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ABSTRACT

NEURAL NETWORKS WITH PIECEWISE CONSTANT ARGUMENT AND IMPACT
ACTIVATION

Yılmaz, Enes

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Marat Akhmet

June 2011, 137 pages

This dissertation addresses the new models in mathematical neuroscience: artificial neural

networks, which have many similarities with the structure of human brain and the functions

of cells by electronic circuits. The networks have been investigated due to their extensive

applications in classification of patterns, associative memories, image processing, artificial

intelligence, signal processing and optimization problems. These applicationsdepend cru-

cially on the dynamical behaviors of the networks. In this thesis the dynamics are presented

by differential equations with discontinuities: differential equations with piecewise constant

argument of generalized type, and both impulses at fixed moments and piecewise constant

argument. A discussion of the models, which are appropriate for the proposed applications,

are also provided.

Qualitative analysis of existence and uniqueness of solutions, global asymptotic stability, uni-

form asymptotic stability and global exponential stability of equilibria, existenceof periodic

solutions and their global asymptotic stability for these networks are obtained.Examples with

numerical simulations are given to validate the theoretical results.

iv



All the properties are rigorously approved by using methods for differential equations with

discontinuities: existence and uniqueness theorems; stability analysis through the Second

Lyapunov method and linearization. It is the first time that the problem of stabilitywith the

method of Lyapunov functions for differential equations with piecewise constant argument

of generalized type is investigated. Despite the fact that these equations are with deviating

argument, stability criteria are merely found in terms of Lyapunov functions.

Keywords: Neural Networks, Piecewise Constant Argument, Impulses,Periodic Solutions,

Stability
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ÖZ

PARÇALI SABİT ARGUMANLI VE ÇARPMA AKT İVASYONLU SİNİR AĞLARI

Yılmaz, Enes

Doktora, Bilimsel Hesaplama B̈olümü

Tez Yöneticisi : Prof. Dr. Marat Akhmet

Haziran 2011, 137 sayfa

Bu tez, matematiksel sinir bilimindeki yeni modellerden: hücre fonksiyonları ve insan bey-

ninin yapısı ile birçok benzerlik g̈osteren yapay sinir ağlarından ve elektronik devreler yar-

dımıyla ḧucrelerin fonksiyonlarından bahsetmektedir. Bu ağlar örüntülerin sınıflandırılması,

çăgrışımlı bellekler, g̈orüntü işleme, yapay zeka, sinyal işleme ve optimizasyon problem-

lerindeki geniş uygulamalarından dolayı incelenmektedir. Bu uygulamalarönemli bir şekilde

ağların dinamik davranışlarına bağlıdır. Bu tezde dinamikler s̈ureksiz diferensiyel denklem-

ler: genel tipteki parçalı sabit argumanlı diferensiyel denklemler, ve hem sabit zamanlı itmeler

ve parçalı sabit arguman, ile gösterilmiştir. Ayrıca, s̈ozkonusu olan uygulamalaraörnek teşkil

eden modellerin tartışması yapılmıştır.

Bu ăglar için ç̈ozümlerin varlık ve teklĭgi, denge noktalarının global asimtotik kararlılığı,

düzg̈un asimtotik kararlılı̆gı ve globalüstel kararlılı̆gı, periyodik ç̈ozümlerin varlı̆gı ve bun-

ların global asimtotik kararlılı̆gının niteliksel analizi elde edilmiştir. Teorik sonuçları doğru-

lamak amacıyla n̈umerik sim̈ulasyonörnekleri verilmiştir.

Tüm özellikler: varlık ve teklik teoremleri; ikinci Lyapunov metodu ve lineerizasyonile

kararlılık analizi, s̈ureksiz diferensiyel denklemler için olan metotlar kullanılarak kesin olarak
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onaylanmıştır. Genel tipteki parçalı sabit argumanlı diferensiyel denklemler için Lyapunov

fonksiyonlar metodu ile kararlılık problemi ilk defa incelenmiştir. Bu denklemler sapma ar-

gumanlı olmasına răgmen kararlılık kriterleri sadece Lyapunov fonksiyonları cinsinden bu-

lunmuştur.

Anahtar Kelimeler: Sinir Ăgları, Parçalı Sabit Arguman,İtmeler, Periyodik Ç̈ozümler,

Kararlılık
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wife Sümeyra whose dedication, love and persistent confidence in me, has takenthe load off

my shoulder. I would like to give my heartfelt thanks to her for enormous support, great pa-

tience and belief in me during this long process. With her endless understanding and generous

encouragement, I have been able to continue my career in a sweet and peaceful environment.

ix



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

The dynamics of artificial neural networks is one of the most applicable andattractive ob-

jects for the mathematical foundations of neuroscience. In the last decades, Recurrent Neural

Networks (RNNs), Cohen-Grossberg Neural Networks (Hopfield neural networks as a spe-

cial version) and Cellular Neural Networks (CNNs) have been deeply investigated by using

various types of difference and differential equations due to their extensive applications in

classification of patterns, associative memories, image processing, artificial intelligence, sig-

nal processing, optimization problems, and other areas [27, 28, 30, 31,32, 35, 36, 37, 38, 39,

117, 119, 120, 121, 122, 123, 124, 131, 134, 135, 136, 137, 138, 139, 148, 149, 150, 153, 154].

One of the ways to extend considered equations is to involve discontinuities ofvarious kinds.

The first one is to assume that functions on the right hand side are discontinuous. Also, we

can use the independent argument as a piecewise constant function. Inboth cases one has

a discontinuity of the velocity of the network process. Another way to obtain the dynamics

with discontinuities is to consider it when the space variables, that is, the electrical character-

istics themselves are discontinuous. Besides continuous activations, discontinuous/singular

activations started to be used to develop for these applications. This phenomena immediately

brings a great interest to the theory of networks with different types of discontinuity. An

exceptional practical interest is connected with discontinuities, which appear at prescribed

moments of time. Moreover, as it is well known, nonautonomous phenomena often occur in

many realistic systems. Particularly, when we consider a long-term dynamicalbehavior of a

system, the parameters of the system usually will change along with time. Thus, the research

on nonautonomous neural networks is of prime significance. These problems provide very

difficult theoretical and mathematical challenges, which will be analyzed in this thesis. The

results of Akhmet’s studies [1, 2, 3, 4, 5, 6, 7, 9, 19, 20, 21, 22, 23, 24] give a solid theoreti-
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cal background for the proposed investigation on differential equations with discontinuity of

types mentioned above: systems with piecewise constant argument and impulsive differential

equations.

The main purpose of this thesis is the mathematical analysis of RNNs. It is well known that

these applications mentioned above depend crucially on the dynamical behavior of the net-

works. In these applications, stability and convergence of neural networks are prerequisites.

However, in the design of neural networks one is not only interested in theglobal asymptotic

stability but also in the global exponential stability, which guarantees a neural network to con-

verge fast enough in order to achieve fast response. In addition, in the analysis of dynamical

neural networks for parallel computation and optimization, to increase the rate of conver-

gence to the equilibrium point of the networks and to reduce the neural computing time, it

is necessary to ensure a desired exponential convergence rate of thenetworks trajectories,

starting from arbitrary initial states to the equilibrium point which corresponds to the opti-

mal solution. Thus, from the mathematical and engineering points of view, it is required that

the neural networks have a unique equilibrium point which is globally exponentially stable.

Moreover, for example, if a neural network is employed to solve some optimization problems,

it is highly desirable for the neural network to have a unique globally stable equilibrium point

[140, 141, 142, 111, 54, 61, 64, 66]. Therefore, the problem of stability analysis of RNNs has

received great attention and many results on this topic have been reportedin the literature;

see, e.g., [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66],

and the references therein.

Further, RNNs have been developed by implementing impulses and delays [11, 13, 15, 32, 33,

35, 37, 39, 40, 41, 42, 43, 72, 99, 117, 120] issuing from different reasons: In implementa-

tion of electronic networks, the state of the networks is subject to instantaneous perturbations

and experiences abrupt change at certain instants, which may be caused by switching phe-

nomenon, frequency change or other sudden noise. This leads to the model of RNNs with

impulses. Due to the finite switching speed of amplifiers and transmission of signals in elec-

tronic networks or finite speed for signal propagation in biological networks, time delays

exist.

In numerical simulations and practical implementations of neural networks, it isessential to

formulate a discrete-time system, an analogue of the continuous-time system. Hence, sta-
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bility for discrete-time neural networks has also received considerable attention from many

researchers [134, 135, 136, 137, 138, 139]. As we know, the reduction of differential equa-

tions with piecewise constant argument to discrete equations has been the mainand possibly

a unique way of stability analysis for these equations [69, 77]. As a consequence of the ex-

isting method, initial value problems are considered only for the case when initial moments

are integers or their multiples. In addition, one can not study stability in the complete form

as only integers or their multiples are allowed to be discussed for initial moments. Hence,

the concept of differential equations with piecewise constant argument of generalized type

[3, 4, 5, 6, 7, 10, 17, 18] will be applied to RNNs by considering arbitrary piecewise constant

functions as arguments.

It is well known that the studies on neural dynamical systems not only involve stability and

periodicity, but also involve other dynamic behaviors such as synchronization, bifurcation and

chaos et al. Nevertheless, in this thesis, we aim to consider the following two mathematical

problems for neural networks with piecewise constant argument and impact activation:

• Sufficient conditions for the global existence-uniqueness of solutions and global asymp-

totic stability of equilibria.

• Existence of periodic solutions and their global asymptotic stability.

This dissertation is organized as follows: In this chapter, a brief review ofneural networks

that provides a clearer understanding for the modeling of RNNs is given.Also a mathe-

matical background for the theory of differential equations with piecewise constant argument

of generalized type, and the theory of impulsive differential equations with their qualitative

properties are discussed.

In Chapter 2, we consider neural networks systems as well as impulsive neural networks sys-

tems with piecewise constant argument of generalized type. For the first system, we obtain

sufficient conditions for the existence of a unique equilibrium and a periodic solution and in-

vestigate the stability of these solutions. For the second one, we introduce twodifferent types

of impulsive neural networks; (θ, θ)− type neural networks and (θ, τ)− type neural networks.

For these types, sufficient conditions for the existence of the unique equilibrium are obtained,

the existence and uniqueness of the solutions and the equivalence lemma forsuch systems

are established, the stability criterion for the equilibrium based on linear approximation is

3



proposed, some sufficient conditions for the existence and stability of periodic solutions are

derived and examples with numerical simulations are presented to illustrate the results.

Chapter 3 deals with the problem of stability for differential equations with piecewise con-

stant argument of generalized type through the method of Lyapunov functions. Besides this

theoretical results, we analyze the stability for neural networks models with piecewise con-

stant argument based on the Second Lyapunov method. That is to say, weuse the method

of Lyapunov functions and Lyapunov-Razumikhin technique for the stability of RNNs and

CNNs, respectively. Examples with numerical simulations are given to illustratethe theoreti-

cal results.

Finally, in Chapter 4, some concluding remarks and future works are discussed.

The main parts of this thesis come from the following papers:

• M. U. Akhmet, E. Yılmaz, Neural networks with non-smooth and impact activations,

(Revised version is submitted to Physica D: Nonlinear Phenomena).

• M. U. Akhmet, D. Arŭgaslan, E. Yılmaz, Method of Lyapunov functions for differential

equations with piecewise constant delay, J. Comput. Appl. Math., 235, pp. 4554-4560,

2011.

• M. U. Akhmet, E. Yılmaz, Impulsive Hopfield-type neural network system withpiece-

wise constant argument, Nonlinear Anal: Real World Applications, 11, pp.2584-2593,

2010.

• M. U. Akhmet, D. Arŭgaslan, E. Yılmaz, Stability in cellular neural networks with a

piecewise constant argument, J. Comput. Appl. Math., 233, pp. 2365-2373, 2010.
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1.1 A Brief Review of Neural Networks

The Artificial neural networks, commonly referred to as “neural networks”, have been moti-

vated by the fact that the human brain computes in an entirely different way from the conven-

tional computer. Conventional computer has a single processor implementing a sequence of

arithmetic and logical operations, now at speed about 109 operations per second [148, 152].

However, these devices have not an ability to adapt their structure and to learn in a way that a

human being does.

What todays computers can not do? We know that there is a large number oftasks for which

it is impossible to make an algorithm or sequence of arithmetic and/or logical operations.

For example, in spite of many attempts, a machine has not yet been produced which can

automatically read handwritten characters, or recognize words spoken by any speaker let alone

can translate from one language to another, or identify objects in visual scenes, or drive a car,

or walk and run as human does [151].

Neither the processing speed of the computers nor their processing ability makes such a dif-

ference. Today’s computers have a speed 106 times faster than the main and basic processing

elements of the brain called “neuron” [148]. If one compares the abilities, the neurons are

much simpler. The main difference comes from the structural and operational trend. Al-

though, the brain is a massively parallel interconnection of relatively simple and slow pro-

cessing elements, in a conventional computer the instructions are executed sequentially in a

complicated and fast processor.

Simon Haykin in his book [148] gives a definition of a neural network viewed as an adaptive

machine:

Definition 1.1.1 A neural network is a massively parallel distributed processor made up of

simple processing units that has a natural prospensity for storing experiential knowledge and

making it available for use. It resembles the brain in two respects:
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• Knowledge is accuried by the network from its environment through a learning process;

• Interneuron connection strengths, known as synaptic weights are usedto store the ac-

quired knowledge.

It is clear that a neural network gets its power from, first, its massively parallel distributed

structure and, second, its ability to learn.

1.1.1 From Biological to Artificial Neuron

The human nervous system may have three-stage system [152](See Fig.1.1). The main part

of this system is the brain denoted byneural net, which continualy receives information,

perceives it, and makes suitable decisions. In this figure we have two sets of arrows; from

left to right indicates theforward transmission of information and the arrows from right to

left shown in red represents thefeedbackin the system. Thereceptorschange stimuli from

the human body or the external environment into electrical impulses that transmit information

to the neural net. Theeffectorstransform electrical impulses produced by the neural net into

discernible responses as systems outputs.

                       Stimulus      ResponseReceptors Neural Net Efectors

Figure 1.1: Representation of nervous system

It is declared that the human central nervous system consists of 1,3× 1010 neurons and that

1 × 1010 of them takes place in the brain [148]. Some of these neurons are firing and their

power decreases because of this electrical activity is assumed to be in the order of 10 watts.

A neuron has a roughly spherical body called soma (Fig. 1.2). The signals produced in soma

are converted to the other neurons through an extension on the cell bodycalledaxonor nerve

fibres. Another kind of extensions on the cell body like bushy tree is thedendrites, which

are responsible from receiving the incoming signals generated by other neurons. The axon is

divided into several branches, at the very end of which the axon enlarges and forms terminal

buttons. These buttons are placed in special structures calledsynapses. Synapses are the
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junctions transmitting signals (electrical or chemical signals) from one neuron to another. A

neuron typically drive 103 to 104 synaptic junctions [148, 149, 153, 154].

              Axon Soma

                 Dendrite

                     Synapse

Figure 1.2: Typical biological neuron [161]

As it is mentioned before, the transmision of a signal from one neoron to another via synapses

is a complex chemical process. So, we need potentials to transmit signal fromone neuron to

another. The effect is to raise or lower the electrical potential inside the body of the receiving

cell. If this potential reaches a threshold, the neuron fires. By describing the characteristics

of neuron, in 1943, McCulloch and Pittz published their famous paper [156], “A Logical

Calculus of the Ideas Immanent in Nervous Activity.” In this paper, it was the first time that

they proposed an artificial neuron model which was widely used in artificialneural networks

with some minor modifications. This model is shown in Fig. 1.3. The representationof this

model can also be found in many books [148, 153, 154].

This model has N inputs, denoted byx1, . . . , xN. Each line connecting these inputs to the

neuron represents a weight, denoted asw1, . . . ,wN, respectively. Weights in this model mean

the synaptic connections in the biological neurons. The activation functionof the model is a

threshold function and represented byθ and the activation corresponding to the potential is

given by

u =
N

∑

j=1

x jw j + θ.

The inputs and the weights are real values. A negative value for a weightshows an inhibitory

connection, while a positive value indicates an excitatory connection. In biological neurons,θ

has a negative value, but in artificial neuron models it may be assigned as apositive value. For
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Figure 1.3: Artificial neuron model

this reason, it is usually referred asbiasif θ is positive. Here, for convenience we take (+) sign

in the activation formula. Orginally, McCulloch and Pittz proposed the threshold function for

the neuron activation function in the artificial model, however there are alsodifferent types

of activation functions (or output functions). For example linear, ramp and sigmoid functions

are also widely used as output functions. In what follows, we identify the following basic

types of activation functions described in Fig. 1.4:

• (a) Threshold Function:

f (v) =



















1, i f v ≥ 0

0, i f v < 0

• (b) Linear Function:

f (v) = κv

• (c) Ramp Function:

f (v) =



































0, i f v ≤ 0

v
κ
, i f 0 < v < κ

1, i f κ < v

• (d) Sigmoid Function:

f (v) =
1

1+ e−κv
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(a) (b)

(c) (d)

Figure 1.4: Some neuron activation functions

1.1.2 Basics of Electrical Circuits

Electrical circuits are so important for understanding the activity of our bodies . For example,

most neurons especially the ones in the brain are electrical. In order to activate neurons we

need brief voltage pulses. These pulses are known as action potentials orspikes which are

used for communication among neurons [150]. The reason for this phenomenon is based

on the physics of axons described in previous section. Therefore, theaxon may be modeled

as resistance-capacitance (RC)-circuit. A simple electric circuit made up ofa voltage and

resistor is shown in Fig.1.5.

I

RV
+

-

Figure 1.5: A simple electric circuit

We define electrical cicuits in terms of the physical quantities of voltage (V) and the current

(I ). We know that these quantities are solutions to the mathematical models. These models

can be derived from Maxwell’s equations by an advanced work or in thisdissertation can

be derived from Kirchoff’s laws for elementary circuits. It is well known that circuits are
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combinations of physical devices like resistors and capacitors. Now, let us give some useful

electrical circuits to understand our neural networks model, which will be described in detail

in the next section.

 R

V
R

I

Figure 1.6: A resistor

The resistors are devices that limit or regulate the flow of electrical current in an electrical

circuit. The relationship betweenVR, I , and resistanceR (as shown in Fig. 1.6) through an

object is given by a simple equation known asOhm’s law:

VR = IR,

whereV is the voltage across the object in volts,I is the current through the object in amperes,

andR is the resistance in ohms.

C

V
C

I

Figure 1.7: A capacitor

As seen in Fig.1.7, a capacitor is a device that stores charge on the plates ata rate proportional

to I , and a voltage change on a capacitor can be shown by

V′C = I/C

or, equivalently by,

VC =
1
C

∫ t

0
Idt.
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The constant C is called thecapacitancein units of farads.

As mentioned before, the circuit models are obtained from Kirchhoff’s laws. Kirchhoff’s laws

state that:

• Kirchhoff’s current law: The sum of all currents entering a node is equal to the sum of

all currents leaving the node.

• Kirchhoff’s voltage law: The directed sum of the voltage differences around any closed

loop must be zero.

1.1.3 Models of Recurrent Neural Networks

The structures, which allow the connections to the neurons of the same layeror to the previous

layers, are calledrecurrent neural networks[148, 155]. That is, a recurrent network may

consist of a single layer of neurons with each neuron feeding its output signal back to the

inputs of all other neurons. Moreover, there is no self-feedback loops in the network; self-

feedback means a situation where the output of a neuron is fed back into its own input [148].

This is illustrated in Fig. 1.8.

z z zz
-1 -1 -1 -1 Unit-time delay

     operators

Figure 1.8: Recurrent neural networks with no hidden neurons

We are now ready to consider some of the important RNNs model involved in theliterature
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and needed for our investigations.

1.1.3.1 Additive Model

The neurodynamic model of a neuron is illustrated in Fig. 1.9 where the conductances are de-

noted by synaptic weights wj1,wj2, . . . ,wjN and the potentials by relevant inputs x1, x2, . . . , xN.
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Figure 1.9: Additive model

The total current entering a node in Fig. 1.9 is

N
∑

i=1

w ji xi(t) + I j ,

where the current sourceI j representing an externally applied bias. Letv j(t) be the induced

local field at the input of the nonlinear activation functionf (·). Then, the total current sum

leaving the node is

v j(t)

Rj
+C j

dvj(t)

dt
.

By Kirchhoff’s current law, the following nonlinear differential equations can be obtained:

v j(t)

Rj
+C j

dvj(t)

dt
=

N
∑

i=1

w ji xi(t) + I j , (1.1)
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where x j(t) = f (v j(t)). Thus,the model described by the equation (1.1) is calledadditive

model. It is assumed that the activation functionf (·) is a continuously differential function

with respect tot. Here, the activation function is the logistic function

f (v j) =
1

1+ e−v j
j = 1,2, . . . ,N.

1.1.3.2 Hopfield (Additive) Model

In 1984, Hopfield [28] proposed the continuous deterministic model which isbased on con-

tinuous variables and responses. The model contains a set of neuronsand corresponding set

of unit-time delays shown in Fig. 1.10. Each neuron has same architectural graph as shown

in Fig. 1.9. Therefore, the neurons are modeled as amplifiers in conjuction with feedback

circuits made up of wires, resistors and capacitors.

z

z

z

z
-1

-1

-1

-1

Unit-time delay

     operators

Neurons

Figure 1.10: Hopfield network withN = 4 neurons

The Hopfield network can be considered as a nonlinear associative memory or content-addressable

memory (CAM). We know priori the fixed points of the network so that they correspond to the

patterns to be stored. However, the synaptic weights of the network that produce the desired

fixed points are unknown. Thus, the problem is how to determine them. In the application

of the Hopfield network, an important property of a CAM is the ability to retrievea stored

pattern, given a reasonable subset of the information content of that pattern [29]. The essence
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of a CAM is mapping a fundamental memory A onto a fixed (stable) point B of a dynamical

system (see Fig. 1.11). The arrow from left to right describes the encoding mapping, whereas

the arrow from right to left describes the decoding mapping.

A B

Encoding

Decoding

Space of fundamental

            memories

Space of stored

         vectors

Figure 1.11: Encoding-decoding performed by a network

The stable points of the phase space of the network are the fundamental memories, or pro-

totype states of the network. For example, when a network has a pattern containing partial

but sufficient information about one of the fundamental memories, we may representit as a

starting point in the phase space. Provided that the starting point is close to the stable point

representing the memory being retrieved, finally, the system converges onto the memory state

itself. Consequently, it can be said that Hopfield network is a dynamical system whose phase

space contains a set of fixed (stable) points representing the fundamental memories of the

system [148, 155].

Let us consider the dynamics of the Hopfield network which is based on the additive model

of a neuron described in the previous section:

C j
dvj(t)

dt
= −

v j(t)

Rj
+

N
∑

i=1

w ji fi(vi(t)) + I j , j = 1,2, . . . ,N (1.2)

where

x j = fi(v j)

and

1
Rj
=

1
r i
+

N
∑

i=1

|w ji |.

14



Here,r i denotes the resistance representing the cell membrane impedance. The equation (1.2)

has a neurobiological background as explained below:

• C j is the total input capacitance of the amplifier representing the capacitance of cell

membrane of neuronj.

• w ji is the value of the conductance of the connection from the output of thejth ampli-

fier to the input of theith amplifier, representing strengths of the synaptic connection

strengths among the neurons.

• v j(t) is the voltage of the amplifier of thejth neuron at timet representing the soma

potential of neuronj.

• I j is a constant external input current to thejth neuron representing the threshold for

activation of neuron.

• fi is the activation function representing the response of theith neuron to its membrane

potential.

The activation function or the input-output relation of theith amplifier is given by

fi(v) = tanh(ρiv),

whereρi is a constant gain parameter. It can be seen that this function is differentiable and

increasing (see Fig.1.12). Specifically, its derivative at origin gives usthe the constant gain

parameterρi .

−10 −5 0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

v

x=f(v)

Figure 1.12: The graph of tanh(v)
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In this model, our aim is to find stable fixed points to read or to understand the fundamental

memory. We have nonlinear dynamical system. So, we analyze the stability by using Lya-

punov functions. It is also well known that the use of Lyapunov functions makes it possible

to decide the stability of equilibrium points without solving the state-space equation of the

system (1.2). In what follows, we need the following basic but useful definition and theorem:

Definition 1.1.2 [106] A continuous function L(x) with a continuous derivative L′(x) is a

definite Lyapunov function if it satisfies:

(i) L(x) is bounded;

(ii) L′(x) is negative definite, that is: L′(x) < 0 for x , x∗ and L′(x) = 0 for x = x∗.

If the condition (ii) is in the formL′(x) ≤ 0 for x , x∗ the Lyapunov function is called

semidefinite.

Theorem 1.1.3 [106] The equilibrium state x∗ is stable (asymptotically stable), if there exists

a semidefinite (definite) Lyapunov function in a small neighborhood of x∗.

To study the stability of the system (1.2), we need three assumptions:

(i) The matrix of synaptic weights is symmetric:w ji = wi j for all i and j;

(ii) Each neuron has a nonlinear activation function of its own;

(iii) The inverse of the nonlinear activation function exists.

Particularly, the inverse of the functionfi illustrated in Fig. 1.13 is

f −1
i (x) = − ln

1− x
1+ x

.

The energy function of the Hopfield network in Fig. 1.10 is defined by

E = −1
2

N
∑

i=1

N
∑

j=1

w ji xi x j +

N
∑

j=1

1
Rj

∫ x j

0
f −1
j (x)dx−

N
∑

j=1

I j x j

and Hopfield used this functionE as a Lyapunov function. That is, the energy functionE is

bounded since the integral of the inverse of the function tanh(v) is bounded when−1 < x j < 1
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and dE
dt < 0 except at a fixed point. Then, by the Definition 1.1.2 and Theorem 1.1.3, the

Hopfield network is globally asymptotically stable in the Lyapunov sense [28].That is to say,

whatever the initial state of the network is, it will converge to one of the equilibrium states.

−1 −0.5 0 0.5 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

v=f−1(x)

Figure 1.13: The graph of tanh−1(x)

1.1.3.3 Cohen-Grossberg Theorem

In paper [27], Cohen-Grossberg states a very useful theorem in deciding the stability of a

certain class of neural networks.

Theorem 1.1.4 [27] Given a neural network with N processing elements having bounded

output signalsϕi(ui) and transfer functions of the form

duj

dt
= a j(u j)

[

b j(u j) −
N

∑

i=1

c jiϕi(ui)
]

, j = 1, . . . ,N (1.3)

satisfying the conditions:

(i) Symmetry: cji = ci j ;

(ii) Nonnegativity: aj(u j) ≥ 0;

(iii) Monotonicity:ϕ
′
j(u j) =

dϕ j (u j )
duj

≥ 0.

Then the network will converge to some stable point and there will be at most a countable

number of such stable points.
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In equation (1.3),u j denotes the state variable associated with theith neuron,a j represents an

amplification function,b j is an appropriately behaved function,c ji represents the connection

strengths between neurons, andϕi means the activation function which shows how neurons

respond to each other.

Obviously, the equation of this model (1.3) reduces to the equation for Hopfield model (1.2).

Thus, one can easily see that the Hopfield model is a special case of the system defined in the

Theorem 1.1.4. The relations between the general system of equation the (1.3) and the system

of (1.2) are summarized as follows in Table 1.1:

Table 1.1: Relations between the Cohen-Grossberg Theorem and the Hopfield Model

Cohen-Grossberg TheoremHopfield Model

u j C jv j

a j(u j) 1

b j(u j) −(v j/Rj) + I j

c ji −w ji

ϕi(ui) fi(vi)

In order to prove the stability of the equation (1.3), Cohen-Grossberg use energy functionE,

defined as

E =
1
2

N
∑

i=1

N
∑

j=1

c jiϕi(ui)ϕ j(u j) −
N

∑

j=1

∫ u j

0
b j(s)ϕ

′
j(s)ds.

Then, under the certain conditions in Theorem 1.1.4, one can show that theenergy function

E of the system (1.3) is a Lyapunov function satisfyingdE
dt < 0 for u j , u∗j and therefore the

Hopfield network is globally asymptotically stable [27, 148].

In the light of above discussions, the qualitative analysis of model equations (1.3) and (1.2)

have been attracted by many scientists and have been investigated through different types of

difference and differential equations. Now we will give some examples considering differ-

ent types of model equations from the literature. Of course, there are many papers dealing

with discrete-time and continuous-time neural networks; see, e.g., [33, 35,39, 42, 117, 119,

120, 121, 122, 123, 124, 131, 134, 135, 136, 137, 138, 139] andthe references cited therein.

Nevertheless, here we will review a few of them:
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Firstly, in paper [135], the authors consider the following discrete-time recurrent neural net-

works with time-varying delays and discuss the analysis of exponential stability for a class of

discrete-time recurrent neural networks with time delays:

ui(k+ 1) = aiui(k) +
n

∑

j=1

bi j f j(u j(k)) +
n

∑

j=1

di j g j(u j(k− τ(k))) + J j ,

whereτ(k) denotes the time-varying delay satisfyingτm ≤ τ(k) ≤ τM, k ∈ N with positive

unknown integersτm, τM. The delay is of the time-varying nature, and the activation functions

are assumed to be neither differentiable nor strict monotonic.

