
1



NUMERICAL SIMULATION OF THERMAL CONVECTION UNDER THE
INFLUENCE OF A MAGNETIC FIELD BY USING SOLENOIDAL BASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

NUMERICAL SIMULATION OF THERMAL CONVECTION UNDER THE
INFLUENCE OF A MAGNETIC FIELD BY USING SOLENOIDAL BASES

Yarımpabuç, Durmuş

Ph.D., Department of Engineering Science

Supervisor : Assoc. Prof. Dr. Hakan I. Tarman

June 2011, 110 pages

The effect of an imposed magnetic field on the thermal convection between rigid plates heated

from below under the influence of gravity is numerically simulated in a computational domain

with periodic horizontal extent. The numerical technique is based on solenoidal basis func-

tions satisfying the boundary conditions for both velocity and induced magnetic field. The

expansion bases for the thermal field are also constructed to satisfy the boundary conditions.

The governing partial differential equations are reduced to a system of ordinary differential

equations governing the time evolution of the expansion coefficients under Galerkin projec-

tion onto the subspace spanned by the dual bases. In the process, the pressure term in the

momentum equation is eliminated. The system validated in the linear regime is then used for

some numerical experiments in the nonlinear regime.

Keywords: Thermal convection, Magnetic fields, Solenoidal Bases, Legendre Polynomials
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ÖZ

MANYETİK BİR ALAN ETKİSİNDE ISIL KONVEKSİYON HAREKETİNİN
SOLENOİDAL BAZ KULLANIMI İLE SAYISAL BENZETİMİ

Yarımpabuç, Durmuş

Doktora, Mühendislik Bilimleri Bölümü

Tez Yöneticisi : Doç. Dr. Hakan I. Tarman

Haziran 2011, 110 sayfa

Manyetik bir alanın etkisi altında ve yerçekimi ortamında alttan ısıtılan iki rijid plaka arasında

oluşan ısıl konveksiyon hareketi yatay yönlerde periyodik kabul edilen bölgede sayısal ben-

zetim yoluyla oluşturulmuştur. Sayısal metod hız ve indüklenmiş manyetik alan değişkeninin

sınır şartlarını sağlayan solenoidal baz fonksiyonları cinsinden yazılmasına dayanmaktadır.

Sıcaklık değişkenide sınır şartlarını sağlayan baz fonksiyonları cinsinden yazılmıştır. Hareketi

modelleyen kısmi diferansiyel denklemler çifteş baz fonksiyonları tarafından karşılanan alt

uzaya Galerkin yöntemiyle yansıtılarak zamana bağlı açılım katsayılarının evrimini mod-

elleyen adi diferansiyel denklem sistemine indirgenmiştir. Bu işlem sırasında, momentum

denkleminde bulunan basınç terimi ortadan kalkmaktadır. Doğrusal akış rejiminde doğrulanan

bu sistem, doğrusal olmayan akış rejiminde çeşitli sayısal deneyler için kullanılmıştır.

Anahtar Kelimeler: Termal konveksiyon, Manyetik alan, Solenoidal bazlar, Legendre poli-

nomları
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(TÜBİTAK-M109M435) and State Planning Organization (BAP-08-11-DPT-2002K120510).

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

INTRODUCTION

In many astrophysical and geophysical contexts, magnetoconvection plays an important role.

There are two aspects of the interaction between magnetic fields and convection: on the one

hand, the motion sweeps magnetic flux aside and concentrates it; on the other, the Lorentz

force affects, and may suppress the pattern of convection. In the outer layers of the Sun and

Earth’s core thermal convection is affected by the presence of the magnetic fields, the exis-

tence of the sunspot indicates the suppression of convections by sufficiently strong magnetic

fields. It is well known that unavoidable hydrodynamic movements can be damped with help

of a magnetic field, therefore magneto-convection has become relevant in material processing

facilities, such as molten metal casting and crystallization. For instance, the investigations of

heat transfer for melt flows under crystal growth conditions permit one to qualify the critical

operating parameters of crystal growth. The study of Oreper and Szekely [23] shows that the

magnetic field suppress the natural-convection currents and the magnetic field strength is one

of the most important factors of crystal formation.

In this study, the effect of an imposed magnetic field on the thermal convection between

rigid plates heated from below under the influence of gravity is numerically simulated in a

computational domain with periodic horizontal extent. As the liquid is heated, it warms,

expands and rises because it is less dense. When it reaches upper cool boundary it transfers

its energy, cools down, becomes denser and falls. Flow is driven by the heat source and

resists against gravity and magnetic fields. The gravity acts in the direction of heat transfer,

while Lorentz force due to magnetic induction acts in the opposite direction of gravity. Thus,

the total heat transfer is reduced considerably due to the braking effect of Lorentz force.

Since, the problem of the ordinary hydrodynamics nearly doubles in dimension by inserting

magnetic variables into the system, it is no wonder that the magnetic convection exhibits a rich
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variety of new phenomena, such as oscillatory onset of convection and subcritical steady finite

amplitude convection. Further, the increase in the convective heat transport with supercritical

Rayleigh number is more rapid in the presence of magnetic field than nonmagnetic case. In

addition, magnetic field has a stabilizing effect on the oscillatory convection. The object

of the study is to obtain numerical solution for the velocity and temperature fields between

rigid plates and to determine the effects of magnetic field strength on the convective transport

phenomena.

The numerical technique that we use in this study is based on solenoidal basis functions sat-

isfying the boundary conditions for both velocity and induced magnetic field, therefore the

number of model equations reduce from nine to four equations which are the momentum and

energy equations. Dimensionless form of these equations involve well known parameters,

Rayleigh number (Ra), Chandrasekhar number (Q), thermal Prandtl number (Pr) and mag-

netic Prandtl number (Pm). Rayleigh number for a fluid is associated with the heat transfer

within the fluid and describes the ratio of buoyancy force driven by temperature difference

to viscous dissipative effect. Chandrasekhar number is the ratio of the viscous dissipation to

Joule dissipation that is an appropriate measure of the strength of the magnetic flux density.

The thermal Prandtl Number is the ratio of kinematic viscosity, ν to thermal diffusivity, κ. The

magnetic Prandtl number the ratio of kinematic viscosity to the magnetic diffusivity λ. The

ratio of thermal to magnetic Prandtl number (Pm/Pr) is shown to be important in the dynam-

ics of the magnetoconvection. When the Pm/Pr is small, that is κ � λ, magnetoconvection

exhibits a particularly rich variety of behavior. This limit is appropriate for liquid metals and

the analysis thus applies to laboratory as well as to planetary cores, but the problem of astro-

physical interest such as the convection in penumbra of sunspot are not covered in this limit.

However, the physical mechanisms underlying the mathematical results are persistent in more

general cases; the assumed limit just serves to isolate them from other effects. In this study,

we concentrate on situations where this ratio becomes very small.

1.1 Earlier Research

Rayleigh-Bénard convection in an electrically conducting fluid in the presence of magnetic

field has long been interest to fluid dynamics mainly due to its importance in astrophysics

and planetary physics applications. Rayleigh-Bénard convection in the context of magne-
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tohydrodynamics has been examined by Thompson [1] in 1951 and Chandrasekhar [2] in

1952 with a linear constitutive relationship between magnetic field and magnetic induction.

In 1955, Lehnert [3] stated that the uniform magnetic field has damping effect on turbulence

in conducting fluids and modeled the problem by the linear equations. In 1963, Deissler [6]

analyzed these equations numerically. Then Nestlerade and Lumey [7] used Taylor series ex-

pansion of the variables in time to solve the problem of the strong magnetic field. Nakagawa

reported some experiments on the magnetic inhibition of thermal convection in horizontal

layers of mercury heated from below in the studies [8] and [9]. Permanent and cyclotron

magnets reconditioned for hydromagnetic studies were used in these experiments. This work

was determined the dependence of the critical Rayleigh number for the onset of instability

and confirmed the experimental results with the theoretical results driven by Chandrasekhar

[2]. Further, He reported some measurements of the heat flux and notes the increased effi-

ciency of the convection heat transport with increasing field strength. Linear theory of the

magnetoconvection is extensively discussed in Chandrasekhar (1961) [5] for different bound-

ary conditions and the results are in agreement with the experiments of Nakagava [8]- [9].

The relationship between critical Rayleigh number and magnetic number was shown in these

experiments. The first systematic study of non-linear magnetoconvection results were per-

formed by Spiegel [10] and Weiss [11]. Nonlinear aspect of thermal convection in a fluid

layer heated from below in the presence of magnetic field investigated by Busse [12] who

studied the subcritical finite amplitude convection. Fauve et al. [13] showed that the increase

in the magnetic field in the horizontal directions generates a new convective pattern, with

two-dimensional rolls parallel to the magnetic field direction, which is in agreement with the

theoretical predictions of Chandrasekhar [5]. They observed that a horizontal magnetic field

has an inhibition effect on the oscillatory instability in a mercury layer. A general review of

non-linear analysis of magnetoconvection is given by Proctor and Weiss [14].

There exists a series of research papers [15]-[17] by Busse and Clever where they cover

different aspects of magnetoconvection in the case of κ � λ. They showed that the onset

of the oscillatory instability is delayed and by further increasing the intensity of the magnetic

field the convection rolls become stable. In their study, they deal with the numerical analysis

of convection rolls and their stability for various Prandtl numbers on the limit of a high ratio

of magnetic to thermal diffusivity. Theoretical study of magnetic inhibition effect on the

stability of two-dimensional convection rolls in a horizontal fluid layer heated from below
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is performed in the work of the Busse and Clever [15]. They pointed out that convection

assumes the form of the two dimensional rolls near the critical value of the Rayleigh number.

And, the stability region of the rolls was investigated by analyzing various instabilities in

[15]. A horizontal homogeneous magnetic field intersecting the layer is discussed in Busse

and Clever [16] where they investigated the effect of a purely horizontal magnetic field on

the onset of three-dimensional instabilities. They indicated that as long as Rayleigh number

is close to its critical value and the horizontal magnetic field is aligned with the convection

rolls, the Lorentz force has stabilizing influence on the onset of oscillatory instability. In [17],

a systematic study of convection rolls in a fluid layer heated from below for Pr = 0.1 and

Pr = 0.025 is described, which is related to studies of convection rolls and their stability in

the presence of a vertical magnetic field [15]. They showed that the onset of the oscillatory

instability reduces the heat transport by convection, and even though the magnetic field has an

inhibiting influence on steady convection, the effect on the onset of oscillatory instability is

much stronger such that in the presence of magnetic field higher heat transport is obtained in

some cases than in its absence. Convection in the presence of oblique magnetic field is studied

in [18]. The results of vertical and horizontal magnetic field are compared and they showed

that the horizontal field has more inhibiting effect on the instability than the vertical magnetic

field and further the horizontal magnetic field on the perfectly conducting boundaries has

more stabilizing influence on the onset of oscillations than on the insulating boundaries. They

further pointed out that the horizontal magnetic field has the most inhibiting effect on the

onset of the oscillatory instability whereas its effect on steady two-dimensional convection is

nil. In 1996, the thermal convection is numerically simulated in the case of a strong vertical

magnetic field permeating the layer by Clever and Busse [19]. They reported that the heat

transport decreases with increasing Rayleigh number for steady three-dimensional convective

flows as well as for time periodic flows. Further, under the influence of strong magnetic

field, they observed higher order instabilities and time-dependent flows in infinite horizontal

fluid layer. They showed that the stability limits of distinct flow regimes are shifted to higher

Rayleigh numbers as Chandrasekhar number is increased.

Ozoe and Maruo [20] numerically investigated the natural convection of a low Prandtl num-

ber fluid in the presence of a magnetic field and obtained correlations for Nusselt number in

terms of Rayleigh, Prandtl and Hartmann numbers. Mössner and Müller [25] investigated the

flow patterns for various thermal boundary conditions and directions of the magnetic field by
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looking over closure patterns of the electric currents and the resulting Lorentz forces in insu-

lated rectangular cavities. They showed that magnetic field perpendicular to the heated wall

was most effective in damping the natural convection whereas the parallel field resulted in

the least damping. Further, the number of the convection rolls associated with the Hartmann

and the Rayleigh numbers such that increasing the Rayleigh numbers decrease and increas-

ing Hartmann numbers increase the number of convection rolls in cavity. In 2001, Aurnou

and Olson [36] performed an experimental study to measure heat transfer in rectangular box

for low Prandtl number (Pr = 0.023) on an electrically conducting fluid as a function of the

temperature, rotation, magnetic field strength and fluid-layer aspect ratio. They demonstrated

the effect of rotation and magnetic fields on the onset of the thermal convection and con-

vective heat transfer in liquid gallium. In their experimental study, they found a relationship

between Rayleigh and Nusselt numbers for Rayleigh-Bénard convection, magnetoconvection

and rotating magnetoconvection. For magnetoconvection, they found that critical Rayleigh

number increases linearly with magnetic field. Further, they indicated that the vertical mag-

netic field and rotation have both individually inhibiting effects on the onset of convection,

but they observed a reduction in convective heat transfer when both are applied to the sys-

tem. The influence of a vertical magnetic field on liquid metal Rayleigh-Bénard convection

is studied experimentally by Burr and Müller [38] for heat transfer and local temporal behav-

ior for highly supercritical condition, which is most relevant for technical applications. They

showed that the damping of the temperature field fluctuations by magnetic field depends on the

frequency. Long term fluctuations are strongly damped by magnetic field whereas short term

fluctuations are less damped or may even be enhanced. In addition, the intensity of the temper-

ature fluctuations is always decreased by increasing the intensity of the magnetic field at large

supercritical Rayleigh numbers. The problem of convection by radial buoyancy in an electri-

cally conducting fluid contained by a rotating cylindrical annulus in the presence of horizontal

magnetic field in the azimuthal direction is considered in the studies of Kurt et al. [[46],[47]].

They used a small gap approximation to reduced the problem to the case of a horizontal fluid

layer, which is heated from below. They introduced some detailed results on instabilities and

pattern formation. Güray and Tarman [37] used an efficient computational scheme based on

spectral element method in order to simulate magnetoconvective flow in liquid melts. They

did not use staggered grid approach in the treatment of the pressure terms, commonly used in

literature, instead Legendre polynomials and rescaled Legendre-Lagrangian polynomial in-

terpolation are used in the expansion of the pressure and the other variables in the variational
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weak formulation, respectively. Although divergence conditions of the problem is not sat-

isfied exactly, the method gave satisfactory results for some regions when the solutions are

sufficiently smooth. Yarımpabuç and Tarman [49] used solenoidal bases method to analyse

the effect of the vertical magnetic field on the thermal convection. They observed that this

technique gave satisfactory results for both linear and nonlinear regimes.

1.2 Scope of the work

In modeling incompressible flows, the flow field is restricted to satisfy the divergence-free

condition or the continuity equation. This is an important hurdle to be overcome in the nu-

merical simulation studies. For this purpose, various techniques have been employed in lit-

erature such as the fractional step [21], the influence matrix [22] and the staggered grid [24]

methods. The common focus in these techniques is to numerically treat the pressure vari-

able which usually comes without any boundary conditions and whose role is to enforce the

divergence-free condition on the flow. On the other hand, these techniques help to enforce the

divergence-free condition only to a certain limited degree of accuracy. Accurate handling of

the divergence-free condition is important in numerical hydrodynamic stability studies where

the flow is perturbed to identify the critical parameter values between the transitory regimes.

Furthermore, the numerical simulation studies of flow under the influence of a magnetic field

encounter an additional divergence-free condition on the magnetic field variable. Various

numerical approaches [25]-[15] have been used for this purpose and the effects of the poor

handling of the divergence-free condition [26] and some remedies [27] are presented in liter-

ature.

In this work, we present some preliminary results on the use of solenoidal (divergence-free)

bases expansion in the numerical simulation of thermal convection under the influence of an

oblique magnetic field. By introducing an expansion in terms of the solenoidal basis functions

for the velocity and the magnetic field into the model equations in a Galerkin projection, both

divergence-free criteria are exactly satisfied and the pressure variable is completely elimi-

nated, thus the number of equations and the number of flow variables are reduced. This

reduces the burden on the numerical technique and increases the accuracy with which the

divergence-free condition is satisfied. While the velocity solenoidal basis functions are gen-

erated independently, a quasi-steady relationship between the velocity and the magnetic field
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variables is used to generate the corresponding magnetic solenoidal basis functions. This re-

lationship arises in the case of liquid metals or melts as the convective fluid. Some studies

that use solenoidal bases in literature are Busse & Clever [15], Leonard & Wray [28], Moser,

Moin & Leonard [29], Mhuiris [30], Pasquarelli, Quarteroni & Sacchi [31], Kessler [32],

Noack & Eckelmann [33], Meseguer & Trefethen [34] and Tarman [35].

