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ABSTRACT

RAPIDLY ROTATING ULTRACOLD ATOMS IN HARMONIC TRAPS

Ghazanfari, Nader
Ph.D., Department of Physics

Supervisor : Prof. Dr. Altuğ Özpineci

Co-Supervisor : Assoc. Prof. Dr. Mehmet Özgür Oktel

June 2011, 67 pages

In this study we investigate the properties of trapped atoms subjected to rapid ro-

tations. The study is divided into two distinct parts, one for fermions, another for

bosons. In the case of the degenerate Fermi gas we explore the density structure

of non-interacting cold atoms when they are rotated rapidly. On the other hand, for

rapidly rotating two component Bose condensate, we search for new lattice structures

in the presence of contact and dipolar interactions.

First, the density structure of Fermi gases in a rotating trap is investigated. We focus

on the anisotropic trap case, in which two distinct regimes, two and one dimensional

regimes, depending on rotation frequency and anisotropy are observed. Two regimes

can be illustrated by a simple description of maximum number of states between two

Landau levels, which is strongly related to the dimensionality of the system. The

regimes are separated from each other by a minimum point in this description. For

small anisotropy values the density profiles show a step structure where each step is

demonstrated by an elliptical plateau. Each plateau represents a Landau level with

a constant density. The local density approximation describes the two dimensional

regime with a perfect similarity in the structure of fermion density. The case for
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one dimensional regime is a little different from the two dimensional case. For large

anisotropy values the Friedel oscillation is the dominant aspect of the density profiles.

The density profiles show gaussian structure along the direction of strong trapping,

and a semicircular form with prominent oscillations along the weak confining direc-

tion. Again, the system is nicely described by local density approximation in this

regime. A smooth crossover between two regimes is observed, with a switching from

a step structure profile to a soft edge transition with Friedel oscillations. At finite tem-

peratures, the step structures are smeared out in two dimension. In one dimensional

regime the Friedel oscillations are cleaned as soon as the temperature is turned on.

The second part of the study is devoted to the investigation of different lattice struc-

tures in two component Bose condensates subjected to very fast rotation, this time

in the presence of interactions. We explore the existence of new vortex lattice struc-

tures for dipolar two component condensates scanning a wide range of interaction

strengths. We introduce a phase diagram as a function of intra and inter-component

interactions showing different type of vortex lattice structures. New types of lattice

structures, overlapped square and overlapped rectangular, emerge as a result of dipo-

lar interactions and s-wave interaction for a two component condensate. The region

where the attractive inter-component interactions dominate the repulsive interactions,

the overlapped lattices are formed. The intra-component interactions, which defines

the behavior of each component inside, result in different type of lattices by changing

the strength of interactions. Two different limits of phase diagram reproduce the re-

sults of ordinary two component and dipolar one component Bose condensates. The

results of calculation are in agreement with the results of previous studies for two

regimes.

Keywords: Degenerate Fermi gas, Bose-Einstein condensate, rapidly rotating, fermion

density, vortex lattice
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ÖZ

HARMONİK TUZAKLARDA HIZLI DÖNEN ULTRASOĞUK ATOMLAR

Ghazanfari, Nader
Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Altuğ Özpineci

Ortak Tez Yöneticisi : Assoc. Prof. Dr. Mehmet Özgür Oktel

Haziran 2011, 67 sayfa

Bu çalışmada hızı dönmeye tabi tutulan harmonik tuzaklardaki atomların özellikleri

incelenmektedir. Çalışma fermiyonlar ve bosonlardan oluşan iki farklı bölüme ayrıl-

mıştır. Dejenere Fermi gazlarda etkileşmeyen ultrasoğuk atomların yoğunluk profil-

leri hızlı dönme altında incelenmiştir. Hızlı dönen iki bileşenli Bose-Einstein yoğuşm-

asında ise yeni girdap örgüleri kontakt ve dipol etkileşimleri altında araştırılmıştır.

İlk önce, Harmonik tuzaklarda dönen Fermi gazların yoğunluk profilleri incelenmiştir.

Çalışmada eşyönsüz tuzaklar üzerine yoğunlaşıldı. Bu durumda eşyönsüzlükle dönme

hızına bağlı olarak iki farklı rejim gözlenmekte. Bu rejimler iki ve bir boyutlu rejim-

ler olarak görn̈mektedir. Bu iki rejim ardışık olan iki Landau düzeyinin arasındaki

durumların maksimum sayısını tanımlayan parametre ile açıklanabilir. Bu parametre

sistemin boyutu ile ilişkili. İki rejim söz konusu parametrenin minimum değerinde

buluşmaktadır. Küçük eşyönsüzlükler için yoğunluk profilleri basamaklı yapı or-

taya koymaktadır. Her basamak ise elips şeklinde olan sabit yoğunluktan oluşan

düzlüklerden ibarettir. Lokal yoğunluk yaklaşımı iki boyutlu rejimi kusursuz benzer-

likle açıklamaktadır. Bir boyutlu rejim, iki boyutlu rejime göre önemli farklılıklar

ortaya koymaktadır. Büyük eşyönsüzlüklerde Friedel salınımları yoğunluk profil-
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lerinin baskın yönünü oluşturmaktadır. Yoğunluk profilleri güçlü tuzaklama yönünde

gausiyen bir yapıya sahiptirler. Diğer yönde ise, yani zayıf tuzaklama yönunde,

Friedel salınımları belirgin olduğu yarı daireseller görünmektedir. Bu rejimde de

lokal yoğunluk yaklaşımı sistemin yoğunluğnu numerik hesaplarla uyumlu biçimde

açıklamaktadır. İki rejim arasında düzgün geçiş gözlenmektedir. Yüksek sıcaklıklarda

iki boyuttaki basamaklı yapi ortadan kalmakta, bir boyatta ise Friedel salınımları or-

tadan kalkmıştır.

Çalışmanın ikinci bölümünde hızlı dönmeye tabi tutulmuş iki bileşenlı Bose-Einstein

yoğuşmasında farklı girdap örgü yapılarının oluşumlarını incelenmiştir. Burada bir

diğer önemli konu ise etkileşimlerin var olmasıdır. Geniş etkileşim aralıkları tara-

narak iki bileşenli yoğuşmada ortaya çıkan girap örgüleri tespit edilmiştir. Sonuç

olarak kontak ve dipol etkileşimlerinin sunduğu yeni örgü yapıları bulunmuştur. Etkil-

eşimlerin doğası, yani etkileşimlerin çekici veya itici olmaları, bu yeni örgülerin

oluşumunda önemli rol oynamaktadır. Bu gazların ortaya koyduğ genel örgü yapıları

ise bir faz diagramında sunulmuştur. Faz diagramının iki limitinin sonuçları, dipol

etkileşimine sahip olan tek bileşenli Bose yoğuşması ve dipol etkileşimi olmayan iki

bileşenli Bose yoğuşması olmak üzere, daha önceki çalışmalarla birebir örtüşmektedir.

Anahtar Kelimeler: dejenere Fermi gazı, Bose-Einstein yoğuşması, hızlı dönen, fer-

miyon yoğnluğu, girdap örgüleri
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CHAPTER 1

INTRODUCTION

Dramatic progresses in laser-based techniques in cooling and trapping of alkali atoms

started a new era in condensed matter physics, both theoretically and experimen-

tally. Decades after the first theoretical demonstration of Bose-Einstein condensation

(BEC) [1, 2, 3], the experimental observations of the macroscopic occupation of a

single particle state were carried out [4, 5, 6]. The achievement was not only the

manifestation of an interesting phenomena, but also provided a great opportunity to

make bridges to study the nature of some other exotic many body systems, such as

superfluidity. Although the early years of the field were devoted to investigate the

important properties of BEC and its consequences, the theoretical and experimental

efforts were accelerated to study the fermionic nature of ultracold atoms, as soon as

the difficulties in cooling of Fermi gases due to the Pauli exclusion principle were

overcome.

Interactions play a very important role in determining the properties of ultracold

atoms. Dynamics and stability of trapped atoms as well as ground sates properties

of these quantum gases are highly influenced by the strength and quality of the in-

teractions [7]. The systematic study of the nature of such many body systems, with

the interaction present needs a powerful theoretical tool. The need for a fine theo-

retical description of ultracold atoms with a good agreement with the experimental

results was met by the Gross-Pitaevskii equation (GPE) [8, 9, 10]. This theory gives

a zero-temperature description of atomic Bose gases when conditions for its validity

are satisfied [7, 11]. The existence of other interactions like the dipole-dipole interac-

tion enriches the topics of the field to go even beyond, and investigate the properties

of long range interactions in more detail.
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Ultracold atoms have some important features that make the system a rich subject of

study. One of the most significant properties of the cold atoms is the unprecedented

degrees of control over some vital parameters, such as interactions, and dimension-

ality, which serves physicists a clean, and flexible environment to simulate various

many-body systems ranging from solid crystals to relativistic particles [12]. Thanks

to the observations of Feshbach resonances in ultracold atoms [13, 14, 15], the tuning

of the interactions, either quantitatively or qualitatively is carried out during the ex-

periments, in a relatively easy manner. Such an ability provide the chance to go from

attractive to repulsive interactions, even create strongly correlated systems. On the

other hand, optical potentials provided the possibility of generating different trapping

geometries and its combination with Feshbach resonances results in realizing very

interesting systems or quantum phenomena [16, 17, 18]. The theoretical suggestions

[19, 20, 21] and afterward observation of a Tonks-Girardeau gas [22, 23], and the

quantum transition from superfluid phase to Mott-insulating state [24] are examples

of cooperations discussed above.

Another important feature of ultracold atoms is their response to external potentials.

The rotation of ultracold atoms, especially Bose gases was a matter of interest from

early days of the BEC era. Theoretically, the response of superfluids to the rotations is

widely studied and well known since the first predictions of quantized vortices when

exceeding a certain critical velocity [25, 26]. The attempts to observe the vortices in

atomic condensates succeeded only a few years later after observations of BEC [27,

28, 29]. The equivalence of the Coriolis force and the Lorentz force when appearing

in a Hamiltonian also opened a new page in the field of atomic gases. The exploration

of quantum Hall physics in rapidly rotating ultracold atoms started with first signs of

connection between two fields [30, 31]. In order to have a better understanding of the

physics of rapidly rotating ultracold atoms for both bosons and fermions along with

the interactions, we review the basic ideas of ultracold atoms, especially those who

help us follow the main ideas discussed in the next chapters.
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1.1 Interactions in dilute ultracold atoms

Ultracold atoms are dilute gases, i.e. the interatomic separation, determined by av-

erage density of the gas, is much larger than the range of interatomic interactions.

Quantitatively speaking, the density of ultracold atoms is about 1012 − 1015 particle

per cm3, which gives an average interparticle spacing of 0.1 − 1 µm. This particle

separation is at least one order of magnitude larger than the atom-atom interaction

length scales. The dilute nature of trapped atoms allows to consider only the binary

collisions and neglect three or more particle interactions. Moreover, the temperature

is sufficiently low, then the de Broglie wavelength is so large that the specific na-

ture or physical details of finer interatomic interactions are not important anymore.

Therefore the low energy two-body scattering is sufficient to describe the system and

one can express the interaction potential in terms of a single parameter, the scattering

length [7, 11, 32, 33]. In order to introduce the scattering length it would be better to

have a short review of basic aspects of the scattering theory.

