
i

RESOURCE INVESTMENT PROBLEM WITH TIME/RESOURCE

TRADE-OFFS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDEM ÇOLAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENT

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

JUNE 2011

ii

Approval of the thesis:

Submitted by ERDEM ÇOLAK in partial fulfillment of the requirements for the

degree of Master of Science in Industrial Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen ________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Sinan Kayalıgil ________________

Head of Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu ________________

Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ömer Kırca ____________________

Industrial Engineering Dept., METU

Prof. Dr. Meral Azizoğlu ____________________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Z. Pelin Bayındır ____________________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Sinan Gürel ____________________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Banu Yüksel Özkaya ____________________

Industrial Engineering Dept., Hacettepe University

Date: 30.06.2011

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last Name: ERDEM ÇOLAK

Signature :

iv

ABSTRACT

RESOURCE INVESTMENT PROBLEM WITH TIME/RESOURCE

TRADE-OFFS

Çolak, Erdem

M.Sc., Department of Industrial Engineering

Supervisor: Prof. Dr. Meral Azizoğlu

June 2011, 89 pages

In this study, we consider a resource investment problem with time/resource trade-

offs in project environments. We assume each mode of an activity is characterized

by its processing time and resource requirement and there is a single renewable

resource. Our aim is to minimize the maximum resource usage, hence the total

amount invested for the single resource.

We formulate the problem as a mixed integer linear model and find optimal

solutions for small sized problem instances. We propose several lower bounding

procedures to find high quality estimates on the optimal resource investment cost.

We use our lower bounds to evaluate the performance of our heuristic procedures.

The results of our computational experiments have revealed the satisfactory

performances of our lower bounds and heuristic procedures.

Keywords: Projects, Resource Investment Time/Resource Trade-off, Bounding

Procedures

v

ÖZ

ZAMAN/KAYNAK ÖDÜNLEŞİMLİ KAYNAK YATIRIM

PROBLEMİ

Çolak, Erdem

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu

Haziran 2011, 89 sayfa

Bu çalışmada proje ortamlarında zaman/kaynak ödünleşimini dikkate alan bir

kaynak yatırım planlaması problemini ele aldık. Aktivitelerin işlem zamanı ve

kaynak gereksinimleri ile tanımlandıklarını ve tek bir yenilebilir kaynak olduğunu

varsaydık. Amacımız en büyük kaynak kullanımını, dolayısıyla, toplam kaynak

yatırımını enazlamaktır.

Problemi tam sayılı karmaşık model olarak formüle ettik ve küçük boylu projeler

için optimal çözümleri bulabildik. Optimal kaynak maliyetlerine yakın sonuçlar

üretebilmek amacıyla alt sınırlama yöntemleri geliştirdik. Alt sınırlarımızı sezgisel

yöntemlerin verimliliğini ölçmek için kullandık.

Deneysel sonuçlarımız, alt sınırlar ve sezgisel yöntemlerimizin başarılı sonuçlar

verdiğini göstermiştir.

Anahtar Kelimeler: Proje, Kaynak Yatırım, Zaman/Kaynak Ödünleşimi, Sınırlama

Teknikleri

vi

To My Mother, Father and Sister...

vii

ACKNOWLEDGMENTS

First, and foremost, I would like to express my gratefulness to my supervisor Prof.

Meral Azizoğlu for guiding me admirably, motivating me in hardest times and

helping me in most tiring times. Without her great encouragement together with her

amicable support, this thesis would not have been written.

Then, I should reveal that, being with me in all this exhaustive period and providing

endless support, my family deserves the best wishes. Therefore, I would like to

thank deeply to my mother Melek Çolak, my father Yılmaz Çolak and my sister

Duygu for their never-ending understanding and love. Without their love and

patience everything would be more difficult.

I would like to express my gratitude to my dear roommates in the past two years,

Bilge Çelik and Volkan Gümüşkaya for firstly being great friends, and secondly for

being great colleagues. Bilge’s smiley face and Volkan’s hilarious opposition in the

room provided great felicity for me while working. I also would like to thank my

dear friend and colleague Kerem Demirtaş, whose great technical support and

friendship was also a great asset for me. I also want to offer my regards to my dear

other colleagues Tülin İnkaya, Ayşegül Demirtaş, Banu Lokman, Aykut Bulut and

Çınar Kılcıoğlu as their presence and company were really relaxing for me.

I also would like to express my special thanks to the special person in my life; Ayla

Öylek for being with me; giving her love and making me feel better in every

instance during this study. I am extremely fortunate for having her love and support

at the most hopeless moments. Without her, completing this work in such a happy

mood would not be possible.

viii

And, lastly I would like to thank all the members of the examining committee and

all the people I had the chance to know during the period of my assistantship in the

Department of Industrial Engineering.

ix

TABLE OF CONTENTS

ABSTRACT___ iv

ÖZ ___ v

ACKNOWLEDGMENTS __ vii

TABLE OF CONTENTS __ ix

LIST OF FIGURES __ xi

LIST OF TABLES __ xii

1. INTRODUCTION __ 1

2. PROJECT SCHEDULING ___ 4

2.1 Project in General __ 4

2.2 Project Networks __ 5

2.2.1 AoA Representation ___ 5

2.2.2 AoN Representation ___ 7

2.3 Project Scheduling ___ 8

2.3.1 Single-Mode Project Scheduling Problems _________________________________ 9

2.3.2 Multi-Mode Project Scheduling Problems _________________________________ 16

3. LITERATURE REVIEW ON RESOURCE CONSTRAINED PROJECT SCHEDULING

PROBLEMS ___ 19

3.1 Makespan Problem with Time/Resource Trade-Offs ___________________ 19

3.1.1 Optimization Studies ___ 20

3.1.2 Approximation Studies: ___ 21

3.2 Resource Investment Problems ____________________________________ 24

3.2.1 Single Mode Resource Investment Problem _______________________________ 25

3.2.2 Multi Mode (Time/Resource Trade-Off) Resource Investment Problem _________ 27

4. OUR PROBLEM, ITS MODEL AND OPTIMALITY PROPERTIES ____________ 30

x

4.1 Problem Definition __ 30

4.2 Mathematical Model __ 31

4.3 Properties of the Optimal Solution _________________________________ 32

4.4 Illustration of Properties on the Example Problem _____________________ 38

5. SOLUTION APPROACHES __ 42

5.1 Lower Bounding Procedures_______________________________________ 42

5.2 Heuristic Procedure ___ 49

5.3 Illustration of Solution Procedures on an Example Problem _____________ 57

6. COMPUTATIONAL EXPERIMENTS _________________________________ 62

6.1 Data Generation __ 62

6.2 Performance Measures___ 64

6.3 Analysis of the Results ___ 65

7. CONCLUSIONS __ 85

REFERENCES __ 87

xi

LIST OF FIGURES

FIGURES

Figure 2.1 – A Gantt Chart with 7 activities ___ 5

Figure 2.2 – AoA network for the example problem ______________________________________ 7

Figure 2.3 – AoN network for the example problem ______________________________________ 8

Figure 2.4 – The AoN network for the example problem with early/late start times and durations. 15

Figure 2.5 – The resource usage profile of early start schedule. ____________________________ 18

Figure 4.1 - A schedule that illustrates Property 2 _______________________________________ 34

Figure 4.2 – A Schedule that illustrates Property 3 ______________________________________ 36

Figure 4.3 – The resource usage profile ___ 40

Figure 5.1 – Resource Profile for early start schedule ____________________________________ 61

file:///C:/Users/Erdem/Documents/My%20Dropbox/Tez%20yazmaca/Thesis_v4%20(Repaired).docx%23_Toc298237974
file:///C:/Users/Erdem/Documents/My%20Dropbox/Tez%20yazmaca/Thesis_v4%20(Repaired).docx%23_Toc298237975

xii

LIST OF TABLES

TABLES

Table 2-1 – The precedence relations for the example problem _____________________________ 6

Table 2-2 – The precedence relations and durations for the example problem ________________ 12

Table 2-3 – The early start-late start times and slack values for activities ____________________ 14

Table 2-4 – The execution modes for non-dummy activities _______________________________ 17

Table 4-1 – The CPM calculations for the example problem _______________________________ 38

Table 4-2– The execution modes for non-dummy activities _______________________________ 39

Table 5-1- The CPM calculations for the example problem ________________________________ 57

Table 5-2– The execution modes for non-dummy activities _______________________________ 58

Table 5-3 – Lower Bound 3 calculation for the example problem ___________________________ 59

Table 6-1 – The effect of Property 1 on the problem size _________________________________ 66

Table 6-2 – The effect of Property 2 and Property 3 _____________________________________ 67

Table 6-3 – The relative deviations of the lower bounds from the optimal ___________________ 68

Table 6-4 - The absolute deviations of the lower bounds from optimals _____________________ 69

Table 6-5 – The number of times each lower bound is the best ____________________________ 70

Table 6-6 – The CPLEX time for the optimal and the lower bound __________________________ 71

Table 6-7 – The deviations of the best lower bound from the optimal _______________________ 72

Table 6-8 – The relative deviations of construction heuristics from the optimal _______________ 73

Table 6-9 – The relative deviations of construction heuristics from the best lower bound _______ 73

Table 6-10 – The absolute and relative deviation of the best construction heuristic from the optimal

 ___ 74

Table 6-11- The absolute and relative deviation of the best construction heuristic from the best

lower bound and frequency of best construction heuristic ________________________________ 75

Table 6-12 – The relative deviations of the best upper bound from the optimal and frequency of

optimal solutions ___ 76

Table 6-13 - The absolute deviations of the best upper bound from the optimal _______________ 77

Table 6-14 – The relative deviations of the upper bound from the best lower bounds __________ 78

xiii

Table 6-15 – The absolute deviations of the upper bound from the best lower bounds for each

heuristic __ 79

Table 6-16 – The CPU times of the algorithms __ 80

Table 6-17 – The problem size comparison for different CNC values ________________________ 81

Table 6-18 - The deviations of heuristics for different CNC values __________________________ 82

Table 6-19 – The CPU time comparison for different CNC values ___________________________ 82

Table 6-20 – The problem size comparison for different number of modes settings ____________ 83

Table 6-21 - The deviations of heuristics for different number of modes settings ______________ 84

Table 6-22 - The CPU time comparison for different mode number settings __________________ 84

1

CHAPTER 1

1. INTRODUCTION

Project is a set of interrelated activities undertaken to create a unique product or

service. Project management deals with planning, organizing and successful

completion of the project. Project scheduling defines the start and completion times

of the activities, together with resource assignments; hence it is essential for the

successful completion of the project. Project management finds its applications in

many areas, including but not limited to, software development, new product

designs, construction industry and make-to order production environments when

each customer order defines a unique output.

When the only feature associated with project activities is duration, the objective of

project scheduling is simply to minimize the project completion time. The

minimum completion time is found in polynomial time with Critical Path Method

(CPM) when activity durations are deterministic and with Program Evaluation

Review Technique (PERT) when they are probabilistic.

In many practical applications, the activities in a project consume resources other

than time, such as money, labor, equipment and machine. When these resources are

scarce, the problem becomes Resource Constrained Project Scheduling Problem

(RCPSP). The RCPSP is the most common project scheduling problem

2

encountered in Operational Research literature. The objective is to minimize the

project completion time subject to the resource constraints.

The resources used in the RCPSP are of three types: Renewable resources, non-

renewable resources and doubly constrained resources. A renewable resource is

available at a certain amount for all periods whereas a non-renewable resource is a

fixed amount declining through usage. Some resources are both renewable and non

renewable and called doubly constrained.

When the resources are scarce, their planning and organization are of crucial

importance. Allocating the resources to the correct activities on correct times results

in good implementable schedules. Resource leveling and resource investment

problems are two main problem types that are pertinent to resource based

objectives. The resource leveling problems smooth the resource consumptions

among all periods. The resource investment problem minimizes the relevant costs

associated with the resources.

A class of the project scheduling problems, so-called multi-mode problems, is

characterized by their activity modes. An activity has more than one mode if it has

processing alternatives, for example its duration can be reduced by putting extra

resources. Each mode of an activity has two main components: time and resource

consumption. The associated problem is referred to as time/cost trade-off problems

if the resource used is money and money is the nonrenewable resource. Time/Cost

trade-off problem deals with the trade-off between the project completion time and

the cost associated with it. Another trade-off is between project completion time

and the renewable resource consumption. Increasing the maximum possible

resource available for each period, the project completion time may decrease and

vice-versa. This problem is called the time/resource trade-off problem.

In this study we consider the resource investment problem with time/resource trade-

offs. Our problem consists of a single renewable resource, like the workers in a

construction project, and given a project deadline which may be defined by

contractual agreements. The objective is to minimize the maximum resource

consumption over all periods. The maximum requirement defines the amount of

resources used, when all units of the resource are made available at the beginning of

3

the project and are freed altogether when the project is complete. For example the

number of construction workers hired for a construction project may be defined by

the period that requires maximum number of workers. In such a case the total labor

investment is an increasing function of the number of the workers. The number of

available workers allocated to a project can be reduced selecting an appropriate

execution mode for each activity.

We, in this study, develop powerful problem size reduction mechanisms, lower

bounding and heuristic procedures for the resource investment problem with

time/resource trade-offs. Despite its practical importance, the research on the

problem is quite limited. To the best of our knowledge, there is only one study that

deals with multiple renewable resources and proposes a priority based heuristic to

solve the problem. We hope that our study fills an open area in research

constrained project scheduling literature.

The rest of the thesis is organized as follows: In Chapter 3, we give a literature

review for the related resource constrained project scheduling problems. In Chapter

4, we define our problem, give a mathematical model and discuss mode elimination

techniques. Chapter 5 discusses our solution approaches; lower bounds and

heuristics. Chapter 6 reports on our computational experiments and discusses its

results. In Chapter 7 we give a brief conclusion of our study.

4

CHAPTER 2

2. PROJECT SCHEDULING

In this chapter we first define a project and then present the Activity on Node and

Activity on Arc project networks. We present single mode problems and their

solutions and support our discussion with an example. We then introduce the

Resource Constrained Project Scheduling Problem and multi mode Time/Cost

Trade-off and Time/Resource Trade-off problems.

2.1 Project in General

A project is a “temporary endeavor undertaken to create a unique product or

service” according to the Project Management Institute. A project is a set of

activities which are interrelated and which share resources such as money, labor,

machine, equipment.

An activity is the smallest work element of a project. The activities are interrelated

because they have an input-output relation. Each activity has predecessors and

successors. An activity, say activity i, is a predecessor of another activity, say

activity j, if it has to finish before j starts. Due to the transitivity property of

precedence relations, that is if i precedes j and j precedes k then, i also precedes k,

there are many redundant expressions. An easy way of expressing all the

precedence relations without any redundancy is using the immediate predecessor

relation. If activity j can start immediately after activity i finishes, then activity i is

5

an immediate predecessor of activity j.The relations between the activities can be

represented using many tools, the most common ones being Gantt Chart or Project

Networks.

Gantt Chart

A Gantt chart is a bar chart that is developed by Henry L. Gantt in early 1900s first

as a production control tool. A Gantt Chart, provides valuable information about the

project such as the start and completion times of activities, precedence relations,

activities being processed in parallel. However, it does not provide insight on the

criticality of activities. An example of a Gantt Chart can be seen in Figure 2.1.

Figure 2.1 – A Gantt Chart with 7 activities

2.2 Project Networks

Project Networks illustrate the activities and their relations on a network. They

provide valuable information on the criticality of the activities, and their

allowances.

The activities of a network can be represented in two different schemes.

1. Activity on Arc (AoA) representation

2. Activity on Node (AoN) representation

2.2.1 AoA Representation

In AoA networks, an arc represents an activity and a node represents an event. In

general, an event corresponds to the start and/or completion time of an activity, it

may also correspond to a particular milestone for the project, like the half

completion of project, the entire completion of the project. AoA representation may

6

require dummy arcs or dummy activities for proper representation of the precedence

relations.

