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ABSTRACT 

 
A MULTIPLE CRITERIA SORTING APPROACH BASED 

ON DISTANCE FUNCTIONS 
 

Çelik, Bilge 

M.Sc., Department of Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Esra Karasakal 

Co-supervisor: Assist. Prof. Dr. Cem İyigun 

May 2011, 111 pages 

Sorting is the problem of assignment of alternatives into predefined ordinal 

classes according to multiple criteria. A new distance function based solution 

approach is developed for sorting problems in this study. The distance to the 

ideal point is used as the criteria disaggregation function to determine the 

values of alternatives. These values are used to sort them into the predefined 

classes. The distance function is provided in general distance norm. The 

criteria disaggregation function is determined according to the sample 

preference set provided by decision maker. Two mathematical models are used 

in order to determine the optimal values and assign classes. The method also 

proposes an approach for handling alternative optimal solutions, which are 

widely seen in sorting problems. Probabilities of belonging to each class for an 

alternative are calculated using the alternative optimal solutions and provided 

as the outputs of the model. Decision maker assigns the alternatives into 

classes according to these probabilities. The method is applied to five data sets 

and results are provided for different performance measures. Different distance 

norms are tried for each data set and their performances are evaluated for each 

data set. The probabilistic approach is also applied to UTADIS. The 

performance of the distance based model and modified UTADIS are compared 

with the previous sorting methods such as UTADIS and classification tree. The 



 

v 
 

developed method has new aspects such as using distances to ideal point for 

sorting purpose and providing probabilities of belonging to classes. The 

handling of alternative optimal solutions within the method instead of a post-

optimality analysis is another new and critical aspect of the study.   

 

Keywords: Multi-criteria sorting, distance based sorting, distance functions, 

probabilistic sorting. 
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ÖZ 

 
UZAKLIKLIK FONKSİYONLARINA BAĞLI ÇOK 

KRİTERLİ SIRALAMA YÖNTEMİ 
 

Çelik, Bilge 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Esra Karasakal 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Cem İyigun 

Mayıs 2011, 111 sayfa 

 

Sıralama problemi, alternatiflerin birden fazla kriterdeki değerlerine göre, önceden 

belirlenmiş sıralı sınıflara atanmasını içerir. Bu çalışmada, uzaklık fonksiyonuna 

dayalı bir sınıflandırma yöntemi geliştirilmiştir. Alternatiflerin, ideal noktaya olan 

uzaklıkları kriter birleştirme fonksiyonu olarak kullanılarak alternatiflerin değerleri 

belirlenir. Bu değerler, alternatiflerin sınıflara atanması için kullanılır. Uzaklık 

fonksiyonu, yöntem içinde genel uzaklık normunda kullanılır. Kriter birleştirme 

fonksiyonu, karar vericinin hazırladığı örnek bir tercih listesine göre belirlenir. 

Alternatiflerin optimal değerlerini ve atanacakları sınıfları belirlemek için iki 

matematiksel model kullanılır. Sınıflandırma yöntemi, sıralama problemlerinde 

sıklıkla görülen alternatif optimal çözümler için de bir çözüm önerisi getirir. Alternatif 

optimal çözümlere göre, sınıflara ait olma olasılıkları belirlenir ve yöntemin çıktıları 

olarak sunulur. Karar verici bu olasılıklara göre alternatifleri sınıflara atar. Çözüm 

yöntemi beş farklı veriye uygulanmış ve performans ölçütlerinin sonuçları 

sunulmuştur. Her veri kümesi için farklı uzaklık normları uygulanmış ve 

performansları karşılaştırılmıştır. Olasılıksal yaklaşım UTADIS yöntemine de 

uygulanmıştır. Uzaklık fonksiyonuna dayalı yöntem ve değiştirilmiş UTADIS'in 

sonuçları, klasik UTADIS ve sınıflandırma ağacı gibi varılan yöntemlerle 

karşılaştırılmıştır. Geliştirilen yöntemin, varılan çözüm yöntemlerinden farkı, ideal 

noktaya olan uzaklıklara göre sınıflandırma yapması ve alternatifleri sadece bir sınıfa 
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atamak yerine, alternatiflerin farklı sınıflara ait olma olasılıklarını hesaplamasıdır.  

Yöntemin bir başka yeni ve önemli özelliği, alternatif optimal çözümleri optimal 

sonrası ele almak yerine, yöntem içerisinde kullanmasıdır.  

 

Anahtar Kelimeler: Çok kriterli sınıflandırma, uzaklığa dayalı sınıflandırma, 

uzaklık fonksiyonları, olasılıksal sınıflandırma. 
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CHAPTER 1 

 
 

1. INTRODUCTION 
 
 
 

The aim of multiple criteria decision aid methodology is to assist a decision 

maker for analysis of a set of alternatives. The structure of the analysis may be 

in 3 different forms (Roy, 1996): 

1. Choice Problems: Identification of best alternative or a limited set of 

the best alternatives. 

2. Ranking Problems; Ranking of alternatives from best to worst one. 

3. Classification/Sorting Problems: Assignment of alternatives into 

predefined homogenous classes which can be ordinal or nominal. 

While choice and ranking problems include judgments based on relative 

comparison of alternatives which changes according to the set of alternatives 

chosen, classification/sorting decisions require absolute judgments to assign 

alternatives into groups which are defined independent of the set of alternatives 

(Zopounidis and Doumpos,2002).The classification and sorting problems differ 

in the type of the classes that the alternatives are grouped. In the classification 

problems, classes are nominal whereas sorting problems include ordinal classes 

which are ranked from the most preferred class to the least one.  

Multiple criteria sorting problem is the assignment of alternatives into 

predefined ordered classes according to their values on several attributes. The 

sorting problem is a very common problem which is encountered in many 

different areas of application such as biostatistics, resource allocation, energy 

policy evaluation, financial management and so on. Being involved as a 
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problem in a wide range of areas, it has been studied by researchers from 

several disciplines in the last forty years.  

The aim of this study is to develop a method that assists decision maker to sort 

alternatives with highest accuracy. Decision maker provides a set of assigned 

alternatives and according to this set, the new alternatives are assigned to the 

classes by the developed method. The method involves mathematical models 

that minimize the classification error of known alternatives. Although similar 

models are used in the previous studies with the same objective, the selection 

of secondary objectives to identify the alternative optimal solutions has been a 

problem which is focused in some studies and ignored in many others. Despite 

the main objective chosen as the classification error in the previously defined 

set, the main focus in the problem is the accuracy of the classification of 

unknown alternatives. So, the alternative optimal solutions may result in 

different accuracy levels for those unknown alternatives. Instead of choosing 

an alternative optimal solution randomly or with a secondary objective, this 

study proposes an approach that identifies and utilizes the alternative optimal 

solutions to define assignment probabilities to each class. There are studies that 

provide possible classes that an alternative can belong according to the 

alternative solutions identified by secondary objectives, yet to our knowledge 

there is no study providing probabilities to the decision maker about the 

assignment of alternatives to the classes.  

The structure of the model used is similar to the linear discriminant functions 

in which the values on each criterion are added after multiplied by the weights 

of the criterion to find the value of an alternative.  In this study, instead of 

adding the actual values of criteria for an alternative, we use the distance of 

each alternative to the ideal point. This approach enables evaluation of 

different distance norms to find the best suited one to the structure of the data 

and also eliminates the necessity to modify the data according to its type as 

higher-the-better or lower-the-better since we consider the distances.  
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The rest of the thesis is organized as follows. In Chapter 2, the related literature 

on sorting problems is provided. In Chapter 3, we provide a theoretical 

background on sorting problems in detail and the terminology used. The 

distance norms used in our models are also defined in this section. In Chapter 

4, the solution approach is defined by presenting the mathematical models and 

probability calculation process as well as the interpretation of the model’s 

outputs. In Chapter 5, computational experiments of the proposed method are 

presented. The data sets used are explored and the results on these data sets are 

evaluated in this chapter. The comparison of these results with the previous 

studies is also presented in this chapter. Finally, we conclude in Chapter 6 with 

some future research directions identified.  
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CHAPTER 2 

 
 

2. LITERATURE REVIEW ON SORTING PROBLEMS 
 
 
 

For the classification/sorting problems, the developed approaches can be 

grouped as parametric and non-parametric methods. The parametric methods 

constitute the first studies in this area which are statistical approaches such as 

the Linear Discriminant Method (LDF) developed by Fisher (1936) and its 

extension as Smith’s (1947) Quadratic Discriminant Method (QDF), and the 

econometric approaches such as logit (Bliss, 1934) and probit analysis 

(Berkson,1944). Yet, these statistical approaches have several drawbacks such 

as their parametric structure and statistical assumptions. The non-parametric 

approaches other than Multiple Criteria Decision Analysis (MCDA) methods 

are neural networks, machine learning, fuzzy set theory and rough sets 

(Zopounidis and Doumpos, 2004). One of the machine learning approaches is 

classification tree method. The C4.5 algorithm (Quinlan, 1993), an algorithm 

developed for classification trees, has several advantages such as handling of 

qualitative attributes and missing information over ID3 algorithm (Quinlan, 

1983) which is the previously developed algorithm (Zopounidis and Doumpos, 

2004).  

The MCDA methods developed for classification/sorting problems can be 

grouped into two main categories as the techniques based on the direct 

interrogation of the decision maker and Preference Disaggregation Analysis 

(PDA) methods. The first category requires the decision maker to specify the 

preferential information directly to construct the model. The second group 

minimizes the effort of the decision maker by providing a proper basis to 

identify the preferences of the decision maker. So, in PDA methods, rather than 
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giving the information on how the decisions are made, the decision maker 

actually makes the decisions (Zopounidis and Doumpos, 2004). In 

classification/sorting problems, these decisions include the classification of a 

limited set of alternatives which is known as preference set. Then, PDA 

methods try to construct a criteria aggregation model that can represent the 

decision maker’s preferences best compared to the information gained from the 

preference set. Some of the most commonly used PDA methods are UTA 

methods, outranking relation methods and discriminant analysis. In this study, 

we will provide a detailed review of the PDA methods since the method 

developed in this study also falls into this category.  

Outranking relation methods are employed for both classification and sorting 

problems. For those problems, the outranking degree of an alternative is 

determined by comparing the alternative to the reference values that 

distinguishes the classes. The comparison should be done for each criterion to 

determine whether an alternative outranks a reference value. An alternative 

outranks a reference value if the degree of outranking is greater than a pre-

determined threshold value. The most popular method that is based on the 

outranking relations is ELECTRE TRI methods (Yu, 1992; Roy and Bouyssou, 

1993).  

A second PDA approach to the sorting problems is the utility function based 

approach among which the most widely used ones are UTA methods, most 

significantly its variant UTADIS (Devaud et al, 1980; Jacquet-Lagrèze and 

Siskos, 1982) and MHDIS method (Zopounidis and Doumpos, 1999).  Both 

methods use an estimate of the decision maker’s utility function to correctly 

sort the alternatives into preference ordered classes. While UTADIS uses a 

single utility function which classifies all the alternatives, MHDIS uses more 

than one utility function to sort the alternatives in a step-by-step manner. In 

classical UTADIS method, an additive utility function of decision maker is 

estimated by adding the marginal utility functions of each criterion. The 

marginal utility functions transform the value of the alternative on a criterion to 
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its correspondence in utility scale between 0 and 1. The global utility of an 

alternative is used to assign the alternative to a class according to the 

thresholds of each class determined in the model based on the preference set as 

shown in Figure 2.1.There are many extensions of UTADIS with additive 

utility function studied by Doumpos and Zopounidis (1998) and extensions 

with multiplicative utility function (Keeney and Raiffa, 1993).  

 

Figure 2-1 Classification of alternatives in UTADIS method in 2-class case1 

 

Another PDA approach to the classification/sorting problems is discriminant 

analysis. It is studied in statistical methods, search methods and mathematical 

programming (MP) methods. We already mentioned the statistical approaches 

in the parametric methods. Genetic algorithm approach of Koehler (1989) is an 

example of search methods. The mathematical programming methods for linear 

discriminant analysis try to determine a hyperplane w x c  , where w is the 

weight vector of criteria, c is scalar denoting the threshold value between 

                                                             
1Adapted from Country Risk Evaluation, K.Kosmidou, M. Doumpos and C. Zopounidis, 
Springer Optimization and Its Applications, Vol. 15, 2008. 
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classes and x as the value vector of alternatives, that partitions the p-

dimensional Euclidean space into a closed half space w x c  and an open half 

space cw x  (Erengüç and Koehler, 1990). The number of hyperplanes 

increases as the number of groups increase. 

The general form of the MP methods can be shown as (Erengüç and Koehler, 

1990): 

,ݓ)݂ ݁ݖ݅݉݅݊݅݉ ܿ) 

≥ ݓݔ ݐ ݐ݆ܾܿ݁ݑݏ                    ݔ      ܿ ∈  ଵܥ

ݓݕ                                         > ݕ       ܿ ∈  ଶܥ

≤ ݓ                                       0, .ݑ  ܿ .ݎ  ݏ

where w is the weight vector, c is the threshold and x and y denote the 

alternatives belonging to class 1 and 2 respectively. This general form and the 

approaches that will be mentioned are constructed for 2-group case where there 

is no preferential difference between the groups (classification). The 2-group 

restriction is relaxed by either introducing new thresholds (Freed and Glover, 

1981) or by utilizing more than one discriminant function (Bennet and 

Mangasarian, 1994). Although discriminant analysis is used mostly for 

classification problems, it can be applied to sorting problems by adding 

boundary sequencing constraints (Freed and Glover, 1979). 

The MP approaches differ according to the objective function. The weights of 

the criteria are chosen to minimize the classification error. The objective 

includes a function of the exterior or interior errors. Exterior error denotes the 

deviation of an incorrectly classified alternative from the cut off value of the 

group that it is assigned to, while interior error is deviation of a correctly 

classified alternative from the cut off value.  The most common MP 

approaches are MMD models (minimize maximum exterior deviation), MSD 

models (minimize sum of exterior deviations), MSID models (minimize sum of 
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exterior deviations and maximize sum of interior deviations), Hybrid models, 

MIP and NLP models. The MMD and MSD models have linear objectives 

which are in L-1 norm and L-∞ norms respectively. The NLP model has a 

similar constraint set whereas its objective is the general L-p norm of the 

exterior errors. The model is nonlinear for other than p=1 and p=∞ norms. A 

study of Stam and Joachimsthaler (1989) examines different L-p norm 

objectives where 1 ≤  ≤ ∞  and concludes that best performing values of p 

are 1 ≤  ≤ 3 and  = ∞. Other than evaluation of different L-p norms for the 

objective function, there is no research on the utilization of different L-p norms 

to find the value of an alternative.  