We consider the scattering of two atoms and aim to solve the Schrodinger equation

to obtain the wavefunctions. Since we deal with the a two-particle problem, we make

a transformation to the center of mass coordinates. The wavefunction for the relative

motion of the atoms contains the information about the scattering. One can find in

most text books of quantum mechanics that the wavefunction can be written as [34]

ψ =
1

(2π)3/2

[
eik·r +

eikr

r
f (k,k′)

]

=
1

(2π)3/2

[
eik·r +

eikr

r
f (θ)

]
, (1.1)

which reduces to the plane wave solution when there is no scattering. Here f (k,k′)

is the scattering amplitude with k, and k′ are the wave vectors for incoming and

scattered waves, respectively, both with magnitude k. Note that θ is the angle between

two wave vectors. To determine the overall effect of scattering one needs to obtain

the cross section σ(E), which is calculated from the differential cross section

dσ
dΩ

= | f (k,k′)|2. (1.2)

At low energies the s-wave scattering is the dominant part , and one can neglect the

other contributions to the scattering [32]. Such an approximation leads us to write the

3



cross section in terms of s-wave scattering length a as

σ(E) = 4πa2. (1.3)

We discussed the problem of scattering for distinguishable particles. To be more

specific in calculating the scattering cross section we may add the effects of indis-

tinguishability. Alkali atoms have different internal states arising from couplings of

electronic and nuclear spins, called atomic hyperfine states. Let us suppose that we

have two identical particles, i.e. atoms occupying the same hyperfine states. Then

we have to symmetrize or antisymmetrize the wavefunction due to the total spin of

atoms, when they are bosons or fermions. The differential cross section considering

the symmetrized wavefunction becomes

dσ
dΩ

=| f (θ) ± f (π − θ) |2, (1.4)

the plus and minus signs refer to bosons and fermions, respectively. Again by inte-

grating the differential cross section over all final directions the total cross section is

obtained as

σ =


8πa2 f or bosons

0 f or f ermions
(1.5)

The result shows that two polarized fermions can be considered to be non-interacting.

However, the scattering is present when fermionic atoms occupy different hyperfine

states.

We discussed above that the diluteness of ultracold atoms allows one to ignore the

actual nature of interactions and replace the interaction with an effective potential

which gives the correct s-wave scattering length. A good candidate to such potential

may have the form of contact interaction which is proportional to scattering length

Ue f f (r) =
2πa~2

Mr
δ(r). (1.6)

An important subject related to the scattering of two atoms is that the strength of the

interaction can be altered via a phenomenon called Feshbach resonances [35]. Tuning

the strength of the interaction in this method specifically is controlling the strength

of s-wave scattering length and its sign [13, 14, 15], which determines the nature

of interaction, whether it is repulsive or attractive. The use of magnetically tunable
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Feshbach resonances not only makes the study of the properties of the condensates

easier [36, 37, 38, 39], but also provides the chance of going to the state of strongly

interacting Fermi systems or study the nature of other physics [23, 24, 40, 41].

1.2 Theory of weakly interacting Bose gases

Sometimes it is difficult to handle a many-body system when considering a realistic

model. However, it can be approached by relatively easy approximate methods. The

symmetries with other features of the systems provide a ground to apply approxima-

tions, giving results in good agreement with the experiments. One of such approxi-

mations is the Gross-Pitaevskii theory of condensed Bose gases. Roughly speaking

the Gross-Pitaevskii theory is the Hartree-Fock approximation at T = 0 for a BEC

system. This theory treats the interactions in a mean field regime, which avoids the

heavy calculations of solving the many-body Schrodinger equation. We first derive

the Gross-Pitaevskii equation starting with the many-body Hamiltonian describing a

system of N interacting identical bosonic atoms in a trapping potential, Vext(r)

H =

∫
dr

[
~2

2M
|∇Ψ(r)|2 + Vext(r)|Ψ(r)|2

]

+

∫
drdr′Ψ†(r)Ψ†(r′)V(r − r′)Ψ(r′)Ψ(r). (1.7)

Where Ψ(r), and Ψ†(r) are the field operators (annihilation and creation, respectively)

obeying bosonic commutation relations, and V(r − r′) is the interaction potential be-

tween two atoms. The Hamiltonian itself gives the properties of the system but needs

a great amount of numerical calculations [42] even for moderately large number of

particles. However, in the case of atomic condensation one can obtain an equation

from time evolution of field operator, which is much more convenient for calcula-

tions. The Heisenberg equation of motion gives the time evolution for field operator

Ψ(r) as

i~
∂

∂t
Ψ(r, t) = [Ψ(r, t),H]

= − ~
2

2M
∇2Ψ(r, t) + Vext(r)Ψ(r, t)

+

∫
dr′Ψ†(r′, t)V(r − r′)Ψ(r′, t)Ψ(r, t). (1.8)
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For the case of dilute atomic gases we write an effective potential giving the same

characteristic length of the real potential, in the previous section (see Eq. (1.6)). Also

for a condensed Bose gas with a large number of atoms, one can replace the field

operator Ψ with the classical field function ψ. With these replacements, the useful

equation of Gross-Pitaevskii can be established [11, 7, 32, 43]

i~
∂

∂t
ψ(r, t) = − ~

2

2M
∇2ψ(r, t) + Vext(r)ψ(r, t) + g|ψ(r, t)|2ψ(r, t) (1.9)

Here g = 4π~2a/M is the coupling constant related to the scattering for two identical

atoms. The equation was derived by Gross [8, 9] and Pitaevskii [10], independently

to investigate the properties of weakly interacting non-uniform Bose gases at low

temperatures.

The GPE has been used widely to study the condensate state both analytically and

numerically ensuring a good agreement with the experimental results. It is a great

theoretical tool to investigate the dynamics of condensates such as elementary excita-

tions, collective oscillations, and solitary waves [32]. Moreover, the static properties

of the system can be investigated using the time-independent GPE

− ~
2

2M
∇2ψ(r) + Vext(r)ψ(r) + g|ψ(r)|2ψ(r) = µψ(r). (1.10)

where µ is the chemical potential.

The trap potentials in the experiments of ultracold atoms could be considered as har-

monic potentials when approaching the problem theoretically. With the known ex-

ternal potential, ground state properties of trapped bosons can be obtained either nu-

merically or analytically from Eq. (1.10). The analytical solutions could be obtained

with different methods such as variational methods, or Thomas-Fermi approximation

[44, 45, 46], however, its numerical solution are relatively easy to obtain [47, 48, 49].

1.3 Rotating Ultracold atoms

The response of the ultracold atoms to the rotation has been a matter of interest since

the first observations of BEC. The rotation of the superfluids gives rise to the existence

of quantized vortices well known for more than half a century [25, 26]. The same
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property was predicted for Bose-Einstein condensates as they exhibit the same con-

strained motions under rotation. The observation of vortices in atomic Bose-Einstein

condensates [50, 51, 52] is the most important achievement after the experimental

manifestation of BEC itself. Thus, let us first start with the quantum hydrodynam-

ics of the condensate in the presence of rotations. The most important property of a

condensate is that a macroscopic wavefunction can describe the condensed Bose gas,

which is written as

Ψ(r, t) = |Ψ(r, t)|eiS (r,t)

=
√

n(r, t)eiS (r,t), (1.11)

where n is the density of the condensate, and S is the overall phase of the condensate.

The velocity field can be obtained from the current density defined from GPE (1.9)

j = n(r, t)v(r, t)

=
~

2Mi
[Ψ∗∇Ψ − Ψ∇Ψ∗] (1.12)

In the case of a classical fluid the velocity field rotating with the frequency Ω obeys

the relation for rigid body rotation

vc = Ω × r, (1.13)

for which the vorticity is uniform, i.e.

∇ × vc = 2Ω (1.14)

However, this is not the case for a condensate, since the velocity field is proportional

to the gradient of the scaler field S (r, t)

v =
~
M
∇S (r, t). (1.15)

Apparently the velocity field is irrotational, in other words the condensate vorticity

vanishes

∇ × v =
~
M
∇ × ∇S (r, t) = 0. (1.16)

Stokes’s theorem implies that for any close path in a simply connected geometry one

can write
∫
∇ × v.da =

∮
v.dl = 0. (1.17)

7



( a ) ( b )

Figure 1.1: (a) The condensate is irrotational when the phase of the condensate wave-
function has no singularity. (b) The rotation can be defined when there is hole in the
phase of the condensate wavefunction.

However, for a function which is not simply connected the rotation happens in a

different manner (see figure 1.1). Let us assume that the phase has a hole. Since the

condensate wavefunction must be single valued, the change in the phase around any

closed path must be an integral multiple of 2π,

4φ =

∮
dl · ∇S (r, t) = 2πl (1.18)

where l is an integer number. Again, defining the circulation
∮

v · dl = l
h
M
, (1.19)

reveals that the circulation is quantized in units of h/M, called the vortex line. Phys-

ically speaking, a rotating condensed Bose gas lowers its energy by nucleating vor-

tices. One can create a large number of vortices by increasing the rotation velocity

Ω [11, 7, 32, 53, 54] (see figure 1.2, for example). Along with the investigations of

quantized vortices in rotating atomic condensates which is an exciting phenomenon,

the hopes to reach a state of strongly correlated system in dilute atomic gases be-

come more realistic with the existence of traps especially when they are rotating. The

rotation increases the effect of interactions when the rotation frequency approaches a

limit, the frequency of the trap [55, 56, 57]. With the Feshbach resonances the interac-

tion between atoms can also be controlled quantitatively and qualitatively to even go

beyond the usual interaction ranges to obtain the novel states of strongly interacting

systems, which opens the horizons of studying the physics of quantum Hall effect in
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Figure 1.2: Vortex lattice

a system of particles different from original matter of subject [57, 58, 59]. The equiv-

alence of the Coriolis force to the Lorentz force when appearing in the Hamiltonian

is the first clue to construct a connection between two completely different systems

[30, 31]. The single particle Hamiltonian of an ultracold atom trapped in rotating

harmonic potential in the rotating frame

H =
P2

2M
+

1
2

Mω2r2 − LzΩ

=
1

2M
(P − MΩ × r)2 +

1
2

M
(
ω2 −Ω2

)
r2. (1.20)

Here M is the mass of the particle, ω is the trap frequency, and Lz is the angular

momentum in the z direction. One can define an effective vector potential, A = M
q Ω×r

to show the explicit equivalence of two systems.

In the case of a rapidly rotating condensate, the regime of high vortex density when

the number of vortices is larger than number of atoms [57], the bosonic analogy of a

fractional quantum hall effect in semiconductors can be constructed [53]. Although

the s-wave interaction is absent for identical particles in the case of atomic Fermi

gases, the tunable p-wave interaction or dipole-dipole interactions also makes it pos-

sible to create the state of strongly correlated system with these atoms [58].
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CHAPTER 2

RAPIDLY ROTATING FERMIONS IN HARMONIC TRAPS

The cooling of Fermi gases with alkali atoms is difficult since the identical fermions

are non-interacting. However, a two component Fermi gas, two atoms occupying dif-

ferent hyperfine states, can experience s-wave interaction between atoms. Another

possibility is a mixture of Bose-Fermi gases which ensure the existence of interac-

tions. The two methods were successfully implemented and the Fermi gases were

cooled below the Fermi temperature [60, 61, 62, 63, 64, 65]. The observation of

the degenerate Fermi gas provides an important tool to observe another exotic phe-

nomenon of Cooper pairs in BCS theory of superconductivity [66, 67], or study the

crossover between BCS and BEC regimes [12].

Moreover, the properties of degenerate Fermi gases under rotation could also be in-

teresting. For a two-dimensional electron gas subjected to a strong magnetic field,

the energy spectrum reveals highly degenerate levels, so-called Landau levels. The

interesting physics of such a system may also be obtained in rapidly rotating ultracold

atoms, due to the physical equivalence of two systems. The system of rapidly rotating

Fermi gases in an isotropic harmonic trap has been studied [68], in which the density

profiles reveal a step-like structure, similar to the density profiles in quantum Hall

effect.