We use one instance adapted from our problem set (we call Example problem

hereafter) to illustrate the AoA Network. Table 2-1 tabulates the immediate

precedence relations and Figure 2.2 illustrates these relations on an AoA network.

Note that activities 1 and 12 are dummy activities that define the starting and ending

of the project.

Table 2-1 – The precedence relations for the example problem

Activity Immediate Predecessors

1 - (Starting Dummy Activity)

2 1

3 1

4 1

5 2

6 4

7 4

8 2,4

9 4

10 5,8

11 3,6,7,9

12 10,11(Ending Dummy Activity)

7

Figure 2.2 – AoA network for the example problem

In the project network in Figure 2.2- each arc corresponds to an activity and each

node corresponds to an event. Nodes S1 and S2 represent start and finish of the

project respectively. Each node corresponds to an event; node J, for instance, is for

the completion of Activity 3 and three dummy activities and start of activity 11.

Each arc is an activity; the arc between nodes B and E represents the Activity 7.

The dummy arcs are for reflecting the precedence relation properly. The arc

between C and H is a dummy arc to illustrate the precedence relation between

activities 5 and 10.

2.2.2 AoN Representation

In AoN networks, the nodes represent activities and the arcs represent the immediate

precedence relations. Activity i is an immediate predecessor of activity j if an arc is

directed from i to j. Node 1 is the starting activity that consumes no time and Node

12 is the ending activity whose duration is zero. Figure 2.3 displays our example

problem on an AoN network.

8

Figure 2.3 – AoN network for the example problem

In Figure 2.3, note that activity 1 is the node that represents the start of the project

and activity 12 is the node where the project finishes.

2.3 Project Scheduling

Project Scheduling decides on the start and finish times of the activities, and the

allocation of all scarce resources to the activities.

All activities in a project have a processing time and resource consumption. Labor,

machines, and money are some instances for the resources. In general when the

resource of interest is renewable, it might be considered as labor and when the

resource is non-renewable the most common indicator of the resource is money.

Sometimes, these resources can be consumed all together. In our problem, the

single resource is renewable.

If all activities in a project have only one combination of duration and resource

consumption, the project is considered as a single-mode project. When there are

multiple alternative ways of processing an activity, the project is considered as a

9

multi-mode project. Each alternative way, called the mode of activities, has its own

processing times and resource usages.

2.3.1 Single-Mode Project Scheduling Problems

For the single mode project scheduling problems, the purpose is to assign a start

time to all the activities so that the precedence relations are respected and the

project is completed in the earliest possible time. The well known Critical Path

Method (CPM) is used to find such a schedule. We first explain CPM, that will be

referred often throughout the thesis. For detailed discussion on CPM, see Meredith

and Mantel (2003).

The Critical Path Method

The CPM is a method of finding the critical path, its length (earliest possible

completion time of a project), critical activities and earliest and latest start times for

the activities. We need following definitions to explain the method.

Critical Path: The longest path(s) in a project. The length of the critical path

defines the project completion time.

Critical activities: Any activity in any critical path is a critical activity. The main

property of a critical activity is that, its earliest start time is equal to its latest start

time hence if the activity starts later than its earliest start time; the schedule cannot

meet on time.

Noncritical Activities: Any activity for which the latest start time is greater than its

earliest start, i.e., any activity on any critical path.

Total Slack: The difference between earliest and latest start times of an activity

defines its total slack. Total slack is the amount an activity can be delayed without

affecting the project completion time. So, the total slack of a critical activity equals

zero.

While starting the procedure, the earliest start times of activities with no

predecessor (whose predecessor is the starting dummy activity) are set to 0 and their

earliest completion times are calculated. The earliest start time of any other activity

is equal to the maximum of its predecessors’ earliest completion time. The ending

dummy activity’s earliest completion time (recall that its processing time is 0) is the

10

project’s earliest completion time. Then, this earliest completion time becomes the

latest completion time for the activities which have no successors (whose only

successor is the ending dummy activity). Using the durations of activities, late start

times for these activities are calculated. For all the other activities, the latest

completion time is equal to the minimum of its immediate successors’ latest start

times. When the earliest and latest possible start times are known for any activity,

total slack times and criticality of all the activities can be defined.

The notation, which is needed for CPM, and used throughout this thesis, is given

below:

pij: processing time of activity i at its mode j.

Ei: Set of immediate predecessors of activity i.

Succi: Set of immediate successors of activity i.

ESi: Earliest start time for activity i.

LSi: Latest start time for activity i.

ECi: Earliest completion time for activity i.

LCi: Latest completion time for activity i.

CR: Set of critical activities

Slacki: Total slack of activity i.

When the problem is single mode, we modify our parameter pij as pi.

Using the notation, we formally define the algorithm; which is excerpted from

Değirmenci (2008);

11

The method will be illustrated in the example problem. Note that our problem is a

multi-mode problem, so we choose the shortest duration modes for each activity to

illustrate CPM and exclude resource consumption as it does not affect CPM

calculations. The activity information is presented in Table 2-2.

Initialization:

0iES : ii E

Main Body:

Repeat

i

i k k

k E

ES Max ES p : i ji k E ES is calculated

Until
iES for 1, 2,....,i N are calculated

i i
i

T Max ES p

iLC T : ii Succ

Repeat

i

i j j

k S

LC Min LC p : i ji j Succ LC is calculated

Until
iLC for 1, 2,....,i N are calculated

Finalization:

i i iSlack LC LS 1, 2,....,i N

,i i i i i iEC ES p LS LC p ,

{ 1,2,...., 0}iCr i N Slack

12

Table 2-2 – The precedence relations and durations for the example problem

Activity Immediate Predecessors Duration (days)

1 - (Starting Dummy Activity) -

2 1 7

3 1 9

4 1 8

5 2 8

6 4 6

7 4 8

8 2,4 9

9 4 7

10 5,8 6

11 3,6,7,9 9

12 10,11(Ending Dummy Activity) -

Now, step by step we show the calculations,

Initialization:

2 3 4E E E (The only predecessor is the starting dummy activity);

2 3 4 0ES ES ES

Main Body:

5 2E 5 2 2 7ES ES p

6 {4}E 6 4 4 8ES ES p

7 {4}E 7 4 4 8ES ES p

8 {2,4}E 8 2 2 4 4{ , } 8ES Max ES p ES p

9 {4}E 9 4 4 8ES ES p

10 {5,8}E 10 5 5 8 8{ , } 17ES Max ES p ES p

13

11 {3,6,7,9}E 11 3 3 6 6 7 7 9 9{ , , , } 16ES Max ES p ES p ES p ES p

10 10 11 11{ , } 26T Max ES p ES p

So, as T is found now, 26T , we are ready to calculate the latest completion

times.

10 11Succ Succ (The only successor is the ending dummy activity);

10 11 25LC LC T

9 {11}Succ
9 11 11 16LC LC p

7 {11}Succ
7 11 11 16LC LC p

6 {11}Succ
6 11 11 16LC LC p

3 {11}Succ 3 11 11 16LC LC p

8 {10}Succ 8 10 10 19LC LC p

5 {10}Succ
5 10 10 19LC LC p

4 {6,7,8,9}Succ 4 9 9 8 8 7 7 6 6, , , 8LC Min LC p LC p LC p LC p

2 {5,8}Succ 4 8 8 5 5, 10LC Min LC p LC p

After calculating earliest start and latest completion times, we finalize the algorithm

by specifying earliest completion times, latest start times and slacks for each

activity. Together with immediate predecessors, activity durations, earliest start and

latest completion times, these values are tabulated in Table 2-3.

14

Table 2-3 – The early start-late start times and slack values for activities

Activity Immediate

Predecessors

Duration

(days)
ESi ECi LSi LCi Slacki

1 (dummy) - - 0 0 0 0 0

2 1 7 0 7 3 10 3

3 1 9 0 9 7 16 7

4 1 8 0 8 0 8 0

5 2 8 7 15 11 19 4

6 4 6 8 14 10 16 2

7 4 8 8 16 8 16 0

8 2,4 9 8 17 10 19 2

9 4 7 8 15 9 16 1

10 5,8 6 17 23 19 25 2

11 3,6,7,9 9 16 25 16 25 0

12

(Dummy)
10,11 - 25 25 25 25 0

The activities with positive slack values, called noncritical activities, can be delayed

by their slack values without affecting the project completion time. For instance,

activity 3 can start 7 days after its earliest start time without changing the project

completion time. As their slack values are equal to 0, activities 4, 7 and 11 are the

critical activities.

Figure 2.4 illustrates the network with earliest start and latest completion times in

boxes and duration of activity in parentheses next to the associated node with the

critical activities and path is bold.

15

Figure 2.4 – The AoN network for the example problem with early/late start times

and durations.

Resource Constrained Project Scheduling Problems: A single mode project

scheduling problem, when the resources of interest are scarce, is called the

Resource Constrained Project Scheduling Problem (RCPSP). The resource

constrained project scheduling problem can be of two types: resource allocation and

resource leveling. The resource allocation problem aims to minimize the project

completion time given the resource requirements for each activity and a limit on

each resource. So the resource allocation problem allocates the scarce resources to

activities without exceeding the resource capacities and by completing the project

early as possible. The resource leveling problem tries to balance the resource usages

throughout the defined life of the project.

16

2.3.2 Multi-Mode Project Scheduling Problems

Sometimes it is possible that an activity may be executed in different ways. These

ways are called modes in the project scheduling problem. This stems from the fact

that allocating more resources to an activity may shorten its duration. Considering

that the single resource is non-renewable, a simple example is that, while a job can

be done in 3 hours spending 5 units of money, or can be done in 5 hours spending

only 1 unit of money. When the single resource is renewable, the idea is the same,

for instance; when 5 workers are assigned to an activity it is completed in 6 days,

whereas when 4 workers are assigned to that activity it finishes in 7 days.

The multi-mode project scheduling problems have an additional complexity brought

by mode selection decisions. When there is a single resource non-renewable

resource, the problem is called the Time/Cost Trade-off Problem, and when the

resource is renewable it is Time/Resource Trade-off Problem.

The time/cost and time/resource trade-off problems are of two types: continuous

and discrete. In continuous problems, activity time is any increasing function of its

resource consumption. In continuous trade-off problems there are infinitely many

modes defined by the continuous time/cost function. In discrete problems, there are

specified number modes where one of which is selected for each activity. In this

study, we consider discrete time/resource trade-off problems.

The Discrete Time/Cost Trade-off Problem

The Discrete Time/Cost Trade-off Problems can be of three types: deadline, budget

and curve problems. The Deadline Problem minimizes the total resource

consumption cost subject to a predetermined project deadline. The Budget Problem

minimizes the project completion time when the budget is limited. The Time/Cost

Trade-off Curve Problem has two objectives, total project cost and project

completion time. The problem is to generate all efficient, i.e. non-dominated,

solutions with respect to these criteria.

17

The Discrete Time/Resource Trade-off Problem

The aim of the Discrete Time/Resource Trade-off Problem (DTRP) is to find a

schedule for each activity, with a single renewable resource, in one of its defined

modes that minimizes the project completion time subject to precedence constraints

and resource constraints according to Ranjbar and Kianfar (2007). A mode is

composed of a processing time and resource requirement and the activities have

many execution modes and one of them must be chosen.

With the difference of the objective function, our problem has the same structure. In

our problem, we try to minimize the capacity of our single non-renewable resource

without violating the project completion time constraint. Project completion time is

the length of the critical path calculated using the smallest modes of activities. The

data for modes are given in Table 2-4, pij denoting the processing time for mode j of

activity i and rij denoting the resource requirement of mode j of activity i.

Table 2-4 – The execution modes for non-dummy activities

A
C

T
IV

IT
IE

S

 MODES

i pi1 ri1 pi2 ri2 pi3 ri3 pi4 ri4 pi5 ri5 pi6 ri6 pi7 ri7 pi8 ri8 pi9 ri9 pi10 ri10

2 7 8 9 6 11 5 13 4 18 3 27 2 55 1 - - - - - -

3 9 11 10 9 11 8 13 7 15 6 19 5 23 4 31 3 47 2 95 1

4 8 8 9 7 10 6 12 5 16 4 21 3 32 2 64 1 - - - -

5 8 10 9 8 10 7 12 6 14 5 18 4 24 3 37 2 74 1 - -

6 6 8 7 6 9 5 11 4 15 3 22 2 45 1 - - - - - -

7 8 9 9 7 11 6 13 5 16 4 22 3 33 2 66 1 - - - -

8 9 11 10 9 12 8 13 7 16 6 19 5 24 4 32 3 48 2 97 1

9 7 9 8 7 9 6 11 5 14 4 19 3 29 2 59 1 - - - -

10 6 8 7 6 8 5 10 4 14 3 21 2 43 1 - - - - - -

11 9 9 10 8 11 7 13 6 16 5 20 4 27 3 40 2 81 1 - -

The critical path for a multi mode problem scheduling problem is calculated using

the modes with smallest processing times. That was what we have done in CPM

calculations. As we use the smallest processing time modes in CPM calculations,

the length of the critical path is 25 time units. To gain insight to the problem a

schedule, namely the earliest start schedule is constructed and the resource profile

of it is presented in Figure 2.5.

18

Figure 2.5 – The resource usage profile of early start schedule.

Maximum resource usage is 58 units in this project when all activities start at their

earliest possible times. As Figure 2.5 illustrates the resource profile is not very

good. This schedule may get better, in the rest of the thesis, we try to find an

efficient way to obtain better results.

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 Days

Resource Usage

Resource Usage

19

CHAPTER 3

3. LITERATURE REVIEW ON RESOURCE

CONSTRAINED PROJECT SCHEDULING

PROBLEMS

In this chapter, we review the project scheduling problems that are most closely

related to our resource investment problem with time/resource trade-offs. Section

3.1 and Section 3.2 overview the literature on the makespan problem with

time/resource trade-offs and resource investment problem with single and multi

modes, respectively. For other resource constrained project scheduling problems,

we refer the reader to the review papers by Herrolelen, De Reyck and

Demeulemester (1998) and Hartmann and Briskorn (2010) for the detailed

information

3.1 Makespan Problem with Time/Resource Trade-Offs

Multi mode resource constrained problem assumes several alternatives for time

versus resource consumption. If these alternatives are specified at discrete time

points then the problem is referred to as discrete time/resource trade-off project

scheduling problem (DTRP). If the time/resource trade-off function receives values

at all continuous values between specified limits, the associated problem is

continuous time/resource trade-off project scheduling problem.

20

The majority of the DTRPs consider the project completion time, so-called

makespan, as the objective function. The other objectives considered in the

literature are resource related like resource consumption cost and resource leveling

There exist several studies that solve the DTRP problem so as to minimize the

makespan. We classify the DTRP studies into two groups as optimization and

approximation studies.

3.1.1 Optimization Studies

Talbot (1982), Sprecher et al.(1997) and Demeulemeester et al. (1999) propose

branch and bound algorithms to find exact solutions. Talbot (1982) defines and

formulates the discrete time resource trade-off makespan problem. He considers

both renewable and non-renewable resources and nonpreemptive activities. He

proposes a two stage algorithm. In the first stage, a re-labeling procedure is applied

to the activities, modes and resources. The relabeling is assigning priorities to these

elements of the problem that will be used while enumerating in the second stage. In

the second stage the algorithm tries to assign the jobs sequentially and feasibly.

Upon finding a good solution, bounds are tightened and enumeration is continued.

An optimal solution is found definitely when either the enumeration process is

completed or makespan value equal to a known lower bound is reached. His

computational results reveal that optimal solutions for small-sized problems can be

found easily. For large-sized instances, the procedures provide high quality

approximate solutions.

