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ABSTRACT

NEURAL NETWORKS WITH PIECEWISE CONSTANT ARGUMENT AND IMPAT
ACTIVATION

Yilmaz, Enes
Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Marat Akhmet

June 2011, 137 pages

This dissertation addresses the new models in mathematical neuroscietifagal areural
networks, which have many similarities with the structure of human brain andittetidns

of cells by electronic circuits. The networks have been investigated dueitoetktensive
applications in classification of patterns, associative memories, image pirageartificial
intelligence, signal processing and optimization problems. These applicalépesd cru-
cially on the dynamical behaviors of the networks. In this thesis the dynamaqeasented
by differential equations with discontinuities:fiirential equations with piecewise constant
argument of generalized type, and both impulses at fixed moments and giec@mstant
argument. A discussion of the models, which are appropriate for the gedmpplications,

are also provided.

Qualitative analysis of existence and uniqueness of solutions, globapastyc stability, uni-
form asymptotic stability and global exponential stability of equilibria, existerigeeriodic
solutions and their global asymptotic stability for these networks are obtdixadnples with

numerical simulations are given to validate the theoretical results.

iv



All the properties are rigorously approved by using methods fiderdintial equations with
discontinuities: existence and unigueness theorems; stability analysis hhtteeigsecond
Lyapunov method and linearization. It is the first time that the problem of stahilttythe
method of Lyapunov functions for fierential equations with piecewise constant argument
of generalized type is investigated. Despite the fact that these equatenstlardeviating

argument, stability criteria are merely found in terms of Lyapunov functions.

Keywords: Neural Networks, Piecewise Constant Argument, ImpuResodic Solutions,

Stability



Oz

PARCALI SABIT ARGUMANLI VE CARPMA AKT IVASYONLU SINIR AGLARI

Yilmaz, Enes
Doktora, Bilimsel Hesaplama@imi

Tez Yoneticisi : Prof. Dr. Marat Akhmet

Haziran 2011, 137 sayfa

Bu tez, matematiksel sinir bilimindeki yeni modellerderiiche fonksiyonlari ve insan bey-
ninin yapisi ile bircok benzerlik@steren yapay sinirgdarindan ve elektronik devreler yar-
dimiyla Hicrelerin fonksiyonlarindan bahsetmektedir. Blaaorintilerin siniflandiriimasi,
cagrisimh bellekler, gruntl isleme, yapay zeka, sinyal isleme ve optimizasyon problem-
lerindeki genis uygulamalarindan dolay! incelenmektedir. Bu uygularmakemli bir sekilde
aglarin dinamik davraniglarina dir. Bu tezde dinamikleriseksiz diferensiyel denklem-
ler: genel tipteki parcall sabit argumanli diferensiyel denklemlergve sabit zamanli itmeler
ve parcall sabit arguman, ilé@gterilmistir. Ayrica, 8zkonusu olan uygulamalaéanek teskil

eden modellerin tartismasi yapilmistir.

Bu ajlar icin gozimlerin varhk ve teklgi, denge noktalarinin global asimtotik karadili
duzgin asimtotik kararhfy! ve globalistel kararllgi, periyodik @zimlerin varlgi ve bun-
larin global asimtotik kararliinin niteliksel analizi elde edilmistir. Teorik sonuglarigio-

lamak amaciyla iimerik sirmulasyondrnekleri verilmistir.

Tum ozellikler: varhk ve teklik teoremleri; ikinci Lyapunov metodu ve lineerizasylen

kararllik analizi, sireksiz diferensiyel denklemler icin olan metotlar kullanilarak kesin olarak

Vi



onaylanmistir. Genel tipteki parcall sabit argumanh diferensiyel léemlkr icin Lyapunov
fonksiyonlar metodu ile kararhlik problemi ilk defa incelenmistir. Bu denklemégmsa ar-
gumanh olmasina gmen kararllik kriterleri sadece Lyapunov fonksiyonlari cinsinden bu-

lunmustur.

Anahtar Kelimeler: Sinir Alari, Parcali Sabit Argumaitmeler, Periyodik @ziimler,

Kararhlik
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

The dynamics of artificial neural networks is one of the most applicableattrattive ob-
jects for the mathematical foundations of neuroscience. In the last dedeeurrent Neural
Networks (RNNs), Cohen-Grossberg Neural Networks (Hopfielttalenetworks as a spe-
cial version) and Cellular Neural Networks (CNNs) have been deepéstigated by using
various types of dference and dlierential equations due to their extensive applications in
classification of patterns, associative memories, image processing, aitifieitgence, sig-
nal processing, optimization problems, and other areas [27, 28, 382335, 36, 37, 38, 39,
117,119,120,121,122,123,124,131, 134, 135, 136, 137,183 148, 149, 150, 153, 154].
One of the ways to extend considered equations is to involve discontinuiti@siotis kinds.
The first one is to assume that functions on the right hand side are disgmmsinAlso, we
can use the independent argument as a piecewise constant functibathlnases one has
a discontinuity of the velocity of the network process. Another way to obtardyimamics
with discontinuities is to consider it when the space variables, that is, theiedd¢ctraracter-
istics themselves are discontinuous. Besides continuous activationshtaisoagsingular
activations started to be used to develop for these applications. Thismpeaadmmediately
brings a great interest to the theory of networks witffedent types of discontinuity. An
exceptional practical interest is connected with discontinuities, whichaapeprescribed
moments of time. Moreover, as it is well known, nonautonomous phenomataaxcur in
many realistic systems. Particularly, when we consider a long-term dynalelavior of a
system, the parameters of the system usually will change along with time. Thusstarch
on nonautonomous neural networks is of prime significance. Theséeprsiprovide very
difficult theoretical and mathematical challenges, which will be analyzed in this tHese

results of Akhmet’s studies [1, 2, 3,4, 5, 6, 7, 9, 19, 20, 21, 22, 2Bge a solid theoreti-



cal background for the proposed investigation difiedential equations with discontinuity of
types mentioned above: systems with piecewise constant argument and venplifferential

equations.

The main purpose of this thesis is the mathematical analysis of RNNs. It is vaslirkthat
these applications mentioned above depend crucially on the dynamicalidrebfthe net-
works. In these applications, stability and convergence of neural nietveoe prerequisites.
However, in the design of neural networks one is not only interested iglthal asymptotic
stability but also in the global exponential stability, which guarantees a Ineetk@ork to con-
verge fast enough in order to achieve fast response. In additiorg mnidlysis of dynamical
neural networks for parallel computation and optimization, to increase theofaconver-
gence to the equilibrium point of the networks and to reduce the neuralutorggime, it
is necessary to ensure a desired exponential convergence rate radtilwrks trajectories,
starting from arbitrary initial states to the equilibrium point which corresgadthe opti-
mal solution. Thus, from the mathematical and engineering points of view,dtjigned that
the neural networks have a unique equilibrium point which is globally expaaily stable.
Moreover, for example, if a neural network is employed to solve some optirigaroblems,
it is highly desirable for the neural network to have a unique globally stajliilerium point
[140, 141, 142,111, 54, 61, 64, 66]. Therefore, the problentadiilty analysis of RNNs has
received great attention and many results on this topic have been repottegliterature;
see, e.g., [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,568 59, 61, 62, 63, 65, 66],

and the references therein.

Further, RNNs have been developed by implementing impulses and delay8[156, 32, 33,
35, 37, 39, 40, 41, 42, 43, 72, 99, 117, 120] issuing froffedent reasons: In implementa-
tion of electronic networks, the state of the networks is subject to instantapeoturbations
and experiences abrupt change at certain instants, which may bel dguseitching phe-
nomenon, frequency change or other sudden noise. This leads to tled ofdrINNs with
impulses. Due to the finite switching speed of amplifiers and transmission ofssigredec-
tronic networks or finite speed for signal propagation in biological netsjotime delays

exist.

In numerical simulations and practical implementations of neural networkse#sisntial to

formulate a discrete-time system, an analogue of the continuous-time systeroe, ld6ax



bility for discrete-time neural networks has also received considerdtgletian from many
researchers [134, 135, 136, 137, 138, 139]. As we know, thectiesh of diferential equa-
tions with piecewise constant argument to discrete equations has been thenagiossibly

a unique way of stability analysis for these equations [69, 77]. As a qoesee of the ex-
isting method, initial value problems are considered only for the case when imiiiments

are integers or their multiples. In addition, one can not study stability in the ctenfolen

as only integers or their multiples are allowed to be discussed for initial mometsceH

the concept of dferential equations with piecewise constant argument of generalized type
[3,4,5,6,7, 10, 17, 18] will be applied to RNNs by considering arbjt@ecewise constant

functions as arguments.

It is well known that the studies on neural dynamical systems not only iew&tibility and
periodicity, but also involve other dynamic behaviors such as synclatoig bifurcation and
chaos et al. Nevertheless, in this thesis, we aim to consider the following tiveematical

problems for neural networks with piecewise constant argument and iragtation:

¢ Suficient conditions for the global existence-uniqueness of solutions ahdlglsymp-

totic stability of equilibria.

e Existence of periodic solutions and their global asymptotic stability.

This dissertation is organized as follows: In this chapter, a brief reviemeafal networks
that provides a clearer understanding for the modeling of RNNs is gi¥dso a mathe-
matical background for the theory offtlirential equations with piecewise constant argument
of generalized type, and the theory of impulsiv&atiential equations with their qualitative

properties are discussed.

In Chapter 2, we consider neural networks systems as well as impusivalmetworks sys-
tems with piecewise constant argument of generalized type. For the ftshsywe obtain
suficient conditions for the existence of a unique equilibrium and a perioditisoland in-
vestigate the stability of these solutions. For the second one, we introduckfigrent types

of impulsive neural networksp(6)— type neural networks and,)— type neural networks.
For these types, flicient conditions for the existence of the unique equilibrium are obtained,
the existence and uniqueness of the solutions and the equivalence lemsogHosystems

are established, the stability criterion for the equilibrium based on lineaogippation is
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proposed, some flicient conditions for the existence and stability of periodic solutions are

derived and examples with numerical simulations are presented to illustratstitesr

Chapter 3 deals with the problem of stability foffdrential equations with piecewise con-
stant argument of generalized type through the method of Lyapunotidnsc Besides this
theoretical results, we analyze the stability for neural networks models witkewise con-
stant argument based on the Second Lyapunov method. That is to sagewke method
of Lyapunov functions and Lyapunov-Razumikhin technique for theilgtabf RNNs and
CNNs, respectively. Examples with numerical simulations are given to illugtratéheoreti-

cal results.
Finally, in Chapter 4, some concluding remarks and future works aressisdu

The main parts of this thesis come from the following papers:

e M. U. Akhmet, E. Yilmaz, Neural networks with non-smooth and impact actimatio

(Revised version is submitted to Physica D: Nonlinear Phenomena).

M. U. Akhmet, D. Arijaslan, E. Yilmaz, Method of Lyapunov functions foffdrential

equations with piecewise constant delay, J. Comput. Appl. Math., 235554-4560,
2011.

e M. U. Akhmet, E. Yilmaz, Impulsive Hopfield-type neural network system pitdte-
wise constant argument, Nonlinear Anal: Real World Applications, 112584-2593,

2010.

e M. U. Akhmet, D. Ar@jaslan, E. Yilmaz, Stability in cellular neural networks with a

piecewise constant argument, J. Comput. Appl. Math., 233, pp. 2365%-2870.

e M. U. Akhmet, D. Arwjaslan, E. Yilmaz, Stability analysis of recurrent neural networks
with piecewise constant argument of generalized type, Neural Netw28kpp. 305-

311, 2010.

e M. U. Akhmet, E. Yilmaz, Global attractivity in impulsive neural networks withgeie
wise constant delay. Proceedings of Neural, Parallel, and Scientific @atigms, Dy-

namic Publishers, Inc, USA, pp. 11-18, 2010.
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e M. U. Akhmet, E. Yilmaz, Hopfield-type neural networks systems equatidhsrece-
wise constant argument. International Journal of Qualitative Theoyifiérential

Equations and Applications, 3, no: 1-2, pp. 8-14, 2009.

1.1 A Brief Review of Neural Networks

The Atrtificial neural networks, commonly referred to as “neural neka/grhave been moti-
vated by the fact that the human brain computes in an entirélgrdnt way from the conven-
tional computer. Conventional computer has a single processor implemengogense of
arithmetic and logical operations, now at speed abofitop@rations per second [148, 152].
However, these devices have not an ability to adapt their structure arattdrea way that a

human being does.

What todays computers can not do? We know that there is a large numtasksffor which
it is impossible to make an algorithm or sequence of arithmetigoaridgical operations.
For example, in spite of many attempts, a machine has not yet been prodhaddocan
automatically read handwritten characters, or recognize words spglketylspeaker let alone
can translate from one language to another, or identify objects in viselasgcor drive a car,

or walk and run as human does [151].

Neither the processing speed of the computers nor their processing abligs miach a dif-
ference. Today’s computers have a spedtitit@es faster than the main and basic processing
elements of the brain called “neuron” [148]. If one compares the abilitiespéurons are
much simpler. The main fference comes from the structural and operational trend. Al-
though, the brain is a massively parallel interconnection of relatively simpuleskbow pro-
cessing elements, in a conventional computer the instructions are exeeqtezmhgally in a

complicated and fast processor.

Simon Haykin in his book [148] gives a definition of a neural network vieas an adaptive

machine:

Definition 1.1.1 A neural network is a massively parallel distributed processor madefup o
simple processing units that has a natural prospensity for storing exgteié&nowledge and

making it available for use. It resembles the brain in two respects:

5



e Knowledge is accuried by the network from its environment through ailegprocess;

e Interneuron connection strengths, known as synaptic weights aretostore the ac-

quired knowledge.

It is clear that a neural network gets its power from, first, its massivelgllgadistributed

structure and, second, its ability to learn.

1.1.1 From Biological to Artificial Neuron

The human nervous system may have three-stage system [152](Sdelffigfhe main part

of this system is the brain denoted bgural nef which continualy receives information,
perceives it, and makes suitable decisions. In this figure we have twofsat®ws; from

left to right indicates thdorward transmission of information and the arrows from right to
left shown in red represents tlieedbackin the system. Theeceptorschange stimuli from
the human body or the external environment into electrical impulses thatrtitinformation

to the neural net. Theffectorstransform electrical impulses produced by the neural net into

discernible responses as systems outputs.

v
v

Stimulus =~ ——y Receptors Neural Net Efectors ——— 3 Response

Figure 1.1: Representation of nervous system

It is declared that the human central nervous system consist8cf 109 neurons and that
1 x 1019 of them takes place in the brain [148]. Some of these neurons are firththain

power decreases because of this electrical activity is assumed to be ml¢éh@b10 watts.

A neuron has a roughly spherical body called soma (Fig. 1.2). Thelsigraduced in soma
are converted to the other neurons through an extension on the celcalbelyaxonor nerve
fibres Another kind of extensions on the cell body like bushy tree isdéedrites which
are responsible from receiving the incoming signals generated by athesms. The axon is
divided into several branches, at the very end of which the axongadand forms terminal

buttons These buttons are placed in special structures calf@dpses Synapses are the

6



junctions transmitting signals (electrical or chemical signals) from one ndoranother. A

neuron typically drive 1®to 10* synaptic junctions [148, 149, 153, 154].

Dendrite —_—

Axon

Synapse

Figure 1.2: Typical biological neuron [161]

As it is mentioned before, the transmision of a signal from one neoron themnda synapses

is a complex chemical process. So, we need potentials to transmit signabfi@meuron to
another. Thefect is to raise or lower the electrical potential inside the body of the recgivin
cell. If this potential reaches a threshold, the neuron fires. By desgribacharacteristics
of neuron, in 1943, McCulloch and Pittz published their famous paper],[1B6Logical
Calculus of the Ideas Immanent in Nervous Activity.” In this paper, it wasfitlst time that
they proposed an artificial neuron model which was widely used in artifieiatal networks
with some minor modifications. This model is shown in Fig. 1.3. The representitibis

model can also be found in many books [148, 153, 154].

This model has N inputs, denoted By, ..., xy. Each line connecting these inputs to the
neuron represents a weight, denotedavas . ., wy, respectively. Weights in this model mean
the synaptic connections in the biological neurons. The activation funafitre model is a
threshold function and represented dgnd the activation corresponding to the potential is

given by
N
u= Z Xjwj + 6.
j=1

The inputs and the weights are real values. A negative value for a wakighits an inhibitory
connection, while a positive value indicates an excitatory connection. logioal neuronsg

has a negative value, but in artificial neuron models it may be assigngubagige value. For
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Output
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()
N

X, O >

Synaptic
weights

Figure 1.3: Artificial neuron model

this reason, itis usually referred laigsif 0 is positive. Here, for convenience we takg §ign
in the activation formula. Orginally, McCulloch and Pittz proposed the thiddiaction for
the neuron activation function in the artificial model, however there aredifferent types
of activation functions (or output functions). For example linear, rantpsggmoid functions
are also widely used as output functions. In what follows, we identify dfleviing basic

types of activation functions described in Fig. 1.4:

(a) Threshold Function:

1, ifv>0
f(v) =
0, ifv<O
e (b) Linear Function:
f(v) = kv
e (¢) Ramp Function:
0, ifv<oO
f(y=9 Y ifO<v<xk
1, ifk<v
e (d) Sigmoid Function:
1
W =1rew



@) (b)

(c) (d)

Figure 1.4: Some neuron activation functions

1.1.2 Basics of Electrical Circuits

Electrical circuits are so important for understanding the activity of odidm. For example,
most neurons especially the ones in the brain are electrical. In order yataatieurons we
need brief voltage pulses. These pulses are known as action potentspikes which are
used for communication among neurons [150]. The reason for this presran is based
on the physics of axons described in previous section. Thereforaxtremay be modeled
as resistance-capacitance (RC)-circuit. A simple electric circuit made apvoftage and

resistor is shown in Fig.1.5.

Figure 1.5: A simple electric circuit

We define electrical cicuits in terms of the physical quantities of volt&ge(id the current
(1. We know that these quantities are solutions to the mathematical models. Theds mode
can be derived from Maxwell's equations by an advanced work or indisisertation can

be derived from Kirchi's laws for elementary circuits. It is well known that circuits are
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combinations of physical devices like resistors and capacitors. Nows lgivea some useful
electrical circuits to understand our neural networks model, which willdseribed in detail

in the next section.

Figure 1.6: A resistor

The resistors are devices that limit or regulate the flow of electrical duimesn electrical
circuit. The relationship betweévk, |, and resistanc® (as shown in Fig. 1.6) through an

object is given by a simple equation known@ksm’s law

whereV is the voltage across the object in voltss the current through the object in amperes,

andRis the resistance in ohms.

Figure 1.7: A capacitor

As seenin Fig.1.7, a capacitor is a device that stores charge on the ptaseaproportional

to |, and a voltage change on a capacitor can be shown by

VL =1/C

1 t
Ve = = Idt.
=z |,

10

or, equivalently by,



The constant C is called tleapacitancean units of farads.

As mentioned before, the circuit models are obtained from Kirfitdiaws. Kirchhdt’s laws

state that:

e Kirchhofi’s current law: The sum of all currents entering a node is equal to timeou

all currents leaving the node.

¢ Kirchhofi’s voltage law: The directed sum of the voltag&eliences around any closed

loop must be zero.

1.1.3 Models of Recurrent Neural Networks

The structures, which allow the connections to the neurons of the sametdgehe previous
layers, are calledecurrent neural network§l48, 155]. That is, a recurrent network may
consist of a single layer of neurons with each neuron feeding its ouignelsack to the
inputs of all other neurons. Moreover, there is no self-feedbacksldophe network; self-
feedback means a situation where the output of a neuron is fed back intmnitisjout [148].

This is illustrated in Fig. 1.8.

Unit-time delay
operators

-1
z

Figure 1.8: Recurrent neural networks with no hidden neurons

We are now ready to consider some of the important RNNs model involved litahagure
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and needed for our investigations.

1.1.3.1 Additive Model

The neurodynamic model of a neuron is illustrated in Fig. 1.9 where the ctarties are de-

noted by synaptic weightsjwwjp, . .., wjn and the potentials by relevantinputsxo, . . ., Xn.

X, (0) o—; W,1X1(t) Current

source

Nonlinearity Neural

Current- output

summing

v

> 0 —0 10

junction

Synaptic
weights

Figure 1.9: Additive model

The total current entering a node in Fig. 1.9 is

N
ZWjiXi(t) +1j,
i1

where the current sourdg representing an externally applied bias. kgt) be the induced
local field at the input of the nonlinear activation functid@). Then, the total current sum

leaving the node is

vi(t) . dv(t)
R’ TC9Ta

By Kirchhoff’s current law, the following nonlinear filerential equations can be obtained:

i(t dvit) o
VJ?(J_) +Cj%() = ;Wjixi(t)+ i, (1.2)
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wherexj(t) = f(vj(t)). Thus,the model described by the equation (1.1) is cadidditive
model It is assumed that the activation functié) is a continuously dierential function
with respect td. Here, the activation function is the logistic function

1

W)= 1rew

i=12...,N.

1.1.3.2 Hopfield (Additive) Model

In 1984, Hopfield [28] proposed the continuous deterministic model whiblsed on con-
tinuous variables and responses. The model contains a set of nemeosrresponding set
of unit-time delays shown in Fig. 1.10. Each neuron has same architectapdd gs shown
in Fig. 1.9. Therefore, the neurons are modeled as amplifiers in conjuctibrfegdback

circuits made up of wires, resistors and capacitors.

B

B

 ———

?J OJ \OJ |04

Neurons Unit-time delay
operators

Figure 1.10: Hopfield network withl = 4 neurons

The Hopfield network can be considered as a nonlinear associative pnenuontent-addressable

memory (CAM). We know priori the fixed points of the network so that thayespond to the
patterns to be stored. However, the synaptic weights of the network thduge the desired
fixed points are unknown. Thus, the problem is how to determine them. Irpfiieation
of the Hopfield network, an important property of a CAM is the ability to retriav&ored

pattern, given a reasonable subset of the information content of thetrpf29]. The essence

13



of a CAM is mapping a fundamental memory A onto a fixed (stable) point B oinahycal
system (see Fig. 1.11). The arrow from left to right describes thedémgonapping, whereas

the arrow from right to left describes the decoding mapping.

Encoding

Decoding

Space of fundamental Space of stored
memories vectors

Figure 1.11: Encoding-decoding performed by a network

The stable points of the phase space of the network are the fundamentatiesgrap pro-
totype states of the network. For example, when a network has a patteaintog partial
but suficient information about one of the fundamental memaories, we may repriesesn
starting point in the phase space. Provided that the starting point is close $tatiie point
representing the memory being retrieved, finally, the system convergethermemory state
itself. Consequently, it can be said that Hopfield network is a dynamicedreywhose phase
space contains a set of fixed (stable) points representing the fundamemieries of the

system [148, 155].

Let us consider the dynamics of the Hopfield network which is based ordttitve model

of a neuron described in the previous section:

dvi() vl < _
T =‘?j+i;Wjifi(Vi(t))+lj, ji=12...,N (1.2)
where
Xj = fi(vj)
and



Here,ri denotes the resistance representing the cell membrane impedance. Tiaddua)

has a neurobiological background as explained below:

e C; is the total input capacitance of the amplifier representing the capacitaned of ¢

membrane of neurop

e w;j is the value of the conductance of the connection from the output gtthempli-
fier to the input of thath amplifier, representing strengths of the synaptic connection

strengths among the neurons.

e vj(t) is the voltage of the amplifier of thigh neuron at time representing the soma

potential of neurorj.

e |; is a constant external input current to tfth neuron representing the threshold for

activation of neuron.
¢ f; is the activation function representing the response oittheeuron to its membrane
potential.
The activation function or the input-output relation of ittleamplifier is given by
fi(v) = tanhpiv),

wherep; is a constant gain parameter. It can be seen that this functiofféseaditiable and
increasing (see Fig.1.12). Specifically, its derivative at origin givetheishe constant gain

parametep.

x=Ff(v)

0.8

0.6

o.4

0.2

—0.2
—0.4
—0.6

—0.8

o]
T T T T T T T T T T
<

—10 —5 o 5 10

Figure 1.12: The graph of tan(

15



In this model, our aim is to find stable fixed points to read or to understand iigufitental
memory. We have nonlinear dynamical system. So, we analyze the stabilityrtay Lys-
punov functions. It is also well known that the use of Lyapunov functiorakes it possible
to decide the stability of equilibrium points without solving the state-space equattithe

system (1.2). In what follows, we need the following basic but useffihiien and theorem:

Definition 1.1.2 [106] A continuous function (x) with a continuous derivative’[x) is a

definite Lyapunov function if it satisfies:

(i) L(x) is bounded;

(i) L’(x) is negative definite, that is:’(x) < 0 for x # x* and L/(X) = O for x = x".

If the condition (ii) is in the formL’(x) < O for x # X* the Lyapunov function is called

semidefinite.