This thesis can be outlined in the following way: In Chapter 2, the geometry of the problem,

the system of model partial differential equations and forcing terms coming from an oblique

magnetic field are constructed for incompressible fluids under the Boussinesq approximation.

And then the nondimensionalization is performed in accordance with Chandrasekhar [5] in

order to present the dimensionless numbers. In addition, the boundary conditions for velocity,

temperature and magnetic field are constructed in both horizontal and vertical directions. In

Chapter 3, solenoidal basis functions for the velocity and temperature field which satisfy the

divergence free constraint and the boundary conditions of the system exactly, are constructed

and, further dual bases are constructed to characterize the projection space, such that, the pres-

sure term is eliminated from the system. Solenoidal magnetic bases are generated using the

velocity solenoidal bases by utilizing the quasi-steady relationship for the cases of oblique,

vertical and horizontal magnetic fields, separately. In Chapter 4, a weak solution is obtained

by applying Galerkin projection to the partial differential equations. The discretization in the

horizontal directions in the form of Fourier expansion and in the vertical direction in the form

Legendre polynomials based on the Legendre-Gauss-Lobatto quadrature are described. In

addition, velocity and magnetic solenoidal bases are presented in detail as a function of the

angle of the magnetic field applied to the system. Moreover, the time discretization of the

system and the implementation of the nonlinear terms are explained. In Chapter 5, linear and

nonlinear numerical simulation under a vertical magnetic field is presented. The linear stabil-

ity analysis of the system are performed by dropping the nonlinear terms in accordance with

the perturbation theory and the results are compared with [5]. Nonlinear analysis in station-

ary and time-dependent flow regimes is presented in two different sections and the results are

compared with some numerical and experimental work in literature. In the last chapter, linear

and nonlinear analysis is performed in the case of external oblique magnetic field. The linear

analysis is performed and the effects of four different parameters, which are the magnetic field

strength, the wavenumber, the angle of the magnetic field applied and Rayleigh number are

examined. Lastly, nonlinear numerical simulation of the oblique magnetic field with various
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angles is performed and the effect of the angle on the flow is discussed for different flow

parameters.
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CHAPTER 2

MAGNETO-CONVECTION PROBLEM

2.1 Governing Equations

Thermal convective motion of a perfectly conducting fluid is considered in a periodic hori-

zontal layer of thickness d between conducting plates that are heated from below under the

influence of a uniform magnetic field B0 applied externally in the yz plane with angle χ from

y axis (Figure 2.1).
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Figure 2.1: The geometry of the periodic convective domain

When a temperature difference is maintained across the horizontal fluid layer by heating from

below and cooling from above, the fluid flows in a pattern of convection rolls if the tem-

perature difference between plates exceeds a threshold value. The fluid motion transports

additional heat over that carried by thermal conduction through the fluid. Many variations

9



on this process have been studied in the laboratory since Bénard’s first experiments around

the turn of the century. The onset of convection is the typical example of a pattern forming

instability. This simplest and most studied version is Rayleigh-Bénard convection, shown

schematically below in Figure 2.2.
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Figure 2.2: Roll motion of the fluid between hot and cold plates

In Figure 2.2 the fluid is confined between rigid plates which are held at constant temperatures

with the hot plate below. Here, the arrows indicate the velocity field and the contours shows

isothermal lines. In a classic 1916 paper, Lord Rayleigh showed that initially motionless

fluid layer becomes unstable to small flow perturbations when the temperature difference is

sufficiently large. Flow perturbations grow when the buoyancy forces on a perturbed parcel

of fluid become sufficient to overcome dissipation due to viscosity. Hot fluid near the bottom

thermally expands and becomes lighter than the fluid above it, so it rises, cools and returns

in an overturning flow. In this study, this motion is opposed by a uniform magnetic field B0
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in addition to the viscosity of the fluid and the tendency of thermal diffusion to smooth out

temperature gradients.

A mathematical model for magneto-convection is obtained by coupling the equations for the

fluid motion and the classical electromagnetism. In other words, incompressible Navier-

Stokes equations with Lorentz body force, which is derived from Maxwell equations and

Ohm’s law, forms the magneto-convection equations. The model equations for the convective

motions are obtained using Boussinesq approximation under the assumption of small tem-

perature difference between the two plates. Under this assumption the density variation with

temperature is small and yet the motion is driven by buoyancy force which results from ne-

glecting the variation of density everywhere except at the buoyancy term. Here, the density is

assumed to obey the following relation:

ρ = ρo[1 − β(T − To)] (2.1)

where To and T are the temperatures of the bottom and top layer, respectively, ρ0 is the density

of the fluid at the temperature T0 and β is the coefficient of the volumetric expansion, which

is a small number for gas and liquids as stated in Chandrasekhar [5] and Davidson [40].

Conservation of mass and momentum equations for incompressible fluids under the Boussi-

nesq approximation and an external magnetic field can be written in cartesian coordinates

as:

∇ · u = 0 (2.2)

∂u
∂t

+ (u · ∇) u = −
1
ρo
∇P −

ρ

ρo
gez + ν∇2u +

1
ρo

(J × B) (2.3)

∂T
∂t

+ (u · ∇) T = α∇2T (2.4)

where ez is the direction vector opposite to gravity, P is the pressure, u = (u, v,w) is the ve-

locity vector, ρo is the density at a reference temperature To, J is the current density, B is the

magnetic field, ν is kinematic viscosity, α is the thermal diffusivity and g acceleration of grav-

ity. Here, (2.4) denotes the equation that governs the evolution of temperature. The additional

forcing term in the equations of motion is the Lorentz force generated by the interaction of

the imposed magnetic field with the currents induced by the fluids. This Lorentz force term

in (2.3) can be rewritten by using the differential form of Ampére’s law:

∇ × B = µJ. (2.5)
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where µ is the magnetic permeability. The current density is eliminated by using the relation

in (2.5) and then the equation (2.3) take the following form:

∂u
∂t

+ (u · ∇) u = −
1
ρo
∇P −

ρ

ρo
gez + ν∇2u +

1
µρo

(∇ × B × B). (2.6)

The linear algebraic relation

∇ × B × B = −∇

(
B · B

2

)
+ (B · ∇)B (2.7)

is used in order to write the Lorentz term in a simpler manner in (2.6):

∂u
∂t

+ (u · ∇) u = −
1
ρo
∇

(
P +
|B|2

2µ

)
−
ρ

ρo
gez + ν∇2u +

1
µρo

(B · ∇)B. (2.8)

In addition to these, the relation between velocity field, u and the magnetic field, B ,which

are contained in Maxwell’s equations, are used. Since we are not concerned with the ef-

fects of propagation of electromagnetic waves, the displacement currents are ignored in com-

parison with current density in Maxwell’s equations. In magnetohydrodynamics equations,

charge density and charge conservation are relatively small, so they are dropped as well Chan-

drasekhar [5] and Davidson [40]. Thus the reduced form of Maxwell’s equations for magne-

tohydrodynamics can be written in the following form:

∇ · B = 0 (2.9)

∇ × E = −
∂B
∂t

(2.10)

together with (2.5). Here, E is the electric field. According to the Ohm’s law, current density

can be stated by using electric field measured in a frame moving with the local velocity of the

conductor:

J = σ(E + u × B) (2.11)

where σ is the coefficient of the electrical conductivity. In order to find a relation between

velocity, u and magnetic field, B, first, the electric field, E, in (2.11) is substituted into (2.10):

∂B
∂t

= −∇ ×

(
J
σ
− u × B

)
(2.12)

and then by using Ampére’s law relation (2.5), the current density is put into to (2.12), to get:

∂B
∂t

= −∇ ×

(
∇ × B
σµ

− u × B
)

(2.13)
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or it can be represented in a simple manner by using some vector identities:

∂B
∂t

= −(u · ∇)B + (B · ∇)u + λ∇2B (2.14)

where λ is the magnetic diffusivity and represented in a combined form as follows:

λ =
1
σµ

. (2.15)

The total flow and temperature field can be decomposed into steady state and perturbation

about this state:

u(x, y, z, t) = 0 + u′(x, y, z, t) (2.16)

P(x, y, z, t) = P̄(z) + P′(x, y, z, t) (2.17)

T (x, y, z, t) = T̄ (z) + Θ′(x, y, z, t) (2.18)

and the total magnetic field consists of two parts: externally imposed uniform magnetic field,

Bo applied in the direction eB in the yz plane with angle χ from y axis and the induced magnetic

field b′ which is created due to the convective motions:

B(x, y, z, t) = BoeB +
κ

λ
b′(x, y, z, t), (2.19)

with

eB = Cosχey + S inχez (2.20)

where κ is the thermal diffusivity, ey and ez are unit vectors in horizontal y−direction and

vertical z−direction, respectively. Here, overbar shows the conduction state and prime shows

the convection state. In conduction (no-motion) state, there is no convection so the pressure

and temperature fields, P̄ and T̄ vary only in the vertical z direction. Thus, using the density

relation (2.1) in conduction state, the governing equations (2.4) and (2.8) takes the following

form:

1
ρo

∂P̄
∂z

= −[1 − β(T̄ − To)]gez, (2.21)

∂2T̄
∂z2 = 0. (2.22)

Linear vertical temperature distribution in the fluid layer is obtained by (2.22) as:

T̄ (z) = To +
∆T
2

(
1 −

z
d/2

)
(2.23)
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where ∆T = T1 − To in which T1 is the bottom plate temperature, whereas To is the upper

plate temperature. Substitution of the expressions (2.16-2.19), (2.23), into (2.2), (2.4), (2.8),

(2.9) and (2.14) gives the equations of motion:

∇ · u′ = 0, (2.24)

∂u′

∂t
= −

(
u′ · ∇

)
u′ −

1
ρo
∇Π′ + βgΘ′ez + ν∇2u′ +

1
µρo

[
BoeB · ∇ +

κ

λ
b′ · ∇

]
κ

λ
b′, (2.25)

Θ′

∂t
+

(
u′ · ∇

)
Θ′ = w′

∆T
2

+ κ∇2Θ′, (2.26)

∇ · b′ = 0, (2.27)

1
λ

∂b′

∂t
= −

1
λ

(
u′ · ∇

)
b′ +

1
λ

[Boλ

κ
eB · ∇ + b′ · ∇

]
u′ + ∇2b′, (2.28)

where Π′ is the stagnation pressure in dimensional form:

Π′ = P′ +

∣∣∣BoeB · ∇ + κ
λb′

∣∣∣2
2µ

. (2.29)

For the numerical analysis and implementation purposes, the above equations are expressed

in non-dimensionalized form. The nondimensionalization is performed in accordance with

[5] except for the length scale which is based on the half depth dh = 1
2 d for computational

convenience. Therefore, the non-dimensionalized variables are stated as:

x =
x

d/2
, t =

t
d2/4κ

,u =
u′

2κ/d
, (2.30)

Θ =
Θ′

∆T
,Π =

Π′

4ρoκ2/d2 ,b =
b′

Bo
. (2.31)

The dimensionless form of governing equations can be written in the following form:

∇ · u = 0, (2.32)

∂u
∂t

= − (u · ∇) u − ∇Π + PrRahΘez + Pr∇2u + QhPr
(
Cosχ

∂

∂y
+ S inχ

∂

∂z

)
b, (2.33)

∂Θ

∂t
+ (u · ∇) Θ =

w
2

+ ∇2Θ, (2.34)

∇ · b = 0, (2.35)

∇2b = −

(
Cosχ

∂

∂y
+ S inχ

∂

∂z

)
u, (2.36)

where b = (bx, by, bz) is the induced magnetic vector field and Θ is the deviation from the

linear conductive temperature profile. Since we are dealing with liquid metals, the limit of

low magnetic Prandtl number Pm = ν/λ (κ � λ) is adopted in the governing equations. In
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the limit Pm → 0, some terms involving the induced magnetic field become negligible and

the problem can be formulated in such a way that the induction equation (2.28) reduces to a

quasi-steady relation (2.36). It is also noted that the term QhPr (eB · ∇) b in (2.33) is obtained

by introducing (2.19) to the Lorentz term (J × B).

The resulting dimensionless numbers are the Rayleigh number Ra(= 8Rah), Chandrasekhar

number Q(= 4Qh) and Prandtl number Pr where

Ra =
g 4 Td3α

κν
, Q =

B2
0d2

ρµνλ
, Pr =

ν

κ
. (2.37)

Here, Chandrasekhar number Q represent square of the Hartmann number Ha =
√

Q. Mag-

netic field in the dimensionless form becomes

B = Cosχey + S inχez +
κ

λ
b (2.38)

which indicates that the induced magnetic field b is weak compared to the externally imposed

uniform magnetic field B0 under the limit of low Pm. Thus b can be viewed as a slaved variable

prescribed by the velocity field as stated by the quasi-steady relationship (2.36). Liquid metals

or melts are characterized by this limit.

2.1.1 Boundary Conditions

The fluid is confined between two perfectly conducting plates at z = −1 and z = 1 at con-

stant temperatures in the vertical z direction. Due to the nature of the boundary the vertical

component of velocity is zero at these bounding plates, that is:

w = 0 at z = ±1. (2.39)

Further, the temperature perturbations Θ, which is shown in Figure 2.3, is zero at these bound-

aries:

Θ = 0 at z = ±1. (2.40)

Since the bounding surfaces are rigid, no slip occurs at the fluid-walls interface. Therefore

the horizontal components of the velocity u and v both vanish at the boundary. Thus,

u = 0 and Θ = 0 at z = ±1. (2.41)

15



  

)(zT

Θ

Θ+)(zT

T1∆T 
Temperature

T0

‐1 

z 

1 

Figure 2.3: Profiles of the conductive temperature, T̄ (z) and temperature perturbations, Θ in z
direction.

The electromagnetic boundary conditions depend upon the electric properties of the medium

adjoining the fluids. Since the walls are perfectly conducting, currents may cross the interface

between fluid and the wall. However, due to the rigidity of the boundary, the horizontal

components (Jx = 0 and Jy = 0) of the current vanish at the boundary. By using charge

conservation equations (∇ · J = 0) and Jx = 0 and Jy = 0 on the plane boundary, we conclude

that

∂Jz

∂z
= 0 at z = ±1. (2.42)

By using the Ampére’s law, (∇ × B = µJ) and magnetic conservation equations, (∇ · B = 0)

this relation becomes,

∂b
∂n

= 0. (2.43)

Therefore, electrically high conductive boundary conditions for the induced magnetic field,

are,

∂bx

∂z
=
∂by

∂z
= bz = 0 at z = ±1. (2.44)

We assume that the flow takes place in a doubly periodic three-dimensional rectangular region

as in Figure 2.1 with aspect ratio sx × sy × 2 or Γ
[

1
2 sx : 1

2 sy
]

such that

0 ≤ x ≤ sx, 0 ≤ y ≤ sy, − 1 ≤ z ≤ 1, (2.45)
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where sx = Lx/dh and sy = Ly/dh are the dimensionless periods in the horizontal x and y

directions, respectively. Therefore, the periodic boundary conditions are defined for all the

physical variables u, Θ and b in the horizontal directions, that are:

u(x + msx, y + nsy, z, t) = u(x, y, z, t), (2.46)

Θ(x + msx, y + nsy, z, t) = Θ(x, y, z, t), (2.47)

b(x + msx, y + nsy, z, t) = b(x, y, z, t). (2.48)

where m and n are integers.
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CHAPTER 3

SOLENOIDAL BASES

In modeling incompressible flow, the flow field is restricted to satisfy the divergence-free con-

dition or the continuity equation, which is an important handicap to be overcome in order to

get high accuracy and robust results in the numerical simulation studies. For this purpose,

various techniques have been employed in literature such as the fractional step [21], the influ-

ence matrix [22] and the staggered grid [24] methods. In another study [48], pressure variable

is expressed in terms of Legendre polynomials in a variational setting. The common focus

in these techniques is to numerically treat the pressure variable which usually comes without

any boundary conditions and whose role is to enforce the divergence-free condition on the

flow. On the other hand, these techniques help to enforce the divergence-free condition only

to a certain limited degree of accuracy. Further, the numerical simulation undertaken in this

work involves a magnetic field variable which requires to satisfy an additional divergence-free

condition. Thus, as an alternative, solenoidal (divergence-free) basis functions are used to ex-

pand the solenoidal variables in this study. By introducing expansions in terms of solenoidal

bases functions for the velocity and the magnetic fields into the model equations in a Galerkin

projection, both divergence-free criteria are exactly satisfied and the pressure variable is com-

pletely eliminated, so the number of equations and the number of flow variables are reduced.

