. The proposed texture feature, TH, 

is expressed in (3.12) and Figure 3.6 illustrates the calculation for a sample 

histogram. 
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where Gmax is the maximum gap in the region and the p represents the probability 

values at the probability density function. The TH feature is higher for wider 

histograms because the likelihood values are smaller due to the wide distribution, 

decreasing the squared sum. The situation is reverse for the narrow histogram. The 

proposed TH feature is expected to be robust to outliers in the histogram, which 

have small likelihood values. The calculated texture feature is roughly linearly 

proportional to the standard deviation for a normal distribution. The proof is in 

Appendix B. 
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Figure 3.6 Calculation of texture heterogeneity feature. The probability density 

functions (pdf’s) for 2 gap distributions which are sampled from a normal 

distribution of 5 and 10 standard deviation are plotted. The absolute values of the 

gaps are taken. The THs of the distributions are calculated as 9.1 and 16.8 

respectively, roughly preserving the initial standard deviation ratios.  

 The variance of the gaps can also be calculated and used as the feature but it 

would be more sensitive large gaps in the region. Most of these large gaps may 

represent the effect of noise or transitions from strong boundaries rather than the 

anatomical texture information. Although border voxels are excluded, the transition 

effect of some strong boundaries may be realized also in interior voxels near to the 

boundary. It is expected that as the number of gaps in a region increase, the 

reliability of the texture information also increases. There is a gap number threshold 

for regions to be represented with their texture information and this threshold is 

discussed in the Region Models section. Figure 3.7 illustrates the gaps for texture 

analysis in a sample region in a 2D space.  
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Figure 3.7 The illustration of gaps in a sample region. Black voxels belong to 

neighbor regions. 

 During the calculation of gap histogram, a uniform noise between [-1,1] 

interval is added to the gaps to prevent the possible biases that may result from the 

quantization of intensity to integer values. This operation is especially useful when 

the total steps of intensity values are relatively lower in the image.  

3.4.2 Region Models 

 In the original algorithm proposed in [3], there is a single region model and 

every region is expected to obey the variance constraint. The variance constraint is 

tested for determining legitimate regions. So all regions have the same duties and 

roles regardless of their size and the level of information they carry. 

 In the problem of sub-cortical region segmentation, the sizes of regions and 

the proportions of tissues vary significantly: a small region may only represent a 

small portion of an anatomical structure whereas a larger region may represent a 

major part of a structure.  Therefore, the anatomic regions are separated into 3 

categories according to the level of information: small regions, intermediate regions 

and large regions. 
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3.4.2.1 Small Regions 

 Small regions are regions with number of voxels below a certain threshold. 

This threshold may depend significantly on the resolution of the MR image, 

therefore the threshold voxel number should be better defined as a ratio of all voxels 

in the sub-cortical region. This ratio value is one of the parameters of the algorithm, 

denoted as “vol_rat”. The default value of this parameter is 0.1%. In practice where 

the sub-cortical region analyzed has a volume around 200mm3, the volume threshold 

is about 0.2mm3, which is significantly smaller than the volume of all main sub-

cortical structures. The reader can find a detailed volumetric analysis of many brain 

structures in [45] and [46]. Small regions are only represented with their intensity 

values.  

3.4.2.2 Intermediate Regions 

 Intermediate regions have a number of voxels more than the threshold 

defined above. Also it is checked whether reliable texture information can be 

derived from an intermediate region. When an intermediate region also carries 

reliable texture information, it is named as a large region. The determination of 

whether an intermediate region is also a large region or not is conducted in the 

following way: 

• The texture feature of the region is calculated. If the number of gaps in the 

image is larger than a threshold, the region can be represented with its 

texture feature and is called a large region. Otherwise, it stays as an 

intermediate region. In the default operation of the algorithm, this threshold 

is kept the same with the threshold of voxels to be an intermediate region for 

simplicity and the reduction of parameter number. This assumption is 

realistic because the voxel number and gap number both increase as the 

regions get larger. 

• The intermediate region is represented with the mean of all its voxels in the 

beginning. During texture extraction, the number of interior voxels is 

calculated. If they are above a certain limit, they are used for mean 
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calculation, discarding the effect of border voxels. 25% of the voxel 

threshold to be an intermediate region is set to be the necessary number of 

interior voxels for the elimination of border voxels, which corresponds to a 

number about 50 voxels for a conventional scan of 1x1x1mm resolution.     

3.4.2.3 Large Regions 

 Large regions are intermediate regions which can also be represented with 

texture information. The criterion to be a large region is discussed in the preceding 

section. Large regions are generally formed by the tissues with a significant 

thickness. These are expected to be the regions where significant anatomical 

structures are formed.  

3.4.3 Region Merging Process 

 In our study, only region merging among the operations proposed in [3], is 

utilized. The border element transfer operation is not used because it can be 

computationally very greedy in a 3D image segmentation problem. Also the 

hierarchical framework for the merging criterion is expected to decrease 

inappropriate merges, decreasing the need for border element transfer significantly. 

At the end of epochs, the following operations are conducted: 

• The activation probabilities of regions are updated. 

• The updated regions in the last epoch are checked to find out whether new 

intermediate and large regions are formed. 

•  After reaching the critical point texture feature standardization is performed.  

 Each voxel starts as a region at the beginning of segmentation. Up to a 

certain point that is called the critical point of the algorithm: 

• Regions are only allowed for merging with their neighbors. 

• If one of the merging regions is a small region, the threshold denoted by 

“thres_1” is used as the criterion. If both regions are intermediate or large, 

the merging is governed by a more restrictive threshold denoted by 
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“thres_2”. These thresholds are explained in the Region Merging Criteria 

Section. 

• At the critical point of the algorithms, the regions are expected to reach a 

certain level of maturity.  

• Both thres_1 and thres_2 are increased as the epochs advance. At the 

beginning of the algorithm, a threshold limit denoted by “thres_limit” is 

calculated from the histogram of the image. 

thres_1 becomes equal to the thres_limit as epochs advances. At this point, 

thres_1 and the thres_2 are kept constant for some epochs to maturate the regions. 

The volume of sub-cortical region possessed by intermediate regions is calculated. 

When the regions maturate, the rate of region merging decreases. The critical point 

is accepted as the epoch where the volume increase in all intermediate regions 

compared to the previous epoch is lower than the volume of the threshold for being 

an intermediate region. This is an indicator that no new intermediate regions are 

formed. Therefore, it is assumed that a certain degree of maturity is achieved.  

After the critical point is reached: 

• Large regions are allowed to perform merges with other intermediate and 

large regions that are not their neighbors. 

• thres_1 is limited to “thres_limit” and “thres_2” is continued to increase.  

• The merges are continued until one of the termination conditions for the 

algorithm is satisfied. Termination is explained in the related section.  

3.4.4 Evolution 

 The evolutionary framework of the original algorithm [3] is used with the 

incorporation of neighborhood intensity information in addition to the success 

parameter. 
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3.4.4.1 Neighborhood Intensity Information 

 In an image having strong boundaries, intensity based region merging 

algorithms can be quite successful by following the edges between regions. 

However, when contrast is lower and significant noise is also present in the image, it 

becomes challenging to track the boundaries because regions of different tissues 

may have quite similar intensity. Some measures should be taken to prevent merging 

of such inappropriate regions. Although some commonly used edge detection 

algorithms like Canny edge detector [47] uses Gaussian windows or other 

approaches for smoothing the image prior to the detection and tracing the boundary 

voxels to improve their performance, smoothing operation has its own risks. The 

automation and the effect of smoothing depend on the application. Stronger and 

simple shaped boundaries can be detected quite successfully but the situation is 

worse in weaker and complex shaped boundaries which are among the greatest 

challenges of sub-cortical segmentation. In addition, the smoothing operation has a 

strong potential to distort the texture information in the image, which is used as a 

second criterion to measure region similarity prior to region merging. Therefore, 

smoothing operations are not suitable for the current problem. 

 Most of the problems regarding region merging are expected in the edges 

where boundaries may be weak and the PVE is also present. The prevention of 

region merging of such boundary voxels can eliminate the problems. Although we 

do not know the exact edges of an image prior to segmentation, we can derive some 

features which can give clues about whether a voxel or a region may be on a 

boundary. At the beginning of the algorithm where each voxel is also a region, 

regions on the boundary generally have neighbors which have quite different 

intensities because intensity transitions on borders are expected. In other words, the 

gaps between the neighboring voxels are expected to be larger. The average of gaps 

of a voxel may be a measure reflecting the probability of a voxel to be on the 

boundary.  
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 As the epochs advance, the regions get larger and the average of gaps feature 

should be extended so that a similar measure for regions can be utilized. Therefore, 

the average of the intensity differences between a region and its neighbors can be 

calculated. For smaller regions, this measure is meaningful but not representative for 

large regions which have achieved a certain level of maturity because they 

inevitably become adjacent to regions of other tissue. The feature can be a regarded 

as a derivative of gradient, therefore its probabilistic effect is referred as “Pgradient”, 

representing that it is the gradient based probability component of activation. The 

intensity in different images may change a lot, so the effective value of this gradient 

feature should be selected with respect to the merging threshold, thres_1 because we 

are trying to modulate the activity of small regions.  

For a region R, Pgradient is formulated in (3.13).  
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where n is the number of neighbors of R, N is the set of neighbors, I is intensity.   

3.4.4.2 Success Parameter 

 The definition of fitness, which is a measure of success, is as defined in the 

original paper [3]. The fitness is the average success of a region to perform a region 

merging operation in a predefined number of last trials. The fitness based probability 

Psucc_avg is calculated as in (3.14). 
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where ntr is the number of trials to be considered for fitness, tri is a trial and L is the 

set of last ntr trials. The success function s is defined in (3.15): 
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 In the current implementation, ntr is 5. When the number of trials of a region 

is lower than 5, the average of present regions is taken into consideration as Psucc_avg.  

3.4.4.3. Determination of Activation 

 In the default of the algorithm, it is adjusted that a region with a volume of 

0.01% of the sub-cortical region volume (10% of size threshold for intermediate 

regions) is affected equally from gradient feature and the success parameter to 

become active in an epoch. The 0.01% of sub-cortical volume is about 20 voxels in 

a scan having 1mm cubic voxels. At the beginning of the algorithm, the feature 

should fully dominate the activation probability. This weighting between the current 

feature and the success parameter is exponentially regulated by the size of the 

region. The effect of this feature is decayed exponentially to 0 with the size of the 

region. The activation probability of a region can be formulated as in (3.16). 

basalavgsuccgradientbasalact
PPwPwPP +×−+××−= ))1(()1( _  (3.16) 

where the probability terms Pact, Pbasal, Pgradient and Psucc_avg  represent the activation, 

basal, gradient based and average success based probabilities respectively. w is the 

weighting between the Pgradient and Psucc_avg.
  

)/)1(exp( %01.0VVVw voxelR ×−−=     (3.17) 

where V is volume. The volume of one voxel is subtracted from the volume of the 

region because when a region has 1 voxel at the beginning of the algorithm there is 

no success information of the region. As epochs advance, a region may still be 

composed of 1 voxel with unsuccessful merging trials. This success based 

information is neglected in such cases but it does not seem a big issue because such 

a voxel already has a low Pgradient value due to its neighbors having significantly 

different intensities. The success parameter would also try to decrease the activation 

probability but it is expected to be low in any case. When the size of a region 

becomes 1/3 of the threshold for being an intermediate region, w becomes 0.1. If the 

region gets larger from this point, w decreases further. At the same time, the number 
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of neighbors of the region increases and the computational load for calculating 

Pgradient also increases. Therefore, the effect of gradient feature is ignored when the 

size of the region becomes 1/3 of the intermediate region voxel threshold and only 

the success parameter affects the activation probability. 

A different random number for each region is generated from a uniform 

distribution in the [0,1] interval. If the activation probability is larger the random 

number of the region, the region is allowed to try a region merging operation in that 

epoch. If not, the region is passive in that epoch. With a new epoch, each region is 

also randomly activated to try region merging operation. In the long run, regions 

which are more successful at their region merging trials are more active, vice versa. 