Theorem 1.1.3[106] The equilibrium state *is stable (asymptotically stable), if there exists

a semidefinite (definite) Lyapunov function in a small neighborhood. of x

To study the stability of the system (1.2), we need three assumptions:

(i) The matrix of synaptic weights is symmetrig; = w;; for all i andj;
(i) Each neuron has a nonlinear activation function of its own;

(i) The inverse of the nonlinear activation function exists.

Particularly, the inverse of the functidnillustrated in Fig. 1.13 is

and Hopfield used this functiof as a Lyapunov function. That is, the energy functibrs

bounded since the integral of the inverse of the function 3nspounded wherl < x; < 1
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and(él—'tE < 0 except at a fixed point. Then, by the Definition 1.1.2 and Theorem 1.3, th
Hopfield network is globally asymptotically stable in the Lyapunov sense [2&t is to say,

whatever the initial state of the network is, it will converge to one of the eqiilibstates.

v=f"1(x)

Figure 1.13: The graph of tank(x)

1.1.3.3 Cohen-Grossberg Theorem

In paper [27], Cohen-Grossberg states a very useful theoremcididg the stability of a

certain class of neural networks.

Theorem 1.1.4[27] Given a neural network with N processing elements having bounded

output signalsp;(u;) and transfer functions of the form
de N .
¢ = aiubi) - > cig@)]. j=1...N (1.3)
i=1

satisfying the conditions:

(i) Symmetry: ¢ = Gij;
(i) Nonnegativity: a(u;) > O;
(iii) Monotonicity:go'j(uj) = dfjj—f;“) > 0.

Then the network will converge to some stable point and there will be at anosuntable

number of such stable points.
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In equation (1.3)y; denotes the state variable associated withttheeurona; represents an
amplification functionp; is an appropriately behaved functiar, represents the connection
strengths between neurons, andneans the activation function which shows how neurons

respond to each other.

Obviously, the equation of this model (1.3) reduces to the equation for ¢lopfiodel (1.2).
Thus, one can easily see that the Hopfield model is a special case oftamgiefined in the
Theorem 1.1.4. The relations between the general system of equatidn3jar(d the system

of (1.2) are summarized as follows in Table 1.1:

Table 1.1: Relations between the Cohen-Grossberg Theorem and tfieléhdfondel

Cohen-Grossberg TheoremHopfield Model
uj Cvi
aj(uj) 1
bj(u;j) —(vj/Ry) + 1
Cii —Wiji
@i (Ui) fi(vi)

In order to prove the stability of the equation (1.3), Cohen-Grossbergnsrgy functiork,

defined as

N

1
E=35),

N
i=1 j=1

N
Lo (Ui (i) — b: "(s)d
(Ui (uy) ; | RLICEICE

Then, under the certain conditions in Theorem 1.1.4, one can show themehgy function
E of the system (1.3) is a Lyapunov function satisfy%g< 0 foru;j # u]f and therefore the

Hopfield network is globally asymptotically stable [27, 148].

In the light of above discussions, the qualitative analysis of model eqsatiod) and (1.2)
have been attracted by many scientists and have been investigated thibeignttypes of
difference and dierential equations. Now we will give some examples consideriftgrei
ent types of model equations from the literature. Of course, there arg pagers dealing
with discrete-time and continuous-time neural networks; see, e.g., [339382, 117, 119,
120, 121, 122,123, 124, 131, 134, 135, 136, 137, 138, 139 enceferences cited therein.

Nevertheless, here we will review a few of them:
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Firstly, in paper [135], the authors consider the following discrete-timerrent neural net-
works with time-varying delays and discuss the analysis of exponentidlitytédr a class of

discrete-time recurrent neural networks with time delays:
n n
Uitk + 1) = aui(k) + > bij Fj(ui(k) + > dijgi(ujtk = 7()) + Jj,
=1 =1

wherez(k) denotes the time-varying delay satisfying < 7(k) < v, k € N with positive
unknown integersm, Tv. The delay is of the time-varying nature, and the activation functions

are assumed to be neitheffdrentiable nor strict monotonic.

Secondly, in paper [138], the global exponential stability of a discretet@narrent neural
network with impulses is discussed. The equation of the model is given as

x(n+ 1) = Dx(n) + Ao (Bx(n) + 1)

X(No) = %o € R"

li(xi(nk) = Xi(nk + 1) = xi(n), i=1,....m k=12,...

Np<NiE<Np<...<hg— ooask— oo,

whereoi(x) = %(lxi T [y v 1|) and the impulsive functionig : R — R are assumed to be

discrete.

Then, in paper [42], the delayed CNNs model described figrdintial equations with delays

is considered:
m m
X0 = —x(®)+ Y b fiegm)+ > cifitxt—)) + i,
=1 =1
8>0i=12...,m
wherer; corresponds to the transmission delay along the axon oftthenit and is non-

negative constant. In this paper, a set of criteria ensuring the globalpastic stability of

delayed CNNs is derived.

Next, in paper [118], Akca et al. investigate the following Hopfield-typedeimf neural
network with impulses:

X(0) = —ax(t) + > bij fi(x(0) +c, t>0, t#t
=1

AXi(t) le=t,= lk(Xi(tk)), 1=12,....m k=12,...,
whereAx(tx) = X(tk + 0) — x(tx — 0) are the impulses at momerifsandt; < t, < ... is

a strictly increasing sequence such tltlat tim= +c0. They investigate the global stability
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characteristics of a system of equations modelling the dynamics of additigéettbtype

neural networks with impulses in the continuous-time case.

Finally, in paper [123], by using Lyapunov functions and analysis tegl Zhang and
Sun get a result for the uniform stability of the equilibrium point of the follagvimpulsive

Hopfield-type neural networks systems with time delays:

m m

Xi'(t) = —Cix(t) + Za;j fi(x;(t)) + Z bijgj(xj(t=7j)) + Ii, t >0, t # t,
i1 =1

X(t) = dk(%i(t.)), 1=12,....m KkeN,

wherer; are the time delays, and satisfy> 0.

We end this section by getting attention to the important novelties of this thesis: theom
mathematical and engineering points of view, the modeling process for evogialproblem

is generally given by the Fig.1.14.

Formulate

Real - world Mathematical

>
proty '!wa
A
Test Solve
\4
Real - world ﬁemaﬁcal
A

predictions - conclusions

Interpret

Figure 1.14: The modeling process

However, in order to be realistic, the modeling process in our investigaticosssdered only
from a mathematical point of view and is illustrated in Fig. 1.15. From the petispef this

illustration, our approaches developed in this thesis can be regardedexseasion of the
many conventional techniques which have been investigated by engimészsnathematical

neuroscience.
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Figure 1.15: The modeling process in our investigations

1.2 A Brief Historical Review of Piecewise Constant Argument

The theory of diferential equations with piecewise constant argument (EPCA) was initiated
in [69, 70, 77]. These equations have been under intensive investigati@searchers in
mathematics, biology, engineering and other fields for the last twenty y€hesstudies of
such equations were motivated by the fact that they represent a hyfbeimhtnuous and
discrete dynamical systems and combine the properties of bothffeeediial and dterence
equations. The first mathematical model including piecewise constant amfjuwas given

by Busenberg and Cooke [68] whose work was on a biomedical proliretheir work, first
order diferential equations with piecewise constant argument was developed trasbe
investigation of vertically transmitted diseases. Since then, several paperpublished by
Shah, Cooke, Aftabizadeh and Wiener [69, 70, 78]. A typical EPCAistlby them is in the

following form:

y'(t) = aoy(t) + ary([t]) + axy([t] + ag),

whereag, a1, a; andas are constantsy(t) represents an unknown function, anfldenotes
the greatest integer function. The initial value problems so defined hawdrtiure of a
continuous dynamical system within each of the intervals of unit length. eTaer many
mathematical models involving a piecewise constant argument such as Frendelum,
Workpiece-Cutter system, Geneva wheel, electrodynamic shaker, ddogmidg system,

undamped systems, vibration systems and so on. For a brief descriptiom mitiels, we
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can refer to the book by Dai [71]. Thesedfdrential equations are closely related to delay
differential equations (DDE) which provide a mathematical model for a physieahanical

or biological system in which the rate of change of a system dependsitgpast history
as they contain arguments of delayed or advanced type [71, 72, 7@&nies of numerrous

applications can be found from literature [100, 101, 102].
The theory of diferential equations with piecewise constant argument of the form

X'(t) = f(t, x(t), x(h(t))), (1.4)

where the argumethi(t) has interval of constancy. For example, equations ffth= [t], [t—
n], t — n[t] were investigated in [69], whemis a positive integer and][denotes the greatest

integer function.

An equation (1.4) in which('(t) is given by a functionx evaluated at and at arguments
[t],....[t = n], wheren is a non-negative integer, is called of retarded or delay type. If the
arguments aréand [ + 1],...,[t + n], then the equation is of advanced type. If both these

types of arguments appear in the equation, it is called of mixed type.

The literature shows a general progress of an extensive interestjpnaperties of solutions

to the governing dferential equations with piecewise constant arguments. The system with
retarded type and advanced type was investigated in [69, 70, 78] aref¢hences therewith.
Existence and uniqueness of the solution of this system and the asymptatitysthsome

of its solutions, the oscillatory properties of its solution and many qualitativdtsewere
formulated and analyzed by researchers in the fieldfédiintial equations. A brief summary

of the theory can be found in [67, 71, 77] and the references citedither

It is not surprising to expect that the investigations of EPCA are contsly@itracting the
attention from the scientists for the behaviors of piecewise constant systeiwasn be found
from the current literature. Examples of such researchs are on theredf almost periodic
solutions of retarded EPCA by Yuan [79], quasiperiodic solutions of £BZ Klipper and
Yuan [80], existence of periodic solutions of retarded EPCA by Wafy [Breen’s function
and comparison principles for first-order periodic EPCA by Cabadaeife and Nieto [82],
existence, uniqueness and asymptotic behavior of EPCA by Papastchio®83]. Remarks

on the development of the theory of EPCA can be also found in thesis {443,
In the light of above discussions, most of the results féiedential equations with piecewise
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constant argument are obtained by the method of reducing them into disqretgons. The
method of reduction to discrete equations has been the main and possiblye waigof sta-
bility analysis for these equations [69, 77]. Hence, qualitative propestieslutions which
start at non-integer values can not be achieved. Particularly, ongotamvestigate the prob-
lem of stability completely, as only elements of a countable set are allowed to dessksl

for initial moments. Consequently, we need fiatient kind of investigation.

By introducing arbitrary piecewise constant functions as argumentsptivept of diferential
equations with piecewise constant argument has been generalized s [&pé, 5, 6, 7,
10, 17, 18]. It has been assumed that there is no restriction on the distetgeen the
switching moments of the argument. Only equations which are linear with respé#uoe
values of solutions at non-deviated moments of time have been investigatednariowed
significantly the class of systems. All of these equations are reduced ik integral
eqguations such that one can investigate many problems, which have natddeed properly
by using discrete equations, i.e., existence and uniqueness of solutailtysand existence
of periodic solutions. Since we do not need additional assumptions ondbheew discrete
equations, the new method requires more easily verifiable conditions, similange for

ordinary diferential equations.

In papers [3, 4, 5, 6, 7], the theory offi#irential equations with piecewise constant argument
has been generalized by Akhmet. Later, Akhmet gathered all resultgfiferestial equation
with piecewise constant argument of generalized type in the book [2]reTltehas been

proposed to investigateftérential equations of the form

X (t) = f(t. x(t), x(B(1))). (1.5)

wherep(t) = 6k (see Fig. 1.16) ibx <t < 6k+1, K € Z, t € R, is an identification function,
Ok, k € Z, is a strictly increasing sequence of real numb@g,— o as|k| — oo. Clearly,
the greatest integer functiot] s a particular case of the functig{t). That is, if we choose
ok = k, k € Z, theng(t) = [t]. System (1.5) is called afilerential equation with piecewise
constant argument of generalized type. That is to say, equation (1f&jétayed type.
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X=t

x = B(YH

Figure 1.16: The graph of the argumg(i).

Another generalization of fferential equations with piecewise constant argument of type

X (1) = f(t. x(t), x(»(1)). (1.6)

wherey(t) = ¢ (see Fig.1.17) if € [0k, 6k+1), K € Z, t € R, are piecewise constant functions,
[k are strictly increasing sequence of real numbers, unbounded on tlatebn the right

such that < k < 6y for all k.

xX=t

x = y(t)

i+1 i+2

Figure 1.17: The graph of the argumet(t).

Let us clarify why the system (1.6) is of mixed type [90], that is, the argur@mchanged its

deviation character during the motion. The argument is deviated if it is addaoradelayed.
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Fix k € N, and consider the system on the intenél §k.1). Then, the identification function
v(t) is equal talk. If the argument satisfiegy < t < ¢, theny(t) > t and (1.6) is an equation
with advanced argument. Similarly, J§ < t < k.1, theny(t) < t and (1.6) is an equation
with delayed argument. Consequently, the equation (1.6) changes the tygpaaiion of the

argument during the process. In other words, the system is of the mixed typ

1.3 Differential Equations with Piecewise Constant Argument of Geralized

Type

In this section we shall give some useful definitions, lemmas and fundantbetalems
for differential equations with piecewise constant argument of generalized typesed by

Akhmet [2, 4, 6, 8].

1.3.1 Description of Systems

Let R, N andZ be the sets of all real numbers, natural numbers and integers, rgspecti
Denote byj|-|| the Euclidean norm for vectors R™, m € N, and denote the uniform norm by

[ICI| = sup||C X|||Ix]| = 1} for mx m matrices.

1.3.2 Existence and Uniqueness Theorems

We now consider the existence and uniqueness theoremgfimeditial equations with piece-
wise constant argument of generalized type due to Akhmet [4, 6, 8{ilmasthe construction

of an equivalent integral equation.

1.3.2.1 Equations with Delayed Argument

In this part we consider the following quasilinear system with delayed angume

y = Ay+ f(t, y(®), y(3(1)). (1.7)

wherey e R™, t € R, Ais a constant x nreal valued matrixf € C(R x R™x R™) is a real
valuedn x 1 function,s(t) = 6; if 6 <t < 6,1, | € Z, is an identification functiorg;, i € Z,

is a strictly ordered sequence of real numbg@bk— o asli| - oo.
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The following assumptions will be needed throughout this section:

(H1) f(t, %, 2) is continuous in the first argumertfiit, 0, 0) = 0, t € R, andf is Lipschitzian
such that| f(t, y1, wi) = f(t, y2, W)l < £(llys — Yall + [lwy — wal]);

(H2) there exists real numbeér> 0 such thath 1 — 6 < 0,ic;

Denote byX(t, s) = eXt9, t, s € R the fundamental matrix of the following linear homoge-

neous system

y(t) = Ay

associated with (1.7). It is known that there exists a congtant 0 such thaf|eAt-9|| <
elt-3 t se R. One can also show thig”-9|| > e -9 t se R. Thus, there exist positive
numbersN andn such than < ||e*t9|| < N, whereN = &, n = e */ if t, s € [6}, 6,1] for

alli e Z.

Definition 1.3.1 A solution yt) = y(t, 6, Yo), Y(6i)) = Yo, 1 € Z, of (1.7) on [6;, ) is a

continuous function such that

(i) the derivative {(t) exists at each pointg [6;, ), with the possible exception of the points

0j, j > i, where one-sided derivatives exist;

(i) equation(1) is satisfied by {t) at each interval6;, 6;.1), j > i.

Definition 1.3.1 is a new version of [69] adapted to our genaral case.

Theorem 1.3.2 Suppose condition@d1) — (H2) are fulfilled. Then for everygye R™ and

i € Z, there exists a unique solutiofftyof (1.7) in the sense of Definitioh 3.1.

Assume additionally that:

(H3) 2Ne6 < 1;
(H4) N6 + N(L + £9)eN®] < n.
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We continue with the following assertion which provides the conditions of existend

uniqueness of solutions for arbitrary initial momésnt

Lemma 1.3.3 Assume that conditior{#11) — (H4) are fulfilled. Then, for everygye R™, ty €
R, 6; < to < 6i11, | € Z, there exists a unique solutiofit) = y(t, 6;, yo) of (1.7) in sense of

Definition1.3.1 such thaty(tp) = Yo.
Let us introduce the following definition from [84], modified for our gealarase.

Definition 1.3.4 A function \t) is a solution of1.7) onR if:

() y(t) is continuous orR;

(i) the derivative ¥(t) exists at each point € R with the possible exception of the points

6, i € Z, where one-sided derivatives exist;

(i) equation(1.7) is satisfied on each interv@di, 6;.1), i € Z.

Now, we give the following equivalence lemma which is major importance of owstiya-

tions throughout the thesis. The proof of the assertion is very similar to tha&noma 3.1 in

[4].

Lemma 1.3.5 A function yt) = y(t,to, o), Y(to) = Yo, Where ¢ is a fixed real number, is a
solution of(1.7) in the sense of Definition 1.3.4 if and only if it is a solution of the following

integral equation:

t
y(t) = Ny, 4 ft 95 (s y(9). y(B(9))ds

In the following theorem the conditions for the existence and uniquenegssutiosns onR

are established. The proof of the assertion is similar to that of Theorem B in

Theorem 1.3.6 Suppose that conditior($11) — (H4) are fulfilled. Then, for everito, Vo) €
R x R™, there exists a unique solutioifty = y(t, to, yo) of (1.7) in sense of Definitiod.3.4
such that Ytg) = Yo.
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The last theorem arranges the correspondence between fginyt € R x R™ and all so-
lutions of (17), and there is not a solution of the equation out of the correspondéelsieg
the assertion we can say that definition of the initial value problem féeréintial equations
with piecewise constant argument of generalized type is similar to the probteam brdinary

differential equation, although the equation is of delayed type.

1.3.2.2 Equations with both Delayed and Advanced Arguments
Let us fix two real-valued sequenc@s/;, i € Z, such tha®;, < 6,1, 6; < ¢ < 6;, for all
i € 7Z,16i] — oo asli| —» .
We shall consider the following system ofi@rential equations:

Z(t) = CAt) + f(t, ), Z(¥(1)), (1.8)
whereze R™ t e R, y(t) = &, if t € [6;, 6i11), 1 € Z.

The following assumptions will be needed:

(H1) C € C(R) is a constanin x mreal valued matrix;
(H2) f(t, x, y) e C(R x R™x R™M) is anmx 1 real valued function;
(H3) f(t, x, y) satisfies the condition
IF(t, X1, y1) = F(t, X2, Y2)Il < Co(lIXa — Xall + lly1 — Yall), (1.9)
wherely > 0 is a constant, and the condition

f(t, 0,0)=0, t € R;

(H4") there exists real numbér> 0 such thati,1 — 6, < 6, i € Z.

One can see that system (1.8)toa [6;, 6;,1), i € Z have the form of a special functional-
differential equations

Z(t) = CAt) + f(t, Z(1), 2(&)). (1.10)
We introduce the following definition, which is a version of a definition from][8nodified

for the general case.
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Definition 1.3.7 A continuous function(®) is a solution of(1.8) on R if:

() the derivative At) exists at each point € R with the possible exception of the points

6, i € Z, where the one-sided derivatives exist;

(i) the equation is satisfied fofty on each interva(6;, 6i;1), i € Z, and it holds for the right

derivative of &) at the points;, i € Z.

We now give some useful investigations for the fundamental matrix of sokition

Denote byZ(t, s) = €9, t, s € R the fundamental matrix of the following linear homoge-

neous system
Z(t)=Cz

associated with (1.8). There exist positive numhbérandn such than < ||e“®9|| < N if

t,se[6;,6.1] forallie Z.

In the following lemma a correspondence between poipigy) € R x R™ and the solutions
of (1.8) in the sense of Definition 1.3.7 is established. Using this result wesagarthat
the definition of the IVP for our system is similar to that for ordinarffefiential equations,
although it is an equation with a deviating argument. The proof of the assertrery similar

to that of Lemma 2.1 in [5].

Lemma 1.3.8 A function #t) = z(t,to, 20), Z(to) = 2o, where ¢ is a fixed real number, is a
solution of(1.8) in the sense of Definition 1.3.7 if and only if it is a solution of the following

integral equation:

Z(t) = €07 + f t e If(s (s), 2(y(9))ds

to

From now on we need the assumption

(H5') NEoheNo” < 1, 2Ntof < 1, N26of| MEoL 1 NopeN(of) < .
—INtQ

Now, we continue with the following lemma which provides the conditions of existemd

uniqueness of solutions for arbitrary initial momeran [6;, 6;.1].
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Lemma 1.3.9 Assume that condition@l’) — (HY') are fulfilled, and fix ie Z. Then, for
every(é, zo) € [6;, 6i+1] x R™, there exists a unique solutiorfty = z(t, &, z) of (1.10) on

[6i, 6is1].

Theorem 1.3.10Assume that conditior($11’) — (H5’) are fulfilled. Then, for everfto, zp) €
R x R™M there exists a unique solutiotl= z(t, tg, o) of (1.8) in the sense of Definition 1.3.7

such that &) = zo.

The last two assertions can be verified in exactly the same way as Lemma ITheoém

1.1 from [5].

1.3.3 Basics of Lyapunov-Razumikhin Technique

In this section, the following results due to the paper [17] obtained by agpRazumikhin
technique for dierential equations with piecewise constant argument of generalizeddtype [
5]. We will give sufficient conditions for stability, uniform stability and uniform asymptotic

stability of the trivial solution of such equations.

LetN andR™ be the set of natural numbers and nonnegative real numbers, tieslyece.,
N=1{0,1 2 3, ..}, Rt =[0,). Denote the m-dimensional real space®}, m € N, and
the Euclidean norm ilR™ by ||. ||. Fix a real-valued sequenégsuch that 0= 6y < 61 < ... <

6 < ...with - oo asi — oo.

Let us introduce special notations:

K ={aeC(R*,R"): strictly increasing an@(0) = 0},
A ={beC(R*,R*) : b(0)=0, b(s) > 0 fors> 0}.
Here, we consider the following fiierential equation:

X'(t) = f(t, x(t), x(B(1))), (1.11)

wherex € S(p), S(p) = {(x€ R™: ||X|| < p}, t e R*, B(t) = 6, if t € [6;,6i11),i € N.

The following assumptions are needed:

(C1) f(t,y,2) € C(R* x S(p) x S(p)) is anmx 1 real valued function;
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(C2) f(t,0,0)=0forallt>0;
(C3) 1(t,y, 2) satisfies the condition
1(t, Y1, z1) = F(t, y2, 2)Il < €(llyr — Yall + 1z = 22l1)
forallt € R* andy, Yo, 21, 2 € S(p), wheref > 0 is a Lipschitz constant;
(C4) there exists a positive numbgsuch thatj,; — 6; < 0,1 € N;
(C5) ¢o[1 + (1 + t0)€"’] < 1;
(C6) e < 1.

We give now some definitions and preliminary results which enable us to ingesstability

of the trivial solution of (1.11).

Definition 1.3.11 [4] A function Xt) is a solution of(1.11) onR™ if:

(i) x(t) is continuous oR*;

(i) the derivative Xt) exists for te R* with the possible exception of the poidisi € N,

where one-sided derivatives exist;

(iii) equation(1.11)is satisfied by §t) on each interval6;, 6i,1), i € N, and it holds for the
right derivative of Xt) at the points;, i € N.

For simplicity of notation in the sequel, let us denote

1

KO = T+ armen

The following lemma is an important auxiliary result of that paper.

Lemma 1.3.12 Let(C1) - (C5) be fulfilled. Then the following inequality

IX@B)I < K@) Ix®)Il

holds for all t> 0.

We give the following assertion which establishes the existence and uesgiefhsolutions
of (1.11).
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Theorem 1.3.13 Assume that condition®€1) and (C3) — (C6) are satisfied. Then for every
(to, Xo) € R* x S(p) there exists a unique solutior{tx = X(t, tg, Xo) of (1.11) on R* in the
sense of Definitiod.3.11 such that ) = Xo.

Definition 1.3.14 Let V: R* x S(0) — R*. Then, V is said to belong to the clags:

() V is continuous ofiR* x S(p) and t,0) = Oforallt € R";

(i) V(t,x) is continuously dferentiable on(6;, 6i.1) x S(p) and for each xe S(p), right

derivative exists at£ 6, i € N.

Let the derivative o/ with respect to system (11) be defined by

V/(t, X, y) = w +grady V(t, x) f(t, X, y)

forallt # 6, in R* andx,y € S(p) if a functionV € 9.

Definitions of Lyapunov stability for the solutions of discussed systems eagivien in the

same way as for ordinary fiierential equations. Let us give the followings.

Definition 1.3.15 [6] The zero solution of1.11)is said to be
(i) stable if for anys > 0 and § € R*, there exists & = d(tg, &) > 0 such that||xg|| < ¢
implies||x(t, to, Xo)|| < & for all t > tg;

(ii) uniformly stable it is independent obt

Definition 1.3.16 [6] The zero solution 0f1.11)is said to be uniformly asymptotically stable
if it is uniformly stable and there is& > 0 such that for everg > 0 and € R*, there exists

aT =T(g) > 0such that|x(t, to, Xo)|| < € forallt > tg + T wheneveliXg|| < do.

Now we give the formulation for the stability of the zero solution of (1.11) Hase the
Lyapunov-Razumikhin method. In the next theorems, we assume that cosdi@d)-(C6)

are satisfied.

