
RULE-BASED IN-NETWORK PROCESSING FOR EVENT-DRIVEN APPLICATIONS
IN WIRELESS SENSOR NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGÜR ŞANLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JUNE 2011

Approval of the thesis:

RULE-BASED IN-NETWORK PROCESSING FOR EVENT-DRIVEN APPLICATIONS

IN WIRELESS SENSOR NETWORKS

submitted by ÖZGÜR ŞANLI in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazıcı
Supervisor, Computer Engineering Dept., METU

Assoc. Prof. Dr. İbrahim Körpeoğlu
Co-supervisor, Computer Engineering Dept., Bilkent University

Examining Committee Members:

Prof. Dr. Özgür Ulusoy
Computer Engineering Dept., Bilkent University

Prof. Dr. Adnan Yazıcı
Computer Engineering Dept., METU

Prof. Dr. Müslim Bozyiğit
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Coşar
Computer Engineering Dept., METU

Assist. Prof. Dr. Sinan Kalkan
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ÖZGÜR ŞANLI

Signature :

iii

ABSTRACT

RULE-BASED IN-NETWORK PROCESSING FOR EVENT-DRIVEN APPLICATIONS
IN WIRELESS SENSOR NETWORKS

Şanlı, Özgür

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

Co-Supervisor : Assoc. Prof. Dr. İbrahim Körpeoğlu

June 2011, 130 pages

Wireless sensor networks are application-specific networks that necessitate the development

of specific network and information processing architectures that can meet the requirements

of the applications involved. The most important challenge related to wireless sensor net-

works is the limited energy and computational resources of the battery powered sensor nodes.

Although the central processing of information produces the most accurate results, it is not

an energy-efficient method because it requires a continuous flow of raw sensor readings over

the network. As communication operations are the most expensive in terms of energy usage,

the distributed processing of information is indispensable for viable deployments of applica-

tions in wireless sensor networks. This method not only helps in reducing the total amount

of packets transmitted and the total energy consumed by sensor nodes, but also produces

scalable and fault-tolerant networks. Another important challenge associated with wireless

sensor networks is that the possibility of sensory data being imperfect and imprecise is high.

The requirement of precision necessitates employing expensive mechanisms such as redun-

dancy or use of sophisticated equipments. Therefore, approximate computing may need to be

used instead of precise computing to conserve energy. This thesis presents two schemes that

distribute information processing for event-driven reactive applications, which are interested

iv

in higher-level information not in the raw sensory data of individual nodes, to appropriate

nodes in sensor networks. Furthermore, based on these schemes, a fuzzy rule-based system is

proposed that handles imprecision, inherently present in sensory data.

Keywords: distributed information processing, complex event detection, reactive rules, fuzzy

rule-based systems, event-driven applications, wireless sensor networks

v

ÖZ

OLAY GÜDÜMLÜ UYGULAMALAR İÇİN KABLOSUZ DUYARGA AĞLARINDA
KURAL TABANLI AĞ İÇİ VERİ İŞLEME

Şanlı, Özgür

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Ortak Tez Yöneticisi : Doç. Dr. İbrahim Körpeoğlu

Haziran 2011, 130 sayfa

Kablosuz duyarga ağları, uygulamaların gereksinimlerine göre geliştirilmiş ağ ve bilgi işleme

mimarilerine ihtiyaç duyan, uygulama bağımlı ağlardır. Kablosuz duyarga ağlarıyla ilgili

olarak karşılaşılan en önemli sorun, pillerle çalışan duyarga cihazlarının sahip olduğu kısıtlı

enerji ve bilgi işleme kaynaklarıdır. Her ne kadar verileri merkezi bir noktada işlemek en

sağlıklı sonuçları üretmeyi sağlayacak olsa da, bu yöntemle ham duyarga verilerinin ağ üzerin-

de sürekli transfer edilmesi gerektiğinden, enerjinin verimli bir şekilde kullanıldığı bir çözüm

değildir. Enerji kullanımı bakımından en pahalı işlemler ağ üzerinden veri transferi işlemleri

olduğundan, gerçek yaşamda uygulanabilecek kablosuz duyarga ağı uygulamalarının geliştiri-

lebilmesi için verilerin dağıtık bir yapıda işlenmesi bir zorunluluktur. Bu, ağda transfer edilen

toplam paket sayısının ve duyarga cihazları tarafından harcanan toplam enerjinin azaltılması

noktasında fayda sağlamakla kalmayıp, daha ölçeklenebilir ve hata toleransı daha fazla olan

ağ mimarilerinin oluşturulması noktasında da yardımcı olacaktır. Kablosuz duyarga ağları ile

ilgili bir diğer önemli sorun, duyarga verilerinin kusurlu olması ve kesin olmaması ihtima-

linin yüksek olmasıdır. Kesinlik, yedeklilik ya da sofistike cihazların kullanımı gibi pahalı

yöntemleri gerekli kılar. Bu nedenle, enerjinin korunması için kesin hesaplama yöntemlerinin

yerine yaklaşık hesaplama yöntemlerinin kullanılması gerekebilir. Bu tezde, ham haldeki du-

vi

yarga verilerinden çok daha üst seviye bilgiyle ilgilenen olay tabanlı reaktif uygulamalar için

bilgi işlemeyi, ağdaki uygun duyarga cihazlarına dağıtan iki yöntem sunulmaktadır. Duyarga

verilerinin kaçınılmaz olarak sahip olduğu kesin olmama durumunu ele almak amacıyla da,

bu yöntemleri baz alan bulanık kural tabanlı bir sistem önerilmektedir.

Anahtar Kelimeler: dağıtık bilgi işleme, karmaşık olay tespiti, reaktif kurallar, bulanık kural

tabanlı sistemler, olay tabanlı uygulamalar, kablosuz duyarga ağları

vii

I dedicate this thesis to my family.

viii

ACKNOWLEDGMENTS

I had the opportunity to work with Prof. Dr. Adnan Yazıcı and Assoc. Prof. Dr. İbrahim

Körpeoğlu whom I would like to express my sincere gratitude. I would not be able to finish

this thesis without their encouragement, advice and guidance.

I would also like to thank my thesis jury members Prof. Dr. Özgür Ulusoy, Prof. Dr. Müslim

Bozyiğit, Assoc. Prof. Dr. Ahmet Coşar and Asst. Prof. Dr. Sinan Kalkan for their valuable

comments and guidance.

I would like to thank my friend Metin Koç for his support that helped me not to lose my

motivation, which could easily be the case in such a long journey. Our discussions not only

about the academia and research but also about life in general have been the most enjoyable

memories of the last few years.

Last but not the least, I would like to thank my family for their patience and belief in me.

Their continuous love and support make everything in my life possible.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATON . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 3

1.2 Contributions . 5

1.3 Organization of the Thesis . 6

2 BACKGROUND INFORMATION AND RELATED WORK 8

2.1 Wireless Sensor Networks . 8

2.1.1 Sensor Nodes . 10

2.1.2 WSN Applications . 11

2.2 Event Processing . 13

2.2.1 Events . 14

2.2.2 Temporal Aspects of Events 15

2.2.2.1 Temporal Relations 16

2.3 Reactive Rules . 17

2.4 Related Work . 18

3 RULE DECOMPOSITION FOR DISTRIBUTED RULE PROCESSING . . . 22

x

3.1 Event-Condition-Action Rules . 22

3.1.1 Events . 24

3.1.1.1 Event Composition Operators 24

3.1.1.2 Event Detection and Composition 26

3.1.2 Conditions . 29

3.1.3 Actions . 29

3.2 Node Classification and Roles . 30

3.3 Proposed Rule Decomposition Algorithm 33

3.3.1 Terms, Definitions and Notations 33

3.3.2 Decomposition Algorithm: RBDA 35

3.4 Equivalence of Initial Rule and Decomposed Sub-rules 40

3.5 Upper Bound on the Number of Sub-rules 44

3.6 Rule Processing . 45

4 RULE DECOMPOSITION: REVISITED 49

4.1 Variables . 49

4.2 Decomposition Using Rules with Variables: RBDA-V 51

4.3 Equivalence of Initial Rule and Decomposed Sub-rules 56

4.4 Upper Bound on the Number of Rules 60

4.5 Rule Processing . 60

5 IMPRECISION IN WSN . 62

5.1 Dealing with Imprecision . 62

5.2 Fuzzy Logic . 64

5.2.1 Fuzzy Sets and Membership Functions 65

5.2.2 Fuzzy Operators . 67

5.2.2.1 Conjunction Operator 67

5.2.2.2 Disjunction Operator 70

5.3 Fuzzy Rules and Fuzzy Inferencing 71

5.3.1 Fuzzification . 73

5.3.2 Defuzzification . 76

5.4 Fuzzy Composition . 77

xi

5.4.1 Fuzzy Composition Graph 78

5.5 Rule Reduction . 83

5.5.1 Distributed Fuzzy Composition 92

5.5.2 Fuzzy Composition of Distributed Rules with Variables . . 96

6 APPLICATION SCENARIO . 104

6.1 Properties and Requirements . 104

6.2 System Architecture . 105

6.3 Healthcare Monitoring Rules . 106

7 PERFORMANCE EVALUATION . 110

7.1 Performance of the Algorithms . 110

7.2 Simulations for In-Network Processing 113

7.2.1 Energy Model . 115

7.2.2 Network Setup . 116

7.2.3 Application Setup . 117

7.2.4 Simulation Results . 118

7.2.5 Healthcare Monitoring 119

8 CONCLUSIONS AND FUTURE WORK 122

REFERENCES . 124

CURRICULUM VITAE . 129

xii

LIST OF TABLES

TABLES

Table 2.1 Sensor Node Specifications . 12

Table 2.2 Sampling rates of different phenomena . 12

Table 2.3 Information Processing Architectures . 13

Table 5.1 The truth table of the binary conjunction 68

Table 5.2 The truth table of the binary disjunction 70

Table 5.3 Possible input combinations for 3 input parameters that each can be a mem-

ber of one of 4 fuzzy sets . 84

Table 7.1 Space needed by rule-bases . 113

Table 7.2 Power required for sensor node’s operations 116

Table 7.3 Number of packet transmissions for healthcare monitoring 121

Table 7.4 Number of hops required for a decision . 121

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Sensor nodes (a) Mica-2 mote (b) BTnode (c) Spec-2 mote (d) WeC mote

(e) PicoBeacon mote (f) TelosB mote . 9

Figure 2.2 Components of a sensor node . 10

Figure 3.1 Rule-based information processing in a node 27

Figure 3.2 Event Vector . 28

Figure 3.3 Rule-based information processing in wireless sensor networks 30

Figure 3.4 Hierarchy of roles . 32

Figure 3.5 Directed graph showing possible execution paths 33

Figure 5.1 An example for the characteristic function of a crisp set 66

Figure 5.2 An example for the membership function of a fuzzy set 66

Figure 5.3 Conjunction, disjunction and complement operations in bivalent logic . . . 67

Figure 5.4 Conjunction, disjunction and complement operations in multi-valued logic 68

Figure 5.5 Triangular membership function . 74

Figure 5.6 Trapezoidal membership function . 74

Figure 5.7 Gaussian membership function . 75

Figure 5.8 Weighted directed acyclic graphs for fuzzy composition 79

Figure 5.9 Possible edge-vertex-edge triplets for a FCG-SR 81

Figure 5.10 Output Unification . 85

Figure 5.11 Fuzzy composition graphs for three rules 85

Figure 5.12 Fuzzy composition graph for a combined rule 88

Figure 5.13 Fuzzy composition for a combined rule 90

xiv

Figure 5.13 Fuzzy composition for a combined rule (cont.) 91

Figure 5.14 Fuzzy composition graphs for sub-rules (2-layer decomposition) 93

Figure 5.15 Fuzzy Composition Graph for sub-rules (2-layer decomposition with vari-

ables) . 95

Figure 5.16 Possible edge-vertex-edge triplets for a FCG-CR with variables 96

Figure 5.17 Fuzzy composition for a sub-rule in layer 1 101

Figure 5.18 Fuzzy composition for a sub-rule in layer 2 102

Figure 5.18 Fuzzy composition for a sub-rule in layer 2 103

Figure 6.1 Healthcare monitoring network . 105

Figure 7.1 Number of initial rules vs. number of sub-rules generated 111

Figure 7.2 Percentage of processable inputs vs. number of sub-rules generated 111

Figure 7.3 Number of different layers vs. number of sub-rules generated 112

Figure 7.4 Ratio of reduction in the number of rules - Layer 1 114

Figure 7.5 Ratio of reduction in the number of rules - Layer 2 114

Figure 7.6 Ratio of reduction in the number of bytes 115

Figure 7.7 Total number of packets transmitted by sensor nodes 118

Figure 7.8 Average energy consumption by sensor nodes 119

xv

CHAPTER 1

INTRODUCTION

The digital revolution that we have witnessed for the last few decades has completely changed

how we live. In health, education, economy, entertainment, security and many other fields

we become totally dependent on the digital world. It is hard to imagine a world without

digital equipments and digital data. Whats more, as the advancements in technology and

science continue, we demand more from our electronic devices: sense and react to physical

phenomena that happen around them, just like humans and every other living being in the

world do.

Sensors are the instruments that help the electronic devices in perceiving what is going on

around their environment. They act as a bridge between the analog physical world and the

digital world. Although the usage of sensors in industry is not a new phenomenon, not until

now have they been used extensively. Today they are so popular that most of the electronic

machinery contain one or more sensors installed. Examples include vehicles, computers,

smart phones, home appliances, just to name a few. It would be fair to say that commercial

success of some of today’s smart phones lies behind the fact that the sensors inside those

phones enable more attractive applications to be developed.

Besides the personal use of the sensors, the advancements in the short-range wireless commu-

nication technology and the ability to produce low-power, small sensing units in an affordable

price open up a new world of possibilities for applications that require interaction with the real

world. Application scenarios that might utilize sensors include military applications (battle-

field surveillance, chemical/biological/nuclear attack detection, monitoring enemy soldiers),

health applications (early diagnosis of diseases, patient monitoring), environmental applica-

tions (forest fire detection, flood or tornado detection, weather predictions, tracking extinct

1

species), home applications (building smart home environment via the sensors built into the

home appliances), traffic applications (controlling or monitoring traffic, human-less or auto-

controlled vehicles) and so on [2, 64].

For the last decade, researchers from all around the world have placed great attention to wire-

less sensor networks (WSN) which are networks of small devices that have sensing, process-

ing and communication capabilities. These devices are called sensor nodes and might be used

to sense various physical phenomena like temperature, pressure, humidity, proximity, speed,

acceleration, radiation, light, sound, and so forth.

In a typical sensor network, sensor nodes sense a stimuli and send their findings to a special

node called sink. The sink is the ultimate computational unit in the network and it connects the

sensor network to the outside world. One of the most important characteristics of the sensor

network is that sensor nodes have scarce energy and computational resources that makes the

task of dealing with sensor networks challenging. Although, the sink is generally considered

to have plenty of resources, the overall operational lifetime of the network depends on the

longevity of the sensor nodes.

An important property of WSNs that requires attention is the existence of unreliable and

imprecise sensory data. Deployment of sensor nodes in the environments that are open to

the interference of any physical event or object, the unreliable cheap sensor hardware, and

unreliable communication are the major causes of this unreliability. In order to preserve the

decision reliability even in the presence of unreliable data, inexact computation techniques

need to be employed in WSNs.

There are a few more properties of WSNs that differentiate them from ordinary networks.

One of them is that sensor networks are data-centric networks. The nature of WSN data plays

an important role in the design of collection, computation and transportation algorithms. An-

other important property is that they are application specific networks deployed generally for

a particular purpose. As a result of this, WSNs face an important challenge: different kinds

of applications have different sets of requirements, which makes it difficult to design general-

ized algorithms that can be used in all application scenarios. For example, some applications

are deployed to gain insights on an unknown physical phenomenon. Such research oriented

applications require all sensor readings to be recorded for offline analysis. On the other hand,

expectation from a forest fire detection or health-care monitoring application is the notifica-

2

tion of emergency cases. As these examples show, appropriate algorithms for an application

should be developed with its own specific requirements.

Sensor network applications can be roughly classified into the following four categories ac-

cording to what initiates processing and communication operations:

• Demand-driven applications are the type of applications that the flow of data in the

network begins as a result of a request from an external entity demanding that data. A

query describing the request is constructed and disseminated into the network, and in

response, sensor nodes collect and send the necessary information back to the deman-

dant.

• Event-driven applications are the type of applications that the flow of data in the net-

work begins after the occurrence of an event that has importance for the application.

There is no need for continuous flow of sensor readings or periodic query requests.

• Some applications might require a mixture of event-driven and demand driven ap-

proaches. In this type of applications, after the detection and notification of a stimuli

by sensor nodes, further requests are directed towards them for more information.

• A final type of applications requires the periodic and the continuous flow of sensory data

in the network. All data periodically sampled by sensor nodes are processed and/or sent

to the sink.

A remarkable majority of the sensor network applications are monitoring and detection ap-

plications. These applications are suitable to employ event-driven paradigm. In order to take

advantage of the event-driven approach, suitable mechanisms need to be established that can

produce high level information from raw data, decide if the information is of interest to the

application and propagate the relevant information to appropriate nodes in the sensor network.

1.1 Motivation

Sensor nodes basically perform three operations: sensing, processing and communication.

The energy required to accomplish these tasks is supplied by a battery, which is generally not

replaceable. Thus, energy efficiency is of utmost importance for WSNs. The energy consump-

tion of sensing and processing operations are far less compared to the energy consumption of

3

transmission and reception of data. As described in [49], transmitting 1 Kb of data at a dis-

tance of 100 meters costs 3 joules in a noise-free environment. Nevertheless, the same amount

of energy is consumed by a general purpose processor with 100 MIPS/W capability for the

execution of 3 million instructions. This suggests that reducing the volume of network traffic

could help in conserving the scarce energy resources.

Sensor networks should employ distributed algorithms for both information processing and

communication. Employing a central approach requires the data, which needs to be processed

by WSN applications, to be transformed into some central location, and the results of the

processing to be transferred back to the appropriate nodes in the network. Central approach

has the advantage that a global view of the network is present while processing data. But there

are several drawbacks which are unacceptable for a WSN:

• Increased delay: Propagation of the sensory data to the sink and the results of the

computation back to the sensor or actor nodes introduces some delay which might be

unacceptable for some type of applications like large-scale sensor network applications

with real-time response requirements. Being able to respond to some of the events as a

result of the processing carried out inside the network is a desirable property.

• Increased network traffic: Transmitting every bit of data in the network whether it is

relevant to the application objectives or not increases the amount of network traffic.

• Reduced sensor and network lifetime: Inefficient consumption of the energy resources

results in the reduced sensor node lifetime which in turn leads to reduced sensor net-

work lifetime.

• Non-scalability: Adding more sensor nodes generally creates a negative influence on

the WSN as the total number of packets transmitted in the network and passing through

the nodes close to the sink will increase: causing more energy consumption and de-

creasing the sensor network lifetime.

• Non-fault-tolerance: In a centralized approach, the sink takes all the responsibility for

information processing. As a result, the sink node becomes a single point of failure for

the WSN.

In-network processing is a distributed information processing technique that is used to reduce

the network traffic in sensor networks. If in-network processing is used, all or part of the data

4

is processed by the nodes inside the sensor network rather than processing all data at a central

node. As a result, refined higher level information is transported inside the network instead

of transporting raw sensory data.

When in-network processing is employed in a WSN, sensor readings can be processed near

to the sensed area and the redundant or unnecessary data can be filtered out. In this way,

the amount of traffic transported in the network decreases and this improves the energy uti-

lization, prolongs the lifetime of both individual sensor nodes and the entire sensor network.

Furthermore, processing data inside the sensor network results in a more fault-tolerant and

scalable solution.

Employing rules instead of embedding the logic into application code has some advantages

[68]. First, rules can be stored outside in a rule-base which improves the modularity, maintain-

ability and extensibility of applications. Second, rules have a high-level declarative syntax,

so they can easily be analyzed and optimized. Finally, rules provide a generic mechanism to

express the reactive behavior contrary to the application code that is typically specialized to a

particular type of reactive scenario.

1.2 Contributions

Information processing in WSNs is a challenging task due to their unique characteristics.

In this thesis we study the subject of distributed processing of imprecise data in WSNs so to

achieve the goal of energy efficient information processing. As a result of this research efforts,

we can summarize the following as our main contributions:

• We present a mechanism that classifies the nodes of a hierarchical WSN. This mecha-

nism is based on what sensor nodes can process and what they cannot. As a result of

the classification, each sensor node has an associated role assigned to itself.

• Rule-based inferencing is used for the fusion of data in WSNs. While dealing with

rules, the antecedents of them need to be described in a general and abstract form. So,

we present a generalized form of the antecedents of the rules.

• We introduce a decomposition algorithm that optimally distributes rule processing into

several nodes in a WSN.

5

• As the proposed decomposition algorithm has an exponential space complexity, we

introduce a new way of representing rules and a new decomposition algorithm which

works with this new rules.

• Fuzzy logic is considered to be a suitable method to deal with imprecision in WSNs,

but fuzzy rule-based systems have the deficiency of large numbers of rules. In order to

get rid of this problem, a scheme that reduces the number of rules in a fuzzy rule-base

is proposed.

• For the composition of fuzzy membership values, a specific type of edge-labeled weighted

directed acyclic graph is defined. Also, a fuzzy composition algorithm utilizing this new

type of graph is presented that can be used by fuzzy inference engines.

• An application scenario that might benefit from the proposed approaches is described.

1.3 Organization of the Thesis

The organization of the thesis is as follows: In the second chapter, first we give introductory

information about WSNs, in-network processing in WSNs, event processing and the rule-

based event processing. In the second part we talk about other work that is related to our

study.

In the third chapter, we first discuss about rules, give the necessary definitions that will be

used in the rest of the thesis. Then we describe a mechanism that shows how to engineer roles

in a sensor network. Based upon these, we describe how the rules that are intended to be run

on a central processing unit can be distributed into the sensor network. Finally, we provide

the proof that the distributed sub-rules achieve the same functionality as the non-decomposed

original rule and present the complexity analysis of the algorithm.

In the fourth chapter, we elaborate on the shortcomings of the algorithm introduced in the third

chapter. Then we show a new way of representing rules. Based on this new representation,

we present a new algorithm that removes the deficiencies of the initial algorithm. Similar

to the third chapter, functional equivalence of sub-rules and non-decomposed original rule is

proved, and the complexity analysis of the new algorithm is given.

In the fifth chapter, we discuss the imprecision inherently present in WSNs and describe a

6

fuzzy rule-based system for dealing with it. Also, to eliminate the drawbacks of the tradi-

tional fuzzy rule-based systems regarding large numbers of rules, we propose a scheme that

reduces the number of rules in a fuzzy rule-based system, and based on it, we present a fuzzy

composition mechanism that can be used by fuzzy rule engines.

In the sixth chapter, we discuss the possible application scenarios that might benefit from

our approach. We select the health-care monitoring application as the sample application

scenario. We give the details of the architecture of such an application, and provide a set of

health-care monitoring rules.

In the seventh chapter, we present the results of experiments that are conducted to examine

the performance of the algorithms. We also present the results of the simulations that show

the benefits of employing an in-network processing strategy.

Finally in the eighth chapter, we summarize our study and discuss about the possible future

directions of it that will improve the presented approaches.

7

CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

2.1 Wireless Sensor Networks

Due to the advancements in wireless communication technologies, micro-electro-mechanical

systems (MEMS), and low-cost and miniaturized integrated circuitry fabrication, it is possible

to develop small devices that combine the sensing, processing and communication operations.

Figure 2.1 shows the examples of such tiny devices.

A network of small sensing devices using wireless communication technology is called a

WSN. There are several properties of WSNs that differentiate them from ordinary networks

that we are accustomed to [51]. The following are the most important ones:

• Deployment. Wireless sensor networks are deployed in physically harsh environments

not in air-conditioned, protected system rooms.

• Data-centricity. The most important thing in the network is the sensed data. However,

which node senses or which node routes that data is not important for most of the

applications. One crucial requirement is to transmit that data to the sink.

• Resource constraints. There is a tradeoff between being small and having plenty of

resources. As the sensor nodes need to be small, their processing, communication and

power resources are scarce.

• Energy efficiency and lifetime. One of the most important challenge associated with

wireless sensor networks is the efficient utilization of the energy resources. While

the improvements in the electronic and mechanical components continue, the improve-

ments in the battery is limited.

8

Figure 2.1: Sensor nodes (a) Mica-2 mote (b) BTnode (c) Spec-2 mote (d) WeC mote (e)
PicoBeacon mote (f) TelosB mote

• Distributed operation. Centralized operations are simply too costly to be employed in

wireless sensor networks. Lightweight distributed algorithms are needed for processing

and networking operations.

• Autonomous/unattended operation. Once deployed, sensor nodes need to operate au-

tonomously. They remain operational until their batteries die out. After that, they would

9

Figure 2.2: Components of a sensor node

be simply forgotten. They cannot be used for another purpose. While they are oper-

ational, there is no intervention in any way by humans that change some property of

them. The sensor network need to self-organize itself starting right after the deployment

and adapt to the changes like the broken nodes, obstacles that prevent communication,

etc.

• Non-reliability. In addition to the possibility of deploying sensor nodes in physically

harsh environments, cheap hardware manufacturing process, and use of wireless net-

working open up a plethora of possible failures associated with sensor nodes and sensor

networks. Failures lead to non-reliability.