This reduces the burden on the numerical technique and increases the accuracy with which

the divergence-free conditions are satisfied.

In this study, while the velocity solenoidal basis functions are generated independently, the

quasi-steady relationship (2.36) between the velocity and the magnetic field variables is used

to generate the corresponding magnetic solenoidal basis functions. This is a crucial step in

this approach. The solenoidal basis functions are based on the Legendre polynomials in the

vertical z-direction which are so constructed to satisfy the boundary conditions. Therefore,
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the velocity and the magnetic fields can directly be expanded in terms of the solenoidal bases

in the following way:

û(m, n, z, t) =

M∑
p=0

a(1)
p (t)V(1)

p (z) + a(2)
p (t)V(2)

p (z), (3.1)

b̂(m, n, z, t) =

M∑
p=0

a(1)
p (t)B(1)

p (z) + a(2)
p (t)B(2)

p (z), (3.2)

where V(1,2)
p (z) and B(1,2)

p (z) are the solenoidal basis for velocity and magnetic fields, respec-

tively. The velocity and magnetic fields share the same time evolution as dictated by the

quasi-steady relation (2.36).

3.1 Construction of Solenoidal Bases

3.1.1 Velocity Bases

The velocity basis functions are constructed to satisfy the continuity equation, (2.32), and the

boundary conditions (2.41) so that the number of equations to be solved is reduced in this

manner. At the outset, the solenoidal basis functions Vp(x) are required to satisfy

∇ · Vp = 0, Vp(x) |z=±1 = 0. (3.3)

The assumption of periodicity in the horizontal directions allows the use of Fourier represen-

tation

Vp(x) = Vp(z)exp(iξmx + iηny) (3.4)

and reduces the continuity equation to the form

iξmU + iηnV + DW = 0 (3.5)

where V(z) = (U,V,W) and D = d
dz is the differentiation operator. It turns out that the basis

functions come in pairs V( j)
p (x), j = 1, 2 because the continuity equation reduces the degree

of freedom in selecting the components of Vp(x) to two by connecting the three components

together. A typical set of solenoidal basis functions are then:

CASE 1:

ξm , 0 and ηn = 0 → iξmû + Dŵ = 0
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V(1)
p (z) =


0

isign(ξm)g(z)

0

 , V(2)
p (z) =


isign(ξm)Dh(z)

0

|ξm|h(z)

 (3.6)

CASE 2:

ξm = 0 and ηn , 0 → iηnv̂ + Dŵ = 0

V(1)
p (z) =


isign(ηn)g(z)

0

0

 , V(2)
p (z) =


0

isign(ηn)Dh(z)

|ηn|h(z)

 (3.7)

CASE 3:

ξm = 0 and ηn = 0 → Dŵ = 0

V(1)
p (z) =


−g(z)

0

0

 , V(2)
p (z) =


0

g(z)

0

 (3.8)

CASE 4:

ξm , 0 and ηn , 0 → iξmû + iηnv̂ + Dŵ = 0

V(1)
p (z) =


−(ηn/ξm)g(z)

g(z)

0

 , V(2)
p (z) =


(i/ξm)Dh(z)

0

h(z)

 (3.9)

These bases have to satisfy the no-slip boundary conditions therefore it can be written as:

g(±1) = h(±1) = Dh(±1) = 0. (3.10)
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Then, functions,g(z) and h(z) can be constructed as g(z) = (1 − z2)Lp(z) and h(z) = (1 −

z2)2Lp(z) where Lp(z) denotes Legendre polynomial of order p.

In all four cases, base pairs meet the divergence condition and the boundary conditions, and

also for computational convenience all of them fulfill the condition of pairwise orthogonality

V(1) ·V(2) = 0 except for Case 4. Therefore, by using Gram Schmidt orthogonality procedure,

the base pairs for Case 4 can be rebuilt-up as follows:

V(1)
p (z) =


−isign(ξmηn)ηng(z)

γ

isign(ξmηn)ξmg(z)
γ

0

 , V(2)
p (z) =


iξmDh(z)

γ

iηnDh(z)
γ

γh(z)

 (3.11)

where γ2 = ξ2
m + η2

n. The solenoidal bases can further be characterized as V(1) having the

toroidal nature with vanishing vertical component V(1) · ez = 0 and V(2) having the poloidal

nature with vanishing vertical vorticity component
(
∇ × V(2)

)
· ez = 0.

For the subsequent Galerkin projection procedure, dual bases V̄( j)
p (x) need to be constructed

to satisfy

∇ · V̄( j)
p = 0, V̄( j)

p · ez |z=±1 = 0. (3.12)

These requirements on the dual basis causes the elimination of the pressure term
(
V̄,∇p

)
in

the projection procedure under the inner product:

(
V̄ ,∇p

)
=

$
Ω

V̄ · ∇p dΩ =

$
Ω

∇ ·
(
pV̄

)
dΩ −

$
Ω

p∇ · V̄ dΩ (3.13)

since dual basis, V̄ solenoidal, the second term on the right hand side$
Ω

p∇ · V̄dΩ = 0 (3.14)

and by Gauss’s theorem, the first term can be converted to a surface integral to get:

(
V̄ ,∇p

)
=

"
s

pV̄ · n dS . (3.15)

Under the condition V̄( j)
p · ez |z=±1 = 0, (3.15) becomes zero. Therefore, the pressure term

under the Galerkin projection drops from the momentum equation.

(
V̄ ,∇p

)
= 0 (3.16)
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Thus, dual basis can be set up under the conditions (3.12) as follows:

CASE 1:

ξm , 0 and ηn = 0 → iξmû + Dŵ = 0

V̄(1)
q (z) =


0

isign(ξm) f (z)

0

 , V̄(2)
q (z) =


isign(ξm)Dg(z)

0

|ξm|g(z)

 (3.17)

CASE 2:

ξm = 0 and ηn , 0 → iηnv̂ + Dŵ = 0

V̄(1)
q (z) =


isign(ηn) f (z)

0

0

 , V̄(2)
q (z) =


0

isign(ηn)Dg(z)

|ηn|g(z)

 (3.18)

CASE 3:

ξm = 0 and ηn = 0 → Dŵ = 0

V̄(1)
q (z) =


− f (z)

0

0

 , V̄(2)
q (z) =


0

f (z)

0

 (3.19)

CASE 4:

ξm , 0 and ηn , 0 → iξmû + iηnv̂ + Dŵ = 0

V̄(1)
q (z) =


−(ηn/ξm) f (z)

f (z)

0

 , V̄(2)
q (z) =


(i/ξm)Dg(z)

0

g(z)

 (3.20)
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The dual bases need to satisfy the no-flux boundary condition in (3.12), therefore the func-

tions, f (z) and g(z) can be constructed as f (z) = Lq(z) and g(z) = (1 − z2)Lq(z) where Lq(z)

denotes Legendre polynomials of order q. Gram Schmidt orthogonality procedure again is

used to reformulate the dual bases pairs for Case 4:

V̄(1)
q (z) =


−isign(ξmηn)ηng(z)

k
isign(ξmηn)ξmg(z)

k

0

 , V̄(2)
q (z) =


iξmDh(z)

k
iηnDh(z)

k

kh(z)

 (3.21)

For the numerical evaluation of the inner product integrals arising in the projection procedure,

Gauss-Legendre-Lobatto (GLL) quadrature is used

(f, g) =

1∫
−1

f∗(z) · g(z) dz ≈
Nz∑
j=0

wqf∗(zq) · g(zq) (3.22)

where (wq, zq) are GLL quadrature weights and nodes, respectively. For linear terms, it can

be shown that associated with the GLL quadrature rules, the number of quadrature nodes Nz

and the number of solenoidal basis M should be related in the least by Nz = M + 4 in order to

render the numerical quadrature exact.

With the inclusion of the nonlinear terms, V (1,2)
p (z) ∈ PM+4 and V̄ (1,2)

q (z) ∈ PM+2, thus the

Gaussian quadrature yields exact results for nonlinear terms if

2Nz − 1 ≥ (M + 3) + (M + 4) + (M + 2) = 3M + 9→ Nz ≥ (3M + 10)/2. (3.23)

3.1.2 Magnetic Bases

Magnetic solenoidal basis functions are generated by using the quasi-steady relationship,

(2.36), between the velocity and the magnetic field variables. These magnetic bases are ana-

lytically solved by using quasi-steady relation and solution procedure was shown in Appendix

A.

3.1.2.1 Magnetic bases for the oblique case

The induced magnetic field b is prescribed by the velocity field as stated by the quasi-steady

relationship as follows:

∇2b = −(eB · ∇)u, (3.24)
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where eB shows the direction of the obliquely imposed magnetic field. Substitution of Fourier

series expansion for the velocity and magnetic field variables into this equation yields the

boundary value problem:[
d2

dz2 − γ
2
]

b̂(m, n, z, t) =

[
Cosχηmi + S inχ

d
dz

]
û(m, n, z, t) (3.25)

to be solved subject to the boundary conditions

dbx

dz
=

dby

dz
= bz = 0 at z = ±1. (3.26)

where γ2 = ξ2
m + η2

n. The singularity in the equations for bx and by at ξm = ηn = 0 due to the

homogeneous Neumann boundary conditions is removed by setting

bx(z = 0) = by(z = 0) = 0 (3.27)

without loss of generality. Solenoidal basis

B(x) = B(z)exp(iξmx + iηny) (3.28)

for the magnetic field is constructed by solving

D2B − γ2B = −
[
Cosχηmi + S inχD

]
V, (3.29)

for B(z) subject to the boundary conditions

DBx = DBy = Bz = 0 at z = ±1. (3.30)

and for each V = V( j)
p (z) where B(z) = (Bx, By, Bz).

3.1.2.2 Magnetic bases for the vertical case

In this case, the magnetic field applied in the vertical direction, in other words, the angle in

the yz plane is taken as χ = π/2, so that;

eB = Cos
(
π

2

)
ey + S in

(
π

2

)
ez = ez. (3.31)

The induced magnetic field b is prescribed by the velocity field as stated by the quasi-steady

relationship as follows:

∇2b = −(ez · ∇)u, (3.32)
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where ez direction vector opposite to gravity. Substitution of Fourier series expansion for the

velocity and magnetic field variables into this equation yields the boundary value problem:[
d2

dz2 − γ
2
]

b̂(m, n, z, t) = −

[
d
dz

]
û(m, n, z, t) (3.33)

to be solved subject to the boundary conditions

dbx

dz
=

dby

dz
= bz = 0 at z = ±1. (3.34)

where γ2 = ξ2
m + η2

n. The singularity in the equations for bx and by at ξm = ηn = 0 due to the

homogeneous Neumann boundary conditions is again removed by setting

bx(z = 0) = by(z = 0) = 0 (3.35)

without loss of generality. Solenoidal basis (3.28) for the magnetic field is constructed by

solving

D2B − γ2B = −DV, (3.36)

for B(z) subject to the boundary conditions (3.30).

3.1.2.3 Magnetic bases for the horizontal case

In this case, the magnetic field applied in the horizontal direction, in other words, the angle in

yz plane becomes χ = 0 so that;

eB = Cos(0)ey + S in(0)ez = ey. (3.37)

The induced magnetic field b is prescribed by the velocity field as stated by the quasi-steady

relationship as follows:

∇2b = −(ey · ∇)u, (3.38)

where ey direction vector in y direction. Substitution of Fourier series expansion for the

velocity and magnetic field variables into this equation yields the boundary value problem:[
d2

dz2 − γ
2
]

b̂(m, n, z, t) = −ηmiû(m, n, z, t) (3.39)

to be solved subject to the boundary conditions

dbx

dz
=

dby

dz
= bz = 0 at z = ±1. (3.40)
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where γ2 = ξ2
m + η2

n. The singularity in the equations for bx and by at ξm = ηn = 0 due to the

homogeneous Neumann boundary conditions is again removed by setting

bx(z = 0) = by(z = 0) = 0 (3.41)

without loss of generality. Solenoidal basis (3.28) for the magnetic field is constructed by

solving

D2B − γ2B = −ηmiV, (3.42)

for B(z) subject to the boundary conditions (3.30).

3.2 Construction of Thermal Bases

The thermal bases are solely required to satisfy the boundary conditions. Thus, the expansion

for the thermal field becomes

Θ̂(m, n, z, t) =

M∑
p=0

bp(t)Tp(z), (3.43)

where Tp(z) = (1 − z2)Lp(z). The dual basis simply becomes T̄q(z) = Tp(z).

After the substitution of the flow variables expanded in terms of the constructed basis func-

tions into the model equations and projecting the model system of equations onto the space

spanned by the dual bases in a Galerkin procedure, the resulting system of equations govern-

ing the evolution of the time dependent expansion coefficients a( j)
p (t) and bp(t) is numerically

integrated in time.
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CHAPTER 4

WEAK FORMULATION OF EQUATIONS

In this work of numerical simulations of thermal convection under the influence of a constant

magnetic field, the governing partial differential equations are projected onto the dual space

by Galerkin projection first to get the weak form of the equations in the form of ordinary

differential equations goevrning the time evolution of the expansion coefficients. In this pro-

cedure, the representations of the flow variables and the dual space are formed by truncated

expansion in terms of the basis functions as constructed in the previous chapter.

Equations from (2.32) to (2.36) are projected by Galerkin projection procedure, which em-

ploys the ”error distribution principle” that the residue should be small. Since the velocity

solenoidal bases are constructed by using the continuity equation and boundary conditions,

and the corresponding magnetic bases are constructed by using quasi-steady relation from the

velocity solenoidal bases, the equations (2.32), (2.35) and (2.36) are satisfied automatically.

Thus, the number of equations in the model system drops from nine to four equations, which

are the momentum and the energy equations. The residue of these equations can be written in

the following form:

Ru = −
∂u
∂t
− (u · ∇) u − ∇Π + PrRahΘez + Pr∇2u + QhPr (Cosχ∂y + S inχ∂z) b, (4.1)

RΘ = −
∂Θ

∂t
− (u · ∇) Θ −

w
2

+ ∇2Θ, (4.2)

after the substitution of the flow variables:
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u(m, n, z, t) =
∑

|m|≤Nx/2

∑
|n|≤Ny/2

e(iξm x+iηny)
M∑

p=0

a(1)
p (t)V(1)

p (z) + a(2)
p (t)V(2)

p (z), (4.3)

b(m, n, z, t) =
∑

|m|≤Nx/2

∑
|n|≤Ny/2

e(iξm x+iηny)
M∑

p=0

a(1)
p (t)B(1)

p (z) + a(2)
p (t)B(2)

p (z), (4.4)

Θ(m, n, z, t) =
∑

|m|≤Nx/2

∑
|n|≤Ny/2

e(iξm x+iηny)
M∑

p=0

bp(t)Tp(z), (4.5)

represented in terms of the solenoidal velocity V(1,2)
p (z), the solenoidal magnetic B(1,2)

p (z) and

the thermal Tp(z) basis functions where ∂y = ∂/∂y and ∂z = ∂/∂z. Due to the quasi-steady

relation, the velocity and the magnetic fields share the same time coefficients, a(1)
p (t) and

a(2)
p (t).