Theorem 1.3.17 Assume that there exists a functiore\# such that
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@) u(Ix) < V(t, X) onR* x S(p), where ue K;
(i) V'(t,x,y) <Oforallt#6 inR" and x y € S(p) such that

V(B(1),y) < V(t, X).

Then the zero solution ¢1.11) is stable.

Theorem 1.3.18 Assume that there exists a functiore\# such that

@) u(Ix) < V(t, x) < v(IX) onR* x S(p), where uv € K;

(i) V'(t,x,y) <Oforallt+6 inR" and x y € S(p) such that
V(B(t),y) < V(t, x).

Then the zero solution ¢1.11) is uniformly stable.

Theorem 1.3.19 Assume that all of the conditions in Theor&r® 18 are valid and there exist
a continuous nondecreasing functigrsuch thaty(s) > s for s> 0 and a function we A. If

condition (ii) is replaced by

(i) V'(t,x,y) < —-w(|x|]) for all t # 6; in R* and x y € S(p) such that
V(B(1),y) < y(V(t, X)),

then the zero solution @i.11) is uniformly asymptotically stable.

1.4 The Theory of Impulsive Differential Equations

The theory of impulsive dierential equations play its own modest role in attracting the at-
tention of researchers to the symbiosis of continuity and discontinuity for efieitibn of

a motion. It is well known that impulsive filerential equation [1, 112, 113] is one of the
basic instruments so the role of discontinuity has been understood bettae fogal world
problems. In real world, many evolutionary processes are charaddlz abrupt changes
at certain time. These changes are called to be impulsive phenomena, whiobladed in
many fields such as biology involving thresholds, bursting rhythm modelsiqd) chem-

istry, population dynamics, models in economics, optimal control, neural nietywetc. For
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example, when an oscillating string is struck by a hammer, it experienceslarsaldange of
velocity; a pendulum of a clock undergoes a rapid change of momentum ivbesses its
equilibrium position; harvesting and epidemics lead to a significant dedretmepopulation
density of a species, etc. To explain such processes mathematically, mésoecessary to
study impulsive dierential equations, also calledf@irential equations with discontinuous

trajectories.

A well known example of such phenomena is the mathematical model of cloé&k |4,
147]. Although, general novelties of impulsivefférential equations were introduced by
Pavlidis [128, 129, 130]. The book of Samoilenko and Perestyuk [kla] fundamental
work in the area as it contains many qualitative theoretical problems sucle &xigtence
and uniqueness of solutions, stability, periodic and almost periodic solufitegral sets,
optimum control, etc. Later, Akhmet [1] gathered all previous results amddaced new
approaches in applied mathematics. In this book, main purpose is to presehetny of
differential equations with solutions that have discontinuities either at the momesrtstiad
integral curves reach certain surfaces in the extended phase $pgcag time increases
(decreases), or at the moments when the trajectories enter certain setplimsleespace.

That is to say, the moments when solutions have discontinuities are notilpegscr

There are two dferent kinds of impulsive dlierential equations: with impulses at fixed times;
and with impulsive action at variable times. The first one has the form [1]
X () = f(t,X)

(1.12)
AX |t:Tk= |k(x)’

wherex € R™, me N, t € R, {7y}, is a given sequence of times indexed by a finite or an
infinite setJ, f andl, arem— dimensional vector-valued, continuous functions. A phase point
of (1.12) moves along one of the trajectories of thi#edential equationx’(t) = f(t, x) for all

t # 7. Whent = 7y, the point has a jJumpaX |-, = X(ry) — X(7}) = lk(X(7})). Thus, a solution
X(t) of (1.12) is a piecewise continuous function that has discontinuities of rdtekind at

t =1k

In the latter one, impulse action occurs when the phase point of a systesetttethe pre-
scribed surfaces in the phase space. It is known that systems with imptisseable times

generate more flicult theoretical challenges if one compares that systems with impulses at
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fixed moments. Systems with impulses at variable (non-fixed) times is of the form

X (t) = f(t, x)
AX Jt=r 0= 1k(X),

(1.13)

whererty(X), k € J defines for the surfaces of discontinuities. Despite the systems (1.12), the
solutions of equations (1.13) are nevertheless piecewise continuotielpaints of discon-
tinuity depend on the solutions. For this reason, this makes the investigatisnstoystems

more dificult.

We note that it is the first time that thefi#irential equation with impulses is given in the form

(1.12) in [1]. Generally, the system has been used in the following folri, [113]

XM =f(tx, t#m (1.14)
AX |t=Tk =1 k(x)'

The system (1.12) is more convenient for the motion with discontinuities thad)(kihce

the existence of the left derivative at disontinuity points is not disregkirdsystem (1.12).

In this thesis, we focus on the systems with impulses at fixed times. Let usayive defi-
nitions and theoretical results for systems with fixed moments of impulses due hodke

proposed by Akhmet, Samoilenko and Perestyuk [1, 112].

1.4.1 Description of the System

Let R, N andZ be the sets of all real numbers, natural numbers and integers, rgspecti
Denote byr = {rk} a strictly increasing sequaence of real humbers such that thd sét

indexesk is an interval inZ.

Definition 1.4.1 7 is a B- sequence, if one of the following alternatives is valid:

(i) T=09;
(i) 7is anonempty and finite set;

(i) 7is an infinite set such thdtyx| — oo as|k| — oo.

Definition 1.4.2 A functiony : T — R™is from the set PCT, 7) if:
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() ¢is left continuous;

(ii) ¢ is continuous, except, possibly, points frenwhere it has discontinuities of the first
kind.

Definition 1.4.3 A functiong : T — R™ belongs to the set PCT, 1) if:

) ¢ € PC(T, 1);

(i) ¢’(t) € PC(T, 1), where the derivative at pointsis assumed to be the left derivative.

In this part of the section, we consider the following impulsivéedtiential equation which has
maximal correspondence to our investigations throughout the thesis:
X (t) = Ax+ f(t, X)

(1.15)
AX |t:‘rk: Ik(X),

whereA = diag(-a, ..., —am) witha > 0, i = 1,..., mis a constant diagonal matrix.

We understand a solution of (1.15) as a function frB@Y(T,7), T c R*, which satisfies
the diferential equation and the impulsive condition of (1.15). Theedential equation is
satisfied for allt € T, except possibly at the moments of discontinuityvhere the left side

derivative exists and it satisfies thefdrential equation as well.

Denote byX(t, s) = A9, t, se R* the fundamental matrix of the following linear homoge-

neous system
X (t) = Ax (1.16)

associated with (1.15). One can easily see|thét, s)|| < e 9, whereo = min &,
<iI<m

We now give equivalent integral equations for the initial value problerts)l

Lemma 1.4.4 A functionp € PCY(T, 1), ¢(to) = Xo, is a solution of (1.15) if and only if it is
a solution of the following integral equation:

t

@(t) = X(t,to)xo + f X 9f(se()ds+ Y Xt 1)le(nd). t= to.

fo to<ti<t
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Lemma 1.4.5 A functiony € PCY(T, 1), ¢(to) = Xo, is a solution of (1.15) if and only if it is

a solution of the following integral equation:

t
¢(t) = Xo + ft (Ap(9) + F(s p()ds+ > Ikg(T), t= to.

to<tk<t

Let us give the Gronwall-Bellman Lemma for piecewise continuous functiwhgh is one

of the simplest and most useful integral inequalities.

Lemma l.4.6Letuve PC(J 7), u(t) >0, v(t) >0, te J Bk>0, ke A, tge J andce R

is a nonnegative constant. I{t) satisfies the inequality

u(t) <c+ f tv(s)u(s)ds+ Z Beu(ti), t > to,
to

to<tk<t

then the following estimates holds for the functidt),u

v(s)ds

u(t) < ceko []@+p) t=2t

to<tk<t
1.4.2 Existence and Uniqueness Theorems

Let us denote by € R*, 7 andG € R™, me N as an open interval, a nonem@y sequence
with set of indexesA and an open connected set, respectively. Consider a continuotisfunc
f:JIJxG - RMand amafd : AxG — R™ The domain of the equation (1.15) is the set
Q=JxAxGC.

Theorem 1.4.7 [1](Local existence theorem) Supposé, k) is continuous on X G and
[Tk G € G, ke A. Then for any(ty, Xg) € J x G there isa > 0 such that a solution (x, to, Xo)
of (1.15) exists offty — «, tg + ).

Theorem 1.4.8[1](Uniqueness theorem) Assume thdt, k) satisfies a local Lipschitz con-
dition, and every solution x v + Ix(v), k € A, x € G, has at most one solution with re-
spect to v Then any solution (X, to, Xo), (to,%0) € J x G, of (1.15) is unique. That is, if

y(t, to, Xo) is another solution of (1.15), and the two solutions are defined at same then

X(t’ to’ XO) = y(t’ tO’ XO)
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Now, let us consider existence and uniqueness theorems of (1.1%) on
Fix (to, X0) € J x G, and take
Jo=[to—hto+h], Go={xeR™:||x-Xoll < H},

with some fixed positive numbeks andh. Suppose thaly x Go ¢ J x G with small numbers.

Letp; =i([to,to + h]), p- =i([to — h,to]), Ap = {ke A : 1« € Jo} and7? = {tx}, k€ Ap.

We need the following assumptions:

(C1) Ais a continuousn x mdiagonal matrix an¢/All < N < oo;

(C2) there exists Lipschitz constafyt > 0 such thatf|f(t, xX) — f(t,y)|| < £¢ [|x - y]| for arbi-
trary x,y € G, uniformly in all (t,k) € I x A ;

(C3) Ik satisfies|Ik(x) — kW)l < € |Ix -yl for arbitraryx,y € G, uniformly in all (t,k) €
J x A, where{, is a positive Lipschitz constant;

(C4) suplf(t. Xl + suplllk(X)ll = M < oo;
IxXG AXG

(C5) (N + M)h+ max(p., p-)M < H;

(C6) (N+£i)h+ ¢ max(p, p-) < 1.

Theorem 1.4.9 Assume thafC1) — (C6) are valid. Then the initial value problem (1.15) and

X(tg) = Xo admit a unique solution onyJ

1.4.3 Stability Based on Linear Approximation

In this section, we will give dfiicient conditions for the global asymptotic stability of the
zero solution of (1.15) based on linearization [112]. Here, we assurhe(th# a solution of

(1.15) such thap : J = [0, 0) —» G andtk — oo ask — oo.

Definition 1.4.10 [1] The solutiong(t) is stable if for any > 0 and § € J there corresponds
6(to, €) > 0 such that for any other solutiop(t) of (1.15) with||e(to) — ¥ (to)ll < (to, €) we
have|lp(t) — ¢ (t)|| < e for t > to.
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Definition 1.4.11 [1] The solutione(t) is asymptotically stable if it is stable in the sense of
Definition 1.4.10 and there exists a positive numifgy) such that ifiy(t) is any other solution
of (1.15) with||e(to) — ¥ (to)ll < k(to), then|lp(t) — w(t)]| — 0Oas t— oo.

From now on we make the following assumptions:

(C7) there exists positive numbesuch thatr < 7,1 — 7, ke N;

(C8) o — ¢y — M) 5 o,

Theorem 1.4.12 Assume thaf{C1)— (C8) are fulfilled.Then, the zero solution of (1.15) is
globally asymptotically stable.

1.4.4 Existence of Periodic Solutions

We shall need the following additional conditions of periodicty:

(C9) f(t+w,x) = f(t,x) forall (t,x) e R* x G;
(C10) the sequence satisfiesry,.p = 6k + w,k € N andlx,p = Ik for a fixed positive real

periodw and some positive integex

A function¢ € PC(R", 7) is a piecewise continuous— periodic function ifo(t + w) = ¢(t),

forallt e R*.

Theorem 1.4.13 (Poincare’ criterion) Assume th4d€1), (C2) and(C4) — (C10)are fulfilled.
Then, a solutionp € PC(R*, 1) of (1.15) isw— periodic if and only ifp(0) = ¢(w).

In what follows, we introduce a Green'’s function

(-9
g(t,s):(l—eA“’)‘l{eA  Ossst=e (1.17)

Awtt=9)  0<t<s<w,
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so that the unique— periodic solution of the system (1.15) can be written as
w P
O = [ 6a9spNdst ) 6t 7).
k=1
Forty, ke N, let [0, w] N {Tkken = {T1,..., Tp} andt rr[10ax] IG(t, 9)l| = A.
,S€[0,w
Theorem 1.4.14 Assume tha{C1) - (C10) are valid. Moreover, the linear homogeneous

w— periodic system (1.16) does not have nontrivial periodic solutions and the inequality

Alsw + € p) < 1 holds, then (1.15) has a unique- periodic solution.
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CHAPTER 2

STABILITY OF PERIODIC MOTIONS AND EQUILIBRIA

In this chapter we consider neural networks systems as well as impuksivalmetworks
systems with piecewise constant argument of generalized tyg&ci€uat conditions for the
existence of a unique equilibrium and a periodic solution are obtained. Tihittgtaf these
solutions is investigated. Examples with numerical simulations are presented tr@idube

results.

2.1 Equilibria of Neural Networks with Piecewise Constant Agument

In this section we obtain sfiucient conditions for the existence of the unique equilibrium.
Existence and uniqueness of the solutions are established. We get ia ¢oitehe global
asymptotic stability of the Hopfield-type neural networks with piecewise cohatguments

of generalized type by using linearization.

2.1.1 Introduction and Preliminaries

In recent years, dynamics of delayed neural networks have bediedtand developed by
many authors and many applications have been foundfiardnt areas such as associative
memory, image processing, signal processing, pattern recognition &nmdzapion (see [42,
94, 111, 46] and references cited therein). As is well known, suplications depend on the

existence of an equilibrium point and its stability.

One of the most crucial idea of the present section is that we assume [Hdpfie neural

networks may “memorize” values of the phase variable at certain moments of tiniéze
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the values during middle process till the next moment. Thus, we arriveferektial equa-
tions with piecewise constant delay. Obviously, the distances between thentsomay be
very variable. Consequently, the concept of generalized type ofipieeeonstant argument

may be fruitful for the theory of neural networks.

Let us denote the set of all real numbers, natural numbers and integ&N, Z , respec-
m

tively, and a norm oiR™ by || - || wherel|u|| = Z Uil

=1
In the present section we shall consider the following Hopfield-typeahegtworks system

with piecewise constant argument
m m
XM = —ax()+ Y bifioqm) + ) cigi((BM) + d (2.1)
=1 =1
>0 i=12....,m

wherep(t) = 6 if 0 <t < 6ky1, K € Z, t € R, is an identification functiondy, k € Z, is a
strictly increasing sequence of real numbég,— oo as|k| — oo, and there exists a positive
real numbe® such thaby,1 — 6k < 6,k € Z. Moreover,m denotes the number of neurons in
the network,x;(t) corresponds to the state of thta unit at timet, f;(x;(t)) andg;(x;(5(t)))
denote, respectively, the measures of activation to its incoming potentialks ofity at time

t andéy, k € Z; bij, ¢jj, d; are real constants;; denotes the synaptic connection weight of the
unit j on the uniti at timet, ¢;; denotes the synaptic connection weight of the yroh the

uniti at timed, d; is the input from outside the network to the uinit

The following assumptions will be needed throughout the section:

(C1) The activation function$;, g; € C(R™) with f;(0) = 0, g;(0) = O satisfy
Ifj(u) - fi(WI < Ljlu—w,
19i(W) - gi(V)I < Ljlu—vi
forall u,v € R, whereL;, Lj > 0 are Lipschitz constants, fgr= 1,2,..., m;
(C2) Olasz +as] < 1;

(C3) 0]z + a3 (L+faz) €] < 1,

where

m m _ m
ap = Z [bjilLi, a2 = ZZ CiilLi, a3z = Zai +a1.

m m
=1 j=1 i=1 j=1 i=1
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Theorem 2.1.1 Suppos€C1) holds. If the neural parameters,&;j, ¢ij satisfy

m _m
a,->LiZ|bji|+LiZ|cji|, i=1,....,m
j=1 j=1

Then, (2.1) has a unique equilibrium x (x;, ..., x:)".

The proof of the theorem is almost identical to the verification in [46] with sligdfegnges

which are caused by the piecewise constant argument.

We understand a solutiox(t) = (X1, ..., %m)' of (2.1) as a continuous function d such
that the derivative((t) exists at each poirte R, with the possible exception of the points
Ok, k € Z, where one-sided derivative exists and thedential equation (2.1) is satisfied by

X(t) on each intervald, 6k.1) as well.

In the following theorem the conditions for the existence and uniqueneasdugfons oriR are
established. The proof of the assertion is similar to that of Theorem 2.3.iNEjertheless,

detailed proof will be given in Lemma 3.3.2 and Theorem 3.3.3 of Section 3.3.

Theorem 2.1.2 Suppose that conditiof€1) — (C3) are fulfilled. Then, for everftg, x%) €
R x R™, there exists a unique solutiorftk= X(t, tg, X°) = (X1,..., Xm)", t € R, of (2.1), such
that Xto) = x°.

Now, let us give the following two equivalence lemmas of (2.1). The praggomitted here,

since they are similar to that of Lemma 3.1 in [3].

Lemma 2.1.3 A function Xt) = x(t, to, xO) =(Xq,..., xm)T, where p is a fixed real number, is
a solution of (2.1) orR if and only if it is a solution of the following integral equation @&n

Fori=1,....,m
t m
(M) = ey f a9 [Z bij £ (xj($)
to =1

+ 3 Gigi(6(8(9) + di | ds
=1

Lemma 2.1.4 A function Xt) = x(t, to, x°) = (X1,...,%m)", where p is a fixed real number, is

a solution of (2.1) orR if and only if it is a solution of the following integral equation @&n
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Fori=1,...,m

t
x(t) = ><.o+£

m

+ > Gigi(xi(B(9)) + d

=1

—ax(9) + ) bij fi(x(9)
j=1

ds

2.1.2 Stability of Equilibrium

In this section, we will give sficient conditions for the global asymptotic stability of the
equilibrium x*. The system (2.1) can be reduced as follows. y.et x — x, for eachi =

1,...,m. Then,

m m
YO = —ayi®)+ > bygiyi) + > 6wy, (2.2)
=1 =1
a>01i=12...,m
wheregi(yi) = filyi + X) — fi(X) andyi(yi) = gi(yi + X) — gi(X). Foreachj = 1,....m,
#i(-), ¥j(-), are Lipschitzian sincdj(-), gj(-) are Lipschitzian withL;, I__J respectively, and

¢i(0) = 0,y¢;(0) = 0.

Definition 2.1.5 The equilibrium x= x* of (2.1) is said to be globally asymptotically stable
if there exist positive constantg anda» such that the estimation of the inequality

IX() — X*|| < a1 |IX(to) — x*|| e *2(t-) js valid for all t > to.

For simplicity of notation in the sequel, let us denote
¢ = {1-0]az +aa(1+baz) )| .

The following lemma, which plays an important role in the proofs of further rbies has
been considered in [17]. But, for convenience of the reader we pieecéull proof of the

assertion.
Lemma 2.1.6 Let \(t) = (ya(t),...,ym(t))" be a solution of (2.2) an(C1) — (C3)be satisfied.
Then, the following inequality

@) < Iyl (2.3)

holds for all te R.
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Proof. For a fixedt € R, there existk € Z such that € [6k, 6k.+1). Then, from Lemma 2.1.4,

we have

Iyl

D i)
i=1

m t] m
< ||Y(9k)||+2{ f ailyi(9)1+ ) IbjilLii(9)|
i=1 (Vo[ =1
+ ZICjiIEiIYi(Qk)I ds}
=1 h
<

(1 + Ba)lly@ll + f aslly(9lds

Ok

The Gronwall-Bellman Lemma yields that

(Ol < (1 + Baz) (@1l (2.4)

Furhermore, fot € [0k, Ok+1) We have

m t
V@l < ||y(t)||+2{ fe
i=1

m

alyi(s)l + ) bjlLilyi(s)
i=1

ds}
t

< @)l + Gazlly@)Il + f aglly(s)llds

Ok

k

m
+ Z [CjiILilyi (B!
-1

J

The last inequality and (2.4) imply that
YOI < IYON + Baally(@ll + s (1 -+ Garz) € ly(@i)ll.
Thus, it follows from condition (C3) that
Iy@ll < Iyl t € [0k, Okra)-
Accordingly, (2.3) holds for alt € R, which is the desired conclusionl

From now on we need the following assumption:
(C4) v — a1 — Zap > 0, wherey = min g is positive.
1<i<m

Theorem 2.1.7 Assume thafC1) — (C4) are fulfilled. Then, the zero solution of (2.2) is glob-

ally asymptotically stable.
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Proof. Lety(t) = (yi(t),...,ym(t))" be an arbitrary solution of (2.2). From Lemma 2.1.3, we

have
m t m
IOl < e_y(t_tO)”yo”JrZ f et [Zlbji|Li|Yi(S)|

i=1 fo j=1

m —_—

+ el |Yi(,3(3))|} ds
=1
<

t
e 70 yo|| + (a1 + Lan) f e Iy(s)llds
to
It follows that
t
eyl < lyoll + (a1 + a2) f & 9|ly(s)ds
to
By virtue of Gronwall-Bellman inequality, we obtain that
Iyl < e 0ot yg),

The last inequality, in conjunction with (C4), deduces that the zero solutisystem (2.2) is
globally asymptotically stable.]

2.2 Periodic Motions of Neural Networks with Piecewise Consint Argument

In this section we derive somefiigient conditions for the existence and stability of periodic

solutions.

2.2.1 Existence and Stability of Periodic Solutions

In this part, we study the existence and global asymptotic stability of the pesgolliton of

(2.1). The following conditions are to be assumed:

(C5) there exists a positive integesuch thatk, p = 6k + w, k € Z with a fixed positive real

periodw;

1

(C6) k[w(ar+laz)] <1, wherex = —55.

Theorem 2.2.1 Assume that conditiondC1) — (C3) and (C5)— (C6) are valid. Then, the

system (2.1) has a unique- periodic solution.
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We omit the proof of this assertion, since it can be proved in the same wajséenee of the
periodic solution for the quasilinear system of ordinarffatential equations in noncritical

case [110].

Theorem 2.2.2 Assume that conditior(€1) — (C6) are valid. Then, the periodic solution of
(2.1) is globally asymptotically stable.

Proof. By Theorem 2.2.1, we know that (2.1) hasanperiodic solution*(t) = (x,...,x5)".
Suppose thak(t) = (X1, ..., %m)" is an arbitrary solution of (2.1) and left) = x(t) — x*(t) =

(X1 =X{,..., Xm— x*m)T. Then, from Lemma 1.1, we have

m t m
e 70|20 | + Z {f g9 {Z Ibji|Lilzi ()|
i=1 j=1

Iz <
to
m —
£y |c,-i|Li|a(ﬂ(s))|} ds
=1
t
< @Ozl + (a1 + L) | €I (9)|lds

to

Also, the previous inequality can be written as,
t
eI < lzoll + (o1 + La2) f &= 9z(s)|ds
fo
By applying Gronwall-Bellman inequality, we obtain that
Izl < e 0esmca g

Thus, using (C4), the periodic solution of system (2.1) is globally asympligtstable. ]

2.3 Equilibria of Neural Networks with Impact Activation

In this section we introduce following twoftierent types of impulsive neural networks system
with piecewise constant argument of generalized type. For these typesient conditions
for the existence of the unique equilibrium are obtained, existence andeanggs of solutions
and the equivalence lemma for such systems are established and stabilitprcifiverthe

equilibrium based on linear approximation is proposed.
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2.3.1 (8,0)— Type Neural Networks

In this type, switching moments of constancy of argumeépisk € N and the moments of
discontinuity are same for impulsive Hopfield-type neural networks systgmpiecewise

constant arguments.

2.3.1.1 Introduction and Preliminaries

Scientists often are interested in systems, which are either continuous-tinse@te-time.
They are widely studied in the theory of neural networks, but there isreshat new cate-
gory of dynamical system, which is neither continuous-time nor purely déstirme; among
them are dynamical systems with impulses, and systems with piecewise comgtaneats
[72, 117, 118, 119, 120]. It is obvious that processes of ‘integuatefire’ type in neural
networks [125, 126, 127, 128] request the systems as a mathematicdlngadstrument.
Significant parts of pioneer results for impulsivéfdiential equations (IDE) andftiérential

equations with piecewise constant argument (EPCA) can be found inT2, 27, 112].

In recent years, dynamics of Hopfield-type neural networks haea lstudied and devel-
oped by many authors by using IDE [117, 120, 121, 122, 123, 1ERCA [114]. To the
best of our knowledge, there have been no results on the dynamiaalibebf impulsive
Hopfield-type neural networks with piecewise constant arguments. @estigation con-
tains an attempt to fill the gap by consideringfeliential equations with piecewise constant

arguments of generalized type [4, 5, 6].