2.1.1 Sensor Nodes

Starting from the late 90s, several sensor node platforms, also called mote, have emerged up

until today. Mica and its successors Mica-2 and Mica-Z [40], Telos [40], Intel mote [43],

BTnode [11], Pluto and its successor Shimmer mote [55] are a few examples of such nodes.

A sensor node is the smallest element of the wireless sensor networks. Figure 2.2 shows

typical components of a sensor node:

10

1. Sensing Unit: Sensors generate analog electrical signals representing the physical phe-

nomenon. Then, these signals are converted to digital signals by an analog-to-digital-

converter (ADC). Sensing hardware generally consume small amounts of power. How-

ever, what is sensed has a direct influence on the requirements for computational and

power resources. The requirement that how often the sensed phenomenon needs to be

sampled varies. Table 2.2 shows the sampling rates of a representative set of physical

phenomena. As the requirement for the sampling frequency increases, there is a need

for better computational resources. More computational resources means more energy

consumption.

2. Processing Unit: Generally consists of a micro-controller and additional memory. It is

responsible for manipulating data. Micro-controllers that can be given as examples in-

clude Texas Instrument’s MSP430, Intel’s 8051, Atmel’s ATmega103/128, and ARM’s

ARM7TDMI.

3. Communication Unit: Responsible for enabling the communication with other entities

in the sensor network. Due to the flexibility that is provided by wireless technologies,

RF communication is generally used. Initial sensor nodes used IEEE 802.11 WiFi

standards for wireless communication. However, soon it turned out to be too costly for

such small devices. Then new set of standards has emerged. Among the most popular

ones are 802.15.4 [28] and ZigBee [66]. Low range and low power RF transmitting and

receiving hardware include Chipcon’s CC1000 [13], CC1100, CC2420 [14], Nordic’s

nRF2401 [45], RFM’s TR1000 [50], and Infineon’s TDA5250 [29].

4. Power Unit: Responsible for supplying the necessary power for the operation of the

other components. Generally an irreplaceable battery is used for this purpose. Com-

pared to other components of a sensor node, the battery is the least improved compo-

nent. There is more space for technological improvements in the field of science of

battery.

2.1.2 WSN Applications

There are so many application scenarios that we can think of. The following is a brief list of

them:

11

Table 2.1: Sensor Node Specifications [60]

Mica2Dot MicaZ MSB430 Sun Spot
Microcontroller ATmega128L ATmega128L TI MSP430F1612 ARM7
Architecture 8-bit 8-bit 16-bit 32-bit
SRAM 4 KB 4 KB 5 KB 256 KB
Flash 128 KB 128 KB 55 KB 2 MB
Radio CC1000 MPR2400 CC1020 CC2420
RF Band 315-916 MHz 2,4 GHz 402-915 MHz 2,4 GHz

Table 2.2: Sampling rates of different phenomena [27]

Phenomena Sample Rate (Hz)
Very low frequency

Atmospheric temperature 0.017 - 1
Barometric pressure 0.017 - 1

Low frequency
Heart rate 0.8 - 3.2
Volcanic infrasound 20 - 80
Natural seismic vibration 0.2 - 100

Mid frequency (100 Hz - 1000 Hz)
Earthquake vibrations 100 - 160
ECG (heart electrical activity 100 - 250

High frequency (> 1 KHz)
Breathing sounds 100 - 5 K
Industrial vibrations 40 K
Audio (human hearing range) 15 K - 44 K
Audio (muzzle shock-wave) 1 M
Video (digital television) 10 M

12

Table 2.3: Comparison of centralized and distributed information processing architectures for WSNs

Centralized Distributed
Accuracy global, more accurate results less precise, localized results
Fault Tolerance single-point of failure highly fault-tolerant
Scalability non-scalable highly scalable

Manageability easy to manage
difficult to construct and man-
age

Synchronization
and Coordination

required for communication
operations

required both for communica-
tion and data processing

Redundancy
redundant data and communi-
cation

possibility to eliminate redun-
dant data and communication

Energy Efficiency less efficient
depends on the implemented
protocols/algorithms

Traffic Volume high low - medium

WSN Lifetime short
depends on the implemented
protocols/algorithms

Processing Complex operations Simple operations
Delay long short
Resources Plentiful Limited

• Tracking Applications. Examples include enemy tracking, animal tracking, vehicle

tracking, and human tracking.

• Monitoring Applications. Examples include habitat monitoring, patient monitoring,

environmental monitoring, structural health monitoring, inventory monitoring, machine

monitoring, volcano monitoring, and coal mine monitoring.

• Detection Applications. Examples include forest fire detection, flooding detection,

early earthquake detection, and other surveillance applications.

• Smart Surrounding Applications. Examples include smart home, and smart building.

2.2 Event Processing

Event processing is the process of detecting, consuming and reacting to events. Managing

events are the main concern in many disciplines. For example, Security Event Management

products in IT security correlate events coming from different sources in order to detect if

there is anything happening abnormal [4, 52]. In wireless sensor networks, almost all track-

13

ing and monitoring applications depend on the occurrence and processing of events and the

reactions taken.

2.2.1 Events

The term event is described in dictionary as ”something that takes place which is significant,

interesting or unusual”. Landing of an airplane, an earthquake or a volcanic eruption, entering

or leaving a building, pressing a key in keyboard, hardware or software interrupts in a compu-

tation system, completion of a transaction in a database system etc. can be given as examples

to events from different domains.

In the context of wireless sensor networks we define an event as any change in the state of

the data being monitored where the change has significance for the application. Arrival of a

network packet or a value exceeding some threshold might be typical examples of the sensor

network events.

Events can be categorized as primitive and composite events:

• Primitive Event: A primitive event, also called simple or raw event, is the single and

atomic occurrence of an event.

• Composite Event: A composite event, also called complex event, is an abstract event

which is derived as a result of the composition of primitive or other complex events

using operators of an event algebra. Events that constitute the composite event are

called component events....

Most of the time, a primitive event on its own is not enough for drawing conclusions or taking

actions. In order to capture a more real and complicated application scenarios, complex events

need to be used. For logical composition of the events, several event algebras have been

proposed: SNOOP [67], SAMOS [22], NAOS [15], EPL [41], CHIMERA [39], ODE [24],

and so on. Typical event algebra operators that have been used by them are:

• Conjunction - (a ∧ b) : Occurrence of both a and b.

• Disjunction - (a ∨ b) : Occurrence of either a or b.

14

• Negation - (!a) : Non-occurrence of a.

• Sequence - (a; b) : Occurrence of a before b.

• Iteration - (a∗) : Multiple occurrences of a.

2.2.2 Temporal Aspects of Events

Temporal knowledge about events is an indispensable element of event processing. A com-

plex event pattern might require the fulfillment of special temporal constraints between the

component events. For instance, the complex event ”a followed by b” require not only the

occurrence of events a and b, but also the satisfaction of the temporal condition that a happens

before b.

In order to be able to evaluate temporal relations between events, the following time-related

information need to be used:

• Event Detection Time: It is the time instant in which the event is detected. This is

trivial for a simple event as there is only one time instant in which the event is de-

tected. Nevertheless, detection time of a composite event is the detection time of the

terminating event that is the lastly detected component event.

• Event Duration: Events can be categorized as instantaneous events and durative events.

An instantaneous event is the one happens in an instant and vanishes immediately after

occurrence. It is not possible to detect the same event after that instant. On the other

hand, a durative event lasts for a specific amount of time in which the conditions that

describe the event hold true. A gun shooting can be given as an example to an instanta-

neous event, whereas the event that human body temperature being above 39◦ Celcius

is a durative event. Generally the conditions that lead to the detection of events does

not disappear immediately, therefore durative events are more common compared to

instantaneous ones. The time interval for which the state that create the event remain

unchanged is called the event duration.

• Event Validity Interval: An event, whether it be an instantaneous or durative event,

can be consumed by the event processing system only within a specific time interval.

It cannot be used before or after that time interval. The interval in which the event

15

can be used by the event processing system is called the event validity interval. Note

that although an instantaneous event does occur in an instant, that event can still be

composed by other events for deriving composite events at a later time.

There are two basic models for event timestamps used in event processing:

• Point-based timestamps: A point-based timestamp refers to a single value in time

domain; i.e., it represents a time instant. In event processing, it has fairly limited usage

such as in the systems that only deal with instantaneous primitive events. However,

almost none of the complex events and durative events could be assigned a point-based

timestamp. As shown in [], use of point-based timestamps even for instantaneous events

might yield some incorrect semantic evaluations.

• Interval-based timestamps: An interval-based timestamp is described by a starting

and an ending time, and written as (starting time, ending time). If there is a need to

refer to an instant, an interval-based timestamp can be used to describe it, which is the

case that starting and ending times are the same. Interval-based timestamps are more

suitable for complex event processing.

2.2.2.1 Temporal Relations

Allen’s Interval Algebra enables to reason using intervals. Although 13 relations has been

given in [3], as 6 relations are simply the inverse of their counterparts, we can talk about 7

basic interval relations. Let’s assume that events a and b have the timestamps (a.ts, a.te) and

(b.ts, b.te). Then the formal definition of the temporal relations are as follows:

• BEFORE: If a happens before b, then the ending time of event a needs to be smaller

than the starting time of event b: a.te < b.ts

• MEETS: If a meets b, then the ending time of a is equal to the ending time of event b:

a.te = b.ts

• OVERLAPS: If a overlaps b, then the starting time of event a is smaller than the

starting time of event b and the ending time of a is smaller than the ending time of b:

(a.ts < b.ts) & (a.te < b.te)

16

• STARTS: If a starts b, then the starting time of both a and b need to be the same:

a.ts = b.ts

• FINISHES: If a finishes b, then the ending time of both a and b need to be the same:

a.te = b.te

• DURING: If a happens during b, then the starting time of b need to be smaller than

the starting time of a and the ending time of a need to be smaller than that of b:

(a.ts > b.ts) & (a.te < b.te)

• EQUAL TO: If a is equal to b then both the starting time and the ending time of a and

b need to be the same: (a.ts = b.ts) & (a.te = b.te)

2.3 Reactive Rules

It is possible to express the events of interest and the reactive behavior inside the application

or outside in a rule-base. In the first approach, software developer writes down all the event

handling operations inside the application. He use interrupts that alert the occurrence of some

event and event handlers that implement the reactive behavior. In the second approach, the

complex events which represent the conditions that need to be met, and the actions are placed

outside the application in a rule-base [60, 7].

The rule-based approaches for reactive event processing is categorized as follows [46]:

• Production Rules: They are in the form of ”WHEN <conditions> DO <actions>”. A

change in the state captured by the condition results in the firing of the rule. The results

of the actions may further change the state that needs to be captured by other rules. A

forward chaining mechanism is used as the rule processing semantic in order to realize

such a chain of state changes . Production rules have been used in expert systems since

1980 and there are several successful commercial applications of them.

• ECA Rules: First explored by database community in the field of active databases. They

are in the form of ”ON <event> IF <conditions> THEN <actions>”. The occurrence

of the event trigers the rule. Next, conditions are evaluated. If they satisfy, then the

related actions are taken.

17

• Rule-Based Event Processing Languages: A combination of Complex Event Processing

(CEP) for real-time event detection and reactive rules for declarative representation and

appropriate reactions.

2.4 Related Work

One of the important topic in sensor networks is the efficient query processing. There are

several approaches in handling queries in sensor networks. One of the approaches is that the

query is handled by a central node. The sensor nodes send their data into the central node for

storage. The central node based on this data answers the queries. Another approach is the

COUGAR approach [63]. In this approach, a query optimizer is located at the gateway node

to generate distributed query plans after receiving queries from the outside. The query plan is

generated according to catalog information (Catalog keeps the meta-data such as remaining

usable battery of sensor nodes, sensor positions, node density of a specific area, system work-

load, etc. that are used to create better query plans) and query specification. The query plan

specifies the data flow between sensor nodes and the exact computation plan at each sensor

node. When such a plan is generated, it is disseminated to all relevant sensor nodes. Data

records propagates to gateway node while in-network processing happens on-the-fly.

Yet another approach is the one that is employed by the ACQUIRE [53]: Acquire is a data-

centric querying mechanism that address complex, one-shot queries for replicated data. Query

is considered to be an active entity and propagated through the network until it is fully re-

solved. While the query propagates in the network, each active node, node that currently

handles the active query, use the information from all other nodes within d-hop range to re-

solve the query. If the information kept in the cache is not up-to-date, an update process is

started. The active node sends a request to be replied by all nodes that are at maximum d hops

away. If the query cannot be resolved fully at this step, a next node is selected and the query is

forwarded to that node. The node selection process might be totally random or may be based

on much more intelligent decisions (e.g., the node that can resolve maximum). At each step,

active query gets smaller and smaller until the last piece of original query is finally resolved

at which point the query result is sent back to the query issuer.

A formal model is generally used for the analysis and the verification of the modeled sys-

18

tem. A survey in formal approaches to model and analyze distributed and concurrent systems

shows that most of the popular approaches are based on the theoretical models such as finite

state machines, petri nets, timed automata, and process algebra [5]. Actually this is natural,

because such formal techniques can be analyzed and verified mathematically.

The study on composite event detection was first conducted in active database field. In [23],

a mechanism suitable to model the semantics of composite events and the implementation

of the event detector in active databases is described. Composite events are described in an

event specification language based on petri nets. Input places in the petri net are used to

model component events and output places are used to model composite events. Also some

auxiliary places are used to model the abstract events such as timeouts. Colored petri nets are

used so that the event parameters such as event type, time, location can be carried throughout

the system. Every time the occurrence of an event is signaled, the input place of the petri net

which models the appropriate event pattern is marked with a token. Then playing the token

game, new markings are obtained. If a token is placed in an end place which has no transitions

the composite event is said to be detected.

In [35], an active database model based on fuzzy ECA rules with a fuzzy petri net represen-

tation to process the information at a central location is proposed. They argue that processing

information at a central location helps to have a global view and, and as a result, yields much

more sound conclusions. So all the sensor readings are processed at that central location. The

fuzzy petri net is constructed using the fuzzy ECA rules of the application domain. When

sensor readings or queries arrive at the inference engine, fuzzy inference engine makes de-

ductions using the rules and the data stored in fuzzy active database.

Cougar [63], TinyDB [37] and Directed Diffusion [30] are the popular data processing schemes

that employ in-network processing in sensor networks. Cougar and TinyDB views the sen-

sor network as a large distributed database and instead of collecting data at the sink, queries

are distributed into the network. Query processing systems are demand-driven in nature, so

they are not suitable for event-driven applications. In Directed Diffusion, interests, which are

attribute-value pairs, are placed in the network by the sink and the nodes send their data to it

if the interest is satisfied. Data is aggregated along the way back to the sink. Similar to previ-

ous approaches, it is demand-driven and not suitable for applications that require continuous

monitoring. Furthermore, attribute-value pairs are not always expressive enough to describe

19

what is interesting. Therefore, unnecessary packets might still be transported.

In [48], a composite event processing framework that works on top of a range of publish /

subscribe systems is proposed. Distributed composite event detectors are installed at various

locations in the sensor network according to the requirements of the application such as la-

tency, reliability or bandwidth usage. Although this work is similar to our study in the way

that composite event expressions are decomposed into sub-expressions as we do in rule-base

decomposition process, their proposition is not specifically about the wireless sensor networks

and therefore, they do not take the constraints present in the wireless sensor networks into ac-

count. Furthermore they do not discuss about how the decomposition is done. On the other

hand, we give an algorithmic way of decomposition that suits to the requirements of wireless

sensor networks. Additionally, we consider a hierarchical network architecture, and we de-

scribe precisely how we can classify the nodes based on what they can process, and therefore

where the information processing engines can be placed.

In [31], complex events with temporal and spatial constraints and correlations are detected by

employing a hierarchical approach. An event description language based on petri nets, named

SNEDL, is used to specify the events. Sensor readings and messages are modeled using to-

kens. Places represent the states in which the objects can be, arcs indicate the communication

path and transitions represent a sensor nodeÕs processing of the sensor readings or messages.

Events are classified as mote-level, group-level, and base-level events. At mote-level, indi-

vidual readings from sensor nodes are processed and the outputs of this processing are fed

into the inputs of the next level. Similarly, the result of group-level processing is used by

the base-level. It is the base-level where the final decision about a composite event that the

application is interested in is made. Although a hierarchy of event detectors are described in

this paper, it does not discuss about how and based on what criterion these event detectors

are created. On the other hand, we show how we classify different hierarchical levels from

information processing perspective.

In [47], a rule-based distributed fuzzy logic reasoning engine is described. The reasoning

engine employs simple if-then rules for the decision process and it uses fuzzy logic to fuse

the individual sensor readings and the neighbor observations to get more accurate results.

Although if-then rules are used for information processing, the main motivation of the study

in [47] is to improve reliability of the decisions and it mentions only about processing done

20

at a single node. However, our method is about distributed processing in the entire wireless

sensor network, and in our approach sensor nodes cooperate for the purpose of reducing

network traffic and energy consumption.

In [1], a proactive and distributed mechanism is proposed to detect the sets of interrelated

events, also called contexts. Event notifications are delivered to special nodes which are con-

nected through an overlay network. These nodes make partial context decisions and forward

their decision to the next node in the overlay. However, the approach adopted in [1] is to ex-

press the logical relations as disjunctions of conjunctions of premises whereas our approach

is to express them as conjunctions of disjunctions of premises. Furthermore, in [1] nodes

need to keep the address of the sensor nodes that are responsible for processing the next input

element. As we use a hierarchical sensor network architecture, sensor nodes in our approach

only need to know how they can reach the nearest node in the next hierarchical level. This

simplifies the routing strategy.

In [32], a fuzzy rule-based system is demonstrated for event detection in WSNs. They show

that using fuzzy logic improves decision accuracy. To tackle with the problem of the ex-

ponentially growing size of fuzzy rule-bases, they combine rules with the same consequent,

similar to what we do in our rule reduction scheme. But contrary to our scheme, they generate

new predicates that express the same events as the non-combined rules would catch. But our

approach does not require changing the definitions of events.

21

CHAPTER 3

RULE DECOMPOSITION FOR DISTRIBUTED RULE

PROCESSING

There are obvious benefits of centralized data-processing. For example a global view of data

may bring more accurate results and only the processing resources of a central node need

to be considered. Nevertheless, as we have discussed before, this paradigm is generally not

suitable for WSNs and therefore data need to be processed in a distributed manner.

This chapter contains our first effort to distribute information processing into WSN. In the

following section, we first discuss about rules that we use as the tool expressing application

logic. Then, we present a mechanism that shows how we determine the roles in a sensor

network setup. After that, we introduce our rule decomposition algorithm. The input to the

algorithm is a rule from the central rule-base and the output is a set of sub-rules for different

roles that in effect do the same thing as the original rule while it is possible to process them

in a distributed manner. Thereafter, we give the proof that shows the functional equivalence

of a central rule and its decomposed sub-rules, and then talk about the complexity analysis of

the decomposition algorithm. Finally, we present how rule engines that are deployed in the

sensor nodes work.

3.1 Event-Condition-Action Rules

In our approach, application logic is expressed by a set of ECA rules that represent a set of

statements. The execution of these statements depends on the occurrence of specific event pat-

terns and the satisfaction of the constraints on the events that constitute those event patterns.

The statements express the actions to be taken and the conclusions to be drawn.

22

Employing ECA rules instead of embedding the logic into application code has several ad-

vantages [68]:

i. Rules can be stored outside an application in a rule-base, which improves the modularity,

maintainability and extensibility of the application.

ii. Rules have a high-level declarative syntax, so they can easily be analyzed and optimized.

iii. Rules provide a generic mechanism to express reactive behavior, contrary to the applica-

tion code, which is typically specialized to a particular type of reactive scenario.

In a procedural paradigm, how an application reacts to events should be coded by the applica-

tion developers. However, by employing a declarative, rule-based paradigm, domain experts

may directly determine the type of reaction. Therefore, application developers only need

to develop a general purpose rule engine that processes rules. Such separation of duties is

favorable, because in this way each person does what he is most proficient at.

ECA rules are in the form of:

IF <Event Pattern>

PROVIDED THAT <Set of constraints>

THEN <Set of Actions>

The first part of a rule contains the event pattern that needs to be detected in order for that

rule to fire. However, the detection of the event pattern does not guarantee the triggering of

the action statements in the third part of the rule. The context in which the event pattern has

been detected is of profound importance for intelligently determining the implications of the

detected events. The conditions and constraints used for evaluating the context are listed in

the second part of the rule.

ECA rules have been mostly used in active database field so far. In these systems, the event

that triggers a rule is a single event like insertion of an entry into a table, completion of a

transaction or similar database operations. What is placed in the condition part is for checking

whether a specific situation has occurred as a result of the detected event. For example, after

an insertion operation, the situation that the number of entries in a table exceeds some specific

23

value might be the condition for an ECA rule. Upon detection of such a condition, the rule

may trigger the actions, e.g., purging some of the entries.

However, ECA rules in our study has slightly different usage compared to ECA rules in active

databases. The main difference is in how the first and second parts of rules are used. First of

all, a complex event pattern fires a rule. All the logical composition is done in the first part.

The second section of the rule lists the conditions and constraints of the component events

that describe the context.

3.1.1 Events

The IF-part, also called the antecedent, of a rule contains one or more events, i.e., a set of

events. Without detecting the event pattern in the antecedent, it is not possible to execute

statements in the action section, also called the consequent. We define an event as any change

in the state of the data being monitored where the change has significance for the applica-

tion. The arrival of a network packet or a value exceeding some threshold might be typical

examples of WSN events.

A single event on its own is not generally enough for drawing conclusions or taking actions.

In order to capture a real and complicated application scenario, we need to use more complex

event patterns, formed by the logical composition of simple events using the operators of an

event algebra.

3.1.1.1 Event Composition Operators

There are four core composition operators used in event algebras that have been introduced in

the literature so far [18]:

• Conjunction. Conjunction of two events a and b, (a · b), specifies that both the event

a and the event b need to occur and at the time of composition they must be valid, i.e.,

their time window should not have been expired. Apart from the constraint about the

validity interval, there are no other temporal constraints.

• Sequence. Sequence of two events a and b, (a ; b), specifies that both of the events a

and b need to occur. However, contrary to conjunction operator, the order of events is

24

important and the event a has to occur before the event b. Both events need to be valid

during composition.

• Disjunction. Disjunction of two events a and b, (a | b), specifies that either the event

a or the event b should occur. Only temporal constraint is that the selected event that

makes the evaluation true need to be valid, i.e., the time of composition lies within its

validity interval.

• Negation. Negation of an event a, (!a), specifies that the event a has not been occurred

for a specific amount of time before the composition takes place.

In addition to these core operators, there are other operators that have been proposed like

concurrency operator which requires two events to occur in parallel or iteration/counting op-

erator which specifies a specific number of occurrences of some event, and so on. Most of

these extra operators are the results of the effort that tries to combine the temporal and logical

relationships of the events. The research that has been conducted in the event processing have

placed great attention to temporal aspects of the processing. However, event processing in

WSNs brings another important aspect into consideration: spatial constraints.

Although spatial information or source of an event might have little or no usage in a central-

ized active database system, it has an important part of the event processing in WSNs. Sim-

ilar to the temporal aspects, spatial information are used to determine the context in which

the event pattern has been detected. Based on these facts, we argue that separating the con-

text evaluation from the logical composition of the events is a better approach. Logical event

composition operators should be free of the context information which should be evaluated

somewhere else. Otherwise, we have to redefine the old operators and/or add new operators

into the event algebra for covering different circumstances.

Let’s consider the following case: Assume that a sensor network is spatially divided into

several regions. Our constraint is that two events need to occur but they have to be produced

in adjacent regions. If we merge the semantics of spatial constraints with logical operators,

then we have to define a new operator adjacent that detects the occurrences of these events

and verifies that they are in the adjacent regions.

In addition to the cases that temporal and spatial constraints are considered individually, in

some circumstances, the temporal and spatial constraints need to be considered together. For

25

example, “the event A in region R1 need to occur before the event B in region R2”. It is

obvious that we shall not consider the semantics of logical composition, and temporal and

spatial constraints in a single event operator, otherwise we have to deal with lots of event

composition operators (a single logical operator would result in as many operators as the

product of the number of temporal relations and spatial relations in the worst case).

In our study we take only three operators as the logical operators: conjunction, disjunction

and negation. We do not use sequence operator, which is listed as a core operator above, as

a logical composition operator, since sequence can be defined as a conjunction with a before

relation in between the component events.

3.1.1.2 Event Detection and Composition

We use the term event for both the event definition and the event instance. We may draw

an analogy between classes and objects in object-oriented paradigm with event definitions

and event instances in event-driven systems. Event definitions in a rule are represented by

predicates.

Definition 3.1.1 A predicate is a binary function that takes variable number of arguments

and returns a value of true or false.

A true evaluation of a predicate means that the event has occurred; i.e., the event instance has

been captured.

In order to evaluate a predicate, the inputs that are assigned to the parameters of the predicate

need to be present where the processing takes place; e.g., the predicate Less Than(t,−5)

returns true if the input that t stands for is available and it is less than −5.