Sprecher et al.(1997) propose a branch and bound algorithm for an exact solution of

the problem. Their enumeration tree resembles the precedence diagram. The

activities that are eligible (whose predecessors are processed) to start are branched

from a mother node. The first feasible mode is chosen when an activity is being

scheduled. If all modes are infeasible then the procedure backtracks. To reduce the

search tree nine rules are proposed. Some of these rules are static and applied at the

beginning of the procedure and some of them are dynamic and applied during the

procedure. However, they observe that some of those reduction rules are not worth

applying as the time to test them outweighs the savings obtained. The algorithm is

tested using instances generated by ProGen that is available in PSPLIB. In the tests

different combinations of the reduction rules are used, i.e. all search tree reduction

21

rules are not used all together. All instances up to 20 activities can be solved within

10 seconds.

Demeulemeester et al. (1999) present a branch and bound procedure for the discrete

time resource problem with nonpreemptive activities and a single renewable

resource. They propose four dominance rules to eliminate the activity modes. The

partial schedules are constructed by temporarily scheduling all feasible

nondominated maximal activity-mode combinations. An activity-mode combination

is feasible if the resource constraint is not violated; maximal if no other activity can

be executed in parallel in any of its modes and nondominated if it cannot be

dominated by their dominance rules. The decision point in the branching scheme is

the nearest activity finishing time, t. The activities that are in progress t can be

removed from the partial schedule or they can be rescheduled, but the activities that

are completed at time t, cannot be removed from the partial schedule or

rescheduled. Two lower bounds are calculated and their maximum is used in the

algorithm. The first one ignores the resource constraint and hence based on the

critical path. The critical path starting with the eligible (either started at the decision

point or became eligible as its predecessor is completed) activity is calculated and

added to the next decision point. The second is a resource based lower bound; total

work content is divided to the each period’s resource availability of the renewable

resource and rounded up to the nearest integer. Demeulmeester et al. generated their

own problem sets and solved them to optimality in less than 1000 seconds mostly.

All the problems with up to 4 modes and 30 activities are solved to optimality

within a maximum CPU time of 160.54 seconds.

3.1.2 Approximation Studies:

The majority of the approximation studies on the DTRP is on the Genetic

Algorithms. Tabu Search Algorithm, Simulated Annealing Algorithm and Scatter

Search Algorithm are used each in a single paper.

Tabu Search Algorithms: De Reyck et al. (1998), consider a single renewable

resource and nonpreemptive activities. They propose and compare steepest descent,

fastest descent, iterated descent, randomized search and tabu search algorithms.

They define the neighborhood structure as changing only one of the activities’

execution mode. The search prohibits recently made moves; it allows revisiting a

22

solution but only with changing the direction of the search. The generated instances

are used for testing the algorithms and comparing them. They also compare the

local search algorithms with the branch and bound algorithm proposed by

Demeulmeester et al. (1999). Random procedure being the worst performer in terms

of solution quality, Tabu search seems to be the slowest in small instances although

it is the one which deviates the least from the best solution among the local search

methods. Its performance in larger instances is far better than all other local search

methods when both time and quality of the solution are considered.

Genetic Algorithms: Alcaraz et al. (2003) propose a genetic algorithm for the

renewable and nonrenewable resources and nonpreemptive activities. They first

reduce the problem size by applying the preprocessing rules introduced by Sprecher

et al (1997) and used also by Hartmann (2001) are applied. The preprocessing rules

eliminate inefficient modes, non-executable modes and redundant non-renewable

resources. They solve the reduced problem by a genetic algorithm. Their algorithm

uses a chromosome representation, such that an individual is represented by

I=(λ,f/b,µ) where λ represents an ordered activity list, f/b indicates the scheduling

generation scheme used to build the schedule, serial forward or backward and µ is

the mode assignment. They allow the infeasible solutions with respect to only non

renewable resources as finding feasible solutions with more than one non-renewable

resource is NP-complete. They evaluate the fitness values by the objective function

values and feasibility of the solutions. Test problems are gathered from the PSPLIB

and these instances are compared with the best results of the previously published

studies. It is seen that deviation from optimal solution is very small and much better

than any other reported heuristic. The algorithm is also so fast that any problem

instance is solved in less than a second before it reaching a stopping condition.

Ranjbar and Kianfar (2007) consider renewable resources and nonpreemptive

activities. They propose a genetic algorithm, using a very simple representation

scheme. They keep the priorities for the activities in one array and in another array

the mode assignments of corresponding activities are held. While assigning the

priorities to the activities, a topological ordering is used. This ordering is related to

the precedence relations of the activities and introduced by Valls et al. (2003) is

used. A Schedule Generation Scheme is used to assign activities with priorities

23

specified in the schedule representation. The population is formed using a

diversification generation method which keeps track of the frequency of the priority

assignments and gives less chance to the frequently appearing solution elements.

The survival of the fittest is provided by assigning deletion probabilities to the

members of population directly proportional to the makespan. They compare their

algorithm with that of De Reyck et al. (1998) and show its outperforming

performance.

Mori and Tseng (1997) propose a genetic algorithm for a single renewable resource

and nonpreemptive activities problem. A scheduling order for the activities is

defined. This order has two components; a forward order and a backward one.

These orders are defined using the precedence information. The fitness values are

calculated using the duration of the activity. The crossover operator uses one

random parent and the best current solution. It specifies a junction activity and takes

activities scheduled up to that activity from one random parent and remaining from

the other one. There are two mutation schemes, one changing modes and other

creating a brand new schedule. The algorithm is tested on the instances generated

by the authors. They compared their results with those of Drexl and Gruenewald

(1993) by using their own instances.

In another effort to solve the problem with genetic algorithms Peteghem and

Vanhoucke (2009) study both the preemptive and non-preemptive activities. The

mode elimination procedure proposed by Sprecher et al. (1997) is used for

preprocessing. The representation scheme is identical with Ranjbar and Kianfar

(2007). To assign the activities in the priority list to a schedule, the serial schedule

generation scheme introduced by Kelley (1963) is improved and used. Two

extensions to this scheme are discussed. One is the forward/backward scheduling

technique that makes use of justifying the activities to right and left. The other one

is a mode improvement procedure, with some probability mode improvement

procedure is applied to an activity, when there is an improvement, the schedule is

changed. For initial population left justified schedules are taken regardless of their

feasibility. The infeasibilities are tried to be resolved by a local search procedure. If

they cannot be resolved after some steps; the infeasible solutions are allowed to stay

in the population with a penalty associated with them in the fitness value. The

24

penalties are calculated using makespan values. For crossover an activity is selected

randomly and a one point crossover is applied. The algorithm is compared with

other heuristics using PSPLIB and Boctor instances. The results indicate that the

algorithm performs well in terms of both solution quality and computational time.

Simulated Annealing Algorithms: Jozefowska et al. (2001) consider

nonpreemptive activities and renewable resources. The objective is minimizing the

makespan. Simulated Annealing (SA) is the metaheuristic used in the study. The

representation consists of a list of activities and a list of execution modes. Two

different approaches are used. The first does not permit infeasibility whereas the

second one permits infeasibility with a penalty. In both approaches, the

neighborhood structure is defined as randomly selecting an activity, moving it and

its immediate predecessors and successors within their allowable range or changing

the mode of the activity to a random mode or doing both together. Jozefowska et al.

(2001) use PSPLIB instances, in small instances SA does not perform well enough.

Only 35-40% of the instances with 10 to 20 activities can be solved to optimality.

About 55.8% of the instances with 30 activities SA finds the best known solution.

Scatter Search Algorithms: Ranjbar et al. (2009) consider renewable resources

and nonpreemptive activities. They use the same schedule generation scheme with

Ranjbar and Kianfar (2007) and study on a scatter search. The initial population is

formed with the same method but an intensification phase using a local search is

used for a better initial population. Then, two diversified reference sets are formed

using a distance based measure. Path relinking is used to combine solutions in

reference sets. Instances from the PSPLIB are used to test the algorithm and scatter

search is found to be the best performing metaheuristic. Branch and bound

algorithm of Demeulmeester et al. (2008) fails to present an optimal solution for

many large-sized instances for which scatter search returns high quality solutions

using same CPU time.

3.2 Resource Investment Problems

The resource planning problems in project scheduling can be divided into two

classes: the resource leveling and resource allocation. The leveling problem occurs,

when sufficient resources are available and one tries to keep the resource usage at a

constant rate as much as possible. The resource leveling problems have two classes:

25

minimizing the range of resource usage and minimizing cost of resource usages.

The cost of resource usages problem is referred to as resource investment problem

or resource availability cost problem. The resource allocation problem occurs when

the total resource usage is restricted and the objective is to allocate various

resources to the activities so as to minimize the project completion time.

3.2.1 Single Mode Resource Investment Problem

Möhring (1984) shows that, the resource investment problem with non-preemptive

tasks and a single renewable resource is strongly NP-hard. Möhring (1984),

Ranjbar et al.(2009), Radermacher (1978), Drexl and Kimms (2001),

Demeulemeester (1995), Yamashita et al.(2004), Shadrokh and Kianfar (2007) and

Ranjbar et al.(2009), study the resource investment problem with non-preemptive

tasks and renewable resources.

Möhring (1984) uses the concept of feasible partial orders, defined by Radermacher

(1978) to solve the problem. He extends the precedence relation of initial network

respecting the resource limits and the time limit and obtains feasible partial orders.

The set of these feasible partial orders lead to the optimal solution. He also defines a

duality relation between two problems.

Drexl and Kimms (2001) propose two lower bounds and two optimization guided

heuristics that are byproducts of their lower bounds. The first lower bound makes

use of Lagrangian Relaxation technique and divides the problem into two

subproblems that can be solved in pseudo- polynomial time. A good side effect of

the approach is that one of their subproblems yields a feasible schedule. They run

the procedure for a certain number of iterations and select the best lower and upper

bounds. The second lower bound is based on a column generation technique in

which each column represents a feasible schedule, hence an upper bound. To obtain

a lower bound, they solve the LP relaxation of the master problem, and solve the

dual of the LP model to find out if any column is to be added to the problem. Their

computational experiment reveals that the quality of the lower and upper bounds

depend on the deadline value and the number of resources, but not on the

complexity of the precedence relations.

26

Demeulemeester (1995) proposes a branch and bound method for the non-

decreasing resource cost function problem. He defines the efficient points based on

their resource availabilities. A point, call i, having resource availabilities (a1,..,am) is

efficient if no point j having resource availabilities (a1’,..,am’) exists such that all

ak’≤ ak for k=1,..m. At all branches a resource-constrained project scheduling

decision problem is solved. The strategy is to solve for the cheapest efficient point

at all stages, if a feasible solution is found, then the solution is optimal. If the

decision problem returns an infeasible solution, then the point is removed from the

solution space and new efficient points are added to the efficient set and the

procedure continues until a feasible solution is found. He compares his computation

times with those of Möhring’s and finds out that his algorithm is approximately 100

times faster. He also compares his results with those of Patterson’s Resource

Constrained Project Scheduling Problem and finds that his algorithm uses about 5%

lower resource for the same makespan.

Yamashita et al.(2004) propose a scatter search algorithm which uses an

improvement heuristic proposed by Tormos and Lova.(2004). In the reference set,

best solutions are accompanied with diverse solutions. They use various methods

for diversification of the reference set such as frequency based memories and path

relinking. They select activity pairs from the reference set and apply a combination

method to obtain some new solutions. The procedure continues until a previously

specified number of solutions are checked. They compare their results with two

simple heuristics each involving an improvement step. Their algorithm outperforms

the heuristics in terms of quality, and its computational time is slightly higher.

Shadrokh and Kianfar (2007) consider the problem of minimizing the total resource

investment and tardiness penalty. They propose a genetic algorithm where the

chromosomes are represented in two parts, one denoting the activity list, the other

capacity list. These lists are transformed to schedules by using Serial Schedule

Generation Scheme and Parallel Schedule Generation Scheme. With certain

probabilities, the chromosomes are subjected to a crossover or a mutation. After

each operation, the chromosome is subjected to a local search and at the time that

the population will be renewed with new solutions, an immigrant is added to the

27

population with a certain probability. We find that their algorithm finds optimal

solutions for many problems with up to 20 tasks.

Ranjbar et al.(2009), use the activity list representation to represent the priority

structure between the activities. In the activity list, the activity with the highest

priority stands in the first position next to the dummy starting activity. Using early

start and late start schedules they move the activities between their allowable ranges

until no improvement is possible. Using solutions generated by a biased random

sampling a reference set is formed and pairs in the reference set are subjected to a

path relinking procedure. This procedure creates as many solutions as required.

Ranjbar et al.(2009), also propose a genetic algorithm using the activity lists as the

representation scheme and obtain new solutions using two point crossover and

mutation operators. The termination condition is the same as that of path relinking.

They compare their results with those of Yamashita et al.(2004) and show that the

path relinking algorithm outperforms their genetic algorithm.

3.2.2 Multi Mode (Time/Resource Trade-Off) Resource Investment Problem

Hsu and Kim (2005), Talbot (1982), Nudtasomboon and Randhawa (1997),

Skarmeta et al. (1999) and Pulat and Horn (1996) study time/resource trade-off

problem with resource cost criteria. All time/resource trade-off resource scheduling

studies assume discrete alternatives, with one exception. The exception is due to

Pulat and Horn (1996) that considers continuous version of the problem. We

classify the studies into two groups as single criterion and multi criteria studies.

Single Criterion Problems: Hsu and Kim (2005) consider the multi mode resource

investment problem for nonpreemptive activities consuming renewable resources.

They calculate the priority function value for each available activity, its mode, and

starting time by combining two functions. One of the functions calculates the

impact of the decision to the unscheduled activities using the slacks. The other

function calculates the resources consumed by the alternative activity-mode-time

combination. At each decision point they consider all activities whose predecessors

are completed and choose the one having smallest priority function value. They

compare their heuristic with some other priority rule based heuristics. They show

that their heuristic outperforms these rules.

28

Talbot (1982) extends his solution methodology for the makespan objective to the

minimum resource usage problem subject to the specified project completion time

value.

Multi Criteria Problems: Nudtasomboon and Randhawa (1997) extend the idea of

Talbot (1982) and propose some improvements to his algorithm for some other

objectives and problem characteristics. They use Talbot’s enumeration scheme and

propose some mode elimination rules and bounding schemes. Three objectives

makespan, total cost and resource leveling, are discussed and a priority based multi-

objective solution procedure is proposed. For each objective, specific labeling and

backtracking rules are proposed. Their computational results with 18 problem

instances reveal the superiority of their algorithms over that of Talbot’s.

Skarmeta et al. (1999) consider both renewable and nonrenewable resources. They

propose a genetic algorithm that finds the set of all non-dominated solutions. Their

criteria are makespan and consumption of a particular renewable resource. The

initial population is formed generating precedence feasible solutions. The fitness

function is evaluated using makespan values of the feasible solutions and penalizing

the infeasible solutions with the excess amount of non-renewable resource

consumption. Another fitness function proposed is the total consumption of

renewable resources. A two-point crossover, one for carrying the chromosomes and

the other for modes, is used. Two different mutation operators are used for

diversification purposes. The parameter setting is done by using test instances in

PSPLIB.

Pulat and Horn (1996) discuss the time-resource trade-off problem with linear time

and resource costs. Resources, if there are several, are grouped into two. The

resource consumption costs constitute two of the three objectives. The third

objective is the makespan. Using these three objectives a set of efficient solutions is

obtained. An important assumption of the problem is that the relationship between

the resource cost and project duration is linear. With this assumption the problem

can be formulated as a network problem with an activity on arc network and

activities are crashed using the labeling procedure and flow augmenting paths. The

resource cost objectives have weights associated with them and for each value of

the weights the problem is solved and a set of all efficient solutions is generated. To

29

specify the weights and determine the efficient solutions for given weights

enumerative and interactive approaches are proposed.

30

CHAPTER 4

4. OUR PROBLEM, ITS MODEL AND OPTIMALITY

PROPERTIES

In this chapter we first define our problem together with its underlying assumptions.

