FORAMINIFERAL PALEONTOLOGY, BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE PERMIAN-TRIASSIC BOUNDARY BEDS OF THE BOLKAR DAĞI UNIT (CENTRAL TAURIDES, TURKEY)

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYSEL HANDE ESATOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING

MAY 2011
Approval of the thesis:

FORAMINIFERAL PALEONTOLOGY, BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE PERMIAN-TRIASSIC BOUNDARY BEDS OF THE BOLKAR DAĞI UNIT (CENTRAL TAURIDES, TURKEY)

submitted by AYSEL HANDE ESATOĞLU in partial fulfillment of the requirements for the degree of Master of Science in Geological Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. M. Zeki Çamur
Head of Department, Geological Engineering

Prof. Dr. Demir Altiner
Supervisor, Geological Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Asuman Günal Türkmenoğlu
Geological Engineering Dept. METU

Prof. Dr. Demir Altiner
Geological Engineering Dept. METU

Assoc. Prof. Dr. Bora Rojay
Geological Engineering Dept. METU

Assoc. Prof. Dr. Ismail Ömer Yılmaz
Geological Engineering Dept. METU

Dr. Zühtü Batı
Exploration Dept., TPAO

Date: 16.05.2011
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: Aysel Hande, Esatoğlu
Signature:
ABSTRACT

FORAMINIFERAL PALEONTOLOGY, BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE PERMIAN-TRIASSIC BOUNDARY BEDS OF THE BOLKAR DAĞI UNIT (CENTRAL TAURIDES, TURKEY)

Esatoğlu, Aysel Hande
M.Sc., Department of Geological Engineering
Supervisor: Prof. Dr. Demir Altiner
May 2011, 184 pages

The aim of this study is to designate paleontologic, biostratigraphic and sequence stratigraphic characteristics of the Permian-Triassic Boundary beds of the Bolkar Dağı Unit in the Hadim region (Central Taurides).

For this purpose a 48,06m thick stratigraphic section, composed of limestone, siltstone and sandstone, was measured and 116 samples were analyzed through the Permian Taşkent Formation and the Triassic Ekinlik Formation which belong to allochthonous Bolkar Dağı Unit in Central Taurides.

By the detailed examination of thin section samples, 37 species and 29 genera of foraminifera were identified. Based on these determinations two foraminiferal assemblage zones have been defined including the Permian-Triassic boundary. These assemblage zones are the Changhsingian “Nodosaria” elabugae-Nestellorella dorashamensis - Reichelina changhsingensis Assemblage Zone and the Greisbachian Spirorbis phlyctaena-Rectocornuspira kalhori Assemblage Zone.

In order to establish the sequence stratigraphic framework of the study area detailed microfacies analysis carried out and according to these, 12 microfacies types were defined. Basing on interpretations of the vertical configuration of these microfacies types 6 main and 10 sub-type cycles were designated. Throughout the measured section 24 shallowing-upward meter-scale cycles and two sequence boundaries were determined. These sequence boundaries coincide well with the
global sea level changes across the Permian-Triassic boundary and the Changhsingian-Greischbachian boundary falls within the transgressive systems tract of a third-order depositional sequence spanning from latest Changhsingian to Greischbachian.

Keywords: Permian-Triassic boundary, Benthic foraminifera, Meter-scale cycles, Central Taurides.
ÖZ

BOLKAR DAĞI BİRİLLİĞİNİN (ORTA TOROSLAR, TÜRKİYE) PERMIYEN-TRIYAS SINIR TABAKALARINDA FORAMİNERFİER PALEONTOLOJİSİ, BİYOSTRATİGRFİ VE SEKANS STRATİGRFİSİ

Esatoğlu, Aysel Hande
Yüksel Lisans, Jeoloji Mühendisliği Bölümü
Tez Yöneticisi: Prof. Dr. Demir Altıner
Mayıs 2011, 184 sayfa

Bu çalışmanın amacı Hadim bölgesinde (Orta Toroslar) Bolkar Dağı Birliği'nin Permiyen-Triyas sınır tabakalarındaki paleontolojik, biyostratigrafik ve sekans stratigrafik özellikleri belirlemektir.

Bu amaçla kireçtaşı, silttaşı ve kumtaşlarından oluşan 48,06m kalınlığında bir stratigrafik kesit ölçülmüştür. Allokton Bolkar Dağı Birliği’nde yer alan Permiyen yaşlı Taşkent Formasyonu ve Triyas yaşlı Ekinlik Formasyonu’na ait toplam 116 örnek incelenmiştir.

Çalışma alanının sekans stratigrafik çatısını tesbit etmek amacıyla detaylı mikrofasiyes analizleri yapılmış ve 12 mikrofasiyes tipi belirlenmiştir. Bu mikrofasiyes tiplerinin dikey sıralanmaları temel alınarak 6 temel 10 alt devir tanımlanmıştır. Ölçülen stratigrafik kesit boyunca 24 metre ölçüklü üstte doğru sağlanan devir ve iki sekans sınırı tesbit edilmiştir. Bu sekans sınırları global deniz düzeyi değişimleri ile uyumluluk göstermektedir. Çangsingiyen-Griesbakiyen sınırı
en geç Çangsingiyen-Griesbakiyen yaş aralığına karşılık gelen üçüncü derece bir sekansın transgresif sistemler dizisine karşılık gelmektedir.

Anahtar Kelimeler: Permiyen-Triyas sınırı, Bentik foraminifer, Metre-ölçekli devirsellik, Orta Toroslar.
To my parents…
ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor Prof. Dr. Demir ALTINER for his valuable advice, guidance, constructive recommendation, motivating encouragements and endless support in all stages of this thesis.

I express my gratitude to Prof. Dr. Asuman Günal TÜRKMENOĞLU, Assoc. Prof. Dr. İsmail Ömer YILMAZ, Assoc. Prof. Dr. Bora ROJAY and Dr. Zühtü BATI for their valuable recommendations for the thesis.

I would like to thank to the General Directorate of Mineral Research and Exploration for their support during my field and laboratory studies.

I would like to thank Mr. İsmet ALAN for his help during my field studies.

I would like to thank Mrs. Ayşe Atakul ÖZDEMİR for her valuable advices and encouragaments.

I am also indebted to all my friends especially Dr. Ayhan ILGAR, Mr. Mehmet VEKLİ, Mrs. Serap KAYA, and Mrs. Gönül CULHA for their help and support.

Finally, I am grateful to my mother, father and brother for their endless encouragements, support and understanding during my study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>Öz</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Purpose and Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Geographic Setting</td>
<td>2</td>
</tr>
<tr>
<td>1.3. Methods of Study</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Previous Works</td>
<td>6</td>
</tr>
<tr>
<td>1.5. Regional Geological Setting</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>18</td>
</tr>
<tr>
<td>LITHOSTRATIGRAPHY AND BIOSTRATIGRAPHY</td>
<td>18</td>
</tr>
<tr>
<td>2.1. Lithostratigraphy</td>
<td>18</td>
</tr>
<tr>
<td>2.1.1. Taşkent Formation</td>
<td>19</td>
</tr>
<tr>
<td>2.1.2. Ekinlik Formation</td>
<td>22</td>
</tr>
<tr>
<td>2.1.3. The Measured Section</td>
<td>24</td>
</tr>
<tr>
<td>2.2. Biostratigraphy</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1. “Nodosaria” elabugae - Nestellorella dorashamensis - Reichelina</td>
<td>32</td>
</tr>
<tr>
<td>changhsingensis Assemblage Zone</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2. Spirorbis phlyctaena-Rectocornuspira kalhori Assemblage Zone</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3. Permian-Triassic Boundary</td>
<td>35</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>37</td>
</tr>
<tr>
<td>SEQUENCE STRATIGRAPHY</td>
<td>37</td>
</tr>
<tr>
<td>3.1. Microfacies Types</td>
<td>39</td>
</tr>
<tr>
<td>3.1.1. MF 1 Mudstone With Lagenoid Foraminifera</td>
<td>42</td>
</tr>
<tr>
<td>3.1.2. MF 2 Bioclastic Wackestone With Calcareous Algae and Benthic</td>
<td>42</td>
</tr>
<tr>
<td>Foraminifera</td>
<td>42</td>
</tr>
<tr>
<td>3.1.3. MF 3 Bioclastic Wackestone-Packstone With Diversified Foraminifera</td>
<td>45</td>
</tr>
<tr>
<td>3.1.4. MF 4 Wackestone With Miliolid Foraminifera</td>
<td>45</td>
</tr>
<tr>
<td>3.1.5. MF 5 Unfossiliferous Mudstone</td>
<td>48</td>
</tr>
<tr>
<td>3.1.6. MF 6 Peloidal Packstone to Grainstone</td>
<td>48</td>
</tr>
<tr>
<td>3.1.7. MF 7 Oolitic Grainstone</td>
<td>48</td>
</tr>
<tr>
<td>3.1.8. MF 8 Siltstone to Mudstone</td>
<td>48</td>
</tr>
<tr>
<td>3.1.9. MF 9 Quartz Arenitic Sandstone</td>
<td>53</td>
</tr>
<tr>
<td>3.1.10 MF 10 Spirorbis phlyctaena-rich Wackestone</td>
<td>53</td>
</tr>
<tr>
<td>3.1.11. MF 11 Pseudoolitic or Recrystallized Coated Grain Packstone</td>
<td>53</td>
</tr>
<tr>
<td>3.1.12. MF 12 Sandy or Silty Lime Mudstone</td>
<td>53</td>
</tr>
<tr>
<td>3.2. Meter-Scale Shallowing Upward Cycles (Parasequences)</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1. Types of Shallowing Upward Cycles</td>
<td>59</td>
</tr>
</tbody>
</table>
3.2.1.1. A Type Cycles ... 59
3.2.1.2. B Type Cycles ... 59
3.2.1.3. C Type Cycles ... 60
3.2.1.4. D Type Cycles ... 60
3.2.1.5. E Type Cycles ... 63
3.2.1.6. F Type Cycles ... 63
3.3. Duration Of Cycles ... 63
3.4. Sequence Stratigraphic Interpretation .. 73
CHAPTER 4 .. 75
SYSTEMATIC PALEONTOLOGY ... 75
DISCUSSIONS AND CONCLUSIONS .. 118
REFERENCES ... 121
APPENDIX ... 149
PLATE I ... 149
PLATE II ... 151
PLATE III .. 153
PLATE IV .. 155
PLATE V ... 157
PLATE VI ... 159
PLATE VII .. 161
PLATE VIII ... 163
PLATE IX ... 165
PLATE X ... 167
PLATE X ... 168
PLATE XI ... 169
PLATE XII ... 171
PLATE XIII .. 173
PLATE XIV .. 175
PLATE XV ... 177
PLATE XV ... 178
PLATE XVI .. 179
PLATE XVII ... 181
PLATE XVIII .. 183
LIST OF FIGURES

Figure 1. Geographic setting of the study area and the location of the measured section. .. 3

Figure 2. A. Location of the measured section. B and C close-up view of measured section showing sampling points. ... 5

Figure 3. Tectonic map of the study area ... 12

Figure 4. Stratigraphic sections of Bolkar Dağı, Aladağ, Geyik Dağı, Bozkır, Alanya and Antalya units (simplified from Ö zgül, 1976). ... 14

Figure 5. Autochthonous and allochthonous units in the Hadim-Taşkent area. (Altın and Ö zgül, 2001) ... 17

Figure 6. Geologic map of the study area (simplified and redrawn from 1/500.000 scale geologic map of MTA). ... 19

Figure 7. Generalized columnar section of the Bolkar Dağı Unit in the Hadim- Taşkent area (simplified from Ö zgül, 1997). .. 20

Figure 8. Generalized columnar section of the Taşkent Formation (simplified from Ö zgül, 1997). ... 21

Figure 9. Generalized columnar section of the Ekinlik Formation (simplified from Ö zgül, 1997). ... 23

Figure 10. Lithostratigraphy of the measured section with calcareous foraminifer biozones. ... 26

Figure 11. Distribution of SMF Types in the Facies Zones (FZ) of Wilson (1975) of the rimmed carbonate platform model (Flügel, 2004). 40

Figure 12. Distribution of microfacies types in different parts of a homoclinal carbonate ramp (Flügel, 2004). ... 41

Figure 13. Photomicrographs of the MF 1 mudstone with lagenoid foraminifera microfacies .. 43

Figure 14. Photomicrographs of the MF 2 bioclastic wackestone with calcareous algae and benthic foraminifera microfacies .. 44

Figure 15. Photomicrographs of the MF 3 bioclastic wackestone-packstone with diversified foraminifera microfacies .. 46
Figure 16. Photomicrographs of the MF 4 wackestone with miliolid foraminifera microfacies fragments ...47
Figure 17. Photomicrographs of the unfossiliferous mudstone microfacies............49
Figure 18. Photomicrographs of the MF 6 Peloidal packstone to grainstone microfacies ..50
Figure 19. Photomicrographs of the MF 7 oolitic grainstone microfacies..........51
Figure 20. Photomicrographs of the MF 8 siltstone to mudstone microfacies52
Figure 21. Photomicrographs of the MF 9 quartz arenitic sandstone microfacies....54
Figure 22. Photomicrographs of the MF 10 Spiroblis phlyctaena-rich wackestone microfacies ..55
Figure 23. Photomicrographs of the MF 11, pseudoolitic or recrystallized coated-grain packstone microfacies ...56
Figure 24. Photomicrographs of the MF 12 sandy or silty lime mudstone microfacies ..57
Figure 25: A type cycle and B type cycle with the representing photomicrographs of the microfacies types deposited within these cycles...61
Figure 26: C1 type cycle with the representing photomicrographs of the microfacies types deposited within this cycle. ..62
Figure 27: C2, D1 and D2 type cycles and with the representing photomicrographs of the microfacies types deposited within these cycles...64
Figure 28: E1, E2 and F1 type cycles with the representing photomicrographs of the microfacies types deposited within these cycles. ...65
Figure 29: F2 and F3 type cycles with the representing photomicrographs of the microfacies types deposited within these cycles. ...66
Figure 30. Sequence stratigraphical construction of the measured section showing stacking pattern of shallowing upward cycles, system tracts and sequences..........67
Figure 31. An hypothetical model showing the sequence stratigraphical interpretation and the position of the measured section ...72
CHAPTER 1

INTRODUCTION

1.1. Purpose and Scope

The main objective of this thesis is to delineate the Permian-Triassic (P-Tr) boundary through the carbonate deposits of the allochthonous Bolkar Dağı Unit widely exposed in Central Taurides by using calcareous benthic foraminifera and to study the sedimentary cyclicity whether the eustatic sea level changes had an impact on the Permian-Triassic boundary beds. For this purpose, a 48,06m thick stratigraphic section has been measured through the Taşkent Formation and the Ekinlik Formation of the Bolkar Dağı Unit.

