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ABSTRACT 

 

 

RESOURCE INVESTMENT PROBLEM WITH TIME/RESOURCE 

TRADE-OFFS 

 

 

Çolak, Erdem 

M.Sc., Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 

June 2011, 89 pages 

In this study, we consider a resource investment problem with time/resource trade-

offs in project environments. We assume each mode of an activity is characterized 

by its processing time and resource requirement and there is a single renewable 

resource. Our aim is to minimize the maximum resource usage, hence the total 

amount invested for the single resource. 

We formulate the problem as a mixed integer linear model and find optimal 

solutions for small sized problem instances.  We propose several lower bounding 

procedures to find high quality estimates on the optimal resource investment cost. 

We use our lower bounds to evaluate the performance of our heuristic procedures. 

The results of our computational experiments have revealed the satisfactory 

performances of our lower bounds and heuristic procedures. 

Keywords: Projects, Resource Investment Time/Resource Trade-off, Bounding 

Procedures



v 

 

ÖZ 

 

 

ZAMAN/KAYNAK ÖDÜNLEŞİMLİ KAYNAK YATIRIM 

PROBLEMİ 

 

 

Çolak, Erdem 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 

Haziran 2011, 89 sayfa 

Bu çalışmada proje ortamlarında zaman/kaynak ödünleşimini dikkate alan bir 

kaynak yatırım planlaması problemini ele aldık. Aktivitelerin işlem zamanı  ve 

kaynak gereksinimleri ile tanımlandıklarını ve tek bir yenilebilir kaynak olduğunu 

varsaydık. Amacımız en büyük kaynak kullanımını, dolayısıyla, toplam kaynak 

yatırımını enazlamaktır.  

Problemi tam sayılı karmaşık model olarak formüle ettik ve küçük boylu projeler 

için optimal çözümleri bulabildik. Optimal kaynak maliyetlerine yakın sonuçlar 

üretebilmek amacıyla alt sınırlama yöntemleri geliştirdik. Alt sınırlarımızı sezgisel 

yöntemlerin verimliliğini ölçmek için kullandık. 

Deneysel sonuçlarımız, alt sınırlar ve sezgisel yöntemlerimizin başarılı sonuçlar 

verdiğini göstermiştir. 

Anahtar Kelimeler: Proje, Kaynak Yatırım, Zaman/Kaynak Ödünleşimi, Sınırlama 

Teknikleri
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

Project is a set of interrelated activities undertaken to create a unique product or 

service.  Project management deals with planning, organizing and successful 

completion of the project. Project scheduling defines the start and completion times 

of the activities, together with resource assignments; hence it is essential for the 

successful completion of the project.  Project management finds its applications in 

many areas, including but not limited to, software development, new product 

designs, construction industry and make-to order production environments when 

each customer order defines a unique output.  

When the only feature associated with project activities is duration, the objective of 

project scheduling is simply to minimize the project completion time.  The 

minimum completion time is found in polynomial time with Critical Path Method 

(CPM) when activity durations are deterministic and with Program Evaluation 

Review Technique (PERT) when they are probabilistic.  

In many practical applications, the activities in a project consume resources other 

than time, such as money, labor, equipment and machine.  When these resources are 

scarce, the problem becomes Resource Constrained Project Scheduling Problem 

(RCPSP).  The RCPSP is the most common project scheduling problem 
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encountered in Operational Research literature. The objective is to minimize the 

project completion time subject to the resource constraints.  

The resources used in the RCPSP are of three types: Renewable resources, non-

renewable resources and doubly constrained resources.  A renewable resource is 

available at a certain amount for all periods whereas a non-renewable resource is a 

fixed amount declining through usage. Some resources are both renewable and non 

renewable and called doubly constrained.   

When the resources are scarce, their planning and organization are of crucial 

importance. Allocating the resources to the correct activities on correct times results 

in good implementable schedules. Resource leveling and resource investment 

problems are two main problem types that are pertinent to resource based 

objectives.  The resource leveling problems smooth the resource consumptions 

among all periods.  The resource investment problem minimizes the relevant costs 

associated with the resources.  

A class of the project scheduling problems, so-called multi-mode problems, is 

characterized by their activity modes. An activity has more than one mode if it has 

processing alternatives, for example its duration can be reduced by putting extra 

resources. Each mode of an activity has two main components: time and resource 

consumption. The associated problem is referred to as time/cost trade-off problems 

if the resource used is money and money is the nonrenewable resource.  Time/Cost 

trade-off problem deals with the trade-off between the project completion time and 

the cost associated with it.  Another trade-off is between project completion time 

and the renewable resource consumption. Increasing the maximum possible 

resource available for each period, the project completion time may decrease and 

vice-versa. This problem is called the time/resource trade-off problem.  

In this study we consider the resource investment problem with time/resource trade-

offs.  Our problem consists of a single renewable resource, like the workers in a 

construction project, and given a project deadline which may be defined by 

contractual agreements.  The objective is to minimize the maximum resource 

consumption over all periods.  The maximum requirement defines the amount of 

resources used, when all units of the resource are made available at the beginning of 
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the project and are freed altogether when the project is complete.  For example the 

number of construction workers hired for a construction project may be defined by 

the period that requires maximum number of workers.  In such a case the total labor 

investment is an increasing function of the number of the workers.   The number of 

available workers allocated to a project can be reduced selecting an appropriate 

execution mode for each activity.  

 

We, in this study, develop powerful problem size reduction mechanisms, lower 

bounding and heuristic procedures for the resource investment problem with 

time/resource trade-offs.  Despite its practical importance, the research on the 

problem is quite limited. To the best of our knowledge, there is only one study that 

deals with multiple renewable resources and proposes a priority based heuristic to 

solve the problem.  We hope that our study fills an open area in research 

constrained project scheduling literature.  

The rest of the thesis is organized as follows: In Chapter 3, we give a literature 

review for the related resource constrained project scheduling problems.  In Chapter 

4, we define our problem, give a mathematical model and discuss mode elimination 

techniques.  Chapter 5 discusses our solution approaches; lower bounds and 

heuristics. Chapter 6 reports on our computational experiments and discusses its 

results.  In Chapter 7 we give a brief conclusion of our study.  
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CHAPTER 2 

 

 

2. PROJECT SCHEDULING 

 

 

 

In this chapter we first define a project and then present the Activity on Node and 

Activity on Arc project networks. We present single mode problems and their 

solutions and support our discussion with an example. We then introduce the 

Resource Constrained Project Scheduling Problem and multi mode Time/Cost 

Trade-off and Time/Resource Trade-off problems.  

2.1 Project in General 

A project is a “temporary endeavor undertaken to create a unique product or 

service” according to the Project Management Institute. A project is a set of 

activities which are interrelated and which share resources such as money, labor, 

machine, equipment.  

An activity is the smallest work element of a project. The activities are interrelated 

because they have an input-output relation. Each activity has predecessors and 

successors. An activity, say activity i, is a predecessor of another activity, say 

activity j, if it has to finish before j starts. Due to the transitivity property of 

precedence relations, that is if i precedes j and j precedes k then, i also precedes k, 

there are many redundant expressions. An easy way of expressing all the 

precedence relations without any redundancy is using the immediate predecessor 

relation. If activity j can start immediately after activity i finishes, then activity i is 
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an immediate predecessor of activity j.The relations between the activities can be 

represented using many tools, the most common ones being Gantt Chart or Project 

Networks. 

Gantt Chart 

A Gantt chart is a bar chart that is developed by Henry L. Gantt in early 1900s first 

as a production control tool. A Gantt Chart, provides valuable information about the 

project such as the start and completion times of activities, precedence relations, 

activities being processed in parallel. However, it does not provide insight on the 

criticality of activities. An example of a Gantt Chart can be seen in Figure 2.1.  

 

Figure 2.1 – A Gantt Chart with 7 activities 

 

2.2 Project Networks 

Project Networks illustrate the activities and their relations on a network.  They 

provide valuable information on the criticality of the activities, and their 

allowances. 

The activities of a network can be represented in two different schemes. 

1. Activity on Arc (AoA) representation 

2. Activity on Node (AoN) representation 

 

2.2.1 AoA Representation 

In AoA networks, an arc represents an activity and a node represents an event. In 

general, an event corresponds to the start and/or completion time of an activity, it 

may also correspond to a particular milestone for the project, like the half 

completion of project, the entire completion of the project.  AoA representation may 
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require dummy arcs or dummy activities for proper representation of the precedence 

relations. 

We use one instance adapted from our problem set (we call Example problem 

hereafter) to illustrate the AoA Network. Table 2-1 tabulates the immediate 

precedence relations and Figure 2.2 illustrates these relations on an AoA network. 

Note that activities 1 and 12 are dummy activities that define the starting and ending 

of the project. 

 

Table 2-1 – The precedence relations for the example problem 

Activity Immediate Predecessors 

1 - (Starting Dummy Activity) 

2 1 

3 1 

4 1 

5 2 

6 4 

7 4 

8 2,4 

9 4 

10 5,8 

11 3,6,7,9 

12 10,11(Ending Dummy Activity) 
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Figure 2.2 – AoA network for the example problem 

 

In the project network in Figure 2.2- each arc corresponds to an activity and each 

node corresponds to an event. Nodes S1 and S2 represent start and finish of the 

project respectively. Each node corresponds to an event; node J, for instance, is for 

the completion of Activity 3 and three dummy activities and start of activity 11.  

Each arc is an activity; the arc between nodes B and E represents the Activity 7.  

The dummy arcs are for reflecting the precedence relation properly. The arc 

between C and H is a dummy arc to illustrate the precedence relation between 

activities 5 and 10.  

2.2.2 AoN Representation 

In AoN networks, the nodes represent activities and the arcs represent the immediate 

precedence relations. Activity i is an immediate predecessor of activity j if an arc is 

directed from i to j. Node 1 is the starting activity that consumes no time and Node 

12 is the ending activity whose duration is zero. Figure 2.3 displays our example 

problem on an AoN network.  
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Figure 2.3 – AoN network for the example problem 

 

In Figure 2.3, note that activity 1 is the node that represents the start of the project 

and activity 12 is the node where the project finishes.  

2.3 Project Scheduling  

Project Scheduling decides on the start and finish times of the activities, and the 

allocation of all scarce resources to the activities. 

All activities in a project have a processing time and resource consumption. Labor, 

machines, and money are some instances for the resources. In general when the 

resource of interest is renewable, it might be considered as labor and when the 

resource is non-renewable the most common indicator of the resource is money. 

Sometimes, these resources can be consumed all together. In our problem, the 

single resource is renewable. 

If all activities in a project have only one combination of duration and resource 

consumption, the project is considered as a single-mode project. When there are 

multiple alternative ways of processing an activity, the project is considered as a 
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multi-mode project. Each alternative way, called the mode of activities, has its own 

processing times and resource usages. 

2.3.1 Single-Mode Project Scheduling Problems 

For the single mode project scheduling problems, the purpose is to assign a start 

time to all the activities so that the precedence relations are respected and the 

project is completed in the earliest possible time. The well known Critical Path 

Method (CPM) is used to find such a schedule.   We first explain CPM, that will be 

referred often throughout the thesis. For detailed discussion on CPM, see Meredith 

and Mantel (2003). 

The Critical Path Method 

The CPM is a method of finding the critical path, its length (earliest possible 

completion time of a project), critical activities and earliest and latest start times for 

the activities. We need following definitions to explain the method. 

Critical Path: The longest path(s) in a project. The length of the critical path 

defines the project completion time. 

Critical activities: Any activity in any critical path is a critical activity. The main 

property of a critical activity is that, its earliest start time is equal to its latest start 

time hence if the activity starts later than its earliest start time; the schedule cannot 

meet on time.  

Noncritical Activities: Any activity for which the latest start time is greater than its 

earliest start, i.e., any activity on any critical path.  

Total Slack: The difference between earliest and latest start times of an activity 

defines its total slack. Total slack is the amount an activity can be delayed without 

affecting the project completion time. So, the total slack of a critical activity equals 

zero.   

While starting the procedure, the earliest start times of activities with no 

predecessor (whose predecessor is the starting dummy activity) are set to 0 and their 

earliest completion times are calculated. The earliest start time of any other activity 

is equal to the maximum of its predecessors’ earliest completion time. The ending 

dummy activity’s earliest completion time (recall that its processing time is 0) is the 
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project’s earliest completion time. Then, this earliest completion time becomes the 

latest completion time for the activities which have no successors (whose only 

successor is the ending dummy activity). Using the durations of activities, late start 

times for these activities are calculated. For all the other activities, the latest 

completion time is equal to the minimum of its immediate successors’ latest start 

times. When the earliest and latest possible start times are known for any activity, 

total slack times and criticality of all the activities can be defined. 

The notation, which is needed for CPM, and used throughout this thesis, is given 

below: 

pij: processing time of activity i at its mode j. 

Ei: Set of immediate predecessors of activity i. 

Succi: Set of immediate successors of activity i. 

ESi: Earliest start time for activity i. 

LSi: Latest start time for activity i. 

ECi: Earliest completion time for activity i. 

LCi: Latest completion time for activity i. 

CR: Set of critical activities 

Slacki: Total slack of activity i. 

When the problem is single mode, we modify our parameter pij as pi. 

Using the notation, we formally define the algorithm; which is excerpted from 

Değirmenci (2008); 
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The method will be illustrated in the example problem. Note that our problem is a 

multi-mode problem, so we choose the shortest duration modes for each activity to 

illustrate CPM and exclude resource consumption as it does not affect CPM 

calculations. The activity information is presented in Table 2-2. 

 

 

 

Initialization: 

0iES  : ii E  

Main Body: 

Repeat 

 
i

i k k

k E

ES Max ES p  :  i ji k E ES  is calculated 

Until 
iES for 1, 2,....,i N are calculated 

i i
i

T Max ES p  

iLC T  : ii Succ  

Repeat 

i

i j j

k S

LC Min LC p   :  i ji j Succ LC is calculated 

Until 
iLC  for 1, 2,....,i N  are calculated 

Finalization: 

i i iSlack LC LS  1, 2,....,i N  

,i i i i i iEC ES p LS LC p , 

{ 1,2,...., 0}iCr i N Slack  
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Table 2-2 – The precedence relations and durations for the example problem 

Activity Immediate Predecessors Duration (days) 

1 - (Starting Dummy Activity) -  

2 1 7 

3 1 9 

4 1 8 

5 2 8 

6 4 6 

7 4 8 

8 2,4 9 

9 4 7 

10 5,8 6 

11 3,6,7,9 9 

12 10,11(Ending Dummy Activity) - 

 

Now, step by step we show the calculations, 

Initialization: 

2 3 4E E E  (The only predecessor is the starting dummy activity);  

2 3 4 0ES ES ES  

Main Body: 

5 2E  5 2 2 7ES ES p  

6 {4}E  6 4 4 8ES ES p  

7 {4}E  7 4 4 8ES ES p  

8 {2,4}E  8 2 2 4 4{ , } 8ES Max ES p ES p  

9 {4}E  9 4 4 8ES ES p  

10 {5,8}E  10 5 5 8 8{ , } 17ES Max ES p ES p  
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11 {3,6,7,9}E 11 3 3 6 6 7 7 9 9{ , , , } 16ES Max ES p ES p ES p ES p  

10 10 11 11{ , } 26T Max ES p ES p  

So, as T is found now, 26T , we are ready to calculate the latest completion 

times. 