There are different methods in rotating the atomic gases in experiments. The most

common method is the pumping of angular momentum to the cloud and later trapping

the gas [51, 52]. In this method the isotropic trap is used to preserve the angular mo-

mentum. Other possibility is to create a rotating anisotropic trap with a fixed rotation

frequency, then the system settles in its ground state at some fixed rotation frequency
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[69]. The latter method in rotating ultracold atoms ensure that the anisotropy of the

system can also be controlled, which allows the study of the effect of anisotropy on

the cloud of atomic gases, specially to make a smooth change of dimension from

two dimensional regime for small anisotropies to one dimensional regime when the

anisotropy is very large. Later we will show that the single particle wavefunction for

a particle in an anisotropic harmonic trap has the interesting property of achieving

a smooth transition from a two dimensional regime to a strip-like quasi-one dimen-

sional system. Moreover, the anisotropy of the system in rapidly rotating condensates

allows the investigation of properties of interacting Bose gases in one dimensional

strip [70, 71, 72]. However the crossover from two dimensions to one dimension

would not be so easy, since the existence of interactions in the system complicates

the observation of such a transition.

Here we aim to study the effects of anisotropy on density profiles of rapidly rotating

ultracold fermionic atoms in a harmonic trap. Since spin polarized fermions are non-

interacting because of the Pauli suppression of s-wave scattering, there will be no

further parameters appearing in the equation which simplifies the evaluation of the

Hamiltonian, considerably. In the next section, a brief review of the results of rapidly

rotating fermions in an isotropic harmonic trap [68] is given, reproducing the density

profiles and the analytical description of density structure. The effect of temperature

on density of rapidly rotating Fermi gases is studied. Then the effect of anisotropy

on density profiles of fast rotating ultracold Fermi gases is investigated. A detailed

description of the solutions of a particle in a rotating anisotropic trap, already obtained

by A. L. Fetter [73] is given. Afterward, the results of our study on the effects of

anisotropy on density profiles of the rapidly rotating cold fermions are presented [74].

The chapter ends with the discussions of experimental consequences, and a short

conclusion of the study.

2.1 Rapidly rotating Fermions: isotropic case

We start with the single particle physics considering an atom in a two dimensional

rotating isotropic trap. We review the solutions for such a system, giving the expres-

sions for energy eigenvalues and corresponding energy eigenfunctions. The Hamilto-
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nian describing a particle in the rotating frame is

H =
1

2M
p2 +

1
2

Mω2r2 −ΩLz, (2.1)

where r and p are the two dimensional position and momentum operators in the x− y

plane. The system is stable when the rotation frequency is smaller than the confining

frequency Ω ≤ ω. The Hamiltonian can be diagonalized applying two successive

canonical transformations. First, we apply the usual transformation of the position

and momentum operators to the annihilation and creation operators in the Hamilto-

nian Eq. (2.1), H. The new operators are given by

ax =

√
Mω

2~

(
x +

ipx

Mω

)

ay =

√
Mω

2~

(
y +

ipy

Mω

)
. (2.2)

a†x, and a†y can be easily obtained from above equations. Then the new Hamiltonian

can be written as

H = ~ω
[
a†xax + a†yay

]
− ~Ωi

(
axa†y − a†xay

)
+ ~ω. (2.3)

Another transformation to new creation and annihilation operators leads to the diag-

onalized Hamiltonian

A =
1√
2

(
ax + iay

)

B =
1√
2

(
ax − iay

)
. (2.4)

The operators A†, and B† can be obtained using above equations. Eventually, the

diagonalized Hamiltonian is obtained which has the form

H = ~ (ω + Ω) A†A + ~ (ω −Ω) B†B + ~ω. (2.5)

Now one can write the energy eigenvalues as

Emn = n~ω− + m~ω+ + ~ω, (2.6)

where ω± = (ω ∓ Ω), n ≥ 0 labels the so called Landau levels, and m ≥ 0 counts the

sublevels in each Landau level. Figure 2.1 describes the graphical correspondence of
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Figure 2.1: Energy vs. number of states in each Landau levels. l is the highest number
of states within LL’s before the next LL is excited.

the Landau levels and the substates between levels. The corresponding eigenfunctions

of the system can be obtained as well which have the form

φnm =
1√

πa2n!m!
er2/2a2

∂n
−∂

m
+e−r2/a2

, (2.7)

where ∂± = (∂x ± i∂y), and a =
√
~/Mω is the characteristic harmonic oscillator

length.

Since the space wavefunctions are known for the system, the density for non-interacting

fermions can be easily obtained by summing over single particle states. Then the den-

sity at zero temperature can be written as

ρ(x, y) =
∑

nm

|φnm(x, y)|2 θ(µ − Enm), (2.8)

where the θ-function counts the number of states below the Fermi level, and µ is the

chemical potential determined by the number of particles, N in the system with the

constraint

N =

∫
dxdyρ(x, y). (2.9)

The nature of the wavefunctions provides a relatively easy computational calcula-

tions, since they are composed of a gaussian multiplied by a Hermite polynomial.

The Hermite polynomials, like other orthogonal polynomials satisfy a recursion rela-

tion [75]

Hn+1(x) = 2xHn(x) − 2nHn−1(x). (2.10)
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Figure 2.2: (a) Density profile for fermions filling three Landau levels. The Lan-
dau levels are represented by a disk like structure. (b) Density profile for fermions
occupying the lowest Landau level.

We reproduced the results for the density of fermions in harmonic traps with fast

rotation, which were already calculated in detail by Ho [68]. We do the calculations

in dimensionless units, using oscillator length a =
√
~/Mω, frequency ω, and energy

quantum ~ω, to scale the lengths, frequencies and energies, respectively. Density

profiles, in Fig. (2.2) reveals the step structure of fermion density in a rotating trap.

Each step in the density profiles is clearly linked with a Landau level, and defines a

disc like area of almost constant density. One can obtain the density contribution of

each Landau level, but before that let us look at some properties of the density profiles.

The first point observed in the density profiles is the existence of the oscillations

between two successive steps. The number of oscillations is related to the number of

Landau levels. In more explicit words, there are n oscillations in the density when

switching between the nth step and (n + 1)th steps, a feature which can be clearly seen

in the figure. The other point is the maximum number of particles in each Landau

plateau, which can be easily determined from the energy eigenvalue expression Eq.

(2.6),

mmax = Int
[
µ/~ − nω− − ω

ω+

]
. (2.11)

The expression obviously shows the step structures of the density, since the maximum

number of the particles in lower plateaus is larger than those in upper plateaus. Figure

2.1 explains the phenomenon in more explicit language.

Another feature of density profiles is about the area that each plateau occupies. In
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order to calculate it we need to know the radii of the plateaus. Since the system is

rotationally symmetric, the function in Eq. (2.7) is also an eigenfunction of Lz, the

angular momentum operator, with eigenvalue of ~(m − n). The eigenfunction in Eq.

(2.7) also satisfies the relationship [36]

~
∫

d2rφ∗(r)Lzφ(r) = ~
〈r2〉
a2 − ~. (2.12)

Here φ(r) is the wavefunction for the system. Thus one can simply find the radii for

the density of fermions as

〈r2〉n = a2
(
µ − 2(n + 1)~Ω

Mωω+

)
. (2.13)

The above relation gives us a result about the density profile which shows that the

difference between areas of two successive plateaus is always constant. In more de-

tail, it is the difference between the square of radius for two successive plateaus and

determined as

r2
n − r2

n+1 = a2
(
2Ω

ω+

)
. (2.14)

We calculate the density sum of fermions in a more explicit form to obtain a better

understanding of the profiles. Here we focus on the lowest Landau Level (LLL), i.e.

when n=0 to avoid the mathematical difficulties in calculating the whole density sum.

Since the density is reduced to sum over the states in LLL we need to obtain the

eigenfunctions for this level. The eigenfunctions in LLL are composed of a Gaussian

multiplied by a polynomial. Then the density related to this level can be written as

ρLLL(r) =

mmax∑

m=0

|φ0m(r)|2

=
1
πa2

mmax∑

m=0

1
m!

(
r2

a2

)m

e
−r2

a2

=
1
πa2

1 − e
−r2

a2

∞∑

mmax

e−ln(m!)
(

r2

a2

)m
 (2.15)

Eventually the sum can be evaluated using the Stirling’s approximation [75], and then

integrating over m gives the final result for density in LLL as

ρLLL =
1

2πa2

[
1 + er f

(
r2/a2 − mmax√

2r/a

)]
(2.16)
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Figure 2.3: Density profile for fermions at different temperatures and at Ω/ω = 0.99.
The layered aspect of the profile is eliminated by temperature.

Note that the error function, er f (x), appearing in equation above ensures that the

contribution of LLL to the density is constant. Ho claims that the densities for higher

Landau levels can be obtained from the LLL density expression and shows that their

contribution to the density is also constant [68]. The density profiles given in the

previous calculations are all calculated at zero temperature. The effects of temperature

on density profiles can be calculated by including the Fermi distribution function as

ρ(x, y) =
∑

nm

|φnm(x, y)|2 1
exp [β(Enm − µ)] + 1

, (2.17)

where β = 1/kBT is the inverse temperature.

We calculated density profiles at finite temperatures by choosing appropriate values

for inverse temperature. The step structure of the density profile is smeared out when

the temperature is high enough kBT ∼ ~ω−, such that thermally excited particles can

occupy a higher Landau level, as can be seen in Fig. (2.3). The calculated density

profiles show that the step structure becomes indiscernible, as the transition regions

between the Landau level steps dominate the profile. For larger temperatures the

profile assumes the gaussian profile as would be expected from a Boltzmann gas.

The results for rapidly rotating fermions in an isotropic harmonic trap will help us to

understand the properties of rapidly rotating fermions in an anisotropic harmonic trap
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which is discussed in the next section.

2.2 Rapidly rotating fermions: anisotropic case

In this section, we consider a system of ultracold Fermi gas in a rotating anisotropic

trap. Density profiles for different control parameters of the system are calculated.

The discussions throughout the section will be limited to behavior in two dimen-

sions. However, before discussing the results for density profiles we will focus on

the physics of switching between one and two dimensional regimes. To extend the

results to the third dimension two limits must be noted; the strong confinement, or a

slowly varying potential along the third dimension [68]. With these conditions satis-

fied, which are also realized in experiments of ultracold atoms the extension to three

dimension could be carried out.

To study the effect of anisotropy on the density of the fermions, it is instructive to

understand the physics of a single particle in a two dimensional rotating anisotropic

trap. We first start with the Hamiltonian describing such a system which can be

written as

H =
1

2M

(
p2

x + p2
y

)
+

1
2

Mω2
xx2 +

1
2

Mω2
yy2 −ΩLz. (2.18)

in the rotating frame. Here M is the mass of the particle, the angular momentum in the

z direction is given as Lz = xpy − ypx, and Ω is the rotation frequency. The trapping

frequencies along the x and y directions are ωx, and ωy, respectively. Without loss of

generality we take ωy ≥ ωx, and refer to the y and x directions as the strongly confined

and weakly confined directions. Since the stability of trapped systems depends on the

rotation frequency, the condition for stability enforce a smaller rotation frequency

with respect to the weak confining frequency Ω ≤ ωx. The eigenenergies of the

system can be obtained by direct diagonalization of Hamiltonian [76] or applying

two successive Bogoliubov transformations [77]

En,m = n~ω− + m~ω+ +
1
2
~(ω− + ω+), (2.19)

where n and m are positive integers. Two different frequency modes in the energy
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expression are defined to be

ω2
± =

1
2

(
ω2

x + ω2
y

)
+ Ω2 ∓

√
1
4

(
ω2

y − ω2
x

)2
+ 2(ω2

x + ω2
y)Ω2. (2.20)

In the isotropic limit, energy eigenvalues are obtained by substituting ωy = ωx = ω,

which results in the simple expression for ω− = ω + Ω, and ω+ = ω − Ω introduced

in the previous section. The frequency modes represent two different motions of the

particle in the trap, which have the form

x+(t) = x0e−iω+t y+(t) = iβ+x0e−iω+t

x−(t) = iβ−y0e−iω−t y−(t) = y0e−iω−t (2.21)

where the anisotropy of single particle orbits are controlled by two dimensionless

parameters

β+ =
ω2

x − ω2
+ −Ω2

2Ωω+

, (2.22)

β− =
ω2
− − ω2

y + Ω2

2Ωω−
,

both of which vary in the [0,1] interval. For the symmetric case β+ = β− = 1 reduces

the equations above to the known motions of a particle in a circular orbit with positive

and negative helicities for plus and minus modes, respectively. The parameters β+,

and β− are determined by a detailed analysis of equations of motion for both plus and

minus modes.