Secondly, in paper [138], the global exponential stability of a discrete-timerecurrent neural

network with impulses is discussed. The equation of the model is given as


















































x(n+ 1) = Dx(n) + Aσ(Bx(n) + I )

x(n0) = x0 ∈ Rn

I i(xi(nk)) = xi(nk + 1)− xi(nk), i = 1, . . . ,m, k = 1,2, . . .

n0 < n1 < n2 < . . . < nk → ∞ as k→ ∞,

whereσi(xi) = 1
2

(

|xi + 1| − |xi − 1|
)

and the impulsive functionsIk : R→ R are assumed to be

discrete.

Then, in paper [42], the delayed CNNs model described by differential equations with delays

is considered:

x′i (t) = −ci xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j f j(x j(t − τ j)) + I i ,

ai > 0, i = 1,2, . . . ,m,

whereτ j corresponds to the transmission delay along the axon of thejth unit and is non-

negative constant. In this paper, a set of criteria ensuring the global asymptotic stability of

delayed CNNs is derived.

Next, in paper [118], Akça et al. investigate the following Hopfield-type model of neural

network with impulses:

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) + ci , t > 0, t , tk

∆xi(tk) |t=tk= Ik(xi(tk)), i = 1,2, . . . ,m, k = 1,2, . . . ,

where∆x(tk) = x(tk + 0) − x(tk − 0) are the impulses at momentstk and t1 < t2 < . . . is

a strictly increasing sequence such that lim
k→∞

tk = +∞. They investigate the global stability
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characteristics of a system of equations modelling the dynamics of additive Hopfield-type

neural networks with impulses in the continuous-time case.

Finally, in paper [123], by using Lyapunov functions and analysis technique, Zhang and

Sun get a result for the uniform stability of the equilibrium point of the following impulsive

Hopfield-type neural networks systems with time delays:

x′i (t) = −ci xi(t) +
m

∑

j=1

ai j f j(x j(t)) +
m

∑

j=1

bi j g j(x j(t − τ j)) + I i , t > 0, t , tk,

xi(tk) = dk(xi(t−k )), i = 1,2, . . . ,m, k ∈ N,

whereτ j are the time delays, and satisfyτ j > 0.

We end this section by getting attention to the important novelties of this thesis: Fromthe

mathematical and engineering points of view, the modeling process for a real-world problem

is generally given by the Fig.1.14.

Real - world

   problem

Formulate
Mathematical

       model

Mathematical

 conclusions

Real - world

predictions

Test Solve

Interpret

Figure 1.14: The modeling process

However, in order to be realistic, the modeling process in our investigations isconsidered only

from a mathematical point of view and is illustrated in Fig. 1.15. From the perspective of this

illustration, our approaches developed in this thesis can be regarded as an extension of the

many conventional techniques which have been investigated by engineersin the mathematical

neuroscience.
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Figure 1.15: The modeling process in our investigations

1.2 A Brief Historical Review of Piecewise Constant Argument

The theory of differential equations with piecewise constant argument (EPCA) was initiated

in [69, 70, 77]. These equations have been under intensive investigation of researchers in

mathematics, biology, engineering and other fields for the last twenty years.The studies of

such equations were motivated by the fact that they represent a hybrid of continuous and

discrete dynamical systems and combine the properties of both the differential and difference

equations. The first mathematical model including piecewise constant argument was given

by Busenberg and Cooke [68] whose work was on a biomedical problem.In their work, first

order differential equations with piecewise constant argument was developed based on the

investigation of vertically transmitted diseases. Since then, several paperswere published by

Shah, Cooke, Aftabizadeh and Wiener [69, 70, 78]. A typical EPCA studied by them is in the

following form:

y′(t) = a0y(t) + a1y([t]) + a2y([t] ± a3),

wherea0,a1,a2 anda3 are constants,y(t) represents an unknown function, and [t] denotes

the greatest integer function. The initial value problems so defined have thestructure of a

continuous dynamical system within each of the intervals of unit length. There are many

mathematical models involving a piecewise constant argument such as Froudependulum,

Workpiece-Cutter system, Geneva wheel, electrodynamic shaker, dampedloading system,

undamped systems, vibration systems and so on. For a brief description of the models, we
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can refer to the book by Dai [71]. These differential equations are closely related to delay

differential equations (DDE) which provide a mathematical model for a physical,mechanical

or biological system in which the rate of change of a system depends uponits past history

as they contain arguments of delayed or advanced type [71, 72, 73]. Examples of numerrous

applications can be found from literature [100, 101, 102].

The theory of differential equations with piecewise constant argument of the form

x′(t) = f (t, x(t), x(h(t))), (1.4)

where the argumenth(t) has interval of constancy. For example, equations withh(t) = [t], [t−

n], t − n[t] were investigated in [69], wheren is a positive integer and [.] denotes the greatest

integer function.

An equation (1.4) in whichx′(t) is given by a functionx evaluated att and at arguments

[t], . . . , [t − n], wheren is a non-negative integer, is called of retarded or delay type. If the

arguments aret and [t + 1], . . . , [t + n], then the equation is of advanced type. If both these

types of arguments appear in the equation, it is called of mixed type.

The literature shows a general progress of an extensive interest in theproperties of solutions

to the governing differential equations with piecewise constant arguments. The system with

retarded type and advanced type was investigated in [69, 70, 78] and thereferences therewith.

Existence and uniqueness of the solution of this system and the asymptotic stability of some

of its solutions, the oscillatory properties of its solution and many qualitative results were

formulated and analyzed by researchers in the field of differential equations. A brief summary

of the theory can be found in [67, 71, 77] and the references cited therein.

It is not surprising to expect that the investigations of EPCA are continuously attracting the

attention from the scientists for the behaviors of piecewise constant systems, as can be found

from the current literature. Examples of such researchs are on the existence of almost periodic

solutions of retarded EPCA by Yuan [79], quasiperiodic solutions of EPCA by Küpper and

Yuan [80], existence of periodic solutions of retarded EPCA by Wang [81], Green’s function

and comparison principles for first-order periodic EPCA by Cabada, Ferreiro and Nieto [82],

existence, uniqueness and asymptotic behavior of EPCA by Papaschinopoulos [83]. Remarks

on the development of the theory of EPCA can be also found in thesis [143,144].

In the light of above discussions, most of the results for differential equations with piecewise
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constant argument are obtained by the method of reducing them into discreteequations. The

method of reduction to discrete equations has been the main and possibly a unique way of sta-

bility analysis for these equations [69, 77]. Hence, qualitative propertiesof solutions which

start at non-integer values can not be achieved. Particularly, one cannot investigate the prob-

lem of stability completely, as only elements of a countable set are allowed to be discussed

for initial moments. Consequently, we need a different kind of investigation.

By introducing arbitrary piecewise constant functions as arguments, the concept of differential

equations with piecewise constant argument has been generalized in papers [3, 4, 5, 6, 7,

10, 17, 18]. It has been assumed that there is no restriction on the distance between the

switching moments of the argument. Only equations which are linear with respectto the

values of solutions at non-deviated moments of time have been investigated. That narrowed

significantly the class of systems. All of these equations are reduced to equivalent integral

equations such that one can investigate many problems, which have not been solved properly

by using discrete equations, i.e., existence and uniqueness of solutions, stability and existence

of periodic solutions. Since we do not need additional assumptions on the reduced discrete

equations, the new method requires more easily verifiable conditions, similar to those for

ordinary differential equations.

In papers [3, 4, 5, 6, 7], the theory of differential equations with piecewise constant argument

has been generalized by Akhmet. Later, Akhmet gathered all results for differential equation

with piecewise constant argument of generalized type in the book [2]. There, it has been

proposed to investigate differential equations of the form

x′(t) = f (t, x(t), x(β(t))), (1.5)

whereβ(t) = θk (see Fig. 1.16) ifθk ≤ t < θk+1, k ∈ Z, t ∈ R, is an identification function,

θk, k ∈ Z, is a strictly increasing sequence of real numbers,|θk| → ∞ as |k| → ∞. Clearly,

the greatest integer function [t] is a particular case of the functionβ(t). That is, if we choose

θk = k, k ∈ Z, thenβ(t) = [t]. System (1.5) is called a differential equation with piecewise

constant argument of generalized type. That is to say, equation (1.5) is of delayed type.
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Figure 1.16: The graph of the argumentβ(t).

Another generalization of differential equations with piecewise constant argument of type

x′(t) = f (t, x(t), x(γ(t))), (1.6)

whereγ(t) = ζk (see Fig.1.17) ift ∈ [θk, θk+1), k ∈ Z, t ∈ R, are piecewise constant functions,

ζk are strictly increasing sequence of real numbers, unbounded on the left and on the right

such thatθk ≤ ζk ≤ θk+1 for all k.
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Figure 1.17: The graph of the argumentγ(t).

Let us clarify why the system (1.6) is of mixed type [90], that is, the argument can changed its

deviation character during the motion. The argument is deviated if it is advanced or delayed.
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Fix k ∈ N, and consider the system on the interval [θk, θk+1). Then, the identification function

γ(t) is equal toζk. If the argumentt satisfiesθk ≤ t < ζk, thenγ(t) > t and (1.6) is an equation

with advanced argument. Similarly, ifζk < t < θk+1, thenγ(t) < t and (1.6) is an equation

with delayed argument. Consequently, the equation (1.6) changes the type of deviation of the

argument during the process. In other words, the system is of the mixed type.

1.3 Differential Equations with Piecewise Constant Argument of Generalized

Type

In this section we shall give some useful definitions, lemmas and fundamentaltheorems

for differential equations with piecewise constant argument of generalized type proposed by

Akhmet [2, 4, 6, 8].

1.3.1 Description of Systems

Let R, N andZ be the sets of all real numbers, natural numbers and integers, respectively.

Denote by‖·‖ the Euclidean norm for vectors inRm, m ∈ N, and denote the uniform norm by

‖C‖ = sup{‖C x‖ | ‖x‖ = 1} for m×mmatrices.

1.3.2 Existence and Uniqueness Theorems

We now consider the existence and uniqueness theorems for differential equations with piece-

wise constant argument of generalized type due to Akhmet [4, 6, 8] based on the construction

of an equivalent integral equation.

1.3.2.1 Equations with Delayed Argument

In this part we consider the following quasilinear system with delayed argument

y′ = Ay+ f (t, y(t), y(β(t))), (1.7)

wherey ∈ Rm, t ∈ R, A is a constantn× n real valued matrix,f ∈ C(R × Rm × Rm) is a real

valuedn× 1 function,β(t) = θi if θi ≤ t < θi+1, i ∈ Z, is an identification function,θi , i ∈ Z,

is a strictly ordered sequence of real numbers,|θi | → ∞ as|i| → ∞.
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The following assumptions will be needed throughout this section:

(H1) f (t, x, z) is continuous in the first argument,f (t, 0, 0) = 0, t ∈ R, and f is Lipschitzian

such that|| f (t, y1, w1) − f (t, y2, w2)|| ≤ ℓ(||y1 − y2|| + ||w1 − w2||);

(H2) there exists real number̄θ > 0 such thatθi+1 − θi ≤ θ̄, i ∈ Z;

Denote byX(t, s) = eA(t−s), t, s ∈ R the fundamental matrix of the following linear homoge-

neous system

y′(t) = Ay

associated with (1.7). It is known that there exists a constantµ > 0 such that||eA(t−s)|| ≤

eµ|t−s|, t, s ∈ R. One can also show that||eA(t−s)|| ≥ e−µ|t−s| t, s ∈ R. Thus, there exist positive

numbersN andn such thatn ≤ ||eA(t−s)|| ≤ N, whereN = eµθ, n = e−µθ if t, s ∈ [θi , θi+1] for

all i ∈ Z.

Definition 1.3.1 A solution y(t) = y(t, θi , y0), y(θi) = y0, i ∈ Z, of (1.7) on [θi , ∞) is a

continuous function such that

(i) the derivative y′(t) exists at each point t∈ [θi , ∞),with the possible exception of the points

θ j , j ≥ i, where one-sided derivatives exist;

(ii) equation(1) is satisfied by y(t) at each interval[θ j , θ j+1), j ≥ i.

Definition 1.3.1 is a new version of [69] adapted to our genaral case.

Theorem 1.3.2 Suppose conditions(H1)− (H2) are fulfilled. Then for every y0 ∈ R
m and

i ∈ Z, there exists a unique solution y(t) of (1.7) in the sense of Definition1.3.1.

Assume additionally that:

(H3) 2Nℓθ̄ < 1;

(H4) Nℓθ̄[1 + N(1+ ℓθ̄)eNℓθ̄] < n.
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We continue with the following assertion which provides the conditions of existence and

uniqueness of solutions for arbitrary initial momentt0.

Lemma 1.3.3 Assume that conditions(H1)− (H4) are fulfilled. Then, for every y0 ∈ Rm, t0 ∈

R, θi < t0 ≤ θi+1, i ∈ Z, there exists a unique solution̄y(t) = y(t, θi , ȳ0) of (1.7) in sense of

Definition1.3.1 such that̄y(t0) = y0.

Let us introduce the following definition from [84], modified for our genaral case.

Definition 1.3.4 A function y(t) is a solution of(1.7) onR if:

(i) y(t) is continuous onR;

(ii) the derivative y′(t) exists at each point t∈ R with the possible exception of the points

θi , i ∈ Z, where one-sided derivatives exist;

(iii) equation(1.7) is satisfied on each interval[θi , θi+1), i ∈ Z.

Now, we give the following equivalence lemma which is major importance of our investiga-

tions throughout the thesis. The proof of the assertion is very similar to that of Lemma 3.1 in

[4].

Lemma 1.3.5 A function y(t) = y(t, t0, y0), y(t0) = y0, where t0 is a fixed real number, is a

solution of(1.7) in the sense of Definition 1.3.4 if and only if it is a solution of the following

integral equation:

y(t) = eA(t−t0)y0 +

∫ t

t0
eA(t−s) f (s, y(s), y(β(s)))ds.

In the following theorem the conditions for the existence and uniqueness of solutions onR

are established. The proof of the assertion is similar to that of Theorem 2.3 in[4].

Theorem 1.3.6 Suppose that conditions(H1)− (H4) are fulfilled. Then, for every(t0, y0) ∈

R × R
m, there exists a unique solution y(t) = y(t, t0, y0) of (1.7) in sense of Definition1.3.4

such that y(t0) = y0.
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The last theorem arranges the correspondence between points (t0, y0) ∈ R × R
m and all so-

lutions of (1.7), and there is not a solution of the equation out of the correspondence. Using

the assertion we can say that definition of the initial value problem for differential equations

with piecewise constant argument of generalized type is similar to the problem for an ordinary

differential equation, although the equation is of delayed type.

1.3.2.2 Equations with both Delayed and Advanced Arguments

Let us fix two real-valued sequencesθi , ζi , i ∈ Z, such thatθi < θi+1, θi ≤ ζi ≤ θi+1 for all

i ∈ Z, |θi | → ∞ as|i| → ∞.

We shall consider the following system of differential equations:

z′(t) = Cz(t) + f (t, z(t), z(γ(t))), (1.8)

wherez ∈ Rm, t ∈ R, γ(t) = ζi , if t ∈ [θi , θi+1), i ∈ Z.

The following assumptions will be needed:

(H1′) C ∈ C(R) is a constantm×m real valued matrix;

(H2′) f (t, x, y) ∈ C(R × Rm× Rm) is anm× 1 real valued function;

(H3′) f (t, x, y) satisfies the condition

|| f (t, x1, y1) − f (t, x2, y2)|| ≤ ℓ0(||x1 − x2|| + ||y1 − y2||), (1.9)

whereℓ0 > 0 is a constant, and the condition

f (t, 0, 0) = 0, t ∈ R;

(H4′) there exists real number̄θ > 0 such thatθi+1 − θi ≤ θ̄, i ∈ Z.

One can see that system (1.8) ont ∈ [θi , θi+1), i ∈ Z have the form of a special functional-

differential equations

z′(t) = Cz(t) + f (t, z(t), z(ζi)). (1.10)

We introduce the following definition, which is a version of a definition from [84], modified

for the general case.
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Definition 1.3.7 A continuous function z(t) is a solution of(1.8) onR if:

(i) the derivative z′(t) exists at each point t∈ R with the possible exception of the points

θi , i ∈ Z, where the one-sided derivatives exist;

(ii) the equation is satisfied for z(t) on each interval(θi , θi+1), i ∈ Z, and it holds for the right

derivative of z(t) at the pointsθi , i ∈ Z.

We now give some useful investigations for the fundamental matrix of solutions.

Denote byZ(t, s) = eC(t−s), t, s ∈ R the fundamental matrix of the following linear homoge-

neous system

z′(t) = Cz

associated with (1.8). There exist positive numbersN andn such thatn ≤ ||eC(t−s)|| ≤ N if

t, s ∈ [θi , θi+1] for all i ∈ Z.

In the following lemma a correspondence between points (t0, z0) ∈ R × Rm and the solutions

of (1.8) in the sense of Definition 1.3.7 is established. Using this result we cansay that

the definition of the IVP for our system is similar to that for ordinary differential equations,

although it is an equation with a deviating argument. The proof of the assertionis very similar

to that of Lemma 2.1 in [5].

Lemma 1.3.8 A function z(t) = z(t, t0, z0), z(t0) = z0, where t0 is a fixed real number, is a

solution of(1.8) in the sense of Definition 1.3.7 if and only if it is a solution of the following

integral equation:

z(t) = eC(t−t0)z0 +

∫ t

t0
eC(t−s) f (s, z(s), z(γ(s)))ds.

From now on we need the assumption

(H5′) Nℓ0θ̄eNℓ0θ̄ < 1, 2Nℓ0θ̄ < 1, N2ℓ0θ̄{Nℓ0θ̄eNℓ0θ̄+1
1−Nℓ0θ̄eNℓ0θ̄

+ Nℓ0θ̄eNℓ0θ̄} < n.

Now, we continue with the following lemma which provides the conditions of existence and

uniqueness of solutions for arbitrary initial momentξ on [θi , θi+1].
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Lemma 1.3.9 Assume that conditions(H1′) − (H5′) are fulfilled, and fix i∈ Z. Then, for

every(ξ, z0) ∈ [θi , θi+1] × R
m, there exists a unique solution z(t) = z(t, ξ, z0) of (1.10) on

[θi , θi+1].

Theorem 1.3.10Assume that conditions(H1′) − (H5′) are fulfilled. Then, for every(t0, z0) ∈

R×Rm there exists a unique solution z(t) = z(t, t0, z0) of (1.8) in the sense of Definition 1.3.7

such that z(t0) = z0.

The last two assertions can be verified in exactly the same way as Lemma 1.1 andTheorem

1.1 from [5].

1.3.3 Basics of Lyapunov-Razumikhin Technique

In this section, the following results due to the paper [17] obtained by applying Razumikhin

technique for differential equations with piecewise constant argument of generalized type [4,

5]. We will give sufficient conditions for stability, uniform stability and uniform asymptotic

stability of the trivial solution of such equations.

Let N andR+ be the set of natural numbers and nonnegative real numbers, respectively, i.e.,

N = {0, 1, 2, 3, ...}, R+ = [0,∞). Denote the m-dimensional real space byR
m, m ∈ N, and

the Euclidean norm inRm by ‖ . ‖. Fix a real-valued sequenceθi such that 0= θ0 < θ1 < ... <

θi < ... with θi → ∞ asi → ∞.

Let us introduce special notations:

K = { a ∈ C(R+,R+) : strictly increasing anda(0) = 0},

Λ = { b ∈ C(R+,R+) : b(0) = 0, b(s) > 0 for s> 0}.

Here, we consider the following differential equation:

x′(t) = f (t, x(t), x(β(t))), (1.11)

wherex ∈ S(ρ), S(ρ) = {x ∈ Rm : ‖x‖ < ρ}, t ∈ R+, β(t) = θi if t ∈ [θi , θi+1), i ∈ N.

The following assumptions are needed:

(C1) f (t, y, z) ∈ C(R+ × S(ρ) × S(ρ)) is anm× 1 real valued function;
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(C2) f (t,0,0) = 0 for all t ≥ 0;

(C3) f (t, y, z) satisfies the condition

‖ f (t, y1, z1) − f (t, y2, z2)‖ ≤ ℓ(‖y1 − y2‖ + ‖z1 − z2‖)

for all t ∈ R+ andy1, y2, z1, z2 ∈ S(ρ), whereℓ > 0 is a Lipschitz constant;

(C4) there exists a positive numberθ such thatθi+1 − θi ≤ θ, i ∈ N;

(C5) ℓθ[1 + (1+ ℓθ)eℓθ] < 1;

(C6) 3ℓθeℓθ < 1.

We give now some definitions and preliminary results which enable us to investigate stability

of the trivial solution of (1.11).

Definition 1.3.11 [4] A function x(t) is a solution of(1.11)onR+ if:

(i) x(t) is continuous onR+;

(ii) the derivative x′(t) exists for t∈ R
+ with the possible exception of the pointsθi , i ∈ N,

where one-sided derivatives exist;

(iii) equation(1.11) is satisfied by x(t) on each interval(θi , θi+1), i ∈ N, and it holds for the

right derivative of x(t) at the pointsθi , i ∈ N.

For simplicity of notation in the sequel, let us denote

K(ℓ) =
1

1− ℓθ[1 + (1+ ℓθ)eℓθ]
.

The following lemma is an important auxiliary result of that paper.

Lemma 1.3.12 Let (C1)− (C5) be fulfilled. Then the following inequality

‖x(β(t))‖ ≤ K(ℓ) ‖x(t)‖

holds for all t≥ 0.

We give the following assertion which establishes the existence and uniqueness of solutions

of (1.11).
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Theorem 1.3.13Assume that conditions(C1) and (C3)− (C6) are satisfied. Then for every

(t0, x0) ∈ R
+ × S(ρ) there exists a unique solution x(t) = x(t, t0, x0) of (1.11) on R

+ in the

sense of Definition1.3.11such that x(t0) = x0.

Definition 1.3.14 Let V : R+ × S(ρ)→ R
+. Then, V is said to belong to the classϑ if:

(i) V is continuous onR+ × S(ρ) and V(t,0) ≡ 0 for all t ∈ R+;

(ii) V(t, x) is continuously differentiable on(θi , θi+1) × S(ρ) and for each x∈ S(ρ), right

derivative exists at t= θi , i ∈ N.

Let the derivative ofV with respect to system (1.11) be defined by

V′(t, x, y) =
∂V(t, x)
∂t

+ gradT
x V(t, x) f (t, x, y)

for all t , θi in R
+ andx , y ∈ S(ρ) if a functionV ∈ ϑ.

Definitions of Lyapunov stability for the solutions of discussed systems can be given in the

same way as for ordinary differential equations. Let us give the followings.

Definition 1.3.15 [6] The zero solution of(1.11) is said to be

(i) stable if for anyε > 0 and t0 ∈ R
+, there exists aδ = δ(t0, ε) > 0 such that‖x0‖ < δ

implies‖x(t, t0, x0)‖ < ε for all t ≥ t0;

(ii) uniformly stable ifδ is independent of t0.

Definition 1.3.16 [6] The zero solution of(1.11) is said to be uniformly asymptotically stable

if it is uniformly stable and there is aδ0 > 0 such that for everyε > 0 and t0 ∈ R+, there exists

a T = T(ε) > 0 such that‖x(t, t0, x0)‖ < ε for all t > t0 + T whenever‖x0‖ < δ0.

Now we give the formulation for the stability of the zero solution of (1.11) based on the

Lyapunov-Razumikhin method. In the next theorems, we assume that conditions (C1)-(C6)

are satisfied.

Theorem 1.3.17Assume that there exists a function V∈ ϑ such that
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(i) u(‖x‖) ≤ V(t, x) onR+ × S(ρ), where u∈ K ;

(ii) V′(t, x, y) ≤ 0 for all t , θi in R
+ and x, y ∈ S(ρ) such that

V(β(t), y) ≤ V(t, x).

Then the zero solution of(1.11) is stable.

Theorem 1.3.18Assume that there exists a function V∈ ϑ such that

(i) u(‖x‖) ≤ V(t, x) ≤ v(‖x‖) onR
+ × S(ρ), where u, v ∈ K ;

(ii) V′(t, x, y) ≤ 0 for all t , θi in R
+ and x, y ∈ S(ρ) such that

V(β(t), y) ≤ V(t, x).

Then the zero solution of(1.11) is uniformly stable.

Theorem 1.3.19Assume that all of the conditions in Theorem1.3.18are valid and there exist

a continuous nondecreasing functionψ such thatψ(s) > s for s> 0 and a function w∈ Λ. If

condition (ii) is replaced by

(iii) V′(t, x, y) ≤ −w(‖x‖) for all t , θi in R
+ and x, y ∈ S(ρ) such that

V(β(t), y) < ψ(V(t, x)),

then the zero solution of(1.11) is uniformly asymptotically stable.

1.4 The Theory of Impulsive Differential Equations

The theory of impulsive differential equations play its own modest role in attracting the at-

tention of researchers to the symbiosis of continuity and discontinuity for the definition of

a motion. It is well known that impulsive differential equation [1, 112, 113] is one of the

basic instruments so the role of discontinuity has been understood better forthe real world

problems. In real world, many evolutionary processes are characterized by abrupt changes

at certain time. These changes are called to be impulsive phenomena, which are included in

many fields such as biology involving thresholds, bursting rhythm models, physics, chem-

istry, population dynamics, models in economics, optimal control, neural networks, etc. For

33



example, when an oscillating string is struck by a hammer, it experiences a sudden change of

velocity; a pendulum of a clock undergoes a rapid change of momentum when it crosses its

equilibrium position; harvesting and epidemics lead to a significant decreasein the population

density of a species, etc. To explain such processes mathematically, it becomes necessary to

study impulsive differential equations, also called differential equations with discontinuous

trajectories.

A well known example of such phenomena is the mathematical model of clock [145, 146,

147]. Although, general novelties of impulsive differential equations were introduced by

Pavlidis [128, 129, 130]. The book of Samoilenko and Perestyuk [112]is a fundamental

work in the area as it contains many qualitative theoretical problems such as the existence

and uniqueness of solutions, stability, periodic and almost periodic solutions, integral sets,

optimum control, etc. Later, Akhmet [1] gathered all previous results and introduced new

approaches in applied mathematics. In this book, main purpose is to present the theory of

differential equations with solutions that have discontinuities either at the moments when the

integral curves reach certain surfaces in the extended phase space (t, x), as time increases

(decreases), or at the moments when the trajectories enter certain sets in thephase spacex.

That is to say, the moments when solutions have discontinuities are not prescribed.

There are two different kinds of impulsive differential equations: with impulses at fixed times;

and with impulsive action at variable times. The first one has the form [1]

x′(t) = f (t, x)

∆x |t=τk= Ik(x),
(1.12)

wherex ∈ R
m, m ∈ N, t ∈ R, {τk} , is a given sequence of times indexed by a finite or an

infinite setJ, f andIk arem− dimensional vector-valued, continuous functions. A phase point

of (1.12) moves along one of the trajectories of the differential equationx′(t) = f (t, x) for all

t , τk. Whent = τk, the point has a jump∆x |t=τk= x(τ+k )− x(τ−k ) = Ik(x(τ−k )). Thus, a solution

x(t) of (1.12) is a piecewise continuous function that has discontinuities of the first kind at

t = τk.

In the latter one, impulse action occurs when the phase point of a system intersects the pre-

scribed surfaces in the phase space. It is known that systems with impulsesat variable times

generate more difficult theoretical challenges if one compares that systems with impulses at
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fixed moments. Systems with impulses at variable (non-fixed) times is of the form

x′(t) = f (t, x)

∆x |t=τk(x)= Ik(x),
(1.13)

whereτk(x), k ∈ J defines for the surfaces of discontinuities. Despite the systems (1.12), the

solutions of equations (1.13) are nevertheless piecewise continuous butthe points of discon-

tinuity depend on the solutions. For this reason, this makes the investigations ofsuch systems

more difficult.

We note that it is the first time that the differential equation with impulses is given in the form

(1.12) in [1]. Generally, the system has been used in the following form [112, 113]

x′(t) = f (t, x), t , τk,

∆x |t=τk= Ik(x).
(1.14)

The system (1.12) is more convenient for the motion with discontinuities than (1.14), since

the existence of the left derivative at disontinuity points is not disregarded in system (1.12).

In this thesis, we focus on the systems with impulses at fixed times. Let us give some defi-

nitions and theoretical results for systems with fixed moments of impulses due to thebooks

proposed by Akhmet, Samoilenko and Perestyuk [1, 112].

1.4.1 Description of the System

Let R, N andZ be the sets of all real numbers, natural numbers and integers, respectively.

Denote byτ = {τk} a strictly increasing sequaence of real numbers such that the setA of

indexesk is an interval inZ.

Definition 1.4.1 τ is a B− sequence, if one of the following alternatives is valid:

(i) τ = ⊘;

(ii) τ is a nonempty and finite set;

(iii) τ is an infinite set such that|τk| → ∞ as |k| → ∞.

Definition 1.4.2 A functionϕ : T → R
m is from the set PC(T, τ) if:
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(i) ϕ is left continuous;

(ii) ϕ is continuous, except, possibly, points fromτ, where it has discontinuities of the first

kind.

Definition 1.4.3 A functionϕ : T → R
m belongs to the set PC1(T, τ) if:

(i) ϕ ∈ PC(T, τ);

(ii) ϕ′(t) ∈ PC(T, τ), where the derivative at pointsτ is assumed to be the left derivative.