Some of the predicates might be evaluated by using a single operation, like comparing a

parameter with a constant. On the other hand, some of them may require more than a sin-

gle operation in their evaluation. For example, a predicate that checks whether the last five

readings of a sensory data is above some threshold value cannot be evaluated by a single op-

eration. In the presence of such a predicate, evaluating it over and over again for every rule

that use it is a waste of energy and processing resources. If the state does not alter, that is

the inputs remain unchanged, it would be wise to evaluate predicates only once and use the

26

Figure 3.1: Rule-based information processing in a node

outcomes of the evaluations while processing rules. In a sensor network, environment is gen-

erally sensed periodically which means that the sensor readings will remain unchanged until

the next sampling interval begins.

One of the important goals of information processing in wireless sensor networks is to devise

lightweight methods for the processing of data. In order to achieve an efficient evaluation of

the predicates we separate the predicate evaluation and the rule processing components in the

event processing system. The predicate evaluation component is responsible for determining

the events that can be used in the event composition for the detection of the event patterns

that fire the rules. Rule processing component, also called the rule engine, is responsible for

detecting the complex event patterns, and upon detection, determining whether the available

context allows triggering of the actions. Figure 3.1 shows typical components of an event

processing system and their interaction with each other in a sensor node.

For any node in the sensor network, there is a limited set of events which are used to describe

the event pattern that forms the antecedent of the rules employed by the node being in concern.

If each of these events is assigned a specific ID, then it is possible to use these IDs in the

definition of the rules instead of the actual predicates.

27

Figure 3.2: Event Vector

Definition 3.1.2 An event-ID is a unique identifier that is assigned to an event type.

Using event-IDs instead of the actual predicates are for the purpose of eliminating redundant

predicate evaluations and speeding up the rule matching process. Once predicates are evalu-

ated and events are determined, this knowledge is used in the rest of the execution of a rule

engine. The processing carried out in the predicate evaluation module is made available to the

rule engine in the form of an event vector.

Definition 3.1.3 An event vector is a vector that lists all possible events that can be consumed

by a rule engine, together with the information whether they have been occurred or not. Each

entry of the vector takes a value of either ’1’, meaning the event has occurred, or ’0’, meaning

the event has not been occurred.

28

There is a one-to-one correspondence between event-IDs and indexes of the vector. When an

event is detected, the field pointed by that event’s ID in the event vector is set to 1. A value

of 0 means that the event has not been occurred and 1 means the event has just happened. By

looking at the event vector at a particular time, it is possible to determine which rules could

fire at that instant.

Assignment of the event-IDs is done after rule-base decomposition. An event-ID has a local

scope. In other words, re-use of the event-IDs is possible and an event-ID may point to two

different events in two different types of nodes.

3.1.2 Conditions

An event pattern which describes the logical composition of the events cannot be solely used

for triggering reactions. Events might have different meanings in different contexts. For

example, ”high pulse rate” has different thresholds for adults and children, or if an adult is

doing exercise, the event ”high pulse rate” does not signify an abnormal condition. Another

example might be that we may not correlate a visual stimuli to an audial stimuli if the former

happens after the latter. For example we cannot hear the sound of an explosion before seeing

the explosion itself.

In our approach, context information is placed in the second section of a rule. This section

consists of a set of constraints and conditions defined as relations between the component

events placed in the antecedent of the rule, the IF-part. In order for the context evaluation not

to fail, all constraints of and relations between the component events, which are used for the

composition of the complex event pattern at run-time, need to satisfy.

3.1.3 Actions

The final part of a rule resembles the interrupt handlers implemented in operating systems.

Interrupts raised due to an hardware or software exception cause the operating system to

execute the statements in the corresponding interrupt handlers. While a rule is processed,

after the detection of the complex event pattern and the satisfaction of all of the constraints

and conditions, the action part of the rule is triggered, and the list of statements placed in this

part is executed.

29

(a) Centralized

(b) Distributed

Figure 3.3: Rule-based information processing in wireless sensor networks

Action part of the rule contains a subset of the functions provided by the node that the rule is

running on. For instance, an action for a typical sensor node might be sending a notification

message over the network, or changing a parameter of the node itself like sampling rate or

sleeping duration, or storing a value in the persistent memory.

3.2 Node Classification and Roles

The sensor nodes in a WSN may be classified into various types due to heterogeneity in the

hardware or the logical roles that the sensor nodes possess [8, 19, 20]. We can think of sev-

eral logical roles which is related to the network and the information processing architecture

employed. If we consider the network architecture, a node may take the role of source which

initiates the network traffic, a relay which simply forwards other nodes’ packets, a sink which

is the ultimate destination, and so on and so forth. In terms of information processing, a node

might be assigned a data disseminating source, an aggregator, a data fusion node, or similar

roles.

30

Due to the data-centric nature of sensor networks, networking and data management aspects

cannot be thought of separately. An information processing role shall be assigned to a node

that has another role related with networking. For example, for a cluster based sensor network,

it is natural to assign a cluster-head the role of both the relay and the aggregator.

In a sensor network, physical capabilities and responsibilities of nodes might differ. Two

nodes may sense different stimuli or one of the nodes may contain more powerful processor

and enhanced battery resource compared to the other nodes. For example, for an early forest

fire detection application, one type of the sensor nodes might be sensing temperature, hu-

midity, atmospheric pressure and similar weather related stimuli while another type of sensor

nodes may be using optical sensors to detect flame or smoke.

Hardware heterogeneity explicitly indicates that nodes with differing hardware cannot assume

the same roles. However, even in homogeneous sensor networks in which all sensor nodes

are of the same type in terms of hardware, different roles shall be used. Obviously, roles in

such networks are assigned to the sensor nodes according to what logical responsibilities they

assume during the operation of the network. This type of networks generally require the role

assignment to be dynamic. In other words, the role of a node should be able to change over

the course of operation of the network, because some of the roles may put too much burden

on the sensor nodes’ computational and energy resources [10, 16, 34, 61]. Using adaptive

strategies that help in sharing out the price of such roles among all of the nodes of a WSN is

a common technique used to prolong the WSN lifetime.

In the context of our study, a role emphasizes what a node can process. There might be

various data types involved in data processing. For example, sensory data such as temperature,

pressure and acceleration or data that is generated as a result of aggregation or fusion of other

data, are data types that might be present in a WSN. Let T be the set of all different data types

appearing in a WSN and P(T) denote the power set of T . Then the set of roles can be defined

as R = {r | ∃r ∈ P(T)} with the cardinality m such that:

1. T =
⋃m

i→1(ri)

2. Given ri ∈ R, r j ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ m, and i , j, one of the following needs to be

satisfied:

(a) ri and r j are mutually disjoint,

31

Figure 3.4: Hierarchy of roles

(b) ri ⊂ r j or

(c) ri ⊃ r j

The first condition denotes that every data type is assigned to a role such that it will be pro-

cessed by one type of node in the network. The second condition states that two roles do

not intersect unless one of them is the proper subset of the other. 2.a ensures that a physical

phenomenon is sensed by only one type of node. This condition makes sure that our assump-

tion that “there is no redundancy in sensor hardware” holds true. In other words, a physical

phenomenon is sensed by only one type of node. We think that this is a fair assumption since

the presence of redundant sensing hardware complicates the task of designing appropriate al-

gorithms for WSN applications. If some data, say temperature, is sensed by more than one

type of node in a WSN application, then the flow of the process of the application might

change by which node the temperature is sensed. It will be easier to deal with a WSN having

non-redundant sensing hardware.

In a hierarchical sensor network, we assume that nodes that are in the higher levels have the

ability to see the data of the lower levels, because sensor nodes send their data to the nodes

on the upper levels. Conditions 2.b and 2.c represent this assumption. If one of the roles is a

proper subset of the other, this implies that the node employing the subset role is in a lower

32

Figure 3.5: Directed graph showing possible execution paths

level.

Classification of the nodes is the process of determining every possible ri that encloses the set

of data types and pertains to the above constraints and conditions. Roles are determined in a

bottom-up fashion: starting from the available data types, each data type is assigned to one of

the appropriate roles.

In figure 3.4, a hierarchy of roles is shown. From that figure we can conclude the following:

• R1, R2, R3 and R4 are disjoint.

• R5, R6 and R7 are disjoint.

• R1, R2 and R3 are the proper subsets of R5

• R4 is a proper subset of R7.

• R5, R6 and R7 are the proper subsets of R8

Roles are precomputed, and assignment of them to actual nodes might be static or dynamic.

However, role assignment is not the subject of this study. We use roles as inputs in our rule

decomposition algorithm, which is described in the following section.

3.3 Proposed Rule Decomposition Algorithm

3.3.1 Terms, Definitions and Notations

The antecedent of a rule is in the form of conjunctions and/or disjunctions of the predicates,

which are atomic boolean expressions. However, our algorithm cannot decompose a rule with

33

an arbitrary composition of the predicates in its antecedent. It requires the antecedent to be in

a special form: conjunctive normal form.

Definition 3.3.1 A disjunctive clause is the disjunction of predicates:

(P1 | P2 | · · · | Pi)

Definition 3.3.2 Antecedent of a rule is said to be in conjunctive normal form if it contains

only conjunctions of disjunctive clauses:

(P11 | P12 | · · · | P1k) & · · · & (Pi1 | Pi2 | · · · | Pin)

Definition 3.3.3 A disjunctive clause is said to be satisfied if at least one of the predicates,

which form the clause, evaluates to true.

Definition 3.3.4 A rule is said to be fireable if all of the conjuncts, disjunctive clauses, in its

antecedent satisfy.

For any node in a sensor network, the predicates of a rule, which is supposed to be executed

in that node, can be classified into two: the predicates that might be processed by the node,

and the predicates that might not. For example, let’s consider a temperature measuring sensor

node. A predicate that uses the temperature information can be evaluated by this node, while

a predicate whose evaluation depends on pressure information obviously cannot.

Definition 3.3.5 The input set of a node is the set of predicates that the node can evaluate

and determine their truth values.

Using the knowledge of what a node can evaluate, a disjunctive clause can be categorized into

one of the following:

i. Fully processable disjunctive clause: All predicates can be evaluated by the node.

ii. Non-processable disjunctive clause: None of the predicates can be evaluated by the

node.

34

iii. Semi-processable disjunctive clause: There are predicates both that can be evaluated

and that cannot be evaluated by the node.

Example. If a node’s input set is {P1, P2, P3}, i.e., it can evaluate predicates P1, P2 and

P3, (P1 | P2) is a fully processable disjunctive clause, (P4 | P5 | P6) is a non-processable

disjunctive clause, and (P1 | P3 | P4) is a semi-processable disjunctive clause for that node.

It is possible to put any expression that is not in conjunctive normal form into an equivalent

expression in conjunctive normal form. Therefore, considering a node and its input set, the

antecedent of a rule can be represented in the following generalized format:

P & (Q1 | Q′1) & (Q2 | Q′2) ∧ · · · & (Qn | Q′n) & R

where P is the conjunction of fully processable disjunctive clauses, R is the conjunction of

non-processable disjunctive clauses, and each (Qi | Q′i), 1 ≤ i ≤ n, is a semi-processable

disjunctive clause. Note that the expression Q′i is not the negation or inverse of Qi. Each Qi

is a disjunction of the predicates that can be evaluated by the node, whereas, each Q′i is a

disjunction of the predicates that cannot be evaluated.

3.3.2 Decomposition Algorithm: RBDA

The rule-base decomposition algorithm that we propose, RBDA, first creates the sub-rule-

base for the type of nodes that are classified at lowest hierarchy. Unlike the other types of

nodes, such nodes’ input set does not have any subset which is the input set of other types of

nodes. If such a subset existed, then the these nodes would not be on the lowest level; higher

layers have more inputs, which include inputs from lower layers.

Next, the rule-base will be created for the nodes with the property such that subsets of those

nodes’ input set can only be the input set of a node from a lower level, not from the higher

levels. This iterative process is repeated until a sub-rule-base is created for each different type

of node. The data is processed in the lowest possible level and it is not relayed into the upper

layers. This bottom-up approach in creating the sub-rule-bases supports the idea that “data

should be processed as close to its source as possible”.

The rule-base decomposition algorithm takes the central rule-base and the input set of the

type of node that we are intending to create a sub-rule-base for as the inputs. Let q be the set

35

Algorithm 1 Rule-Base Decomposition Algorithm 1: RBDA
INPUT: IS =input set, RB=original rule-base

OUTPUT: RB=original rule-base (modified), NRB=new sub-rule-base

1: for all Rule in RB do

2: Set P, R, q, q′

3: P← powerset(q)

4: for all M in P do

5: if M equals to q then

6: if (R is NULL & (P is not NULL | q is not empty)) then

7: Add
[
(P & con junction o f elements o f M)→ O

]
into S RB

8: else if q is empty then

9: if (P is NULL) then

10: Add [R→ O] into RB

11: else

12: Add [P→ Ok] into NRB

13: Add [(Ok & R)→ O] into RB

14: end if

15: else

16: Add
[
(P & con junction o f elements o f M)→ Ok

]
into S RB

17: Add [(Ok & R)→ O] into RB

18: end if

19: else

20: Add
[
(P & con junction o f elements o f M)→ Ok

]
into S RB

21: M′ ← {Q′i | Qi < M}

22: Add
[
(Ok & con junction o f elements o f M′ & R)→ O

]
into RB

23: end if

24: end for

25: Remove Rule from RB

26: end for

36

{Q1 , Q2 , · · · , Qn} and q′ be the set {Q′1 , Q′2 , · · · , Q′n}, which are constructed using

the input set of the node. Furthermore, let P be the powerset of q. For a member M of the

powerset P, if M and q are not identical, then a rule having the following antecedent will be

added into the sub-rule-base:

P &
m∏

i=1

M(i),

where m is the cardinality of M and M(i) is the ith element of M. The output part of the rule

will be an auxiliary output Ok representing the current matching conditions of the original

rule. If the Q part of a disjunctive clause evaluates to false, it is still possible that overall

disjunctive clause holds true as the Q′ part of the clause might result in a true evaluation. For

this reason, when an auxiliary output is generated, i.e., it is not possible to decide whether

the conditions for the original rule hold true or not, this auxiliary output should be forwarded

to the upper layers in the hierarchy so that the inputs available there can be used to further

validate the conditions.

If we define the set M′ as M′ = {Q′i | Qi < M} with the cardinality (n − m), then a new rule

with the original output O and the following antecedent is added into the central rule-base:

Ok &

n−m∏
i=1

M′(i)

 & R,

where M′(i) is the ith element of M′.

If M and q are identical, the original rule is removed from the central rule-base. If R is missing

in addition to that condition, the formula for adding a new rule into the newly generated rule-

base does not differ from the previous case except when the rule will have the original output

O rather than an auxiliary output as its output part.

The above process should be repeated for each member of the powerset P so that all possible

combinations of condition matchings are enumerated. As a result of this process, a central

rule is decomposed into multiple sub-rules and placed in two rule-bases: the newly created

sub-rule-base and the modified central rule-base.

The above steps are for the decomposition of a single rule. In order to generate the complete

sub-rule-base, the operations taken for just one rule should be repeated for every rule in the

original rule-base. Furthermore, the described process only creates a sub-rule-base for one

type of node and the complete distribution of information processing into the sensor network

requires the creation of sub-rule-bases for every type of node residing in different hierarchies.

37

The following examples are given to illustrate the RBDA. For the sake of simplicity, the

condition part of the rules are omitted.

Example 1. Let’s consider the following rule:

(a1 & (b1 | c1) & (d1 | e2 | f2) & (g1 | h2) & i2)→ O

where subscripts represent the hierarchical level where the related input can be pro-

cessed. This rule is going to be distributed into 2 different rule-bases; i.e., only one

iteration of the algorithm is enough to derive the necessary rules. The input set for the

first hierarchical level is IS = {a1, b1, c1, d1, g1}. Using this, we come up with:

• P = (a1 & (b1 | c1))

• q = {d1, g1}

• q′ = {(e2 | f2), h2}

• R = i2

The powerset P is equal to {{}, {d1}, {g1}, {d1, g1}}. If we follow the steps described in

the algorithm, the following rules would be added into the new sub-rule-base:

(a1 & (b1 | c1))→ X1

(a1 & (b1 | c1) & d1)→ X2

(a1 & (b1 | c1) & g1)→ X3

(a1 & (b1 | c1) & d1 & g1)→ X4

If none, one or both of d1 and g1 are detected, this information is sent to the upper

hierarchical layer for further processing provided that (a1 & (b1 | c1)) is detected.

The original rule being decomposed is removed from the original rule-base and the

following rules are added:

(X1 & (e2 | f2) & h2 & i2)→ O

(X2 & h2 & i2)→ O

(X3 & (e2 | f2) & i2)→ O

(X4 & i2)→ O

38

Example 2. Let’s now consider another rule for a three level hierarchy:

(a1 & (b1 | c2 | d3) & (e1 | f3))→ O

where subscripts represent the hierarchical level where the related input can be pro-

cessed. In this example we are going to distribute this rule into 3 different rule-bases.

In the first iteration of the algorithm, P = a1, q = {b1, e1}, q′ = {(c2 | d3), f3} and R is

null. The powerset P is equal to {{}, {b1}, {e1}, {b1, e1}}. If we follow the steps described

in the algorithm, the following rules would be added into the new sub-rule-base:

(a1)→ X1

(a1 & b1)→ X2

(a1 & e1)→ X3

(a1 & b1 & e1)→ O

If all of a1, b1 and e1 evaluate to true, then the rule engine reaches a conclusion and

the associated actions are taken. On the other hand, if at least one of b1 or e1 yields

a false value or they cannot be evaluated because of the absence of the input, then the

available information is fused and the result is sent to the node in the next hierarchi-

cal level. Furthermore, auxiliary outputs are added as inputs into the input set of the

next hierarchical level. After the first iteration, original rule-base is going to have the

following rules:

(X1 & (c2 | d3) & f3)→ O

(X2 & f3)→ O

(X3 & (c2 | d3))→ O

In the second iteration of the algorithm, sub-rule-bases for the second and third hier-

archical levels are generated by decomposing those 3 rules above. For the first rule,

P = X1, q = {c2}, q′ = {d3} and R = f3. For the second rule, P = X2, R = f3, q and q′

are empty. Finally for the third rule, P = X3, q = {c2}, q′ = {d3} and R is null. Sub-rules

39

that are generated for the second hierarchical level are as follows:

(X1)→ Y1

(X1 & c2)→ Y2

(X2)→ Y3

(X3)→ Y4

(X3 & c2)→ O

After the second iteration, the original rule-base which is the rule-base of the third

hierarchical level is going to have the following rules:

(Y1 & d3 & f3)→ O

(Y2 & f3)→ O

(Y3 & f3)→ O

(Y4 & d3)→ O

3.4 Equivalence of Initial Rule and Decomposed Sub-rules

Before we proceed with the proof of the RBDA, let’s give the common facts, terms and

notations used in this section.

By a single operation of the algorithm, a rule is decomposed into sub-rules, which are then to

be processed by two different types of nodes. The node whose input set is used to determine

P, Q, Q′ and R is referred to as the first node, and the other as the second node. The antecedent

of the original rule might contain P, (Qi | Q′i), R or any combination of them. There are three

cases that this could possibly fit:

• There is no (Q | Q′) in the rule.

– Case 1. There is either P or R. If there is P, r : P is placed in the first node’s

rule-base, and if R, r : R is placed the second node’s rule-base.

– Case 2. There are both P and R. A single pair of rules is generated: r1 : P, which

is placed in the first node’s rule-base, and r2 : r1 & R, which is placed in the

second node’s rule-base.

40

• Case 3. There are (Q | Q′) and possibly P and/or R. If there are n conjuncts in the form

of (Q | Q′), there can be n + 1 cases that we need to consider: 0 to n Qs being detected

by the first node. For each of n+1 cases, there are C(n, i) different combinations of Qs

where 0 ≤ i ≤ n. Therefore, there can be a total of
∑n

i=0 C(n, i) = 2n different cases

that can be encountered during run-time processing. The RBDA exhaustively generates

a distinct pair of rules for every possible case. Let q be the set {Q1,Q2, · · · ,Qn}, q′

be the set {Q′1,Q
′
2, · · · ,Q

′
n}, s be any subset of q and s′ be the subset of q′ such that

(Q′i ∈ s′) ⇔ (Qi < s). The antecedents of a pair of rules r1 and r2 generated by the

RBDA are as follows:

– r1 : (P & <con junction o f elements o f s>), which is placed in the first node’s

rule-base and

– r2 : (< output o f r1 > & <con junction o f elements o f s′> & R), which is

placed in the second node’s rule-base.

If, however, there is no R and the case considered is for n Qs, only a single rule is added

into the first node’s rule-base: r : (P & <con junction o f elements o f q>). For any

pair of r1 and r2, the union of the conjuncts of r1 and r2 covers all the conjuncts of the

original rule, since s together with s′ cover all conjuncts that are in the form (Q | Q′)

of the original rule.

Lemma 1: An event pattern captured by a rule is also captured by the sub-rules, which are

decomposed from that rule.

Proof: We need to prove that if original rule satisfies, r or r2 also satisfies. Consider the three

cases one by one:

1. P or R: As the original rule and the rule placed in the sub-rule-base are the same,

the same events are detected.

2. P and R: Satisfaction of the original rule means that P and R evaluate to true. If

P satisfies, r1 also satisfies. Similarly, the satisfaction of r1 and R results in the

satisfaction of r2. Therefore, if the original rule satisfies, sub-rules r1 and r2 also

satisfy.

3. Existence of (Q | Q′): Satisfaction of the original rule implies that P, R and each

(Q | Q′) evaluate to true. Since an exhaustive list of possible cases enumerated by

41

sub-rules, at least one rule pair out of 2n pairs will catch the event pattern detected

by the original rule.

Lemma 2: An event pattern that cannot be captured by a rule cannot be captured by the

sub-rules generated as a result of the decomposition of that rule.

Proof: We need to prove that if the original rule does not satisfy, neither does r or r2. Con-

sider the three cases one by one:

1. P or R: As the original rule and the rule placed in the sub-rule-base are the same,

the same event pattern should yield the same result.

2. P and R: If the original rule does not satisfy, either P or R should yield a false

evaluation. If P were false, r1 and, as a result, r2 would not satisfy. If R were

false, r2 would not satisfy. Therefore, if the original rule does not satisfy, neither

does sub-rule r2.

3. Existence of (Q | Q′): If the original rule does not satisfy, there must be at least

one conjunct that evaluates to false. Since the conjuncts of the original rule are

covered by all pairs of sub-rules, each pair of sub-rules should have at least one

conjunct that does not satisfy, which means that if the original rule does not satisfy,

sub-rules do not satisfy either. The same reasoning applies to the case in which

there is only r, which covers all conjuncts of the original rule.

Theorem 1: For a two-layer hierarchy, sub-rules that are decomposed from a rule capture

exactly the same events as the original rule.

Proof: In order for this to be true, the following conditions should hold:

• an event pattern should be captured by sub-rules if and only if it could be captured

by the original rule,

• an event pattern should not be captured by sub-rules if and only if it could not be

captured by the original rule.

Let A(e) be a proposition expressing an event pattern e detected by the original rule,

B(e) be a proposition expressing e detected by the sub-rules of that rule, A′(e) be the

proposition expressing e not detected by the original rule, and B′(e) be the proposition

expressing e not detected by the sub-rules. We need to prove that (A(e) ⇔ B(e)) and

42

(A′(e) ⇔ B′(e)). In order to prove (A(e) ⇔ B(e)), we need to show (A(e) ⇒ B(e))

and (B(e) ⇒ A(e)). Similarly, in order to prove (A′(e) ⇔ B′(e)), we need to show

(A′(e) ⇒ B′(e)) and (B′(e) ⇒ A′(e)). However, we know from propositional logic that

(A(e) ⇒ B(e)) ` (B′(e) ⇒ A′(e)) and (A′(e) ⇒ B′(e)) ` (B(e) ⇒ A(e)). Therefore, it is

enough to show that (A(e)⇒ B(e)) and (A′(e)⇒ B′(e)). The proofs for these are given

in lemmas 1 and 2.

Theorem 2: For a k-layer hierarchy, sub-rules that are decomposed from a rule capture ex-

actly the same events as the original rule.

Proof: (Proof by Induction) A single operation of the decomposition algorithm generates two

sub-rule-bases: a new rule-base for the node whose input set is used by the algorithm,

and a modified original rule-base (MORB).

• Initial Step: For two-layer hierarchy, a single running of the algorithm generates

two sub-rule-bases. The sub-rules of a decomposed rule capture exactly the same

events as the original rule, as proved by Theorem 1.

• Inductive Step: For a k-layer hierarchy, the decomposition algorithm should be

run (k − 1) times. We have to prove that for an arbitrary k ≥ 3, if the theorem

holds for (k − 1) sub-rule-bases, it also holds for k sub-rule-bases. Let’s assume

that the algorithm is run (k − 2) times, which generates (k − 1) rule-bases, and the

events detected by the original rule are exactly the same as the events detected by

sub-rules distributed into (k − 1) rule-bases. In order to generate the final rule-

bases for (k − 1)th and kth layers, the decomposition algorithm should be run once

more, taking the following inputs: the input set of the (k − 1)th layer and the

MORB, generated from the (k − 2)th iteration of the algorithm. Theorem 1 proves

that sub-rules that are decomposed from a rule in MORB and placed in the newly

generated rule-bases capture exactly the same event patterns as the event patterns

detected by that decomposed rule. Based on this, we can conclude that sub-rules

of an initial rule placed in k rule-bases capture exactly the same events as that rule

does, since the event patterns captured by the rules of first (k − 2) together with

the patterns captured by MORB constitute the event pattern of the initial rule.