We then give the mathematical model. Finally we introduce our elimination rules

that can be used to reduce the complexity of the solutions.

4.1 Problem Definition

We consider N non dummy activities. Activity 0 stands for a dummy starting

activity and N+1 stands for a dummy ending activity. Activity i (i=1,.…,N) has mi

modes.

Mode j (j=1,….,mi) of activity i is characterized by the following parameters.

rij: units of resource required by activity i when executed in mode j

pij: duration (processing requirement) of activity i when executed in mode j

We assume all modes are efficient in the sense that rij < rik implies pij > pik . In our

convention, we assume that pij < pij+1 for all i, i.e., the modes of all activities are

ordered in their nondecreasing order of processing times, hence nonincreasing order

of resource requirement. Accordingly the first mode of each activity is its shortest

duration mode and it consumes highest resource.

31

We use terms task and activity interchangeably throughout the thesis.

We let T be the length of the critical path. It is found by CPM after setting all

activities to their shortest duration mode. T is the deadline of the project.

Activity i can start at any time t between 0 and T-1.

The precedence network is defined by the immediate predecessor sets. Ei is the set

of immediate predecessors of activity i.

We assume that the single renewable resource is available at unlimited quantity.

Moreover we make the following assumptions:

The tasks are nonpreemptive, i.e., once a task starts it should be processed till its

completion.

The dummy activity N+ 1 can start after all activities are complete. As T is the

deadline of the project, the activity starts and completes at time T.

All parameters are integers, are known with certainty, i.e., the system is

deterministic.

The parameters are not subject to any change, i.e., the system is static.

4.2 Mathematical Model

Our main decision variable
ijtx gives the start time and selected mode of each

activity and is defined as

1, if activity starts at time and is executed with mode
:

0, otherwise
ijt

i t j
x

The decision variable R is defined as the amount of renewable resource available

for each time unit.

Our constraints are explained next.

Each activity should be assigned to exactly one mode and starting time

32

1
i

i i

LS

ijt

j m t ES

x Ai (1)

The resource consumption at any period cannot exceed the available resource

1

*
ij

i

t t p

ij ijt

i A j m t t

r x R t (2)

The ending dummy activity must start at T.

2,1, 1N Tx (3)

An activity can start only after all of its predecessors are completed.

* ()*
i k

i i k k

LS LS

ijt kj kjt

j m t ES j m t ES

t x t p x 2,3,..., 2; ii N k E (4)

xijt’s are binary variables.

0,1ijtx 1,2,...., 2 ; j=1,2,....,m ; t=1,2,....Tii N (5)

The objective is to minimize the maximum renewable resource usage and is

expressed as:

Minimize R (6)

The model contains

2

1

*
N

i

i

T m binary variables (xijts) and one continuous variable

(R).

There are

2

1

N

i

i

N T E constraints.

4.3 Properties of the Optimal Solution

In this section we present some properties that are used to reduce the problem size.

The problem size is reduced when any mode is eliminated and any start time is set.

Properties 1, 4 and 5 are used to eliminate the modes that cannot lead to feasible or

unique optimal solutions. Property 2 and Property 3 are used to set both the modes

33

and the starting times of the activities that cannot lead to unique optimal solutions.

We use the following notation to state our properties.

Early Start Schedule

iES Earliest start time of activity i , when all activities are at their shortest modes

iEC Earliest completion time of activity i , when all activities are at their shortest

modes

Late Start Schedule

iLS = Latest start time of activity i , when all activities are at their shortest modes

iLC = Latest completion time of activity i , when all activities are at their shortest

modes

LB= A lower bound on the objective function value for the problem

UB= An upper bound on the objective function value for the problem

We call an activity critical if its early start time is equal to its late start time. i.e.,

activity i is critical if and only if
i iES LS . We set the critical activities’ start

times to their early start times and modes to their shortest duration modes. We

further reduce the problem size by using the results of Property 2 and Property 3.

Property 1.

If
i i ijLC ES p , then for activity i modes , 1,...., ij j m cannot lead to a feasible

solution.

Proof: i iLC ES is the maximum processing time allowed for activity i to

maintain feasibility. Hence, a solution in which activity i is assigned mode j such

that
ij i ip LC ES , can never lead to a feasible solution.

The properties 2 and 3 use the following additional notation.

34

tEL Resource usage at period t when all activities start at their earliest start time

and shortest mode

tLL Resource usage at period t when all activities start at their latest start time and

shortest mode

Property 2.

There exists an optimal schedule in which activity i is processed between
iES and

iEC at its shortest duration mode if
tEL LB at every [0,]it EC

Proof: Assume a schedule
1A that contradicts with the condition of the theorem.

Activity i completes at time
i iC EC at a longer mode and

tEL LB at every

[0,]it EC . Shift activity i such that it completes at time
iEC at its shorter mode,

and get schedule
2A which is in line with the condition of the property.

Divide the time span into time intervals as [0,]iEC and (,]iEC T and let
ijz be the

maximum resource usage of solution
iA in interval j . Figure 4.1 illustrates this

situation.

In Figure 4.1, note that 12 22z z

as in addition to all activities being processed in the

interval (,]iEC T , some portion of activity i is also processed for 1A . Also note that,

Figure 4.1 - A schedule that illustrates Property 2

T
A2

z21 z22

ECi

Ci

A1

z11 z12

ECi T

35

11 21z z as the resource consumed by activity i is less (as a smaller time consuming

mode is used) for
1A in the interval[0,]iEC .

Let
iAz be the maximum resource used by

iA . Note that
iAz LB

1 11 12 12,Az Max z z z as
11 21z z LB and

1Az LB implies
12z LB

2 21 22 22,Az Max z z z as
21 tEz L LB and

2Az LB implies
22z LB

This follows
1 2A Az z as

12 22z z . Hence a schedule that contradicts with the

condition of the property can never be better.

Property 3.

There exists an optimal schedule in which activity i is processed between
iLS and

iLC at its shortest duration mode if
tLL LB at every [,]it LS T

Proof: Assume a schedule
1B that contradicts with the condition of the theorem.

Activity i starts at time i iS LS at longer mode and tLL LB at every [,]it LS T .

Shift activity i such that it starts at time iLS at its shorter mode, and get schedule

2B which is in line with the condition of the property.

Divide the time span into time intervals as [0,)iLS and [,]iLS T and let
ijz be the

maximum resource usage of solution iB in interval j . Figure 4.2. illustrates this

situation.

36

In Figure 4.2 note that
11 21z z

as in addition to all activities being processed in the

interval (,]iEC T , some portion of activity i is also processed for
1A . Also note that,

12 22z z as the resource consumed by activity i is less (as a smaller time

consuming mode is used) for
1B in the interval[,]iLS T .

Let
iBz be the maximum resource used by

iA . Note that
iBz LB

1 11 12 11,Bz Max z z z as
12 22z z LB and

1Bz LB implies
11z LB

2 21 22 21,Bz Max z z z as
22 tEz L LB and

2Bz LB implies
221 Bz z

This follows
1 211 21B Bz z z z . Hence a schedule that contradicts with the

condition of the property can never be better.

For the reduced problem with non-fixed start times and modes, we introduce two

more properties to eliminate the modes. The eliminated modes are the ones that

either lead to non promising or infeasible solutions.

We define the following sets that are used to state our mode elimination properties.

tS : {Set of activities that have to be processed at time t}

Mathematically,

LSi Si

B1

z11 z12

T

B2

z21 z22

LSi T

Figure 4.2 – A Schedule that illustrates Property 3

37

| (0) ([,]t i i i iS i EC LS t LS EC

:iFR {Set of activities that are processed in parallel with activity i for at least one

time unit}

Mathematically, { , }i t tFR k i S k S t

:iFS {Maximal set for the activities that can be processed together with activity i }

Mathematically, { () () () ()}i i k i k i iFS k LC ES ES LC k Succ k E

Property 4.

If
j

i

ik jm

j FR

r r UB , then for activity i modes 1, …, k cannot lead to an optimal

solution.

Proof: In at least one time unit, the activities in
iFR should be processed together

with activity i . 1

i

j

j FR

r is a lower bound on the total resource consumption of the

activities that should be processed with activity i . So, when activity i is assigned to

mode k , and all the activities in
iFR are assigned to their minimum resource

consuming modes, the maximum resource usage is no smaller than
j

i

ik jm

j FR

r r .

This follows, a solution in which activity i is assigned to mode k is dominated by

the upper bound ()UB solution.

Property 5.

Recall that iFS is the maximal set for the activities that can be processed together

with activity i . If 1

i

ik j

j FS

r r LB , then there exists an optimal schedule in which

activity i is assigned to modes 1,...., .k

38

Proof: 1

i

ik jm

j FS

r r is an upper bound on the resource usage for the time points at

which activity i is processed at mode k . If this upper bound is no bigger than LB ,

then setting activity i to its lower resource usage modes will never improve the

objective function value that is surely greater than LB .

4.4 Illustration of Properties on the Example Problem

We illustrate the properties on our example problem. In the examples we do not

consider the critical activities as they are already set to their first modes to meet the

minimum project completion time. Table 4-1 shows the CPM calculations for the

example problem and Table 4-2 shows the mode information.

Table 4-1 – The CPM calculations for the example problem

Activity Immediate

Predecessors

Duration

(days)
ESi ECi LSi LCi Slacki

1 (dummy) - - 0 0 0 0 0

2 1 7 0 7 3 10 3

3 1 9 0 9 7 16 7

4 1 8 0 8 0 8 0

5 2 8 7 15 11 19 4

6 4 6 8 14 10 16 2

7 4 8 8 16 8 16 0

8 2,4 9 8 17 10 19 2

9 4 7 8 15 9 16 1

10 5,8 6 17 23 19 25 2

11 3,6,7,9 9 16 25 16 25 0

12

(Dummy)
10,11 - 25 25 25 25 0

39

Table 4-2– The execution modes for non-dummy activities

A
C

T
IV

IT
IE

S

 MODES

i pi1 ri1 pi2 ri2 pi3 ri3 pi4 ri4 pi5 ri5 pi6 ri6 pi7 ri7 pi8 ri8 pi9 ri9 pi10 ri10

2 7 8 9 6 11 5 13 4 18 3 27 2 55 1 - - - - - -

3 9 11 10 9 11 8 13 7 15 6 19 5 23 4 31 3 47 2 95 1

4 8 8 9 7 10 6 12 5 16 4 21 3 32 2 64 1 - - - -

5 8 10 9 8 10 7 12 6 14 5 18 4 24 3 37 2 74 1 - -

6 6 8 7 6 9 5 11 4 15 3 22 2 45 1 - - - - - -

7 8 9 9 7 11 6 13 5 16 4 22 3 33 2 66 1 - - - -

8 9 11 10 9 12 8 13 7 16 6 19 5 24 4 32 3 48 2 97 1

9 7 9 8 7 9 6 11 5 14 4 19 3 29 2 59 1 - - - -

10 6 8 7 6 8 5 10 4 14 3 21 2 43 1 - - - - - -

11 9 9 10 8 11 7 13 6 16 5 20 4 27 3 40 2 81 1 - -

Property 1.

Consider a noncritical activity, say activity 5. The activity cannot start before its

earliest start, 7, due to its predecessors and cannot be completed later than its latest

completion time due to its successors and the deadline. The total amount of time

allowed for activity 5 is
5 5 19 7 12LC ES . We eliminate all modes of the

activity having processing requirements of more than 12 time units. Hence, modes

5 through 9, are eliminated from further considerations as they cannot lead to

feasible solutions. This leaves 4 modes for activity 5.

Property 2.

Assume we have a lower bound LB=30 (in the following sections it will be shown

that 30 is a valid lower bound for the problem). The resource profile of the early

start schedule is given in Figure 4.3. The horizontal line in the figure shows the

lower bound value.

40

Figure 4.3 – The resource usage profile

As can be seen in Figure 4.3 the resource usage first exceeds the lower bound in

period 8, i.e., 8
Et

L . So according to the property if any activity using at its

shortest duration mode (maximum resource consuming mode) can be completed

before
Et

L in the early start schedule, there exists an optimal solution in which that

activity is scheduled to start at its earliest start using its shortest duration mode. The

earliest completion time of noncritical activity 2 is 7 (see Table 4-1), which is

smaller than 8
Et

L . So in at least one optimal solution, activity 2 starts at its

earliest start time at its shortest duration mode.

Property 3 is not illustrated as it uses the same idea with Property 2. It uses late

start schedules in place of early start schedules and sets the optimal start times to

their latest start times in place of early start times.

Property 4.

Assume we have an upper bound UB=37. We select activity 5 and form set iFR .

Activity 5 has to be processed between periods 11 through 15, i.e.,

11 12 13 14 5 , , ,activity S S S S and 15S . Among the five sets, 11S is the one that contains

41

highest number of activities. The activities in
11S are 5, 6, 7, 8 and 9 and

5 {6,7,8,9}FR . Now we check the condition of property 4 and compare the

minimum resource consumption in Set FR5 with UB. Note that

5

1 1 1 1 4
jjm

j FR

r . As 4 + r5j < 37 for all r5j values (all are no bigger than

10), no mode of activity 5 could be eliminated.

Our data set includes instances with small values of resource consumptions (no

bigger than 10), hence we could not benefit from Property 4.

Property 5.

Assume we have a lower bound LB=30. A noncritical activity 10 has the smallest

[,]i iES LC interval length. The activities that have a chance to be processed with

activity 10 are 5, 8 and 11, hence they constitute set
iFS . Now we check the

condition of property 5 and compare the resource consumption in Set FS10 with LB.

1 9
i

j

j FS

r and the maximum resource consuming mode of activity consumes 8

units of resource. 8 + 9 =17 < 30 = LB , so any mode consuming less resource is

eliminated as using that mode cannot change the optimal.

42

CHAPTER 5

5. SOLUTION APPROACHES

The time/resource trade-off problem defines the completion time of each activity

together with its mode. Our time/resource trade-off problem aims to minimize the

maximum consumption of a single renewable resource. Möhring (1984) shows that

the resource investment problem with single renewable resource is strongly NP-

hard. So is our problem, with an additional complexity brought by mode decisions.

In this chapter we present our present our solution approaches. Section 5.1 and

Section 5.2 present our lower bounding procedures and heuristic procedure,

respectively and Section 5.3 illustrates these on the example problem.

5.1 Lower Bounding Procedures

We develop four lower bounds each of which provides an underestimate of the

objective function value. We use those estimates to evaluate the performance of our

heuristic procedure.

43

Lower Bound 1:

The first lower bound is based on the overlapping activities. We call activity i and

activity k as overlapping if they should be processed together in at least one time

unit. We let
ika denote the length of the biggest interval in which both activity i and

activity k must be processed.

For all pairs of activities,
i kES ES , we calculate

ika values. If their minimum

possible total processing times (when set to their first modes) is smaller than ika ,

activities i and k will be processed in parallel for at least one time unit. We let FR

denote the set of such activity pairs.

1 1: (,) ik i kFR i k a p p where { , } { , }ik i k i ka Max LC LC Min ES ES

We find a lower bound considering the activities in set FR and their minimum

resource consuming modes. For each activity pair in the set, the minimum possible

consumption is calculated and their maximum is selected for the lower bound. The

lower bound
1LB becomes

1
(,) i kim km
i k FR

LB Max r r

If FR , then an extended set, FRE is defined. Set FRE includes the activity

pairs that should be performed in parallel for at least one time unit at their

maximum duration modes. Formally,

: (,) |
i kik im kmFRE i k a p p

Using Set FRE , we calculate a lower bounding procedure whose algorithmic

description is provided in the next page.