The most severe disaster event in the Phanerozoic history of earth’s life happened in the Permian-Triassic transition, and it eliminated more than 90 % of all marine species (Erwin, 1994). Multiple scenarios suggesting the causes of the P-Tr event have been proposed by many researchers but there is growing evidence that the following four major triggers are the most likely causes for this crisis: bolide impact, flood basalt eruption of the Siberian Traps, shallow water anoxia and catastrophic release of seafloor methane (Knoll et al., 2007). Unlike other fossil groups, foraminifers are one of the most common fossil groups through the P-Tr transition and are distributed in a variety of facies settings (Song et al. 2009b). In this study, a detailed taxonomic analysis is presented in order to document their diversity and the biotic turnover across the Permian-Triassic boundary. The foraminiferal inventory from the P-Tr boundary beds of the Bolkar Dağı Unit is being given in such a detail for the first time in Turkey in this thesis.

To determine the sedimentary cyclicity and the sequence stratigraphic evolution of the study area detailed microfacies analysis has been carried out. In addition to observations in the field, by using standard microfacies zones and microfacies models of Flügel (2004), sedimentary cyclicity and stacking patterns of
cycles have been determined in order to understand the controls on cyclicity. Bed-scale sequence stratigraphic studies are rare in Turkey, particularly on upper Paleozoic rocks. From this point of view this thesis can also be considered as one of the pioneering studies in Turkey.

1.2. Geographic Setting

The study area is located at 3 km southwest of the Gaziler Village that belongs to the town of Hadim (Figure 1). The town of Hadim can be reached by the Konya-Hadim highway and the section is measured to the north of the Hadim-Gaziler road. It is situated on the topographic map of Konya-N29-d4 of 1:25,000 scale. The coordinates of the measured section start at 36461216 E - 4098240 N and finish at 36461150 E - 4098186 N.
Figure 1. Geographic setting of the study area and the location of the measured section.
1.3. Methods of Study

This study is built up on the field and laboratory studies successively. A 48.06m thick stratigraphic section was measured mainly composed of carbonates and 116 samples were collected on bed-scale basis (Figure 2). More than one sample were collected from thicker beds by sampling them in equal intervals. Samples were oriented by indicating the top of each bed. Beds were examined carefully by using a hand-lense in order to locate the fossiliferous zones and microfacies changes. Stacking patterns of probable meter-scale cycles were observed, interpreted and photographed during the field study.

For micropaleontological and microfacies analysis thin sections were prepared from each sample. To build up a biostratigraphical framework and delineate P-Tr boundary, benthic foraminifera have been used because important changes occur in the density and diversity of benthic foraminifera across the boundary. Thin sections were investigated carefully under the microscope and a large number of photographs were taken in order to detect the variations in the populations.

For the microfacies analysis, thin sections were investigated under the microscope. Each level sampled was photographed and samples were classified according to their biological content and lithological components. The classification and changing patterns of microfacies, combined with field observations, have yielded us the architecture of meter-scale cycles. The sequence stratigraphic framework of the study area has been constructed by the stacking patterns of meter-scale cycles.
Figure 2. A. Location of the measured section. B. and C. Close-up view of measured section showing sampling points.
1.4. Previous Works

Taurides have been studied by many researchers since the second half of nineteenth century. Blumenthal (1944, 1947, 1951 and 1956) was the first researcher to discover the basic structures and features of the Tauride Belt. Blumenthal studied the geologic, geomorphologic and tectonic structure of Seydişehir-Beyşehir region, which is located at northwest of the Bolkar Dağı Unit. He also studied the geographic, stratigraphic and tectonic features of the Aladağ Unit and the Upper Paleozoic, Mesozoic and Cenozoic and tectonic features of the Bolkardağı region. Most of the previous works carried out in the following years did not include the Bolkar Dağı Unit. For example, Monod (1977), described the autochthon from Cambro-Ordovician to Cretaceous and examined allochthonous units in two different rock assemblages as Beyşehir-Hoyran Nappes and Antalya Nappes. Dumont (1976) studied the geology and stratigraphy of Dipoyraz Dağı to the of Seydişehir-Beyşehir region. Poisson (1977) carried out detailed stratigraphic studies in Beydağları and Susuz Dağ. In Gutnic et al. (1979), Gutnic, Monod, Poisson and Dumont presented detailed stratigraphic sections, their correlations and maps illustrating tectonic structure of Tauride Belt.

It was Özgül (1971, 1976, 1984 and 1997) who documented the important geologic, stratigraphic and tectonic features and the geodynamic evolution of the Taurides. He defined the Geyikdağ Unit as autochthon while South Central Anatolia and Central Taurus Units as the allochthonous units. According to Özgül (1971), our study area is situated in the allochthonous South Central Anatolia Unit. Özgül and Gedik (1973) studied the Lower-Middle Cambrian Çaltepe Limestones and the Upper Cambrian-Lower Ordovician Seydişehir Formation in the Seydişehir and Hadim regions located to the northwest of our study area. Finally Özgül (1976) distinguished different tectonostratigraphic units in southern Turkey and named them as Bolkar Dağı Unit, Aladağ Unit, Geyik dağı Unit, Alanya Unit, Bozkır Unit and Antalya Unit. He realised that these units were extending laterally hundreds of kilometers with tectonic contacts between them and commonly forming allochthonous covers on each other. He described the Bolkar Dağı Unit comprising
Middle Upper Devonian-Lower Tertiary shelf type carbonates and detrital rocks. He had mentioned the same unit as the South Central Anatolia Unit in Özgül (1971). In Özgül (1984) he stated that the Bolkar Dağı Unit is distinguished from the Aladağ Unit by its regional greenschist metamorphism, the presence of frequent discordances and the absence of the characteristic biozones and lithozones of the Aladağ Unit. Demirbaşlı (1984) studied the Bolkar Mountains and differentiated two tectono-stratigraphic units (Bolkar Dağı Unit at the north and the Aladağ unit at the south) showing considerable stratigraphic differences. Özgül (1997), defined the stratigraphic features of tectono-stratigraphic units of the Bozkır-Hadim-Taşkent region and divided the Bolkar Dağı Unit into nine lithostratigraphic units as Hocalar Formation (Devonian), Kongul Formation (Lower-Middle Carboniferous), Taşkent Formation (Upper Permian), Ekinlik Formation (Triassic), Morbayır Formation (Lias), Sinat Dağı Limestone (Jurassic-Lower Cretaceous), Pusula Group (Lias-Upper Cretaceous), Topyatak Limestone (Cenomanian) and Söğüt Formation (Senonian). The Taşkent Formation and the Ekinlik Formation are important lithostratigraphic units for this study because, the studied stratigraphic section has been measured across these formations. Şenel (1999) proposed new definitions for the autochthonous, parautochthonous and allochthonous rock units of Taurus Belt. He named the autochthonous rock units, west to east, as Beydağları autochthon, Anamas-Akseki autochthon, and the Southeast Anatolian autochthon; the allochthonous rock units in turn are called the Lycian nappes, Antalya nappes, Alanya nappe, Beysichir-Hoyran-Hadim-Bolkar nappes, Yahyalı-Munzur nappes and Bitlis-Pötürge-Malatya nappes. According to Şenel (1999), the Bolkar Dağı Unit defined by Özgül (1976) takes place in the allochthonous Beysichir-Hoyran-Hadim-Bolkar nappes.

In Turkey, sequence stratigraphic studies on the Taurides carbonates began by the studies of Marine Micropaleontology Research Unit, directed by Prof. Dr. Demir Altıner. Important sequence stratigraphic and cyclostratigraphic studies were carried out by researchers in carbonate platform deposits of Tauride Belt which could be reference to the present study. The MSc. study of Yılmaz (1997) was the first sequence stratigraphic study for this region, in which, he studied the sequence
stratigraphy, cyclostratigraphy and dasyclad algal taxonomy in the Upper Jurassic (Kimmeridgian)-Upper Cretaceous (Cenomanien) peritidal carbonates of the Fele area. After this study several MSc. thesis were carried out by Akçar (1998), Bayazitoglu (1998), Gaziulusoy (1999) which described the meter-scale cyclic deposits and sequence stratigraphy in the Cretaceous carbonate successions of the Western Taurides. Altiner et al. (1999) made the first high-resolution sequence stratigraphic correlation within Geyikdağı Unit and described the types of meter-scale shallowing upward cyclic deposits, four second order cycles, 26 third order cycles and compared with the global sea level fluctuations within the Upper Jurassic-Upper Cretaceous platform carbonates of Western Taurides. Also Yılmaz and Altiner (2001) and Yılmaz (2002) are important studies, in which they discussed the cyclicity and sequence stratigraphy of Jurassic and Cretaceous peritidal carbonates of the Tauride platform. In addition to these studies, Pütürgeli (2002), Şen (2002), Ünal (2002), Ünal et al. (2003), Atakul (2006) and Dinç (2009) studied and defined meter-scale shallowing upward cycles in the carbonates of the allochthonous Aladağ Unit. Studies of Ünal (2002) and Ünal et al. (2003) became important references for the present study in which cyclic stratigraphy across the Permian-Triassic boundary in the Aladağ Unit was defined and global correlation of Permian-Triassic boundary beds in comparison with selected sections in the world was presented.

Altıner (1984) studied the Upper Permian deposits of the Tauride-Anatolide platform and the Arabian platform by examining seven stratigraphic sections measured from these platforms. He recognized one hundred and four foraminiferal species and distinguished four informal biostratigraphic units (Assemblages) of Foraminifera from these deposits. Middle-Upper Permian marine carbonates are distinguished in two contrasting biofacies belts (Northern Biofacies Belt and Southern Biofacies Belt) in Turkey (Altıner et al. 2000). In this study the Bolkar Dağı Unit, including our study area, is established as part of the Northern Biofacies Belt. Groves et al. (2005) studied the extinction, survival and recovery of lagenide foraminifers in the Permian-Triassic boundary interval in the Central Taurides and stated that lagenide foraminifers experienced a catastrophic reduction in diversity at or near the Permian-Triassic boundary.

Important paleontologic and biostratigraphic studies were carried out about Permian and Triassic faunas by many researchers outside the world. Kobayashi (1999) studied the Tethyan uppermost Permian foraminiferal faunas and proposed a reconstructed oceanic plate stratigraphy for Japanese terranes using presence and distribution of *Palaeofusulina*. Pronina-Nestell and Nestell (2001) studied the small foraminifers and fusulinaceans of the Upper Changhsingian deposits of the Northwestern Caucasus and correlated to deposits of the South Primorye. Another important study was carried out by Groves et al. (2003) in which they determined the evolutionary radiation and paleobiogeographic distribution of the Order Lagenida. Kobayashi (2004) studied the biostratigraphic and sedimentologic features of Lopingian Mitai Formation and disconformably overlying Triassic Kamura Formation in Japan. Eiland and Gudmundsson (2004) carried out a study about the taxonomy of some Nodosariinae collected in the North Atlantic. One of the most important studies about the end Permian mass extinction was Groves and Altıner (2005) in which they summarized the record of foraminiferal extinction, survival and recovery across the Permian-Triassic boundary. Marquez (2005) carried out a study about the recovery of foraminiferal faunas after the Late Permian extinction in the western Tethys. Vachard et al. (2008) studied the Permian succession of the island of Hydra (Greece) and described *Glomomidiella* gen. n. a (genus of Foraminifera).
Karavaeva and Nestell (2007) carried out a study about Permian foraminifers of the Omolon Massif (Russia) and described 47 new species of Nodosariid small foraminifers. Songzhu et al. (2007) studied the small foraminiferal fauna discovered from the upper Changhsingian Dalong Formation (South China). Song et al. (2007) studied the foraminifers from Permian-Triassic boundary strata and reported foraminifers in the Meishan section (South China) for the first time. Groves et al. (2007) carried out an important study about the lagenide foraminifers of the Permian-Triassic boundary sections in the Southern Alps and designated that the only survivors were “’Nodosaria’’ elabugae and unidentified species in Geinitzina and Nodosinelloides.

In recent years Song et al. (2009) carried out quantitative analysis to determine the foraminiferal extinction patterns near the P-Tr boundary and emphasized that the Miliolida, Fusulinida and Lagenida had been affected from the crisis with an extinction rate of 100%, 96%, and 92%, respectively. Gaillot et al. (2009) dealt with the microfacies and microfossil content of the latest Permian calsisponges-bearing reef limestones of the Wujaping Formation (South China) and compared the biotic content with the Khuff Formation (time equivalents in the Middle East). Krainer and Vachard (2009) performed a study in the Lower Triassic Werfen Formation of the Karawanken Mountains (Southern Austria) and presented the determination of disaster forms of the earliest Triassic. One of the recent studies dealing with Changhsingian foraminiferal fauna is performed by Wang et al. (2010) in southern Tibet (China). They proposed the Reichelina pulchra-Colaniella parva-Dilatofusulina orthogonios Zone to represent the last assemblage biozone of Permian foraminifers and correlated to the Palaeofusulina sinensis Zone.

