
USING FEATURE MODELS FOR REUSABILITY IN AGILE METHODS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MARCIN JEDYK

 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

MAY 2011

Approval of the thesis:

USING FEATURE MODELS FOR REUSABILITY IN AGILE METHODS

submitted by MARCIN JEDYK in partial fulfillment of the requirements for the

degree of Master of Science in Computer Engineering Department, Middle

East Technical University by,

Prof. Dr. Canan Özgen _______________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _______________________

Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali Doğru _______________________

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Adnan Yazıcı _______________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali Doğru _______________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Coşar _______________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün _______________________

Computer Engineering Dept., METU

Assist. Prof. Dr Reza Hassanpour _______________________

Computer Engineering Dept., Çankaya Univ.

 Date: ________________

iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name: Marcin Jedyk

 Signature: _____________

iv

ABSTRACT

USING FEATURE MODELS FOR REUSABILITY IN AGILE METHODS

Jedyk, Marcin

M.Sc., Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Doğru

May 2011, 84 pages

The approach proposed in this thesis contributes to implementing source code

reuse and re-engineering techniques for agile software development. This work

includes an introduction to feature models and some of the Feature Oriented

Software Development (FOSD) practices to achieve a lightweight way of

retrieving source code. A Feature model created during the course of following

FOSD practices serves as an additional layer of documentation which represents

the problem space for the developed application. This thesis proposes linking

source code with such a feature model for the purpose of identifying and

retrieving code. This mechanism helps with accessing the code segment

v

corresponding to a feature with minimal effort, thus suits agile development

methods.

At the moment, there is a gap between feature oriented approaches and agile

methods. This thesis tries to close this gap between high-level approaches for

software modelling (feature modelling) and agile methods for software

development.

Keywords: Source code reuse, Feature Model, Agile methods

vi

ÖZ

KIVRAK METOTLARDA YENIDEN KULLANILABILIRLIK IÇIN NITELIK

MODELIMI KULLANIMI

Jedyk, Marcin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Doğru

Mayıs 2011, 84 sayfa

Bu tezde önerilen yaklaşım kıvrak yazılım geliştirme için kaynak kod yeniden

kullanımı ve yeniden yapılandırmasına katkıda bulunmaktadır. Bu çalışmada

kaynak koduna hafif bir yöntem ile ulaşım için Nitelik Modelleri ve Nitelik

Yönelimli Yazılım Geliştirme (Feature Oriented Software Development

(FOSD)) kullanımı önerilmektedir. FOSD uygulaması ile oluşturulan nitelik

modeli, geliştirilen uygulama için problem uzayının belgelenmesinde bir ek

katman olarak da hizmet etmektedir. Bu tez, kodun tanımlanması ve ulaşılması

için kaynak kodunun nitelik modeli ile ilişkilendirilmesini önermektedir. Bu

mekanizma ile bir niteliğe karşı düşen kod parçasına minimal bir çaba ile ulaşma

mümkün olmaktadır ve böylece kıvrak geliştirme metotlarına uygunluk

vii

sağlanmaktadır.

Şu an, Nitelik Yönelimli yaklaşımlar ve kıvrak yöntemler arasında bir

bağlantısızlık mevcuttur. Bu tezde yüksek düzeydeki yazılım geliştirme

yaklaşımları (nitelik modellemesi) ile kıvrak yazılım geliştirme metotları

arasındaki bu boşluk doldurulmaya çalışılmaktadır.

Anahtar Kelimeler: Kaynak kodun yeniden kullanılabilirliği, Ana özellik modeli,

Kıvrak metotlarda

viii

To Maryam

ix

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Assoc. Prof. Dr. Ali Doğru who was

always ready to share his wisdom and insightful ideas while I was working on

my thesis. His knowledge on variety of topics and disciplines significantly

contributed to this work. I appreciate his help and motivation while I was

studying in Middle East Technical University.

I would also like to thank Assoc. Prof. Dr. Tolga Can for his help and support,

both, when I was an Erasmus student at METU and when I became a regular

student. His help and encouragement motivated me to apply for Masters

programme at METU.

I would also like to express my gratitude to my parents who supported me during

studies and motivated me to work hard and achieve my goals. They were always

very supportive.

My friends, Maryam, Kemal, Masoud, Saeid and Eldi also helped me while I

was working on thesis and I would like to thank them for their support and

contribution.

At last but not least, I would like to thank my previous supervisor and Erasmus

coordinator from Faculty of Computer Science and Management, Wroclaw

x

University of Technology, Dr. Jan Kwiatkowski. I would like to thank for his

help while I was working on my first thesis while I was studying at METU.

xi

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

CHAPTERS

1. INTRODUCTION ... 1

1.1 Motivation .. 3

1.2 Thesis organisation ... 4

2. BACKGROUND INFORMATION AND CURRENT WORKS 6

2.1 Source code analysis ... 7

2.1.1 Source code re-engineering ... 8

2.2 Software development methodologies ... 11

2.2.1 Agile software development ... 15

2.3 Documenting software design .. 17

2.3.1 Domain engineering .. 18

2.4 Software reuse .. 23

2.4.1 Software product lines .. 25

2.4.2 Component-Based Software Engineering 27

2.5 Feature modelling ... 29

2.5.1 Feature trees and feature models ... 30

xii

2.5.2 Feature oriented domain analysis (FODA) 32

2.5.3 Feature-Oriented Software Development (FOSD) 33

3. USING FEATURE MODELS FOR REUSABILITY IN AGILE

METHODS ... 35

3.1 Overview of the approach .. 36

3.2 Constrains and limitations of current work 45

3.3 Suggested usage of the approach .. 46

3.3.1 Roles and responsibilities.. 47

3.3.2 Code and feature models sharing and maintenance 48

3.3.3 Feasibility of the approach .. 50

3.4 Design of the system .. 55

3.4.1 Code analysis .. 56

3.4.2 Representing Features and Functions 58

3.4.3 Code retrieval .. 59

3.4.4 User interface and code visualisation...................................... 63

3.4.5 Creating sample project .. 66

4. EVALUATION OF THE APPROACH .. 71

4.1 Test design and testing approach .. 72

4.1.1 Target group and environment .. 74

4.1.2 Test results and participants‟ feedback on the tool and

approach .. 75

5. CONCLUSIONS AND FUTURE WORK .. 77

BIBLIOGRAPHY ... 82

xiii

LIST OF TABLES

TABLES

Table 4.1: Time required for retrieval and identification of a source code for

particular feature. Measured for different participants with and without

provided tool .. 75

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 RUP phases and disciplines ... 14

Figure 3.1: Overview of creating project with proposed methodology 40

Figure 3.2: Process of identifying assets and source code reuse 41

Figure 3.3: Roles, assets and project allocation and access for proposed 50

Figure 3.4: Simplifed model of function representationed model of function

representation .. 60

Figure 3.5: Sample Java function - subject to source code retrieval and analysis,

1 ... 61

Figure 3.6: Sample Java function - subject to source code retrieval and analysis,

2 ... 61

Figure 3.7: Sample Java function - subject to source code retrieval and analysis,

3 ... 61

Figure 3.8: Main layout of the interface .. 64

Figure 3.9: Additional view with listed (discovered) features 64

Figure 3. 10: Functions call hierarchy for particular feature 65

xv

Figure 3.11: Interface with function call hierarchy and discovered code for

particularfunction .. 66

Figure 3.12: Creating new project ... 67

Figure 3.13: Interface for adding features to feature model 68

Figure 3.14: Sample feature model ... 68

Figure 3.15: @Feature annotated code in IDE .. 69

Figure 3.16: Function call tree with selected function to display in source code

pane ... 70

Figure 3.17: Interface with selected function in function call tree and displayed

source code .. 70

Figure 4.1: Sample feature model ... 72

1

CHAPTER 1

INTRODUCTION

Advancements in a field of a software engineering and computer science enabled

use of software products in various fields such as automotive, defence, enterprise

operations support, entertainment and many more. The growing importance and

ubiquity of software projects influences the way in which software is designed,

developed and maintained. Growing importance makes the software market

bigger which implies growing competition on that market. This increases need

for cheaper, more reliable and faster delivery of products to the end users.

Lowering costs and/or increasing quality of products are aims for many

industries because it leads to growth of sales and profits. Different industries

would have different approaches for achieving mentioned goals. For production

industry lowering cost could be attained by decreasing materials waste without

lowering quality of production and without increasing costs of labour above what

was saved. In software production industry approach should be obviously

different since different kind of „material‟ is used. The obvious need for making

software faster, cheaper and more reliable is not a new idea and up to now, lots

of work has been done on software reuse field. Such works should lead to

establishing new standards and making software development more a predictable

discipline rather than art.

2

For lowering costs of software development, new approach like agile software

development could be used which allows for developing software products with

lower overhead. On the other hand, there are Feature-Oriented Software

Development (FOSD) and Feature Modelling practices which allow for rapid

modelling of the applications. Each of them is important and efficient

approaches used in the software industry.

Someone could ask, why should we write again a source code which has already

been written „somewhere by someone‟? Until now, „reinventing the wheel‟ is

unfortunately a common practice in software industry. It is because software

reuse practices are not very well established and in most of the cases it is simpler

and easier for a company to write a code from a scratch rather than use once

written code or even use market-available component. Of course, nowadays it is

much better in terms of using available libraries, components, frameworks or

execution environments (i.e. application servers) than in ‟80 or early ‟90.

Nowadays developers have wide range of libraries (both free and commercial) as

well as very powerful Java programming language which has build in many

functions and data structures – now, when using Java programming language

developers do not have to implement by themselves such structures as hash set,

linked list, blocking queue, etc. Also, some very popular algorithms such as

quick sort and very basic design patter – observer, are available for Java

programmers without need of implementing them. Of course, even back in ‟80

or early ‟90 such data structures or algorithms could be included via libraries into

programs, but there was a chance of data incompatibility when third part libraries

were used. When Java-like widespread of data structures and basic algorithms is

taken into consideration, it could be concluded that with advance of computer

science, some higher level solutions or components will be also easily available

for developers without need of fully implementing them – without need for

3

„reinventing the wheel‟. However, it is possible that in order to achieve that,

new programming languages, paradigms or just new way of thinking about how

software have to emerge.

Unfortunately it could take many years until software reuse will be advanced

enough to use for example „online login form‟ as easy as hash set in Java. Until

it happens it would be worth to focus on more realistic software reuse techniques

which also would increase quality, productivity and decrease development costs.

It would be even better if a company could create its own reusable assets while

working on their projects – such assets could be later used in other projects or

even sold on a market to other companies generating additional revenue. The

problem with current techniques for software reuse is they are very complex and

expensive to introduce which is a serious barrier for many potential adopters.

1.1 Motivation

At the time of writing, there is no work which combines usage of agile

development methods and feature models for rapid modelling the application and

reusability. Lack of such approaches creates a niche for it. An approach which

combines agile development with feature models for reusability should have low

entry and exit barriers which mean that development teams could start using this

kind of approach without need of high expenses and at the same time could

abandon it without any obstacles. What is also important such approach should

be easily comprehendible and should not add high overhead to standard

development processes. Those who are familiar with agile development could

come to a conclusion that such „lightweight‟ and „developer friendly‟ approach

could be build upon similar ideas as agile development methods – without

unnecessary bureaucracy and heavy processes.

4

The purpose of this work is to deliver an approach which meets above criteria -

especially it should be close to agile development methods. Proposed approach

will allow for using feature models for improving reusability with agile methods.

Such approach will allow for reuse once written code, or rather „retrieve once

written code‟ basing on a feature model. In such case, source code would be a

low-level resource (asset) and feature model would be a high level abstraction of

it. Usage of such approach would allow developers for easy access to their or

other programmers‟ source code which could have positive influence on an

overall quality of developed products.

Another purpose of this work is to show that it is possible to implement and

introduce such agile-like approach for source code reuse and re-engineering. By

proposing such easy and lightweight approach for a complex task as software

reuse, I want to provoke new way of thinking about software reuse – I want to

encourage other researchers to think about other simple and easy to use

approaches for other difficult problems in a field of software engineering. By

changing way of thinking, we can solve complex problems in much simpler way

– instead of providing complex solution for a complex problem, it would be

better to make that problem simpler and provide simple solution. Proposed

approach is not a silver bullet and at current stage, reusing source code would not

be as easy as using a hash set in Java, however, reusing company‟s assets would

become possible at low cost and without big overhead.

1.2 Thesis organisation

This thesis is organised as follows. Chapter 2 presents background information

on source code analysis methods and source code reuse, features oriented

approaches, software product lines and software development methodologies.