44

Algorithmic explanation of lower bounding procedure which uses set FRE

For all (,)i k FRE ;

 Let a and b be the modes of activities i and k respectively;

For all a starting from
ia m and decreasing to 1a

{ For all b starting from
kb m and decreasing to 1b

 ()ia kb ikif t t a

 1 { , }ia kbres Max r r

 End for

}

For all b starting from
kb m and decreasing to 1b

{ For all a starting from ia m and decreasing to 1a

 ()ia kb ikif t t a

 1 { , }ia kbres Max r r

 End for

}

(,) { 1, 2}resm i k Min res res

1
(,)

{ (,)}
i k FRE

LB Max resm i k

45

Lower Bound 2:

If the earliest completion time of an activity is later than its latest start time, then the

activity has to be processed between its latest start and earliest completion times.

Formally, for activity i if 0i iEC LS then it is certainly processed in interval

[,]i iLS EC . If there is an interval in which the activity is definitely processed, then

for each time t , the set of activities that have to be processed can be defined as well.

So, we let
tS denote the set of activities that have to be processed at time t . Then,

for all the time points, the activities in the set
tS are found and their minimum

possible resource consumptions are summed up. The minimum resource

consumption is found by setting all activities to their minimum resource usage

mode. The maximum of the minimum consumptions overall periods constitutes the

lower bound.

So, Mathematically,

if 0i iEC LS , ti S [,]i it LS EC

2 i

t

im
t

i S

LB Max r

Lower Bound 3:

The workload of an activity is the total resource it consumes during its execution.

The workload of activity i ()iWL , at its selected mode j , is *ij ijp r , and the

minimum workload ()iMWL for activity i over all its modes is

*i ij ij
j

MWL Min p r

An activity i , should be completed before its latest completion time, iLC . It means

that, it consumes at least iMWL amount of resource before iLC . The minimum

possible total resource consumed by the end of iLC , iMTWL , is the sum of

46

minimum workloads of activities whose latest completion is no later than
iLC .

Formally,

i

i k

k Fin

MTWL MWL where

:i k iFin k LC LC

To get a lower bound on the maximum resource consumption, the total workload is

distributed evenly in the interval [0,]iLC and the resulting value is rounded up to

the smallest integer value.

i
i

i

MTWL
Min

LC

To find a lower bound, all activities are considered and maximum of
iMin values is

selected. So, a valid lower bound is i
i

Max Min .

Note that this bound considers all activities that should complete no later than iLC

to find iMin . However there may exist an activity such that k iLC LC , but

k jLS LC . For such an activity, the minimum processing before iLC is i kLC LS .

We include this portion by weighing with the minimum weight
kkmr , hence obtain a

lower bound on the total workload of activity k .

The updated iMTWL values become ()*
k

i i

k i k km

k Fin k St

MWL LC LS r where

:i k i k iSt k LC LC LS LC

The following expression, 3LB gives a valid lower bound;

3 ()*
k

i i

k i k km
i

k Fin k St

LB Max MWL LC LS r

47

Lower Bound 4: Linear Programming (LP) Relaxation with Valid Cuts

We simply relax the integrality constraints on
ijtx variables and get the following

relation.

0 1ijtx

The resulting model is the LP relaxation of the original model. The optimal

solution to the LP relaxation provides a lower bound for our minimization problem.

In order to strengthen the relaxation we include some valid cuts (constraints). These

cuts are the relations that are satisfied by the integer problem however not by the

associated linear program.

Cut 1: Reduction due To Feasibility

The first cut is the one proposed by Akkan et al. (2005) to the discrete time –cost

trade-off problem. The cut is valid for our problem and is explained below.

Consider any pair of activities (,)i k such that
ik E and any combination of modes

ia M and kb M

If
i k ia kbLC ES p p then modes,

1,...., ii mM M and
1, ,....,

kk k mM M M cannot

provide a feasible solution. So, a valid cut is as follows;

1 1

1
i km mT T

ijt kjt

t j a t j b

x x (,)i k FC ; where

{(,) ()}i i k ia kbFC i k k E LC ES p p

Cut 2: Reduction due to Optimality

Let activity i and activity k be two activities that have to be processed together for at

least one time period, i.e., (i, k) is in Set FR. If their resource usage exceeds a given

48

upper bound ()UB for any mode combinations
ia M and

kb M then performing

these activities in modes
1,...., iM M cannot lead to an optimal solution. So, the

second cut can be stated as follows;

1 1 1 1

1
T a T b

ijt kjt

t j t j

x x (,)i k OC where

{(,) ()}ia kbOC i k k FR r r UB

Together with these two cuts, our strengthened LP relaxation model is stated below.

For the sake of completeness we give the previously stated constraints as well.

Min R (1)

s.to.

1
i

i i

LS

ijt

j m t ES

x Ai (2)

1

*
ij

i

t t p

ij ijt

i A j m t t

r x R t (3)

2,1, 1N Tx (4)

* ()*
i k

i i k k

LS LS

ijt kj kjt

j m t ES j m t ES

t x t p x 2,3,..., 2; ii N k E (5)

1 1

1
i km mT T

ijt kjt

t j a t j b

x x (,)i k FC (6)

1 1 1 1

1
T a T b

ijt kjt

t j t j

x x (,)i k OC (7)

0ijtx (8)

We round the optimal objective function value to the smallest following integer, to

get a lower bound 4()LB on the optimal objective value. Formally,

49

*

4 LPLB z , where *

LPz is the objective function value of the optimal LP

Relaxation.

The overall lower bound is
1,2,3,4

{ }i
i

LB Max LB . Note that LB is the best of our four

lower bounds.

We include additional cuts using the results of Property 2 and Property 3. We let;

:ESO {Set of activities that are set to their first mode and start on their early start

times according to Property 2}

:LSO {Set of activities that are set to their first mode and start on their late start

times according to Property 3}

After these sets are specified, we add the following constraint sets to the linear

programming relaxation of the problem.

1 1
ii ESx i ESO

1 1
ii ESx i LSO

In defining ESO and LSO we first use
1,2,3

i
i

LB Max LB

After we solve the LP Relaxation, we redefine ESO and LSO using

1,2,3,4
i

i
LB Max LB . With new ESO and LSO sets we resolve the LP Relaxation and

get new
4LB , and update LB .

5.2 Heuristic Procedure

In this section we present our heuristic procedure that aims to find high quality

feasible solutions to our problem. We evaluate the performance of our heuristic

procedure relative to the optimal solutions for the problems for which optimal

solution is available. For large sized problem instances for which the optimal

solutions are not available, we make the evaluation relative to the best lower bound

found in Section 5.1.

50

Our heuristic procedure runs in two steps: Construction and Improvement. The

construction step finds initial feasible solutions. The improvement step improves

the solutions that are found in construction step. Below is the detailed description of

each step.

Step 1. Construction

The construction step proceeds in two steps:

Step 1.1. Finding mode assignments

Step 1.2. Finding the start times, given the mode assignments of step 1.1.

Step 1.1 finds the mode assignments by using the optimal solution of the LP

relaxation. We retain the integer assignments and move the fractional modes to their

next smaller duration modes. Our aim is to find a feasible solution while increasing

the resource consumption as small as possible.

Formally we set activity i to mode k if
, 1ik iLPR i kp p p , hence

, 1ik iLPR i kr r r

where

iLPRp the duration of activity i in the LP relaxation solution.

iLPRr the resource consumption of activity i in the LP relaxation solution.

Note that by setting activity i to mode k , we guarantee feasibility. The resource

consumption may increase slightly, as the new mode assignments require more

resource.

Given the mode assignments, Step 1.2. defines the starting times of the activities,

hence forms feasible schedules. The schedules are formed in three different ways

each of which is discussed below.

Schedule 1. Early Start Schedule

Using the mode assignments found in Step 1.1. and applying CPM, we set the start

time of activity i to iES for Schedule 1.

51

Schedule 2. Late Start Schedule

Using the mode assignments found in Step 1.1. and applying CPM, we set the start

time of activity i to
iLS for Schedule 2.

Schedule 3. Alternating Early Start – Late Start (AEL) Schedule

Using the mode assignments found in Step 1.1. we calculate
iES and

iLS . Then we

sort activities according to their early start and late start times and put them into the

following sets.

ESSorted Set of activities in nondecreasing order of their early start times

LSSorted Set of activities in nonincreasing order of their late start times

First the start time of the first not yet scheduled activity in
ESSorted is set to its

early start time. Then the start time of the first not yet scheduled activity in

LSSorted is set to its late start time. The procedure continues until all activities are

scheduled.

Step 2. Improvement

Each schedule found in Step 1 is subjected to an improvement procedure with the

hope of reducing the maximum resource consumption.

Given the schedule, we consider the time point that defines the maximum resource

consumption and try to reduce the load of this time point. The reduction can be

done in three different ways.

 Reducing the duration of an activity

 Increasing the duration of an activity

 Changing the start time of an activity

When the duration is reduced, keeping the start time of the activity same, the

activity will no longer be processed at some time points. Hence, the load on the

maximum load time point may be removed and maximum resource consumption

might decrease. But, the reverse is also possible. By reducing the duration of an

activity, the resource consumption of that activity increases. This, in the case of still

52

being processed on maximum load time point, increases the maximum resource

consumption.

When the duration of an activity is increased, the activity consumes less resource,

which leads to a reduction in the resource usage in the maximum load time point.

Again, the reverse is also possible. Increasing the time of an activity causes the

activity spread its workload to more time points. So, a time point, in which the

activity is not processed before but will be processed now, will have more resource

consumption than it had before the duration change.

When the start time of an activity is increased or decreased, the maximum load may

shift to another time point, which in turn might reduce (increase) the maximum

resource consumption.

Below is the detailed algorithmic description of our improvement procedure.

The main steps of the Heuristic Algorithm

The OnlyImprove step is the main body of the algorithm. The step calls

ModeChange module to change the modes of the activities and SlideAct module to

change the start times of the activities.

Heuristic Algorithm

Using each construction heuristic as an initial solution;

Execute OnlyImprove

Execute BestAvailable

Choose the best solution reached.

53

The OnlyImprove Module

In our implementation, we set iterlim to 100 and nonimplim to 7.

OnlyImprove

Repeat

Increase iter by 1

Execute ModeChange by counter1 times

 If maximum resource usage is less

Change current solution

 counter1=1; counter2=1;

 Else

 Return to the solution before ModeChange

counter1 increases by 1

Execute SlideAct by counter2 times

 If maximum resource usage is less

Change current solution

 counter1=1; counter2=1;

Else

 Return to the best solution available for the given

initial solution

counter2 increases by 1

Until iter reaches iterlim or one of the counters reaches nonimplim.

54

The BestAvailable Module

In our implementation, we set niterlim to 1000 and nonimprolim to 150.

BestAvailable

Repeat

Increase niter by 1;

Execute ModeChange once;

 If maximum resource usage is less

 counter1=1; counter2=1;

 Execute OnlyImprove with nonimplim=5.

 Else

counter1 increases by 1.

Change current solution.

Execute SlideAct once;

 If maximum resource usage is less

 counter1=1; counter2=1;

 Execute OnlyImprove with nonimplim=5.

Else

 counter2 increases by 1.

Change current solution.

Until niter reaches niterlim or one of the counters reaches

nonimprolim.

55

The ModeChange Module

maxt: the first time when the resource usage is at its highest level.

Smaxt: The set of activities executed at time maxt

ModeChange (changing the mode of an activity)

For maxti S

Change the mode assignment of activity i with the next smaller mode (if

possible) with all other mode assignments remaining the same.

Adjust all successor and predecessor activities’ early start, late start and start

times.

Calculate the maximum resource usage.

Change the mode assignment of activity i with the next larger mode (if

possible) with all other mode assignments remaining the same.

Adjust all successor and predecessor activities’ early start, late start and start

times.

Calculate the maximum resource usage.

Choose the assignment with the least maximum resource usage - Return the

transformed schedule and its maximum resource usage.

56

The SlideAct Module

Our search procedure resembles the Tabu Search algorithm. We visit neighboring

solutions and let non-improving solutions only when an improved solution cannot

be reached after a specified number of iterations. When we find an improved

solution, we search without changing the current solution on hand as in

intensification phase of tabu search algorithms. When there is no improvement for

specified number of iterations, we switch to a new starting solution as in

diversification phase of tabu search algorithms.

SlideAct (changing the start time of an activity)

For
maxti S

Slide activity i up to its earliest start;

Adjust all succeeding and preceding activities’ starting times;

Calculate the maximum resource usage;

Slide activity i up to its latest start;

Adjust all succeeding and preceding activities’ starting times.;

Calculate the maximum resource usage;

Choose the assignment possibility with the least maximum resource usage -

Return the transformed schedule and its maximum resource usage.

57

5.3 Illustration of Solution Procedures on an Example Problem

We illustrate the lower bounds and heuristic procedures on our example problem. In

Table 5.1 we restate the CPM calculations and mode data, but now with not-yet-

eliminated modes. These modes are shown in bold faces and larger font size in

Table 5-2.

Table 5-1- The CPM calculations for the example problem

Activity Immediate

Predecessors

Duration

(days)
ESi ECi LSi LCi Slacki

1 (dummy) - - 0 0 0 0 0

2 1 7 0 7 3 10 3

3 1 9 0 9 7 16 7

4 1 8 0 8 0 8 0

5 2 8 7 15 11 19 4

6 4 6 8 14 10 16 2

7 4 8 8 16 8 16 0

8 2,4 9 8 17 10 19 2

9 4 7 8 15 9 16 1

10 5,8 6 17 23 19 25 2

11 3,6,7,9 9 16 25 16 25 0

12

(Dummy)
10,11 - 25 25 25 25 0

58

Table 5-2– The execution modes for non-dummy activities

A
C

T
IV

IT
IE

S

 MODES

i pi1 ri1 pi2 ri2 pi3 ri3 pi4 ri4 pi5 ri5 pi6 ri6 pi7 ri7 pi8 ri8 pi9 ri9 pi10 ri10

2 7 8 9 6 11 5 13 4 18 3 27 2 55 1 - - - - - -

3 9 11 10 9 11 8 13 7 15 6 19 5 23 4 31 3 47 2 95 1

4 8 8 9 7 10 6 12 5 16 4 21 3 32 2 64 1 - - - -

5 8 10 9 8 10 7 12 6 14 5 18 4 24 3 37 2 74 1 - -

6 6 8 7 6 9 5 11 4 15 3 22 2 45 1 - - - - - -

7 8 9 9 7 11 6 13 5 16 4 22 3 33 2 66 1 - - - -

8 9 11 10 9 12 8 13 7 16 6 19 5 24 4 32 3 48 2 97 1

9 7 9 8 7 9 6 11 5 14 4 19 3 29 2 59 1 - - - -

10 6 8 7 6 8 5 10 4 14 3 21 2 43 1 - - - - - -

11 9 9 10 8 11 7 13 6 16 5 20 4 27 3 40 2 81 1 - -

Lower Bound 1

Consider activities 5 and 9. The latest possible start time for both activities is 19,

and the earliest possible start time for one of them is 7. This follows both must be

completed in at most 12 time units, however their smallest duration modes add up

to 15 time units. So, surely the resource consumed by the activities will add up to,

at least, the sum of their minimum resource consumptions. That is 6+7=13. 13 is

our first lower bound value.

Lower Bound 2

As in example 4.4.3 let us take time point 11. 11 {5,6,7,8,9}S . Note that these

activities are in set 11S because their processing interval, [,]i iLS EC , includes 11.

For example the interval for activity 7 is [8,16] . The minimum total resource

consumption of these five activities over their non-eliminated modes equals to 37;

mathematically;

11

54 62 71 82 92 6 6 9 9 7 37
iim

i S

r r r r r r

For the example problem, our second lower bound, by chance, equals the objective

function value.

Lower Bound 3:

59

The lower bound on the resource consumption is calculated using the minimum

workloads. Table 5-3 illustrates the minimum workloads of the activities sorted by

their latest completion time.