The most severe and greatest in magnitude disaster event in the Phanerozoic history of Earth’s life, happened in the Permian-Triassic transition, and it eliminated more than 90% of all marine species (Erwin 1994). The end-Permian mass extinction has long been regarded as a single event but the extinction actually occurred in two distinct phases; first at the Middle-Late Permian boundary (Guadalupian-Lopingian...
boundary) and second at the Permian-Triassic boundary as first pointed out by Stanley and Yang (1994) and Jin et al. (1994).

The Permian-Triassic Boundary Working Group (PTBWG) was established by the International Commission on Stratigraphy (ICS) in 1981. The ammonoid *Otoceras* was considered as the index fossil of the P-Tr boundary until 1984. In 1986 *Hindeodeus parvus* was proposed to substitute as the boundary marker (Yin et al., 1986), which later obtained the majority approval of PTBWG. In 1994 Yin et al. published a paper in which they recommended to set the P-Tr boundary at the first appearance of *Hindeodus parvus* Bed 27c of Meishan. This paper later served as the draft in polling for the formal acceptance of PTBWG. After several votings, finally the proposal was approved in March 2001 by the IUGS Executive Committee. As a result, the GSSP of the P-Tr boundary is defined at the base of Bed 27c, Meishan Section D, Changxing Country, Zhejiang Province, China, at the horizon where the conodont *Hindeodus parvus* first appeared (Yin et al. 2001).

1.5. Regional Geological Setting

As emphasized in Özgül (1984), because it shows most of the characteristic features of the Tauride Belt, Central Taurides was intensely studied by many researchers. These studies have shown that the Central Taurides region is composed of a number of tectono-stratigraphic rock units which are distinguished by their stratigraphical, structural and metamorphic features (Blumenthal 1944, 1947, 1951; Özgül, 1971, 1976; Monod, 1977; Gutnic et al., 1979). These rock units are defined and named as Bolkar Dağı Unit, Aladağ Unit, Geyik Dağı Unit, Alanya Unit, Bozkır Unit and Antalya Unit by Özgül (1976) (Figure 3, Figure 4, Figure 5). Among these nappes, Alanya and Antalya units are the tectonic units of southern origin and will be out of the scope of the regional geological setting section of this thesis.

Among these tectonic units, the Geyik Dağı Unit is placed at the base of all other units including the tectonic units of northern and southern origin and considered as the autochthon with respect to the rock units tectonically overlying it
Figure 3. Tectonic map of the study area redrawn from Özgül (1984).
Geyik Dağı Unit occupies large areas in the western part of the central Taurides and disappears under the allochthonous units in the southward direction. This unit is composed of platform type sediments starting with Cambrian and Ordovician rocks and transgressive Mesozoic-Lower Tertiary carbonate rocks consisting largely of carbonates (Özgül 1984). The Lower Paleozoic of the Geyik Dağı Unit comprises the Çaltepe Formation composed of dolomites, neritic limestones and nodular limestones, the Hamzalar Formation mainly composed of dark coloured shales and the Seydişehir Formation which consists of micaceous turbiditic clastics (Özgül and Gedik 1973; Özgül 1984, 1997). The Mesozoic sequence of the Geyik Dağı Unit, which lies with an unconformity over the Lower Paleozoic basement, consists mostly of platform type carbonates (Özgül 1984) (Figure 4).

The Aladağ Unit, which is composed of shelf type clastics and carbonates of Upper Devonian-Upper Cretaceous age was named as the “Hadim Nappe” in Blumenthal (1944) and ‘Bademli-Çamlık Unit’ in Monod (1977). Aladağ Unit consists Gölböğazı Formation (Devonian), Yarıçak Formation (Carboniferous), Çekić Dağı Formation (Permian), Gevne Formation (Triassic), Çambaşı Formation (Jurassic-Cretaceous) and Zekeriya Formation (Maastrichtian) (Figure 4). The Gölböğazı Formation is mainly composed of quartzite and shale intercalations, reefal limestones and dolomite layers. The Yarıçak Formation, mainly includes shelf type limestones with quartzite intercalations and comprises a dark coloured shale level at the lower part of the formation. The Çekić Dağı Formation of Permian age, composed mainly of foraminiferal and algal limestones compies quartzites at the lower part of the unit. The Trissic Gevne Formation, mainly contains shallow marine carbonates and clastics. The Liassic-Upper Cretaceous Çambaşı Formation is made up of a thick carbonate succession comprising dolomite and shallow marine limestones. Lastly, the Maastrichtian Zekeriya Formation of the Aladağ Unit is composed of clastics including olistoliths and olistrostroms (Özgül 1984, 1997) (Figure 3).
Figure 4. Stratigraphic sections of Bolkar Dağı, Aladağ, Geyik Dağı, Bozkıır, Alanya and Antalya units (simplified from Özgül, 1976).
The Bolkar Dağı Unit locates in the North of Central Taurides between the Central Anatolian metamorphic massifs and the Tauride Belt (Figure 3). The Unit comprises shelf type clastics and carbonates of Devonian to Upper Cretaceous age and, unlike Aladağ and Geyik Dağı units, shows regional metamorphism in greenschist facies (Figure 3). The grade of metamorphism increases towards the north and stratigraphically deeper levels of the sequence. The Bolkar Dağı Unit is composed of Hocalar Formation, Kongul Formation, Taşkent Formation, Ekinlik Formation, Morbayır Formation, Sinat Dağı Limesone, Pusula Group, Topyatak Limestone and Söğüt Formation (Figure 4). The Hocalar Formation of Devonian age is the oldest rock unit of the region and comprises low grade metamorphics with recrystallized limestone and quartzite intercalations. The Lower-Middle Carboniferous Kongul Formation, is composed of dark coloured and fine grained clastics with reefal limestone intercalations. The Upper Permian Taşkent Formation is mainly composed of algal and foraminiferal limestones and also includes quartzite intercalations in the upper levels. Ekinlik Formation of Triassic age consists of neritic carbonates and clastics. The overlying Morbayır Formation of Liassic age is mainly made up of conglomerate and sandstone. The Sinat Dağı Limestone of Jurassic and Lower Cretaceous is absolutely made up of neritic limestone whereas Liassic-Upper Cretaceous Pusula Group includes neritic and pelagic limestones. The Topyatak Limestone of Cenomanian age is mainly composed of limestones with rudists. Söğüt Formation of Senonian includes pelagic limestones and flischoidal clastics (Özgül 1997) (Figure 3).

Bozkır Unit has an appearence of a melange containing pelagic and neritic limestones deposited in Triassic-Cretaceous time span, radiolarite, submarine volcanic rocks, tuff, diabase, serpentinite and ultramafic blocks of various sizes and ages (Figure 3). Bozkır Unit is composed of Korualan Group that consists Kayabaşı and Başmışla Formations, Huğlu Group, comprising Dedemli, Mahmut Tepesi and Kovanlık Formations, Boyalı Tepe Group comprising Kuztepe and Asar Tepe Formations and Soğucak Limestone (Figure 4). The Korualan Group consists pelagic and shallow marine carbonates, radiolarite, clastics and submarine volcanics. The Huğlu Group is made up of green coloured volcanics with shale and pelagic
limestone alternations, cherty pelagic limestone and clastics with blocks. The Boyalı Tepe Group comprises thick neritic carbonate succession and pelagic limestone with chert intercalations. The Soğucak Limestone is absolutely composed of neritic limestone (Özgül 1997) (Figure 3).

Within the regional geological frame our study area is located in the Bolkar Dağı Unit. The stratigraphic section measured across the Permian-Triassic boundary comprises the upper part of the Taşkent Formation and the lowermost part of the Ekinlik Formation of this tectonic unit which is one of the main tectonic entities of the Tauride Belt.
Figure 5. Autochthonous and allochthonous units in the Hadim-Taškent area. (Altuner and Ö zgül, 2001)
CHAPTER 2

LITHOSTRATIGRAPHY AND BIOSTRATIGRAPHY

2.1. Lithostratigraphy

In the study area, carbonate successions of Permian-Senonian age belonging to Bolkar Dağı Unit are widely exposed (Figure 6). The Unit begins with the Devonian Hocalar Formation, which is composed of dominantly green coloured low grade metamorphised slate, dolomite and quartzite levels (Figure 7). Hocalar Formation is followed by Carboniferous Kongul Formation, which includes dark coloured shale and quartzite with limestone alternations at the base and oolitic limestone at the upper parts (Figure 7). The succession passes to the Permian Tağkent Formation following an unconformity surface. The Tağkent Formation is composed of foraminiferal and algal limestone including shale and clayey limestone intercalations in the upper parts (Figure 7, Figure 8). The Tağkent Formation is unconformably overlain by the Triassic Ekinlik Formation (Figure 7). The Ekinlik Formation is composed of dolomites at its base, shale and quartzite with limestone intercalations in the middle part and benthic foraminiferal and algal limestone in the upper parts (Figure 7, Figure 9). The Ekinlik Formation is overlain by the Jurassic-Lower Cretaceous Sinat Dağı Formation by an unconformity surface. The Sinat Dağı Formation is composed of algal and benthic foraminiferal limestone in the lower part, oolitic limestone in the middle and stromatolitic and algal oncotic limestone in the upper part. The Sinat Dağı Formation is overlain unconformably by the Topyatak Limestone of Cenomanian age which is mainly composed of limestone with rudist. The succession passes to the Senonian Söğüt Formation with an unconformity surface and continues upward with pelagic limestone and sandstone-shale intercalations with olistoliths and olistrostroms (Özgül 1997) (Figure 7).
The measured section is situated across the boundary between the Upper Permian Tağkent Formation and the Triassic Ekinlik Formation (Figure 7).

2.1.1. Tağkent Formation

The type locality of the Upper Permian Tağkent Formation is located in 1,5 km west of Dereiçi Village of the Bozkır Town. The Formation is mainly composed of abundant foraminiferal and algal limestone, and it begins with limestone with shale intercalations and clayey limestone and includes quartzite and shale intercalations in the upper parts (Figure 8).

Figure 6. Geologic map of the study area (simplified and redrawn from 1/500.000 scale geologic map of MTA).
Figure 7. Generalized columnar section of the Bolkar Dağı Unit in the Hadim-Taşkent area (simplified from Özgül, 1997). The solid red line shows the stratigraphic position of the measured section.
Figure 8. Generalized columnar section of the Taškent Formation (simplified from Özgül, 1997).
The formation unconformably overlies various levels of the Kongul and Hocalar Formations and is overlain unconformably by the Ekinlik (Triassic) and Söğüt (Senonian) Formations. The thickness of the formation at the type locality is 805m (Özgül 1997) (Figure 8). Beside the rich foraminiferal and algal fossil content, the Taşkent Formation also contains brachiopods, gastropods, corals, bryzoa and crinoids (Figure 8). According to the lithologic features and fossil content, the Taşkent Formation represents a shallow shelf environment beginning with a transgression and ending with a regression (Özgül 1997).

2.1.2. Ekinlik Formation

The Triassic part of the studied measured section is situated in the Ekinlik Formation. The type section of the formation is located at 6 km southwest of the Hadim Town. The formation consists intercalations of silt and sand sized clastics and shallow marine limestones (Figure 9). The Ekinlik Formation unconformably overlies mostly the Taşkent Formation of Permian and the Kongul Formation of the Carboniferous age in some localities. The formation is overlain unconformably by the Sinat Dağı Formation of Jurassic age (Özgül, 1997). The thickness of the formation is generally 610m in the type locality (Figure 9). The fossil content of the formation is poor, however, from the samples collected from the type locality the foraminiferal assemblages of Late Scythian-Anisian-Ladinian ages have been identified (Figure 9). The Ekinlik Formation is deposited in supratidal, intertidal and subtidal environmental conditions (Özgül 1997).