The Galerkin scheme is formulated by introducing (4.3), (4.4) and (4.5) into (4.1) and (4.2)

and projecting onto the dual space spanned by the dual bases V̄ (1)
p , V̄ (2)

p and T̄p to get

Lx∫
0

Ly∫
0

1∫
−1

V̄ · Ru dz =

Lx∫
0

Ly∫
0

1∫
−1

V̄ ·
[
−
∂u
∂t
− (u · ∇) u − ∇Π + PrRahΘez

]
dxdydz +

Lx∫
0

Ly∫
0

1∫
−1

V̄ ·
[
Pr∇2u + QhPr (Cosχ∂y + S inχ∂z) b

]
dxdydz = 0 (4.6)

Lx∫
0

Ly∫
0

1∫
−1

T̄RΘ dz =

Lx∫
0

Ly∫
0

1∫
−1

T̄
[
−
∂Θ

∂t
− (u · ∇) Θ −

w
2

+ ∇2Θ

]
dxdydz = 0 (4.7)

or in the matrix form,
(
V̄ (1)

q , V̂ (1)
p

) (
V̄ (1)

q ,V (2)
p

)
(
V̄ (2)

q ,V (1)
p

) (
V̄ (2)

q ,V (2)
p

)

ȧ

(1)
p

ȧ(2)
p

 +

c(1)

c(2)

 = PrRah


(
V̄ (1)

q ,Tpez
)

(
V̄ (2)

q ,Tpez
)
 [bp

]

+Pr


(
V̄ (1)

q ,∇2V (1)
p

) (
V̄ (1)

q ,∇2V (2)
p

)
(
V̄ (2)

q ,∇2V (1)
p

) (
V̄ (2)

q ,∇2V (2)
p

)

a

(1)
p

a(2)
p


+PrQh


(
V̄ (1)

q , (Cosχ∂y + S inχ∂z) B(1)
p

) (
V̄ (1)

q , (Cosχ∂y + S inχ∂z) B(2)
p

)
(
V̄ (2)

q , (Cosχ∂y + S inχ∂z) B(1)
p

) (
V̄ (2)

q , (Cosχ∂y + S inχ∂z) B(2)
p

)

a

(1)
p

a(2)
p

 (4.8)
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(
T̄q,Tp

)
ḃp + d =

(
T̄q,V

(1)
p · ez

)
a(1)

p +
(
T̄q,V

(2)
p · ez

)
a(2)

p +
(
T̄q,∇

2Tp
)

bp (4.9)

where

c1,2 =
(
V̄ , (u · ∇) u

)
=

Lx∫
0

Ly∫
0

1∫
−1

(
V̄∗ (u · ∇) u

)
dxdydz (4.10)

d =
(
T̄ , (u · ∇) Θ

)
=

Lx∫
0

Ly∫
0

1∫
−1

(
T̄ ∗ (u · ∇) Θ

)
dxdydz (4.11)

are the nonlinear terms.

The crucial point in this projection is that, the dual solenoidal bases (3.17), (3.18), (3.19)

and (3.21) are chosen in such a way that the pressure term (3.16) drops from the system of

equations. In addition, due to the structure of the solenoidal basis function V (1)
p , the terms

V (1)
p · ez = 0 (4.12)

drop from the equation (4.9) and thus, the coefficients a(1)
p are absent in (4.9). Further, due

to the construction of the solenoidal bases and their duals, cross terms between the bases and

their duals vanish, therefore the system (4.8) and (4.9) reduce to:


(
V̄ (1)

q , V̂ (1)
p

)
0

0
(
V̄ (2)

q ,V (2)
p

)

ȧ

(1)
p

ȧ(2)
p

 +

c(1)

c(2)

 = PrRah

 0(
V̄ (2)

q ,Tpez
)
 [bp

]

+Pr


(
V̄ (1)

q ,∇2V (1)
p

)
0

0
(
V̄ (2)

q ,∇2V (2)
p

)

a

(1)
p

a(2)
p


+PrQh


(
V̄ (1)

q , (Cosχ∂y + S inχ∂z) B(1)
p

)
0

0
(
V̄ (2)

q , (Cosχ∂y + S inχ∂z) B(2)
p

)

a

(1)
p

a(2)
p

 (4.13)

(
T̄q,Tp

)
ḃp + d =

(
T̄q,V

(2)
p · ez

)
a(2)

p +
(
T̄q,∇

2Tp
)

bp (4.14)

If we combine (4.13) and (4.14) in a system and write it down in the matrix form, we get the

Mass and Stiffness matrices as follows:
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
(
V̄ (1)

q ,V (1)
p

)
0 0

0
(
V̄ (2)

q ,V (2)
p

)
0

0 0
(
T̄q,Tp

)
︸                                         ︷︷                                         ︸

Mass−Matrix


ȧ(1)

p

ȧ(2)
p

ḃp

 +


c(1)

c(2)

d

 =

+Pr


(
V̄ (1)

q , (−γ2 + D2)V (1)
p

)
0 0

0
(
V̄ (2)

q , (−γ2 + D2)V (2)
p

)
Rah

(
V̄ (2)

q ,Tpez
)

0
(
T̄q,V

(2)
p · ez

)
/2Pr

(
T̄q,∇

2Tp
)
/Pr

︸                                                                                         ︷︷                                                                                         ︸
S ti f f ness−Matrix


a(1)

p

a(2)
p

bp



+PrQh


(
V̄ (1)

q , (Cosχηmi + S inχD) B(1)
p

)
0

0
(
V̄ (2)

q , (Cosχηmi + S inχD) B(2)
p

)
︸                                                                                                 ︷︷                                                                                                 ︸

S ti f f ness−Matrix

a
(1)
p

a(2)
p

 (4.15)

or in compact form:


(
V̄ (1)

q ,V (1)
p

)
0 0

0
(
V̄ (2)

q ,V (2)
p

)
0

0 0
(
T̄q,Tp

)
︸                                         ︷︷                                         ︸

Mass−Matrix


ȧ(1)

p

ȧ(2)
p

ḃp

 +


c(1)

c(2)

d

 =

Pr



(
V̄ (1)

q , (−γ2 + D2)V (1)
p

)
+ 0 0(

V̄ (1)
q ,Qh (Cosχηmi + S inχD) B(1)

p

)
0

(
V̄ (2)

q , (−γ2 + D2)V (2)
p

)
+ Rah

(
V̄ (2)

q ,Tpez

)(
V̄ (2)

q ,Qh (Cosχηmi + S inχD) B(2)
p

)
0

(
T̄q,V

(2)
p · ez

)
/2Pr

(
T̄q,∇

2Tp

)
/Pr

︸                                                                                                                             ︷︷                                                                                                                             ︸
S ti f f ness−Matrix



a(1)
p

a(2)
p

bp


(4.16)

where γ2 = ξ2 + η2 and D = d
dz .

4.1 Spatial Discretization

While Fourier expansions are used for the approximation of the variables in the horizontal

directions, polynomial expansions are used for the approximations in the vertical direction.
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The assumption of periodicity in the horizontal directions allows the use of Fourier series

expansions of the dependent flow variables,

u(x, y, z, t) =
∑

m

∑
n

û(m, n, z, t)exp[i(ξmx + ηny)], (4.17)

Θ(x, y, z, t) =
∑

m

∑
n

Θ̂(m, n, z, t)exp[i(ξmx + ηny)], (4.18)

b(x, y, z, t) =
∑

m

∑
n

b̂(m, n, z, t)exp[i(ξmx + ηny)], (4.19)

where ξm and ηn are the wave numbers with

ξm =
2πm
sx

, (4.20)

ηn =
2πn
sy

(4.21)

for the integers m and n in the range

1 −
1
2

Nx ≤ m ≤
1
2

Nx, (4.22)

1 −
1
2

Ny ≤ n ≤
1
2

Ny. (4.23)

Here, Nxand Ny represent horizontal resolutions in x and y directions, respectively. The col-

location points in the x and y directions are:

xi =
sxi
Nx
, (4.24)

y j =
sy j
Ny

. (4.25)

for 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny.

Since the interval in the z direction is normalized to the range [−1, 1], Gauss-Legendre-

Lobatto (GLL) points are used as collocation points in the vertical direction. GLL points

are found as roots of the polynomial

q(z) = (1 − z2)DLNz(z). (4.26)

where D = d
dz and LNz(z) is the Legendre polynomial of order Nz. The Legendre polynomials

can be derived using the Rodrigues’ formula:

LNz(z) =
1

2Nz Nz!
DNz(1 − z2)Nz . (4.27)

The quadrature points consist of the boundary points z0 = −1 and zNz = 1, and Nz − 1 interior

points which are the roots of the Legendre polynomial DLNz(z). Unfortunately, no explicit
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formulas are known for these interior roots, so Newton method is used in order to compute

these roots numerically from recurrence relations for the Legendre polynomials.

Legendre polynomials satisfy some three term relations as a general property of Jacobi Poly-

nomials. These relations are derived in [41] for Legendre polynomials as follows:

zLNz(z) =
Nz

2Nz + 1
LNz−1(z) +

Nz + 1
2Nz + 1

LNz+1(z), (4.28)

LNz(z) =
1

2Nz + 1
DLNz+1(z) −

1
2Nz + 1

DLNz−1(z). (4.29)

(1 − z2)DLNz(z) =
Nz(Nz + 1)

2Nz + 1
LNz−1(z) −

Nz(Nz + 1)
2Nz + 1

LNz+1(z). (4.30)

A direct relationship for the GLL roots in terms of the Legendre polynomials can be obtained

by substitution the relation (4.30) into the (4.26):

q(z) =
Nz(Nz + 1)

2Nz + 1
LNz−1(z) −

Nz(Nz + 1)
2Nz + 1

LNz+1(z). (4.31)

The derivative of q(z) can be written by taking the derivative of (4.31) to get:

Dq(z) =
Nz(Nz + 1)

2Nz + 1
DLNz−1(z) −

Nz(Nz + 1)
2Nz + 1

DLNz+1(z). (4.32)

This can be written in the simple form by substituting (4.29) into (4.32) to get:

Dq(z) = −Nz(Nz + 1)LNz(z). (4.33)

Now, the roots of the q(z) = 0 can be computed by using the Newton iterations

zi
n+1 = zi

n −
q(zi

n)
Dq(zi

n)
= zi

n −
LNz−1(z) − LNz+1(z)

(2Nz + 1)LNz(z)
(4.34)

where Chebyshev points are used as initial guesses:

zi
o = cos

(
iπ
Nz

)
f or 1 ≤ i ≤ Nz − 1. (4.35)

The corresponding weights are given by:

wi =


2

Nz(Nz+1) if i = 0,Nz

2(LNz (zi))−2

Nz(Nz+1) if i = 1, . . . ,Nz − 1.
(4.36)

4.2 Analysis of Solenoidal Bases

In this section, we present the solenoidal bases for a selected wavenumber pair (ξm, ηn) in

order to study the structure of the bases. For this purpose, we choose ξm = 1 and ηn = 1
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wavenumber pair, which is the one of the most energetic modes and exhibit dependence both

on x and y variables. As mentioned in chapter 3 solenoidal basis functions come in pairs,

(V(1,2)) for velocity and (B(1,2)) for magnetic fields. They can be classified as having toroidal

(V(1),B(1)) and poloidal (V(2),B(2)) character. Each of the following figures shows the first,

second and third components of the selected solenoidal basis in rows for velocity and the

magnetic field with different angles χ.

As shown in Figure 4.1, the velocity solenoidal basis carries motion in all three directions

with identical profiles for the first and second components corresponding to the horizontal

directions since it represents a mode residing in the diagonal plane of the convective box.

As mentioned before, the solenoidal magnetic basis is derived from the associated solenoidal

velocity basis appearing as forcing in (2.38) in which the coefficient Cosχ weights y-variation

and S inχ weights z-variation of the velocity basis. When magnetic field is applied in the

vertical direction χ = 90◦, z-variation weights the most and the rich vertical structure in the

velocity basis is carried to the corresponding magnetic basis as shown in Figure 4.2. As the

angle is reduced, y-variation begins to weight more and this is reflected in Figures 4.3 and

4.4 corresponding to the angles χ = 60◦ and χ = 30◦, respectively. In these cases, there is

noticable change in the vertical profiles of the magnetic basis especially in the poloidal case

as compared to that of the vertical angle.

33



0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1
V

x
(1)(1,1,1,z)

z

0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1
V

x
(2)(1,1,1,z)

0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1
V

y
(1)(1,1,1,z)

z

0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1
V

y
(2)(1,1,1,z)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
V

z
(1)(1,1,1,z)

z

0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1
V

z
(2)(1,1,1,z)

Figure 4.1: Velocity solenoidal basis profile at ξm = 1 and ηn = 1 wavenumber pair.
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Figure 4.2: Magnetic solenoidal basis profile at χ = 90◦, ξm = 1 and ηn = 1 wavenumber pair.
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Figure 4.3: Magnetic solenoidal basis profile at χ = 60◦, ξm = 1 and ηn = 1 wavenumber pair.
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Figure 4.4: Magnetic solenoidal basis profile at χ = 30◦, ξm = 1 and ηn = 1 wavenumber pair.
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4.3 Time Discretization

The linear terms are treated implicitly for the sake of the numerical stability [43], while non-

linear advection and forcing terms are implemented explicitly. Thus, a semi-implicit scheme

is used for the time discretization. In the initial testing stage, the nonlinear advective and forc-

ing terms are discretized explicitly using second order Adams-Bashforth(AB2) and the linear

terms implicitly by Crank Nicolson. We observed that for short time integration second or-

der Adams-Bashforth is quite satisfactory, but for long time integration it is not suitable [41].

Then we tested third and fourth order semi-implicit schemes and Runge-Kutta type meth-

ods for the time integration of the system. We concluded that, third order Adams-Bashforth

scheme is stable, robust and less costly than fourth and higher order Runge-Kutta type meth-

ods, as stated in Boyd [41]. So, the nonlinear advective terms are integrated explicitly using

third order Adams-Bashforth and the linear terms are integrated implicitly by third order

Adams-Moulton.

Fully nonlinear governing equations:

∂u
∂t

= − (u · ∇) u − ∇Π + PrRahΘez + Pr∇2u + QhPr (Cosχ∂y + S inχ∂z) b, (4.37)

∂Θ

∂t
+ (u · ∇) Θ =

w
2

+ ∇2Θ, (4.38)

are then discretized in time based on the semi-implicit scheme mentioned

un+1 − un

∆t
=

23
12

(− (u · ∇) u + PrRaΘez + QhPr (Cosχ∂y + S inχ∂z) b)n

−
16
12

(− (u · ∇) u + PrRaΘez + QhPr (Cosχ∂y + S inχ∂z) b)n−1

+
5
12

(− (u · ∇) u + PrRaΘez + QhPr (Cosχ∂y + S inχ∂z) b)n−2

+ Pr∇2
(

5
12

un+1 +
8

12
un −

1
12

un−1
)

(4.39)

Θn+1 − Θn

∆t
=

23
12

(
− (u · ∇) Θ +

w
2

)n
−

16
12

(
− (u · ∇) Θ +

w
2

)n−1

+
5
12

(
− (u · ∇) Θ +

w
2

)n−2
+ ∇2

(
5
12

Θn+1 +
8

12
Θn −

1
12

Θn−1
)

(4.40)

or in more compact form:(
5Pr∇2 −

12
∆t

)
un+1 = gn, (4.41)
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(
5∇2 −

12
∆t

)
Θn+1 = f n, (4.42)

where

gn = − 23 (− (u · ∇) u + PrRaΘez + QhPr (Cosχ∂y + S inχ∂z) b)n

+ 16 (− (u · ∇) u + PrRaΘez + QhPr (Cosχ∂y + S inχ∂z) b)n−1

− 5 (− (u · ∇) u + PrRaΘez + QhPr (Cosχ∂y + S inχ∂z) b)n−2

−

(
8Pr∇2 +

12
∆t

)
un + Pr∇2un−1 (4.43)

and

f n = − 23
(
− (u · ∇) Θ +

w
2

)n
+ 16

(
− (u · ∇) Θ +

w
2

)n−1

− 5
(
− (u · ∇) Θ +

w
2

)n−2
−

(
8∇2 +

12
∆t

)
Θn + ∇2Θn−1. (4.44)

The time scheme is third order accurate, robust and stable, whereas it needs three known

starting steps to start the iteration. The linear solution of the problem is used as the initial

step.
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4.4 Nonlinear Implementation

Momentum and Energy equations contain nonlinear advection terms which have significant

importance at high Rayleigh numbers. Since convolution sum is needed in calculation of

these nonlinear terms in Fourier space and consume more CPU time in Fourier space than in

real space, all nonlinear terms are calculated in real space and then transformed to Fourier

space to obtain their Fourier coefficients,

c1,2 =
(
V̄ , (u · ∇) u

)
=

Lx∫
0

Ly∫
0

1∫
−1

(
V̄∗ (u · ∇) u

)
dxdydz (4.45)

d =
(
T̄ , (u · ∇) Θ

)
=

Lx∫
0

Ly∫
0

1∫
−1

(
T̄ ∗ (u · ∇) Θ

)
dxdydz (4.46)

where c(1), c(2) and d are the time dependent coefficients corresponding to the nonlinear terms

projected onto the corresponding dual space. Forward and backward Fast Fourier transforms

(FFT) have been used in moving between real and Fourier spaces.