10 11Succ Succ  (The only successor is the ending dummy activity);  

10 11 25LC LC T  

9 {11}Succ  
9 11 11 16LC LC p  

7 {11}Succ  
7 11 11 16LC LC p  

6 {11}Succ  
6 11 11 16LC LC p  

3 {11}Succ  3 11 11 16LC LC p  

8 {10}Succ  8 10 10 19LC LC p  

5 {10}Succ  
5 10 10 19LC LC p  

4 {6,7,8,9}Succ  4 9 9 8 8 7 7 6 6, , , 8LC Min LC p LC p LC p LC p  

2 {5,8}Succ  4 8 8 5 5, 10LC Min LC p LC p  

 

After calculating earliest start and latest completion times, we finalize the algorithm 

by specifying earliest completion times, latest start times and slacks for each 

activity. Together with immediate predecessors, activity durations, earliest start and 

latest completion times, these values are tabulated in Table 2-3.  
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Table 2-3 – The early start-late start times and slack values for activities 

Activity Immediate 

Predecessors 

Duration 

(days) 
ESi ECi LSi LCi Slacki 

1 (dummy) - - 0 0 0 0 0 

2 1 7 0 7 3 10 3 

3 1 9 0 9 7 16 7 

4 1 8 0 8 0 8 0 

5 2 8 7 15 11 19 4 

6 4 6 8 14 10 16 2 

7 4 8 8 16 8 16 0 

8 2,4 9 8 17 10 19 2 

9 4 7 8 15 9 16 1 

10 5,8 6 17 23 19 25 2 

11 3,6,7,9 9 16 25 16 25 0 

12 

(Dummy) 
10,11 - 25 25 25 25 0 

 

The activities with positive slack values, called noncritical activities, can be delayed 

by their slack values without affecting the project completion time. For instance, 

activity 3 can start 7 days after its earliest start time without changing the project 

completion time.  As their slack values are equal to 0, activities 4, 7 and 11 are the 

critical activities.  

Figure 2.4 illustrates the network with earliest start and latest completion times in 

boxes and duration of activity in parentheses next to the associated node with the 

critical activities and path is bold. 
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Figure 2.4 – The AoN network for the example problem with early/late start times 

and durations. 

 

Resource Constrained Project Scheduling Problems: A single mode project 

scheduling problem, when the resources of interest are scarce, is called the 

Resource Constrained Project Scheduling Problem (RCPSP). The resource 

constrained project scheduling problem can be of two types: resource allocation and 

resource leveling. The resource allocation problem aims to minimize the project 

completion time given the resource requirements for each activity and a limit on 

each resource.  So the resource allocation problem allocates the scarce resources to 

activities without exceeding the resource capacities and by completing the project 

early as possible. The resource leveling problem tries to balance the resource usages 

throughout the defined life of the project. 

 



16 

 

2.3.2 Multi-Mode Project Scheduling Problems 

Sometimes it is possible that an activity may be executed in different ways. These 

ways are called modes in the project scheduling problem. This stems from the fact 

that allocating more resources to an activity may shorten its duration. Considering 

that the single resource is non-renewable, a simple example is that, while a job can 

be done in 3 hours spending 5 units of money, or can be done in 5 hours spending 

only 1 unit of money. When the single resource is renewable, the idea is the same, 

for instance; when 5 workers are assigned to an activity it is completed in 6 days, 

whereas when 4 workers are assigned to that activity it finishes in 7 days.  

The multi-mode project scheduling problems have an additional complexity brought 

by mode selection decisions. When there is a single resource non-renewable 

resource, the problem is called the Time/Cost Trade-off Problem, and when the 

resource is renewable it is Time/Resource Trade-off Problem.  

The time/cost and time/resource trade-off problems are of two types: continuous 

and discrete. In continuous problems, activity time is any increasing function of its 

resource consumption. In continuous trade-off problems there are infinitely many 

modes defined by the continuous time/cost function. In discrete problems, there are 

specified number modes where one of which is selected for each activity. In this 

study, we consider discrete time/resource trade-off problems. 

The Discrete Time/Cost Trade-off Problem 

The Discrete Time/Cost Trade-off Problems can be of three types: deadline, budget 

and curve problems. The Deadline Problem minimizes the total resource 

consumption cost subject to a predetermined project deadline. The Budget Problem 

minimizes the project completion time when the budget is limited. The Time/Cost 

Trade-off Curve Problem has two objectives, total project cost and project 

completion time. The problem is to generate all efficient, i.e. non-dominated, 

solutions with respect to these criteria.  
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The Discrete Time/Resource Trade-off Problem 

The aim of the Discrete Time/Resource Trade-off Problem (DTRP) is to find a 

schedule for each activity, with a single renewable resource, in one of its defined 

modes that minimizes the project completion time subject to precedence constraints 

and resource constraints according to Ranjbar and Kianfar (2007). A mode is 

composed of a processing time and resource requirement and the activities have 

many execution modes and one of them must be chosen.  

With the difference of the objective function, our problem has the same structure. In 

our problem, we try to minimize the capacity of our single non-renewable resource 

without violating the project completion time constraint. Project completion time is 

the length of the critical path calculated using the smallest modes of activities. The 

data for modes are given in Table 2-4, pij denoting the processing time for mode j of 

activity i and rij denoting the resource requirement of mode j of activity i. 

Table 2-4 – The execution modes for non-dummy activities  

A
C

T
IV

IT
IE

S
 

 MODES 

i pi1 ri1 pi2 ri2 pi3 ri3 pi4 ri4 pi5 ri5 pi6 ri6 pi7 ri7 pi8 ri8 pi9 ri9 pi10 ri10 

2 7 8 9 6 11 5 13 4 18 3 27 2 55 1 - - - - - - 

3 9 11 10 9 11 8 13 7 15 6 19 5 23 4 31 3 47 2 95 1 

4 8 8 9 7 10 6 12 5 16 4 21 3 32 2 64 1 - - - - 

5 8 10 9 8 10 7 12 6 14 5 18 4 24 3 37 2 74 1 - - 

6 6 8 7 6 9 5 11 4 15 3 22 2 45 1 - - - - - - 

7 8 9 9 7 11 6 13 5 16 4 22 3 33 2 66 1 - - - - 

8 9 11 10 9 12 8 13 7 16 6 19 5 24 4 32 3 48 2 97 1 

9 7 9 8 7 9 6 11 5 14 4 19 3 29 2 59 1 - - - - 

10 6 8 7 6 8 5 10 4 14 3 21 2 43 1 - - - - - - 

11 9 9 10 8 11 7 13 6 16 5 20 4 27 3 40 2 81 1 - - 

 

The critical path for a multi mode problem scheduling problem is calculated using 

the modes with smallest processing times. That was what we have done in CPM 

calculations. As we use the smallest processing time modes in CPM calculations, 

the length of the critical path is 25 time units. To gain insight to the problem a 

schedule, namely the earliest start schedule is constructed and the resource profile 

of it is presented in Figure 2.5. 
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Figure 2.5 – The resource usage profile of early start schedule. 

 

Maximum resource usage is 58 units in this project when all activities start at their 

earliest possible times. As Figure 2.5 illustrates the resource profile is not very 

good. This schedule may get better, in the rest of the thesis, we try to find an 

efficient way to obtain better results. 
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CHAPTER 3 

 

 

3. LITERATURE REVIEW ON RESOURCE 

CONSTRAINED PROJECT SCHEDULING 

PROBLEMS 

 

 

 

In this chapter, we review the project scheduling problems that are most closely 

related to our resource investment problem with time/resource trade-offs.  Section 

3.1 and Section 3.2 overview the literature on the makespan problem with 

time/resource trade-offs and resource investment problem with single and multi 

modes, respectively. For other resource constrained project scheduling problems, 

we refer the reader to the review papers by Herrolelen, De Reyck and 

Demeulemester (1998) and Hartmann and Briskorn (2010) for the detailed 

information 

3.1 Makespan Problem with Time/Resource Trade-Offs  

Multi mode resource constrained problem assumes several alternatives for time 

versus resource consumption. If these alternatives are specified at discrete time 

points then the problem is referred to as discrete time/resource trade-off project 

scheduling problem (DTRP). If the time/resource trade-off function receives values 

at all continuous values between specified limits, the associated problem is 

continuous time/resource trade-off project scheduling problem. 
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The majority of the DTRPs consider the project completion time, so-called 

makespan, as the objective function. The other objectives considered in the 

literature are resource related like resource consumption cost and resource leveling 

There exist several studies that solve the DTRP problem so as to minimize the 

makespan. We classify the DTRP studies into two groups as optimization and 

approximation studies. 

3.1.1 Optimization Studies  

Talbot (1982), Sprecher et al.(1997) and Demeulemeester et al. (1999) propose 

branch and bound algorithms to find exact solutions. Talbot (1982) defines and 

formulates the discrete time resource trade-off makespan problem. He considers 

both renewable and non-renewable resources and nonpreemptive activities. He 

proposes a two stage algorithm. In the first stage, a re-labeling procedure is applied 

to the activities, modes and resources. The relabeling is assigning priorities to these 

elements of the problem that will be used while enumerating in the second stage. In 

the second stage the algorithm tries to assign the jobs sequentially and feasibly. 

Upon finding a good solution, bounds are tightened and enumeration is continued. 

An optimal solution is found definitely when either the enumeration process is 

completed or makespan value equal to a known lower bound is reached. His 

computational results reveal that optimal solutions for small-sized problems can be 

found easily. For large-sized instances, the procedures provide high quality 

approximate solutions. 

Sprecher et al.(1997) propose a branch and bound algorithm for an exact solution of 

the problem. Their enumeration tree resembles the precedence diagram. The 

activities that are eligible (whose predecessors are processed) to start are branched 

from a mother node. The first feasible mode is chosen when an activity is being 

scheduled. If all modes are infeasible then the procedure backtracks. To reduce the 

search tree nine rules are proposed. Some of these rules are static and applied at the 

beginning of the procedure and some of them are dynamic and applied during the 

procedure. However, they observe that some of those reduction rules are not worth 

applying as the time to test them outweighs the savings obtained. The algorithm is 

tested using instances generated by ProGen that is available in PSPLIB. In the tests 

different combinations of the reduction rules are used, i.e. all search tree reduction 
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rules are not used all together. All instances up to 20 activities can be solved within 

10 seconds. 

Demeulemeester et al. (1999) present a branch and bound procedure for the discrete 

time resource problem with nonpreemptive activities and a single renewable 

resource. They propose four dominance rules to eliminate the activity modes. The 

partial schedules are constructed by temporarily scheduling all feasible 

nondominated maximal activity-mode combinations. An activity-mode combination 

is feasible if the resource constraint is not violated; maximal if no other activity can 

be executed in parallel in any of its modes and nondominated if it cannot be 

dominated by their dominance rules. The decision point in the branching scheme is 

the nearest activity finishing time, t. The activities that are in progress t can be 

removed from the partial schedule or they can be rescheduled, but the activities that 

are completed at time t, cannot be removed from the partial schedule or 

rescheduled.  Two lower bounds are calculated and their maximum is used in the 

algorithm. The first one ignores the resource constraint and hence based on the 

critical path. The critical path starting with the eligible (either started at the decision 

point or became eligible as its predecessor is completed) activity is calculated and 

added to the next decision point. The second is a resource based lower bound; total 

work content is divided to the each period’s resource availability of the renewable 

resource and rounded up to the nearest integer. Demeulmeester et al. generated their 

own problem sets and solved them to optimality in less than 1000 seconds mostly. 

All the problems with up to 4 modes and 30 activities are solved to optimality 

within a maximum CPU time of 160.54 seconds. 

3.1.2 Approximation Studies:  

The majority of the approximation studies on the DTRP is on the Genetic 

Algorithms. Tabu Search Algorithm, Simulated Annealing Algorithm and Scatter 

Search Algorithm are used each in a single paper.     

Tabu Search Algorithms: De Reyck et al. (1998), consider a single renewable 

resource and nonpreemptive activities. They propose and compare steepest descent, 

fastest descent, iterated descent, randomized search and tabu search algorithms. 

They define the neighborhood structure as changing only one of the activities’ 

execution mode. The search prohibits recently made moves; it allows revisiting a 
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solution but only with changing the direction of the search. The generated instances 

are used for testing the algorithms and comparing them. They also compare the 

local search algorithms with the branch and bound algorithm proposed by 

Demeulmeester et al. (1999). Random procedure being the worst performer in terms 

of solution quality, Tabu search seems to be the slowest in small instances although 

it is the one which deviates the least from the best solution among the local search 

methods. Its performance in larger instances is far better than all other local search 

methods when both time and quality of the solution are considered.  

Genetic Algorithms: Alcaraz et al. (2003) propose a genetic algorithm for the 

renewable and nonrenewable resources and nonpreemptive activities. They first 

reduce the problem size by applying the preprocessing rules introduced by Sprecher 

et al (1997) and used also by Hartmann (2001) are applied. The preprocessing rules 

eliminate inefficient modes, non-executable modes and redundant non-renewable 

resources.  They solve the reduced problem by a genetic algorithm. Their algorithm 

uses a chromosome representation, such that an individual is represented by 

I=(λ,f/b,µ) where λ represents an ordered activity list, f/b indicates the scheduling 

generation scheme used to build the schedule, serial forward or backward and µ is 

the mode assignment. They allow the infeasible solutions with respect to only non 

renewable resources as finding feasible solutions with more than one non-renewable 

resource is NP-complete. They evaluate the fitness values by the objective function 

values and feasibility of the solutions. Test problems are gathered from the PSPLIB 

and these instances are compared with the best results of the previously published 

studies. It is seen that deviation from optimal solution is very small and much better 

than any other reported heuristic. The algorithm is also so fast that any problem 

instance is solved in less than a second before it reaching a stopping condition.  

Ranjbar and Kianfar (2007) consider renewable resources and nonpreemptive 

activities. They propose a genetic algorithm, using a very simple representation 

scheme. They keep the priorities for the activities in one array and in another array 

the mode assignments of corresponding activities are held. While assigning the 

priorities to the activities, a topological ordering is used. This ordering is related to 

the precedence relations of the activities and introduced by Valls et al. (2003) is 

used. A Schedule Generation Scheme is used to assign activities with priorities 
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specified in the schedule representation. The population is formed using a 

diversification generation method which keeps track of the frequency of the priority 

assignments and gives less chance to the frequently appearing solution elements. 

The survival of the fittest is provided by assigning deletion probabilities to the 

members of population directly proportional to the makespan. They compare their 

algorithm with that of De Reyck et al. (1998) and show its outperforming 

performance.  

Mori and Tseng (1997) propose a genetic algorithm for a single renewable resource 

and nonpreemptive activities problem. A scheduling order for the activities is 

defined. This order has two components; a forward order and a backward one. 