Within this generalized stratigraphic framework the studied section is measured across the Upper Permian Taşkent Formation and the Triassic Ekinlik Formation in order to document foraminiferal paleontology, biostratigraphy and sequence stratigraphy of the Permian-Triassic boundary beds of the Bolkar Dağı Unit.
Figure 9. Generalized columnar section of the Ekinlik Formation (simplified from Özgül, 1997).
2.1.3. The Measured Section

The measured section in this study is placed through the Tağkent Formation and the Ekinlik Formation and represents the Permian-Triassic boundary beds (Figure 10). Throughout the 48.06 m thick stratigraphic section, 116 samples have been collected. At the base, the measured section begins with dark grey coloured wackestone-packstone rich in calcareous benthic foraminifera. Than a wackestone facies rich in calcareous algae and also foraminifera is observed between the samples AH-11 and AH-16. By the sample AH-17 the diversification of the calcareous foraminifera decreases and a dark gray coloured micrite is observed. From the base of the section the thickness of the layers vary between 3-82 cm. Than a thick (220cm) siltstone layer overlies these limestones. After this siltstone layer, regularly positioned dark grey coloured wackestone-packstone with high diversification of foraminifera and wackestone rich in calcareous algae are deposited. Above this well diversified layers the fossil content decreases between the sample AH-37 and AH-41 and a mudstone facies with lagenoid foraminifers is deposited. After this mudstone facies the diversification begins to increase again and a wackestone-packstone facies is observed. Than a peloidal packstone to grainstone and an oolitic grainstone facies representing high energy environmental conditions is observed by the sample AH-64 and AH-65 respectively. From this level to the sample AH-90 we observe the alternation of diversified wackestone-packstone facies, peloidal packstone to grainstone facies and oolitic grainstone facies. By the sample AH-90 a 100cm thick siltstone layer overlies these limestones. Between the samples AH-91 and AH-95 the section continues with quartz arenitic sandstone and siltstone alternation with limestone intercalation. Again a thick (200cm) siltstone layer is observed by the sample AH-96. In this part of the section each layer was sampled carefully to observe the boundary. The Changhsingian foraminifers are observed for the last time in the sample AH-97 and the section passes to Greisbachian layers by the sample AH-98. Towards the upper part of the section, between the samples AH-97 and AH-102 the section continues with *Spirobus phlyctaena*-rich wackestone and sandy or silty lime mudstone alternation. By the sample AH-104, a 73cm thick pseudooolitic or recrystallized coated grain packstone representing higher energy conditions is
observed. Between the sample AH-105 and AH-108 the deposition continues regularly with Greishbachian wackestone rich in *Spirobis phlyctaena* and *Rectocornuspira kalhori* and thin layers of sandy or silty lime mudstone alternation. By the sample AH-109 again a pseudoolitic or recrystallized coated grain packstone facies is observed. Throughout the top of the measured section the succession continues with *Spirobis phlyctaena*-rich wackestone and sandy or silty lime mudstone alternations. The top of the measured section is represented by the sample AH-116 which is composed of *Spirobis phlyctaena*-rich wackestone.
Figure 10. Lithostratigraphy of the measured section with calcareous foraminifer biozones.
Figure 10. Continued.
Figure 10. Continued.
Figure 10. Continued.
2.2. Biostratigraphy

In Altıner and Özgül 2001, the Middle-Upper Permian of the Bolkar Dağı Unit and Aladağ Unit was studied and the succession of the Aladağ unit in the Hadim area was divided as Midian –Md1 *Dunbarula* Zone, Djulfian Dj1 *Septoglobivalvulina gracilis* Zone and Uppermost Djulfian-Dorashamian Do1 *Paradagmarita* Zone. *Septoglobivalvulina gracilis* Zone has been defined as an interval from the last occurrence of *Dunbarula* to the first occurrence *Paradagmarita* in this study. Lastly, *Paradagmarita* Zone has been characterized by the total range of *Paradagmarita* and the other species of foraminifera recorded in the zone are,
Table 1: Foraminiferal distribution chart.

| Specimen | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Specimen | 28| 29| 30| 31| 32| 33| 34| 35| 36| 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 |
| Specimen | 54| 55| 56| 57| 58| 59| 60| 61| 62| 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
| Specimen | 80| 81| 82| 83| 84| 85| 86| 87| 88| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100| 101| 102| 103| 104| 105|

According to the detailed analysis of thin sections of samples the measured section across the Permian-Triassic boundary is divided into two biozones. The lower assemblage zone “Nodosaria” elabugae-Nestellorella dorashamensis-Reichelina changhsingensis represents the Changsingian part of the measured section and the upper zone (Spirorbis phlyctaena-Rectocurnuspira kalhori Zone) represents the Greisbachian part of the measured section.

2.2.1. “Nodosaria” elabugae - Nestellorella dorashamensis - Reichelina changhsingensis Assemblage Zone

This assemblage zone is composed of an alternation of various types of facies including bioclastic wackestone with diversified foraminifera, wackestone with miliolid foraminifera, coated packstone and oolitic grainstone. The zone begins at the bottom of the measured section and terminates by the sample AH-97. The base of the assemblage zone is quite diversified in foraminifers and contains “Dagmarita” shahrezaensis, Globivalvulina ex gr. cyprica and Nestellorella dorashamensis (Table 1). Upwards in the section the fossil content gets richer by the presence of Floritheca variata, Globivalvulina sp., Pachyphloia sp., Retroseptellina decrouezae and Rectostipulina pentamerata. Between samples AH-11 and AH-15 a certain decrease observed in the diversification (Table 1). By the sample AH-20 foraminifers become abundant and a richer diversity period begins and continues until the sample AH-66. In this part of the section various lagenid foraminifers such as Nestellorella dorashamensis, “Nodosaria” elabugae, Nodosinelloides sagitta, Nodosinelloides camerata, Frondina permica and Geinitzina araxensis are recorded in high number of individuals. Apart from these species Charliella altineri, Dagmarita chanakchiensis, Nestellorella spp., Rectostipulina quadrata, Agathammina ex. gr. pusilla, Globivalvulina vonderschmitti, Glomomidiella sp., Paraglobivalvulina mira,
Codonofusiella kwangsiana are frequently recorded in the samples (Table 1). Between samples AH-60 and AH-92 the abundance and diversity in foraminifers decrease again. This part of the assemblage zone contains Palaeofusulina nana, Reichelina changhsingensis, Nodosinelloides sagitta, Globivalvulina spp., Septoglobalvalvulina gracilis, Nodosinelloides camerata, Rectostipulina quadrata, Calvezina ottomana, Neoendotyra sp. and Agathammina pusilla. By the sample no AH-93 again an enrichment is observed in the foraminiferal content. Pachyphloia ovata, Rectostipulina pentamerata, Hemigordius sp., Multidiscus sp., Hemigordiellina sp., Postendotyra sp., Colaniella parva, Midelli broenimanni and Paradagmarita sp. represent a part of foraminifers recorded in this part of the assemblage zone. The upper boundary of the assemblage zone is defined by the presence of some biostratigraphically undiagnostic Permian foraminifers including Pachyphloia schwageri, Pseudolangella ? sp. and Climacammina sp. recored in the sample AH-97.

2.2.2. Spirobris phlyctaena-Rectocornusirma kalhori Assemblage Zone

This zone is composed of Spirobris phlyctaena-rich wackestone, pseudouoolitic or recrystallized coated grain packstone and sandy or silty lime
mudstone alternations. It is defined as the interval between the level where the last occurrence of Permian foraminifers is observed and the last bed at the top of the section (Table 1). The zone is characterized by the frequent occurrences of *Spirorbis phlyctaena* and *Rectocornuspira kalhori*, typical taxa for most of the Greisbachian strata in the world. Brönnimann et al. (1972a) studied the Triassic smaller foraminiferal fauna in the Elika Formation (Northern Iran) and the Siusi Formation (Northern Italy) and described *Earlandia* spp. *Cornuspira mahajeri* and *Rectocornuspira kalhori* in the lowermost Triassic strata. Altıner et al. (1980) have studied the Pınarbaşı (Taurides), Julfa (NW-Iran) and Ghashlagh and Gheselgah (eastern Elburz, Iran) and stated that the first abundant occurrence of the *Spirorbis* appeared everywhere in these localities above the lowermost Triassic beds. Also Altıner et al. (1980) recorded the occurrence of *Rectocornuspira kalhori* and *Earlandia* sp. at the lowermost Triassic of these sections. İşık (1983) studied the foraminiferal population of the Permian-Triassic boundary beds in the Aladağ Unit (Taurides, Turkey), and defined *Cyclogyra mahajeri, Rectocornuspira kalhori* and *Earlandinita* sp. Assemblage Zone representing the lowermost Triassic interval of the measured section. Broglio-Loriga et al. (1986) studied in the lower Triassic sequences of the Dolomites (Italy) and recorded the existence of “*Cyclogyra-Rectocornuspira*” in these sequences. Another study carried out about the foraminiferal stratigraphy of the Triassic beds was Oravecz-Scheffer (1987) in which the presence of *Rectocornuspira kalhori* was reported in the earliest Triassic strata of the Transdanubian Mid Mountains (Hungary).

Ramovs (1986) reported the presence of the *Cornuspira kahleri* in the lowermost Triassic beds in the Slovenian part of the Karawanken Mountains. Köylüoğlu and Altıner (1989) recorded *Rectocornuspira kalhori* in the earliest Triassic strata of the Hakkari region (southeast Turkey). Jenny Deshusses (1991) was another study which documented *Cornuspira mahajeri* and *Rectocornuspira kalhori* in the lowermost Triassic beds of the Carnic Alps, Austria. Rettori (1995) studied the Julian Alps and Northern Calcareous Alps (northern Italy) and reported *Rectocornuspira kalhori* in the lowermost Triassic beds. Ünal et al. (2003) and Groves et al. (2005) studied in the Central Taurides (Turkey) and described and
illustrated *Rectocornuspira kalhori* in the lower Triassic (Greisbachian) beds. Wignall and Hallam (1996) and Ezaki (2003) studied the end-Permian mass extinction and the lowermost Triassic beds respectively in Sichuan Province (South China) and described the presence *Rectocornuspira kalhori* at the basal Triassic strata. Groves et al. (2007) also recorded *Earlandia* spp. and *Rectocornuspira kalhori* near and above the Permian-Triassic boundary extinction level. Gaillot (2006), in his study in the Khuff Formation, determined the presence of *Rectocornuspira kalhori* in the lowermost Triassic strata. Recently, Krainer and Vachard (2009) studied the lower Triassic Werfen Formation of the Karawanken Mountains (Southern Austria) and reported a relatively numerous assemblage of *Postcladella* a new genus replacing the name *Rectocornuspira, Earlandia dunningtoni, Spirorbis phlyctaena* and *Meandrospira pusilla* in the lower Triassic interval.

2.2.3. Permian-Triassic Boundary

Until 1984, the ammonoid Otoceras was considered as the index fossil of the Permian-Triassic boundary. Later in March 2001 the GSSP of the Permian-Triassic boundary is defined at the base of the Bed 27c, Meishan Section D. Changxing Country, Zhejiang Province, China, at the horizon where the conodont *Hindeodus parvus* appeared (Yin et al., 2001).

Calcareous foraminifera is also used to define the Permian-Triassic boundary. The disappearance of Permian foraminifers and the appearance of *Rectocornuspira kalhori* is used to determine the Permian-Triassic boundary. In southern Turkey Altiner and Zaninetti (1981), Köylüoğlu and Altiner (1989), Altiner et al. (2005), Groves et al. (2005), Payne et al. (2007), in Italy Broglio-Loriga et al. (1986), Groves et al. (2007), in Carnic Alps (Austria) Jenny Deshusses (1991) and Krainer and Vachard (2009), in South China, Wignal and Hallam (1996) and Ezaki (2003) have used the presence of *Rectocornuspira kalhori* as the Greisbachian marker.

The Permian-Triassic boundary beds in the measured section is composed of bioclastic wackestone-packstone with diversified foraminifera and *Spirorbis phlyctaena*-rich wackestone and sandy silty mudstone alternation. The Permian-
Triassic boundary was determined as at the base of the level AH-98 overlying the level AH-97 containing the Permian foraminifers. A diversified foraminiferal fauna is observed in the sample AH-97 associated with several algae and gastropods. The sample AH-98 does not contain any Permian foraminifera and the earliest *Spirorbis phlyctaneana* and *Rectocornuspira kalhori* of Triassic are recorded in the sample AH-102 (Table 1).

Along the measured section the Permian-Triassic boundary is delineated between, as previously defined, the Changhsingian “Nodosaria” *elabugae - Nestellorella dorashamensis - Reichelina changhsingensis* Assemblage Zone and the Greisbachian *Spirorbis phlyctanea-Rectocornuspira kalhori* Assemblage Zone (Table 1).
CHAPTER 3

SEQUENCE STRATIGRAPHY

Sloss (1963) considered sequences to be major rock stratigraphic units traceable over major areas of a continent and bounded by unconformities of interregional scope for the first time. Also he recognized that such sequences had chronostratigraphic significance. On the other hand with the work of Vail (1975) and Vail et al. (1977) seismic stratigraphy evolved in the 1970’s. This new method for analyzing seismic-reflection data stimulated a revolution in stratigraphy. The concepts of seismic stratigraphy were published together with a global sea-level cycle chart (Vail et al. 1977), based on the underlying assumption that eustasy is the main driving force behind sequence formation at all levels of stratigraphic cyclicity. In these studies the concepts are defined based on the depositional sequences. The depositional sequence concept has been redefined by Mitchum et al. (1977) as a stratigraphic unit composed of a relatively conformable succession of genetically related strata and bounded at its top and base by unconformities and their correlative conformities. All these progresses with the combination outcrop and well data led to the evolution of sequence stratigraphy concept.

Sequence stratigraphy is the study of rock relationships within a chronostratigraphic framework of repetitive, genetically related strata bounded by surfaces of erosion or nondeposition, or their correlative conformities (Van Woganer et al., 1988).

The fundamental unit of sequence stratigraphy is the sequence, which is bounded by unconformities and their correlative conformities. A sequence can be subdivided into systems tracts, which are defined by their position within the sequence and by the stacking patterns of parasequence sets and parasequences bounded by marine-flooding surfaces. Sequences, parasequence sets, and parasequences are defined and identified by the physical relationships of strata; including the lateral continuity and geometry of the surfaces bounding the units, vertical and lateral
stacking patterns, and the lateral geometry of the strata within these units (Van Woganer et al. 1988).

Following these studies about the siliciclastic rocks, for the first time Sarg (1988) described the application of sequence stratigraphy to the interpretation of carbonate rocks, documenting with outcrop, well-log, and seismic examples most aspects of the conceptual models. Carbonate sequence stratigraphy plays a major role in reservoir characterization and simulation. Intensive analyses of outcrop data, detailed facies studies of carbonate cycles have led to the development of 3-D models describing depositional and diagenetic patterns of carbonate rocks and predicting carbonate reservoirs.