Denote byN andR* = [0, o) the sets of natlﬂnral and nonnegative real numbers, respectively,
and denote a norm dR" by || - ||, where|jul| = Z |ui|. The main subject under investigation in
this section is the following impulsive Hopfji?elld-type neural networks systéim piecewise
constant argument

X(0) = —ax(®) + ) b fi04(0) + ) cijgi((80)) + di, t # &
j=1 j=1 (2.5)

AX lt=g,= |k(Xi(9|;)), i=12,....m KkeN,

whereg(t) = Ok_1 if 6.1 <t < 6k, ke N, t € R*, is an identification functiorgx > 0,k € N,
is a sequence of real numbers such that there exist two positive nedlensy, 6 such that

6 < Op1— Ok < 9_, k € N, Ax(6k) denotes«(6k) — Xi (9;), wherex; (9;) = limp_o- %(6k + h).
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Moreover,a; > 0,i = 1,2,...,m are constantsin denotes the number of neurons in the
network, x;(t) corresponds to the state of theh unit at timet, f;(x;(t)) and g;(x;(3(t)))
denote, respectively, the measures of activation to its incoming potentiale afmihj at
timet € [6k-1,60k).k = 1,2,..., andf_1; bjj, Gj, d;i are constantsh;; denotes the synaptic
connection weight of the unit on the uniti at timet, ¢;; denotes the synaptic connection
weight of the unitj on the uniti at timedy_1, d; is the input from outside the network to the

uniti.

We denotePC(J, R™), whereJ c R* is an interval, the set of all right continuous functions

¢ : J = RMwith possible points of discontinuity of the first kindéte J k € N.

Moreover, we introduce a s®CM(J R™) of functionsy : J — R™ such thaty, ¢’ €

PC(J,R™M), where the derivative at pointg is assumed to be the right derivative.

Throughout this section, we assume that the functigns R* — R* are continuous, the
parameter$;j, ¢;j, d; are real, the activation functiorfg, g; € C(R™) with f;(0) = 0,g;(0) =
0, and they satisfy the following conditions:
(C1) there exist Lipschitz constarits, Ej > 0 such that

Ifj(u) = fi(WI < Ljlu—w,

95(W) - gVl < Ljlu—v

foralluveR™ j=1,2,....m;
(C2) the impulsive operatdr satisfies
[i(u) = i) < €flu -V

forallu,ve R™ i=1,2,...,m wherel is a positive Lipschitz constant.

For the sake of convenience, we adopt the following notations:

01:Zi|bji|l—i, a’2=2i|cji|lji, 0’3:iai + 1.

i =1 i j=1 i=1

m m
=1 =1
Furthermore, the following assumptions will be needed throughout the sectio

(C3) Olas + 2] < 1;
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(C4) 0]z + a3 (L1 + faz) €] < 1.

Taking into account the definition of solutions foffférential equations with piecewise con-
stant arguments of generalized type [2] and IDE [113], we understawdution of (2.5) as

a function fromPC(l)(J, R™M),J c R*, which satisfies the elierential equation and the im-
pulsive condition of (2.5). The ferential equation is satisfied for alE J, except possibly

at the moments of discontinuitl, where the right side derivative exists and it satisfies the

differential equation as well.

Let us denote an equilibrium solution for theffdrential equation of (2.5) as the constant

vectorx* = (xj, e, x’;‘n)T € R™ where eaclhx’ satisfies
m m
ax = > bij i) + > 6igj(x) + .
i=1 =1

The proof of following lemma is almost identical to the verification of Lemma 2.2 irfJ11

with slight changes which are caused by the piecewise constant argument.

Lemma 2.3.1 Assume that the neural parametershg, cij and Lipschitz constants;LL

satisfy

m _m
ai>LiZ|bji|+LiZ|Cji|, i=1,....,m
i=1 =1

Then, the dferential equation of (2.5) has a unique equilibrium.

Theorem 2.3.2 If the equilibrium X = (xj,...,x;*n)T € R™ of the djferential equation of
(2.5) satisfiesd(x’) = Oforalli = 1,...,m, ke N. Then, X is an equilibrium point of (2.5).

Particularly, ifc;j = 0, the system (2.5) reduces to the system in [117].

In the theory of diferential equations with piecewise constant arguments of generalized type
[2], we take the functiom(t) = 6k if Ok < t < k.1, that is,B(t) is right continuous. However,

as it is usually done in the theory of IDE, at the points of discontingitef the solution,
solutions are left continuous. One should say that for the following invastig the right
continuity is more convenient assumption if one considers equations withyiseceonstant

arguments.
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The rest of this section is organized as follows: In the next section, anobuficient
conditions for the existence and uniqueness of the solutions and thelemqa® lemma for
(2.5). We get a criteria for the global asymptotic stability of the impulsive Htpfige

neural networks with piecewise constant arguments of generalizedyyysérty linearization.

2.3.1.2 Existence and Uniqueness of Solutions

Consider the following system
m m
X = —ax)+ > bifiG0) + > cigi06-1)) + di, (2.6)
=1 =1
a>01=12....m
fOI’ er_l < t < Hr.

Now, we continue with the following lemma which provides the conditions of extgtemd

unigueness of solutions for arbitrary initial moment

Lemma 2.3.3 Let (C1), (C3), (C4) be satisfied. Then for eacl x R™ andé, 6,_1 < & <
6r,r € N, there exists a unique solutiorftx= x(t, &, X0) = (x1(t), ..., Xm(t))T, of (2.6),6,_1 <
t <6, suchthat ) = x° = (x2,...,x%)7.

Proof. Existence It is enough to show that the equivalent integral equation

zi(t)=xi°+j;t

has a unique solutioz(t) = (z(t), ..., zm(t))".

ds

—az(9) + ) | bijfi(Z(9) + D 6igj(Z(¢r-1) + d
j=1 ji=1

Define a normj|z(t)|lo = [gmag<] lz(t)l| and construct the following sequenca$t), 2(t) =
r-1,Ur
X0, i=1,...,m n> 0 such that

ds

t
M+Lly = 50
2" () x,+ff

—aZ(9) + Y bijfi(Z(9) + ) cjg;(Z)(6-1)) + d
=1 =1

One can find that
I127%4) ~ 2o = max [17+() - 20l < [0as + az] [ .
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where

0] (a3 + a2) X +Z

Hence, the sequencedt) are convergent and thelr Ilmlts satisfy the integral equation on

[6r-1,6;]. The existence is proved.

Uniqueness It is sufficient to check that for eadhe [6;_1, 6;], andx® = (X3, ..., x2)T, xt =
(xt x2)T e R™ x? # x1, the conditionx(t, 6,1, X') # X(t, 6;_1, X%) is valid. Let us denote
the solutions of (2.5) by(t) = x(t, 6,_1, X1), X2(t) = x(t, 6;_1, X?). Assume on the contrary
that there exist§' € [6,_1, 6;] such thatx}(t*) = x?(t*). Then, we have

£

1 2 _

X=X —f
Or-1

£ 6ilgi0¢(0r-1)) - 6i(xH )]
=1

—a (9 = () + ¥ by[F68(9) - ()]
j=1

ds i=1,....m (2.7)

Taking the absolute value of both sides for each 1,...,m and adding all equalities, we

obtain

m

2\,

=1

- Z Gij [958 (6r-1)) - gj(le(grl))ﬂ d%
=1

B
Z 1jil1X? — Xl" ds}

t J—
f a3lIXH(s) — X2(9)llds+ Bazlxt — X2|\. (2.8)

Or_1

2 _ 1
l1x= =l

(9 - x(9) + Zb.,[f(xz(s» f0d(9)]

IA

aib®(s) - X9+ Y Lilbjillx¥(s) - x(9)l
j=1

IA

Furthermore, fot € [6;_1, 6], the following is valid:

m t
X = PO < X =+ { f |aib(9) - X (9)
i=1 \Wor-1
+ Z LilbjiIX3(s) — XH(3)| + Z Lilc;ilIx? — X,-lll dS}
= o=
< (1+6a2) X" - %) + fa a3lx(s) - X4(9)ds

Using Gronwall-Bellman inequality, it follows that

IIX(E) — O < (1 + Baz) €2]1x — K. (2.9)
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Consequently, substituting (2.9) in (2.8), we obtain
Xt = 52| < [fers (1 + Barz) €2 + Bz 1X* — 2. (2.10)

Thus, one can see that (C4) contradicts with (2.10). The lemma is priaved.

Theorem 2.3.4 Assume that conditiof€1), (C3), (C4)are fulfilled. Then, for everfto, X°) €
R* x R™ there exists a unique solutiorftk= x(t, to, X°) = (x1(t), ..., Xm(®))T, t > to, of (2.5),
such that ko) = x°.

Proof. Fix tp € R*. There exists € N such thatty € [6;_1,6;). Use Lemma 2.3.3 with
& = to to obtain the unique solutiox(t, to, X°) on [¢, 6;]. Then apply the impulse condition to
evaluate uniquely(é;, to, X°) = X(6;, to, X%) + 1(X(67 . to, X°)). Next, on the intervald, 6; 1)

the solution satisfies the ordinanyfldirential equation

m m
Vi) = —ayi®)+ > b i)+ > cigiyi(@) + di.
=1 =1
a>01i=12...,m
The system has a unique solutigft, 6;, x(6;, to, X°)). By definition of the solution of (2.5),

X(t, to, X0) = y(t, 6;, X(6r, to, X°)) on [6;, 6, +1]. The mathematical induction completes the proof.

O
Let us introduce the following two lemmas. We will prove just the second orepribof for

the first one is similar.

Lemma 2.3.5 A function Xt) = X(t, to, X°) = (x1(t), ..., Xm(t))", where ¢ is a fixed real num-
ber, is a solution of (2.5) o* if and only if it is a solution, oR*, of the following integral

equation:
t m
x(t) = e‘a‘(t‘tO)x?+fe‘a‘(t_S) [Zbij fj(xj(s))
to j=1

ds+ > e (xi(ey),

to<Ok<t

+ > Cigi((B(9)) + di
=

fori=1,...,m t>to.
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Lemma 2.3.6 A function Xt) = X(t, to, X°) = (x1(t), ..., Xm(t))", where ¢ is a fixed real num-

ber, is a solution of (2.5) o* if and only if it is a solution, o™, of the following integral

t
xi(t) = Xi0+ft

+ >, Gigi(x(B(9)) + di
=

equation:

—ax(9) + ) bij fi(x(9)
j=1

ds+ > (6(6)),

to<Ok<t

fori=1,...,m t>to.

Proof. Suficient part of this lemma can be easily proved. Therefore, we only prave th
necessity of this lemma. Fix=1,...,m. Assume thak(t) = (x(t), ..., Xm(t))" is a solution

of (2.5) onR*. Denote

m

t
a© = R+ [ a9+ ) byTicy)
to =1
+ 2 Gigi(GBEN) +di [ds+ D7 1:04(6;)). (2.11)
j=1 to<6, <t

It is clear that the expression in the right side exists fot.all
Assume thatg € (6;_1, 6;), then diferentiating the last expression, we get
m m
¢l = —axi(® + > b fi(x(0) + ) ciigi(x(BX)) + .
j=1 j=1
We also have
m m
X(t) = —axi(t) + > bij fi(0) + D cijgi((B(R) + di.
=1 =1
Hence, fort # 6;, r € N, we obtain

[ei(®) —x(®)] = 0. (2.12)
Moreover, it follows from equation (2.11) that
Agi(0r) = ¢i(6r) — ¢i(0;) = i (¢i(67)). (2.13)
One can see that(to) = xl.o. Then, by (2.12), we have thai(t) = x(t) on [to, 6;), which
impliesyi(6,) = xi(6;). Next, using equation (2.13) and the last equation, we obtain
@i(6r) = @i(07) + Ie(@i(6;) = %i(67) + 1 (X (67)) = Xi(6r).
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Therefore, one can conclude thg{d,) = x;(6;) for t € [to, 6;). Similarly, in the light of above
discussion, one can also obtain thgt) = xi(t) on [0, 6,.1). We can complete the proof by

using mathematical inductiofl

2.3.1.3 Stability of Equilibrium

In this section, we will give sficient conditions for the global asymptotic stability of the
equilibrium, x*, of (2.5) based on linearization [112]. The system (2.5) can be simplified as

follows. Lety, = x — X, for eachi = 1,..., m. Then,

Vi(©) = —ayi®) + ) bigi(yi®) + > 6w (i (BR)), t # b
=1 =1 (2.14)
AYi hea= k(i(6), i=12,....m KeN,

whereg;(y;() = fi(yj(®) + X)) = f;(<), wj(yi(t) = gj(y;(®) + x}) — g;(x}) andli(y;(6;)) =
[k (Y; (9;)+x]f)—lk(yj(x]f)). Foreach =1,...,mandk e N, ¢;(-), (), andl are Lipschitzian
sincefj(-), gj(-) andly are Lipschitzian with_j, L_J andl respectively, ang;(0) = 0, (0) = 0;

furthermore () : R* — R* is continuous witH (0) = O.

It is clear that the stability of the zero solution of (2.14) is equivalent to thailgyaof the
equilibrium x* of (2.5). Therefore, in what follows, we discuss the stability of the zelo-s

tion of (2.5).
Let us denote
B = {1-0[az +as(1+6az) &) "

The following lemma is an important auxiliary result of the section (see, alg}), [1

Lemma 2.3.7 Let \(t) = (ya(t),...,ym(t))" be a solution of (2.14) an@C1), (C3),(C4) be

satisfied. Then, the following inequality

lyBM)Il < Bly®)ll (2.15)

holds for all te R*.

Proof. Fixt € R*, there existk € N such that € [6k_1,6). Then, from Lemma 2.3.6, we
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have

[Iy(Oll

D i)
i=1
m t
M+ ) { |
+ > Lilciilly (ek_l)ﬂ ds}
j=1

t

< L+ Gyl + f aslly(9lds

Ok-1

IA

alyi(9)l+ ) Lilbjilyi(9)
j=1

By using Gronwall-Belmann Lemma, we get
YOl < (1 + Baz) €3y (-l (2.16)

Moreover, fort € [6k_1, 0), we have

YOED) {f;
i=1 (Vo1

m
+ Z Lilciillyi (Gk-1)I
=

Iy(6k-2)Il

ailyi(9)1+ ) Lilbjilyi(9)
=1

ds}
t

YOI + Gzl @)l + f aslly(9lds

Ok-1

IN

It follows from (2.16) that
Y@ < YOl + a2lly@o)ll + bas (1 + Baz) €ly(Bi ).
Then, we have from condition (C4) that
Ily@-0)ll < BIY®Il  t € [6-1. 610)-
Thus, (2.15) holds for all € R*. This proves the lemma.]

Now, we are ready to give flicient conditions for the global asymptotic stability of (2.5).

Let us denote the solution of linear homogeneous system of (2.34} asag(ys, . . . , Ym)-

From now on we need the following assumption:

(C5) y—a1—- I§a2 - w > 0, wherey = min g is positive.
= 1<i<m

The following theorem is a modified version of the theorem in [112], foraystem.
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Theorem 2.3.8 Assume thaC1) — (C5)are fulfilled.Then, the zero solution of (2.14) is glob-

ally asymptotically stable.

Proof. Lety(t) = (ya(t),...,ym(®)" be an arbitrary solution of (2.14). From Lemma 2.3.5,

we have

Iyl

IA

m t m
e—v(t—to)”yO” + Z {f g9 lz Lilbjillyi ()|
i=1 (Yt

0 =1

+ Z Lilciilly: (3(S)|
i1

ds+¢ Z e‘Y(t“’k)lyi(eg)l}

to<Ok<t

IA

_ t
e O)jyo|| + (a1 + Baz) f e Iy(9)lds
to

+ Y Myl

to<bi<t

Also, previous inequality can be written as,

N t
Oyl < lyoll + (a1 + Baz) f e y(9)ds
fo

w0 Y @Oyl

to<bk<t

By applying Gronwall-Bellman inequality [112], we obtain
& 0)y(p)] < elor+Baz)(t-)[g 4 f]iloDyg),

wherei(tp, t) is the number of pointé in [to, t). Then, we have that

=y In(1+¢
—(y—(yl—Bag—JQ—2

Iyl < e R TVNTR

So, using (C5), we see thiat(t)]| — 0 ast — . That is, the zero solution of system (2.14) is

globally asmptotically stablé.]

2.3.2 (8,7)— Type Neural Networks

In this section we investigate same problems for the second type of an impudsival net-
works system with piecewise constant argument of generalized typd.isThhe sequence
of momentsy, k € N, where the constancy of the argument changes, and the sequence of

impulsive momentssy, are diferent.
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2.3.2.1 Introduction

Recurrent neural networks and impulsive recurrent neural nksaeeive been investigated
due to their extensive applications in classification of patterns, assoaia¢in®ries, image
processing, optimization problems, and other areas [28, 31, 32, 38937131, 117, 119,
120, 121, 122, 123, 124]. It is well known that these applications mgeucially on the
dynamical behavior of the networks. For example, if a neural networknjg@yed to solve
some optimization problems, it is highly desirable for the neural network to davdque
globally stable equilibrium [140, 141, 142, 111, 54, 61, 64, 66]. Tioeee stability analysis
of neural networks has received much attention and various stabilityitmradhave been

obtained over the past years.

In this section, we develop the model of recurrent neural networksflierelntial equations
with both impulses and piecewise constant argument of generalized typke literature,
recurrent neural networks have been developed by implementing impaiskepiecewise
constant delay [13, 14, 117, 119, 120, 121, 122, 123, 124] issuing fifferent reasons:
In implementation of electronic networks, the state of the networks is subjecstanta-
neous perturbations and experiences abrupt change at certairtsngbdch may be caused
by switching phenomenon, frequency change or other sudden noisthefmore, the dy-
namics of quasi-active dendrites with active spines is described by arsgEpmint hot-spots
(with an integrate-and-fire process), see [132, 133] for more defdiis.leads to the model
of recurrent neural network with impulses. It is important to say that tighber moments
of impulses may depend on each other. For example, the successive impuatsnt may de-
pend upon its predecessor. The reason for this phenomenon is theridesiign of a neural
network. On the other hand, due to the finite switching speed of amplifiers@msmission
of signals in electronic networks or finite speed for signal propagatioreimah networks,
time delays exist [32, 35, 39, 131]. Moreover, the idea of involving dedagrguments in
the recurrent neural networks can be explained by the fact that suengsneural networks
may“memorize” values of the phase variable at certain moments of time to utilize the values
during middle process till the next moment. Thus, we arrive fietential equations with
piecewise constant delay. Obviously, the distances betweémemaorized” moments may
be very variative. Consequently, the concept of generalized typé&oéwise constant ar-

gument is fruitful for recurrent neural networks [13, 14]. Theref it is possible to apply
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differential equations with both impulses and piecewise constant delay to metnadrks

theory.

The intrinsic idea of this section is that our model is not only from the applicaipa@int of
view, but also from a new system offiirential equations. That is, we develoffeliential
equations with piecewise constant argument of generalized type to a nesvoflaystems;
impulsive diferential equations with piecewise constant delay and apply them to returre
neural networks [3, 5, 6, 17, 13, 14]. Another novelty is that the seqe of moments,, k €

N, where the constancy of the argument changes, and the sequence tsivenpuoments,

Tk, are diterent. More precisely, each momemt i € N, is an interior point of an interval
(6k, 6k+1)- This gives to our investigations more biological sense, as well as provielgs

theoretical opportunities.

2.3.2.2 Model Formulation and Preliminaries

LetN = {0,1,2,...} andR* = [0, ) be the sets of natural arrllqd nonnegative real numbers,
respectively, and denote a norm &Y by || - || where||u|| = Z |ui]. Fix two real valued
sequence8 = {6k}, 7 = {1k}, Ke N, 7N = ¢ such thaty < 9|k:+11 with 6y — oo ask — o
andty < Tks1 With 7 — oo ask — o, and there exist two positive numbetsr such that
Oi1 — O < 6 andrt < 7¢41 — Tk, K € N. The condition of the empty intersection is caused by
the investigation reasons. Otherwise, the proof of auxiliary results resssal additional

assumptions.

The main subject under investigation in this section is the following impulsiveneuineural
networks with piecewise constant delay

X(t) = —axi(t) + > by fi(x(®) + > cijgi((BN) + di, t # 7
j=1 =1 (2.17)

AXi Itz = Ik(Xi(7)), @& >0,i=12....m KkeN,
whereg(t) = 0k if O <t < Ok1, K€ N, t € R*, is an identification functionAx;(rx) denotes
Xi(tk) = (), wherexi(r,) = limho- Xi(rk + h). Moreover,m corresponds to the number
of units in a neural network;(t) stands for the state vector of tita unit at timet, f;(x;(t))
andg;(x;j(s(t))) denote, respectively, the measures of activation to its incoming poteoitials
the unitj at timet andg(t), bij, cjj, di are real constants;; means the strength of thjeh unit

on theith unit at timet, ¢;; infers the strength of th¢th unit on theith unit at times(t), d;
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signifies the external bias on tith unit anda; represents the rate with which tha unit will
reset its potential to the resting state in isolation when it is disconnected frametiverk and

external inputs.

In the theory of diferential equations with piecewise constant argument [3, 5, 6], we take the
functionp(t) = 6k if 6k <t < 6.1, that is,B(t) is right continuous. However, as it is usually
done in the theory of impulsive fiierential equations, at the points of discontinuityof the
solution, solutions are left continuous. Thus, the right continuity is moreesoant assump-

tion if one considers equations with piecewise constant arguments, artblassume the
continuity for both, impulsive moments and moments of the switching of constanitye o

argument.

We say that the functiop : R* — R™is from the sePC.(R*, R™) if:

(i) ¢ isright continuous oR™;
(i) it is continuous everywhere except possibly momentghere it has discontinuities of

the first kind.

Moreover, we introduce a set of functioRE€, s(R*, R™) if we replacer by r U 4 in the last
definition. In our investigation, we understand tat R* — R™ is a solution of (2.17) if

¢ € PC.(R*,R™) andy’ € PC,g(R*,RM).

Throughout this section, we assume the following hypotheses:

(H1) there exist Lipschitz constam_%, L? > 0 such that
(W) = Fi()I < Llu= v,

lgj(u) - gj(V)| < L?Iu -V
foralluve R™ j=212...,m,
(H2) the impulsive operatdf : R* — R* satisfies
[i(u) = (Wl < fu -V
forallu,ve R™ i=1,2,...,m wheref is a positive Lipschitz constant.
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For the sake of convenience, we adopt the following notations in the lseque

m m
ki = max(a+L ) Ibjl). ke = max (L?; i) ke = max(|1(0)).

<I<
1<i<m =i

ks

1<i<m J

m
max (" (Il (0) + Iey g (0)))).

j=1
Denote bypx the number of points; in the interval g, 6k;1), k € N. We assume thap =
fIT('IE%ka < 00,

Assume, additionally, that

(H3) [(ka + 2k)d + £p|(1 + ¢)°€? < 1;
(H4) ko + (ke + £P)(L + kof)(1 + O)PE? < 1,

We denote an equilibrium state for thefdrential equation of (2.17) by the constant vector

X =(X,..., x:-)T € R™, where the componeni$ are governed by the algebraic system

m m
0=—ax + > bijfi(x5)+ > cijgi(x) +d.
=1 =1

The proof of following lemma is very similar to that of Lemma 2.2 in [117] and tlwreefve

omit it here.

Lemma 2.3.9 AssumdH1) holds. If the condition

m m
f .
a>L > il + LY > el i=1...,m
=1 j=1

is satisfied, then the glerential equation of (2.17) has a unique equilibrium state x

Theorem 2.3.101f the equilibrium X = (x’{,...,x;;q)T € R™M of the dfferential equation of
(2.17) satisfiesi(x’) = Oforalli = 1,....,m k € N. Then, X is an equilibrium point of

(2.17).

Now we need the following equivalence lemmas which will be used in the prbofxt

assertions. The proofs are omitted here, since itis similar in [3, 5, 6, 23, 11
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Lemma 2.3.11 A function Xt) = X(t,to, X°) = (x1(t),...,Xm(t)T, where ¢ is a fixed real
number, is a solution of (2.17) dR* if and only if it is a solution, orR*, of the following
integral equation:

t m
(1) = e—a,'(t—to)xlo+fe—ai(t—5) lz bij f;(xj(9))

to =1

+ 761G 0G(B9)) +di[ds+ > e Wy (xi(xp)),
=1

to<tk<t

fori=1,...,m t>to.

Lemma 2.3.12 A function Xt) = X(t,to, X°) = (X(t),...,Xm(t))", where § is a fixed real
number, is a solution of (2.17) dR* if and only if it is a solution, orR*, of the following

integral equation:

t
x(t) = Xi0+ft

+ > Gigi(%(B(9)) +
j=1

—ax(9) + ) bij fi(x(9)
=1

ds+ > I4(r),

to<tk<t

fori=1,...,m t>to.

Consider the following system

X(0) = —axi(®) + > b fi(x0) + > cigi(x(@) + di, t £ 7
=1 =1 (2.18)

AXi lt=r,= Ir(Xi(7;)), 1=12....m kel

In the next lemma the conditions of existence and uniqueness of solutioastabdished for

arbitrary initial momeng.