In this part of the section, we consider the following impulsive differential equation which has

maximal correspondence to our investigations throughout the thesis:

x′(t) = Ax+ f (t, x)

∆x |t=τk= Ik(x),
(1.15)

whereA = diag(−a1, . . . ,−am) with ai > 0, i = 1, . . . ,m is a constant diagonal matrix.

We understand a solution of (1.15) as a function fromPC1(T, τ),T ⊂ R
+, which satisfies

the differential equation and the impulsive condition of (1.15). The differential equation is

satisfied for allt ∈ T, except possibly at the moments of discontinuityτ, where the left side

derivative exists and it satisfies the differential equation as well.

Denote byX(t, s) = eA(t−s), t, s ∈ R+ the fundamental matrix of the following linear homoge-

neous system

x′(t) = Ax (1.16)

associated with (1.15). One can easily see that‖X(t, s)‖ ≤ e−σ(t−s), whereσ = min
1≤i≤m

ai .

We now give equivalent integral equations for the initial value problem (1.15).

Lemma 1.4.4 A functionϕ ∈ PC1(T, τ), ϕ(t0) = x0, is a solution of (1.15) if and only if it is

a solution of the following integral equation:

ϕ(t) = X(t, t0)x0 +

∫ t

t0
X(t, s) f (s, ϕ(s))ds+

∑

t0≤τk<t

X(t, τ+k )Ik(ϕ(τk)), t ≥ t0.
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Lemma 1.4.5 A functionϕ ∈ PC1(T, τ), ϕ(t0) = x0, is a solution of (1.15) if and only if it is

a solution of the following integral equation:

ϕ(t) = x0 +

∫ t

t0

(

Aϕ(s) + f (s, ϕ(s))
)

ds+
∑

t0≤τk<t

Ik(ϕ(τk)), t ≥ t0.

Let us give the Gronwall-Bellman Lemma for piecewise continuous functions,which is one

of the simplest and most useful integral inequalities.

Lemma 1.4.6 Let u, v ∈ PC(J, τ), u(t) ≥ 0, v(t) > 0, t ∈ J, βk ≥ 0, k ∈ A, t0 ∈ J, and c∈ R

is a nonnegative constant. If u(t) satisfies the inequality

u(t) ≤ c+
∫ t

t0
v(s)u(s)ds+

∑

t0≤τk<t

βku(τk), t ≥ t0,

then the following estimates holds for the function u(t),

u(t) ≤ ce
∫ t
t0

v(s)ds
∏

t0≤τk<t

(1+ βk), t ≥ t0.

1.4.2 Existence and Uniqueness Theorems

Let us denote byJ ⊆ R
+, τ andG ⊆ R

m,m ∈ N as an open interval, a nonemptyB− sequence

with set of indexesA and an open connected set, respectively. Consider a continuous function

f : J ×G → R
m and a mapI : A ×G → R

m. The domain of the equation (1.15) is the set

Ω = J ×A ×G.

Theorem 1.4.7 [1](Local existence theorem) Suppose f(t, x) is continuous on J× G and
∏

k G ⊆ G, k ∈ A. Then for any(t0, x0) ∈ J ×G there isα > 0 such that a solution x(t, t0, x0)

of (1.15) exists on(t0 − α, t0 + α).

Theorem 1.4.8 [1](Uniqueness theorem) Assume that f(t, x) satisfies a local Lipschitz con-

dition, and every solution x= v + Ik(v), k ∈ A, x ∈ G, has at most one solution with re-

spect to v. Then any solution x(t, t0, x0), (t0, x0) ∈ J × G, of (1.15) is unique. That is, if

y(t, t0, x0) is another solution of (1.15), and the two solutions are defined at some t∈ J, then

x(t, t0, x0) = y(t, t0, x0).
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Now, let us consider existence and uniqueness theorems of (1.15) onΩ.

Fix (t0, x0) ∈ J ×G, and take

J0 = [t0 − h, t0 + h], G0 =
{

x ∈ Rm : ‖x− x0‖ < H
}

,

with some fixed positive numbersH andh. Suppose thatJ0×G0 ⊂ J×G with small numbers.

Let p+ = i([t0, t0 + h]), p− = i([t0 − h, t0]), A0 = {k ∈ A : τk ∈ J0} andτ0 = {τk} , k ∈ A0.

We need the following assumptions:

(C1) A is a continuousm×mdiagonal matrix and‖A‖ ≤ N < ∞;

(C2) there exists Lipschitz constantℓ f > 0 such that‖ f (t, x) − f (t, y)‖ ≤ ℓ f ‖x− y‖ for arbi-

trary x, y ∈ G, uniformly in all (t, k) ∈ J ×A ;

(C3) Ik satisfies‖Ik(x) − Ik(y)‖ ≤ ℓI ‖x− y‖ for arbitrary x, y ∈ G, uniformly in all (t, k) ∈

J ×A, whereℓI is a positive Lipschitz constant;

(C4) sup
I×G
‖ f (t, x)‖ + sup

A×G
‖Ik(x)‖ = M < ∞;

(C5) (N + M)h+max(p+, p−)M < H;

(C6) (N + ℓ f )h+ ℓI max(p+, p−) < 1.

Theorem 1.4.9 Assume that(C1)− (C6)are valid. Then the initial value problem (1.15) and

x(t0) = x0 admit a unique solution on J0.

1.4.3 Stability Based on Linear Approximation

In this section, we will give sufficient conditions for the global asymptotic stability of the

zero solution of (1.15) based on linearization [112]. Here, we assume that ϕ(t) is a solution of

(1.15) such thatϕ : J = [0,∞)→ G andτk → ∞ ask→ ∞.

Definition 1.4.10 [1] The solutionϕ(t) is stable if for anyǫ > 0 and t0 ∈ J there corresponds

δ(t0, ǫ) > 0 such that for any other solutionψ(t) of (1.15) with‖ϕ(t0) − ψ(t0)‖ < δ(t0, ǫ) we

have‖ϕ(t) − ψ(t)‖ < ǫ for t ≥ t0.
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Definition 1.4.11 [1] The solutionϕ(t) is asymptotically stable if it is stable in the sense of

Definition 1.4.10 and there exists a positive numberκ(t0) such that ifψ(t) is any other solution

of (1.15) with‖ϕ(t0) − ψ(t0)‖ < κ(t0), then‖ϕ(t) − ψ(t)‖ → 0 as t→ ∞.

From now on we make the following assumptions:

(C7) there exists positive numberτ such thatτ ≤ τk+1 − τk, k ∈ N;

(C8) σ − ℓ f − ln(1+ℓI )
τ

> 0.

Theorem 1.4.12Assume that(C1)− (C8) are fulfilled.Then, the zero solution of (1.15) is

globally asymptotically stable.

1.4.4 Existence of Periodic Solutions

We shall need the following additional conditions of periodicty:

(C9) f (t + ω, x) = f (t, x) for all (t, x) ∈ R+ ×G;

(C10) the sequenceτk satisfiesτk+p = θk + ω, k ∈ N and Ik+p = Ik for a fixed positive real

periodω and some positive integerp.

A functionϕ ∈ PC(R+, τ) is a piecewise continuousω− periodic function ifϕ(t + ω) = ϕ(t),

for all t ∈ R+.

Theorem 1.4.13 (Poincare’ criterion) Assume that(C1), (C2)and(C4)− (C10)are fulfilled.

Then, a solutionϕ ∈ PC(R+, τ) of (1.15) isω− periodic if and only ifϕ(0) = ϕ(ω).

In what follows, we introduce a Green’s function

G(t, s) = (1− eAω)−1



















eA(t−s), 0 ≤ s≤ t ≤ ω,

eA(ω+t−s), 0 ≤ t < s≤ ω,
(1.17)
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so that the uniqueω− periodic solution of the system (1.15) can be written as

x∗(t) =
∫ ω

0
G(t, s) f (s, ϕ(s))ds+

p
∑

k=1

G(t, τ+k )Ik(ϕ(θk)).

Forτk, k ∈ N, let [0, ω] ∩ {τk}k∈N = {τ1, . . . , τp} and max
t,s∈[0,ω]

‖G(t, s)‖ = λ.

Theorem 1.4.14Assume that(C1)− (C10) are valid. Moreover, the linear homogeneous

ω− periodic system (1.16) does not have nontrivialω− periodic solutions and the inequality

λ(ℓ fω + ℓI p) < 1 holds, then (1.15) has a uniqueω− periodic solution.
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CHAPTER 2

STABILITY OF PERIODIC MOTIONS AND EQUILIBRIA

In this chapter we consider neural networks systems as well as impulsive neural networks

systems with piecewise constant argument of generalized type. Sufficient conditions for the

existence of a unique equilibrium and a periodic solution are obtained. The stability of these

solutions is investigated. Examples with numerical simulations are presented to illustrate the

results.

2.1 Equilibria of Neural Networks with Piecewise Constant Argument

In this section we obtain sufficient conditions for the existence of the unique equilibrium.

Existence and uniqueness of the solutions are established. We get a criteria for the global

asymptotic stability of the Hopfield-type neural networks with piecewise constant arguments

of generalized type by using linearization.

2.1.1 Introduction and Preliminaries

In recent years, dynamics of delayed neural networks have been studied and developed by

many authors and many applications have been found in different areas such as associative

memory, image processing, signal processing, pattern recognition and optimization (see [42,

94, 111, 46] and references cited therein). As is well known, such applications depend on the

existence of an equilibrium point and its stability.

One of the most crucial idea of the present section is that we assume Hopfield-type neural

networks may “memorize” values of the phase variable at certain moments of time toutilize
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the values during middle process till the next moment. Thus, we arrive to differential equa-

tions with piecewise constant delay. Obviously, the distances between the moments may be

very variable. Consequently, the concept of generalized type of piecewise constant argument

may be fruitful for the theory of neural networks.

Let us denote the set of all real numbers, natural numbers and integersby R,N,Z , respec-

tively, and a norm onRm by || · || where||u|| =
m

∑

j=1

|ui |.

In the present section we shall consider the following Hopfield-type neural networks system

with piecewise constant argument

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(β(t))) + di , (2.1)

ai > 0, i = 1,2, . . . ,m.

whereβ(t) = θk if θk ≤ t < θk+1, k ∈ Z, t ∈ R, is an identification function,θk, k ∈ Z, is a

strictly increasing sequence of real numbers,|θk| → ∞ as|k| → ∞, and there exists a positive

real number̄θ such thatθk+1 − θk ≤ θ̄, k ∈ Z. Moreover,m denotes the number of neurons in

the network,xi(t) corresponds to the state of theith unit at timet, f j(x j(t)) andg j(x j(β(t)))

denote, respectively, the measures of activation to its incoming potentials of the unit j at time

t andθk, k ∈ Z; bi j , ci j ,di are real constants;bi j denotes the synaptic connection weight of the

unit j on the uniti at timet, ci j denotes the synaptic connection weight of the unitj on the

unit i at timeθk, di is the input from outside the network to the uniti.

The following assumptions will be needed throughout the section:

(C1) The activation functionsf j ,g j ∈ C(Rm) with f j(0) = 0, g j(0) = 0 satisfy

| f j(u) − f j(v)| ≤ L j |u− v|,

|g j(u) − g j(v)| ≤ L̄ j |u− v|

for all u, v ∈ R, whereL j , L̄ j > 0 are Lipschitz constants, forj = 1,2, . . . ,m;

(C2) θ̄ [α3 + α2] < 1;

(C3) θ̄
[

α2 + α3

(

1+ θ̄α2

)

eθ̄α3
]

< 1,

where

α1 =

m
∑

i=1

m
∑

j=1

|b ji |Li , α2 =

m
∑

i=1

m
∑

j=1

|c ji |L̄i , α3 =

m
∑

i=1

ai + α1.
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Theorem 2.1.1 Suppose(C1) holds. If the neural parameters ai ,bi j , ci j satisfy

ai > Li

m
∑

j=1

|b ji | + L̄i

m
∑

j=1

|c ji |, i = 1, . . . ,m.

Then, (2.1) has a unique equilibrium x∗ = (x∗1, . . . , x
∗
m)T .

The proof of the theorem is almost identical to the verification in [46] with slightchanges

which are caused by the piecewise constant argument.

We understand a solutionx(t) = (x1, . . . , xm)T of (2.1) as a continuous function onR such

that the derivativex′(t) exists at each pointt ∈ R, with the possible exception of the points

θk, k ∈ Z, where one-sided derivative exists and the differential equation (2.1) is satisfied by

x(t) on each interval (θk, θk+1) as well.

In the following theorem the conditions for the existence and uniqueness ofsolutions onR are

established. The proof of the assertion is similar to that of Theorem 2.3 in [3]. Nevertheless,

detailed proof will be given in Lemma 3.3.2 and Theorem 3.3.3 of Section 3.3.

Theorem 2.1.2 Suppose that conditions(C1)− (C3) are fulfilled. Then, for every(t0, x0) ∈

R × Rm, there exists a unique solution x(t) = x(t, t0, x0) = (x1, . . . , xm)T , t ∈ R, of (2.1), such

that x(t0) = x0.

Now, let us give the following two equivalence lemmas of (2.1). The proofsare omitted here,

since they are similar to that of Lemma 3.1 in [3].

Lemma 2.1.3 A function x(t) = x(t, t0, x0) = (x1, . . . , xm)T , where t0 is a fixed real number, is

a solution of (2.1) onR if and only if it is a solution of the following integral equation onR:

For i = 1, . . . ,m,

xi(t) = e−ai (t−t0)x0
i +

∫ t

t0
e−ai (t−s)



















m
∑

j=1

bi j f j(x j(s))

+

m
∑

j=1

ci j g j(x j(β(s))) + di



















ds.

Lemma 2.1.4 A function x(t) = x(t, t0, x0) = (x1, . . . , xm)T , where t0 is a fixed real number, is

a solution of (2.1) onR if and only if it is a solution of the following integral equation onR:
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For i = 1, . . . ,m,

xi(t) = x0
i +

∫ t

t0



















−ai xi(s) +
m

∑

j=1

bi j f j(x j(s))

+

m
∑

j=1

ci j g j(x j(β(s))) + di



















ds.

2.1.2 Stability of Equilibrium

In this section, we will give sufficient conditions for the global asymptotic stability of the

equilibrium x∗. The system (2.1) can be reduced as follows. Letyi = xi − x∗i , for eachi =

1, . . . ,m. Then,

y′i (t) = −aiyi(t) +
m

∑

j=1

bi jφ j(y j(t)) +
m

∑

j=1

ci jψ j(y j(β(t))), (2.2)

ai > 0, i = 1,2, . . . ,m,

whereφi(yi) = fi(yi + x∗i ) − fi(x∗i ) andψi(yi) = gi(yi + x∗i ) − gi(x∗i ). For eachj = 1, . . . ,m,

φ j(·), ψ j(·), are Lipschitzian sincef j(·), g j(·) are Lipschitzian withL j , L̄ j respectively, and

φ j(0) = 0, ψ j(0) = 0.

Definition 2.1.5 The equilibrium x= x∗ of (2.1) is said to be globally asymptotically stable

if there exist positive constantsα1 andα2 such that the estimation of the inequality

‖x(t) − x∗‖ < α1 ‖x(t0) − x∗‖e−α2(t−t0) is valid for all t ≥ t0.

For simplicity of notation in the sequel, let us denote

ζ =
{

1− θ̄
[

α2 + α3

(

1+ θ̄α2

)

eθ̄α3
]}−1

.

The following lemma, which plays an important role in the proofs of further theorems has

been considered in [17]. But, for convenience of the reader we placethe full proof of the

assertion.

Lemma 2.1.6 Let y(t) = (y1(t), . . . , ym(t))T be a solution of (2.2) and(C1)− (C3)be satisfied.

Then, the following inequality

||y(β(t))|| ≤ ζ ||y(t)|| (2.3)

holds for all t∈ R.
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Proof. For a fixedt ∈ R, there existsk ∈ Z such thatt ∈ [θk, θk+1). Then, from Lemma 2.1.4,

we have

||y(t)|| =
m

∑

i=1

|yi(t)|

≤ ||y(θk)|| +
m

∑

i=1



















∫ t

θk



















ai |yi(s)| +
m

∑

j=1

|b ji |Li |yi(s)|

+

m
∑

j=1

|c ji |L̄i |yi(θk)|



















ds



















≤ (1+ θ̄α2)||y(θk)|| +
∫ t

θk

α3||y(s)||ds.

The Gronwall-Bellman Lemma yields that

||y(t)|| ≤
(

1+ θ̄α2

)

eθ̄α3 ||y(θk)||. (2.4)

Furhermore, fort ∈ [θk, θk+1) we have

||y(θk)|| ≤ ||y(t)|| +
m

∑

i=1



















∫ t

θk



















ai |yi(s)| +
m

∑

j=1

|b ji |Li |yi(s)|

+

m
∑

j=1

|c ji |L̄i |yi(θk)|



















ds



















≤ ||y(t)|| + θ̄α2||y(θk)|| +
∫ t

θk

α3||y(s)||ds.

The last inequality and (2.4) imply that

||y(θk))|| ≤ ||y(t)|| + θ̄α2||y(θk)|| + θ̄α3

(

1+ θ̄α2

)

eθ̄α3 ||y(θk)||.

Thus, it follows from condition (C3) that

||y(θk)|| ≤ ζ ||y(t)||, t ∈ [θk, θk+1).

Accordingly, (2.3) holds for allt ∈ R, which is the desired conclusion.�

From now on we need the following assumption:

(C4) γ − α1 − ζα2 > 0, whereγ = min
1≤i≤m

ai is positive.

Theorem 2.1.7 Assume that(C1)− (C4)are fulfilled. Then, the zero solution of (2.2) is glob-

ally asymptotically stable.
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Proof. Let y(t) = (y1(t), . . . , ym(t))T be an arbitrary solution of (2.2). From Lemma 2.1.3, we

have

||y(t)|| ≤ e−γ(t−t0)||y0|| +
m

∑

i=1



















∫ t

t0
e−γ(t−s)



















m
∑

j=1

|b ji |Li |yi(s)|

+

m
∑

j=1

|c ji |L̄i |yi(β(s))|



















ds



















≤ e−γ(t−t0)||y0|| + (α1 + ζα2)
∫ t

t0
e−γ(t−s)||y(s)||ds.

It follows that

eγ(t−t0)||y(t)|| ≤ ||y0|| + (α1 + ζα2)
∫ t

t0
eγ(s−t0)||y(s)||ds.

By virtue of Gronwall-Bellman inequality, we obtain that

||y(t)|| ≤ e−(γ−α1−ζα2)(t−t0)||y0||.

The last inequality, in conjunction with (C4), deduces that the zero solution of system (2.2) is

globally asymptotically stable.�

2.2 Periodic Motions of Neural Networks with Piecewise Constant Argument

In this section we derive some sufficient conditions for the existence and stability of periodic

solutions.

2.2.1 Existence and Stability of Periodic Solutions

In this part, we study the existence and global asymptotic stability of the periodicsolution of

(2.1). The following conditions are to be assumed:

(C5) there exists a positive integerp such thatθk+p = θk+ω, k ∈ Z with a fixed positive real

periodω;

(C6) κ
[

ω (α1 + ζα2)
]

< 1, whereκ = 1
1−e−γω .

Theorem 2.2.1 Assume that conditions(C1)− (C3) and (C5)− (C6) are valid. Then, the

system (2.1) has a uniqueω− periodic solution.
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We omit the proof of this assertion, since it can be proved in the same way as existence of the

periodic solution for the quasilinear system of ordinary differential equations in noncritical

case [110].

Theorem 2.2.2 Assume that conditions(C1)− (C6) are valid. Then, the periodic solution of

(2.1) is globally asymptotically stable.

Proof. By Theorem 2.2.1, we know that (2.1) has anω−periodic solutionx∗(t) = (x∗1, . . . , x
∗
m)T .

Suppose thatx(t) = (x1, . . . , xm)T is an arbitrary solution of (2.1) and letz(t) = x(t) − x∗(t) =

(x1 − x∗1, . . . , xm− x∗m)T . Then, from Lemma 1.1, we have

||z(t)|| ≤ e−γ(t−t0)||z0|| +
m

∑

i=1



















∫ t

t0
e−γ(t−s)



















m
∑

j=1

|b ji |Li |zi(s)|

+

m
∑

j=1

|c ji |L̄i |zi(β(s))|



















ds



















≤ e−γ(t−t0)||z0|| + (α1 + ζα2)
∫ t

t0
e−γ(t−s)||z(s)||ds.

Also, the previous inequality can be written as,

eγ(t−t0)||z(t)|| ≤ ||z0|| + (α1 + ζα2)
∫ t

t0
eγ(s−t0)||z(s)||ds.

By applying Gronwall-Bellman inequality, we obtain that

||z(t)|| ≤ e−(γ−α1−ζα2)(t−t0)||z0||.

Thus, using (C4), the periodic solution of system (2.1) is globally asymptotically stable.�

2.3 Equilibria of Neural Networks with Impact Activation

In this section we introduce following two different types of impulsive neural networks system

with piecewise constant argument of generalized type. For these types, sufficient conditions

for the existence of the unique equilibrium are obtained, existence and uniqueness of solutions

and the equivalence lemma for such systems are established and stability criterion for the

equilibrium based on linear approximation is proposed.
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2.3.1 (θ, θ)− Type Neural Networks

In this type, switching moments of constancy of argumentsθk, k ∈ N and the moments of

discontinuity are same for impulsive Hopfield-type neural networks systemwith piecewise

constant arguments.

2.3.1.1 Introduction and Preliminaries

Scientists often are interested in systems, which are either continuous-time or discrete-time.

They are widely studied in the theory of neural networks, but there is a somewhat new cate-

gory of dynamical system, which is neither continuous-time nor purely discrete-time; among

them are dynamical systems with impulses, and systems with piecewise constant arguments

[72, 117, 118, 119, 120]. It is obvious that processes of ‘integrate-and-fire’ type in neural

networks [125, 126, 127, 128] request the systems as a mathematical modeling instrument.

Significant parts of pioneer results for impulsive differential equations (IDE) and differential

equations with piecewise constant argument (EPCA) can be found in [1, 2, 72, 77, 112].

In recent years, dynamics of Hopfield-type neural networks have been studied and devel-

oped by many authors by using IDE [117, 120, 121, 122, 123, 124] and EPCA [114]. To the

best of our knowledge, there have been no results on the dynamical behavior of impulsive

Hopfield-type neural networks with piecewise constant arguments. Our investigation con-

tains an attempt to fill the gap by considering differential equations with piecewise constant

arguments of generalized type [4, 5, 6].

Denote byN andR+ = [0,∞) the sets of natural and nonnegative real numbers, respectively,

and denote a norm onRn by || · ||, where||u|| =
m

∑

j=1

|ui |. The main subject under investigation in

this section is the following impulsive Hopfield-type neural networks system with piecewise

constant argument

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(β(t))) + di , t , θk

∆xi |t=θk= Ik(xi(θ−k )), i = 1,2, . . . ,m, k ∈ N,
(2.5)

whereβ(t) = θk−1 if θk−1 ≤ t < θk, k ∈ N, t ∈ R+, is an identification function,θk > 0, k ∈ N,

is a sequence of real numbers such that there exist two positive real numbersθ, θ̄ such that

θ ≤ θk+1 − θk < θ̄, k ∈ N, ∆xi(θk) denotesxi(θk) − xi(θ−k ), wherexi(θ−k ) = limh→0− xi(θk + h).
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Moreover,ai > 0, i = 1,2, . . . ,m are constants,m denotes the number of neurons in the

network, xi(t) corresponds to the state of thei th unit at timet, f j(x j(t)) and g j(x j(β(t)))

denote, respectively, the measures of activation to its incoming potentials of the unit j at

time t ∈ [θk−1, θk), k = 1,2, . . . , andθk−1; bi j , ci j ,di are constants;bi j denotes the synaptic

connection weight of the unitj on the uniti at time t, ci j denotes the synaptic connection

weight of the unitj on the uniti at timeθk−1, di is the input from outside the network to the

unit i.

We denotePC(J,Rm), whereJ ⊂ R
+ is an interval, the set of all right continuous functions

ϕ : J→ R
m with possible points of discontinuity of the first kind atθk ∈ J, k ∈ N.

Moreover, we introduce a setPC(1)(J,Rm) of functionsϕ : J → R
m such thatϕ, ϕ′ ∈

PC(J,Rm), where the derivative at pointsθk is assumed to be the right derivative.

Throughout this section, we assume that the functionsIk : R
+ → R

+ are continuous, the

parametersbi j , ci j ,di are real, the activation functionsf j ,g j ∈ C(Rm) with f j(0) = 0,g j(0) =

0, and they satisfy the following conditions:

(C1) there exist Lipschitz constantsL j , L̄ j > 0 such that

| f j(u) − f j(v)| ≤ L j |u− v|,

|g j(u) − g j(v)| ≤ L̄ j |u− v|

for all u, v ∈ Rm, j = 1,2, . . . ,m;

(C2) the impulsive operatorI i satisfies

|I i(u) − I i(v)| ≤ ℓ|u− v|

for all u, v ∈ Rm, i = 1,2, . . . ,m, wherel is a positive Lipschitz constant.

For the sake of convenience, we adopt the following notations:

α1 =

m
∑

i=1

m
∑

j=1

|b ji |Li , α2 =

m
∑

i=1

m
∑

j=1

|c ji |L̄i , α3 =

m
∑

i=1

ai + α1.

Furthermore, the following assumptions will be needed throughout the section:

(C3) θ̄ [α3 + α2] < 1;
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(C4) θ̄
[

α2 + α3

(

1+ θ̄α2

)

eθ̄α3
]

< 1.

Taking into account the definition of solutions for differential equations with piecewise con-

stant arguments of generalized type [2] and IDE [113], we understanda solution of (2.5) as

a function fromPC(1)(J,Rm), J ⊂ R
+, which satisfies the differential equation and the im-

pulsive condition of (2.5). The differential equation is satisfied for allt ∈ J, except possibly

at the moments of discontinuityθk, where the right side derivative exists and it satisfies the

differential equation as well.

Let us denote an equilibrium solution for the differential equation of (2.5) as the constant

vectorx∗ = (x∗1, . . . , x
∗
m)T ∈ Rm, where eachx∗i satisfies

ai x
∗
i =

m
∑

j=1

bi j f j(x
∗
j ) +

m
∑

j=1

ci j g j(x
∗
j )) + di .

The proof of following lemma is almost identical to the verification of Lemma 2.2 in [117]

with slight changes which are caused by the piecewise constant argument.

Lemma 2.3.1 Assume that the neural parameters ai ,bi j , ci j and Lipschitz constants Lj , L̄ j

satisfy

ai > Li

m
∑

j=1

|b ji | + L̄i

m
∑

j=1

|c ji |, i = 1, . . . ,m.

Then, the differential equation of (2.5) has a unique equilibrium.

Theorem 2.3.2 If the equilibrium x∗ = (x∗1, . . . , x
∗
m)T ∈ R

m of the differential equation of

(2.5) satisfies Ik(x∗i ) = 0 for all i = 1, . . . ,m, k ∈ N. Then, x∗ is an equilibrium point of (2.5).

Particularly, ifci j = 0, the system (2.5) reduces to the system in [117].

In the theory of differential equations with piecewise constant arguments of generalized type

[2], we take the functionβ(t) = θk if θk ≤ t < θk+1, that is,β(t) is right continuous. However,

as it is usually done in the theory of IDE, at the points of discontinuityθk of the solution,

solutions are left continuous. One should say that for the following investigation the right

continuity is more convenient assumption if one considers equations with piecewise constant

arguments.
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The rest of this section is organized as follows: In the next section, we obtain sufficient

conditions for the existence and uniqueness of the solutions and the equivalence lemma for

(2.5). We get a criteria for the global asymptotic stability of the impulsive Hopfield-type

neural networks with piecewise constant arguments of generalized type by using linearization.

2.3.1.2 Existence and Uniqueness of Solutions

Consider the following system

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(θr−1)) + di , (2.6)

ai > 0, i = 1,2, . . . ,m

for θr−1 ≤ t ≤ θr .

Now, we continue with the following lemma which provides the conditions of existence and

uniqueness of solutions for arbitrary initial momentξ.

Lemma 2.3.3 Let (C1), (C3), (C4) be satisfied. Then for each x0 ∈ R
m, and ξ, θr−1 ≤ ξ <

θr , r ∈ N, there exists a unique solution x(t) = x(t, ξ, x0) = (x1(t), . . . , xm(t))T , of (2.6),θr−1 ≤

t ≤ θr , such that x(ξ) = x0 = (x0
1, . . . , x

0
m)T .

Proof. Existence: It is enough to show that the equivalent integral equation

zi(t) = x0
i +

∫ t

ξ



















−aizi(s) +
m

∑

j=1

bi j f j(zj(s)) +
m

∑

j=1

ci j g j(zj(θr−1)) + di



















ds

has a unique solutionz(t) = (z1(t), . . . , zm(t))T .

Define a norm||z(t)||0 = max
[θr−1,θr ]

||z(t)|| and construct the following sequenceszn
i (t), z0

i (t) ≡

x0
i , i = 1, . . . ,m, n ≥ 0 such that

zn+1
i (t) = x0

i +

∫ t

ξ



















−aiz
n
i (s) +

m
∑

j=1

bi j f j(z
n
j (s)) +

m
∑

j=1

ci j g j(z
n
j (θr−1)) + di



















ds.