A cycle is a group of rock units that occur in a certain order with one unit being frequently repeated throughout the succession (Flügel, 2004). The stratigraphic record is a composite of several orders of superimposed sedimentary cycles, depending on their casual mechanisms. They range from the high-frequency Milankovitch-scale climatic cycles (often 1m to a few meters in thickness) to third-order (mostly 1 to 2 My in duration) and fourth-order (<0.5My in duration) eustatic cycles, and larger (several million years in duration) tectonic cycles (Haq and Schutter, 2008).

The stratification of the carbonate platforms is caused by stacking of meter-scale depositional sequence displaying a shallowing upward trend. The shallowing upward sequences consist of repetitions of subdital facies bounded by peritidal facies, subaerial exposure surfaces and/or marine flooding surfaces (Flügel, 2004).

In this study shallowing-upward meter-scale cycles are determined across the Permian-Triassic boundary beds of Bolkar Dağı Unit. The cycles are determined according to vertical arrangement of microfacies types. In order to determine the microfacies types representing distinct environmental and depositional conditions, detailed microfacies analysis is carried out. According to the features of shallowing-
upward cycles system tracts are determined and the sequence stratigraphic model of the measured section is presented (Figure 30).

3.1. Microfacies Types

The increasing importance of limestones and dolomites as reservoir rocks and the use of thin section fossils in subdividing carbonate platforms gave substantial impetus to the progress of microfacies research. The microfacies term is originally defined by Brown (1943) as petrographic and paleontologic criteria studied in thin sections. Today, microfacies is regarded as the total of all sedimentological and paleontological data which can be described and classified from thin sections, peels, polished slabs or rock samples (Flügel, 2004). All the limestone classifications commonly used in facies analyses are based on textural and compositional criteria. The most widely used classifications are those of Dunham (1962) and Folk (1959, 1962). Microfacies based on thin section studies subdivides facies into units of similar compositional aspects that reflect specific depositional environments and controls.

A facies model is a generalized summary of a given depositional system (Walker 1992). Wilson (1975) used the succession of major facies belts on rimmed tropical carbonate platforms to establish a Standard Facies Model. In his model Wilson defined 10 Standard Facies Zones describing idealized facies belts along an abstract transect from open marine deep basins across a slope, a pronounced marginal rim and an inner platform to the coast (Flügel, 2004). Standard microfacies types are virtual categories that summarize microfacies with identical criteria. Most SMF types are based on dominant characteristics comprising grain types, biota or depositional textures (Flügel, 2004). Wilson (1975) distinguished 24 SMF Types and used these types as additional criteria in differentiating the major facies belts of an idealized rimmed carbonate shelf. After him, Flügel (2004) determined 26 SMF Types for rimmed carbonate platforms (Figure 11). Also he studied about carbonate
Figure 11. Distribution of SMF Types in the Facies Zones (FZ) of Wilson (1975) of the rimmed carbonate platform model (A:Evaporatic, B:Brackish), (Flügel, 2004).
Figure 12. Distribution of microfacies types in different parts of a homoclinical carbonate ramp (Flügel, 2004).
ramps and identified 30 Ramp Microfacies Types (RMT) distributed throughout the deeper outer ramp zones, mid ramps and shallow inner ramp zones (Figure 12).

Under the light of this information the carbonates have been classified according to the Dunham (1962) and 12 microfacies types were distinguished. The determined microfacies types in this study are; mudstone with lagenoid foraminifera, bioclastic wackestone with calcareous algae and benthic foraminifera, bioclastic wackestone-packstone with diversified foraminifera, wackestone with miliolid foraminifera, unfossiliferous mudstone, peloidal packstone to grainstone, oolitic grainstone, siltstone to mudstone and quartz arenitic sandstone, *Spirorbis phlyctena* rich wackestone, pseudoolitic or recrystallized coated grain packstone, sandy or silty lime mudstone.

3.1.1. MF 1 Mudstone with Lagenoid Foraminifera

This facies type is composed of micrite and includes lagenoid benthic foraminifers such as *Nodosinelloides camerata*, “*Nodosaria*” *elabugae*, *Langella* sp. and *Nodosaria* sp. (Figure 13). This facies type represents possibly the deposits laid down below the wave base in the platform interior observed in the samples AH-1, AH-37, AH-39, AH-40 and AH-41. It is probably the equivalent of SMF 9 corresponding to the open marine zone (FZ 7) of the platform interior (Flügel, 2004).

3.1.2. MF 2 Bioclastic Wackestone with Calcareous Algae and Benthic Foraminifera

This microfacies is rich in calcareous algae and contains also benthic foraminifera and gastropods. The common texture of the facies is wackestone (Figure 14) and is placed landward side of the MF 1. It is observed in the intervals between AH-11 and AH-16, between AH-20 and AH-27, between AH-44 and AH-45 and in the upper part of the section between samples AH-66 and AH-68 (Figure 30).
This type of facies corresponds to RMF17 (Bioclastic wackestone with dasyclads) of Flügel (2004) deposited in the restricted part of the inner ramp.

3.1.3. MF 3 Bioclastic Wackestone-Packstone With Diversified Foraminifera

This microfacies type is characterized by the highly diversified benthic foraminiferal assemblages. \textit{Nodosinelloides} spp., \textit{Globivalvulina} sp., \textit{Codonofusiella} sp., \textit{Frondina permica}, \textit{Dagmarita chanakchiensis} and \textit{Rectostipulina quadrata} are the most frequently encountered taxa. Apart from these foraminifera, algae, gastropoda and echinodermata fragments are also present in the microfacies (Figure 15).

MF 3 is probably the equivalent of SMF 18 (Grainstone/Packstone with abundant foraminifera or algae) of Flügel (2004) and corresponds to FZ8 (restricted environment of platform interior) of Wilson (1975).

3.1.4. MF 4 Wackestone with Miliolid Foraminifera

This microfacies is generally observed in the lower part of the measured section. In this type, the foraminifers decrease in diversity but the abundance of miliolids increases (Figure 16).

This microfacies type is similar to RMF 16 (Mudstone, wackestone or packstone with abundant miliolid foraminifera) defined by Flügel (2004). According to the RMF model of Flügel (2004) wackestone with abundant miliolid foraminifera is deposited in the restricted environment of the inner ramp.
Figure 16. Photomicrographs of the MF 4 wackestone with miliolid foraminifera microfacies (m: miliolid foraminifer, cr: crinoid), (A-B:AH-5, C-D:AH-10, E-F:AH-37).
3.1.5. MF 5 Unfossiliferous Mudstone

This microfacies is mainly composed of unfossiliferous lime mudstone and deposited in the low energy conditions of lagoonal environment of inner ramp settings (Figure 17). This microfacies type is similar to the SMF 23 (Non-laminated homogeneous micrite and microsparite without fossils) of Flügel (2004). Throughout the measured section generally this microfacies type takes place at the top of shallowing up-ward cycles (Figure 30). According to the SMF model of Flügel (2004) this microfacies type is deposited in the tidal flats (FZ 8) and around the arid evaporitic coasts (FZ 9A).

3.1.6. MF 6 Peloidal Packstone to Grainstone

This facies type includes grains most of which are coated bioclasts, exhibit micrite envelopes and additional grain types may be rounded intraclasts, peloids, foraminifers and algae (Figure 18). This facies type resembles to SMF 16 of Flügel (2004) and corresponds to FZ 8 of the Standard Facies Zones of Flügel (2004).

3.1.7. MF 7 Oolitic Grainstone

In this microfacies type, the laminae of the ooid cortices are radially structured and the grains are poorly sorted (Figure 19). This microfacies type is similar to the SMF 15 (Oolite commonly oolitic grainstones but also oolitic wackestones) of Flügel (2004) and corresponds to high energy marine settings on oolitic shoals, tidal bars and beaches (FZ 8 or FZ 9).

3.1.8. MF 8 Siltstone to Mudstone

This microfacies represents the siliciclastic influx into the depositional area. In the measured section it is observed as thick layers corresponding to samples AH-18, AH-19, AH-90 and AH-96 (Figure 20, Figure 30).
Figure 17. Photomicrographs of the MF-5 Unfossiliferous mudstone microfacies (A-B-C: All-17; D: All-60).
Figure 19. Photomicrographs of the MF 7 oolitic grainstone microfacies (A-B:AH-65, C-D-E:AH-79, F:AH-86).
Figure 20. Photomicrographs of the MF 8 siltstone to mudstone microfacies (A:AH-18, B-C:AH-19, D-E:AH-90, F:AH-96).
3.1.9. MF 9 Quartz Arenitic Sandstone

This facies is mostly composed of sand size quartz fragments and does not include any fossils, pellets or intraclasts (Figure 21). This facies takes place in the regressive part of cycles due to the increasing siliciclastic input brought in the basin.

3.1.10 MF 10 Spirorbis phlyctaena-rich Wackestone

This facies takes place in the Triassic part of the measured section. The facies includes Spirorbis phlyctaena and the foraminifer Rectocornuspira kalhori (Figure 22). Thin lamellibranch shells are also rarely observed. This facies type is intensely dolomitized. It is similar to the facies described from the Lower Triassic Werfen Formation of the Karawanken Mountains (Southern Austria) which include Spirorbis phlyctaena and Postcladella sp. (= Rectocornuspira), (Krainer and Vachard, 2009).

3.1.11. MF 11 Pseudoolitic or Recrystallized Coated Grain Packstone

This type represents the higher energy conditions of the Triassic part of the measured section. The nuclei of the oolites are composed of intraclasts, Spirorbis phlyctaena fragments and pellets (Figure 23). This microfacies type also resembles to the SMF 22 (oncoid floatstone/packstone) of Flügel (2004) and corresponds to restricted or evaporitic or brackish zone of the platform interior(FZ 8 or FZ9).

3.1.12. MF 12 Sandy or Silty Lime Mudstone

This microfacies type is unfossiliferous and also dolomitized (Figure 24). It is similar to the RMF 22 (Finely-laminated dolomitic or lime mudstone) of Flügel (2004). According to the model of Flügel (2004), the depositional area of this facies is a lagoonal environment at the back of sand shoals and banks.
Figure 21. Photomicrographs of the MF 9 quartz arenitic sandstone microfacies (qg: quartz grain), (A-B:AH-91, C-D:AH-92, E-F:AH-95).
Figure 22. Photomicrographs of the MF 10 *Spirorbis phlyctaena*-rich wackestone microfacies (sp: *Spirorbis phlyctaena*, pel: pelecypod), (A:AH-102, B-C:AH-105, D-E:AH-107, F:AH-115).
Figure 23. Photomicrographs of the MF 11, pseudoolitic or recrystallized coated-grain packstone microfacies (A-B-C-D:AH-104, E-F:AH-109).
3.2. Meter-Scale Shallowing Upward Cycles (Parasequences)

The fundamental building blocks of sequences are parasequences and parasequence sets. A parasequence is a relatively conformable succession of genetically related beds or bedsets bounded by marine flooding surfaces and their correlative surfaces (Wagoner, 1985). Siliciclastic parasequences are progradational and therefore shoal upward. Carbonate parasequences are commonly aggradational and also shoal upward (Van Wagoner, 1988). The other denomination of parasequence is meter-scale shallowing upward cycles. Meter scales cycles dominated many shallow water successions throughout the history of carbonate rocks. These high frequency depositional cycles are fundamental sequence stratigraphic units of carbonate platforms (Flügel, 2004).

The depositional sequence was subdivided into lowstand, transgressive, and high stand and falling stage system tracts on the basis of internal surfaces that correspond to changes in the direction of shoreline shift from regression to transgression and vice versa (Catuneanu, 2006).

The highstand system tract is bounded by the maximum flooding surface at the base, and by a composite surface at the top that includes a portion of the subaerial unconformity, the basal surface of forced regression, and the oldest portion of the regressive surface of marina erosion (Catuneanu, 2006). The falling-stage system tract corresponds to the “lowstand fan” of Posamentier et al. (1988) and includes all strata that accumulate in a sedimentary basin during the forced regression of the shoreline. The lowstand system tract is defined as all sedimentary deposits accumulated during the stage of early-rise normal regression which is bounded by the subaerial unconformity and its marine correlative conformity at the base, and by the maximum regressive surface at the top. The transgressive system tract is bounded by the maximum regressive surface at the base, and by the maximum flooding surface at the top (Catuneanu, 2006).

Facies evolution and stacking pattern allow to define elementary, small-scale, medium-scale, and large scale sequences. Some depositional sequences display well
marked sequence boundaries, others are limited by transgressive or maximum flooding surfaces. The hierarchical organisation of such sequence-stratigraphic elements implies that sea-level fluctuations were an important factor in their formation, and that these fluctuations had different frequencies (Strasser et al., 1999).

In this study a 48.06 m thick stratigraphic section was measured across the Permian-Triassic boundary beds of Bolkar Dağı Unit. As a result of microfacies analysis carried out by the investigation of thin sections under microscope 12 microfacies types were determined and according to the vertical arrangement of these microfacies types throughout the section 24 shallowing upward cycles were distinguished. The thickness of the cycles range from 382 cm to 30 cm in thickness. The average thickness of the cycles is 179.92 cm.

3.2.1. Types of Shallowing Upward Cycles

Based on the stacking pattern of microfacies types 6 types main and 10 sub-types of cycles were designated throughout the measured section. These cycles were mainly deposited under shallow marine subtidal environmental conditions. Shallowing character of the cycles are determined according to the presence of lagoonal mudstone, oolitic packstone and siliciclastic deposits at the top of the cycles.

3.2.1.1. A Type Cycles

This type of cycle begins with mudstone with lagenoid foraminifera at the base and continues with bioclastic wackestone-packstone with diversified foraminifera. A type cycles are capped by wackestone with miliolid foraminifera at the top (Figure 25). This type of cycle is observed at the bottom of the measured section (Figure 30).