43

3.5 Upper Bound on the Number of Sub-rules

The main factors affecting the running time of the decomposition algorithm and the number

of sub-rules generated are the number of different node classifications, the number of rules in

the original rule-base and the cardinality of the set q of each rule.

Let k be the number of different classifications, r be the number of rules in the original rule-

base, ni be the total number of sub-rules that are generated from the ith rule, nk
i be the number

of sub-rules for the kth classification that are generated from the ith rule and qk
i be the cardi-

nality of the set q of the ith rule for the kth classification.

For a typical sensor network, we expect the number of different classifications at different hi-

erarchies to have a small value. For example, in a cluster-based homogeneous sensor network

this number will most probably be 3. The cardinality of the set q changes with each rule and

each classification. Similar to the number of classifications, we anticipate a small value for it

on the average case.

The worst case in decomposing rules for a classification k occurs when there are P and R parts

in each sub-rule generated for classification k + 1. In such a case, the number of rules that are

generated from one rule is as follows:

n1
i = 2q1

i

n2
i = n1

i ∗ 2q2
i

= 2q1
i ∗ 2q2

i

...

nk
i = nk

i ∗ 2qk
i

= 2q1
i ∗ 2q2

i ∗ · · · ∗ 2qk
i

nk
i =

k∏
j=1

2q j
i (3.1)

Using these, we can calculate the upper bound on the total number of sub-rules generated for

the ith rule as follows:

ni ≤

k∑
t=1

 t∏
j=1

2q j
i

 =

k∑
t=1

2
(∑t

j=1 q j
i

)
(3.2)

44

Therefore, the upper bound on total number of sub-rules are:

n =

r∑
i=1

ni (3.3)

n ≤

r∑
i=1

 k∑
t=1

2
(∑t

j=1 q j
i

) (3.4)

Total number of sub-rules generated has exponential space complexity. Since rule-base de-

composition is statically done outside of the sensor network, algorithm running time has little

importance in terms of energy efficiency of the sensor network. However, number of rules

influence both space and rule-processing time of sensor nodes. More rules being placed in a

rule-base means that more time and computation required for processing them.

3.6 Rule Processing

Given a set of realized events, rule engine is responsible for finding the appropriate rules

that match the event patterns in their antecedents and satisfy the constraints in their condition

parts. There might be multiple rules that could fire with the set of available events. In such

a case, the selection of the rules that should fire depends on the requirements of applications.

The requirements may differ from an application to another application. Therefore, instead of

handling the rule selection problem in a generic way, it is much more appropriate to give the

rule-base developers the ability to control which rules could fire during run-time. However,

the necessary tools need to be provided to them. For example, an action that blocks processing

the rest of the rules in a rule-base, or the ability to block the execution of a specific action

statement, should be provided in the platforms that perform rule processing.

There are several ways that a rule engine could accomplish the task of processing rules, and

choosing the appropriate mechanisms depend on the concerned application. The following

are the possible strategies that may be used:

• The rule engine may only fire a single rule. The problem is that which rule should be

selected. The rule engine might employ the following strategies:

– It may select the first rule that could fire.

– It may select a rule randomly.

45

Algorithm 2 A Single Iteration of Processing by Rule Engine
1: RB = Rule-Base

2: minPriority = The smallest priority that of a rule which could fire

3: numRules = Number of rules that can fire

4: stopProcessing← 0

5: n← 0, g← 0

6: for all Rule in RB do

7: if stopProcessing then

8: break;

9: end if

10: if (g == group-id(Rule)) then

11: continue;

12: end if

13: p← priority(Rule);

14: if (p < minPriority) then

15: continue;

16: end if

17: if ((numRules != 0) & (n > numRules)) then

18: break;

19: end if

20: if Rule matches event pattern then

21: if Rule satisfy constraints then

22: Trigger Actions

23: n++

24: g← group-id(Rule)

25: end if

26: end if

27: end for

46

– If rules are assigned priorities, it may select the highest priority rule that could

fire.

• The rule engine may fire multiple rules and all of the associated actions are performed.

In such a case, starting from the top of the rule-base and searching for the rules that

could fire, the rule engine has the problem of when to stop processing.

– All rules that could fire may be processed. In such a case, the rule engine need to

go on with the processing until it reaches the end of the rule-base.

– Rule processing may be stopped by an explicit statement in the action part of a

fired rule which bans the processing of the rest of the rules.

– Only a specific number of rules may fire. For example, an application might

require at most five rules to be fired in a specific time interval.

– If assigned priorities, rules with a priority that is above some value may fire. If

there are rules that could fire but they have priorities below the threshold value,

different strategies may be employed. For example, a strategy may be to never

execute them, and another one may be to fire them if there are not any rules fired

before.

• The rule engine may fire multiple rules, but some of the actions may need to be per-

formed only once. For example, in a healthcare monitoring application, if multiple

rules can fire, and those rules contain ”Call 911” action, running this action more than

once is not desirable, while other actions may be performed more than once.

There are some rules that should never fire together. All the rules of a rule-base that are

decomposed from the same rule form a group. During the execution, only one of them should

be able to fire. In order to assure that, each rule in a rule-base should be assigned a rule

group-id, and only one of them should be executed at a particular moment. The sub-rules that

are decomposed from a rule all have the same rule group-id as the rule that is decomposed.

If multiple rules could fire in a rule group, there is only one way to select a rule: In a group of

rules, the most specific rule that satisfy the conditions should fire. A rule is more specific if

the number of elements of the set q being a part of the antecedent is more compared to another

rule. For example, (P & Q1 & Q2) is more specific than P, or (P & Q1), or (P & Q2).

47

Algorithm 2 provides a mechanism that can be employed by rule engines. This algorithm

assumes rules have been assigned priorities.

48

CHAPTER 4

RULE DECOMPOSITION: REVISITED

The main drawback of the algorithm given in the previous chapter, RBDA, is that all possible

n-ary combinations of the elements of the set q need to be enumerated. In such a case, the

number of sub-rules generated grows exponentially depending on the number of elements in

q. This situation results in two major problems. First, more rules means that more space is

required for storage, yet storage is a luxury for a typical sensor node. Second, a larger rule-

base leads to increased processing overhead as the information-processing engine needs to go

over much more rules for the event detection and correlation operations.

In order to reduce the number of sub-rules generated, we extend our algorithm with a new

one that employs rules with variables, helping us to get rid of the need for statically listing all

possible input combinations of a rule.

4.1 Variables

We defined the term predicate as any binary function that takes a variable number of argu-

ments and returns a value of true or false. Furthermore, given a node’s input set, we presented

a generalized format of the antecedent of the rules:

P & (Q1 | Q′1) & (Q2 | Q′2) & · · · & (Qn | Q′n) & R,

where P, R, Qi and Q′i have the same meanings as described in the previous section.

Definition 4.1.1 Let q be the set {Qi | 1 ≤ i ≤ n} and q′ be the set {Q′i | 1 ≤ i ≤ n}. A variable

is a symbol that represents some m-ary combination of the elements of the sets q or q′, where

0 ≤ m ≤ n.

49

In the previous algorithm, for decomposing a rule which contains elements of q in it, the cases

that embody the presence of from none to n Q’s need to be enumerated. However, use of the

variables eliminates the requirement for this enumeration.

Let’s consider, for example, the following antecedents: P, (P & Q1), (P & Q2), (P & Q1 & Q2).

We can represent these in a single expression with the help of the variable: (P & ϑ), where

ϑ stands for either φ, Q1, Q2 or (Q1 & Q2). By the help of variables, there is no need to

exhaustively list all possible input combinations.

Rules used in the new algorithm differ from the conventional rules in that additional array

structures are associated with the variables. Array entries correspond to the elements of the

sets q or q′, or to the results of their evaluations. However, note that a variable may only be

used for either the elements of set q or q′, but not both. In other words, all entries of an array

need to be related to the elements of the same set.

There are two roles that a variable can assume. The first role is to statically store the infor-

mation about the disjunctive clauses to be matched, which are the elements of the sets q or q′.

The second role is to keep and transfer dynamic knowledge about the results of the evaluation

of the disjunctive clauses during rule processing. For this purpose, we define two types of

variables:

1. Predicate Matching Variable (PMV): This is responsible for statically storing all pos-

sible disjunctive clauses that could be matched at run-time. The rule engine uses PMV

to determine what to search for in the available event stream at run-time.

2. Knowledge Transfer Variable (KTV): This holds the results of the processing carried

out by a node, and is used by the nodes at the upper layers to determine what should be

matched. As KTV stores the results of evaluations, its contents are meaningful only at

run-time. The antecedent of a rule cannot contain a KTV alone; it needs to be accom-

panied by a PMV. Actually, there is one-to-one relationship between the entries of the

PMV and the KTV. The KTV contains the results of the evaluations of the elements of

the set q from previous layers and the PMV stores the elements of the set q′. Variables

in the consequent can only be KTV.

Sub-rules that are produced as a result of the decomposition algorithm might contain zero,

one or two variables in their antecedents.

50

• If there are no variables in a rule, the rule that is decomposed to produce that rule has

an empty set q.

• If there is a single variable in a rule, it stores all elements of the set q. The variable is a

PMV and this rule cannot be further decomposed. In the presence of such a rule, there

must be an accompanying rule employed in the next (upper) layer. Rules generated for

the nodes of the lowest layer cannot have more than one variable.

• If there are two variables in a rule, the first variable, which is a KTV, holds the knowl-

edge about the processing carried out in the lower layer. The second variable is a PMV

and it stores the elements of the set q′ that is constructed using the input set of the lower

layer. Besides keeping the relationship with the lower layer, the second variable also

stores the elements of the set q, which is constructed for the current layer, such that

processing in the current layer can be used to shape the processing carried out in the

upper layers.

4.2 Decomposition Using Rules with Variables: RBDA-V

Similar to our previous algorithm, given an input set for a node, the new algorithm, RBDA-

V, decomposes a rule-base into two rule-bases: a new rule-base for the node, NRB, and the

modified original rule-base, ORB.

Algorithm 3 gives a pseudocode implementation of the new rule-base decomposition pro-

cess. It begins by putting the antecedent of the original rule into the conjunctive normal

form. Each conjunct is either a single predicate or a disjunction of predicates. Conjuncts

form P if all predicates can be evaluated by the node and conjuncts that cannot be evalu-

ated form the R part of the antecedent. If the conjunct is in disjunctive normal form and

only some part of it can be evaluated by the node, then the part that can be processed con-

stitutes Q and the remaining part constitutes Q′. The antecedent of a rule can be written as

P & (Q1 | Q′1) & · · · & (Qn | Q′n) & R.

Let q be the set {Q1, Q2, · · · , Qn} and q′ be the set {Q′1, Q′2, · · · , Q′n}. If the rule to be

decomposed only contains P, it is added into the NRB, and if it only contains R, added into

the ORB unaltered. If the rule contains both P and R but not any (Q | Q′), a sub-rule with P as

51

Algorithm 3 Decomposition Algorithm Using Rules with Variables: RBDA-V - Part 1
INPUT: IS =input set, RB=original rule-base

OUTPUT: RB=original rule-base (modified), NRB=new sub-rule-base

1: for all Rule in RB do

2: Set P, R, q, q′ ;

3: n← cardinality of set q

4: if Rule does not contain variables then

5: if ((R is NULL) & (P is not NULL | n ≥ 1)) then

6: Add
[
(P & con junction o f all Qi)→ O

]
into NRB

7: else if q is empty then

8: if (P is NULL) then

9: Add [R→ O] into RB

10: else

11: Add [P→ Op] into NRB

12: Add [(Op & R)→ O] into RB

13: end if

14: else

15: for i = 1 to n do

16: ϑ[i] = Qi

17: ω[i] = Q′i

18: end for

19: Add
[
(P & ϑ)→ µ

]
into NRB

20: Add
[
(µ & ω & R)→ O

]
into RB

21: end if

22: else . //
(
P & µ & ω & (Q1|Q′1) & · · · & (Qn|Q′n) & R

)
23: ϑ← remove non processable dis juncts(ω)

24: ω← remove processable dis juncts(ω)

25: if (R is NULL) then

26: Add
[
(P & µ & ϑ & con junction o f all Qi)→ O

]
into NRB

27: end if

52

Algorithm 4 Decomposition Algorithm Using Rules with Variables: RBDA-V - Part 2
28: k ← max index of ϑ

29: for i = 1 to n do

30: ϑ[k + i] = Qi

31: ω[k + i] = Q′i

32: end for

33: Add
[
(P & µ & ϑ)→ τ

]
into NRB

34: Add [(τ & ω & R)→ O] into RB

35: end if

36: Remove Rule from RB

37: end for

its antecedent and an auxiliary output as its consequent is added into the NRB. The associated

rule to be placed in the RB has the conjunction of auxiliary output and R as its antecedent,

together with the original rule’s consequent as its consequent.

Provided that the set q is not empty, let n be the number of elements of the set q. With our

new algorithm, instead of generating 2n pairs of rules, a rule can be decomposed into at most

three sub-rules regardless of the value of n: one or two rules for the NRB and one rule for the

ORB. Two sub-rules, for the NRB, are generated when there is no R in the original rule and

it is possible to reach a state where the original rule’s actions can be taken. One of the rules

contains the original rule’s consequent, which covers the case that all elements of the set q

are captured. And the other rule, which has an auxiliary output, is used to cover the cases in

which not all the elements of the set q are captured.

Let ϑ represent the variable used in the sub-rule to be placed in the NRB and ϑ[] represent the

array associated with it. If the set q is non-empty and the rule does not contain any variables,

then the elements of q are assigned to the elements of the array associated with the variable:

ϑ[i] = Qi, 1 ≤ i ≤ n

If P is absent, only ϑ, otherwise P and ϑ constitute the antecedent of the sub-rule to be placed

in the NRB. The rule has has an auxiliary output, µ. It is a KTV and used as the first variable

in the accompanying rule to be placed in the ORB. This rule has a second variable, ω, which

is a PMV and holds the elements of the set q′:

ω[i] = Q′i , 1 ≤ i ≤ n

53

µ, ω, and, if it exists, R comprise the antecedent of the rule to be placed in the ORB. Its

consequent is equal to the original rule’s consequent. In addition to this pair of rules, if there

is no R, then an additional rule, having the original rule’s output as its consequent and the

conjunction of the elements of the set q and, if it exists, P as its antecedent is added into the

NRB.

If the rule to be decomposed contains variables, the generalized format for the antecedent

must look like the following:

(
P & µ & ω & (Q1|Q′1) & · · · & (Qn|Q′n) & R

)
,

where µ, a KTV, corresponds to the entries of the set q, and ω, a PMV, holds the entries of

the set q′. Note, however, that these sets are not the ones used for the current decomposi-

tion; they are created and used in the previous run of the RBDA-V. Let k be the size of the

arrays associated with µ and ω. Let ϑ be assigned to ω with the non-processable predicates

removed. Furthermore, let the processable predicates of ω be removed, leaving ω only with

non-processable inputs. The array for ϑ will hold not only the elements coming from ω, but

also the elements of the set q, which has the cardinality n:

ϑ[k + i] = Qi, 1 ≤ i ≤ n

µ, ϑ and, if it exists, P constitute the antecedent of the sub-rule to be placed in the NRB. The

rule has an auxiliary output, τ. It is a KTV and used as the first variable in the accompanying

rule that is placed in the ORB. This rule uses ω as the second variable:

ω[k + i] = Q′i , 1 ≤ i ≤ n

τ, ω, and, if it exists, R comprise the antecedent of that rule. Its consequent is equal to the

original rule’s consequent. In addition to this pair of rules, if there is no R, then a rule with

the original rule’s output as its consequent and the conjunction of the elements of the set q, µ,

ϑ and, if it exists, P as its antecedent is added into the NRB.

The last step is to remove the original rule from the ORB. Nevertheless, the steps described

above decomposes only a single rule into sub-rules. These operations should be repeated for

every rule in the ORB in order to generate the complete sub-rule-base for the type of node

it is. The input set of this node is used in the RBDA-V. Furthermore, the described process

only creates a sub-rule-base for one type of node; the complete distribution of information

54

processing into the WSN requires the creation of sub-rule-bases for each type of node residing

at different layers.

Example 1. Let’s consider the following rule:

(a1 & (b1 | c1) & (d1 | e2 | f2) & (g1 | h2) & i2)→ O

where subscripts represent the hierarchical level where the related input can be pro-

cessed. This rule is going to be distributed into 2 different rule-bases; i.e., only one

iteration of the RBDA-V is enough to derive the necessary rules. The input set for the

first hierarchical level is IS = {a1, b1, c1, d1, g1}. Using this, we come up with:

• P = (a1 & (b1 | c1))

• q = {d1, g1}

• q′ = {(e2 | f2), h2}

• R = i2

If we follow the steps described in the RBDA-V, the following rule would be added into

the new sub-rule-base:

(a1 & (b1 | c1) & ϑ[d1, g1])→ µ[d1, g1]

The original rule being decomposed is removed from the original rule-base and instead

the following rule is added:

(µ[d1, g1] & ω[(e2 | f2), h2] & i2)→ O

Example 2. Let’s consider the following rule for a three-level hierarchy:

a1 & (b1 | c2 | d3) & (e1 | f3))→ O,

where subscripts represent the level where the related input can be processed. In this

example we are going to distribute this rule into three different rule-bases. In the first

iteration of the RBDA-V, P = a1, q = {b1, e1}, q′ = {(c2 | d3), f3} and R is null. If we

follow the steps described in the RBDA-V, the following rules would be added into the

new sub-rule-base:

a1 & b1 & e1 → O

a1 & ϑ[b1, e1]→ µ[eval(b1), eval(e1)]

55

eval(p) is the result of the evaluation of p. Elements of the KTVs are given for the

sake of understandability. If all of a1, b1 and e1 evaluate to true, then the rule engine

reaches a conclusion and associated actions are taken. On the other hand, if at least one

of b1 or e1 yields a false value or they cannot be evaluated because of the absence of

input, then the available information is fused and the result is sent to the node in the

next layer. After the first iteration, the original rule is removed from the ORB and the

following rule is added into it:

µ[eval(b1), eval(e1)] & ω[(c2 | d3), f3]→ O

In the second iteration of the RBDA-V, sub-rule-bases for the second and third levels

are generated by decomposing the above rule. The non-processable predicates in ω are

d3 and f3. Based on this information, the sub-rule that is generated for the second level

is as follows:

µ[eval(b1), eval(e1)] & ϑ[c2,−]→ τ[eval(b1) | eval(c2), eval(e1)]

After the second iteration, the original rule-base, which is the rule-base of the third

level, have the following rule:

τ[eval(b1) | eval(c2), eval(e1)] & ω[d3, f3]→ O

4.3 Equivalence of Initial Rule and Decomposed Sub-rules

By a single operation of the RBDA-V, a rule is decomposed into sub-rules to be processed

by two different types of nodes. Let’s refer to the rule-base of the node where the input set

is used to determine P, Q, Q′ and R as the first rule-base, and the other one as the second

rule-base.

The antecedent of the original rule might contain P, a KTV/PMV pair, (Qi | Q′i), R or any

combination of these. It might contain no or two variables in its antecedent: a KTV (corre-

sponding to the elements of q) and a PMV (corresponding to the elements of q′). They are

related such that if the consequent of a rule does not contain a variable (i.e., it is a decision

rule) and the non-variable conjuncts have been satisfied, the following condition must hold in

order for the rule to fire: ∀i, (KTV[i] | PMV[i])→ true.

There are four cases that the original rule could possibly be in:

56

• There are neither variables nor (Q | Q′) in the rule.

– Case 1. There is either P or R. If there is P, r : P is placed in the first rule-base

and if R, r : R is placed the second rule-base.

– Case 2. There are both P and R. A single pair of rules is generated: r1 : P, which

is placed in the first rule-base, and r2 : r1 & R, which is placed in the second

rule-base.

• Case 3. There are (Q | Q′) and possibly P and/or R in the rule, but no variables. Let

ϑ and µ correspond to the elements of q, and ω corresponds to the elements of q′. A

pair of rules, r1, for the first rule-base, and r2, for the second rule-base, are as follows:

r1 : ([P &] ϑ)→ µ, r2 : (µ & ω [& R])→ O. If there is no R, an additional rule is added

into the first rule-base: r : ([P &] <con j o f elements o f q>)→ O. Actually, r1 and r2

could detect the same event patterns as r, but its sole purpose is to enable the first node

to react to events.

• Case 4. There is a KTV/PMV pair and possibly (Q | Q′) and/or P and/or R in the rule.

Let KTV be µ and PMV be θ for the original rule, ϑ and τ correspond to the elements

of q and processable entries of θ, and ω correspond to the elements of q′ and the non-

processable elements of θ. The antecedents of a pair of rules r1 and r2 generated by the

RBDA-V are as follows: r1 : ([P &] µ & ϑ)→ τ, r2 : (τ & ω [& R])→ O. If there is no

R, an additional rule is added into the first rule-base:

r : ([P &] µ & ϑ [& <con j o f elements o f q>]) → O. It is used for enabling the first

node to react to events.

An event pattern detected by the original rule is also detected by sub-rules if r2 or r fires.

Because an event pattern that is detected by r is also detected by r1, we will omit discussing

it in the rest of the proof. Furthermore, as the proofs for cases 1 and 2 are similar to the ones

given in Section 3, here we discuss only cases 3 and 4.

Lemma 3: An event pattern captured by the original rule is also captured by sub-rules, which

are decomposed from that rule.

Proof: Let E(Pr) represent the result of the evaluation of Pr. The firing of the original

rule means that all conjuncts satisfy; in other words, E(P), E(R), ∀i E(Qi | Q′i) and

∀i E(µ[i] | θ[i]) (only for case 4) are true.

57

Case 3. As E(P) is true, r1 fires with µ[i] set to true if E(Qi) is true, or else it is set to

false. Since all (Qi | Q′i) evaluate to true, if µ[i] (= E(Qi)) is not true, ω[i] (= E(Q′i))

needs to satisfy. As a result, the condition that “∀i, (KTV[i] | PMV[i]) → true” holds

and because E(R) is true, r2 satisfies.

Case 4. Let there be x conjuncts in the form of (Q | Q′) and the number of entries of

µ be y. The first y elements of ϑ contain the disjunctions of the processable predicates

of θ and the remaining x elements correspond to Qi. Similarly, the first y elements of

ω contain the disjunctions of the non-processable predicates of θ and the remaining x

elements correspond to Q′i . τ contain the results of the evaluations of the elements of

ϑ. As E(P) is true, r1 fires, with τ[i] is set to true if µ[i] is true or ϑ[i] satisfies, or else

it is set to false. As all (Qi | Q′i) evaluate to true, the disjunction of τ[i] and ω[i], where

(y+1) ≤ i ≤ (y+ x), needs to produce true as well. Since θ[i] = ϑ[i] | ω[i] for 1 ≤ i ≤ x,

what is captured by θ in the original rule will also be captured by the τ and ω variable

pair. As a result, the condition that “∀i, (KTV[i] | PMV[i])→ true” holds and because

E(R) is true, r2 satisfies.

Lemma 4: An event pattern not captured by the original rule is not captured by the sub-rules,

which are decomposed from that rule, either.

Proof: If the original rule does not satisfy, at least one of P, R, (Qi | Q′i) or θ[i] (only for case

4) should fail to satisfy. If E(P) is false, r1 and in turn, r2 do not fire for cases 3 and 4.

Similarly, if E(R) is false, r2 fails to satisfy. If E(P) and E(R) are true:

• Case 3. As the original rule fails to fire, the following condition should hold:

∃i, E(Qi | Q′i) → f alse. In such a case, although r1 fires, r2 fails to fire since the

condition that “∀i (KTV[i] | PMV[i]) is true” does not satisfy.

• Case 4. If there exists at least one i for which E(Qi | Q′i) is false, r2 does not fire

for the reason explained for case 3. Otherwise, the following condition must be

true: ∃i, (µ[i] | θ[i])→ f alse. Since θ[i] = ϑ[i] | ω[i], what is captured by θ in the

original rule will also be captured by the τ and ω variable pair in r2. As a result,

the condition that ”∀i, (KTV[i] | PMV[i]) → true” would fail and therefore r2

fails to satisfy.

As we can see, it is not possible to fire r2 if the original rule fails to fire.

58

Theorem 3: For a two-layer hierarchy, sub-rules that are decomposed from a rule capture

exactly the same events as the original rule.

Proof: In order for this to be true, the following conditions should hold:

• an event pattern should be captured by sub-rules if and only if it could be captured

by the original rule,

• an event pattern should not be captured by sub-rules if and only if it could not be

captured by the original rule.

The proofs given for lemmas 3 and 4 demonstrate that these conditions hold true.

Theorem 4: For a k-layer hierarchy, sub-rules that are decomposed from a rule capture ex-

actly the same events as the original rule.

Proof: (Proof by Induction) A single operation of the RBDA-V generates two sub-rule-bases:

new rule-base for the node whose input set is used by the algorithm, and the modified

original rule-base.

• Initial Step: For 2-layer hierarchy, single running of the RBDA-V generates two

sub-rule-bases. The sub-rules of a decomposed rule capture exactly the same

events as the original rule, as it is proved by Theorem 1.