Derivatives of velocity and temperature fields are calculated by using Fast Fourier transforms

for horizontal directions, while polynomial differentiation matrices [44] have been used for

vertical direction. Fourier differentiation matrix approach [44] has been tested for horizontal

derivatives as well, but it observed that FFT differentiation approach is faster than differenti-

ation matrix approach for higher horizontal resolution.
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Figure 4.5: A schematic flow diagram of the solution of the time dependent nonlinear terms
c(1) and c(2).
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CHAPTER 5

THERMAL CONVECTION UNDER VERTICAL MAGNETIC

FIELD

A numerical study is performed in a periodic horizontal layer of thickness d between con-

ducting plates that are heated from below under the influence of a uniform vertical magnetic

field B0 applied externally in order to study the effect of vertical magnetic field on the flow

driven by the buoyancy in a rectangular cavity filled with low Prandtl number fluids such as

silicon (Pr = 0.01), gallium (Pr = 0.023) and molten silicon (Pr = 0.054) (Figure 5.1).

 

 

 

 

Ly

B0

x 
y z gravity 

Hot Rigid Plate 
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d 
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Figure 5.1: The geometry of the periodic convective domain under the vertical magnetic field

In this section, the governing equations for the vertical magnetic field are stated first as a

special case of the oblique equations of Chapter 2. Weak formulation in terms of the generated

bases is given. Discretized form of the equations is then numerically integrated to study the
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linear and nonlinear convective regimes. The effect of the vertical magnetic field on thermal

convection is studied in these regime. The results are discussed and compared with theoretical

and experimental results in literature.

5.1 Governing Equations

To ensure the continuity of this chapter, some of the formulations in the previous chapters are

repeated. Nondimensional form of the governing equations when only the vertical magnetic

field is present in the system is written by introducing χ = π/2 to (2.32)-(2.36) in the following

form:

∇ · u = 0, (5.1)

∂u
∂t

= − (u · ∇) u − ∇Π + PrRahΘez + Pr∇2u + QhPr (ez · ∇) b, (5.2)

∂Θ

∂t
+ (u · ∇) Θ =

w
2

+ ∇2Θ, (5.3)

∇ · b = 0, (5.4)

∇2b = − (ez · ∇) u, (5.5)

where ez is the unit vector in the z direction opposite to the direction of gravity, b = (bx, by, bz)

the induced magnetic vector field and Θ is the deviation from the linear conductive temper-

ature profile. The three dimensionless parameters Rayleigh (Ra = 8Rah), Chandrasekhar

(Q = 4Qh) and Prandtl (Pr) numbers in the vertical magnetic field are, as before, defined as

follows:

Ra =
g 4 Td3α

κν
, Q =

B2
0d2

ρµνλ
, Pr =

ν

κ
. (5.6)

The total magnetic field in the presence of an externally applied vertical magnetic field be-

comes

B = ez +
κ

λ
b (5.7)

which indicates that the induced magnetic field b is weak compared to the externally imposed

uniform magnetic field B0 with the assumption of low magnetic Prandtl number Pm = ν/λ

(κ � λ). Since the solenoidal bases are constructed to satisfy the divergence-free conditions

and as well as the quasi-steady relation between magnetic and velocity fields, the equations

(5.1), (5.4) and (5.5) are automatically satisfied. The number of equations in the system is
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reduced from nine to four equations that are the momentum and the energy equations. After

the introduction of the truncated expansion of the flow variables in terms of the bases as in

(4.3), (4.4) and (4.5), the residues in these equations can be written in the following form:

Ru = −
∂u
∂t
− (u · ∇) u − ∇Π + PrRahΘez + Pr∇2u + QhPr (ez · ∇) b, (5.8)

RΘ = −
∂Θ

∂t
− (u · ∇) Θ −

w
2

+ ∇2Θ, (5.9)

The vanishing Galerkin projection of these residues in the projection space spanned by the

dual vectors V̄ (1)
p , V̄ (2)

p and T̄p yields

Lx∫
0

Ly∫
0

1∫
−1

V̄ · Ru dz =

Lx∫
0

Ly∫
0

1∫
−1

V̄ ·
[
−
∂u
∂t
− (u · ∇) u − ∇Π + PrRahΘez

]
dxdydz +

Lx∫
0

Ly∫
0

1∫
−1

V̄ ·
[
Pr∇2u + QhPr (ez · ∇) b

]
dxdydz = 0 (5.10)

Lx∫
0

Ly∫
0

1∫
−1

T̄RΘ dz =

Lx∫
0

Ly∫
0

1∫
−1

T̄
[
−
∂Θ

∂t
− (u · ∇) Θ −

w
2

+ ∇2Θ

]
dxdydz = 0 (5.11)

or in compact matrix form:


(
V̄ (1)

q ,V (1)
p

)
0 0

0
(
V̄ (2)

q ,V (2)
p

)
0

0 0
(
T̄q,Tp

)
︸                                         ︷︷                                         ︸

Mass−Matrix


ȧ(1)

p

ȧ(2)
p

ḃp

 +


c(1)

c(2)

d

 =

Pr



(
V̄ (1)

q , (−γ2 + D2)V (1)
p

)
+ 0 0(

V̄ (1)
q ,QhDB(1)

p

)
0

(
V̄ (2)

q , (−γ2 + D2)V (2)
p

)
+ Rah

(
V̄ (2)

q ,Tpez

)(
V̄ (2)

q ,QhDB(2)
p

)
0

(
T̄q,V

(2)
p · ez

)
/2Pr

(
T̄q,∇

2Tp

)
/Pr

︸                                                                                                ︷︷                                                                                                ︸
S ti f f ness−Matrix



a(1)
p

a(2)
p

bp


(5.12)

where γ2 = ξ2 + η2 and D = d
dz .
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5.2 Linear Stability Analysis

Linear stability of the magnetoconvection equations is investigated by Chandrasekhar [5].

For non-magnetic case, Chandrasekhar found that critical wavenumber and critical Rayleigh

number are independent of the Prandtl number at the convective threshold. Reid and Harris

[42] found the stability curve has one minima at critical wavenumber equal to 3.117 and

critical Rayleigh numbers at 1707.8 for viscous fluids confined between rigid plate. Below

the critical value, there is no motion and the heat is transferred by conduction across the fluid

layer.

In order to test the solenoidal basis and the projection procedure, first we consider the linear

stability of the conductive (no-motion) state leading to the critical values when the convective

motion just sets in. At this state, the velocity and temperature perturbations over the conduc-

tive state are small, and so the nonlinear terms in the governing equations (2.33) and (2.34)

can be linearized around no-motion state to get the residues:

Ru = −
∂u
∂t
− ∇Π + PrRahΘez + Pr∇2u + QhPr (ez · ∇) b, (5.13)

RΘ = −
∂Θ

∂t
−

w
2

+ ∇2Θ. (5.14)

and their Galerkin projections as follows:

Lx∫
0

Ly∫
0

1∫
−1

V̄ · Ru dz =

Lx∫
0

Ly∫
0

1∫
−1

V̄ ·
[
−
∂u
∂t
− ∇Π + PrRahΘez

]
dxdydz +

Lx∫
0

Ly∫
0

1∫
−1

V̄ ·
[
Pr∇2u + QhPr (ez · ∇) b

]
dxdydz = 0 (5.15)

Lx∫
0

Ly∫
0

1∫
−1

T̄RΘ dz =

Lx∫
0

Ly∫
0

1∫
−1

T̄
[
−
∂Θ

∂t
−

w
2

+ ∇2Θ

]
dxdydz = 0. (5.16)

This system of ordinary differential equations can be written in matrix form:
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
(
V̄ (1)

q , V̂ (1)
p

) (
V̄ (1)

q ,V (2)
p

)
(
V̄ (2)

q ,V (1)
p

) (
V̄ (2)

q ,V (2)
p

)

ȧ

(1)
p

ȧ(2)
p

 = PrRah


(
V̄ (1)

q ,Tpez
)

(
V̄ (2)

q ,Tpez
)
 [bp

]

+Pr


(
V̄ (1)

q ,∇2V (1)
p

) (
V̄ (1)

q ,∇2V (2)
p

)
(
V̄ (2)

q ,∇2V (1)
p

) (
V̄ (2)

q ,∇2V (2)
p

)

a

(1)
p

a(2)
p

 (5.17)

+Pr


(
V̄ (1)

q ,Qh (ez · ∇) B(1)
p

) (
V̄ (1)

q ,Qh (ez · ∇) B(2)
p

)
(
V̄ (2)

q ,Qh (ez · ∇) B(1)
p

) (
V̄ (2)

q ,Qh (ez · ∇) B(2)
p

)

a

(1)
p

a(2)
p



(
T̄q,Tp

)
ḃp =

(
T̄q,V

(1)
p · ez

)
a(1)

p +
(
T̄q,V

(2)
p · ez

)
a(2)

p +
(
T̄q,∇

2Tp
)

bp (5.18)

Due to construction of the solenoidal basis and their duals, cross inner product terms between

the bases and their duals vanish, therefore the system (5.17) and (5.18) reduce to:


(
V̄ (1)

q , V̂ (1)
p

)
0

0
(
V̄ (2)

q ,V (2)
p

)

ȧ

(1)
p

ȧ(2)
p

 = PrRah

 0(
V̄ (2)

q ,Tpez
)
 [bp

]

+Pr


(
V̄ (1)

q ,∇2V (1)
p

)
0

0
(
V̄ (2)

q ,∇2V (2)
p

)

a

(1)
p

a(2)
p

 (5.19)

+Pr


(
V̄ (1)

q ,Qh (ez · ∇) B(1)
p

)
0

0
(
V̄ (2)

q ,Qh (ez · ∇) B(2)
p

)

a

(1)
p

a(2)
p



(
T̄q,Tp

)
ḃp =

(
T̄q,V

(2)
p · ez

)
a(2)

p +
(
T̄q,∇

2Tp
)

bp (5.20)

If the equations (5.19) and (5.20) are combined in a system and written in the matrix form,

the Mass and Stiffness matrices for the linearized system are obtained as:
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
(
V̄ (1)

q ,V (1)
p

)
0 0

0
(
V̄ (2)

q ,V (2)
p

)
0

0 0
(
T̄q,Tp

)
︸                                         ︷︷                                         ︸

Mass−Matrix


ȧ(1)

p

ȧ(2)
p

ḃp

 =

Pr



(
V̄ (1)

q , (−γ2 + D2)V (1)
p

)
+ 0 0(

V̄ (1)
q ,QhDB(1)

p

)
0

(
V̄ (2)

q , (−γ2 + D2)V (2)
p

)
+ Rah

(
V̄ (2)

q ,Tpez

)(
V̄ (2)

q ,QhDB(2)
p

)
0

(
T̄q,V

(2)
p · ez

)
/2Pr

(
T̄q,∇

2Tp

)
/Pr

︸                                                                                            ︷︷                                                                                            ︸
S ti f f ness−Matrix



a(1)
p

a(2)
p

bp


. (5.21)

These matrices can be computed numerically by using the spatial discretization introduced

in section 4.1.

The assumption of time dependence in the form

[a(1); a(2); b] ∝ exp(ςt) (5.22)

reduces the system to a generalized eigenvalue problem for the eigenvalues ς. The critical

wave-number kc and Rayleigh number Rac values for different Q values are listed in Table

5.1 for the rightmost eigenvalue just crossing the imaginary axis. These are obtained at the

selection of n = 0 and m = 1 (that is, kc = ξ1 = 2π/sx) in (4.3), (4.4) and (4.5). The variation

of the wave number kc at the onset of the instability as a function of Q and the variation

of the critical Rayleigh number for the onset of instability as a function of Q are plotted in

Figures 5.2 and 5.3, respectively. The corresponding marginal stability curves for increasing

Q values is plotted in Figure 5.5. The eigenvalue spectrum of the critical Rayleigh number

for the corresponding Chandrasekhar number is shown in Figure 5.4. These are in agreement

with the linear analysis in Chandrasekhar [5]. The increase in the critical wave number with

increasing Chandrasekhar number is in agreement with the reported asymptotic dependence

on Q of the associated wave number, as stated in Chandrasekhar [5].
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Figure 5.2: Critic wave number(kc) versus magnetic field strength (Q).
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Figure 5.3: Critic Rayleigh number (Rac) versus magnetic field strength (Q)
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Table 5.1: Linear stability points for various Q and wavenumber kc

Chandrasekhar [5] Present Work (Resolution)
Q kc Rac Rac (Nx × Ny × Nz)
0 3.13 1707.8 1707.8 (4 × 4 × 9)
10 3.25 1945.9 1945.8 (4 × 4 × 13)
50 3.68 2802.1 2802.1 (4 × 4 × 13)
100 4.00 3757.4 3757.4 (4 × 4 × 17)
200 4.45 5488.6 5488.6 (4 × 4 × 17)
500 5.16 10110.0 10110.0 (4 × 4 × 21)
1000 5.80 17103.0 17103.0 (4 × 4 × 21)
2000 6.55 30125.0 30125.0 (4 × 4 × 25)
4000 7.40 54697.0 54697.0 (4 × 4 × 29)
6000 7.94 78391.0 78391.0 (4 × 4 × 29)
8000 8.34 101606.0 101606.0 (4 × 4 × 29)

10000 8.66 124509.0 124509.0 (4 × 4 × 33)
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Figure 5.4: Eigenvalue spectrum at critic Rayleigh number for different Chandrasekhar num-
bers.
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Figure 5.5: Linear stability curves for different magnetic field strength. Solid circle shows
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5.3 Nonlinear Analysis

Time discretization of the governing system (5.12) is obtained semi-implicitly by third or-

der Adams-Bashforth (AB3) and Adams-Moulton (AM3) schemes. The nonlinear advective

terms are integrated explicitly using third order Adams-Bashforth and the linear terms are

integrated implicitly by third order Adams-Moulton. The resulting time discretized form of

the nonlinear governing system can be written in more compact form as follows:(
5Pr∇2 −

12
∆t

)
un+1 = gn, (5.23)

(
5∇2 −

12
∆t

)
Θn+1 = f n, (5.24)

where

gn = − 23 (− (u · ∇) u + PrRaΘez + QhPrDb)n

+ 16 (− (u · ∇) u + PrRaΘez + QhPrDb)n−1

− 5 (− (u · ∇) u + PrRaΘez + QhPrDb)n−2

−

(
8Pr∇2 +

12
∆t

)
un + Pr∇2un−1 (5.25)

and

f n = − 23
(
− (u · ∇) Θ +

w
2

)n
+ 16

(
− (u · ∇) Θ +

w
2

)n−1

− 5
(
− (u · ∇) Θ +

w
2

)n−2
−

(
8∇2 +

12
∆t

)
Θn + ∇2Θn−1. (5.26)

The initial conditions for the time dependent coefficients are obtained from the linear solu-

tion of the governing equations (5.13-5.14). Random perturbations are added onto the time

dependent coefficients of temperature. The numerical integration is continued until transients

disappear. For instance, for 2-D steady roll regime, the integration is continued until the

toroidal component of the kinetic energy (Etor) reduces to 10−16. Each run uses the last nu-

merical flow field of the previous run as the initial condition.

In the horizontal directions, a resolution of Nx = Ny = 16 and in the vertical direction, Nz = 21

are mostly used in the subsequent simulations unless stated otherwise. In the horizontal direc-

tions 16 nodes are well enough to resolve the model equations, but in the vertical z direction

51



at least Nz = 21 nodes should be used for high Rayleigh and Chandrasekhar numbers. But,

higher resolutions, such as Nz = 25 or Nz = 29, are used in the vertical direction in order

to test the results for convergence. Samples of convergence with the resolution are shown in

Tables 5.2 and 5.3. Results in these tables are generated for two different Rayleigh numbers,

Ra = 15000 and Ra = 30000, and for Q = 400 with an aspect ratio Γ [3 : 1.5]. Nusselt num-

ber values corresponding to the vertical resolution Nz = 21, Nz = 25 and Nz = 29 show little

change.

Table 5.2: Grid refinement test in horizontal directions for Pr = 0.05 and Q = 400.

Nx = Ny = 12 Nx = Ny = 16 Nx = Ny = 20
Ra = 15000 Nu = 1.4522 Nu = 1.4528 Nu = 1.4523
Ra = 30000 Nu = 2.2829 Nu = 2.2802 Nu = 2.2870

Table 5.3: Grid refinement test in vertical direction for Pr = 0.05 and Q = 400.

Nz = 21 Nz = 25 Nz = 29
Ra = 15000 Nu = 1.4522 Nu = 1.4528 Nu = 1.4528
Ra = 30000 Nu = 2.2857 Nu = 2.2802 Nu = 2.2805

Polynomial interpolation over Gauss-Legendre-Lobatto (GLL) grid provides denser nodal

configurations near the z boundaries, which help representing boundary layers accurately.