As some regions get maturate, they perform less merging because they achieve their 

natural borders. Becoming unsuccessful in the last trials cause these regions to be 

inactive. Success based control activation is important for the reducing unnecessary 

trials for region merging, which in turn improves the computational efficiency. The 

presence of basal probability decreases the probability of the algorithm to be stuck 

in local minimum points of the problem. The basal probability is 0.2 in this 

implementation so there exists at least one expected trial for any region in 5 epochs. 

At each epoch, a random order of regions is formed for the activation. 

3.4.5 Region Merging Criteria 

 There are 2 different criteria for determining appropriate merges in the 

region merging process.  These are intensity similarity and texture similarity criteria 

and they are discussed separately in the following sections.  At the end, the selection 

process among the candidate merges is explained. 

3.4.5.1 Intensity Similarity 

 As previously stated, the most prominent feature of a tissue is its intensity. 

Voxels of same tissue type tend to have similar intensities, vice versa. However, due 

to anatomical variability within the tissues and several problems that decrease the 
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contrast between tissues, the regions of different tissue type can have quite similar 

intensities. There are 2 intensity thresholds, denoted by “thres_1” and “thres_2”. 

Intensity Threshold “thres_1” 

 This threshold is used as a criterion for merges when one or both of the 

regions are small. It is increased as the epochs advance up to a certain limit denoted 

by thres_limit. The initialization, limitation and update of thres_1 are explained in 

the following sections.  

Initialization of thres_1 

 Although the anatomy of the subcortcial region is quite complex, the number 

of interior voxels is still significantly higher than the number of border voxels in 

high resolution anatomic scans. At the beginning stages of the algorithm, the merges 

performed by the interior voxels are more desired because the formation and 

preservation of the natural boundaries in the images are quite difficult when the 

border voxels are also performing merges with their neighbors. In the ideal case, 

larger regions should begin to form in the middle of a tissue distant to the 

boundaries. Then these large regions should merge with the border regions to form 

better representation of tissues and anatomic structures. 

 The regions merge with one of their neighbors which has the closest intensity 

that the threshold permits. Therefore, the initialization of the threshold should be 

related to the intensity difference of neighboring voxels. First, for each voxel, the 

absolute intensity differences to all its neighbors are calculated. The minimum 

differences of all individual voxels are selected and collected in a histogram. The 

initialization of thres_1 is performed using the information derived from this 

histogram. The straightforward and simple way for initialization is to determine a 

percentage allowing some of the candidate merges while rejecting others.  

The selection of this percentage is not straightforward, it is rather conducted 

in an intuitive manner. However, there are a few issues to be considered during the 

selection. This percentage should be flexible enough to allow the merging of interior 
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voxels but also restrictive enough to prevent the merging of border voxels. The 

percentage can be very restrictive to allow low rate of merging to reduce 

inappropriate merges but in this case there is a risk of decreasing the activation 

probabilities of most voxels due to the initial activation function. The rate of 

merging is also to be low, decreasing the amount of progress in an epoch. For each 

region, activation probability update and activation trial are conducted at each 

epoch. In each epoch, if the number of regions is higher, the computational load of 

these standard operations increases. Therefore, the number of regions should be 

significantly decreased in the first few epochs for computational efficiency. In the 

current implementation, the percentage for thres_1 initialization denoted by 

“thres_1_init_perc”is selected as 75 to achieve a high success of merges. 

 The 75th percentile of this histogram is calculated and set as the initial value 

for thres_1. thres_1_init, the initial value of thres_1, also determines the activation 

probabilities of all voxels at the beginning. Although the properties of images may 

differ a lot, it is observed that about half of all voxels have an activation probability 

larger than 0.5, which are more probable to be active in the first epoch. The success 

percentage of merges are about 80-85%, larger than 75%, which is expected because 

the border voxels which have a lower chance of performing merges are more 

deactivated as compared to interior voxels.   

Restriction of thres_1 

 The number of target regions at the final segmentation is 3 but it is very hard 

to achieve the final segmentation at the end of region merging procedure as 

previously discussed. The intensity differences between the pairs of tissues may not 

be distributed homogeneously in the intensity spectrum in most cases. Due to the 

single global intensity threshold, there is high risk of merging two tissues into a 

single class and leaving a tissue in 2 classes even when the image quality is high. 

Therefore, thres_1 should be restricted to prevent such cases. 

 The determination of thres_1 is not straightforward. The algorithm should 

allow reducing the image into a feasible number of representative regions and 
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decrease the probability of merges between different tissues. In order to investigate 

this, an ideal image is considered. In this ideal image, the volumetric ratios of 3 

tissues are the same and the intensity probability density functions of 3 tissues are 

well separated as in Figure 3.8. The mean intensities of tissues are 100, 200 and 300 

for CSF, GM and WM respectively. The standard deviation is 20 for all classes. This 

kind of an image is an ideal scheme for many segmentation algorithms like the ones 

modeling the histogram as a mixture of Gaussians.  

 

Figure 3.8 The probability density functions of 3 tissues in the ideal image stated.  

 In this image, TH1 and TH2 thresholds, which are in the middle of 

neighboring tissue means are the thresholds minimizing the misclassification rate for 

a possible threshold based voxel classification. If a region merging algorithm is 

utilized in this case, the restriction of thres_1 to the difference between to the tissue 

means to the nearest of TH1 and TH2 seems reasonable to reduce the inappropriate 

merges. This idea to determine a reasonable limitation to thres_1 can be 

implemented as follows: 

• Calculate the 16.67th, 50th and 83.33th percentiles of the histogram. These 3 

values may be considered as a rough estimation for the mean values of 3 

tissues. Denote these by m1, m2 and m3. 
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• Then find the amount of 2 separations, s1-2 and s2-3, between the 3 tissues.  

• TH1 and TH2 are expected to be in the middle of tissue means. So the 

distance of TH1 and TH2 to the nearest tissue means is the half of the 

corresponding separations. 

• Among the distances of TH1 and TH2 to the nearest tissue means, select the 

smallest one by dividing the smaller separation by 2. This value is the limit 

for thres_1. 

This restriction is derived from the case where some assumptions are made 

for an ideal image. This limit should also be investigated for generalized cases. The 

volumetric ratios of tissues are not similar and the shape of probability density 

functions may change a lot in most cases. The pdf’s can significantly overlap and 

the intensity levels of tissues may not be distributed homogeneously in the intensity 

spectrum.  

 When the volumetric ratios are not similar, this restriction is expected to be 

tighter because the minimum of the calculated separations becomes smaller than the 

difference of real mean values between 2 tissues. In the case of inhomogeneous 

intensity spectrum, which is frequently observed, the intensity levels of GM are 

much closer to WM than CSF. The current solution is robust to this problem, by 

taking using the minimum of the separations. When there is significant overlap 

between different tissues, the restriction becomes even tighter because the intensity 

levels get closer. In the stated 3 cases, the threshold choice seems to be safe to 

prevent the merging of different tissues having considerable contrast. 

 The threshold restriction can be regulated by a parameter if desired by the 

user. The regulation coefficient is denoted by “thres1_limit_coef” and linearly scales 

the histogram derived thres1_limit. In the default implementation, thres1_limit_coef 

is set to 1. The determination of thres1_limit is illustrated in a sample histogram as 

in Figure 3.9. 

 



53 

 

 

Figure 3.9 Histogram of sub-cortical region of a sample brain.  

 In Figure 3.9, the 16.67th, 50th and 83.33th percentiles are represented with 

M1, M2 and M3 respectively. These are the estimates of tissue means for the ideal 

stated before. The thres1_limit is calculated from M1, M2 and M3 as in Eq. (3.18). 
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Update of thres_1 

 The algorithm starts with the initial value of thres_1. As the region merge in 

the first few epochs, the success rate of merges “succ_merge” and the activation 

rates “act” of the regions decrease because the neighboring regions of a region tend 

to have more different intensities as the regions get larger. The succ_merge and act 

are defined in (3.19) and (3.20).  
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 These two measures are defined for one epoch of the algorithm. The 

succ_merge is defined as the number of regions that performs region merging to the 

number of regions that are active in that epoch. The act parameter is the ratio of 
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active regions to the number of regions at the beginning of the epoch. These two 

measures carry information regarding the operation of the algorithm, indicating the 

rate of decrease in the total number of regions as the epoch advances. Therefore, a 

threshold called “succ_percentage” is applied on the succ_merge measure to 

perform the update of thres_1. After the update, thres_1 is increased, allowing new 

merges and increasing the activation probabilities of regions where neighborhood 

intensity information is taken into consideration. 

 About half of the active regions in an epoch are expected to initiate 

successful merges. By leaving some margin, the threshold for update is set to be 

40% success in the current implementation. If succ_percentage is below 0.4, thres_1 

is increased in an exponential manner. The total number of updates is defined 

according to the basal probability value for activation. When this probability is 0.2, 

each region is expected to perform at least 1 trial in 5 epochs. The number of 

updates, n_update is selected as 10, the twice of 5 epochs. Therefore, each region is 

expected to be active at least twice, decreasing the probability of the algorithm to be 

stuck in local minimum points. The update of thres_1 is expressed in (3.21) and 

(3.22). 
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 thres_1 is increased exponentially to thres1_limit according to the success of 

merges in the last epoch. When critical point is reached, large regions are allowed to 

merge with other large and intermediate in addition to their neighbors. After the 

critical point, thres_1 is kept constant. 

Intensity Threshold “thres_2” 

 The intensity threshold thres_2 is used to determine the intensity similarity 

between either intermediate or large regions. This is a more restrictive threshold 
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than thres_1 to prohibit the inappropriate merges between larger regions. The 

initialization, limitation and update of thres_2 are discussed in the following 

sections. 

Initialization of thres_2 

 There are no intermediate or large regions at the beginning and most likely in 

the first few epochs of the algorithm. Therefore thres_2 becomes necessary only 

when intermediate regions begin to form. Naturally, thres _2_init, the initial value of 

thres_2, is set to the initial value of thres_1, thres_1_init. 

Limitation of thres_2 

 The final limit for thres_2 denoted by “thres_2_limit” is the same with the 

limit of thres_1. However, thres_2 is a more restrictive threshold due to its update 

strategy. 

Update of thres_2 

 The update of thres_2 is conducted differently before and after the critical 

epoch of the algorithm. Up to the critical point, thres_2 is set to the average of the 

initial value of thres_1 and the current thres_1 value as expressed in (3.23). 
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 The reasoning behind this update strategy is that thres_2 should not begin 

with a smaller value than the initial value of thres_1 because it is not likely that the 

intensity differences between regions decreases as the regions get larger. thres_2 

gets more flexible as the epochs advance but it is always more restrictive than 

thres_1 with a certain degree.  

 After critical point where the regions are expected to achieve a certain level 

of maturity, thres_1 is kept constant. The merging between 2 regions between 2 

intermediate or large regions is more dominant in the algorithm. The ratio of 

allowable merges governed by thres_2 to all possible merge trials governed by 
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thres_2 is calculated. If this ratio denoted by “ratio_thres2” is very low, the thres_2 

should be increased. The threshold for this ratio is selected as 10% because this ratio 

should be low in general to prevent merges of the regions of different tissues. Since 

there are 3 target tissues, if the ratio_thres2 is larger than 33.33%, this indicates a 

high risk of a merge between different tissues even in the ideal image where the 

volumetric ratios of tissues are the same and contrast is high. Therefore, 10% 

threshold is expected to operate the algorithm with appropriate merging, keeping 

ratio_thres2 between 10-20% in general. The algorithm is desired to perform the 

most favorable merges at each epoch, thereby reducing the accumulated errors to the 

final of the segmentation. The ratio_thres2 is calculated in (3.24). 
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A region first tests its intensity similarity to all the regions that it is allowed to 

merge. The results of each intensity similarity test governed by thres_2 are collected 

during an epoch. The total number of all trials “tr2all” and the number of trials which 

satisfy the thres_2 constraint “tr2legal” are calculated. Their ratio in (3.24) gives 

information about whether thres_2 should be updated. The update rule is expressed 

in (3.25), (3.26) and (3.27). 
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 The update of thres_2 after the critical point is conducted quite similarly with 

the update of thres_1 before the critical point. thres_2 is increased up to its limit if 

none of the termination conditions is satisfied.  
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3.4.5.2 Texture Similarity Criteria 

 When the critical epoch is reached, first all intermediate regions are checked 

to see whether they satisfy the criterion for being a large region. Then large regions 

are determined and they are given the permit of trying to merge with all other 

intermediate and large regions. The merging between 2 large regions is tested also 

according to texture, in addition to the intensity. It is desired that different tissues 

having low contrast can be discriminated according to their texture information. If 

the textures of 2 large regions are not similar, the merging is not allowed even if the 

intensity similarity criterion is satisfied. 