These orders are defined using the precedence information. The fitness values are 

calculated using the duration of the activity. The crossover operator uses one 

random parent and the best current solution. It specifies a junction activity and takes 

activities scheduled up to that activity from one random parent and remaining from 

the other one. There are two mutation schemes, one changing modes and other 

creating a brand new schedule. The algorithm is tested on the instances generated 

by the authors. They compared their results with those of Drexl and Gruenewald 

(1993) by using their own instances. 

In another effort to solve the problem with genetic algorithms Peteghem and 

Vanhoucke (2009) study both the preemptive and non-preemptive activities. The 

mode elimination procedure proposed by Sprecher et al. (1997) is used for 

preprocessing. The representation scheme is identical with Ranjbar and Kianfar 

(2007). To assign the activities in the priority list to a schedule, the serial schedule 

generation scheme introduced by Kelley (1963) is improved and used. Two 

extensions to this scheme are discussed. One is the forward/backward scheduling 

technique that makes use of justifying the activities to right and left. The other one 

is a mode improvement procedure, with some probability mode improvement 

procedure is applied to an activity, when there is an improvement, the schedule is 

changed. For initial population left justified schedules are taken regardless of their 

feasibility. The infeasibilities are tried to be resolved by a local search procedure. If 

they cannot be resolved after some steps; the infeasible solutions are allowed to stay 

in the population with a penalty associated with them in the fitness value. The 
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penalties are calculated using makespan values. For crossover an activity is selected 

randomly and a one point crossover is applied. The algorithm is compared with 

other heuristics using PSPLIB and Boctor instances. The results indicate that the 

algorithm performs well in terms of both solution quality and computational time. 

Simulated Annealing Algorithms: Jozefowska et al. (2001) consider 

nonpreemptive activities and renewable resources. The objective is minimizing the 

makespan. Simulated Annealing (SA) is the metaheuristic used in the study. The 

representation consists of a list of activities and a list of execution modes. Two 

different approaches are used. The first does not permit infeasibility whereas the 

second one permits infeasibility with a penalty. In both approaches, the 

neighborhood structure is defined as randomly selecting an activity, moving it and 

its immediate predecessors and successors within their allowable range or changing 

the mode of the activity to a random mode or doing both together. Jozefowska et al. 

(2001) use PSPLIB instances, in small instances SA does not perform well enough. 

Only 35-40% of the instances with 10 to 20 activities can be solved to optimality. 

About 55.8% of the instances with 30 activities SA finds the best known solution.  

Scatter Search Algorithms: Ranjbar et al. (2009) consider renewable resources 

and nonpreemptive activities. They use the same schedule generation scheme with 

Ranjbar and Kianfar (2007) and study on a scatter search. The initial population is 

formed with the same method but an intensification phase using a local search is 

used for a better initial population. Then, two diversified reference sets are formed 

using a distance based measure. Path relinking is used to combine solutions in 

reference sets. Instances from the PSPLIB are used to test the algorithm and scatter 

search is found to be the best performing metaheuristic. Branch and bound 

algorithm of Demeulmeester et al. (2008) fails to present an optimal solution for 

many large-sized instances for which scatter search returns high quality solutions 

using same CPU time. 

3.2 Resource Investment Problems 

The resource planning problems in project scheduling can be divided into two 

classes: the resource leveling and resource allocation.  The leveling problem occurs, 

when sufficient resources are available and one tries to keep the resource usage at a 

constant rate as much as possible. The resource leveling problems have two classes: 
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minimizing the range of resource usage and minimizing cost of resource usages.  

The cost of resource usages problem is referred to as resource investment problem 

or resource availability cost problem.  The resource allocation problem occurs when 

the total resource usage is restricted and the objective is to allocate various 

resources to the activities so as to minimize the project completion time.  

3.2.1 Single Mode Resource Investment Problem 

Möhring (1984) shows that, the resource investment problem with non-preemptive 

tasks and a single renewable resource is strongly NP-hard.  Möhring (1984), 

Ranjbar et al.(2009), Radermacher (1978), Drexl and Kimms (2001), 

Demeulemeester (1995), Yamashita et al.(2004), Shadrokh and Kianfar (2007) and 

Ranjbar et al.(2009), study the resource investment problem with non-preemptive 

tasks and renewable resources. 

Möhring (1984) uses the concept of feasible partial orders, defined by Radermacher 

(1978) to solve the problem. He extends the precedence relation of initial network 

respecting the resource limits and the time limit and obtains feasible partial orders. 

The set of these feasible partial orders lead to the optimal solution. He also defines a 

duality relation between two problems. 

Drexl and Kimms (2001) propose two lower bounds and two optimization guided 

heuristics that are byproducts of their lower bounds. The first lower bound makes 

use of Lagrangian Relaxation technique and divides the problem into two 

subproblems that can be solved in pseudo- polynomial time. A good side effect of 

the approach is that one of their subproblems yields a feasible schedule. They run 

the procedure for a certain number of iterations and select the best lower and upper 

bounds. The second lower bound is based on a column generation technique in 

which each column represents a feasible schedule, hence an upper bound. To obtain 

a lower bound, they solve the LP relaxation of the master problem, and solve the 

dual of the LP model to find out if any column is to be added to the problem. Their 

computational experiment reveals that the quality of the lower and upper bounds 

depend on the deadline value and the number of resources, but not on the 

complexity of the precedence relations. 



26 

 

Demeulemeester (1995) proposes a branch and bound method for the non-

decreasing resource cost function problem. He defines the efficient points based on 

their resource availabilities. A point, call i, having resource availabilities (a1,..,am) is 

efficient if no point j having resource availabilities (a1’,..,am’) exists such that all 

ak’≤ ak for k=1,..m. At all branches a resource-constrained project scheduling 

decision problem is solved. The strategy is to solve for the cheapest efficient point 

at all stages, if a feasible solution is found, then the solution is optimal. If the 

decision problem returns an infeasible solution, then the point is removed from the 

solution space and new efficient points are added to the efficient set and the 

procedure continues until a feasible solution is found. He compares his computation 

times with those of Möhring’s and finds out that his algorithm is approximately 100 

times faster. He also compares his results with those of Patterson’s Resource 

Constrained Project Scheduling Problem and finds that his algorithm uses about 5% 

lower resource for the same makespan.  

Yamashita et al.(2004) propose a scatter search algorithm which uses an 

improvement heuristic proposed by Tormos and Lova.(2004). In the reference set, 

best solutions are accompanied with diverse solutions. They use various methods 

for diversification of the reference set such as frequency based memories and path 

relinking. They select activity pairs from the reference set and apply a combination 

method to obtain some new solutions. The procedure continues until a previously 

specified number of solutions are checked. They compare their results with two 

simple heuristics each involving an improvement step.  Their algorithm outperforms 

the heuristics in terms of quality, and its computational time is slightly higher. 

Shadrokh and Kianfar (2007) consider the problem of minimizing the total resource 

investment and tardiness penalty. They propose a genetic algorithm where the 

chromosomes are represented in two parts, one denoting the activity list, the other 

capacity list. These lists are transformed to schedules by using Serial Schedule 

Generation Scheme and Parallel Schedule Generation Scheme. With certain 

probabilities, the chromosomes are subjected to a crossover or a mutation. After 

each operation, the chromosome is subjected to a local search and at the time that 

the population will be renewed with new solutions, an immigrant is added to the 
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population with a certain probability. We find that their algorithm finds optimal 

solutions for many problems with up to 20 tasks.  

Ranjbar et al.(2009), use the activity list representation to represent the priority 

structure between the activities. In the activity list, the activity with the highest 

priority stands in the first position next to the dummy starting activity. Using early 

start and late start schedules they move the activities between their allowable ranges 

until no improvement is possible. Using solutions generated by a biased random 

sampling a reference set is formed and pairs in the reference set are subjected to a 

path relinking procedure. This procedure creates as many solutions as required. 

Ranjbar et al.(2009), also propose a genetic algorithm using the activity lists as the 

representation scheme and obtain new solutions using two point crossover and 

mutation operators. The termination condition is the same as that of path relinking. 

They compare their results with those of Yamashita et al.(2004) and show that the 

path relinking algorithm outperforms their genetic algorithm.  

3.2.2 Multi Mode (Time/Resource Trade-Off) Resource Investment Problem 

Hsu and Kim (2005), Talbot (1982), Nudtasomboon and Randhawa (1997), 

Skarmeta et al. (1999) and Pulat and Horn (1996) study time/resource trade-off 

problem with resource cost criteria.  All time/resource trade-off resource scheduling 

studies assume discrete alternatives, with one exception.  The exception is due to 

Pulat and Horn (1996) that considers continuous version of the problem.   We 

classify the studies into two groups as single criterion and multi criteria studies. 

Single Criterion Problems: Hsu and Kim (2005) consider the multi mode resource 

investment problem for nonpreemptive activities consuming renewable resources. 

They calculate the priority function value for each available activity, its mode, and 

starting time by combining two functions. One of the functions calculates the 

impact of the decision to the unscheduled activities using the slacks. The other 

function calculates the resources consumed by the alternative activity-mode-time 

combination. At each decision point they consider all activities whose predecessors 

are completed and choose the one having smallest priority function value. They 

compare their heuristic with some other priority rule based heuristics. They show 

that their heuristic outperforms these rules. 



28 

 

Talbot (1982) extends his solution methodology for the makespan objective to the 

minimum resource usage problem subject to the specified project completion time 

value.   

Multi Criteria Problems: Nudtasomboon and Randhawa (1997) extend the idea of 

Talbot (1982) and propose some improvements to his algorithm for some other 

objectives and problem characteristics. They use Talbot’s enumeration scheme and 

propose some mode elimination rules and bounding schemes. Three objectives 

makespan, total cost and resource leveling, are discussed and a priority based multi-

objective solution procedure is proposed. For each objective, specific labeling and 

backtracking rules are proposed.  Their computational results with 18 problem 

instances reveal the superiority of their algorithms over that of Talbot’s.  

Skarmeta et al. (1999) consider both renewable and nonrenewable resources. They 

propose a genetic algorithm that finds the set of all non-dominated solutions. Their 

criteria are makespan and consumption of a particular renewable resource. The 

initial population is formed generating precedence feasible solutions. The fitness 

function is evaluated using makespan values of the feasible solutions and penalizing 

the infeasible solutions with the excess amount of non-renewable resource 

consumption. Another fitness function proposed is the total consumption of 

renewable resources. A two-point crossover, one for carrying the chromosomes and 

the other for modes, is used. Two different mutation operators are used for 

diversification purposes. The parameter setting is done by using test instances in 

PSPLIB. 

Pulat and Horn (1996) discuss the time-resource trade-off problem with linear time 

and resource costs. Resources, if there are several, are grouped into two. The 

resource consumption costs constitute two of the three objectives. The third 

objective is the makespan. Using these three objectives a set of efficient solutions is 

obtained. An important assumption of the problem is that the relationship between 

the resource cost and project duration is linear. With this assumption the problem 

can be formulated as a network problem with an activity on arc network and 

activities are crashed using the labeling procedure and flow augmenting paths. The 

resource cost objectives have weights associated with them and for each value of 

the weights the problem is solved and a set of all efficient solutions is generated. To 
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specify the weights and determine the efficient solutions for given weights 

enumerative and interactive approaches are proposed.  
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CHAPTER 4 

 

 

4. OUR PROBLEM, ITS MODEL AND OPTIMALITY 

PROPERTIES 

 

 

 

In this chapter we first define our problem together with its underlying assumptions.  

We then give the mathematical model. Finally we introduce our elimination rules 

that can be used to reduce the complexity of the solutions. 

4.1 Problem Definition 

We consider N  non dummy activities. Activity 0 stands for a dummy starting 

activity and N+1 stands for a dummy ending activity. Activity i (i=1,.…,N) has mi 

modes.  

Mode j (j=1,….,mi) of activity i is characterized by the following parameters. 

rij: units of resource required by activity i when executed in mode j 

pij: duration (processing requirement) of activity i when executed in mode j 

We assume all modes are efficient in the sense that rij < rik  implies pij > pik  .   In our 

convention, we assume that pij < pij+1  for all i, i.e., the modes of all activities are 

ordered in their nondecreasing order of processing times, hence nonincreasing order 

of resource requirement. Accordingly the first mode of each activity is its shortest 

duration mode and it consumes highest resource. 
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We use terms task and activity interchangeably throughout the thesis.  

We let T be the length of the critical path.  It is found by CPM after setting all 

activities to their shortest duration mode. T is the deadline of the project. 

Activity i can start at any time t between 0 and T-1.  

The precedence network is defined by the immediate predecessor sets. Ei is the set 

of immediate predecessors of activity i. 

We assume that the single renewable resource is available at unlimited quantity. 

Moreover we make the following assumptions: 

The tasks are nonpreemptive, i.e., once a task starts it should be processed till its 

completion. 

The dummy activity N+ 1 can start after all activities are complete. As T is the 

deadline of the project, the activity starts and completes at time T. 

All parameters are integers, are known with certainty, i.e., the system is 

deterministic. 

The parameters are not subject to any change, i.e., the system is static. 

4.2 Mathematical Model 

Our main decision variable 
ijtx gives the start time and selected mode of each 

activity and is defined as 

1,  if activity  starts at time  and is executed with mode 
:

0,  otherwise                                                                      
ijt

i t j
x

 

The decision variable R is defined as the amount of renewable resource available 

for each time unit. 

 

Our constraints are explained next. 

Each activity should be assigned to exactly one mode and starting time 
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1
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i i

LS

ijt

j m t ES

x             Ai     (1) 

The resource consumption at any period cannot exceed the available resource 

1

*
ij

i

t t p

ij ijt

i A j m t t

r x R                      t      (2) 

The ending dummy activity must start at T. 

2,1, 1N Tx           (3) 

An activity can start only after all of its predecessors are completed. 

* ( )*
i k

i i k k

LS LS

ijt kj kjt

j m t ES j m t ES

t x t p x           2,3,..., 2;   ii N k E   (4) 

xijt’s are binary variables. 

0,1ijtx                                      1,2,...., 2 ; j=1,2,....,m  ; t=1,2,....Tii N         (5) 

The objective is to minimize the maximum renewable resource usage and is 

expressed as: 

Minimize R           (6) 

The model contains 

2

1

*
N

i

i

T m  binary variables (xijts) and one continuous variable 

(R).  

There are 

2

1

N

i

i

N T E constraints. 

4.3 Properties of the Optimal Solution 

In this section we present some properties that are used to reduce the problem size.  

The problem size is reduced when any mode is eliminated and any start time is set.    

Properties 1, 4 and 5 are used to eliminate the modes that cannot lead to feasible or 

unique optimal solutions.  Property 2 and Property 3 are used to set both the modes 
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and the starting times of the activities that cannot lead to unique optimal solutions. 

We use the following notation to state our properties.  