For example, in order to resolve the thermal boundary layers, at least, three nodes should

be included in this layer for stability. Here, the thermal boundary layer thickness δθ can be

written in terms of heat transfer rate as stated in [45], as follows:

δθ =
1

2Nu
. (5.27)

Time steps ∆t are selected in the interval 1×10−4 < ∆t < 5×10−3. In any case, ∆t = 5×10−3

is used first, if it is not resolving enough, then it is halved and, so on.

Averaged kinetic energy, poloidal and toroidal energy, Nusselt number, frequency of oscilla-

tions are monitored during the time integration. The averaged kinetic energy is computed by

52



integration of the square of the horizontally and time averaged velocity field along z, that is:

E =
1
2

1∫
−1

〈u〉2 dz. (5.28)

Since the velocity field is solenoidal, it can be decomposed in the following form

u = 5 × (5 × ezϕ) + 5 × ezψ. (5.29)

Here, the first term denotes the poloidal and the second term the toroidal components of the

velocity for some functions ϕ and ψ. The poloidal component of velocity with vanishing

vertical vorticity component is related to the two-dimensional convective rolls. Furthermore,

only the poloidal component of motion contributes to the convective heat transport. The

poloidal component of the kinetic energy is computed by integration of the square of the

average of the first term in (5.29) along z, as follows:

Epol =
1
2

1∫
−1

〈5 × (5 × ezϕ)〉2 dz. (5.30)

Since the toroidal component of velocity is associated with the vertical vorticity component,

it shows oscillatory regime features in which vertical vorticity plays important role and it is

inactive for the two-dimensional steady roll regime. The toroidal component of kinetic energy

is computed by integration of the square of the average of the second term in (5.29) along z,

that is:

Etor =
1
2

1∫
−1

〈5 × ezψ〉
2 dz. (5.31)

The energy of the toroidal component of motion increases with Rayleigh number while that

of the poloidal component exhibits the similar variation as the heat transport.

The effectiveness of the convective heat transport is characterized by the dimensionless Nus-

selt number which is defined by the ratio of the total heat transport to heat transport by heat

conduction only between top and bottom plates. It can be computed simply by using the

averaged temperature gradient at the wall as follows:

Nu = 1 + 2

∣∣∣∣∣∣
〈
∂Θ

∂z

〉∣∣∣∣∣∣
wall

. (5.32)

If Nusselt number is close to unity, it indicates weak convective motions. A larger Nusselt

number corresponds to stronger convective motions. The frequency f and the period T = 1/f

are used to quantify the flow in the oscillatory regimes (periodic, double periodic, etc.)
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5.3.1 Stationary Flow

The numerical experiments are performed to study the effects of varying Q (magnetic field

strength) and Ra (Rayleigh number) on the convective heat transport efficiency indicated by

Nusselt number (Nu). Numerical results are compared with the numerical study of Mössner

and Müller [25]. In their study, the flow is numerically investigated in a rectangular cavity

with aspect ratio Γ [6 : 3] using a resolution of at least 80 × 80 × 128. In their study, the

natural convection is driven by a vertical temperature gradient and magnetic field is vertically

oriented. The lateral walls are taken as adiabatic. The calculations are presented for varying

Hartmann number, which corresponds to the square root of Chandrasekhar number, for Ra ≤

5 · 104 and Pr = 0.05 and a second-order finite difference scheme with staggered grid is

employed to solve the dimensionless equations with Adams-Bashforth time discretization for

dimensionless time step ∆t = 10−3 and ∆t = 10−4. They report the dependence of the number

convection rolls on Rayleigh and Chandrasekhar numbers. It is shown that the number of

the rolls in the cavity decreases with increasing Rayleigh number whereas increases with

increasing Chandrasekhar number.

In the present study, a liquid metal with Pr = 0.05 is selected as the convective fluid in a layer

with aspect ratio Γ [3 : 1.5] and subjected to a vertical magnetic field. The eigenfunctions of

the linear stability is taken as the initial condition. In our computation, at most 16×16×21 grid

size is used which is almost mush less than [25] in each direction and perfectly conducting

rigid boundaries are taken in z direction whereas z boundaries are electrically insulated in [25].

Despite these differences in configuration, the Nusselt number values obtained in Table 5.4 are

all comparable but bigger than those reported in [25]. This is also due to restraining influence

of the lateral walls in [25]. The reported result in [25] that the number of the convection rolls

increases as the Chandrasekhar number increases is also observed in the present study.

In Figures 5.6-5.9, the time record of nonmagnetic convective flow (Q = 0) for three compo-

nents of velocity and temperature is compared with the magnetoconvective flow at Q = 400

for a Rayleigh number of Ra = 15000. While a chaotic flow is observed in (Q = 0) case, when

a magnetic field corresponding to Q = 400 is imposed to the convective flow, the fluctuations

are damped.

The power spectrum for the nonmagnetic and the magnetoconvective flows are compared
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in Figure 5.10 for velocity and in Figure 5.11 for temperature at Chandrasekhar number of

Q = 400 and Rayleigh number of Ra = 15000. When the power spectrum of non-magnetic

case (Q = 0) is compared with the power spectrum of magnetoconvective flow at Q = 400,

damping is observed in the whole frequency range. The damping effect of the vertical mag-

netic field is also observed in Nusselt number values in Figure 5.14. The chaotic flow damp-

ens to a stationary flow when a magnetic field corresponding to Q = 400 and Ra = 15000 is

imposed.

A further verification of the present computation is presented in Figures 5.12 and 5.13 that

the lateral extension of the rolls in the y−direction decreases with increasing Chandrasekhar

number, as also reported in [25].

Table 5.4: Nu and flow pattern for Pr = 0.05 and B ‖ g.

Chandrasekhar Nu (Roll numbers)
Number (Q)

[25] Present Work
Γ [6 : 3] Γ [3 : 1.5]

Q = 0 1.98 (4 rolls) 2.53 (2 rolls)
Q = 400 1.32 (6 rolls) 1.45 (4 rolls)

Ra = 15000 Q = 625 1.23 (6 rolls) 1.36 (4 rolls)
Q = 784 1.12 (8 rolls) 1.09 (4 rolls)
Q = 900 1 1
Q = 0 2.49 (4 rolls) 2.92 (2 rolls)
Q = 400 2.19 (6 rolls) 2.58 (4 rolls)

Ra = 30000 Q = 900 1.57 (6 rolls) 1.88 (4 rolls)
Q = 1225 1.31 (8 rolls) 1.49 (4 rolls)
Q = 2025 1 1
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Figure 5.6: U component of the velocity variations at Q = 0 and Q = 400,Ra = 15000,
Pr = 0.05, 16 × 16 × 21 resolution, x = Lx/4, y = Ly/4 and z = 0.6941 with aspect ratio
Γ [3 : 1.5].
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Figure 5.7: V component of the velocity variations at Q = 0 and Q = 400,Ra = 15000,
Pr = 0.05, 16 × 16 × 21 resolution, x = Lx/4, y = Ly/4 and z = 0.6941 with aspect ratio
Γ [3 : 1.5].
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Figure 5.8: W component of the velocity variations at Q = 0 and Q = 400,Ra = 15000,
Pr = 0.05, 16 × 16 × 21 resolution, x = Lx/4, y = Ly/4 and z = 0.6941 with aspect ratio
Γ [3 : 1.5].
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Figure 5.9: Temperature variations at Q = 0 and Q = 400,Ra = 15000, Pr = 0.05, 16×16×21
resolution, x = Lx/4, y = Ly/4 and z = 0.6941 with aspect ratio Γ [3 : 1.5].
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Figure 5.10: Power spectrum of V velocity at Q = 0 and Q = 400, Ra = 15000, Pr = 0.05,
16 × 16 × 21 resolution, x = Lx/4, y = Ly/4 and z = 0.6941 with aspect ratio Γ [3 : 1.5].
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Figure 5.11: Power spectrum of T temperature at Q = 0 and Q = 400, Ra = 15000, Pr = 0.05,
16 × 16 × 21 resolution, x = Lx/4, y = Ly/4 and z = 0.6941 with aspect ratio Γ [3 : 1.5].
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Figure 5.12: The solid lines shows the stream function of the velocity fields and dashed lines
shows the temperature contours for Ra = 15000 at Pr = 0.05 with aspect ratio Γ [3 : 1.5].
The pattern on the top at Q = 0 and on the bottom at Q = 400

Q=0

Z

0 1 2 3 4 5
−1

−0.5

0

0.5

1

X

Z

Q=900

0 1 2 3 4 5
−1

−0.5

0

0.5

1

Figure 5.13: The solid lines shows the stream lines of the velocity fields and dashed lines
shows the temperature contours for Ra = 30000 at Pr = 0.05. The pattern on the top at Q = 0
and on the bottom at Q = 900.
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Further numerical experiments are performed to study the effects of varying magnetic field

strength (Q) on the convective heat transport efficiency indicated by Nusselt number (Nu) at

selected Rayleigh number (Ra) values. A liquid metal with Pr = 0.05 is selected in a layer

with aspect ratio Γ [3 : 1.5] and subjected to a vertical magnetic field. The computation is

started with the flow field just supercritical obtained using the eigenfunctions of the linear

stability study. It is known that application of a vertical magnetic field suppresses the con-

vective motions as shown in Figure 5.15 by decreasing Nu values as Q increases, ultimately

approaching to the conductive state with Nu = 1 . In the process, kinks appear at Q = 1400

for Ra = 30000, at Q = 2500 for Ra = 50000 and at Q = 3600 for Ra = 80000. The kinks

coincide with the increase in the number of rolls and thus decrease in the wavelength. This is

also observed and discussed in an earlier numerical study [37]. This change in the roll pattern

is shown in Figure 5.16 when Q = 2250 is increased to Q = 3000 for Ra = 50000 at the

transient stages t = 0, 30, 65. All these runs are in the steady roll motion regime and use a

typical dimensionless time step between 10−3 and 10−4.
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Figure 5.15: Nusselt number, Nu versus Chandrasekhar number, Q for Pr = 0.05 with aspect
ratio Γ [3 : 1.5].

62



Z

0 1 2 3
0

1

Z

0 1 2 3
0

1

X

Z

0 1 2 3
0

1

Figure 5.16: Temperature contour in the xz plane during the stages t = 0, 30, 60 of restructur-
ing when initially Q = 2500 is suddenly set to 3000 at Ra = 50000, Pr = 0.05 with aspect
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5.3.2 Time Dependent Flows

In this section, we discuss the effects of the the strong magnetic field Q in the vertical direction

on the thermal convection. The Rayleigh number range over the critical value is examined

for the impact on heat transport. The results are compared with study of Busse and Clever

[19]. In that paper, thermal convection in a fluid layer heated from below is solved numer-

ically in the case of strong vertical magnetic field permeating the convective layer. In [19],

spatially periodic solutions in the x and y-directions are assumed and the dependent variables

in the z-direction are expanded in a complete system of functions satisfying the boundary

conditions. The resulting nonlinear system reduced from the model equations using Galerkin

projection is solved using Newton-Raphson method. They observe that for a given horizontal

spatial period, the heat transport decreases with increasing Rayleigh number for steady three-

dimensional convective flow as well as for time periodic forms of convection. The stability

limits of different flow regimes such as stationary, time periodic, etc., are shifted to higher

Rayleigh numbers and as the severity of the magnetic field grows, the characteristic time

scales are reduced.

In order to compare the result with Busse and Clever [19], Pr = 0.01 and Q = 2000 and aspect

ratio Γ [1.5 : 1] are chosen. As shown in Figure 5.17, the heat transport and poloidal kinetic

energy at Ra = 31000 show an upward trend and then suddenly decrease with increasing

Rayleigh number for steady two-dimensional convective flow as well as for time periodic

flows as also observed by Busse and Clever [19]. As the Rayleigh number is further increased

to Ra = 35500, it is observed that time periodic flow shifts to stationary flow and the heat

transport and poloidal kinetic energy begin to rise.

The toroidal component of the kinetic energy appears for Ra ≥ 31500 that is the underlay-

ing flow contains vertical vorticity component and thus no longer two dimensional. Since the

study is performed just above the marginal stability curve corresponding to Q = 2000, toroidal

values are too small, that is smaller than 10−3 and thus it can be considered as noise except

those at Ra = 31500 and Ra = 35000 which are significant. And then at Ra ≥ 35500, toroidal

energy disappears again and we observe two-dimensional steady flow. This situation is sup-

ported by the plots of temperature and velocity field in the xy plane for Ra = 31000 − 3600

in Figures 5.23 - 5.28. At Ra = 31000 the flow is in the form of stationary two dimensional

roll motion that means that in the xy plane only parallel lines appear. Otherwise, as in Figures
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5.24 - 5.27), the parallel lines disappear and the flow becomes three dimensional.

The power spectrum for Ra = 32000− 34500 are shown in Figure 5.18. Periodic flow regime

is observed at Rayleigh numbers in this interval. The power spectrum for periodic Ra = 32500

and Ra = 33500 are examined and the discrete frequencies are identified in Figures 5.19 and

Figure 5.21 respectively. As in Nusselt number, decline in the frequency values is observed

as Rayleigh number is increased in this range.

As Rayleigh number is increased, the time series of temperature variation are plotted in Fig-

ures 5.29 and 5.30 at Q = 2000. Since the flow is steady at Ra = 31000, no fluctuations are

observed. When toroidal component is present in the flow, a periodic signal is observed as

in Figure 5.29 for Ra = 32000. A further increase in the Rayleigh number results in more

intensive temporal variation up to Ra = 35000. As the Rayleigh number is further increased

to Ra = 35500, it is observed that time periodic flow shifts to stationary flow and the heat

transport and poloidal kinetic energy begin to rise due to the strong magnetic field effects on

the flow. The flow does not break down the suppressing effect of the strong magnetic field

and stay on the steady region up to Ra = 63000. At Ra = 63500 flow shows periodic behavior

and at Ra = 65000 transient to the chaotic region.
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Figure 5.18: Power spectrum on periodic regions for Γ [1.5 : 1], Pr = 0.01 and Q = 2000.
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Figure 5.19: Power spectrum on periodic region at Ra = 32500 for Γ [1.5 : 1], Pr = 0.01 and
Q = 2000.
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Figure 5.20: Nusselt number versus time at Ra = 32500 for Γ [1.5 : 1], Pr = 0.01 and Q =

2000.
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Figure 5.21: Power spectrum on periodic region at Ra = 33500 for Γ [1.5 : 1], Pr = 0.01 and
Q = 2000.
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Figure 5.22: Nusselt number versus time at Ra = 33500 for Γ [1.5 : 1], Pr = 0.01 and Q =

2000.
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Figure 5.23: Velocity field and temperature contour for Ra = 31000 at z = 0.7723, Γ [1.5 : 1],
Pr = 0.01 and Q = 2000. Here, arrows shows the velocity field, solid lines indicate the
temperature contour.
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Figure 5.24: Velocity field and temperature contour for Ra = 32000 at z = 0.7723, Γ [1.5 : 1],
Pr = 0.01 and Q = 2000. Here, arrows shows the velocity field, solid lines indicate the
temperature contour.
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Figure 5.25: Velocity field and temperature contour for Ra = 33000 at z = 0.7723, Γ [1.5 : 1],
Pr = 0.01 and Q = 2000. Here, arrows shows the velocity field, solid lines indicate the
temperature contour.
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Figure 5.26: Velocity field and temperature contour for Ra = 34000 at z = 0.7723, Γ [1.5 : 1],
Pr = 0.01 and Q = 2000. Here, arrows shows the velocity field, solid lines indicate the
temperature contour.

71



0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Y

X

Ra=35000

 

 

−6

−4

−2

0

2

4

6

8
x 10

−3

Figure 5.27: Velocity field and temperature contour for Ra = 35000 at z = 0.7723, Γ [1.5 : 1],
Pr = 0.01 and Q = 2000. Here, arrows shows the velocity field, solid lines indicate the
temperature contour.
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Figure 5.28: Velocity field and temperature contour for Ra = 36000 at z = 0.7723, Γ [1.5 : 1],
Pr = 0.01 and Q = 2000. Here, arrows shows the velocity field, solid lines indicate the
temperature contour.