  The texture feature defined before is very sensitive to noise and other 

properties of the image like the intensity levels, the sharpness, etc. Therefore, the 

texture features of all large regions are first standardized to reduce the bias of 

additive noise in the image. Then these standardized features are eligible for testing 

texture similarity. The test is similar to the statistical hypothesis test for the 

comparison of the variances of two different distributions. The texture similarity 

test, texture feature standardization, the initialization and update of the texture 

similarity threshold “TH_thres” is explained in the following parts.  

Texture Similarity Test 

 The texture feature TH is discussed to be a measure of standard deviation of 

the magnitude of gaps in a large region. Thus TH2 can be used as the variance of 

magnitude of gaps. It is expected that tissues with similar texture should have 

similar TH2, vice versa. In a brain image, some regions are quite homogeneous for 

conventional MR image resolutions. However, some tissues are quite heterogeneous 

at these resolutions. This heterogeneity may be regarded as an additive noise on the 

image but in fact it is a component of the anatomy, which should be regarded as a 

part of the image to be acquired.  The heterogeneity of tissues lie in a spectrum, 

where the spectrum is affected by the resolution of image, sharpness, additive noise, 

selection of scan parameters and any preprocessing if performed. 
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 TH2 is a measure of the variance of a gap distribution, therefore variance 

equality hypothesis seems a reasonable candidate for testing texture heterogeneity 

similarity. When 2 large regions try to merge, first the thres_2 is used to test their 

intensity similarity. Then the F statistics which corresponds to the ratio of the larger 

TH2 to the smaller TH2 is calculated to obtain a measure of texture similarity as in 

(3.28). 
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In the statistical test, the table F statistics with the present degrees of freedom 

and significance level are found. Then the decision is made by comparing the test F 

statistics to the compared F statistics.  

In the current problem, the TH2 values are inevitably corrupted to a certain 

level due to a bias due to the artifacts, noise and other properties of the scan. 

Therefore, it is a rough measure of tissue heterogeneity. High number of gaps does 

not increase the reliability of the feature after a certain level because the feature is 

already corrupted. In this case, the statistical testing same with the F value does not 

seem appropriate. The calculated F statistics itself represents the amount of texture 

similarity. 

  The F statistics is compared with a threshold denoted by “TH_thres”, which 

is valid for all tests in the same epoch. It is assumed the textures of regions are 

similar if F is lower than thres_var. 

Texture Feature Standardization 

 The texture feature is standardization is necessary for the robustness of the 

algorithm especially to various levels of additive noise and sharpness. If a region is 

considered in an image, the measured variance of the intensities in the image can be 

modeled as in (3.29). This modeling assumes that the noise and the variability in the 

image are uncorrelated. The calculated variance is the sum of variances of the noise 

and real variability in the region.  
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 When the noise level changes, the calculated variance of the region also 

changes. In the current problem, no information regarding the noise is present. Only 

the TH values of the large regions are known. It is sufficient to standardize these TH 

values among themselves because their ratios are important. In statistics, a constraint 

for performing some hypothesis tests is the homogeneity of variances among groups. 

The homogeneity of variance states the levels of variance of distributions should be 

similar. For the distributions which can be accepted to have sufficient number of 

samples (about 25-30), the F statistics is around 2 for the 0.05 significance level. 

This fact is also stated in [48] as a rule of thumb for determining the homogeneity of 

variance.  

 This rule can be utilized to make a standardization of texture features of 

large regions. A histogram from the TH2 values of regions weighted with their 

volume is constructed. It is assumed that the ratio of the median to the minimum of 

this histogram should be adjusted to 2. With this strategy, the difference between the 

middle and the bottom of the texture heterogeneity feature is set to be in the border 

of significant difference. 

 A sample histogram is shown in Figure 3.10. The bottom and median values 

are observed. The TH features of all large regions are standardized as in (3.30) and 

(3.31). 

)2( 22
bottommedianadd THTHTH ×−=   (3.30) 
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22

tan    (3.31) 

 After this standardization, the ratio of the middle and the bottom TH2 is set 

to 2. In the current example TH2
median=192.07, TH2

bottom= 134.50 and THadd=-76.91. 

It can be considered that the effect of noise is removed. This removal enables the 

texture features to spread to the texture spectrum more uniformly, allowing for 

discrimination between the textures of regions. 
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This update is repeated at the beginning of each epoch after the critical point. 

Ideally, this standardization is totally robust to additive noise. 

 

Figure 3.10 Texture spectrum of large regions.  

TH_thres Initialization 

 The initial default value for TH_thres is set to 1.5, which is a quite restrictive 

at the beginning to reduce inappropriate merges. 

The Update of TH_thres 

 If TH_thres is very restrictive, even the merges between the same tissues 

may be prevented. TH_thres is accordingly increased with a scalar multiplier 

coefficient if it is very restrictive. To measure the restrictiveness of TH_thres, the 

success of texture similarity tests are used similar to the success of thres_2. The ratio 

of success in texture tests are defined in (3.32). 
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than a threshold, the TH_thres should be increased to allow more merges. This ratio 

is selected as 25%. If the tissues in the brain are divided roughly to 2 according to 

their texture, this ratio should be lower than 50% in general. A threshold of 25% 

seems appropriate as a safe threshold for the problem. The updates are conducted 

with 5% increases when necessary, which is an increment that makes TH_thres 

about 2 at the end of 10 updates. Maximum allowable value of TH is set to 2. The 

update rule is stated in (3.33). 
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  If the total number of texture similarity test are smaller than 5, the reciprocal 

of 25%, no update is performed because it may not be right to decide an update with 

low number trials and insufficient statistics. Also inappropriate merges can be 

observed when the TH_thres is increased a lot. 

3.4.5.3 The merging process 

 When one region tries to perform region merging with its neighbors, there 

may be more than legal 1 merge candidate. In this case, the most appropriate merge 

should be determined.  A measure of cost “Cost_merge” is calculated for each legal 

merge. The Cost_merge is determined by the degree of intensity similarity of the 2 

regions. Cost_merge for a candidate merge is equal to the ratio of the intensity 

difference of 2 regions to the threshold which governs the merging, either thres_1 or 

thres_2. Therefore, costs of all legal candidate merges are normalized to 1. 

 After the costs are calculated for each possible merge, the one with the 

lowest cost is performed. Since thres_1 is more flexible than thres_2, the merges 

containing small regions are encouraged. After the merging is decided, the necessary 

updates listed below should be performed: 

• The mean intensities of regions are weighted with their volume to give the 

mean intensity of the resultant region. 
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• The voxels, volume, neighbors and the list containing the intensities of 

neighbor regions are updated. The similar information of the affected 

neighbors is also updated. 

• If 2 large regions merge, the resultant TH2 feature is calculated according the 

volume weighted sum of TH2 of the regions. This is a rough assumption. At 

the end of the epoch, the exact value of TH2 is calculated. 

• If 1 of the 2 regions is a large region, the TH2 of the large region is the 

feature of the new region. If the volume of the resulting of region exceeds 

the volume of the large region at the last update by 10%, the exact TH2 is 

calculated at the end of the epoch. If not, texture feature is kept as the feature 

of the large region. 

• If one of the regions is small and the other is intermediate, it is checked 

whether the number of gaps can exceed the threshold for texture calculation. 

Each new voxel can increase the number of gaps up to 3 so the number of 

maximum gaps that can be present in the region is calculated. The number of 

gaps and voxels of the intermediate region in the last texture calculation is 

used. If this number is below the threshold number of gaps, texture 

calculation is not performed. If there is a chance of satisfying the threshold, 

texture is searched at the end of the epoch and the regions become a large 

region if it exactly satisfies the criterion. 

• The success history of regions is updated. This information is used to update 

the activation probabilities at the end of each epoch. 

3.4.6 Termination Conditions 

 At the end of the algorithm, it is desired that the regions of the same tissue 

are merged as much as possible while the merges of regions from different tissues 

are prevented as much as possible. Therefore, 2 criteria are defined to finalize the 

region merging process. These are listed as follows: 

1. A minimum number of large regions are left in the segmentation. This is a 

parameter denoted by “n_region” and set as 10 in the default 
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implementation. The number of large regions should reach 150% of the 

threshold (15) once so that this rule is active. This is a precaution for the 

cases where the number of large regions is about 10 or lower than 10 when 

the critical point is reached. If the number of large regions cannot reach 

150% of the threshold, this rule becomes active when thres_2 reaches to its 

limit. 

2. After thres_2 has reached to its limit, a predefined maximum number of 

epochs is allowed to proceed before the algorithm terminates. This number 

of epochs is also equal to the number of epochs which allow at least one 

activation for any region, 5 in the current implementation derived from the 

basal probability. 

These 2 conditions are checked at the end of each epoch after the critical 

point. If one of the conditions are satisfied, the algorithm is terminated. 

3.5 Reduction of Segmentation to Three Tissues 

 When the region merging process is terminated, the image contains a 

predefined number of large regions, 10 in the default implementation. However, the 

desired segmentation is composed of 3 tissues. 

 In most unsupervised brain segmentation algorithms, the brain histogram is 

assumed to be summation of distribution of 3 tissues. Most of the variability within 

a tissue is assumed to be due to the anatomy of the tissues. However, PVE and other 

image artifacts are the most prominent factors creating within tissue variability. For 

example, most sub-cortical GM structures have a different tissue composition 

compared to cortical GM, due to significant WM diffused homogeneously or 

heterogeneously within GM. This is the main cause of difference among different 

anatomic structures categorized as GM. In the sub-cortical region, the bias field is 

less effective so the intrinsic tissue intensities should be quite similar among 

different positions in the sub-cortical region. Therefore, the intrinsic mean values of 

the tissues are estimated first in the current approach. The intrinsic intensity term is 
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used to refer to the mean of the tissues which is composed of only one of the 3 tissue 

types.  

In the PVE voxel modeling, the voxels are expected to have intensities 

weighted with the volume ratios and intrinsic intensities of the tissues composing the 

tissues. Therefore, the aim is to classify the regions to the tissues whose intrinsic 

intensity is closest to the intensity of the region. 

The estimation of intrinsic tissue intensities is explained first. Then the 

determination of thresholds and the finalization of segmentation are presented. 

3.5.1 Estimation of Intrinsic Tissue Intensity 

 In a typical T1 or T2 weighted brain image, the intensity levels of tissues are 

in an order. For a T1 image, WM has a higher intensity level than GM and GM has a 

higher intensity level than CSF even when the contrast is poor. 

 The tissues of the anatomic structures in the sub-cortical region consist of 

homogeneous parts and heterogeneous parts. The interior parts of lateral ventricles 

are expected to be a quite homogeneous part of CSF tissue. WM in the superior parts 

of sub-cortical regions surrounding the superiors parts of lateral ventricles are 

expected to be quite homogenous, composed of only WM tissue. The presence of 

such homogeneous regions can be useful during the calculation of intrinsic tissue 

intensities. 

 To implement this idea, first the histogram of the image formed by the region 

merging process is constructed. To prevent the increase in region number due to 

small regions, only the intermediate regions which have a volume ratio above 0.1% 

of all sub-cortical volume is filtered from the histogram.   