3.2.1.2. B Type Cycles

This type of cycles is characterized by bioclastic wackestone with calcareous algae and benthic foraminifera at the base and unfossiliferous mudstone capping the
top of the cycle. (Figure 25). B type cycles take place near the base of the measured section (Figure 30).

3.2.1.3. C Type Cycles

C type cycles include two subtypes (C1 and C2). This microfacies type represents a gradual shallowing upward trend. In C1 sub-type the cycle begins with bioclastic wackestone with calcareous algae and benthic foraminifera at the base. Moving upwards bioclastic wackestone-packstone with diversified foraminifera overlies this microfacies (Figure 26). The top of the cycle is constituted by unfossiliferous mudstone. The presence of this lagoonal unfossiliferous mudstone at the top of the cycles indicate a shallowing trend throughout the cycles. C2 sub-type is differentiated from C2 by having mudstone with lagenoid foraminifera at the base of the cycle (Figure 27).

3.2.1.4. D Type Cycles

D type cycles are composed of two different sub-types (D1 and D2). These cycles both begin by bioclastic wackestone-packstone with diversified foraminifera at the base and culminate with oolitic grainstone facies which represents higher energy depositional conditions. D1 sub-type cycles differentiate from D2 in having a transitional packstone-grainstone facies in the cycle (Figure 27).
Figure 25: A type cycle and B type cycle with the representing photomicrographs of the microfacies types deposited within these cycles.
Figure 26: C1 type cycle with the representing photomicrographs of the microfacies types deposited within this cycle.
3.2.1.5. E Type Cycles

Under this cycle two sub-types are defined and named as E1 and E2. Both sub-types which are composed of peloidal packstone to grainstone at the top of cycles. They differ from each other by microfacies types that they have at the bottom of the cycles. E1 sub-type begins with bioclastic wackestone-packstone with diversified foraminifera on the other hand E2 sub-type begins by bioclastic wackestone with calcareous algae and benthic foraminifera at the base of the cycle (Figure 28).

3.2.1.6. F Type Cycles

F type cycles comprise the cycles in the Triassic part of the measured section. This type is composed of *Spirobus phlyctaena*-rich wackestone, pseudoolitic or recrystallized coated grain packstone and sandy or silty lime mudstone. According to the vertical configuration of these microfacies types three sub-types were determined. All these three cycles (F1, F2 and F3) begin with *Spirobus phlyctaena*-rich wackestone at the base (Figure 28, Figure 29). In F1 sub-type cycles *Spirobus phlyctaena* rich wackestone is overlain by pseudoolitic packstone and sandy or silty lime mudstone represents the top of the cycle. In F2 sub-type cycle pseudoolitic packstone facies is absent. F2 is capped by sandy or silty lime mudstone. On the other hand F3 sub-type cycle is characterized by pseudoolitic packstone at the top (Figure 29).

3.3. Duration Of Cycles

Cycles are hierarchically clasasified by the duration of sea-level changes whereby rates of eustatic changes and amplitudes reflect the generating processes. Typical high frequency, meter scale cycles including fifth- and fourth- order cycles with durations of a few ten thousand years (for fifth order), a few hundred thousand years (for fourth order) and grouped into third order cycles formed on a scale of about 1 to 10 million years. Second order cycles have durations of ranging from 10 to 100
Figure 27: C2, D1 and D2 type cycles and with the representing photomicrographs of the microfacies types deposited within these cycles.
Figure 28: E1, E2 and F1 type cycles with the representing photomicrographs of the microfacies types deposited within these cycles.
Figure 29: F2 and F3 type cycles with the representing photomicrographs of the microfacies types deposited within these cycles.
Figure 30. Sequence stratigraphical construction of the measured section showing stacking pattern of shallowing upward cycles, system tracts and sequences.
Figure 30. Continued.

<table>
<thead>
<tr>
<th>MF 2</th>
<th>MF 3</th>
<th>MF 5</th>
<th>MF 3</th>
<th>MF 7</th>
<th>MF 2</th>
<th>MF 6</th>
<th>MF 6</th>
<th>MF 3</th>
<th>MF 6</th>
</tr>
</thead>
</table>

Taskent Formation

Upper Permian

Changhsingian

<table>
<thead>
<tr>
<th>MW</th>
<th>MF 2</th>
<th>MF 3</th>
<th>MF 5</th>
<th>MF 3</th>
<th>MF 7</th>
<th>MF 2</th>
<th>MF 6</th>
<th>MF 6</th>
<th>MF 3</th>
<th>MF 6</th>
</tr>
</thead>
</table>

Scale

Sample No

Lithology

System Tracts

Cycles

Sequences
Figure 30. Continued.
Figure 30. Continued.
Ma and first order cycles last several hundreds of million years. First and second order cycles attributed to long term sea-level changes and tectonics will not control the internal architecture of carbonate sequences because the rates of amplitudes of sea level fluctuation (1-2cm/1000years) are two orders of magnitude less than carbonate sedimentation rates (10-1000cm/1000years). The formation of sedimentary cycles in the third, fourth and fifth order bands have been explained by Milankovitch cycles but also by autocyclic factors and tectonic controls. Causes of third order cycles are waxing and waning of polar ice caps (glacio-eustasy) and changes in the volume of ocean basins (tectono-eustasy) (Flügel, 2004)

The alternation between the glacial and interglacial ages is explained best by the Milankovitch cycles, named after a Yugoslavian geophysicist who first calculated them in 1920’s and 1930’s. These cycles cause periodic variations in the amount of heat Earth receives from the Sun. The shape of Earth’s orbit around the Sun changes cyclically, being more circular at some times and more elliptical at others. The degree of ellipticity of Earth’s orbit is known as eccentricity. A nearly circular orbit has low eccentricity, and a more elliptical orbit has high eccentricity (Einsele, 1991). The time interval of one cycle of variation from low to high eccentricity is about 100.000 years. Small-scale shallow lagoonal to peritidal sequences related to cyclic sea level fluctuations have been documented from many geologic epochs and by many authors (Fisher 1964, Goldhammer et al. 1987, Strasser 1988). In many sections, the 100.000 eccentricity cycle seems to be particularly well developed (Einsele, 1991).

Haq and Schutter (2008) have reconstructed a history of sea-level fluctuations for the entire Paleozoic by using stratigraphic sections from pericratonic and cratonic basins. They documented one hundred and seventy two eustatic events for the Paleozoic, varying in magnitude from a few tens of meters to 125 meters. Throughout the measured section two sequence boundaries determined (SB1 and SB2). These sequence boundaries coincide well with sequence boundaries determined in Changhsingian by Haq and Schutter (2008). According to their chart a sequence boundary exist at the middle part of Changhsingian by 252.5 Ma and a younger sequence boundary (251.5 Ma) exist at the upper part just below the Permian-Triassic.
Figure 31: A hypothetical model showing the sequence stratigraphical interpretation and the position of the measured section.
boundary. Throughout the measured section 11 meter-scale cycles have been determined between SB1 and SB2. The duration of the cycles are approximately 90.900 and can be interpreted as Milankovitch eccentricity cycle. (Figure 31).

3.4. Sequence Stratigraphic Interpretation

Basing on microfacies analysis and field observations, sequence stratigraphic interpretation of the study area is presented. According to the characteristics and the vertical configuration of the shallowing upward cycles, system tracts have been delineated throughout the measured section. Three sequences and two sequence boundaries were determined. In sequence 1 only highstand system tract and falling stage system tract deposits can be observed along our measured section. The highstand system tract deposits are composed of mudstone with lagenoid foraminifera, bioclastic wackestone-packstone with diversified foraminifera, wackestone with miliolid foraminifera, bioclastic wackestone with calcareous algae and benthic foraminifera and unfossiliferous mudstone facies which are represented as A type and B type cycles in the lowermost part of the stratigraphic section. These deposits display a transition from carbonate-dominated highstand system tract deposits to silicilastic-dominated falling stage system tract deposits until sample AH-19. Between samples AH-19 and AH-20 the thick siltstone layer is overlain by bioclastic wackestone with calcareous algae and benthic foraminifera. This abrupt change in the deposition is interpreted as the first sequence boundary which assigns the top of sequence 1 and the base of sequence 2. C1 and C2 sub-type cycles contain bioclastic wackestone with calcareous algae and benthic foraminifera, bioclastic wackestone-packstone with diversified foraminifera mudstone with lagenoid foraminifera and unfossiliferous mudstone, which exhibit a clear gradual shallowing upward trend and backstepping stacking pattern of these cycles record a deepening from siltstone to open marine limestone and mudstone. The increasing marine influence and retrogradational character of the deposits are interpreted to represent a progressive increase in sediment accommodation space and these deposits are interpreted as transgressive system tract deposits of sequence 2. The average thickness of the C type cycles is 353.5 cm within this interval. D and E type cycles, mainly composed of peloidal packstone to grainstone and oolitic grainstone record a
progressive shallowing and decreasing sediment accommodation space in our study area. These sediments are interpreted as highstand system tract deposits of sequence 2. The thickness of the D type cycles varies between 88 cm to 300 cm and the thickness of E type cycles varies between 82 cm to 272 cm. The second sequence boundary is located between the samples AH-92 and AH-93. Between samples AH-94 and AH-96 the deposition of sandstone and siltstone is observed associated with a reduction in sediment accommodation space and these siliciclastic deposits are interpreted as lowstand system tract deposits of sequence 3. From the sample AH-97 to the top of the measured section the transgressive system tract deposits of the sequence 3 are observed which are represented by F type cycles. Permian-Triassic boundary is located in the trangressive system tract deposits of the sequence 3. Altuner et al. (1980) recorded a transgressive phase in the uppermost Permian at Julfa and north of the Eastern Elbruz. Angiolini et al. (2010) has also reported the Permian-Triassic boundary in the transgressive system tract deposits of the Elihah River section in the Alborz Mountains (North/Iran).
CHAPTER 4

SYSTEMATIC PALEONTOLOGY

Family Syzraniidae VACHARD in VACHARD and MONTENAT, 1981

Genus Rectostipulina JENNY-DESHUSSES, 1985

Type species: Rectostipulina quadrata JENNY-DESHUSSES, 1985

Rectostipulina quadrata JENNY-DESHUSSES, 1985

Pl. VIII, figs. 1, 2

1978. Stipulina n. gen.? Lys and Marcoux, pl. 1, fig. 14
1980. Stipulina Lys and Marcoux; Lys et al., p. 86-87, pl. 3, fig. 14, 15
1981. “Stipulina” Lys in Lys and Marcoux; Zaninetti, Altner and Çatal, pl. 12, figs. 3, 8, 9, 14, 18, 19, 21.
1989. Rectostipulina quadrata Jenny-Deshusses; Köylüoğlu and Altner, pl. 11, fig. 24, 26, 27
1991. Rectostipulina quadrata Jenny-Deshusses; Vachard and Ferrière, pl. 4, fig. 16.
1996. Rectostipulina quadrata Jenny-Deshusses; Leven and Okay, pl. 8, fig. 22
1998. Rectostipulina quadrata Jenny-Deshusses; Cirilli, Pirini Radrizzani, Ponton and Radrizzani, pl. 2, fig. 8.
2005. Rectostipulina quadrata Jenny-Deshusses; Groves et al., figs. 23.5-23.12
2007. Rectostipulina quadrata Jenny-Deshusses; Groves et al., figs.6.9, 7.1-7.3
2009. Rectostipulina quadrata Jenny-Deshusses; Song et al., figs. 11.4, 11.5.
2010. Rectostipulina quadrata Jenny-Deshusses; Angiolini et al., figs. 4.30, 4.31.
Description:

Test is tubular and no septation is observed. The chambers appear square-shaped in the transverse section. The wall is two layered; inner one is dark microgranular layer and the outer one is thick hyaline layer. In addition the outer layer becomes thicker at the corners of the square.

Dimensions (mm):

Diameter of the tubular chamber: 0.037
Thickness of the wall: 0.006

Stratigraphic Distribution:

Rectostipulina quadrata is recovered from most of the samples from base to middle part of the Changhsingian stage of the measured section.

Rectostipulina pentamerata Groves, Altner and Rettori, 2005
Pl. VIII, figs. 3-5

1981. “Stipulina” Lys in Lys and Marcoux; Zaninetti, Altner and Çatal, pl. 12, figs. 11, 12, 16.
1989. Rectostipulina quadrata Jenny-Deshusses; Köylüoğlu and Altner, pl. 11, fig. 25.
2005. Rectostipulina pentamerata Groves, Altner and Rettori; Groves et al., figs. 23.1-23.4
2007. Rectostipulina pentamerata Groves, Altner and Rettori; Groves et al., figs. 7.4-7.6
2009. Rectostipulina pentamerata Groves, Altner and Rettori; Song et al., figs. 11.6-11.8.
2010. Rectostipulina pentamerata Groves, Altner and Rettori; fig 4.29.

Description:

Test is tubular. The tubular chamber is pentagonal in transverse section, and rectangular in oblique section. Wall thickness increases at the corners of the pentagonal.
Dimensions (mm):
 Diameter of the tubular chamber: 0.033
 Thickness of the wall: 0.006

Remarks:
 The difference between *Rectostipulina quadrata* and *Rectostipulina pentamerata* is the number of chamber sides. *Rectostipulina quadrata* has four-sided chambers and appears square in transverse sections, *Rectostipulina pentamerata* has five-sided chambers and appears pentagonal in tranverse sections. The oblique section of both species may appear rectangular so transverse section must be observed to decide on the species.

Stratigraphic Distribution:
Rectostipulina pentamerata is recovered from Changhsingian stage of the measured section.