That chapter focuses on various trends including those which are firm and

5

widely accepted by academicians as well as those which are relatively new and

are object of evaluations. Understanding of basic concepts presented in that

chapter is essential to understand and analyse proposed approach. Chapter 3

presents proposed solution with examples how does it work and how could it be

used. Chapter 4 is an evaluation of proposed approach and describes how it was

evaluated. That chapter allows us to understand how developers could use the

approach and what their individual attitude towards it is. Chapter 5 concludes

presented solution and points out possible further works and extensions to given

approach.

6

CHAPTER 2

BACKGROUND INFORMATION AND CURRENT

WORKS

This chapter presents current and past researches on various aspects of reusable

software development and software development methodologies with focus on

agile development. The core issues of this chapter are source code analysis and

source code reuse, domain engineering, software product lines, feature modelling

and software development methods. This chapter also sheds a light on feature

trees and feature modelling. This chapter also focuses on various aspects of

development methodologies – when proposed methodology is meant to be close

to agile development, it is also worth to know principles of heavy development

methodologies. It is important to understand how those methodologies affect

development teams so proposing own lightweight methodology for source code

reuse will be easier basing on that knowledge.

Software reuse issues and software development methodologies are fundamental

for this thesis, thus related issues have been exhaustively described. Field of

software reuse is very attractive from economical point of view, thus much

attention has been paid to it in recent years. Agile software development

methods seem to be well established and mature approaches for developing

software products. However, issues of incorporating software reuse or source

code reuse practices with methodologies which are „agile compatible‟ have not

7

been investigated up to date. This chapter focuses on most significant and

universal works in those fields and serves as an introduction to both topics.

2.1 Source code analysis

Source code analysis is a very wide concept and is being applied on variety of

fields. Few examples of applicability of source code analysis are [6]: debugging,

quality assessment (code metrics), fault location, comprehension or validation.

Each programming language follows set of rules which is programming

language grammar – those rules describe what constitutes syntactically correct

source code - syntax. Besides syntax, semantic aspects of programming

languages are also playing an important role in a construction of a language.

Automated or even semi-automated source code analysis could give big

advantages to software developers because such analysis makes it possible to

analyse a code in a way that a single developer would not be able to do in a

reasonable time (in particular cases). As Dr. David Binkley points out in his

paper [6], potential benefits of using tools for source code analysis are very

promising:

“The tremendous increase in the amount of software in use each year

produces a growing demand for programmers and programmer

productivity. Hiring additional programmers is costly and ineffective if

the system under consideration cannot be broken down into pieces.

Given the complexity of modern software, a more viable solution is tool

support. Of growing interest are tools based on source-code analysis.

Such tools provide information to programmers that can be used to

coordinate their efforts and improve their overall productivity.”

Source code analysis could provide valuable, higher level information for

developers of analysed code. The fact that information is presented at higher

level of abstraction means it is more comprehendible for the developer.

8

Source code analysis is a multiple stage process which requires [6]:

- Parsing

This stage of source code analysis obviously requires usage of parser

prepared for particular programming language (particular grammar).

Writing a parser is not a trivial task, and there are parser generators

available which can generate parser for particular grammar basing on

user defined grammar description.

- Preparing internal representation of the source code

- Analysis of such information

Each process could be conducted by a separate tool which output is passed to

another stage of analysis for further processing. For example, during source

code parsing we can obtain such representation of the code, which will allow for

preparing internal representation of the source code.

2.1.1 Source code re-engineering

Idea of reusing existing software, in particular – source code of applications is

not new and some researches on that field have been done. Authors of the work

[7] are focusing on two essential questions towards software reuse and re-

engineering:

“1) What are the engineering solutions to be looked for in the existing

software?

2) What are the inter-component standards and component templates to

use for recording them?”

It could be concluded that one very important aspect of software reuse and re-

engineering is to provide an abstraction of written source code or components.

With such abstraction it would be possible to apply reusable asset for different

purposes. It does not necessarily mean that with such approach we could

9

develop a new system by simply connecting and combining different parts of

source code – like in component oriented development. However, with having

such source code described by higher level of abstraction it should be easier and

cheaper to apply existing solutions to new projects and at the same time,

reducing number of lines of source code that has to be written.

Authors of the work [7] proposed a five stage process for creating a portfolio of

reusable components. Those stages are:

- Candidature:

This stage involves usage of various activities of source code analysis

and as an outcome sets of modules are produced. Those sets are potential

candidates which after proper decoupling and generalisation could be

turned into reusable modules.

- Election:

During this stage, sets of modules produced during candidature phase are

grouped into reusable modules.

- Qualification:

Outputs of this stage are functional and interface specifications of

reusable modules produced during election phase.

- Classification and storage:

At this stage both reusable modules and theirs specifications are grouped

into related category and taxonomy. In this way, reusable assets could be

identified and discovered during reuse and re-engineering phase. Also,

during this stage, a storage and repository for the reusable modules are

set up.

- Search and display:

An output of this stage is a front-end interface for end users who will

interact with the repository and will be benefiting from access to the

10

reusable modules. It is essential to make the interface and search

procedures as simple and intuitive as possible in order to make work with

reusable modules as easy and efficient as possible.

 “Setting up a reuse re-engineering process may entail using a large

number of methodologies and tools from different fields, mainly the

reverse-engineering and re-engineering fields, as well as defining a new

methodologies and creating new tools. Because most of the

methodologies and tools provide only partial solutions the definition of a

reuse re-engineering process must be founded on a reference

paradigm”[7]

Proposed approach towards software re-engineering [7] seems to be complex and

requires heavily involvement of developers or trained analysts who can conduct

the processes. Such complexity and possible costs of creating portfolio could be

a barrier for potential users of the methodology.

Except methodology described above [7] there are also other approaches towards

source code reuse and reverse engineering. There are known approaches such

program slicing and concept assignment. Both of them take different approach

for extracting part of the code and as it will be later shown, both approaches have

been combined to extract code more efficiently.

Program slicing [30] is isolation of program behaviour and reducing source code

for each “behaviour” so it still will be valid and executable code but without

redundant lines of code. In this case, redundant lines of code are such lines

which are necessary for other slices but not the one we are extracting at

particular time. In this way, source code could be „sliced‟ and different functions

or subprogram could be extracted. Programs are sliced based on slicing

criterions which are defining what should be extracted.

11

Concept assignment problem is “the problem of discovering individual human

oriented concepts and assigning them to their implementation oriented

counterparts for a given program” [5]. Such process is aimed to recognise

concepts within a source code and assigning such concepts to various parts of the

code and it requires understanding of it. There are three different approaches for

concept assignment, and various tools could be delivered for each of them [5,

15]:

1. The code and generally, is “highly domain specific, model driven, rule-

based” [15]. Systems aimed to tackle that problem are dependent on pre-

populated databases which describe the domain which is analysed.

2. “Plan driven, algorithmic program understanders or recogniser” [5]

3. “Model driven, plausible reasoning systems” [5]

Each of the approaches has different characteristics and is aimed for different

program sizes and are characterised by different precision. Solution 1 and 2 are

efficient for small scale-programs while solution 3 can handle large-scale

programs more efficiently. The drawback of approach 3 is its lack of precision

and possibility of getting not precise results [5, 15].

2.2 Software development methodologies

Building complex software applications is a process which requires significant

amount or resources, such as experienced personnel, time, support tools and

knowledge. Such a complex task requires proper processes in order to support

software construction. Because of that, software development methodologies

have emerged to facilitate development lifecycle. The idea behind such

methodologies is to develop a software product in defined and methodological

way which should assure predictability of outcome and help participants to

12

understand what and how they should work. Following an established software

development methodology allows to focus on “what” rather than focussing on

“how” to do that. Another benefit of using a methodology for development

purpose is that many people before has used particular approach and we could

benefit from their experience and insight on usage the methodology.

There are many different approaches and methodologies for developing software

products and they are varying between each other in several ways. Because of

differences, some of them are preferred for particular types of projects which

require specific features of particular methodology. Sometimes choose of

methodology simply belongs to experience of a team, preference of project

manager or culture of an organisation. It is never an easy task to change a

methodology used within organisation because change of methodology also

requires change of practices, tools and sometimes key people responsible for

developing and managing software products.

One of the first widely used and recognised software design process waterfall

cited for a first time in 1970. Waterfall is a design process composed of

sequence of steps: requirements specification, design, implementation,

verification and maintenance. That was industry-like approach where

requirements and approach had to be up-front planned and agreed – without

possibility to change anything during implementation stage. The fail-rate for

that approach was high and probability of failure was higher for bigger projects.

However, waterfall approach could work in a case of extremely straightforward

and small systems where change or requirements or possibility of not predicting

something are relatively low. That is of course more hypothetical because

uncertainty and need for change during development are very common in

software projects.

13

Over the time a concept of iterative and incremental development (IID) has

emerged as a response for gaps of waterfall process. The main idea behind IID is

to repeat activities like planning, requirements gathering, analysis & design,

implementation, testing and evaluation in a cyclic manner during project

development. The value which IID brings and waterfall lacks is feedback from

users between iterations. In waterfall everything had to be set and agreed in

advance – with zero flexibility and adaptability while IID benefits from

feedbacks from stakeholders between iterations. Many modern development

methods are based on IID and they vary between each other in few aspects. In

context of IID it is worth to mention about Rational Unified Process (RUP) and

agile methods because they follow similar philosophy but they vary in few

details which makes big gap between them in terms of development culture,

quality and success rate. It is important to compare RUP with agile methods

because they have same roots, but few features made a huge difference between

them.

RUP is an IID based methodology that is based on four iterations (phases).

Those phases are:

 Inception phase

 Elaboration phase

 Construction phase

 Transition phase

Each of those phases has one main objective to be accomplished and at the end

of each phase it is verified if such objective has been meet. In case of big

projects each phase could last as long as few months. This is very long period

and feedback and objectives verification could be delayed and in consequence,

this methodology does not benefit from frequent feedbacks from product owners.

14

Tasks conducted within mentioned phases fall into one of six different

engineering disciplines. Those disciplines are:

 Business modelling discipline

 Requirements discipline

 Analysis and design discipline

 Implementation discipline

 Test discipline

 Deployment discipline

RUP phases and disciplines are presented as on Figure 2.1.

Figure 2.1: RUP phases and disciplines

Figure 2.1 reflects how disciplines are spanned across different phases and

during each phase particular discipline could be more or less exercised. For

example, it could be noticed that business modelling discipline is has big share

of all tasks in first phase while tasks of deployment discipline have the biggest

share of the tasks in last phase – transition.

15

RUP is considered as a heavy and document oriented software development

methodology. It is designed for rather big projects for which using so complex

and heavy methodology would have any sense.

Because RUP does not fit all sizes of projects – it is rather for big and complex

one, alternative IID based methodologies have been proposed. Those

alternatives are agile methodologies such as Scrum, XP, TDD and others which

could be distinguished from RUP by various factors, for example length of

iteration – ranging from one to six weeks [22]. Length of iteration has impact on

projects and as Craig Larman states [22]:

“A three-month or six-month timeboxed “iteration” is extraordinary long

and usually misses the point and value; research shows that shorter steps

have lower complexity and risk, better feedback, and higher productivity

and success rates. That said, there are extreme cases of projects with

hundreds of developers where a three-month iteration is useful because of

the overhead.”

2.2.1 Agile software development

Not everyone was satisfied with heavy, document-oriented and very bureaucratic

methods of software development. As a response for those heavy

methodologies, many lightweight methods have been proposed. Agile

development methodologies are aimed to be as lightweight as possible. In such

methodologies, a usage of as simple and easy to setup solutions could be

observed. For example, instead of relying on heavy and complex tools such as

Rational Rose developers are tending to manage development processes with

help of whiteboards, post-it cards attached to walls and assigned tasks visible on

a wall in a development office. Such approach guarantees that a simple and

efficient environment could be easily implemented and at the same time,

developers can see what tasks are currently assigned just by approaching the

16

wall. Such solutions have their roots in Toyota car production lines where

visualisation and simplicity are keys for efficiency and 'lean production'.

Examples of those methodologies are Scrum, Extreme Programming (XP),

Adaptive Software Development (ASD), Test-Driven Development (TDD) and

Feature-Driven Development (FDD). Those methodologies have emerged

before “Agile” principles have been founded and agreed on by a group of

respected and famous software engineers. On February 2001 [17] a group of 17

software engineers has agreed on basic principles of Agile Software

Development. As a result famous Manifesto for Agile Software Development has

been written and signed by all 17 participants. The most essential values of that

manifesto are:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following plan

The manifesto could be easily misunderstood and could lead to false conclusion

that its authors do not value “processes and tools” or “comprehensive

documentation” is not important. That is far from true.