Lemma 2.3.13 Assume that conditior{sl1) — (H3) are fulfilled, and fix re N. Then for every
(& X0) € [6r, 6;41] x R™there exists a unique solutiorftk= x(t, &, X°) = (x1(t), ..., Xm(t))" of
(2.18) on[6;, 6, 1] with x(&) = x°.

Proof. Existence Denoted(t) = x(t, &, X°), 9(t) = (91(t), ..., Im(t))". From Lemma 2.3.12,
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we have

t
9i(t) = XIO+L
IR CIC) (2.19)

<<t

—aidi(9) + Y bij fi(0(9) + Y €ijg;(®(6r)) + di | ds
j=1 j=1

Define a norm|¢(t)llo = [emax l9(t)Il and construct the following sequenagXt), ﬂio(t) =

rs 9r+l]

X0 i=1,....,m n>0such that

t
I = X0+ f
§

+ @),

E<t<t

—ad(s) + Y by [N + ) cijg;(@)(6) + d [ ds
j=1 =1

One can find that
19™(t) = 9"(llo < (| (ke + k)8 + £p])" &
where

k= [ (ke + ko)® + £p] 119°)] + Z)(Z di) + omky + mple .

Since the condition (H3) impIieE(kl + k)6 + t’p] < 1, then the sequences(t) are conver-

m
=1

gent and their limits satisfy (2.19) o8;| 6;.1]. The existence is proved.

Uniqueness Let us denote the solutions of (2.17) kB}(t) = x(t, &, x1), X3(t) = x(t, &, X2,
where6, < ¢ < 6,1. It is sufficient to check that for each intervak [6;,6,.1], andx? =

(G, )T )= (... xh)T e R™ x% # X, the conditionx}(t) # X%(t). Then, we have

XD =@l < ||x1—x2||+i f t
i-1 (V¢

+ > Lleil [xE(er) - it 6r))
=1

(aa + Z L bj I) [X2(s) — X (9)|
=

E<t<t

ds+¢ > () - Xil(‘rr_)|}

IA

t
XY = 5| + kaBlIXH(6r) — X260 + ka f IX4(9) - x¥(s)llds
3

+0 ) 1K) = )

E<te<t

Using Gronwall-Bellman Lemma for piecewise continuous functions [112], 1di$ can

obtain that
IXE(t) — X2 < (11Xt~ 211 + kBl (Er) = X2(@))(L + Ok,
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Particularly,
I1X40r) = 32611 < (11Xt = Il + kaBlIXL(6r) = X2(@)11)(L + )P,

Hence,

Ty o2 (1+ ¢)Pe? 12
[IX*(t) — x*()Il < L_ L+ [)Peklél 1" = x“l. (2.20)

Also, we peculiarly have

(2.21)

(1 + £)Pead l 1 52,

Vo) = X =
I ) x(r>||s[1_k2§(l+€)péqg

On the other hand, assume on the contrary that there €xi§ts, 6,.1] such thaix}(t) = x2(t).

S

e ZL?|c,-i||x-2(er)—x%(er)|}ds+f D Ix»z(r;)—x%(r;n}
j=1

E<t <t

Then

IA

1_ 2
[ = X7l

(a+ > L Ibjl) [xé(9) - X (9)]
1

=

IA

t
ke ff IX4(8) = X2(9)lld s+ kablIX(6r) — X2(6r)l

+eplIXt () = X2 (2.22)

Consequently, substituting (2.20) and (2.21) in (2.22), we obtain

Xt =5 < [(ke + 2k2)8 + £p(1 + €) €FIxt — 5. (2.23)
Thus, one can see that (H3) contradicts with (2.23). The lemma is praoved.

Theorem 2.3.14 Assume that condition®11) — (H3) are fulfilled. Then, for everito, X°) €
R* x R™, there exists a unique solutior(tk = X(t,to, X°) = (X1(t), ..., Xm(®)T, t > to, of
(2.17), such that (o) = x°.

Proof. Fix top € R™. It is clear that there exists € N such thatty € [6;,6;,1). Using pre-
vious lemma fo = to, one can obtain that there exists a unique soluki@h = x(t, to, x°)
on [£,6,+1]. Next, we again apply the last lemma to obtain the unique solution on interval

[6r+1,6r12). The mathematical induction completes the praof.
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2.3.2.3 Global Asymptotic Stability

In this section, we will focus our attention on giving®caient conditions for the global asymp-

totic stability of the equilibriumx*, of (2.17) based on linearization [6, 112].

The system (2.17) can be simplified as follows. Substitugiilg= x(t) — x* into (2.17) leads

to

yi(t) = —ayit) + > bijg (i) + > cijui(yi(BO)). t# 7
j=1 j=1 (2.24)

AYi lt=n= Wk(Yi(7,)), 1=1,2,....m KkeN,

whereg;(y;j(t)) = fj(y;(t) + Xj) = fj(x). ¢(y;(®) = gj(y; (1) + X}) — 9;(>F) andWk(yi(7})) =
lk(Yi(ry) + X7) = Ik(X). From hypotheses (H1) and (H2), we have the following inequalities:
1601 < LIOL 1501 < L3O and W) < €)1

It is clear that the stability of the zero solution of (2.24) is equivalent to thailgyaof the
equilibrium x* of (2.17). Therefore, in what follows, we discuss the stability of the zero

solution of (2.24).

First of all, we give the lemma below which is one of the most important resulteqgirédsent
section. One can see that this lemma is generalized version of the lemmas i6,[37513,

14].

For simplicity of notation, we denote

1= (1 — (ko + (ka + EP)(L + ko)(1 + f)pekl@))

Lemma 2.3.15Let \(t) = (ya(t), ..., ym(t))" be a solution of (2.24) antH1) — (H4) be sat-

isfied. Then, the following inequality

ly@BO)I < Ally®)ll (2.25)

holds for all te R*.

Proof. Fix t € R, there existk € N such that € [0k, 0k.1). Then, from Lemma 2.3.12, we
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have

Iyl

> i)
i=1

< Iy@dll+ ) { f o+ > L bl ()]
i1 6k -1
+ Z Lg|CJ|||Y|(9k)| ds+ ¢ Z |y|(Tk)|}
to<tk<t
<

(L+ kD)Y@ + o f IvSids+ ¢ Iyl

to<tik<t

Applying the analogue of Gronwall-Bellman Lemma [112, 113], we obtain
YOIl < (1 + koB)(L+ )P Ily(BRl (2.26)
Particularly,
YTl < (1 + keB)(L+ OPEX (@l (2.27)
Moreover, fort € [0, Ok+1), we also have

t
Y@ < Iyl + kBBl + ka , ly(s)lids

+0 I

to<ti<t

The last inequality together with (2.26) and (2.27) imply
VAN < YO + [ke + (ke + EP)(L+ kaB)(L + O)PES|ly(B)I
Thus, we have from condition (H4) that
lly(@oll < Aly®ll,  t € [6k, Oksa)-
Therefore, (2.25) holds for alle R*. This completes the proof of lemmal

Now, we are ready to give fiicient conditions for the global asymptotic stability of (2.17).

For convenience, we adopt the notation given below in the sequel:
f n
M= {I‘.‘i‘é i jZ;ijil)-

From now on we need the following assumption:
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(H5) y—u— Ak — 20 5 0 5 = min a.

T 1<i<m

The next theorem is a modified version of the theorem in [112], for ostesy.

Theorem 2.3.16 Assume thatH1) — (H5) are fulfilled.Then, the zero solution of (2.24) is
globally asymptotically stable.

Proof. Lety(t) = (ya(t),...,ym(®)" be an arbitrary solution of (2.24). From Lemma 2.3.11,

we have

A

to

m t m
Iyl < e_Y(t_tO)ll)/olleZ{ f e {Z L} 1bjillyi(S)
i=1 =1

+ Z LYlciillyi (B(9))!
i=1

ds+¢ Z e‘V(“Tk)|yi(T;)|}

to<tik<t

t
e Oygl| + (u + Ao) [ e Iy(g)ds

fo

+ Y ey,

to<ti<t

IA

Then, we can write the last inequality as,

t
SOOI < Iyoll+ (u+ ) [ Iyl
fo

) @Iyl

to<tik<t

By virtue of Gronwall-Bellman Lemma [112], we obtain
& |ly(p)]] < ek 4 )y,
wherei(tg, t) is the number of pointsy in [to, t). Then, we have

In(1

(D) < & Ot R

Hence, using the condition (H5), we see that the zero solution of syst@d) (8 globally

asymptotically stabld]

2.4 Periodic Motions of Neural Networks with Impact Activation

In this section we derive somefiigient conditions for the existence and stability of periodic
solutions for eachd( )— type neural networks and,(r)— type neural networks, respectively.

Examples with numerical simulations are given to illustrate our results.
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2.4.1 (8,0)— Type Neural Networks

Here, we investigate some flgient conditions for the existence and stability of periodic

solutions for @, 8)— type neural networks discussed in Section 2.3.1.

2.4.1.1 Existence and Stability of Periodic Solutions

In this part, we will establish some ficient conditions for existence of periodic solutions of
(2.5). Then, we will study the stability of these solutions. Firstly, we shaltiiee folowing

assumptions:
(C6) the sequencey satisfiesty,p = 0k + W,k € N andlx,p = Ik for a fixed positive real
periodw and some positive integex

(C7) B = 7<[w (al + I§a2) + t’p] <1, whereX = —L

Tero:

From now on, let us denote, = rlr(1alx(|lk(0)|) and foré, k € N, let [0, w] N {fiken =
>

{H]_, ceey gp}

Here, we will give the following version of the Poincare’ criterion fortgys (2.5). One can

easily prove the following lemma (see, also, [112]).

Lemma 2.4.1 Suppose that conditiof€1), (C3), (C4), (C6) are valid. Then, solution(¥) =
X(t, to, X0) = (X1, ..., Xm)" of (2.5) with Xto) = X° is w—periodic if and only if Xw) = x(0).

Theorem 2.4.2 Assume that condition€1) — (C4), (C6), (C7) are valid. Then system (2.5)

has a uniquev—periodic solution.

Proof. Let PC,, = {¢ € PCO(R*, R™M) | ¢(t + w) = ¢(t), t > O} be a Banach space of periodic

functions with the nornfiello = max||e(t)|].
O<t<w

Letp(t) = (o1(t), ..., em(t)T € PC,. Using Lemma 2.3.5, similarly to the proofin [112], one

can show that ifp € PC,, then the system
m m
X(0) = —ax(®) + > by filei0) + > Gigj(e; () + di, t# bk,
=1 =1
AXi |t=9k= Ik(SOI(QE))’ [ =1’---’rn7 kzl,zy---,p
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has the unique— periodic solution
m m
XM = f:%(t, S lz bij i (#i(9) + ) €ij0i (@i (B(9) + i | ds
=1 =1

p
+ Z Hi(t, ) (i (6, ),
=)

where
egal-9)  O<s<t<w

Hi(t.s) = (1- e_a““’)_l{

gal-9 O<t<s<w

The function{#;(t, 9)}i-1...m is a Green’s function. One can find that

.....

whereD = [0, w] X [0, w].

Define the operata® in PC,, by
&:PC, - PC,

such that ifp € PC,, then

&) = fo w%(t,s)lei,-f,-(wj(s))+Zcijgj(so,-(ﬂ(s)»+di ds
i=1 i=1

p
+ ) Ht ) i(6)), i=1,....m
k=1

LetPC, = {¢ | ¢ € PCy, llo—¢ollo < 1 ,3*} whereC = 7(de. and (po)i(t) = f Hi(t, 9)dids i =
1,...,m. Thenitis easy to see th&C;, is a closed convex subset BC,,. According to the
definition of the norm of Banach spaP&,,, we have

m

Zm; fowfﬂi(t,s)dids{ < ﬁ;[fowdids] <C< .

lleo(OIl =

S0, leollo < C.

Then, for an arbitrary € PC;,, we have

B C C
llello < fle = gollo + llgollo < 7— y +C -

Now, we need to prove thad mapsPC into itself. That is, we shall show th&ky € PC;

for any ¢ € PC’,. One can easily verify tha)(t) = ((E¢)1....,(Ee)m) is w—periodic
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function. Now, if¢ € PC;,, then

IE¢ — woll

p
+ Z Hi(t, 0) k(i (6,))
ko1

> bijfilei(9) + Zci,-g,-(soj(ﬁ(s»)]ds
j=1 j=1

fow%(t,s) _

m 1 ol m m
- .; 1- gaw {fo [; Ljlbijliej(s) + ; Lj|Cij||90j(ﬂ(S))|] ds
p
+>) |Ik(¢i(0;))|}
kel
< K, {fw {Z Lilbjillgi (9] + > L_iICjillsoi(ﬁ(S))I] ds
=1 V0 [j= =1
P p
SN ADEDS ||k(0)|}
k=1 k=1
<

) P
W[ f |aslle(9)l + aalleBEN]ds+ £ D lle@)l + mm].
0 k=1

In this periodic case, we take, = max (|Ik(0)|). Thus, it follows that
<k<p

G — @ollo < 7((((0 (al + I§a2) + t’p) llello + mm4)
. _ pC
< B ip + A= 15 + A,

whereA = Kmprs. ChooseA < C so that in the view of (C7)5¢ € PC,.
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Finally, we shall show tha® is a contraction mapping. 1, 9> € PC;,, then

IS ) - £ = ) [EL i) - (2D
i=1

IA

_ { fo C i 9) 2, Lilbiille}(s) ~ ()
=1 =1

ds

m
+ B LilGille}(s) - £3(s)
=1

P
+ €Y (L 0l 6) - soiZ(GE)I}

(r

B p
Lilcjille (3(9)) - soiz(ﬁ(s))l} ds+ ¢ > 1eH) — P (6,
k=1

> Lilbjille(s) - ()

=1

IA

x,

+

4

+0 ) leM6) - soz(e;)n] :

p
k=1

k=
m
=
m
j=1

)

|e1lle™(9) = X9l + a2lle™(B(9) — ¢*(B()II] ds

IA

S—

0

Hence,
18 — EQ%ll0 < 7((a) (al + E_Saz) + {’p) et — &llo

Noting (C7), it can be seen thé&tis a contraction mapping iRC;,. Consequently, by using
Banach fixed point theorers, has a unique fixed poit* € PC}, such thaty® = ¢*, which

implies that (2.5) has a unique- periodic solution

We are now in a position to give and prove the stability of the periodic solutig¢.5j.

Theorem 2.4.3 Assume that condition€1) — (C7) are valid. Then the periodic solution of
(2.5) is globally asymptotically stable.

Proof. By Theorem 2.4.2, we know that (2.5) hasanperiodic solutionx*(t) = (X, ..., x:)".
Suppose thak(t) = (X1, ..., %m)" is an arbitrary solution of (2.5) and lgft) = x(t) — x*(t) =
(X1 =X, ..., Xm— x:)T. Then, similar to the proof of Theorem 2.3.8, one can show that

m t m
ly®l - < e-7<t—t°>||yo||+2{ f e (9 lz Lilbjillyi(9)
i=1 |Vt 1

0 j:

ds+¢ > e‘y(t‘ek)|yi(0;)|}

to<bk<t

+ Z Lilciillyi (3(D)|
i1
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and hence

=y In(1+¢
—(7’—01—5012—4?2

Iyl < e Oyl

Thus, the periodic solution of (2.5) is globally asymptotically stable.

2.4.1.2 An lllustrative Example

Consider the following impulsive Hopfield-type neural networks system pighewise con-

stant argument

2 2
X0 = —ax(®) + > bij i) + > cigi(x(BM)) + di, t # b
j=1 =1 (2.28)

AXi |t=9k= Ik(Xi (HI:))’ I = 1’ 27 k = 1, 23 ceey

wherepB(t) = 6 if O < t < O,k € N, 6 = k + (-1)¢/12 The distanc®,1 — 6. k € N,
is equal to eithep = 5/6, or 6 = 7/6. The output functions arg(x) = tanh(x/2),gi(x) =
(Ix+ 1 — |x = 1])/8. Obviously,L; = 1/2 andL; = 1/4. Takingbjj = ¢jj = 1/64 fori, | =
1,2, I = (-1)*x/32+ 1/12 with| = 1/32 andd; = 1/6, dp = 1/7,a = 0.18, a, = 0.19,
wegetp=2 w =2 y =018 B = 453370 K = 3.30786 ang8* = 0.88194< 1. Itis
easily checked that the system (2.28) satisfies Theorem 2.3.1, Thed@@nTheorem 2.4.2
and Theorem 2.4.3. Consequently, the system (2.28) has a uniqus@ipsblution which
is globally asymptotically stable. Since it is globally asymptotically stable, any otteien

is eventually 2-periodic. The fact can be seen by simulation in Figure 2.Fignde 2.2.
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Figure 2.1: (a) 2-periodic solution ofi(t) of system (2.28) fot € [0, 50] with the initial
valuexy(tg) = 2. (b) 2-periodic solution okx(t) of system (2.28) fot € [0, 50] with the initial
valueXxo(tp) = 1.5.

A\

40
30

Figure 2.2: Eventually 2-periodic solutions of system (2.28).
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2.4.2 (8,7)- Type Neural Networks

In this part of this section, we continué, )— type neural networks considered in Section

2.3.2 and obtain some fiicient conditions for the existence and stability of periodic solutions.

2.4.2.1 Existence and Stability of Periodic Solutions

In this section, we shall discuss the existence of periodic solution of (2rid'jts stability.

To do so, we need the following assumptions:

(H6) the sequences anddk, k € N satisfy , p) and , p1)-properties; that is, there are
positive integerp andp; such that the equationg, , = 7« +w andb,p, = 6+ w hold

for all k e N andly,p = I for a fixed positive real period.

(H7) a1 =R(w (u + Akp) + £p) < 1, whereR = -2

1-eve:

Forzy andék, let [0, w]N{rklken = {71, ..., Tp} and [Q w]N{Ok}ken = {61, . .., 6p, }, respectively.
Here, we will give the following version of the Poincare’ criterion fortgys (2.17) which

can be easily proved (see, also, [112]).

Lemma 2.4.4 Suppose that conditior{sl1l) — (H3) and (H6) are valid. Then, solution(¥) =
X(t, to, X0) = (X1, ..., Xm)" oOf (2.17) with %tg) = X° is w—periodic if and only if Xw) = x(0).

Theorem 2.4.5 Assume that conditior($11) — (H3) and (H6) — (H7) are valid. Then system

(2.17) has a unique—periodic solution.
Proof. To begin with, let us introduce a Banach space of periodic functis = {¢ €
PCrug(R™, RT) | ¢(t + w) = ¢(1), t = O} with the normiillo = max lle(t)Il-

<l<w

Let o(t) = (p1(t),...,om(t)T € PC, satisfying the inequalityle(t)llo < h. Using Lemma
2.3.11, similarly to the proof in [112], one can show that & PC,, then the system

X = -ax(t) + ) b filei®) + Y cigilei(BM)) + di t# 7,
=1 =1
AXi l=r,= lk(pi(m ), i=1....m k=12....p
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has the unique— periodic solution
X = fo Git.9) {Z bij Fi(¢i(9) + ) €ij0j(#i(B()) + d | ds
j=1 =1

p
+ > Gilt, ) Ik(ei(T),
k=1

where

g | €YY 0<s<t<o,
Git,s) = (1-e*)

g9 0<t<s<o,

which is known assreen’s functiorj112]. Then, one can easily find that

1
(o ] """ T l-eaw

Define the operatof : PC, — PC, such that ifp € PC,, then

(FeN(t) = fo wgi(t,s)leufj(«aj(s))+Zq;gj(¢j(ﬁ(s>))+di ds
j=1 j=1

P
# Y G TIei(r), i=1....m
k=1

Now, we need to prove th&t mapsPC, into itself. Thatis, we shall show thd&y € PC,, for
anyg € PC,. Itis easy to check thaf{e)(t) = (F)1....,(Fe)m)" is w—periodic function.
Now, if ¢ € PC,, then

Zfowgi(t,s){Zbi,-f,-(go,-(s))+Zci,-g,-(¢,-(ﬁ(s)))+di ds
=1 =1 j=1

p
+ ) Gilt TIgi(ry))

k=1

1o i—aw {fo Z Lflbijll¢j(3)l + Z L{lcijlle; B(9)I

IF el

<
* Zm;m.,nso,(on + Z Gijllp3 (O)] + c | ds+ Z |Ik(¢.(rk))|}
=
< Rzm;{ lz L Ibjllgi(S)] + Z Llciillei (B(9))
* ;mlm,.nso.(on + Z Cillpi(0)] + d]ds+ fZ i (7o)l + Z ||k(0>|}
< R fo " [l + kel (BN o+ szz‘{ lp(rll + @ ild + wmky + mpl@]
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In this periodical case, we takg = max (11(0))). Thus, it follows that
<k<p

m
1Felo < R((w @+ ko) + €p)lgllo + w( > di) + wmks + mple)
i=1
< aith+as.
m
Chooseh such thatr, < h(1-a1), wherea, = Z dI +wmk4+mp|g) Then, we obtain
i=1

that¥ ¢ € PC,,.
Next, the proof is completed by showing tl¥atis a contraction mapping.
If o1, ¢? € PC,, then

IF () — FeO)ll [(Fehit) - (Fe?)i()|

Z{ f” Gilt, S)I[ZLIb.,Ilsoj(s) S

agt

IA

i=1

+ AZ LYl llej(s) - 2(9)l|d
=1

p
+ 0 1Git Tl () - ¢ (Tk)l}

k=1

R.: {LT[ZZlJH%M%(Q %(9'

IA

2
i=1
> LAicillet(B(9) — o?B(9)

+

ds+ 52 et (t) — & (Tk)|}

=1

R(fw [p||¢1(s) — @?(9Il + kallp*(B(9)) - goz(B(S))II] ds

0

IA

Mo

+0y llgt(ry) - soz(r;)n].

~
I

1

Hence,
176" = F¢lo < R(w(u+ k) + €p)lig* - ¢Pllo.

It follows from the condition (H7) thatf is a contraction mapping iRC,,. Consequently, by
using Banach fixed point theorem, has a unique fixed poirt* € PC,,, such thatF¢* = ¢*.

This completes the proof]

Theorem 2.4.6 Assume that condition$i1) — (H7) are valid. Then the periodic solution of

(2.17) is globally asymptotically stable.
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Proof. By Theorem 2.4.5, we know that (2.17) hasa@rperiodic solutiore’(t) = (7, ..., z)".
Suppose that(t) = (z1,...,zn)" is an arbitrary solution of (2.17) and I&t) = z(t) — Z*(t) =
(z1 - Z,....Zm— 4*;1)7 Then, similar to the proof of Theorem 2.3.16, one can show that it is

globally asymptotically stable.

2.4.2.2 Numerical Simulations

In this part, we give examples with numerical simulations to illustrate the theoretmalts
of this section. In what follows, ledx = k, 7« = (6k + 6k:1)/2 = (2k + 1)/2, k € N be the
sequence of the change of constancy for the argument and the se@qiémpulsive action,

respectively.

Consider the following recurrent neural networks:

oo _ | 5% 101 0 xa () N 10% 2x10* |[ tanh&l)
« 0 5x10° || %@ 10% 3x10* || tanh@2)
2x102 3x1073 |[ tanhé®) 1
+ + , t# Tk (229)
3x10°3 5x1073 || tanh(2fW) 1

L(xa(ry al) 4 1
AX(t) = { o 1(Tk))]=[ 0 "2 t=1, k=12...,

o) ) | g + 3

By simple calculation, one can see that the corresponding parametersamtigans of The-
orems 2.3.14, 2.3.16, 2.4.5, 2.4.6 &e= 0.5001 k, = 0.0046 L; = 0.1, L} =03, LY =
L9=02 ¢=00250 8 =7=1 p=pr =1 y=05 1=96421 u = 000015 w
1, R =25415 a3 = 0.1766 For these values, we can check that (H3).9032< 1, (H4) =
0.8963< 1, (H5) = 0.4308> 0 anda1 = 0.1766< 1. So, it is easy to verify that (2.29) sat-

isfies the conditions of these theorems. Hence, the system of (2.29) haerimdic solution
which is globally asymptotically stable. Specifically, the simulation results with somd initia
points are shown in Fig. 2.3 and Fig. 2.3. We deduce that the non-smos#iidgsk € N is

not seen by numerical simulations due to the choosing the parameters sniglhdocatisfy

the theorems. Hence, tlsenallnesdides thenon-smoothness
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Figure 2.3: Transient behavior of the recurrent neural networkihiéosystem (2.29) with the
initial points [0 0]" and [7,7]".

Figure 2.4: Eventually 1-periodic solutions of system (2.29) with the initialtsd®0]" and
[7,71".

On the other hand, in the following example, we illustrate a globally stable equitibajor
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pearance for our system offtérential equations:

oy _ | 2% 1071 0 X1(t) 104 2x10°° |[ tanh¢tld))
O
t 0 5x107" J{ () 104 3x103 || tanh@al)
2x102 3x1072 |[ tanh¢&ld) 1
’ + , U# 7k (2.30)
3x102 5x1072 || tanh(2l®) 1

. Ol
[ (X1(7 e
AX@H) = { G k))J=[ 30 ],t:m k=12 ...,

—\_yv*)2
0e(r)) ) |
wherex; = 2.0987 x; = 2.1577. One can check that the poirt = (X, X;) satisfies the

algebraic system
2 2
—ax + ) bijfi(6) + > cijgi(x) +di =0, (2.31)
i=1 j=1

approximately. And it is clear thdi(x’) = O fori = 1,2. By simple calculation, we can
see that all conditions of Theorem 2.3.1 are satisfied and the yoista solution of (2.31),

approximately with the error, which is less tharr 1fevaluated by MATLAB).