• Inductive Step: For a k-layer hierarchy, the decomposition algorithm should be

run (k − 1) times. We have to prove that for an arbitrary k ≥ 3, if the theorem

holds for (k − 1) sub-rule-bases, it also holds for k sub-rule-bases. Let’s assume

that the RBDA-V is run (k − 2) times, which generates (k − 1) rule-bases, and the

events detected by the original rule are exactly the same as the events detected

by sub-rules distributed into (k − 1) rule-bases. In order to generate the final

rule-bases for (k − 1)th and kth layers, the decomposition algorithm should be run

once more taking the inputs: the input set of the (k − 1)th layer and the modified

original rule-base, MORB, generated from the (k − 2)th iteration of the RBDA-V.

Theorem 1 proves that sub-rules that are decomposed from a rule in MORB and

placed in the newly generated rule-bases capture exactly the same event patterns

as the event patterns detected by that decomposed rule. Based on this, we can

conclude that sub-rules of an initial rule placed in k rule-bases capture exactly the

same events as that rule does, since the event patterns captured by the rules of first

59

(k − 2) together with the patterns captured by MORB constitute the event pattern

of the initial rule.

4.4 Upper Bound on the Number of Rules

The use of variables in rules helps us to transfer the burden of space into computation. The

main factor that affect the number of sub-rules generated by the RBDA-V is the number of

hierarchical layers. In any layer except the highest layer, there can be at most two sub-rules

generated from one rule. In the highest hierarchical layer, there can be at most one rule.

Let k be the number of different hierarchical layers, and r be the number of rules in the original

rule-base. In the worst case, the number of sub-rules generated from a single rule is going to

be less than or equal to (2k − 1). Therefore the upper bound on the total number of rules that

can be used by the application is n(2k − 1).

4.5 Rule Processing

The topics of the selection of rules that could fire, and when to stop the rule processing are

discussed in Chapter 3. Conceptually, there is not any difference in the handling of these

issues. On the other hand, in our new approach, rule engine has to perform an additional task:

matching variables with the elements of the sets q and q′, which are the sets used during the

decomposition of the rule that this rule is decomposed from.

The minimum requirements for a rule to be eligible for firing is that non-variable elements in

the antecedent need to be detected. If the consequent is an auxiliary output, then not all of

the elements in the array associated with the variable need to satisfy. This auxiliary output is

used as a variable in the rules of the next layer.

In a rule which contains two variables, the first variable stores information about events that

have been detected by the lower layers thus far. The second variable matches the remaining

events using the information in the first variable. The second variable may also be used to

pass the result of the partial processing, which has been performed up until the current layer,

onto higher layers.

60

Let’s consider the disjunctive clause (Q | Q′). Q is stored in the first variable and Q′ is stored

in the second variable. The index of the array entry that holds Q is equal to index of the entry

that holds Q′. If the ith entry of the first variable evaluates to true, then the rule engine does

not need to check the satisfaction of the ith entry of the second variable. Furthermore, if the

second variable is used to pass the information onto higher layers, the ith entry is treated as if

it has been satisfied. In other words, the ith entry of the second variable of the rule in the next

layer does not need to be checked.

Let’s consider the rule from Example 2:

(a1 & (b1 | c2 | d3) & (e1 | f3)))→ O

Sub-rules generated are:

Layer1 : (a1 & b1 & e1)→ O

Layer1 : (a1 & ϑ[b1, e1])→ µ[b1, e1]

Layer2 : (µ[b1, e1] & ϑ[c2, ∗])→ τ[c2, ∗]

Layer3 : (τ[c2, ∗] & ω[d3, f3])→ O

If a1, b1 and e1 occur, then the rule in layer one fires and action O is taken. Now let’s assume

that events a1, c2 and f3 have occurred. In the first layer, the second rule will fire even though

ϑ does not match b1 and e1. Therefore, µ[f alse, f alse] is sent to the second layer. In the

second layer, ϑ matches c2 and therefore τ[true, f alse] is sent to the third layer. In the third

layer, ω matches f3 and the result of the evaluation becomes ω[true, true]. As a result, the

rule fires and action O is taken.

61

CHAPTER 5

IMPRECISION IN WSN

An indispensable requirement for data processing in WSNs is to deal with unreliable and

imprecise sensory data. There are various reasons behind this important challenge. First,

sensor nodes are deployed in environments that are open to the interference of some physical

events or objects, not deployed in special protected areas. Second, as huge numbers of nodes

are generally required for a typical WSN application, cheap fabrication techniques need to be

used to produce affordable sensor nodes. Although this results in inexpensive nodes, this also

leads to less reliable sensor nodes. Another problem is the unreliable wireless communication,

which is the de facto communication mechanism in WSNs. In order to preserve the decision

reliability even in the presence of unreliable data, inexact computation techniques need to be

employed in WSNs.

In this chapter, after giving some preliminary information, we describe a fuzzy rule-based

system for WSNs. Moreover, as the most important deficiency of fuzzy rule-based systems

is the large numbers of rules, we propose a new method that reduces the number of rules in

a fuzzy rule-base, and based on this, we propose an algorithm to be used by fuzzy inference

engines for fuzzy compositions.

5.1 Dealing with Imprecision

There are several strategies that can be used to deal with imprecision in information processing

[44]. Bayesian inference is an information fusion technique where probability theory is used

to combine the information in order to find out whether a hypothesis is true or not. The

uncertainty is represented by conditional probabilities which can be a value between zero and

62

one. A value of zero represents that a hypothesis is absolutely false and one represents that it

is absolutely true. Bayesian inference uses Bayes’ rule:

P(A|B) =
P(B|A)P(A)

P(B)

where the a posteriori probability P(A|B) represents the belief of hypothesis A given the in-

formation B. This probability is obtained by multiplying P(A), the a priori probability of

hypothesis A, by P(B|A), the probability of receiving B given A is true. The probability P(B)

is considered as a normalizing constant.

The Dempster-Shafer inference is based on evidential reasoning [17, 54], which is a gen-

eralization of the bayesian theory. Instead of dealing with probabilities used in bayesian

inference, it combines evidence from different sources to come up with a belief. This mecha-

nism is suitable especially for multi-sensor data fusion [44]. The beauty of this mechanism is

that the information to be fused might be in different granularities. Each sensor can provide

information in different levels of details.

Another method for handling imprecision is fuzzy logic. It deals with uncertainty by mapping

crisp values into linguistic variables, which broadly describe the value. The main advantage

of fuzzy inference is that it transforms a complex problem into a more simpler problem which

can be dealt with more easily.

Bayesian inference requires prior knowledge about the probabilities, P(B|A) and P(B), which

is not practically possible to be obtained. Large amounts of data need to be collected, and

statistical analysis techniques need to be used to generate those prior probabilities, costing

time and expense. While Dempster-Shafer inference does not assign a priori probabilities, it

requires complex operations to be performed which is beyond the computational abilities of a

typical sensor node.

For the above reasons, we choose to use fuzzy logic in handling imprecision and uncertainty in

WSNs. It is simple to be implemented on sensor nodes with low resources. The problems can

be described much more easily because it is much more closer to the human way of thinking.

People use fuzzy if-then rules all the time. For example, “If I go to bed before 11p.m., I can

get up earlier” is a typical fuzzy rule.

63

5.2 Fuzzy Logic

In traditional two-valued logic, also called bivalent logic, a statement is either true or false,

zero or one, right or wrong, in or out, valid or not valid. However, we are not living in a

digital world and two values are not enough to model the the analog world that we are living

in. The seminal paper of L. Zadeh in 1965 [65], which introduced the concept of fuzzy sets,

underlies fuzzy logic.

There are generally imprecisions in inputs and/or outputs of people’s decisions. For example,

the statement ”the height of John is greater than 170cm” is either true or false in traditional

logic. However, if you ask a person that whether the height is greater than 170cm or not,

he will probably give inexact answers, such as maybe, probably or not sure. Besides the in-

exactness of the resulting decision, the input used for the decision may not be precise. For

example, even if a person does not know the precise value of John’s height, he can still give

the answer YES for the question “Is John’s height greater than 170cm?”. While giving their

answers, people most probably tend to rely on their opinions, instincts, unreliable observa-

tions and other subjective judgements rather than measuring John’s height to give a definite

answer. Reasoning with imprecision is quite an effective strategy because relying on precise

evaluations of precise inputs may not be possible all the time. Besides that, precision gen-

erally brings too much cost and complexity for the decision process, which makes precise

computing infeasible for some applications.

Humans’ way of reasoning is quite a successful mechanism as they are considered to be the

most intelligent living being in the world. In the light of evolutionary theory, a thing has to be

successful in order to live up. One of the most important aspects of this reasoning mechanism

is that complexity is reduced by employing approximate reasoning. Of course there are cases

in which precision is very important, but for most of the time approximate reasoning yields

acceptable results.

Precision increases complexity, so reasoning mechanisms that use precise inputs and outputs

require time and resource. Besides that, precision is not achievable every time. For example,

it is inevitable that there will be noise in the analog signal captured by the sensor nodes that

are deployed in a harsh physical environment. This noise will then cause deviations from

the actual values in digitized sensor readings. Therefore, it is preferable to have a reasoning

64

mechanism that can tolerate this kind of inaccuracies.

Fuzzy logic helps to model the human way of reasoning. Literals, such as tall, strong, big,

etc., are used to describe fuzzy sets.

5.2.1 Fuzzy Sets and Membership Functions

An ordinary set is based on the two-valued logic. An item is either a member of the set or not.

Such a set A on a universe of discourse U can be represented by the following characteristic

function:

µA(x) =


1 x ∈ A,

0 x < A.

The characteristic function of the set A can also be represented as a functional mapping as

follows:

µA(x) : U → {0, 1}

Although ordinary sets are simple and easy to operate on, they are not suitable to be used in

most of the real world cases. In real life, i.e., the analog world that we are living in, it is hard

to classify things as pure black or white. There are grays that represent partial truthfulness

or falseness. Humans’ interaction with their surroundings generally contains these types of

partial information or conclusions. For example, let us consider the following statement:

John is tall. Let us further assume that John’s height is 182 cm. John is not very tall but he is

slightly above the average height of the population, so he may be considered tall.

A fuzzy set is an extension of a crisp set that allows partial memberships [21]. The degree

of membership of an element x of a fuzzy set A on a universe of discourse U is defined by

the following membership function, which is an extension of the characteristic function for

ordinary sets:

µA(x) : U → [0, 1],

where 0 means no membership and 1 means full membership. In contrast to the characteristic

function of ordinary sets, µA(x) can take any real value in the range 0 to 1: 0 ≤ µA(x) ≤ 1. A

degree of membership that is in between 0 and 1 models partial membership.

65

x

µ(x)

0

1

190

Tall

Height

Figure 5.1: An example for the characteristic function of a crisp set

x

µ(x)

0

1

170 190

Tall

Height

Figure 5.2: An example for the membership function of a fuzzy set

66

a

b

a AND b

a OR b

NOT a

Figure 5.3: Conjunction, disjunction and complement operations in bivalent logic

5.2.2 Fuzzy Operators

Intersection and union are the basic operations of crisp sets that correspond to conjunction

(AND) and disjunction (OR) operations in bivalent logic. These are also the basic operators

in a fuzzy logic system. However, as expected, they have slightly different definitions from

the ordinary ones [21].

5.2.2.1 Conjunction Operator

The truth table for the conjunction operator, also called AND operator, of the classical binary

logic can be seen in Table 5.1. This operator corresponds to the intersection operation in the

classical set theory. Instead of considering only zero and one, the binary conjunction can be

extended on the unit interval [0, 1] as follows [56]:

Definition 5.2.1 Binary conjunction on the unit interval is a function f : [0, 1] x [0, 1] →

[0, 1] which satisfies the following conditions ∀x, y, z ∈ [0, 1]:

67

x

x

x

x

µ(x)

µ(x)

µ(x)

µ(x)
A B

A and B

A or B

not A

Figure 5.4: Conjunction, disjunction and complement operations in multi-valued logic

Table 5.1: The truth table of the binary conjunction

P1 P2 P1 ∧ P2

0 0 0
0 1 0
1 0 0
1 1 1

68

i. f (x, 1) = x, and

ii. Monotonicity: (x ≤ y)⇒ (f (x, z) ≤ f (y, z) & f (z, x) ≤ f (z, y)).

The first condition makes sure that ’1’ is interpreted as an identity element. The monotonicity

condition assures that an increase in the conjunct’s value does not produce a decrease in the

resulting truth value.

There is not a single implementation of the conjunction operator for fuzzy logic systems. In

accordance with requirements, different correspondences between operands may be defined.

The conjunction operation in fuzzy logic is typically modeled as a triangular norm, t-norm

for short.

Definition 5.2.2 A triangular norm is a function t : [0, 1] x [0, 1]→ [0, 1] which satisfies the

following conditions ∀x, y, z ∈ [0, 1]:

i. Boundary: t(x, 1) = x and t(0, 0) = 0,

ii. Monotonicity: (x ≤ y)⇒ (t(x, z) ≤ t(y, z)),

iii. Commutativity: t(x, y) = t(y, x),

iv. Associativity: t(x, t(y, z)) = t(t(x, y), z).

The boundary condition ensures that the behavior of the conjunction operator for crisp sets

is modeled correctly. The monotonicity condition states that an increase in x and y do not

produce a decrease in the result. The commutativity condition guarantees that the order in

which x and y are combined makes no difference. Finally, the associativity condition ensures

that any number of sets can be combined in any order.

Every t-norm is a conjunction on the unit interval. Typical t-norms that are seen in the litera-

ture are as follows [25]:

• Gödel/Minimum t-norm: T (x, y) = min(x, y).

• Product t-norm: T (x, y) = xy.

• Łukasiewicz t-norm: T (x, y) = max(0, x + y − 1).

69

Table 5.2: The truth table of the binary disjunction

P1 P2 P1 ∨ P2

0 0 0
0 1 1
1 0 1
1 1 1

• Drastic product t-norm: T (x, y) =


min(x, y) if x = 1 or y = 1,

0 otherwise.

• Nilpotent minimum t-norm: T (x, y) =


0 if x + y ≤ 1,

min(x, y) otherwise.

5.2.2.2 Disjunction Operator

The truth table for the disjunction operator, also called OR operator, of the classical binary

logic can be seen in Table 5.2. This operator corresponds to the union operation in the classical

set theory. Instead of considering only zero and one, the binary disjunction can be extended

on the unit interval [0, 1] as follows [56]:

Definition 5.2.3 Binary disjunction on the unit interval is a function f : [0, 1] x [0, 1] →

[0, 1] which satisfies the following conditions ∀x, y, z ∈ [0, 1]:

i. f (x, 0) = x, and

ii. Monotonicity: (x ≤ y)⇒ (f (x, z) ≤ f (y, z) & f (z, x) ≤ f (z, y)).

The first condition makes sure that ’0’ is interpreted as an identity element. The monotonicity

condition assures that an increase in the disjunct’s value does not produce a decrease in the

resulting truth value.

Similar to the conjunction operator, there is not a single implementation of the disjunction

operator for fuzzy logic systems. Different correspondences between operands may be de-

fined according to needs. The disjunction operation in fuzzy logic is typically modeled as a

triangular conorm, t-conorm or s-norm for short.

70

Definition 5.2.4 A triangular conorm is a function s : [0, 1] x [0, 1] → [0, 1] which satisfies

the following conditions ∀x, y, z ∈ [0, 1]:

i. Boundary: s(x, 0) = x and s(1, 1) = 1,

ii. Monotonicity: (x ≤ y)⇒ (s(x, z) ≤ s(y, z)),

iii. Commutativity: s(x, y) = s(y, x),

iv. Associativity: s(x, s(y, z)) = s(s(x, y), z).

The above conditions for t-conorms are similar to the conditions for t-norms. The bound-

ary condition ensures that the behavior of the disjunction operator for crisp sets is modeled

correctly. The monotonicity condition states that an increase in x and y does not produce a

decrease in the result. The commutativity condition guarantees that the order in which x and

y are combined does not make any difference. Finally, the associativity condition ensures that

any number of sets can be combined in any order.

Every t-conorm is a disjunction on the unit interval. Typical t-conorms that are seen in the

literature are as follows [25]:

• Gödel/Minimum t-conorm: S (x, y) = max(x, y).

• Probabilistic sum t-conorm: S (x, y) = x + y − xy.

• Bounded sum/Łukasiewicz t-conorm: S (x, y) = max(1, x + y).

• Drastic sum t-conorm: S (x, y) =


max(x, y) if x = 0 or y = 0,

1 otherwise.

• Nilpotent maximum t-conorm: S (x, y) =


1 if x + y ≥ 1,

max(x, y) otherwise.

5.3 Fuzzy Rules and Fuzzy Inferencing

Fuzzy inferencing is the process that maps a set of inputs into a set of outputs using fuzzy

logic. The relationship between inputs and outputs are formulated by means of if-then rules.

The following is what happens in traditional rule-based inferencing:

71

Rule: IF x is A THEN y is B.

Evidence: x is A.

Conclusion: y is B.

This is a strict relation that the consequent can only be true when the antecedent is fully true.

Fuzzy rules helps in describing non-strict relationships between input and output domains.

The following is an example for fuzzy rule-based inferencing:

Rule: IF x is A THEN y is B.

Evidence: x matches A to a degree of µ.

Conclusion: y complies with B to a degree of µ.

There is not a single type of fuzzy rules, nor there is a single type of fuzzy inferencing sys-

tems. A type of fuzzy inferencing system generally requires a specific type of fuzzy rules.

Different types of fuzzy rules emerge from where fuzzy sets are used. Fuzzy sets may be in

a rule’s antecedent, in its consequent, or in both. Although there are several fuzzy inferenc-

ing systems proposed in literature, two of them are widely accepted: Mamdani-type fuzzy

inferencing system [38] and Sugeno-type fuzzy inferencing system [58, 59], also known as

Takagi-Sugeno-Kang inferencing method. In Mamdani’s method, fuzzy sets are used for both

the antecedent and the consequent of a rule. A rule used in Mamdani-type inferencing has

the form “IF x1 is A1 and x2 is A2 and · · · and xn is An THEN y is B”, where x1 to xn are the

inputs, y is the output, A1 to An and B are the fuzzy sets. However, in Sugeno-type inferencing

only the antecedent contains fuzzy sets. The consequent is a crisp function of the inputs. A

typical rule used in Sugeno-type inferencing has the form “IF x1 is A1 and x2 is A2 and · · ·

and xn is An THEN y = f (x1, x2, · · · , xn)”.

The interpretation of an if-then rule requires the evaluation of the antecedent, applying the

result of the antecedent to the consequent, aggregating rule outputs and determining a final

output [21]. The steps required for the evaluation of an antecedent are the same for both

inferencing mechanisms. They are as follows:

i. Fuzzification: The membership value of each input is determined for the available fuzzy

sets.

72

ii. Fuzzy Composition: Fuzzy predicates are combined by means of fuzzy composition

operators and a single value that describe the firing strength of the rule, which is also

called the degree of confidence of the rule, is calculated.

For Mamdani-type inferencing, the rest of the steps are as follows:

i. Applying the result of the antecedent to the consequent: If the rule’s antecedent is

true to some degree µ, then the consequent should also be true to the same degree µ. So,

in this step, the rule’s consequent is correlated with the degree of confidence of the rule.

Clipping is the most common method used in this step which can be described as cutting

the membership function of the output at the level of µ.

ii. Aggregation: Outputs of individual rules, which are fuzzy sets, are combined to generate

a single fuzzy set.

iii. Defuzzification: A crisp output value is calculated from the combined fuzzy set.

In Sugeno-type inferencing, the output is calculated using the following formula:

x∗ =

n∑
i=1

wi fi

n∑
i=1

wi

where wi is the firing strength of the ith rule, and fi is the result of the output function for the

ith rule.

5.3.1 Fuzzification

Fuzzification is the process that maps a crisp value to fuzzy membership values. In other

words, it is used to determine the degree of membership of a crisp value for each of the avail-

able fuzzy sets. Membership functions are used for this purpose. Selection of an appropriate

membership function for an input depends on the characteristics of the input and the set of

rules using it. Therefore, experts who have a good understanding of the rules and the input

domain need to choose the appropriate membership functions. The following are the most

commonly used membership functions.

73

x

µ(x)

0

1

a b c

Figure 5.5: Triangular membership function

x

µ(x)

0

1

a b c d

Figure 5.6: Trapezoidal membership function

74

x

µ(x)

1

c

σ

Figure 5.7: Gaussian membership function

i. A triangular membership function is characterized by 3 parameters: a, b and b. a and

c are the left and right corners of the triangle on the X−axis. b is the value for which the

membership grade is one.

µ(x; l, c, r) =



0 for x ≤ l

x − l
c − l

for l < x ≤ c

r − x
r − c

for c < x ≤ r

0 for x > r

ii. A trapezoidal membership function is characterized by 4 parameters: a, b, c and d.

a and d are the left and right corners of the trapezoid on the X−axis. b and c are the

projections of the left and right top corners of the trapezoid on the X−axis.

µ(x; a, b, c, d) =



0 for x ≤ a

x − a
b − a

for a < x ≤ b

1 b < x ≤ c

d − x
d − c

for c < x ≤ d

0 for x > d

iii. A gaussian membership function is characterized by 2 values: σ and c. c is the center

75

and σ is the width of the membership function.

µ(x;σ, c) = exp
(
−(x − c)2

2σ2

)

5.3.2 Defuzzification

Defuzzification is the reverse of the fuzzification operation. If the output of a rule is char-

acterized by one or more fuzzy sets, it may need to be mapped into a single scalar quantity.

The process of mapping a fuzzy quantity into a single crisp value is called defuzzification.

Before employing the defuzzification operation, output fuzzy sets are aggregated, by a union

operator, into a single fuzzy set. Then, one of the several defuzzification methods, which have

been proposed in the literature, is used to get a single scalar value. Similar to the fuzzification

methods, selection of a defuzzification method depends on the requirements and experts who

have a good understanding of the output domain need to select the appropriate method. The

following are the most widely used defuzzification methods.

i. The max-membership defuzzification method is one of the most simple techniques

used for defuzzification. It gives the crisp value with the highest degree of membership.

µ(x∗) ≥ µ(x), ∀x ∈ X

where x∗ is the scalar output.

ii. The mean of max defuzzification method calculates the average of the abscissa of the

points that has the highest membership value.

x∗ =

n∑
i=1

xi

n

where ∀i,∀x, µ(xi) ≥ µ(x).

iii. The centroid defuzzification method gives the X−coordinate of the point that is the

centre of the area enclosed by the membership function that represents the aggregated

fuzzy set and the X−axis. For a continuous membership function, it is calculated as

follows:

x∗ =

∫
s

xi µ(x) dx

∫
s

µ(x) dx

76

In the case of discrete values, it is calculated as follows:

x∗ =

n∑
i=1

xi µ(xi)

n∑
i=1

µ(xi)

Although it is one of the most reliable defuzzification methods, it is computationally

complex and costly.

iv. The weighted average defuzzification method calculates a weighted average of the

outputs of rules.

x∗ =

n∑
i=1

wi µ(xi)

n∑
i=1

µ(xi)

5.4 Fuzzy Composition

The first step in the processing of a fuzzy rule is to perform the fuzzification of inputs, and

then to evaluate the antecedent to calculate the firing strength of it. For this purpose, a fuzzy

rule engine needs to apply the necessary fuzzy composition operators, which is called fuzzy

composition.

If a rule’s antecedent is in a conjunctive normal form, the resulting value for the firing strength

of the rule is calculated by combining the degree of membership value for each conjunct

by means of fuzzy conjunction operation. But before this composition can take place, the

degree of membership value for each conjunct needs to be computed. If a conjunct contains

a single predicate, that value is equal to the membership value of the predicate. However, if

the conjunct contains more than one predicate, which means that the conjunct is a disjunction

of several predicates, the degree of grade for the conjunct is calculated by combining the

degree of membership values for each predicate by means of fuzzy disjunction operation.

For the rules that have antecedents in conjunctive normal form, fuzzy disjunction operation

has precedence over fuzzy conjunction operation. Fuzzy inference engines need to apply

disjunction operators before conjunction operators.

Example. Let us consider the following rule:

IF ((a is A) and ((b is B) or (c is C)) and ((d is D) or (e is E))) THEN o is O (5.1)

77

This rule has three conjuncts: “a is A”, “(b is B) or (c is C)”, and “(d is D) or (e is E)”.

Let us use min and max as the fuzzy conjunction and disjunction operators respectively. As

the first conjunct contains a single proposition, no fuzzy composition operation is required.

However, for the second and third conjuncts, fuzzy disjunction operator needs to be used. The

maximum degree of membership value of the propositions “b is B” and “c is C” determines

the degree of grade for the second conjunct. Similarly, degree of grade for the third conjunct is

the maximum of the degree of membership values for the propositions “d is D” and “e is E”.

Finally, the firing strength of the rule is equal to the minimum of the degrees of grades of

these three conjuncts.

5.4.1 Fuzzy Composition Graph

Graphical modeling tools are used to represent the interactions in a structural system in a

concise and compact manner. The well known adage “a picture is worth a thousand words” is

the most important motivation for the use of graphical modeling tools. Visually representing

components and their relations makes the analysis of the systems being modeled easier. Using

a graphical tool to represent the compositional relationships between the predicates of a rule

helps in visualizing what an inference engine does while processing the rule.