One can find that

||zn+1(t) − zn(t)||0 = max
[θr−1,θr ]

||zn+1(t) − zn(t)|| ≤
[

θ̄ [α3 + α2]
]n
κ,
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where

κ = θ̄















(α3 + α2) ||x0|| +
m

∑

i=1

di















.

Hence, the sequenceszn
i (t) are convergent and their limits satisfy the integral equation on

[θr−1, θr ]. The existence is proved.

Uniqueness: It is sufficient to check that for eacht ∈ [θr−1, θr ], andx2 = (x2
1, . . . , x

2
m)T , x1 =

(x1
1, . . . , x

1
m)T ∈ Rm, x2

, x1, the conditionx(t, θr−1, x1) , x(t, θr−1, x2) is valid. Let us denote

the solutions of (2.5) byx1(t) = x(t, θr−1, x1), x2(t) = x(t, θr−1, x2). Assume on the contrary

that there existst∗ ∈ [θr−1, θr ] such thatx1(t∗) = x2(t∗). Then, we have

x1
i − x2

i =

∫ t∗

θr−1



















−ai

(

x2
i (s) − x1

i (s)
)

+

m
∑

j=1

bi j [ f j(x
2
j (s)) − f j(x

1
j (s))]

+

m
∑

j=1

ci j [g j(x
2
j (θr−1)) − g j(x

1
j (θr−1))]



















ds, i = 1, . . . ,m. (2.7)

Taking the absolute value of both sides for eachi = 1, . . . ,m and adding all equalities, we

obtain

||x2 − x1|| =
m

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∫ t∗

θr−1



















−ai

(

x2
i (s) − x1

i (s)
)

+

m
∑

j=1

bi j

[

f j(x
2
j (s)) − f j(x

1
j (s))

]

+

m
∑

j=1

ci j

[

g j(x
2
j (θr−1)) − g j(x

1
j (θr−1))

]



















ds

∣

∣

∣

∣

∣

∣

∣

∣

≤
m

∑

i=1



















∫ t∗

θr−1



















ai |x2
i (s) − x1

i (s)| +
m

∑

j=1

Li |b ji ||x2
i (s) − x1

i (s)|

+

m
∑

j=1

L̄i |c ji ||x2
i − x1

i |



















ds



















≤
∫ t∗

θr−1

α3||x1(s) − x2(s)||ds+ θ̄α2||x1 − x2||. (2.8)

Furthermore, fort ∈ [θr−1, θr ], the following is valid:

||x1(t) − x2(t)|| ≤ ||x1 − x2|| +
m

∑

i=1

{∫ t

θr−1

[

ai |x2
i (s) − x1

i (s)|

+

m
∑

j=1

Li |b ji ||x2
i (s) − x1

i (s)| +
m

∑

j=1

L̄i |c ji ||x2
i − x1

i |



















ds



















≤
(

1+ θ̄α2

)

||x1 − x2|| +
∫ t

θr−1

α3||x1(s) − x2(s)||ds.

Using Gronwall-Bellman inequality, it follows that

||x1(t) − x2(t)|| ≤
(

1+ θ̄α2

)

eθ̄α3 ||x1 − x2||. (2.9)
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Consequently, substituting (2.9) in (2.8), we obtain

||x1 − x2|| ≤
[

θ̄α3

(

1+ θ̄α2

)

eθ̄α3 + θ̄α2

]

||x1 − x2||. (2.10)

Thus, one can see that (C4) contradicts with (2.10). The lemma is proved.�

Theorem 2.3.4 Assume that conditions(C1), (C3), (C4)are fulfilled. Then, for every(t0, x0) ∈

R
+ ×Rm, there exists a unique solution x(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , t ≥ t0, of (2.5),

such that x(t0) = x0.

Proof. Fix t0 ∈ R
+. There existsr ∈ N such thatt0 ∈ [θr−1, θr ). Use Lemma 2.3.3 with

ξ = t0 to obtain the unique solutionx(t, t0, x0) on [ξ, θr ]. Then apply the impulse condition to

evaluate uniquelyx(θr , t0, x0) = x(θ−r , t0, x
0) + I (x(θ−r , t0, x

0)). Next, on the interval [θr , θr+1)

the solution satisfies the ordinary differential equation

y′i (t) = −aiyi(t) +
m

∑

j=1

bi j f j(y j(t)) +
m

∑

j=1

ci j g j(y j(θr )) + di .

ai > 0, i = 1,2, . . . ,m.

The system has a unique solutiony(t, θr , x(θr , t0, x0)). By definition of the solution of (2.5),

x(t, t0, x0) = y(t, θr , x(θr , t0, x0)) on [θr , θr+1]. The mathematical induction completes the proof.

�

Let us introduce the following two lemmas. We will prove just the second one, the proof for

the first one is similar.

Lemma 2.3.5 A function x(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , where t0 is a fixed real num-

ber, is a solution of (2.5) onR+ if and only if it is a solution, onR+, of the following integral

equation:

xi(t) = e−ai (t−t0)x0
i +

∫ t

t0
e−ai (t−s)



















m
∑

j=1

bi j f j(x j(s))

+

m
∑

j=1

ci j g j(x j(β(s))) + di



















ds+
∑

t0≤θk<t

e−ai (t−θk)Ik(xi(θ
−
k )),

for i = 1, . . . ,m, t ≥ t0.
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Lemma 2.3.6 A function x(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , where t0 is a fixed real num-

ber, is a solution of (2.5) onR+ if and only if it is a solution, onR+, of the following integral

equation:

xi(t) = x0
i +

∫ t

t0



















−ai xi(s) +
m

∑

j=1

bi j f j(x j(s))

+

m
∑

j=1

ci j g j(x j(β(s))) + di



















ds+
∑

t0≤θk<t

Ik(xi(θ
−
k )),

for i = 1, . . . ,m, t ≥ t0.

Proof. Sufficient part of this lemma can be easily proved. Therefore, we only prove the

necessity of this lemma. Fixi = 1, . . . ,m. Assume thatx(t) = (x1(t), . . . , xm(t))T is a solution

of (2.5) onR+. Denote

ϕi(t) = x0
i +

∫ t

t0



















−ai xi(s) +
m

∑

j=1

bi j f j(x j(s))

+

m
∑

j=1

ci j g j(x j(β(s))) + di



















ds+
∑

t0≤θr<t

Ir (xi(θ
−
r )). (2.11)

It is clear that the expression in the right side exists for allt.

Assume thatt0 ∈ (θr−1, θr ), then differentiating the last expression, we get

ϕ′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(β(t))) + di .

We also have

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(β(t))) + di .

Hence, fort , θr , r ∈ N, we obtain

[ϕi(t) − xi(t)]
′ = 0. (2.12)

Moreover, it follows from equation (2.11) that

∆ϕi(θr ) = ϕi(θr ) − ϕi(θ
−
r ) = Ir (ϕi(θ

−
r )). (2.13)

One can see thatϕi(t0) = x0
i . Then, by (2.12), we have thatϕi(t) = xi(t) on [t0, θr ), which

impliesϕi(θ−r ) = xi(θ−r ). Next, using equation (2.13) and the last equation, we obtain

ϕi(θr ) = ϕi(θ
−
r ) + Ir (ϕi(θ

−
r )) = xi(θ

−
r ) + Ir (xi(θ

−
r )) = xi(θr ).
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Therefore, one can conclude thatϕi(θr ) = xi(θr ) for t ∈ [t0, θr ). Similarly, in the light of above

discussion, one can also obtain thatϕi(t) = xi(t) on [θr , θr+1). We can complete the proof by

using mathematical induction.�

2.3.1.3 Stability of Equilibrium

In this section, we will give sufficient conditions for the global asymptotic stability of the

equilibrium, x∗, of (2.5) based on linearization [112]. The system (2.5) can be simplified as

follows. Letyi = xi − x∗i , for eachi = 1, . . . ,m. Then,

y′i (t) = −aiyi(t) +
m

∑

j=1

bi jφ j(y j(t)) +
m

∑

j=1

ci jψ j(y j(β(t))), t , θk

∆yi |t=θk= Īk(yi(θ−k )), i = 1,2, . . . ,m, k ∈ N,
(2.14)

whereφ j(y j(t)) = f j(y j(t) + x∗j ) − f j(x∗j ), ψ j(y j(t)) = g j(y j(t) + x∗j ) − g j(x∗j ) and Īk(y j(θ−k )) =

Ik(y j(θ−k )+x∗j )−Ik(y j(x∗j )). For eachj = 1, . . . ,m, andk ∈ N, φ j(·), ψ j(·), andĪk are Lipschitzian

sincef j(·), g j(·) andIk are Lipschitzian withL j , L̄ j andl respectively, andφ j(0) = 0, ψ j(0) = 0;

furthermore,Īk(·) : R+ → R
+ is continuous with̄Ik(0) = 0.

It is clear that the stability of the zero solution of (2.14) is equivalent to the stability of the

equilibrium x∗ of (2.5). Therefore, in what follows, we discuss the stability of the zero solu-

tion of (2.5).

Let us denote

B̄ =
{

1− θ̄
[

α2 + α3

(

1+ θ̄α2

)

eθ̄α3
]}−1

.

The following lemma is an important auxiliary result of the section (see, also, [17]).

Lemma 2.3.7 Let y(t) = (y1(t), . . . , ym(t))T be a solution of (2.14) and(C1), (C3), (C4) be

satisfied. Then, the following inequality

||y(β(t))|| ≤ B̄||y(t)|| (2.15)

holds for all t∈ R+.

Proof. Fix t ∈ R
+, there existsk ∈ N such thatt ∈ [θk−1, θk). Then, from Lemma 2.3.6, we
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have

||y(t)|| =
m

∑

i=1

|yi(t)|

≤ ||y(θk−1)|| +
m

∑

i=1



















∫ t

θk−1



















ai |yi(s)| +
m

∑

j=1

Li |b ji ||yi(s)|

+

m
∑

j=1

L̄i |c ji ||yi(θk−1)|



















ds



















≤ (1+ θ̄α2)||y(θk−1)|| +
∫ t

θk−1

α3||y(s)||ds

By using Gronwall-Belmann Lemma, we get

||y(t)|| ≤
(

1+ θ̄α2

)

eθ̄α3 ||y(θk−1)||. (2.16)

Moreover, fort ∈ [θk−1, θk), we have

||y(θk−1)|| = ||y(t)|| +
m

∑

i=1



















∫ t

θk−1



















ai |yi(s)| +
m

∑

j=1

Li |b ji ||yi(s)|

+

m
∑

j=1

L̄i |c ji ||yi(θk−1)|



















ds



















≤ ||y(t)|| + θ̄α2||y(θk−1)|| +
∫ t

θk−1

α3||y(s)||ds.

It follows from (2.16) that

||y(θk−1))|| ≤ ||y(t)|| + θ̄α2||y(θk−1)|| + θ̄α3

(

1+ θ̄α2

)

eθ̄α3 ||y(θk−1)||.

Then, we have from condition (C4) that

||y(θk−1)|| ≤ B̄||y(t)||, t ∈ [θk−1, θk).

Thus, (2.15) holds for allt ∈ R+. This proves the lemma.�

Now, we are ready to give sufficient conditions for the global asymptotic stability of (2.5).

Let us denote the solution of linear homogeneous system of (2.14) as ¯y = diag(y1, . . . , ym).

From now on we need the following assumption:

(C5) γ − α1 − B̄α2 − ln(1+ℓ)
θ

> 0, whereγ = min
1≤i≤m

ai is positive.

The following theorem is a modified version of the theorem in [112], for oursystem.
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Theorem 2.3.8 Assume that(C1)− (C5)are fulfilled.Then, the zero solution of (2.14) is glob-

ally asymptotically stable.

Proof. Let y(t) = (y1(t), . . . , ym(t))T be an arbitrary solution of (2.14). From Lemma 2.3.5,

we have

||y(t)|| ≤ e−γ(t−t0)||y0|| +
m

∑

i=1



















∫ t

t0
e−γ(t−s)



















m
∑

j=1

Li |b ji ||yi(s)|

+

m
∑

j=1

L̄i |c ji ||yi(β(s))|



















ds+ ℓ
∑

t0≤θk<t

e−γ(t−θk)|yi(θ
−
k )|



















≤ e−γ(t−t0)||y0|| +
(

α1 + B̄α2

)

∫ t

t0
e−γ(t−s)||y(s)||ds

+ℓ
∑

t0≤θk<t

e−γ(t−θk)||y(θ−k )||.

Also, previous inequality can be written as,

eγ(t−t0)||y(t)|| ≤ ||y0|| +
(

α1 + B̄α2

)

∫ t

t0
eγ(s−t0)||y(s)||ds

+ℓ
∑

t0≤θk<t

eγ(θk−t0)||y(θ−k )||.

By applying Gronwall-Bellman inequality [112], we obtain

eγ(t−t0)||y(t)|| ≤ e(α1+B̄α2)(t−t0)[1 + ℓ] i(t0,t)||y0||,

wherei(t0, t) is the number of pointsθk in [t0, t). Then, we have that

||y(t)|| ≤ e−(γ−α1−B̄α2− ln(1+ℓ)
θ

)(t−t0)||y0||.

So, using (C5), we see that||y(t)|| → 0 ast → ∞. That is, the zero solution of system (2.14) is

globally asmptotically stable.�

2.3.2 (θ, τ)− Type Neural Networks

In this section we investigate same problems for the second type of an impulsiveneural net-

works system with piecewise constant argument of generalized type. That is, the sequence

of momentsθk, k ∈ N, where the constancy of the argument changes, and the sequence of

impulsive moments,τk, are different.
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2.3.2.1 Introduction

Recurrent neural networks and impulsive recurrent neural networks have been investigated

due to their extensive applications in classification of patterns, associativememories, image

processing, optimization problems, and other areas [28, 31, 32, 35, 37,39, 131, 117, 119,

120, 121, 122, 123, 124]. It is well known that these applications depend crucially on the

dynamical behavior of the networks. For example, if a neural network is employed to solve

some optimization problems, it is highly desirable for the neural network to havea unique

globally stable equilibrium [140, 141, 142, 111, 54, 61, 64, 66]. Therefore, stability analysis

of neural networks has received much attention and various stability conditions have been

obtained over the past years.

In this section, we develop the model of recurrent neural networks to differential equations

with both impulses and piecewise constant argument of generalized type. Inthe literature,

recurrent neural networks have been developed by implementing impulsesand piecewise

constant delay [13, 14, 117, 119, 120, 121, 122, 123, 124] issuing from different reasons:

In implementation of electronic networks, the state of the networks is subject to instanta-

neous perturbations and experiences abrupt change at certain instants which may be caused

by switching phenomenon, frequency change or other sudden noise. Furthermore, the dy-

namics of quasi-active dendrites with active spines is described by a system of point hot-spots

(with an integrate-and-fire process), see [132, 133] for more details.This leads to the model

of recurrent neural network with impulses. It is important to say that the neighbor moments

of impulses may depend on each other. For example, the successive impulsemoment may de-

pend upon its predecessor. The reason for this phenomenon is the interior design of a neural

network. On the other hand, due to the finite switching speed of amplifiers andtransmission

of signals in electronic networks or finite speed for signal propagation in neural networks,

time delays exist [32, 35, 39, 131]. Moreover, the idea of involving delayed arguments in

the recurrent neural networks can be explained by the fact that we assume neural networks

may“memorize” values of the phase variable at certain moments of time to utilize the values

during middle process till the next moment. Thus, we arrive to differential equations with

piecewise constant delay. Obviously, the distances between the“memorized” moments may

be very variative. Consequently, the concept of generalized type of piecewise constant ar-

gument is fruitful for recurrent neural networks [13, 14]. Therefore, it is possible to apply
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differential equations with both impulses and piecewise constant delay to neuralnetworks

theory.

The intrinsic idea of this section is that our model is not only from the applications point of

view, but also from a new system of differential equations. That is, we develop differential

equations with piecewise constant argument of generalized type to a new class of systems;

impulsive differential equations with piecewise constant delay and apply them to recurrent

neural networks [3, 5, 6, 17, 13, 14]. Another novelty is that the sequence of momentsθk, k ∈

N, where the constancy of the argument changes, and the sequence of impulsive moments,

τk, are different. More precisely, each momentτi , i ∈ N, is an interior point of an interval

(θk, θk+1). This gives to our investigations more biological sense, as well as providesnew

theoretical opportunities.

2.3.2.2 Model Formulation and Preliminaries

Let N = {0,1,2, . . .} andR+ = [0,∞) be the sets of natural and nonnegative real numbers,

respectively, and denote a norm onRm by || · || where ||u|| =
m

∑

i=1

|ui |. Fix two real valued

sequencesθ = {θk} , τ = {τk} , k ∈ N, τ ∩ θ = φ such thatθk < θk+1 with θk → ∞ ask → ∞

andτk < τk+1 with τk → ∞ ask → ∞, and there exist two positive numbersθ, τ such that

θk+1 − θk ≤ θ andτ ≤ τk+1 − τk, k ∈ N. The condition of the empty intersection is caused by

the investigation reasons. Otherwise, the proof of auxiliary results needsseveral additional

assumptions.

The main subject under investigation in this section is the following impulsive recurrent neural

networks with piecewise constant delay

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(β(t))) + di , t , τk

∆xi |t=τk= Ik(xi(τ−k )), ai > 0, i = 1,2, . . . ,m, k ∈ N,
(2.17)

whereβ(t) = θk if θk ≤ t < θk+1, k ∈ N, t ∈ R+, is an identification function,∆xi(τk) denotes

xi(τk) − xi(τ−k ), wherexi(τ−k ) = limh→0− xi(τk + h). Moreover,m corresponds to the number

of units in a neural network,xi(t) stands for the state vector of theith unit at timet, f j(x j(t))

andg j(x j(β(t))) denote, respectively, the measures of activation to its incoming potentialsof

the unit j at timet andβ(t), bi j , ci j ,di are real constants,bi j means the strength of thejth unit

on theith unit at timet, ci j infers the strength of thejth unit on theith unit at timeβ(t), di
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signifies the external bias on theith unit andai represents the rate with which theith unit will

reset its potential to the resting state in isolation when it is disconnected from thenetwork and

external inputs.

In the theory of differential equations with piecewise constant argument [3, 5, 6], we take the

functionβ(t) = θk if θk ≤ t < θk+1, that is,β(t) is right continuous. However, as it is usually

done in the theory of impulsive differential equations, at the points of discontinuityτk of the

solution, solutions are left continuous. Thus, the right continuity is more convenient assump-

tion if one considers equations with piecewise constant arguments, and we shall assume the

continuity for both, impulsive moments and moments of the switching of constancy of the

argument.

We say that the functionϕ : R+ → R
m is from the setPCτ(R+,Rm) if:

(i) ϕ is right continuous onR+;

(ii) it is continuous everywhere except possibly momentsτ where it has discontinuities of

the first kind.

Moreover, we introduce a set of functionsPCτ∪θ(R+,Rm) if we replaceτ by τ ∪ θ in the last

definition. In our investigation, we understand thatϕ : R+ → R
m is a solution of (2.17) if

ϕ ∈ PCτ(R+,Rm) andϕ′ ∈ PCτ∪θ(R+,Rm).

Throughout this section, we assume the following hypotheses:

(H1) there exist Lipschitz constantsL f
j , L

g
j > 0 such that

| f j(u) − f j(v)| ≤ L f
j |u− v|,

|g j(u) − g j(v)| ≤ Lg
j |u− v|

for all u, v ∈ Rm, j = 1,2, . . . ,m;

(H2) the impulsive operatorI i : R+ → R
+ satisfies

|I i(u) − I i(v)| ≤ ℓ|u− v|

for all u, v ∈ Rm, i = 1,2, . . . ,m, whereℓ is a positive Lipschitz constant.
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For the sake of convenience, we adopt the following notations in the sequel:

k1 = max
1≤i≤m

(

ai + L f
i

m
∑

j=1

|b ji |
)

, k2 = max
1≤i≤m

(

Lg
i

m
∑

j=1

|c ji |
)

, k3 = max
k≥1

(

|Ik(0)|
)

,

k4 = max
1≤i≤m

(

m
∑

j=1

(

|b ji || fi(0)| + |c ji ||gi(0)|
))

.

Denote bypk the number of pointsτi in the interval (θk, θk+1), k ∈ N. We assume thatp =

max
k∈N

pk < ∞.

Assume, additionally, that

(H3)
[

(k1 + 2k2)θ + ℓp
](

1+ ℓ
)p

ek1θ < 1;

(H4) k2θ + (k1θ + ℓp)(1+ k2θ)(1+ ℓ)pek1θ < 1,

We denote an equilibrium state for the differential equation of (2.17) by the constant vector

x∗ = (x∗1, . . . , x
∗
m)T ∈ Rm, where the componentsx∗i are governed by the algebraic system

0 = −ai x
∗
i +

m
∑

j=1

bi j f j(x
∗
j ) +

m
∑

j=1

ci j g j(x
∗
j )) + di .

The proof of following lemma is very similar to that of Lemma 2.2 in [117] and therefore we

omit it here.

Lemma 2.3.9 Assume(H1) holds. If the condition

ai > L f
i

m
∑

j=1

|b ji | + Lg
i

m
∑

j=1

|c ji |, i = 1, . . . ,m.

is satisfied, then the differential equation of (2.17) has a unique equilibrium state x∗.

Theorem 2.3.10 If the equilibrium x∗ = (x∗1, . . . , x
∗
m)T ∈ R

m of the differential equation of

(2.17) satisfies Ik(x∗i ) = 0 for all i = 1, . . . ,m, k ∈ N. Then, x∗ is an equilibrium point of

(2.17).

Now we need the following equivalence lemmas which will be used in the proof of next

assertions. The proofs are omitted here, since it is similar in [3, 5, 6, 13, 112].
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Lemma 2.3.11 A function x(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , where t0 is a fixed real

number, is a solution of (2.17) onR+ if and only if it is a solution, onR+, of the following

integral equation:

xi(t) = e−ai (t−t0)x0
i +

∫ t

t0
e−ai (t−s)



















m
∑

j=1

bi j f j(x j(s))

+

m
∑

j=1

ci j g j(x j(β(s))) + di



















ds+
∑

t0≤τk<t

e−ai (t−τk)Ik(xi(τ
−
k )),

for i = 1, . . . ,m, t ≥ t0.

Lemma 2.3.12 A function x(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , where t0 is a fixed real

number, is a solution of (2.17) onR+ if and only if it is a solution, onR+, of the following

integral equation:

xi(t) = x0
i +

∫ t

t0



















−ai xi(s) +
m

∑

j=1

bi j f j(x j(s))

+

m
∑

j=1

ci j g j(x j(β(s))) + di



















ds+
∑

t0≤τk<t

Ik(xi(τ
−
k )),

for i = 1, . . . ,m, t ≥ t0.

Consider the following system

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(θr )) + di , t , τr

∆xi |t=τr= Ir (xi(τ−r )), i = 1,2, . . . ,m, k ∈ N.
(2.18)

In the next lemma the conditions of existence and uniqueness of solutions areestablished for

arbitrary initial momentξ.

Lemma 2.3.13 Assume that conditions(H1)− (H3)are fulfilled, and fix r∈ N. Then for every

(ξ, x0) ∈ [θr , θr+1] ×Rm there exists a unique solution x(t) = x(t, ξ, x0) = (x1(t), . . . , xm(t))T of

(2.18) on[θr , θr+1] with x(ξ) = x0.

Proof. Existence: Denoteϑ(t) = x(t, ξ, x0), ϑ(t) = (ϑ1(t), . . . , ϑm(t))T . From Lemma 2.3.12,
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we have

ϑi(t) = x0
i +

∫ t

ξ



















−aiϑi(s) +
m

∑

j=1

bi j f j(ϑ j(s)) +
m

∑

j=1

ci j g j(ϑ j(θr )) + di



















ds

+
∑

ξ≤τr<t

Ir (ϑi(τ
−
r )). (2.19)

Define a norm||ϑ(t)||0 = max
[θr , θr+1]

||ϑ(t)|| and construct the following sequencesϑn
i (t), ϑ0

i (t) ≡

x0
i , i = 1, . . . ,m, n ≥ 0 such that

ϑn+1
i (t) = x0

i +

∫ t

ξ



















−aiϑ
n
i (s) +

m
∑

j=1

bi j f j(ϑ
n
j (s)) +

m
∑

j=1

ci j g j(ϑ
n
j (θr )) + di



















ds

+
∑

ξ≤τr<t

Ir (ϑ
n
i (τ−r )).

One can find that

||ϑn+1(t) − ϑn(t)||0 ≤
([

(k1 + k2)θ + ℓp
])n

κ,

where

κ =















[

(k1 + k2)θ + ℓp
]

||ϑ0|| + θ
(

m
∑

i=1

di

)

+ θmk4 +mpk3















.

Since the condition (H3) implies
[

(k1 + k2)θ + ℓp
]

< 1, then the sequencesϑn
i (t) are conver-

gent and their limits satisfy (2.19) on [θr , θr+1]. The existence is proved.

Uniqueness: Let us denote the solutions of (2.17) byx1(t) = x(t, ξ, x1), x2(t) = x(t, ξ, x2),

whereθr ≤ ξ ≤ θr+1. It is sufficient to check that for each intervalt ∈ [θr , θr+1], and x2 =

(x2
1, . . . , x

2
m)T , x1 = (x1

1, . . . , x
1
m)T ∈ Rm, x2

, x1, the conditionx1(t) , x2(t). Then, we have

||x1(t) − x2(t)|| ≤ ||x1 − x2|| +
m

∑

i=1



















∫ t

ξ



















(

ai +

m
∑

j=1

L f
i |b ji |

) ∣

∣

∣x2
i (s) − x1

i (s)
∣

∣

∣

+

m
∑

j=1

Lg
i |c ji |

∣

∣

∣x2
i (θr ) − x1

i (θr )
∣

∣

∣



















ds+ ℓ
∑

ξ≤τr<t

∣

∣

∣x2
i (τ−r ) − x1

i (τ−r )
∣

∣

∣



















≤ ||x1 − x2|| + k2θ||x1(θr ) − x2(θr )|| + k1

∫ t

ξ

||x1(s) − x2(s)||ds

+ℓ
∑

ξ≤τr<t

||x1(τ−r ) − x2(τ−r )||.

Using Gronwall-Bellman Lemma for piecewise continuous functions [112, 113], one can

obtain that

||x1(t) − x2(t)|| ≤
(

||x1 − x2|| + k2θ||x1(θr ) − x2(θr )||
)

(1+ ℓ)pek1θ.
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Particularly,

||x1(θr ) − x2(θr )|| ≤
(

||x1 − x2|| + k2θ||x1(θr ) − x2(θr )||
)

(1+ ℓ)pek1θ.

Hence,

||x1(t) − x2(t)|| ≤














(1+ ℓ)pek1θ

1− k2θ(1+ ℓ)pek1θ















||x1 − x2||. (2.20)

Also, we peculiarly have

||x1(τ−r ) − x2(τ−r )|| ≤














(1+ ℓ)pek1θ

1− k2θ(1+ ℓ)pek1θ















||x1 − x2||. (2.21)

On the other hand, assume on the contrary that there existst ∈ [θr , θr+1] such thatx1(t) = x2(t).

Then

||x1 − x2|| ≤
m

∑

i=1



















∫ t

ξ



















(

ai +

m
∑

j=1

L f
i |b ji |

) ∣

∣

∣x2
i (s) − x1

i (s)
∣

∣

∣

+

m
∑

j=1

Lg
i |c ji |

∣

∣

∣x2
i (θr ) − x1

i (θr )
∣

∣

∣



















ds+ ℓ
∑

ξ≤τr<t

∣

∣

∣x2
i (τ−r ) − x1

i (τ−r )
∣

∣

∣



















≤ k1

∫ t

ξ

||x1(s) − x2(s)||ds+ k2θ||x1(θr ) − x2(θr )||

+ℓp||x1(τ−r ) − x2(τ−r )||. (2.22)

Consequently, substituting (2.20) and (2.21) in (2.22), we obtain

||x1 − x2|| ≤
[

(k1 + 2k2)θ + ℓp
](

1+ ℓ
)p

ek1θ||x1 − x2||. (2.23)

Thus, one can see that (H3) contradicts with (2.23). The lemma is proved.�

Theorem 2.3.14Assume that conditions(H1)− (H3) are fulfilled. Then, for every(t0, x0) ∈

R
+ × R

m, there exists a unique solution x(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , t ≥ t0, of

(2.17), such that x(t0) = x0.

Proof. Fix t0 ∈ R
+. It is clear that there existsr ∈ N such thatt0 ∈ [θr , θr+1). Using pre-

vious lemma forξ = t0, one can obtain that there exists a unique solutionx(t) = x(t, t0, x0)

on [ξ, θr+1]. Next, we again apply the last lemma to obtain the unique solution on interval

[θr+1, θr+2). The mathematical induction completes the proof.�
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2.3.2.3 Global Asymptotic Stability

In this section, we will focus our attention on giving sufficient conditions for the global asymp-

totic stability of the equilibrium,x∗, of (2.17) based on linearization [6, 112].