The simulation, where the initial value is chosen as I0)" , is shown in Fig. 2.5 and it

illustrates that all trajectories convergexo

10 ‘ ‘

8t \ .
=< 6| \ -

ar \'—‘

% 1 2 3 a4 s 6 7 8 o9

t

10 ‘ ‘

8 \ .
<6 \ -

a4+ \*

o 1 2 s 4 5 6 7 8 o

Figure 2.5: The first and the second coordinates of the solution for thsygem (2.30) with
the initial point [1Q 10]" approacheg; andx;, respectively, as time increases.

Now, let us take the parameters so that the non-smoothness can alsmb€&seasider the

following recurrent neural networks with non-smooth and impact actinatio
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20
0
20

dx(t) 0
8
1

8 1
[ lk(xa(7y))
lk(Xa(7y))

AX(1)

|

@ | (10 3)( anhta@)

%o(t) 5 1 | tanhge()

tanhta(A(1)) ]+{ ! ] t# 7y (2.32)
tanh(5(1))) 1

= =12...,

xi(f) 1
[ —3 *t%
X(r) 1
3 T&

],IZTk, k

Clearly, one can see that our parameters are big now. Thereforgsteensof equations (2.32)

does not satisfy the conditions of the theorems. However, we can saeriremoothnessf

the solution with the initial value [@]", which is illustrated by simulations in Fig. 2.6 and

Fig. 2.7.
3
2 -
><\—|
l -
O 1 1
0 0.5 1
3
2 -
><N
1 -
0 1 1
0 0.5 1

Figure 2.6: The impact and nensmoothness are seen at discontinuity poings :
(0.5; 15; 25; 35) and at switching point& : (1; 2; 3), respectively.
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Figure 2.7: Eventually 4 periodic solutions of system (2.32) with the initial point Q' .

2.4.2.3 Conclusions

This is the first time that global asymptotic stability of periodic solutions for meciimeural
networks with both impulses and piecewise constant delay is considereitheffaore, our
model gives new ideas not only from the implementation point of view, butfatsn the
system of diferential equations. In other words, we develdfelential equations with piece-
wise constant argument to a new class of system, so called impulfieesdtial equations
with piecewise constant delay. For applications, we have also nice figgpen the system
of equations that the moments of discontinuifyand switching moments of constancy of ar-
gumentg)y are not related to each other. That is, our investigations are more appliodabe
real world problems like recurrent neural networks. Finally, the regiiNen in this section

could be developed for more complex systems [20, 21, 22].
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CHAPTER 3

THE SECOND LYAPUNOV METHOD

In this chapter we investigate the problem of stability fdffetiential equations with piece-
wise constant argument of generalized type based on the method ofrioxafunctions. In
addition to this theoretical results, we analyze the stability for neural neswuith piecewise
constant argument of generalized type through the Second Lyapuribasné hat is, we use
the method of Lyapunov functions and Lyapunov-Razumikhin techniquthéostability of
RNNs and CNNs, respectively. Examples with numerical simulations are ¢ivi#ustrate

the theoretical results.

3.1 The Method of Lyapunov Functions: Theoretical Results

In this section, we addressfi#irential equations with piecewise constant argument of gen-
eralized type [4, 5, 6, 8] and investigate their stability with the second Lyapumethod.
Despite the fact that these equations include delay, stability conditions aetyrgeren in
terms of Lyapunov functions; that is, no functionals are used. Seseaahples, one of which

considers the logistic equation, are discussed to illustrate the developntkattbéory.

3.1.1 Introduction

K. L. Cooke, J. Wiener and their co-authors [68, 69, 70, 77] introduliéerential equations
with piecewise constant argument, which play an important role in applicadioiss 6, 8, 9,
12,13, 14,17,68, 69, 70, 72, 77, 85, 87, 100, 101, 102, 1inBoducing arbitrary piece-
wise constant functions as arguments, the conceptftérdntial equations with piecewise

constant argument has been generalized in [4, 5, 6].
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We should mention the following novelties of the present section. The mainassibpy a
unique way of stability analysis for flierential equations with piecewise constant argument
has been the reduction to discrete equations [72, 77, 80, 86, 88, B911%). Particularly,
the problem of exploring stability with Lyapunov functions of continuous time lbeen re-
maining open. Moreover, the results of our investigation have been gedelbrough the
concept of “total stability” [75, 106], which is stability under persistenttydations of the
right hand side of a dlierential equation, and they originate from a special theorem by Malkin
[76]. Then, one can accept our approach as comparison of stability of emgiatith piece-
wise constant argument and ordinarsfeliential equations. Finally, it deserves to emphasize
that the direct method for fierential equations with deviating argument necessarily utilizes
functionals [67, 90, 105], but we use only Lyapunov functions to deitez criteria of the

stability, and this can be an advantage in applications.

3.1.2 The Subject and Method of Analysis

Let N andR* be the set of natural numbers and nonnegative real numbers, tiespece.,
N ={0, 1, 2, ...}, R* = [0, o). Denote the n-dimensional real spaceltly n € N, and the

Euclidean norm iR" by || . ||.
Let us introduce a special notation:
K ={y: ¢ € C(R*,R*) is a strictly increasing function an@(0) = 0}.

We fix a real-valued sequenégi € N, suchthat 0= 0y < 01 < ... < 6 < ... with 6 —» ~ as

i — oo, and shall consider the following equation

X (1) = F(t. x(t), x(B(1)). 3.1)

wherex € B(h), B(h) = {x € R" : ||X|| < h}, t e R* andB(t) = 6; if t € [6;,6i+1), | € N, is an

identification function.

We say that a continuous functiodi) is a solution of equation (B) onR* if it satisfies (31)
on the intervals{, 6;.1), i € N and the derivatived (t) exists everywhere with the possible

exception of the pointg;, i € N, where one-sided derivatives exist.
In the rest of this section, we assume that the following conditions hold:
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(C1) f(t,u,v) e C(R* x B(h) x B(h)) is ann x 1 real valued function;
(C2) f(t,0,0)=0forallt>0;
(C3) f satisfies a Lipschitz condition with consta#iis(, :
1 (t, Uz, va) — F(t Uz, V)l < 1 llug — Ull + €2 [lve — V2l (3.2)
forallt € R* anduy, up, vi, vo € B(h);
(C4) there exists a constait- 0 such tha#j,; — 6; < 0,1 € N;
(C5) [t + £1(1 + £20)€17] < 1;
(CB) 6(£1 + 262)e? < 1.

We give now some definitions and preliminary results which enable us to ingesstability

of the trivial solution of (31).

Definition 3.1.1 [6] The zero solution of3.1) is said to be
(i) stable if for anye > 0 and § € R*, there exists & = §(tp, £) > 0 such thatl|xg|| < §
implies||x(t, to, Xo)|| < & for all t > tg;

(i) uniformly stable ifé is independent obt

Definition 3.1.2 [6] The zero solution of3.1) is said to be uniformly asymptotically stable if
it is uniformly stable and there is& > O such that for everg > 0 and p € R, there exists

aT =T(g) > 0such that|x(t, to, Xo)|| < € forall t > tg + T whenevefiXg|| < do.

Next, we shall describe the method, which is in the base of our investigatetrusLrewrite

the system (3) in the form
X (t) = £t x(1), x(1)) + h(t, x(t), X(B(1))),
whereh(t, x(t), x(8(t))) = f(t, x(t), x(B(t))) — f(t, x(t), x(t)). If the constan® mentioned inC4)

is small, then we can consideft, x(t), x(8(t))) as a small perturbation. That is to say, system

(3.1) is a perturbed system for the following ordinaryteiential equation,

y'(® = gt y(1)), (3.3)
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whereg(t, y(1)) = f(t y(1), (1))

Our intention is to consider systemsiBand (33) involved in the perturbation relation, and
then extend these systems to the problem of stability based on the apprdach dMalkin
[76].

Before applying the method, it is useful to consider a simple example. Letltbe/ing linear

scalar equation with piecewise constant argument be given:

X (t) = ax(t) + bx(B(t)) (3.4)
whered; = ih, i € N. The solution of (34) if t € [ih, (i + 1)h) is given by [74 77]
; b, b b, b
— (t—ih) MY Fhyggedh My M
X(0) = (L4 2) - HeENL+ )~ )
Then, one can easily see that the zero solution ) (8 asymptotically stable if and only if

_aEh+1)

T < b<-a (3.5)

On the other side, consider the following ordinarffeliential equation, which is associated

with (3.4), and plays the role of (3),

Y (t) = ay(t) + by(t) = (a+ b)y(t). (3.6)

It is seen that the trivial solution of @) is asymptotically stable if and only if
b<-a (3.7)

When the insertion of the greatest integer function is regarded as arlperan” of the linear
equation (), it is seen for (#) that the stability condition (8) is necessarily stricter than
the one given by (3) for the corresponding “nonperturbed” equatior6§3Moreover, it is

seen that the condition &) transforms to (3) ash — 0.

If we discuss stability of equation (B on the basis of (3), we expect that a comparison,
similar to the relation of the conditions of.& and (37), can be generalized. Furthermore,
stability conditions for the ordinary fferential equation (3) may not be enough for the
issue system (3). By means of the following theorems, we demonstrate that stability.bf (3

depends on that of the corresponding ordinaffedential equation (3).
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3.1.3 Main Results

The following lemma plays a crucial role in the proofs of stability theorems.

Lemma 3.1.3 If the conditiongC1) — (C5) are fulfilled, then we have the estimation

IXBO) < mix@)| (3.8)

forallt e R*, where m= {1 — 0t + 61(1 + 529)9519]}_1-

Proof. Fix t € R*, then one can fink € N such that € Ix = [0k, Ok.1). Fort € Iy, we have
t
X(t) = x(6k) + f f(s, x(9), X(6k))ds which yields to
Ok

t
XN < (1 + £20) [IX(6)ll +€1f9 Ix(s)llds

By the Gronwall-Bellman Lemma, we obtan(t)|| < (1 + £20)e2?||x(6k)|| . Moreover,

t
X(6) = X(t) - f9 (s X(9) X(@))ds te Iy

Thus,

A

t
IX@I - < IIX(t)||+f(51I|X(S)I|+£’2|IX(9|<)II)O|S

Ok

t
< O+ [ ] God + o] Ixelds
< XN+ 0] (L + L0)€ + 6] IIX@I,

proves that|x(6y)l| < m|[x(t)|| for t € Ix. As the functionx(t) is continuous orfiR*, (3.8) holds

forallt > 0.

Next, we need the following theorem which provides conditions for the exdstand unique-
ness of solutions oR*. Since the proof of the assertion is almost identical to the one given

in [4], we omit it here.

Theorem 3.1.4 Suppose that condition€1) and (C3) — (C6) are fulfilled. Then for every
(to, X0) € R* x B(h) there exists a unique solutior(tk = x(t, tp, Xg) of (3.1) on R* with
X(to) = Xo.
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Let the derivative oV with respect to system (3.3) be defined by

ov(t,y) 6V(t y)
+
ot

Viza)(t.y) = gt.y)

foralltin R* andy € B(h).

Theorem 3.1.5 Suppose thafC1) — (C6) hold true and there exist a continuouslyjdren-
tiable function V: R* x B(h) - R*, V(t,0) = Ofor allt € R*, and a positive constaiat such
that

() u(livi) < V(t,y) onR* x B(h), where ue K;

(i) V(’3.3)(t, y) < —alo(1+m)|lyll? for all (t,y) € R* x B(h), where m is the constant defined
in Lemma3.1.3;

(iii) |l ( )I|< lIvil.

Then the zero solution ¢8.1) is stable.

Proof. Leth; € (0,h). Givene € (0,h;) andty € R*, chooses > 0 suficiently small that
V(to, X(to)) < u(e) if |Ix(to)ll < 6. If we evaluate the time derivative d with respect to (3),

we get fort # 6;

NEXV) | _ V(LX)

Vgt x(0), xBY) = I o T X, X)) >

= Vit X(O)+ < 8V(;[9 XO) hit. x(t). x(5(0)) > .
Hence, we have
Vis(t X0 xB0) < ~ata(L+ mix + 172 Dy, 0, xepy
< —aly(L+m) [IXOIZ + ala(l+m) XD =

which implies that/(t, x(t)) < V(to, X(to)) < u(e) for all t > to, proving that|x(t)|| < . O

Theorem 3.1.6 Suppose thafC1) — (C6) hold true and there exist a continuouslyfdien-

tiable function V: R* x B(h) —» R* and a constan& > 0 such that
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(i) uivi) < V(t.y) < v(lIiyll) onIR* x B(h), where u v € K

(i) Viz3)(ty) < —alr(1+m) iyl for all t € R* and ye B(h);

(i) ||a (L y)||<a||y||.

Then the zero solution ¢8.1) is uniformly stable.

Proof. Leth; € (0,h). Fix & > 0 in the range O< ¢ < h; and choos& > 0 such that
v(6) < u(e). If tg > 0 and||x(tg)l| < 4, then as a consequence of the condition (i) we have
V(to, X(tg)) < V(6) < u(e). Using the same argument used in the proof of Theordns one
can obtain thaV/(t, x(t)) < V(to, X(to)) < u(e) for all t > tg. Hencel|x(t)|| < & for all t > to.

Theorem 3.1.7 Suppose thafC1) - (C6) hold true and there exist a continuouslyfdren-

tiable function V: R* x B(h) — R*, constantsr > 0 andr > 1 such that
@) u(yll) < V(t,y) < v(Iivl) onR* x B(h), where yv € K;
(i) V(3 3)(t y) < —tala(1+ m) |yl for all t € R* and ye B(h);

(y)

(iil) l—=—=II < aliyll.

Then the zero solution ¢8.1) is uniformly asymptotically stable.

Proof. In view of the Theorem 3.5, the equilibriumx = 0 of (3.1) is uniformly stable. We

need to show that it is asymptotically stable as well. o8,

A

Vst X®), x(B1) < —tala(L+m)IXO)IF + alz(L+m) IXO)I

—(t = L)ato(1 + m) IXW)I2.

Denotew(||X|]) = (r — 1)at>(1+m)||x||°. Lethy € (0, h). Chooses > 0 such that/(s) < u(hy).
We fix £ > 0 in the range ((h;) and pickn € (0,6) such thatv(n) < u(e). Lettg € R* and
IX(to)l| < 6. We defineT = (( 1))

this were not true, then we would hajgt)|| > n for all t € [to, to + T].

We shall show thaltx(t)|| < n for somet € [tg, tg + T]. If

Fort € [to,to + T], t # 6;, we have
Viz1y(t X(0), X(B(1))) < ~W(IIXO)Il) < ~w(n).
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Since the functioV(t, x(t)) and the solutiorx(t) are continuous, we obtain that

u(hy)

V(to + T, X(to + T)) < V(to, X(to)) — W) T < V(6) — W(n) W)

<0,
which is a contradiction. Henceexists. Now fort > t we have

V(t, x(1) < V(L (D) < V() < u(e).

In the end, it follows from the hypothesig that||x(t)]| <  for all t > t and in turn for all

t>tg+T.0

Remark 3.1.8 Theorems3.1.5-3.1.7 provide criteria for stability, which are entirely con-
structed on the basis of Lyapunov functions. As for the functionals, thesaapply in the
proofs of theorems. Although the equations include deviating argumernt$yactionals are
ordinarily used in the stability criterid72, 90], we see that the conditions of our investiga-

tions, which guarantee stability, are definitely formulated without functionals.

Next, we want to compare our present results, which are obtained by thedraf Lyapunov
functions with the ones proved in [17] by employing the Lyapunov-Razumitéthnique.
To this end, let us discuss the following linear equation with piecewise cdratgument of

generalized type taken from [17],

X (1) = —ao(t)X(t) — a2 (X(B(V)), (3.9)

whereag anda; are bounded continuous functions &Y. We suppose that the sequence
6, i € N, with £, = suplag(t)], £> = suplay(t)|, satisfies the conditions (C4)-(C6). One can

teR* teR*
check easily that conditions (C1)-(C3) are also valid. Under the assumptio

0 < ag(t) + ay(t) < 2ag(t), t>0, (3.10)

it was obtained via the Lyapunov-Razumikhin method in [17] that the triviaitemn of (3.9)
is uniformly stable. Let us consider this equation using the results obtainee jréisent

section. We set
(1+m) suplag(t) < ao(t) +au(t), t=0, (3.11)
teR+

In order to apply our results, we need the following equation besidey (3

Y () = —(ao(t) + a1 ()y(®). (3.12)
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Let us define a Lyapunov functiovi(y) = %yz, y € B(h), @ > 0. It follows from (3.11) that

the derivative ol (y) with respect to equation (B2) is given by

—a(ao(t) + as(t)y*(t)
—ala(1 + my2(t).

Viz.12) (Y1)

IA

Then, by Theorem.3.6, the zero solution of (9) is uniformly stable.

In addition, taking &(t) + a1(t)) > vf2(1+m), T > 1, one can show that the trivial solution of

(3.9) is uniformly asymptotically stable by Theoreni3d.

We can see that theorems obtained by Lyapunov-Razumikhin method progde dkass of
equations with respect to.&. However, from the perspective of the constructive analysis,
the present method may be more preferable, since, for example, fromoibifegh Theorem
3.1.6, we have\/(’s_g)(t, x(1), x(B(1))) < 0, which implies|x(t)| < |x(to)l, t > to, for our specific
Lyapunov function. Thus, by using the present results, it is possiblealoae the numbe¥

needed for (uniform) stability in the DefinitionB31 ass = &.

Besides TheoremsB5, 3.1.6 and 31.7, the following assertions may be useful for analysis
of the stability of diferential equations with piecewise constant argument. These theorems
are important and have their own distinctive values with the newly requirguepties of the

Lyapunov function and can be proved similarly.

Theorem 3.1.9 Suppose thatC1)— (C6) hold true and there exist a continuouslyfdren-

tiable function V: R* x B(h) — R* and a positive constant M such that

() u(livih < V(t,y) onR* x B(h), where ue K;

(i) V(’3'3)(t, y) < —M¢&>(1+ m) |ly|| for all t € R* and ye B(h);

oV(t,y)

(iii) IIa—yII <M.

Then the zero solution ¢8.1) is stable.

Theorem 3.1.10 Suppose thatC1) — (C6) hold true and there exist a continuouslyfdien-

tiable function V: R* x B(h) —» R* and a positive constant M such that
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(i) uivi) < V(t.y) < v(lIiyll) onIR* x B(h), where u v € K

(i) V(33)(t, y) < —M&>(1+ m) |ly|| for all t € R* and ye B(h);

oV (t y)

(i) 155220 < M.

Then the zero solution ¢8.1) is uniformly stable.

Theorem 3.1.11 Suppose thatC1) — (C6) hold true and there exist a continuouslyfdren-
tiable function V: R* x B(h) — R*, constants M> 0 andr > 1 such that

(i) u(vin < V(t.y) < V(i) onR* x B(h), where y v € K;

(i) V(33)(t y) < —tM{2(1 + m) |ly|| for all t € R* and ye B(h);

(i) 1Y ( ) <

Then the zero solution ¢8.1) is uniformly asymptotically stable.

3.1.4 Applications to The Logistic Equation

In this section, we are interested in the stability of the positive equilibiins D of the

following logistically growing population subjected to a density-dependemnelsting;
N’(t) = rN(t)[1 — aN(t) - bN(3(t))], t>0, (3.13)

whereN(t) denotes the biomass of a single species,raadb are positive parameters. There
exists an extensive literature dealing withistient conditions for global asymptotic stability
of equilibria for the logistic equation with piecewise constant argument (&% B6, 87, 89,
101] and the references therein). For example, Gopalsamy and Liligh&®ed thalN* is
globally asymptotically stable &/b > 1. In these papers, the initial moments are taken as
integers owing to the method of investigation: reduction téedénce equations. Since our
approach makes it possible to take not only integers, but also all valesit as initial

moments, we can consider the stability in uniform sense.

Let us also discuss the biological sense of the insertion of the piecewistaobdelay [115,

72, 86, 87, 89, 101]. The delay means that the rate of the populatiomdebeth on the
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present size and the memorized values of the population. To illustrate theddepe, one
may think populations, which meet at the beginning of a season, e.g., intipenavith their
instinctive evaluations of the population state and environment and implicitly elediich
living conditions to prefer and where to go [9] in line with group hierardogmmunications

and dynamics and then adapt to those conditions.
By means of the transformation= b(N — N*), equation (3L3) can be simplified as

X (1) = —r[x(t) +

1
11 7][7X(t) + X(BO)], (3.14)

wherey = a/b. Let us specify for (3L4) general conditions of Theorem4d.3, 31.6 and 31.7.

We observe that(x,y) := —r[x+ Fly][yx + Y] is a continuous function and has continuous

partial derivatives foi,y € B(h). It can be found easily that
b=r@h+hs 20 f=rht —)
1=y 1+y” 2= 1+y”

One can see that (C1), (C2) and (C3) holdig suficiently small. Moreover, we assume that

(C4), (C5) and (C6) are satisfied.

Consider the following equation associated withL43;
1
Y(®) = 1L+ n)YONO + - (3.15)
Y

Supposénis smallerthanl% and consider a Lyapunov function defined\iy) = %yz, AS
Y
B(h), > 0. Then,

VarsOO) = —ar(L+ YOO + 1]
< —ar[l - h(1+)YA0).
For sdficiently smallh, we assume that
p(h,m) <y, (3.16)

where

1-h@B+m) - /(h(L+m)2-6h(1+m)+1
2h ‘

e(h,m) =
It follows from (3.16) that

(h+%/)(1+m)sl—h(l+y),
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which implies in turn

By Theorem 3L.6, the zero solution of (34) is uniformly stable.

Next, we consider uniform asymptotic stability. Assumingfor 1;
y(h,m 1) <, (3.17)

where

1-hr(3+m) — y/(hr(1+ m))2 —6hr(1+ m) + 1

y(h,m ) = oh

we obtain that

7(h+ ?17)(1+ m) <1-h(1+vy).

One can show easily thet{h, m, 7) > 1 for smallh. Then forV(y) = %yz, we have

Via15 (D) < —Tata(1+ myA().

That is, condition (iii) of Theorem.3.7 is satisfied. Thus, the trivial solution= 0 of (3.14)

is uniformly asymptotically stable.

In the light of the above reduction, we see that the obtained conditionalétdor the stability

of the equilibriumN = N* of (3.13).

Finally, we see that the condition.(¥) is stronger than the one > 1 taken from [115]
However, our results are for all values frdRt as initial moments, whereas [115] considers

only integers. Moreover, the piecewise constant argument is of Jeeeréype.

3.2 The Method of Lyapunov Functions

In this section, we apply the method of Lyapunov functions fdfedéntial equations with
piecewise constant argument of generalized type to a model of RNNsmatel involves
both advanced and delayed argumentdfi@ant conditions are obtained for global exponen-
tial stability of the equilibrium point. Examples with numerical simulations are ptegdn

illustrate the results.
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3.2.1 Introduction

Lyapunov functions and functionals are among the most popular tools iyistuthe problem
of the stability for RNNs (see, [40, 41, 42, 43, 44, 45, 46, 47, 4850951, 52, 53, 54, 61,
62, 63, 64, 65, 66]). However, it isfiicult to construct Lyapunov functions or functionals
that satisfy the strong conditions required in the classical stability theoryhisgrpart, we
investigate some new stability conditions for RNNs model based on the segapdiriov
method. Although, this model includes both advanced and delayed arguntetgserves
to be mentioned that new stability conditions are given in terms of inequalitiesit amd
known that for equations with deviating argument, this method necessarily sifilizetionals
[67, 69, 77, 90.

To the best of our knowledge, the equations with piecewise constanthargs were not
considered as models of RNNs, except possibly [12, 13]. In paBefs, b, 7, 10, 12, 13,
17, 18] we discuss the stability problems. Unlike these papers, the stabilitawedgzed

by the second Lyapunov method in [10]. Nevertheless, it is the first timethleasecond
method is applied to the equations, whose arguments are not only delaysddatvanced
in this thesis. Moreover, one should emphasize that there is an opportppiigagion of

Lyapunov functions technique to estimate domains of attraction which has@uparinterest

to evaluate the performance of RNNs [54, 60].