Petri nets are one of the popular graphical modeling tools that are used for modeling systems

that are dynamic, distributed, concurrent, asynchronous and non-deterministic [42]. However,

one of the major weaknesses of petri nets is the complexity problem; i.e., they become too

large even for a modest-size system [42]. Moreover, compositional relationships of predicates

are static and do not change over time. So, instead of using petri nets, a more simple graphical

tool can serve the same purpose. To that end, a weighted directed acyclic graph (wDAG) can

be used to represent the compositional pattern in the antecedent of a rule.

Definition 5.4.1 A fuzzy composition graph (FCG) is a wDAG that is used to show the fuzzy

logical relationships between the predicates in the antecedent of a rule. In a FCG, vertices

model predicates, edges model fuzzy disjunction and conjunction operations, and weights

associated with edges correspond to fuzzy membership values for the predicates.

Figures 5.8(a)–(b) show two different wDAG representations of the composition of the ele-

ments in the antecedent of the above rule. For the sake of simplicity, the propositions are

78

A B C D E
µA

µB

µC µD

µE

µD

µE 1

1

(a)

A B C D E
µA µB µC µD µE 1

(b)

Figure 5.8: Weighted directed acyclic graphs for fuzzy composition: (a) Ordinary wDAG (b)
A modified wDAG with different types of edges

labeled as single letters. In the first figure an ordinary wDAG is used to represent the rela-

tionships between the propositions. Starting with the source vertex, if the sink vertex can be

reached, then this means that the antecedent is satisfied. The problem with the first graph is

that if it is used for determining firing strength of the rule, selection of a path during inference

is non-deterministic since it is possible for a vertex to have multiple outgoing edges. As a

result, in order to come up with a correct decision, fuzzy inference engine needs to consider

every possible path. After reaching the sink vertex or reaching a vertex that has an outgo-

ing edge with a weight of zero, if there are still paths that have not been taken into account,

the engine needs to backtrack to calculate the firing strengths by going over the remaining

possible paths.

The second figure shows an alternative representation that we propose for the same fuzzy

composition. It contains only a single path and the number of edges are constant, which is

one less than the number of vertices.

Definition 5.4.2 A fuzzy composition graph for a single rule (FCG-SR) is a wDAG that is

characterized by a 7-tuple G = (V, E, s, f , T, Fw, Ft).

• V is a set of vertices {v1, v2, · · · , vn},

• E is a set of edges {e1, e2, · · · , em},

• s is a source vertex, s ∈ V,

79

• f is a sink vertex, f ∈ V,

• T is a set of edge types {t1, t2, · · · , tk},

• Fw is a function Fw : E → [0, 1] that maps an edge in E to a real number between zero

and one,

• Ft is a function Ft : E → T that maps an edge in E to a type,

FCG-SR shown in 5.8(b) has two different types of edges: straightline and dashed. Edges with

a straight line model fuzzy conjunction operation whereas edges with a dashed line model

fuzzy disjunction operation. In both graphs, a weight associated with an edge correspond to

the degree of membership value for the vertex that this edge is an incoming edge of. The

weight for the incoming edges of the sink vertex should be one as these edges represent the

fuzzy conjunction and the value calculated up until to the vertex one hop before the sink vertex

is not altered as one is identity element for the conjunction operation. Vertices model fuzzy

predicates or propositions, and during inference, they keep the values that are computed up

until to them.

In a FCG-SR, there are three types of vertices:

• Source vertex. It only has outgoing edges, and it is the starting point for the processing

carried out by the fuzzy inference engine that processes the associated rule. It does not

correspond to any predicate in the antecedent of the rule. A FCG-SR needs to contain

exactly one source vertex.

• Sink vertex. It only has incoming edges. It is the final node to be reached by a fuzzy

inference engine, and it does not correspond to an actual predicate of a rule. Reaching

this node implies that the rule being processed is satisfied. A FCG-SR needs to contain

exactly one sink vertex.

• Intermediary vertex. It models a predicate or a proposition in the antecedent of a rule.

Each intermediary vertex contain at least one incoming edge and one outgoing edge. In

a FCG-SR, there must be at least one intermediary vertex.

The firing strength of a rule is computed by starting at the source vertex and going forward

until the sink vertex is reached, and applying fuzzy composition operators along the path. By

80

A
µA

(a)

A
µA

(b)

A
µA

(c)

A
µA

(d)

Figure 5.9: Possible edge-vertex-edge triplets for a FCG-SR

the time sink node is reached, the firing strength of the rule has been determined as well.

In the first graph in Figure 5.8, in order to go along a path, each edge on that path need to have

a non-zero fuzzy membership value. If an inference engine encounters an edge with a value

of zero, it needs to backtrack to explore other paths. For such a graph, a depth first search

strategy can be used by a fuzzy inference engine. Along a path, the minimum weight value

determines the resulting fuzzy composition value for that path.

In the second graph, even if an edge has a weight of zero, it may still be possible to carry on on

that path. The fuzzy disjunction operation has precedence over the conjunction operation. In

other words, disjunction operation needs to be applied before conjunction operation. So, when

an inference engine reaches a vertex that has an outgoing edge with a dashed line, it needs

to traverse subsequent edges with dashed lines before applying fuzzy conjunction operation.

That is, if fuzzy inference engine encounters a vertex that has a straight-lined incoming edge

and dashed-lined outgoing edge, before combining the fuzzy membership value calculated up

until to that node with the weight associated with the lastly traversed edge, all the subsequent

dashed edges need to be traversed to select the maximum weight value, which is then used

in the fuzzy conjunction. During this calculation, if an edge with a weight value of zero is

encountered, it is legal to continue traversing dashed lines as long as the final maximum value

is not zero. As it can be seen, the edge-vertex-edge triplet changes how a fuzzy inference

engine behaves. Figure 5.9 shows all possible edge-vertex-edge triplets for a FCG-SR.

• Figure 5.9(a) shows a vertex representing a predicate that is a conjunct on its own.

• Figure 5.9(b) shows a vertex representing a predicate that is the first element of a dis-

junctive clause.

• Figure 5.9(c) shows a vertex representing a predicate that is a component of a disjunc-

81

tive clause, and it is neither the first nor the last component of that disjunctive clause.

• Figure 5.9(d) shows a vertex representing a predicate that is the last element of a dis-

junctive clause.

Algorithm 5 shows how a fuzzy inference engine computes the firing strength of a rule repre-

sented by a FCG-SR.

Algorithm 5 Computing Firing Strength of a Single Rule
1: INPUT: G = (V, E)

2: OUTPUT: RS = firing strength of the rule

3: RS = 1

4: v = “source vertex”

5: ein ← NIL

6: m = 1

7: while v is not equal to “sink vertex” do

8: eout ← v.outgoing edge

9: if eout is “dashed edge” then

10: m← ein.weight

11: while v = v.next do

12: ein ← eout

13: eout ← v.outgoing edge

14: m← max(ein.weight, m)

15: if eout is “straight edge” then

16: break

17: end if

18: end while

19: else if ein is not NIL then

20: m← ein.weight

21: end if

22: RS ← min(RS , m)

23: ein ← eout

24: v← v.next

25: end while

When an ordinary wDAG is used by a fuzzy inference engine, the complexity for calculat-

ing the firing strength of a rule is O(|V | + |E|) because whether a depth first or breadth first

search algorithm is used, each vertex and edge is processed only once. On the other hand,

82

the complexity of Algorithm 5 is O(2|V | − 1). Although each vertex and edge is processed

only once similar to the previous case, the number of edges is equal to the number of vertices

minus one. If the antecedent of a rule contains one or more disjunctive clauses, number of

edges is always greater than or equal to number of vertices in an ordinary wDAG. There-

fore, O(2|V | − 1) ≤ O(|V | + |E|). This makes us sure that FCG-SR is a better alternative for

representing fuzzy compositions.

5.5 Rule Reduction

One of the problems of using fuzzy rule-based systems is that total number of rules may be

large [6], and this is a major problem for wireless sensor networks that have sensor nodes with

limited storage and processing capability. Compared to crisp rules, generally more fuzzy rules

are required for describing an input output mapping while the latter one is the more intuitive

way to express this relationship. For example, we can define very low, low, normal, high and

very high as the fuzzy sets for the body temperature of a person. Compared to a crisp rule

which contains a predicate that checks the temperature value being above 38 in its antecedent,

two fuzzy rules may have to be used that only differ in the predicate that is related to body

temperature: one of the rules is for a body temperature classified as high, and the other one is

for very high.

Same input composition pattern may be used for several rules where the only difference is in

fuzzy sets that input parameters are members of. To illustrate what is meant, let us consider

the following rules:

Rule 1: IF x is X1 and y is Y1 THEN z is Z1

Rule 2: IF x is X2 and y is Y1 THEN z is Z1

Rule 3: IF x is X1 and y is Y2 THEN z is Z1

Rule 4: IF x is X2 and y is Y2 THEN z is Z2

where x and y are the input parameters, z is the output parameter, and Xi, Yi and Zi are the

associated fuzzy sets. Although the event pattern for the first, second and third rules contains

the composition of the same input parameters and producing the same output, they need to be

83

Table 5.3: Possible input combinations for 3 input parameters that each can be a member of one of 4
fuzzy sets

x y z

X1 Y1 Z1

X1 Y1 Z2

X1 Y1 Z3

X1 Y1 Z4

X1 Y2 Z1

X1 Y2 Z2

X1 Y2 Z3

X1 Y2 Z4

X1 Y3 Z1
...

...
...

X4 Y3 Z4

X4 Y4 Z1

X4 Y4 Z2

X4 Y4 Z3

X4 Y4 Z4

written down separately in a typical fuzzy rule-based system. However, number of rules need

to be reduced, as we have done in Chapter 4, in order to reduce the resource requirements for

storage and processing.

In the worst case, the number of rules required for an event pattern is exponential depending

on the number of input parameters and the number of fuzzy sets that input parameters may

be a member of. Let us assume that an event pattern in the antecedent of a rule contains the

conjunction of three inputs and each of them can be members of four fuzzy sets. Then, the

number of rules for the worst case is 4 · 4 · 4 = 43. Possible input combinations for such an

event pattern can be seen in Table 5.3.

If an event pattern contains composition of n input parameters, then, in the worst case, the

number of rules which use the same input parameters with the same event pattern can be

calculated by the following formula:
n∏

i=1

si ,

where si is the number of fuzzy sets that the ith input can be a member of.

In this section we propose a mechanism that reduce total number of rules having a specific

pattern in their antecedent to the number of output fuzzy sets that may be present in the

84

x

µ(x)

x

µ(x)

A

µ1

A

µ2

x

µ(x)

A

µ1

µ2

x

µ(x)

Unified Output

µ2

Figure 5.10: Output Unification

consequent of these rules. Our proposed mechanism combine all rules with the same event

pattern and the same output into a single rule.

In a typical fuzzy inference system, fuzzy rules are evaluated independently and outputs of

them are unified. However, if two rules produce the same output; i.e., the output parameter

is assigned to the same output fuzzy set, the result of the unification only depends on the

maximum of the firing strengths of these rules. Illustration of this can be seen in Figure 5.10.

A1

A1

A2

B1

B2

B2

C1

C2

C2

D1

D1

D2

E1

E2

E3

µA1 µB1 µC1 µD1 µE1 1

µA1 µB2 µC2 µD1 µE2 1

µA2 µB2 µC2 µD2 µE3 1

Figure 5.11: Fuzzy composition graphs for three rules

85

Example. Let us consider the following rules:

IF ((a is A1) and ((b is B1) or (c is C1)) and ((d is D1) or (e is E1))) THEN o is O (5.2)

IF ((a is A1) and ((b is B2) or (c is C2)) and ((d is D1) or (e is E2))) THEN o is O (5.3)

IF ((a is A2) and ((b is B2) or (c is C2)) and ((d is D2) or (e is E3))) THEN o is O (5.4)

The firing strengths of these rules are calculated as follows:

s1 = min(µA1 , max(µB1 , µC1), max(µD1 , µE1))

s2 = min(µA1 , max(µB2 , µC2), max(µD1 , µE2))

s3 = min(µA2 , max(µB2 , µC2), max(µD2 , µE3))

The union of the outcomes of these rules is s = max(s1, s2, s3). Figure 5.11 shows the graphs

that would be used if these rules were represented and evaluated separately. Our proposition is

that rules with same output can be combined into a single rule. The following is the combined

rule:

IF ((a is A1{1, 2} | A2{3}) and

((b is B1{1} | B2{2, 3}) or (c is C1{1} | C2{2, 3})) and

((d is D1{1, 2} | D2{3}) or (e is E1{1} | E2{2} | E3{3}))) THEN o is O

The numbers that are seen next to fuzzy set literals are used to preserve the relationships

between propositions. They correspond to rule numbers. If all input combinations are covered

by a set of rules which have identical output, there would not be a need for these numbers.

Possible input combinations for the above event pattern is:

{(A1, B1,C1,D1, E1), (A1, B1,C1,D1, E2), (A1, B1,C1,D1, E3), · · · , (A2, B2,C2,D2, E3)}.

However, for the above rules, (A1, B1,C1,D1, E1), (A1, B2,C2,D1, E2) and (A2, B2,C2,D2, E3)

are the only combinations. In general, union of input combinations of a set of rules that can

be combined constitutes a subset of all possible input combinations.

Definition 5.5.1 A fuzzy composition graph for a combined rule (FCG-CR) is an edge-labeled

wDAG that is characterized by a 9-tuple G = (V, E, s, f , T, L, Fw, Ft, Fl).

• V is a set of vertices {v1, v2, · · · , vn},

86

• E is a set of edges {e1, e2, · · · , em},

• s is a source vertex, s ∈ V,

• f is a sink vertex, f ∈ V,

• T is a set of edge types {t1, t2, · · · , tk},

• L is a set of labels {l1, l2, · · · , lr} that represents path identifiers,

• Fw is a function Fw : E → [0, 1] that maps an edge in E to a real number between zero

and one,

• Ft is a function Ft : E → T that maps an edge in E to a type,

• Fl is a function Fl : E → Ll that maps an edge in E to a set of labels.

Figure 5.12 shows the FCG-CR that can be used for the above combined rule. Edges in the

graph have two labels:

i. The blue label above an edge corresponds to the numbers next to fuzzy literals, and it

identifies a specific path from the source to the sink vertex. Therefore, it is called the

path identifier. A path identifier plays an important role during traversing graphs. If

a vertex has an incoming edge with a specific path identifier, the outgoing edge that

traversing can carry on should have that identifier as well. Considering a vertex, if there

are multiple incoming edges and/or the incoming edge has multiple identifiers, than the

union of path identifiers in the outgoing edge(s) should contain all of the identifiers in

the incoming edge(s) as well.

ii. The red label below an edge represent the fuzzy membership value for the proposition

represented by the vertex that this edge is an incoming edge of.

A vertex in such a graph keeps the results of fuzzy compositions carried out up until to that

vertex. It may have multiple values assigned to itself. Actually, a value need to be computed

for each path identifier that is present in the incoming edges of that vertex.

In order to determine the firing strength of a combined rule using the FCG-CR created for that

rule, breadth first searching is a reasonable strategy. Breadth first search algorithm uses each

87

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

E3

1,2
µA1

3
µA2

1
µB1

2
µB2

1
µC1

1
µD1

1
µE1 1

1

3
µB2

2,3
µC2

3
µD2

2
µD1

3
µE3

3

1

2
µE2 2

1

Figure 5.12: Fuzzy composition graph for a combined rule

vertex and edge only once. Therefore, the time complexity of such a strategy is O(|V | + |E|)

where |V | is the number of vertices and |E| is the number of edges. If a depth first search

strategy were employed, the time complexity for the algorithm would to be Ω(|V | + |E|); i.e.,

(|V | + |E|) would be the lower bound. This is due to the fact that a vertex or an edge has to be

processed at least once but some of them may be processed more than once, when at least one

edge has more than one path identifier assigned to it.

Algorithm 6 shows the pseudo code for determining the degree of grade of a combined rule.

Starting with the source vertex, each vertex is visited in a breadth first manner. For this

purpose a queue is used. The vertices that could be reached from a vertex is put into the

queue. After the processing of the current vertex, the next vertex to be visited is dequeued

from that queue. During the traversal of FCG-CR, an array is used to store the results of

evaluations for each path identifier. If a dashed edge is met, an intermediate array is used

to store the maximum membership value along the path with dashed edges. When a straight

line is encountered once again, these maximum values are used to update the corresponding

values in the initial array. When the sink vertex has finally been reached, the array contains the

results of the fuzzy composition for each path identifier. Maximum of these values determines

the firing strength of the combined rule.

Figure 5.13 is an illustration that shows the steps of the computation done to determine the

firing strength of a combined rule. For this example, the following fuzzy membership values

88

Algorithm 6 Computing Firing Strength of a Combined Rule
INPUT: G = (V, E)

OUTPUT: RS = firing strength of the rule

FUNCTION void enqueue(q, v): insert v to q

FUNCTION vertex dequeue(q): pull next entry from q and return it

FUNCTION edge incoming edge(v, p): return incoming edge having label p

1: enqueue(q,“source vertex”)

2: RS ← 0

3: ∀i, m[i]← 0

4: ∀i, val[i]← 1

5: while v← dequeue(q) is not “sink vertex” do

6: for all outgoing edge eout of v do

7: if v.next(eout) is not in q then

8: enqueue(q, v.next(eout))

9: end if

10: if v is “source vertex” then

11: Continue

12: end if

13: for all identifier p of eout do

14: if eout.type is dashed then

15: m[p]← max(incoming edge(v, p).weight,m[p])

16: else if incoming edge(v, p).type is dashed then

17: m[p]← max(incoming edge(v, p).weight,m[p])

18: val[p] = min(m[p], val[p])

19: else

20: val[p] = min(incoming edge(v, p).weight, val[p])

21: end if

22: end for

23: end for

24: end while

25: for p = 1 to n do

26: RS ← max(val[p], RS)

27: end for

89

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

E3

0.6 0.6 0.4val

1,2

0.6

3

0.4

1

0.5

2

0.2

1

0.2

1

0.5

1

0.6 1

1

3

0.2

2,3

0

3

0.4

2

0.5

3

0.3

3

1

2

0.7 2

1

(a)

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

E3

0.6 0.6 0.4val

0.5 0.2 0.2m

1,2

0.6

3

0.4

1

0.5

2

0.2

1

0.2

1

0.5

1

0.6 1

1

3

0.2

2,3

0

3

0.4

2

0.5

3

0.3

3

1

2

0.7 2

1

(b)

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

E3

0.5 0.2 0.2val

0.5 0.2 0.2m

1,2

0.6

3

0.4

1

0.5

2

0.2

1

0.2

1

0.5

1

0.6 1

1

3

0.2

2,3

0

3

0.4

2

0.5

3

0.3

3

1

2

0.7 2

1

(c)

Figure 5.13: Fuzzy composition for a combined rule

90

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

E3

0.5 0.2 0.2val

0.5 0.4 0.4m

1,2

0.6

3

0.4

1

0.5

2

0.2

1

0.2

1

0.5

1

0.6 1

1

3

0.2

2,3

0

3

0.4

2

0.5

3

0.3

3

1

2

0.7 2

1

(d)

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

E3

0.5 0.2 0.2val

0.6 0.7 0.4m

1,2

0.6

3

0.4

1

0.5

2

0.2

1

0.2

1

0.5

1

0.6 1

1

3

0.2

2,3

0

3

0.4

2

0.5

3

0.3

3

1

2

0.7 2

1

(e)

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

E3

Firing S trength = max{0.5, 0.2, 0.2} = 0.5

1,2

0.6

3

0.4

1

0.5

2

0.2

1

0.2

1

0.5

1

0.6 1

1

3

0.2

2,3

0

3

0.4

2

0.5

3

0.3

3

1

2

0.7 2

1

(f)

Figure 5.13: Fuzzy composition for a combined rule (cont.)

91

are used for the rule that is formed by combining (5.2), (5.3) and (5.4):

µA1 = 0.6 µA2 = 0.4

µB1 = 0.5 µB2 = 0.2

µC1 = 0.2 µC2 = 0

µD1 = 0.5 µD2 = 0.4

µE1 = 0.6 µE2 = 0.7 µE3 = 0.3

Starting with the source vertex, fuzzy inference engine first visits A1, and as the outgoing

edge of A1 is straight, the array that keeps the latest value of the fuzzy composition completed

up to that vertex is set to [0.6, 0.6, -]. As the traversed edge contains two path identifiers,

two entries in the array are updated that correspond to the path identifiers. In the second step,

A2 is visited and the array is modified as [0.6, 0.6, 0.4]. After that, B1 is visited, but it has

a dashed outgoing edge, which means the predicate represented by this vertex is part of a

disjunctive clause. So instead of modifying the first array, a temporary array is used to store

the computations for the disjunctive clause. The temporary array m is modified as [0.5, -, -].

Then vertex B2 is visited, and in a similar manner, m is modified as [0.5, 0.2, 0.2]. The next

vertex to be visited is C1, and the first element of m is set to maximum of the value of the

first entry of m and the weight associated with the traversed edge, which is 0.5. So, m is not

modified, and as the outgoing edge signifies the end of the disjunctive clause, the initial array

is modified using the values in m. The first entry of the initial array is set to the minimum of

the first entry of the initial array and the first entry of m. After this step, the initial array looks

like [0.5, 0.6, 0.4]. Next, C2 is visited and performing the steps similar to the steps described

for C1, the fuzzy inference engine modifies the initial array as [0.5, 0.2, 0.2]. Continuing on

the graph, when the fuzzy inference engine reaches the sink vertex, the final look of the array

becomes [0.5, 0.2, 0.2]. After reaching the sink vertex, the final step is to find the maximum

of the values in the array, which is the firing strength of the combined rule.

5.5.1 Distributed Fuzzy Composition

For a combined rule that is centrally processed, there is only one source and one sink vertex.

The sink vertex represents the state that the rule antecedent is satisfied, and when the sink

is reached, the fuzzy inference engine selects the maximum rule firing strength among the

92

A1

A2

X1

1,2
µA1

3
µA2

1,2

1

3

1

(a)

X1

C1

C2

E1

E2

E3

1,2
µC1

3
µC2

1

E1

2
µE2

3
µE3

1

1
2

1
3

1

(b)

A1

A2

B1

B2

X2

1,2
µA1

3
µA2

1
µB1

2
µB2

3
µB2

1

1

2,3

1

(c)

X2 E2

E1

E3

1
µE1

2
µE2

3
µE3

1

1

2

1

3

1

(d)

A1

A2

D1

D2

X3

1,2
µA1

3
µA2

1,2
µD1

3
µD2

1,2

1

3

1

(e)

X3

C1

C2

1
µC1

2,3
µC2

1

1

1,2,3

1

(f)

A1

A2

B1

B2

D1

D2

1,2
µA1

3
µA2

1
µB1

2
µB2

3
µB2

1
µD1

2
µD1

3
µD2

1,2

1

3

1

(g)

Figure 5.14: Fuzzy composition graphs for sub-rules (2 layer decomposition): (a), (c), (e), (g)
are for the first layer, and (b), (d), (f) are for the second layer

93

set of computed values. However, when decomposition of rules is considered, a sink vertex

for a sub-rule does not necessarily imply the satisfaction of the original rule. Moreover, if

this is the case, the sink vertex should not unite the fuzzy membership values by taking the

maximum of them, because the sub-rules that are decomposed from the rule capture partial

states of processing, not the whole processing of the rule, and this partial state should be made

available to the upper layers where the processing could carry on. Considering the example in

the graph in Figure 5.12, let us assume that the inputs a, b and d can be processed at layer one,

and c and d can be processed at layer two. Let us further assume that the inputs a and b have

produced non-zero fuzzy membership values for the fuzzy sets A1, A2, B1 and B2. Then it is

possible to reach the vertices B1 and B2, which keep the results of partial evaluations up until

to these vertices. However, as the input d in the third conjunct does not yield a usable result,

the partial evaluations need to be transferred to the next layer in the WSN network hierarchy.

At the upper layer, the reachability of the non-decomposed rule’s consequent is determined

based on the fuzzy membership values of the fuzzy sets E1, E2 and E3.

The fuzzy composition graph used for the sub-rules that are decomposed from a rule is similar

to FCG-SR with the following differences:

• A sink vertex in a FCG-SR indicate the state that a conclusion is drawn. However the

fuzzy composition graph used for the decomposed rules may or may not model such a

state. If it is not, a fuzzy inference engine need to transfer the results of its computations

to the fuzzy inference engine in the next layer.

• A source vertex in a FCG-SR is just an empty state, a starting point for the fuzzy

composition. However in the new case, it may possibly indicate the state that has been

reached by lower layers.

Figure 5.14 shows fuzzy composition graphs for the sub-rules that are produced as a result

of two-layer decomposition of the combined rule from the previous sub-section, and for the

decomposition, it is assumed that only c and e cannot be processed at the first layer. The

steps required for fuzzy composition is similar to the steps described in Algorithm 6. The

case with sub-rules only requires the data structures to be initialized with the proper values

if the source vertex does not represent an empty state, and the selection of the maximum of

computed firing strength values if the rule is a final rule; i.e., it has the consequent of the rule

that it is decomposed from.