A similar PDA approach to discriminant analysis which is developed for 

sorting problems is a distance based mathematical model of Hipel et al (2005). 

The model aggregates the values of alternatives on each criteria by calculating 

the weighted squared Euclidean distance of alternatives the centroid and sorts 

them according to this distance. This model is important since it is the only 

study that utilizes distances for criteria aggregation. Yet, it only considers a 

distance norm similar to the squared weighted Euclidean distance but it does 

not take square of the weights which are decision variables. It is not a regular 

distance norm but it results in a linear constraint set. The authors propose the 

handling of alternative optimal solutions as a future research direction. We 

mentioned this model since it is the most similar study in literature to the 

proposed method in this research. Yet, we consider distances to the ideal point 

and we propose an approach in general L-p norm with a empirical evaluation 

of different p values applied on several data sets. A method that uses the L-p 

norm distances of alternatives to the ideal point is VIKOR (Opricovic, 1998) 

which is an approach developed for ranking problems. It uses an aggregation 

function that adds the distances to the ideal point by multiplying them with the 

associated weights of the criteria which is similar to our aggregation function. 

Still, our approach is unique for the sorting problems not only because of the 
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aggregation function but also its handling approach of the alternative solutions 

to define probabilities of class assignment. 
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CHAPTER 3 

 
 

3. THEORETICAL BACKGROUND 
 
 
 

3.1 Sorting Problems 

The PDA methods offer a basis to the decision maker that makes identification 

of her preferences easier. In sorting problems, this basis is usually a preference 

set (or training set) which is the set of alternatives that the decision maker has 

already classified to the predefined groups. The preference set is used to extract 

information on the relative importance of each criterion and the cut off values 

between classes. The model then classifies the alternatives in the testing set in 

accordance with the classification in preference set. 

 

Figure 3-1 Preference set in sorting problems 

 

In sorting problems, the aim is to assign a finite set of alternatives X = 

{ ଵܺ, ܺଶ, … , ܺ} to previously defined k groups {ܥଵ, ,ଶܥ … ,  }.Alternative Xi isܥ

a vector of values on each criterion, Xi = (Ai1, Ai2, ... , Aiq) where Aij is the 

score of alternative i on criterion j. Each criterion in sorting problems is ordinal 
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and they can be either “higher the better” or “lower the better”. If a criterion is 

higher the better, then the higher scores on that criterion is preferred to the 

lower scores and it is vice versa for lower the better criteria.  The alternatives’ 

preference order is determined according to these performances on each 

criterion. An attribute can be categorical ({Small, Medium, Large}) or linear 

({1,2,3..}). Linear attributes can be continuous or discrete. The trade-off 

between the criteria is described by the weights of criteria. In criteria 

aggregation methods, these weights are used as coefficients for scores on each 

criterion to determine the value of an alternative. This process transforms Rq 

R1so the alternatives are ordered in one dimensional space and a threshold 

value can be calculated for each class. A threshold is the value that separates 

two classes on R1. The thresholds and the weights are determined by the 

sorting model in order to classify the alternatives in preference set with 

minimum error. Then, the developed method with established parameters can 

be used to sort the alternatives in testing set. A typical model construction is 

shown in Figure 3.2 (Doumpos and Zopounidis, 2004). 
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Figure 3-2 Model construction for the sorting problems 

 

3.2 Distance Norms 

In this study, we employ different L-p distance norms for the aggregation of 

criteria to determine the value of an alternative. The general weighted distance 

of p-norm between two points (X1, X2, … , Xn) and (Y1, Y2,…,Yn) is as shown 

below: 

 
1/

1

ppn

i ii
i

x yw


 
  

 


    (1)
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When  = 1, the distance norm becomes Manhattan distance which is the 

rectilinear distance between two points.   When  = 2, the distance norm 

becomes a more familiar and more widely used norm which is Euclidean 

distance. The square of Euclidean distance is known as Squared Euclidean 

distance. As p order gets higher, the larger valued dimensions get more 

dominating and when  =  ∞, the distance is equal to max ( ଵܺ , ܺଶ … ܺ ) , 

which is known as Tchebycheff distance. Each distance norm in the objective 

function constitutes a different form of contours (Figure 3.3). 

 

Figure 3-3 Contours of L-p norm distances from y2 

The distance norms are utilized in the distance calculation of alternatives to the 

ideal point. Ideal point is the point compromising the best values in each 

criterion which can be maximum or minimum depending on the type of the 

criteria. It is calculated as shown below: 

   I୧
∗ = ൫A୧୨ห jݔܽ݉ = 1,2, … , m൯     ∀i ∈  (2)  ܪ

ܫ   
∗ = ݉݅݊൫ܣห ݆ = 1,2, … , ݉൯     ∀݅ ∈  (3)   ܮ

∗ܫ    = ଵܫ)
∗, ଶܫ

∗, … , ܫ
∗)     (4) 

                                                             
2 Adapted from the article Solving the Classification Problem in Discriminant Analysis Via 
Linear and Nonlinear Programming Methods, A.Stam and E.A.Joachimsthaler, Decision 
Sciences, Vol.20, 285-293,1989. 
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where H is the set of criteria which are higher the better, A୧୨ is the score of 

alternative i on criterion j, L is the set of criteria which are lower the better and 

there are m alternatives. ܫ
∗ is the best value in criterion i and ܫ∗ is the ideal 

point in ܴ  which combines the best values in each criteria.  

3.3 UTADIS 

UTADIS method is an extension of UTA methods for sorting of alternatives. 

The method estimates the utility function of the decision maker based on the 

preference set which is used as a criteria aggregation function. The global 

utility function of the decision maker is estimated by adding the marginal 

utility functions for each criterion. The global utility function is: 

                           ܷ(ܽ) =  ∑ ݓ

ୀଵ )ݑ ܽ)    (5) 

where a = (ܽଵ, ܽଶ, … , ܽ) is the vector of criteria, ݓ is the weight factor of 

criteria j and ݓଵ + ଶݓ + ⋯ + ݓ = )ݑ .1 ܽ) is the marginal utility function 

that shows the value of score ܽ on criteria j for the decision maker. The 

criteria aggregation function of UTADIS is different than the discriminant 

function by this property that takes marginal utility value of a score rather than 

the score itself. The method tries to estimate these marginal utility functions 

with minimum classification error of the preference set. 

The marginal utility functions are monotone and increasing from 0 to 1 in the 

range of the criteria. 

)ݑ                                        ܽ
∗) = 1        (6) 

)ݑ                                        ܽ
ᇱ) = 0         (7) 

where a୨
∗ and a୨

ᇱ are best and worst values for criteria j respectively.  In order to 

avoid nonlinearity due to writing global utility function as a product of two 

unknowns, weights of the criteria and marginal utility functions, the global 

utility function is transformed as; 
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     ܷ(ܽ) =  ∑ )′ݑ ܽ)
ୀଵ          (8) 

where ݑ
ᇱ൫ ܽ൯ = ݓ )ݑ  ܽ) , ݑ

ᇱ൫ ܽ
∗൯ = ݑ  andݓ

ᇱ൫ ܽ
ᇱ൯ = 0. In the transformed 

structure, the global utility function is still in the range of (0,1) but the marginal 

utility functions vary between (0, ݓ) which is the weight of the associated 

criteria. To estimate the marginal utility function, the interval ൣ ܽ
ᇱ, ܽ

∗൧ on each 

criterion is divided into  − 1 subintervals with  break points ܽ
ଵ ൫=

ܽ
ᇱ൯, ܽ

ଶ, … , ܽ
ೕ(= ܽ

∗). The marginal utility function is estimated by estimating 

the utility values at breakpoints as shown below: 

௦ݓ      ݑ =
ᇱ൫ ܽ

௦൯ ݑ −
ᇱ൫ ܽ

௦ିଵ൯        (9) 

ݑ     
ᇱ൫ ܽ

൯ =   ∑ ௦ݓ
ିଵ
௦ୀଵ      (10) 

where   ݓ௦ is the utility value corresponding to the interval s on criterion j. The 

marginal utility value of any score ܽ  of alternative k on criterion j is 

calculated by linear interpolation using the ݓ௦  values. 

ݑ
ᇱ൫ ܽ൯ =   ∑ ௦ݓ

ೕೖିଵ
௦ୀଵ + ,ೕݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ    (11) 

where ݎ is the subinterval that alternative k belongs on criterion j. The global 

utility function of alternative i is then calculated by summing up these marginal 

utility values.  

The objective of UTADIS is to minimize classification error of alternatives in 

preference set. The misclassified alternatives are the ones that are assigned to a 

group different than i although they belong to class i (assigned by decision 

maker in preference set). The classification error for the misclassified 

alternatives is calculated as: 

ߝ             
ି = ,0 }ݔܽ݉ ܷ(ܽ) −      ିଵ}                                   (12)ݑ 

ߝ      
ା = ,0 }ݔܽ݉ ݑ − ܷ(ܽ)}                                 (13) 
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for every  x୩ ϵ C୧ where u୧ denotes the threshold value of class i and ε୩
ି  and ε୩

ା 

are the errors of assignment to a higher (better) class and a lower (worse) class 

respectively. The linear model that finds the optimal ݓ௧ values and thresholds 

of classes with the objective of minimizing the total classification error is 

shown below. 

Indexes 

ܭ  = number of alternatives in preference set 

ݍ  = number of criteria 

 ݊ = number of classes 

  =number of breakpoints on each criterion 

 ݇ ∈ {1,2, … ,  for alternatives in preference set {ܭ

 ݆ ∈ {1,2, … ,  for criteria  {ݍ

 ݅ ∈ {1,2, … , ݊}  for classes 

ݏ  ∈ ൛1,2, … ,  − 1ൟ for intervals on each criterion 

Parameters 

ݎ  = subinterval that alternative k belongs on criterion j  

ܥ   = set of alternatives in preference set which belongs in class i 

ݔ   = alternative k in preference set  

 ݉ = number of alternatives in class i 

 ܽ = score of alternative k on criterion j 

 ܽ
௧ = breakpoint t on criterion j 

,  ,ଵߜ ଶߜ  = small positive constants (0.001; 0.0001; 0.0001) 
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 Decision Variables  

௦ݓ  = utility value corresponding to interval s on criterion j 

ݑ  = threshold value between class i and i+1 

 ε୩
ି = error of assignment of alternative k to a higher class 

 ε୩
ା = error of assignment of alternative k to a lower class 

 UTADIS Model 

min ∑ 
∑ ൫ఌೖ

శ ା ఌೖ
ష ൯ ∀ೣೖ ∈ 


൨

ୀଵ             (14) 

s.t.  

∑ ቈ∑ ௦ݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ − ଵݑ


ୀଵ + ߝ

ା  ≥ ∋ ݔ ∀       ଵߜ    ଵ (15)ܥ

∑ ቈ∑ ௦ݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ − ݑ


ୀଵ + ߝ

ା  ≥             ଵߜ 

ݔ ∀   ∈ , (1,2,3ܥ  … , ݊ − 1)         (16)   

∑ ቈ∑ ௦ݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ − ିଵݑ


ୀଵ − ߝ

ି  ≤         ଶߜ− 

ݔ ∀  ∈ ܥ   (1,2,3, … , ݊ − 1)          (17) 

∑ ቈ∑ ௦ݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ − ିଵݑ


ୀଵ − ߝ

ି  ≥ ݔ ∀       ଶߜ−  ∈     (18)ܥ

∑ ∑ ௦ݓ
ೕିଵ
௦ୀଵ = 1

ୀଵ           (19) 

ିଵݑ  − ݑ  ≥  (20)           

,௦ݓ  ߝ
ା, ߝ

ି  ≥ 0        (21) 
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The optimal ݓ௦  and ݑ values are used to determine the utility values of 

alternatives in test set and their assigned class according to their position 

between thresholds. 

3.4 Classification Tree 

Classification (decision) tree is a data mining technique for classification 

problems based on some decision rules used to partition the alternatives. The 

decision rules are implemented in IF…THEN conditions.  C4.5 algorithm 

(Quinlan, 1993) uses these rules to construct a tree as shown in Figure 3.4. 

 

Figure 3-4 Classification decision tree 

 

Each decision node in the tree represents an attribute. The branches coming out 

of a node separate the alternatives according to the decision rule indicated. The 

branching process continues until the separated alternatives belong to one 

class. The tree is formed by use of alternatives in preference set. The algorithm 

proceeds in iterative steps such as: 

1. Let St be the set of alternatives that reach a node t. 

2. If St contains alternatives that belong the same class Ci, then t is a leaf 

node labelled as Ci . 

3. If St contains alternatives that belong to more than one class, a decision 

rule on an attribute is used to split the alternatives into smaller subsets. 
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Apply the procedure to each subset recursively starting from the root 

node. 

The decision rules are about how to split to attributes in each attribute node. 

There are binary splits which create 2 branches and multi-way splits which 

create to more than 2 branches, e.g. as many parts as the values on that attribute 

for categorical attributes.  For continuous attributes, another decision is to 

determine the best split to branch. There are several performance measures 

such as GINI index or entropy to measure the performance of split decision.  

The resulting tree can be pruned (post-pruning) or the algorithm can be stopped 

before a full tree is formed (pre-pruning) in order to avoid over fitting which is 

the case where the tree classifies the alternatives in preference set with a high 

accuracy but fails to succeed in the test set. After the final tree is conducted, it 

is used to determine the classes of test variables by using the decision rules for 

each alternative to reach one of the leaf nodes. 
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CHAPTER 4 

 
 

4. SOLUTION APPROACH 
 
 
 

The common property of previously mentioned existing models for sorting 

problems is that they form the criteria aggregation function by estimating 

weights of the criteria and define thresholds once with the preference set. The 

values of the weights and thresholds are chosen such that the classification of 

alternatives in preference set is done with minimum error. Yet, classification 

error may be minimized by more than one set of values which result in 

alternative optimal solutions. Although these are alternative optimals resulting 

in the same classification error for the preference set, they may not result in the 

same classification accuracy for the testing set. So, randomly choosing one of 

these solutions may not be the best choice for higher accuracy of the model. 

The alternative optimal solutions are handled by further analysis with 

secondary objectives in many studies (Köksalan and Özpeynirci, 2008). This 

requires evaluation of many possible objectives and the objectives that give 

better performance in some data sets may fail to do so in other data sets. Also, 

using secondary objectives do not consider all possible alternative optimal 

solutions; therefore do not guarantee to obtain the best alternative solution that 

gives highest accuracy. None of the previous methods include identification 

and handling of alternatives in the main structure of the method but offer as a 

further analysis up to our knowledge. Our solution approach in this study 

proposes a solution by calculating the minimum and maximum values of these 

decision variables in order to determine the probabilities of belonging to a class 

for an alternative in the test set.   
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The proposed solution approach in this study includes two optimization models 

and a probability calculation algorithm as shown in Figure 4.1. The first model 

calculates the minimum and maximum values of thresholds for each class that 

gives the minimum classification error for preference set. The second model 

takes this error as a binding constraint and calculates the minimum and 

maximum values of alternatives in the test set which occur as a result of the 

alternative weights that gives the minimum classification error. Then, these 

values are used by probability calculation algorithm to define the probabilities. 