The crucial novelty of this part is that the system is of mixed type, in othedsydhe argu-
ment can be advanced during the process. In the literature, biologasaie for argument
to be delayed are discussed well [91, 92]. Due to the finite switching sgeadmifiers and
transmission of signals in electronic networks or finite speed for signphgation in neural
networks, time delays exist [32, 33, 35, 39]. In the present sectioigsue from the fact that
delayed as well as advanced argument play a significant role in electnetiafields, see, for
example, the paper [25], where tegmmetry of the physics lawsere emphasized with re-
spect taime reversal Consequently, one can suppose that analysis of neural netwdric, w
is based on electrodynamics, may bring us to the comprehension of the devésecially
the advanced one, in the models more clearly. Therefore, in the futulesenaf RNNs, the
systems introduced in this section can be useful. Furthermdferetit types of deviation of
the argument may depend on traveling waves emergence in CNNs [26rdfadding the

structure of such traveling waves is important due to their potential applisatioluding im-

94



age processing (see, for example, [30, 31, 32, 33, 34, 35]). Oothiee hand, the importance
of anticipation for biology, which can be modeled with advanced argumentserisioned by
some authors. For instance, in paper [93], it is supposed that syrnizétion of biological

oscillators may request anticipation of counterparts behavior.

3.2.2 Model Formulation and Preliminaries

Let N andR* be the sets of natural and nonnegative real numbers, respectivelyy i
{0,1,2, ...}, R* = [0, ). Denotn? then dimensional real space /™, m e N, and the norm

of a vectorx € R™ by ||x| = Z Ix|. We fix two real valued sequencés ¢, i € N, such
thatg; < 6.1, 6; < & < 9i+1i:flor alli € N, - o asi — oo, and shall consider the
following RNNs model described byfiierential equations with piecewise constant argument

of generalized type:

XM = —ax+ ) bifiogm) + D Gigilgo M) + i (3.18)
j=1 j=1

a>0i=12....m

wherey(t) = &, if t € [0k, 0ki1), K € N, t € R*, n corresponds to the number of units in a
neural networkx;(t) stands for the state vector of titk unit at timet, f;(x;(t)) andg;(x;(y(t)))
denote, respectively, the measures of activation to its incoming potentiaks ofity at time

t andy(t), bij, Gj, li are real constants;; means the strength of thjénh unit on theith unit at
timet, ¢;; infers the strength of thith unit on theith unit at timey(t), I; signifies the external
bias on thath unit anda; represents the rate with which ttte unit will reset its potential to

the resting state in isolation when it is disconnected from the network anchakieputs.

The following assumptions will be needed throughout this section:
(A1) the activation functiondj,g; € C(R™) satisfy f;(0) = 0, g;(0) = O for eachj =
1,2,....m;
(A2) there exist Lipschitz constants, L? > 0 such that
(W) ~ fi(V)l < Liu -,

lgi(u) - gi(V)| < LAu-v|

foralluveR™ i=12,...,m;
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(A3) there exists a positive numbgsuch thati,; — 6 < 6,1 € N;
(A4) O[my + 2mp] e™f < 1;

(A5) 6|mg + my(1+ mpe)e™| < 1,
where

=1

m m
_ o1 i _ 2 )
m = lrg%[ai +1 ;lb”l]’ my Q‘;‘?ﬁ[L' ZICJ.I].

In this part we assume that the solutions of the equation (3.18) are cordirfiuoctions.
But the deviating argumenf(t) is discontinuous. Thus, in general, the right-hand side of
(3.18) has discontinuities at momemsi € N. As a result, we consider the solutions of the
equations as functions, which are continuous and continuousgreintiable within intervals
[6i,6i+1),1 € N. In other words, by a solutior(t) = (x1(t),..., Xn(®))" of (3.18) we mean a
continuous function ofR™ such that the derivative (t) exists at each poirite R*, with the
possible exception of the poinsi € N, where one-sided derivative exists and thealential

equation (3.18) is satisfied byt) on each intervalg, 6;,1) as well.
In the following theorem, we obtain ficient conditions for the existence of a unique equi-

librium, x* = (x;,...,x:)T, of (3.18).

Theorem 3.2.1 Suppose thatA2) holds. If the neural parameters, &;j, ¢;; satisfy

m m
a> LY byl + L2 Y [cjl, i=1....m
=1 =1

then (3.18) has a unique equilibriun x (x, .. ., X7

The proof of the theorem is almost identical to Theorem 2.1 in [46] and tleusmait it here.

The next theorem provides conditions for the existence and uniqueihgdsiions ont > to.
The proof of the assertion is similar to that of Theorem 1.1 in [5] and The@&e in [12].

But, for convenience of the reader we place the full proof of the tieger

Theorem 3.2.2 Assume that condition@1) — (A4) are fulfilled. Then, for everfto, X°) €
R* x R™, there exists a unique solutior(tk = X(t, tg, X°) = (X1(t), ..., Xm(®)T, t > to, of
(3.18), such that (o) = x°.
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Proof. Existence Fix k € N. We assume without loss of generality tiigi< ¢k < to < Oki1.
To begin with, we shall prove that for everiy,(xo) € [0k, Ok+1] X R™, there exists a unique

solutionx(t) = X(t, to, X%) = (X1(t), . .., Xm(t))", of (3.18) such thak(tg) = x° = (x,...,x%)T.

Let us denote for simplicitg(t) = X(t, to, x°), z(t) = (z1....,Zn)", and consider the equivalent

integral equation

z(t)=><i°+ftot

Define a nornjz(t)||o = [r?ziv](llz(t)ll and construct the following sequenag), ;.O(t) = xI.O, i =
kst

ds

—az(9) + ) b fi(zi(9) + D Gigi(z (&) + i
j=1 j=1

1,...,m n> 0 such that

270 =%+ [ 0s

to

—aZ(9) + Y bij fi(Z(9) + ) ¢ijg(Z(&)) + i
j=1 j=1

One can find that

1Z"2(t) — 2°@®)llo < [6(my + mp)]" 7,

where

m
7= 0|(my+ mp) X + > il
i=1

Thus, there exists a unique solutig(t) = x(t, to, x°) of the integral equation ori[, to]. Then,

conditions (A1) and (A2) imply thax(t) can be continued t6x,1, since it is a solution of

ordinary diferential equations

X0 = —ax)+ > b i) + > Gigixid) + i,
j=1 j=1

a>01i=212....,m

on [0k, Bk+1). Next, again, using same argument we can contikf)dromt = Oy, 1 tot = Ziy1,

and then t@k.». Hence, the mathematical induction completes the proof.

Uniqueness Denote byx!(t) = x(t, to, 1), X2(t) = X(t, to, X°), the solutions of (3.18), where
Ok < to < Ok.1. It is sufficient to check that for everye [6k, Oks1], X2 = (%2,...,x3) T, xt =

(x1,....xt)T € R™ x2 # x* implies x'(t) # x2(t). Then, we have that
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m t
X = PO < I =+ Y { ft |ail’(9) - %' (9)
i=1 0
+ ) Lol (9) = 91+ ) LPleillx(di) - x%(gk)ﬂ ds}
=1 j=1
t
< (I =0+ omplix () = XPll) + ft malix'(s) - X*(9)llds
The Gronwall-Bellman Lemma yields that
IX(t) = P < (X =1+ omallxt (&) — (&Il €™
Particularly,
IXH(gi) = 2@l < (11X = 311 + omglIxt (i) — X2zl €™’

Thus,
h 6

1 2
[IX*(t) — Xl < (w

ixt = 2. (3.19)

On the other hand, assume on the contrary that there &xsgt&, 6i.1] such thaix(t) = x2(t).

Hence,

Xt =

t
ft;

Cu [gj(xz(fk)) gj(xl(ék))]} %

Jﬂ
to

+ > L2 — X ()
=1

1M

—ai (@(9) - x(9) + > by [Fi0€(9) - F(xK(9)]
j=1

Ma

+

|_\

=

aib(s) — (9 + > Libjillxé(s) = %)
=1

.

t
omalIXH(G) — X2(@l + ft mylix() - X(9lds (3.20)

[y

IA

Consequently, substituting (3.19) in (3.20), we obtain
Xt = 2| < 6(my + 2mp)e™?|xt — 2. (3.21)

Thus, one can see that (A4) contradicts with (3.21). The uniqueneass/edxort € [0k, Ok:1].

The extension of the unique solution B is obvious. Hence, the theorem is proved.
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Definitions of Lyapunov stability for the solutions of discussed system eagilen in the

same way as for ordinaryfiiérential equations. Let us give only one of them.

Definition 3.2.3 [6] The equilibrium x = x* of (3.18) is said to be globally exponentially
stable if there exist positive constants and a»> such that the estimation of the inequality

IX(t) — X*|| < a1 [|IX(to) — x*|| e *2(t-) js valid for all t > to.

System (3.18) can be simplified as follows. Substitutifiy= x(t) — x* into (3.18) leads to

Vi(t) = —ayi®) + > bijei (v (1) + D i (v (), (3:22)
j=1 =1

whereg;j(yj(t)) = fj(y;®) + xj) — ;(x]) andyj(y;(1)) = gj(y;(t) + Xj) — 9;(x}) with ¢;(0) =

¥j(0) = 0. From assumption (A2)pj(-) andyj(-) are also Lipschitzian WitH].Jl, LJ?, respec-
tively.

Itis clear that the stability of the zero solution of (3.22) is equivalent to thidsoequilibrium

x* of (3.18). Therefore, we restrict our discussion to the stability of the gelution of (3.22).

First of all, we give the following lemma which is one of the most important auxiliasylts

of the present section.

Lemma 3.2.4 Let \(t) = (y1(t), ..., ym(t)T be a solution of (3.22) anfAl) — (A5) be satis-

fied. Then, the following inequality

Iy < Ally®)l (3.23)

holds for all te R*, whered = {1 - 6|my + my (1 + myo) emle]}‘l _

Proof. Fix k € N. Then fort € [k, Ok:+1),

—ayi(9) + ) | bijei(vi(9) + Y iwi(yi(d) |ds
j=1

=1

t
(0 = Vi(c) + L

wherey(t) = . if t € [6k.0ks1), t € R*. Taking absolute value of both sides for each
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i =1,2,...,mand adding all equalities, we obtain that

m t m
Iyl < ||y(§k)||+2{ f alyi(9)1+ ) Libijlly;(s)
i=1 (¢ j=1
+ " LGy (&) ds}
j=1
t] m m
= Iyl + f Z[ai+L%Z|b,-i|J|yi(s)|
O = =1
+ >0 Leiillyia)l| ds
i=1 j=1
t
< (1 + mo)lly(Gdll + f my/ly(s)llds
143

The Gronwall-Bellman Lemma yields

YOI < (1 + meO)e™ Iyl (3.24)

Furthermore, fot € [0k, Ok+1) we have
{

Y@l < [ly@®ll + f

k

4

" Zm: Zml Li2|Cji||yi(§k)I] ds

i=1 j=1

> [ai Ly |b,-i|]|yi(s)|
i=1

j=1

t

< IO + Moyl + L mly(Slids

The last inequality together with (3.24) imply
IV < 1@l + meblly(Zill + mao(1 + mpa)e™ iyl

Thus, it follows from condition (A4) that

VIl < Ally(@®ll,  t € [6k, Oksn)-

Hence, (3.23) holds for alle R*. This completes the proofl]

3.2.3 Main Results

In this section we establish several criteria for global exponential stabil{{§.®2) based on

the method of Lyapunov functions.
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For convenience, we adopt the following notation in the sequel:

_ 1 1¢ L bii L2Gii LYb:
= (2 2 2 (Il el )|

Theorem 3.2.5 Suppose thatAl) — (A5) hold true. Assume, furthermore, that the following
inequality is satisfied:

2
Mg > % (3.25)

Then the system (3.22) is globally exponentially stable.

Proof. We define a Lyapunov function by
1 m
V == 2(t).
V) =5 21 v ()
One can easily show that

SCIVOIP < VD) < SV (3.26)

Fort # 6;,i € N, the time derivative oV with respect to (22) is given by

Vigop (1) = zmlj Y/ ®
= zml]y () |-ayi(t) + Z bijepj (¥ (1)) + Z Gij i (3 (1))
< Zm}1 —ay?(t) + Zl L1bi s Oy (1)) + Zl L2Icij i Olly; (v (1)
= =
< 2 —ayA(t) + % i Loy (20 + Y2(1) + % ,Z: L2ceijI (7 () + yf(y(t)))}
. ( ._% (L Ny + L20c1 + Lillbjil)]yiz(t)}

- N

ICji |y2(7(t))

NE
a— 2 > (Ll + Lyl + Loy ]Zyz(t)

j=1

: %rpqn[ Z|c,.JZy2(y<t»

—mglly(®)I[% + 7||y(y(t))||2.

IA

|
=]
=

IN
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By using Lemma 3.2.4, we obtain

/12
—mally()II? + mzTny(t)u2

IA

V(,3.22)(Y(t))

2
~(ms - T2yl

Now, defines for convenience as follows:

/12
ﬁ:mg—sz>O.

Then, we have fot # 6,

d
FEVOO) = EH@BVHD) + V(5 1(D)

BEP Iy - pe Ily()I1% = O.

IA

From (3.26) and using the continuity of the functidrand the solutiory(t), we obtain
e(1/2m) ly(®)” < eV (y(t) < €70V (y(to)) < €7°(1/2) liy(to)II?,

which implies|ly(t)|| < vm|ly(to)|| e #-©) That is, the system (3.22) is globally exponentially
stable.(]

In the next theorem, we utilize the same technique, used in previous theoréng teew

stability conditions for RNNs by choosing afiirent Lyapunov function defined as

V(y(®) = iaiWi(t)L @ >0, i=12..m
i=1

For simplicity of notation, let us denote
m
— minla —11 .
my = E?Lrﬂn[a' L jZ_;Ibpl].
Theorem 3.2.6 Suppose thafAl) — (A5) hold true. Assume, furthermore, that the following
inequality is satisfied:

my > mpA. (3.27)

Then the system (3.22) is globally exponentially stable.

The proof of the assertion is similar to that of Theorem 3.2.5, so we omit it here
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3.2.4 lllustrative Examples

In this section, we give three examples with simulations to illustrate our resuttse Bequel,
we assume that the identification functig(t) is with the sequences = k/9, & = (2k +
1)/18, ke N.

Example 3.2.7 Consider the following RNNs with the argument functigt):

dx(t) 2 0 | %) 002 003 |[ tanh(t)
-7 — — +
dt 0 15 J| () 001 1 || tanhfe(®)
008 1 | tanh@z) 1
N + _ (3.28)
001 1){ tanh¢22®) 1

It is easy to verify that (3.28) satisfies the conditions of the Theorem 3.2.5_§viih L% =
1,12 = 1/7, L = 1/6, my = 253 mp = 0.3333 mg = 0.6308my = 0.47, 1 = 1.7337
Thus, according to this theorem the unique equilibriuim=x(0.6011, 1.3654) of (3.28) is

globally exponentially stable. However, the condition (3.27) of Theorerfi B 2ot satisfied.

Let us simulate a solution of (3.28) with initial condition(®&) = X9, x3(0) = x3. Since the
equation (3.28) is of mixed type, the numerical analysis has a specifiaateaand it should
be described more carefully. One will see that this algorithm is in full acawedawith the

approximations made in the proof of Theorem 3.2.2.

We start with the intervdlp, 61], that is; [0, 1/9]. On this interval the equation (3.28) has the

form

)y (2 0 |(x©], (002 a0s)( tanha(o)
dt |0 15| %0 ) (001 1 J| tanht(0))

008 1 |[ tanhEui1®) 1
+ + ,
001 1 || tanhE2i1®) 1

where x(1/18), i = 1, 2, are still unknown. For this reason, we will arrange approximations

in the following way. Consider the sequence of the equations
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ey (”>(0) 0.02 003 || tanh¢d"(0))
0 15

dt (”>(0) 001 1 J{ tanhed(0))
008 1 tanh(x [1/19)) 1
+ (1/18) + ’
001 1 tanh(Xz 1
where n= 0,1,2..., with X(t) = ¢, x(t) = x3. We evaluate the solutions("Xt), by

usin and stop the iterations t t en, we assigniit) =
ing MATLAB 7.8. and stop th (ac§5°°)() x300(t)). Th gn k)
x2%t), xo(t) = x°t) on the intervaléo, 61]. Next, similar operation is done on the inter-

val [61, 62]. That is, we construct the sequer(tx%‘), x(zn)) of solutions again for the system

vy (2 0 | X0 .| 002 ao3 tanh¢d”(0))
dat 0 15 || X"(0) 001 1 J| tanhed(0))

(n)
008 1 |( tanh¢-C22) 1
+ ® +
001 1| tanh=E (3/18) 1
with 50(t) = x%%1/9), x3(t) = x%%1/9). Then, we reassignitt) = xP%t), x(t) =

x(2500)(t) on[61,62]. Proceeding in this way, one can obtain a simulation which demonstrates

the asymptotic property.

Specifically, simulation result with several random initial points is shown in&it). We must
explain that the non-smoothness at the switching paint& € N is not seen by simulation.
That is why we have to choose the Lipschitz constantsdasmall enough to satisfy the

conditions of the theorems. So, the smallness “hides” the non-smoasthnes

Let us now take the parameters such that the non-smoothness caerbe Gensider the

following RNNs:

d _ (20 0)fx@]| (2 1 | tanhea)
dt 0 10 /| x(t) 8 02 | tanhgo(t)

|1 20| anheaG) | 1 , (3.29)
2 3 )| tanh¢el®) 1
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wherebx = k/2, &k = (2k + 1)/4, k € N. One can see that and the Lipschitz cggcient

are large this time. They do not satisfy the conditions of our theorems. It grdhed in
Fig.3.2 that the non-smoothness of the solution with the initial fairf]” can be seen at the
switching point®k, k € N. This isimportant for us to see that the non-smoothness of solutions
expected from the equations’ nature is seen. Moreover, we can sehelsatlution converges

to the unique equilibrium= (0.4325 0.6065) . It shows that the gficient conditions which

are found in our theorems can be elaborated further.

100

50 |- B

x1
(o]

—50F 4

—100
o

100
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X2
(@]

—50F i

—100
(o]

Figure 3.1: Transient behavior of the RNNs in Example 3.2.7.

x1

X2

Figure 3.2: The non-smoothness is seen at momehit4 L5, which are switching points of
the functiony(t).
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Example 3.2.8 Consider the following RNNSs:

d _ [2 0 |[x0) [ 1 o003 tanh(42)
dt |0 25 ) x() 004 1 || tanhee()
1 004 |[ tanhy®) 1
N + , (3.30)
002 007 )| tanh22) 1

It can be shown easily that (3.30) satisfies the conditions of the Theo2® i8 L} =
1/4,L3 = 112 = 1/4,15 = 1/4,m; = 353 mp = 0.255Q = 0.6181my = 147, 1 =
2.6693 whereas the condition (3.25) of Theorem 3.2.5 does not hold. Henckgw$drom
Theorem 3.2.6 that the unique equilibriurh= (0.6737,0.6265) of (3.30) is globally expo-

nentially stable.

Example 3.2.9 Consider the following system offfdirential equations:
dq) _ _[3 0} xu@® | (002 003 tanh¢d?)
dt 0 3| () 004 025 || tanhd?)

025 04 | tanh@®) 1
+ + . (3.31)
02 07 )| tanh¢z®) 1

One can see easily that the conditions of both Theorem 3.2.5 and Theorénar@.2atisfied
with LI = 1/4, L} = 1/4,12 = 1/4, L2 = 1/4, my = 3.07, mp = 0.275Q mg = 1.4081 my =

293 1 =21052 r = 1.1. Thus, according to Theorem 3.2.5 and Theorem 3.2.6 the unique
equilibrium ¥ = (0.4172 0.4686) of (3.31) is globally exponentially stable.

3.2.5 Conclusion

In this section, it is the first time that the method of Lyapunov functions fidetintial equa-
tions with piecewise constant argument of generalized type is applied to thel ofdNNs
and this part has provided newfBaient conditions guaranteeing existence, uniqueness, and
global exponential stability of the equilibrium point of the RNNs. In additiom; method
gives new ideas not only from the modeling point of view, but also fronh dfigheoretical

opportunities since the RNNs model equation involves piecewise constamhant of both
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advanced and delayed types. The obtained results could be usefuldediga and applica-
tions of RNNs. Furthermore, the method given in this section may be extendadiiomore

complex systems [20]. On the basis of our results, Lyapunov functioesagi opportunity to
estimate domains of attraction which allows us particular interest to evaluatertbenpence

of RNNs [54, 60].

3.3 Lyapunov-Razumikhin Technique

In this section, by using the concept offdrential equations with piecewise constant argu-
ments of generalized type [3, 4, 5, 6], the model of CNNs [31, 32] isldpee. Lyapunov-
Razumikhin technique is applied to findfBaient conditions for uniform asymptotic stability
of equilibria. Global exponential stability is investigated by means of Lyapdnoctions.

An example with numerical simulations is worked out to illustrate the results.

3.3.1 Introduction

CNNs are introduced by Chua and Yang in 1988. For a brief summary ahdwy and
applications of CNNs, the reader is referred to the papers [31, 3g¢cknt years, dynamical
behavior of delayed cellular neural networks (DCNNs) proposed & 1y Chua and Roska
[33] has been studied and developed by many authors [41, 42, 486457, 48, 94, 95, 96,
97, 98] as well as many applications have been foundfiiemdint areas such as associative
memory, image and signal processing, pattern recognition and so on. A& lexawn, such

applications depend on the existence of an equilibrium point and its stability.

In the literature, there are many papers in which Lyapunov-Krasovshkhadg67] has been
successfully utilized on the stability analysis of CNNs. But, there are feultsesn the
stability of CNNs [103, 44, 104] based on the Lyapunov-Razumikhin tigcien[90, 105].
Moreover, it deserves to be mentioned that sin@fedéntial equations with piecewise constant
argument are dlierential equations with deviated argument of delay or advanced typ8][6, 7

it is reasonable to use this technique.

The intrinsic idea of this section is that we investigate the problem of stability XX with

piecewise constant argument through two approaches based on ffmenbyaRazumikhin
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method and Lyapunov functions combined with linear matrix inequality technie@ielD7,
108]. In the first one, we apply proper Razumikhin technique with theleity that con-
ditions on derivative are rather vector-like but not functional. For #word one, we utilize

Lyapunov functions, not functionals despite the system is a defgrelntial equation.

In this sectionN andR™* are the sets of natural and nonnegative real numbers, respectively,
ie., N =1{012 ..}, R" =[0,), R™denotes then dimensional real space. The notation

X > 0 (or X < 0) denotes thaK is a symmetric and positive definite (or negative definite)
matrix. The notationX" andX~! refer, respectively, the transpose and the inverse of a square
matrix X. AmaxX) and Anin(X) represent the maximal eigenvaIU(?nand minimal eigenvalue

of X, respectively. The nornj -|| means either one-nornix||; = Z IXil, x € R™ or the
i=1
induced matrix 2-normiiX|l, = v Amax(X" X). * refers to the element below the main diagonal

of a symmetric block matrix. Led;, i € N, denote a fixed real-valued sequence such that

0=6y<61<..<06f <..with — oo asi — oo.

3.3.2 Model Formulation and Preliminaries

In this section, we will focus our attention on some preliminary results which williged
in the stability analysis of CNNSs. First, let us give a general descriptioneofrtathematical

model of cellular neural networks with piecewise constant argument:

X)) = —AX({t)+ Bf(x(t) + Cg(x(B(1)) + D (3.32)
or equivalently,
XM = —ax®+ ) bifi(4m) + ) cigi(x(BM) + d, (3.33)
j=1 =1

a>0i=12....m

whereg(t) = 6 if t € [6,6+1), 1 € N,t € R*, X = [X1,...,%n]" € R™is the neuron state

vector, f(x(1) = [f1(xa(0)),. .., fm(m(O)]T, gXBM)) = [G(aBWD))); - - -, IOmBONIT €
R™ are the activation functions of neurori3, = [dy,...,dm]" is a constant external input
vector. Moreover, we havA = diag(as, ...,am), B = (bjj)mm andC = (Gij)mxm, WhereB

andC denote the connection weight and the delayed connection weight matespsctively.
The following assumptions will be needed throughout the section:
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(H1) The activation function$, g € C(R™) with f(0) = 0, g(0) = 0;

(H2) there exist two Lipschitz constants= diag(Ly, ..., Lm),
L = diag(L1, .. ., Lm) > O such that

[fi(u) = fi(V)l < Lilu—vl,
161 (W) - Gi(W)l < Lilu—vi
foralluveR™ i=12...,n;
(H3) there exists a positive numbgésuch thati,1 — 6 < 6,1 € N;
(H4) 0[ks + ko] < 1;

(H5) 0 [ko + ks (1+ Oko) €] < 1,

where
m m m m _ m
k= > bjilli, ke = > > [cilli andks = ) a +ku.
i=1 j=1 i=1 j=1 i—1

By a solution of equation (3.32) 0R™ we mean a continuous functioft) satisfying the
conditions (i) the derivativel'(t) exists everywhere with the possible exception of the points
6,1 € N, where one-sided derivatives exist; (ii) (3.32) is satisfied on eachvaitp, 6. 1),
ieN.

In the following theorem, we obtain ficient conditions for the existence of a unique equi-

librium, x* = (x;,...,x:)T, of (3.33).

Theorem 3.3.1 Suppose that the neural parametershg, ¢;; and Lipschitz constants;LL

satisfy

m _m
a; >LiZ|bji|+LiZ|Cji|a i=1,....,m
i1 =1

Then, (3.33) has a unique equilibrium.