 

Early Start Schedule 

iES Earliest start time of activity i , when all activities are at their shortest modes 

iEC Earliest completion time of activity i , when all activities are at their shortest 

modes 

Late Start Schedule 

iLS = Latest start time of activity i , when all activities are at their shortest modes

iLC = Latest completion time of activity i , when all activities are at their shortest 

modes 

LB= A lower bound on the objective function value for the problem 

UB= An upper bound on the objective function value for the problem 

We call an activity critical if its early start time is equal to its late start time. i.e., 

activity i  is critical if and only if 
i iES LS . We set the critical activities’ start 

times to their early start times and modes to their shortest duration modes. We 

further reduce the problem size by using the results of Property 2 and Property 3.   

Property 1.  

 

If 
i i ijLC ES p , then for activity i modes , 1,...., ij j m  cannot lead to a feasible 

solution. 

Proof: i iLC ES  is the maximum processing time allowed for activity i  to 

maintain feasibility. Hence, a solution in which activity i is assigned mode j  such 

that 
ij i ip LC ES , can never lead to a feasible solution.      

The properties 2 and 3 use the following additional notation. 
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tEL Resource usage at period t  when all activities start at their earliest start time 

and shortest mode 

tLL Resource usage at period t  when all activities start at their latest start time and 

shortest mode 

Property 2.  

 

There exists an optimal schedule in which activity i  is processed between 
iES  and 

iEC at its shortest duration mode if 
tEL LB  at every [0, ]it EC  

Proof: Assume a schedule 
1A  that contradicts with the condition of the theorem. 

Activity i  completes at time 
i iC EC  at a longer mode and 

tEL LB  at every

[0, ]it EC . Shift activity i  such that it completes at time 
iEC  at its shorter mode, 

and get schedule 
2A which is in line with the condition of the property. 

Divide the time span into time intervals as [0, ]iEC  and ( , ]iEC T and let 
ijz  be the 

maximum resource usage of solution 
iA  in interval j . Figure 4.1 illustrates this 

situation.  

 

 

 

 

 

 

 

In Figure 4.1, note that 12 22z z
 
as in addition to all activities being processed in the 

interval ( , ]iEC T , some portion of activity i  is also processed for 1A . Also note that, 

Figure 4.1 - A schedule that illustrates Property 2 

T 
A2 

z21 z22 

ECi 

Ci 

A1 

z11 z12 

ECi T 
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11 21z z  as the resource consumed by activity i  is less (as a smaller time consuming 

mode is used) for 
1A  in the interval[0, ]iEC . 

Let 
iAz be the maximum resource used by

iA . Note that 
iAz LB  

1 11 12 12,Az Max z z z  as 
11 21z z LB  and 

1Az LB implies 
12z LB  

2 21 22 22,Az Max z z z as 
21 tEz L LB  and 

2Az LB  implies
22z LB  

This follows 
1 2A Az z as 

12 22z z . Hence a schedule that contradicts with the 

condition of the property can never be better.       

Property 3.  

 

There exists an optimal schedule in which activity i  is processed between 
iLS  and 

iLC at its shortest duration mode if 
tLL LB  at every [ , ]it LS T

 

Proof: Assume a schedule 
1B  that contradicts with the condition of the theorem. 

Activity i  starts at time i iS LS  at longer mode and tLL LB  at every [ , ]it LS T . 

Shift activity i  such that it starts at time iLS  at its shorter mode, and get schedule 

2B  which is in line with the condition of the property. 

Divide the time span into time intervals as [0, )iLS  and [ , ]iLS T and let 
ijz  be the 

maximum resource usage of solution iB  in interval j . Figure 4.2. illustrates this 

situation.  
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In Figure 4.2 note that 
11 21z z

 
as in addition to all activities being processed in the 

interval ( , ]iEC T , some portion of activity i  is also processed for 
1A . Also note that, 

12 22z z  as the resource consumed by activity i  is less (as a smaller time 

consuming mode is used) for 
1B  in the interval[ , ]iLS T . 

Let 
iBz be the maximum resource used by

iA . Note that 
iBz LB  

1 11 12 11,Bz Max z z z  as 
12 22z z LB  and 

1Bz LB implies 
11z LB  

2 21 22 21,Bz Max z z z as 
22 tEz L LB  and 

2Bz LB  implies
221 Bz z  

This follows
1 211 21B Bz z z z . Hence a schedule that contradicts with the 

condition of the property can never be better.       

 

For the reduced problem with non-fixed start times and modes, we introduce two 

more properties to eliminate the modes. The eliminated modes are the ones that 

either lead to non promising or infeasible solutions.  

We define the following sets that are used to state our mode elimination properties. 

tS : {Set of activities that have to be processed at time t} 

Mathematically,  

LSi Si 

B1 

z11 z12 

T 

B2 

z21 z22 

LSi T 

Figure 4.2 – A Schedule that illustrates Property 3 
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| ( 0) ( [ , ]t i i i iS i EC LS t LS EC  

:iFR {Set of activities that are processed in parallel with activity i for at least one 

time unit} 

Mathematically,  { , }i t tFR k i S k S t  

:iFS {Maximal set for the activities that can be processed together with activity i } 

Mathematically,  { ( ) ( ) ( ) ( )}i i k i k i iFS k LC ES ES LC k Succ k E  

Property 4.  

 

If 
j

i

ik jm

j FR

r r UB , then for activity i modes  1, …, k cannot lead to an optimal 

solution. 

Proof: In at least one time unit, the activities in 
iFR should be processed together 

with activity i . 1

i

j

j FR

r  is a lower bound on the total resource consumption of the 

activities that should be processed with activity i . So, when activity i  is assigned to 

mode k , and all the activities in 
iFR  are assigned to their minimum resource 

consuming modes, the maximum resource usage is no smaller than
j

i

ik jm

j FR

r r . 

This follows, a solution in which activity i  is assigned to mode k  is dominated by 

the upper bound ( )UB  solution.          

Property 5. 

 

Recall that iFS is the maximal set for the activities that can be processed together 

with activity i . If 1

i

ik j

j FS

r r LB , then there exists an optimal schedule in which 

activity i  is assigned to modes 1,...., .k  
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Proof: 1

i

ik jm

j FS

r r is an upper bound on the resource usage for the time points at 

which activity i  is processed at mode k . If this upper bound is no bigger than LB , 

then setting activity i to its lower resource usage modes will never improve the 

objective function value that is surely greater than LB .     

4.4 Illustration of Properties on the Example Problem 

 

We illustrate the properties on our example problem. In the examples we do not 

consider the critical activities as they are already set to their first modes to meet the 

minimum project completion time. Table 4-1 shows the CPM calculations for the 

example problem and Table 4-2 shows the mode information.  

 

Table 4-1 – The CPM calculations for the example problem 

Activity Immediate 

Predecessors 

Duration 

(days) 
ESi ECi LSi LCi Slacki 

1 (dummy) - - 0 0 0 0 0 

2 1 7 0 7 3 10 3 

3 1 9 0 9 7 16 7 

4 1 8 0 8 0 8 0 

5 2 8 7 15 11 19 4 

6 4 6 8 14 10 16 2 

7 4 8 8 16 8 16 0 

8 2,4 9 8 17 10 19 2 

9 4 7 8 15 9 16 1 

10 5,8 6 17 23 19 25 2 

11 3,6,7,9 9 16 25 16 25 0 

12 

(Dummy) 
10,11 - 25 25 25 25 0 
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Table 4-2– The execution modes for non-dummy activities  

A
C

T
IV

IT
IE

S
 

 MODES 

i pi1 ri1 pi2 ri2 pi3 ri3 pi4 ri4 pi5 ri5 pi6 ri6 pi7 ri7 pi8 ri8 pi9 ri9 pi10 ri10 

2 7 8 9 6 11 5 13 4 18 3 27 2 55 1 - - - - - - 

3 9 11 10 9 11 8 13 7 15 6 19 5 23 4 31 3 47 2 95 1 

4 8 8 9 7 10 6 12 5 16 4 21 3 32 2 64 1 - - - - 

5 8 10 9 8 10 7 12 6 14 5 18 4 24 3 37 2 74 1 - - 

6 6 8 7 6 9 5 11 4 15 3 22 2 45 1 - - - - - - 

7 8 9 9 7 11 6 13 5 16 4 22 3 33 2 66 1 - - - - 

8 9 11 10 9 12 8 13 7 16 6 19 5 24 4 32 3 48 2 97 1 

9 7 9 8 7 9 6 11 5 14 4 19 3 29 2 59 1 - - - - 

10 6 8 7 6 8 5 10 4 14 3 21 2 43 1 - - - - - - 

11 9 9 10 8 11 7 13 6 16 5 20 4 27 3 40 2 81 1 - - 

 

Property 1. 

 

Consider a noncritical activity, say activity 5.  The activity cannot start before its 

earliest start, 7, due to its predecessors and cannot be completed later than its latest 

completion time due to its successors and the deadline.   The total amount of time 

allowed for activity 5  is
5 5 19 7 12LC ES .   We eliminate all modes of the 

activity having processing requirements of more than 12 time units.  Hence, modes 

5 through 9, are eliminated from further considerations as they cannot lead to 

feasible solutions.  This leaves 4 modes for activity 5. 

Property 2. 

 

Assume we have a lower bound LB=30 (in the following sections it will be shown 

that 30 is a valid lower bound for the problem).  The resource profile of the early 

start schedule is given in Figure 4.3. The horizontal line in the figure shows the 

lower bound value. 
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Figure 4.3 – The resource usage profile 

 

As can be seen in Figure 4.3 the resource usage first exceeds the lower bound in 

period 8, i.e., 8
Et

L . So according to the property if any activity using at its 

shortest duration mode (maximum resource consuming mode) can be completed 

before 
Et

L   in the early start schedule, there exists an optimal solution in which that 

activity is scheduled to start at its earliest start using its shortest duration mode.  The 

earliest completion time of noncritical activity 2 is 7 (see Table 4-1), which is 

smaller than 8
Et

L .  So in at least one optimal solution, activity 2 starts at its 

earliest start time at its shortest duration mode. 

Property 3 is not illustrated as it uses the same idea with Property 2.  It uses late 

start schedules in place of early start schedules and sets the optimal start times to 

their latest start times in place of early start times.  

  

Property 4. 

 

Assume we have an upper bound UB=37.   We select activity 5 and form set iFR .  

Activity 5 has to be processed between periods 11 through 15, i.e., 

11 12 13 14 5 , , ,activity S S S S and 15S . Among the five sets, 11S  is the one that contains 
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highest number of activities.  The activities in 
11S  are 5, 6, 7, 8 and 9 and  

5 {6,7,8,9}FR .  Now we check the condition of property 4 and compare the 

minimum resource consumption in Set FR5 with UB. Note that

5

1 1 1 1 4
jjm

j FR

r .   As  4 + r5j < 37 for all r5j values (all are no bigger than 

10), no mode of activity 5 could be eliminated.    

Our data set includes instances with small values of resource consumptions (no 

bigger than 10), hence we could not benefit from Property 4. 

 

Property 5. 

 

Assume we have a lower bound LB=30.  A noncritical activity 10 has the  smallest 

[ , ]i iES LC  interval length. The activities that have a chance to be processed with 

activity 10 are 5, 8 and 11, hence they constitute set 
iFS .  Now we check the 

condition of property 5 and compare the resource consumption in Set FS10  with LB. 

1 9
i

j

j FS

r  and the maximum resource consuming mode of activity consumes 8 

units of resource.   8  + 9 =17  < 30 = LB , so any mode consuming less resource is 

eliminated as using that mode cannot change the optimal. 
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CHAPTER 5 

 

 

5. SOLUTION APPROACHES 

 

 

 

The time/resource trade-off problem defines the completion time of each activity 

together with its mode.  Our time/resource trade-off problem aims to minimize the 

maximum consumption of a single renewable resource. Möhring  (1984) shows that 

the resource investment problem with single renewable resource is strongly NP-

hard. So is our problem, with an additional complexity brought by mode decisions.   

In this chapter we present our present our solution approaches.  Section 5.1 and 

Section 5.2 present our lower bounding procedures and heuristic procedure, 

respectively and Section 5.3 illustrates these on the example problem.    

 

5.1 Lower Bounding Procedures 

We develop four lower bounds each of which provides an underestimate of the 

objective function value.  We use those estimates to evaluate the performance of our 

heuristic procedure. 
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Lower Bound 1:  

 

The first lower bound is based on the overlapping activities.  We call activity i and 

activity k as overlapping if they should be processed together in at least one time 

unit.  We let 
ika denote the length of the biggest interval in which both activity i and 

activity k must be processed. 

For all pairs of activities,
i kES ES , we calculate 

ika  values.  If their minimum 

possible total processing times (when set to their first modes) is smaller than ika , 

activities i  and k  will be processed in parallel for at least one time unit. We let FR  

denote the set of such activity pairs. 

1 1: ( , ) ik i kFR i k a p p  where { , } { , }ik i k i ka Max LC LC Min ES ES  

We find a lower bound considering the activities in set FR and their minimum 

resource consuming modes. For each activity pair in the set, the minimum possible 

consumption is calculated and their maximum is selected for the lower bound. The 

lower bound 
1LB  becomes 

1
( , ) i kim km
i k FR

LB Max r r  

If FR , then an extended set, FRE  is defined. Set FRE  includes the activity 

pairs that should be performed in parallel for at least one time unit at their 

maximum duration modes. Formally, 

: ( , ) |
i kik im kmFRE i k a p p  

Using Set FRE , we calculate a lower bounding procedure  whose  algorithmic 

description is provided in the next page.  
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Algorithmic explanation of lower bounding procedure which uses set FRE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For all ( , )i k FRE ; 

 Let a  and b  be the modes of activities i  and k  respectively; 

For all a  starting from 
ia m and decreasing to 1a  

{  For all b  starting from 
kb m  and decreasing to 1b  

 ( )ia kb ikif t t a  

  1 { , }ia kbres Max r r  

  End for  

} 

For all b  starting from 
kb m  and decreasing to 1b  

{  For all a  starting from ia m  and decreasing to 1a  

 ( )ia kb ikif t t a  

  1 { , }ia kbres Max r r  

  End for  

} 

( , ) { 1, 2}resm i k Min res res  

1
( , )

{ ( , )}
i k FRE

LB Max resm i k  
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Lower Bound 2:   

 

If the earliest completion time of an activity is later than its latest start time, then the 

activity has to be processed between its latest start and earliest completion times. 

Formally, for activity i  if 0i iEC LS then it is certainly processed in interval

[ , ]i iLS EC . If there is an interval in which the activity is definitely processed, then 

for each time t , the set of activities that have to be processed can be defined as well. 

So, we let 
tS denote the set of activities that have to be processed at time t . Then, 

for all the time points, the activities in the set 
tS  are found and their minimum 

possible resource consumptions are summed up. The minimum resource 

consumption is found by setting all activities to their minimum resource usage 

mode. The maximum of the minimum consumptions overall periods constitutes the 

lower bound.  

So, Mathematically, 

if 0i iEC LS , ti S    [ , ]i it LS EC  

2 i

t

im
t

i S

LB Max r  

Lower Bound 3:   

 

The workload of an activity is the total resource it consumes during its execution. 