Although the Hamiltonian in Eq. (2.18) seems to be simple, the real-space functions

describing the system were introduced almost recently. Oktel [77] solved the problem

in the limit of fast rotation, and very small anisotropy and obtained the wavefunctions

for the system, but the general wavefunctions was later obtained by Fetter [73]. We

here review the solution in [73] in a relatively detailed fashion (to avoid any confu-

sion and increasing the number of parameters we prefer to follow the notation used

by Fetter in discussed paper). Since the diagonalization of the system by introduc-

ing usual creation and annihilation operators in quantum mechanics for this system

cost considerable algebraic complexity, a canonical transformation is used to solve

the problem. The canonical transformation expresses the Hamiltonian in terms of

new coordinates and momenta which satisfy the same Poisson brackets or commuta-

tion relations. Valatin [78] introduces a useful canonical transformation which gives
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a sum of two independent harmonic oscillators from originally rotating single par-

ticle Hamiltonian in an anisotropic harmonic trap. The canonical transformation is

generated from a generating function involving the old and new coordinates given by

S (x, y; Q+,Q−) = −Mγ

[
λ+λ−Q+Q− +

1
2

(λ2
+ + λ2

−)xy − λ+Q+y − λ−Q−x
]
. (2.23)

Here λ± are dimensionless parameters defined as

λ± =
ω±

ω± + β+β−ω∓
, (2.24)

and γ is a frequency with the definition

γ =
ω2
− − ω2

+

2Ω
. (2.25)

The canonical momenta corresponding to coordinates are obtained from generating

function derivatives [79] as follows

px =
∂S
∂x

py =
∂S
∂y

P+ = − ∂S
∂Q+

P− = − ∂S
∂Q−

. (2.26)

A more detailed calculation give the relations between original coordinates and new

canonical variables as

x = λ+Q+ − P−
Mγλ−

,

y = λ−Q− − P+

Mγλ+

. (2.27)

Now, by substituting the relations above into the Eq. (2.18), the Hamiltonian can be

diagonalized and rewritten in the form

H =
P2

+

2M
+

1
2

Mω2
+Q2

+ +
P2
−

2M
+

1
2

Mω2
−Q2
−. (2.28)

The new Hamiltonian is a sum of two separated harmonic oscillators which is already

diagonalized. By defining the well known creation and annihilation operators for two

parts as

α± =
1√
2

(
Q±
d±

+ i
d±P±
~

)

α†± =
1√
2

(
Q±
d±
− i

d±P±
~

)
(2.29)
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one can write the Hamiltonian in terms of these operators. Here d± =
√
~/Mω±.

Now we can write the ground state eigenfunction for the system in a straight forward

manner as we know from quantum mechanics

φ00(Q+,Q−) ∝ exp
(
− Q2

+

2d2
+

− Q2
−

2d2−

)
. (2.30)

The higher excited states are obtained by applying the creation operators on the

ground state wavefunction. Note that the eigenfunctions are in terms of new coor-

dinates and must be transformed to the original coordinates. Valatin uses the gener-

ating function S (x, y; Q+,Q−) to carry out the transformation [78]. Let us here write

the transformation itself and leave the proof to be done in Appendix A. The relation

φ00(x, y) ∝
∫ ∫

dQ+dQ−e
i
~S (x,y,Q+,Q−)φ00(Q+,Q−) (2.31)

gives the ground state wavefunction in original coordinates. Finally, evaluating the

integral gives the expression for the ground state as

φ00 =
1√
πaxay

exp
[
− x2

2a2
x
− y2

2a2
y

]
exp

{
i
Mxy
~

[
γ

1 + β+β−
− 1

2

(
ω+

β+

+
ω−
β−

)]}
, (2.32)

where ax and ay are the widths of the Gaussian envelope

a2
x =

1 + β+β−
β+

~
Mγ

, a2
y =

1 + β+β−
β−

~
Mγ

. (2.33)

The wavefunctions in the lowest Landau level (LLL) are found by applying the rele-

vant raising operator which are given by

φm0(x, y) =
1√
m!

(c
2

)m/2
Hm

(
ξ+√
2c

)
φ00 (x, y) , (2.34)

where Hm is the mth Hermite polynomial. Here

c =
1 − β+β−
1 + β+β−

. (2.35)

which controls the switching between the one and two dimensional regimes as we

show in the following sections.

The relevant raising operators are applied to the ground state wavefunction, to obtain

the wavefunctions in lowest and higher Landau levels. We suggest a general form for

the wavefunctions in higher Landau levels as

φnm(x, y) =
1√

n!m!
ϕ00(x, y) (2.36)

×
n∑

k=0

[
(−i)n−k 2n−k

(n − k)!
ρn−k dn−k

dn−kξ−
Pn(ξ−)

dn−k

dn−kξ+

Pm(ξ+)
]
,
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where

Pm(ξ±) =
(c
2

)n/2
Hm

(
ξ±√
2c

)
, (2.37)

ξ± are two complex coordinates which control motion in Landau levels

ξ+ =

√
2Mγβ+

~
x + iβ−y
1 + β+β−

, (2.38)

ξ− =

√
2Mγβ−
~

y + iβ+x
1 + β+β−

,

and ρ =
√
β+β−/(1 + β+β−).

It is obviously seen from Hamiltonian Eq. (2.18), that the system is described by two

dimensionless parameters, the anisotropy

ω̃y =
ωy

ωx
≥ 1, (2.39)

and the scaled rotation frequency

Ω̃ =
Ω

ωx
≤ 1. (2.40)

Other quantities can be scaled and non-dimensionalized applying appropriate scal-

ings. In particular, we scaled the lengths by the oscillator length in the x direction

lx =
√
~/Mωx, frequencies by ωx and energies by ~ωx. The calculations in this sec-

tion are also done in dimensionless units.

The wavefunctions introduced above exhibit a remarkable structure. The anisotropic

cloud in the case of rapid rotation becomes almost one dimensional strip [70, 71].

The wavefunction also continuously connects the Hermite polynomials appearing in

wavefunctions of the two dimensional rotating anisotropic system to the usual one di-

mensional oscillator wavefunctions. To be more explicit, in the case of isotropic limit

an mth order zero settles at the origin for the mth wavefunction. With the anisotropy

turned on, the mth order zero immediately breaks up into m first order zeros along the

weak anisotropy direction [77]. As seen in Fig. (2.4), by increasing the anisotropy

of the system the roots of the Hermite polynomial, which is an analytical function

in LLL, are separated. Such a separation of roots causes more anisotropy in density

profile. We discuss the transition between the two and one dimensional regimes in

more details in the next section, by introducing a parameter which corresponds to the

maximum number of states between two successive Landau levels.
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Figure 2.4: Density of fifth wavefunction at different anisotropies, and fixed rotation
frequency, Ω/ωx = 0.99. Increasing the anisotropy breaks up the fifth order zeros in
the origin to row of zeros along the weak trapping direction.
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2.2.1 One and two dimensional regimes

The number of states in a Landau level that have the energy value lower than the en-

ergy of any state in the higher Landau level is a good identifier to discuss the transition

from two to one dimensional regimes. The physical significance of this quantity is

embedded in the energy spectrum of the system given in Eq. 2.19. It would be quite

instructive to look at the energy spectrum of two limiting cases. One is the case for a

system of rotating isotropic trap expressed by

Enm = ~
[(

n +
1
2

)
(ω + Ω) +

(
m +

1
2

)
(ω −Ω)

]
, (2.41)

and the other one is the case for non-rotating anisotropic trap given by

Enxny = ~
[
(nx +

1
2

)ωx + (ny +
1
2

)ωy

]
. (2.42)

The spectra reveal an interesting fact, both have the same structures since they have

been expressed in terms of two non-negative integers. The structure can be graphi-

cally represented by figure 2.1. The number of the states between two levels is tightly

connected to the dimensionality of the systems. The rotating anisotropic trap system

interpolates between these two limits, and we expect that such number could be a

good identifier for this interpolation. Thus, we define

l =
ω−
ω+

, (2.43)

Let us study l in more detail, by demonstrating its behavior in terms of anisotropy,

an important parameter in changing the geometry of the system. Figure 2.5 explic-

itly shows the sort of changes in l as a function of anisotropy, ωy at a fixed rotation

frequency, Ω. It is clearly seen that l has a minimum value at a certain anisotropy. It

starts from its isotropic value

liso =
1 + Ω̃

1 − Ω̃
(2.44)

for ω̃y = ω̃x = 1, and decreases sharply as

l = liso

√
(1 − Ω̃)(ω̃y + Ω̃)

(1 + Ω̃)(ω̃y − Ω̃)
(2.45)

to reach its minimum of lmin =
√

8/(1 − Ω̃2), which occurs at the critical anisotropy

value

ω̃y =
√

1 + 4Ω̃2. (2.46)
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After this point the increase in anisotropy causes an enlargement in the number of

states between two successive Landau levels

l =

√
ω̃2

y + 3Ω̃2

1 − Ω̃2
' ω̃y√

1 − Ω̃2
, (2.47)

which is linear in ωy for large anisotropies.

An important point here is the high degeneracy of the Landau levels in the case of

the isotropic systems. Such a high degeneracy for an anisotropic systems is only

obtained for large asymmetries in trap frequencies. This large degeneracy for the

case of two dimensional regimes is caused by the Coriolis force canceling the trapping

force. This mechanism freezes the kinetic energy of the particles partially, and for a

larger rotation frequency the degeneracy will also increase. However, the case for the

large anisotropy is completely different. In this regime the energy spectrum is like a

subband quantization in a narrow channel where the states in each Landau level have

the same wavefunction along the tightly confined direction.

The form of the wavefunctions also support this identification based on l. For low
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anisotropy the wavefunctions peak around an ellipse in the x − y plane, while in the

one dimensional regime the density in the x direction shows prominent oscillations,

similar to one dimensional harmonic oscillator wavefunctions. Based on the discus-

sions here it is expected that the density of the fermionic system exhibits different

forms in these two regimes, the fact that we show in the next section.

2.2.2 Density Profiles

The procedure for calculating the density profiles is the same as was illustrated in

isotropic case. Here we consider N fermionic atoms which are non-interacting with

the wavefunction known from the previous section. Our task is only to sum over filled

single particle states controlled by the chemical potential. The density is calculated

using Eq. (2.8). The numerical calculations can be done with a very low compu-

tational cost, with high accuracy since the wavefunctions composed of a gaussian

multiplied by Hermite polynomials, benefit the recursive structure also discussed in

previous sections. This enables us to calculate the density profiles up to thousands of

particles rapidly. The parameters can be controlled to obtain the profiles with particles

in the lowest six Landau levels, which are given in Appendix B.

The density profiles are calculated for different values of anisotropy for N = 1000

at fixed rotation frequency Ω/ωx = 0.999, all displayed in figure 2.6. We specially

calculated the density for very small anisotropy, critical value of anisotropy (where l

reaches its minimum value), and for high anisotropy. The profiles show a step struc-

ture for small anisotropy, the same as what we see for the isotropic density profiles,

but here, the disk-like plateaus are now elliptical. However, the step structure is only

observed in Fig. (2.6a). Each plateau corresponds to a Landau level, which are sep-

arated with a small region of switching. We show that these plateaus have almost

constant density proportional to Mγ

2π~ . Since the numerical calculations are given in

dimensionless units, each step in a profile has a density of an integer times γ

2πωx
.