The details of each of these steps are given in the following subsections.   

 

Figure 4-1 Steps of the solution approach 
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4.1 Criteria Aggregation Function 

Before description of the criteria aggregation function and the details of the 

models, the problem should be defined in a formal way with the notations that 

will be used in the following sections.  The problem is to sort the alternatives in 

preference set ܲ =  { ଵܺ, ܺଶ, … , ܺ} into n predefined classes {ܥଵ, ,ଶܥ … ,  {ܥ

with minimum classification error. The classes are ordered such that ܥଵ is the 

most preferred and ܥ is the least preferred class. An alternative ܺ  is defined 

on a set of criteria ܣ =  ൛ܽଵ, ܽଶ, … , ܽൟ such as ܺ =  ൫ܽଵ, ܽଶ, … , ܽ൯ where 

the ܽ values are the scores of alternative k on criterion j. The sorting process 

is done by defining a criteria aggregation function that maps the alternatives on 

ܴଵ by defining proper weights of the criteria ൫ݓଵ, ,ଶݓ … ,  ൯ and thresholdsݓ

that separate the classes ( ଵܶ, ଶܶ, … , ܶିଵ). The established criteria aggregation 

function is used to sort the alternatives in test set ܶ =  { ଵܺ, ܺଶ, … , ܺ} which 

will be quite different in our model as it will be explained later. 

The general structure of the model is similar to the MP formulations of 

discriminant analysis yet the criteria aggregation function is quite different. 

Instead of adding the scores of alternatives on each criterion, the distance of an 

alternative to the ideal point is calculated and taken as the value of that 

alternative. The L-p norm distance of an alternative ݔ to ideal point I* is: 

,ݔ)ܦ (∗ܫ = ൣ∑ ൫ݓหܽ − ∗ห൯ܫ
ୀଵ ൧

ଵ/
= ܸ    (22) 

where ܽ  is the score of alternative ݇ on criterion ݆, ݓ is the weight of 

criterion ݆, ܫ∗ is the best value on criterion ݆ where the alternatives are defined 

on ݍ criteria. ܸ  is the value of alternative ݔ which is the mapped value from 

ܴ → ܴଵ. Different p norms are applied in the model and evaluated in 

following sections.  

On ܴଵ space, the ܸ  values are separated into different classes by establishing 

thresholds in the range (0, ∞) since distances can not be negative. The lower 
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the ܸ  value of alternative ݔ, the more preferred the alternative is since as an 

alternative gets closer to the ideal point it is more preferred.  

 ܸ <  ܸ   →   ܺ  ≫  ܺ   (23) 

So, class-1 is in the range of (0, ଵܶ), class-2 is in the range of ( ଵܶ, ଶܶ), and so 

on as shown in Figure 4.2.   

 

Figure 4-2 Sorting of alternatives to classes 

        

The alternatives are assigned to classes according to the following rule: 

   ܸ ≤  ଵܶ  → ܺ  ∈  ଵ         (24)ܥ

   ܶିଵ < ܸ ≤  ܶ  → ܺ  ∈ ݅∀     ܥ = 2,3, … , ݊ − 1   (25) 

    ܸ >  ܶିଵ  → ܺ  ∈      (26)ܥ

This distance approach eliminates the need for pre-transformation of scores on 

each criterion to increasing (higher-the-better) or decreasing (lower-the-better) 

structure.   
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The main objective of the model is to construct several criteria aggregation 

functions that minimize the classification error of alternatives in preference set. 

The classification error for the misclassified alternatives is calculated as: 

               ݁
ି = ,0 }ݔܽ݉ ܶିଵ − ܸ  }        (27) 

 ݁
ା = ,0 }ݔܽ݉ ܸ− ܶ}   (28) 

for every  x୩ ϵ C୧ where T୧ denotes the threshold value of class i, ܶିଵ is the 

threshold value for the lower class, and e୩
ା and e୩

ି are the errors of assignment 

to a lower (worse) class and a higher (better) class respectively. 

                             

Figure 4-3 Errors of alternatives X1 ∈ C1 and X2 ∈ C2 

 

 

4.2 Model-1  

The first model is similar to the previously mentioned sorting methods except 

that only thresholds and target classification error are permanently determined. 

The criteria aggregation function is estimated in the first phase by stabilizing 

weights and thresholds in the previous studies (Erengüç and Koehler, 1990; 

Freed and Glover, 1979). In our model, different weight vectors are used to 

find maximum and minimum values of thresholds but these weights are not 

kept for a permanent criteria aggregation function since in the second phase, 

݁ଶ
ି =  ଶܸ − ଵܶ 

݁ଵ
ା =  ଵܶ −  ଵܸ 
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the objective changes as to find the possible maximum and minimum values of 

alternatives in the test set. So, in our method the criteria aggregation function 

changes with different weights since the objective in the first model is to find 

the alternative values of thresholds with minimum classification error. In the 

second model, within the alternative values that give the minimum 

classification error found in model-1, the maximum and minimum distances to 

the ideal point for each test alternative are determined.  

The decision variables and parameters of the model are defined as follows: 

Indexes 

    ݊ = number of classes 

ݍ     = number of criteria 

ܭ     = number of alternatives in preference set 

ݐ    = ቄ1 for maximum threshold values
2 for minimum threshold values

�  

    ݅ ∈ {1,2, … , ݊ − 1} for thresholds 

    ݆ ∈ {1,2, … ,  for criteria {ݍ

    ݇ ∈ {1,2, … ,  for alternatives in preference set {ܭ

Parameters 

     ܽ = value of alternative k on criterion j  

∗ܫ         = value of ideal point on criterion j  

     ߲ =  a small constant (0.005) 

ܥ      = set of alternatives in preference set which belongs to class i 
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Decision Variables 

௧ݓ      = weight of criterion j 

     ݁௧
ା = error of assignment of alternative k to a lower class 

     ݁௧
ି = error of assignment of alternative k to a higher class 

ݔܽ݉ܶ      = maximum value of threshold i separating class i and i+1 

             ܶ݉݅݊ = minimum value of threshold i separating class i and i+1 

Model-1 

min   ∑ ∑ (݁௧
ା + ݁௧

ି ) +
ୀଵ

ଶ
௧ୀଵ ߲ ∑ (ܶ݉݅݊ − )ିଵݔܽ݉ܶ

ୀଵ       (29)
 s. t. 

ൣ∑ ଵหܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

− ݁ଵ
ା  ≤  ܶ݉݅݊ଵ   ∀݇ ∈  ଵ       (30)ܥ

ൣ∑ ଵหܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

+ ݁ଵ
ି  ≥  ܶ݉݅݊ିଵ   ∀݇ ∈ ݅) ܥ = 2,3, … ݊)    (31) 

ൣ∑ ଵหܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

− ݁ଵ
ା ≤  ܶ݉݅݊    ∀݇ ∈ ܥ  (݅ = 2,3, … ݊ − 1)  (32) 

ൣ∑ ଶหܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

− ݁ଶ
ା  ≤ ݇∀   ଵݔܽ݉ܶ  ∈  ଵ       (33)ܥ

ൣ∑ ଶหܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

+ ݁ଶ
ି  ≥ ݇∀   ିଵݔܽ݉ܶ  ∈ ܥ  (݅ = 2,3, … ݊)    (34) 

ൣ∑ ଶหܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

− ݁ଶ
ା ≤ ݇∀    ݔܽ݉ܶ  ∈ ݅) ܥ = 2, … ݊ − 1)   (35) 

ݔܽ݉ܶ  ≥ ݅∀             ିଵݔܽ݉ܶ ∈ {1,2, … , ݊ − 1}       (36) 

 ܶ݉݅݊ ≥ ܶ݉݅݊ିଵ              ∀݅ ∈ {1,2, … , ݊ − 1}       (37) 

ݔܽ݉ܶ  ≥ ܶ݉݅݊                  ∀݅ ∈ {1,2, … , ݊ − 1}        (38) 

 ∑ ௧ݓ = ݐ∀        1 ∈ {1,2}
ୀଵ           (39) 

௧ݓ  ≥ 0, ݁௧
ା ≥ 0, ݁௧

ି ≥ ݐ∀      0 ∈ {1,2}, ∀݆ ∈ {1,2, … , ,{ݍ ∀݇ ∈ {1,2, … ,  (40)   {ܭ
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The index t in the model is used to create two different criteria aggregation 

functions for each value of t. For t=1, a set of weights (ݓଵ) is found that 

minimizes the threshold values (ܶ݉݅݊) and for t=2, another set of weights 

 among the (ݔܽ݉ܶ) is found that maximizes the threshold values (ଶݓ)

alternative threshold values that result in same minimum classification error. 

Each of these weight vectors sum up to 1 for all criteria. (݁ଵ௧
ା  , ݁ଵ௧

ି ) and 

(݁ଶ௧
ା  , ݁ଶ௧

ି ) are the errors resulting in two criteria aggregation functions. The 

idea is to be able to explore each set of values of alternative solutions that 

results in minimum threshold and maximum threshold. If one criteria 

aggregation function was used, only one set of values would be found which 

would maximize the range (ܶ݉ܽݔ − ܶ݉݅݊). We can explain this idea by the 

following example. Assume that one criteria aggregation function was used 

instead of two. For two class case, two alternative optimal solutions shown in 

Figure 4.4 would result in the same (ܶ݉ܽݔ − ܶ݉݅݊) value and same 

classification error (0) so the model would give any of the two as the optimal 

solution. Yet, assuming that these two are the only alternative optimal 

solutions, we want to identify ܶ݉ܽݔ value of the second solution and ܶ݉݅݊ 

value of the first solution. In order to do that, we need to identify two different 

configurations of alternatives which is not possible without using two different 

weight spaces.  

 

Figure 4-4 Two alternative optimal solutions in 2-class case where 

 { ଵܺ, ܺଶ} ∈ ,ଵ and {ܺଷܥ ܺସ}  ∈  ଶܥ
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The first objective is to minimize total error and the secondary objectives are to 

maximize the maximum threshold value and minimize the minimum threshold 

value. When there is only one solution (only one set of weights and thresholds) 

that gives the minimum classification error, then there is only one value for 

each threshold that minimizes classification error. So, the maximum and 

minimum threshold variables take the same value. The constraints between 

Eq.30 and Eq.32 ensure that the alternatives assigned to class-i in preference 

set take values out of the range of the correct class. Otherwise the error 

variable takes a value equal to the distance out of the correct class’s threshold. 

The constraints between Eq.33 and Eq.35 are for the same purpose but this 

time for the decision variables defined for maximum thresholds. Eq.36 and 

Eq.37 are defined to ensure that thresholds of better classes are smaller than 

thresholds of worse classes. Eq.39 equates the sum of weights for each 

criterion to 1 for each weight set.  

The total classification error of model-1 is shown below which is given to the 

second model as a constraint: 

 ∑ ∑ (݁௧
ା + ݁௧

ି ) = ∗ܧ
ୀଵ

ଶ
௧ୀଵ       (41) 

 

4.3 Model-2 

The second model is quite similar to the first one yet the alternatives in the test 

set are also included in this model. The objective is to find the maximum and 

minimum values of each alternative in the test set among the solutions that give 

the minimum classification error. In order to do that, both the classification of 

alternatives in the preference set and establishing the values of alternatives in 

the test set are done simultaneously. The minimum classification error found in 

model-1 (ܧ∗) is taken as an upper bound on the classification error of 

alternatives in the preference set.  
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    ∑ ݁∀∈ ≤  (42)      ∗ܧ

Again, different criteria aggregation functions are used to find the ܸ݉ܽݔ and 

ܸ݉݅݊ values of alternatives on set T. For each ܸ݉ܽݔ or ܸ݉݅݊ of alternative 

݈, a different set of weights and thresholds is found if there exist alternative 

optimal solutions with ܧ∗ classification error. So, there are 2ܮ sets of weights 

and thresholds which result in 2ݍܮ weight variables and 2ܮ(݊ − 1) thresholds 

which were only 2ݍ and 2(݊ − 1) respectively in the first model. This 

increases the computational effort especially when the ܮ  norm is different 

than ܮଵ and ܮஶ, which makes both Model-1 and Model-2 nonlinear and 

becomes a problem especially with massive data sets. Since the classification 

error is taken as a constraint, the objective is to maximize ܸ݉ܽݔ and minimize 

ܸ݉݅݊. 

min    ∑ (ܸ݉݅݊ − ்∋ )∀ݔܸܽ݉     (43) 

The total weight of all criteria for each weight set is again equated to 1. The 

threshold values for each class are limited between the minimum and 

maximum values found in Model-1.  

ܶ݉݅݊ ≤ ܶ ≤       ∀݅     (44)ݔܽ݉ܶ

Additional Indexes 

ܮ     = number of alternatives in test set 

    ݈ ∈ {1,2, … ,  for alternatives in test set {ܮ

Additional Parameters  

     ܽ = score of alternative l on criterion j 

∗ܧ       = total classification error 

     ܶ݉݅݊ = minimum value of threshold separating class i and i+1 

ݔܽ݉ܶ      = maximum value of threshold separating class i and i+1 
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 Decision Variables 

௧ݓ      = weight of criterion j 

     ݁௧
ା = error of assignment of alternative k to a lower class 

     ݁௧
ି = error of assignment of alternative k to a higher class 

     ܶ௧ = value of threshold i  

ݔܸܽ݉      = maximum value of alternative l in test set 

     ܸ݉݅݊ = minimum value of alternative l in test set 

 

Model-2 

min      ∑ (ܸ݉݅݊ − )ݔܸܽ݉
ୀଵ          (45)

 
 s. t. 