 The filtered histogram is divided into 3 tissues with 2 candidate thresholds. 

With the constraint that each tissue should have at least one region, all possible 

threshold combinations are listed. If 15 regions are present in the filtered histogram, 

the total number of combinations is 13x12/2=78. For each combination, the intrinsic 
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tissue characteristic of each tissue is estimated. The intensity of each region of a 

tissue is smoothed with Gaussian windows. This step aims to reduce the effect of 

accumulation of intensities into a single value. In a discrete histogram as in Fig 3.11, 

the median may not be so sensitive to the volumetric distribution of other regions of 

the same tissue. The standard deviation of this Gaussian kernel is as in (3.34). This 

standard deviation is derived from the threshold limit, which governs the merging. 

With this implementation, expected 95% of the voxels in a region are within the 

threshold limit neighborhood of the mean, which is a reasonable assumption. Then 

all intensities of that tissue are collected in a separate distribution. Then for the 

middle tissue, the median value is selected as the intrinsic tissue. For the tissues with 

lowest and highest intensities, it is assumed that approximately half of the tissue 

may be affected from PVE. Therefore, the remaining half is assumed to be 

homogeneous part of the tissue. The median of the homogeneous part of the tissue is 

assumed to be the intrinsic intensity of the tissue. Therefore, for the tissue with 

lowest intensity, 25th percentile is set as the intrinsic intensity whereas 75th 

percentile is selected as the intrinsic intensity of the tissue with highest intensity. 

The assumption that half of the tissues are affected by PVE may not be so realistic 

because of the changes in scanning and inter-subject variations. But the intensity 

values are expected to be quite robust because slight changes in the percentage of 

the percentile are not expected to change the calculated tissue intensity dramatically. 

For instance, if 30% of the tissue with lowest intensity is affected from PVE, 35th 

percentile is expected to give the intrinsic tissue intensity. However, the 25th and 35th 

percentile is not expected to be so different because it probably lies in a dense region 

in the histogram. 

2/lim_1ker itthresnel =σ   (3.34) 

 The median of the collection of the smoothed intensities is accepted as the 

intrinsic intensity of the middle tissue. Median is selected as the measure because it 

seems a more robust estimator than mean. There are parts of the middle tissue which 

affected by the PVE with both tissues. The median likely corresponds to the parts 

where the tissue is homogeneous.  
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 After all the intrinsic intensities are available, the squared error for that 

threshold combination is calculated as in (3.35). The threshold combination which 

gives the minimum error is selected as the optimal one. This type of error may not 

be reliable if the number of regions in the filtered histogram is high. In that case, it is 

expected that the middle mean is placed on the average of the low and high intrinsic 

tissue intensities to minimize error. However, a small number of regions is present 

in our histogram, therefore the estimation is quite reliable.  

∑
∈

−×=

filti HR

ii RTissueIRIRVolerror
2))(()(()(   (3.35) 

 A sample filtered histogram and calculated optimal tissue intrinsic intensities 

are shown in Figure 3.11.  

 

Figure 3.11 The filtered histogram of sub-cortical region for a T1 weighted 

image. The means of CSF, GM and WM are 22.7, 71.5 and 109.4. The CSF-GM and 

GM-WM thresholds are calculated as 47.1 and 90.5 accordingly. 

3.5.2 Finalization of Segmentation  

After the optimal intrinsic tissue intensities are calculated, the 2 thresholds 

are determined. They are calculated as in (3.36), (3.37), (3.38) and (3.40). 

)1()()( 21221121 −−−
−×+×= RatTissueIRatTissueIThreshold  (3.36)  

0 20 40 60 80 100 120
0

1

2

3

4

5

6
x 10

4

Intensity

#
 o

f 
v
o
x
e
ls



67 

 

)1()()( 32332232 −−−
−×+×= RatTissueIRatTissueIThreshold  (3.37) 

5.021 =
−

Rat         (3.38) 

5.032 =
−

Rat         (3.39) 

 The thresholds are set as midway intensities of tissues. This strategy comes 

from the following model. It is assumed that the intensity levels of regions are 

mostly determined by the volumetric ratios of tissues forming it and the effect of 

smoothing on the boundaries between tissues. This modeling is formulated in (3.40). 

SmoothingTissueITissueratioVolRI
n

nni +×= ∑
=

))()(_()(
3

1

  (3.40) 

 The effect of smoothing is decreased by the ignorance of border voxels but it 

can still have a bias. It is not possible to estimate the exact effect of smoothing on 

the intensity of a region. Therefore, it is neglected. The region is assigned to the 

closest tissue in terms of intensity. The 2 ratios defined in (3.38) and (3.39) can be 

changed to regulate the final classification. This procedure is very simple and does 

not require the reoperation of the whole algorithm. This final segmentation can be 

performed in a very negligible time, about few seconds. This type of regulation may 

be important when thin structures which can be affected significantly by smoothing 

and PVE is tried to be enhanced. 
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CHAPTER 4 

 

RESULTS 

 

 In this chapter, the performance of the proposed EHRM algorithm on 

simulated and real MR brain images are presented. The performance is compared 

with the FSL FAST algorithm[1], which is currently one of the most widely used 

segmentation algorithms. FAST models the segmentation as a Hidden Markov 

Random Field Model with the utilization of Expectation Maximization algorithm for 

the estimation of tissue class parameters. Further information about FAST algorithm 

is available in the section 2.3. The comparison is performed with some of widely 

known performance measures like Jaccard Index [50] and Detection Ratio.   

 First, the operation stages of the algorithm are presented with the results of a 

sample brain image. Then the performance of the algorithm on 3 different datasets 

are given and discussed. 

4.1 Operation Stages of the Algorithm 

 The operation of the algorithm with the default parameters for a sample brain 

is explained in this section.  

 The sub-cortical region of the brain is first determined by the linear 

registration of the template brain to the new brain. The transformation of the 

predefined sub-cortical region with the same linear registration parameters 

corresponds to the sub-cortical region of the new area. An axial slice chosen 
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approximately mid-way through the sub-cortical region in the inferior-to-superior 

direction is shown in Figure 4.1. 

 

Figure 4.1 An axial slice from sub-cortical region. 

 The initial threshold is determined from the histogram containing minimum 

pairwise differences among neighboring voxels. The histogram is plotted in Figure 

4.2. The initial threshold, 75th percentile of the histogram is calculated as 3. 

 

Figure 4.2 Histogram of minimum intensity differences between neighboring voxels.  
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The threshold limits are also determined at the beginning, extracted from the 

intensity histogram of the sub-cortical region. The histogram is shown in Figure 4.3. 

The 16.67th, 50th an 83.33th percentiles are calculated as 60, 86 and 106 respectively. 

Then the threshold limit is determined as 10 ((106-86)/2).  

 

Figure 4.3 Histogram of sub-cortical region. 

 When the algorithm reaches to the critical point, it is expected that the 

regions achieve a certain level of maturity. The image at the critical point is 

displayed in Figure 4.4. It is seen that there are significant regions representing the 

major parts of anatomic structures. At the critical point, there are generally about 40-

60 intermediate regions in the image.  

 

Figure 4.4 Image at the critical point. 
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 After the critical point, the large regions are determined. Their texture 

heterogeneity features are calculated and standardized. The texture heterogeneity 

map of the image is displayed on Figure 4.5. The voxels which do not belong to a 

large region are represented with black color. It is easily seen that the regions which 

are adjacent to strong boundaries tend to have higher heterogeneity values. This 

observation is mainly due to the smoothing and PVE in the image. Although the 

boundary voxels of a region are excluded from the texture analysis, the smoothed 

effects of strong boundaries can be observed also in interior voxels of the image near 

to the boundary. Such smoothing deviates the intensity of effected interior voxels 

and is perceived as texture heterogeneity.  

 

Figure 4.5 Texture map at the critical point. 

When visually inspected, it is observed that the smoothing effect mostly 

diminishes after 2 layers of voxels. But the removal of 2 layers from the surface of 

regions does not seem feasible because it would roughly lead to a 4 layer of decrease 

in the tissue thickness in texture analysis. The anatomy of the sub-cortical region is 

quite complex and sub-cortical structures are not thick enough to allow for reliable 

extraction of texture features after removal of 2 layers. For a conventional scan with 
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1x1x1mm resolution, it may be very hard to achieve a certain number of voxels and 

gaps to derive a reliable texture feature. 

It should be noted that the texture features may not be reliable in many cases 

and may not contribute much to the region merging process. However, this is not a 

great risk because texture is used only as a second criterion for the region merging. 

If texture criterion is excluded, the intensity similarity would be the only 

determinant. The texture may only be preventive, rather than facilitative, denying 

some merges between large regions.   

At the end of the region merging process, the image in Figure 4.6 is 

obtained. It is observed that the image is quantized to intensity levels quite 

successfully. Some weak boundaries can also be detected and preserved. The related 

texture map is given in Figure 4.7.   

 

Figure 4.6 Regions at the end of region merging. 
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Figure 4.7 Texture map at the end of region merging. 

The image in Figure 4.6 should be reduced to 3 classes according to its 

histogram. First, the intrinsic tissue intensity means are calculated from the 

histogram in Figure 4.8. The estimated tissue means for CSF, GM and WM are 22.7, 

71.5 and 109.4 respectively. In the default operation, the 2 thresholds for final 

segmentation are selected as the averages of the related tissue means. The CSF-GM 

and GM-WM thresholds are calculated as 47.1 and 90.5 respectively. 

 

Figure 4.8 Histogram at the end of region merging. 
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The final results of segmentation are displayed in Figure 4.9 together with 

the raw image, FAST segmentation and the reference segmentation which is 

accepted as the gold standard. Slight improvements in putamen and thalamus can be 

observed.  

The segmentation of CSF is not problematic due to the sufficient contrast 

most of the time. There may be subtle errors at CSF boundaries due to the 

smoothing and PVE. The PVE effect in the boundaries of lateral ventricles and WM 

are frequently detected as GM because the boundary voxels have intermediate 

intensity.  

 

           (a)          (b) 

 

(c)            (d) 

 Figure 4.9 The results of the segmentation. (a) is the segmented image, (b) is 

the manually segmented image, (c) is the raw image, (d) is the FAST segmentation.  
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 The segmentation of WM is also problematic in certain areas. The first one is 

the internal capsule, which separates the putamen and globus pallidus from the 

thalamus. The boundary of internal capsule with thalamus is very smooth. In 

addition, thalamus also has a gradual intensity decrease from the internal capsule to 

the ventricle due to the spatially changing anatomical characteristics, smoothing 

effect and PVE. Therefore, the boundary between internal capsule and thalamus may 

not be placed to the exact boundary, resulting in underestimation of the thalamus 

frequently. The shape of the boundary may be very complicated which is 

significantly shaped by the noise, due to the insufficient contrast. The boundary 

between the globus pallidus and the internal capsule is a very weak boundary and 

the intensity of globus pallidus is usually closer to the internal capsule rather than 

the putamen. So it is quite impossible to detect the globus pallidus. It usually merges 

to the internal capsule.  The boundary between the putamen and the globus pallidus 

is more evident and enables the detection of the putamen boundary. The boundary of 

putamen with internal capsule is less evident in the posterior parts of putamen which 

increases false segmentations. In terms of texture, internal capsule is more 

heterogeneous than most other WM tissues like corpus callosum. Also the neighbors 

of the internal capsule, especially thalamus and globus pallidus have a 

heterogeneous GM tissue, which is a challenge for the utilization of texture 

heterogeneity in the region merging process.  

 Brain stem region also turns out to be a problematic region for segmentation. 

Brain stem, which is a mixture of WM and GM, is segmented as WM in manual 

segmentations. The tissue is also quite heterogeneous. Therefore, some parts of the 

brain stem are segmented as GM by the proposed algorithm.  

 The most problematic GM structures are the thalamus, putamen and globus 

pallidus. As previously discussed, it is very hard to detect the globus pallidus. On 

the other hand, the major parts of putamen and thalamus are usually segmented quite 

acceptably although the boundaries with the internal capsule are not detected 

precisely.  
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 The cortical GM tissue, insula and caudate have a relatively higher contrast 

with other tissues and they are segmented quite successfully. 