The oscillations in switching between two successive steps exist here but in a more

noticeable form. For small anisotropy values the same behavior is observed, i.e. there

are n oscillations in the density when switching between the nth step and (n + 1)th

steps. However, for higher values of anisotropy oscillations in density along the weak

25



Figure 2.6: Density profiles for fermions at different anisotropy values of the system
and fixed number of the particles N=1000, and fixed rotation frequency Ω/ωx =

0.999. The Friedel oscillations are observed in density profiles of anisotropic cases.
The number of LL’s that fermions fill at each anisotropy can also be determined by
counting the number of plateaus in the density profiles.
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confinement direction become more prominent. The anisotropy also changes the step

structure of the density profiles, smearing out the level structures. The change starts

around the critical anisotropy value, ωyc as seen from Fig. (2.6c) The transition be-

tween Landau levels do not take place with clear steps, but the oscillations become

dominant in profiles. These oscillations are related to sharp cutoffs in Fermi surface

in momentum space. In solid state physics, they are known as Friedel oscillations

[80].

A drastic change happens in density profiles when the anisotropy is very large. In

this limit, the density profiles exhibit new shape of being a gaussian along the strong

trapping direction and a semicircular shape along weak trapping direction. The shape

of density in weak direction is what we know from trapped fermions in one dimen-

sion. In the step structure one can easily count the number of Landau levels filled,

and here now can determine Landau levels with the semicircular shape of each level

in the density profile. This fact is obviously seen in Fig. (2.6e).

The change in the shape of density profiles when switching from two dimensional to

one dimensional regime can be seen for a profile with only one level filled, which nat-

urally is the LLL. We choose a small number of particles with respect to the previous

calculations to ensure that the particles settle only in LLL for any anisotropy of the

system. As seen in Fig. (2.7), the plateau form of density for the LLL changes to be

semicircular. The Friedel oscillations are also observed to be more prominent when

the anisotropy is increased. Again, the changes in the shape of the density and also in

the oscillations starts around the critical anisotropy value.

The analytical investigation of density sum Eq. (2.8) may help us to understand the

different aspects of profiles in more detail. To avoid the algebraic complexities we

focus on the case that all the atoms settle in the LLL. Then, we write the density sum

for N fermions which is explicitly

ρ(x, y) =

N∑

m=0

|φ0m(x, y)|2 (2.48)

=
1

πaxay
e−x2/a2

x−y2/a2
y

N∑

m=0

1
m!

(c
2

)m
Hm(

ξ̄+√
2c

)Hm(
ξ+√
2c

).

We concentrate in the limit N → ∞, which enables us to evaluate the sum using
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Figure 2.7: Density profiles of fermions at different anisotropy values of the sys-
tem and fixed number of the particles N=200, and fixed rotation parameter Ω/ωx =

0.9999, when all the fermions are settled at the LLL. The Friedel oscillations are also
observed for density profiles of anisotropic cases.
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the generating function for Hermite polynomials. We now rewrite the sum in a more

compact form defining z = ξ+/
√

2c, then we have

S (z̄, z) =

∞∑

m=0

1
m!

(c
2

)m
Hm(z̄)Hm(z). (2.49)

Since the sum is composed of two Hermite polynomials, in which one is the com-

plex conjugate of the other, we use the generating function for Hermite polynomials

regarding t = |t|eiθ to be a complex variable

e−
c
2 t̄2+

√
2ct̄z̄e−

c
2 t2+

√
2ctz =

∞∑

m

Hm(z)
m!

tm
(c
2

)m/2 ∞∑

n

Hn(z̄)
n!

t̄n
(c
2

)n/2
, (2.50)

An integration helps us to eliminate the extra terms and also one of the sums to obtain

the same infinite sum introduced in density expression. Then the right hand side could

be written as
∞∑

m,n

1
m!n!

Hm(z)Hn(z̄)
(c
2

)m+n
2

∫ ∞

0
d|t|2|t|e−|t|2 |t|m+n

∫ 2π

0

dθ
2π

ei(m−n)θ, (2.51)

which is exactly the infinite sum we need. Then we just need to evaluate the integral

in the left hand side

S (z̄, z) =

∫ 2π

0

dθ
2π

∫ ∞

0
d|t|2|t| exp

[
−c

2
(t̄2 + t2) +

√
2c(t̄z̄ + tz) − |t|2

]
. (2.52)

One may do a change of variables in order to evaluate the resulting Gaussian integral.

Defining new variables a, and b through t = a + ib and integrating over a, and b

S (z̄, z) =
1√

(1 − c)(1 + c)
exp

[1
2

c
1 − c

(i(z − z̄))2
]

exp
[1
2

c
1 + c

(z + z̄)2
]
, (2.53)

and by replacing the z = ξ+/
√

2c and using relation Eq. (2.38) for ξ+ the sum can be

evaluated which gives a constant denisty

ρ(x, y) = ρ0 =
1√

1 − c2

1
πaxay

=
Mγ

2π~
. (2.54)

Through the numerical calculations we observe that the density of the Landau lev-

els is an integer times this constant value. The parameter γ controls the density of

plateaus which goes to its isotropic value up to the first order approximation in eval-

uating the er f function appeared in Eq. (2.16) around the center of the cloud. Note

that the isotropic value for γ is obtained from Eq. (2.25) which is γ = 2ω. For small

anisotropies the density reaches the value above quickly, even for small number of
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particles since the contribution to the density around the center from higher wave-

functions is very small. In the case of large anisotropy, the cloud goes through two

very different paths to reach the constant density, with prominent oscillations. As

we discussed above the presence of these oscillations are related to a sharp cutoff in

the Fermi surface of fermions in momentum space, but they are suppressed in two

dimensional regime as locally the maximum allowed density within a Landau level

is reached. The frequency of the Friedel oscillations can be obtained with a simple

scaling argument. We define two finite sums of Hermite polynomials which are only

different in the c parameter,

S N(a, b, ci) =

N∑

n=0

Hn(z̄)Hn(z)
2nn!

cn
i , (2.55)

where i = 1, 2, and z = a + ib. From the infinite sum Eq. (2.53) we can assume that

two finite sums to be related

S N(a, b, c2) �

√
1 − c2

1

1 − c2
2

S N

(√ (1 + c1)c2

(1 + c2)c1
a,

√
(1 − c1)c2

(1 − c2)c1
b, c1

)
, (2.56)

for sufficiently large number of particles, i.e. N � 1. It allows us to choose c1

arbitrarily close to one,

S N(a, b, c1) =

N∑

n=0

Hn(z̄)Hn(z)
2nn!

cn
1

≈
N∑

n=0

Hn(z̄)Hn(z)
2nn!

= S N(a, b, 1), (2.57)

provided that (1 − c1)N � 1, or for a rapidly rotating trap. Here we have a sum over

two orthogonal functions, and using the Christoffel-Darboux formula [81] the sum

may be calculated exactly,

S N(a, b, 1) =

N∑

n=0

Hn(z̄)Hn(z)
2nn!

=
HN+1(z̄)HN(z) − HN+1(z)HN(z̄)

2N+1N!(z̄ − z)
. (2.58)

The exact evaluation along with a scaling assumption leads us to a relationship for

the wavevector of the Friedel oscillations near the center of the trap

ρ(x, y = 0) = ρ0

(
1 + (−1)N 1

4N
cos(kF x)

)
, (2.59)
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Figure 2.8: (a) Density for N=200 fermions at Ω/ωx = 0.9999, and ωy/ωx = 1.5. (b)
Density for N=200 fermions at Ω/ωx = 0.9999, and ωy/ωx = 5. The insets in both
figures highlight the Friedel oscillation in density profiles of the fermions.
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with

kFlx =
√

8N/ωx

√
ω+ + ω−β+β−. (2.60)

The local density approximation (LDA) is a useful tool to investigate the density

properties of the system when we have a smooth external potential. In the case of

isotropic trap one can describe the system with the Hamiltonian Eq. (1.20). The

first term in the Hamiltonian corresponds to a density with a step structure, each step

with a constant contribution of MΩ/π~. For a rapidly rotating gas the second term,

an effective potential, could be supposed to be a slowly varying potential and can be

absorbed inside the chemical potential [68]. However, in the case of anisotropic trap,

to treat the different behavior of the system we need two different version of LDA,

one dimensional LDA (1DLDA), and two dimensional LDA (2DLDA).

The two dimensional regime is the same as the isotropic case, since the effective po-

tential in either strong and weak trapping directions are varying slowly over the range

of magnetic length defined by rotation. Such conditions provide us the possibility of

treating the system locally homogenous. As we described above each Landau level

contribute to the density with a constant value, then the local density in each point

will be given by

ρ(x, y) = k
MΩ

π~
, (2.61)

where k itself is defined as

k =
∑

Θ
[
µ − M/2(ω2 −Ω2)r2 − (2n + 1)~Ω

]

= Int
[
µ − M/2(ω2 −Ω2)r2 + ~Ω

2~Ω

]
. (2.62)

One may need the useful identity

∑

n

Θ [α(x − n)] = Int[x + 1], (2.63)

to evaluate the sum, where x, and α are positive definite. The numerical calculations

for 2DLDA are illustrated in figure 2.9a.

By increasing the anisotropy, the system undergoes a transition from two dimensional

regime to an almost one dimensional regime, losing the step structure in density pro-

files. In this regime the system can not be described by 2DLDA in a correct manner
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Figure 2.9: (a) Density of N=550 fermions obtained by direct numerical calculations
(solid line), and two dimensional LDA (dashed line) at Ω/ωx = 0.999, and ωy/ωx =

1.05. (b) Density of N=200 fermions obtained by direct numerical calculations (solid
line), and one dimensional LDA (dashed line) at Ω/ωx = 0.9999, and ωy/ωx = 3.5.
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since the effective potential is not smooth along the strong confining direction. Thus

we need a different approach to treat the density in this regime. The 1DLDA lead us

to the semicircular profiles for the atoms along the weak trapping direction,

ρ(x, y = 0) = ρ(0, 0)

√
1 − x2

L2 . (2.64)

Here, L is the radius of the cloud and is defined by

L/lx =

√
2µ/~ωx − ω−/ωx

1 − Ω̃2
. (2.65)

the results for the 1DLDA is shown in Fig. (2.9b), in which the approximation intro-

duces the density profile in good agreement with the exact solution. The description

nicely illustrates the density profiles for higher anisotropy values, but the Friedel

oscillations are absent. The agreement in the density of the numerically calculated

profiles from exact solutions and the one from 1DLDA support our interpretation of

the sub-bands formed by the quantization in the strong trapping direction for highly

anisotropic Landau levels.

2.2.3 Temperature effects

In order to add the effect of temperature we use the Fermi distribution function as we

did in isotropic case. We recall Eq. (2.17) to calculate the density profiles at finite

temperatures. Choosing the appropriate temperature values in our calculations, we

investigate the effect of temperature on structure of profiles, which are shown in figure

2.10. We expect from isotropic case that the temperature around the gap between

two landau levels, kBT ∼ ~ω−, smears out the step structure in two dimensional

regime. However, in the case of one dimensional regime, a low temperature also

cause changes in density of fermions. As soon as the temperature is turned on, Friedel

oscillations are smeared out since the energy scale related to the Friedel oscillations is

the small value of ~ω. The higher temperature values make the density profiles more

smooth. For both one and two dimensional regimes at room temperature a gaussian

profile is observed, the structure that we expect from a Boltzmann gas.
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Figure 2.10: (a) Density profile for fermions at different temperatures and at Ω/ωx =

0.99, and ωy/Ωx = 3.5. (b) Density profile for fermions at different temperatures and
at Ω/ωx = 0.99, and ωy/Ωx = 1.01. The oscillations (a) and the layered aspect of the
profiles (b) are eliminated by temperature. Here β = ~ωx

kbT is the normalized inverse
temperature.
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CHAPTER 3

VORTEX LATTICES OF RAPIDLY ROTATING

BOSE-EINSTEIN CONDENSATES

One of the most important properties of Bose-Einstein condensates is their response to

the rotation. The rotation in Bose condensates gives rise to the existence of quantized

vortices. An interesting property of vortices is their desire to form lattices when the

rotation is fast enough, due to the interactions between atoms. The property that is

also observed in superconductors with a lattice of magnetic quantized fluxes, called

the Abrikosov lattice. In the case of a Bose condensate composed of atoms occupying

the same hyperfine states (one component Bose gas), the lattice is the same as the

Abrikosov lattice for superconductors [36], which is known to be a hexagonal lattice

[82]. However, the number of components as well as the quality and sort of the

interactions introduce new types of vortex lattices [37, 38, 39]. Then it will be helpful

to study the effect of interactions on vortex lattice in the limit of fast rotation. The

effect of interactions are not only limited to the creation of new type of vortices, but

it is also known that the inter-particle interactions play an important role in stability

and dynamics of the condensates [11, 32].