 ൣ∑ ௧หܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

− ݁௧
ା  ≤  ܶ௧ଵ         

 ∀݇ ∈ ,ଵܥ ∀݈ ∈  {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}       (46) 

 ൣ∑ ௧หܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

+ ݁௧
ି  ≥  ܶ௧ିଵ   

 ∀݇ ∈ ܥ  (݅ = 2,3, … ݊), ∀݈ ∈  {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}     (47) 

 ൣ∑ ௧หܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

− ݁௧
ା ≤  ܶ௧    

 ∀݇ ∈ ܥ  (݅ = 2, … ݊ − 1), ∀݈ ∈  {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}     (48) 

 ൣ∑ ଵหܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

≥ ݈∀     ݔܸܽ݉  ∈ {1,2, … ,  (49)     {ܮ

 ൣ∑ ଵหܽݓ) − ∗ห)ܫ
ୀଵ ൧ଵ/ 

≤  ܸ݉݅݊     ∀݈ ∈ {1,2, … ,  (50)     {ܮ

 ܶ௧ ≥ ܶ௧ିଵ     ∀݈ ∈ {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}, ∀݅ ∈ {2,3, … , ݊ − 1}    (51) 
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 ∑ ௧ݓ = 1     
ୀଵ   ∀݈ ∈ {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}     (52) 

 ∑ ∑ ∑ (݁௧
ା + ݁௧

ି )
ୀଵ


ୀଵ

ଶ
௧ୀଵ ≤  (53)       ∗ܧܮ

ݔܽ݉ܶ  ≥ ܶ௧         ∀݈ ∈ {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}, ∀݅ ∈ {1,2,3, … , ݊ − 1}  (54) 

 ܶ݉݅݊ ≤ ܶ௧         ∀݈ ∈ {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}, ∀݅ ∈ {1,2,3, … , ݊ − 1}  (55) 

݆ݐ݈ݓ   ≥ 0, ݐ݈݇݁
+ ≥ 0, ݐ݈݇݁

− ≥ ݐ∀      0 ∈ {1,2}, ∀݆ ∈ {1,2, … , ,{ݍ ∀݇ ∈ {1,2, … ,  ,{ܭ

 ∀݈ ∈ {1,2, … ,  (56)         {ܮ
The constraints of Model-2 are equivalent to Model-1 except that dimension l 

is included in the decision variables.  

4.4 Model-1 and Model-2 for ࡸஶ 

The models given in sections 4.2 and 4.3 are valid for all ܮ norms except 

 = ∞ since its distance function is quite different than the others. The 

distances in each dimension are not added as in the other norms but only the 

maximum of them is taken as the distance of two points. In this case, the ܮஶ 

distance (Tchebycheff distance) is calculated as follows; 

,ݔ)ܦ (∗ܫ = max൫ݓหܽ − ∗ห൯ = ܸܫ   (57) 

The function is not included in the model like this but instead it is inserted in 

the objective in order to construct a linear model. The first objective is to 

define these distances correctly so its coefficient is 1. The secondary objective 

is to minimize the total classification error as in the other models. Among the 

alternative optimal solutions that give the minimum classification error, the 

ones that give the minimum and maximum values of thresholds and testing 

alternatives are chosen in model-1 and model-2 respectively.  

All the variables and parameters are same except the decision variable ܦ and 

 which are the global values (distances to ideal point) of alternatives in ,ݐܦ
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preference set and test set respectively. Model-1 and model-2 for ܮஶ are shown 

below.  

Model-1: 

Additional Decision Variables 

௧ܦ      = weighted L∞ distance of alternative k ∈ P to ideal point 

 

Additional Parameters 

     ߲ =  a small positive constant (0.005) 

 a small positive constant greater than ߲ (0.01)  = ߚ     

 

Model-1 

 

min       ߚ ∑ ∑ (݁௧
ା + ݁௧

ି )ଶ
௧ୀଵ


ୀଵ + ߲ ∑ (ܶ݉݅݊ − )ିଵݔܽ݉ܶ

ୀଵ + ∑ ∑ ௧ܦ
ଶ
௧ୀଵ


ୀଵ    (58) 

 s. t. 

௧ܦ  ≥ ௧൫ܽ௧ݓ − ݇∀    ∗൯ܫ ∈ {1,2, … , , {ܭ ݐ∀ ∈ {1,2}, ∀݆ ∈ {1,2, … ,  (59)     {ݍ

ଵܦ  − ݁ଵ
ା ≤  ܶ݉݅݊ଵ        ∀݇ ∈  ଵ         (60)ܥ

ଵܦ  + ݁ଵ
ି ≥  ܶ݉݅݊ିଵ    ∀݇ ∈ ܥ (݅ = 2,3, … ݊)       (61) 

ଵܦ  − ݁ଵ
ା ≤  ܶ݉݅݊         ∀݇ ∈ ܥ (݅ = 2, … ݊ − 1)       (62) 

ଶܦ  − ݁ଶ
ା ≤ ݇∀        ଶݔܽ݉ܶ  ∈  ଵ         (63)ܥ

ଶܦ  + ݁ଶ
ି ≥ ݇∀    ିଵݔܽ݉ܶ  ∈ ݅)ܥ = 2,3, … ݊)       (64) 

ଶܦ  − ݁ଶ
ା ≤ ݔܽ݉ܶ          ∀݇ ∈ ݅)ܥ = 2, … ݊ − 1)       (65) 

ݔܽ݉ܶ  ≥ ݅∀             ିଵݔܽ݉ܶ ∈ {1,2, … , ݊ − 1}        (66) 

 ܶ݉݅݊ ≥ ܶ݉݅݊ିଵ              ∀݅ ∈ {1,2, … , ݊ − 1}        (67) 

ݔܽ݉ܶ  ≥ ܶ݉݅݊                  ∀݅ ∈ {1,2, … , ݊ − 1}        (68) 
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 ∑ ௧ݓ = ݐ∀        1 ∈ {1,2}
ୀଵ          (69) 

௧ݓ  ≥ 0, ݁௧
ା ≥ 0, ݁௧

ି ≥ ݐ∀      0 ∈ {1,2}, ∀݆ ∈ {1,2, … , ,{ݍ ∀݇ ∈ {1,2, … ,  (70)   {ܭ

The constraints of the model are equivalent to the constraints of the general 

distance norm approach. The only difference is the calculation of criteria 

aggregation function which is refered as ܦ௧.    

  

Model-2:
 

Additional Decision Variables 

௧ܦ      = weighted L∞ distance of alternative k ∈ P to ideal point 

௧ݐܦ      = weighted L∞ distance of alternative l ∈ T to ideal point 

 

Additional Parameters 

     ߲ = a small positive constant (0.005) 

 

Model-2 

min       ߲ ∑ (ܸ݉݅݊ − )ݔܸܽ݉
ୀଵ + ∑ ∑ ∑ ௧ܦ  ଶ

௧ୀଵ

ୀଵ


ୀଵ +  ∑ ∑ ௧ݐܦ

ଶ
௧ୀଵ


ୀଵ       (71) 

s. t.

   
௧ܦ   ≥ ௧൫ܽ௧ݓ − ݇∀    ∗൯ܫ ∈ {1,2, … , , {ܭ ݐ∀ ∈ {1,2}, ∀݈ ∈ {1,2, … ,  ,{ܮ

  ∀݆ ∈ {1,2, … ,  (72)          {ݍ

௧ݐܦ   ≥ ௧൫ܽ௧ݓ − ݈∀     ∗൯ܫ ∈ {1,2, … , , {ܮ ݐ∀ ∈ {1,2}, ∀݈ ∈ {1,2, … ,  ,{ܮ

   ∀݆ ∈ {1,2, … ,  (73)          {ݍ

௧ܦ  − ݁௧
ା ≤  ܶ௧ଵ        ∀݇ ∈ ଵܥ , ݐ∀ ∈ {1,2}, ∀݈ ∈ {1,2, … ,  (74)     {ܮ

௧ܦ  + ݁௧
ି ≥  ܶ௧ିଵ    ∀݇ ∈ ݅)ܥ = 2,3, … ݊), ݐ∀ ∈ {1,2}, ∀݈ ∈ {1,2, … ,  (75)   {ܮ

௧ܦ  − ݁௧
ା ≤  ܶ௧         ∀݇ ∈ ݅)ܥ = 2, … ݊ − 1), ݐ∀ ∈ {1,2}, ∀݈ ∈ {1,2, … ,  (76)   {ܮ

ଵݐܦ  ≤ ܸ݉݅݊         ∀݈ ∈ {1,2, … ,  (77)        {ܮ
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ଶݐܦ  ≥ ݔܸܽ݉         ∀݈ ∈ {1,2, … ,  (78)       {ܮ

 ∑ ௧ݓ = 1     
ୀଵ   ∀݈ ∈ {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}     (79) 

 ∑ ∑ ∑ (݁௧
ା + ݁௧

ି )
ୀଵ


ୀଵ

ଶ
௧ୀଵ ≤  (80)       ∗ܧܮ

ݔܽ݉ܶ  ≥ ܶ௧         ∀݈ ∈ {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}, ∀݅ ∈ {1,2,3, … , ݊ − 1}  (81) 

 ܶ݉݅݊ ≤ ܶ௧         ∀݈ ∈ {1,2, … , ,{ܮ ݐ∀ ∈ {1,2}, ∀݅ ∈ {1,2,3, … , ݊ − 1}  (82) 

݆ݐ݈ݓ  ≥ 0, ݐ݈݇݁
+ ≥ 0, ݐ݈݇݁

− ≥ ݐ∀      0 ∈ {1,2}, ∀݆ ∈ {1,2, … , ,{ݍ ∀݇ ∈ {1,2, … ,  ,{ܭ

 ∀݈ ∈ {1,2, … ,  (83)         {ܮ

The constraints of Model-2 are equivalent to Model-1 with additional 

dimension l for each decision variable. The constant ߲ is set to 0.005 by 

empirical evaluation of different values to ensure that the minimum and 

maximum values of alternatives are set among the solutions with the weighted 

distances of alternatives assigned correctly. 
4.5 Probability Calculation  

After the two models are solved, the optimal ܸ݉ܽݔ, ܸ݉݅݊, ܶ݉݅݊ and 

  values are used in order to define the probability of belonging to eachݔܽ݉ܶ

class for the alternatives in test set. Since values of the alternatives are defined 

as intervals rather than points and so are the thresholds, the sorting of 

alternatives in test set into classes is not straightforward. If the thresholds were 

taken as points, the interval of an alternative could lie on only one class (Figure 

4.5-a), or more than one classes (Figure 4.5-b),  and the probability could be 

calculated by taking ratio of the part of an alternative lying on one class to the 

whole with the assumption of uniform distribution. In the first case, the 

probability of the class that the interval of alternative lies on is assigned as 1 

and the other classes 0 since all the possible values of an alternative are 

between its minimum and maximum values. In the second case, all the classes 

that the interval of alternative covers take positive probabilities which are 
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calculated according to the ratios lying on each class which sum up to 1 for all 

classes for an alternative.  

 

 

Figure 4-5 (a) Alternative lies on only one class. (b) Alternative  

                   lies on more than one classes 

 

Yet, in our model, the thresholds also have intervals. This makes the 

identification of classes between thresholds more complicated. When the 

maximum value of a threshold ݅ is less than the minimum value of the 

following threshold ݅ + 1, it is rather simple. Between the minimum and 

maximum values of a threshold ݅, class ݅ and ݅ + 1 are possible. Between the 

minimum value of a threshold ݅ and the maximum value of threshold ݅ − 1, 

only possible class is ݅. Between the maximum value of threshold ݅ and 

minimum value of threshold ݅ + 1, only possible class is class i+1. The 

situation where intervals of thresholds do not coincidence is shown in Figure 

4.6.  
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Figure 4-6 Classes between intervals when there is no intersection of threshold 
intervals 

 

When the intervals of thresholds intersect, the classes are assigned in a similar 

way. Yet, in that case, the number of classes that can exist in an interval can be 

more than 2 depending on the number of intervals intersecting. The class 

assignments in the case of 2 and 3 intervals intersecting are shown in Figure 

4.7.  

 

Figure 4-7 Classes between intervals when there are 2 and 3 intersecting 
intervals   of thresholds 

 

The algorithm to identify the possible classes between intervals is shown 

below: 

Let { ଵܵ, ܵଶ, … , ܵ} and {ܧଵ, ,ଶܧ … ,  } denote the order of intervals which eachܧ

class start and end. For instance, ଵܵ = 1 and ܧଵ = 3 means class-1 starts in 
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interval 1 and continues until interval 4. So, a class is open for the intervals 

between ܵ  and ܧ. Let R denote the number of intervals and there are n classes. 

Let T = ൛ ଵܶ, ଶܶ, … , ଶܶ(ିଵ)ൟ be the ordered set of thresholds and C = 

,ଵܥ} ,ଶܥ … ,  .} be the set of classesܥ

 Step.0. Set  ଵܵ = 1 and  ܧ = ܴ. Set the iteration counter i=0.  

Step.1. Increase i by 1. For ∀݆ ∈  {1,2, … , ݊}, if ܶ = ܶ݉݅ ݊, set 

 ܵାଵ = 1 and if ܶ = ܶ݉ܽݔ, set  ܵ = 1.  

Step.2.  If i=R, stop. Otherwise, go to step-1.  

The algorithm follows the rule that ܶ݉݅ ݊ opens class (݆ + 1) and ܶ݉ܽݔ 

closes class j. Opening a class means that class can exist after that interval and 

closing means that class can not exist after that interval.  

Before proceeding to the probability calculation phase, we need to introduce 

two concepts, optimistic case and pessimistic case. As it is shown, rather than 

assigning an interval between thresholds to a class permanently, in these 

methods the classes are defined on the intervals that they can exist. This means 

a class may or may not exist on its possible interval, depending on the choice 

of the thresholds. Since there are infinite choices to define the boundaries of 

the classes, we consider only two cases which are more meaningful. The first 

one is the case where the boundaries of a class are as wide as possible, which is 

the optimistic case for that class. In this case, all the possible intervals that a 

class can exist are taken as the intervals of that class. The second one is the 

case where the boundaries of a class are as narrow as possible, which is the 

pessimistic case. In this case, only the intervals that a class exists for 100% of 

the time are taken as the boundaries of that class. These intervals are the ones 

that only one class can exist. If a class is not defined alone in any interval, then 

in the pessimistic case, that class has no interval. The optimistic boundaries of 

classes with the maximum and minimum thresholds given are shown in Figure 

4.8.  
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Figure 4-8 The optimistic intervals for (a) class-1, (b) class-2,  

(c) class-3 

As it can be seen in Figure 4.8, to find the optimistic interval for a class, the 

threshold before the class is taken as its minimum value and the threshold after 

the class is taken as its maximum value. The pessimistic boundaries for each 

class for the same case are shown in Figure 4.9. 