According to the Table 5.3, the maximum average workload is observed when

19t . We illustrate the lower bound only for the maximum workload period,

19t . Some portion of activity 11 must be carried out before 19t as its latest

start is 16 and minimum processing time is 9. The one third (
3

9
) of the activity

must be processed before 19t . As the minimum workload of 11 is 77, the per unit

time increase in the workload is
1 77

* 4.05
19 3

. Hence the lower bound improves

to 27.32 4.05 31.37 . It can be seen that the lower bound has ameliorated by

approximately 15% with the inclusion of the additional workload.

Table 5-3 – Lower Bound 3 calculation for the example problem

Activity

Latest

Completion

Minimum

Workload

Minimum

Cumulative

Workload

Minimum

resource

consumed

4 8 52 52 52/8=6.50

2 10 88 52+88=140 140/10=14.00

3 16 60 375 23.44

6 16 70 375 23.44

7 16 42 375 23.44

9 16 63 375 23.44

5 19 90 519 27.32

8 19 54 519 27.32

10 25 40 559 22.36

11 25 77 636 25.44

Cuts for the LP Relaxation

60

To illustrate Cut 1, two activities that are related in the precedence network are

considered. Note that activities 2 and 5 are related as
52 E . We find that

5 2 19LC ES .

Now, consider the maximum resource consuming modes of activities 2 and 5, i.e.,

mode 1 of activity 2, and mode 4 of activity 5. The associated total resource

consumption is 19, i.e., no other mode combinations of the activities can exceed 19.

Therefore no cut can be generated considering these two activities.

However if no earlier mode eliminations had been done, mode 2 of activity 2 and

mode 4 of activity 5 together would form a cut as their total resource consumption

exceeds 19. The cut supporting this result is expressed below:

25 9 25 7

5 2

1 4 1 2

1jt jt

t j t j

x x

Similarly mode 1 of activity 2 and mode 5 of activity 5 would form a cut as their

total resource consumption exceeds 19. This would add the following cut to the LP

problem.

25 9 25 7

5 2

1 5 1 1

1jt jt

t j t j

x x

Unfortunately, we could not generate any relation to support our second cut.

ModeChange Procedure

In this procedure, we try to improve the solution by changing the mode of an

activity being processed at the maximum resource usage (bottleneck) period. We

first find the maximum resource usage period. Figure 5.1 gives the resource profile,

i.e., a graph showing the resource consumptions over time.

61

Figure 5.1 – Resource Profile for early start schedule

Figure 5.1 shows that the peak resource usage is at period 8 with resource

consumption of 57 units. At that period, the noncritical activities in process are 3, 5,

6, 7, 8 and 9. All five activities indicated are subjected to the ModeChange

procedure. As the activities are already at their first modes, their second modes are

tried. The best improving solutions are found at mode 2 of activity 6 and mode 2 of

activity 8, each returning two units of reduction in the maximum resource

consumption. We break the tie in favor of activity 6 as it has lower index.

SlideAct Procedure

The procedure is again applied to the maximum resource consuming period. Let us

consider the same initial schedule. The activities whose starting time can be

changed are the ones with positive slack values. These activities are 3, 5, 6, 8 and

9. Among these activities, the best improvement is achieved by one unit sliding of

activity 6 such that it starts at 9t . By this change the maximum resource

consuming period switches from period 8 to period 9 and the maximum load

reduces from 57 to 54.

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 Days

Resource Usage

Resource Usage

62

CHAPTER 6

6. COMPUTATIONAL EXPERIMENTS

In this chapter, our aim is to test the performance of our problem size reduction

techniques, lower bounds and upper bounds. First, we discuss the generation of test

problems, then we present our performance measures and lastly we discuss our

results for the experiment.

6.1 Data Generation

Number of activities (N):

The problem is solved with 6 different problem sizes. The number of activities is

selected as 10, 20, 30, 40, 60 and 80. For each problem size 10 instances are

solved, so a total number of 60 instances are used to test the algorithm. We used a

two phase methodology to generate these instances. In the first phase we generate

the project network using Project Scheduling Instance Generator (ProGen) of

Kolisch and Sprecher (1996). In the second phase we generate random processing

times for activities and using these times, we find activity modes. ProGen is not

used for mode generation as it fails to generate more than 5 modes for an activity.

We next explain our problem parameters;

63

Project Network:

For the Activity on Node (AoN) representation, coefficient of network complexity

(CNC) is defined as the number of precedence relations per node. It means

increasing CNC results in a more interconnected network. Alvarez-Valdes and

Tamarit(1989) have shown that as the network gets more complex, the time

required to solve the problem of those networks decreases. In our problem sets,

networks of complexity 1.5 is used which is the lowest complexity preferred. In

order to observe the effect of precedence network, we also include problem

instances with higher CNC value of 2.1. For those networks we set 20N and

80N and generate 10 problem instances for each N . To see the effect of number

of modes, we use 20 instances, 10 with 20N and 10 with 80N . The instances

are generated by decreasing the number of modes to half of its original setting. In

doing so we take the odd modes, and skip the even ones. As a total our problem set

includes 100 problem instances.

Processing Times and Resource Requirements:

We adapt the random generation scheme of Ranjbar and Kianfar (2007) to generate

our parameters. In order to generate the modes systematically, we first generate

processing times of the activities. The processing time of each activity is generated

from a uniform probability distribution between 10 and 100. Then the following

procedure is applied; 1i ip w ; 1

1

i
i

i

w
r

p

1 1ij ijr r ;
1

1

i
ij

ij

w
p

r
, if efficient

1()ij ijp p accept; otherwise

1 2ij ijr r ;
1

1

i
ij

ij

w
p

r
, if efficient

1()ij ijp p accept; otherwise

…

Generate modes until 1i jr .

64

The processing time of the activities define the number of modes. The maximum

number of modes is 10 as 1 100 10ip and
1

100
10

10
ir . By decreasing

1ir

with unit increments, a maximum of 10 modes can be found. Similarly, minimum

number of modes is 3.

6.2 Performance Measures

To evaluate the performance of our problem size reduction techniques, lower

bounds and upper bounds, we define some performance measures. In this section,

we describe our performance measures.

The performance measures for problem size reduction techniques are

 Number of activities for which mode and time decisions wait to be taken

 Number of activity modes reduced by reduction properties

 Percent Reduction in total number of modes

The performance measures for lower bounds are

 Percent deviation from the optimal objective function value (for the

problems solved to optimality)

 CPU Time (in seconds)

 Frequency of defining the best lower bound

 Frequency at which optimal = lower bound

The performance measures heuristics are

 Percent deviation from the optimal objective function value (For the

problems solved to optimality)

 Frequency at which optimal = heuristic solution (For the problems solved

to optimality)

 Percent deviation from the best lower bound (For the problems no optimal

solution is found)

 CPU time (in seconds)

For the construction heuristics we give the frequency each defines the best

construction solution.

65

The heuristic results are compared with the heuristic algorithm of Hsu and Kim

(2005). As discussed in Chapter 3, Hsu and Kim (2005) also consider renewable

resources in their study, the only difference of their problem and our study is that

they consider multiple resources.

All these performance measures are reported by their worst case (maximum) and

average values.

We solve our mathematical models, and linear relaxations by GAMS using CPLEX

solver. The algorithms are coded in C programming language. We conduct our

experiments in an Intel Core(2) Duo 2.33 G.Hz, 1GB RAM computer.

6.3 Analysis of the Results

Our data set includes 60 instances of complexity 1.5 and 20 instances of complexity

2.1. In the tables below, we evaluate our performance measures with respect to the

optimal objective function values for the problem with up to 30 activities. It is

because 5 out of 10 instances are solved in more than 30 minutes by CPLEX and

none of the 40 activity instances could be solved to optimality in 30 minutes.

We first investigate the effect of the mode elimination rules in reducing the problem

size. Recall that Property 2 and Property 3 define the start times and modes of the

activities whereas Properties 1, 4 and 5 eliminate the modes.

In Table 6.1, we report on Property 1. The table includes the number of activities,

number of noncritical activities, total and average number of modes for noncritical

activities, the total number of modes reduced by those assignments is given.

We also find the percentage of elimination in modes for these activities as

%

Number of Modes Eliminated
EL

Number of Modes
 and report the results.

66

Table 6-1 – The effect of Property 1 on the problem size

N

Number of

noncritical

activities

Total number of

modes of

noncritical

activities

Average number

of modes of

noncritical

activities

Number of

activity modes

reduced by

Property 1

%EL

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.

10 5.3 7 36 58 6.6 8.3 16.8 38 42.9 66

20 13 14 90.7 110 6.9 8.1 8.8 30
36.1 63

30 21.5 23 154.2 165 7.7 7.2 48.4 92 31.2 58

40 30.1 32 215.1 235 7.2 8.2 55.4 99.3 25.2 43

60 48 52 347.8 377 7.2 7.6 69.2 117 19.8 31

80 67.2 70 483.8 510 7.2 7.5 107.3 175 22.2 38

It is seen from the table that Property 1 performs better with smaller problems as

expected. Consider 10N and 20N , on the average 39% of the modes are

eliminated by Property 1 in these problem sizes whereas for 60N and 80N on

the average 21% of the modes are eliminated. This is due to the fact that the

makespan for smaller problems is more restrictive, so that the activities tend to have

fewer slacks. Also it can be deducted from the table that Property 1 has an influence

of 27.5% reduction in the number of modes on the average. It is clear that reducing

the number of modes by 27.5% is an important reduction in the problem size,

verifying the effectiveness of Property 1.

In the algorithm we first use Property 1 as we do not need any lower bound for it.

Then, for the reduced problem and with a good lower bound on hand we use

Property 2, to improve the lower bound and decide on some activities’ starting time

and mode assignments.

Table 6.2 reports on the efficiency of Property 2 and Property 3. We let RN denote

the set of activities remained after employing Properties 2 and 3. In the table, we

report the number of activities, number of noncritical activities, RN i.e. total

number of activities in RN , number of modes per activity over set RN , total

number of modes eliminated by Property 3.

67

Table 6-2 – The effect of Property 2 and Property 3

Note that when 10N , about half of the activities are set critical and taken out of

consideration. For the remaining activities, on average 1 out of 5 of them are fixed

by either Property 2 or Property 3. When 80N , the average number of noncritical

activities is 67, 5 of which are fixed by the properties. It can be inferred from Table

1 that, for all problem sizes on the average, more than 7% of the activities’ start

time and mode decisions are given by Property 2 or Property 3 and over 6% of the

modes of the noncritical activities are eliminated from further consideration. With

each activity eliminated from the decision process, more than 4 modes of each

activity on the average are reduced. Recall that the problem is NP-Hard hence

reducing the number of activities is important and these two properties are quite

effective in reducing the problem size.

As shown with the example, property 4 definitely cannot make eliminations due to

the mode generation scheme. After eliminating many modes and finding the LB, we

may use Property 5, but as Property 1, 2 and 3 all eliminate longer modes like

Property 5, performing Property 1,2 and 3 before, all long modes are eliminated and

Property 5 can eliminate 18 modes in total for all the problem sets.

Having discussed the effect of problem size reductions, we next study the

performance of our lower bounds. We compare the performances relative to the

optimal objective function values and use the following performance measure for

iLB ,

N

Noncritical

activities RN

Total

number of

modes for NR

Mode

/activity for

NR

Total number

of modes

eliminated by

Properties 2

and 3

% EL

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.

10 5.3 7 4.4 6 17.1 27 3.99 5.4 3 10 0.15 0.47

20 13 14 10.7 13 45.8 63 4.18 5.25 8.8 30 0.17 0.65

30 21.5 23 19.4 21 97.1 118 5.01 6.56 8.9 14 0.09 0.21

40 30.1 32 27.9 31 149.7 178 5.38 6.59 9.8 25 0.06 0.16

60 48 52 45.5 48 265.7 297 5.85 6.56 12.9 20 0.05 0.07

80 67.2 70 61.9 65 344.7 403 5.56 6.21 27.7 56 0.08 0.15

68

(%) *100i
i

OPT LB
dev

OPT
, where

iLB is the maximum resource consumption of lower bound i and

OPT is the optimal maximum resource consumption.

In Table 6.3, the average and maximum percent deviations from the optimal and the

number of times lower bound returns the optimal solution are reported.

Table 6-3 – The relative deviations of the lower bounds from the optimal

N
%dev for LB1 %dev for LB2 %dev for LB3 %dev for LB4

Avg. Max. Freq. Avg. Max. Freq. Avg. Max. Freq. Avg. Max. Freq.

10 22.8 38 0 13.6 32 1 12.3 25 0 5.7 11 2

20 35.3 52 0 21.6 36 0 11.5 22 0 4.6 9 2

30 48.0 58 0 44.6 68 0 10.2 23 0 7.0 12 0

1LB is the lower bound that performs the worst. For 10N it is 23% far from the

optimal, this percentage increases even more when the problem gets larger. This is

not surprising as this lower bound makes use of only two activities, and while the

problem gets larger, the bound coming from the overlapping of two activities is

relatively small. The same situation is valid also for
2LB Its deviation from optimal

is 14% for 10N and 44.6% for 30N . Although the bound is not restricted to

two activities, as the makespan becomes larger for larger problem instances, the

activities have more slack and they are not restricted to any time intervals, i.e., their

earliest completion times are earlier than their late start times.

3LB is a promising lower bound, as the number of activities in the problem instance

increases, the lower bound performs better. On the average it is 11.3% away from

the optimal solutions. As expected 4LB is the best performing lower bound and it

works consistently well over all problem sizes. The average deviation is below 7%,

the maximum deviation is 12% and it finds optimal solutions in 4 out of 30

instances. We expect this satisfactory behavior of 4LB , as we support the LP

relaxation with some valid cuts and Property 2 and Property 3, and make it stronger.

69

We find that the optimal objective function values are so small that a small absolute

deviation from the optimal solution may lead to high relative deviation, as it is a

ratio of the optimal solution. As the relative deviation of lower bounds from the

optimal is valuable information to only some extent, we also report the absolute

deviations of the lower bounds from the optimal objective function values in Table

6.4.

Table 6.4 reports the average optimal objective function value, average and

maximum absolute deviations of each lower bound from optimal solution and

average objective function values for lower bounds.

i iAbsdev OPT LB , where OPT is the optimal objective function value and LBi

is the objective function value for Lower Bound i .

Table 6-4 - The absolute deviations of the lower bounds from optimals

Note from Table 6.4 that the average relative deviation of 5.7% for 4LB stems from

an average absolute deviation of 1.1 units. That means; the lower bound is

approximately one unit lower than the optimal solution value. It is better seen in

Table 6.4 that, lower bounds 3LB and 4LB outperform 1LB and 2LB . It is clear from

tables 3 and 4 that for up to 30 activities, 4LB performs better than 3LB . Table 6.4

shows that when 40N and 60N , the objective function values for 3LB and

4LB are almost equal. When N becomes 80, 4LB again performs better.

Table 6.5 reports the number of times each lower bound is best for each problem

size.

N
OPT Absdev1 Absdev2 Absdev3 Absdev4

Avg. Avg. Max. Obj. Avg. Max. Obj. Avg. Max. Obj. Avg. Max. Obj.

10 21.7 5.4 12 16.3 2.6 6 19.1 2.8 6 18.9 1.1 2 20.6

20 27.1 10.1 17 17 5.8 11 21.3 3.2 7 23.9 1.2 2 25.9

30 32 15.4 21 16.6 14.1 21 17.9 3.3 9 28.7 2.2 3 29.8

40 - - - 15.1 - - 17.0 - - 32.7 - - 32.6

60 - - - 13.5 - - 15.1 - - 41.1 - - 41.2

80 - - - 16.4 - - 20.2 - - 51.4 - - 55.4

70

Table 6-5 – The number of times each lower bound is the best

N LB1 LB2 LB3 LB4

10 2 3 5 10

20 0 0 1 10

30 0 0 5 8

40 0 0 6 5

60 0 0 6 6

80 0 0 1 9

The numbers include the ties hence the sum of the numbers in each row may be

greater than 10.