The manifesto states that “individuals and interactions” are more important than

“processes and tools” but it does not reject value of proper tools and processes.

For agile methodologists, each member of a team is unique and his/her skills

should be used in a proper way in order to drive project further. Following that,

processes should be compatible with teams and its members, not vice versa.

The same is true for second principle – it is not matter how good software‟s

documentation is if the software itself is not working. However, working

17

software will not have full value for its customer if documentation is not

delivered. Without documentation, usage, maintenance or further development

could be impossible, thus there should be agreement between client and

developers how detailed should be that documentation.

2.3 Documenting software design

Creating software projects requires involvement of different people who are

interested in project completion and have their duties and responsibilities related

to software development or software operation. Those individuals are called

stakeholders. Stakeholders are an intrinsic part of every project of a significant

size and play important role in project establishment and creation. They could

contribute to the project development in various ways and usually have different

perspectives on some parts of developed systems and different ideas how those

parts should function. Each of them can contribute to project development in

his/her way by providing insight on different aspects of the system. Because of

that, their needs and concerns about developed system should be taken into

consideration at every stage. Each stakeholder play different role during project

lifecycle, have different objectives, different needs and different way of looking

at the project. Moreover, some of them will participate only in specific stages of

the venture or focus only on a small piece of the whole.

Depending on project, different stakeholders could be participating in system

design and development. Example stakeholders are presented below:

 Customer

 Project manager

 System architect

 Programmers

18

 System integrators

 Testers

In order to efficiently use knowledge and experience of various stakeholders,

good communication practices should be established. Such communication

could be understood in terms of good project documentation (system

representation) – which does not mean a complex and very detailed

documentation. Most of the time different stakeholders would require different

kind of documentation presenting different perspectives. Such documentation

could be delivered in form of views, where different view reflects different level

of abstraction and details of designed system. As Remco M. Dijkman et al.

write: “Stakeholders focuses on a part of the design, which we call the view of

that stakeholder (...) we way that a stakeholder focuses on certain design

concerns and considers these concerns at a certain level of abstraction” [11].

Ensuring that stakeholders are well informed about each other goals and

perspectives and that they could express and understand the system in their own

way, could contribute to developing of high quality system. It could be very

challenging and difficult to come with appropriate solution for documenting and

modelling stakeholders‟ perspectives, but once it is done, it would be a big

contribution to software engineering approaches of developing systems.

2.3.1 Domain engineering

In terms of software engineering, a domain could be understood as knowledge or

activities representing particular group of related systems. A characteristic of a

domain is a shared vocabulary used by different stakeholders involved in

activities within that knowledge area. There are various definitions and

descriptions of domains and for example Mili et al state that domain is “defined

by the common managed features that satisfy specific market or mission” [25].

19

Domain engineering could be defined as set of activities that lead to

development of domain model used to create a family of related products. In

other words, domain engineering is a process that leads to development of

reusable artefacts (core artefacts) [16]. Because scope of domain could be used

for developing multiple products for serving a particular market or mission,

domain modelling is especially useful for creating reusable software, and serves

as a base for developing multiple products, also known as software product lines.

It is also defined as:

“a key process needed for the systematic design of an architecture and set

of reusable assets (...) It is a systematic process that incorporates

business criteria and that enable better decision to be made, reordered

and revisited for further revision, and for process improvement based on

learning”[14]

Another definition of domain engineering defined by Kang et al in early nineties

is following [19]:

“[Domain engineering is] an encompassing process which includes

domain analysis and the subsequent construction of components,

methods, and tools that address the problems of system/subsystem

development through the application of the domain analysis products.”

Going further, it could be stated that domain engineering activities lead to

identification and generation of assets which could be used to generate profit of

an organisation during multiple projects. Domain engineering and reusable

assets creation is not solely about creating assets in-house, “producing reusable

assets can be interpreted to include acquisition of assets developed outside the

corporation, such as commercial off-the-shelf (COTS) products” [25]. Most

likely after completing domain engineering steps variety of assets will be

derived. Those assets could be:

 Domain scope

20

 Domain model

 Standardised development activates and processes

 Generic software architecture for the domain

Domain engineering is a multiple steps process and the following stages could be

specified [14, 25]:

 Domain analysis

o Domain identification and scoping

o Making decision if it is worth to create domain for reuse

o Selection and analysis of examples, needs and trends

o Identification and cataloguing of commonalities and clustering

features

o Specifying reusable assets and classification for particular

purposes

 Asset/component engineering

o Develop reuse infrastructure, domain model and architecture

o Representation of usable commonality and variability

o Exploitation of commonality and variability

o (Optionally) Assets acquisition

o Implementation, certification, and packaging of reusable

components

Of mentioned steps in domain engineering, domain analysis activities are crucial

because at this stage, a decision will be made if it is worth to create infrastructure

for reusable development of specific domain or not. This step will also

determine shape of a domain and determine which features will be included for

further development. Any mistake at this stage will be amplified and have big

impact on further stages.

21

Developing a domain is more difficult than developing specific application

because of several reasons. First of all, domain is developed to serve as a

foundation for a family of more or less related products. This implies that

domain model must be more generic and express higher level of abstraction than

an application model. Also, when it comes to domain analysis, more examples

and aspects should be analysed and taken into consideration to generate possibly

universal domain specification. It is important that domain specification or

domain model consists of only common and generic features that are suitable for

variety of products within that domain. That is, domain model should describe

family of related products in terms of commonality and variability [18]. This

requires good knowledge base, experience and insight into a particular domain

from engineers responsible of domain analysis and design. It is also important to

mention that in order to create a good domain model, requirements engineering

process should be suitable for delivering reusable domain models. Besides

studying exemplary products, domain modeller or requirements engineer should

also focus his attention on gathering functional and non-functional requirements

from various stakeholders.

Domain scoping is one of the issues that should be taken into consideration when

domain model is being created. Because process of generating assets that

constitute domain model is expensive and time consuming, domain scope could

be derived from economic aspects [25]. One of the ways of scoping a domain is

to analyse needs of several stakeholders and “calculate their benefit function”

[25]. Yijun Yu et al have suggested taking stakeholders‟ goals into consideration

when determining features that should be included into domain model [33]. If

we do not have access to stakeholders, we still could use current applications

from the same domain to identify their common features. It could be simply

done by preparing a matrix where rows represent features and columns represent

22

different applications. By giving a point at each intersection of feature-row and

application-column, the most common features could be identified. This method

could be extended by using different weights for different features and/or

applications. Similar approaches for identifying features for reusable

methodologies have been presented in various publications [9, 31].

Determining economically and functionally optimal domain scope in some cases

could be very difficult. When domain engineer tries to define in advance which

features should be included in domain model and which should not, there is

always a possibility that too many or too less features will be included. Those

cases are called over- and underscoping [25]. When is overscoped the

development cost increases as well as domain modelling time. From economical

point of view in this case, company will not generate as much revenue as it

could. In case of underscoping it could be difficult to create and deliver wide

range of different products from particular domain because of lack of features.

Such situation could force domain engineers to include new features into domain

model during development cycle. Depending on whether missing assets were

detected at early stage of product development or not, it could significantly

increase development time of new product from SPL.

Economic aspects should be always taken into consideration when decisions

about domain developing or domain scoping have to be made. Making decisions

if domain should be developed or not, or how many and which features it should

include is harder that making decisions about developing single application.

Working on domain and creating environment for reusable software

development is itself time and resource consuming. Benefit from implementing

reusable practices can be seen in a long run term, thus decision for developing a

domain or particular feature should be based on its usefulness in future projects

and estimated revenue.

23

2.4 Software reuse

Software engineering requires from programmes, developers, system architects

and other stakeholders involved in developing new software products,

significantly large knowledge base when they are working on a new products.

Because of that, non-trivial IT projects require both experienced engineers and

significant amount of time and money to develop new application, add new

features to existing one or adjust its properties to meet needs of different clients.

Both academicians and industry experts are working on techniques and

methodologies which would allow persisting existing “knowledge” in that field

and shorten time of developing new products.

Software reuse is a paradigm which supports reusing once created design,

components or implemented code in multiple projects. ”Software reuse involves

generating new designs by combining high-level specifications and existing

component artifacts” [26]. This is very challenging but beneficial activity in

terms of costs, quality and shortening development time during future projects.

All in all, the more products we could create based on reused components, the

cheaper development process would be.

Discipline that is focused on providing solutions of mentioned concerns is called

software reuse and is a very challenging and promising field for both

academicians and industry experts. There are many software reuse concepts that

are being constantly improved and adjusted to changing needs of industry. In

general, purpose of introducing software reuse practices is concentrated on

providing working products faster, at lower cost, with smaller number of

developers and with higher quality. The main idea behind software reuse

techniques is to using once created code or components, rather than writing them

from scratch [21] – with respect to phrase “don‟t repeat yourself”.

24

Software reuse approaches are aimed for persisting experience and knowledge

base of domain experts and system developers in order to use it in multiple

projects. Those activities are called assets creation and are done under domain

engineering processes. Mentioned assets could be understood in multiple ways.

Anything that is once created in order to serve as a base or an artifact of future

projects from same domain or same family of related projects could be treated as

such asset. Examples of those assets are:

 generic architectures,

 feature models,

 code generators,

 components,

 development practices and processes,

 frameworks and so on.

In software reuse approaches not everything has to be build in-house – it is also

possible to buy assets for purpose of software reuse and integrate them into

projects. Some approaches are actually very dependent on assets/components

acquisition.

Implementing software reuse approaches does not come at „no cost‟ and before

engaging such practices for particular purpose, it should be evaluated if it is

feasible and if it would yield expected benefits. Employing reuse oriented

techniques or methodologies requires substantial amount of time, money and

knowledge. The big overhead prior to product (or rather products) development

is supposed to be compensated by facilitation of successive projects

development. Because of that reuse approaches are suitable for those software

products which are needed in multiple versions, variants or are marketed for

multiple customers with individual needs.

25

There are various approaches and techniques for software reuse paradigm. They

vary in terms of needed technical skills, integration level and expected outcomes.

Different approaches also vary in organisational level, thus they require different

roles and skills in order to operate. Brief descriptions and principles of selected

approaches are given below.

2.4.1 Software product lines

A software product line (SPL) is a paradigm or form of software engineering

practice focused on delivering software from reusable assets. SPL focuses on

creating family of related products based on available components (also called

assets) instead of creating everything from scratch. SPL is aimed to deliver

diversity of products from the same family of products of from the same domain.

Domain engineering principles, which are heavily used for SPLs have been

discussed in previous sections.

There are various process models which could be used during usage of SPL.

Following [26], those could be named:

 proactive

 reactive

 and extractive process models

Products created with proactive process model are based on pre-created core

assets which are later on used to create final products. This requires significant

number of developed assets and suits best those domains, which are well

established and it is easy to predict in advance, which assets (functionalities) will

be required. Another possible approach is creating assets “on demand, at the

time when a particular functionality (asset) is needed. This is a reactive process

model and suits cases when creating multiple assets in advance would be too

26

expensive or when it is difficult to predict all required assets for a particular

domain” [26]. Last of the mentioned processes ”stays in between the proactive

and reactive approaches” [26]. This approach is suitable when a company has

already developed some working products that could be turned into assets and

reused within SPL.

Assets accumulation and proper reuse is one of the key issues in SPLs.

Depending on how many assets we have and how well could we integrate them

into a working product could determine an efficiency of an organisation and

could have an impact on operational costs and products quality. But there are

other important issues such as assets granularity and their coherence level.

These properties determine how well we can integrate and combine different

assets (coherence) and how many different products would we assemble from set

of assets (granularity).

Creating family of products requires specific approaches for analysing and

modelling software products. Creating generic models and finding common

features for applications from same domain enforces focusing on commonalities

and variabilities instead of focusing on details. For purposes of analysis and

discovering of key properties of software, Feature-Oriented Analysis approaches

could be used. This would allow for discovering common and variable assets of

products and would also allow for defining their relations and dependencies. For

a purpose of representing variability and commonality within SPL, feature

models could be used [8]. Feature models and feature oriented approaches are

well established and widely used for representing variability, commonality,

modules and different features of a software. Because of those properties,

feature models could be successfully used for modelling product families in

SPLs.

27

2.4.2 Component-Based Software Engineering

Component-based software engineering (CBSE) which is also known as

component-based development (CBD) is another approach for software reuse in

software engineering. Reusable assets in this approach are called components

and are supposed to be independent from each other, provide well-defined

services to other components or application and require very little or no

customisation during integration process [25]. Components are also described

by interfaces they are communicating with other components as well as with

application. They suppose to be abstract enough to serve similar or same

purpose within different applications.