When the optimistic or pessimistic intervals are found for a class, the other 

classes and their thresholds are not considered. So the boundaries of only one 

class are established at a time. When there are only two classes, the optimistic 

case of one class is the pessimistic case of the other class.  
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Figure 4-9 The pessimistic intervals for (a) class-1, (b) class-2, (c) class-3 

 

The probabilities of belonging to a class are also calculated according to the 

optimistic and pessimistic cases. The optimistic probabilities for each class are 

defined for the optimistic cases of those classes and vice versa for the 

pessimistic probabilities. When calculating the probabilities, two distributions, 

which are uniform distribution and triangular distribution, are considered. The 

cumulative distribution function for the uniform distribution when the lower 

and upper points are a and b respectively is: 

(ܺ)ܨ =  ቐ
ݔ ݎ݂                           0 < ܽ
௫ି
ି

ܽ ݎ݂                < ݔ < ܾ
ݔ  ݎ݂                         1 > ܾ

�                          (84) 

If the alternatives are uniformly distributed between their minimum and 

maximum values, the probabilities of belonging to each class for an alternative 

are calculated as the ratios of the proportion of the alternative intersecting with 

the interval of the class. Let ܣ be the length of the part of alternative ܺ that 

intersects with class i. Then, the probability of belonging to class i for ܺ is: 

                                          ܲ (ܺ) =  ೖ
∑ ೖ


సభ

                                               (85) 
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  values are determined for the optimistic and pessimistic cases of theܣ 

classes and the probabilities are given for each case. The probability 

calculation for uniform distribution is shown in Figure 4.10. Optimistic 

probability for class-1 is ଵܲ (ܺ) = ܸ݊݅݉ −1ݔܽ݉ܶ 
ܸ݊݅݉−ݔܸܽ݉  for the case shown in 

Figure 4.10 and the pessimistic probability is 0 since the interval of alternative 

does not coincidence with the pessimistic interval of class-1.  

 

 

Figure 4-10 The probability calculation for uniform distribution in (a) 
optimistic and (b) pessimistic     case for class-1 

 

The cumulative distribution function for triangular distribution when a, b and c 

are lower, upper and mode values respectively is: 

 

(ܺ)ܨ =  ቐ
(௫ି)మ

(ି)(ି)
ܽ ݎ݂                 ≤ ݔ ≤ ܿ  

1 − (ି௫)మ

(ି)(ି)
ܿ ݎ݂      ≤ ݔ ≤ ܾ

 �                     (86) 
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The mode is taken as the middle point between ܸ݉݅݊ and ܸ݉ܽݔ values in 

probability calculations. The distribution of an alternative is as shown in the 

Figure 4.11.  

 

Figure 4-11 Triangular distribution of an alternative between Vmin and Vmax 
values 

 

Let ܣ be the length of the part of alternative ܺ that intersects with class i. 

Depending on the position of the intersection on the interval of the class, the 

calculation of the probabilities are different. The possible configurations are 

shown in the Figure 4.12. 
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Figure 4-12 Different positions of intersections between classes and 
alternatives 

 

The corresponding probability calculations for each of the configurations 

shown in Figure 4.12 are: 

 (a)    ܲ(ܺ) =   4(ܶ݅−ܸ݉݅݊)
 (87)      2(ܸ݊݅݉−ݔܸܽ݉)

 (b)      ܲ(ܺ) = (2ܶ݅−(ܸ݊݅݉−ݔܸܽ݉))2  
2(ܸ݊݅݉−ݔܸܽ݉)      (88) 

 (c)      ܲ(ܺ) = (2ܶ݅−(ܸ݊݅݉−ݔܸܽ݉))2  
2(ܸ݊݅݉−ݔܸܽ݉) − 4(ܶ݅−1−ܸ݉݅݊)

 (89)  2(ܸ݊݅݉−ݔܸܽ݉)

 (d)      ܲ(ܺ) = (2ܶ݅−(ܸ݊݅݉−ݔܸܽ݉))2 
2(ܸ݊݅݉−ݔܸܽ݉) (1−2ܶ݅−(ܸ݊݅݉−ݔܸܽ݉))2 −

2(ܸ݊݅݉−ݔܸܽ݉)  (90) 
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Each of these probabilities assuming triangular and uniform distributions is 

calculated for both optimistic and pessimistic positions of classes. The output 

of the method for each alternative has the form shown in Figure 4.13.  

 
Figure 4-13 Outputs of the method 

  

4.6 Modified UTADIS  

The developed solution approach is also adapted to classical UTADIS3 method. 

Instead of using the criteria aggregation function that uses distances to the ideal 

point to determine the values of alternatives, the utility function is used in the 

method. The classical UTADIS method includes only one model that 

determines the utility thresholds and weights that give the minimum 

classification error. Then, these established values are used to determine the 

utility values of alternatives in test set.  It  is modified such that the alternative 

optimal solutions that give the minimum classification error are searched and 

the ones that give minimum and maximum threshold (ܶ݉ܽݔ, ܶ݉݅݊) and utility 

values of alternatives (ܷ݉ܽݔ, ܷ݉݅݊) are identified in the first and second 

                                                             
3 For more information on UTADIS, see Chapter-3, Section-3.  
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model respectively. The probability calculation and evaluation phase is same as 

the original model so we will focus only on the mathematical models.   

 

4.6.1 UTADIS Model-1  

UTADIS estimates marginal utility functions for each criterion which are 

added to form global utility function of the decision maker. The global utility 

values of the alternatives are used to sort them into classes, which are separated 

by thresholds estimated in the model. In classical UTADIS, there is only one 

model which estimates thresholds and weights of criteria at the same time in 

order to minimize classification error of alternatives in preference set. In the 

modified UTADIS, weights are not established once and then used for 

prediction, but instead different weight sets are used to identify the maximum 

and minimum values of thresholds and alternatives. In the first model, the 

maximum and minimum values of thresholds are determined among the 

alternative optimal solutions that give minimum classification error. The linear 

model is shown below: 

Additional Indexes 

 = number of breakpoints on each criterion 

ݏ ∈ ൛1,2, … ,  − 1ൟ for intervals on each criterion 

Additional Parameters 

ݎ  =  subinterval that alternative k belongs on criterion j  

 ܽ
௧ = breakpoint t on criterion j 

,ݏ  ,ଵߜ ,ଶߜ ∂ = small positive constants (0.001; 0.0001; 0.0001;0.005) 

 Decision Variables 

௦௧ݓ  = utility value corresponding to interval s on criterion j 
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ݔܽ݉ݑ  = maximum value of threshold value separating class i and class i+1 

݊݅݉ݑ  = minimum value of threshold value separating class i and class i+1 

 ε୩୲
ି = error of assignment of alternative k to a higher class 

 ε୩୲
ା = error of assignment of alternative k to a lower class 

 UTADIS Model-1 

min   ∑ ∑ 
∑ ൫ఌೖ

శ ା ఌೖ
ష ൯ ∀ೣೖ ∈ 


൨  

ୀଵ
ଶ
௧ୀଵ + ߲ ∑ ݊݅݉ݑ)  − )ିଵݔܽ݉ݑ

ୀଵ          (91) 

 s.t.   

∑ ∑ ௦ଵݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ  ,ଵ

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ଵݔܽ݉ݑ


ୀଵ + ଵߝ

ା  ≥ ∋ ݔ ∀       ଵߜ   ଵ  (92)ܥ

∑ ∑ ௦ଵݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ  ,ଵ

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ݔܽ݉ݑ


ୀଵ + ଵߝ

ା  ≥          ଵߜ 

ݔ ∀  ∈ ܥ   (݅ = 2,3, … , ݊ − 1)             (93) 

∑ ∑ ௦ଵݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ  ,ଵ

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ିଵݔܽ݉ݑ


ୀଵ − ଵߝ

ି  ≤                      ଶߜ− 

ݔ ∀   ∈ ܥ   (݅ = 2,3, … , ݊ − 1)          (94) 

∑ ∑ ௦ଵݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ  ,ଵ

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ିଵݔܽ݉ݑ


ୀଵ − ଵߝ

ି  ≥ ݔ ∀     ଶߜ−  ∈      (95)ܥ

∑ ∑ ௦ଶݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ  ,ଶ

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ଵ݊݅݉ݑ


ୀଵ + ଶߝ

ା  ≥ ∋ ݔ ∀       ଵߜ    ଵ (96)ܥ

∑ ∑ ௦ଶݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖݓ  ,ଶ

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ݊݅݉ݑ


ୀଵ + ଶߝ

ା  ≥         ଵߜ 

ݔ ∀   ∈ ܥ   (݅ = 2,3, … , ݊ − 1)          (97) 

  ∑ ∑ ௦ଶݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖ,ଶݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ିଵ݊݅݉ݑ


ୀଵ − ଶߝ

ି  ≤  ଶߜ− 
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ݔ ∀    ∈ ܥ   (݅ = 2,3, … , ݊ − 1)          (98) 

 ∑ ∑ ௦ଶݓ
ೕೖିଵ
௦ୀଵ ,ೕೖݓ + ,ଶ

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ିଵ݊݅݉ݑ


ୀଵ − ଶߝ

ି  ≥ ݔ ∀   ଶߜ−  ∈ ܥ  (99)    

 ∑ ∑ ௦௧ݓ
ೕିଵ
௦ୀଵ = 1

ୀଵ ݐ∀          ∈ {1,2}          (100) 

ିଵݔܽ݉ݑ  − ݔܽ݉ݑ  ≥ ݅∀                 ݏ ∈ {2,3, … , ݊ − 1}       (101) 

ିଵ݊݅݉ݑ  − ݊݅݉ݑ  ≥ ݅∀                  ݏ ∈ {2,3, … , ݊ − 1}      (102) 

ݔܽ݉ݑ   ≥ ݊݅݉ݑ                              ∀݅ ∈ {1,2,3, … , ݊ − 1}     (103) 

௦௧ݓ   ≥ 0 , ௧ߝ
ା ≥ 0 , ௧ߝ

ି  ≥ 0          ∀݆ ∈ {1,2, … , ,{ݍ ݏ∀ ∈ ൛1,2, … ,  − 1ൟ, 

ݐ∀  ∈ {1,2}, ∀݇ ∈ {1,2, … ,  (104)       {ܭ

 

 

4.6.2 UTADIS Model-2 

In the second model, among the alternatives that give the minimum 

classification error found in model-1, the ones that result in maximum and 

minimum values of alternatives in test set are identified. The original UTADIS 

does not need a second model to find values of alternatives in the test set since 

the optimization is done once to establish the utility function and then, if no 

postoptimality analysis is done, this utility function is used to find values of 

alternatives of test set. In the modified version, we find these values again in an 

optimization model because alternative optimal solutions are searched with the 

secondary objective of minimizing ܷ݉݅݊ and maximizing ܷ݉ܽݔ values. The 

second model of modified UTADIS is shown below: 

 Additional Indexes  

ܮ = number of alternatives in test set 

݈ ∈ {1,2, … ,  for alternatives in test set  {ܮ
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Additional Parameters 

  ܽ = score of alternative l on criterion j 

∗ܧ   = total classification error from model-1 

݊݅݉ݑ  = minimum value of threshold i seperating class i and i+1 

ݔܽ݉ݑ  = maximum value of threshold i seperating class i and i+1 

,ݏ    ,ଵߜ ଶߜ  = small positive constants (0.001; 0.0001; 0.0001) 

 Decision Variables 

௦௧ݓ  = utility value corresponding to interval s on criterion j 

ݔܸܽ݉  = maximum global utility value of alternative l  

 ܸ݉݅݊ = minimum global utility value of alternative l 

 ε୩୲୪
ି = error of assignment of alternative i to a higher class 

 ε୩୲୪
ା = error of assignment of alternative i to a higher class 

௧ݑ  = threshold value seperating class i and i+1 

UTADIS Model-2 

 min    ∑  (ܷ݉݅݊ − )ݔܷܽ݉
ୀଵ           (105) 

 s.t.   

∑ ∑ ௦ଵݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖ,ଵ,ݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ଵ௧ݑ


ୀଵ + ௧ߝ

ା  ≥       ଵߜ 

∋ ݔ ∀  ,ଵܥ ∀ ݈ ∈ {1,2, … ,{ܮ ݐ∀ ∈ {1,2}      (106) 

 ∑ ∑ ௦ଵݓ
ೕೖିଵ
௦ୀଵ ,ೕೖݓ + ,ଵ,

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ௧ݑ


ୀଵ + ௧ߝ

ା  ≥           ଵߜ 

ݔ ∀   ∈ ܥ   (݅ = 2,3, … , ݊ − 1), ∀ ݈ ∈ {1,2, … ,{ܮ ݐ∀ ∈ {1,2}   (107) 
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∑ ∑ ௦ଵݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖ,ଵ,ݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ିଵ,௧ݑ


ୀଵ − ௧ߝ

ି  ≤          ଶߜ− 

ݔ ∀  ∈ ܥ   (݅ = 2,3, … , ݊ − 1), ∀ ݈ ∈ {1,2, … ,{ܮ ݐ∀ ∈ {1,2}   (108) 

∑ ∑ ௦ଵݓ
ೕೖିଵ
௦ୀଵ + ,ೕೖ,ଵ,ݓ 

ೕೖିೕ
ೝೕೖ

ೕ
ೝೕೖషభ

ିೕ
ೝೕೖ൩ − ିଵ,௧ݑ


ୀଵ − ௧ߝ

ି  ≥           ଶߜ− 

ݔ ∀  ∈ ܥ , ∀ ݈ ∈ {1,2, … ,{ܮ ݐ∀ ∈ {1,2}      (109) 

∑ ∑ ௦௧ݓ
ೕିଵ
௦ୀଵ = 1

ୀଵ ݐ∀          ∈ {1,2}, ∀ ݈ ∈ {1,2, …  (110)       {ܮ

 ∑ ∑ ௦ଵݓ
ೕିଵ
௦ୀଵ ,ೕݓ + ,ଵ,

ೕିೕ
ೝೕ

ೕ
ೝೕషభ

ିೕ
ೝೕ൩


ୀଵ  ≥ ݔܷܽ݉         ∀݈ ∈ {1,2,3, … ,  (111)        {ܮ

 ∑ ∑ ௦ଶݓ
ೕିଵ
௦ୀଵ ,ೕݓ + ,ଶ,

ೕିೕ
ೝೕ

ೕ
ೝೕషభ

ିೕ
ೝೕ൩


ୀଵ ≤ ܷ݉݅݊           ∀݈ ∈ {1,2,3, … ,  (112)    {ܮ

௧ݑ  − ିଵ,௧ݐ݈ݑ  ≥ ݅∀           ݏ ∈ {2,3, … , ݊ − 1}, ∀ ݈ ∈ {1,2, … ,{ܮ ݐ∀ ∈ {1,2}         (113) 

ݔܽ݉ݑ  ≥ ௧ݑ                       ∀݅ ∈ {1,2,3, … , ݊ − 1}, ∀ ݈ ∈ {1,2, … ,{ܮ ݐ∀ ∈ {1,2}     (114) 

݊݅݉ݑ  ≤ ௧ݑ                        ∀݅ ∈ {1,2,3, … , ݊ − 1}, ∀ ݈ ∈ {1,2, … ,{ܮ ݐ∀ ∈ {1,2}     (115) 

 ∑ ∑ ∑ ௧ߝ)
ା +

ୀଵ

ୀଵ

ଶ
௧ୀଵ ௧ߝ

ି ) ≤  (116)      ∗ܧܮ

௦௧ݓ   ≥ 0, ௧ߝ
ା ≥ 0, ௧ߝ

ି  ≥ 0                  ∀݆ ∈ {1,2, … , ,{ݍ ݏ∀ ∈ ൛1,2, … ,  − 1ൟ, 

ݐ∀  ∈ {1,2}, ∀݇ ∈ {1,2, … , ,{ܭ ∀ ݈ ∈ {1,2, …  (117)     {ܮ

 

4.6.3 Heuristics for Determining Subintervals on Each 

Criterion 

When the criterion is categorical, the breakpoints in the criterion range are 

determined as these categories. For instance, if there are 3 categories on a 

criterion such as low (1), medium (2) and high (3); the breakpoints on that 

criterion are taken as 1,2 and 3. But, if the criterion is continuous, determining 
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the subintervals is not that straightforward. There are 2 heuristics proposed for 

this problem by Doumpos and Zopounidis (2004). The empirical study of 

Doumpos and Zopounidis (2001) shows that the second heuristic performs 

better than the first heuristic in terms of increasing stability of the model and 

classification performance. So, we implement second heuristic (HEUR2) for 

determining the breakpoints in this study. HEUR2 considers the distribution of 

alternatives, which belongs to different groups, on each criterion scale. HEUR2 

has 5 steps to determine the breakpoints as shown below: 

Step 1. Rank the alternatives in preference set for each criterion, 

according to their score ܽ on that criterion from the least preferred 

one to the most. Set the minimum acceptable number of alternatives (ߚ) 

belonging to a subinterval equal to zero.  