The table illustrates that the first and second lower bounds never define the best one

when the number of activities is more than 10. This is in the line with the deviation

results. For 40N the third lower bound,
3LB , defines the best solution more

frequent than LP Relaxation bound, 4LB . It finds the best solution in 6 out of 10

instances whereas the LP Relaxation bound finds the best solution in 5 out of 10

instances. When 60N , 3LB

and
 4LB define the best solution with the same

frequency of 6. However; when 80N , the performance of 4LB in defining the

best solution becomes dominant.

It finds

the best lower bound in 9 out of 10

instances. This number is only 1 for 3LB .

We can conclude from tables 6.3, 6.4 and 6.5 that, in general, the lower bounds

found by the first and second approaches are not satisfactory, and are inferior to the

third and fourth lower bounds. The performance of the third lower bound, making

use of minimum possible resource consumption idea, deteriorates as N gets larger.

The strengthened LP Relaxation behaves consistently well over all problem

instances and is far superior to other lower bounds.

Table 6.6 reports the CPU times of finding 4LB and the optimal solution. We do

not give the CPU times of other lower bounds as they are negligibly small.

71

Table 6-6 – The CPLEX time for the optimal and the lower bound

N
LB4 (in seconds) OPT (in seconds)

Avg Max Avg Max

10 0.67 0.78 0.26 0.38

20 1.02 1.33 1.57 5.59

30 2.10 3.36 15083.66 108106.6

40 6.99 18.09 - -

60 14.02 26.59 - -

80 21.75 36.92 - -

Recall that our problem is strongly NP-Hard hence one should expect that the

solution times increase exponentially with problem size. The results in Table 6.6

verify these expectations. For small problem sizes, i.e., for 10N and 20N ,

the average CPLEX times are less than 2 seconds. When N becomes 30 the

solution times reach to 4 hours. For 30N , the maximum time used to find an

optimal solution is more than 30 hours although one of the instances is solved in

less than a second. This follows the inconsistent behavior of optimal model

solutions. The LP relaxation time also increases with the problem size, however

not exponentially. The increases are linear, when N is increased from 40 to 80, i.e.,

2 times, the average CPU times increases from 6.99 to 21.75 second, i.e., 3 times.

Even when 80N , the computation times do not reach to 1 minute.

Due to the satisfactory performance of the lower bounds, we use them to evaluate

our heuristic procedure. In doing so, for each problem instance we select the lower

bound giving the maximum value. Table 6.7 gives the objective function value of

optimal, relative and absolute percent deviations of the best lower bound from the

optimal solution and frequency of finding the optimal solutions. As before, we use

% *100
OPT LB

dev
OPT

 where
1,2,3,4

i
i

LB Max LB for percent relative deviations.

Accordingly the absolute deviations are measured as Absdev OPT LB .

72

 Table 6-7 – The deviations of the best lower bound from the optimal

N
OPT Absdev %dev Frequency

of optimal Avg. Max. Avg. Max. Avg. Max.

10 21.7 32 1.1 2 5.7 11 2

20 27.1 34 1.2 2 4.6 9 2

30 32 40 2 3 6.5 12 0

Table 6.7 illustrates that for 10N and 20N the best lower bound returns 4

optimal solutions out of 20 instances. When N becomes 30, the best lower bound

cannot find the optimal solution which is a signal of deteriorating performances of

the lower bounds with increases in the problem sizes. The deviations verify this

conclusion. As seen from Table 6.7, the best lower bound is at most 3 units less

than the optimal objective function value for all 30 problem instances. The average

percent deviation is about 6%, which is quite good for estimating the optimal

solution.

Having discussed the effect of mode elimination procedures and performance of

lower bounds, we now discuss the performance of our heuristic procedure. As

discussed in Chapter 5, our heuristic has two main phases; construction and

improvement. In the construction phase, 3 different construction heuristics are used,

namely Early Start Schedule (ESS), Late Start Schedule (LSS), Alternating Early-

Late Start Schedule (AELSS). We first measure their performance relative to the

optimal solutions for small-sized problem instances up to 30 activities and relative

to the best lower bound over all problem sets.

The relative deviations from the optimal solution and best lower bound are

measured as follows;

i. Relative Deviation of iCS from Optimal: % *100iCS OPT
devopt

OPT

where iCS is the maximum resource usage of construction schedule i , where

, ,i ESS LSS AELSS

73

ii. Relative Deviation of
iCS from Best Lower Bound: % *100iCS LB

gap
LB

where
iCS is the maximum resource usage of construction schedule i , where

, ,i ESS LSS AELSS

Tables 6.8 and 6.9 report the average and maximum relative deviations from the

optimal and the best lower bounds, respectively. Table 6.8 also reports number of

instances out of 10 each construction heuristic returns the optimal solution.

Table 6-8 – The relative deviations of construction heuristics from the optimal

N
%devopt for CS1 OPT %devopt for CS2 OPT %devopt for CS3 Optimal

Avg. Max. Freq. Avg. Max. Freq. Avg. Max. Freq.

10 31.8 60 0 28.5 85 1 22 37 1

20 56.5 120 0 51.2 136 0 45.6 105 1

30 60.8 104 0 54.1 81 0 50.4 85 0

Table 6-9 – The relative deviations of construction heuristics from the best lower

bound

N
%gap for CS1 %gap for CS2 %gap for CS3

Avg. Max. Avg. Max. Avg. Max.

10 40.1 78 36.9 106 29.6 53

20 64.1 132 59.2 160 53 116

30 72.1 130 64.9 104 61 109

40 80.7 126 82.5 137 64.7 107

60 99.3 129 95.3 128 60.9 87

80 80.1 117 105.4 143 72 104

As it can be seen from Table 6.8, the construction heuristics return optimal

solutions for small-sized problems with 10 and 20 activities. Although for some

small-sized instances the construction heuristics return very good results, their

average performance is not as good. Even for 10N , the construction heuristics

return solutions that are 20-30% away from the optimal solution on average. This is

74

not surprising as even the most complex construction schedule (AELSS) only

considers early or late start times for the start times of the activities using a

specified mode. Table 6.8 also reveals that when the problem size gets larger, the

performance of the construction heuristic deteriorates. For 30N , the best

construction heuristic (AELSS) generates solutions with objective function values

over 50% far from the optimal. So it is clear that the performance of these

construction heuristics is not satisfactory and needs to be improved. Table 6.9 gives

the deviations from the best lower bound. This table clearly shows that AELSS is by

far the best construction heuristic as it performs better than others over all problem

set.

We next study the performance of the best construction heuristic. The performances

are measured by the absolute deviations from the optimal solution and best lower

bound that are stated below.

i. Absolute Deviation from the Optimal: { }i
i

Absdevopt Min CS OPT where

iCS is the maximum resource usage of construction heuristic i , where

, ,i ESS LSS AELSS

ii. Absolute Deviation from the Best Lower Bound: { }i
i

Absgaplb Min CS LB

where iCS is the maximum resource usage of construction heuristic i , where

, ,i ESS LSS AELSS

Table 6.10 and Table 6.11 report the relative and absolute deviations of the best

construction heuristic from the optimal objective function value and the best

lower bound, respectively. Table 6.11 also reports on the frequency of the best

construction heuristic.

Table 6-10 – The absolute and relative deviation of the best construction heuristic

from the optimal

N
Absdevopt %dev for best CS

Avg. Max. Avg. Max.

10 3.5 6 18.6 33

20 8.1 20 31.8 67

30 14.8 21 0.481 0.81

75

Table 6-11- The absolute and relative deviation of the best construction heuristic

from the best lower bound and frequency of best construction heuristic

N
Absgap %gap for best CS Best Schedule frequency

Avg. Max. Avg. Max. CS1 CS2 CS3

10 4.6 8 26.2 47 2 7 7

20 9.3 22 38.4 79 3 3 6

30 16.8 24 58.5 104 3 5 6

40 19.1 25 59.9 85 2 3 6

60 25.3 39 60.9 87 0 0 10

80 35.4 47 65.4 98 2 1 6

For each problem instance the best construction heuristic is chosen and its deviation

from optimal is found. Table 6.10 illustrates these results. The table shows that the

maximum deviations from optimal are about twice the average deviations. For

instance when 20N the average deviation from the optimal objective function

value is 8.1, the worse case brings a solution that deviates about 20 units from the

optimal. This reveals that the construction heuristics’ solutions are not consistent.

Also, the average relative deviations of the best construction heuristic from the

optimal are increasing consistently and sharply with the increasing number of

activities.

It is seen from table 11 that, even selecting the best construction heuristic does not

result in solutions close to the best lower bounds. For example when 30N , the

deviation of the best construction heuristic from the best lower bound is

approximately 60%. It can be observed that the best construction heuristic’s

objective function value may even be twice of the best lower bound. Table 11

shows that AELSS is the best construction heuristic that deviates least from optimal.

However from some instances the other construction heuristics give better results.

ESS gives the best solutions in 12 out of 60 instances, LSS and AELSS give 19 and

41 instances respectively, including the ties. To summarize the majority of the best

solutions come from AELSS and the other construction heuristics are also worth

76

consideration. The results on the construction heuristics’ performances point a need

for improvement.

We compare our heuristic results after the improvement step, not only with the

optimal solutions and lower bounds but also with the heuristic of Hsu and Kim

(2005) (HKH) as discussed in section 6.2. Both our heuristic and HKH are applied

to the problem reduced by mode elimination mechanisms. The performances of

both heuristics are reported in tables 6.12 through 6.15. In all the tables, the same

performance measures are reported for both heuristics.

Table 6.12 and Table 6.13 report on the performance of both heuristics with respect

to the optimal solution for the problem sets when 30N . Table 6.12 reports the

average and maximum relative deviation of the heuristics from the optimal solution

and the number of times they find the optimal solution. Table 13 reports the average

and maximum optimal objective function values and absolute deviation of both

heuristics from optimal which are found as below.

i. Relative Deviation of iUB from Optimal: % *100iUB OPT
devopt

OPT
 where

iUB is the maximum resource usage of heuristic i where ,i IH HKH

ii. Absolute Deviation of iUB from Optimal: { }i
i

Absdevopt Min UB OPT where

iUB is the maximum resource usage of heuristic i where = ,i IH HKH

Table 6-12 – The relative deviations of the best upper bound from the optimal and

frequency of optimal solutions

N
%dev for IH Frequency

of optimal

%dev for HKH Frequency

of optimal Avg. Max. Avg. Max.

10 1.6 10 8 16.5 28 0

20 5.4 9 1 20.3 32 0

30 6.2 9 0 29.4 44 0

Table 6.12 shows that IH provides 9 optimal solutions in 30 instances, 8 of which

are for 10 activities. The average relative deviation from optimal is around 6 %. It is

seen from the table that HKH cannot find any optimal solution for 30 problems; it

does not even perform well even for 10N . Actually, this is not surprising as that

77

algorithm is a priority based rule and it only positions the activities to anywhere in

its allowable range and it does not use any improvement procedure.

Table 6-13 - The absolute deviations of the best upper bound from the optimal

N OPT Absdev for IH Absdev for HKH

Avg. Max. Avg. Max. Avg. Max.

10 21.7 32 0.3 2 3.5 8

20 27.1 34 1.4 3 5.5 8

30 32 40 1.9 3 9.5 15

Table 6.13 reveals the satisfactory behavior of IH. The average absolute deviation

of the heuristic from the optimal objective function value is less than 2 units, 1.9

units, for 30N . Note that the maximum absolute deviation from the optimal

objective function value is only 3, hence the heuristic behaves consistently well

over all problem instances. HKH returns an average absolute deviation of 3.5 units

for the smallest problem set that is greater than the maximum absolute deviation of

IH for 30N . These results are enough to conclude that for small problem

instances whose optimal solutions are known, HKH is inferior to IH.

For the problem sets including more than 30 activities, we compare our results with

the best lower bounds. Note that the deviation of the best lower bound from the

optimal objective function value for 30N is around 6%.

We calculate the relative and the absolute deviations of the heuristics from the best

lower bound available and report the results in Tables 6.14 and 6.15, respectively.

i. Relative Deviation of iUB from the best lower bound:

% *100iUB LB
gaplb

LB
 where iUB is the maximum resource usage of heuristic

i where ,i IH HKH

ii. Absolute Deviation of iUB from the best lower bound:

{ }i
i

Absgaplb Min UB LB where iUB is the maximum resource usage of

heuristic i where = ,i IH HKH

78

Table 6.15 also includes the objective function values of the best lower bounds.

Table 6-14 – The relative deviations of the upper bound from the best lower bounds

N
%gaplb for IH %gaplb for HKH

Avg. Max. Avg. Max.

10 7.9 22.2 23.7 38.9

20 10.4 20 26 32.2

30 13.4 21.7 38.3 53.6

40 13.5 15 33.2 45.9

60 16.6 23 48.4 85.7

80 16.1 21 38.9 47.6

The average deviation of IH from the best lower bound is very small, 7.9%, for

10N . It is due to the fact that, the lower bounds are very close to the optimal

objective function values for that problem size and the upper bounds found by IH

are nearly optimal. The same is true for 20N . For larger problem sizes, we

expect that the relative gap between the lower bound and upper bound increases. In

line with our expectations, our experimental results show that our lower bounds

deteriorate by the increase in the number of activities. Looking at the deviations in

Table 6.14, it can be seen that the upper bounds of problem sets with more than 20

activities deviate more from the lower bound. But, the table shows that the

maximum deviation from the best lower bound for IH is always less than 23% and

the average deviation is around 15 %. HKH, when the problem size increases does

not get better, but we can say that it does not get worse either. For 80N , for

example, the deviation from the best lower bound still deviates less than 40% from

the best lower bound as for 30N .

79

Table 6-15 – The absolute deviations of the upper bound from the best lower

bounds for each heuristic

N
LB Absgap for IH Absgap for HKH

Avg. Max. Avg. Max. Avg. Max.

10 20.6 32 1.4 4 4.6 8

20 25.9 34 2.6 5 6.7 10

30 30 38 3.9 5 11.5 17

40 33.4 49 4.4 5 11.4 21

60 42 56 6.8 9 20.3 36

80 55.8 67 8.9 11 21.7 29

It should be noted from Table 6.15 that, as the problem size increases the objective

function values also increase. The objective function values for 80N are twice

more than those of 20N and the deviation from the best lower bound increases

in the same way. Again, from Table 6.15 it can be seen that the maximum deviation

of IH, from the best lower bound is less than half of the average deviation of HKH

for over all problem set. All these results, and the fact that HKH could not perform

better than IH for even a single instance, shows the superiority of IH over HKH.

Table 6.16 shows the average and maximum computational times of finding the

heuristic algorithm (construction and improvement all together) and HKH. The

mode elimination procedures are not reported as they use negligible time (less than

one tenth of a second). All CPU times are reported in seconds.

80

Table 6-16 – The CPU times of the algorithms

N
CPLEX TIME BEST LB

OUR

HEURISTIC
HKH

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

10 0.264 0.38 0.52 0.63 0.94 1.27 0.53 0.65

20 2.24 5.04 0.99 1.33 2.28 4.50 1.02 1.42

30 15083.66 108106.6 1.86 3.2 4.84 8.42 2.13 3.72

40 - - 3.64 6.72 9.20 20.02 4.36 6.88

60 - - 15.02 32.92 30.94 52.92 20.56 40.95

80 - - 23.26 48.33 48.86 86.67 35.63 65.77

As seen in Table 6.16, the CPLEX time increases exponentially with increases in

the number of activities. On the other hand the lower bound times increase linearly.

The lower bounds are used both by our heuristic and HKH, hence we include the

lower bound times to all heuristic times. The CPU times spent both by our heuristic

and HKH are quite small. Note from the table that the maximum time for the

highest number of activities, i.e., 80N , is slightly less than 90 seconds by our

algorithm and 70 seconds by HKH. For all problem instances the HKH produces

quicker solutions than our heuristic however at an expense of lower quality.