72



−0.05

0

0.05
Ra=31000

T

−0.05

0

0.05
Ra=32000

T

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.05

0

0.05

T

Ra=33000

Time

Figure 5.29: Temperature variations at Ra = 31000 - Ra = 33000, Q = 2000 , Pr = 0.05,
16 × 16 × 21 resolution, x = Lx/4, y = Ly/4 and z = 0.6941.
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Figure 5.30: Temperature variations at Ra = 34000 - Ra = 36000, Q = 2000 , Pr = 0.05,
16 × 16 × 21 resolution, x = Lx/4, y = Ly/4 and z = 0.6941.
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The presented results are also compared with the experimental data generated by Aurnou and

Olson in [36]. In that study, small Prandtl number fluid (liquid gallium, Pr = 0.023) is used in

a large convection tank with aspect ratio Γ [8 : 8]. The experimental data for Nusselt number

in supercritical magnetoconvection regime is shown to fit the following power law:

Nu = 0.23(Q−1Ra)0.50±0.03 for Q = 670 with Q−1Ra > 25. (5.33)

This power law in 5.33 is derived using simple scaling arguments which was formulated by

the basic force balance between buoyancy and the Lorentz force in regards to heat transport.

However, no upper bound of validity of this law is given in the experimental study of Aurnou

and Olson [36].

We performed a numerical study at various spatial and temporal resolutions for the same flow

parameters that are used in the experimental study [36]. Sequare box with aspect ratio of

Γ [0.8 : 0.8] are chosen due to the computaion cost.

In Figure 5.31 a logarithmic plot of Nusselt number versus (Q−1Ra)0.50 is plotted for increas-

ing Rayleigh number at a fixed Chandrasekhar number Q = 670 in the range of Q−1Ra > 25.

At Ra = 17420 and Ra = 20100 the underlying flow is steady and at Ra = 23450 it is pe-

riodic, that is, the toroidal component is present in the flow (Figure 5.32). Beyond the value

of Ra = 30150, chaotic motions are observed. In Figure 5.33, increasing complexity of flow

is observed in plots in the xy plane as Rayleigh number is increased. It is observed in Figure

5.31 that the calculated numerical results stay in the range specified by the power law up to

Ra = 36800 only. This may be a the upper bound for the validity of the power law.
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Q = 670.
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Figure 5.32: Poloidal and toroidal kinetic energy versus Rayleigh number for vertical mag-
netic field at Pr = 0.023, Γ [0.8 : 0.8] and Q = 670.
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Figure 5.33: Velocity field and temperature contour on xy plane at z = 0.796, Γ [0.8 : 0.8],
Pr = 0.023, and Q = 670. Here, arrows shows the velocity field, solid lines indicate the
temperature contour.
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CHAPTER 6

THERMAL CONVECTION UNDER OBLIQUE MAGNETIC

FIELD

In the previous chapter, a periodic horizontal layer between conducting plates that are heated

from below under the influence of a uniform vertical magnetic field is discussed and as men-

tioned in the literature, the inhibition effect on an electrically conducting fluid is observed. In

this section, the convective flow under the influence of a oblique magnetic field is studied as

both vertical and horizontal components of a magnetic field are present.

6.1 Linear Stability Analysis

We consider the linear stability of the conductive (no-motion) state under an oblique magnetic

field that leads to critical Rayleigh values when the convective motion just sets in. At this

point, the velocity and temperature perturbations over the conductive state are small, so that

the nonlinear terms in the governing equations (2.33) and (2.34) can be linearized around

no-motion state to get the residual equations:

Ru = −
∂u
∂t
− ∇Π + PrRahΘez + Pr∇2u + QhPr (Cosχ∂y + S inχ∂z) b, (6.1)

RΘ = −
∂Θ

∂t
−

w
2

+ ∇2Θ. (6.2)

after introduction of truncated representations of the flow variables in terms of the correspond-

ing bases (4.3), (4.4) and (4.5). Vanishing Galerkin projection of these residuals in the space

spanned by the dual bases yields

Lx∫
0

Ly∫
0

1∫
−1

V̄ · Ru dz =

Lx∫
0

Ly∫
0

1∫
−1

V̄ ·
[
−
∂u
∂t
− ∇Π + PrRahΘez

]
dxdydz +
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Lx∫
0

Ly∫
0

1∫
−1

V̄ ·
[
Pr∇2u + QhPr (Cosχ∂y + S inχ∂z) b

]
dxdydz = 0 (6.3)

Lx∫
0

Ly∫
0

1∫
−1

T̄RΘ dz =

Lx∫
0

Ly∫
0

1∫
−1

T̄
[
−
∂Θ

∂t
−

w
2

+ ∇2Θ

]
dxdydz = 0. (6.4)

And, for this general case the system matrices (5.21) can be expanded to the following form:


(
V̄ (1)

q ,V (1)
p

)
0 0

0
(
V̄ (2)

q ,V (2)
p

)
0

0 0
(
T̄q,Tp

)
︸                                         ︷︷                                         ︸

Mass−Matrix


ȧ(1)

p

ȧ(2)
p

ḃp

 =

Pr



(
V̄ (1)

q , (−γ2 + D2)V (1)
p

)
+ 0 0(

V̄ (1)
q ,Qh (Cosχηmi + S inχD) B(1)

p

)
0

(
V̄ (2)

q , (−γ2 + D2)V (2)
p

)
+ Rah

(
V̄ (2)

q ,Tpez

)(
V̄ (2)

q ,Qh (Cosχηmi + S inχD) B(2)
p

)
0

(
T̄q,V

(2)
p · ez

)
/2Pr

(
T̄q,∇

2Tp

)
/Pr

︸                                                                                                                         ︷︷                                                                                                                         ︸
S ti f f ness−Matrix



a(1)
p

a(2)
p

bp


.

(6.5)

The assumption of time dependence in the form [a(1)a(2)b]T ∝ exp(ςt) reduces the system

to a generalized eigenvalue problem for the eigenvalues ς. The critical wave-number kc and

Rayleigh number Rac values for Q = 100 and for various angle χ values are listed in Table

6.1 for the rightmost eigenvalue just crossing the imaginary axis. These are obtained at the

selection of n = 1 and m = 0 in (4.3), (4.4) and (4.5). The corresponding marginal stability

curves for Q = 100 for χ = 0◦ to χ = 90◦ are plotted in Figure 6.1. These are in agreement

with the linear analysis in Chandrasekhar [5] and Busse and Clever [18]. The increase in the

critical wave numbers with increasing Chandrasekhar numbers is associated with the lateral

dimension of the convective rolls, as stated in Chandrasekhar [5]. This is explained in the

study of Burr and Müller, [38] by the lack of Joule dissipation for the vertical motions. Thus,

the system reduces the horizontal motion in order to minimize the loss of Joule dissipation

resulting in a decrease in the wavelength (increase in the wavenumber).
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Table 6.1: Linear stability points for various Angle χ and wavenumber kc for constant oblique
magnetic field Q = 100

Clever and Busse [18] Present Work (Resolution)
Angle kc Rac Rac (Nx × Ny × Nz)
χ = 0◦ 3.117 1707.8 1707.8 (4 × 4 × 9)
χ = 10◦ 3.16 1781.0 1781.7 (4 × 4 × 9)
χ = 20◦ 3.29 1984.9 1985 (4 × 4 × 13)
χ = 30◦ 3.45 2281.3 2281.4 (4 × 4 × 13)
χ = 40◦ 3.61 2625.5 2625.6 (4 × 4 × 13)
χ = 50◦ 3.75 2974.7 2974.9 (4 × 4 × 13)
χ = 60◦ 3.86 3290.7 3290.5 (4 × 4 × 13)
χ = 70◦ 3.94 3541.3 3541.4 (4 × 4 × 17)
χ = 80◦ 4.00 3701.9 3702.1 (4 × 4 × 17)
χ = 90◦ 4.01 3757.2 3757.4 (4 × 4 × 17)

1 2 3 4 5 6 7 8
103

104

Ra

k

 

 
Q = 0
Q = 100 −χ = 0

Q = 100 −χ = 30

Q = 100 −χ = 60
Q = 100 −χ = 90

Figure 6.1: Stability curves for non-magnetic case and a fixed magnetic field (Q = 100)is
applied at different angles. Solid circle shows critic wavenumber, kc and corresponding critic
Rayleigh number, Rac.
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The verification of the claim that in the two dimensional roll regime, only the vertical compo-

nent of the oblique magnetic field has an inhibition effect on the flow is shown in Figure 6.2.

The results of the vertical magnetic field with intensity QS in2χ is compared with inclined

magnetic field Q with angle χ = 30◦ in Figure 6.2. This claim is also supported by Figure 6.3

and Figure 6.4 amongst the angle χ, critical Rayleigh number and the critical wave number.

It can be observed from the Figure 6.3 and Figure 6.4, that, closer the angle to the vertical

(horizontal), higher (lower) the critical Rayleigh number and and the critical wave number.

In fact, in this regime the horizontal component contributes only to the alignment of the rolls

along. In Figure 6.3 and Figure 6.4 critical Rayleigh number, Rac(χ,Q) and corresponding

wave number, kc(χ,Q) is always larger than the Rayleigh-Bénard convection.
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Q = 100.sin(30)2 −χ = 90

Figure 6.2: Comparison the result of the vertical magnetic field QS in2χ with inclined mag-
netic field Q with angle χ = 30◦, at Q = 100.
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And also, critical Rayleigh number and corresponding wave numbers are listed in Table6.2

for the onset of the convection in the presence of oblique magnetic field Q. This table gives

an idea about the effects of the oblique magnetic field on the onset of the convection.

Table 6.2: Linear stability points for critic Rayleigh number Rac (upper number) and corre-
sponding critic wavenumber kc (lower number) for the onset of the convection in the presence
of oblique magnetic field Q.

Q 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

0 1707.8 1707.8 1707.8 1707.8 1707.8 1707.8 1707.8 1707.8 1707.8 1707.8
3.117 3.117 3.117 3.117 3.117 3.117 3.117 3.117 3.117 3.117

100 1707.8 1781 1984.9 2281.3 2625.5 2974.7 3290.7 3541.3 3701.9 3757.2
3.117 3.16 3.29 3.45 3.61 3.75 3.86 3.94 4 4.01

200 1707.8 1852.9 2246.4 2802 3435.2 4071.3 4644.3 5097.8 5388.5 5488.5
3.117 3.21 3.43 3.68 3.91 4.1 4.25 4.36 4.42 4.45

300 1707.8 1923.6 2496.3 3290.7 4188.7 5088.4 5898.9 6540.8 6952.5 7094.3
3.117 3.25 3.55 3.86 4.14 4.36 4.53 4.65 4.72 4.74

400 1707.8 1993.5 2737.6 3757.8 4906.2 6056.8 7094.6 7917.8 8445.1 8627.3
3.117 3.31 3.67 4.02 4.32 4.56 4.76 4.87 4.96 4.97

500 1707.8 2061.8 2970.9 4207.9 5597.3 6991.1 8249 9247.6 9888.8 10109.8
3.117 3.33 3.75 4.14 4.47 4.73 4.92 5.06 5.14 5.17

600 1707.8 2130 3198.5 4644.7 6268.6 7900.9 9374 10544 11297 11556
3.117 3.385 3.82 4.27 4.61 4.83 5.06 5.20 5.28 5.31

700 1707.8 2196.9 3422 5074 6931.7 8798.6 10487 11829 12694 12990
3.117 3.388 3.87 4.3 4.7 4.9 5.1 5.3 5.35 5.45

800 1707.8 2263 3640 5489 7569 9661 11556 13064 14034 14368
3.117 3.39 3.96 4.44 4.8 5.1 5.31 5.45 5.53 5.59

900 1707.8 2328 3854 5900 8202 10520 12622 14295 15371 15743
3.117 3.53 4.1 4.58 4.942 5.22 5.45 5.59 5.68 5.72

1000 1707.8 2393 4065 6302.8 8825 11367 13674 15510 16692 17101
3.117 3.57 4.11 4.61 5.01 5.295 5.57 5.69 5.79 5.85
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Figure 6.3: Critical Rayleigh numbers, Rac as a function of angle, χ and magnetic filed, Q.

0
100

200
300

400
500

600
700

800
900

1000

0
10

20
30

40
50

60
70

80
90

3.5

4

4.5

5

5.5

Qχ

k
c

Figure 6.4: Critical wave numbers, kc as a function of angle, χ and magnetic filed, Q.
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6.2 Nonlinear Analysis

The numerical experiments are performed to study the effects of varying angle (χ) and Rayleigh

number on the convective heat transport efficiency indicated by Nusselt number. We inves-

tigate the results in a square based convective box with the aspect ratio Γ [2.02 : 2.02] for

small Prandtl number, Pr = 0.05, at the supercritical parameter values. While the magnetic

field strength is kept at a constant value Q = 100, the Rayleigh number is increased and the

external magnetic field angle χ is varied. The computation is started with the initial flow field

just supercritical obtained using the eigenfunctions of the previous linear stability study. As

shown in Figure 6.5, Nusselt number increases with Rayleigh number. However, at one point,

at which the flow passes from stationary two dimensional roll motion to time periodic mo-

tion, Nusselt number suddenly drops and continue to increase as Rayleigh number increase.

As Rayleigh number is further increased, the flow passes to the double periodic and then to

chaotic regimes. This is also shown in Figures 6.6 to 6.9 by the emergence of toroidal com-

ponent of kinetic energy at that point, up to which only the poloidal component of kinetic

energy was present in the system.

Since the horizontal component of the magnetic field has only the effect of aligning the rolls

along in the steady roll motion regime and the vertical magnetic field has an inhibition effect

on the steady flow, the angle of the magnetic field is an important parameter at the point

where the flow starts to oscillate. Chandrasekhar [5], Busse and Clever [18] and Burr Müller

[39] state that the horizontal component of the magnetic field has no effect on the steady

convection rolls until roll solutions begin to loose its stability. This is observed in this study.

Therefore, the amplitude of the oscillations rises at Ra ≥ 12650 for χ = 90◦, Ra ≥ 9000 for

χ = 60◦, Ra ≥ 5450 for χ = 30◦ and Ra > 2900 for nonmagnetic cases. After the onset of

oscillations, the horizontal component has more inhibition effect than the vertical component

of the magnetic field [18]. This is observed in Figure 6.5 and that Nusselt number values

for various angle values tend to get closer to each other as Rayleigh number increase. This

means that the slope of the Nusselt-Rayleigh number curve decreases for smaller angle χ

values that is closer to the horizontal axis. Furthermore, for high Rayleigh numbers the heat

transport tends to decrease faster in the case of an oblique magnetic field at an angle closer to

the horizontal axis.
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Figure 6.5: Nusselt versus Rayleigh number for different angle χ at Pr = 0.05, Γ [2.02 : 2.02]
and Q = 100.

86



After this point oblique magnetic field with angle χ = 30◦ and χ = 60◦ are considered only.

This selection is motivated by the associated directions being close to the horizontal and to

the vertical, respectively. The detailed analysis of the vertical magnetic field in chapter 5 will

serve as a reference state. First, the study of the oblique magnetic field with angle χ = 60◦ is

performed.
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Figure 6.6: Poloidal and toroidal kinetic energy versus Rayleigh number for nonmagnetic
case (Q = 0) at Pr = 0.05, Γ [2.02 : 2.02].
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Figure 6.7: Poloidal and toroidal kinetic energy versus Rayleigh number for oblique magnetic
field at angle χ = 30◦, Pr = 0.05, Γ [2.02 : 2.02] and Q = 100.
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Figure 6.8: Poloidal and toroidal kinetic energy versus Rayleigh number for oblique magnetic
field at angle χ = 60◦, Pr = 0.05, Γ [2.02 : 2.02] and Q = 100.
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Figure 6.9: Poloidal and toroidal kinetic energy versus Rayleigh number for vertical magnetic
field at angle χ = 90◦, Pr = 0.05, Γ [2.02 : 2.02] and Q = 100.