The system (2.17) can be simplified as follows. Substitutingy(t) = x(t) − x∗ into (2.17) leads

to

y′i (t) = −aiyi(t) +
m

∑

j=1

bi jφ j(y j(t)) +
m

∑

j=1

ci jψ j(y j(β(t))), t , τk

∆yi |t=τk=Wk(yi(τ−k )), i = 1,2, . . . ,m, k ∈ N,
(2.24)

whereφ j(y j(t)) = f j(y j(t) + x∗j ) − f j(x∗j ), ψ j(y j(t)) = g j(y j(t) + x∗j ) − g j(x∗i ) andWk(yi(τ−k )) =

Ik(yi(τ−k ) + x∗i ) − Ik(x∗i ). From hypotheses (H1) and (H2), we have the following inequalities:

|φ j(·)| ≤ L f
j |(·)|, |ψ j(·)| ≤ Lg

j |(·)| and|Wk(·)| ≤ ℓ|(·)|.

It is clear that the stability of the zero solution of (2.24) is equivalent to the stability of the

equilibrium x∗ of (2.17). Therefore, in what follows, we discuss the stability of the zero

solution of (2.24).

First of all, we give the lemma below which is one of the most important results of the present

section. One can see that this lemma is generalized version of the lemmas in [3, 5,6, 17, 13,

14].

For simplicity of notation, we denote

λ =

(

1−
(

k2θ + (k1θ + ℓp)(1+ k2θ)(1+ ℓ)
pek1θ

)

)−1
.

Lemma 2.3.15 Let y(t) = (y1(t), . . . , ym(t))T be a solution of (2.24) and(H1)− (H4) be sat-

isfied. Then, the following inequality

||y(β(t))|| ≤ λ||y(t)|| (2.25)

holds for all t∈ R+.

Proof. Fix t ∈ R+, there existsk ∈ N such thatt ∈ [θk, θk+1). Then, from Lemma 2.3.12, we
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have

||y(t)|| =
m

∑

i=1

|yi(t)|

≤ ||y(θk)|| +
m

∑

i=1



















∫ t

θk



















(

ai +

m
∑

j=1

L f
i |b ji |

)

|yi(s)|

+

m
∑

j=1

Lg
i |c ji | |yi(θk)|



















ds+ ℓ
∑

t0≤τk<t

∣

∣

∣yi(τ
−
k )

∣

∣

∣















≤ (1+ k2θ)||y(θk)|| + k1

∫ t

θk

||y(s)||ds+ ℓ
∑

t0≤τk<t

||y(τ−k )||.

Applying the analogue of Gronwall-Bellman Lemma [112, 113], we obtain

||y(t)|| ≤ (1+ k2θ)(1+ ℓ)
pek1θ||y(θk)||. (2.26)

Particularly,

||y(τ−k )|| ≤ (1+ k2θ)(1+ ℓ)
pek1θ||y(θk)||. (2.27)

Moreover, fort ∈ [θk, θk+1), we also have

||y(θk)|| ≤ ||y(t)|| + k2θ||y(θk)|| + k1

∫ t

θk

||y(s)||ds

+ℓ
∑

t0≤τk<t

||y(τ−k )||.

The last inequality together with (2.26) and (2.27) imply

||y(θk))|| ≤ ||y(t)|| +
[

k2θ + (k1θ + ℓp)(1+ k2θ)(1+ ℓ)
pek1θ

]

||y(θk)||

Thus, we have from condition (H4) that

||y(θk)|| ≤ λ||y(t)||, t ∈ [θk, θk+1).

Therefore, (2.25) holds for allt ∈ R+. This completes the proof of lemma.�

Now, we are ready to give sufficient conditions for the global asymptotic stability of (2.17).

For convenience, we adopt the notation given below in the sequel:

µ = max
1≤i≤m

(

L f
i

n
∑

j=1

|b ji |
)

.

From now on we need the following assumption:
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(H5) γ − µ − λk2 − ln(1+ℓ)
τ

> 0, γ = min
1≤i≤m

ai .

The next theorem is a modified version of the theorem in [112], for our system.

Theorem 2.3.16Assume that(H1)− (H5) are fulfilled.Then, the zero solution of (2.24) is

globally asymptotically stable.

Proof. Let y(t) = (y1(t), . . . , ym(t))T be an arbitrary solution of (2.24). From Lemma 2.3.11,

we have

||y(t)|| ≤ e−γ(t−t0)||y0|| +
m

∑

i=1



















∫ t

t0
e−γ(t−s)



















m
∑

j=1

L f
i |b ji ||yi(s)|

+

m
∑

j=1

Lg
i |c ji ||yi(β(s))|



















ds+ ℓ
∑

t0≤τk<t

e−γ(t−τk)|yi(τ
−
k )|



















≤ e−γ(t−t0)||y0|| + (µ + λk2)
∫ t

t0
e−γ(t−s)||y(s)||ds

+ℓ
∑

t0≤τk<t

e−γ(t−τk)||y(τ−k )||.

Then, we can write the last inequality as,

eγ(t−t0)||y(t)|| ≤ ||y0|| + (µ + λk2)
∫ t

t0
eγ(s−t0)||y(s)||ds

+ℓ
∑

t0≤τk<t

eγ(τk−t0)||y(τ−k )||.

By virtue of Gronwall-Bellman Lemma [112], we obtain

eγ(t−t0)||y(t)|| ≤ e(µ+λk2)(t−t0)[1 + ℓ] i(t0,t)||y0||,

wherei(t0, t) is the number of pointsτk in [t0, t). Then, we have

||y(t)|| ≤ e−(γ−µ−λk2− ln(1+ℓ)
τ

)(t−t0)||y0||.

Hence, using the condition (H5), we see that the zero solution of system (2.24) is globally

asymptotically stable.�

2.4 Periodic Motions of Neural Networks with Impact Activation

In this section we derive some sufficient conditions for the existence and stability of periodic

solutions for each (θ, θ)− type neural networks and (θ, τ)− type neural networks, respectively.

Examples with numerical simulations are given to illustrate our results.
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2.4.1 (θ, θ)− Type Neural Networks

Here, we investigate some sufficient conditions for the existence and stability of periodic

solutions for (θ, θ)− type neural networks discussed in Section 2.3.1.

2.4.1.1 Existence and Stability of Periodic Solutions

In this part, we will establish some sufficient conditions for existence of periodic solutions of

(2.5). Then, we will study the stability of these solutions. Firstly, we shall need the folowing

assumptions:

(C6) the sequenceθk satisfiesθk+p = θk + w, k ∈ N and Ik+p = Ik for a fixed positive real

periodw and some positive integerp.

(C7) β∗ = K
[

ω
(

α1 + B̄α2

)

+ ℓp
]

< 1, whereK = 1
1−e−γω .

From now on, let us denoteα4 = max
k≥1

(

|Ik(0)|
)

and for θk, k ∈ N, let [0, ω] ∩ {θk}k∈N =

{θ1, . . . , θp}.

Here, we will give the following version of the Poincare’ criterion for system (2.5). One can

easily prove the following lemma (see, also, [112]).

Lemma 2.4.1 Suppose that conditions(C1), (C3), (C4), (C6) are valid. Then, solution x(t) =

x(t, t0, x0) = (x1, . . . , xm)T of (2.5) with x(t0) = x0 isω−periodic if and only if x(ω) = x(0).

Theorem 2.4.2 Assume that conditions(C1)− (C4), (C6), (C7) are valid. Then system (2.5)

has a uniqueω−periodic solution.

Proof. Let PCω = {ϕ ∈ PC(1)(R+,Rm) | ϕ(t +ω) = ϕ(t), t ≥ 0} be a Banach space of periodic

functions with the norm||ϕ||0 = max
0≤t≤ω

||ϕ(t)||.

Letϕ(t) = (ϕ1(t), . . . , ϕm(t))T ∈ PCω. Using Lemma 2.3.5, similarly to the proof in [112], one

can show that ifϕ ∈ PCω then the system

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(ϕ j(t)) +
m

∑

j=1

ci j g j(ϕ j(β(t))) + di , t , θk,

∆xi |t=θk= Ik(ϕi(θ−k )), i = 1, . . . ,m, k = 1,2, . . . , p
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has the uniqueω− periodic solution

x∗i (t) =
∫ ω

0
Hi(t, s)



















m
∑

j=1

bi j f j(ϕ j(s)) +
m

∑

j=1

ci j g j(ϕ j(β(s))) + di



















ds

+

p
∑

k=1

Hi(t, θk)Ik(ϕi(θ
−
k )),

where

Hi(t, s) = (1− e−aiω)−1



















e−ai (t−s), 0 ≤ s≤ t ≤ ω

e−ai (ω+t−s), 0 ≤ t < s≤ ω

The function{Hi(t, s)}i=1,...,m is a Green’s function. One can find that

max
t,s∈D

∣

∣

∣{Hi(t, s)}i=1,...,m

∣

∣

∣ =
1

1− e−aiω
,

whereD = [0, ω] × [0, ω].

Define the operatorE in PCω by

E : PCω → PCω

such that ifϕ ∈ PCω, then

(Eϕ)i(t) =
∫ ω

0
Hi(t, s)



















m
∑

j=1

bi j f j(ϕ j(s)) +
m

∑

j=1

ci j g j(ϕ j(β(s))) + di



















ds

+

p
∑

k=1

Hi(t, θk)Ik(ϕi(θ
−
k )), i = 1, . . . ,m.

Let PC∗ω = {ϕ | ϕ ∈ PCω, ||ϕ−ϕ0||0 ≤ β∗C
1−β∗ },whereC = Kω

m
∑

i=1

di and (ϕ0)i(t) =
∫ ω

0
Hi(t, s)dids, i =

1, . . . ,m. Then it is easy to see thatPC∗ω is a closed convex subset ofPCω. According to the

definition of the norm of Banach spacePCω, we have

||ϕ0(t)|| =
m

∑

i=1

∣

∣

∣

∣

∣

∫ ω

0
Hi(t, s)dids

∣

∣

∣

∣

∣

≤ 1
1− e−aiω

m
∑

i=1

[∫ ω

0
dids

]

≤ C < ∞.

So,||ϕ0||0 ≤ C.

Then, for an arbitraryϕ ∈ PC∗ω, we have

||ϕ||0 ≤ ||ϕ − ϕ0||0 + ||ϕ0||0 ≤
β∗C

1− β∗ + C =
C

1− β∗ .

Now, we need to prove thatE mapsPC∗ω into itself. That is, we shall show thatEϕ ∈ PC∗ω

for any ϕ ∈ PC∗ω. One can easily verify that (Eϕ)(t) = ((Eϕ)1, . . . , (Eϕ)m)T is ω−periodic
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function. Now, ifϕ ∈ PC∗ω, then

||Eϕ − ϕ0|| =
m

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∫ ω

0
Hi(t, s)



















m
∑

j=1

bi j f j(ϕ j(s)) +
m

∑

j=1

ci j g j(ϕ j(β(s)))



















ds

+

p
∑

k=1

Hi(t, θk)Ik(ϕi(θ
−
k ))

∣

∣

∣

∣

∣

∣

∣

≤
m

∑

i=1

1
1− e−aiω



















∫ ω

0



















m
∑

j=1

L j |bi j ||ϕ j(s)| +
m

∑

j=1

L̄ j |ci j ||ϕ j(β(s))|



















ds

+

p
∑

k=1

|Ik(ϕi(θ
−
k ))|















≤ K
m

∑

i=1



















∫ ω

0



















m
∑

j=1

Li |b ji ||ϕi(s)| +
m

∑

j=1

L̄i |c ji ||ϕi(β(s))|



















ds

+ℓ

p
∑

k=1

|ϕi(θ
−
k )| +

p
∑

k=1

|Ik(0)|














≤ K
















∫ ω

0

[

α1||ϕ(s)|| + α2||ϕ(β(s))||
]

ds+ ℓ
p

∑

k=1

||ϕ(θ−k )|| +mpα4

















.

In this periodic case, we takeα4 = max
1≤k≤p

(

|Ik(0)|
)

. Thus, it follows that

||Eϕ − ϕ0||0 ≤ K
((

ω
(

α1 + B̄α2

)

+ ℓp
)

||ϕ||0 +mpα4

)

≤ β∗
C

1− β∗ +A =
β∗C

1− β∗ +A,

whereA = Kmpα4. ChooseA ≤ C so that in the view of (C7),Eϕ ∈ PC∗ω.
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Finally, we shall show thatE is a contraction mapping. Ifϕ1, ϕ2 ∈ PC∗ω, then

||Eϕ1(t) − Eϕ2(t)|| =
m

∑

i=1

∣

∣

∣(Eϕ1)i(t) − (Eϕ2)i(t)
∣

∣

∣

≤
m

∑

i=1



















∫ ω

0
|Hi(t, s)|



















m
∑

j=1

L j |bi j ||ϕ1
j (s) − ϕ2

j (s)|

+ B̄
m

∑

j=1

L̄ j |ci j ||ϕ1
j (s) − ϕ2

j (s)|



















ds

+ ℓ

p
∑

k=1

|Hi(t, θk)||ϕ1
i (θ−k ) − ϕ2

i (θ−k )|














≤ K
m

∑

i=1



















∫ ω

0



















m
∑

j=1

Li |b ji ||ϕ1
i (s) − ϕ2

i (s)|

+

m
∑

j=1

L̄i |c ji ||ϕ1
i (β(s)) − ϕ2

i (β(s))|



















ds+ ℓ
p

∑

k=1

|ϕ1
i (θ−k ) − ϕ2

i (θ−k )|



















≤ K
(∫ ω

0

[

α1||ϕ1(s) − ϕ2(s)|| + α2||ϕ1(β(s)) − ϕ2(β(s))||
]

ds

+ℓ

p
∑

k=1

||ϕ1(θ−k ) − ϕ2(θ−k )||
















.

Hence,

||Eϕ1 − Eϕ2||0 ≤ K
(

ω
(

α1 + B̄α2

)

+ ℓp
)

||ϕ1 − ϕ2||0.

Noting (C7), it can be seen thatE is a contraction mapping inPC∗ω. Consequently, by using

Banach fixed point theorem,E has a unique fixed pointϕ∗ ∈ PC∗ω, such thatEϕ∗ = ϕ∗, which

implies that (2.5) has a uniqueω− periodic solution.�

We are now in a position to give and prove the stability of the periodic solution of(2.5).

Theorem 2.4.3 Assume that conditions(C1)− (C7) are valid. Then the periodic solution of

(2.5) is globally asymptotically stable.

Proof. By Theorem 2.4.2, we know that (2.5) has anω−periodic solutionx∗(t) = (x∗1, . . . , x
∗
m)T .

Suppose thatx(t) = (x1, . . . , xm)T is an arbitrary solution of (2.5) and lety(t) = x(t) − x∗(t) =

(x1 − x∗1, . . . , xm− x∗m)T . Then, similar to the proof of Theorem 2.3.8, one can show that

||y(t)|| ≤ e−γ(t−t0)||y0|| +
m

∑

i=1



















∫ t

t0
e−γ(t−s)



















m
∑

j=1

Li |b ji ||yi(s)|

+

m
∑

j=1

L̄i |c ji ||yi(β(t))|



















ds+ ℓ
∑

t0≤θk<t

e−γ(t−θk)|yi(θ
−
k )|


















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and hence

||y(t)|| ≤ e−(γ−α1−B̄α2− ln(1+ℓ)
θ

)(t−t0)||y0||.

Thus, the periodic solution of (2.5) is globally asymptotically stable.�

2.4.1.2 An Illustrative Example

Consider the following impulsive Hopfield-type neural networks system withpiecewise con-

stant argument

x′i (t) = −ai xi(t) +
2

∑

j=1

bi j f j(x j(t)) +
2

∑

j=1

ci j g j(x j(β(t))) + di , t , θk

∆xi |t=θk= Ik(xi(θ−k )), i = 1,2, k = 1,2, . . . ,

(2.28)

whereβ(t) = θk if θk ≤ t < θk+1, k ∈ N, θk = k + (−1)k/12. The distanceθk+1 − θk, k ∈ N,

is equal to eitherθ = 5/6, or θ̄ = 7/6. The output functions arefi(x) = tanh(x/2),gi(x) =

(|x + 1| − |x − 1|)/8. Obviously,Li = 1/2 andL̄i = 1/4. Taking bi j = ci j = 1/64 for i, j =

1,2, Ik = (−1)kx/32+ 1/12 with l = 1/32, andd1 = 1/6, d2 = 1/7,a1 = 0.18, a2 = 0.19,

we getp = 2, ω = 2, γ = 0.18, B̄ = 4.53370, K = 3.30786 andβ∗ = 0.88194< 1. It is

easily checked that the system (2.28) satisfies Theorem 2.3.1, Theorem 2.3.8, Theorem 2.4.2

and Theorem 2.4.3. Consequently, the system (2.28) has a unique 2-periodic solution which

is globally asymptotically stable. Since it is globally asymptotically stable, any other solution

is eventually 2-periodic. The fact can be seen by simulation in Figure 2.1 andFigure 2.2.

72



0 10 20 30 40 50
1.4

1.6

1.8

2

t

x1

(a)

0 10 20 30 40 50

1.3

1.4

1.5

1.6

t

x2

(b)

Figure 2.1: (a) 2-periodic solution ofx1(t) of system (2.28) fort ∈ [0,50] with the initial
valuex1(t0) = 2. (b) 2-periodic solution ofx2(t) of system (2.28) fort ∈ [0,50] with the initial
valuex2(t0) = 1.5.

0
10

20
30

40
50

1.4

1.6

1.8

2

1.3

1.4

1.5

1.6

tx1

x2

Figure 2.2: Eventually 2-periodic solutions of system (2.28).
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2.4.2 (θ, τ)− Type Neural Networks

In this part of this section, we continue (θ, τ)− type neural networks considered in Section

2.3.2 and obtain some sufficient conditions for the existence and stability of periodic solutions.

2.4.2.1 Existence and Stability of Periodic Solutions

In this section, we shall discuss the existence of periodic solution of (2.17)and its stability.

To do so, we need the following assumptions:

(H6) the sequencesτk andθk, k ∈ N satisfy (ω, p) and (ω, p1)-properties; that is, there are

positive integersp andp1 such that the equationsτk+p = τk+ω andθk+p1 = θk+ω hold

for all k ∈ N andIk+p = Ik for a fixed positive real periodω.

(H7) α1 = R
(

ω (µ + λk2) + ℓp
)

< 1, whereR = 1
1−e−γω .

Forτk andθk, let [0, ω]∩{τk}k∈N = {τ1, . . . , τp} and [0, ω]∩{θk}k∈N = {θ1, . . . , θp1}, respectively.

Here, we will give the following version of the Poincare’ criterion for system (2.17) which

can be easily proved (see, also, [112]).

Lemma 2.4.4 Suppose that conditions(H1)− (H3) and(H6) are valid. Then, solution x(t) =

x(t, t0, x0) = (x1, . . . , xm)T of (2.17) with x(t0) = x0 isω−periodic if and only if x(ω) = x(0).

Theorem 2.4.5 Assume that conditions(H1)− (H3) and(H6)− (H7) are valid. Then system

(2.17) has a uniqueω−periodic solution.

Proof. To begin with, let us introduce a Banach space of periodic functionsPCω = {ϕ ∈

PCτ∪θ(R+,Rm) | ϕ(t + ω) = ϕ(t), t ≥ 0} with the norm||ϕ||0 = max
0≤t≤ω

||ϕ(t)||.

Let ϕ(t) = (ϕ1(t), . . . , ϕm(t))T ∈ PCω satisfying the inequality||ϕ(t)||0 ≤ h. Using Lemma

2.3.11, similarly to the proof in [112], one can show that ifϕ ∈ PCω then the system

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(ϕ j(t)) +
m

∑

j=1

ci j g j(ϕ j(β(t))) + di , t , τk,

∆xi |t=τk= Ik(ϕi(τ−k )), i = 1, . . . ,m, k = 1,2, . . . , p
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has the uniqueω− periodic solution

x∗i (t) =
∫ ω

0
Gi(t, s)



















m
∑

j=1

bi j f j(ϕ j(s)) +
m

∑

j=1

ci j g j(ϕ j(β(s))) + di



















ds

+

p
∑

k=1

Gi(t, τk)Ik(ϕi(τ
−
k )),

where

Gi(t, s) = (1− e−aiω)−1



















e−ai (t−s), 0 ≤ s≤ t ≤ ω,

e−ai (ω+t−s), 0 ≤ t < s≤ ω,

which is known asGreen’s function[112]. Then, one can easily find that

max
t,s∈[0,ω]

∣

∣

∣{Gi(t, s)}i=1,...,m

∣

∣

∣ =
1

1− e−aiω
.

Define the operatorF : PCω → PCω such that ifϕ ∈ PCω, then

(F ϕ)i(t) =
∫ ω

0
Gi(t, s)



















m
∑

j=1

bi j f j(ϕ j(s)) +
m

∑

j=1

ci j g j(ϕ j(β(s))) + di



















ds

+

p
∑

k=1

Gi(t, τk)Ik(ϕi(τ
−
k )), i = 1, . . . ,m.

Now, we need to prove thatF mapsPCω into itself. That is, we shall show thatF ϕ ∈ PCω for

anyϕ ∈ PCω. It is easy to check that (F ϕ)(t) = ((F ϕ)1, . . . , (F ϕ)m)T isω−periodic function.

Now, if ϕ ∈ PCω, then

||F ϕ|| =
m

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∫ ω

0
Gi(t, s)



















m
∑

j=1

bi j f j(ϕ j(s)) +
m

∑

j=1

ci j g j(ϕ j(β(s))) + di



















ds

+

p
∑

k=1

Gi(t, τk)Ik(ϕi(τ
−
k ))

∣

∣

∣

∣

∣

∣

∣

≤
m

∑

i=1

1
1− e−aiω



















∫ ω

0



















m
∑

j=1

L f
j |bi j ||ϕ j(s)| +

m
∑

j=1

Lg
j |ci j ||ϕ j(β(s))|

+

m
∑

j=1

|bi j ||ϕ j(0)| +
m

∑

j=1

|ci j ||ϕ j(0)| + di



















ds+
p

∑

k=1

|Ik(ϕi(τ
−
k ))|



















≤ R
m

∑

i=1



















∫ ω

0



















m
∑

j=1

L f
i |b ji ||ϕi(s)| +

m
∑

j=1

Lg
i |c ji ||ϕi(β(s))|

+

m
∑

j=1

|b ji ||ϕi(0)| +
m

∑

j=1

|c ji ||ϕi(0)| + di



















ds+ ℓ
p

∑

k=1

|ϕi(τ
−
k )| +

p
∑

k=1

|Ik(0)|



















≤ R
















∫ ω

0

[

µ||ϕ(s)|| + k2||ϕ(β(s))||
]

ds+ ℓ
p

∑

k=1

||ϕ(τ−k )|| + ω
(

m
∑

i=1

di

)

+ ωmk4 +mpk3

















.

75



In this periodical case, we takek3 = max
1≤k≤p

(

|Ik(0)|
)

. Thus, it follows that

||F ϕ||0 ≤ R
((

ω (µ + λk2) + ℓp
)

||ϕ||0 + ω
(

m
∑

i=1

di

)

+ ωmk4 +mpk3
)

≤ α1h+ α2.

Chooseh such thatα2 ≤ h(1−α1), whereα2 = R
(

ω
(

m
∑

i=1

di

)

+ωmk4+mpk3
)

. Then, we obtain

thatF ϕ ∈ PCω.

Next, the proof is completed by showing thatF is a contraction mapping.

If ϕ1, ϕ2 ∈ PCω, then

||F ϕ1(t) − F ϕ2(t)|| =
m

∑

i=1

∣

∣

∣(F ϕ1)i(t) − (F ϕ2)i(t)
∣

∣

∣

≤
m

∑

i=1



















∫ ω

0
|Gi(t, s)|



















m
∑

j=1

L f
j |bi j ||ϕ1

j (s) − ϕ2
j (s)|

+ λ

m
∑

j=1

Lg
j |ci j ||ϕ1

j (s) − ϕ2
j (s)|



















ds

+ ℓ

p
∑

k=1

|Gi(t, τk)||ϕ1
i (τ−k ) − ϕ2

i (τ−k )|














≤ R
m

∑

i=1



















∫ ω

0



















m
∑

j=1

L f
i |b ji ||ϕ1

i (s) − ϕ2
i (s)|

+

m
∑

j=1

Lg
i |c ji ||ϕ1

i (β(s)) − ϕ2
i (β(s))|



















ds+ ℓ
p

∑

k=1

|ϕ1
i (τ−k ) − ϕ2

i (τ−k )|



















≤ R
(∫ ω

0

[

µ||ϕ1(s) − ϕ2(s)|| + k2||ϕ1(β(s)) − ϕ2(β(s))||
]

ds

+ℓ

p
∑

k=1

||ϕ1(τ−k ) − ϕ2(τ−k )||
















.

Hence,

||F ϕ1 − F ϕ2||0 ≤ R
(

ω (µ + λk2) + ℓp
)

||ϕ1 − ϕ2||0.

It follows from the condition (H7) that,F is a contraction mapping inPCω. Consequently, by

using Banach fixed point theorem,F has a unique fixed pointϕ∗ ∈ PCω, such thatF ϕ∗ = ϕ∗.

This completes the proof.�

Theorem 2.4.6 Assume that conditions(H1)− (H7) are valid. Then the periodic solution of

(2.17) is globally asymptotically stable.
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Proof. By Theorem 2.4.5, we know that (2.17) has anω−periodic solutionz∗(t) = (z∗1, . . . , z
∗
m)T .

Suppose thatz(t) = (z1, . . . , zm)T is an arbitrary solution of (2.17) and letz(t) = z(t) − z∗(t) =

(z1 − z∗1, . . . , zm − z∗m)T . Then, similar to the proof of Theorem 2.3.16, one can show that it is

globally asymptotically stable.

2.4.2.2 Numerical Simulations

In this part, we give examples with numerical simulations to illustrate the theoreticalresults

of this section. In what follows, letθk = k, τk = (θk + θk+1)/2 = (2k + 1)/2, k ∈ N be the

sequence of the change of constancy for the argument and the sequence of impulsive action,

respectively.

Consider the following recurrent neural networks:






















































































dx(t)
dt = −





















5× 10−1 0

0 5× 10−1









































x1(t)

x2(t)





















+





















10−4 2× 10−4

10−4 3× 10−4









































tanh(x1(t)
10 )

tanh(3x2(t)
10 )





















+





















2× 10−2 3× 10−3

3× 10−3 5× 10−3









































tanh(x1(β(t))
5 )

tanh(x2(β(t))
5 )





















+





















1

1





















, t , τk

∆x(t) =





















Ik(x1(τ−k ))

Ik(x2(τ−k ))





















=





















x1(τ−k )
40 +

1
2

x2(τ−k )
40 +

1
2





















, t = τk, k = 1,2, . . . ,

(2.29)

By simple calculation, one can see that the corresponding parameters in the conditions of The-

orems 2.3.14, 2.3.16, 2.4.5, 2.4.6 arek1 = 0.5001, k2 = 0.0046, L f
1 = 0.1, L f

2 = 0.3, Lg
1 =

Lg
2 = 0.2, ℓ = 0.0250, θ = τ = 1, p = p1 = 1, γ = 0.5, λ = 9.6421, µ = 0.00015, ω =

1, R = 2.5415, α1 = 0.1766. For these values, we can check that (H3)= 0.9032< 1, (H4) =

0.8963< 1, (H5) = 0.4308> 0 andα1 = 0.1766< 1. So, it is easy to verify that (2.29) sat-

isfies the conditions of these theorems. Hence, the system of (2.29) has a 1-periodic solution

which is globally asymptotically stable. Specifically, the simulation results with some initial

points are shown in Fig. 2.3 and Fig. 2.3. We deduce that the non-smoothness atθk, k ∈ N is

not seen by numerical simulations due to the choosing the parameters small enough to satisfy

the theorems. Hence, thesmallnesshides thenon-smoothness.
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Figure 2.3: Transient behavior of the recurrent neural networks for the system (2.29) with the
initial points [0,0]T and [7,7]T .
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Figure 2.4: Eventually 1-periodic solutions of system (2.29) with the initial points [0,0]T and
[7,7]T .

On the other hand, in the following example, we illustrate a globally stable equilibrium ap-
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pearance for our system of differential equations:


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


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


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


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
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
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∆x(t) =


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
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, t = τk, k = 1,2, . . . ,

(2.30)

wherex∗1 = 2.0987, x∗2 = 2.1577. One can check that the pointx∗ = (x∗1, x
∗
2) satisfies the

algebraic system

−ai x
∗
i +

2
∑

j=1

bi j f j(x
∗
j ) +

2
∑

j=1

ci j g j(x
∗
j )) + di = 0, (2.31)

approximately. And it is clear thatI (x∗i ) = 0 for i = 1,2. By simple calculation, we can

see that all conditions of Theorem 2.3.1 are satisfied and the pointx∗ is a solution of (2.31),

approximately with the error, which is less than 10−11(evaluated by MATLAB).

The simulation, where the initial value is chosen as [10,10]T , is shown in Fig. 2.5 and it

illustrates that all trajectories converge tox∗.
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Figure 2.5: The first and the second coordinates of the solution for the thesystem (2.30) with
the initial point [10,10]T approachesx∗1 andx∗2, respectively, as time increases.