The proof of the theorem is almost identical to the verification in [46] with slidf@nges

which are caused by the piecewise constant argument.

Now we need the following lemma which provides conditions for the existendeiaigue-

ness of solutions for arbitrary initial momegt
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Lemma 3.3.2 Assume that condition@i1) — (H5) are fulfilled. Then for all € R™, 6, <
& < 6,11 € N, there exists a unique solutiogt) = x(t, 6;, X°) = (X¢(t), . .., Xm(t))" of (3.33),
0 <t < 6,1, such thatx(¢) = x°.

Proof. Existence Consider a solutiom(t) = x(t, &, X°) = (va(t), ..., vm(t))" of the equation,
m m
X(t) = —axi(®) + > b fi(x0) + > Gjgi(¢j) + d
=1 =1

on [#,£]. We need to prove that there exists a veatos ({1,...,¢m)" € R™ such that the

vi(t) = xi°+ft
&

has a solution ondf, £], and satisfies(6;) = ¢. Define a normijv(t)llo = maxy, ¢ IIv(t)I| and

equation

—avi(9) + ) b fi(vi(9) + > 6jgj(¢) + di|ds  (3.34)
=1 =1

construct the following sequencet),

i=1....,m n>0.
Takevio(t) = x]O i =1,...,m and sequences

t
Vin+1(t) — X|0 +f
¢

One can find that

ds

—av(s) + ) bij Fi((9) + ) cijgi (v)(e:) +
=1 j=1

V() = V' (©)llo = g;aﬂxnv"“(t) = V()] < (0 (ks + k)" «,
where
m
K= 9[2%(((1(3 +k2) [IXoll + ; di]-

Hence, the sequencedt) are convergent and their limits satisfy (3.34) @p §] with £ =

v(6;). The existence is proved.

Uniqueness It is sufficient to check that for eadhe [, 6;.1), andx® = (%2, ..., xa)T, x! =
(&, ..., x5)T € R™ x? # xL, the conditionx(t, 6, x) # X(t, 6, x?) is valid. Let us denote
solutions of (3.33) by!(t) = x(t, 6;, x1), X3(t) = X(t, 6, x%), x! # x2. Assume on the contrary

that there exist§' € [6;, 6;+1) such that}(t*) = x?(t*). Then, we have

"

2 A

X=X f
o

ZCij[gj(X,Z(Qr) - gj(le(@r)]}ds i=1...,m
-1

—a; (X(s) = X(9) + Z bij [f;06(9)) — fj(x{(9))]
=t

+
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Taking the absolute value of both sides for each 1,..., mand adding all equalities, we

obtain that

2 1
D= = ]

i=1

+ > G 908 - g,—(x}(ar)]‘ d%
j=1

—ai (¥(9) - x(9) + > by [F;0€(9) - Fj(x}(9)]
j=1

m t* m
< D) { fe aibF(s) = () + D Lilbillxé(s) = X ()
i=1 T i=1
m —
+ > Lilcjills - >ql|] ds}
j=1
.
< Okalixt =X+ | kalIXi(s) - X*(s)llds (3.35)

O

Furthermore, fot € [0, 6;.1), the following is valid:

m t*
X)) = PO < X =+ { f |aibx(9) = X\ (s)
i—1 \WJor
+ Z LilbjiIX2(9) — xH(s)] + Z Lilcjilpé — Xil" ds}
=1 =1
J . ]
< L+ 0k X -+ f kallXX(8) - x4(Sllds
Or

The Gronwall-Bellman lemma yields that
IXH(E) = PO < (1 + Okz) €79)1x* = 7. (3.36)
Consequently, substituting (3.36) in (3.35), we obtain
Xt = < 0]k + ks (1 + 0kz) €] I = ]I (3.37)
Thus, one can see that (H5) contradicts with (3.37). The lemma is praved.
Theorem 3.3.3 Suppose that conditior(11) — (H5) are fulfilled. Then, for everto, X°) €

R* x R™, there exists a unique solutior(tk = X(t, to, X°) = (x1(t), ..., Xm(®)T, t € R*, of
(3.32), such that (o) = x°.

Proof. We prove the theorem only for incresihdut one can easily see that the proof is sim-

iliar for decreasing. It is clear that there existse N such thatp € [6;, 6;+1). Using Lemma
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3.3.2 for¢ = to, there exists a unique solutiott) = x(t, to, X°) of (3.33) on By, 6r,1). Next,
applyig the lemma again, one can obtain a unique solution on intékval .. »). Hence, the

mathematical induction completes the prdof.

Consider the equilibrium point¢® = (x”i,...,xﬁn)T, of the system (3.32). Let us give the

following definitions, which are adopted for the system (3.32).

Definition 3.3.4 [6] The equilibrium x= x* of (3.32) is said to be uniformly stable if for
anye > 0and § € R*, there exists & = 6(¢) > 0 such that||x(tg) — x*|| < ¢ implies

[IX(t) — X*|| < & forall t > to.

Definition 3.3.5 [6] The equilibrium x= x* of (3.32) is said to be uniformly asymptotically
stable if it is uniformly stable and there issg > 0 such that for everg > 0and § € R, there

exists a T= T(g) > 0 such that|x(t) — X*|| < e for all t > tg + T whenevefix(tp) — X*|| < do.

Definition 3.3.6 [6] The equilibrium x = x* of (3.32) is said to be globally exponentially
stable if there exist positive constants and a» such that the estimation of the inequality

IX(t) — X*|| < a1 [IX(to) — x*|| e*2(t) js valid for all t > to.

By means of the transformatioft) = x(t) — x*, system (3.32) can be simplified as
y(t) = —AYY) + Be(y(t)) + Cu(y(B(1), (3.38)

whereg;j(yj(t)) = fj(y;(t) + xj) — f;(x]) andyj(y;(1)) = gj(y;(t) + Xj) — 9;(x}) with ¢;(0) =
¥j(0) = 0. From assumption (H2), we hayg(-) andy(-) are also Lipschitzian witlhj, I__J

respectively.

It is obvious that the stability of the zero solution of (3.38) is equivalent todhtdne equilib-
rium x* of (3.32). Therefore, in what follows, we discuss the stability of the setation of
(3.38).

To begin with, we introduce the following lemmas which will be used in the proahef

stability of the zero solution for CNNs with piecewise constant argument.

Lemma 3.3.7 [109] Given any real matrices UW, Z of appropriate dimensions and a scalar

e > 0 such thatd < W = WT, then the following matrix inequality holds:
1
UTz+Z'U <eUTWU+ =ZTW1Z
€
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The following lemma is an important auxiliary result of the section. It can begaran the

same way used for Theorem 2.2 in [4].

Lemma 3.3.8 Let \(t) = (y1(t), ..., ym(t))" be a solution of (3.38) anfH1) — (H5) be satis-

fied. Then, the following inequality

Iy@B)I < Hy®ll (3.39)

holds for all te R*, where I= {1 - 0[ke + ks (1 + 0kz) €]} .

For convenience, we adopt the following notation in the sequel:

(N) Given P > 0, positive diagonal matriceR, S with appropriate dimensions and a real

g> 1, denote

Q=PBR!B"P+LRL+PCSICTP+qP-AP-PA

or, by Schur complements, it can be rewritten as the following matrix form:
AP+ PA-LRL-gP PB PC

-Q = * R 0 |
* * S

wherelL = diag(L1,...,Lm) > 0.

We shall consider the quadratic functidify) = y' Py. The derivative ofV with respect to
system (38) is defined by

V'(y,2) = —y" (AP + PA) + 2y" PBy(y) + 2y" PCy/(2) fory,ze R™
3.3.3 Lyapunov-Razumikhin Technique

From now on, we shall need the following assumptions:

(C1) Q<0:
(C2) P> LSL whereL = diag(Ly, ..., Lm) > 0.

113



Lemma 3.3.9 Assume that condition&1) — (C2) are fulfilled, and {t) : R* - RMis a
solution of (3.38). Then the following conditions hold faiylt)) = y' (t)Py(t):

(1) ally(®)ll* < V(y(t)) < blly®)lI*, where a= Amin(P) and b= Amax(P);

(1b) V/(y(1), y(B(1))) < —clly(t)|]? for all t # 6 in R* such that \{y(3(t))) < qV(y(t)) with a
constant ¢ 0.

Proof. It is obvious that|ly(t)||? < V(y(t)) < blly(t)|[?, wherea = Amin(P) andb = Amax(P).

Fort # 6;, i € N, the derivative oV (y(t)) along the trajectories of system (3.38) is given by

yTRPYE) +y' (t)PY (1)
—yT () (AP + PA)Y(t) + 2y" (t)PBp(y(t))
+2y" () PCy(Y(B(1))). (3.40)

V7 (y(t). y(B(1)))

LetU = BTPY(t), Z = ¢(y(t)). By applying Lemma 3.3.7, we have the following inequality:

2yT(OPBe(y() = Y ()PBe(Y(Y)) + ¢ (y(1))BT PY(t)
< Y (MPBRIBTPY(t) + ¢ (y(t))Re(¥(t))
< y'(t)(PBR'B'P + LRL)y(t), (3.41)
sincep’ (y(1))Re(y(1)) < yTLRLY(Y).
Similarly, we have
2y (OPCy(Y(B(1)) < Y ()PCSICTPY(t) +y' (B(1))LSLY(B(1)). (3.42)

sincey T (Y(BM))SY(Y(B(1)) < YT (BH)LSLY(A()).
Substituting (3.41) and (3.42) into (3.40) and using condition (C2), we have
V(y(t).yB(1)) < y'(t)(PBR'B'P+LRL+PCS'CTP- AP

—PA) y(t) + y" (BE)PY(B()).

Then, one can conclude that

V' (Y(1), (B(1) < YT (OQ(D), t# 6 (3.43)
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whenevery (5(1) PY(3(1) = V(y(B(1))) < aV(y(t)) = y" ()aPX1).

It follows from the condition (C1) in terms of Schur complements given in () €8.43) that

(1b) is valid. O

From (1a) and () of the last lemma, it implies that can be taken as a Lyapunov function
for system (3.38). Now, we are ready to giveTstient conditions for uniform asymptotic
stability of (3.38). To prove the following theorem we shall use the techmighieh was

developed in paper [17].

Theorem 3.3.10 Suppose thafH1) — (H5) and (C1) — (C2) hold true, then the equilibrium

x* of (3.32) is uniformly asymptotically stable.

Proof. Fix hy > 0. Givene > 0, (¢ < hy), we choose’; > 0 such thabs? < as?. Define
0 = 01/l and note thad < ¢, asl > 1. We first prove uniform stability whet = 0; for some

j € N and then fottg # 6; for all i € N, to show that thig is the needed one in both cases.
If to = 6;, wherej € N and||y(9))|| < ¢, thenV(y(#))) < bs? < be? < as?.

We fix k € N and consider the intervady, 6x,1). Using (1) in Lemma 3.3.9, we shall show

that

V(y(1)) < V(y(6k) for t € [bk. Ok:a)- (3.44)

Let us set(t) = V(y(1)). If (3.44) does not hold, then there must exist poifgsdp satisfying

Ok < <p <61 and

v(17) = V() , V() > V() for te (n,p].

Based on the mean value theorem, we can fifid 4r, p) satisfying the equatio

V() > 0.

V(p) — V(i)
p=1

Actually, sincev(8k) < V(&) < qvu¢), it follows from (1b) thatVv'(¢) < 0, a contradiction.
Hence, (344) is true. As the function¥ andy are continuous, one can obtain by induction
thatV(y(t)) < V(y(6;)) for all t > 6;. Thus, we havaly(t)I?> < V(y(t)) < V(¥(6))) < as?,
which implies in turn thally(t)|| < e for allt > 6;. We see that evaluation é6fdoes not depend

on the choice of € N.
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Now, consider the casg € R* with tg # 6; for all i € N. Then there exist§ € N such
thatd; < to < 0j.1. For a solutiony(t) satisfying|ly(to)ll < ¢, Lemma 33.8 implies that
[v(@))|| < 61. Using a similar idea used for the cage= 6j, we conclude thalty(t)|| < & for
t > 0; and hence for all > to, which completes the proof for the uniform stability. We note
that the evaluation is independent ok N and correspondingly it is valid for ath € R*.

Next we shall prove uniform asymptotic stability.

First, we show “uniform” asymptotic stability with respect to all elements of thesecgs;,

i €N,

Fix j € N. Forty = 6;, we choose > 0 such thab(l5)> = aré holds. In view of uniform
stability, one can obtain that(y(t)) < bs? < b(l5)? for all t > 6; and hencaly(t)ll < h
whenever||y(9;)|| < ¢. In what follows, we present that thiscan be taken a in the
Definition 3.3.5. That is to say, givesn > 0, ¢ < h;, we need to show that there exists a

T = T(e) > 0 such thafly(t)|| < £ for t > 6; + T if ||y(6;)|| < 6.

We denotey = %Csz andé1 = 6. We can find a number > 0 such thaigs > s+ u for

as? < s < b6?. Let M be the smallest positive integer such thet + My > bs?. Choosing
2

bs
t = k(—2 +6) + 6j, k= 1,2, ..., M, we aim to prove that
Y

V(YD) < a? + (M — K)u for t>te, k=0,1,2,..., M. (3.45)

It is easily seen tha¥/(y(t)) < bs? < as? + Mu fort > to = 6;. Hence, (345) is true
for kK = 0. Now, assuming that (85) is true for some < k < M, we will show that
V(y(t)) < as? + (M —k — 1)u for t > ty,.1. To prove the last inequality, we first claim that

there exists & € Iy = [B(ik) + 0, tk+1] such that
V(y(t")) < ag? + (M =k — 1) (3.46)
Otherwise V(y(t)) > as? + (M — k — 1)u for all t € Ix. On the other side, we haxg(y(t)) <

ag? + (M — K for t > t, which implies that/(y(3(t))) < as? + (M — K)u for t > B(ty) + 6.

Hence, fort € Iy

qVy(®) > V() + > as® + (M = K > V(YD)

Sinceas? < V(y(t)) < b|ly(t)|/? for t € Iy, it follows from (1b) that
V(). YBW)) < —cliy(®)lI” <~y for all t 6 in I
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Using the continuity of the functio and the solutiory(t), we get
V(¥(tke1)) < V(YB(t) + 0)) — y(ticra — Bt) — 6)
< b6} —y(t1—tc-0) =0,
which is a contradiction. Thus 46) holds true. Next, we show that

V(y(t)) < ag? + (M — k- 1) for all t € [t*, o). (3.47)

If (3.47) does not hold, then there exists@(t*, o) such that
V() > as® + (M — k= L) > V(y(t")).

Thus, we can find & e (t*,t) such thatf # 6, i € N, V/(y(®), y(8({)) > 0 andV(y()) >

ag? + (M — k — 1)u. However,

qVy®) > V(D) + p > as® + (M — K > V(¥(B(D)))

implies thatV’(y(®), y(8(f))) < —y < 0, a contradiction. Then, we conclude th&(t)) <
ag? + (M — k — 1)u for all t > t* and thus for alt > t,1. This completes the induction and

shows that (315) is valid. Fork = M, we have

b52
V(y(t) < as?, t >ty = M(— +6) + to.
Y

b52
In the end|ly(t)ll < e fort > 6; + T whereT = M(—2 + 6), which proves uniform asymptotic
Y

stability forto = 6, j € N.

Taketp # 6; for all i € N. Then6; < to < 6.1 for somej € N. |ly(to)l| < 6 implies by Lemma
3.3.8 that||y(6;)|| < 61. Hence, the argument used for the case 6; yields that]ly(t)|| < &

fort>60; + T and soforalk > to+ T.

3.3.4 Method of Lyapunov Functions

In this part, Lyapunov-Krasovskii method is used for equation (3.3Bi¢hvis a delay dier-
ential equation, but one must emphasize that Lyapunov functions, metidnals, are used.

In the following condition, the matrices, B, C, P, R, S, L are described as in (N).

(C3)Q = PBR!BTP+LRL+PCSICTP + bl%kP - AP— PA < 0, wherex is a constant with

ka> 1.
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Lemma 3.3.11 Assume that conditiongC2)— (C3) are fulfilled, and yt) is a solution of
(3.38). Then the following conditions hold for the quadratic functigp(®) = y (t)Py(t):
(22) ally®I* < V(y(t)) < blly(t)I*, where a= Amin(P) and b= Amax(P);

(2b) V/(y(), y(B(1)) < —c|ly(t)||? for all t # 6 in R* with a constant ¢ 0.

Proof. It is easily seen thaa|y(t)|? < V(y(t)) < blly®)I?, wherea = Amin(P) andb =
Amax(P).

It follows from Lemma 3.3.8 thaV/(y(3(t))) < blly(BM)IIZ < bIly®)|> < bl?«ally(t)|?
b2V (y(t)).

IA

Fort # 6;, i € N, we know from the proof of Lemma 3.3.9 that the derivativé/¢j(t)) along

the trajectories of system (3.38) satisfies

V(y(t).yB(1) < y'(t)(PBR'B'P+LRL+PCS'CTP- AP

~PAY(®) + Y (BO)PYB()).
Hence, we get
V' (Y, YBO)) <y (OQ(D), t# 6. (3.48)

It follows from the condition (C3) and (3.48) thatl{@is valid. [

Theorem 3.3.12 Suppose thafH1) — (H5) and (C2) — (C3) hold true, then the equilibrium
x* of (3.32) is globally exponentially stable.

Proof. Using Lemma 3.3.11, we have fo 6;

dﬂt(e“/b”wy(t)» = eOc/b)V(y(r)) + OV (y(t), (B(1)))
cd P y()1? — et |ly(D)I1 = 0.

IN

Using the continuity of the functio and the solutiory(t), we obtain
e“Pla)y@)* < €7V (y() < €70V (y(to)) < eV b ly(to) 17,
which implies thatly(t)|| < \/E lly(to)|| € (¢/2D)t=t) The theorem is proved
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3.3.5 An lllustrative Example

Consider the following CNNs with piecewise constant argument:
d _ _[2 0} xu®]| [05 o tanh)
dt 0 2| %@ 0.1 03 | tanhedl)

05 01 |[ tanhgé®) 1
+ + . (3.49)
01 03 || tanh¢2l®) 2

Clearly, we obtain

O NI
O NI

N ——
|
Il
VN
wrr O
N ——

NIk O

Let

15 1 30 4 0
P = s R= s S: 5 q=12,
1 15 0 3 0 4
i
BO =6=15 i€l

By simple calculation, we can check that= 0.45, k, = 0.4333 k3 = 4.45, a = Amin(P) =
0.5, b = Amax(P) = 2.5 andl = 4.81. We can choose = 2.1 so thatka > 1. It follows from
Theorem 3.2.1 that there exists a unique equilibrium suchxthat[0.7255 1.1898] . Then

it can be easily verified that

-2.9479 -2.3708 - — 0.5 1
Q= <0, P-LSL= > 0.
-2.3708 -3.0604 1 10556

For6 = 1/10, we get[ks + kp] = 0.4883< 1 andd |k, + ks (1 + bkp) €| = 0.7921< 1. So,
(H1)-(H5) and (C1)-(C2) hold. Thus, the conditions of the Theore®&l® forq = 1.2 are
satisfied. Hence, (3.49) has a uniformly asymptotically stable equilibrium pbiodvever,

for the samey we haveq < bl%. Hence, Theorem 3.3.12 is not applicable. That is, using
Lyapunov-Razumikhin technique, we may take smaijlealues, and that verifies it as more
effective in theoretical sense. Nevertheless, the second theorem alldavehtain exponen-
tial evaluation of convergence to the equilibrium, which has a very imporealiarity for

applications in practice.
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The simulation, where the initial value is chosen ad[@]", is shown in Fig. 3.3 and it illus-
trates that all trajectories uniformly converge to the unique asymptotically stqbiéeum

point x*.

(@)

x1*= 0.7255

x1

o

[00]
:

0.6

(b)
1.5

1.4F

X2

13l x2*=1.1898

1.2¢ =

1.1

Figure 3.3: Time response of state variabigl$) andx,(t) with piecewise constant arguments
in (&) and (b), respectively.

3.3.6 Conclusion

In this section, it is the first time that CNNs with piecewise constant argumegeradralized
type are investigated. There is not a restriction on the distance betweehisgiteighbors
of the argument function and the stability is discussed in the uniform ver3iba.analysis
has been available after a new approach was proposed in [4, 5g6jestnew ideas not only
from the modeling point of view, but also from that of theoretical oppatiemto conjugate
with numerical analysis, and take into account the easiness of simulations sidhplifibe

constancy of the argument.

Moreover, comparing two main results of this section, one can see thaterhe»3.10 al-
lows to analyze a larger class of equations than Theorem 3.3.12. At thetisagmen the
basis of Theorem 3.3.12, one can evaluate convergence of soluticglibréa. Application
of Lyapunov functions gives an opportunity to develop further quantéainalysis such as

estimation of the domain of attraction, etc.
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CHAPTER 4

CONCLUSION AND FUTURE WORKS

This thesis is dedicated to not only the mathematical analysis of RNNs and ingRINiMs
with piecewise constant argument of generalized type but also the probkability for dif-
ferential equations with piecewise constant argument of generalizedhngqegh the method
of Lyapunov functions. It is the first time that RNNs and impulsive RNNs witdtg@wise

constant argument of generalized type are investigated.

In Chapter 2, we obtain $icient conditions for the existence of a unique equilibrium and a
periodic solution and investigate the stability of RNNs with piecewise constgatreant of
generalized type. For an impulsive RNNs with piecewise constant argurhgeneralized
type, we introduce two ¢lierent types of impulsive RNNsg,(0)— type neural networks and
(9, 7)- type neural networks. For these typesffisient conditions for the existence of the
unique equilibrium are obtained, existence and uniqueness of solutidrth@mrequivalence
lemma for such systems are established and stability criterion for the equilibaiseal lon lin-
ear approximation is proposed. In addition to these qualitative analysisyfipgng Green's
function we derive new result of existence of the periodic solution andltiteal asymptotic
stability of this solution is investigated. Finally, examples with numerical simulatioms ar

given to validate our theoretical results.

In Chapter 3, the problem of stability forftirential equations with piecewise constant argu-
ment of generalized type through the method of Lyapunov functions istigegsd. More-
over, Chapter 3 analyzes the problem of stability for neural networkspigttewise constant
argument based on the Second Lyapunov method. That is, we use thedroéthy@punov
functions and Lyapunov-Razumikhin technique for the stability of RNNsGNUIs, respec-

tively. It is the first time that the method of Lyapunov functions foftetiential equations
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with piecewise constant argument of generalized type [10] is applied to tdelmmbRNNs
and this part has provided newfBoient conditions guaranteeing existence, uniqueness, and
global exponential stability of the equilibrium point of the RNNs. In additiom; method
gives new ideas not only from the modeling point of view, but also fronh digheoretical
opportunities since the RNNs model equation involves piecewise constamhant of both
advanced and delayed types. In the last part of Chapter 3, by usimgiicept of diferen-
tial equations with piecewise constant arguments of generalized type42536, 17], the
model of CNNs is developed. Lyapunov-Razumikhin technique is appliethdosfificient
conditions for uniform asymptotic stability of equilibria. Global exponentiabiditst is inves-
tigated by means of Lyapunov functions. It gives new ideas not oniy fiee modeling point
of view, but also from that of theoretical opportunities to conjugate with micaleanalysis,
and take into account the easiness of simulations simplified by the constaheyas§ument.
Application of Lyapunov functions gives an opportunity to develop furtheantitative anal-
ysis such as estimation of the domain of attraction, etc [54, 60]. Examples witkriaal

simulations are also given in Chapter 3 to illustrate our theoretical results.

Our approaches developed in papers [10, 11, 12, 13, 14, 15nti6hased on the methods
of analysis for diferential equations with discontinuities can lfieetively applied to almost
all problems concerning neural networks models, including bidirectissa@ative memory
(BAM) neural networks model first introduced by Kosko [162, 168411 Cohen-Grossberg
neural networks, weakly connected neural networks [149], etaceftionaly, it concerns
those problems which relate state-dependent discontinuity [1, 2, 183194P Let us list

fields where the activity can be realized, immediately:

e Since these networks have ability to learn, the method under investigatiorecam b
plied to learning theory related to an unsupervised Hebbian-type learniclgamem
with/without a forgetting term [148, 158, 159, 160] and several learningrilfgns
modeled by Amari [157] connected to proposal of Hebb [158]. Unsuged, or self-
organized learning means that there is no external teacher to manager iegl@so-

cess, shown in Fig.4.1.

e |tisinteresting to study chaos [20, 21, 22, 165, 166, 167, 168, I8Y,dnd control of

chaos [171, 172, 173] in neural networks models.
e The results in this thesis will be useful for synchronization-desynaehation problems
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State of the
environment

Learning

—

system

Figure 4.1: Unsupervised Learning

[126, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 188, 186, 187] and the

references cited therein.

e Neural networks is also widely used in Artificial intelligence [153, 154]. &e sure

that the methods established in this thesis will be useful for this subject.
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