Following [25], there is no single definition of a component and variety of

authors proposed different definitions. For example, Szyperski et al. suggest

that component is a piece of software that could be deployed independently from

other components and are meant to be composed with different components

through „contractual interfaces‟ [28].

Because components heavily rely on interfaces and interoperability, it is essential

to have components which are highly interoperable and have well defined and

reasonable interfaces. Because some of the components are created for sale

purposes, their creators must ensure that components‟ interfaces will follow

common industry standards. Examples of those standards are EJB, CORBA,

RMI, HL7, etc. Such standards ensure that components will be able to

communicate with other components or application without major problems.

Except following communication and information exchange standards, there is

also need to meet quality criteria for market targeted components.

When it comes to define quality of components, several aspects should be taken

into consideration. Following [25], a good component should be:

28

 Well documented

 Cohesive

 Independent

 Useful

 Certified

Additionally, they should satisfy the several properties [25]:

 Should be composable

 Should have well-defined interfaces

 Conforming to a component model

 Should be secure

In practice, CBSE could be difficult to fully implement because of some

technical issues, especially if components from various third party vendors are

used. First and most obvious issue for component integration could be interface

compatibility with other components or whole application. Even when the

documentation is detailed, there is always a risk that some peculiarities of

component have not been documented and integration could be bothersome.

In recent years an emergence of Web Services (WS) and products following

Service Oriented Architectures (SOA) becomes more noticeable. Such services

could be compared to components in terms of exposed interfaces and being

independent from each other. The biggest difference between service and

component is their allocation. When component is used, it have to be build into

application it serves while web service could be executed on provider‟s server

and just provide its service instead of being physically delivered to customer or

integrator.

29

2.5 Feature modelling

Increasing complexity of software products in terms of used components,

libraries, and written lines of code requires from domain engineers and system

architects new approaches toward software engineering, structuring and

documenting. Software design could be presented at various levels of details and

each level could serve different purpose and be addressed to different

stakeholders. When it comes to analyse, design or maintain complex programs,

analysing them at the level of class diagrams could be inefficient, time

consuming and error prone. In such cases, for some purposes it would be worth

to consider introducing features as an approach of analysing and documenting

software products.

There are a considerable number of papers treating about various usages of

features and about different views on those features by authors [8, 13, 12, 25,

31]. Because of that, different definitions of features could be found. Orla

Greevy et al. suggest that “a feature represents a unit of domain knowledge, and

it typically corresponds to a realized functional requirement of a system” [13].

Other authors write that “feature is an abstract description of a functionality

given in the specification” [32]. It could be concluded that a single feature could

be spread across many classes and one class could serve more than one feature.

As [4] suggests, it creates n-to-n relation between them. Basing on that, we can

conclude that features provide higher level of abstraction than classes, thus

modelling or representing system in terms of features set or feature tree would

be more understandable for variety of stakeholders. This property in system

representation is very important when someone have to face very complex

system, composed of hundreds or thousands of classes. [32]

30

Features could be introduced at various stages of software products development,

thus will play different role and have different purpose. Some authors suggest

introducing features at the domain analysis stage [14, 19, 23], which would

facilitate product development and analysis. But that is not the only possible use

of features – other authors advocate using features for tracing changes within

software projects and analyzing its evolution [13]. Another possible usage of

features is facilitating maintenance of legacy software. As Norman Wilde et al.

have noticed that there are various methods for locating features in legacy

software [31]. When it comes to introducing improvements of bug fixes, such

approach makes job of software engineers easier, especially in the case of

complex software products. Having features and their mapping to classes, would

allow for fast identification of relevant pieces of code when a particular feature

should be updated or modified.

2.5.1 Feature trees and feature models

Features could be used for representing whole models of software – by feature

models. Basic idea behind feature model is to represent variability and

commonality of a software product in a compact way. To do so, features are

organised (most of the time) as hierarchical- tree-like structures, called feature

trees. Feature tree could be used to represent software model or even whole

domain of a product family. This approach is especially useful for representing

models or domains for reusable approaches. There is no consensus about one

common notation for representing feature trees and different researchers

proposed their own notations. P. Heymans et al. [16] have described several

ways of representing feature diagrams and described properties of different

notations.

In recent years, much attention has been paid to potentially sensitive areas of

feature modelling [23], those are:

31

 How to identify features?

 How to represent feature in a structure?

 How to identify constrains, dependencies and relations among features?

 How to assure that feature model is complete, consistent and valid?

If we think about feature tree which contains more than thousand features and

such feature model was evolving for more than few years, it becomes easy to

image how difficult it could be to manage such design without appropriate

methodologies and approaches. The problem could emerge when we have to

introduce a new feature to the feature tree or when we have to modify existing

one. Doing so, we have to be sure that new feature (or removed one) will not

break consistency of a feature hierarchy. One way of specifying static

dependencies between features is introduction of constraint relationships.

Unfortunately, “constraints only describe static dependencies between features,

but tell little about how these features interact dynamically with each other at

run-time” [23]. Hong Mei et al have proposed a metamodel for addressing

issues of both static and dynamic dependencies between features [23]. Their

metamodel:

“(...) defines three important relationships between features, namely

refinement, constraint and interaction (...) The refinement provides a way

to explore various system features from high levels to low-levels of

abstraction, and to organize features as hierarchy structures. The

constraint provides a way to specify static dependencies between features.

And interaction provides a way to express dynamic dependencies between

features”

Obviously, even having such metamodel for representing feature-based domain

models, automatic approaches for consistency and validity checking of derived

products are required when it comes to work with very large domain models.

32

2.5.2 Feature oriented domain analysis (FODA)

Domain analysis is a crucial stage of developing software thus quality of

products and possibility of achieving venture‟s goals are strongly related on

process of domain analysis. The purpose of this process is to both, better

understand domain space as well as represent it in a way that other stakeholders

could understand what the purpose of a domain is and how the domain is

constructed. Domain analysis is a process within domain engineering activity

and focuses on analysing domain and its properties for a particular purpose.

When it comes to reusable software a proper approach for domain analysis

should be taken into consideration. Analysing a domain for purpose of

reusability requires support for variety and commonality – in this way, assets for

SPLs or other approaches could be created.

Feature Oriented Domain Analysis (FODA) is an approach which meets

mentioned requirements. An analysis process leads to discovery and

identification of features representing domain where “Features present customer

valuable properties of systems” [25]. Feasibility study of FODA was released in

1990 and since that time, that method has been actively used by many

researchers [10, 20, 33] working on different aspects of software engineering. It

was proposed as ”a method for discovering and representing commonalities

among related software systems” [19]. For a purpose of software reuse, it is very

essential to find common and variable aspects of a domain within a family of

similar or related software products. If we could achieve that, it would be easier

to identify features which should be included into SPL as mandatory or optional

ones.

Treating a domain in terms of tree-organized feature models allows to model

hierarchy and map connections between different features. Representing features

as a tree makes the representation of a domain clear and easy to comprehend.

33

Additionally, such representation could be considered as an asset and reused for

different projects within the same domain.

Finding features during analyse of multiple products is not an easy task. It could

be asked how to determine which features should be optional, which should be

mandatory and which should be omitted. It is not an easy question and in most

non-trivial cases, extensive domain expert‟s and software architect‟s knowledge

is required. Ilian Pashov et al have proposed a statistical approach to find out,

which features should be and which should not be included into feature tree [25].

FODA could be used as for domain modelling purpose where domain model

could be represented as a feature tree. ”Feature modelling is a method originally

developed for structuring domain properties from customer‟s point of view”

[25].

2.5.3 Feature-Oriented Software Development (FOSD)

Feature-Oriented Software Development (FOSD) is a paradigm which has

emerged from different disciplines in software construction and reuse. FOSD is

aimed to serve different purposes such as construction of software, its

customisation and composition of systems. In FOSD everything is focused on a

concept of feature and feature models which are a high level abstraction of

applications and serve as description of problem space that software system

should address. By focusing on a feature, system could be decomposed and

structured in a way, which allows for separating most essential parts of

application and possibly restructuring such applications to serve different

purposes. As Sven Apel et al points out:

34

“The goal of the decomposition is to construct well-structured software

that can be tailored to the needs of the user and the application scenario.

Typically, from a set of features, many different software systems can be

generated that share common features and differ in other features. The

set of software systems generated from a set of features is also called a

software product line.” [3]

In FOSD it is favoured to use concept of feature during all phases of software

development cycle such as analysis, design and implementation. [3] By focusing

on features during all phases, the design and implementation are supposed to be

exactly mapped and meet the requirement. Such exact mapping would allow

assuring that during transition between different phases the original requirements

will not be misunderstood or wrongly interpreted. Additionally, focusing on

features not helps to focus on consistency but also facilitates identification of

commonalities and variabilities which makes implementation of software reuse

techniques easier.

Feature-oriented programming (FOP) is another approach related to FOSD

which focuses on usage of features in software development. FOP approach

focuses on modularising features instead of allowing the code to be distributed

across different classes [27]. Sven Aplen et al are also trying to use feature-

based approaches for software development to develop systems based on

service-oriented architectures. In their work [2] they point out that “formal

foundation of feature orientation provides a straightforward way to set up a

formal specification and type system for services based on features, not just on

interfaces.” Works on FOP and designing service-oriented applications basing on

features shows high potential of incorporating features in variety of areas of

software engineering.

35

CHAPTER 3

USING FEATURE MODELS FOR REUSABILITY IN

AGILE METHODS

In this chapter, an approach for using feature models for reusability in Agile

Methods and code retrieval tool is introduced. Until this point, related works and

technologies which were presented would allow for better understanding of

proposed methodology. This chapter starts with brief overview of proposed

methodology and part by part will explain fundamentals and basis of it. After

introduction part, constrains and limitations will be mentioned with explanations

how such limitations could be overcame. Later on, suggested usage of the

approach will demonstrate its real strengths and will let readers to judge

usefulness of it. In order to benefit from the approach, a dedicated tool was

created for purpose of evaluation – tool for source code retrieval basing on

predefined features. Combination of the approach and dedicated tool for source

code retrieval makes a fully functional system that could be used for source code

reuse and re-engineering purposes. The tool which has been developed will be

presented and described in last part of this chapter. Basing on that description,

similar solutions could be designed in order to meet specific needs of particular

development environments.

36

3.1 Overview of the approach

Presented approach is combination of feature based software design and agile

development methods. It has been inspired by agile development techniques

which are lightweight, developer friendly and which are well balancing effort

needed to use it and a quality of final product developed under guidelines if it.

Such way of thinking about software reuse is in contradiction to some of well

known software reuse methods such as software product lines, code generators

or component based development – which are quite heavy and difficult to

introduce in terms of initial costs and effort. All of those methods are complex

to implement and require high overhead in terms of creating or acquiring assets

(code generators, components, etc). However, on the other hand, mentioned

“heavy” approaches towards software reuse in particular situations could allow

for faster implementation of particular function or feature in some cases when

already existing components could be easily integrated into working software. It

should be mentioned, that even if one of those approaches would allow for faster

implementation of part (or whole) of the application, most probably additional

effort for integrating or testing “reused” component should be done anyway.

One of the very noticeable aspects of the approach is that it allows to access low

level resources via highly abstract description of the project. Source code of the

application is indeed very low level resource and representing it with feature

model, which is in fact more abstract than UML class model makes the

description very general. Making description (or document) layer of the

approach as an abstract one, developer will require less time to access resources

he/she needs. Of course, reuse process is not automatic and requires

involvement of a developer, but by accessing reuse assets consciously, developer

can tailor and modify the reused code to specific needs of a new project.

37

Proposed approach for code reuse is based on two fundamental aspects. First, a

feature model representing source code (or application) is required. Second, for

each feature (of a feature model), at least one “top level” function should have

been identified in advance and marked with special Java annotation. Top level

function is understood as a function which is both, most important and probably

called as one of the first during feature execution. Under some circumstances

more than one such function could be associated with particular feature and each

of them should be adequately annotated. Examples of how to identify such top

level function and how to properly annotate them will be presented in “Creating

sample project”. Proposed approach requires access to whole source code of

analysed and processed application.

As mentioned earlier, this approach imposes usage of feature models as a

representation of particular application. Such imposition is justified by the

assumption, that high level code representation would allow for more efficient

source code reuse practices. In this way, when developer or other team member

wants to access source code which represents particular feature of feature model,

such person having appropriate system (presented in this chapter) can do it in

few clicks of a mouse. When an application is represented by a feature model,

and another similar application is created, developer can find source code of

features easily and it gives the development team the advantage and possibility

of not rewriting the code. Such approach could be very efficient and is fairly

easy to implement and still gives full control over the reused code to

programmers.