 The performance of the algorithm is investigated and compared with a 

simple quantizer. The image shown in Figure 4.10 is used for testing. 

  

    (a)      (b) 

Figure 4.10 An axial slice from the test image (a) and its histogram (b).  

The EHRM algorithm is operated for this image and the image at Figure 

4.11(b) is obtained at the end of merging, before final reduction to 3. The 

corresponding histogram is in Figure 4.11(d). 7 prominent regions are observed at 

the end of region merging. The quantizer is set to divide the intensity range also to 7. 

The output of the algorithm and the digitizer is displayed with a sample slice and 

histogram of both images in Figure 4.11.  
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   (a)             (b) 

  

           (c)           (d) 

Figure 4.11 Performance of a digitizer and EHRM. (a) is the image of the digitizer, 

(b) is the image at the end of region merging, (c) is the digitizer histogram, (d) is the 

histogram at the end of region merging1. There is also a very small peak at the 

histogram of digitizer about 84 intensity value, which is hard to see. 

It is observed that the digitizer cannot impose connectivity constraint as the 

region merging algorithm. Therefore the boundaries at the image may not be 

smooth. Also the effect of noise can be seen as spots in the middle of regions. A 

simple digitizer can also split an anatomic structure into 2 because of the hard          

_________________________________           
1There exists a very small peak at the histogram of digitizer about 84 intensity value, 

which is hard to see. 
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transition points in the quantization process. This is observed for both internal          

capsules that separate thalamus and putamen. Also the detection of external capsule 

at the right side is handled better with EHRM approach. The connectivity of WM is 

achieved better. Region merging is more adaptive and is more likely to form 

coherent representations of anatomical structures and smoother boundaries. It is 

expected to be more robust to noise and bias field in comparison to a simple 

intensity quantization process.   

 Both images are reduced to 3 classes with the proposed approach. The 

segmentations are displayed in Figure 4.12. It is observed the WM structures are 

detected much better by the EHRM approach. The internal capsules and right 

external capsule are detected much more accurately. The superior performance of 

region merging compared to simple quantization can also be seen in the quantitative 

measures. The Jaccard Index (JI), defined in (4.1), for WM is 0.417 in digitization 

and 0.519 for EHRM. The reason for this is the significant underestimation of WM 

in quantization. The estimated volume for WM is 0.223 in digitization whereas 

EHRM estimates as 0.294, which is still an underestimation but much closer the 

actual volumes of WM. Similar observations are also observed for GM JI and 

volumetric estimations. The segmentation quality of CSF is affected negligibly.  

  

          (a)                  (b) 

Figure 4.12 Final segmentations after quantization (a) and EHRM (b). 
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4.2 Performance Analysis on the Real IBSR Dataset 

 The algorithm is operated on the 18 high resolution T1 weighted brain 

images which have manual segmentations provided by the Center for Morphometric 

Analysis at Massachusetts General Hospital and are available at 

http://www.cma.mgh.harvard.edu/ibsr/. The details of the scan and the manual 

segmentation procedure are available on the stated website. Same images are also 

segmented with the FSL FAST algorithm for comparison. Before operating FAST, 

brain extraction is performed using the FSL BET [49] tool. The extractions are 

visually optimized with the modulation of f and g parameters of the BET algorithm. 

Another algorithm, a simple k-means algorithm which incorporates coordinates to 

the segmentation, is also implemented and operated on the same images. The details 

of this k-means algorithm, which is abbreviated as SK, is given in Appendix C. The 

purpose of implementing SK is to compare the performance of EHRM with a known 

simple approach which can be quite successful for many segmentation problems.  

 The performance of the algorithms are compared in terms of Jaccard 

Index(JI) [50] for individual tissues and the success of volumetric ratio estimation; 

caudate, thalamus and putamen detection ratio. Also the robustness of EHRM for the 

2 major parameters is discussed. 

4.2.1 GM Analysis 

 Jaccard Index(JI) [50], also known as Jaccard Similarity Coefficient, is a 

popular measure for the segmentation quality assessment. It is defined by the ratio of 

number of elements in the intersection set to the number of elements in the union set 

of 2 sets. It is formulated as in (4.1). In the formula, the segmentation result of an 

algorithm is taken as the first set A and the second set B is the manually segmented 

image. In case of a large overlap, the Jaccard index appoaches to 1, and in case of a 

large mismatch, JI approaches 0. This metric turns out to be somewhat problematic 

for the IBSR dataset, because the provided manual segmentations can include some 

anatomical details which are not apparent from the raw image intensities. Some 

parts, which do not have GM intensity appearance, is labeled as a part of GM at 
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manual segmentations because GM structures are expected as such locations. 

Therefore, this property of manual segmentations produces a bias in JI metrics. 

BA

BA
JI

∪

∩
=    (4.1) 

 The JI for GM tissue segmentation with EHRM is calculated and compared 

with the FSL FAST [1] and SK algorithm. The volumetric ratio of GM in total sub-

cortical area of the EHRM, FAST, SK and the manual segmentations are also 

presented. The results for GM tissue are in Table 4.1.  

Table 4.1 JI for and Volumetric Ratios for GM. 

Subject 
No 

EHRM 
GM 

Volume 

EHRM 
GM JI 

FAST 
GM 

Volume 

FAST 
GM JI 

SK     
GM 

Volume 

SK     
GM JI 

GM 
Volume 

1 0.535 0.566 0.295 0.484 0.376 0.532 0.438 

2 0.484 0.593 0.304 0.517 0.370 0.531 0.378 

3 0.502 0.660 0.333 0.531 0.477 0.609 0.478 

4 0.587 0.622 0.348 0.548 0.577 0.555 0.485 

5 0.384 0.505 0.286 0.453 0.353 0.471 0.413 

6 0.439 0.577 0.280 0.467 0.357 0.466 0.395 

7 0.399 0.533 0.321 0.490 0.347 0.512 0.389 

8 0.498 0.523 0.324 0.539 0.383 0.549 0.378 

9 0.371 0.540 0.272 0.481 0.264 0.461 0.331 

10 0.323 0.517 0.269 0.504 0.289 0.477 0.326 

11 0.402 0.578 0.336 0.540 0.283 0.526 0.377 

12 0.438 0.599 0.331 0.552 0.411 0.556 0.399 

13 0.507 0.611 0.354 0.545 0.462 0.581 0.523 

14 0.438 0.624 0.360 0.596 0.464 0.616 0.464 
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Table 4.1 (Continued) 

15 0.653 0.569 0.354 0.540 0.404 0.394 0.497 

16 0.658 0.680 0.312 0.495 0.457 0.575 0.497 

17 0.517 0.660 0.319 0.511 0.395 0.518 0.506 

18 0.460 0.565 0.304 0.476 0.473 0.575 0.486 

Mean 0.477 0.585 0.317 0.515 0.397 0.528 0.431 

Std. 
Dev. 

 0.051  0.037 

  

0.057  

 

 The JI of GM tissue for EHRM is 7.0% better than the JI of FAST algorithm 

and this difference is statistically significant (p<0.00001). The volumetric ratio 

estimation of EHRM for GM is also superior to the performance of FAST algorithm 

at 5% confidence interval (p=0.002). It is observed that EHRM is more successful 

for the detection of GM tissue and the volumetric estimation. EHRM slightly 

overestimates the GM whereas FAST underestimates GM significantly. 

 EHRM is also superior to SK in terms of GM JI with 5.7%. Their volumetric 

estimation performance is similar. EHRM slightly overestimates GM whereas SK 

slightly underestimates. 

4.2.2 Detection of Caudate, Putamen and Thalamus 

 The performance of the algorithm on the detection of caudate, putamen and 

thalamus structures is calculated. The calculated metric is the ratio of segmented 

GM volume in the structure to whole structure volume. The results are tabulated in 

Table 4.2. The detection ratio (DR) for a structure S can be expressed as in (4.2). 

S

STissueS
SDR

)(
)(

∩
=   (4.2) 
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Table 4.2 Detection Ratios (DR) for Caudate (CA), Putamen (PU) and Thalamus 

(TH). 

Subject 
No 

EHRM 
DR 
CA 

FAST 
DR 
CA 

SK 
DR 
CA 

EHRM 
DR 
PU 

FAST 
DR   
PU 

SK 
DR 
PU 

EHRM 
DR 
TH 

FAST 
DR 
TH 

SK 
DR 
TH 

1 0.958 0.765 0.835 0.945 0.101 0.279 0.837 0.403 0.623 

2 0.972 0.864 0.836 0.845 0.324 0.633 0.873 0.503 0.560 

3 0.965 0.879 0.915 0.858 0.446 0.837 0.743 0.459 0.665 

4 0.981 0.826 0.952 0.978 0.646 0.908 0.863 0.412 0.761 

5 0.843 0.826 0.835 0.259 0.047 0.062 0.555 0.378 0.633 

6 0.961 0.902 0.868 0.790 0.153 0.083 0.655 0.374 0.688 

7 0.964 0.942 0.898 0.896 0.683 0.608 0.587 0.435 0.468 

8 0.985 0.930 0.903 0.978 0.808 0.835 0.835 0.445 0.538 

9 0.973 0.932 0.924 0.799 0.441 0.145 0.598 0.367 0.373 

10 0.946 0.923 0.911 0.616 0.607 0.502 0.437 0.316 0.353 

11 0.973 0.915 0.766 0.808 0.750 0.517 0.717 0.652 0.493 

12 0.931 0.841 0.579 0.855 0.457 0.445 0.668 0.437 0.729 

13 0.972 0.871 0.904 0.936 0.607 0.817 0.681 0.479 0.631 

14 0.928 0.885 0.928 0.754 0.617 0.743 0.592 0.554 0.754 

15 0.971 0.914 0.651 1.000 0.429 0.732 0.964 0.456 0.440 

16 0.975 0.809 0.778 0.994 0.385 0.790 0.887 0.303 0.687 

17 0.941 0.729 0.530 0.729 0.281 0.432 0.649 0.388 0.372 

18 0.824 0.713 0.840 0.569 0.324 0.744 0.418 0.310 0.674 

Mean 0.948 0.859 0.825 0.812 0.450 0.562 0.698 0.426 0.580 

Std. 
Dev. 0.045 0.070 0.123 0.185 0.220 0.272 0.155 0.088 0.135 
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 Although the average detection ratios for all these 3 sub-cortical GM 

structures are higher for EHRM algorithm, we would like to note the dramatic gain 

obtained by using EHRM for putamen and caudate. The results show that on the 

average, the EHRM is superior than FAST about 36.2% for putamen detection 

(p<0.00001) and 27.2% better for thalamus detection (p<0.00001).  For caudate 

structure, the detection ratio is approximately 8.9% better than FAST 

algorithm(p<0.00001).   

 Although SK seems more successful than FAST in average DR values of 3 

structures, EHRM is still superior to SK in terms of DR in all 3 structures.  

4.2.3 CSF and WM Analysis 

The JI for CSF and WM tissues are calculated and compared with the FSL 

FAST and SK algorithms. The results for CSF are presented in Table 4.3. The 

volumetric ratio of CSF in total sub-cortical area of the EHRM, FAST, SK and the 

manual segmentations are presented below. 

Table 4.3 JI for and Volumetric Ratios for CSF. 