Step 2. Form all non-overlapping subintervals ൣ ܽ
௦, ܽ

௦ାଵ൧ where the 

alternative with score equal to ܽ
௦ and the alternative with score equal to 

ܽ
௦ାଵ belong to different groups. 

Step 3. Check the number of alternatives that lie on each subinterval 

formed after step-2. If the number of alternatives in a subinterval is less 

than ߚ, then merge this interval with the precedent one. (Skip this when 

 (0=ߚ

Step 4. Compare the number of subintervals in each criterion to the 

number of constraints in the LP model. If the number of subintervals 

leads to specification of more than ݉ଵ + 2 ∑ ݉
ିଵ
ୀଶ +  ݉ variables 

ߚ where ݉ is the number of constraints for class i, then set ,(ݓ) = ߚ +

1 and go to step-3. Otherwise, stop.  

4.7 Evaluation of Results 

The probabilities provided to the decision maker can be interpreted differently 

by different decision makers with various world views. Since the probabilities 
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are given for optimistic and pessimistic cases, there can be several 

combinations of these probabilities and the evaluation of them depends on the 

decision maker. For instance, three possible probabilities of belonging to class i 

and j for an alternative in a two class case are shown in Figure 4.14.  

 

Figure 4-14 Three different combinations of pessimistic and optimistic 
probabilities of an alternative for class i and j 

 

The situation in Figure 4.14 (a) can be evaluated easily since both the 

pessimistic and optimistic probabilities for class-j are higher than class-i. So, 

assigning that alternative to class-j is obvious. In situation (b), the difference is 

less clear since the probabilities are quite similar. Still, in each of optimistic 

and pessimistic cases, class-j is higher. The evaluation of last situation (c) 

depends heavily on the decision maker. Although the optimistic probability of 

class-i is higher, class-j is more probable if we look at the pessimistic 

probabilities. So, the decision changes for a risk-averse and risk-seeking 

person.  Risk-averse decision makers would rely on the pessimistic 

probabilities more and prefer maximizing the minimum probability and choose 

class-j, while risk-seeking decision makers would rely on optimistic 

probabilities and prefer maximizing the maximum probability by choosing 

class-j. The accuracy calculations for this study are done by the classes that 
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would be chosen by a risk-seeking decision maker considering mostly the 

optimistic probabilities. 
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CHAPTER 5 

 
 

5. COMPUTATIONAL EXPERIMENTS 
 
 
 

5.1 Data Sets 

The developed method is implemented on 5 data sets which are retrieved from 

UCI Machine Learning Repository, a study of Hipel and Kilgour (2005) and a 

study of Fernandez et al (2009). The data sets are chosen such that all the 

criteria and classes are ordinal so the problem is a sorting problem. Some of the 

criteria are categorical and some are continuous.  The categorical data is 

transformed into quantitative by assigning numbers to each category. Each of 

the data set is separated into two groups as training (preference) and test sets. 

65% of the data sets are taken as training and 35% as the test data. The general 

information about the data sets is given in Table 5.1.  

Table 5-1 Data sets used in the computational experiments 

Data set Number of 

data points 

Number of 

sttributes 

Classes Number of 

alternatives in 

each class 

Water Supplies 19 7 
1 10 

2 9 

R&D Projects 81 4 

1 6 

2 28 

3 27 

4 4 

5 10 

6 3 

7 1 

8 2 
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  Table 5-1 Continued 

Assistant 151 3 

1 49 

2 50 

3 52 

Cars 220 6 

1 14 

2 10 

3 44 

4 152 

Credit 150 20 
1 83 

2 67 

 

5.1.1 Water Supplies Data Set  

The water usage data set is retrieved from the study of Hipel and Kilgour 

(2005). It is a relatively small data set with 19 data points. The data set 

includes alternatives for best water resources. The alternatives are sorted into 2 

classes such as:  

 Acceptable – Class-1 

 Unacceptable – Class-2 

There are 7 criteria to evaluate the alternatives, which are shown in Table 5.2. 

Table 5-2 Criteria for the water supplies data set with their ranges and types 

Criteria Range Type 

Project investment cost Millions of dollars Lower the better 

Project operating cost Millions of dollars Lower the better 

Project negative 
infrastructure impact 

0-100 Lower the better 

Project negative 
environmental impact 

0-100 Lower the better 

Project implementation 
risk  

0-100 Lower the better 

Project supply capability 
Million imperial gallons 

per day 
Higher the better 

Quality of water the 
project will deliver 

0-100 Higher the better 
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All of the criteria are continuous and the value ranges are not compatible as 

seen in the table. So, normalization is done first to make the ranges of each 

criterion equivalent and prevent the dominance of one criterion. The 

normalization is applied by dividing each score on a criterion by the range on 

that criterion and therefore equating the ranges to (0,1) for each criterion. The 

function is as shown below: 

ܽ
ᇱ =

ܽ

max


(ܽ) −  min


(ܽ) 

 where ܽ and ܽ
ᇱ  are the original and standardized values of alternative k on 

criterion j. 

5.1.2 R&D Projects Data Set 

The R&D projects data set is retrieved from the study of Fernandez et al 

(2009). The data includes 81 alternatives, which are the R&D projects to be 

evaluated on 4 criteria. The alternatives are classified into 8 classes: 

 Exceptional – Class-1 

 Very high – Class-2 

 High – Class-3 

 Above average – Class-4 

 Average – Class-5 

 Below average – Class-6 

 Low – Class-7 

 Very low – Class-8 

The criteria are shown in Table 5.3.  
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Table 5-3 Criteria for the R&D projects data set with their ranges and types 

Criteria Range Type 

Economic outcomes 1-7 Higher the better 

Social outcomes 1-7 Higher the better 

Scientific outcomes 1-7 Higher the better 

Improvement of research 
competence 

1-7 Higher the better 

 

Since all the criteria are categorical and defined on equal ranges, no 

standardization is applied to this data set. The interesting point of the data set is 

that some of the alternatives are classified in 2 classes such as “exceptional or 

very high” which is well handled by the proposed method.  

5.1.3 Assistant Data Set 

This data set is retrieved from the UCI Machine Learning Repository. There 

are 151 data points in the data set. The alternatives are assistants to be 

evaluated and sorted into 3 classes: 

 High – Class-1 

 Medium – Class-2 

 Low – Class-3 

There are 3 criteria that are shown in Table 5.4.  

Table 5-4 Criteria for the assistant data set with their ranges and types 

Criteria Range Type 

Native English speaker 
Native (1),  

Non-Native (2) 
Lower the better 

Semester of teaching 
Regular (1) ,  

Summer (2) 
Lower the better 

Class size Number of students 
registered 

Higher the better 
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The last criterion “class size” is standardized into the range (0,1) by dividing 

the values to the range of that criterion similar to the previous data sets.  

5.1.4 Car Data Set  

This data set is retrieved from the UCI Machine Learning Repository. There 

are 220 data points in the data set. The alternatives are cars to be evaluated and 

sorted into 4 classes such as: 

 Very good – Class-1 

 Good – Class-2 

 Acceptable – Class-3 

 Unacceptable – Class-4 

 The alternatives are sorted according to 6 criteria as shown in Table 5.5.  

Table 5-5 Criteria for the car data set with their ranges and types 

Criteria Range Type 

Price  

Very high (1),  

High (2),  

Medium (3),  

Low (4) 

Higher the better 

Maintenance cost  

Very high (1),  

High (2),  

Medium (3),  

Low (4) 

Higher the better 

Number of doors  

2 doors (1),  

3 doors (2),  

4 doors (3),  

More than 4 doors (4) 

 

 

Higher the better 
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Table 5-5 Continued 

Number of person that 

can be carried 

2 persons (1),  

4 persons (2), 

More than 4 persons (3)  

Higher the better 

Luggage boot capacity  

Small (1),  

Medium (2),  

Big (3) 

Higher the better 

Safety 

Low (1),  

Medium (2),  

High (3) 

Higher the better 

 

Since the criteria are categorical, they are quantified by assigning numbers to 

each category as shown in Table 5.4. 

5.1.5 Credit Data Set  

The credit data set is retrieved from UCI Machine Learning Repository. The 

data set includes 150 data points. The alternatives are credit applicants which 

are sorted into 2 classes such as: 

 Approved – Class-1 

 Not approved – Class-2  

The alternatives are sorted according to 20 criteria as shown in Table 5.6. 

Table 5-6 Criteria for the credit data set with their ranges and types 

Criteria Range Type 

Status of existing check 

account 

No check account (1) 

Account with no money (2) 

Account with less than 

$200 (3) 

Account with more than 

$200 (4) 

 

Higher the better 
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Table 5-6 Continued 

Duration of the credit 

application  

Months Higher the better 

Credit history of the 

applicant  

Critical account (1),  

Delay in paying off in the 

past (2),  

Paid back existing credits 

duly till now (3),  

Paid back all credits at this 

bank duly (4) 

Paid back all credits duly or 

taken no credits till now (5) 

Higher the better 

Purpose of the credit 

application 

New car (1) 

Used car (2) 

Furniture or equipment (3) 

Radio or television (4) 

Domestic appliances (5) 

Repair (6) 

Education (7) 

Vacation (8) 

Retraining (9) 

Business (10) 

Higher the better 

Amount of the credit 

application  
Dollars  Higher the better 

Amount of saving 

accounts of the applicant 

No information or no 

account (1) 

Account is less than $100 (2) 

Account is between  $100 

and $500 (3) 

Account is between $500 

and $1000 (4) 

Account is above $1000 (5) 

Higher the better 
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Table 5-6 Continued 

Employment status of the 

applicant  

Unemployed (1) 

Employed less than 1 year (2) 

Employed more than 1, less 

than 4 years (3) 

Employed more than 4, less 

than 7 years (4) 

Employed more than 7 years 

(5) 

Higher the better 

Installment rate in 

percentage of disposable 

income 

0-100 Higher the better 

Marital status and sex of 

the applicant 

Male and divorced (1) 

Female and divorced (2) 

Male and single (3) 

Male and married or widowed 

(4) 

Female and single (5) 

Higher the better 

Whether or nor there 

exists other debtors and 

guarantors  

None (1) 

Co-applicant (2) 

Guarantor (3) 

Higher the better 

Duration of the residence 

of the applicant  
Years Higher the better 

Properties belong to the 

applicant 

No information or no property 

(1) 

Car (2) 

Building society savings 

agreement or life insurance (3) 

Real estate (4) 

Higher the better 

Age of the applicant Years Higher the better 
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Table 5-6 Continued 

Whether or not there 

exists other installment 

plans of the applicant  

Installment plans to bank 

(1) 

Installment plans to stores 

(2) 

No installment plans (3) 

Higher the better 

Housing information of 

the applicant 

Rent (1) 

Owns the house (2) 

House is for free (3) 

Higher the better 

Number of existing 

credits of the applicant 

on this bank 

0 - ~ Higher the better 

Job of the applicant 

Unemployed or unskilled-

non-resident (1) 

Unskilled-resident (2) 

Skilled employee or 

official (3) 

Manager or self-employed 

(4) 

Higher the better 

Number of people liable 

to provide maintenance 

for the applicant  

1 person (1) 

2 persons (2) 
Higher the better 

Whether or not the 

applicant has telephone 

Does not own telephone (1) 

Owns a telephone (2) 
Higher the better 

Whether or not the 

applicant is a foreign 

worker 

Foreign worker (1) 

Not a foreign worker (2) 
Higher the better 

 

All the criteria which are not categorical are standardized as shown before into 

the range (0,1). 
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5.2 Performance Measures 

The most commonly used performance measure for classification/sorting 

methods is the accuracy of the prediction of the method for the alternatives in 

test set. Accuracy is the proportion of the correctly classified alternatives in the 

test set. Table 5.7 shows the number of correctly and incorrectly classified 

alternatives for 2-class problem. 