Proposed approach was created to support agile development methods because it

was designed to be lightweight and easy to use. The most obvious and

demanding aspect of using proposed approach is to create and maintain feature

model for each project and annotate appropriate functions within code. Such

38

restriction could be perceived as beneficial because application could be rapidly

modelled and feature model could be treated as additional documentation of the

project and because of high level of abstraction, such documentation could be

useful for various stakeholders. Also, by creating feature model, developers

have to think of code they are writing in terms of features which could lead to

writing more coherent code– as developer tries to write code within bounds of

particular feature.

What in practice does it all mean? In practice, by connecting source code with a

feature developer is able to retrieve whole (or almost whole) source code

responsible of execution and functions of particular feature. Easy access to such

code could lead to fast implementation (or instant implementation in some cases)

of same or similar features within separate projects. Of course, someone could

say, that developer can retrieve source code without any tool by simply analysing

and reading it. That is true but if developer will face need of analysis one or

more projects, each of them having more than 50000 lines of code then such

analysis will be very time (resources) consuming and of low benefit in terms of

reuse. However, if each of those projects would have well created feature model,

and each feature would be connected with source code then code analysis and

code retrieval would take much less time. By taking less time, it becomes

obvious that such approach, if properly used, could shorten time of development

cycle and decrease development costs.

Besides benefits mentioned above, there are some other, not direct and not

obvious ones. At the time when developer is looking for a source code

responsible for a feature, he/she is at the same time doing code review. This

could lead to two potential benefits. First, there is a chance that during such

review some bugs will be spotted and fixed which is obviously beneficial.

Second, during review a developer, especially inexperienced one can learn

39

something new, especially if the code which he/she is reviewing was written by

experienced programmer.

The figure 3.1 is a simplified overview of how the approach is used when a new

project is created. However the diagram is simplified, it could be noticed that

the approach is pretty straightforward and not complicated. All what is need to

be done is to create a feature model reflecting a real project and annotate

appropriate functions representing entry points for each of the feature. Of

course, usage of the approach is not constrained only to new project and feature

model and links between features and code could be applied to existing ones as

well.

40

Figure 3.1: Overview of creating project with proposed methodology

Creating a project with respect to given approach is only one aspect of it.

Another, probably more interesting is how the code retrieval process works.

What is obvious, in order to retrieve a source code of a feature, first we have to

have at least one project annotated and enhanced with feature model according to

guidelines of proposed approach.

First step in code retrieval is to identify a project or group of projects which

potentially could have implemented a feature we are looking for. After that

developer is able to view each feature model and try to identify feature he/she is

looking for. Source code of particular feature could be easily accessed by

clicking on a feature via graphical interface. After that, developer can navigate

41

via tree of functions which participate in execution of feature – in this way,

developer gains access to source code of functions which participate in feature

execution. This process has been presented on Figure 3.2.

Figure 3.2: Process of identifying assets and source code reuse

What is also interesting is how exactly the retrieved code looks like? Let‟s

assume we are writing software for controlling an engine and we are interested in

code responsible for starting it. In modern cars the process of starting an engine

is quite complex and involves heavily usage of on-board computers which are

controlling this process. For sake of simplicity in the given example we will

consider bit simplified process, where just one cylinder is taken into

consideration:

42

 Pre-start checks:

o Check security code

o Check engine temperature

o Check oil level

 Start fuel pump

 Calculate air-fuel proportions

 Inject air-fuel mixture

 Compress mixture

o Rotate crankshaft to appropriate position

 Ignite spark plug

Now, let‟s assume that simplified source code of above process looks as given

below:

package com.carsoftronix.engine;

public class OperateEngine {

//init devlarations…

 @Feature(name="Start Engine", description="…")

 public void startEngine(Code secCode){

 if(!generalCheck.preStartChecks(secCode)){

 return;//pre start checks failed

 }

 fuelPump.startFuelPump();

 int i=0;

 while(!isEngineOperating() && i++<500){

 FuelAirMixture fam =

engineComputations.calculateStartFuelAirMixture();

 injectFuelAirMixture(fam);

 compressFuelAirMixture();

 igniteSparkPlug();

 }

 }

//some other functions …

43

}

Let‟s also consider below code as a part of example:

package com.carsoftronix.engine.checks;

import com.carsoftronix.model.Code;

public class GeneralCheck {

 public boolean preStartChecks(Code secCode){

 if(!checkSecCode(secCode))

 return false;

 if(!checkEgnineTemperature())

 return false;

 if(!checkOilLevel())

 return false;

 return true;

 }

 private boolean checkOilLevel() {

 // do some calculations and return true or false

 return false;

 }

 private boolean checkEgnineTemperature() {

 // do some calculations and return true or false

 return false;

 }

 private boolean checkSecCode(Code secCode) {

 //do some calculations and return true or false

 return false;

 }

}

As we can see, the top level function startEngine(Code secCode) is

annotated with annotation @Feature(name=”Start Engine”,

description=”Feature responsible for starting engine”). The

44

function does not itself do everything required to start the engine but calls other

functions responsible for appropriate tasks – as it supposed to be in Object

Oriented programming. Now, when we will require retrieving the code

responsible for starting the engine, whole source code will be returned – not just

top level function. No matter how nested the function calls are, the tool for

retrieving source code basing on features will find them and printout on a screen.

In this way, developer will have “one-click” access to source code of all

functions which are involved in starting of the engine. In the given example,

such functions as preStartsChecks(Code secCode),

checkOilLevel(), checkEngineTemperature() or

checkSecCode(Code secCode) will also be returned, and as we can see, they

do not have to be directly annotated with @Feature.

Analysing and processing source code and somehow determining runtime

behaviour (identifying functions which will be executed during runtime) could

be challenging. Java as an advanced Object-oriented programming language

provides for programmers wide range of programming mechanisms such as

polymorphism, inheritance, overloading, abstract classes, interfaces and

anonymous classes and interfaces. Those advanced mechanisms make the

language more efficient for the programmer, but it becomes more difficult to

analyse the code, as runtime behaviour cannot be always predicted. As Dr.

David Binkley wrote in his article [6]:

“Against an increasing need for higher precision source-code analysis,

modern languages increasingly require tools to handle only partially

known behaviour (in the case of Java this is caused by features such as

generics, user defined types, plug-in components, reflection, and dynamic

class loading). These features increase flexibility at runtime, but

compromise static analysis.”

45

3.2 Constrains and limitations of current work

For a purpose of current work, a tool that makes usage of proposed approach

possible has been implemented. This tool is limited to work with Java source

code, version 1.5 or higher. The requirement for Java version belongs to the fact

that annotations which are required to identify features within code, did not exist

prior to Java 1.5.

In theory, the approach could be used with any Object Oriented language. For

that purpose, a parser and code analysis tool should be implemented. Basing on

this work and explanations how proposed tool was designed and implemented,

implementing similar tool for other object oriented languages is possible.

Some of the limitations of current tool for code retrieval belong to the ways Java

programs could be constructed. For example, when we want to identify source

code which is responsible for functioning of particular feature, we have to

recursively follow execution of each nested function call within a top level

function and within each of that nested function. In order to do that, we have to

know which specific class the function is called from. That could be

complicated if at one level we will not have information about concrete class but

instead we will have information about interface of such class. There could be a

case when object of concrete class is assigned to reference of an interface during

runtime of the program. In such case, it could be not possible or it would be very

difficult to identify during source code analysis 100% of source code that

constitutes features. Such constraint could be possibly bypassed with

satisfactory results in most of such cases with usage of advanced analysis

techniques or some heuristics which would give possible solutions. Such

solution goes beyond current work and is not necessary to affirm if proposed

46

approach meets its purpose – if it allows reusing source code easily and identify

source code for modelled features.

Despite mentioned limitations, proposed approach could be evaluated and it

could be judged if it meets expectations in terms feasibility of code reuse and

retrieval. After such judgements, improved tools could be implemented to meet

higher standards and needs of enterprise-level development environments.

3.3 Suggested usage of the approach

Introduction of any approach into a working environment does not come at no-

cost because it requires time for adaptation, possibly training of developers and

some kind of overhead during its usage. Before an approach is introduced into

working environment and adapted by developers it should be evaluated if it will

bring expected benefits in terms of increased quality of software products,

reduced development cycle and/or reduced cost of development.

There are no silver bullet solutions or „one approach fits all‟ so in this part of the

thesis, suggested usage of the approach will be presented. This should bring

potential adapters closer to a decision, if presented approach would fit their

needs and match their environments and working style. Also, by presenting how

approach could be used, reader could get some ideas of possible benefits and

good practices implied by the approach.

Usage of proposed approach could be divided into two distinctive activities.

First of them could be described as assets creation. That activity constitutes

creating feature model for each project we want to reuse in a feature and linking

features form the model with source code. That activity could be executed

during development of each new application or could be also carried out on old

projects which company or group of developers have been working on

47

previously. Another activity is retrieving and reusing once written source code.

In order to perform following activity, former one should be first executed.

Also, the more projects have been done or adapted to proposed approach, the

more code to reuse developers will have. We could assume that costs of

developing applications will systematically decrease with number of project

performed under guidelines of source code reuse approach.

3.3.1 Roles and responsibilities

In order to adapt an approach, some additional effort should be made. If benefits

of adapting the approach are higher than cost (effort) then adapting a approach

would make a sense. Proposed approach requires introduction of additional roles

and responsibilities into development team. Those roles and responsibilities are

not very absorbing so successfully could be assigned to members of development

team – without need of additional personnel.

First of the roles is feature model modeller and maintainer. Let‟s call such

person feature model owner. Introduction of feature model is a must, and there

should be a defined person who will be responsible for it. The responsibility

includes developing a feature model, assuring it is consistent with project

requirements and source code. Maintenance involves keeping the model up to

date and when required, assuring that source code is well linked to such model.

If needed, such person should point out when source code becomes not

consistent with the model and should have enough authority to demand from

developers to improve or refactor their code to match feature model. Such role

should be assigned to an experienced developer who is familiar with feature

modelling and architectural issues. At the end of each project, feature model

owner, should additionally check if code retrieval of features gives reasonable

results and if features are correctly linked to the source code.

48

Each member of development team, in context of proposed approach, could be

named feature model user. Responsibilities of feature model users include

writing code which is coherent with feature model proposed by feature model

owner and gives them permission to reuse once written code during previous

projects. Also, feature model users are obligated to report, and if possible, fix

(or report) bugs discovered during code retrieval operations. It is recommended,

that when a developer reuses code from one project, he/she makes an appropriate

comment in a new project, indicating project and feature from which the code

has been taken. Such activity would allow other developers to find

commonalities between projects which should lead to higher awareness of

different projects available in the reuse repository.

It should be also mentioned, that because source code and projects are meant to

be reused and analysed by various developers in different period of time -

sometimes, months after completion of a project. This fact should motivate

developers to write code of higher quality, especially if they will be aware of

possibility of linking them with code they wrote, so their reputation can be

affected by low quality code. Such linking and identification is not a part of

proposed approach, but could be easily achieved by putting “author” in JavaDoc

comments. Of course, if developers will place their names in JavaDoc

comments or not, is another issue and it should be ensured by development

culture or policies.

3.3.2 Code and feature models sharing and maintenance

Sharing source code and feature models between developers and even among

different teams in case of large organisations is essential in this approach. As it

was mentioned, one person is responsible for particular feature model of a

project, so just one person should be able to modify and update it. However,

everyone who is participating in process of developing software in particular

49

organisation should have full (read) access to the code and feature models.

Sharing code between developers is not an issue since there are various revision

control systems which are meeting their purposes perfectly. However, in case of

sharing feature models other approach should be considered. First, only feature

model owner is allowed to modify feature model thus sharing feature models

over such systems would be redundant. Another issue is that to each feature

model, a source code of an application should be available. Because for code

reuse purpose most of the time we will be considering finished projects, where

no regular code updates are made, then such code also does not have to be shared

via code repositories because there should be no modification and there would be

no need for version control.

Taking into account above consideration, it could be concluded that most

appropriate approach for sharing feature models and code would be to give to all

interested participants instant access to most recent version, without need of

synchronisation. As also mentioned, different groups of participants should have

different privileges – feature model owners should have full read-write access to

their projects while feature model users just read access. Such environment

could be established basing on solutions such as directory service (i.e. Active

Directory) or other forms of sharing files among different user via LAN. Of

course, such solutions are not restricted only to LAN networks – resources could

be remotely accessed via VPN connections.