Now, let us take the parameters so that the non-smoothness can also be seen. Consider the

following recurrent neural networks with non-smooth and impact activations:
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(2.32)

Clearly, one can see that our parameters are big now. Therefore, the system of equations (2.32)

does not satisfy the conditions of the theorems. However, we can see thenon-smoothnessof

the solution with the initial value [0,0]T , which is illustrated by simulations in Fig. 2.6 and

Fig. 2.7.
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Figure 2.6: The impact and non− smoothness are seen at discontinuity pointsτk :
(0.5; 1.5; 2.5; 3.5) and at switching pointsθk : (1; 2; 3), respectively.
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Figure 2.7: Eventually 1− periodic solutions of system (2.32) with the initial point [0,0]T .

2.4.2.3 Conclusions

This is the first time that global asymptotic stability of periodic solutions for recurrent neural

networks with both impulses and piecewise constant delay is considered. Furthermore, our

model gives new ideas not only from the implementation point of view, but alsofrom the

system of differential equations. In other words, we develop differential equations with piece-

wise constant argument to a new class of system, so called impulsive differential equations

with piecewise constant delay. For applications, we have also nice properties on the system

of equations that the moments of discontinuityτk and switching moments of constancy of ar-

gumentsθk are not related to each other. That is, our investigations are more applicable to the

real world problems like recurrent neural networks. Finally, the resultsgiven in this section

could be developed for more complex systems [20, 21, 22].
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CHAPTER 3

THE SECOND LYAPUNOV METHOD

In this chapter we investigate the problem of stability for differential equations with piece-

wise constant argument of generalized type based on the method of Lyapunov functions. In

addition to this theoretical results, we analyze the stability for neural networks with piecewise

constant argument of generalized type through the Second Lyapunov method. That is, we use

the method of Lyapunov functions and Lyapunov-Razumikhin technique for the stability of

RNNs and CNNs, respectively. Examples with numerical simulations are given to illustrate

the theoretical results.

3.1 The Method of Lyapunov Functions: Theoretical Results

In this section, we address differential equations with piecewise constant argument of gen-

eralized type [4, 5, 6, 8] and investigate their stability with the second Lyapunov method.

Despite the fact that these equations include delay, stability conditions are merely given in

terms of Lyapunov functions; that is, no functionals are used. Severalexamples, one of which

considers the logistic equation, are discussed to illustrate the development ofthe theory.

3.1.1 Introduction

K. L. Cooke, J. Wiener and their co-authors [68, 69, 70, 77] introduced differential equations

with piecewise constant argument, which play an important role in applications [4, 5, 6, 8, 9,

12, 13, 14, 17, 68, 69, 70, 72, 77, 85, 87, 100, 101, 102, 115]. By introducing arbitrary piece-

wise constant functions as arguments, the concept of differential equations with piecewise

constant argument has been generalized in [4, 5, 6].
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We should mention the following novelties of the present section. The main and possibly a

unique way of stability analysis for differential equations with piecewise constant argument

has been the reduction to discrete equations [72, 77, 80, 86, 88, 89, 101, 115]. Particularly,

the problem of exploring stability with Lyapunov functions of continuous time has been re-

maining open. Moreover, the results of our investigation have been developed through the

concept of “total stability” [75, 106], which is stability under persistent perturbations of the

right hand side of a differential equation, and they originate from a special theorem by Malkin

[76]. Then, one can accept our approach as comparison of stability of equations with piece-

wise constant argument and ordinary differential equations. Finally, it deserves to emphasize

that the direct method for differential equations with deviating argument necessarily utilizes

functionals [67, 90, 105], but we use only Lyapunov functions to determine criteria of the

stability, and this can be an advantage in applications.

3.1.2 The Subject and Method of Analysis

Let N andR+ be the set of natural numbers and nonnegative real numbers, respectively, i.e.,

N = {0, 1, 2, ...}, R+ = [0,∞). Denote the n-dimensional real space byR
n, n ∈ N, and the

Euclidean norm inRn by ‖ . ‖.

Let us introduce a special notation:

K = {ψ : ψ ∈ C(R+,R+) is a strictly increasing function andψ(0) = 0}.

We fix a real-valued sequenceθi , i ∈ N, such that 0= θ0 < θ1 < ... < θi < ... with θi → ∞ as

i → ∞, and shall consider the following equation

x′(t) = f (t, x(t), x(β(t))), (3.1)

wherex ∈ B(h), B(h) = {x ∈ Rn : ‖x‖ < h}, t ∈ R+ andβ(t) = θi if t ∈ [θi , θi+1), i ∈ N, is an

identification function.

We say that a continuous functionx(t) is a solution of equation (3.1) onR+ if it satisfies (3.1)

on the intervals [θi , θi+1), i ∈ N and the derivativex′(t) exists everywhere with the possible

exception of the pointsθi , i ∈ N, where one-sided derivatives exist.

In the rest of this section, we assume that the following conditions hold:
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(C1) f (t,u, v) ∈ C(R+ × B(h) × B(h)) is ann× 1 real valued function;

(C2) f (t,0,0) = 0 for all t ≥ 0;

(C3) f satisfies a Lipschitz condition with constantsℓ1, ℓ2 :

‖ f (t,u1, v1) − f (t,u2, v2)‖ ≤ ℓ1 ‖u1 − u2‖ + ℓ2 ‖v1 − v2‖ (3.2)

for all t ∈ R+ andu1, u2, v1, v2 ∈ B(h);

(C4) there exists a constantθ > 0 such thatθi+1 − θi ≤ θ, i ∈ N;

(C5) θ[ℓ2 + ℓ1(1+ ℓ2θ)eℓ1θ] < 1;

(C6) θ(ℓ1 + 2ℓ2)eℓ1θ < 1.

We give now some definitions and preliminary results which enable us to investigate stability

of the trivial solution of (3.1).

Definition 3.1.1 [6] The zero solution of(3.1) is said to be

(i) stable if for anyε > 0 and t0 ∈ R
+, there exists aδ = δ(t0, ε) > 0 such that‖x0‖ < δ

implies‖x(t, t0, x0)‖ < ε for all t ≥ t0;

(ii) uniformly stable ifδ is independent of t0.

Definition 3.1.2 [6] The zero solution of(3.1) is said to be uniformly asymptotically stable if

it is uniformly stable and there is aδ0 > 0 such that for everyε > 0 and t0 ∈ R+, there exists

a T = T(ε) > 0 such that‖x(t, t0, x0)‖ < ε for all t > t0 + T whenever‖x0‖ < δ0.

Next, we shall describe the method, which is in the base of our investigation. Let us rewrite

the system (3.1) in the form

x′(t) = f (t, x(t), x(t)) + h(t, x(t), x(β(t))),

whereh(t, x(t), x(β(t))) = f (t, x(t), x(β(t)))− f (t, x(t), x(t)). If the constantθ mentioned in (C4)

is small, then we can considerh(t, x(t), x(β(t))) as a small perturbation. That is to say, system

(3.1) is a perturbed system for the following ordinary differential equation,

y′(t) = g(t, y(t)), (3.3)
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whereg(t, y(t)) = f (t, y(t), y(t)).

Our intention is to consider systems (3.1) and (3.3) involved in the perturbation relation, and

then extend these systems to the problem of stability based on the approach ofI. G. Malkin

[76].

Before applying the method, it is useful to consider a simple example. Let the following linear

scalar equation with piecewise constant argument be given:

x′(t) = ax(t) + bx(β(t)) (3.4)

whereθi = ih, i ∈ N. The solution of (3.4) if t ∈ [ih, (i + 1)h) is given by [74, 77]

x(t) = {ea(t−ih)(1+
b
a

) − b
a
}{eah(1+

b
a

) − b
a
}i x0.

Then, one can easily see that the zero solution of (3.4) is asymptotically stable if and only if

−a(eah+ 1)

eah− 1
< b < −a. (3.5)

On the other side, consider the following ordinary differential equation, which is associated

with (3.4), and plays the role of (3.3),

y′(t) = ay(t) + by(t) = (a+ b)y(t). (3.6)

It is seen that the trivial solution of (3.6) is asymptotically stable if and only if

b < −a. (3.7)

When the insertion of the greatest integer function is regarded as a “perturbation” of the linear

equation (3.6), it is seen for (3.4) that the stability condition (3.5) is necessarily stricter than

the one given by (3.7) for the corresponding “nonperturbed” equation (3.6). Moreover, it is

seen that the condition (3.5) transforms to (3.7) ash→ 0.

If we discuss stability of equation (3.1) on the basis of (3.3), we expect that a comparison,

similar to the relation of the conditions of (3.5) and (3.7), can be generalized. Furthermore,

stability conditions for the ordinary differential equation (3.3) may not be enough for the

issue system (3.1). By means of the following theorems, we demonstrate that stability of (3.1)

depends on that of the corresponding ordinary differential equation (3.3).

85



3.1.3 Main Results

The following lemma plays a crucial role in the proofs of stability theorems.

Lemma 3.1.3 If the conditions(C1)− (C5)are fulfilled, then we have the estimation

‖x(β(t))‖ ≤ m‖x(t)‖ (3.8)

for all t ∈ R+, where m=
{

1− θ[ℓ2 + ℓ1(1+ ℓ2θ)eℓ1θ]
}−1

.

Proof. Fix t ∈ R+, then one can findk ∈ N such thatt ∈ Ik = [θk, θk+1). For t ∈ Ik, we have

x(t) = x(θk) +
∫ t

θk

f (s, x(s), x(θk))ds, which yields to

‖x(t)‖ ≤ (1+ ℓ2θ) ‖x(θk)‖ + ℓ1

∫ t

θk

‖x(s)‖ds.

By the Gronwall-Bellman Lemma, we obtain‖x(t)‖ ≤ (1+ ℓ2θ)eℓ1θ ‖x(θk)‖ . Moreover,

x(θk) = x(t) −
∫ t

θk

f (s, x(s), x(θk))ds, t ∈ Ik.

Thus,

‖x(θk)‖ ≤ ‖x(t)‖ +
∫ t

θk

(ℓ1 ‖x(s)‖ + ℓ2 ‖x(θk)‖) ds

≤ ‖x(t)‖ +
∫ t

θk

ℓ1

[

(1+ ℓ2θ)e
ℓ1θ + ℓ2

]

‖x(θk)‖ds

≤ ‖x(t)‖ + θ
[

ℓ1(1+ ℓ2θ)e
ℓ1θ + ℓ2

]

‖x(θk)‖ ,

proves that‖x(θk)‖ ≤ m‖x(t)‖ for t ∈ Ik. As the functionx(t) is continuous onR+, (3.8) holds

for all t ≥ 0.

Next, we need the following theorem which provides conditions for the existence and unique-

ness of solutions onR+. Since the proof of the assertion is almost identical to the one given

in [4], we omit it here.

Theorem 3.1.4 Suppose that conditions(C1) and (C3)− (C6) are fulfilled. Then for every

(t0, x0) ∈ R
+ × B(h) there exists a unique solution x(t) = x(t, t0, x0) of (3.1) on R

+ with

x(t0) = x0.
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Let the derivative ofV with respect to system (3.3) be defined by

V′(3.3)(t, y) =
∂V(t, y)
∂t

+
∂V(t, y)
∂y

g(t, y)

for all t in R
+ andy ∈ B(h).

Theorem 3.1.5 Suppose that(C1)− (C6) hold true and there exist a continuously differen-

tiable function V: R+ ×B(h)→ R
+, V(t,0) = 0 for all t ∈ R+, and a positive constantα such

that

(i) u(‖y‖) ≤ V(t, y) onR+ × B(h), where u∈ K ;

(ii) V ′(3.3)(t, y) ≤ −αℓ2(1+m) ‖y‖2 for all (t, y) ∈ R+ × B(h), where m is the constant defined

in Lemma3.1.3;

(iii) ||∂V(t, y)
∂y

|| ≤ α ‖y‖.

Then the zero solution of(3.1) is stable.

Proof. Let h1 ∈ (0,h). Givenε ∈ (0,h1) and t0 ∈ R
+, chooseδ > 0 sufficiently small that

V(t0, x(t0)) < u(ε) if ‖x(t0)‖ < δ. If we evaluate the time derivative ofV with respect to (3.1),

we get fort , θi

V′(3.1)(t, x(t), x(β(t))) =
∂V(t, x(t))

∂t
+ <

∂V(t, x(t))
∂x

, f (t, x(t), x(β(t))) >

= V′(3.3)(t, x(t))+ <
∂V(t, x(t))

∂x
,h(t, x(t), x(β(t))) > .

Hence, we have

V′(3.1)(t, x(t), x(β(t))) ≤ −αℓ2(1+m)||x(t)||2 + ||∂V(t, x(t))
∂x

||||h(t, x(t), x(β(t)))||

≤ −αℓ2(1+m) ‖x(t)‖2 + αℓ2(1+m) ‖x(t)‖2 = 0,

which implies thatV(t, x(t)) ≤ V(t0, x(t0)) < u(ε) for all t ≥ t0, proving that‖x(t)‖ < ε. �

Theorem 3.1.6 Suppose that(C1)− (C6) hold true and there exist a continuously differen-

tiable function V: R+ × B(h)→ R
+ and a constantα > 0 such that
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(i) u(‖y‖) ≤ V(t, y) ≤ v(‖y‖) onR+ × B(h), where u, v ∈ K ;

(ii) V ′(3.3)(t, y) ≤ −αℓ2(1+m) ‖y‖2 for all t ∈ R+ and y∈ B(h);

(iii) ||∂V(t, y)
∂y

|| ≤ α ‖y‖.

Then the zero solution of(3.1) is uniformly stable.

Proof. Let h1 ∈ (0,h). Fix ε > 0 in the range 0< ε < h1 and chooseδ > 0 such that

v(δ) < u(ε). If t0 ≥ 0 and‖x(t0)‖ < δ, then as a consequence of the condition (i) we have

V(t0, x(t0)) < v(δ) < u(ε). Using the same argument used in the proof of Theorem 3.1.5, one

can obtain thatV(t, x(t)) ≤ V(t0, x(t0)) < u(ε) for all t ≥ t0. Hence‖x(t)‖ < ε for all t ≥ t0.

Theorem 3.1.7 Suppose that(C1)− (C6) hold true and there exist a continuously differen-

tiable function V: R+ × B(h)→ R
+, constantsα > 0 andτ > 1 such that

(i) u(‖y‖) ≤ V(t, y) ≤ v(‖y‖) onR+ × B(h), where u, v ∈ K ;

(ii) V ′(3.3)(t, y) ≤ −ταℓ2(1+m) ‖y‖2 for all t ∈ R+ and y∈ B(h);

(iii) ||∂V(t, y)
∂y

|| ≤ α ‖y‖.

Then the zero solution of(3.1) is uniformly asymptotically stable.

Proof. In view of the Theorem 3.1.5, the equilibriumx = 0 of (3.1) is uniformly stable. We

need to show that it is asymptotically stable as well. Fort , θi ,

V′(3.1)(t, x(t), x(β(t))) ≤ −ταℓ2(1+m) ‖x(t)‖2 + αℓ2(1+m) ‖x(t)‖2

= −(τ − 1)αℓ2(1+m) ‖x(t)‖2 .

Denotew(‖x‖) = (τ− 1)αℓ2(1+m) ‖x‖2 . Let h1 ∈ (0,h). Chooseδ > 0 such thatv(δ) < u(h1).

We fix ε > 0 in the range (0,h1) and pickη ∈ (0, δ) such thatv(η) < u(ε). Let t0 ∈ R
+ and

‖x(t0)‖ < δ. We defineT =
u(h1)
w(η)

. We shall show that‖x(t̄)‖ < η for somet̄ ∈ [t0, t0 + T]. If

this were not true, then we would have‖x(t)‖ ≥ η for all t ∈ [t0, t0 + T].

For t ∈ [t0, t0 + T], t , θi , we have

V′(3.1)(t, x(t), x(β(t))) ≤ −w(‖x(t)‖) ≤ −w(η).
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Since the functionV(t, x(t)) and the solutionx(t) are continuous, we obtain that

V(t0 + T, x(t0 + T)) ≤ V(t0, x(t0)) − w(η)T < v(δ) − w(η)
u(h1)
w(η)

< 0,

which is a contradiction. Hence,̄t exists. Now fort ≥ t̄ we have

V(t, x(t)) ≤ V(t̄, x(t̄)) < v(η) < u(ε).

In the end, it follows from the hypothesis (i) that ‖x(t)‖ < ε for all t ≥ t̄ and in turn for all

t ≥ t0 + T. �

Remark 3.1.8 Theorems3.1.5-3.1.7 provide criteria for stability, which are entirely con-

structed on the basis of Lyapunov functions. As for the functionals, they appear only in the

proofs of theorems. Although the equations include deviating arguments, and functionals are

ordinarily used in the stability criteria[72, 90], we see that the conditions of our investiga-

tions, which guarantee stability, are definitely formulated without functionals.

Next, we want to compare our present results, which are obtained by the method of Lyapunov

functions with the ones proved in [17] by employing the Lyapunov-Razumikhin technique.

To this end, let us discuss the following linear equation with piecewise constant argument of

generalized type taken from [17],

x′(t) = −a0(t)x(t) − a1(t)x(β(t)), (3.9)

wherea0 and a1 are bounded continuous functions onR+. We suppose that the sequence

θi , i ∈ N, with ℓ1 = sup
t∈R+
|a0(t)|, ℓ2 = sup

t∈R+
|a1(t)|, satisfies the conditions (C4)-(C6). One can

check easily that conditions (C1)-(C3) are also valid. Under the assumption

0 ≤ a0(t) + a1(t) ≤ 2a0(t), t ≥ 0, (3.10)

it was obtained via the Lyapunov-Razumikhin method in [17] that the trivial solution of (3.9)

is uniformly stable. Let us consider this equation using the results obtained in the present

section. We set

(1+m) sup
t∈R+
|a1(t)| ≤ a0(t) + a1(t), t ≥ 0, (3.11)

In order to apply our results, we need the following equation besides (3.9);

y′(t) = −(a0(t) + a1(t))y(t). (3.12)
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Let us define a Lyapunov functionV(y) = α
2y2, y ∈ B(h), α > 0. It follows from (3.11) that

the derivative ofV(y) with respect to equation (3.12) is given by

V′(3.12)(y(t)) = −α(a0(t) + a1(t))y2(t)

≤ −αℓ2(1+m)y2(t).

Then, by Theorem 3.1.6, the zero solution of (3.9) is uniformly stable.

In addition, taking (a0(t)+ a1(t)) ≥ τℓ2(1+m), τ > 1, one can show that the trivial solution of

(3.9) is uniformly asymptotically stable by Theorem 3.1.7.

We can see that theorems obtained by Lyapunov-Razumikhin method provide larger class of

equations with respect to (3.9). However, from the perspective of the constructive analysis,

the present method may be more preferable, since, for example, from the proof of Theorem

3.1.6, we haveV′(3.9)(t, x(t), x(β(t))) ≤ 0, which implies|x(t)| ≤ |x(t0)|, t ≥ t0, for our specific

Lyapunov function. Thus, by using the present results, it is possible to evaluate the numberδ

needed for (uniform) stability in the Definition 3.1.1 asδ = ε.

Besides Theorems 3.1.5, 3.1.6 and 3.1.7, the following assertions may be useful for analysis

of the stability of differential equations with piecewise constant argument. These theorems

are important and have their own distinctive values with the newly required properties of the

Lyapunov function and can be proved similarly.

Theorem 3.1.9 Suppose that(C1)− (C6) hold true and there exist a continuously differen-

tiable function V: R+ × B(h)→ R
+ and a positive constant M such that

(i) u(‖y‖) ≤ V(t, y) onR+ × B(h), where u∈ K ;

(ii) V ′(3.3)(t, y) ≤ −Mℓ2(1+m) ‖y‖ for all t ∈ R+ and y∈ B(h);

(iii) ||∂V(t, y)
∂y

|| ≤ M.

Then the zero solution of(3.1) is stable.

Theorem 3.1.10Suppose that(C1)− (C6) hold true and there exist a continuously differen-

tiable function V: R+ × B(h)→ R
+ and a positive constant M such that
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(i) u(‖y‖) ≤ V(t, y) ≤ v(‖y‖) onR+ × B(h), where u, v ∈ K ;

(ii) V ′(3.3)(t, y) ≤ −Mℓ2(1+m) ‖y‖ for all t ∈ R+ and y∈ B(h);

(iii) ||∂V(t, y)
∂y

|| ≤ M.

Then the zero solution of(3.1) is uniformly stable.

Theorem 3.1.11Suppose that(C1)− (C6) hold true and there exist a continuously differen-

tiable function V: R+ × B(h)→ R
+, constants M> 0 andτ > 1 such that

(i) u(‖y‖) ≤ V(t, y) ≤ v(‖y‖) onR+ × B(h), where u, v ∈ K ;

(ii) V ′(3.3)(t, y) ≤ −τMℓ2(1+m) ‖y‖ for all t ∈ R+ and y∈ B(h);

(iii) ||∂V(t, y)
∂y

|| ≤ M.

Then the zero solution of(3.1) is uniformly asymptotically stable.

3.1.4 Applications to The Logistic Equation

In this section, we are interested in the stability of the positive equilibriumN∗ =
1

a+ b
of the

following logistically growing population subjected to a density-dependent harvesting;

N′(t) = rN(t)[1 − aN(t) − bN(β(t))], t > 0, (3.13)

whereN(t) denotes the biomass of a single species, andr, a, b are positive parameters. There

exists an extensive literature dealing with sufficient conditions for global asymptotic stability

of equilibria for the logistic equation with piecewise constant argument (see [115, 86, 87, 89,

101] and the references therein). For example, Gopalsamy and Liu [115] showed thatN∗ is

globally asymptotically stable ifa/b ≥ 1. In these papers, the initial moments are taken as

integers owing to the method of investigation: reduction to difference equations. Since our

approach makes it possible to take not only integers, but also all values from R
+ as initial

moments, we can consider the stability in uniform sense.

Let us also discuss the biological sense of the insertion of the piecewise constant delay [115,

72, 86, 87, 89, 101]. The delay means that the rate of the population depends both on the
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present size and the memorized values of the population. To illustrate the dependence, one

may think populations, which meet at the beginning of a season, e.g., in springtime, with their

instinctive evaluations of the population state and environment and implicitly decide which

living conditions to prefer and where to go [9] in line with group hierarchy,communications

and dynamics and then adapt to those conditions.

By means of the transformationx = b(N − N∗), equation (3.13) can be simplified as

x′(t) = −r[x(t) +
1

1+ γ
][γx(t) + x(β(t))], (3.14)

whereγ = a/b. Let us specify for (3.14) general conditions of Theorems 3.1.5, 3.1.6 and 3.1.7.

We observe thatf (x, y) := −r[x + 1
1+γ ][γx + y] is a continuous function and has continuous

partial derivatives forx, y ∈ B(h). It can be found easily that

ℓ1 = r(2γh+ h+
γ

1+ γ
), ℓ2 = r(h+

1
1+ γ

).

One can see that (C1), (C2) and (C3) hold ifr is sufficiently small. Moreover, we assume that

(C4), (C5) and (C6) are satisfied.

Consider the following equation associated with (3.14);

y′(t) = −r(1+ γ)y(t)[y(t) +
1

1+ γ
]. (3.15)

Supposeh is smaller than
1

1+ γ
and consider a Lyapunov function defined byV(y) = α

2y2, y ∈

B(h), α > 0. Then,

V′(3.15)(y(t)) = −αr(1+ γ)y2(t)[y(t) +
1

1+ γ
]

≤ −αr[1 − h(1+ γ)]y2(t).

For sufficiently smallh, we assume that

ϕ(h,m) ≤ γ, (3.16)

where

ϕ(h,m) =
1− h(3+m) −

√

(h(1+m))2 − 6h(1+m) + 1
2h

.

It follows from (3.16) that

(h+
1

1+ γ
)(1+m) ≤ 1− h(1+ γ),
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which implies in turn

V′(3.15)(y(t)) ≤ −αℓ2(1+m)y2(t).

By Theorem 3.1.6, the zero solution of (3.14) is uniformly stable.

Next, we consider uniform asymptotic stability. Assuming forτ > 1;

ψ(h,m, τ) ≤ γ, (3.17)

where

ψ(h,m, τ) =
1− hτ(3+m) −

√

(hτ(1+m))2 − 6hτ(1+m) + 1
2h

,

we obtain that

τ(h+
1

1+ γ
)(1+m) ≤ 1− h(1+ γ).

One can show easily thatψ(h,m, τ) ≥ 1 for smallh. Then forV(y) = α
2y2, we have

V′(3.15)(y(t)) ≤ −ταℓ2(1+m)y2(t).

That is, condition (iii) of Theorem 3.1.7 is satisfied. Thus, the trivial solutionx = 0 of (3.14)

is uniformly asymptotically stable.

In the light of the above reduction, we see that the obtained conditions are valid for the stability

of the equilibriumN = N∗ of (3.13).

Finally, we see that the condition (3.17) is stronger than the oneγ ≥ 1 taken from [115].

However, our results are for all values fromR+ as initial moments, whereas [115] considers

only integers. Moreover, the piecewise constant argument is of generalized type.

3.2 The Method of Lyapunov Functions

In this section, we apply the method of Lyapunov functions for differential equations with

piecewise constant argument of generalized type to a model of RNNs. Themodel involves

both advanced and delayed arguments. Sufficient conditions are obtained for global exponen-

tial stability of the equilibrium point. Examples with numerical simulations are presented to

illustrate the results.
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3.2.1 Introduction

Lyapunov functions and functionals are among the most popular tools in studying the problem

of the stability for RNNs (see, [40, 41, 42, 43, 44, 45, 46, 47, 48, 49,50, 51, 52, 53, 54, 61,

62, 63, 64, 65, 66]). However, it is difficult to construct Lyapunov functions or functionals

that satisfy the strong conditions required in the classical stability theory. Inthis part, we

investigate some new stability conditions for RNNs model based on the second Lyapunov

method. Although, this model includes both advanced and delayed arguments, it deserves

to be mentioned that new stability conditions are given in terms of inequalities, andit is

known that for equations with deviating argument, this method necessarily utilizes functionals

[67, 69, 77, 90].

To the best of our knowledge, the equations with piecewise constant arguments were not

considered as models of RNNs, except possibly [12, 13]. In papers [3, 5, 6, 7, 10, 12, 13,

17, 18] we discuss the stability problems. Unlike these papers, the stability wasanalyzed

by the second Lyapunov method in [10]. Nevertheless, it is the first time thatthe second

method is applied to the equations, whose arguments are not only delayed butalso advanced

in this thesis. Moreover, one should emphasize that there is an opportunity application of

Lyapunov functions technique to estimate domains of attraction which has a particular interest

to evaluate the performance of RNNs [54, 60].

The crucial novelty of this part is that the system is of mixed type, in other words; the argu-

ment can be advanced during the process. In the literature, biological reasons for argument

to be delayed are discussed well [91, 92]. Due to the finite switching speed of amplifiers and

transmission of signals in electronic networks or finite speed for signal propagation in neural

networks, time delays exist [32, 33, 35, 39]. In the present section, weissue from the fact that

delayed as well as advanced argument play a significant role in electromagnetic fields, see, for

example, the paper [25], where thesymmetry of the physics lawswere emphasized with re-

spect totime reversal. Consequently, one can suppose that analysis of neural networks, which

is based on electrodynamics, may bring us to the comprehension of the deviation, especially

the advanced one, in the models more clearly. Therefore, in the future analysis of RNNs, the

systems introduced in this section can be useful. Furthermore, different types of deviation of

the argument may depend on traveling waves emergence in CNNs [26]. Understanding the

structure of such traveling waves is important due to their potential applications including im-
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age processing (see, for example, [30, 31, 32, 33, 34, 35]). On theother hand, the importance

of anticipation for biology, which can be modeled with advanced arguments, ismentioned by

some authors. For instance, in paper [93], it is supposed that synchronization of biological

oscillators may request anticipation of counterparts behavior.

3.2.2 Model Formulation and Preliminaries

Let N andR+ be the sets of natural and nonnegative real numbers, respectively, i.e., N =

{0,1,2, ...}, R+ = [0,∞). Denote them dimensional real space byRm, m ∈ N, and the norm

of a vectorx ∈ R
m by ||x|| =

m
∑

i=1

|xi |. We fix two real valued sequencesθi , ζi , i ∈ N, such

that θi < θi+1, θi ≤ ζi ≤ θi+1 for all i ∈ N, θi → ∞ as i → ∞, and shall consider the

following RNNs model described by differential equations with piecewise constant argument

of generalized type:

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(γ(t))) + I i , (3.18)

ai > 0, i = 1,2, . . . ,m.

whereγ(t) = ζk, if t ∈ [θk, θk+1), k ∈ N, t ∈ R
+, n corresponds to the number of units in a

neural network,xi(t) stands for the state vector of theith unit at timet, f j(x j(t)) andg j(x j(γ(t)))

denote, respectively, the measures of activation to its incoming potentials of the unit j at time

t andγ(t), bi j , ci j , I i are real constants,bi j means the strength of thejth unit on theith unit at

time t, ci j infers the strength of thejth unit on theith unit at timeγ(t), I i signifies the external

bias on theith unit andai represents the rate with which theith unit will reset its potential to

the resting state in isolation when it is disconnected from the network and external inputs.