Transition to the oscillatory regime from the two dimensional steady parallel roll regime oc-

curs at Ra ≥ 9000 for an oblique magnetic field in the yz−plane with angle χ = 60◦ at Q = 100

and Pr = 0.05. The steady two dimensional rolls are observed in their projections onto yz-

plane and onto the xy−plane in Figures 6.10 and 6.11 at Ra = 8750. If Rayleigh number is

increased just above this value, oscillatory motion is observed in the xy−plane in Figure 6.12

and the rolls in the yz−plane appear in Figure 6.13 at Ra = 9300. At this value of Rayleigh

number the flow is periodic and this period is computed using the frequency diagram in Figure

6.16. If Rayleigh number is further increased to Ra = 10300, the periodic regime gives way

to a chaotic regime. As expected, the motion in the xy−plane becomes more complex (Figure

6.14) than Ra = 9300 and this can also be seen in the frequency diagram in Figure 6.17 where

many more frequencies are excited.
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Figure 6.10: Velocity field and temperature contour on xy plane at z = 0.796, Ra = 8750,
Γ [2.02 : 2.02], Pr = 0.05, χ = 60◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.11: Velocity field and temperature contour on yz plane at x = 0.7854, Ra = 8750,
Γ [2.02 : 2.02], Pr = 0.05, χ = 60◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.12: Velocity field and temperature contour on xy plane at z = 0.796, Ra = 9300,
Γ [2.02 : 2.02], Pr = 0.05, χ = 60◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.13: Velocity field and temperature contour on yz plane at x = 0.7854, Ra = 9300,
Γ [2.02 : 2.02], Pr = 0.05, χ = 60◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.14: Velocity field and temperature contour on xy plane at z = 0.796, Ra = 10300,
Γ [2.02 : 2.02], Pr = 0.05, χ = 60◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.15: Velocity field and temperature contour on yz plane at x = 0.7854, Ra = 10300,
Γ [2.02 : 2.02], Pr = 0.05, χ = 60◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.16: Frequency spectrum for Ra = 9300, Γ [2.02 : 2.02], Pr = 0.05, χ = 60◦ and
Q = 100.
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Figure 6.17: Frequency spectrum at Ra = 10300, Γ [2.02 : 2.02], Pr = 0.05, χ = 60◦ and
Q = 100.
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Transition to the oscillatory regime from the two dimensional steady roll regime for an oblique

magnetic field with an angle χ = 30◦ and Q = 100 occurs for Ra > 5400 before the transition

for χ = 60◦. This is due to the angle χ = 30◦ being closer to the horizontal axis. The

corresponding flow projections are shown in Figures 6.18, 6.19 for Ra = 5400, depicting

two dimensional steady roll motion and in Figures 6.20 and 6.21 for Ra = 5450, depicting

the fluctuations superimposed onto the two dimensional rolls. Except the differences at the

transition Rayleigh number, the flow patterns are similar to those observed with angle χ = 60◦.

The periodic motion is also depicted using the frequency diagram in Figure 6.24. As Rayleigh

number is increased to Ra = 6281, the periodic regime gives way to chaotic motions. As

expected, the screen-shot of the motion in the xy−plane become more complex in (Figure

6.22) in comparison to that for Ra = 5450 and this is also shown in the frequency diagram

in Figure 6.25. In this frequency diagram besides the peaks representing the underlying flow,

there exist peaks at various frequency values.
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Figure 6.18: Velocity field and temperature contour on xy plane at z = 0.796, Ra = 5400,
Γ [2.02 : 2.02], Pr = 0.05, χ = 30◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.19: Velocity field and temperature contour on xz plane at y = 0.7854, Ra = 5400,
Γ [2.02 : 2.02], Pr = 0.05, χ = 30◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.20: Velocity field and temperature contour on xy plane at z = 0.796, Ra = 5450,
Γ [2.02 : 2.02], Pr = 0.05, χ = 30◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.21: Velocity field and temperature contour on xz plane at y = 0.7854, Ra = 5450,
Γ [2.02 : 2.02], Pr = 0.05, χ = 30◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.22: Velocity field and temperature contour on xy plane at z = 0.796, Ra = 6281,
Γ [2.02 : 2.02], Pr = 0.05, χ = 30◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.23: Velocity field and temperature contour on yz plane at x = 0.7854, Ra = 6281,
Γ [2.02 : 2.02], Pr = 0.05, χ = 30◦ and Q = 100. Here, arrows shows the velocity field, solid
lines indicate the temperature contour.
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Figure 6.24: Frequency spectrum at Ra = 5450, Γ [2.02 : 2.02], Pr = 0.05, χ = 30◦ and
Q = 100.
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Figure 6.25: Frequency spectrum at Ra = 6281, Γ [2.02 : 2.02], Pr = 0.05, χ = 30◦ and
Q = 100.
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CHAPTER 7

CONCLUSIONS

In this study, the effect of an imposed oblique magnetic field on the thermal convection in a

layer of an electrically conducting low Prandtl fluids (i.e liquid metals) between rigid plates

heated from below under the influence of gravity is numerically simulated in a computational

domain with periodic horizontal extent. Due to the assumptions of the rigidity of the plate

boundaries and periodicity in the horizontal extend, while no slip boundary conditions are

used at the vertical boundaries, periodic boundary conditions are employed in the horizontal

directions for the velocity and temperature components. The assumption of perfectly con-

ducting plates dictated the magnetic boundary conditions. Rayleigh-Bénard convection in an

electrically conducting fluid in the presence of magnetic field has long been studied both nu-

merically and experimentally in literature. Solenoidal bases approach has been applied in var-

ious configurations and in various ways. The current flow configuration has been studied by

Busse and Clever in [15] - [19] using solenoidal basis functions in a semi-analytic approach.

However, the solenoidal bases approach used in this study is novel in the way of the construc-

tion and the approach in the flow configuration of thermal convection under a magnetic field.

This approach provides a new perspective to numerical simulation of incompressible flows in

efficiently overcoming the hurdle of treating the pressure variable.

The two crucial stages in this work are the use of the Legendre polynomials and the associated

Gauss-Legendre-Lobatto (GLL) quadrature and the use the quasi-steady relationship between

velocity and magnetic fields under the limit of κ � λ to generate the solenoidal basis functions

for the magnetic field from those constructed for the velocity field. Legendre polynomial

representation provides a numerically stable interpolation property and the associated GLL

quadrature provides the tools for accurate evaluation of the integrals arising in the formulation
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of the model equations in the weak form. The construction of the solenoidal bases and their

duals are easier in their representation in terms of Legendre polynomials. This is due to the

unity weight associated with the integrals involving Legendre polynomials. The quasi-steady

relationship between velocity and magnetic fields provides the link to carry the solenoidal

property from velocity basis functions already constructed to be solenoidal to the magnetic

bases in a manner inherent to the model system. These features help eliminating five equations

from the model system. Moreover, careful construction of the dual bases help eliminating the

pressure variable from the model system clearing an important obstacle towards an efficient

numerical simulation.

In the time integration of the model equations, an implicit algorithm has high cost per time

step. Therefore, in this study, time discretization is performed by a semi-implicit scheme

composed of an explicit scheme for the nonlinear terms and of an implicit scheme for the

linear terms in the models equations. Various combinations of explicit and implicit schemes

such as second order explicit Adams-Bashforth (AB2) and implicit Crank Nicolson (CN)

schemes, or Runge-Kutta schemes are tested for performance. It is observed that for short time

integration second order Adams-Bashforth is quite satisfactory, but for long time integration

it is not. Third order Adams-Bashforth scheme has performed satisfactorily for long time

integration which is robust and less costly in comparison to fourth and higher order Runge-

Kutta schemes as also stated in Boyd [41]. Thus, the non-linear advective terms are integrated

explicitly using third order Adams-Bashforth and the linear terms integrated implicitly by

third order Adams-Moulton schemes. So, the results represented in this study are third order

accurate with time steps ∆t varying in the interval 1 × 10−3 < ∆t < 1 × 10−4.

First, the system is validated in linear stability analysis of conduction regime loosing its stabil-

ity towards convective regime under the influence of vertical and oblique magnetic fields. The

linear stability results obtained in this study is in good agreement with the experimental and

theoretical studies in literature. This initial stage provided the necessary verification for the

formulation and the implementation before attempting a nonlinear analysis. The numerical

experiments in the nonlinear regime are implemented for the Rayleigh number in the range

1800 < Ra < 105 and Chandrasekhar number in the range of 0 < Q < 4000 for low Prandtl

fluid (liquid metals). Computational tests were performed at different spatial and temporal

resolutions and it is concluded that a spatial resolution of at most 16×16×21 is necessary for

satisfactory results. Many numerical experiments are performed in order to test and compare
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our findings results against those in literature. With relatively lower resolution requirement in

comparison to other work in literature, the current approach is tested to be robust and efficient.

7.1 Future Works

A future study of natural thermal convection under the influence of both magnetic field and

rotation is a rational extension for the current numerical approach. The competing effects of

magnetic field and rotation on thermal convection has been receiving attention in literature.

Other geometries, such as cylindrical, spherical or rectangular without the periodic extent,

may be considered for future study as well.

In general, time integration has been the most demanding part of this study. Due to time

constraints, we refrain from experimenting with more time solvers. Fully implicit schemes

with their more relaxed time step restrictions are worth to try as future improvements on this

study. With the incorporation of outer Newton iterations as nonlinear system solver together

with efficient iterative sparse linear system solvers for inner iterations, fully implicit methods

may prove to be valuable.

The current computational approach for studying transitionary flow phenomena such as un-

dertaken in this work may be adapted for a bifurcation study as flow parameters varied. Such

a future study would be combining the efficiency of the current numerical approach with the

well developed tools of bifurcation analysis for the model equations as a dynamical system.
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[37] Güray, E. and Tarman, I. H.,Thermal convection in the presence of a vertical magnetic
field, ACTA Mechanica, 194, 33–46 (2007).

[38] Burr, U. and Müller, U., Rayleigh-Bénard convection in liquid metal layers under the
influence of a vertical magnetic field, Phys. Fluids, 13, 3247–3257 (2001).

[39] Burr, U. and Müller, U., Rayleigh-Bénard convection in liquid metal layers under the
influence of a horizontal magnetic field, J. Fluid Mech., 453, 345–369 (2002).

[40] Davidson, P. A., An Introduction to Magnetohydrodynamics, Cambridge University
Press,(2001).

[41] Boyd, J. P., Chebyshev and Fouries Spectral Methods, New York: Springer-
Verlag,(1989).

[42] Reid, W. H. and Harris, D. L., Some further results on the Bénard problem, Phys. Fluids,
1, 102–110, 1958

[43] Peyret, R., Spectral Methods for incompressible flow, New York: Springer,(2000).

[44] Weideman J. A. C., Reddy S. C., A MATLAB Differentiation Matrix Suite, ACM Trans-
actions on Mathematical Software, 26, pp. 465-519, 2000

[45] Haidvogel D. B, Zang T., The accurate solution of Poisson’s equations by expansion, J.
Comp. Phys., 30, 167–180 (1979).

[46] Kurt E., Busse F. H. and Pesch W., Hydrodynamic convection in a rotating annulus with
an azimuthal magnetic field, Theoret. Comput. Fluid Dynamics, 18, 251–263 (2004).

[47] Kurt E., Busse F. H. and Pesch W., Pattern formation in the rotating annulus with an
azimuthal magnetic field at low Prandtl Numbers, Journal of Vibration and Control, 13,
1321–1330 (2006).
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APPENDIX A

ANALYTICAL SOLUTION FOR MAGNETIC BASES

Analytical solution of magnetic bases for the vertical case will only be shown in this section.

The other cases can be made in similar manner. Let’s consider the boundary value problem

(3.35) obtained from the quasi-steady relation (3.32):

D2B − γ2B = −DV, (A.1)

for B(z) subject to the boundary conditions

DBx = DBy = Bz = 0 at z = ±1. (A.2)

Horizontal and vertical components of the boundary value problem according to the type of

the boundary conditions can be written separately by the following way:

D2Bx − γ
2Bx = −DVx = fx(z), with DBx(z = ±1) = 0 (A.3)

D2By − γ
2By = −DVy = fy(z), with DBy(z = ±1) = 0 (A.4)

D2Bz − γ
2Bz = −DVz = fz(z), with Bz(z = ±1) = 0 (A.5)

Since the boundary type of the x and y component are the same, only the solution of the x

and z component will be done. By using separation of variables method, homogeneous and

particular solution of the equations (A.3) can be written as follows:

Bxh = C1cosh (γ (z + 1)) + C2sinh (γ (z + 1)) (A.6)

Bxp = u1cosh (γ (z + 1)) + u2sinh (γ (z + 1)) (A.7)

where

Du1 =
w1

w
Du2 =

w2

w
(A.8)
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such that

w1 =

∣∣∣∣∣∣∣∣∣
0 sinh (γ (z + 1))

fx(z) γcosh (γ (z + 1))

∣∣∣∣∣∣∣∣∣ = − fx(z)sinh (γ (z + 1)) , (A.9)

w2 =

∣∣∣∣∣∣∣∣∣
cosh (γ (z + 1)) 0

γsinh (γ (z + 1)) fx(z)

∣∣∣∣∣∣∣∣∣ = fx(z)cosh (γ (z + 1)) , (A.10)

w =

∣∣∣∣∣∣∣∣∣
cosh (γ (z + 1)) sinh (γ (z + 1))

γsinh (γ (z + 1)) γcosh (γ (z + 1))

∣∣∣∣∣∣∣∣∣ = γ. (A.11)

Therefore Du1 and Du2 can be written in the following form:

Du1 = −
1
γ

fx(z)sinh (γ (z + 1)) Du2 =
1
γ

fx(z)cosh (γ (z + 1)) (A.12)

and then particular solution becomes,

Bxp = −
1
γ

cosh (γ (z + 1))

z∫
−1

fx(τ)sinh (γ (τ + 1)) dτ+

1
γ

sinh (γ (z + 1))

z∫
−1

fx(τ)cosh (γ (τ + 1)) dτ. (A.13)

So, the analytical solution of the equation (A.3) is the sum of the homogeneous and particular

solution and written as follows:

Bx = C1cosh (γ (z + 1)) + C2sinh (γ (z + 1)) −
1
γ

cosh (γ (z + 1))

z∫
−1

fx(τ)sinh (γ (τ + 1)) dτ+

1
γ

sinh (γ (z + 1))

z∫
−1

fx(τ)cosh (γ (τ + 1)) dτ. (A.14)

with Neumann type boundary conditions DBx(z = −1) = 0 and DBx(z = 1) = 0. It can be

easily shown that the constant C2 becomes zero (C2 = 0) for DBx(z = −1) = 0. The other

constant C1 is calculated from the boundary condition DBx(z = 1) = 0 in the following way:

C1 = −
1
γ

cosh (2γ)
sinh (2γ)

1∫
−1

fx(τ)cosh (γ (τ + 1)) dτ +
1
γ

1∫
−1

fx(τ)sinh (γ (τ + 1)) dτ. (A.15)
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If the calculated value of the constants C1 and C2 are put into equation (A.14) and rearranged,

x component of the solenoidal magnetic bases takes the following form:

Bx = −
cosh (γ (z − 1))
γsinh (2γ)

1∫
−1

fx(τ)cosh (γ (τ + 1)) dτ

+
cosh (γ (τ + 1))

γ

1∫
z

fx(τ)sinh (γ (τ + 1)) dτ

−
sinh (γ (τ + 1))

γ

1∫
z

fx(τ)cosh (γ (τ + 1)) dτ. (A.16)

Here the function fx(z) is the n-th degree Legendre polynomial. The integrals in the equation

(A.16) can easily be solved by using integration by parts rule.

The z component of the solenoidal magnetic bases can be solved in the same way of the

equation (A.3), so the equation (A.14) is rearranged and written as follows:

Bz = C3cosh (γ (z + 1)) + C4sinh (γ (z + 1)) −
1
γ

cosh (γ (z + 1))

z∫
−1

fz(τ)sinh (γ (τ + 1)) dτ+

1
γ

sinh (γ (z + 1))

z∫
−1

fz(τ)cosh (γ (τ + 1)) dτ. (A.17)

with Dirichlet type boundary conditions Bz(z = −1) = 0 and Bz(z = 1) = 0. It can be easily

shown that the constant C3 becomes zero (C3 = 0) for Bz(z = −1) = 0. The other constant C4

is calculated from the boundary condition Bz(z = 1) = 0 in the following way:

C4 =
1
γ

cosh (2γ)
sinh (2γ)

1∫
−1

fz(τ)sinh (γ (τ + 1)) dτ −

1∫
−1

fx(τ)cosh (γ (τ + 1)) dτ. (A.18)

If the calculated value of the constants C3 and C4 are put into equation (A.18) and rearranged,

z component of the solenoidal magnetic bases becomes:

Bz =
sinh (γ (z − 1))
γsinh (2γ)

1∫
−1

fz(τ)sinh (γ (τ + 1)) dτ

+
cosh (γ (τ + 1))

γ

1∫
z

fz(τ)sinh (γ (τ + 1)) dτ

−
sinh (γ (τ + 1))

γ

1∫
z

fz(τ)cosh (γ (τ + 1)) dτ. (A.19)
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