There could be a situation, when a significant change has been made in project‟s

source code so in such situation, to keep the code in the directory service up to

date, feature model owner is responsible to update it when significant changes

are made. Such approach will make code available for reuse possibly consistent

and still it will be possible to update it. Also, project does not have to be

finished in order to be eligible for reuse. Feature model owner who is

50

responsible for both feature model and its relation to the source code at one stage

could decide that enough features are implemented and project under

development could be shared for reuse purpose. Following figure demonstrates

various activities and processes which could occur during usage of proposed

approach.

Figure 0.3: Roles, assets and project allocation and access for proposed

3.3.3 Feasibility of the approach

Basing on description and purpose of approach, its feasibility for particular

purposes could be at least hypothetically judged. Knowledge of how an

approach will be used and how development teams are working in production

environments is essential for judging feasibility of an approach in different cases.

Of course, it is hard to predict how an approach would be used in every kind of

environment and by different development teams with exact precision.

However, basing on several general examples it should be possible to judge if an

approach is feasible for various cases.

51

For purpose of demonstrating feasibility of proposed approach, several cases

when the approach would meet its purpose and when it would not meet will be

presented. Each case gives also insight on purpose of developing the approach.

By analysing them, reader can with a certain level of confidence conclude if the

approach would work in his/her environment.

 Case 1:

In first case we are considering usage of proposed approach in a small or

medium size company writing custom applications for its external customers.

There is one or more projects developed at the same time and projects are

manifesting at least minimal level of similarity – for example, project are from

similar domains – banking, accounting, Business Intelligence or at least have

similar form – web applications, GUI applications, embedded applications and

so on. Projects could rely on external libraries, but still, significant amount of

programming is done by developers.

In the above scenario introduction of the proposed approach should bring

expected results for benefiting from reusable assets. In such environment, we are

able to create assets – develop feature models and link features to the source

code. In this way in further project developers could use source code from

previous (or current) project by easily retrieving and reusing it. It is important to

notice, that there is at least minimal level of similarity between projects – in such

case, there is chance of need for reusing previously written code. What is also

important is number of projects developer annually – the more are developed, the

faster assets would be created. It means that with larger number of projects

developed „in house‟, benefits from adopting the approach will come sooner.

Case 2:

52

In next case, a large and distributed organisation working on variety of projects

is considered. It is possible, that the organisation has offices in distinct locations

and projects are varying from small to very large. In terms of domain and type,

applications are also diverse. Annually, many projects are completed and

hundreds thousands lines of code are written. Applications are developed for

external customers, internal use or mainstream market.

This is bit more complicated case in compare to the first one. In this case, we are

considering very large organisation which develops diverse range of products –

in terms of customers, domain and type. Such high diversification is not a

perfect case for code reuse. However, if we take into consideration that annually

a lot of different projects are completed, then there is a high possibility that

sufficient level of similarity between some of the projects will occur and source

code reuse will be beneficial. At this point, it should be also mentioned that the

larger organisation is, the more difficult and costly introduction of the approach

would be. For example, in order to provide access to projects and source code,

VPN network should be established – as it was mentioned earlier probably

sharing feature models with theirs source code via code revision systems will not

be best solution. Another point is that having a very large number of projects as

source reuse assets, it would be reasonable to somehow organise them into

ontology to allow developers for faster access to feature models they would be

interested in. Such ontology goes beyond this work and is suggested as a further

work. Despite mentioned difficulties, possible benefits from „economy of scale‟

should make this approach feasible for large organisations.

Case 3:

In this case, a small or medium size company is considered. Our hypothetical

company develops software for much specialised markets such as military or

53

banking industry. It could be considered a good case for source code reuse –

company is focused on very narrow market, so we could guess that there will be

significant level of similarity between projects. However, because of

confidentiality or licensing issues, code cannot be easily shared between not

involved developers.

In this case, there are issues of licensing or confidentiality which obstructs

possibility of sharing and reusing source code. In such case, obviously the

approach has to be used with caution. In given example, other software reuse

techniques could be more appropriate: for example using code generators.

Case 4:

In the last case let‟s consider a small, medium or big company which main

activity is to integrate third part‟s components and libraries. We can assume that

composed software is from same or few very similar domains and there is some

level of similarity between different products. Such integration involves some

level of programming and for each final product some amount of source code has

to be written.

In this case, company already has adopted a technique for software reuse – in

this case software products are created from ready, market-available

components. However, it was also mentioned that developers are writing their

own code to integrate components and libraries. In such case, there are few

aspects to consider. First, how much of source code can we reuse from different

projects? Second, how much benefit could we have from having additional

documentation and description in form of feature models? Answering first

question, how much source code can we reuse would depend on how much

source code have been written for each project. Even if little code has been

written, such code could have valuable bits of information about integration

54

process which could allow developers to integrate some components easier while

working with them next time. When we think about benefits from having

additional documentation and description of a product it becomes obvious that

such feature model would allow different stakeholders to better understand the

project. Even when project will be finished and archived, coming back to it and

understanding how it was constructed would be easier when feature model would

be available. Of course, there could be some problems with linking features to

source code. For example, if functionality of particular feature will be fully

delivered by component or library, then we simply cannot do that. We could just

link feature to the source code our developers would wrote. But still,

impossibility of linking feature with source code does not mean we should not

create a feature model. In this example, it should be judged individually if

potential benefits would be worth to introduce such approach into working

environment.

Above cases could give some insight into feasibility of the approach in different

environments. There are also other factors which were not considered and could

have potentially big impact on successfulness of approach introduction. In this

case, experience of developers could be significant. Developers should have

enough experience to be able to work with source code which someone else

wrote which requires analytical thinking. Also, developers should be able to

think about code they are writing in terms of features and deliver coherent and

feature relevant code.

In advance, it could be difficult to be sure if proposed approach will work out in

particular situation or development environment. However, basing on presented

cases at least up to some level of certainty we should be able assess usefulness of

the approach. Taking it into account, if one decides to introduce any approach

into production environment, such introduction should be gradual in order to

55

evaluate how it meets demands and expectations. Also, by gradual introduction

of an approach, it is more likely that it will be accepted by developers because

gradual introduction of it, will not meet equally high resistance as in case of full

introduction to every team and every department.

3.4 Design of the system

In order to efficiently use proposed approach a dedicated tool for retrieval of

source code linked to feature model has been developed. This part of the chapter

explains how the tool works and presented information could be useful in case of

extending proposed tool or writing a new tool for different programming

language. The approach with support of that tool constitutes a system for source

code retrieval and reuse basing on feature models. The tool could be divided

into several components:

 Code analysis

 Feature model representation

 Code retrieval

 Code visualisation

A part of code from another work on Feature modelling has been incorporated

into the tool [29]. The code which has been included from that work allows for

displaying and drawing feature model. Also, a Java parser which generates AST

of Java code, has been used in this work [1].

Each of those components could constitute separate tool and in fact, many open

sources applications have been used during development of presented tool.

Because each component of the tool highly independent, extending or changing

some of them would be possible. As it will be proposed in „Conclusion and

56

further work‟ there are several possible ways of improving and/or extending

delivered tool.

One of the main aims during designing and developing was to deliver an

application which will allow evaluating and testing proposed approach. Besides

that, the tool was also designed to be user friendly, simple and easy to use. The

tool has been written Java programming language, version 1.5.

3.4.1 Code analysis

Code analysis is one of the very first processes during runtime of proposed tool.

Code analysis is executed once the project is created/loaded into the application

or on demand – for example user can execute action allowing for analysing code

and refreshing features representations. It could be done when user knows that

source code has changed and it would be reasonable to work on fresh data.

Code analysis is divided into several steps and requires usage of several

structures (classes) implemented as a part of the tool:

 Storing in memory representation of Java files (“SourceRepresentation”):

During this process, all Java pointed by the user during project creations

are being discovered; their locations and file content is then stored in

special class (structure) for easing access during further stages of code

analysis.

 Preparing and storing in memory “CompilationUnitInfo” of discovered

Java files:

CompilationUnitInfo is a class which directly represents discovered

interfaces or classes. It has to be separated from “SourceRepresentation”

described above, because single source file can represent multiple

classes. During initialisation of CompilationUnitInfo, such information

57

as package, class/interface name, imports declarations, field declarations

and some more detailed information about interface/class are identified

during analysis and stored in memory. After that, objects of this class are

grouped by packages in which they are declared. During further stages of

analysis, it allows for easier access to classes/interfaces of the same

package.

 Discovering and storing in memory “FeatureRepresentations”:

This stage of code analysis requires a lot of parsing of given source code.

For that purpose an external Java parsing library is used. First phase of

features discovery requires identification of functions annotated with

“@Feature” annotation – so called entry points which are in fact

representing those functions which are executed as first during execution

of particular feature. Those functions – entry points will be used during

further analysis and discovering of functions involved in functioning of

given feature. One of the outcomes of this stage of analysis is collection

of BasicFeatureInfo. This class constitutes feature name, method name,

method body (method declaration) and information required to identify

class (from analysed source code) in which particular feature was

discovered. Basing on those BasicFeatureInfo[s] entry points will be

later on identified and stored in memory.

 BasicFeatureInfo clustering and entry points initialisation:

This is the last stage of initial identification of features. After identifying

all BasicFeatureInfo[s] they are clustered into appropriate representations

of features (class FeatureRepresentation). It is required, because a single

feature could be annotated at several different functions thus

FeatureRepresentation could be composed of several BasicFeatureInfo[s].

After all BasicFeatureInfo[s] are allocated at appropriate

FeatureRepresentation, collection of FunctionRepresentation, which is in

58

fact a collection of entry points, is generated. At this stage,

FeatureRepresentation is represented by feature name, feature

description, set of BasicFeatureInfo and set of FunctionRepresentation

(entry points).

Those are initial stages in code analysis and all information is stored in memory

during runtime of the system. Now, we know which features are present in a

source code we are analysing and processing but the source code of each feature

has not been identified yet. The source code identification for each feature is

done upon user request – in provided system via graphical interface. How does

it work and how source code is retrieved will be described in further part of this

work.

3.4.2 Representing Features and Functions

Feature representation is essential for proposed tool. It is required for both,

providing right data structure for making it possible to visualise feature model as

well as make it possible to represent information required for identifying and

providing source code which represents the feature. It is also essential to

understand how such representation is created during runtime of the system.

Generating representation is related to code analysis which is described with

more details in further part of this work.

In proposed solution features are represented in two separate ways. The reasons

for such form of dualism of features representation belongs to the fact that tool

for drawing feature models is based on a third part source code and it has its own

representation for feature models. For purpose of source code retrieval of a

particular feature, independent model for representing features has been

proposed. Someone could argue that it could be better to have one unified model

for representing feature model, but despite the fact that those two models are

59

representing features, those models are having completely different purpose in

the system. One of them makes visualisation of feature models possible, while

another makes it possible to retrieve source code thus having unified model

would make it unnecessary complex.

For better understanding how the system was designing, explaining how feature

representation for code retrieval was designed is more crucial. By understanding

how feature representation is modelled and which roles particular parts of the

model play will allow to better understand the system and process of code

analysis.

3.4.3 Code retrieval

Code retrieval is most crucial and complex module of provided tool. As it was

explained in “Overview of the approach”, retrieved code does not just contain

code of annotated function but also source code of all functions which are called

as a direct result of calling annotated function – direct call for example does not

include aspect oriented function executions.

How does code retrieval work in practice? First step is to properly process source

code to get proper representation of FeatureRepresentation and

FunctionRepresentation as it was described in previous section. In order to

prepare it, an inner representation of source code in parser format is prepared.

The parser can traverse such representation and identify every single element of

source code (declarations, variables, conditions, function calls, etc). With such

parser, the source code is searched for function declarations and for each method,

it is checked weather the function is annotated with annotations or not. After

identifying such function, it is checked weather one of the annotations is the one

we are looking for - @Feature. Such lookup is done for each source file pointed

out as part of the project. It should be mentioned that particular feature, for

60

example @Feature(name=”startFuelPump”, description=”...”) can be annotated

to more than one function thus during discovering, existing internal

representation of feature is extended with newly discovered functions. Because

multiple functions can be annotated as the same feature, thus before source code

for a feature is analysed for code identification and retrieval purpose, it have to

be assured that all annotated features are discovered prior to such analysis. After

the process of analysing all source files is completed, the real source code

identification and retrieval for features can begin.

Next stage in source code discovery for feature is identification of function call

hierarchy where function is represented by mentioned earlier

FunctionRepresentation. Figure 3.4 represents simplified model of

FunctionRepresentation with parent-children relationships hierarchy. It is

important to know that in order to better understand how code retrieval works.

Figure 0.4: Simplifed model of function representationed model of function representation

During analysis of function‟s body, parser navigates through the abstract syntax

tree (AST) looking for function calls declarations in order to prepare such parent-

children hierarchy. Before details of analysis are revealed, let‟s consider

following functions (Figure 3.5, 3.6, 3.7) samples as possible input for process of

source code analysis.