94

A1

A2

B1

B2

D1

D2

1,2
µA1

3
µA2

1
µB1

2
µB2

3
µB2

1
µD1

2
µD1

3
µD2

1,2

1

3

1

(a)

A1

A2

B1

B2

D1

D2

Θ

1,2
µA1

3
µA2

1
µB1

2
µB2

3
µB2

1
µD1

2
µD1

3
µD2

1,2

1

3

1

(b)

Θ

C1

C2

E1

E2

E3

1
µC1

2,3
µC2

1
µE1

2
µE2

3
µE3

1

1
2

1
3

1

(c)

Figure 5.15: Fuzzy Composition Graph for sub-rules (2-layer decomposition with variables):
(a) and (b) for the first layer, (c) for the second layer

95

A
µA

(a)

A
µA

(b)

A
µA

(c)

A
µA

(d)

A
µA

(e)

Figure 5.16: Possible edge-vertex-edge triplets for a FCG-CR with variables

5.5.2 Fuzzy Composition of Distributed Rules with Variables

The fuzzy composition process that has been described so far cannot be used for the computa-

tions required for rules with variables. All possible conjuncts need to be represented in a sin-

gle fuzzy composition graph for a rule containing variables. If a conjunct in a sub-rule, which

is a disjunction of predicates, is part of a bigger disjunctive clause in the non-decomposed

rule, it is treated as an element of the variable for the sub-rule. However, for a rule with vari-

ables, the satisfaction of the rule does not necessitate the satisfaction of the elements of the

variable. Therefore, in the fuzzy composition graph, the edges that have the fuzzy member-

ship values of the elements of the variables as their weights should be traversed even if the

weight is zero. For this reason, we define a new type of edge, a dotted edge, which connects

one of the elements of a variable with other conjuncts, which may be other variable elements,

or P-part or R-part of a rule.

Actually, there is not any change in the formal definition of the fuzzy composition graph. It

is the same as the FCG-CR. Figure 5.15 shows examples of FCG-CRs for three sub-rules.

Nevertheless, with the newly added edge type, how fuzzy inference engines process the FCG-

CR needs to change. With the newly added edge type, in addition to the four edge-vertex-edge

triplets shown in Figure 5.9, there may be five more triplets that can be present in a FCG-CR

modeling a rule with variables. Figure 5.16 shows these five new triplets.

• Figure 5.16(a) shows a vertex representing a predicate in the P-part of the rule, and it

forms a conjunct on its own.

96

• Figure 5.16(b) shows a vertex representing a predicate that is the last element of a

disjunctive clause that is in the P-part of the rule.

• Figure 5.16(c) shows a vertex representing a predicate that is a component of a disjunc-

tive clause, and this disjunctive clause is an entry of the vector that keeps variables.

• Figure 5.16(d) shows a vertex representing a predicate that is an entry of the variable

vector on its own.

• Figure 5.16(e) shows a vertex representing a predicate that is the last entry of the vari-

able vector.

Algorithm 7 shows how fuzzy inference engine computes the firing strength of a decomposed

rule. In the case that there are no variables, that is, there are no dotted edges in a fuzzy

composition graph, a fuzzy inference engine behaves exactly the same as in Algorithm 6.

However, when the inference engine encounters a vertex that has an incoming edge with a

dotted line, which model an element of a variable, it stores the evaluations related to the

variables in a two dimensional array. The number of rules that are combined to form the rule,

which is decomposed, constitutes one dimension of this array. The other dimension is related

to the number of elements of the set q. For each path identifier, the elements of the set q is

evaluated and stored in that array. After that point, unless the fuzzy inference engine does not

encounter a straight-lined edge, it continues to store its results in that array. A straight edge

after a dotted edge is possible either if the straight edge is connected to the sink vertex or it

is connected to the R part of the rule. If the latter is the case, the sink vertex represents the

satisfaction of the original, non-decomposed rule.

Figures 5.17 and 5.18 show an example for how the algorithm works for rules with variables.

Starting with the source vertex, fuzzy inference engine first visits A1, and as the outgoing

edge of A1 is straight, the array that keeps the latest value of the fuzzy composition completed

up to that vertex is set to [0.6, 0.6, -]. As the traversed edge contains two path identifiers,

two entries in the array are updated that correspond to the path identifiers. In the second

step, A2 is visited and the array is modified as [0.6, 0.6, 0.4]. After that, B1 is visited, but as

the traversed edge is a dotted edge, this implies that B1 is an element of a variable. So, the

weight associated with the traversed edge is stored in a new two-dimensional array: [[0.5, -,

-]]. When B2 is visited, the second array is modified as [[0.5, 0.2, 0.2]]. The next steps are

97

to visit D1 and D2, and in a similar manner to the previous case, the second array is updated

to become [[0.5, 0.2, 0.2], [0.5, 0.5, 0.4]]. When the final state is reached in the first layer,

the initial array is [0.6, 0.6, 0.4] and the array holding the results related to variable entries is

[[0.5, 0.2, 0.2], [0.5, 0.5, 0.4]]. These values form the initial state of the computation done

in the second layer. When C1 is visited, the first element of the first vector in the variable

array is compared with the weight of the traversed edge, a dotted edge, and the bigger one is

assigned as the first entry of the first vector of the variable array. In a similar manner, when

C2 is visited, the second and third entries of the first vector of the variable array is updated:

[[0.5, 0.2, 0.2], [0.5, 0.5, 0.4]]. Next E1 is visited, and the first entry of the second vector of

the variable array is assigned 0.6, since it is bigger than the previous value of 0.5. When E2 is

visited, the second entry of the same vector is set to 0.7, and when E3 is visited, the previous

value 0.4 is preserved because it is bigger than the weight associated with the traversed edge,

0.3. When the sink vertex is reached, the firing strength of the combined rule is calculated

as following: For each entry of the initial array, which stores the results of computations for

different path identifiers, this value is compared with the corresponding entries of the variable

array. The minimum of these values determines the firing strength associated with the path

identifier. After determining the values for each path identifier, which are min(0.6, 0.5, 0.6)

= 0.5, min(0.6, 0.2, 0.7) = 0.2 and min(0.4, 0.2, 0.4) = 0.2, maximum of these give the final

firing strength of the rule: 0.5.

98

Algorithm 7 Computing Firing Strength of a Combined Rule with Variables - Part 1
INPUT: G = (V, E)

OUTPUT: RS = firing strength of the rule

FUNCTION void enqueue(q, v): insert v to q

FUNCTION vertex dequeue(q): pull next entry from q and return it

FUNCTION edge incoming edge(v, p): return incoming edge having label p

1: enqueue(q,“source vertex”)

2: RS ← 0

3: ∀i, m[i]← 0

4: ∀i, val[i]← 1

5: ∀i, ind[i]← 1

6: f lag← f alse

7: while v← dequeue(q) is not “sink vertex” do

8: for all outgoing edge eout of v do

9: if v.next(eout) is not in q then

10: enqueue(q, v.next(eout))

11: end if

12: if v is “source vertex” then

13: if v is not an empty state then

14: Initialize val with lower layer’s results

15: end if

16: Continue

17: end if

18: for all identifier p of eout do

19: if incoming edge(v, p) is dotted then

20: f lag← true

21: end if

22: if f lag is f alse then

23: if eout.type is dashed then

24: m[p]← max(incoming edge(v, p).weight,m[p])

25: else if incoming edge(v, p).type is dashed then

26: m[p]← max(incoming edge(v, p).weight,m[p])

27: val[p] = min(m[p], val[p])

99

Algorithm 8 Computing Firing Strength of a Combined Rule with Variables - Part 2
28: else

29: val[p] = min(incoming edge(v, p).weight, val[p])

30: end if

31: else . f lag is true

32: if eout.type is dashed then

33: var[ind[p]][p]← max(incoming edge(v, p).weight, var[ind[p]][p])

34: else if incoming edge(v, p).type is dashed then

35: var[ind[p]][p]← max(incoming edge(v, p).weight, var[ind[p]][p])

36: ind[p] = ind[p] + 1

37: if eout.type is not dotted then

38: f lag← f alse

39: end if

40: else if eout.type is dotted then

41: var[ind[p]][p]← max(incoming edge(v, p).weight, var[ind[p]][p])

42: ind[p] = ind[p] + 1

43: else if v.next is not “sink vertex” then

44: f lag← f alse

45: var[ind[p]][p]← max(incoming edge(v, p).weight, var[ind[p]][p])

46: end if

47: end if

48: end for

49: end for

50: end while

51: if rule is a final rule then

52: for p = 1 to n do

53: for i = 1 to ind[p] do

54: val[p] = min(var[i][p], val[p])

55: end for

56: RS ← max(val[p], RS)

57: end for

58: end if

100

A1

A2

B1

B2

D1

D2

Θ

0.6 0.6 0.4val
1,2

0.6

3

0.4

1

0.5

2

0.2

3

0.2

1

0.5

2

0.5

3

0.4

1,2

1

3

1

(a)

A1

A2

B1

B2

D1

D2

Θ

0.5 0.2 0.2
−− −− −−

var

0.6 0.6 0.4val

1,2

0.6

3

0.4

1

0.5

2

0.2

3

0.2

1

0.5

2

0.5

3

0.4

1,2

1

3

1

(b)

A1

A2

B1

B2

D1

D2

Θ

0.5 0.2 0.2
0.5 0.5 0.4

var

0.6 0.6 0.4val

1,2

0.6

3

0.4

1

0.5

2

0.2

3

0.2

1

0.5

2

0.5

3

0.4

1,2

1

3

1

(c)

A1

A2

B1

B2

D1

D2

Θ

0.5 0.2 0.2
0.5 0.5 0.4

var

0.6 0.6 0.4val

1,2

0.6

3

0.4

1

0.5

2

0.2

3

0.2

1

0.5

2

0.5

3

0.4

1,2

1

3

1

(d)

Figure 5.17: Fuzzy composition for a sub-rule in layer 1

101

Θ

C1

C2

E1

E2

E3

0.5 0.2 0.2
0.5 0.5 0.4

var

0.6 0.6 0.4val

1

0.2

2,3

0

1

0.6

2

0.7

3

0.3

1

1
2

1
3

1

(a)

Θ

C1

C2

E1

E2

E3

0.5 0.2 0.2
0.5 0.5 0.4

var

0.6 0.6 0.4val

1

0.2

2,3

0

1

0.6

2

0.7

3

0.3

1

1
2

1
3

1

(b)

Θ

C1

C2

E1

E2

E3

0.5 0.2 0.2
0.6 0.7 0.4

var

0.6 0.6 0.4val

1

0.2

2,3

0

1

0.6

2

0.7

3

0.3

1

1
2

1
3

1

(c)

Figure 5.18: Fuzzy composition for a sub-rule in layer 2

102

Θ

C1

C2

E1

E2

E3

0.5 0.2 0.2
0.6 0.7 0.4

var

0.6 0.6 0.4val

RS = max(min(0.6,0.5,0.6),min(0.6,0.2,0.7),min(0.4,0.2,0.4))
RS = max(0.5,0.2,0.2) = 0.5

1

0.2

2,3

0

1

0.6

2

0.7

3

0.3

1

1
2

1
3

1

Figure 5.18: Fuzzy composition for a sub-rule in layer 2

103

CHAPTER 6

APPLICATION SCENARIO

In-network processing of data is especially useful for event-driven applications where the

focus is on events and reactions to them. Although some applications might require all raw

sensory data to be recorded, such as research-oriented applications where the aim is to extract

knowledge about the inner workings of an unexplored real-world phenomenon, there are many

application scenarios where the only interest is in the high-level knowledge of whether a

certain event happens or not. Early detection of forest fires and healthcare monitoring are

typical examples for such applications.

We choose to discuss a healthcare monitoring application as a scenario that can benefit from

our approach. In the following subsections, we give the details of the properties and require-

ments of such an application and then describe a system architecture that can be used for the

purpose.

6.1 Properties and Requirements

Healthcare monitoring has become an important application area for wireless sensor networks.

The benefits of implementing such an application have been discussed in [9, 26]. Neverthe-

less, there is still a lot to be done in the development of hardware and software before we

see widespread implementations. For example, individuals would expect wearable sensors

to be small, unobtrusive, harmless, reliable and long-lasting. In addition to these hardware

issues, the requirements of timely and efficient data processing necessitate improvements in

the underlying information processing and communication architectures.

In a healthcare monitoring application, a person’s physiological signals, such as pulse rate,

104

Figure 6.1: Healthcare monitoring network

blood pressure, respiration rate, body temperature, etc., together with physical activities and

the state of individual and environmental conditions are assessed to detect and react to emer-

gency cases. Take pulse rate as an example. A person’s pulse rate while he is exercising might

be twice its rate while he is resting. Besides, normal values of vital signs differ according to

a person’s age or sex. Because of this capacity for change, it is not enough to employ simple

threshold-based filters to eliminate unnecessary network traffic. On the other hand, it is very

important to relay only relevant information to the medical center as the person responsible

for monitoring and managing alerts might be overwhelmed by the number of alerts and miss

important ones.

Another aspect of healthcare monitoring is that it requires continuous evaluation of sensor

values; an emergency can happen at any time and in any place. If in-network processing is

not used, all sensor readings would need to be transported to the data center.

Finally, time is very critical and immediate reaction is required in the case of an emergency.

Therefore, the delay between the detection of an event and the reaction to it needs to be small.

In this respect, in-network processing again performs better than central processing.

6.2 System Architecture

The architecture of a healthcare monitoring application consists of a body area sensor network

(BASN), a home network and a medical center network.

Body Area Sensor Network. This consists of wearable medical sensors that sense the phys-

iological signals of a person and sensor nodes that detect the posture and movement and/or

other relevant physical activities or characteristics of the person. Medical sensors can detect

105

pulse rate, blood pressure, respiration rate, body temperature, blood oxygen saturation and

similar physiological signals. Additionally, physical motion sensors, such as the accelerom-

eter and the gyroscope, are used to detect the current physical condition of the person [33].

An accelerometer is used to measure forward or upward acceleration so that it is possible to

determine if the person is running, walking, falling down or stationary. A gyroscope measures

orientation, such as sitting, lying or standing. Wearable sensor nodes have limited processing

capabilities and they only check if the sensed value is above or below a threshold value.

Gateway Node. This involves sensor nodes that communicate with a PDA or a special device

that is used to collect and process the nodes’ readings, act as a gateway between the BASN,

home network and the medical center network, and react to emergencies. The gateway node

also has capabilities to interact with the person being monitored. For example, if the sensor

outputs are not enough to reach an accurate conclusion, an audio-visual alarm or an appli-

cation might be activated that demands a confirmation response from the person. The inputs

provided or not provided by the person can be recognized by the rule-processing engine as

events, which then lead to other actions. Sensor nodes communicate with that device using

802.15.4 or a similar low power and a low data-rate protocol.

Home Network. Apart from wearable sensors, temperature or light sensors, IP cameras placed

in the home might be used to evaluate environmental conditions, which can help clarify a

person’s state. They communicate with the gateway node.

Medical Center Network. This contains a central server that stores and processes the informa-

tion from individuals. Typical data that can be stored in central servers might be a person’s

medical history or results of a face-to-face examination. In addition to information process-

ing systems, there are also operators who are responsible for monitoring and managing the

incoming information. The gateway node in a home network communicates with the medical

center network using GSM, UMTS or similar mobile technologies.

6.3 Healthcare Monitoring Rules

Rules that are used in monitoring the healthcare should be developed by domain experts.

Although we are not domain experts, the following rules are given for illustration purpose.

These rules are used to show how we distribute the processing so that not all data is collected

106

at a central place.

IF ((Blood_Oxygen_Saturation < 80) &

(Blood_Pressure < 100/70) & (Respiration_Rate > 20))

THEN Send_Alert("Shock")

IF ((Pulse_Rate > 100) & (Blood_Pressure < 100/70) &

((Blood_Oxygen_Saturation < 80) |

(Respiration_Rate < 15)))

THEN Send_Alert("Hearth Attack")

IF (Speed >= 6 km/h)

THEN Running

IF ((Pulse_Rate > 100) & !Running &

(Respiration_Rate > 20))

THEN Send_Alert("Abnormal situation")

IF (Blood_Pressure > 120/80)

THEN Increment(High_Blood_Pressure_Count)

IF ((Blood_Pressure > 120/80) &

(High_Blood_Pressure_Count > 5) &

(High_Blood_Pressure_in_Family = true))

THEN Warn("See Doctor")

The above rules contain parts that can be processed at different places in the network and

if we follow our decomposition algorithm we come up with several rule-bases for ordinary

sensor nodes, a rule-base for the PDA/special device and a final one for central server at the

medical center. Sensor nodes compare their measurements with the appropriate threshold

values in order to detect events that might be interesting for the application. The following is

a collection of rule-bases for different types of sensor nodes:

IF (Blood_Oxygen_Saturation < 80)

107

THEN low_oxygen_saturation

IF (Blood_Pressure < 100/70)

THEN low_blood_pressure

IF (Blood_Pressure > 120/80)

THEN high_blood_pressure

IF (Respiration_Rate > 20))

THEN high_respiration_rate

IF (Respiration_Rate < 15)

THEN low_respiration_rate

IF (Pulse_Rate > 100)

THEN fast_pulse_rate

IF (Speed >= 6 km/h)

THEN Running

Simple events from sensor nodes are gathered and fused in the PDA/special device and the

rules used for this purpose are as follows:

IF (low_oxygen_saturation & low_blood_pressure &

high_respiration_rate)

THEN Send_Alert("Shock")

IF (fast_pulse_rate & low_blood_pressure &

(low_oxygen_saturation | (low_respiration_rate))

THEN Send_Alert("Hearth Attack")

IF (high_pulse_rate & !Running &

high_respiration_rate)

THEN Send_Alert("Abnormal situation")

108

IF (high_blood_pressure)

THEN Increment(High_Blood_Pressure_Count)

IF (high_blood_pressure & High_Blood_Pressure_Count > 5)

THEN High_Blood_Pressure_Alarm

We assume that the information about whether there is high blood pressure problem in a

family member is stored in a database in medical center network. The rule-base for the central

server at the medical center is as follows:

IF (High_Blood_Pressure_Alarm &

(High_Blood_Pressure_in_Family = true))

THEN Warn("See Doctor")

The above rule-bases make sure that the processing is distributed in the network and the data

is transported only if there is an interest in it. Sensor readings are transported if they satisfy

a filtering rule. Similarly, PDA eliminates false positives to be sent to the central server. For

example, heart rate goes up while exercising and respiration rate decreases while sleeping,

and these should be considered normal. Actually, for a typical person, we expect a large value

for the ratio of these false positives to the real problems.

109

CHAPTER 7

PERFORMANCE EVALUATION

This chapter presents the experiments that are conducted to demonstrate how the proposed

algorithms, RBDA and RBDA-V, behave with different parameters. Furthermore, simulations

have been performed to show the amount of reduction in total transmitted packets and the

energy consumption of the sensor nodes when employing the proposed approaches in contrast

to employing a centralized approach.

In the following sub-section, we give the results of the experiments carried out to see the

efficiency of the algorithms. After that, we explain the energy model that we adopt for this

study and we discuss about the simulation setup and parameters. Finally in the last sub-

section, we present the simulation results.

7.1 Performance of the Algorithms

We implemented the proposed rule decomposition algorithms in a UNIX environment using

C language. In Figure 7.1 we see how our algorithms behave for a varying number of rules

in the initial rule-base. For this experiment we generated random rule-bases having between

10 and 100 rules, for a two-layer decomposition. After repeating each experiment five times,

each with different rule-bases, we plot the average of the sum of the number of all sub-rules

for both layers. It is seen that the number of sub-rules generated by the RBDA-V is more

predictable. The line is almost straight. Furthermore, the number of rules for a layer is close

to the original number of rules. On the other hand, the number of the sub-rules generated

by the RBDA depends entirely on the nature of the rules. Although random rule-bases have

not generated the worst-case, the difference between the results is still huge, especially if we

110

Figure 7.1: Number of initial rules vs. number of sub-rules generated

Figure 7.2: Percentage of processable inputs vs. number of sub-rules generated

consider the sensor nodes where energy conservation is of utmost importance.

In Figure 7.2, we present the effect of percent of processable inputs of a node to total available

inputs on the number of sub-rules generated. For this purpose we used five different randomly

generated rule-bases, each containing five rules, which may have at most five conjuncts and

each of those conjuncts may contain at most four disjuncts. Throughout the experiments we

varied the input set of the node for each percentage value and took the average of the results

for plotting. A percent of 0 means no processable inputs are present and 100 means all inputs

can be processed. In these cases the original number of rules is preserved. We can see from the

results that there is a major difference in the number of sub-rules generated by the RBDA-V

111

Figure 7.3: Number of different layers vs. number of sub-rules generated

and the RBDA when the percentage is between 20 and 70.

In Figure 7.3, we see the effect of the number of different layers, which is equal to the number

of different classifications, on the number of sub-rules generated. We used the same rules that

we used in the second experiment, and we uniformly distributed inputs to the layers. The

results lead us to a similar conclusion as the previous experiment, where, with everything

being equal, the RBDA-V produces fewer rules, and compared to the RBDA, the number of

layers has less influence and the number of sub-rules generated is more predictable.

In Figures 7.4 and 7.5, the ratio of the reduction in the number of rules for different percent-

ages of combinable rules is seen. For this experiment, starting with a 15 non-combinable

randomly generated fuzzy rules, a new rule is added into the set of rules that can be combined

with one of the initial rules so that the percentage of the combinable rules is increased. The

ratio of the number of fuzzy rules when nothing is performed to the number of rules when

rules having the same event pattern and consequent is combined into a single rule is plotted in

the figures. The rule-base is decomposed into two sub-rule-bases. In Figure 7.4, the ratio for

the rules of layer one and in Figure 7.5, the ratio for layer two are seen. As it can be seen from

the figures, in the presence of 50% or more combinable rules, for the RBDA-V, the number of

rules is decreased by nearly a factor of 2 by combining fuzzy rules that have the similar event

pattern and the same output. This value increases to a factor of 9 for the RBDA.

Figure 7.6 shows the number of bytes transferred when an event is occurred. For this experi-

112

Table 7.1: Space needed by rule-bases

RB-1 (bytes) RB-2 (bytes)
RBDA 47 43
RBDA-V 17 10

ment, we use a set of rules with varying number of |q|, the size of the set q. These rules have

the same event pattern and the same consequents, so they can be combined. While changing

the number of rules, the ratio of the number of bytes transferred when they are not combined to

the number of bytes transferred when they are combined is plotted in the figure. It is obvious

from the figure that combining fuzzy rules decreases the number of bytes that are transferred.

Although the size of data transmitted in a single packet is increased for a combined rule, as

the number of packets declines, less packet header overhead results in less number of bytes

transmitted. In the case that the size of the set q increases, so does the size of the payload.

Therefore, the ratio decreases when |q| increases.

We used the rule-bases of the last two experiments for evaluating the storage requirements of

the algorithms. In order to calculate how much space is needed by each algorithm, we made

the following assumptions. First, we assume that the predicates in the rules contain a pointer

to the actual implementation of the predicate function. This knowledge is stored in two bytes

(16 bits). Similar to predicates in the antecedent, we assume that the consequent part of the

rules contains a pointer, two bytes, to the actual code that takes the necessary actions. A PMV

requires as much space as the total space required by each predicate that could be matched by

that variable. Finally, a KTV requires just two bytes, since a single bit is enough to represent

the state of the element, and 16 bits is more than enough for a rule. In Table 7.1, RB-1 and

RB-2 refer to the sub-rule-bases for layer 1 and layer 2 accordingly. The numbers seen in the

table are the average of the number of bytes required for sub-rule-bases that are generated

from the five original rule-bases. The RBDA requires 90 bytes in total whereas the RBDA-V

requires 27 bytes in total, which is 30 percent of the space required for the RBDA.

7.2 Simulations for In-Network Processing

In this section, we first discuss our energy consumption model for a WSN, then present the

network and application setup of our simulations, and finally show and discuss our simulation

113

Figure 7.4: Ratio of reduction in the number of rules when fuzzy rule combining performed -
Layer 1

Figure 7.5: Ratio of reduction in the number of rules when fuzzy rule combining performed -
Layer 2

results for evaluating our approach against centralized approach. In our simulations we used

Castalia simulator [12], which is a sensor platform independent WSN simulator based on

OMNet++ platform.

114

Figure 7.6: Ratio of reduction in the number of bytes transmitted for rules with varying num-
ber of size of the set q

7.2.1 Energy Model

We consider sensor network with n sensor nodes, where the number of events detected by

a sensor node has a poisson distribution with a mean event arrival rate of λ. Let h be the

average number of hops for a node to reach the nearest cluster-head, b be the number of bits

in a network packet and c be the transmission rate in bits per second.

In a time interval [0, t), λt events occur at a single node and nλt events occur throughout the

entire network. The occurrence of a single event results in h transmission and (h − 1) receive

operations that are carried out by the sensor nodes. In order to calculate the energy consumed

for these communication operations, we can use the formula

E = V · I · T, (7.1)

where V is the potential difference, I is the electrical current and T is the time in seconds. In

[57], the electrical current that flows through the Mica2’s radio circuitry is listed under the

presence of a 3V power supply. The receive operation results in 7.0 mA current flow whereas

the transmission operation causes between 3.7 to 21.5 mA, depending on the power level used

for the transmission. We can calculate the time required to transmit or receive a packet using

the formula T = b/c.

115

Table 7.2: Power required for sensor node’s operations

Power (mW)
Receive 22.2
Idle 22.2
Transmit 80.1 - 15.9
Sense 0.02
Sleep 0.0006

The total energy consumed by the sensor nodes is determined by multiplying the energy

required for the transmission and receive operations when an event occurs by the total number

of events that occur in the sensor network:

E =
3.n.λ.t.b

c
(h · It + (h − 1) · Ir) , (7.2)

where It and Ir are the electrical currents that flow through the radio circuitry when transmit-

ting and receiving packets, respectively.