The following assumptions will be needed throughout this section:

(A1) the activation functionsf j ,g j ∈ C(Rm) satisfy f j(0) = 0, g j(0) = 0 for each j =

1,2, . . . ,m;

(A2) there exist Lipschitz constantsL1
i , L

2
i > 0 such that

| fi(u) − fi(v)| ≤ L1
i |u− v|,

|gi(u) − gi(v)| ≤ L2
i |u− v|

for all u, v ∈ Rm, i = 1,2, . . . ,m;

95



(A3) there exists a positive numberθ such thatθi+1 − θi ≤ θ, i ∈ N;

(A4) θ [m1 + 2m2] em1θ < 1;

(A5) θ
[

m2 +m1(1+m2θ)em1θ
]

< 1,

where

m1 = max
1≤i≤m



















ai + L1
i

m
∑

j=1

|b ji |



















, m2 = max
1≤i≤m



















L2
i

m
∑

j=1

|c ji |



















.

In this part we assume that the solutions of the equation (3.18) are continuous functions.

But the deviating argumentγ(t) is discontinuous. Thus, in general, the right-hand side of

(3.18) has discontinuities at momentsθi , i ∈ N. As a result, we consider the solutions of the

equations as functions, which are continuous and continuously differentiable within intervals

[θi , θi+1), i ∈ N. In other words, by a solutionx(t) = (x1(t), . . . , xm(t))T of (3.18) we mean a

continuous function onR+ such that the derivativex′(t) exists at each pointt ∈ R+, with the

possible exception of the pointsθi , i ∈ N,where one-sided derivative exists and the differential

equation (3.18) is satisfied byx(t) on each interval (θi , θi+1) as well.

In the following theorem, we obtain sufficient conditions for the existence of a unique equi-

librium, x∗ = (x∗1, . . . , x
∗
m)T , of (3.18).

Theorem 3.2.1 Suppose that(A2) holds. If the neural parameters ai ,bi j , ci j satisfy

ai > L1
i

m
∑

j=1

|b ji | + L2
i

m
∑

j=1

|c ji |, i = 1, . . . ,m,

then (3.18) has a unique equilibrium x∗ = (x∗1, . . . , x
∗
m)T .

The proof of the theorem is almost identical to Theorem 2.1 in [46] and thus we omit it here.

The next theorem provides conditions for the existence and uniqueness of solutions ont ≥ t0.

The proof of the assertion is similar to that of Theorem 1.1 in [5] and Theorem 2.2 in [12].

But, for convenience of the reader we place the full proof of the assertion.

Theorem 3.2.2 Assume that conditions(A1) − (A4) are fulfilled. Then, for every(t0, x0) ∈

R
+ × R

m, there exists a unique solution x(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , t ≥ t0, of

(3.18), such that x(t0) = x0.
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Proof. Existence: Fix k ∈ N. We assume without loss of generality thatθk ≤ ζk < t0 ≤ θk+1.

To begin with, we shall prove that for every (t0, x0) ∈ [θk, θk+1] × R
m, there exists a unique

solutionx(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , of (3.18) such thatx(t0) = x0 = (x0
1, . . . , x

0
m)T .

Let us denote for simplicityz(t) = x(t, t0, x0), z(t) = (z1, . . . , zm)T , and consider the equivalent

integral equation

zi(t) = x0
i +

∫ t

t0



















−aizi(s) +
m

∑

j=1

bi j f j(zj(s)) +
m

∑

j=1

ci j g j(zj(ζk)) + I i



















ds.

Define a norm||z(t)||0 = max
[ζk,t0]
||z(t)|| and construct the following sequenceszn

i (t), z0
i (t) ≡ x0

i , i =

1, . . . ,m, n ≥ 0 such that

zn+1
i (t) = x0

i +

∫ t

t0



















−aiz
n
i (s) +

m
∑

j=1

bi j f j(z
n
j (s)) +

m
∑

j=1

ci j g j(z
n
j (ζk)) + I i



















ds.

One can find that

||zn+1(t) − zn(t)||0 ≤ [θ(m1 +m2)]n τ,

where

τ = θ















(m1 +m2) ||x0|| +
m

∑

i=1

I i















.

Thus, there exists a unique solutionz(t) = x(t, t0, x0) of the integral equation on [ζk, t0]. Then,

conditions (A1) and (A2) imply thatx(t) can be continued toθk+1, since it is a solution of

ordinary differential equations

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(ζk)) + I i ,

ai > 0, i = 1,2, . . . ,m

on [θk, θk+1). Next, again, using same argument we can continuex(t) from t = θk+1 to t = ζk+1,

and then toθk+2. Hence, the mathematical induction completes the proof.

Uniqueness: Denote byx1(t) = x(t, t0, x1), x2(t) = x(t, t0, x2), the solutions of (3.18), where

θk ≤ t0 ≤ θk+1. It is sufficient to check that for everyt ∈ [θk, θk+1], x2 = (x2
1, . . . , x

2
m)T , x1 =

(x1
1, . . . , x

1
m)T ∈ Rm, x2

, x1 impliesx1(t) , x2(t). Then, we have that
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||x1(t) − x2(t)|| ≤ ||x1 − x2|| +
m

∑

i=1

{∫ t

t0

[

ai |x2
i (s) − x1

i (s)|

+

m
∑

j=1

L1
i |b ji ||x2

i (s) − x1
i (s)| +

m
∑

j=1

L2
i |c ji ||x2

i (ζk) − x1
i (ζk)|



















ds



















≤
(

||x1 − x2|| + θm2||x1(ζk) − x2(ζk)||
)

+

∫ t

t0
m1||x1(s) − x2(s)||ds.

The Gronwall-Bellman Lemma yields that

||x1(t) − x2(t)|| ≤
(

||x1 − x2|| + θm2||x1(ζk) − x2(ζk)||
)

em1θ.

Particularly,

||x1(ζk) − x2(ζk)|| ≤
(

||x1 − x2|| + θm2||x1(ζk) − x2(ζk)||
)

em1θ.

Thus,

||x1(t) − x2(t)|| ≤
( em1θ

1−m2θem1θ

)

||x1 − x2||. (3.19)

On the other hand, assume on the contrary that there existst ∈ [θk, θk+1] such thatx1(t) = x2(t).

Hence,

||x1 − x2|| =
m

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

t0



















−ai

(

x2
i (s) − x1

i (s)
)

+

m
∑

j=1

bi j

[

f j(x
2
j (s)) − f j(x

1
j (s))

]

+

m
∑

j=1

ci j

[

g j(x
2
j (ζk)) − g j(x

1
j (ζk))

]



















ds

∣

∣

∣

∣

∣

∣

∣

∣

≤
m

∑

i=1



















∫ t

t0



















ai |x2
i (s) − x1

i (s)| +
m

∑

j=1

L1
i |b ji ||x2

i (s) − x1
i (s)|

+

m
∑

j=1

L2
i |c ji ||x2

i (ζk) − x1
i (ζk)|



















ds



















≤ θm2||x1(ζk) − x2(ζk)|| +
∫ t

t0
m1||x1(s) − x2(s)||ds. (3.20)

Consequently, substituting (3.19) in (3.20), we obtain

||x1 − x2|| ≤ θ(m1 + 2m2)em1θ||x1 − x2||. (3.21)

Thus, one can see that (A4) contradicts with (3.21). The uniqueness is proved fort ∈ [θk, θk+1].

The extension of the unique solution onR+ is obvious. Hence, the theorem is proved.�
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Definitions of Lyapunov stability for the solutions of discussed system can be given in the

same way as for ordinary differential equations. Let us give only one of them.

Definition 3.2.3 [6] The equilibrium x= x∗ of (3.18) is said to be globally exponentially

stable if there exist positive constantsα1 and α2 such that the estimation of the inequality

‖x(t) − x∗‖ < α1 ‖x(t0) − x∗‖e−α2(t−t0) is valid for all t ≥ t0.

System (3.18) can be simplified as follows. Substitutingy(t) = x(t) − x∗ into (3.18) leads to

y′i (t) = −aiyi(t) +
m

∑

j=1

bi jϕ j(y j(t)) +
m

∑

j=1

ci jψ j(y j(γ(t))), (3.22)

whereϕ j(y j(t)) = f j(y j(t) + x∗j ) − f j(x∗j ) andψ j(y j(t)) = g j(y j(t) + x∗j ) − g j(x∗j ) with ϕ j(0) =

ψ j(0) = 0. From assumption (A2),ϕ j(·) andψ j(·) are also Lipschitzian withL1
j , L

2
j , respec-

tively.

It is clear that the stability of the zero solution of (3.22) is equivalent to that of the equilibrium

x∗ of (3.18). Therefore, we restrict our discussion to the stability of the zero solution of (3.22).

First of all, we give the following lemma which is one of the most important auxiliaryresults

of the present section.

Lemma 3.2.4 Let y(t) = (y1(t), . . . , ym(t))T be a solution of (3.22) and(A1) − (A5) be satis-

fied. Then, the following inequality

||y(γ(t))|| ≤ λ||y(t)|| (3.23)

holds for all t∈ R+, whereλ =
{

1− θ
[

m2 +m1 (1+m2θ) em1θ
]}−1

.

Proof. Fix k ∈ N. Then fort ∈ [θk, θk+1),

yi(t) = yi(ζk) +
∫ t

ζk



















−aiyi(s) +
m

∑

j=1

bi jϕ j(y j(s)) +
m

∑

j=1

ci jψ j(y j(ζk))



















ds,

whereγ(t) = ζk, if t ∈ [θk, θk+1), t ∈ R
+. Taking absolute value of both sides for each
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i = 1,2, . . . ,mand adding all equalities, we obtain that

||y(t)|| ≤ ||y(ζk)|| +
m

∑

i=1



















∫ t

ζk



















ai |yi(s)| +
m

∑

j=1

L1
j |bi j ||y j(s)|

+

m
∑

j=1

L2
j |ci j ||y j(ζk)|



















ds



















= ||y(ζk)|| +
∫ t

ζk



















m
∑

i=1



















ai + L1
i

m
∑

j=1

|b ji |



















|yi(s)|

+

m
∑

i=1

m
∑

j=1

L2
i |c ji ||yi(ζk)|



















ds

≤ (1+m2θ)||y(ζk)|| +
∫ t

ζk

m1||y(s)||ds.

The Gronwall-Bellman Lemma yields

||y(t)|| ≤ (1+m2θ)e
m1θ||y(ζk)||. (3.24)

Furthermore, fort ∈ [θk, θk+1) we have

||y(ζk)|| ≤ ||y(t)|| +
∫ t

ζk



















m
∑

i=1



















ai + L1
i

m
∑

j=1

|b ji |



















|yi(s)|

+

m
∑

i=1

m
∑

j=1

L2
i |c ji ||yi(ζk)|



















ds

≤ ||y(t)|| +m2θ||y(ζk)|| +
∫ t

ζk

m1||y(s)||ds.

The last inequality together with (3.24) imply

||y(ζk)|| ≤ ||y(t)|| +m2θ||y(ζk)|| +m1θ(1+m2θ)e
m1θ||y(ζk)||.

Thus, it follows from condition (A4) that

||y(ζk)|| ≤ λ||y(t)||, t ∈ [θk, θk+1).

Hence, (3.23) holds for allt ∈ R+. This completes the proof.�

3.2.3 Main Results

In this section we establish several criteria for global exponential stability of (3.22) based on

the method of Lyapunov functions.
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For convenience, we adopt the following notation in the sequel:

m3 =
1
m

min
1≤i≤m



















ai −
1
2

m
∑

j=1

(

L1
j |bi j | + L2

j |ci j | + L1
i |b ji |

)



















.

Theorem 3.2.5 Suppose that(A1) − (A5) hold true. Assume, furthermore, that the following

inequality is satisfied:

m3 >
m2λ

2

2
. (3.25)

Then the system (3.22) is globally exponentially stable.

Proof. We define a Lyapunov function by

V(y(t)) =
1
2

m
∑

i=1

y2
i (t).

One can easily show that

1
2m
||y(t)||2 ≤ V(y(t)) ≤ 1

2
||y(t)||2. (3.26)

For t , θi , i ∈ N, the time derivative ofV with respect to (3.22) is given by

V′(3.22)(y(t)) =
m

∑

i=1

yi(t)y
′
i (t)

=

m
∑

i=1

yi(t)



















−aiyi(t) +
m

∑

j=1

bi jϕ j(y j(t)) +
m

∑

j=1

ci jψ j(y j(γ(t)))



















≤
m

∑

i=1



















−aiy
2
i (t) +

m
∑

j=1

L1
j |bi j ||yi(t)||y j(t)| +

m
∑

j=1

L2
j |ci j ||yi(t)||y j(γ(t))|



















≤
m

∑

i=1



















−aiy
2
i (t) +

1
2

m
∑

j=1

L1
j |bi j |(y2

i (t) + y2
j (t)) +

1
2

m
∑

j=1

L2
j |ci j |(y2

i (t) + y2
j (γ(t)))



















≤ −
m

∑

i=1





































ai −
1
2

m
∑

j=1

(

L1
j |bi j | + L2

j |ci j | + L1
i |b ji |

)



















y2
i (t)



















+
1
2

m
∑

i=1

m
∑

j=1

L2
i |c ji |y2

i (γ(t))

≤ − min
1≤i≤m



















ai −
1
2

m
∑

j=1

(

L1
j |bi j | + L2

j |ci j | + L1
i |b ji |

)



















m
∑

i=1

y2
i (t)

+
1
2

max
1≤i≤m



















L2
i

m
∑

j=1

|c ji |



















m
∑

i=1

y2
i (γ(t))

≤ −m3||y(t)||2 + m2

2
||y(γ(t))||2.
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By using Lemma 3.2.4, we obtain

V′(3.22)(y(t)) ≤ −m3||y(t)||2 + m2λ
2

2
||y(t)||2

= −(m3 −
m2λ

2

2
)||y(t)||2.

Now, defineβ for convenience as follows:

β = m3 −
m2λ

2

2
> 0.

Then, we have fort , θi

d
dt

(e2βtV(y(t))) = e2βt(2β)V(y(t)) + e2βtV′(3.22)(y(t))

≤ βe2βt ‖y(t)‖2 − βe2βt ‖y(t)‖2 = 0.

From (3.26) and using the continuity of the functionV and the solutiony(t), we obtain

e2βt(1/2m) ‖y(t)‖2 ≤ e2βtV(y(t)) ≤ e2βt0V(y(t0)) ≤ e2βt0(1/2)‖y(t0)‖2 ,

which implies‖y(t)‖ ≤
√

m‖y(t0)‖e−β(t−t0). That is, the system (3.22) is globally exponentially

stable.�

In the next theorem, we utilize the same technique, used in previous theorem, tofind new

stability conditions for RNNs by choosing a different Lyapunov function defined as

V(y(t)) =
m

∑

i=1

αi |yi(t)|, αi > 0, i = 1,2, . . . ,m.

For simplicity of notation, let us denote

m4 = min
1≤i≤m



















ai − L1
i

m
∑

j=1

|b ji |



















.

Theorem 3.2.6 Suppose that(A1) − (A5) hold true. Assume, furthermore, that the following

inequality is satisfied:

m4 > m2λ. (3.27)

Then the system (3.22) is globally exponentially stable.

The proof of the assertion is similar to that of Theorem 3.2.5, so we omit it here.

102



3.2.4 Illustrative Examples

In this section, we give three examples with simulations to illustrate our results. Inthe sequel,

we assume that the identification functionγ(t) is with the sequencesθk = k/9, ζk = (2k +

1)/18, k ∈ N.

Example 3.2.7 Consider the following RNNs with the argument functionγ(t):

dx(t)
dt

= −





















2 0

0 1.5









































x1(t)

x2(t)





















+





















0.02 0.03

0.01 1









































tanh(x1(t))

tanh(x2(t))





















+





















0.08 1

0.01 1









































tanh(x1(γ(t))
7 )

tanh(x2(γ(t))
6 )





















+





















1

1





















. (3.28)

It is easy to verify that (3.28) satisfies the conditions of the Theorem 3.2.5 withL1
1 = L1

2 =

1, L2
1 = 1/7, L2

2 = 1/6, m1 = 2.53, m2 = 0.3333, m3 = 0.6308,m4 = 0.47, λ = 1.7337,

Thus, according to this theorem the unique equilibrium x∗ = (0.6011,1.3654)T of (3.28) is

globally exponentially stable. However, the condition (3.27) of Theorem 3.2.6 is not satisfied.

Let us simulate a solution of (3.28) with initial condition x1
1(0) = x0

1, x1
2(0) = x0

2. Since the

equation (3.28) is of mixed type, the numerical analysis has a specific character and it should

be described more carefully. One will see that this algorithm is in full accordance with the

approximations made in the proof of Theorem 3.2.2.

We start with the interval[θ0, θ1], that is; [0,1/9]. On this interval the equation (3.28) has the

form

dx(t)
dt

= −





















2 0

0 1.5






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




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















x1(0)

x2(0)





















+




















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
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


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




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
















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0.01 1




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




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






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













tanh(x1(1/18)
7 )

tanh(x2(1/18)
6 )





















+





















1

1





















,

where xi(1/18), i = 1,2, are still unknown. For this reason, we will arrange approximations

in the following way. Consider the sequence of the equations
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dx(n+1)(t)
dt

= −




















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
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
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


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
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
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


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




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
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




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





















tanh(
x(n)

1 (1/18)
7 )

tanh(
x(n)

2 (1/18)
6 )





















+





















1

1





















,

where n = 0,1,2 . . . , with x0
1(t) ≡ x0

1, x0
2(t) ≡ x0

2. We evaluate the solutions, x(n)(t), by

using MATLAB 7.8. and stop the iterations at(x(500)
1 (t), x500

2 (t)). Then, we assign x1(t) =

x(500)
1 (t), x2(t) = x(500)

2 (t) on the interval[θ0, θ1]. Next, similar operation is done on the inter-

val [θ1, θ2]. That is, we construct the sequence(x(n)
1 , x(n)

2 ) of solutions again for the system

dx(n+1)(t)
dt

= −








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
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


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
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
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

x(n)
1 (0)

x(n)
2 (0)





















+





















0.02 0.03

0.01 1









































tanh(x(n)
1 (0))

tanh(x(n)
2 (0))





















+





















0.08 1

0.01 1









































tanh(
x(n)

1 (3/18)
7 )

tanh(
x(n)

2 (3/18)
6 )




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
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
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


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





with x0
1(t) ≡ x(500)

1 (1/9), x0
2(t) ≡ x(500)

2 (1/9). Then, we reassign x1(t) = x(500)
1 (t), x2(t) =

x(500)
2 (t) on [θ1, θ2]. Proceeding in this way, one can obtain a simulation which demonstrates

the asymptotic property.

Specifically, simulation result with several random initial points is shown in Fig. 3.1. We must

explain that the non-smoothness at the switching pointsθk, k ∈ N is not seen by simulation.

That is why we have to choose the Lipschitz constants andθ small enough to satisfy the

conditions of the theorems. So, the smallness “hides” the non-smoothness.

Let us now take the parameters such that the non-smoothness can be seen. Consider the

following RNNs:

dx(t)
dt

= −
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
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, (3.29)
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whereθk = k/2, ζk = (2k + 1)/4, k ∈ N. One can see thatθ and the Lipschitz coefficient

are large this time. They do not satisfy the conditions of our theorems. It is illustrated in

Fig.3.2 that the non-smoothness of the solution with the initial point[1,2]T can be seen at the

switching pointsθk, k ∈ N. This is important for us to see that the non-smoothness of solutions

expected from the equations’ nature is seen. Moreover, we can see thatthe solution converges

to the unique equilibrium x∗ = (0.4325,0.6065)T . It shows that the sufficient conditions which

are found in our theorems can be elaborated further.
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Figure 3.1: Transient behavior of the RNNs in Example 3.2.7.
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Figure 3.2: The non-smoothness is seen at moments 0.5; 1; 1.5, which are switching points of
the functionγ(t).
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Example 3.2.8 Consider the following RNNs:

dx(t)
dt

= −





















2 0

0 2.5









































x1(t)

x2(t)





















+





















1 0.03

0.04 1









































tanh(x1(t)
4 )

tanh(x2(t))





















+





















1 0.04

0.02 0.07









































tanh(x1(γ(t))
4 )

tanh(x2(γ(t))
4 )





















+





















1

1





















. (3.30)

It can be shown easily that (3.30) satisfies the conditions of the Theorem 3.2.6 if L1
1 =

1/4, L1
2 = 1, L2

1 = 1/4, L2
2 = 1/4,m1 = 3.53,m2 = 0.2550,m3 = 0.6181,m4 = 1.47, λ =

2.6693, whereas the condition (3.25) of Theorem 3.2.5 does not hold. Hence, it follows from

Theorem 3.2.6 that the unique equilibrium x∗ = (0.6737,0.6265)T of (3.30) is globally expo-

nentially stable.

Example 3.2.9 Consider the following system of differential equations:

dx(t)
dt

= −





















3 0

0 3









































x1(t)

x2(t)





















+





















0.02 0.03

0.04 0.25









































tanh(x1(t)
4 )

tanh(x2(t)
4 )





















+





















0.25 0.4

0.2 0.7









































tanh(x1(γ(t))
4 )

tanh(x2(γ(t))
4 )





















+





















1

1





















. (3.31)

One can see easily that the conditions of both Theorem 3.2.5 and Theorem 3.2.6 are satisfied

with L1
1 = 1/4, L1

2 = 1/4, L2
1 = 1/4, L2

2 = 1/4, m1 = 3.07, m2 = 0.2750, m3 = 1.4081, m4 =

2.93, λ = 2.1052, τ = 1.1. Thus, according to Theorem 3.2.5 and Theorem 3.2.6 the unique

equilibrium x∗ = (0.4172,0.4686)T of (3.31) is globally exponentially stable.

3.2.5 Conclusion

In this section, it is the first time that the method of Lyapunov functions for differential equa-

tions with piecewise constant argument of generalized type is applied to the model of RNNs

and this part has provided new sufficient conditions guaranteeing existence, uniqueness, and

global exponential stability of the equilibrium point of the RNNs. In addition, our method

gives new ideas not only from the modeling point of view, but also from that of theoretical

opportunities since the RNNs model equation involves piecewise constant argument of both
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advanced and delayed types. The obtained results could be useful in thedesign and applica-

tions of RNNs. Furthermore, the method given in this section may be extended tostudy more

complex systems [20]. On the basis of our results, Lyapunov functions give an opportunity to

estimate domains of attraction which allows us particular interest to evaluate the performance

of RNNs [54, 60].

3.3 Lyapunov-Razumikhin Technique

In this section, by using the concept of differential equations with piecewise constant argu-

ments of generalized type [3, 4, 5, 6], the model of CNNs [31, 32] is developed. Lyapunov-

Razumikhin technique is applied to find sufficient conditions for uniform asymptotic stability

of equilibria. Global exponential stability is investigated by means of Lyapunov functions.

An example with numerical simulations is worked out to illustrate the results.

3.3.1 Introduction

CNNs are introduced by Chua and Yang in 1988. For a brief summary of thetheory and

applications of CNNs, the reader is referred to the papers [31, 32]. Inrecent years, dynamical

behavior of delayed cellular neural networks (DCNNs) proposed in 1990 by Chua and Roska

[33] has been studied and developed by many authors [41, 42, 43, 45,46, 47, 48, 94, 95, 96,

97, 98] as well as many applications have been found in different areas such as associative

memory, image and signal processing, pattern recognition and so on. As is well known, such

applications depend on the existence of an equilibrium point and its stability.

In the literature, there are many papers in which Lyapunov-Krasovskii method [67] has been

successfully utilized on the stability analysis of CNNs. But, there are few results on the

stability of CNNs [103, 44, 104] based on the Lyapunov-Razumikhin technique [90, 105].

Moreover, it deserves to be mentioned that since differential equations with piecewise constant

argument are differential equations with deviated argument of delay or advanced type [6, 73],

it is reasonable to use this technique.

The intrinsic idea of this section is that we investigate the problem of stability for CNNs with

piecewise constant argument through two approaches based on the Lyapunov-Razumikhin
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method and Lyapunov functions combined with linear matrix inequality technique [98, 107,

108]. In the first one, we apply proper Razumikhin technique with the peculiarity that con-

ditions on derivative are rather vector-like but not functional. For the second one, we utilize

Lyapunov functions, not functionals despite the system is a delay differential equation.

In this section,N andR+ are the sets of natural and nonnegative real numbers, respectively,

i.e., N = {0,1,2, ...}, R+ = [0,∞), Rm denotes then dimensional real space. The notation

X > 0 (or X < 0) denotes thatX is a symmetric and positive definite (or negative definite)

matrix. The notationsXT andX−1 refer, respectively, the transpose and the inverse of a square

matrix X. λmax(X) and λmin(X) represent the maximal eigenvalue and minimal eigenvalue

of X, respectively. The norm‖ ·‖ means either one-norm:‖x‖1 =
m

∑

i=1

|xi |, x ∈ R
m or the

induced matrix 2-norm:‖X‖2 =
√

λmax(XTX). ∗ refers to the element below the main diagonal

of a symmetric block matrix. Letθi , i ∈ N, denote a fixed real-valued sequence such that

0 = θ0 < θ1 < ... < θi < ... with θi → ∞ asi → ∞.

3.3.2 Model Formulation and Preliminaries

In this section, we will focus our attention on some preliminary results which will be used

in the stability analysis of CNNs. First, let us give a general description of the mathematical

model of cellular neural networks with piecewise constant argument:

x′(t) = −Ax(t) + B f(x(t)) +Cg(x(β(t))) + D (3.32)

or equivalently,

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(x j(β(t))) + di , (3.33)

ai > 0, i = 1,2, . . . ,m.

whereβ(t) = θi if t ∈ [θi , θi+1), i ∈ N, t ∈ R
+, x = [x1, . . . , xm]T ∈ R

m is the neuron state

vector, f (x(t)) = [ f1(x1(t)), . . . , fm(xm(t))]T , g(x(β(t))) = [g1(x1(β(t))), . . . ,gm(xm(β(t)))]T ∈

R
m are the activation functions of neurons,D = [d1, . . . ,dm]T is a constant external input

vector. Moreover, we haveA = diag(a1, . . . ,am), B = (bi j )m×m andC = (ci j )m×m, whereB

andC denote the connection weight and the delayed connection weight matrices, respectively.

The following assumptions will be needed throughout the section:
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(H1) The activation functionsf ,g ∈ C(Rm) with f (0) = 0, g(0) = 0;

(H2) there exist two Lipschitz constantsL = diag(L1, . . . , Lm),

L̄ = diag(L̄1, . . . , L̄m) > 0 such that

| fi(u) − fi(v)| ≤ Li |u− v|,

|gi(u) − gi(v)| ≤ L̄i |u− v|

for all u, v ∈ Rm, i = 1,2, . . . ,n;

(H3) there exists a positive numberθ such thatθi+1 − θi ≤ θ, i ∈ N;

(H4) θ [k3 + k2] < 1;

(H5) θ
[

k2 + k3 (1+ θk2) eθk3
]

< 1,

where

k1 =

m
∑

i=1

m
∑

j=1

|b ji |Li , k2 =

m
∑

i=1

m
∑

j=1

|c ji |L̄i andk3 =

m
∑

i=1

ai + k1.

By a solution of equation (3.32) onR+ we mean a continuous functionx(t) satisfying the

conditions (i) the derivativex′(t) exists everywhere with the possible exception of the points

θi , i ∈ N, where one-sided derivatives exist; (ii) (3.32) is satisfied on each interval [θi , θi+1),

i ∈ N.

In the following theorem, we obtain sufficient conditions for the existence of a unique equi-

librium, x∗ = (x∗1, . . . , x
∗
m)T , of (3.33).

Theorem 3.3.1 Suppose that the neural parameters ai ,bi j , ci j and Lipschitz constants Lj , L̄ j

satisfy

ai > Li

m
∑

j=1

|b ji | + L̄i

m
∑

j=1

|c ji |, i = 1, . . . ,m.

Then, (3.33) has a unique equilibrium.

The proof of the theorem is almost identical to the verification in [46] with slightchanges

which are caused by the piecewise constant argument.

Now we need the following lemma which provides conditions for the existence and unique-

ness of solutions for arbitrary initial momentξ.
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Lemma 3.3.2 Assume that conditions(H1)− (H5) are fulfilled. Then for all x0 ∈ R
m, θr ≤

ξ < θr+1, r ∈ N, there exists a unique solution̄x(t) = x(t, θr , x̄0) = (x1(t), . . . , xm(t))T of (3.33),

θr ≤ t < θr+1, such thatx̄(ξ) = x0.

Proof. Existence: Consider a solutionv(t) = x(t, ξ, x0) = (v1(t), . . . , vm(t))T of the equation,

x′i (t) = −ai xi(t) +
m

∑

j=1

bi j f j(x j(t)) +
m

∑

j=1

ci j g j(ζ j) + di

on [θr , ξ]. We need to prove that there exists a vectorζ = (ζ1, . . . , ζm)T ∈ R
m such that the

equation

vi(t) = x0
i +

∫ t

ξ



















−aivi(s) +
m

∑

j=1

bi j f j(v j(s)) +
m

∑

j=1

ci j g j(ζ j) + di



















ds (3.34)

has a solution on [θr , ξ], and satisfiesv(θr ) = ζ. Define a norm||v(t)||0 = max[θr ,ξ] ||v(t)|| and

construct the following sequencesvn
i (t),

i = 1, . . . ,m, n ≥ 0.

Takev0
i (t) ≡ x0

i , i = 1, . . . ,m, and sequences

vn+1
i (t) = x0

i +

∫ t

ξ



















−aiv
n
i (s) +

m
∑

j=1

bi j f j(v
n
j (s)) +

m
∑

j=1

ci j g j(v
n
j (θr )) + di



















ds.