As discussed before, we used 20 instances with CNC value of 2.1 having 20 and 80

activities, in the following tables we will denote them 20+ and 80+ respectively.

Recall that, Alvarez and Tamarit (1989) discuss that when CNC increases the

problem becomes easier. This makes sense because the starting time alternatives for

activities decrease as the network becomes more interrelated.

Then, we discuss the effect of the network complexity on the speed and quality of

the solutions. We extend our experiment with 20 instances of 20 and 80 activities

each having CNC value of 2.1. We compare the results with those of the same size

with CNC value of 1.5. As discussed by Alvarez and Tamarit (1989) when the

CNC value increases the problems become easier to solve. Hence our main

experiment with small CNC values includes hard-to-solve problem instances.

We analyze the effect of the CNC value in the reducing the problem size and report

the results in Table 6.17. The table includes the average and maximum number of

81

noncritical activities, number of activities in the set
RN , total number of modes of

noncritical activities, number of modes eliminated by Property 1, number of modes

eliminated by Property 2 and 3, and total percent reduction.

Table 6-17 – The problem size comparison for different CNC values

N CNC

Noncritical

Activities
NR

Total

number of

modes for

noncritical

activities

Number of

Modes

Eliminated

by Property

1

Number of

Modes

Eliminated

by Property

2 and 3

%EL

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.

20

1.5 13 14 10.7 13 90.7 110 36.2 63 8.8 30 48.3 83.8

2.1 12.5 14 11.5 13 87.3 108 34.3 53 3.3 11 42.2 62.8

80
1.5 67.2 70 62 65 483.8 510 107.2 175 27.3 56 27.8 46.6

2.1 65.9 70 60.8 68 477.6 509 137.4 204 22.4 35 33.2 49.2

Note from the table that for small N, N = 20, the power of the elimination for

different CNC values are very close. When N = 80, the effect of property 1

becomes more visible. The property eliminates about 5% more modes when the

CNC value increases from 1.5 to 2.1. This is due to having tighter precedence

relations that leave smaller room for the start times.

The performance of the best lower bound,
4LB , relative to the optimal solution is

evaluated only for 20N as the optimal solutions are not available for N = 80.

When 2.1CNC , the deviation of the best lower bound from the optimal is 4.8%

hence is better than that of 1.5CNC which was found around 6%. This is due to

the fact that when the CNC value is higher, there are more precedence constraints

and the total slack values of the activities are smaller. This leaves fewer choices for

the decision variables; hence the resulting solutions are more close to the optimal

ones.

The performances of our heuristic and HKH are given in Table 6.18. The table

reports the number of activities and average and maximum relative deviations of

heuristics IH and HKH from the optimal solution (for 20N) and lower bounds

for each CNC value.

82

Table 6-18 - The deviations of heuristics for different CNC values

N CNC %dev for IH %dev for

HKH

%gap for

IH

%gap for

HKH

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

20 1.5 5 12 23.1 31 10.4 19 29.3 40

2.1 5.4 9 20.3 32 5.6 10 26.1 32

80 1.5 - - - - 16.1 21 38.9 48

2.1 - - - - 15.5 25 46 62

As can be observed from Table 6.18, there is no significant and consistent effect of

CNC on the quality of the heuristic procedures. The percentage deviations of

different CNC values are very small and close. Note that the average relative

deviation of IH increases from 5% to 5.4%, when the CNC value increases from 1.5

to 2.1. On the other hand, the average relative deviation of HKH decreases from

23.1% to 20.3%, when the CNC value increases from 1.5 to 2.1. The similar results

hold for the percentage gaps.

Finally, we discuss the effect of the CNC values on the solution times. Table 6.19

reports the CPU times for the optimal solutions, best lower bound, IH and HKH

heuristics.

Table 6-19 – The CPU time comparison for different CNC values

N CNC
CPLEX Time

CPU Time of

Best LB

CPU Time of

IH

CPU Time of

HKH

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

20

1.5 2.24 5.04 0.99 1.33 2.28 4.50 1.02 1.42

2.1 0.48 0.69 1.02 1.36 2.15 3.07 1.04 1.39

80

1.5 - - 23.26 48.33 48.86 86.67 35.63 65.77

2.1 30.19 68.42 52.65 115.64 42.01 92.47

Note from the table that the average CPU time is 2.24 seconds when CNC = 1.5 and

0.48 seconds when CNC = 2.1. This is due to the fact that when CNC is higher,

there are more precedence constraints and activity slack times are smaller. This

follows the binary decision variables are fewer, hence the optimal solutions can be

83

obtained quicker. For the best lower bound and heuristic procedures we do not

observe any significant effect of the CNC values on the performances. There is a

slight increase in CPU times which can be attributed to the increased project

completion time due to the added precedence constraints.

We now discuss the effect of the number of modes. Table 6.20 illustrates the effect

of number of modes on the problem size reduction mechanisms. In the table,

together with number of activities we illustrate number of non-critical activities,

RN , total number of modes for
RN , number of modes eliminated by properties,

and total reduction in problem size by the reduction mechanisms.

Table 6-20 – The problem size comparison for different number of modes settings

N
Mode

Setting

Noncritical

Activities
NR

Total

number of

modes for

noncritical

activities

Number of

Modes

Eliminated

by Property

1

Number of

Modes

Eliminated

by Property

2 and 3

%EL

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.

20

1 13 14 10.4 13 49.8 61 18.5 35 6.3 21 48.1 90

2 13 14 10.7 13 90.7 110 36.2 63 8.8 30 48.3 83.8

40
1 30.1 32 27.9 31 117.1 129 27.6 52 5.6 14 27.6 51.7

2 30.1 32 27.9 31 300.7 344 76.4 134 9.8 25 28.4 45.6

Note from Table 6-20 that the number of noncritical activities does not change as

the smallest duration modes do not change due to the mode generation scheme. It is

clear from the total problem size reduction percentages that the number of modes

has no effect on the elimination power of the properties.

Table 6-21 illustrates the effect of number of modes on the performance of our

heuristic procedure. It reports percent deviation of the IH and HKH solutions from

the optimal solution and the best lower bound value.

84

Table 6-21 - The deviations of heuristics for different number of modes settings

N
Mode

Setting

%dev for IH %dev for HKH %gap for IH %gap for HKH

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

20
1 3.8 10 18.3 24 11.3 25 26.6 32

2 5 12 23.1 31 10.4 19 29.3 40

40
1 - - - - 13.2 15 35.2 52

2 - - - - 13.5 15 33.2 45.9

According to Table 6-21, when there are fewer modes, the heuristic solutions are

closer to the optimal solution. When compared with the lower bounds, the

performances are similar under both settings. For both mode settings, our heuristic

outperforms HKH.

Table 6-22 reports the CPU times for the optimal solution, best lower bound, and

the heuristics, IH and HKH.

Table 6-22 - The CPU time comparison for different mode number settings

N
Mode

Setting

CPLEX

Time

CPU Time of Best

LB

CPU Time of

IH

CPU Time of

HKH

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

20

1 1.33 2.34 0.71 0.97 1.65 2.44 0.72 1.02

2 2.24 5.04 0.99 1.33 2.28 4.5 1.02 1.42

40

1 - - 2.34 3.78 7.7 13.67 2.9 4.58

2 - - 3.64 6.72 9.31 18.02 4.36 7.7

Table 6-22 reveals that not only the optimal solutions but also the bounding

procedures are found quicker when there are fewer modes. However the effect of

the number of activities is more dominant than that of number of modes, for all

approaches. Note that when N increases two times from 20 to 40, the CPU times of

the best lower bound increase from 0.71 to 2.34 seconds, respectively, for the fewer

mode case. On the other hand, when the number of modes increase two times, the

CPU times of the best lower bound increase from 0.71 to 0.99 seconds.

85

CHAPTER 7

7. CONCLUSIONS

In this study, we consider a resource investment problem with time-resource trade-

offs. We assume each activity consumes a renewable resource during its execution

and the duration of an activity can be reduced by consuming extra resources. Each

time- resource combination defines a mode for an activity and there are several

activity modes. We constrain the project length by the completion time found when

all activities are set to their minimum duration modes.

Our problem to find activity durations that minimizes the maximum resource

without increasing the minimum project length. The problem is shown to be

strongly NP-hard. Hence optimal solutions to the medium to large sized instances

are hardly obtained in reasonable time.

In this study we propose several problem size reduction techniques, heuristic and

the lower bounding procedures. The results of our experiments have revealed that

the reduction techniques and bounding procedure perform very satisfactory over all

problem set. The performances slightly deteriorate with the increases in the number

of activities, number of modes and decreases in the complexity index. Even for the

largest problem sizes, our heuristic solutions deviate from the best lower bounds by

about 16%.

We observe that our mode elimination procedures reduce the problem size by more

than 30%, either by eliminating the modes of the activities or settling their start

86

times. Lower bounds serve as underestimates on the optimal objective function

values. We find that our lower bounds produce solutions that are very close to

optimal. For problem sizes with less than 40 tasks, the average relative deviation of

the best lower bound from the optimal is around 6% and the absolute deviation of

the best lower bound from the optimal is no more than 3 resource units.

Our heuristic procedure runs in two steps: construction and improvement. We find

that our heuristic’s performance is very similar to that of our lower bound as it

deviates from the optimal by 6% on the average and the average absolute deviation

from the optimal is again no more than 3 units. We also compare our heuristic with

the heuristic proposed by Hsu and Kim (2005) and find that our heuristic is far

superior. It has outperformed Hsu and Kim (2005)’s heuristic in all instances

without any exception.

We hope that our study fills an important gap in the resource constrained project

scheduling literature. To the best of our knowledge there is a unique reported study

that tackles with our problem. The study proposes a heuristic solution that is found

to have inferior performance when compared with ours.

The future research around our problem may consider the following issues. Our

reduction mechanisms and bounding approaches can be embedded into an

optimization procedure. Our results can be extended to the preemptive activities

case. We assume a single renewable resource; future research may consider

multiple renewable resources and nonrenewable resources as well. Other resource

leveling objectives like minimizing range of resource usages may be worth

studying. Three attribute trade-offs including time, cost and resource can also be

considered in future research.

87

REFERENCES

Akkan, C., Drexl, A. and Kimms, A.,(2005), Network decomposition-based

benchmark results for the discrete time-cost tradeoff problem, European Journal of

Operational Research, Vol.165, No.2, pp. 339-358

Alcaraz J., Maroto C., Ruiz R. (2003), Solving the multi-mode resource-constrained

project scheduling problem with genetic algorithms, Journal of the Operational

Research Society, 54, pp. 614–626.

Alvarez-Valdes, R. and J.M. Tamarit (1989): Heuristic algorithms for resource

constrained project scheduling: A review and an empirical analysis. In: Slowinski,

R. and J. Weglarz (Eds.): Advances in project scheduling. Elsevier, Amsterdam, pp.

113-134

Antonio F. Gómez-Skarmeta, Fernando Jiménez and Jesús Ibáñez (1999), Pareto-

optimality in Scheduling, Problems Lecture Notes in Computer Science, 1625, pp.

177-185

De Reyck B., Demeulemeester E., Herroelen W. (1998), Local search methods for

the discrete time/resource trade-off problem in project networks, Naval Research

Logistic Quarterly, 45, pp. 553–578.

Değirmenci, G., (2008) The Budget Constrained Discrete Time/Resource Trade-off

Problem in Project Networks, MSc Thesis, METU IE.

Demeulemeester E., De Reyck B., Herroelen W. (2000), The discrete time/resource

trade-off problem in project networks: a branch and bound approach, IIE

Transactions, 32, pp. 1059–1069.

Demeulemeester, E. (1995), Minimizing Resource Availability Costs in Time

Limited Project Networks, Management Science, 41, pp. 1590-1598

Drexl, A. and Kimms, A. (2001), Optimization Guided Lower and Upper Bounds

for the Resource Investment Problem, Journal of the Operational Research Society,

52, pp. 340-351.

Drexl, A., and Gruenewald, J. (1993), Nonpreemptive multi-mode resource-

constrained project scheduling, IIE Transactions, 25, pp. 74-81.

Hartmann S (2001). Project scheduling with multiple modes: a genetic algorithm,

Annals of Operations Research, 102, pp. 111-135.

Hartmann, S., Briskorn, D. (2009), A survey of variants and extensions of the

resourceconstrained project scheduling problem, European Journal of Operational

Research, Vol. 207, No. 1, pp 1-14

88

Herroelen W., De Reyck B., Demeulemeester E. (1998), Resource-constrained

project scheduling: A survey of recent developments, Computers and Operations

Research, 25 (4), pp.279–302.,

Hsu, C. C. and Kim, D. S. (2005) A new heuristic for the multi-mode resource

investment problem. Journal of the Operational Research Society, 56, pp. 406-413.

Jozefowska J., Mika M., Rozycki R., Waligora G., Weglarz J. (2001), Simulated

annealing for multi-mode resource-constrained project scheduling, Annals of

Operations Research, 102, pp. 137–155.

Kelley Jr., J.E., (1963), The critical-path method: Resources planning and

scheduling, Industrial Scheduling Prentice-Hall, New Jersey, pp. 347–365.

Kolisch, R. and Sprecher A. (1996): PSPLIB - A project scheduling library,

European Journal of Operational Research, Vol. 96, pp. 205--216.

Meredith, M. (2003): Project Management: A Managerial Approach, 5th Edition

Möhring R. (1984), Minimizing costs of resource requirements in project networks

subject to a fixed completion time, Operations Research, 32, pp. 89–120

Mori M and Tseng CC (1997), A genetic algorithm for multi- mode resource

constrained project scheduling problem, European Journal of Operational

Research, 100, pp. 134-141.

Nudtasomboon N., Randhawa S.U. (1997), Resource-constrained project scheduling

with renewable and non-renewable resources and time-resource tradeoffs,

Computers and Industrial Engineering, 32 (1), pp. 227–242.

Peteghem, V. and Vanhoucke, M. (2009), A genetic algorithm for the preemptive

and non-preemptive multi-mode resource-constrained project scheduling problem,

European Journal of Operational Research.

Pulat PS, Horn SJ (1996) Time–resource tradeoff problem. IEEE Transactions on

Engineering Management, 43(4), pp. 411–417

Ranjbar M., De Reyck B., Kianfar F. (2009), A hybrid scatter search for the discrete

time/resource trade-off problem in project scheduling, European Journal of

Operational Research, 193, pp. 35–48.

Ranjbar M., Kianfar F. (2007), Solving the discrete time/resource trade-off problem

in project scheduling with genetic algorithms, Applied Mathematics and

Computation 191, pp. 451–456.

Ranjbar M., Kianfar F., Shadrokh S.(2008), Solving the resource availability cost

problem in project scheduling by path relinking and genetic algorithm, Applied

Mathematics and Computation, 196, pp. 879–888.

Shadrokh S., Kianfar F. (2007), A genetic algorithm for resource investment project

scheduling problem, tardiness permitted with penalty, European Journal of

Operational Research, 181 (1), pp. 86–101.

89

Sprecher A, Hartmann S and Drexl A (1997). An exact algorithm for project

scheduling with multiple modes, OR Spektrum, 19, pp. 195-203.

Sprecher A., Drexl A. (1998), Multi-mode resource-constrained project scheduling

by a simple, general and powerful sequencing algorithm, European Journal of

Operational Research, 107, pp. 431-450.

Talbot, F.B. (1982), Resource-constrained project scheduling with time-resource

tradeoffs: the nonpreemptive case, Management Science, 28, pp. 1197-1210.

Valls V., Quintanilla M.S., Ballestin F. (2003), Resource-constrained project

scheduling: a critical reordering heuristic, European Journal of Operational

Research, 165, pp. 375–386.

Yamashita D.S., Armentano V.A., Laguna M. (2007), Robust optimization models

for project scheduling with resource availability cost, Journal of Scheduling, 10(1),

pp. 67–76.