Another feature of ultracold atoms that enriches this field is the existence of relatively

strong long range dipolar interaction. The magnetic moment of condensates of alkali

atoms is very weak (µ = 1µB) with respect to the contact interaction. However,

the magnetic trapping of atomic chromium [83], which has higher magnetic moment

(µ = 6µB), and then observation of Bose-Einstein condensation of chromium [84]

caused new experimental and theoretical efforts in this field. The long range character

of this interaction also opens new horizons for researchers in the investigation of
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different quantum phases. Based on these facts, along with the researches on general

properties of the dipolar condensates, such as ground state [85], dynamics [86], and

stability [87, 88, 89], the investigations on realization and control of different quantum

phases in condensates with dipolar bosons [90, 91] are at the center of attention.

The effects of interactions on vortex lattices in rotating Bose gases have also been

investigated extensively [36, 37, 38, 39]. It is now well known that the formation of

different lattice types depends on the strength of interactions between particles. New

types of vortex lattices have been found as a result of interactions between atoms

[37, 38], and researchers are still seeking new types of lattices.

The properties of the single and two component rotating Bose-Einstein gases have

been studied analytically by Ho and Mueller [36, 37]. They show that the vortex

lattices differ under s-wave interaction and also new types of lattices rather than the

triangular lattice are determined because of this interaction between like and unlike

atoms. The method developed in [37] has been successfully used to investigate the

excitations [92], dipolar condensates [38], and also more complicated Bose systems

[93]. It is shown in [38] that the dipolar interaction along with s-wave interaction also

result in a new vortex lattice for one component Bose-Einstein condensate. Drastic

changes caused by dipolar interactions in fast rotating condensates [38, 39] motivated

us to study multi-component condensates with dipolar interactions.

In this chapter, the vortex lattice structures of two component Bose-Einstein conden-

sates with magnetic dipole-dipole interaction in the limit of large number of vortices

are investigated. The details of the method used to determine the type of vortex lat-

tices are given in the next section. Finally, a phase diagram which describes the

structure of lattices in terms of long-range dipolar interaction and short-range contact

interaction strength is presented. The detailed discussions of the different phases and

also the limits of single component with dipolar interaction [38] and two component

gas without dipolar interaction [37] are also given in this chapter.
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3.1 Mean field quantum Hall regime

The first attempts to understand the physics of rapidly rotating ultracold atoms re-

vealed the connection between very fast rotating atomic gas and quantum Hall effect

[30, 31]. The description was implied to a Bose-Einstein condensates with large num-

ber of vortices by Ho [36]. The importance of this regime is that the system is exactly

solvable in this limit which allows one to do the calculations analytically. In this sec-

tion we will review in detail the properties of condensates in quantum Hall regime

which is mainly carried out in [36].

We first consider a system of Bose-Einstein condensate in a three dimensional har-

monic trap. The system can be described by the Gross-Pitaevskii energy functional

which gives the wavefunction of the condensate, when the total number of particles

is constant. Thus we need to write the energy functional for the condensate in an

isotropic harmonic trap with a frequency of ω, and rotating at angular frequency Ω

around z axis

E[Ψ(x)] =

∫
d3xΨ∗(x)

[
P2

2M
+

1
2

Mω2R2 −ΩLz

]
Ψ(x) +

1
2

g
∫

d3x|Ψ(x)|4, (3.1)

where R and P are three dimensional position and momentum operators, respectively.

Before starting the minimization of the energy functional with the given condition it

is useful to explore some important properties of the system. The main feature of this

system is the similarity between the Hamiltonian of the rotating particles in a trap

and a two dimensional electron gas subjected to a strong uniform magnetic field. The

single particle Hamiltonian appearing in the first integral of energy functional can be

expressed in a different way to see this similarity in more explicit form.

H =
P2

2M
+

1
2

Mω2R2 −ΩLz (3.2)

=
1

2M
(p − MΩ × r)2 +

1
2

M(ω2 −Ω2)r2 +
p2

z

2M
+

1
2

Mω2z2.

Here p = (px, py), r = (x, y), M is the mass of the particle, and Lz is the angular

momentum in the z direction. The equivalence of two systems is obviously seen

in the second form of the Hamiltonian, which describes a charged particle, q, in an

effective magnetic field with a vector potential of A = M
q Ω × r. This part of the

Hamiltonian can be diagonalized applying two successive canonical transformations,
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which is shown in chapter 2 in detail. The energy eigenvalues of the system can be

found which have the form

Emn = ~(ω + Ω)n + ~(ω −Ω)m + ~ω, (3.3)

where n ≥ 0 labels the Landau levels and m ≥ 0 counts the sublevels in each Landau

level. The corresponding eigenfunctions of the system are introduced in Eq. (2.7).

In the limit of very fast rotation i.e. ω − Ω is very small in Eq. (3.3), one can easily

see that two successive Landau levels are separated by 2~ω. Moreover, in this limit

the centrifugal force MΩ2r nearly cancels the trapping force Mω2r. As a result, the

condensate almost becomes a flat cloud. The area occupied by the atoms increases

which gives a smaller density n for the system [94]. A smaller density means a smaller

interaction term and when the rotation is fast enough, or correspondingly when the

interaction energy is sufficiently small gn � ~ω, the system fills now the highly

degenerate n = 0 level, the well known LLL [30, 31, 36]. Abrikosov shows that

the wavefunction in this limit can be written as a linear combination of single particle

eigenfunctions, ψ0m = ψm [95]. Then for an assembly of cold identical bosons rotating

at frequency Ω ,

Ψ(r) =
∑

m

cmψm (3.4)

=
∑

m

cmumexp
[−r2

2a

]

= f (u)exp
[−r2

2a

]
.

Here f (u) is a polynomial (an analytical function of u), and u = x + iy.

The LLL description of the Bose-Einstein condensation in fast rotation provides the

groundwork to study the vortex structures of condensates analytically. The polyno-

mial in the wavefunction can be written in accordance with the fundamental theorem

of algebra as

f (u) =

m∏

i

(u − ui), (3.5)

where ui’s are the zeros of the polynomial. These zeros are the position for the vor-

tices as f shows a phase change of 2π when u encircling ui, since they are complex

variables. It is supposed that the zeros of Ψ which are the zeros of f (u) form an infi-

39



nite lattice. Our task is to find the structure of the vortex lattices which minimize the

energy functional with respect to wavefunction Ψ.

3.2 Vortex lattices of dipolar two component Bose-Einstein condensates

In this section, we consider a disk-shape two component Bose-Einstein condensate

with contact and dipolar interactions, which is subjected to rapid rotation. Each com-

ponent can be considered as a different hyperfine state of the same atom. The trap

geometry is important in determining the nature of interaction. For disk shape con-

densates the atoms are settled side by side, additionally we assume that the magnetic

dipoles are aligned in the same direction. Thus the dipole-dipole interaction between

atoms is repulsive. The vortex structures are calculated by minimizing the energy

based on works done by Ho and Mueller [36, 37]. By changing the strength of the

interactions we observe that the vortex lattices go through different structural phase

transitions. Since the system is subjected to two different interactions, it is difficult

to interpret the effect of interaction on vortex structure. However the results of works

done in [37, 38] makes the interpretation a little bit easier. We show that the results

give the vortex structures in the limit of the two component regime studied in [37]

and one component regime with dipolar interaction handled in [38].

We consider that the components of the condensate are described with a wave function

Ψi, where i = 1, 2. The condensate is rotated at a fixed rotation frequency Ω, which

is fast enough to consider the mean field quantum Hall regime. The Gross-Pitaevskii

energy functional of the system is:

E[Ψ] =
∑

i=1,2

∫
d2rΨ∗i

[−~2

2M
∇2 +

1
2

mω2r2 −ΩLz

]
Ψi + Es + Ed, (3.6)

where Lz is the angular momentum along the rotation direction, and Es and Ed are the

scattering and dipolar interaction energies, respectively. These energies are defined
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Figure 3.1: Dipole-dipole interaction.

as

Es =
1
2

∑

i=1,2

gi

∫
d2r|Ψi|4 + g12

∫
d2r|Ψ1|2|Ψ2|2,

Ed =
∑

i=1,2

µ2
i

∫
dr1dr2|Ψi(r1)|2V(r1 − r2)|Ψi(r2)|2

+ µ1µ2

∫
dr1dr2|Ψ1(r1)|2V(r1 − r2)|Ψ2(r2)|2, (3.7)

where gi = 4π~2ai/M and g12 = 4π~2a12/M are the the s-wave interaction coupling

constants between like and unlike atoms, respectively, and µi’s are the magnitudes of

magnetic dipole moment of each component. The magnetic dipole-dipole interaction

is given by expression

V(r1 − r2) = −µ0

4π
3(m1 · e1)(m2 · e2) −m1 ·m2

|r1 − r2|3 , (3.8)

where m1 and m2 are unit vectors in the direction of magnetic dipoles µ1 and µ2.

Here e1,and e2 are the unit vectors parallel to r12, the line joining the centers of the

two dipoles. Figure 3.1 illustrates the picture explicitly. Here we assume that the

magnetic dipoles are parallel to each other, and perpendicular to r12. In this case the

magnetic dipole interaction has a simple expression given by

V(r1 − r2) =
µ0

4π
1

|r1 − r2|3 . (3.9)
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The wavefunction of each component is normalized such that∫
d2r|Ψi|2 = Ni, (3.10)

where we assume that the densities for both components are equal. Moreover, we

assume that for the s-wave interactions g1 = g2 , g12, and for the dipolar interactions

µ1 = µ2. For a two component Bose gas in which both components are subjected

to the same rotation frequency, vortex lattices have the same structure, but one is

shifted with respect to another. Then the wavefunctions for both components can be

introduced by two basis vectors and one relative displacement vector. We assume

that the B1 and B2 are the basis vectors of the infinite lattice, and r0 is the relative

displacement of the vortices of different kind. The area of the unit cell is

vc = |B1 × B2|. (3.11)

It is shown that that |Ψ(r)|2 can be written as a product of a gaussian and a function

g(r) which is periodic under lattice transformation [36]

|Ψ(r)|2 = Ae
−r2

σ2 g(r). (3.12)

Here σ is related to the number of the vortices and is given by
1
σ2 =

1
a2 −

π

vc
. (3.13)

Using Fourier transform, g(r) is written as

g(r) =
1
vc

∑

K

gKeiK·r, (3.14)

where K’s are the reciprocal lattice vectors. From the normalization of Ψ one can

obtain

|Ψ1|2 =
1
πσ2

∑

K

g̃KeiK·re
−r2

σ2 , (3.15)

|Ψ2|2 =
1
πσ2

∑

K

g̃KeiK·(r−r0)e
−r2

σ2 , (3.16)

g̃K =
gK

∑
K′ gK′e

−σ2K′2
4

. (3.17)

The presence of |Ψ|4 and |Ψ1|2|Ψ2|2 in the energy function leads to the definition of

quantities

I = πσ2
∫

d2r|Ψi|4

I12 = πσ

∫
d2r|Ψ1|2|Ψ2|2, (3.18)
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to write the energy in a more compact form. One can obtain I’s using the expression

for |Ψi|2’s

I =
∑

K,K′
g̃K g̃K′e

−σ2 |K+K′ |2
4 , (3.19)

I12 =
∑

K,K′
g̃K g̃K′e−iK·r0e

−σ2 |K+K′ |2
4 . (3.20)