Table 5-7 Number of incorrectly classified alternatives for 2-class case 

 Predicted Class 

 

Actual 

Class 

 Class=1 Class=2 

Class=1 X Y 

Class=2 Z T 

 

The accuracy of the case shown in the table is calculated as: 

ݕܿܽݎݑܿܿܣ =  
ܺ + ܶ

ܺ + ܻ + ܼ + ܶ 

Accuracy is one of the performance measures used in this study. Yet, since the 

output of the proposed method is not similar to the usual classification/sorting 

methods such as a single class for one alternative, accuracy alone is not enough 

to see the actual performance of the method. The other performance measures 

used in this study are covering and accuracy2. Covering is used to identify 

whether the correct class has a positive probability for an alternative although it 

is not the class with highest probability. It is useful when the output for an 

alternative consists of similar probabilities for different classes such as: 

ଵܲ(ݔ) = 0.55 

ଶܲ(ݔ) = 0.50 
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where the correct class of alternative ݔ is class-2. The accuracy measure does 

not consider the 0,45 probability of belonging to correct class yet the existence 

of that probability is important since a decision maker may decide on that class 

based on that probability. So, covering counts the alternatives similar to this 

one and takes the proportion of these alternatives as a performance measure. If 

there are K alternatives which has positive probabilities in their correct classes 

(highest or not) among N alternatives, then covering is calculated as: 

݃݊݅ݎ݁ݒܥ =  
ܭ
ܰ 

Accuracy2 calculates the accuracy considering not only the class with highest 

probability but also the class with second highest probability where the 

difference between these probabilities is less than 0.2 as shown below: 

                 (a)    ଵܲ(ݔ) = 0.90       Consider class-2 for accuracy2 

  ଶܲ(ݔ) = 0.85 

                (b) ଵܲ(ݔ) = 0.90 Do not consider class-2 for accuracy2 

ଶܲ(ݔ) = 0.40 

 

Table 5.8 shows the number of alternatives that are correctly classified and 

among the incorrectly classified alternatives, the ones with positive 

probabilities. 

Table 5-8 Number of alternatives according to the classes with first and second 
highest probability for 2-class case 

 Predicted Class 

 

Actual 

Class 

 Class1=1 Class1=2 

Class2=None Class2=2Class2=NoneClass2=1

Class=1 X1 X2 Y1 Y2 

Class=2 Z1 Z2 T1 T2 
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Where Class1 and Class2 are the classes with highest and second highest 

positive probabilities where the difference between probabilities is less than 

0.2. In this case, the accuracy and accuracy2 calculations are done as follows: 

  

ݕܿܽݎݑܿܿܣ =  
( ଵܺ + ܺଶ) + ( ଵܶ + ଶܶ)

∑ ( ܺ + ܻ + ܶ + ܼ)ଶ
ୀଵ

 

ଶݕܿܽݎݑܿܿܣ    =  
( ଵܺ + ܺଶ) + ( ଵܶ + ଶܶ) + ଶܻ + ܼଶ

∑ ( ܺ + ܻ + ܶ + ܼ)ଶ
ୀଵ

  

Other than these 3 measures that consider the correctness of the predicted 

classes, there is another performance measure considering the ability of the 

method to predict all classes. This means the thresholds determined by the 

model result in intervals for each class. This is a necessary performance 

measure because the method can result in missing classes where the thresholds 

below and above the class are equal, which makes the interval of that class 

disappear. This may result when the number of alternatives in one class is 

significantly less than the other classes so the relative importance of that class 

for that data set is very small. So increasing the interval of other classes result 

in smaller classification error and the class with fewer alternatives is closed. 

This is not a desired situation because the method should be able to identify the 

ranges for all classes. The performance measure that considers this situation is 

missing # of classes. Missing number of classes counts the classes that do not 

have an interval and consequently, there are no positive probabilities for that 

class in the outputs of the model. The first 3 performance measures are desired 

to be as high as possible whereas in this performance measure, the less is the 

better.   

5.3 Results 

The method is applied to each of the five data sets for different distance norms 

and the results are compared in order to identify the best-suited distance norm. 
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For the ܮ norms different than ܮଵ and ܮஶ, the mathematical models are 

nonlinear. Also, for computational concerns, the squared Euclidean distance is 

also used to compare its performance with Euclidean distance. GAMS 

compiler is used for the execution of the models. The solver is specified as 

MINOSD for nonlinear models and CPLEX for the linear models. Since the 

distance function for each norm is convex, optimality is guaranteed for 

nonlinear models. The results of proposed method and modified UTADIS are 

given for each data set with the results of performance measures previously 

defined, computation times and classification error. In each case, the uniform 

and triangular distribution assumptions resulted in the same probabilities so the 

results are not shown for each distribution separately.   

5.3.1 Results of Distance-Based Method 

In this section, the results of the proposed method with the criteria 

disaggregation function based on distances are shown. For water supplies data 

set, the results are provided in Table 5.9.  

Table 5-9 Results of water supplies set 

Water Supplies Data Set 

Distance 
norm Accuracy Accuracy2 Covering 

# of 
missing 
classes 

Classification 
Error 

Computation 
Time 

 ଵ 0.67 1.00 1.00 - 0 0.42 secܮ

 ଶ 0.5 0.5 0.33 1 0 0.42 secܮ

 ଶ  0.58 0.7 1.00 - 0 0.45 secܮ ݀݁ݎܽݑݍݏ

 ଷ 0.5 0.5 0.5 1 0 0.74 secܮ

 ସ 0.5 0.5 0.5 1 0 0.46 secܮ

 ହ 0.29 0.29 0.29 1 0 0.87 secܮ

 ଵ 0.5 0.5 0.5 1 0 0.43 secܮ

 ଶ 0.5 0.5 0.5 - 0 0.84 secܮ

 ଷ 0.33 1 1 - 0 2.67 secܮ

 ஶ 0.67 0.67 0.67 - 0 0.50 secܮ
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The best performing distance norm for water supplies data set is ܮଵ norm with 

highest accuracy. The ܮஶ norm also results in same level accuracy. but 

 .ଵ norm has higher values on covering and accuracy2 performance measuresܮ

The classification error is zero for all distance norms and the computation 

times are very low due to the small size of the data set.  

The outputs of the method with ܮଵ norm for water supplies data set are 

provided in Appendix-A. 

The results of R&D projects data set are provided in Table 5.10.  

Table 5-10 Results of R&D projects data set 

R&D Projects Data Set 

Distance 
norm Accuracy Accuracy2 Covering 

# of 
missing 
classes 

Classification 
Error 

Computation 
Time 

 ଵ 0.83 0.83 0.83 - 0.22 1.35 secܮ

 ଶ 0.69 0.69 0.69 1 0.33 18.32 secܮ

 ଶ  0.69 0.69 0.69 1 6.31 1.42 secܮ ݀݁ݎܽݑݍݏ

 ଷ 0.55 0.55 0.55 1 1.99 22.67 secܮ

 ସ 0.55 0.55 0.55 1 0.4 17.92 secܮ

 ହ 0.5 1 1 - 0.44 39.14 secܮ

 ଵ 0.57 0.57 0.57 1 0.54 48.59 secܮ

 ଶ 0.36 0.36 0.36 2 0.57 37.34 secܮ

 ଷ 0.31 0.31 0.31 2 0.57 30.53 secܮ

 ஶ 0.26 0.26 0.26 4 0.88 8.95 secܮ

 

The best compromise of results is seen in ܮଵ distance norm for R&D projects 

data set with 0.83 accuracy, no missing classes and a small computation time 

due to linear model. The classification error is also at minimum for ܮଵ distance 

norm.  

The outputs of the method with ܮଵ norm for R&D projects data set are 

provided in Appendix-B. 
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The results of assistant data set are given in Table 5.11. 

Table 5-11 Results of assistant data set 

Assistant Data Set 

Distance 
norm Accuracy Accuracy2 Covering 

# of 
missing 
classes 

Classification 
Error 

Computation 
Time 

 ଵ 0.32 0.32 0.32 2 3 0.95 secܮ

 ଶ 0.44 0.44 0.44 - 2.24 2 min 11.10ܮ
sec 

 ଶ 0.38 0.38 0.38 2 3 1.18 secܮ ݀݁ݎܽݑݍݏ

 ଷ 0.48 0.48 0.48 - 2.01 2 min 1.31 secܮ

 ସ 0.46 0.46 0.46 - 1.89 1 min 54.89ܮ
sec 

 ହ 0.46 0.46 0.46 - 1.84 2 min 22.90ܮ
sec 

 ଵ 0.46 0.46 0.46 - 1.74 1 min 7.17 secܮ

 ଶ 0.46 0.46 0.46 - 1.7 1 min 28.57ܮ
sec 

 ଷ 0.46 0.46 0.46 - 1.77 1 min 23.90ܮ
sec 

 ஶ 0.32 0.32 0.32 - 2.5 1.54 secܮ

 

For assistant data set, all distance norms perform poorly compared to the other 

data sets. Still, the best results of performance measures are seen in ܮଷ distance 

norm. The classification errors are positive and higher compared to other data 

sets for all distance norms.  

The outputs of the method with ܮଷ norm for assistant data set are provided in 

Appendix-C. 

The results of the cars data set are shown in Table 5.12. 
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Table 5-12 Results of the cars data set 

Cars Data Set 

Distance 
norm Accuracy Accuracy2 Covering 

# of 
missing 
classes 

Classification 
Error 

Computation 
Time 

 ଵ 0.84 0.84 0.84 - 2.4 34.28 secܮ

 ଶ 0.88 0.88 0.88 - 0.47 9 min 9.21 secܮ
ଶܮ ݀݁ݎܽݑݍݏ 0.88 0.88 0.88 1 1.73 34 sec 

 ଷ 0.87 0.87 0.87 - 0.28ܮ
14 min 34.60 sec 

 ସ 0.88 0.88 0.88 1 0.25 24 min 9.42 secܮ

 ହ 0.87 0.87 0.87 - 0.24 11 min 8.10 secܮ

 ଵ 0.83 0.83 0.83 - 0.4 29 min 43.59 secܮ

 ଶ 0.83 0.83 0.83 1 0.51 16 hrs 57 minܮ

 ଷ 0.83 0.83 0.83 1 0.57 20 hrs 32 minܮ

 ஶ 0.85 0.85 0.85 1 0.78 53.70 secܮ

 

For cars data set, all distance norms perform quite well with high accuracy 

levels and less missing classes. Still, the best results are seen in ܮଶ distance 

norm. The computational times are higher compared to other data sets since the 

size of the data is higher. For ܮଶ and ܮଷ, the computational times are higher 

compared to other distance norms and the nonlinear models did not result in 

optimal solutions for this data set.  

The outputs of the method with ܮଶ norm for cars data set are provided in 

Appendix-D.  

The results of credit data set are given in Table 5.13.  
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Table 5-13 Results of credit data set 

Credit Data Set 

Distance 
norm Accuracy Accuracy2 Covering 

# of 
missing 
classes 

Classification 
Error 

Computation 
Time 

 ଵ 0.4 0.4 0.4 - 0 1.34 secܮ

 ଶ 0.6 0.6 0.6 - 0 6 min 19.32 secܮ
 ଶ 0.36 0.36 0.36 1 0 1.43 secܮ ݀݁ݎܽݑݍݏ

 ଷ 0.72 0.74 0.84 - 0 21 min 17.26 secܮ
 ସ 0.58 0.58 0.58 - 0 11 min 43.90 secܮ

 ହ 0.58 0.58 0.58 - 0 17 min 23.06 secܮ

 ଵ 0.42 0.42 0.42 - 0 7 min 21.53 secܮ

 ଶ 0.52 0.52 0.52 - 0 6 min 42.23 secܮ

 ଷ 0.44 0.44 0.44 - 0 57 min 59.06 secܮ

 ஶ 0.36 0.36 0.36 1 0.05 10.06 secܮ

 

 

The best performing distance norm for credit data set is ܮଷ with 0.72 accuracy, 

0.84 covering and no missing classes. The computational time is quite greater 

than other norms yet the difference in other performance measures is more 

significant than this drawback. The classification errors are 0 or slightly 

different than 0 for all distance norms.  

The outputs of the method with ܮଷ norm for credit data set are provided in 

Appendix-E. 

The results of the distance based method for different distance norms show that 

although there isn’t a pattern related to the increase or decrease in p-norm for 

any data set, the best results occur in smaller values of p. The p values greater 

than 10 require a high computational effort for non-linear models and the 

results may not be the optimal solutions. Still, we see that it is not right to fix 

the distance-based method to only one distance norm, since different distance 
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norms may fit a data set better and result in better performance as in the case of 

five data sets.  

The highest probability classes for each data set and their actual classes are 

given in Appendix-F for the best performing Lp norms. 

 

5.3.2 Results of Modified UTADIS 

Modified UTADIS is applied to each of the five data sets and the results are 

provided in this section. The HEUR2 defined in Chapter-4 is applied first in 

order to determine the breakpoints on each criterion. The results for all data 

sets are given in Table 5.14. 

Table 5-14 Results of modified UTADIS for each data set 

Modified UTADIS Results 

Data Set Accuracy Accuracy2 Covering 
# of 

missing 
classes 

Classification 
Error 

Computation 
Time 

Water 
Supplies 0.5 0.5 0.5 1 0 0.73 sec 

R&D 
Projects 0.9 0.92 1 - 0 0.82 sec 

Assistant 0.46 0.46 0.46 2 0.17 0.78 sec 

Cars 0.91 1 1 - 7.27 0.89 sec 

Credit 0.64 0.64 0.64 1 0 0.87 sec 

 

It is seen that modified UTADIS performs quite well for the R&D projects and 

cars data set with accuracies greater than 0.90. Also, the computation time 

required is very low (less than a second) since the model is linear. The missing 

classes occur in this method too. For assistant, water supplies and credit data 

sets, there is only one class open. The comparison of modified UTADIS with 

the proposed method and the previous methods is provided in the next section. 
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The highest probability classes for each data set and their actual classes are 

given in Appendix-G for the modified UTADIS method.   

 

5.4 Comparison with Previous Methods 

The classification tree and the classical UTADIS are applied to the data sets 

and the results are compared with the proposed method and modified UTADIS. 

The results of the best performing Lp norms are selected for the proposed 

distance based method in each data set and compared with the other methods. 

The results of modified UTADIS are compared with UTADIS to see whether 

the modification provides any improvement. For the classification tree, 

XLMiner program is used to obtain the results. The classification error for 

classification trees are given as percentage of misclassified alternatives rather 

than total misclassified distance as in the other methods. The breakpoints of 

classical UTADIS are same with the modified UTADIS, which are found by 

HEUR2 previously mentioned. The accuracy2 and covering performance 

measures do not take any value for UTADIS and classification tree methods 

since they do not provide outcomes as probabilities. 

Table 5.15 shows the results of each method for water supplies data set.  

Table 5-15 Results of each method for water supplies data set 

Water Supplies Data Set 

Method Accuracy Accuracy2 Covering 
# of 

missing 
classes 

Classification 
Error 

Computation 
Time 

Proposed 
method (L1) 

0.67 1.00 1.00 - 0 0.42 sec 

Classification 
Tree 0.5 - - 1 0 1.18 sec 

UTADIS 0.5 - - 1 0 0.32 sec 

Modified 

UTADIS 0.5 0.5 0.5 1 0 0.73 sec 
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For the water supplies data set, it is seen that the proposed method performs 

best among all the other sorting methods. There are no missing classes and the 

covering and accuracy2 levels are at 100%. The computation time is 

insignificant for each method since the data set is relatively small. Also, it is 

seen that modified UTADIS performs same as UTADIS for this data set.  