Family Protonodosariidae MAMET and PINARD, 1992
Genus *Nodosinelloides* MAMET and PINARD, 1992
Type species: *Nodosinelloides potievskayae* MAMET and PINARD, 1996

Nodosinelloides sagitta MIKLUKHO-MAKLAY, 1954
 Pl. I, figs. 1-6, Pl. II, figs. 1-14

1981. *Nodosaria sagitta* Miklukho-Maklay; Altiner, pl. 42, fig. 3-5
1989. *Protonodosaria sagitta* (Miklukho-Maklay); Köylüoğlu and Altıner, pl. 9, fig. 17.

Description:

Test is elongate. The number of the postproloculus chambers is 6-10. Early chambers are more compressed and hemispherical. Height of later chambers increase and they have a subcylindrical form.

Dimensions (mm):

- Height of the test: 0.1525
- Diameter of the last formed chamber: 0.03
- Height of the last formed chamber: 0.0275
- Thickness of the wall: 0.005

Remarks: This form differs from *Nodosinelloides camerata* by having taller chambers and a longer and thinner appearance.

Stratigraphic Distribution:

This species is one of the most commonly occurring foraminifers in our thin sections. It is found in most of the samples in the Changhsingian Stage of measured section.

Nodosinelloides camerata MIKLUKHO-MAKLAY, 1954

Pl. III, figs. 1-12

2005. *Nodosinelloides camerata* (Miklukho-Maklay, 1954); Groves et al., figs. 19.18-19.26

Description:

Test is elongate and chambers are uniserially arranged. The number of the chambers after proloculus is 4-6. Chambers are compressed and hemispherical. The width of the chambers slowly increases in the later chambers.

Dimensions (mm):

- Height of the test: 0.045
- Diameter of the last formed chamber: 0.022
- Height of the last formed chamber: 0.012
- Thickness of the wall: 0.005

Remarks:

Nodosinelloides camerata differs from *Nodosinelloides sagitta* from having more hemispherical chambers and a more compressed appearance.

Stratigraphic Distribution:

This species is also one of the abundant foraminifers in Changhsingian stage of the Tağkent Formation.

Nodosinelloides sp. A

Pl. VI, figs. 12, 13

Description:

The test is elongate. The chambers are arranged uniserially. The shape of the chambers is subrectangular. Throughout the growth of the test the width of the chambers increases gradually but on the other hand the height of the chambers increases abruptly. The wall is thin. The aperture appears as a simple opening at the top of the test.

Dimensions (mm):

- Height of the test: 0.13
Diameter of the last formed chamber: 0.034
Height of the last formed chamber: 0.028
Thickness of the wall: 0.004

Remarks:
Nodosinelloides sp. A differs from others by the shape chambers, abruptly increasing chamber height and the having a thin wall.

Stratigraphic Distribution:
Nodosinelloides sp. A is recovered from Changhsingian stage of the measured section.

Nodosinelloides spp.
Pl. VI, fig. 14

Description:
Under *Nodosinelloides* spp. we group several forms having a large number of uniserially arranged chambers. The number of postprolocular chambers varies between 7-12. The shape of the chambers is subrectangular. The height and the width of the chambers increase gradually and regularly throughout the growth.

Dimensions (mm):
- Height of the test: 0.115
- Diameter of the last formed chamber: 0.027
- Height of the last formed chamber: 0.017
- Thickness of the wall: 0.001

Stratigraphic Distribution:
Nodosinelloides spp. is recovered from Changhsingian stage of the measured section.

Nestellorella dorashamensis PRONINA, 1989
Pl. VII, figs. 1-16

1989. *Pseudolangella doraschamensis* sp. nov; Pronina, p. 33-34, pl. 2, fig. 32-35
2007. *Pseudolangella doraschamensis* Pronina; Groves et al., fig. 10.6-8.
Description:

A spherical proloculus is followed by uniserially arranged 4-6 chambers. Test is small.

Dimension (mm):
- Height of the test: 0.08
- Diameter of the last formed chamber: 0.048
- Height of the last formed chamber: 0.024
- Thickness of the wall: 0.008

Stratigraphic Distribution:

Nestellorella dorashamensis is recorded from the Changhsingian stage of the measured section.

Genus *Langella* SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965
Type species: *Padangia perforata* LANGE, 1925

Langella sp.

Description:

Test is elongate and uniserially arranged. Chambers increase rapidly in size in the early stage, later a slight increase of size is observed. Chambers are subglobular in shape and slightly arched towards the preceding chamber.

Dimensions (mm):
- Height of the test: 0.085
- Diameter of the last formed chamber: 0.042
- Height of the last formed chamber: 0.03
- Thickness of the wall: 0.008

Remarks: The most diagnostic feature of the *Langella* sp. is having a very thick hyaline wall.

Stratigraphic Distribution:

Langella sp. is recovered from Changhsingian stage of the measured section.
Langella perforata LANGE, 1925

Pl. V, fig. 13

1925. *Padangia perforata* sp. nov., Lange, p. 228-229, pl. 1, fig. 21.

1984. *Padangia perforata* Lange; Lin, p. 117, pl. 1, fig. 44, 45a, 45b

2003. *Langella perforata* Lange; Ünal et al., pl. 1, fig. 42.

Description:

The test consists two postprolocular chambers which are uniserially arranged. The chambers are hemispherical. *Langella perforata* has a thick hyaline wall.

Dimension (mm):

- Height of the test: 0.28
- Diameter of the last formed chamber: 0.16
- Height of the last formed chamber: 0.116
- Thickness of the wall: 0.076

Stratigraphic Distribution:

Langella perforata is recovered from Changhsingian stage of the measured section.

Genus Pseudolangella SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965

Type species: *Pseudolangella fragilis* SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965

Pseudolangella sp.

Pl. V, fig. 11

Description:

Test is elongate and hemispherical chambers are uniserially arranged. The number of postproloculus chambers is 4. The chambers are arched towards to sides of the previous chamber. A thick hyaline wall is observed.

Dimension (mm):

- Height of the test: 0.075
- Diameter of the last formed chamber: 0.03
Height of the last formed chamber: 0.019
Thickness of the wall: 0.0035

Remarks:

Pseudolangella sp. distinguished from Langella sp. by having thinner wall.

Stratigraphic Distribution:

Pseudolangella sp. is recovered from the Changhsingian stage of the measured section.

Family Geinitzinidae BOZORGNIA, 1973

Geinitzina araxensis PRONINA, 1989

Pl. IV, fig. 11, Pl. V, figs. 1-4

1981. Lunucammina postcarbonica (Spandel, 1901); Altner, pl. 41, fig. 13, 15-18.
1989. Lunucammina postcarbonica (Spandel, 1901); Köylüoğlu and Altner, pl. 8, fig. 20-21.
1989. Geinitzina araxensis Pronina, p. 34-35, pl. 2 fig. 1, 2.
2003. Geinitzina postcarbonica Spandel, 1901; Ünal, Altner, Yılmaz, and Özkanoğlu and Altner, pl. 1, fig. 21, 22.

Description:

The number of postproloculus chambers is 6-8. Chambers are uniserially arranged, slightly arched and rounded at their lateral margins. Throughout the growth the chamber heights do not change so much but widths of the chambers increase gradually.

Dimensions (mm):

Height of the test: 0.026
Diameter of the last formed chamber: 0.23
Height of the last formed chamber: 0.005
Thickness of the wall: 0.001
Remarks:

Geinitzina araxensis differs from other *Geinitzina* species by flat and wide chambers.

Stratigraphic Distribution:

Specimens were recovered from the Changhsingian stage of the measured section.

Family Robuloadidae REISS, 1963 nomen translat LOEBLICH and TAPPAN, 1984

Genus *Calvezina* SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965

Type Species: *Calvezina ottomana* Sellier de Civrieux and Dessauvagie, 1965

Calvezina ottomana SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965

Pl. V, fig. 16, Pl. VI, fig. 1

1965. *Calvezina ottomana* Sellier de Civrieux and Dessauvagie, p. 53-54, pl. 11, fig. 3; pl. 14, fig. 9

1973. *Calvezina cf. ottomana* Sellier de Civrieux and Dessauvagie; Bozorgnia, pl.35, fig. 10.

1978. *Calvezina ottomana* Sellier de Civrieux and Dessauvagie; Lys and Marcoux, pl. 1, fig. 19.

1980. *Calvezina ottomana* Sellier de Civrieux and Dessauvagie; Lys, Colchen, Bassoulet, Marcoux and Mascle, pl. 4, fig. 1.

1981. *Calvezina* sp. Vachard and Montenat, pl.14, fig. 12

1989. *Calvezina ottomana* Sellier de Civrieux and Dessauvagie; Köylüoğlu and Altner, pl. 9, fig. 12.

1989. *Calvezina* sp. Köylüoğlu and Altner, pl. 9, fig. 13

1996. *Calvezina* ? sp. Leven and Okay, pl. 10, fig.20

2003. *Calvezina* sp. Ünal, Altner, Yılmaz and Özkan-Altner, pl. 1, fig. 41.

2005.*Calvezina ottomana* Sellier de Civrieux and Dessauvagie; Groves et al., figs. 23.23-23.25, 23.27, 23.30, 24.1, 24.2, 24.8, 24.9

2009. *Calvezina ottomana* Sellier de Civrieux and Dessauvagie; Song, Tong, Chen, Yang and Wang, figs. 10.23-10.25.

2010. *Calvezina ottomana* Sellier de Civrieux and Dessauvagie; Angiolini et al., fig. 4.15

Description:

The spherical proloculus is followed by 4-5 uniserially arranged chambers. The second and third chamber may be slightly curved. *Calvezina ottomana* has a thin hyaline wall structure.

Dimensions (mm):

- Height of the test: 0.059
- Diameter of the last formed chamber: 0.026
- Height of the last formed chamber: 0.01
- Thickness of the wall: 0.002

Remarks:

Calvezina ottomana is differentiated from other lagenid foraminifers by relatively thinner hyaline wall and irregular chamber shapes in especially second and third chambers.

Stratigraphic Distribution:

Calvezina ottomana is not very abundant in our measured section and represented by three specimens recorded from lower and middle part of the Changhsingian stage.

Genus Cryptomorphina Sellier de Civrieux and Dessauvagie, 1965

Type Species: *Cryptopmorphina limonitica* SELLIER DE CIVRIEUX AND DESSAUVAGIE, 1965

Cryptopmorphina limonitica SELLIER DE CIVRIEUX AND DESSAUVAGIE, 1965

Pl. V, figs. 14, 15

1965. *Cryptopmorphina limonitica* Sellier de Civrieux and Dessauvagie, p. 51-52, pl. 11, fig. 6; pl. 23, fig. 24.
2005. *Cryptopmorphina limonitica* Sellier de Civrieux and Dessauvagie; Groves et al., figs. 22.15?, 22.16?, 22.17

2007. *Cryptopmorphina limonitica* Sellier de Civrieux and Dessauvagie; Groves et al., figs. 6.5-6.8, 6.10, 6.12.

Description:

The globular proloculus is followed by 2-3 postprolocular subglobular chambers by a uniserial arrangement. The earlier chambers increase gradually but the last chambers increase abruptly and arced strongly towards the proloculus. The top of the last chamber is slightly flattened. Also the last chamber has a thicker outer hyaline layer that envelopes the previous chambers.

Dimension (mm):

- Height of the test: 0.15
- Diameter of the last formed chamber: 0.0875
- Height of the last formed chamber: 0.0375
- Thickness of the wall: 0.001

Stratigraphic Distribution:

Cryptomorphina limonitica is recorded from lower and middle part of Changhsingian stage of measured section.

Genus *Robuloides* REICHEL, 1946

Type species: *Robuloides lens* Reichel, 1946

Robuloides ? sp.

1946. *Robuloides lens* Reichel, p. 536, text-fig. 21-26, pl. 19, fig. 6, 7
1946. *Robuloides acutus*, Reichel, p. 537, text-fig. 27-29, pl.19, fig. 8, 9
1954. *Robuloides lens* Reichel; Miklukho-Maklay, p. 64, pl. 10, fig. 8-11
1981. *Robuloides lens* Reichel; Altner, pl. 42, fig. 8-14
1988. *Robuloides acutus*, Reichel; Pronina, pl. 2, fig. 65-66
1989. *Robuloides lens* Reichel; Köylüoğlu and Altner, pl. 10, fig. 16, 17
1991. *Robuloides acutus*, Reichel; Vachard and Ferrière, pl. 4, fig. 10, 11
1996. *Robuloides lens* Reichel; Leven and Okay, pl. 9, fig. 29, 30
1999. *Robuloides lens* Reichel; Kobayashi, fig. 1.12
2007. *Robuloides lens* Reichel; Groves et al., figs. 7.22, 7.25-7.27
2009. *Robuloides lens* Reichel; Song, Tong, Chen, Yang and Wang, figs. 10.33-10.35.
2010. *Robuloides lens* Reichel; Angiolini et al., fig. 4.32.

Description:

Test is lenticular to nautiloid. Planispiral involute coiling is observed with two or three whorls. The wall is calcareous hyaline.

Dimension (mm):

Diameter of the test: 0.035
Thickness of the wall: 0.002

Stratigraphic Distribution:

Our single specimen occurs in the sample AH-93 belonging to the uppermost part of the Changhsingian stage of our measured section.