Subject 
No 

EHRM 
CSF 

Volume 

EHRM 
CSF JI 

FAST 
CSF 

Volume 

FAST 
CSF JI 

SK     
CSF 

Volume 

SK     
CSF JI 

CSF 
Volume 

1 0.156 0.606 0.162 0.625 0.118 0.660 0.108 

2 0.083 0.690 0.109 0.660 0.088 0.683 0.080 

3 0.049 0.551 0.084 0.511 0.066 0.507 0.051 

4 0.112 0.578 0.129 0.593 0.118 0.547 0.089 

5 0.084 0.627 0.124 0.676 0.099 0.666 0.102 

6 0.125 0.707 0.176 0.786 0.132 0.686 0.165 

7 0.118 0.655 0.150 0.596 0.119 0.677 0.099 

8 0.209 0.740 0.241 0.721 0.193 0.752 0.190 

9 0.106 0.781 0.134 0.765 0.102 0.758 0.114 

 



84 

 

Table 4.3 (Continued) 

10 0.191 0.832 0.228 0.857 0.206 0.858 0.214 

11 0.091 0.707 0.133 0.605 0.089 0.703 0.090 

12 0.118 0.667 0.158 0.639 0.119 0.683 0.121 

13 0.173 0.574 0.196 0.593 0.170 0.567 0.128 

14 0.109 0.696 0.149 0.663 0.116 0.649 0.109 

15 0.147 0.398 0.115 0.530 0.206 0.252 0.080 

16 0.068 0.605 0.092 0.633 0.135 0.374 0.074 

17 0.112 0.706 0.170 0.692 0.106 0.662 0.131 

18 0.090 0.622 0.167 0.688 0.147 0.622 0.130 

Mean 0.119 0.652 0.151 0.657 0.129 0.628 0.115 

Std. 
Dev. 

 0.097  0.087 

  

0.141  

 

 The average JI for EHRM is slightly lower for than the FAST for CSF tissue. 

A 2 tailed paired t test is conducted and this difference is found not to be significant 

for 5% confidence level (p=0.7013).  

 If the volumetric ratio estimation of EHRM and FAST is compared, the 

performance of EHRM is superior to FAST (p=0.0131). The errors of the algorithms 

for volumetric estimation are taken as the ratio of volume error to the whole sub-

cortical volume while conducting the statistical test. However, it should also be 

noted that the CSF is slightly underestimated in the manual segmentations, which 

might have produced some bias towards EHRM in the statistical testing.  

 The JI for CSF is better for EHRM when compared with the SK algorithm. 

The SK algorithm seems to slightly overestimate CSF if the possible errors in the 

manual segmentation are ignored. The EHRM estimates the CSF volume better than 

SK. Similar analysis is shown for WM and the results are shown in Table 4.4.  
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Table 4.4 JI for and Volumetric Ratios for WM. 

Subject 
No 

EHRM 
WM 

Volume 

EHRM 
WM JI 

FAST 
WM 

Volume 

FAST 
WM JI 

SK     
WM 

Volume 

SK     
WM JI 

WM 
Volume 

1 0.309 0.549 0.544 0.647 0.507 0.635 0.454 

2 0.433 0.661 0.587 0.702 0.542 0.671 0.543 

3 0.449 0.681 0.584 0.660 0.457 0.637 0.471 

4 0.301 0.563 0.523 0.652 0.305 0.483 0.426 

5 0.532 0.639 0.590 0.642 0.548 0.610 0.485 

6 0.436 0.668 0.544 0.648 0.511 0.617 0.440 

7 0.483 0.658 0.530 0.677 0.534 0.661 0.512 

8 0.294 0.519 0.435 0.683 0.424 0.650 0.433 

9 0.523 0.703 0.594 0.714 0.634 0.715 0.555 

10 0.486 0.689 0.502 0.689 0.505 0.662 0.460 

11 0.507 0.698 0.530 0.717 0.628 0.718 0.533 

12 0.444 0.690 0.511 0.714 0.469 0.654 0.480 

13 0.321 0.586 0.450 0.615 0.368 0.576 0.349 

14 0.453 0.668 0.491 0.685 0.420 0.645 0.427 

15 0.200 0.456 0.531 0.647 0.390 0.501 0.423 

16 0.274 0.575 0.596 0.614 0.408 0.632 0.429 

17 0.371 0.620 0.512 0.584 0.499 0.553 0.363 

18 0.451 0.594 0.529 0.589 0.380 0.575 0.383 

Mean 0.404 0.623 0.532 0.660 0.474 0.622 0.454 

Std. 
Dev. 

 0.070  0.041 

  

0.064  
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  The WM JI of FAST is statistically superior to EHRM (p=0.0214). The WM 

volumetric ratio estimations of EHRM is slightly better than FAST but is not 

statistically significant (p=0.5909). 

The JI for WM is similar for EHRM and the SK algorithms. The SK 

algorithm seems to slightly overestimate WM but volumetric estimations are closer 

to actual values in average when compared to EHRM algorithm. 

4.2.4 Robustness of EHRM to Initial Parameters 

 The 2 crucial parameters of the algorithm, which are also static (not 

adaptive), are the volumetric ratio threshold for determining intermediate regions 

(vol_rat) and the minimum number of large regions (n_region). A single brain, 

which is the 1st image of IBSR dataset, is operated with several combinations of the 

2 parameters to test robustness against these two parameters. 

 6 different values for vol_rat: 0.0003, 0.0006, 0.001 (default value), 0.0015, 

0.002, 0.003 and 3 different values for n_region: 7, 10(default value), 13 are used to 

operate the algorithm for 18 different parameter combinations.  

4.2.4.1 JI and Volumetric Estimation Analysis 

 The effect of different parameters on JI and volumetric ratios are 

investigated for tissue classes separately. The JI and volumetric ratio of CSF is 

shown in Figure 4.13.  

The parameters do not seem to have a significant effect on the results. A 

significant pattern cannot be observed on the operation of the algorithm. Very subtle 

variations are found, probably due to the stochastic nature of the evolutions. 
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Figure 4.13 Volume and JI for CSF for different parameter combinations. (a) the 

volumetric estimations, (b) JI.  

 Similar analysis is also conducted for GM and WM tissues. The results are 

displayed in Figure 4.14 and 4.15. 

 

Figure 4.14 Volume and JI for GM for different parameter combinations. (a) the 

volumetric estimations, (b) JI. 
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Figure 4.15 Volume and JI for WM for different parameter combinations. (a) the 

volumetric estimations, (b) JI. 

 For n_region 7 and 13, the volumetric ratios for GM and WM do not look 

very stable when the vol_rat parameter is high. This is probably due to the regions 

which have intensity values in the middle of GM and WM intensities. Such regions 

can be segmented differently each time due to the stochastic nature of the algorithm. 

But for medium vol_rat parameters, the JI is quite stable for especially GM. On the 

other hand, n_region parameter does not seem to affect the performance of GM and 

CSF significantly, but the JI for WM is lower for the high n_region value in general. 

The medium n_region and vol_rat parameters seem more stable, therefore the 

default parameters vol_rat=0.001 and n_region=10 seem reasonable. In any case, the 

JI for GM is stable. 
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4.2.4.2 Caudate, Putamen and Thalamus Analysis 

 On another front, the effect of these 2 parameters on the detection of caudate, 

putamen and thalamus are investigated. The results of the analysis are displayed on 

Figures 4.16, 4.17 and 4.18. 

 

Figure 4.16 Detection Ratio of caudate for different parameter combinations. 

 

Figure 4.17 Detection Ratio of putamen for different parameter combinations. 
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Figure 4.18 Detection Ratio of thalamus for different parameter combinations. 

 The detection of caudate is quite stable because it usually has a good contrast 

with WM. However, the detection for putamen and thalamus are sensitive to the 

parameters. The performance is especially more sensitive at higher vol_rat values. 

The default parameters turn out as a good choice. 

4.2.5 Randomness Analysis 
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The random threshold that the determines whether a particular region can be active 

at a certain epoch. Due to these 2 processes, the segmentation results differ when the 
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 It is desired that the outputs of EHRM are quite stable so that a single operation 

of the algorithm is sufficient. EHRM algorithm is operated 10 times with the same 

input image. The variability of the JI and volumetric ratios of tissues are displayed 

in Figures 19 and 20. It is observed that the JI of 3 tissues are quite stable with small 
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which lie near the GM – WM intensity threshold. Such regions are classified 

differently in different cases. Therefore, deviations in volume are observed. 

However, the JI values are more stable because such regions contain voxels of both 

tissues. In any case, they cause similar error on the segmentation, making JI values 

stable. It can be concluded that the stochastic nature of the algorithm is not an 

important issue when the JI values are considered. 

 

Figure 4.19 The randomness of JI for 3 tissues. The error bars show the average and 

standard deviation of JI. 

 

Figure 4.20 The randomness of Volumetric Estimations for 3 tissues. The error bars 

show the average and standard deviation of volumetric estimations. 
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4.3 Performance Analysis on the Real Dataset 

 The algorithm is operated on the 17 high resolution normal T1 weighted 

brain images. The images are taken with Siemens Magnetom Vision MR Device. 

Standard mprage sequence is used and scan settings are flip angle=120, TE=4ms, 

TR=9.7ms. The resolution is 1mm x 1mm x 1mm. No manual segmentation is 

available. Therefore the segmentations produced by the Freesurfer software [2] are 

taken as the gold standard to evaluate the segmentation. The performance of this 

algorithm is shown to be comparable to manual segmentation [2]. All anatomical 

structures are grouped in their tissue types to perform the JI and volumetric analysis. 

Same images are also segmented with the FSL FAST and SK algorithms. Before 

operating FAST, the brain extraction is taken from the Freesurfer software. The 

extractions are visually checked to prevent any possible errors.  

 Similar to the evaluation in IBSR dataset, the performance of two algorithms 

are compared in terms of Jaccard Index (JI) for individual tissues and the success of 

volumetric ratio estimation; caudate, thalamus and putamen detection ratio.  

4.3.1 GM Analysis 

 The JI for GM tissue is calculated and compared with the FSL FAST and SK 

algorithms. The volumetric ratio of CSF in total sub-cortical area of the EHRM, 

FAST, SK and the manual segmentation are also presented. The results for GM 

tissue are in Table 4.5.  

Table 4.5 JI for and Volumetric Ratios for GM. 

Subject 
No 

EHRM 
GM 

Volume 

EHRM 
GM JI 

FAST 
GM 

Volume 

FAST 
GM JI 

SK     
GM 

Volume 

SK     
GM JI 

GM 
Volume 

1 0.498 0.660 0.342 0.590 0.344 0.542 0.441 

2 0.390 0.585 0.305 0.563 0.364 0.497 0.406 

3 0.352 0.567 0.321 0.573 0.436 0.559 0.407 
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Table 4.5 (Continued) 

4 0.479 0.622 0.320 0.556 0.423 0.552 0.415 

5 0.504 0.619 0.338 0.590 0.383 0.520 0.401 

6 0.365 0.601 0.282 0.568 0.360 0.555 0.343 

7 0.368 0.577 0.264 0.504 0.322 0.498 0.363 

8 0.519 0.509 0.244 0.449 0.445 0.449 0.398 

9 0.385 0.607 0.285 0.557 0.301 0.527 0.377 

10 0.361 0.578 0.350 0.600 0.455 0.592 0.415 

11 0.408 0.587 0.302 0.545 0.412 0.574 0.388 

12 0.440 0.655 0.347 0.618 0.368 0.539 0.423 

13 0.385 0.600 0.282 0.508 0.427 0.627 0.415 

14 0.429 0.569 0.336 0.555 0.341 0.466 0.442 

15 0.446 0.607 0.278 0.530 0.397 0.537 0.372 

16 0.391 0.574 0.342 0.582 0.493 0.583 0.424 

17 0.435 0.616 0.276 0.533 0.379 0.540 0.361 

Mean 0.421 0.596 0.307 0.554 0.391 0.539 0.400 

Std. 
Dev. 

 0.035  0.041 

  

0.045  

 

 The JI of GM tissue for EHRM is 4.2% higher than the JI of FAST algorithm 

and this difference is also statistically significant (p<0.001). The volumetric ratio 

estimation of EHRM for GM is also better than the performance of FAST algorithm 

(p<0.0001). It is observed that EHRM is more successful for the detection of GM 

tissue and the volumetric estimation. EHRM slightly overestimates the GM whereas 

FAST underestimates GM significantly. 
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EHRM is also superior to SK in terms of GM JI with 5.7%. Their volumetric 

estimation performance is similar. EHRM slightly overestimates GM whereas SK 

slightly underestimates. 