The workload of activity i  ( )iWL , at its selected mode j , is *ij ijp r , and the 

minimum workload ( )iMWL  for activity i  over all its modes is 

*i ij ij
j

MWL Min p r  

An activity i , should be completed before its latest completion time, iLC . It means 

that, it consumes at least iMWL  amount of resource before iLC . The minimum 

possible total resource consumed by the end of iLC , iMTWL , is the sum of 
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minimum workloads of activities whose latest completion is no later than 
iLC . 

Formally, 

i

i k

k Fin

MTWL MWL  where 

:i k iFin k LC LC  

To get a lower bound on the maximum resource consumption, the total workload is 

distributed evenly in the interval [0, ]iLC and the resulting value is rounded up to 

the smallest integer value.  

i
i

i

MTWL
Min

LC
 

To find a lower bound, all activities are considered and maximum of 
iMin  values is 

selected. So, a valid lower bound is i
i

Max Min . 

Note that this bound considers all activities that should complete no later than iLC  

to find iMin . However there may exist an activity such that k iLC LC , but

k jLS LC . For such an activity, the minimum processing before iLC  is i kLC LS . 

We include this portion by weighing with the minimum weight
kkmr , hence obtain a 

lower bound on the total workload of activity k .  

The updated iMTWL  values become ( )*
k

i i

k i k km

k Fin k St

MWL LC LS r  where 

:i k i k iSt k LC LC LS LC  

The following expression, 3LB  gives a valid lower bound; 

3 ( )*
k

i i

k i k km
i

k Fin k St

LB Max MWL LC LS r  
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Lower Bound 4: Linear Programming (LP) Relaxation with Valid Cuts 

 

We simply relax the integrality constraints on 
ijtx variables and get the following 

relation. 

0 1ijtx  

The resulting model is the LP relaxation of the original model.  The optimal 

solution to the LP relaxation provides a lower bound for our minimization problem.   

In order to strengthen the relaxation we include some valid cuts (constraints). These 

cuts are the relations that are satisfied by the integer problem however not by the 

associated linear program.  

Cut 1: Reduction due To Feasibility 

The first cut is the one proposed by Akkan et al. (2005) to the discrete time –cost 

trade-off problem.  The cut is valid for our problem and is explained below.  

Consider any pair of activities ( , )i k such that 
ik E and any combination of modes 

ia M  and kb M  

If 
i k ia kbLC ES p p  then modes, 

1,...., ii mM M  and 
1, ,....,

kk k mM M M  cannot 

provide a feasible solution.  So, a valid cut is as follows; 

1 1

1
i km mT T

ijt kjt

t j a t j b

x x     ( , )i k FC ; where 

{( , ) ( )}i i k ia kbFC i k k E LC ES p p  

Cut 2: Reduction due to Optimality 

Let activity i and activity k be two activities that have to be processed together for at 

least one time period, i.e., (i, k) is in Set FR.  If their resource usage exceeds a given 
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upper bound ( )UB  for any mode combinations 
ia M  and 

kb M  then performing 

these activities in modes 
1,...., iM M  cannot lead to an optimal solution. So, the 

second cut can be stated as follows; 

1 1 1 1

1
T a T b

ijt kjt

t j t j

x x      ( , )i k OC where 

{( , ) ( )}ia kbOC i k k FR r r UB  

Together with these two cuts, our strengthened LP relaxation model is stated below. 

For the sake of completeness we give the previously stated constraints as well. 

Min R                       (1) 

s.to.  

1
i

i i

LS

ijt

j m t ES

x             Ai     (2) 

1

*
ij

i

t t p

ij ijt

i A j m t t

r x R                              t     (3) 

2,1, 1N Tx           (4) 

* ( )*
i k

i i k k

LS LS

ijt kj kjt

j m t ES j m t ES

t x t p x                     2,3,..., 2;   ii N k E  (5) 

1 1

1
i km mT T

ijt kjt

t j a t j b

x x           ( , )i k FC     (6) 

1 1 1 1

1
T a T b

ijt kjt

t j t j

x x  ( , )i k OC       (7) 

0ijtx            (8) 

We round the optimal objective function value to the smallest following integer, to 

get a lower bound 4( )LB  on the optimal objective value. Formally, 
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*

4 LPLB z , where *

LPz is the objective function value of the optimal LP 

Relaxation. 

The overall lower bound is 
1,2,3,4

{ }i
i

LB Max LB . Note that LB is the best of our four 

lower bounds.   

We include additional cuts using the results of Property 2 and Property 3. We let; 

:ESO {Set of activities that are set to their first mode and start on their early start 

times according to Property 2} 

:LSO {Set of activities that are set to their first mode and start on their late start 

times according to Property 3} 

After these sets are specified, we add the following constraint sets to the linear 

programming relaxation of the problem. 

1 1
ii ESx  i ESO  

1 1
ii ESx  i LSO  

In defining ESO and LSO  we first use 
1,2,3

i
i

LB Max LB  

After we solve the LP Relaxation, we redefine ESO  and LSO  using 

1,2,3,4
i

i
LB Max LB . With new ESO  and LSO  sets we resolve the LP Relaxation and 

get new
4LB , and update LB . 

5.2 Heuristic Procedure 

In this section we present our heuristic procedure that aims to find high quality 

feasible solutions to our problem.  We evaluate the performance of our heuristic 

procedure relative to the optimal solutions for the problems for which optimal 

solution is available.  For large sized problem instances for which the optimal 

solutions are not available, we make the evaluation relative to the best lower bound 

found in Section 5.1. 
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Our heuristic procedure runs in two steps: Construction and Improvement.  The 

construction step finds initial feasible solutions.  The improvement step improves 

the solutions that are found in construction step. Below is the detailed description of 

each step. 

Step 1. Construction 

The construction step proceeds in two steps: 

Step 1.1. Finding mode assignments 

Step 1.2. Finding the start times, given the mode assignments of step 1.1. 

Step 1.1 finds the mode assignments by using the optimal solution of the LP 

relaxation. We retain the integer assignments and move the fractional modes to their 

next smaller duration modes. Our aim is to find a feasible solution while increasing 

the resource consumption as small as possible. 

Formally we set activity i  to mode k if
, 1ik iLPR i kp p p , hence 

, 1ik iLPR i kr r r

where 

iLPRp the duration of activity i in the LP relaxation solution. 

iLPRr the resource consumption of activity i in the LP relaxation solution. 

Note that by setting activity i to mode k , we guarantee feasibility. The resource 

consumption may increase slightly, as the new mode assignments require more 

resource.  

Given the mode assignments, Step 1.2. defines the starting times of the activities, 

hence forms  feasible schedules.  The schedules are formed in three different ways 

each of which is discussed below. 

Schedule 1. Early Start Schedule 

Using the mode assignments found in Step 1.1.  and applying CPM, we set the start 

time of activity i  to iES  for Schedule 1. 
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Schedule 2. Late Start Schedule 

Using the mode assignments found in Step 1.1.  and applying CPM, we set the start 

time of activity i  to 
iLS  for Schedule 2. 

Schedule 3. Alternating Early Start – Late Start (AEL) Schedule 

Using the mode assignments found in Step 1.1. we calculate 
iES  and 

iLS . Then we 

sort activities according to their early start and late start times and put them into the 

following sets.  

ESSorted Set of activities in nondecreasing order of their early start times 

LSSorted Set of activities in nonincreasing order of their late start times 

First the start time of the first not yet scheduled activity in 
ESSorted  is set to its 

early start time. Then the start time of the first not yet scheduled activity in 

LSSorted  is set to its late start time.  The procedure continues until all activities are 

scheduled. 

Step 2. Improvement 

Each schedule found in Step 1 is subjected to an improvement procedure with the 

hope of reducing the maximum resource consumption. 

Given the schedule, we consider the time point that defines the maximum resource 

consumption and try to reduce the load of this time point. The reduction can be 

done in three different ways.  

 Reducing the duration of an activity  

 Increasing the duration of an activity  

 Changing the start time of an activity 

When the duration is reduced, keeping the start time of the activity same, the 

activity will no longer be processed at some time points. Hence, the load on the 

maximum load time point may be removed and maximum resource consumption 

might decrease. But, the reverse is also possible. By reducing the duration of an 

activity, the resource consumption of that activity increases. This, in the case of still 
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being processed on maximum load time point, increases the maximum resource 

consumption. 

When the duration of an activity is increased, the activity consumes less resource, 

which leads to a reduction in the resource usage in the maximum load time point. 

Again, the reverse is also possible. Increasing the time of an activity causes the 

activity spread its workload to more time points. So, a time point, in which the 

activity is not processed before but will be processed now, will have more resource 

consumption than it had before the duration change.  

When the start time of an activity is increased or decreased, the maximum load may 

shift to another time point, which in turn might reduce (increase) the maximum 

resource consumption.  

Below is the detailed algorithmic description of our improvement procedure. 

 

The main steps of the Heuristic Algorithm 

 

 

 

 

 

The OnlyImprove step is the main body of the algorithm. The step calls 

ModeChange module to change the modes of the activities and SlideAct module to 

change the start times of the activities. 

Heuristic Algorithm 

Using each construction heuristic as an initial solution; 

Execute OnlyImprove  

Execute BestAvailable  

Choose the best solution reached. 
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The OnlyImprove Module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our implementation, we set iterlim to 100 and nonimplim to 7. 

OnlyImprove 

Repeat 

Increase iter by 1 

Execute ModeChange by counter1 times 

 If maximum resource usage is less 

Change current solution 

  counter1=1;  counter2=1; 

 Else  

  Return to the solution before ModeChange 

counter1 increases by 1 

Execute SlideAct by counter2 times 

 If maximum resource usage is less 

Change current solution 

  counter1=1;  counter2=1; 

Else 

 Return to the best solution available for the given 

initial solution 

counter2 increases by 1  

Until iter reaches iterlim or one of the counters reaches nonimplim. 
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The BestAvailable Module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our implementation, we set niterlim to 1000 and nonimprolim to 150. 

BestAvailable 

Repeat 

Increase niter by 1; 

Execute ModeChange once; 

 If maximum resource usage is less 

  counter1=1;  counter2=1; 

  Execute OnlyImprove with nonimplim=5. 

 Else  

counter1 increases by 1. 

Change current solution. 

Execute SlideAct once; 

 If maximum resource usage is less 

  counter1=1;  counter2=1; 

  Execute OnlyImprove with nonimplim=5. 

Else 

  counter2 increases by 1. 

Change current solution. 

Until niter reaches niterlim or one of the counters reaches 

nonimprolim. 
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The ModeChange Module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maxt: the first time when the resource usage is at its highest level. 

Smaxt: The set of activities executed at time maxt 

ModeChange (changing the mode of an activity) 

For maxti S  

Change the mode assignment of activity i with the next smaller mode (if 

possible) with all other mode assignments remaining the same. 

Adjust all successor and predecessor activities’ early start, late start and start 

times. 

Calculate the maximum resource usage. 

Change the mode assignment of activity i with the next larger mode (if 

possible) with all other mode assignments remaining the same.  

Adjust all successor and predecessor activities’ early start, late start and start 

times. 

Calculate the maximum resource usage. 

Choose the assignment with the least maximum resource usage - Return the 

transformed schedule and its maximum resource usage. 
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The SlideAct Module 

 

 

 

 

 

 

 

 

 

 

 

 

Our search procedure resembles the Tabu Search algorithm. We visit neighboring 

solutions and let non-improving solutions only when an improved solution cannot 

be reached after a specified number of iterations. When we find an improved 

solution, we search without changing the current solution on hand as in 

intensification phase of tabu search algorithms. When there is no improvement for 

specified number of iterations, we switch to a new starting solution as in 

diversification phase of tabu search algorithms.   

 

 

 

SlideAct (changing the start time of an activity) 

For 
maxti S  

Slide activity i up to its earliest start; 

Adjust all succeeding and preceding activities’ starting times; 

Calculate the maximum resource usage; 

 

Slide activity i up to its latest start; 

Adjust all succeeding and preceding activities’ starting times.; 

Calculate the maximum resource usage; 

Choose the assignment possibility with the least maximum resource usage - 

Return the transformed schedule and its maximum resource usage. 
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5.3 Illustration of Solution Procedures on an Example Problem 

We illustrate the lower bounds and heuristic procedures on our example problem. In 

Table 5.1 we restate the CPM calculations and mode data, but now with not-yet-

eliminated modes. These modes are shown in bold faces and larger font size in 

Table 5-2. 

 

Table 5-1- The CPM calculations for the example problem 

Activity Immediate 

Predecessors 

Duration 

(days) 
ESi ECi LSi LCi Slacki 

1 (dummy) - - 0 0 0 0 0 

2 1 7 0 7 3 10 3 

3 1 9 0 9 7 16 7 

4 1 8 0 8 0 8 0 

5 2 8 7 15 11 19 4 

6 4 6 8 14 10 16 2 

7 4 8 8 16 8 16 0 

8 2,4 9 8 17 10 19 2 

9 4 7 8 15 9 16 1 

10 5,8 6 17 23 19 25 2 

11 3,6,7,9 9 16 25 16 25 0 

12 

(Dummy) 
10,11 - 25 25 25 25 0 
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Table 5-2– The execution modes for non-dummy activities  

A
C

T
IV

IT
IE

S
 

 MODES 

i pi1 ri1 pi2 ri2 pi3 ri3 pi4 ri4 pi5 ri5 pi6 ri6 pi7 ri7 pi8 ri8 pi9 ri9 pi10 ri10 

2 7 8 9 6 11 5 13 4 18 3 27 2 55 1 - - - - - - 

3 9 11 10 9 11 8 13 7 15 6 19 5 23 4 31 3 47 2 95 1 

4 8 8 9 7 10 6 12 5 16 4 21 3 32 2 64 1 - - - - 

5 8 10 9 8 10 7 12 6 14 5 18 4 24 3 37 2 74 1 - - 

6 6 8 7 6 9 5 11 4 15 3 22 2 45 1 - - - - - - 

7 8 9 9 7 11 6 13 5 16 4 22 3 33 2 66 1 - - - - 

8 9 11 10 9 12 8 13 7 16 6 19 5 24 4 32 3 48 2 97 1 

9 7 9 8 7 9 6 11 5 14 4 19 3 29 2 59 1 - - - - 

10 6 8 7 6 8 5 10 4 14 3 21 2 43 1 - - - - - - 

11 9 9 10 8 11 7 13 6 16 5 20 4 27 3 40 2 81 1 - - 

 

Lower Bound 1 

 

Consider activities 5 and 9. The latest possible start time for both activities is 19, 

and the earliest possible start time for one of them is 7.  This follows both must be 

completed in at most 12 time units, however their smallest duration modes add up 

to 15 time units.  So, surely the resource consumed by the activities will add up to, 

at least, the sum of their minimum resource consumptions. That is 6+7=13. 13 is 

our first lower bound value. 

Lower Bound 2 

 

As in example 4.4.3 let us take time point 11. 11 {5,6,7,8,9}S . Note that these 

activities are in set 11S  because their processing interval, [ , ]i iLS EC , includes 11.  