The results of R&D projects for each method are provided in Table 5.16.  

Table 5-16 Results of each method for R&D projects data set 

R&D Projects Data Set 

Method Accuracy Accuracy2 Covering 
# of 

missing 
classes 

Classification 
Error 

Computation 
Time 

Proposed 
method (L1) 

0.83 0.83 0.83 - 0.22 1.35 sec 

Classification 
Tree 0.42 - - - 0.40 2.03 sec 

UTADIS 0.6 - - - 12.1 0.281 sec 

Modified 

UTADIS 0.9 0.92 1 - 0 0.828 sec 

 

The modified UTADIS method performs better than other methods for the 

R&D projects data set. It is seen that modification improved the performance 

of UTADIS for this data set. The proposed method also performs well with 

0.83 accuracy. The computation times are again low but the classification error 

is positive for all methods except modified UTADIS. Yet, although it is not 

seen in the table, modified UTADIS has a drawback for this data set. The case 

where highest probabilities are equal for more than one class occurs more 

frequently in modified UTADIS compared to other methods. In that case, if the 

correct class is one of the highest probabilities, it is taken as a correct 

classification and increase the accuracy level. Yet, these cases are not as 

informative as the other results for the decision maker.  

Table 5.17 shows the results of each method for assistant data set.  
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Table 5-17 Results of each method for assistant data set 

Assistant Data Set 

Method Accuracy Accuracy2 Covering 
# of 

missing 
classes 

Classification 
Error 

Computation 
Time 

Proposed 
method (L3) 

0.48 0.48 0.48 - 2.01 2 min 1.31 sec 

Classification 
Tree 0.42 - - - 0.44 2.3 sec 

UTADIS 0.46 - - 1 0.24 0.34 sec 

Modified 

UTADIS 0.46 0.46 0.46 2 0.17 0.78 sec 

 

For the assistant data set the proposed method performs better than the other 

approaches. Still, it is seen that the performance of each sorting method is 

lower compared to other data sets. The computation times are relatively low 

and the classification errors are positive for each method. The modified 

UTADIS performs similarly as the UTADIS with same accuracy but more 

missing classes.  

Table 5.18 shows the results of each method for cars data set.  

Table 5-18 Results of each method for cars data set 

Cars Data Set 

Method Accuracy Accuracy2 Covering 
# of 

missing 
classes 

Classification 
Error 

Computation 
Time 

Proposed 
method (L2) 

0.88 0.88 0.88 - 0.47 9 min 9.21 sec 

Classification 
Tree 0.77 - - 1 0.21 2.71 sec 

UTADIS 0.67 - - 1 7.27 0.28 sec 

Modified 

UTADIS 0.91 1 1 - 7.27 0.89 sec 
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Modified UTADIS method performs better than other methods for cars data set 

as seen in the Table 5.18. Yet, the drawback mentioned before is valid for this 

data set too with a relatively high number of equal probability cases. So, the 

proposed method is also a good solution approach for this data set.  

Table 5.19 shows the results of each solution approach for credit data set.  

Table 5-19 Results of each method for credit data set 

Credit Data Set 

Method Accuracy Accuracy2 Covering 
# of 

missing 
classes 

Classification 
Error 

Computation 
Time 

Proposed 
method (L3) 

0.72 0.74 0.84 - 0 21 min 17.26 
sec 

Classification 
Tree 0.64 - - - 0.23 3.14 sec 

UTADIS 0.64 - - 1 0 0.51 sec 

Modified 

UTADIS 0.64 0.64 0.64 1 0 0.87 sec 

 

For the credit data set, the best performing solution approach is proposed 

method as seen in Table 5.19. There are no missing classes and the 

classification error is zero. The computation time is relatively high since L3 

model is nonlinear and the data set is not as small as the other data sets. Again, 

it is seen that modified UTADIS performs same as the UTADIS. 

It is seen that proposed distance-based method performs better than other 

methods in most of the 5 data sets in terms of the defined performance 

measures. Modified UTADIS results in slightly better values for some data sets 

yet its results include a relatively high percentage of equal probability cases. 

Still, it performs at least as good as the classical UTADIS for each data set 

which shows that it is a promising modification for UTADIS. Classification 

tree performs worse than the other methods in all cases yet it is useful to see its 

results since it provides an idea about the data set and how informative it is.  
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For the proposed method, the computation times are lower for the Lp norms 

that perform best. Yet, the nonlinearity of the models for distance norms other 

than L1 and L∞ is a drawback. The computational effort would increase 

exponentially for larger data sets and greater Lp norms.   
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CHAPTER 6 

 
 

6. CONCLUSION 
 
 
 

A new solution method for sorting problems is developed in this study. It is a 

PDA approach including a distance function based method as criteria 

aggregation function and instead of identifying only one class for each 

alternative, it provides probabilities of belonging to each class for an 

alternative. The decision maker can evaluate these probabilities and decide on 

the assigned class. So, the method provides a second opportunity to include 

decision maker’s preferences in the sorting process. The method is given in 

general distance norm and in the computational experiments, it is seen that 

different distance norms may fit different data sets better so defining the 

method with a general distance norm is more promising. The probabilistic 

approach is also applied to UTADIS in order to handle the alternative optimal 

solutions.  

The results of the distance function based method are compared with the results 

of modified UTADIS and previous methods such as UTADIS and 

classification trees. Distance function based method performs better than the 

previous methods for the five data sets. It is seen that modified UTADIS 

always performs at least as good as classical UTADIS for each of the five data 

set and for some data sets, it performs better than distance function based 

method. Computational effort is a challenging issue especially for the massive 

data sets since the model becomes nonlinear for certain distance norms. It is 

also seen that as the distance norm gets larger, the computation time required 

increases and usually performance of the method decreases for larger distance 

norms such as L10, L20 and so on.  
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A possible research direction on this subject can be application of combined 

distance norms to the distance based criteria aggregation function. The 

combined distance norms consist of distance norms for both continuous and 

categorical data, which eliminates the need for quantifying the categorical data. 

Another possible research topic may be application of probabilistic approach to 

mathematical programming based discriminant analysis for classification 

problems. Since the alternative optimal solutions issue is also valid for 

classification problems, calculating probabilities by defining maximum and 

minimum values may improve the performance of discriminant analysis as in 

the UTADIS case. . Also, an additional study to one of these proposed research 

topics may be calculation of the coefficient of secondary objectives by a 

theoretical approach instead of empirical evaluation. The comparisons of the 

developed approach with the previous sorting methods are based on the five 

data sets. A theoretical comparison of the methods in order to identify the 

superior properties of each method may be another future research direction  
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APPENDIX A 

 
 

THE OUTPUTS OF THE DISTANCE BASED METHOD WITH 
Lଵ NORM FOR WATER SUPPLIES DATA SET 

 

Figure A - Probabilities of water supplies data set 
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Figure A -continued 
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APPENDIX B 
 

 

THE OUTPUTS OF THE DISTANCE BASED METHOD WITH Lଵ NORM 
FOR R&D PROJECTS DATA SET 

 

Figure B - Probabilities of R&D projects data set 
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Figure B -continued 
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Figure B -continued 
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Figure B -continued 
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Figure B -continued 
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Figure B -continued 
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Figure B -continued 
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APPENDIX C 
 

 

THE OUTPUTS OF THE DISTANCE BASED METHOD WITH Lଷ NORM 
FOR ASSISTANT DATA SET 

 

 

Figure C - Probabilities of assistant data set 
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Figure C -continued 
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Figure C -continued 
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Figure C -continued 
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Figure C -continued 
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Figure C -continued 
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APPENDIX D 
 

THE OUTPUTS OF THE DISTANCE BASED METHOD WITH Lଶ NORM 
FOR CARS DATA SET 
 

 

Figure D - Probabilities of cars data set 
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Figure D - continued 
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Figure D - continued 
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Figure D - continued 
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Figure D - continued 
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Figure D - continued 
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Figure D - continued 
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Figure D - continued 
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APPENDIX E 
 

THE OUTPUTS OF THE DISTANCE BASED METHOD WITH ܮଷ NORM 
FOR CREDIT DATA SET 

 

Figure E – Probabilities of credit data set 
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Figure E - continued 
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Figure E - continued 
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Figure E - continued 
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Figure E - continued 
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APPENDIX F 
THE HIGHEST PROBABILITY CLASSES OF EACH DATA SET FOR THE 
BEST PERFORMING Lp NORM DISTANCE BASED METHODS 

Table F – Results of distane-based method for each data set 

Data 
Point 

Water 
Supplies 

R&D 
Projects 

Assistant Cars Credit 

Real Pred. Real Pred. Real Pred. Real Pred. Real Pred. 

1 1 1 1 1 1 3 1 3 1 1 
2 1 2 2 2 1 1 1 1 1 1 
3 1 1 2 2 1 2 1 2 1 1 
4 2 1 2 2 1 1 2 1 1 1 
5 2 2 2 2 1 1 2 2 1 1 
6 2 2 2 2 1 1 3 3 1 1 
7 2 1 2 2 1 1 3 3 1 1 
8 2 1 2 2 1 1 3 3 1 1 
9 1 1 2 2 1 3 3 3 1 1 

10 1 1 2 3 1 3 3 3 1 1 
11 1 1 2 2 1 3 3 3 1 1 
12 2 2 2 2 1 1 3 3 1 1 
13   2 3 1 1 3 3 1 1 
14   2 2 1 3 3 4 1 1 
15   2 2 2 1 3 4 1 1 
16   3 3 2 1 3 3 1 1 
17   3 3 2 1 4 4 1 1 
18   3 3 2 3 4 4 1 1 
19   3 3 2 2 4 4 1 1 
20   3 2 2 3 4 4 1 1 
21   3 3 2 1 4 4 1 1 
22   3 3 2 3 4 4 1 1 
23   3 3 2 3 4 4 1 1 
24   3 2 2 3 4 4 1 1 
25   3 3 2 3 4 4 1 1 
26   3 3 2 1 4 4 1 1 
27   3 3 2 3 4 4 1 1 
28   3 3 2 3 4 4 1 1 
29   3 3 2 2 4 4 1 1 
30   3 3 2 1 4 4 1 1 
31   3 3 2 2 4 4 1 1 
32   5 5 2 2 4 4 1 1 
33   5 5 2 1 4 4 2 1 
34   5 3 2 3 4 4 2 2 
35   6-7 6-7 3 3 4 4 2 1 
36   6 6 3 1 4 1 2 1 
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Table F – continued 

37   2 2 3 1 4 4 2 1 
38   3 3 3 3 4 4 2 1 
39   4 4 3 3 4 4 2 2 
40   4 5 3 3 4 4 2 2 
41   4 4 3 3 4 4 2 1 
42   4 5 3 3 4 4 2 1 
43     3 3 4 3 2 1 
44     3 3 4 4 2 1 
45     3 1 4 4 2 1 
46     3 3 4 4 2 1 
47     3 3 4 4 2 1 
48     3 3 4 4 2 1 
49     3 3 4 4 2 2 
50     3 1 4 4 2 1 
51       4 4   
52       4 4   
53       4 4   
54       4 4   
55       4 4   
56       4 4   
57       4 4   
58       4 4   
59       4 4   
60       4 4   
61       4 3   
62       4 4   
63       4 4   
64       4 4   
65       4 4   
66       4 4   
67       4 4   
68       4 4   
69       4 4   
70       4 4   
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APPENDIX G 
 

THE HIGHEST PROBABILITY CLASSES OF EACH DATA SET FOR 
MODIFIED UTADIS METHOD 

Table G – Results of modified UTADIS method for each data set 

Data 
Point 

Water 
Supplies 

R&D Projects Assistant Cars Credit 

Real Pred. Real Pred. Real Pred. Real Pred. Real Pred. 

1 1 1 1 1 1 2 1 1..2 1 1 
2 1 1 2 1..2 1 2 1 1..2 1 1 
3 1 1 2 2 1 2 1 1..2 1 1 
4 2 1 2 2 1 2 2 1 1 1 
5 2 1 2 2 1 2 2 1..2 1 1 
6 2 1 2 1..2 1 2 3 3..4 1 1 
7 2 1 2 1..2 1 2 3 3 1 1 
8 2 1 2 1..2 1 2 3 3 1 1 
9 1 1 2 2 1 2 3 3 1 1 

10 1 1 2 2..3 1 2 3 3 1 1 
11 1 1 2 2 1 2 3 3 1 1 
12 2 1 2 1..2..3 1 2 3 3 1 1 
13   2 2 1 2 3 3 1 1 
14   2 2 1 2 3 4 1 1 
15   2 2 2 2 3 4 1 1 
16   3 3 2 2 3 3 1 1 
17   3 3 2 2 4 3..4 1 1 
18   3 3 2 2 4 4 1 1 
19   3 3 2 2 4 4 1 1 
20   3 2 2 2 4 4 1 1 
21   3 3 2 2 4 4 1 1 
22   3 3 2 2 4 4 1 1 
23   3 3 2 2 4 4 1 1 
24   3 2 2 2 4 4 1 1 
25   3 3 2 2 4 4 1 1 
26   3 3 2 2 4 4 1 1 
27   3 3 2 2 4 4 1 1 
28   3 3 2 2 4 3..4 1 1 
29   3 3 2 2 4 4 1 1 
30   3 3 2 2 4 3..4 1 1 
31   3 3 2 2 4 4 1 1 
32   5 4..5 2 2 4 4 1 1 
33   5 4..5 2 2 4 4 2 1 
34   5 3 2 2 4 4 2 1 
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Table G – continued 

35   6 6..7 3 2 4 4 2 1 
36   6 4..5..6..7 3 2 4 3 2 1 

  37   2 1..2 3 2 4 3 2 1 
38   3 3 3 2 4 4 2 1 
39   4 4..5 3 2 4 4 2 1 
40   4 4..5 3 2 4 4 2 1 
41   4 4..5 3 2 4 4 2 1 
42   4 4..5 3 2 4 4 2 1 
43     3 2 4 4 2 1 
44     3 2 4 4 2 1 
45     3 2 4 4 2 1 
46     3 2 4 4 2 1 
47     3 2 4 4 2 1 
48     3 2 4 4 2 1 
49     3 2 4 4 2 1 
50     3 2 4 4 2 1 
51       4 4   
52       4 4   
53       4 4   
54       4 4   
55       4 3..4   
56       4 4   
57       4 4   
58       4 4   
59       4 4   
60       4 4   
61       4 3   
62       4 4   
63       4 4   
64       4 4   
65       4 4   
66       4 4   
67       4 4   
68       4 4   
69       4 4   
70       4 4   

 

 