To obtain the lattice types we need to minimize the energy functional with respect to

lattice basis vectors. Thus we need to express gK’s in terms of the length of the basis

vectors. In order to obtain such expressions we introduce a complex representation

for the basis vectors, bi = (x̂ + iŷ) · Bi. If we choose the lattice vectors such that B1

lies on the x-axis, then b1 will be real

B1 = b1x̂ , B2 = b1(ux̂ + vŷ), (3.21)

b2 = b1(u + iv), (3.22)

Then the area of the unit cell is

vc = |B1 × B2| = b2
1v. (3.23)

We substitute the periodic part of the wavefunction with the Jacobi theta function

which has the exact zeros of the analytical function f (u)

f (u) = Θ(ζ, τ)eπu2/2vc , (3.24)

where ζ = u/b1 and τ = b2/b1. Using the expression for the theta function the Fourier

coefficients are derived to be [37]

gK = (−1)m1+m2+m1m2e
−vc |K|2

8π

√
vc

2
,

vcK2 =

(
2π
v

) [
(vm1)2 + (m2 − um1)2

]
, (3.25)

where K = m1K1 + m2K2, and m1 and m2 are integers. Here K1, and K2 are the basis

vectors of the reciprocal lattice and are given by

K1 =
2π
vc

B2 × z

K2 =
2π
vc

z × B1. (3.26)
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Noting that we deal with a large number of vortices, the expression for I and I12 take

more simple forms of

I =
∑

K

|gk

g0
|2 , I12 =

∑

K

|gk

g0
|2 cos K · r0. (3.27)

The s-wave interaction energy then has the form

Es =
gn2

πσ2 (I +
g12

g
I12). (3.28)

Following similar steps for the dipolar part of the energy expression, and also assum-

ing that µ1 = µ2 = µ, we obtain

Ed =
µ0µ

2

4π
n2

(πσ2)2

∑

K

|gK

g0
|2(1 + cos K · r0) (3.29)

×
∫

d2r1d2r2eiK·(r2−r1) e
−(r1+r2)2

σ2

|r1 − r2|3 .

We do a transformation to the center of mass coordinates, writing the dipole inter-

action energy in terms of the relative displacement r = r2 − r1 and center of mass

coordinate 2R = r1 + r2, then integrating with respect to R we have

Ed =
n2µ0µ

2

8π2σ2

∑

K

|gK

g0
|2(1 + cos K · r0)

∫
d2r

eiK·r0

r3 e−r2/2σ2
. (3.30)

This leads to a radial integral for the energy expression as

Ed =
n2µ0µ

2

4πσ2

∑

K

|gK

g0
|2(1 + cos K · r0)

∫ ∞

0
dr

1
r2

[
J0

(
Kr

)
e−r2/2σ2]

. (3.31)

There is a problem in evaluating the integral with respect to r when it approaches

zero. To solve this problem we define a cutoff Λ and write the integral as

Ed =
n2µ0µ

2

4πσ2

∑

K

|gK

g0
|2(1 + cos K · r0) (3.32)

×
{

1
Λ

+

∫ ∞

0
dr

1
r2 [J0(Kr)e−r2/2σ2 − 1]

}
.

Since we work in the limit of the large number of the vortices, we can neglect the

gaussian term and make a change of variables to write the expression in a simple

form

Ed =
n2µ0µ

2

4πσ2

∑

K

|gK

g0
|2(1 + cos K · r0)

{
1
Λ

+ K
∫ ∞

0

dx
x2 [J0(x) − 1]

}
(3.33)
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with an integral appearing in the energy expression, which is only equal to −1. Then,

the full interaction energy can be written as

Eint =
n2µ0µ

2

4πσ2a
[
αI + βI12 − D)

]
, (3.34)

where

D =
∑

K

|gK

g0
|2Ka(1 + cos K · r0)

α =
4ga
µ0µ2 +

a
Λ

β =
4g12a
µ0µ2 +

a
Λ
. (3.35)

3.2.1 Vortex pattern

We obtain a variety of vortex lattice types as a function of parameters α and β by

minimizing the energy in Eq.(3.34) numerically. The lattices are determined in the

unit of basis vectors B1 and B2 and also r0 = aB1 + bB2. Lattice structures can

be specified in terms of aspect ratio τ and lattice angle θ such that u + iv = τeiθ.

We introduce a phase diagram for the lattice types as a function of the α and β in

Fig. (3.2). The new types of vortex lattices are obtained which can be described

as overlapped square and overlapped rectangular lattices. We expect that the phase

diagram includes the lattice types for two component Bose gas studied in [37] when

the dipolar interaction vanishes, and also the regime for the single component Bose

gas with dipolar interaction studied in [38], when we ignore the differences between

atoms of different species.

Since dipole-dipole interaction is the same between like and unlike atoms, in the en-

ergy expression Eq. (3.34) α, and β can be interpreted as the energy contribution for

intra-component and inter-component interaction, respectively. The α part contains

g, thus it dominantly governs the behavior of each component inside. Since α could

be negative, it is important in the collapse of the condensate. It is known that the con-

densate may collapse for strong attractive interaction. The β part which contains g12,

determines the behavior of the two components with respect to each other. Although

the third part, i.e. D, is positive definite, with its minus sign in the expression there is

always an attractive part inside the energy.
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Figure 3.2: Phase diagram showing lattice structures for different values of interac-
tion terms α,and β. Here, C corresponds to collapse region, and IR, IS, IO, IT, OR,
OT, and OS stand for interlaced rectangular, interlaced square, interlaced oblique, in-
terlaced triangle, overlapped rectangular, overlapped triangle, and overlapped square,
respectively. The inset figure indicates the region for overlapped square lattices, a
new type of lattice structure for rotating Bose condensates.
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Adjusting the strength of parameters α, and β, also enables us to control the switching

between the regime of dominated dipolar condensate and the regime of ordinary two

component condensate. One can easily conclude from Eq. (3.34) that for small values

of α and β the dipole-dipole interaction is the dominant part, however for large values

of α and β, the contact interaction dominates.

For large α, and β, the last term D can be ignored and lattice structures are determined

by their ratio. Thus the work reduces to the minimization of the term

J = I +
β

α
I12. (3.36)

The behavior is similar to ordinary two component BEC energy expression introduced

in [37] (see figure 3.3a).

In the case of the dipole-dominant regime and when g = g12, the two component gas

behaves like a one component gas. Thus the problem reduces exactly to the system

studied in [38] for which the interaction energy is

Eint =
n2µ0µ

2

2πσ2a
[αI − D)] . (3.37)

For this case we obtained the vortex structures introduced in [38] (see figure 3.3b).

The detailed analysis of the different aspects of introduced phase diagram is given in

the following parts.

i) The dominant attractive interaction causes the condensate to collapse for α < 1.25.

The condensate collapses even for large β values, since it is not an important factor in

determining the stability of each component inside.

ii) For α > 1.25, and β < 1.25, the inter-component attraction is strong enough to

overcome the dipolar repulsion between unlike atoms which result in overlapped lat-

tices. By increasing α, the vortex structures undergo structural phase transition from

overlapped rectangular to overlapped square lattice and then to overlapped triangular

lattices since α values, as α is the dominant part in determining the lattice structures

for each component.

iii) For 1.25 < α < 3.70 and 1.25 < β < 3.70; the comparison of these two parameters

determines the position of lattice points of one species with respect to another species.
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Figure 3.3: The parameters indicating the type of lattice structures as a function of
interaction interaction terms α, and β. The phase diagram is reduced to different
regimes: (a) The limit for ordinary two component condensate. (b) The limit for
dipolar single component condensate. Here τ and, θ are the lattice parameters and
define the lattice structure, and a, indicates the displacement of the lattice structures
of one species with respect to another species.
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In this region, when α < β interlaced rectangular lattice forms. On the other hand,

when α > β, overlapped lattice form.

iv) When α ≥ 3.70 and β ≥ 3.70, only interlaced lattices exist in the phase diagram.

This is an expected result as inter-component interaction is not attractive any more.

The repulsive forces between two different species cause the minima of one type to

move to maxima of another type. In this region by increasing α the structures of the

lattices changes from interlaced rectangular to interlaced square, oblique, and finally

triangle lattices.

We expect that the phase diagram to also cover two regimes studied in [37, 38]. For

such limits, two different cut lines can be taken on the phase diagram; α = constant

line, and α = β line, which are expected to give the ordinary two component, and

single component dipolar condensates, respectively. Note that if we fix α and change

β, it corresponds to the variation of g12, and α = β means that g = g12 and as dipolar

interaction exists the situation is like one component condensate with dipolar interac-

tion. Minimization along these lines is shown in Fig. (3.3).

In the case of ordinary two component limit, the cut line gives us all the phases ob-

served in [37] (see figure 3.3a). The interlaced rectangular, square, oblique, and tri-

angle and overlapped triangle lattices are obtained for this part. When α = β also we

observe the same vortex lattices which have been determined for the single compo-

nent Bose gas with dipolar interactions (see figure 3.3b). The results for this case are

a little complicated, then we illustrate them in a more explicit manner

a) α > 4.54: In this region, the triangle vortex lattices are observed, but it is not easily

seen in the figure. The two component gas forms interlaced rectangular lattices, but

the combined lattices form triangular lattice together when one ignores the difference

between unlike species, as g = g12. It is easy to observe this in figure 3.4 for IR

(interlaced rectangular) lattices.

b) 4.1 < α < 4.54: In this region, square lattices are observed. The atoms of both

gases form interlace square lattices and when the atoms are taken to be same the com-

bined lattices again form square lattices.

c) 3.73 < α < 4.1: In this region, the resulted vortex lattices are determined to be

rectangular under dipolar interaction. The two component gas forms interlace oblique
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Figure 3.4: Lattice structures for dipolar two component condensates. Black and gray
dots corresponds to vortices of two condensates.
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lattices but the combined lattices form rectangular lattices when the atoms are taken

to be the same. This lattices also are clearly seen in figure 3.4 for IO lattices.

d) 2.02 < α < 3.73: Since the lattice structure for two component condensate is over-

lapped triangles in this region, the combined lattices are also triangular.

e) 1.92 < α < 2.02: In this region square lattices are formed when the differences be-

tween species are ignored. The lattice structure for two component gas is overlapped

square.

f) 1.12 < α < 2.02: The resulted lattices are determined to be rectangular, as the

original lattices are also overlapped rectangular in the case of two component dipolar

gas.

g) α < 1.12: In this region condensate collapses.
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CHAPTER 4

SUMMARY AND CONCLUSION

In this study we investigate the properties of trapped atoms subjected to rapid ro-

tations. The study is divided into two distinct parts, one for fermions another for

bosons. In the case of a Fermi gas we explore the density structure of non-interaction

cold atoms when are rotated rapidly. on the other hand, for rapidly rotating Bose con-

densate, we search for new lattice structures in the presence of contact and dipolar

interactions.

First, The density structure of Fermi gases in a rotating traps are investigated. We

focus on anisotropic trap case, in which two distinct regimes depending on rotation

frequency and anisotropy are observed. Two regimes can be illustrated by a simple

description of maximum number of states between two Landau levels, which are sep-

arated from each other by a minimum point, ωyc in the this description. For small

anisotropy values, when ωy � ωyc, the density profiles show a step structure each

step is demonstrated by an elliptical plateaus. Each plateau represents a Landau level

with a constant density. The local density approximation describe the two dimen-

sional regime with a perfect similarity in structure of fermion density. The case for

one dimensional regime is a little different from the two dimensional case. For large

anisotropy values, ωy � ωyc, the Friedel oscillation is the dominant aspect of the

density profiles. The density profiles show gaussian structure along the direction of

strong trapping, with a semicircular forms with prominent oscillations along weak

confining direction. Again, the system is nicely described by local density approxi-

mation in this regime. A smooth crossover between two regimes is observed, with a

switching from a step structure profile to a soft edge transition with Friedel oscilla-

tion. At finite temperatures, the step structure are smeared out in two dimension. In
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one dimensional regime the Friedel oscillations are cleaned as soon as the temperature

is turned on.