61

Figure 0.5: Sample Java function - subject to source code retrieval and analysis, 1

Figure 0.6: Sample Java function - subject to source code retrieval and analysis, 2

Figure 3.7: Sample Java function - subject to source code retrieval and analysis, 3

First sample is very straightforward and its analysis and identification of

functions should not be overly complex – however, our aim is to access the

function body of called functions (functionCall(), anotherFunctionCall(),

doSomething()). For that purpose the parser should not only identify called

function names but also be aware of functions in super-classes and even super-

classes of the super-class (very deep inheritance hierarchy). Proposed tool takes

care of that and after identifying a function call declaration, it takes proper steps

to identify the class to which a function declaration belongs.

62

Second sample demonstrates similar structure, however, function calls are bit

more complex – the source code analyser has to additionally face overloading

and identification of argument types. Again, source code analyser has to not

only identify functions but also, precisely determine argument(s) type in order to

match exact function call.

Third sample is the most complex of presented functions. Object Oriented

programming allows for a lot of flexibility in terms of programming style and as

a result source code analysers have to be able to work with such code. Proposed

tools is also capable of identifying all of those functions which requires

sequential analysis of given structure. Let‟s consider this line:

fooClass.callFunction(booClass.callSth().callAnotherFu

nction().lastCall());

In order to identify all 4 functions, first the class of booClass object should be

identified. After that, the analyser can identify callSth() function and its return

type – required to identify callAnotherFunction(). The same happens for

callAnotherFunction() – its identification allows for identifying its return type

and at the end, identification of lastCall() function. As a result, we can identify

return type of lastCall() and in this way discover fooClass.callFunction(...). In

practice, proposed tools do a „backward search‟. First, the analyser tries to

identify callFunction(...). In order to do that, it tries to identify return type of

lastCall(). During analysis of the last call, it goes backward (recursively) from

lastCall(), to callAnotherFunction() and then to callSth() “asking” at each step

for a return type. If the return type is identified, it identifies the function and

gives the “answer” as a return in a recursive call.

Provided samples are not the ultimate cases for code that could be analysed –

richness of Java programming language allows for much more complex

63

structures and declarations which proposed tool is also able to analyse. The

problem could arise when argument types for function call cannot be precisely

identified (for example, using concrete class while function is declared with

interface).

3.4.4 User interface and code visualisation

The interface was designed in a way, that users can use the most essential

features efficiently and in an intuitive way. The heart of the application is

feature tree visualisation which allows navigating thru features with mouse and

source code could be accessed with just few „clicks‟.

Figure 3.8 shows the interface overview with opened project and modelled

feature tree. The interface is concentrated on tabbed panes which allows for

easily navigation between feature model, list of features and code of features.

Having such layout, user can swiftly navigate from one view to another. Besides

tree representation of the features, features are additionally displayed in a table

layout 3.9 which additionally contains description of the feature – such view

could be useful in case when there are many features and user wants to go

through all of them.

64

Figure 0.8: Main layout of the interface

Figure 0.9: Additional view with listed (discovered) features

When a single feature is selected via tree model by double clicking the feature or

from the list of features, its representation is displayed in navigation view –

“Functions call” presented in a figure 3.10. The feature is then presented as a

hierarchy of function calls with multiple levels of depth so user can get familiar

65

with functions which are participating in an execution of a feature. Additionally,

this view provides to the user information about the package and class of origin

for each of the function as well as function signatures.

Figure 3.10: Functions call hierarchy for particular feature

The interface allows for easy access to the source code of the feature – via the

navigation tree with function calls of each feature, user can access the source

code just by clicking on appropriate function in the tree. Figure 3.11

demonstrates that after selection of showFileChooser(JFrame ui) function, the

code of that feature is displayed and highlighted in “Code of Feature” table pane.

That allows users to swiftly go through all functions participating in execution of

particular feature.

66

Figure 0.11: Interface with function call hierarchy and discovered code for particular

function

Having such a simple interface, user can easily create project, feature model and

access the source code of the features. This allows for easy interaction between

developer and proposed tool which is one of the aims for proposed approach – to

make it as lightweight and easy to use as possible.

3.4.5 Creating sample project

This section of the thesis demonstrates how to create a simple project according

to proposed approach with use of delivered tool for retrieving source code for

given features of a feature model. This simple, step-by-step description allows

for better understanding of the approach as well as the tool. Proposed approach

toward using the tool is not the only possible and some steps could be conducted

in different order.

First step is to create a Java project with an IDE of a preference (Eclipse,

NetBeans, etc) with included a Jar library into build path – the Jar library defines

@Feature annotation so annotated code will compile without problems. After

creation of the Java project, a reuse project with provided tool could be created.

67

In order to create a new project in the reuse tool, first, File->New project should

be selected. After that user is asked to give a name of a project and select

location of the source code that will be searched for annotations and potentially,

reused. After confirming input data with “Create new project” user is asked to

point location under which project‟s files will be saved – now, the project is

ready to use (see figure 3.12)

Figure 0.12: Creating new project

After having both projects started, next stage is to create a feature model. There

are two possible approaches for that and first is favoured for better understanding

of the project. The first approach is to create a whole feature model (feature tree)

in advance and later on, annotate appropriate functions while writing a source

code.

When new project is created, a design board for feature tree is empty and new

features could be added and joined together to form a tree structure. Figure 3.13

shows two ways of adding a new feature – via a button located on a button bar or

through popup menu (right click of a mouse). Figure 3.14 shows example of a

tree model created with proposed tool. Such model could be also treated as

additional high level documentation and description of a project.

68

Figure 0.13: Interface for adding features to feature model

Figure 3.14: Sample feature model

Besides creating the feature tree in advance, it is also possible to first annotate

features in a source code and they will be automatically discovered during

creation, opening or update of the project. However, if it is decided to first

annotate code and then discover such features, they will appear on a design board

in unstructured and unconnected manner. Thus in order to have a tree model the

69

features have to be manually connected. In any case, when there is new feature

in source code and we want to synchronise feature model with it, the project has

to be reopened or an update action should be invoked via “update button” in a

main layout.

Figure 3.15 shows piece of source code from an IDE with annotated function

getTreeCellRendererComponent. After selecting a feature changeTreeIcons in a

tree model (double click with a mouse) the feature function calls will be visible

in a function call explorer on a left side of the layout (Functions call tab) – see

figure 3.16. The functions call tab represents hierarchy of discovered functions

calls within the code – only those functions of which source code is provided

will be listed. By selecting any of given function name user can access the

source code as it is presented on figure 3.17.

Figure 0.15: @Feature annotated code in IDE

70

Figure 0.16: Function call tree with selected function to display in source code pane

Figure 0.17: Interface with selected function in function call tree and displayed source code

71

CHAPTER 4

EVALUATION OF THE APPROACH

Evaluation of the approach is essential in order to understand deeper how

beneficial its introduction would be for developers and organisation. By

evaluating and testing, some question and ideas have also been generated which

would allow to improve proposed approach to better match users‟ expectations

on it. In order to evaluate the approach, appropriate tests have to be designed.

Tests for evaluating proposed approach were designed to answer several

questions:

 Does the approach work?

This is a crucial question that have to be answered and will tell us if the

approach meets its essential function or not – if the code retrieval works

and can be retrieved easily.

 What is a benefit of using the approach?

When the approach is evaluated, it is checked if initial assumptions about

possible benefits were correct or not. During evaluation, other potential

benefits, not considered during approach design could be discovered and

pointed out by testers.

 How easy is it for developers to learn and understand how the

approach works?

When a new approach, framework or technology is introduced into a

working environment, a learning curve is one of the considered aspects.

The more complex or vague something is the more expensive and

difficult it would be to implement in a working environment. Because of

72

that, during testing and evaluation such aspects are also addressed and

considered.

 What is developers view on the provided tool and approach?

Besides testing the efficiency of the approach or a tool, also developers

view on the approach is very important. It is essential that developers see

benefits of using it and will cooperate both in assets generation as well as

assets retrieval for making their work easier.

4.1 Test design and testing approach

Main aim of designing tests for proposed tool and approach was to reflect

possibly precisely real environment and way in which both of them could be

used. For that purpose, third party software - an open source application, was

chosen as an object of test. The application was analysed and a feature model

was created for it. Also, @Feature annotations were placed in a code to link

feature model with source code. The feature model of that application is

presented on a figure 4.1. It was decided that the object of tests should not be

overly complex so participating in a test will not require great effort and time

from voluntary testers.

Figure 0.1: Sample feature model

73

Four Java developers participated in testing and evaluation. Each of the tests

was carried out separately so testers did not have an advantage of understanding

the tested code in advance. Before each test, it was explained how the approach

works and how developers could benefit from it. After that, a tool for code reuse

was presented with explanation how to use it and how to navigate through

retrieved code. After that brief introduction, an application which source code

will be retrieved during the test was presented. This open source application is

an easy to use jar files browser and explorer – via simple interface, it allows to

look inside into a jar of compiled classes and allows for navigating through it.

Explaining to testers how the tool for source retrieving and the approach works is

essential to allow them working with it efficiently. Also, by demonstrating them

the JarExplorer works will allow them to better understand what pieces of code

they will be looking for.

In order to test the approach and provided tool, testers were asked to find in total

source code of 4 features in provided source code of JarExplorer. Those features

are related to application‟s GUI and most essential functions. Those features are:

1. Feature responsible for popping-up “open file dialog” for loading JAR

file (feature 1)

2. Feature responsible for decompiling “.class” files from byte code to

string (feature 2)

3. Feature responsible for keeping program window “on top” of other

windows (feature 3)

4. Feature responsible for reading jar file and displaying it as a “tree”

structure (feature 4)

What was measured during that test was how much time it takes for each

developer to retrieve or identify source code of given feature. Each tester was

asked to retrieve code of two features with use of provided tool for source code

retrieval and two others without – tester had to navigate via source code and find

those features without help of the tool.

In order to have more accurate results, different testers were asked to retrieve

different pairs of features with help of provided tool and without it. For

example, tester 1 was asked to retrieve source code of Feature 2 and 4 with

provided tool for source code retrieval and Feature 1 and 3 with provided IDE

74

while tester 2 was asked to retrieve source code of Feature 1 and 3 with provided

tool and Feature 2 and 4 with provided IDE.

4.1.1 Target group and environment

The tests were conducted on a group of 4 programmers (participants) familiar

with Java programming language – all of them are currently a Master‟s students.

One of them is currently working as a Java programmer (participant 1) while 3

others are familiar with Java programming language but currently are not

working as programmers. Each test was carried out on a portable computer with

Windows 7 operating system. Besides the tool for source code reuse, testers

were allowed to choose one of two IDE on which they will be asked to retrieve

code of a feature “by hand”. Those IDEs are: Eclipse and NetBeans which are

the most popular non-commercial development environments. Testers were

asked to assess their knowledge and experience with Java and other

programming languages. The following information was provided:

 Participant 1 – working with Java for about 2 years, currently working as

a Java programmer.

 Participant 2 – less than a year of experience with Java, familiar with

other Object Oriented languages (about 2-3 years of .NET programming)

 Participant 3 – about a year of experience with Java, previous experience

with other Object Oriented languages

 Participant 4 – less than a year of experience with Java programming

Testers were given the following task to complete:

Your task is to identify source code of 4 features within provided source code of

a JarExplorer application. An example of such source code will be

demonstrated to you in order to define “source code of a feature”. All of the

features which you are asked to identify will be demonstrated to you in a

working application, it means, it will be demonstrated how the feature works.

The features to identify:

75

1. Feature responsible for popping-up “open file dialog” for loading JAR

file.

2. Feature responsible for decompiling “.class” files from byte code to

string

3. Feature responsible for keeping program window “on top” of other

windows

4. Feature responsible for reading jar file and displaying it as a “tree”

structure

Besides, after conducting the tasks, participants were asked the following

questions:

 How did you find usefulness of provided tool and approach?

 How would you improve provided tool in order to better perform your

day-to-day programming duties with support of the tool?

 What are other benefits of using provided tool and approach?

4.1.2 Test results andparticipants’feedback on the tool and approach

Participants were asked to discover a source code of four previously mentioned

features. During the test, time was measured and results are presented in table

4.1. After analysing the results, it becomes clear that source code retrieval with

provided tool becomes easier and takes less time. Average time for retrieving a

source code of feature with provided tool was 50 seconds while “by hand” (with

IDE) it took on average 3 minutes and 28 seconds.