In the above formula, the energy consumption that occurs while sensor nodes listen to the

wireless channel is not taken into account. However, sensor nodes also need to power the radio

electronics in a listening or idle state to detect the presence of radio signals. As mentioned in

[62], the energy consumed during the listening state is big enough so as not to be ignored in

the energy consumption analysis. Actually, we see from [57] that the same amount of current

flows through the radio circuitry during the listen and receive operations.

If we assume that the same amount of energy is consumed while receiving and listening, then

the total energy consumed by the sensor nodes will be:

E = 3.t.
(
n.λ.b.h.It

c
+ l.Ir

)
, (7.3)

where l is the ratio of listen time to the sum of sleep and listen times in a unit time interval.

We choose to use this energy model in our simulations where we ignore the energy consumed

during processing and sensing operations.

7.2.2 Network Setup

In our setup, the sensor network consists of ordinary sensor nodes and highly capable cluster-

heads. Sensor nodes use cluster-heads for the transmission of their data to the sink and it

116

is assumed that they can reach the cluster-heads in just one hop. They choose the nearest

cluster-head as their next hop to sink. Similarly, cluster-heads reach the sink in one hop. This

means that, any node in the sensor network can reach the sink in at most two hops.

The sensor field used in the simulations is 400m x 400m and it is divided into 16 100m x

100m sub-regions. Each sub-region contains one cluster-head randomly deployed inside it.

Simulations were run for 50, 100, 150 and 200 sensor nodes that are deployed uniformly in

the field.

Table 7.2 shows the amount of power required for the operations carried out by Mica2 motes.

As it can be seen from the table, a node in receive and idle states requires the same amount of

power.

7.2.3 Application Setup

Rules describing the application logic for this experiment are as follows:

(x ≥ 50)→ A1

((last 5 readings o f y ≥ 100) and (v ≥ 500))→ A2

((x ≥ 35) and (y ≥ 50))→ A3

((x ≤ 0) and (z ≤ 0) and (w == 0))→ A4

((x ≤ 0) and (z ≤ 0) and (w == 1))→ A5

((y ≥ 125) and ((w == 2) or (v < 400)))→ A6

These rules form the central rule-base. Ordinary sensor nodes sense x, y and z whereas cluster-

heads sense v and w. The rules do not have any conditions.

We consider three different scenarios. In the first scenario, the sensory data is transmitted

directly to the sink without any processing by the sensor nodes. Cluster-heads act as gateways

and they do not process data either. In order to reduce the total packet overhead and the

number of packets, the x, y and z values are packed into a single packet. In the second scenario,

both sensor nodes and cluster-heads send data to the sink only if it is above or below some

threshold value. This is similar to the case in directed diffusion [30], where data is sent if

there is an interest in it. Sensory data meeting the threshold conditions are transmitted in

a single network packet in this scenario too. Finally, in the last scenario, sensor nodes and

cluster-heads process data according to the rules in their rule-bases and only the results of the

117

Figure 7.7: Total number of packets transmitted by sensor nodes

processing are sent to the sink.

7.2.4 Simulation Results

Simulations were run for 5000 seconds for each of the application scenarios under exactly the

same conditions; that is, the same network topology, the same energy and the physical event

models were used in all of the application scenarios. Figures 7.7 and 7.8 show the simulation

results.

Figure 7.7 shows the total number of packets sent by the sensor nodes. The results in the

figures do not include the packets transmitted by cluster-heads. As it can be seen from the

figure, the total amount of communication is drastically reduced by employing our approach,

used in the third scenario. In addition to the decrease in the number of packet transmissions,

the packet size for the third scenario is smaller compared to the packet sizes for the other two

scenarios. In the first two scenarios, raw sensory data, together with its temporal and spatial

properties, are transported inside the network; in the third scenario only the current state of the

processing is propagated to the appropriate nodes. An eight-bit data can represent 28 different

states. Additionally, due to spatial and temporal locality properties of information processing

in WSNs, spatial and temporal information is either not transported or is transported in a short

path in the network. Therefore, the reduction in the total number of bytes transmitted is much

lower than the reduction in the total number of packets. In the simulations we assumed that

118

Figure 7.8: Average energy consumption by sensor nodes

no collisions occur in the network. Had collisions been taken into account, the results for the

first and second applications would have been worse due to the fact that more network traffic

would lead to higher probabilities of packet collisions and retransmissions.

Figure 7.8 shows the average amount of energy consumed by each sensor node. As seen

from the figure, the total spent energy is decreased by nearly a factor of three when the data is

processed inside the network using our approach. However, the number of transmitted packets

is reduced by nearly a factor of seven. The nodes’ energy consumption is not a corresponding

seven times lower because they use the same amount of energy in the idle state as in the

receive state.

In all of the scenarios, only one-hop clusters exist and cluster-heads reach the sink in just one

hop. In the case of multi-hop clusters, we anticipate better results with in-network processing

compared to other approaches, because in such a case, nodes need to route other nodes’

packets as well. The more network packets put into the sensor network, the more a node

needs to transmit the packets of others. In addition to the obvious implications of power

consumption, more packets cause more collisions and more retransmissions.

7.2.5 Healthcare Monitoring

In addition to the above simulations, we also conducted experiments for the healthcare moni-

toring application described in Chapter 6 to show that in-network processing is indispensable

119

for event-driven applications. Here, the concern is not only minimizing network traffic and

power consumption, but also generating timely and accurate reactions to important events.

We used the following rules:

(not exercising & (pr ← high | rr ← high | bp← high))→ ”record abnormal event”

(exercising & (pr ← low | rr ← low | bp← low))→ ”record abnormal event”

(number o f abnormal events ≥ 3)→ ”in f orm person and medical personnel”

(pr ← very low | rr ← very low)→ ”in f orm medical personnel”

(pr ← high & bp← low)→ ”ask person i f he is OK”

(not OK signal | no response f or active question)→ ”in f orm medical personnel”,

where pr is pulse rate, rr is respiration rate, and bp is systolic blood pressure. The first four

rules are self-explanatory. If the fifth rule fires, an application that gets the person’s attention

by audio-visual stimuli and asks him to provide his status is activated. That person is assumed

to provide the necessary information if he is all right. Rule 6 covers the cases where there are

no replies after rule has requested status information, or there is an explicit notification of a

bad condition.

Wearable sensor nodes have a sampling interval of 30 seconds and the simulation duration is

86400 seconds, i.e., 1 day. Similar to the previous simulation, we consider both central and

distributed processing. We consider three scenarios. In the first scenario, most of the time

a person has normal values as his vital signs, but occasionally his pulse rate increases while

his blood pressure has a low value. In the second scenario, a person has high blood pressure

values throughout the day. Finally, in the third scenario, a person having normal vital signs

stops breathing for two minutes.

The simulation results can be seen in Table 7.3. Link 1 refers to communication between the

sensor nodes and the gateway node, and Link 2 is for the communication between the gateway

and the central network. The results confirm the expectations that in-network processing

makes a big difference. Instead of transmitting thousands of event notifications to a central

network, only necessary events are transmitted.

Another parameter to look for is the delay in reacting to emergency cases. If the fifth rule is

evaluated at a centralized system and it fires, the reaction requires getting back to home net-

work and activating an application that interacts with the person. Table 7.4 shows how many

hops are required for such a rule to reach a conclusion that the situation requires emergency

120

Table 7.3: Number of packet transmissions for healthcare monitoring

Scenario
Centralized Distributed

Link 1 Link 2 Link 1 Link 2
Case 1 11520 2896 2862 3
Case 2 11520 3926 3025 173
Case 3 11520 2880 2508 4

Table 7.4: Number of hops required for a decision

Location Number of hops
Firing Action Centralized Distributed
Center Center 2 2
Center Gateway 4 3
Gateway Center 2 2
Gateway Gateway 4 1

personnel’s response. It is wise to support decisions reached by bare sensor readings with a

confirmation response from people in order to reduce false alarms. The case in the fourth row

in the table would be frequently encountered in such a scenario. That row indicates that a

decision can be made at the gateway node, but with central processing data need to be trans-

ported to central network. Furthermore, action, i.e., soliciting a confirmation request from the

user, can only be taken at the gateway node. For central processing, transferring data from

the sensor nodes to the gateway node, from the gateway node to the central system, from the

central system back to the gateway (user confirmation request), and finally from the gateway

to the central system (user’s response) sums up to four hops. On the other hand, if distributed

processing is allowed, sensor readings are transferred only to the gateway, and the rest of the

processing is carried out at this node.

121

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis we present new methods that distribute information processing into different

nodes in a WSN for rule-based event-driven applications. We present how we decompose the

central rule-base expressing the logic of an application into multiple sub-rule-bases that are

employed in appropriate places inside the network. Our first method shows a simple, easy-

to-grasp and rational way of distributing information processing. However, it possibly suffers

from an exponential increase in the number of rules generated. Therefore, we introduce a

new way of representing rules with variables and rearrange the distribution method accord-

ingly. We show the results of experiments that confirm that the second method removes the

deficiencies of the first method.

Concerning the information processing in sensor networks, imprecision of sensor readings is

an important challenge. We think that a fuzzy rule-based system is the most suitable solution

to tackle this problem. However, the number of rules in a fuzzy rule-based system is the most

important obstacle for it to be employed in WSNs. For this reason, we present a mechanism

that reduces the number of rules in a fuzzy rule-based system, and show how fuzzy inference

can be done in a distributed manner in line with our previous rule distribution schemes. Based

on the rule reduction strategy, we propose a new algorithm for fuzzy composition that can be

used by fuzzy rule engines.

Our motivation was to process data inside WSNs as much as possible since communication

operations are responsible for most of the energy consumption in sensor nodes. Our simu-

lations show that in a sensor network application scenario employing in-network processing

based on our methods, the average energy consumption of a sensor node might be reduced to

nearly one-third of the energy consumption that is used in central processing. We describe

122

an application scenario that might benefit from our approach and simulations based on this

scenario prove the benefits of using in-network processing.

Since the rule-base decomposition is carried out outside of sensor networks and on rare occa-

sions like initial deployment or when there is a need for changing the logic of an application,

its execution time is less important compared to the space requirements of sub-rule-bases.

Although technological advancements make storage capacity being a smaller concern, it is

still a limitation for small sensor nodes. Therefore, there is a need for having lightweight

representations of rules to be employed in sensor nodes. This can be a topic for future study.

Cooperation of sensor nodes may provide more reliable decisions. Of course, cooperative

processing may explicitly be specified by rules. But in order to mitigate the complexity in-

troduced by such rules, developing systems that do this job implicitly might be an area that

can be worked on in future studies. Fuzzy logic seems to be a flexible and cheap solution for

combining the data of multiple sensor nodes.

The truth value of a predicate might change over time. For example, a temperature value of

30◦ Celcius measured may be considered normal in summer but it should not be counted as a

normal value if measured in winter. In addition to that, the parameters associated with rule-

based systems, such as fuzzy membership functions or the priorities of rules, or the parameters

associated with sensor nodes, such as sleeping interval or transmission range, may need to be

changed in the course of time. In order to adapt to such changes automatically, systems that

have learning capabilities, such as neuro-fuzzy systems, may be used. This may be a study

that can extend the work presented here.

In rule-bases that contain automatically generated rules, which are the rules generated as a

result of decomposition, there might be redundant rules. The determination and elimination

of such rules should be considered in a future study as well.

123

REFERENCES

[1] S. Ahn, and D. Kim, “Proactive Context-Aware Sensor Networks”, Lecture Notes in
Computer Science, Vol. 3868/2006, pp. 38-53, 2006.

[2] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor
Networks”, IEEE Communications Magazine, Vol. 40, No. 8, pp. 102-114, August 2002.

[3] J. F. Allen, “Maintaining Knowledge about Temporal Intervals”, Communications of
the ACM, Vol. 26, No. 11, pp. 832-843, November 1983.

[4] Arcsight Enterprise Security Manager (ESM), http://www.arcsight.com/products/products-
esm/, Last Visited June 2011.

[5] F. Babich, L. Deotto, ”Formal Methods for Specification and Analysis of Communica-
tion Protocols,” IEEE Communications Surveys and Tutorials, Vol. 4, No. 1, Dec 2002.

[6] J. Balasubramaniam, “Rule Reduction for Efficient Inferencing in Similarity Based Rea-
soning”, International Journal of Approximate Reasoning, Vol. 48, Issue 1, pp.156-173,
2008.

[7] B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P. L. Patranjan, “Reactive Rules on the
Web”, Reasoning Web, Lecture Notes in Computer Science, Vol. 4636, pp. 183-239,
2007.

[8] M. Bhardwaj, and A. Chandrakasan, “Bounding the Lifetime of Sensor Networks via
Optimal Role Assignment”, In Proc. of 21st. Annual Joint Conference of the IEEE Com-
puter and Communication Socities, New York, NY, USA, 2002.

[9] P. Bonato, “Advances in Wearable Technology and its Medical Applications”, Proc.
of 32nd. Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Buenos Aires, Argentina, September 2010.

[10] B. Bonfils, and P. Bonnet, “Adaptive and Decentralized Operator Placement for In-
Network Query Processing”, IPSN’03, Palo Alto, CA, USA, April 2003.

[11] BTnode Platform. Available online at http://www.btnode.ethz.ch/, Last Visited June
2011.

[12] Castalia: A simulator for WSNs. Available online at http://castalia.npc.nicta.com.au/,
Last Visited June 2011.

[13] Chipcon. CC1000 - Single Chip Very Low Power RF Transceiver. Chipcon AS, Oslo,
Norway, April 2002.

[14] Chipcon AS SmartRF. CC2420 2.4 GHz RF Transceiver CC2420 - Zigbee RF
Transceiver. Oslo, Norway, April 2004.

124

[15] C. Collet, and T. Coupaye, “Primitive and Composite Events in NAOS”, Actes des 12e
Journées Bases de Données Avancées, pp. 331-349, Cassis (France), August 1996.

[16] K. Dasgupta, M. Kukreja, and K. Kalpakis, “Topology-Aware Placement and Role As-
signment for Energy-Efficient Information Gathering in Sensor Networks”, In Proc. if
the eight IEEE International Symposium on Computers and Communication (ISCC’03),
Antalya, Turkey, July 2003.

[17] A. P. Dempster, “A generalization of Bayesian Inference”, Journal of the Royal Statisti-
cal Society, Vol. 30, No. 2, 1968.

[18] M. Eckert, “Complex Event Processing with XChangeEQ: Language Design, Formal Se-
mantics, and Incremental Evaluation for Querying Events”, Ph.D. Dissertation, October
2008.

[19] C. Frank, and K. Romer, “Algorithms for Generic Role Assignment in Wireless Sensor
Networks”, ACM International Conference on Embedded Networked Sensor Systems
(SenSys’05), San Diego, CA, USA, November 2005.

[20] C. Frank, and K. Romer, “Solving Generic Role Assignment Exactly”, WP-
DRTS/IPDPS, Rhodes Island, Greece, April 2006.

[21] Fuzzy Logic Fundamentals, Available online at
http://ptgmedia.pearsoncmg.com/images/0135705991/samplechapter/0135705991.pdf,
Last Visited June 2011.

[22] S. Gatziu, K. R. Dittrich, “Events in an Active Object Oriented Database System”, In
Proc. of 1st. International Workshop on Rules in Database Systems, pp. 23-39, Edinburg,
Scotland, September 1993.

[23] S. Gatziu, K. R. Dittrich, ”Detecting Composite Events in Active Databases Using Petri
Nets,” Proceedings of the Fourth International Workshop on Research Issues in Data
engineering: Active Database Systems, pp. 2-9, Feb 1994.

[24] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Composite Event Specification in Active
Databases: Model and Implementation”, In Proc. of the 18th. International Conference
on Very Large Databases, 1992.

[25] J. Hajek, “Basic Fuzzy Logic and BL-Algebras”, Soft Computing - A Fusion of Foun-
dations, Methodologies and Applications, Vol. 2, No. 3, pp. 124-128, 1998.

[26] M.A. Hanson, H.C. Powell, A.T. Barth, K. Ringgenberg, B.H. Calhoun, J.H. Aylor, J.
Lach, “Body Area Sensor Networks: Challenges and Opportunities”, Computer, Vol.42,
No.1, pp. 58-65, 2009.

[27] M. Hempstead, M. J. Lyons, D. Brooks, G. Wei, “Survey of Hardware Systems for
Wireless Sensor Networks”, ASP Journal of Low Power Electronics, Vol. 4, No. 1, 1-10,
April 2008.

[28] IEEE 802.15 WPAN Task Group 4. http://www.ieee802.org/15/pub/TG4.html, Last Vis-
ited June 2011.

[29] Infineon Technology AG, Munich, Germany, Energy Efficient Sensor Networks: eye-
sIFX Wireless Sensor Network Deployment Kit, 1.0.1 edition, November 2005.

125

[30] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: a scalable and
robust communication paradigm”, Proceedings of the 6th. Annual International Confer-
ence on Mobile Computing and Networking, pp. 56-67, Boston, 2000.

[31] B. Jiao, S. Son, and J. Stankovic, “GEM: Generic Event Service Middleware for Wire-
less Sensor Networks”, Proceedings of the 2nd International Workshop on Networked
Sensing Systems (INSS), June 2005.

[32] K. Kapitanova, S. H. Son, K.-D. Kang, “Event Detection in Wireless Sensor Networks -
Can Fuzzy Values Be Accurate?”, Ad Hoc Networks - Second International Conference,
ADHOCNETS 2010, Victoria, BC, Canada, August 2010.

[33] A. M. Khan, Y.-K. Lee, S. Y. Lee, T.-S. Kim, “A Triaxial Accelerometer-Based Physical-
Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer”,
IEEE Transactions on Information Technology in Biomedicine, Vol. 14, No. 5, pp. 1166-
1172, Sep 2010.

[34] M. Kochhal, L. Schwiebert, and S. Gupta, “Role-based Hierarchical Self Organization
for Wireless Ad Hoc Sensor Networks”, WCNA’03, San Diego, CA, USA, September
2003.

[35] B. B.-Korpeoglu, A. Yazici, I. Korpeoglu, R. George, “A New Approach for Informa-
tion Processing in Wireless Sensor Networks”, 22nd International Conference on Data
Engineering Workshops (ICDEW’06), Atlanta, GA, 2006.

[36] B. Krishnamachari, D. Estrin, and S. Wicker, “Modeling Data-Centric Routing in Wire-
less Sensor Networks”, In. Proc. of IEEE INFOCOM’02, 2002.

[37] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: an Acquisi-
tional Query Processing System for Sensor Networks”, ACM Trans. Database Syst., Vol.
30, No. 1, pp. 122-173, 2005.

[38] E. H. Mamdani, and S. Assilian, “An experiment in linguistic synthesis with a fuzzy
logic controller”, International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-
13, 1975.

[39] G. P. Meo, and S. Ceri, “Composite Events in Chimera”, In Proc. of 5th. International
Conference on Extending Database Technology (EDBT’96), LNCS 1057, pp. 56-78,
1996.

[40] Hardware platforms available for TinyOS. Available online at
http://www.tinyos.net/scoop/special/hardware.html, Last Visited June 2011.

[41] I. Motakis, and C. Zaniolo, “Formal Semantics for Composite Temporal Events in Active
Database Rules”, Journal of System Integration, Vol. 7, No. 3-4, pp. 291-325, 1997.

[42] T. Murata, “Petri Nets: Properties, Analysis and Applications”, Proceedings of IEEE,
Vol. 77, No. 4, pp. 541-580, 1989.

[43] L. Nachman, R. King, R. Adler, J. Huang, V. Hummel, “The Intel R©Mote Platform: a
Bluetooth-based sensor network for industrial monitoring”, Proceedings of 4th Interna-
tional Symposium on Information Processing in Sensor Networks, 2005.

126

[44] E. F. Nakamura, A.A.F. Loureiro, A. C. Frery, “Information Fusion for Wireless Sensor
Networks: Methods, Models, and Classifications” ACM Computing Surveys, Vol. 39,
No. 3, Article 9, August 2007.

[45] Nordic VLSI ASA. nRF2401 Single Chip 2.4 GHz Radio Transceiver. Tiller, Norway,
March 2003.

[46] A. Paschke, and A. Kozlenkov, “Rule-Based Event Processing and Reaction Rules”,
Lecture Notes in Computer Science (LNCS), Vol. 5858/2009, pp. 53-66, 2009.

[47] M. M. Perianu, and P. Havinga, “D-FLER: Distributed Fuzzy Logic Engine for Rule-
Based Wireless Sensor Networks”, Ubiquitous Computing Systems, Vol. 4836/2007,
pp. 86-101, 2007.

[48] P. R. Pietzuch, B. Shand, and J. Bacon, “Composite Event Detection as a Generic Mid-
dleware Extension”, IEEE Network Magazine, Special Issue on Middleware Technolo-
gies for Future Communication Networks, Jan/Feb 2004.

[49] G. J. Pottie, and W. J. Kaiser, “Wireless Integrated Network Sensors”, Communications
of the ACM, Vol. 43, No. 5, pp. 51-58, 2000.

[50] RFM Monolithics, Inc., Dallas, TX, USA. 916.50 MHz Hybrid Transceiver, 1999.

[51] K. Romer, and F. Mattern, “The Design Space of Wireless Sensor Networks”, IEEE
Wireless Communications, Vol. 11, No. 6, pp 54-61, December 2004.

[52] RSA enVision, http://www.rsa.com/node.aspx?id=3170, Last Visited June 2011.

[53] N. Sadagopan, B. Krishnamachari, A. Helmy, “The ACQUIRE Mechanism for Efficient
Querying in Sensor Networks”, Proceedings of the First IEEE International Workshop
on Sensor Network Protocols and Applications, pp. 149-155, May 2003.

[54] G. Shafer, “A mathematical theory of evidence”, Princeton University Press, 1976.

[55] Shimmer Hardware Guide. Available online at http://www.eecs.harvard.edu/ kon-
rad/projects/shimmer/references/SHIMMER HWGuide REV1P3.pdf, Last Visited
June 2011.

[56] Y. Shi, “A Deep Study of Fuzzy Implications”, Ph.D. Dissertation, September 2009.

[57] V. Shnayder, M. Hempstead, B. R. Chen, G. W. Allen, and M. Welsh, “Simulating the
power consumption of large-scale sensor network applications”, Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems, pp. 188-200, 2004.

[58] T. Takagi, M. Sugeno, “Fuzzy identification of systems and its application to modeling
and control”, IEEE Transaction on Systems, Man and Cybernetics, Vol. 15, pp. 116-132,
1985.

[59] M. Sugeno, and G. T. Kang, “Structure identification of fuzzy model”, Fuzzy Sets and
Systems, Vol. 28, pp. 15-33, 1988.

[60] K. Terfloth, “A Rule-Based Programming Model for Wireless Sensor Networks”, Ph.D.
Dissertation, June 2009.

127

[61] N. Tezcan, and W. Wang, “A lightweight classification algorithm for energy conserva-
tion in wireless sensor networks”, In Proc. of 14th. International Conference no Com-
puter Communications and Networks, San Diego, CA, USA, October 2005.

[62] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conservation for Ad
Hoc routing”, Proceedings of the 7th Annual International Conference on Mobile Com-
puting and Networking, pp. 70-84, Rome, Italy, 2001.

[63] Y. Yao, and J. Gehrke, “The Cougar Approach to In-Network Query Processing in Sen-
sor Networks”, SIGMOD, 2002.

[64] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless Sensor Network Survey” Computer
Networks, Vol. 52, pp. 2292-2330, 2008.

[65] L. A. Zadeh, “Fuzzy Sets”, Information and Control, Vol. 8, Issue 3, pp. 338-353, June
1965.

[66] Zigbee Alliance. http://www.zigbee.org/, Last Visited June 2011.

[67] D. Zimmer, A. Meckenstock, R. Unland, “A General Model for Event Specification
in Active Database Management Systems”, In Proc. of the 5th. International Confer-
ence on Deductive and Object-Oriented Databases (DOOD’97), LNCS 1341, Montreux,
Switzerland, December 1997.

[68] M. Zoumboulakis, G. Roussos, and A. Poulovassilis, “Active Rules for Sensor
Databases”, Proceedings of the First Workshop on Data Management for Sensor Net-
works (DMSN’04), August 2004.

128

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Şanlı, Özgür

Date of Birth: 15.06.1978

Place of Birth: Ankara

Marital Status: Single

Phone: +90 312 507-5976

Email: ozgur.sanli@ceng.metu.edu.tr

EDUCATION

Degree Institution Year of Graduation

MS METU Computer Engineering 2003

BS METU Computer Engineering 2000

WORK EXPERIENCE

Year Place Enrollment

2000-present T.C. Merkez Bankası IT Security Specialist

1999 Aselsan Intern

1998 METU CC Intern

PUBLICATIONS

• Ö. Şanlı, İ. Körpeoğlu, A. Yazıcı, ”Rule-Based In-Network Processing in Wireless Sen-

sor Networks”, IEEE Multi-conference on Systems and Control, pp.660-665, Saint Pe-

tersburg, Russia, July 2009.

129

PERSONAL INTERESTS AND HOBBIES

Tennis, Parachuting, Travelling, Electronics, Linguistics

FOREIGN LANGUAGES

Fluent English, Basic German and Spanish

130