4.3.2 Detection of Caudate, Putamen and Thalamus 

 The performance of the algorithm on the detection of caudate, putamen and 

thalamus structures is calculated. The detection ratio is calculated as in Table 4.6.  

Table 4.6 Detection Ratios (DR) for Caudate (CA), Putamen (PU) and Thalamus 

(TH). 

Subject 
No 

EHRM 
DR 
CA 

FAST  
DR 
CA 

SK 
DR 
CA 

EHRM 
DR 
PU 

FAST 
DR    
PU 

SK 
DR 
PU 

EHRM 
DR 
TH 

FAST 
DR 
TH 

SK 
DR 
TH 

1 0.945 0.777 0.778 0.791 0.196 0.164 0.645 0.324 0.296 

2 0.901 0.794 0.792 0.365 0.188 0.283 0.401 0.318 0.319 

3 0.837 0.820 0.907 0.364 0.281 0.769 0.259 0.270 0.335 

4 0.947 0.758 0.690 0.733 0.147 0.480 0.625 0.331 0.619 

5 0.949 0.830 0.649 0.915 0.385 0.404 0.677 0.371 0.441 

6 0.924 0.832 0.875 0.638 0.249 0.732 0.455 0.373 0.387 

7 0.915 0.838 0.849 0.617 0.250 0.406 0.544 0.331 0.515 

8 0.942 0.711 0.855 0.742 0.071 0.498 0.599 0.240 0.460 

9 0.895 0.790 0.814 0.547 0.229 0.392 0.536 0.359 0.397 

10 0.698 0.821 0.612 0.233 0.265 0.489 0.305 0.372 0.747 

11 0.843 0.795 0.818 0.633 0.233 0.711 0.490 0.337 0.708 

12 0.891 0.715 0.405 0.486 0.140 0.268 0.504 0.334 0.297 

13 0.876 0.699 0.812 0.493 0.088 0.684 0.414 0.319 0.696 

14 0.817 0.708 0.392 0.348 0.111 0.094 0.314 0.288 0.275 

15 0.956 0.837 0.819 0.854 0.331 0.662 0.708 0.356 0.664 

16 0.717 0.750 0.825 0.301 0.192 0.794 0.338 0.355 0.558 
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Table 4.6 (Continued) 

17 0.938 0.798 0.825 0.757 0.150 0.710 0.723 0.400 0.705 

Mean 0.882 0.781 0.748 0.577 0.206 0.502 0.502 0.334 0.495 

Std. 
Dev. 

0.078 0.049 

 

0.152 0.207 0.085 

 

0.219 0.148 0.040 

 

0.168 

 

Although the average detection ratios for all 3 sub-cortical GM structures are 

higher for EHRM algorithm, there is a dramatic gain introduced for the detection of 

putamen by the use of EHRM. The results indicate that the EHRM is superior than 

FAST about 37.1% in average for putamen detection (p<0.00001). The performance 

of EHRM is also better than FAST in thalamus detection with 16.8% difference in 

average(p<0.001). For caudate structure, the detection ratio is 10.1% better than 

FAST algorithm (p<0.001).    

Although SK seems more successful than FAST in average DR values of 3 

structures, EHRM is still superior to SK in terms of DR in especially caudate and 

putamen. The thalamus performance is similar.  

4.3.3 CSF and WM Analysis 

The JI for CSF and WM tissues are calculated and compared with the FSL 

FAST and SK algorithms. The results for CSF are presented in Table 4.7. The 

volumetric ratio of CSF in total sub-cortical area of the EHRM, FAST, SK and the 

manual segmentation are also presented. 

Table 4.7 JI for and Volumetric Ratios for CSF. 

Subject 
No 

EHRM -
CSF 

Volume 

EHRM-
CSF JI 

FAST - 
CSF 

Volume 

FAST 
- CSF 

JI 

SK     
CSF 

Volume 

SK     
CSF JI 

CSF 
Volume 

1 0.095 0.629 0.110 0.671 0.092 0.577 0.113 

2 0.148 0.732 0.179 0.786 0.156 0.720 0.176 
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Table 4.7 (Continued) 

3 0.052 0.562 0.069 0.624 0.060 0.506 0.074 

4 0.092 0.613 0.100 0.652 0.104 0.563 0.110 

5 0.116 0.702 0.136 0.735 0.114 0.664 0.133 

6 0.079 0.672 0.094 0.720 0.090 0.662 0.096 

7 0.062 0.564 0.083 0.631 0.081 0.569 0.080 

8 0.135 0.714 0.153 0.757 0.130 0.685 0.151 

9 0.084 0.646 0.110 0.705 0.093 0.648 0.101 

10 0.060 0.551 0.080 0.600 0.064 0.472 0.084 

11 0.047 0.541 0.064 0.625 0.092 0.530 0.070 

12 0.083 0.616 0.098 0.672 0.091 0.573 0.110 

13 0.084 0.619 0.108 0.690 0.088 0.598 0.111 

14 0.064 0.489 0.108 0.669 0.106 0.578 0.108 

15 0.091 0.665 0.112 0.698 0.096 0.661 0.098 

16 0.097 0.605 0.137 0.728 0.127 0.654 0.143 

17 0.046 0.518 0.059 0.589 0.099 0.436 0.069 

Mean 0.084 0.614 0.106 0.680 0.099 0.594 0.107 

Std 
Dev. 

 0.070  0.056 

  

0.078  

 

 The average JI for EHRM is lower for than the FAST for CSF tissue with 

6.4%(p<0.00001). Although the difference is statistically strong, the average 

volumetric differences of 2 algorithms are 2.2% of sub-cortical volume, which is not 

very dramatic. The similarity of the models for the Freesurfer software and FAST, 

which both depend on MRF models, may be an important factor for the perfect 

similarity between the Freesurfer and FAST for CSF tissue. Another reason for the 

superior performance of FAST may be due to the smoothness imposed by the MRF 
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model, which helps especially in CSF – WM boundaries. EHRM can segment the 

border which have intermediate intensities as GM, while FAST better handle such 

boundaries with the MRF model. 

 If the volumetric ratio estimation of EHRM and FAST is compared, the 

performance of FAST is superior to EHRM (p<0.0001). The MRF model of FAST 

may be an important reason for the superior performance but in any case the 

volumetric estimation error is 1.75% in average more for EHRM, which is not very 

critical.  

The JI for CSF is better for EHRM when compared with the SK algorithm. 

The SK algorithm seems to slightly underestimate CSF and is more successful than 

EHRM in average. Similar analysis is conducted for WM and the results are 

presented in Table 4.8.  

Table 4.8 JI for and Volumetric Ratios for WM. 

Subject 
No 

EHRM -
WM 

Volume 

EHRM-
WM JI 

FAST – 
WM 

Volume 

FAST - 
WM JI 

SK     
WM 

Volume 

SK     
WM JI 

WM 
Volume 

1 0.407 0.699 0.548 0.712 0.564 0.683 0.446 

2 0.462 0.685 0.516 0.697 0.480 0.615 0.418 

3 0.596 0.723 0.610 0.736 0.504 0.667 0.519 

4 0.429 0.686 0.580 0.714 0.472 0.650 0.475 

5 0.379 0.656 0.526 0.722 0.502 0.645 0.466 

6 0.556 0.770 0.623 0.781 0.550 0.735 0.561 

7 0.570 0.752 0.654 0.744 0.597 0.707 0.557 

8 0.347 0.517 0.602 0.667 0.425 0.521 0.451 

9 0.531 0.751 0.605 0.753 0.606 0.730 0.522 

10 0.579 0.723 0.570 0.741 0.482 0.679 0.500 

11 0.545 0.722 0.633 0.736 0.496 0.688 0.543 
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Table 4.8 (Continued) 

12 0.478 0.744 0.555 0.747 0.541 0.674 0.467 

13 0.530 0.728 0.609 0.695 0.485 0.727 0.474 

14 0.507 0.677 0.556 0.684 0.553 0.609 0.450 

15 0.463 0.714 0.611 0.741 0.507 0.675 0.530 

16 0.512 0.701 0.521 0.703 0.380 0.609 0.433 

17 0.520 0.748 0.665 0.761 0.523 0.721 0.570 

Mean 0.495 0.706 0.587 0.726 0.510 0.667 0.493 

Std 
Dev. 

 0.058  0.030 

  

0.055  

 

The WM JI of FAST is statistically superior to EHRM with 2.0% (p=0.05). 

The WM volumetric ratio estimations of EHRM is quite better than FAST 

(p<0.0001). 

The JI of WM is better for EHRM when compared with SK. The SK 

algorithm seems to slightly overestimate WM and EHRM performs a more 

successful volumetric estimation in average. 

4.4 Robustness to Bias Field and Noise 

 The effect of bias field and the Signal to Noise Ratio (SNR) in MR images 

differ for different scanners, sequences, acquisition parameters, resolution, RF and 

receiver coils. Therefore, robustness to bias field and noise is a crucial property for a 

brain segmentation algorithm. 

 Different bias field distributions and noise levels can be added to MR images 

using simulations. Brainweb database [51] provides such simulations for an 

anatomical image model with different bias field and noise levels [52]-[55]. The 

manual segmentation of the image is also available, which allows the researchers to 
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test the performance of segmentation algorithms for various bias field and noise 

levels. 

 3 levels of bias field and 3 levels of additive Gaussian noise are analyzed. 

EHRM algorithm is operated for the 2 sets of 3 images. In one set, the noise level is 

same and the bias field level is different among images. Similarly in the other set, 

the bias field is same and the noise levels are different. The algorithm is operated 10 

times on a single image and the avarage performances are evaluated. The purpose of 

conducting repeated experiments is to reduce the bias due to the randomness of the 

evolutionary algoritm.  

 The manual segmentation of the images for 3 tissues, rather than specific 

anatomical structures, is available so quantitative analysis is performed for the JI 

and volumetric estimations of these 3 tissues.  

Various bias field and noise levels are represented with percentages. The 

percentage of the bias field represents the percentage of intensity decrease in the 

parts of the image which have the most underestimated intensities compared to 

intensity of the parts which have the most overestimated intensities. For instance, in 

the presence of 20% bias field, a voxel which is represented with an intensity value 

of 800 at the brightest part of an image is represented with 640 intensity in the parts 

which are most affected from the bias field. On the other hand, the percentage of 

noise determines the standard deviation of the additive Gaussian noise. The value of 

standard deviation is determined by calculating the desired percentage of the 

maximum intensity in the noiseless image. In an image where the highest intensity is 

500, 5% noise corresponds to a standard deviation of 25.  

The volumetric estimations and JI of both algorithms for CSF, GM and WM 

tissues are displayed in Figures 4.19, 4.20 and 4.21 respectively. When various noise 

levels are analyzed, the bias field level is set to 20%. When various bias fields are 

analyzed, the noise level is set to 3%. The volumes of tissues are represented with 

the ratio of tissue volumes to the volume of whole sub-cortical region. The error 

plots show the average and standard deviation of the JI and volumetric estimations. 
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It is observed the volumetric estimations of CSF are quite insensitive to noise 

and bias field. The JI of CSF decreases with increasing noise and bias field as 

expected but the reduction of performance does not seem so dramatic. 

 

 

Figure 4.19 JI and Volumetric estimation for CSF at different bias field and noise 

levels. (a) and (b) are JI and volumetric estimations for various noise levels. (c) and 

(d) JI and volumetric estimations for various bias field levels. 
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Figure 4.20 JI and Volumetric estimation for GM at different bias field and noise 

levels. (a) and (b) are JI and volumetric estimations for various noise levels. (c) and 

(d) JI and volumetric estimations for various bias field levels. 

It is observed the volumetric estimations of GM are quite insensitive to noise 

and bias field. Although there are some changes, these small changes does not seem 

significant when the error plots are considered. The JI of GM decreases with 

increasing noise and bias field as expected but the reduction of performance is not 

extreme. 
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Figure 4.21 JI and Volumetric estimation for WM at different bias field and noise 

levels. (a) and (b) are JI and volumetric estimations for various noise levels. (c) and 

(d) JI and volumetric estimations for various bias field levels. 