Table 4.1: Time required for retrieval and identification of a source code for particular

feature. Measured for different participants with and without provided tool

Time for identifying source code a features 1,2,3,4

Retrieval with tool Retrieval "by hand" (with IDE)

Number of a feature (time) Number of a feature (time)

participant 1 2 (45sec) 4 (1min) 1 (2min) 3 (3min)

participant 2 1 (1min 10sec) 3 (40sec) 2 (6min, 30sec) 4 (2min, 5sec)

participant 3 2 (35sec) 4 (50sec) 1 (4min 10sec) 3 (1min 15sec)

participant 4 1 (1min 15sec) 3 (25sec) 2 (5min 35sec) 4 (3min 15sec)

76

Beside tests, participants provided also very valuable information of possible

improvements and usage of proposed tool and approach. All of suggested

suggestions were about improving the tool by adding additional functionalities

and making operation of it easier – improving interface. Participants proposed

following improvements of the tool:

 Adding possibility of folding/unfolding nodes of feature tree so in case of

very large trees, it would be easier to read it and find appropriate feature.

 Adding tooltips to the nodes of the feature model tree with additional

information such as feature description or function names constituting the

feature.

 Providing given tool as a plug-in for Eclipse IDE so operation of it would

be easier to operate on a source code and feature model at the same time

– i.e. directly modifying the code after accessing it via feature model.

However, such functionality was not considered for given approach,

because primary use of it was designed in order to „retrieve‟ and „reuse‟

source code rather than operate on an application and maintain it.

What is also very interesting, participants found and proposed a new way of

using provided tool and approach. One of them have suggested, that such tool

would be very good for source code maintenance, because when new

programmer is assigned to maintain a source code he/she can easily identify

particular features within code. Such suggestion is in parallel with statement

from the thesis, that such feature model would be an additional high-level

documentation of the source code. Also, another participant of the test suggested

that proposed tool allows for faster and better comprehension of a source code.

77

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Proposed work is just a cornerstone for future research and improvements of the

proposed approach and a tool for source code retrieval. During tests and

evaluation it was demonstrated that both approach and the tool allowed for

retrieving of source code that developers were asked to find. However, in order

to make more accurate conclusions and judgements both approach and the tool

should be evaluated in a real production environment on more than one project –

in order to first generate assets and then to use those assets or simply, reuse

written code.

The approach could be also called „seamless assets generator‟ because in

contrary to other software reuse methodologies, it does not require to generate or

write assets in advance before starting any project. Because assets are generated

while working on „normal‟ projects and applications, thus no extra workforce is

required to participate in software reuse processes. It is big advance over other

methodologies because it reduces risk of introducing approach and reduces costs

of using it.

Proposed system (approach + tool) is easy and cheap to introduce into

production environment thus at almost no-cost could be tried and evaluated by

software developers. This fact is very important because high costs of

78

introduction of something new into a company, could be a major obstacle in its

implementation. Also, when a company decides to use given system, it can be

abandoned at anytime without damage or any inconvenience to developers.

Because entry and exit costs of using the system are low, there is a chance that

development teams decide to try provided system.

The system is currently working, but still it is in an early stage of development

thus there is high chance that if a company would decide to use it, many ideas

will come into developers‟ minds about possible improvements and extensions.

More experienced software architects and engineers who participated in variety

of different projects and more than once faced issues of source code reuse, would

probably contribute the most and their ideas could help to make such system

„development and enterprise forged‟.

At the current stage, the tool for code retrieval is a separate application but for

further work, it would be more convenience to have such tool integrated into

such IDE as Eclipse or NetBeans. By integrating the tool into IDE, developer

will not be required to start and operate another application while working on a

project – it would make his/her environment more users friendly and

comfortable. Also, by integrating such tool into IDE, developer would be able to

navigate through retrieved code and code he/she is working at a time easier – just

by switching between tabs. Both of mentioned IDEs are plug-in friendly and if

significant amount of time is invested, experienced Eclipse or NetBeans

contributors could create such extensions.

Proposed approach is supposed to be scalable and work equally well with small,

medium and large number of former projects stored as company assets.

However, at current stage it could be more difficult to work with large number of

projects because for retrieving a feature code, developer would have to traverse

79

large number of projects. He/she would be lucky if in advance he/she would

know in which projects to look for a feature – for example, within a small (5-10)

set of projects. Now, let‟s image that developer does not have such knowledge

and has to look through variety of projects to find a desired feature. In such

case, usage of approach would become less beneficial. In order to prevent such

situation and in general, improve the approach a simple extension of it could be

introduced. One of such extension is storing features names and descriptions in

a database with search interface. In such scenario, when developer would be

looking for a feature, he/she could first do a keyword search in a database. That

would allow for identifying a project or small set of related projects. Another

possible improvement is introduction of ontology – related projects could be

after completion linked with each other in an ontological way. Such ontology

could play a role as a roadmap of all projects and would allow developers to

access related projects and locate features they are looking for.

Another possible improvement of provided approach is to track which features

are reused in which projects. For example, if a Feature A originally

implemented in Project A was later reused in Project X, Y and Z it would be

beneficial to keep track of such actions for various reasons. Let‟s consider that

during Project A operations it was discovered that Feature A has a serious bug

which occurs in really rare situations and just in special conditions thus it was

hard to discover the bug earlier. If we have information where the feature was

reused, then we can check if affected code was also reused or not. Another

possible benefit of keeping track of features reuse is to identify the features

which are most commonly used. If we can track them, then proposed approach

could be connected with other reuse based software methodologies and

appropriate components or libraries could be implemented. Such tracking should

not be difficult to implement and could be done in at least two ways. First, there

80

could be a database with web interface where developers are submitting facts of

reusing particular feature in particular project with some details that allow

identifying where exactly that code was reused. Another possibility is to

introduce another annotation (for example, @Reused (project =”projectName”,

feature = ”originalFeature”) which indicates where the code was reused. This

method would allow for using automatic research tools for analysing which

features were reused and where, which has such benefit that developer

him/herself would not be obligated to use any web form to submit fact of reusing

feature. By introducing such monitoring tools or techniques, it would be

possible to assess in a long time prospect, how effective the approach is. This

would allow objectively confirming or rejecting benefits of using the approach.

At the time of writing this thesis, there are no standard tools or files formats for

modelling and representing feature models. However, if feature modelling will

gain enough popularity then for sure we can expect that such tools will emerge

on a market. Having professional tools for modelling would make modelling

process easier and also, more complex models could be created and maintained.

In a case when such tools become available one day, it would be reasonable to

make proposed tool compatible with such file formats/standards so models

created with dedicated feature modelling tools could be read by tool for

retrieving source code for features. In this way, a lead developer who is

responsible for maintaining feature model could benefit from using fully

dedicated and robust tool for feature modelling while developer at the same time

would be able to read the feature model into reuse tool and retrieve code of

particular features.

 At the current stage, provided tool for source code reuse is working just with

Java code and as future work, the tool could be extended to work with other

popular programming languages such as C#, C++, Ruby or Python. It would

81

require using different language parsers for source code and rewriting some of

the modules for code retrieval. It could be challenging but still possible to have

an all-in-one tool for source code reuse which supports mentioned programming

languages.

82

BIBLIOGRAPHY

[1] javaparser http://code.google.com/p/javaparser/, Last access date: 15

March 2011.

[2] S. Apel, C. Kaestner, and C. Lengauer. “Research challenges in the tension

between features and services”. In Proceedings of the 2nd international

workshop on Systems development in SOA environments, SDSOA '08,

pages 53- 58, New York, NY, USA, 2008. ACM.

[3] S. Apel and C. Kstner. “An overview of feature-oriented software

development”. Journal of Object Technology, vol. 8, no. 5, July-August

2009, pp. 49-84

[4] K. Berg, J. Bishop, and D. Muthig. “Tracing software product line

variability: from problem to solution space”. In Proceedings of the 2005

annual research conference of the South African institute of computer

scientists and information technologists on IT research in developing

countries, SAICSIT '05. South African Institute for Computer Scientists

and Information technologists, 2005.

[5] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. “The concept

assignment problem in program understanding”. 15th International

Conference on Software Engineering, Baltimore, MD , USA, May 1993.

[6] D. Binkley. “Source code analysis: A road map”. Future of Software

Engineering (FOSE '07), 2007, pp. 115-30, May 23-25, 2007, Minneapolis,

MN, USA,

[7] G. Canfora, A. Cimitile, and M. Munro. “Re2: Reverse-engineering and

reuse re-engineering”. Journal of Software Maintenance and Evolution:

Research and Practice, Volume 6, issue 2, 1994.

[8] D. Clarke and J. Proenca. “Towards a theory of views for feature models”.

FMSPLE, Jeju Island, South Korea, 14 September 2010, 2010.

[9] J. M. Conejero and J. Hernndez. “Analysis of crosscutting features in

software product lines”. Proceedings of the 13th international workshop on

Early Aspects, New York, NY, USA, 2008.

83

[10] K. Czarnecki and U. Eisenecker. “Generative programming: Methods,

tools, and applications”. 2000.

[11] R. M. Dijkman, D. A. C. Quartel, and M. V. Sinderen. “Consistency in

multi-viewpoint design of enterprise information systems”. Information &

Software Technology, Volume 50, Issue 7-8, 2008.

[12] S. Ferber, J. Haag, and J. Savolainen. “Feature interaction and

dependencies: Modeling features for reengineering a legacy product line”.

In Software Product Lines, Springer Berlin, 2002.

[13] O. Greevy, S. Ducasse, and T. Grba. “Analyzing software evolution

through feature views”. Journal of Software Maintenance and Evolution:

Research and Practice, 2006.

[14] M. Griss, J. Favaro, and M. d‟Alessandro. “Integrating feature modeling

with the RESB”. In International Conference on Software Reuse, 1998.

[15] M. Harman, N. Gold, R. M. Hierons, and D. Binkley. “Code extraction

algorithms which unify slicing and concept assignment”. In Working

Conference on Reverse Engineering, 2002.

[16] P. Heymans, P. –Y. Schobbens, J. christophe Trigaux, Y. Bontemps, R.

Matulevicius, and A. Classen. “Evaluating formal properties of feature

diagram languages”. IET Software, Volume 2, Issue 3, 2008.

[17] J. Highsmith. “Agile Software Development Ecosystems”. Addison-

Wesley Professional, 2002.

[18] K. Kang, K. Lee, J. Lee, and S. Kim. “Feature-oriented product line

software engineering: Principles and guidelines”. 2003.

[19] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.

“Feature-oriented domain analysis (FODA) feasibility study”. Technical

report, Carnegie-Mellon University Software Engineering Institute,

November 1990.

[20] A. S. Karatas, A. H. Dogru, H. Oguztuzun, and M. Tolun. “Using context

information for staged confguration of feature models”. In Transformative

Systems Conference: SDPS 2010, 2010.

[21] C. W. Krueger. “Software reuse”. ACM Computing Surveys, Volume 24,

Issue 2, June 1992.

84

[22] C. Larman. “Agile and Iterative Development: A Manager‟s Guide”.

Addison-Wesley Professional, 2003.

[23] H. Mei, W. Zhang, and H. Zhao. “A metamodel for modelling system

features and their refinement, constraint and interaction relationships”.

Software & System Modeling, Volume 5, 2006.

 [24] H. Mili, A. Mili, S. Yacoub, and E. Addy. “Reuse-Based Software

Engineering: Techniques, Organizations, and Controls”. Wiley-

Interscience, New York, NY, USA, 2001.

[25] I. Pashov, M. Riebisch, and I. Philippow. “Supporting architectural

restructuring by analyzing feature models”. In Conference on Software

Maintenance and Reengineering, pages 25- 36, 2004.

[26] K. Pohl, G. Böckle, and F. J. v. d. Linden. “Software Product Line

Engineering: Foundations, Principles and Techniques”. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2005.

[27] C. Prehofer. “Feature-oriented programming: A fresh look at objects”. In

European Conference on Object-Oriented Programming, 1997.

[28] C. A. Szyperski. “Component software - beyond object-oriented

programming”. Addison-Wesley-Longman, 1998.

[29] O. Üçtepe. “Utilization of feature modeling in axiomatic design”. Master's

thesis, Middle East Technical University, 2008.

[30] M. Weiser. “Program slicing”. IEEE Transactions on Software

Engineering, 1984.

[31] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds. “A

comparison of methods for locating features in legacy software”. Journal

of Systems and Software, Volume 65, 2003.

[32] W. E. Wong, S. S. Gokhale, and J. R. Horgan. “Quantifying the closeness

between program components and features”. Journal of Systems and

Software, Volume 54, 2000

 [33] Y. Yu, J. Mylopoulos, A. Lapouchnian, and S. Liaskos. “From stakeholder

goals to high-variability software designs” 2005.