One can find that

||vn+1(t) − vn(t)||0 = max
[θr ,ξ]
||vm+1(t) − vm(t)|| ≤ (θ (k3 + k2))n κ,

where

κ = θmax
[θr ,ξ]















(k3 + k2) ||x0|| +
m

∑

i=1

di















.

Hence, the sequencesvn
i (t) are convergent and their limits satisfy (3.34) on [θr , ξ] with ζ =

v(θr ). The existence is proved.

Uniqueness: It is sufficient to check that for eacht ∈ [θr , θr+1), andx2 = (x2
1, . . . , x

2
m)T , x1 =

(x1
1, . . . , x

1
m)T ∈ R

m, x2
, x1, the conditionx(t, θr , x1) , x(t, θr , x2) is valid. Let us denote

solutions of (3.33) byx1(t) = x(t, θr , x1), x2(t) = x(t, θr , x2), x1
, x2. Assume on the contrary

that there existst∗ ∈ [θr , θr+1) such thatx1(t∗) = x2(t∗). Then, we have

x2
i − x1

i =

∫ t∗

θr



















−ai

(

x2
i (s) − x1

i (s)
)

+

m
∑

j=1

bi j [ f j(x
2
j (s)) − f j(x

1
j (s))]

+

m
∑

j=1

ci j [g j(x
2
j (θr ) − g j(x

1
j (θr )]



















ds, i = 1, . . . ,m.
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Taking the absolute value of both sides for eachi = 1, . . . ,m and adding all equalities, we

obtain that

||x2 − x1|| =
m

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∫ t∗

θr



















−ai

(

x2
i (s) − x1

i (s)
)

+

m
∑

j=1

bi j

[

f j(x
2
j (s)) − f j(x

1
j (s))

]

+

m
∑

j=1

ci j

[

g j(x
2
j (θr ) − g j(x

1
j (θr )

]



















ds

∣

∣

∣

∣

∣

∣

∣

∣

≤
m

∑

i=1



















∫ t∗

θr



















ai |x2
i (s) − x1

i (s)| +
m

∑

j=1

Li |b ji ||x2
i (s) − x1

i (s)|

+

m
∑

j=1

L̄i |c ji ||x2
i − x1

i |



















ds



















≤ θk2||x1 − x2|| +
∫ t∗

θr

k3||x1(s) − x2(s)||ds. (3.35)

Furthermore, fort ∈ [θr , θr+1), the following is valid:

||x1(t) − x2(t)|| ≤ ||x1 − x2|| +
m

∑

i=1

{∫ t∗

θr

[

ai |x2
i (s) − x1

i (s)|

+

m
∑

j=1

Li |b ji ||x2
i (s) − x1

i (s)| +
m

∑

j=1

L̄i |c ji ||x2
i − x1

i |



















ds



















≤ (1+ θk2) ||x1 − x2|| +
∫ t∗

θr

k3||x1(s) − x2(s)||ds.

The Gronwall-Bellman lemma yields that

||x1(t) − x2(t)|| ≤ (1+ θk2) eθk3 ||x1 − x2||. (3.36)

Consequently, substituting (3.36) in (3.35), we obtain

||x1 − x2|| ≤ θ
[

k2 + k3 (1+ θk2) eθk3
]

||x1 − x2||. (3.37)

Thus, one can see that (H5) contradicts with (3.37). The lemma is proved.�

Theorem 3.3.3 Suppose that conditions(H1)− (H5) are fulfilled. Then, for every(t0, x0) ∈

R
+ × R

m, there exists a unique solution x(t) = x(t, t0, x0) = (x1(t), . . . , xm(t))T , t ∈ R
+, of

(3.32), such that x(t0) = x0.

Proof. We prove the theorem only for incresingt, but one can easily see that the proof is sim-

iliar for decreasingt. It is clear that there existsr ∈ N such thatt0 ∈ [θr , θr+1). Using Lemma
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3.3.2 forξ = t0, there exists a unique solutionx(t) = x(t, t0, x0) of (3.33) on [θr , θr+1). Next,

applyig the lemma again, one can obtain a unique solution on interval [θr+1, θr+2). Hence, the

mathematical induction completes the proof.�

Consider the equilibrium point,x∗ = (x∗1, . . . , x
∗
m)T , of the system (3.32). Let us give the

following definitions, which are adopted for the system (3.32).

Definition 3.3.4 [6] The equilibrium x= x∗ of (3.32) is said to be uniformly stable if for

any ε > 0 and t0 ∈ R
+, there exists aδ = δ(ε) > 0 such that‖x(t0) − x∗‖ < δ implies

‖x(t) − x∗‖ < ε for all t ≥ t0.

Definition 3.3.5 [6] The equilibrium x= x∗ of (3.32) is said to be uniformly asymptotically

stable if it is uniformly stable and there is aδ0 > 0 such that for everyε > 0 and t0 ∈ R+, there

exists a T= T(ε) > 0 such that‖x(t) − x∗‖ < ε for all t > t0 + T whenever‖x(t0) − x∗‖ < δ0.

Definition 3.3.6 [6] The equilibrium x= x∗ of (3.32) is said to be globally exponentially

stable if there exist positive constantsα1 and α2 such that the estimation of the inequality

‖x(t) − x∗‖ < α1 ‖x(t0) − x∗‖e−α2(t−t0) is valid for all t ≥ t0.

By means of the transformationy(t) = x(t) − x∗, system (3.32) can be simplified as

y′(t) = −Ay(t) + Bϕ(y(t)) +Cψ(y(β(t))), (3.38)

whereϕ j(y j(t)) = f j(y j(t) + x∗j ) − f j(x∗j ) andψ j(y j(t)) = g j(y j(t) + x∗j ) − g j(x∗j ) with ϕ j(0) =

ψ j(0) = 0. From assumption (H2), we haveϕ j(·) andψ j(·) are also Lipschitzian withL j , L̄ j ,

respectively.

It is obvious that the stability of the zero solution of (3.38) is equivalent to that of the equilib-

rium x∗ of (3.32). Therefore, in what follows, we discuss the stability of the zerosolution of

(3.38).

To begin with, we introduce the following lemmas which will be used in the proof ofthe

stability of the zero solution for CNNs with piecewise constant argument.

Lemma 3.3.7 [109] Given any real matrices U, W, Z of appropriate dimensions and a scalar

ǫ > 0 such that0 < W =WT , then the following matrix inequality holds:

UTZ + ZTU ≤ ǫUTWU+
1
ǫ

ZTW−1Z.
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The following lemma is an important auxiliary result of the section. It can be proved in the

same way used for Theorem 2.2 in [4].

Lemma 3.3.8 Let y(t) = (y1(t), . . . , ym(t))T be a solution of (3.38) and(H1)− (H5) be satis-

fied. Then, the following inequality

||y(β(t))|| ≤ l||y(t)|| (3.39)

holds for all t∈ R+, where l=
{

1− θ
[

k2 + k3 (1+ θk2) eθk3
]}−1

.

For convenience, we adopt the following notation in the sequel:

(N) Given P > 0, positive diagonal matricesR,S with appropriate dimensions and a real

q > 1, denote

Ω = PBR−1BTP+ LRL+ PCS−1CTP+ qP− AP− PA,

or, by Schur complements, it can be rewritten as the following matrix form:

−Ω =





































AP+ PA− LRL− qP PB PC

∗ R 0

∗ ∗ S





































,

whereL = diag(L1, . . . , Lm) > 0.

We shall consider the quadratic functionV(y) = yTPy. The derivative ofV with respect to

system (3.38) is defined by

V′(y, z) = −yT(AP+ PA)y+ 2yTPBϕ(y) + 2yTPCψ(z) for y , z ∈ Rm.

3.3.3 Lyapunov-Razumikhin Technique

From now on, we shall need the following assumptions:

(C1) Ω < 0 ;

(C2) P > L̄SL̄ whereL̄ = diag(L̄1, . . . , L̄m) > 0.
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Lemma 3.3.9 Assume that conditions(C1)− (C2) are fulfilled, and y(t) : R
+ → R

m is a

solution of (3.38). Then the following conditions hold for V(y(t)) = yT(t)Py(t):

(1a) a‖y(t)‖2 ≤ V(y(t)) ≤ b‖y(t)‖2 , where a= λmin(P) and b= λmax(P);

(1b) V′(y(t), y(β(t))) ≤ −c‖y(t)‖2 for all t , θi in R
+ such that V(y(β(t))) < qV(y(t)) with a

constant c> 0.

Proof. It is obvious thata‖y(t)‖2 ≤ V(y(t)) ≤ b‖y(t)‖2 , wherea = λmin(P) andb = λmax(P).

For t , θi , i ∈ N, the derivative ofV(y(t)) along the trajectories of system (3.38) is given by

V′(y(t), y(β(t))) = y′T(t)Py(t) + yT(t)Py′(t)

= −yT(t)(AP+ PA)y(t) + 2yT(t)PBϕ(y(t))

+2yT(t)PCψ(y(β(t))). (3.40)

Let U = BTPy(t), Z = ϕ(y(t)). By applying Lemma 3.3.7, we have the following inequality:

2yT(t)PBϕ(y(t)) = yT(t)PBϕ(y(t)) + ϕT(y(t))BTPy(t)

≤ yT(t)PBR−1BTPy(t) + ϕT(y(t))Rϕ(y(t))

≤ yT(t)
(

PBR−1BTP+ LRL
)

y(t), (3.41)

sinceϕT(y(t))Rϕ(y(t)) ≤ yTLRLy(t).

Similarly, we have

2yT(t)PCψ(y(β(t))) ≤ yT(t)PCS−1CTPy(t) + yT(β(t))L̄SL̄y(β(t)), (3.42)

sinceψT(y(β(t)))Sψ(y(β(t))) ≤ yT(β(t))L̄SL̄y(β(t)).

Substituting (3.41) and (3.42) into (3.40) and using condition (C2), we have

V′(y(t), y(β(t))) ≤ yT(t)
(

PBR−1BTP+ LRL+ PCS−1CTP− AP

−PA) y(t) + yT(β(t))Py(β(t)).

Then, one can conclude that

V′(y(t), y(β(t))) ≤ yT(t)Ωy(t), t , θi (3.43)
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wheneveryT(β(t))Py(β(t)) = V(y(β(t))) < qV(y(t)) = yT(t)qPy(t).

It follows from the condition (C1) in terms of Schur complements given in (N) and (3.43) that

(1b) is valid.�

From (1a) and (1b) of the last lemma, it implies thatV can be taken as a Lyapunov function

for system (3.38). Now, we are ready to give sufficient conditions for uniform asymptotic

stability of (3.38). To prove the following theorem we shall use the techniquewhich was

developed in paper [17].

Theorem 3.3.10Suppose that(H1)− (H5) and (C1)− (C2) hold true, then the equilibrium

x∗ of (3.32) is uniformly asymptotically stable.

Proof. Fix h1 > 0. Given ε > 0, (ε < h1), we chooseδ1 > 0 such thatbδ2
1 ≤ aε2. Define

δ = δ1/l and note thatδ < δ1 asl > 1. We first prove uniform stability whent0 = θ j for some

j ∈ N and then fort0 , θi for all i ∈ N, to show that thisδ is the needed one in both cases.

If t0 = θ j , where j ∈ N and
∥

∥

∥y(θ j)
∥

∥

∥ < δ, thenV(y(θ j)) < bδ2 < bδ2
1 ≤ aε2.

We fix k ∈ N and consider the interval [θk, θk+1). Using (1b) in Lemma 3.3.9, we shall show

that

V(y(t)) ≤ V(y(θk)) for t ∈ [θk, θk+1). (3.44)

Let us setv(t) = V(y(t)). If (3.44) does not hold, then there must exist pointsη andρ satisfying

θk ≤ η < ρ < θk+1 and

v(η) = v(θk) , v(t) > v(θk) for t ∈ (η, ρ].

Based on the mean value theorem, we can find aζ ∈ (η, ρ) satisfying the equation
v(ρ) − v(η)
ρ − η =

v′(ζ) > 0.

Actually, sincev(θk) < v(ζ) < qv(ζ), it follows from (1b) that v′(ζ) < 0, a contradiction.

Hence, (3.44) is true. As the functionsV andy are continuous, one can obtain by induction

that V(y(t)) ≤ V(y(θ j)) for all t ≥ θ j . Thus, we havea‖y(t)‖2 ≤ V(y(t)) ≤ V(y(θ j)) < aε2,

which implies in turn that‖y(t)‖ < ε for all t ≥ θ j . We see that evaluation ofδ does not depend

on the choice ofj ∈ N.
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Now, consider the caset0 ∈ R
+ with t0 , θi for all i ∈ N. Then there existsj ∈ N such

that θ j < t0 < θ j+1. For a solutiony(t) satisfying‖y(t0)‖ < δ, Lemma 3.3.8 implies that
∥

∥

∥y(θ j)
∥

∥

∥ < δ1. Using a similar idea used for the caset0 = θ j , we conclude that‖y(t)‖ < ε for

t ≥ θ j and hence for allt ≥ t0, which completes the proof for the uniform stability. We note

that the evaluation is independent ofj ∈ N and correspondingly it is valid for allt0 ∈ R
+.

Next we shall prove uniform asymptotic stability.

First, we show “uniform” asymptotic stability with respect to all elements of the sequenceθi ,

i ∈ N.

Fix j ∈ N. For t0 = θ j , we chooseδ > 0 such thatb(lδ)2 = ah2
1 holds. In view of uniform

stability, one can obtain thatV(y(t)) < bδ2 < b(lδ)2 for all t ≥ θ j and hence‖y(t)‖ < h1

whenever
∥

∥

∥y(θ j)
∥

∥

∥ < δ. In what follows, we present that thisδ can be taken asδ0 in the

Definition 3.3.5. That is to say, givenε > 0, ε < h1, we need to show that there exists a

T = T(ε) > 0 such that‖y(t)‖ < ε for t > θ j + T if
∥

∥

∥y(θ j)
∥

∥

∥ < δ.

We denoteγ = ac
b ε

2 andδ1 = lδ. We can find a numberµ > 0 such thatqs > s+ µ for

aε2 ≤ s ≤ bδ2
1. Let M be the smallest positive integer such thataε2 + Mµ ≥ bδ2

1. Choosing

tk = k(
bδ2

1

γ
+ θ) + θ j , k = 1,2, ...,M, we aim to prove that

V(y(t)) ≤ aε2 + (M − k)µ for t ≥ tk, k = 0,1,2, ...,M. (3.45)

It is easily seen thatV(y(t)) < bδ2
1 ≤ aε2 + Mµ for t ≥ t0 = θ j . Hence, (3.45) is true

for k = 0. Now, assuming that (3.45) is true for some 0≤ k < M, we will show that

V(y(t)) ≤ aε2 + (M − k − 1)µ for t ≥ tk+1. To prove the last inequality, we first claim that

there exists at∗ ∈ Ik = [β(tk) + θ, tk+1] such that

V(y(t∗)) ≤ aε2 + (M − k− 1)µ. (3.46)

Otherwise,V(y(t)) > aε2 + (M − k − 1)µ for all t ∈ Ik. On the other side, we haveV(y(t)) ≤

aε2 + (M − k)µ for t ≥ tk, which implies thatV(y(β(t))) ≤ aε2 + (M − k)µ for t ≥ β(tk) + θ.

Hence, fort ∈ Ik

qV(y(t)) > V(y(t)) + µ > aε2 + (M − k)µ ≥ V(y(β(t))).

Sinceaε2 ≤ V(y(t)) ≤ b‖y(t)‖2 for t ∈ Ik, it follows from (1b) that

V′(y(t), y(β(t))) ≤ −c‖y(t)‖2 ≤ −γ for all t , θi in Ik.
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Using the continuity of the functionV and the solutiony(t), we get

V(y(tk+1)) ≤ V(y(β(tk) + θ)) − γ(tk+1 − β(tk) − θ)

< bδ2
1 − γ(tk+1 − tk − θ) = 0,

which is a contradiction. Thus (3.46) holds true. Next, we show that

V(y(t)) ≤ aε2 + (M − k− 1)µ for all t ∈ [t∗,∞). (3.47)

If (3.47) does not hold, then there exists at̄ ∈ (t∗,∞) such that

V(y(t̄)) > aε2 + (M − k− 1)µ ≥ V(y(t∗)).

Thus, we can find ãt ∈ (t∗, t̄) such thatt̃ , θi , i ∈ N, V′(y(t̃), y(β(t̃))) > 0 andV(y(t̃)) >

aε2 + (M − k− 1)µ. However,

qV(y(t̃))) > V(y(t̃)) + µ > aε2 + (M − k)µ ≥ V(y(β(t̃)))

implies thatV′(y(t̃), y(β(t̃))) ≤ −γ < 0, a contradiction. Then, we conclude thatV(y(t)) ≤

aε2 + (M − k − 1)µ for all t ≥ t∗ and thus for allt ≥ tk+1. This completes the induction and

shows that (3.45) is valid. Fork = M, we have

V(y(t)) ≤ aε2 , t ≥ tM = M(
bδ2

1

γ
+ θ) + t0.

In the end,‖y(t)‖ < ε for t > θ j +T whereT = M(
bδ2

1

γ
+ θ), which proves uniform asymptotic

stability for t0 = θ j , j ∈ N.

Taket0 , θi for all i ∈ N. Thenθ j < t0 < θ j+1 for some j ∈ N. ‖y(t0)‖ < δ implies by Lemma

3.3.8 that
∥

∥

∥y(θ j)
∥

∥

∥ < δ1. Hence, the argument used for the caset0 = θ j yields that‖y(t)‖ < ε

for t > θ j + T and so for allt > t0 + T. �

3.3.4 Method of Lyapunov Functions

In this part, Lyapunov-Krasovskii method is used for equation (3.38), which is a delay differ-

ential equation, but one must emphasize that Lyapunov functions, not functionals, are used.

In the following condition, the matricesA, B, C, P, R, S, L are described as in (N).

(C3)Ω̄ = PBR−1BTP+ LRL+PCS−1CTP+ bl2κP−AP−PA< 0, whereκ is a constant with

κa ≥ 1.
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Lemma 3.3.11 Assume that conditions(C2)− (C3) are fulfilled, and y(t) is a solution of

(3.38). Then the following conditions hold for the quadratic function V(y(t)) = yT(t)Py(t):

(2a) a‖y(t)‖2 ≤ V(y(t)) ≤ b‖y(t)‖2 , where a= λmin(P) and b= λmax(P);

(2b) V′(y(t), y(β(t))) ≤ −c‖y(t)‖2 for all t , θi in R
+ with a constant c> 0.

Proof. It is easily seen thata‖y(t)‖2 ≤ V(y(t)) ≤ b‖y(t)‖2 , wherea = λmin(P) and b =

λmax(P).

It follows from Lemma 3.3.8 thatV(y(β(t))) ≤ b||y(β(t))||2 ≤ bl2||y(t)||2 ≤ bl2κa||y(t)||2 ≤

bl2κV(y(t)).

For t , θi , i ∈ N, we know from the proof of Lemma 3.3.9 that the derivative ofV(y(t)) along

the trajectories of system (3.38) satisfies

V′(y(t), y(β(t))) ≤ yT(t)
(

PBR−1BTP+ LRL+ PCS−1CTP− AP

−PA) y(t) + yT(β(t))Py(β(t)).

Hence, we get

V′(y(t), y(β(t))) ≤ yT(t)Ω̄y(t), t , θi . (3.48)

It follows from the condition (C3) and (3.48) that (2b) is valid.�

Theorem 3.3.12Suppose that(H1)− (H5) and (C2)− (C3) hold true, then the equilibrium

x∗ of (3.32) is globally exponentially stable.

Proof. Using Lemma 3.3.11, we have fort , θi

d
dt

(e(c/b)tV(y(t))) = e(c/b)t(c/b)V(y(t)) + e(c/b)tV′(y(t), y(β(t)))

≤ ce(c/b)t ‖y(t)‖2 − ce(c/b)t ‖y(t)‖2 = 0.

Using the continuity of the functionV and the solutiony(t), we obtain

e(c/b)ta‖y(t)‖2 ≤ e(c/b)tV(y(t)) ≤ e(c/b)t0V(y(t0)) ≤ e(c/b)t0b‖y(t0)‖2 ,

which implies that‖y(t)‖ ≤
√

b
a ‖y(t0)‖e−(c/2b)(t−t0). The theorem is proved.�
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3.3.5 An Illustrative Example

Consider the following CNNs with piecewise constant argument:

dx(t)
dt

= −





















2 0

0 2









































x1(t)

x2(t)





















+





















0.5 0

0.1 0.3









































tanh(x1(t)
2 )

tanh(x2(t)
2 )





















+





















0.5 0.1

0.1 0.3









































tanh(x1(β(t))
2 )

tanh(x2(β(t))
3 )





















+





















1

2





















. (3.49)

Clearly, we obtain

L =





















1
2 0

0 1
2





















, L̄ =





















1
2 0

0 1
3





















.

Let

P =





















1.5 1

1 1.5





















, R=





















3 0

0 3





















, S =





















4 0

0 4





















, q = 1.2,

β(t) = θi =
i

10
, i ∈ N.

By simple calculation, we can check thatk1 = 0.45, k2 = 0.4333, k3 = 4.45, a = λmin(P) =

0.5, b = λmax(P) = 2.5 andl = 4.81. We can chooseκ = 2.1 so thatκa > 1. It follows from

Theorem 3.2.1 that there exists a unique equilibrium such thatx∗ = [0.7255,1.1898]T . Then

it can be easily verified that

Ω =





















−2.9479 −2.3708

−2.3708 −3.0604





















< 0, P− L̄SL̄ =





















0.5 1

1 1.0556





















> 0.

For θ = 1/10, we getθ [k3 + k2] = 0.4883< 1 andθ
[

k2 + k3 (1+ θk2) eθk3
]

= 0.7921< 1. So,

(H1)-(H5) and (C1)-(C2) hold. Thus, the conditions of the Theorem 3.3.10 forq = 1.2 are

satisfied. Hence, (3.49) has a uniformly asymptotically stable equilibrium point.However,

for the sameq we haveq < bl2κ. Hence, Theorem 3.3.12 is not applicable. That is, using

Lyapunov-Razumikhin technique, we may take smallerq values, and that verifies it as more

effective in theoretical sense. Nevertheless, the second theorem allows usto obtain exponen-

tial evaluation of convergence to the equilibrium, which has a very important peculiarity for

applications in practice.
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The simulation, where the initial value is chosen as [1,1.5]T , is shown in Fig. 3.3 and it illus-

trates that all trajectories uniformly converge to the unique asymptotically stable equilibrium

point x∗.
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t

x2

(b)

x1*= 0.7255

x2*= 1.1898

Figure 3.3: Time response of state variablesx1(t) andx2(t) with piecewise constant arguments
in (a) and (b), respectively.

3.3.6 Conclusion

In this section, it is the first time that CNNs with piecewise constant argument ofgeneralized

type are investigated. There is not a restriction on the distance between switching neighbors

of the argument function and the stability is discussed in the uniform version.The analysis

has been available after a new approach was proposed in [4, 5, 6]. Itgives new ideas not only

from the modeling point of view, but also from that of theoretical opportunities to conjugate

with numerical analysis, and take into account the easiness of simulations simplified by the

constancy of the argument.

Moreover, comparing two main results of this section, one can see that Theorem 3.3.10 al-

lows to analyze a larger class of equations than Theorem 3.3.12. At the sametime, on the

basis of Theorem 3.3.12, one can evaluate convergence of solutions to equilibria. Application

of Lyapunov functions gives an opportunity to develop further quantitative analysis such as

estimation of the domain of attraction, etc.
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CHAPTER 4

CONCLUSION AND FUTURE WORKS

This thesis is dedicated to not only the mathematical analysis of RNNs and impulsive RNNs

with piecewise constant argument of generalized type but also the problemof stability for dif-

ferential equations with piecewise constant argument of generalized typethrough the method

of Lyapunov functions. It is the first time that RNNs and impulsive RNNs with piecewise

constant argument of generalized type are investigated.

In Chapter 2, we obtain sufficient conditions for the existence of a unique equilibrium and a

periodic solution and investigate the stability of RNNs with piecewise constant argument of

generalized type. For an impulsive RNNs with piecewise constant argumentof generalized

type, we introduce two different types of impulsive RNNs; (θ, θ)− type neural networks and

(θ, τ)− type neural networks. For these types, sufficient conditions for the existence of the

unique equilibrium are obtained, existence and uniqueness of solutions and the equivalence

lemma for such systems are established and stability criterion for the equilibrium based on lin-

ear approximation is proposed. In addition to these qualitative analysis, by employing Green’s

function we derive new result of existence of the periodic solution and theglobal asymptotic

stability of this solution is investigated. Finally, examples with numerical simulations are

given to validate our theoretical results.

In Chapter 3, the problem of stability for differential equations with piecewise constant argu-

ment of generalized type through the method of Lyapunov functions is investigated. More-

over, Chapter 3 analyzes the problem of stability for neural networks withpiecewise constant

argument based on the Second Lyapunov method. That is, we use the method of Lyapunov

functions and Lyapunov-Razumikhin technique for the stability of RNNs andCNNs, respec-

tively. It is the first time that the method of Lyapunov functions for differential equations
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with piecewise constant argument of generalized type [10] is applied to the model of RNNs

and this part has provided new sufficient conditions guaranteeing existence, uniqueness, and

global exponential stability of the equilibrium point of the RNNs. In addition, our method

gives new ideas not only from the modeling point of view, but also from that of theoretical

opportunities since the RNNs model equation involves piecewise constant argument of both

advanced and delayed types. In the last part of Chapter 3, by using theconcept of differen-

tial equations with piecewise constant arguments of generalized type [2, 3,4, 5, 6, 17], the

model of CNNs is developed. Lyapunov-Razumikhin technique is applied to find sufficient

conditions for uniform asymptotic stability of equilibria. Global exponential stability is inves-

tigated by means of Lyapunov functions. It gives new ideas not only from the modeling point

of view, but also from that of theoretical opportunities to conjugate with numerical analysis,

and take into account the easiness of simulations simplified by the constancy ofthe argument.

Application of Lyapunov functions gives an opportunity to develop further quantitative anal-

ysis such as estimation of the domain of attraction, etc [54, 60]. Examples with numerical

simulations are also given in Chapter 3 to illustrate our theoretical results.

Our approaches developed in papers [10, 11, 12, 13, 14, 15, 16] and based on the methods

of analysis for differential equations with discontinuities can be effectively applied to almost

all problems concerning neural networks models, including bidirectional associative memory

(BAM) neural networks model first introduced by Kosko [162, 163, 164], Cohen-Grossberg

neural networks, weakly connected neural networks [149], etc. Exceptionaly, it concerns

those problems which relate state-dependent discontinuity [1, 2, 18, 19, 23, 24]. Let us list

fields where the activity can be realized, immediately:

• Since these networks have ability to learn, the method under investigation can be ap-

plied to learning theory related to an unsupervised Hebbian-type learning mechanism

with/without a forgetting term [148, 158, 159, 160] and several learning algorithms

modeled by Amari [157] connected to proposal of Hebb [158]. Unsupervised, or self-

organized learning means that there is no external teacher to manage the learning pro-

cess, shown in Fig.4.1.

• It is interesting to study chaos [20, 21, 22, 165, 166, 167, 168, 169, 170] and control of

chaos [171, 172, 173] in neural networks models.

• The results in this thesis will be useful for synchronization-desynchronization problems
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 State of the 

environment

Figure 4.1: Unsupervised Learning

[126, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187] and the

references cited therein.

• Neural networks is also widely used in Artificial intelligence [153, 154]. Weare sure

that the methods established in this thesis will be useful for this subject.
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[85] I. Györi, On approximation of the solutions of delay differential equations by using
piecewise constant argument, Internat. J. Math. and Math. Sci., 14, pp. 111-126, 1991.

[86] H. Li, R. Yuan,An affirmative answer to Gopalsamy and Liu’s conjecture in a population
model, J. Math. Anal. Appl., 338, pp. 1152-1168, 2008.

[87] H. Li, Y. Muroya, R. Yuan,A sufficient condition for global asymptotic stability of
a class of logistic equations with piecewise constant delay, Nonlinear Analysis: Real
World Application, 10, pp. 244-253, 2009.

[88] P. Liu, K. Gopalsamy,Global stability and chaos in a population model with piecewise
constant arguments, Appl. Math. Comput., 101, pp. 63-88, 1999.

[89] Y. Muroya, Y. Kato,On Gopalsamy and Liu’s conjecture for global stability in a popu-
lation model, J. Comput. Appl. Math., 224, pp. 70-82, 2005.

[90] J. K. Hale,Theory of Functional Differential Equations, Springer-Verlag, New York,
Heidelberg, Berlin, 1997.

[91] J. D. Murray,Mathematical Biology: I. An Introduction, Third edition. Interdisciplinary
Applied Mathematics, 17, Springer-Verlag, New York, Heidelberg, Berlin, 2002.

[92] F. C. Hoppensteadt, C. S. Peskin,Mathematics in medicine and the life sciences,
Springer-Verlag, New York, Heidelberg, Berlin, 1992.

[93] J. Buck, E. Buck,Mechanism of rhythmic synchronous flashing of fireflies: Fireflies
of Southeast Asia may use anticipatory time-measuring in synchronizing their flashing,
Science, 159, pp. 1319-1327, 1968.
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