For example the interval for activity 7 is [8,16] . The minimum total resource 

consumption of these five activities over their non-eliminated modes equals to 37; 

mathematically;  

11

54 62 71 82 92 6 6 9 9 7 37
iim

i S

r r r r r r  

For the example problem, our second lower bound, by chance, equals the objective 

function value. 

Lower Bound 3:   
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The lower bound on the resource consumption is calculated using the minimum 

workloads. Table 5-3 illustrates the minimum workloads of the activities sorted by 

their latest completion time.  

According to the Table 5.3, the maximum average workload is observed when 

19t . We illustrate the lower bound only for the maximum workload period, 

19t . Some portion of activity 11 must be carried out before 19t   as its latest 

start is 16 and minimum processing time is 9. The one third (
3

9
 ) of the activity 

must be processed before 19t . As the minimum workload of 11 is 77, the per unit 

time increase in the workload is 
1 77

* 4.05
19 3

. Hence the lower bound improves 

to 27.32 4.05 31.37 . It can be seen that the lower bound has ameliorated by 

approximately 15% with the inclusion of the additional workload.  

Table 5-3 – Lower Bound 3 calculation for the example problem 

Activity 

# 

Latest 

Completion 

Minimum 

Workload 

Minimum 

Cumulative 

Workload 

Minimum 

resource 

consumed 

4 8 52 52 52/8=6.50 

2 10 88 52+88=140 140/10=14.00 

3 16 60 375 23.44 

6 16 70 375 23.44 

7 16 42 375 23.44 

9 16 63 375 23.44 

5 19 90 519 27.32 

8 19 54 519 27.32 

10 25 40 559 22.36 

11 25 77 636 25.44 

 

 

Cuts for the LP Relaxation 
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To illustrate Cut 1, two activities that are related in the precedence network are 

considered. Note that activities 2 and 5 are related as
52 E . We find that

5 2 19LC ES . 

Now, consider the maximum resource consuming modes of activities 2 and 5, i.e., 

mode 1 of activity 2, and mode 4 of activity 5. The associated total resource 

consumption is 19, i.e., no other mode combinations of the activities can exceed 19. 

Therefore no cut can be generated considering these two activities.  

However if no earlier mode eliminations had been done, mode 2 of activity 2 and 

mode 4 of activity 5 together would form a cut as their total resource consumption 

exceeds 19. The cut supporting this result is expressed below: 

25 9 25 7

5 2

1 4 1 2

1jt jt

t j t j

x x  

Similarly mode 1 of activity 2 and mode 5 of activity 5 would form a cut as their 

total resource consumption exceeds 19.  This would add the following cut to the LP 

problem. 

25 9 25 7

5 2

1 5 1 1

1jt jt

t j t j

x x  

Unfortunately, we could not generate any relation to support our second cut. 

ModeChange Procedure 

 

In this procedure, we try to improve the solution by changing the mode of an 

activity being processed at the maximum resource usage (bottleneck) period.  We 

first find the maximum resource usage period. Figure 5.1 gives the resource profile, 

i.e., a graph showing the resource consumptions over time. 
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Figure 5.1 – Resource Profile for early start schedule  

 

Figure 5.1 shows that the peak resource usage is at period 8 with resource 

consumption of 57 units. At that period, the noncritical activities in process are 3, 5, 

6, 7, 8 and 9. All five activities indicated are subjected to the ModeChange 

procedure. As the activities are already at their first modes, their second modes are 

tried. The best improving solutions are found at mode 2 of activity 6 and mode 2 of 

activity 8, each returning two units of reduction in the maximum resource 

consumption. We break the tie in favor of activity 6 as it has lower index.  

SlideAct Procedure 

 

The procedure is again applied to the maximum resource consuming period. Let us 

consider the same initial schedule. The activities whose starting time can be 

changed are the ones with positive slack values.  These activities are 3, 5, 6, 8 and 

9. Among these activities, the best improvement is achieved by one unit sliding of 

activity 6 such that it starts at 9t . By this change the maximum resource 

consuming period switches from period 8 to period 9 and the maximum load 

reduces from 57 to 54.  
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CHAPTER 6 

 

 

6. COMPUTATIONAL EXPERIMENTS 

 

 

 

In this chapter, our aim is to test the performance of our problem size reduction 

techniques, lower bounds and upper bounds. First, we discuss the generation of test 

problems, then we present our performance measures and lastly we discuss our 

results for the experiment. 

 

6.1 Data Generation 

Number of activities (N):  

 

The problem is solved with 6 different problem sizes. The number of activities is 

selected as 10, 20, 30, 40, 60 and 80.  For each problem size 10 instances are 

solved, so a total number of 60 instances are used to test the algorithm. We used a 

two phase methodology to generate these instances. In the first phase we generate 

the project network using Project Scheduling Instance Generator (ProGen) of 

Kolisch and Sprecher (1996). In the second phase we generate random processing 

times for activities and using these times, we find activity modes.  ProGen is not 

used for mode generation as it fails to generate more than 5 modes for an activity.  

We next explain our problem parameters;
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Project Network:  

 

For the Activity on Node (AoN) representation, coefficient of network complexity 

(CNC) is defined as the number of precedence relations per node. It means 

increasing CNC results in a more interconnected network. Alvarez-Valdes and 

Tamarit(1989) have shown that as the network gets more complex, the time 

required to solve the problem of those networks decreases. In our problem sets, 

networks of complexity 1.5 is used which is the lowest complexity preferred. In 

order to observe the effect of precedence network, we also include problem 

instances with higher CNC value of 2.1. For those networks we set 20N and 

80N and generate 10 problem instances for each N . To see the effect of number 

of modes, we use 20 instances, 10 with 20N and 10 with 80N . The instances 

are generated by decreasing the number of modes to half of its original setting. In 

doing so we take the odd modes, and skip the even ones.  As a total our problem set 

includes 100 problem instances.   

Processing Times and Resource Requirements:  

 

We adapt the random generation scheme of Ranjbar and Kianfar (2007) to generate 

our parameters. In order to generate the modes systematically, we first generate 

processing times of the activities. The processing time of each activity is generated 

from a uniform probability distribution between 10 and 100. Then the following 

procedure is applied; 1i ip w ; 1

1

i
i

i

w
r

p
 

1 1ij ijr r ; 
1

1

i
ij

ij

w
p

r
, if efficient 

1( )ij ijp p  accept; otherwise  

1 2ij ijr r ; 
1

1

i
ij

ij

w
p

r
, if efficient 

1( )ij ijp p  accept; otherwise 

… 

Generate modes until 1i jr . 
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The processing time of the activities define the number of modes. The maximum 

number of modes is 10 as 1 100 10ip  and 
1

100
10

10
ir . By decreasing 

1ir  

with unit increments, a maximum of 10 modes can be found. Similarly, minimum 

number of modes is 3. 

6.2 Performance Measures 

To evaluate the performance of our problem size reduction techniques, lower 

bounds and upper bounds, we define some performance measures. In this section, 

we describe our performance measures.  

The performance measures for problem size reduction techniques are 

 Number of activities for which mode and time decisions wait to be taken 

 Number of activity modes reduced by reduction properties 

 Percent Reduction in total number of modes 

The performance measures for lower bounds are  

 Percent deviation from the optimal objective function value (for the 

problems solved to optimality) 

 CPU Time (in seconds) 

 Frequency of defining the best lower bound 

 Frequency at which  optimal = lower bound 

The performance measures heuristics are 

 Percent deviation from the optimal objective function value (For the 

problems solved to optimality) 

 Frequency at which  optimal = heuristic solution  (For the problems solved 

to optimality) 

 Percent deviation from the best lower bound (For the problems no optimal 

solution is found) 

 CPU time (in seconds) 

For the construction heuristics we give the frequency each defines the best 

construction solution. 



65 

 

The heuristic results are compared with the heuristic algorithm of Hsu and Kim 

(2005). As discussed in Chapter 3, Hsu and Kim (2005) also consider renewable 

resources in their study, the only difference of their problem and our study is that 

they consider multiple resources.  

All these performance measures are reported by their worst case (maximum) and 

average values. 

We solve our mathematical models, and linear relaxations by GAMS using CPLEX 

solver. The algorithms are coded in C programming language.  We conduct our 

experiments in an Intel Core(2) Duo 2.33 G.Hz, 1GB RAM computer.  

6.3 Analysis of the Results 

Our data set includes 60 instances of complexity 1.5 and 20 instances of complexity 

2.1.  In the tables below, we evaluate our performance measures with respect to the 

optimal objective function values for the problem with up to 30 activities. It is 

because 5 out of 10 instances are solved in more than 30 minutes by CPLEX and 

none of the 40 activity instances could be solved to optimality in 30 minutes.  

We first investigate the effect of the mode elimination rules in reducing the problem 

size. Recall that Property 2 and Property 3 define the start times and modes of the 

activities whereas Properties 1, 4 and 5 eliminate the modes. 

In Table 6.1, we report on Property 1. The table includes the number of activities, 

number of noncritical activities, total and average number of modes for noncritical 

activities, the total number of modes reduced by those assignments is given.  

We also find the percentage of elimination in modes for these activities as

   
%

  

Number of Modes Eliminated
EL

Number of Modes
 and report the results. 
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Table 6-1 – The effect of Property 1 on the problem size 

N 

Number of 

noncritical 

activities 

Total number of 

modes of 

noncritical 

activities 

Average number 

of modes of 

noncritical 

activities 

Number of 

activity modes 

reduced by 

Property 1 

%EL 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

10 5.3 7 36 58 6.6 8.3 16.8 38 42.9 66 

20 13 14 90.7 110 6.9 8.1 8.8 30 
36.1 63 

30 21.5 23 154.2 165 7.7 7.2 48.4 92 31.2 58 

40 30.1 32 215.1 235 7.2 8.2 55.4 99.3 25.2 43 

60 48 52 347.8 377 7.2 7.6 69.2 117 19.8 31 

80 67.2 70 483.8 510 7.2 7.5 107.3 175 22.2 38 

 

It is seen from the table that Property 1 performs better with smaller problems as 

expected. Consider 10N  and 20N , on the average 39% of the modes are 

eliminated by Property 1 in these problem sizes whereas for 60N  and 80N  on 

the average 21% of the modes are eliminated. This is due to the fact that the 

makespan for smaller problems is more restrictive, so that the activities tend to have 

fewer slacks. Also it can be deducted from the table that Property 1 has an influence 

of 27.5% reduction in the number of modes on the average.  It is clear that reducing 

the number of modes by 27.5% is an important reduction in the problem size, 

verifying the effectiveness of Property 1.  

In the algorithm we first use Property 1 as we do not need any lower bound for it. 

Then, for the reduced problem and with a good lower bound on hand we use 

Property 2, to improve the lower bound and decide on some activities’ starting time 

and mode assignments. 

Table 6.2 reports on the efficiency of Property 2 and Property 3.  We let RN  denote 

the set of activities remained after employing Properties 2 and 3. In the table, we 

report the number of activities, number of noncritical activities, RN i.e. total 

number of activities in RN , number of modes per activity over  set RN , total 

number of modes eliminated by Property 3.   
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Table 6-2 – The effect of Property 2 and Property 3  

 

Note that when 10N , about half of the activities are set critical and taken out of 

consideration. For the remaining activities, on average 1 out of 5 of them are fixed 

by either Property 2 or Property 3. When 80N , the average number of noncritical 

activities is 67, 5 of which are fixed by the properties.  It can be inferred from Table 

1 that, for all problem sizes on the average, more than 7% of the activities’ start 

time and mode decisions are given by Property 2 or Property 3 and over 6% of the 

modes of the noncritical activities are eliminated from further consideration. With 

each activity eliminated from the decision process, more than 4 modes of each 

activity on the average are reduced.   Recall that the problem is NP-Hard hence 

reducing the number of activities is important and these two properties are quite 

effective in reducing the problem size.  

As shown with the example, property 4 definitely cannot make eliminations due to 

the mode generation scheme. After eliminating many modes and finding the LB, we 

may use Property 5, but as Property 1, 2 and 3 all eliminate longer modes like 

Property 5, performing Property 1,2 and 3 before, all long modes are eliminated and 

Property 5 can eliminate 18 modes in total for all the problem sets.  

Having discussed the effect of problem size reductions, we next study the 

performance of our lower bounds. We compare the performances relative to the 

optimal objective function values and use the following performance measure for 

iLB ,  

N 

Noncritical 

activities RN  

Total 

number of 

modes for NR 

Mode 

/activity for 

NR 

Total number 

of modes 

eliminated by 

Properties 2 

and 3 

% EL 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

10 5.3 7 4.4 6 17.1 27 3.99 5.4 3 10 0.15 0.47 

20 13 14 10.7 13 45.8 63 4.18 5.25 8.8 30 0.17 0.65 

30 21.5 23 19.4 21 97.1 118 5.01 6.56 8.9 14 0.09 0.21 

40 30.1 32 27.9 31 149.7 178 5.38 6.59 9.8 25 0.06 0.16 

60 48 52 45.5 48 265.7 297 5.85 6.56 12.9 20 0.05 0.07 

80 67.2 70 61.9 65 344.7 403 5.56 6.21 27.7 56 0.08 0.15 
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(% ) *100i
i

OPT LB
dev

OPT
,  where  

iLB  is the maximum resource consumption of lower bound i  and  

OPT is the optimal maximum resource consumption.  

 

In Table 6.3, the average and maximum percent deviations from the optimal and the 

number of times lower bound returns the optimal solution are reported. 

Table 6-3 – The relative deviations of the lower bounds from the optimal 

N 
%dev for LB1 %dev for LB2 %dev for LB3 %dev for LB4 

Avg. Max. Freq. Avg. Max. Freq. Avg. Max. Freq. Avg. Max. Freq. 

10 22.8 38 0 13.6 32 1 12.3 25 0 5.7 11 2 

20 35.3 52 0 21.6 36 0 11.5 22 0 4.6 9 2 

30 48.0 58 0 44.6 68 0 10.2 23 0 7.0 12 0 

 

1LB is the lower bound that performs the worst. For 10N it is 23% far from the 

optimal, this percentage increases even more when the problem gets larger. This is 

not surprising as this lower bound makes use of only two activities, and while the 

problem gets larger, the bound coming from the overlapping of two activities is 

relatively small. The same situation is valid also for 
2LB   Its deviation from optimal 

is 14% for 10N  and 44.6% for 30N . Although the bound is not restricted to 

two activities, as the makespan becomes larger for larger problem instances, the 

activities have more slack and they are not restricted to any time intervals, i.e., their 

earliest completion times are earlier than their late start times.  

3LB is a promising lower bound, as the number of activities in the problem instance 

increases, the lower bound performs better. On the average it is 11.3% away from 

the optimal solutions.  As expected 4LB  is the best performing lower bound and it 

works consistently well over all problem sizes.  The average deviation is below 7%, 

the maximum deviation is 12% and it finds optimal solutions in 4 out of 30 

instances. We expect this satisfactory behavior of 4LB , as we support the LP 

relaxation with some valid cuts and Property 2 and Property 3, and make it stronger.  
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We find that the optimal objective function values are so small that a small absolute 

deviation from the optimal solution may lead to high relative deviation, as it is a 

ratio of the optimal solution.  As the relative deviation of lower bounds from the 

optimal is valuable information to only some extent, we also report the absolute 

deviations of the lower bounds from the optimal objective function values in Table 

6.4. 