The smooth switching between two regimes is present in the nature of the wavefunc-

tions for the rotating anisotropic trap. Such smooth transition provides a mapping

between states of two dimensional system to the one dimensional system. The study

can be extended to the case of interaction Fermi, or even Bose gases to investigate the

properties of states in an extremely elongated trap.

The cooling of fermions during the experiments is one of the major difficulties in the

study of cold Fermi gases in the labs, since the fermionic atoms are non-interaction

[60, 61, 62, 63, 64, 65]. However, the observation of some properties, like step

structure of fermion in rotating traps is within the capability of current experiments.

The other issue about the experimental possibility of our system is the usual use of

isotropic traps for cooling and rotating atoms. nevertheless, the implementation of the

rotating process with anisotropic trap [69], lights the hopes of experimental demon-

stration of the system discussed in this study.

The density profile measurements are carried out by the method of expansion imag-

ing. This method enable us to observe the main aspects of the density profiles such

as the step structure of two dimensional rotating Fermi gas or the semicircular profile

of a fermionic gas in a rotating highly anisotropic trap. However, the more detailed

features, such Friedel oscillations needs a more complicated methods such as Bragg

spectroscopy [96].

It also worth to remark that the addition of the interaction to the system would be

interesting. Specially, the presence of relatively strong dipole-dipole interaction in

some atomic gases [84] makes it more favorable to study the effect of such interaction

on the density profiles.

The second part of the study is devoted to the investigation of different lattice struc-

tures in two component Bose condensates subjected to very fast rotation, this time in

the presence of interactions. The bosonic atomic gases enjoy the presence of contact

interactions. Moreover, the observation of dipole-dipole interaction in atomic gases

[84] improves the richness of the system.
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We explore the existence of new vortex lattice structures for dipolar two component

condensates scanning a wide range of interaction strengths. We introduce a phase

diagram as a function of intra and inter-component interactions showing different

type of vortex lattice structures. New type of lattice structures, overlapped square

and overlapped rectangular, are determined as a result of dipolar interactions and

s-wave interaction for two component condensate. The region where the attractive

inter-component interactions dominates the repulsive once, the overlapped lattices

are formed. The intra-component interactions, which defines the behavior of each

component inside, results in different type of lattices by changing the strength of

interactions.

Two different limits of phase diagram reproduce the results of ordinary two compo-

nent and dipolar one component Bose condensates. Ordinary two component conden-

sate are produced by fixing intra-component s-wave interactions for a constant value

of dipole moment, and changing inter-component s-wave interaction. The dipolar

one component condensate is obtained by equalizing intra and inter-component s-

wave interaction, which enable us to get rid of differences between like and unlike

atoms. The results of calculation are in agreement with the results of previous studies

for two regimes [37, 38].
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APPENDIX A

Canonical transformation in quantum mechanics

The most important issue when dealing with quantum mechanics is how to diago-

nalize the Hamiltonian to obtain the eigenvalues and their corresponding eigenstates.

There are number of techniques in solving problems, some with relatively easy and

some with sophisticated calculations. Usually we use direct diagonalization tech-

niques or some other like Bogoliubov transformations. However, there are some other

tools that we do not use them often in quantum mechanics, one of which is the canon-

ical transformation that connects the classical mechanics to Quantum mechanics. The

interesting analogy between canonical transformation in classical mechanics with the

unitary transformation in quantum mechanics is known from early life of quantum

mechanics with works of (perhaps not surprisingly) Dirac. He pointed out that any

transformation like 〈q|Q〉, or 〈q|P〉 between old and new canonical variables is con-

nected with their corresponding generating functions, or more explicitly

〈q|Q〉 = e[ i
~F1(q,Q,t)],

〈q|P〉 = e[ i
~F2(q,P,t)]. (A.1)

In this part, we aim to construct the connection between a canonical transformation in

quantum mechanics with classical mechanics. We start by defining a linear canonical

transformation in classical mechanics as follows

Q = aq + bp

P = cq + dp. (A.2)

The condition for canonical transformation is implied by Poisson brackets, i.e. [Q, P] =

1, which gives the relation

ad − bc = 1. (A.3)
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Since we want to construct the generating function for such transformations, we write

the generating function derivatives

p =
∂F1

∂q
, P = −∂F1

∂Q
. (A.4)

To find F1 we integrate over the first equation above, which gives us

F1 =

∫
pdq + g(Q) (A.5)

Writing the p in terms of q, and Q from the equation system A.2 helps us progress

the integration and obtain the result

F1 =
1
b

(
Qq − 1

2
aq2

)
+ g(Q). (A.6)

The result of integration can be used in second equation A.4, in order to obtain the

generating function. Finally we obtain the generating function which has the form

F1 =
1

2b

[
2qQ − aq2 − dQ2

]
. (A.7)

Since we know the generating function for our canonical transformation, we get back

to the quantum mechanics with the same linear canonical transformations, this time

obeying the well known commutation relations for position and coordinate operator.

We introduce the ket |Q〉 to be the eigenstate of the Q operator. Then we try write the

q-representation of a function when the Q-representation of that is known, in other

words

〈q|φ〉 =

∫
〈q|Q〉〈Q|φ〉dQ. (A.8)

We know 〈Q|φ〉, hence our task is now to construct 〈q|Q〉. We also know that

〈q|Q|Q〉 = Q〈q|Q〉, (A.9)

and

〈q|Q|Q〉 = 〈q| (aq + bp) |Q〉
= aq − i~b

∂

∂q
〈q|Q〉 (A.10)

then equating two equations, and integrating over the new equation one can obtain

〈q|Q〉 = ϕ(Q)e
i
~[ 1

2b (2Qq−aq2)]. (A.11)
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The task is now reduced to finding integral constant ϕ(Q). In order to obtain it we

consider a matrix element of P operator with any arbitrary state ψ

〈Q|P|ψ〉 =

∫
dq〈Q|q〉〈q|P|ψ〉

=

∫
dq〈Q|q〉

(
cq − i~d

∂

∂q

)
〈q|ψ〉. (A.12)

We use integration by parts defining

u = 〈Q|q〉
dv =

∂

∂q
〈q|ψ〉dq, (A.13)

and since we know

∂

∂q
〈Q|q〉 = − i

~

(Q − aq
b

)
〈Q|q〉 (A.14)

we obtain

〈Q|P|ψ〉 =
d
b

Q〈Q|ψ〉 +
(
c − ad

b

) ∫
q〈Q|q〉〈q|ψ〉dq. (A.15)

We use the condition for the canonical transformation Eq. (A.3) to write the result as

〈Q|P|ψ〉 =
d
b

Q〈Q|ψ〉 − 1
b

∫
q〈Q|q〉〈q|ψ〉dq. (A.16)

Now let us have a look at the first derivative of 〈Q|q〉 with respect to Q

∂

∂Q
〈Q|q〉 =

1
ϕ∗(Q)

〈Q|q〉∂ϕ
∗(Q)
∂Q

− iq
b~
〈Q|q〉 (A.17)

By extracting out the value for −q/b〈Q|q〉 and substituting it into the integral in equa-

tion A.16 one can find

〈Q|P|ψ〉 =

[
d
b

Q − i~
∂

∂Q
+

i~
ϕ∗(Q)

∂ϕ∗

∂Q

]
〈Q|ψ〉. (A.18)

On the other hand from derivative representation of P in Q space

〈Q|P|ψ〉 = −i~
∂

∂Q
〈Q|ψ〉. (A.19)

Equations A.18, and A.19 lead us to the differential equation for ϕ∗(Q), which helps

us to obtain the integral constant ϕ as follows

ϕ(Q) = e
−idQ2

2b . (A.20)
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We reach the point to write 〈q|Q〉 explicitly by putting ϕ into equation A.11

〈q|Q〉 = e
i
~ [ 1

2b (2qQ−aq2−dQ2)]. (A.21)

This result take us to the final form of 〈q|φ〉

〈q|φ〉 =

∫
e

i
~ [ 1

2b (2qQ−aq2−dQ2)]〈Q|φ〉dQ. (A.22)

Comparing the equation for generating function F1, A.7 with the equation A.22 lead

us to construct the important connection between the classical mechanics and quan-

tum mechanics

〈q|φ〉 =

∫
e

i
~F1(q,Q,t)〈Q|φ〉dQ. (A.23)
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APPENDIX B

Wavefunctions of higher Landau levels for a particle in a rotating

anisotropic harmonic trap

Since we have the ground state wavefunction, the excited states can be obtained by

applying the relevant raising operators on ground state wavefunction. We give the

wavefunction for six Landau level that we used in calculations during this study. (All

the parameters used here are already defined in the main text.) The ground state wave

function of the system is written as

φ00 =
1√
πaxay

exp
[
− x2

2a2
x
− y2

2a2
y

]
exp

{
i
Mxy
~

[
γ

1 + β+β−
− 1

2

(
ω+

β+

+
ω−
β−

)]}
. (B.1)

Operator α+ gives the excited sates wave functions in each Landau level, and the other

one i.e. α− gives the higher LL states wavefunctions. The wave functions in LLL are

obtained to be

ϕm0(x, y) =
1√
m!
ϕ00(x, y)Pm(ξ+) (B.2)

where

Pm(ξ+) =
(c
2

)n/2
Hm

(
ξ+√
2c

)
(B.3)

The wavefunctions in higher excited Landau levels also are found to be

ϕm1(x, y) =
1√
m!
ϕ00(x, y)

[
ξ−Pm(ξ+) − 2imρPm−1(ξ+)

]
, (B.4)

ϕm2(x, y) =
1√
2m!

ϕ00(x, y)
{(
ξ2
− − c

)
Pm(ξ+)

− 4imρξ−Pm−1(ξ+)

− 4m(m − 1)ρ2Pm−2(ξ+)
}
, (B.5)
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ϕm3(x, y) =
1√

3!m!
ϕ00(x, y)

{(
ξ3
− − 3cξ−

)
Pm(ξ+)

− 6imρ
(
ξ2
− − c

)
Pm−1(ξ+)

− 12m(m − 1)ρ2ξ−Pm−2(ξ+)

+ 8im(m − 1)(m − 2)ρ3Pm−3(ξ+)
}

(B.6)

ϕm4(x, y) =
1√

24m!
ϕ00(x, y)

{(
ξ4
− − 6cξ2

− + 3c2
)
Pm(ξ+)

− 8miρ
(
ξ3
− − 3cξ−

)
Pm−1(ξ+)

− 24m(m − 1)ρ2
(
ξ2
− − c

)
Pm−2(ξ+)

+ 32im(m − 1)(m − 2)ρ3ξ−Pm−3(ξ+)

+ 16m(m − 1)(m − 2)(m − 3)ρ4Pm−4(ξ+)
}

(B.7)

ϕm5(x, y) =
1√

120m!
ϕ00(x, y)

{(
ξ5
− − 10cξ3

− + 15c2ξ−
)
Pm(ξ+)

− 10imρ
(
ξ4
− − 6cξ2

− + 3c2
)
Pm−1(ξ+)

− 40m(m − 1)ρ2
(
ξ3
− − 3cξ−

)
Pm−2(ξ+)

+ 80im(m − 1)(m − 2)ρ3
(
ξ2
− − c

)
Pm−3(ξ+)

+ 80m(m − 1)(m − 2)(m − 3)ρ4ξ−Pm−4(ξ+)

− 32im(m − 1)(m − 2)(m − 3)(m − 4)ρ5Pm−5(ξ+)
}

(B.8)

We also suggest a general form for the wavefunctions of a particle in a rotating

anisotropic harmonic trap in the main text, and one can obtain the same wavefunction

introduced above for any state in any Landau level using the general form

ϕmn(x, y) =
1√

n!m!
ϕ00(x, y)

n∑

k=0

[
(−i)n−k 2n−k

(n − k)!
ρn−k dn−k

dn−kξ−
Pn(ξ−)

dn−k

dn−kξ+

Pm(ξ+)
]
(B.9)
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