It is observed the volumetric estimations of WM seem insensitive to bias 

field and slightly sensitive to noise. Although there are some changes, these small 

changes does not seem significant when the error plots are considered. The JI of 

WM decreases slightly with increasing noise and bias field as expected but the 

changes are not so dramatic.  

 The JI values show that the bias field does not have a strong affect on JI. It is 

seen that bias field is not a serious problem for EHRM even if no bias field removal 

is performed. This is expected because the sub-cortical region is a small part of the 

brain, which limits the amount of bias field variation from one location of sub-

cortical region to another location. However, noise seems to be a more serious 

problem compared to bias field. The JI values decrease with increasing noise but the 

changes are not so dramatic. In any case, the volumetric estimations are not affected 

much from bias field and noise. The estimations are quite robust.  
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 The behavior of EHRM to various noise and bias field conditions is 

investigated with repeated experiments. It seems that the performance of EHRM is 

not significantly affected by various bias field and SNR. 

4.5 Complexity Analysis of EHRM 

 Our algorithm operates by the region merging operations conducted between 

regions. At the beginning of the algorithm, each voxel is a region. Regardless of the 

image resolution, each voxel, except the border voxels in the image, has 6 

neighbors. Therefore, the number of region merging trials and the number of 

successful region merges are linearly proportional to the number of voxels in the 

image (O(n)). As epochs advance, the regions get larger, the number of regions 

decreases but the average number of neighbors for a region increases. The number 

of decrease in regions is faster than the increase of average neighbor number so the 

total number of trials in an epoch tends to decrease as epochs advance. The cost of 

each region merging trial is the same regardless of the sizes of the regions if the 

effect of texture feature is neglected, which is incorporated for a small number of 

trials which can be neglected in total trials. Although the cost of necessary updates 

after a single merge increases as epochs advance, the number of total merges in a 

single epoch decrease with a faster rate. Therefore, the computational complexity of 

epochs decreases with increasing iterations.  In this case, the complexity of the first 

epoch, which has the highest number of trials and region merges, determines the 

complexity of the entire approach. Theoretically, the complexity of the algorithm is 

directly proportional to the number of voxels in the image (O(n), n is the number of 

voxels). Since the algorithm operates only on the extracted sub-cortical box, n << M, 

where n depicts the number of voxels within this sub-cortical box, and M depicts the 

number of voxels within the entire image.    

 The operation time of EHRM takes about 30 minutes in the MATLAB [56] 

implementation for a conventional resolution of 1mm cubic voxels. Observations on 

images with different resolutions demonstrated that the computation time is roughly 

linear with the total number of voxels, as expected from the complexity analysis. 
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The algorithms are operated on an ordinary netbook having a 1 GB of RAM and a 

1.73 GHz processor. The operation time in MATLAB is actually misleading to 

compare with other methods which are implemented in faster programming 

languages. The presence of nested loops in EHRM is a major reason for the current 

operation time. MATLAB is known to be very slow for operating loops, therefore 

the implementation of EHRM in a faster programming language is expected to 

produce a running time of approximately a few minutes.  

 In comparison, FAST operates at the whole brain with similar resolution 

about 10-15 minutes in a desktop with a 4GB RAM and a 4GHz processor, which is 

obviously a much more powerful computer than the netbook that EHRM is operated. 

Therefore, it seems that running time of EHRM algorithm on the sub-cortical region 

is acceptable. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

 The segmentation of sub-cortical GM structures is very challenging because 

the anatomy of this region is more complex and the contrast is lower. Structures like 

thalamus, putamen and globus pallidus, which are termed as a part of GM tissue, 

have a tissue composition different than the cortical GM. Sub-cortical GM tissue is 

not pure and also contains WM fibers. Therefore, the intensities of these composite 

tissues approach to the intensity levels of WM, causing a reduction in contrast. 

Modeling of all GM tissue in the brain as a single class may not be an appropriate 

representation of sub-cortical GM. Therefore, the algorithms which segment the 

brain into 3 tissues is usually not successful in these structures and segment them as 

a part of WM tissue. This necessitates the handling of sub-cortical segmentation in a 

different way from the rest of the brain. There are also other approaches that 

segment each anatomical structure separately but these methods have high 

computational demand and impose high spatial constraints which can limit their 

wide range usage.  

In this study, an evolutionary hierarchical region merging (EHRM) algorithm 

is proposed to improve the segmentation quality in the sub-cortical GM structures in 

MR brain images. The image segmentation algorithm proposed by Veenman et al. 

[3] is used as a starting point for EHRM.  In this evolutionary segmentation 

algorithm, region merging and border pixel transfer operations are utilized 

depending on the intensity variance feature of separate regions. These operations are 
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conducted iteratively to reach to the final regions. An evolutionary framework is 

used to reduce the computation time by preventing the number of unsuccessful trials 

which do not contribute to the segmentation process. The border pixel transfer 

operation, which significantly increases computational complexity, is not utilized in 

EHRM. Instead, region merging in a hierarchical framework is proposed as a single 

operation to guide the segmentation. The hierarchical approach allows gradual 

formation of regions and is expected to represent the anatomical structures more 

coherently. Also, the necessity of border pixel transfer is reduced because the 

regions maturate gradually. Region merging in EHRM simplifies the image quite 

successfully to a certain number of regions.   

The performance of the algorithm is presented in a comparative manner with 

the FAST algorithm in 3 different datasets:  Brainweb simulated data with various 

noise and bias field conditions, the IBSR manually segmented dataset [57], and a 

real MRI dataset where manual segmentation is not available.  

 Although some findings are questionable due to the errors in the ground truth 

segmentation within IBSR, some important improvements of EHRM approach can 

be clearly observed. The detection of sub-cortical GM structures like thalamus, 

caudate and putamen are analyzed quantitatively in 2 datasets. In both datasets, the 

performance of EHRM is significantly superior to FAST. Average improvements of 

10%, 36% and 22% are achieved for caudate, putamen and thalamus respectively. 

Also improvement in the JI of GM tissue is observed in both datasets. However, the 

amount of improvement in overall sub-cortical GM JI is less because of the good 

performance of FAST in structures other than the target GM structures, where 

smoothness imposed by the MRF model is useful.  

 EHRM is also superior to SK in many aspects. The JI and DR values are 

higher for all tested cases. The volumetric performance is also similar. Therefore, it 

is realized that EHRM is more successful than widely known k-means algorithm 

which also incorporates spatial information.  
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EHRM is also more successful than FAST in the estimation of tissue 

volumes. GM is consistently underestimated and WM is consistently overestimated 

by FAST. Whereas EHRM can slightly overestimate GM but it is shown to make 

more accurate estimations especially for GM volume. The robustness of EHRM 

approach to the initialization of 2 important parameters (the size threshold for 

intermediate regions and the number of regions desired at the end of region 

merging) is questioned. It is observed that the performance is quite insensitive to the 

initialization of these parameters although some stability problems are observed 

when the threshold parameter guiding the hierarchy of regions is high. 

 The robustness of the algorithm to various bias field and noise conditions are 

examined on the datasets provided by the Brainweb database [51]. The algorithm 

seems to be sufficiently robust to the bias field and noise variations.  

 The running time of the algorithm is quite feasible because it depends only 

on the raw intensity information and simple operations within the evolutionary 

framework. If a successful segmentation of the whole brain is desired, EHRM 

algorithm can be fused with another algorithm that operates successfully in the 

cortical region. In this hybrid framework, both algorithms should be operated. Then 

the sub-cortical segmentation of EHRM and cortical segmentation of another 

algorithm can be combined to yield better segmentation. The only problem with this 

approach is the discontinuity in the segmentation in the borders of the extracted sub-

cortical region. 

In future studies, some issues need to be further investigated and studied to 

increase the performance, robustness and usability of the EHRM algorithm: 1. A 

more reliable and robust texture heterogeneity feature should be implemented. 2. 

The current method for the determination of threshold limit can be modified or 

replaced with another approach. The threshold limit for intensity similarity criterion 

is observed to be important when the segmentations are visually inspected. This 

limit is sometimes so flexible that the sub-cortical GM and WM combine with 

region merging.  The final classification to 3 tissues may not be able to fix this error 
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and the segmentation quality decreases inevitably.  Therefore, the threshold limit 

should be set more conservatively. 3. Some details of the final classification step are 

intuitive and its robustness is questionable. Although no serious problem is observed 

for the tested images, the performance can increase a little bit more with a better 

approach. 4. The integration of EHRM with other algorithms is an important issue. 

To obtain a smooth transition between cortical and sub-cortical segmentations, the 

transition regions can be segmented in a smooth manner with the contribution of 

both segmentations. A new approach for this fusion may be developed. 5. A cluster 

index can be proposed to determine the optimum number of regions that should be 

left at the end of region merging process. This issue is actually searched but the 

optimal cluster number depends on the dispersion measure of regions. However, it is 

very difficult to extract reliable dispersion measures that are not affected from PVE. 

A reliable cluster index would help the algorithm to operate with a sound 

background.  

In this study, we proposed a unique method that is fast and effective for 

segmenting the sub-cortical region which is problematic for whole brain 

segmentation algorithms. Significant improvements are observed in the detection of 

three major sub-cortical GM structures, caudate, putamen and thalamus. In addition, 

EHRM does not necessitate any preprocessing step. Only the intensity information is 

utilized and no spatial or intensity priors are incorporated. Therefore, EHRM 

proposes a general framework for the sub-cortical segmentation problem, which can 

increase the detection of sub-cortical GM structures. The proposed method can be 

easily fused with plenty of successful approaches, which perform whole brain 

segmentation.     
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APPENDICES 

 

APPENDIX A: BRAIN ANATOMY ON A SAMPLE SLICE  

 

   The brain is composed of 3 main tissues, which are CSF, GM and WM. The 

outer part of the brain is called the cortex. The inner region, where a plenty of GM 

structures are present, is called the sub-cortical region. The main structures of the 

brain, which are mentioned in the thesis, are shown on a sample axial slice in Figure 

A.1 taken from [2]. The tissue type of structures is also indicated in parenthesis.  

 

         Figure A.1 An axial brain slice with labeled structures. Figure taken from [2]. 
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APPENDIX B: TEXTURE FEATURE DERIVATION 

 

 The texture feature TH is shown to be a linear function of variance for a 

Gaussian distribution. The derivation is based on the generalized form of Gaussian 

integral [58]. 

The TH for discrete random variables are expressed as below.  
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The continuous form of TH can be expressed as follows: 
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For the right side of a Gaussian distribution with zero mean, TH can be written as 
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The general form of Gaussian integral can be calculated as follows: 
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The effect of variance to the TH feature can be analytically calculated using this 

generalization.  
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Substituting 
22

1

πσ
=a , 0=b  and σ=c , the dependence of TH feature on the 

standard deviation σ can be determined. 
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It is derived that the TH value is a linear function of the standard deviationσ . 
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APPENDIX C: SK ALGORITHM 

 

 A spatial k-means algoritm, abbreviated as SK, is implemented to compare 

with the proposed EHRM algorithm.  It is a simple algorithm which incorporates 

spatial coordinate features in addition to the intensity features. 

 The steps of the SK algorithm can be listed as follows: 

• Form the 4D (1 intensity + 3 spatial coordinate features) data vectors. 

• Normalize each feature to [0,1] range using a linear transformation. 

• There are 3 classes for intensity feature, which represent individual tissues. 

Roughly assume 3 classes for each individual spatial features. Therefore, the 

number of clusters are set to 3x3x3x3=81. 

•  With 81 target clusters and 4D features, operate the k-means algorithm. 

• Obtain the class labels and class centers when the k-means algorithm 

converges. 

After 81 classes are left, reduce 81 classes to 3 tissues using the same 

methodology as the reduction implemented in the EHRM algorithm. A slight 

difference is that smoothing of the histogram peaks are not conducted because the 

information on the dispersion of the classes is not available. The number of classes 

are quite high compared to the EHRM, therefore the absence of smoothing is not 

expected to change the results dramatically. 

 

 

 