Table 6.4 reports the average optimal objective function value, average and 

maximum absolute deviations of each lower bound from optimal solution and 

average objective function values for lower bounds. 

i iAbsdev OPT LB ,  where OPT is the optimal objective function value and LBi 

is the objective function value for Lower Bound i .  

Table 6-4 - The absolute deviations of the lower bounds from optimals 

 

Note from Table 6.4 that the average relative deviation of 5.7% for 4LB stems from 

an average absolute deviation of 1.1 units. That means; the lower bound is 

approximately one unit lower than the optimal solution value. It is better seen in 

Table 6.4 that, lower bounds 3LB and 4LB outperform 1LB and 2LB . It is clear from 

tables 3 and 4 that for up to 30 activities, 4LB  performs better than 3LB .  Table 6.4 

shows that when 40N and 60N , the objective function values for 3LB  and 

4LB  are almost equal.   When N becomes 80,  4LB  again performs better.  

Table 6.5 reports the number of times each lower bound is best for each problem 

size.  

 

N 
OPT Absdev1 Absdev2 Absdev3 Absdev4 

Avg. Avg. Max. Obj. Avg. Max. Obj. Avg. Max. Obj. Avg. Max. Obj. 

10 21.7 5.4 12 16.3 2.6 6 19.1 2.8 6 18.9 1.1 2 20.6 

20 27.1 10.1 17 17 5.8 11 21.3 3.2 7 23.9 1.2 2 25.9 

30 32 15.4 21 16.6 14.1 21 17.9 3.3 9 28.7 2.2 3 29.8 

40 - - - 15.1 - - 17.0 - - 32.7 - - 32.6 

60 - - - 13.5 - - 15.1 - - 41.1 - - 41.2 

80 - - - 16.4 - - 20.2 - - 51.4 - - 55.4 
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Table 6-5 – The number of times each lower bound is the best  

N LB1 LB2 LB3 LB4 

10 2 3 5 10 

20 0 0 1 10 

30 0 0 5 8 

40 0 0 6 5 

60 0 0 6 6 

80 0 0 1 9 

 

The numbers include the ties hence the sum of the numbers in each row may be 

greater than 10. 

The table illustrates that the first and second lower bounds never define the best one 

when the number of activities is more than 10.  This is in the line with the deviation 

results.  For 40N the third lower bound,
3LB , defines the best solution more 

frequent than LP Relaxation bound, 4LB .   It finds the best solution in 6 out of 10 

instances whereas the LP Relaxation bound finds the best solution in 5 out of 10 

instances. When 60N , 3LB
 

and
 4LB define the best solution with the same 

frequency of 6.  However; when 80N , the performance of 4LB in defining the 

best solution becomes dominant. 
 
It finds

 
the best lower bound in 9 out of 10 

instances.  This number is only 1 for 3LB . 

We can conclude from tables 6.3, 6.4 and 6.5 that, in general, the lower bounds 

found by the first and second approaches are not satisfactory, and are inferior to the 

third and fourth lower bounds. The performance of the third lower bound, making 

use of minimum possible resource consumption idea, deteriorates as N gets larger. 

The strengthened LP Relaxation behaves consistently well over all problem 

instances and is far superior to other lower bounds. 

Table 6.6 reports the CPU times of finding 4LB  and the optimal solution. We do 

not give the CPU times of other lower bounds as they are negligibly small. 
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Table 6-6 – The CPLEX time for the optimal and the lower bound 

N 
LB4 (in seconds) OPT (in seconds) 

Avg  Max Avg Max 

10 0.67 0.78 0.26 0.38 

20 1.02 1.33 1.57 5.59 

30 2.10 3.36 15083.66 108106.6 

40 6.99 18.09 - - 

60 14.02 26.59 - - 

80 21.75 36.92 - - 

 

Recall that our problem is strongly NP-Hard hence one should expect that the 

solution times increase exponentially with problem size. The results in Table 6.6 

verify these expectations.  For small problem sizes, i.e., for 10N  and 20N , 

the average CPLEX times are less than 2 seconds.  When  N  becomes 30  the 

solution times reach to 4 hours.  For 30N , the maximum time used to find an 

optimal solution is more than 30 hours although one of the instances is solved in 

less than a second.  This follows the inconsistent behavior of optimal model 

solutions.  The LP relaxation time also increases with the problem size, however 

not exponentially.  The increases are linear, when N is increased from 40 to 80, i.e., 

2 times, the average CPU times increases from 6.99 to 21.75 second, i.e., 3 times.  

Even when 80N , the computation times do not reach to 1 minute.    

Due to the satisfactory performance of the lower bounds, we use them to evaluate 

our heuristic procedure. In doing so, for each problem instance we select the lower 

bound giving the maximum value. Table 6.7 gives the objective function value of 

optimal, relative and absolute percent deviations of the best lower bound from the 

optimal solution and frequency of finding the optimal solutions. As before, we use 

% *100
OPT LB

dev
OPT

 where 
1,2,3,4

i
i

LB Max LB  for percent relative deviations. 

Accordingly the absolute deviations are measured as Absdev OPT LB . 
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 Table 6-7 – The deviations of the best lower bound from the optimal 

N 
OPT Absdev %dev Frequency  

of optimal Avg. Max. Avg. Max. Avg. Max. 

10 21.7 32 1.1 2 5.7 11 2 

20 27.1 34 1.2 2 4.6 9 2 

30 32 40 2 3 6.5 12 0 

 

Table 6.7 illustrates that for 10N  and 20N  the best lower bound returns 4 

optimal solutions out of 20 instances.  When N  becomes 30, the best lower bound 

cannot find the optimal solution which is a signal of deteriorating  performances of 

the lower bounds with increases in the problem sizes.  The deviations verify this 

conclusion.  As seen from Table 6.7, the best lower bound is at most 3 units less 

than the optimal objective function value for all 30 problem instances. The average 

percent deviation is about 6%, which is quite good for estimating the optimal 

solution. 

Having discussed the effect of mode elimination procedures and performance of 

lower bounds, we now discuss the performance of our heuristic procedure. As 

discussed in Chapter 5, our heuristic has two main phases; construction and 

improvement. In the construction phase, 3 different construction heuristics are used, 

namely Early Start Schedule (ESS), Late Start Schedule (LSS), Alternating Early-

Late Start Schedule (AELSS). We first measure their performance relative to the 

optimal solutions for small-sized problem instances up to 30 activities and relative 

to the best lower bound over all problem sets. 

The relative deviations from the optimal solution and best lower bound are 

measured as follows; 

i. Relative Deviation of iCS  from Optimal:  % *100iCS OPT
devopt

OPT
 

where iCS is the maximum resource usage of construction schedule i , where 

, ,i ESS LSS AELSS  
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ii. Relative Deviation of 
iCS  from Best Lower Bound:  % *100iCS LB

gap
LB

  

where 
iCS  is the maximum resource usage of construction schedule i , where 

, ,i ESS LSS AELSS  

Tables 6.8 and 6.9 report the average and maximum relative deviations from the 

optimal and the best lower bounds, respectively. Table 6.8 also reports number of 

instances out of 10 each construction heuristic returns the optimal solution. 

Table 6-8 – The relative deviations of construction heuristics from the optimal 

N 
%devopt for CS1 OPT %devopt for CS2 OPT %devopt for CS3 Optimal 

Avg. Max. Freq. Avg. Max. Freq. Avg. Max. Freq. 

10 31.8 60 0 28.5 85 1 22 37 1 

20 56.5 120 0 51.2 136 0 45.6 105 1 

30 60.8 104 0 54.1 81 0 50.4 85 0 

 

 

Table 6-9 – The relative deviations of construction heuristics from the best lower 

bound 

N 
%gap for CS1 %gap for CS2 %gap for CS3 

Avg. Max. Avg. Max. Avg. Max. 

10 40.1 78 36.9 106 29.6 53 

20 64.1 132 59.2 160 53 116 

30 72.1 130 64.9 104 61 109 

40 80.7 126 82.5 137 64.7 107 

60 99.3 129 95.3 128 60.9 87 

80 80.1 117 105.4 143 72 104 

 

As it can be seen from Table 6.8, the construction heuristics return optimal 

solutions for small-sized problems with 10 and 20 activities.  Although for some 

small-sized instances the construction heuristics return very good results, their 

average performance is not as good.  Even for 10N , the construction heuristics 

return solutions that are 20-30% away from the optimal solution on average.  This is 
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not surprising as even the most complex construction schedule (AELSS) only 

considers early or late start times for the start times of the activities using a 

specified mode. Table 6.8 also reveals that when the problem size gets larger, the 

performance of the construction heuristic deteriorates. For 30N , the best 

construction heuristic (AELSS) generates solutions with objective function values 

over  50% far  from the optimal. So it is clear that the performance of these 

construction heuristics is not satisfactory and needs to be improved. Table 6.9 gives 

the deviations from the best lower bound. This table clearly shows that AELSS is by 

far the best construction heuristic as it performs better than others over all problem 

set.  

We next study the performance of the best construction heuristic. The performances 

are measured by the absolute deviations from the optimal solution and best lower 

bound that are stated below. 

i. Absolute Deviation from the Optimal:  { }i
i

Absdevopt Min CS OPT  where 

iCS is the maximum resource usage of construction heuristic i , where 

, ,i ESS LSS AELSS  

ii. Absolute Deviation from the Best Lower Bound: { }i
i

Absgaplb Min CS LB  

where iCS is the maximum resource usage of construction heuristic i , where  

, ,i ESS LSS AELSS  

Table 6.10 and Table 6.11 report the relative and absolute deviations of the best 

construction heuristic from the optimal objective function value and the best 

lower bound, respectively. Table 6.11 also reports on the frequency of the best 

construction heuristic. 

Table 6-10 – The absolute and relative deviation of the best construction heuristic 

from the optimal 

N 
Absdevopt %dev for best CS 

Avg. Max. Avg. Max. 

10 3.5 6 18.6 33 

20 8.1 20 31.8 67 

30 14.8 21 0.481 0.81 
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Table 6-11- The absolute and relative deviation of the best construction heuristic 

from the best lower bound and frequency of best construction heuristic 

N 
Absgap  %gap  for best CS Best Schedule frequency 

Avg. Max. Avg. Max. CS1 CS2 CS3 

10 4.6 8 26.2 47 2 7 7 

20 9.3 22 38.4 79 3 3 6 

30 16.8 24 58.5 104 3 5 6 

40 19.1 25 59.9 85 2 3 6 

60 25.3 39 60.9 87 0 0 10 

80 35.4 47 65.4 98 2 1 6 

 

For each problem instance the best construction heuristic is chosen and its deviation 

from optimal is found. Table 6.10 illustrates these results.  The table shows that the 

maximum deviations from optimal are about twice the average deviations. For 

instance when 20N  the average deviation from the optimal objective function 

value is 8.1, the worse case brings a solution that deviates about 20 units from the 

optimal.  This reveals that the construction heuristics’ solutions are not consistent. 

Also, the average relative deviations of the best construction heuristic from the 

optimal are increasing consistently and sharply with the increasing number of 

activities. 

It is seen from table 11 that, even selecting the best construction heuristic does not 

result in solutions close to the best lower bounds. For example when 30N , the 

deviation of the best construction heuristic from the best lower bound is 

approximately 60%.  It can be observed that the best construction heuristic’s 

objective function value may even be twice of the best lower bound.  Table 11 

shows that AELSS is the best construction heuristic that deviates least from optimal.  

However from some instances the other construction heuristics give better results.  

ESS gives the best solutions in 12 out of 60 instances, LSS and AELSS give 19 and 

41 instances respectively, including the ties. To summarize the majority of the best 

solutions come from AELSS and the other construction heuristics are also worth 
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consideration. The results on the construction heuristics’ performances point a need 

for improvement.   

We  compare our heuristic results after the improvement step, not only with the 

optimal solutions and lower bounds but also with the heuristic of Hsu and Kim 

(2005) (HKH) as discussed in section 6.2.  Both our heuristic and HKH are applied 

to the problem reduced by mode elimination mechanisms. The performances of 

both heuristics are reported in tables 6.12 through 6.15. In all the tables, the same 

performance measures are reported for both heuristics.  

Table 6.12 and Table 6.13 report on the performance of both heuristics with respect 

to the optimal solution for the problem sets when 30N . Table 6.12 reports the 

average and maximum relative deviation of the heuristics from the optimal solution 

and the number of times they find the optimal solution. Table 13 reports the average 

and maximum optimal objective function values and absolute deviation of both 

heuristics from optimal which are found as below.  

i. Relative Deviation of  iUB  from Optimal:  % *100iUB OPT
devopt

OPT
 where 

iUB is the maximum resource usage of heuristic i  where ,i IH HKH  

ii. Absolute Deviation of iUB  from Optimal:  { }i
i

Absdevopt Min UB OPT  where 

iUB is the maximum resource usage of heuristic i  where = ,i IH HKH  

Table 6-12 – The relative deviations of the best upper bound from the optimal and 

frequency of optimal solutions 

N 
%dev for IH Frequency 

of optimal 

%dev for HKH Frequency 

of optimal Avg. Max. Avg. Max. 

10 1.6 10 8 16.5 28 0 

20 5.4 9 1 20.3 32 0 

30 6.2 9 0 29.4 44 0 

 

Table 6.12 shows that IH provides 9 optimal solutions in 30 instances, 8 of which 

are for 10 activities. The average relative deviation from optimal is around 6 %. It is 

seen from the table that HKH cannot find any optimal solution for 30 problems; it 

does not even perform well even for 10N . Actually, this is not surprising as that 
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algorithm is a priority based rule and it only positions the activities to anywhere in 

its allowable range and it does not use any improvement procedure. 

Table 6-13 - The absolute deviations of the best upper bound from the optimal 

N OPT Absdev for IH Absdev for HKH 

Avg. Max. Avg. Max. Avg. Max. 

10 21.7 32 0.3 2 3.5 8 

20 27.1 34 1.4 3 5.5 8 

30 32 40 1.9 3 9.5 15 

 

Table 6.13 reveals the satisfactory behavior of IH. The average absolute deviation 

of the heuristic from the optimal objective function value is less than 2 units, 1.9 

units, for 30N . Note that the maximum absolute deviation from the optimal 

objective function value is only 3, hence the heuristic behaves consistently well 

over all problem instances. HKH returns an average absolute deviation of 3.5 units 

for the smallest problem set that is greater than the maximum absolute deviation of 

IH for 30N . These results are enough to conclude that for small problem 

instances whose optimal solutions are known, HKH is inferior to IH.  

For the problem sets including more than 30 activities, we compare our results with 

the best lower bounds. Note that the deviation of the best lower bound from the 

optimal objective function value for 30N  is around 6%.  

We calculate the relative and the absolute deviations of the heuristics from the best 

lower bound available and report the results in Tables 6.14 and 6.15, respectively.  

i. Relative Deviation of  iUB  from the best lower bound:  

% *100iUB LB
gaplb

LB
 where iUB is the maximum resource usage of heuristic 

i  where ,i IH HKH  

ii. Absolute Deviation of iUB  from the best lower bound:  

{ }i
i

Absgaplb Min UB LB  where iUB is the maximum resource usage of 

heuristic i  where = ,i IH HKH  
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Table 6.15 also includes the objective function values of the best lower bounds. 

Table 6-14 – The relative deviations of the upper bound from the best lower bounds 

N 
%gaplb for IH %gaplb for HKH 

Avg. Max. Avg. Max. 

10 7.9 22.2 23.7 38.9 

20 10.4 20 26 32.2 

30 13.4 21.7 38.3 53.6 

40 13.5 15 33.2 45.9 

60 16.6 23 48.4 85.7 

80 16.1 21 38.9 47.6 

 

The average deviation of IH from the best lower bound is very small, 7.9%, for 

10N . It is due to the fact that, the lower bounds are very close to the optimal 

objective function values for that problem size and the upper bounds found by IH 

are nearly optimal. The same is true for 20N . For larger problem sizes, we 

expect that the relative gap between the lower bound and upper bound increases.  In 

line with our expectations, our experimental results show that our lower bounds 

deteriorate by the increase in the number of activities. Looking at the deviations in 

Table 6.14, it can be seen that the upper bounds of problem sets with more than 20 

activities deviate more from the lower bound. But, the table shows that the 

maximum deviation from the best lower bound for IH is always less than 23% and 

the average deviation is around 15 %. HKH, when the problem size increases does 

not get better, but we can say that it does not get worse either. For 80N , for 

example, the deviation from the best lower bound still deviates less than 40% from 

the best lower bound as for 30N .  
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Table 6-15 – The absolute deviations of the upper bound from the best lower 

bounds for each heuristic 

 

N 
LB Absgap for IH Absgap for HKH 

Avg. Max. Avg. Max. Avg. Max. 

10 20.6 32 1.4 4 4.6 8 

20 25.9 34 2.6 5 6.7 10 

30 30 38 3.9 5 11.5 17 

40 33.4 49 4.4 5 11.4 21 

60 42 56 6.8 9 20.3 36 

80 55.8 67 8.9 11 21.7 29 

 

It should be noted from Table 6.15 that, as the problem size increases the objective 

function values also increase. The objective function values for 80N  are twice 

more than those of 20N  and the deviation from the best lower bound increases 

in the same way. Again, from Table 6.15 it can be seen that the maximum deviation 

of IH, from the best lower bound is less than half of the average deviation of HKH 

for over all problem set. All these results, and the fact that HKH could not perform 

better than IH for even a single instance, shows the superiority of IH over HKH.  

 

Table 6.16 shows the average and maximum computational times of finding the 

heuristic algorithm (construction and improvement all together) and HKH.  The 

mode elimination procedures are not reported as they use negligible time (less than 

one tenth of a second). All CPU times are reported in seconds. 
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Table 6-16 – The CPU times of the algorithms 

N 
CPLEX TIME BEST LB 

OUR 

HEURISTIC 
HKH 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

10 0.264 0.38 0.52 0.63 0.94 1.27 0.53 0.65 

20 2.24 5.04 0.99 1.33 2.28 4.50 1.02 1.42 

30 15083.66 108106.6 1.86 3.2 4.84 8.42 2.13 3.72 

40 - - 3.64 6.72 9.20 20.02 4.36 6.88 

60 - - 15.02 32.92 30.94 52.92   20.56 40.95 

80 - - 23.26 48.33 48.86 86.67 35.63 65.77 

 

As seen in Table 6.16, the CPLEX time increases exponentially with increases in 

the number of activities.  On the other hand the lower bound times increase linearly.  

The lower bounds are used both by our heuristic and HKH, hence we include the 

lower bound times to all heuristic times. The CPU times spent both by our heuristic 

and HKH are quite small.  Note from the table that the maximum time for the 

highest number of activities, i.e., 80N , is slightly less than 90 seconds by our 

algorithm and 70 seconds by HKH.  For all problem instances the HKH produces 

quicker solutions than our heuristic however at an expense of lower quality. 

As discussed before, we used 20 instances with CNC value of 2.1 having 20 and 80 

activities, in the following tables we will denote them 20+ and 80+ respectively. 

Recall that, Alvarez and Tamarit (1989) discuss that when CNC increases the 

problem becomes easier. This makes sense because the starting time alternatives for 

activities decrease as the network becomes more interrelated.  

Then, we discuss the effect of the network complexity on the speed and quality of 

the solutions.  We extend our experiment with 20 instances of 20 and 80 activities 

each having CNC value of 2.1.   We compare the results with those of the same size 

with CNC value of 1.5.  As discussed by Alvarez and Tamarit (1989) when the 

CNC value increases the problems become easier to solve.  Hence our main 

experiment with small CNC values includes hard-to-solve problem instances.    

We analyze the effect of the CNC value in the reducing the problem size and report 

the results in Table 6.17.  The table includes the average and maximum number of 



81 

 

noncritical activities, number of activities in the set 
RN , total number of modes of 

noncritical activities, number of modes eliminated by Property 1, number of modes 

eliminated by Property 2 and 3, and total percent reduction.  

Table  6-17 – The problem size comparison for different CNC values  

N CNC 

Noncritical 

Activities 
NR

 

Total 

number of 

modes for 

noncritical 

activities 

Number of 

Modes 

Eliminated 

by Property 

1 

Number of 

Modes 

Eliminated 

by Property 

2 and 3 

%EL 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 

 

1.5 13 14 10.7 13 90.7 110 36.2 63 8.8 30 48.3 83.8 

2.1 12.5 14 11.5 13 87.3 108 34.3 53 3.3 11 42.2 62.8 

80 
1.5 67.2 70 62 65 483.8 510 107.2 175 27.3 56 27.8 46.6 

2.1 65.9 70 60.8 68 477.6 509 137.4 204 22.4 35 33.2 49.2 

 

Note from the table that for small N, N = 20, the power of the elimination for 

different CNC values are very close.  When N = 80,  the effect of property 1 

becomes more visible.  The property eliminates about 5% more modes when the 

CNC value increases from 1.5 to 2.1.  This is due to having tighter precedence 

relations that leave smaller room for the start times. 

The performance of the best lower bound,
4LB , relative to the optimal solution is 

evaluated only for 20N  as the optimal solutions are not available for  N = 80.  

When 2.1CNC ,  the deviation of the best lower bound from the optimal is 4.8% 

hence is better than that of 1.5CNC which was found around 6%.   This is due to 

the fact that when the CNC value is higher, there are more precedence constraints 

and the total slack values of the activities are smaller.  This leaves fewer choices for 

the decision variables; hence the resulting solutions are more close to the optimal 

ones. 

The performances of our heuristic and HKH are given in Table 6.18. The table 

reports the number of activities and average and maximum relative deviations of 

heuristics IH and HKH from the optimal solution (for 20N ) and lower bounds 

for each CNC value. 
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Table 6-18 - The deviations of heuristics for different CNC values 

N CNC %dev for IH %dev for 

HKH 

%gap for 

IH 

%gap for 

HKH 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 1.5 5 12 23.1 31 10.4 19 29.3 40 

2.1 5.4 9 20.3 32 5.6 10 26.1 32 

80 1.5 - - - - 16.1 21 38.9 48 

2.1 - - - - 15.5 25 46 62 

 

As can be observed from Table 6.18, there is no significant and consistent effect of 

CNC on the quality of the heuristic procedures.  The percentage deviations of 

different CNC values are very small and close.  Note that the average relative 

deviation of IH increases from 5% to 5.4%, when the CNC value increases from 1.5 

to 2.1.  On the other hand,  the average relative deviation of  HKH decreases from 

23.1% to 20.3%, when the CNC value increases from 1.5 to 2.1.  The similar results 

hold for the percentage gaps.    

Finally, we discuss the effect of the CNC values on the solution times. Table 6.19 

reports the CPU times for the optimal solutions, best lower bound, IH and HKH  

heuristics.   

Table  6-19 – The CPU time comparison for different CNC values  

N CNC 
CPLEX Time 

CPU Time of 

Best  LB 

CPU Time of 

IH 

CPU Time of 

HKH 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 

 

1.5 2.24 5.04 0.99 1.33 2.28 4.50 1.02 1.42 

2.1 0.48 0.69 1.02 1.36 2.15 3.07 1.04 1.39 

 

80 

1.5 - - 23.26 48.33 48.86 86.67 35.63 65.77 

2.1   30.19 68.42 52.65 115.64 42.01 92.47 

 

Note from the table that the average CPU time is 2.24 seconds when CNC = 1.5 and 

0.48 seconds when CNC = 2.1.  This is due to the fact that when CNC is higher, 

there are more precedence constraints and activity slack times are smaller.   This 

follows the binary decision variables are fewer, hence the optimal solutions can be 
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obtained quicker.   For the best lower bound and heuristic procedures we do not 

observe any significant effect of the CNC values on the performances.  There is a 

slight increase in CPU times which can be attributed to the increased project 

completion time due to the added precedence constraints. 

We now discuss the effect of the number of modes. Table 6.20 illustrates the effect 

of number of modes on the problem size reduction mechanisms. In the table, 

together with number of activities we illustrate number of non-critical activities, 

RN , total number of modes for 
RN , number of modes eliminated by properties, 

and total reduction in problem size by the reduction mechanisms.  

 

Table 6-20 – The problem size comparison for different number of modes settings 

N 
Mode 

Setting 

Noncritical 

Activities 
NR

 

Total 

number of 

modes for 

noncritical 

activities 

Number of 

Modes 

Eliminated 

by Property 

1 

Number of 

Modes 

Eliminated 

by Property 

2 and 3 

%EL 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 

 

1 13 14 10.4 13 49.8 61 18.5 35 6.3 21 48.1 90 

2 13 14 10.7 13 90.7 110 36.2 63 8.8 30 48.3 83.8 

40 
1 30.1 32 27.9 31 117.1 129 27.6 52 5.6 14 27.6 51.7 

2 30.1 32 27.9 31 300.7 344 76.4 134 9.8 25 28.4 45.6 

 

Note from Table 6-20 that the number of noncritical activities does not change as 

the smallest duration modes do not change due to the mode generation scheme.  It is 

clear from the total problem size reduction percentages that the number of modes 

has no effect on the elimination power of the properties.  

Table 6-21 illustrates the effect of number of modes on the performance of our 

heuristic procedure. It reports percent deviation of the IH and HKH solutions from 

the optimal solution and the best lower bound value. 
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Table 6-21 - The deviations of heuristics for different number of modes settings 

N 
Mode 

Setting 

%dev for IH %dev for HKH %gap for IH %gap for HKH 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 
1 3.8 10 18.3 24 11.3 25 26.6 32 

2 5 12 23.1 31 10.4 19 29.3 40 

40 
1 - - - - 13.2 15 35.2 52 

2 - - - - 13.5 15 33.2 45.9 

 

According to Table 6-21, when there are fewer modes, the heuristic solutions are 

closer to the optimal solution.  When compared with the lower bounds, the 

performances are similar under both settings. For both mode settings, our heuristic 

outperforms HKH.  

Table 6-22 reports the CPU times for the optimal solution, best lower bound, and 

the heuristics, IH and HKH.  

Table 6-22 - The CPU time comparison for different mode number settings  

N 
Mode 

Setting 

CPLEX 

Time 

CPU Time of Best  

LB 

CPU Time of 

IH 

CPU Time of 

HKH 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 

1 1.33 2.34 0.71 0.97 1.65 2.44 0.72 1.02 

2 2.24 5.04 0.99 1.33 2.28 4.5 1.02 1.42 

40 

1 - - 2.34 3.78 7.7 13.67 2.9 4.58 

2 - - 3.64 6.72 9.31 18.02 4.36 7.7 

 

Table 6-22 reveals that not only the optimal solutions but also the bounding 

procedures are found quicker when there are fewer modes. However the effect of 

the number of activities is more dominant than that of number of modes, for all 

approaches. Note that when N increases two times from 20 to 40, the CPU times of 

the best lower bound increase from 0.71 to 2.34 seconds, respectively, for the fewer 

mode case.  On the other hand,  when the number of modes increase two times, the 

CPU times of the best lower bound increase from 0.71 to 0.99 seconds. 
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CHAPTER 7 

 

 

7. CONCLUSIONS 

 

 

 

In this study, we consider a resource investment problem with time-resource trade-

offs. We assume each activity consumes a renewable resource during its execution 

and the duration of an activity can be reduced by consuming extra resources.  Each 

time- resource combination defines a mode for an activity and there are several 

activity modes.  We constrain the project length by the completion time found when 

all activities are set to their minimum duration modes.   

Our problem to find activity durations that minimizes the maximum resource 

without increasing the minimum project length.  The problem is shown to be 

strongly NP-hard.  Hence optimal solutions to the medium to large sized instances 

are hardly obtained in reasonable time.   

In this study we propose several problem size reduction techniques, heuristic and 

the lower bounding procedures.  The results of our experiments have revealed that 

the reduction techniques and bounding procedure perform very satisfactory over all 

problem set.  The performances slightly deteriorate with the increases in the number 

of activities, number of modes and decreases in the complexity index.  Even for the 

largest problem sizes, our heuristic solutions deviate from the best lower bounds by 

about 16%.  

We observe that our mode elimination procedures reduce the problem size by more 

than 30%, either by eliminating the modes of the activities or settling their start 
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times. Lower bounds serve as underestimates on the optimal objective function 

values.   We find that our lower bounds produce solutions that are very close to 

optimal.  For problem sizes with less than 40 tasks, the average relative deviation of 

the best lower bound from the optimal is around 6% and the absolute deviation of 

the best lower bound from the optimal is no more than 3 resource units.  

Our heuristic procedure runs in two steps: construction and improvement.  We find 

that our heuristic’s performance is very similar to that of our lower bound as it 

deviates from the optimal by 6% on the average and the average absolute deviation 

from the optimal is again no more than 3 units. We also compare our heuristic with 

the heuristic proposed by Hsu and Kim (2005) and find that our heuristic is far 

superior. It has outperformed Hsu and Kim (2005)’s heuristic in all instances 

without any exception.   

We hope that our study fills an important gap in the resource constrained project 

scheduling literature.  To the best of our knowledge there is a unique reported study 

that tackles with our problem.  The study proposes a heuristic solution that is found 

to have inferior performance when compared with ours.    

The future research around our problem may consider the following issues.  Our 

reduction mechanisms and bounding approaches can be embedded into an 

optimization procedure. Our results can be extended to the preemptive activities 

case. We assume a single renewable resource; future research may consider 

multiple renewable resources and nonrenewable resources as well.  Other resource 

leveling objectives like minimizing range of resource usages may be worth 

studying. Three attribute trade-offs including time, cost and resource can also be 

considered in future research. 
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