Genus *Frondina* SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965

Type species: *Frondina permica* SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965

Frondina permica SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965

Pl. V, figs. 5-10

1965. *Frondina permica* Sellier de Civrieux and Dessauvagie, p. 59-60, pl.5, fig. 17, 18, 21-23, 26-28, 32, 33; pl. 16, fig. 5, 8, 12; pl. 17, fig. 1, 3, 5, 6
1978. *Frondina permica* Sellier de Civrieux and Dessauvagie; Lys and Marcoux, pl. 1, fig. 18
1978. ? *Frondina permica* Sellier de Civrieux and Dessauvagie; Zaninetti, Brönnimann, Hubber and Moshtaghian, pl.86, fig.28
1979. *Frondina permica* Sellier de Civrieux and Dessauvagie; Whittaker, Zaninetti and Altıner, pl. 2, figs. 15, 16.
1980. *Frondina permica* Sellier de Civrieux and Dessauvagie; Lys, Colchen, Bassoullet, Marcoux and Mascle, p. 87, pl. 4, fig. 2, 3
1981. *Frondina permica* Sellier de Civrieux and Dessauvagie; Altıner, pl. 39, fig. 10-14
1987. *Frondina permica* Sellier de Civrieux and Dessauvagie; Noé, pl. 32, fig. 9
1989. *Frondina permica* Sellier de Civrieux and Dessauvagie; Köylüoğlu and Altıner, pl. 9, fig. 4-8
1996. *Frondina* cf. *permica* Sellier de Civrieux and Dessauvagie; Leven and Okay, pl. 8, fig. 27.
2003. *Frondina permica* Sellier de Civrieux and Dessauvagie; Ünal, Altıner, Yılmaz, and Özkan-Altıner, pl. 1, fig. 32-34, 38.
2007. *Frondina permica* Sellier de Civrieux and Dessauvagie; Groves et al., figs.7.9, 7.10, 7.15-7.17, 7.20.
2007. *Frondina permica* Sellier de Civrieux and Dessauvagie; Song, Tong, Zhang, Wang and Chen, fig. 7.S.
Description:
Test is elongate. The number of uniserially arranged chambers is 4-6. Chambers are strongly arched towards the proloculus. The chambers envelope the preceding chambers so the chambers are seen as crescent-shape in the frontal longitudinal section.
Dimension (mm):

Height of the test: 0.06
Diameter of the last formed chamber: 0.026
Height of the last formed chamber: 0.013
Thickness of the wall: 0.002

Remarks:

Frondina permica differs from *Ichthyofrondina palmata* by less arched and less enveloped chambers.

Stratigraphic Distribution:

Frondina permica is recovered from the Changhsingian stage of the measured section.

SUPERFAMILY COLANIELLOIDEA FURSENKO, 1959

Family Colaniellidae Fursenko, 1959

Genus *Colaniella* Likharev, 1939

Colaniella parva (Colani, 1924)

Pl. XI, figs. 3, 4

1924. *Pyramis parva* Colani, p. 181, pl. 29, fig. 2, 4-14, 15a-15f, 16, 17, 19, 21, 24.
1975. *Colaniella parva* (Colani); Ishii et al., pl. 1, fig. 1-3, pl. 4, fig. 4.
1980. *Colaniella parva* (Colani); Lys, Colchen, Bassoullet, Marcoux and Mascle, pl. 5 figs. 12-17.
1981. *Colaniella inflata* (K. L. Wang); Hase et al., fig. 4-6.
1981. *Colaniella* sp., Hase et al., fig. 4-7.
1981. *Colaniella minima* K.L. Wang; Hase et al., fig. 4-8, 4-13.
1981. *Pseudocolaniella* sp., Hase et al., fig. 4-10.
1997. *Colaniella parva* (Colani); Kobayashi, pl. 2, figs. 1-27.
1999. *Colaniella parva* (Colani); Kobayashi, figs. 1.14, 1.15.
2001. *Colaniella parva* (Colani); Pronina-Nestell and Nestell, pl. 3, fig. 16.
2004. *Colaniella parva* (Colani); Groves, Rettori and Altiner, figs 7.4-7.6.
2006. *Colaniella parva* (Colani); Kobayashi, pl. 1, figs. 1-20, 22-24.

2009. *Colaniella parva* (Colani); Song, Tong, Chen, Yang and Wang, figs. 10.14-10.18.

2010. *Colaniella parva* (Colani), Wang et al., Figs.4.9-4.13.

Description:

Test is elongate, subfusiform. Spherical proloculus is followed by strongly overlapped uniserially arranged chambers increasing their height and width gradually throughout the growth. Chambers are divided into chamberlets by radially arranged primary and secondary plate like partitions. The wall is perforate with fibrous or radial structure and may have a very thin opaque layer. The form appears circular in the transverse section.

Dimensions (mm):

- Diameter of the test: 0.093
- Thickness of the wall: 0.006

Stratigraphic Distribution:

Our single specimen was recorded from sample AH-93 in the Changhsingian part of the measured section.

SUPERFAMILY Nodosarioidea EHRENBERG, 1838

Family Nodosariidae EHRENBERG, 1838

Genus *Nodosaria* LAMARCK, 1812

Type species: *Nautilus radicula* LINNÉ, 1758

‘*Nodosaria*’ *elabugae* CHERDYNTSEV, 1914

Pl. VI, figs. 2-6

1914. *Nodosaria elabugae* Cherdymtsev, p. 34-35, pl. 2 fig. 1, 2.

1939. *Nodosaria elabugae* Cherdymtsev; Likharev, p. 30, pl. 1, fig. 2, 3.

1965. *Nodosaria armeniensis* Efimova; Reitlinger, pl. 2, fig. 6, 7.

1978. *Nodosaria armeniensis* Efimova; Lys and Marcoux, pl. 1, fig. 15.

1981. *Nodosaria armeniensis* Efimova; Altıner, pl. 42, fig. 1, 2.
1985. *Nodosaria nechajevi* Tcherdintsev; Epshtein, Terekhova and Solov’eva, pl.
1986. *Nodosaria angjieshanensis* Wang, p. 120, pl. 2, fig. 4.
2005. “*Nodosaria* elabugae” Cherdyntsev; Groves et al., figs.19.11-19.17.
2007. “*Nodosaria* elabugae” Cherdyntsev; Groves et al., figs. 8.18, 8.22-8.30.

Description:
Test is small and elongate. The number of postprolocular chambers is 4-5.
Chambers are subspherical. Upper face of the chambers has an oscillating appearance.

Dimensions (mm):
- Height of the test: 0.053
- Diameter of the last formed chamber: 0.02
- Height of the last formed chamber: 0.017
- Thickness of the wall: 0.005

Remarks:
“*Nodosaria* elabugae” is differentiated from other species by having a thicker chamber wall and subspherical chamber shape.

Stratigraphic Distribution:
The occurrence of this species is relatively rare. “*Nodosaria* elabugae” is recorded only four samples (AH-17, AH-29, AH-38 and AH-53) of the Changhsingian stage of the measured section.

“*Nodosaria* skyphica” EFIMOVA, 1974
Pl. VI, fig. 7

1959. *Nososaria* sp. Ho, p. 417, pl. 8, fig. 22-25
1974. *Nodosaria pircamerata* Efimova, p. 73-74, pl. 5, fig.12
1978. *Nodosaria pircamerata* Efimova, pl. 1, fig. 11

1992. *Nodosaria skyphica* Efimova; Scoursis-Coroneou, Trifonova, and Tselepides, pl. 1, fig. 6.

1994. *Nodosaria skyphica* Efimova; Trifonova, p. 45, pl. 5, fig. 23-26, pl. 6, fig.1.

1994. *Nodosaria piricamerata* Efimova; Trifonova, p. 43, pl. 6, fig. 15, 16.

2007. “*Nodosaria*” *skyphica* Efimova; Song, Tong, Zhang, Wang and Chen, fig. 5.A.

2007. “*Nodosaria*” *skyphica* Efimova; Groves et al., figs. 7.28, 7.29.

Description:

Test is elongate and chambers are uniserially arranged. The number of chambers is 6-8. The chambers are egg-shaped and the thicker part is at the top of each chamber. About one-fifth of each chamber projects into the following chamber.

Dimension (mm):

- Height of the test: 0.12
- Diameter of the last formed chamber: 0.03
- Height of the last formed chamber: 0.024
- Thickness of the wall: 0.006

Remarks:

This species differs from other “*Nodosaria*” by in having egg-shaped chambers and arrangement of the chambers one another.

Stratigraphic Distribution:

“*Nodosaria*” *skyphica* is one of the rare fossil groups in the studied section. This species recorded only at sample AH-2 in the lowermost part of the Changsiningian stage of the studied section.

“*Nodosaria*” sp. A

Pl. VI, figs. 8-11

Description:

The test is composed of uniserially arranged spherical chambers. The number of the postprolocular chambers is 4-5. Every chamber attached to another from the
uppermost part of the chamber so the frontal view of the test appears like chain-shaped. The apperture appears as a simple opening at the top of the test.

Dimensions (mm):

- Height of the test: 0.19
- Diameter of the last formed chamber: 0.036
- Height of the last formed chamber: 0.044
- Thickness of the wall: 0.008

Remarks:

―Nodosaria‖ sp. A differs from other ―Nodosaria‖ by the shape of chambers and arrangement of the chambers.

Stratigraphic Distribution:

―Nodosaria‖ sp. A is recorded from the Changhsingian stage of measured section.

Genus *Pachyphloia*, Lange, 1925

Type species: *Pachyphloia ovata* Lange, 1925

Pachyphloia ovata Lange, 1925

Pl. IV, figs. 3-7, 9

1925. *Pachyphloia ovata* Lange, p. 231, pl. 1. Fig. 24a, 24b.
1954. *Pachyphloia ovata* Lange; Mikluuko-Maklay, p. 44-45, pl. 5, fig. 1.
1965. *Pachyphloia cukurkoyi* Sellier de Civrieux and Dessauvagie, p. 37-38, pl. 4, fig. 1-3; pl. 5, fig. 2, 8, 9; pl. 6, fig. 3, 4, 6-8, 12; pl. 7, fig. 1, 4; pl. 13, fig. 4
1981. *Pachyphloia ovata* Lange; Altner, pl. 40, fig. 6-15.
2001. *Pachyphloia ovata* Lange; Kobayashi, pl. 1, fig. 27-29, 31-34.
2003. *Pachyphloia ex gr. ovata* Lange; Groves, Altuner and Rettori, fig. 1.24, 1.27, 1.28.
2004. *Pachyphloia ovata* Lange; Groves, Rettori and Altuner, fig. 7.1-7.3
2005. *Pachyphloia ovata* Lange; Kobayashi, figs. 3.7-3.11.
2007. *Pachyphloia ovata* Lange; Gaillot and Vachard, pl. 72, figs. 5, 23, pl. 73, figs. 4, 8

Description:

Test is elongate and compressed. The number of chambers is 6-7. Uniserially arranged chambers are strongly arched. A well developed lamellar thickening can be observed in the lateral longitudinal sections.

Dimensions (mm):

- Height of the test: 0,1
- Diameter of the last formed chamber: 0,021
- Height of the last formed chamber: 0,02
- Thickness of the wall: 0,009

Stratigraphic Distribution:

Pachyphloia ovata is recovered from Changhsingian stage of the measured section.

Pachyphloia schwageri SELLIER DE CIVRIEUX and DESSAUVAGIE, 1965

Pl. IV, fig. 1
1965. *Pachyphloia schwageri* Sellier de Civrieux and Dessauvagie, p.38-39, pl. 4, fig. 4-16; pl. 5, fig. 1, 3-7, 10-16, 19; pl.6, fig. 1, 2, 5, 11, 13; pl. 7, fig. 2, 3; pl. 8, fig. 1, 3, 4; pl. 9, fig. 3; pl. 14, fig. 2; pl. 16, fig. 2.

1981. *Pachyphloia schwageri* Sellier de Civrieux and Dessauvagie; Altner, pl. 40, fig. 16-18.

1989. *Pachyphloia schwageri* Sellier de Civrieux and Dessauvagie; Köylüoğlu and Altner, pl. 8, fig. 8-12.

1986. *Pachyphloia ovata* Lange; Kobayashi, pl. 2, fig. 27-29, 30, 32

1996. *Pachyphloia sp.* Leven and Okay, pl.10, fig. 5.

2007. *Pachyphloia schwageri* Sellier de Civrieux and Dessauvagie; Groves et al., figs. 8.7-8.9, 8.11-8.14, 8.20, 8.21.

2009. *Pachyphloia schwageri* Sellier de Civrieux and Dessauvagie; Song, Tong, Chen, Yang and Wang, figs. 10.26, 10.27.

Description:

Test is elongate, chambers are uniserially arranged and strongly arched towards the proloculus. Secondary lamellarity is developed at the sides of the test.

Dimensions (mm):

- Height of the test: 0.158
- Diameter of the last formed chamber: 0.03
- Height of the last formed chamber: 0.02
- Thickness of the wall: 0.01

Remarks:

Pachyphloia schwageri differs from *Pachyphloia ovata* by its thinner secondary lamellae and less arched chambers.

Stratigraphic Distribution:

Pachyphloia schwageri is recovered from the Changhsingian stage of the measured section.
SUPERFAMILY BISERIAMMINOIDEA CHERNYSHEVA, 1941
Family Biseriamminidae, CHERNYSHEVA, 1941

Genus Globivalvulina SCHUBERT, 1921
Type species: Valvulina bulloides BRADY, 1876

Globivalvulina sp.
Description:
Globular chambers are biserially arranged, with axis of biseriality enrolled in a planispiral to slightly trochoid configuration. Wall is microgranular and may have an inner fibrous or radial layer that is well developed along the septa.

Dimension (mm):
- Diameter of the test: 0.11
- Width of the test: 0.06
- Width of the wall: 0.005

Stratigraphic Distribution:
Globivalvulina sp. is recovered from lower and middle part of Changhsingian stage of the measured section.

Genus Charliella ALTINER and ÖZKAN-ALTINER, 2001
Type species: Charliella rossae ALTINER and ÖZKAN-ALTINER, 2001

Charliella altineri Gaillot and Vachard, 2006
Pl. X, figs. 2-4
2006. Charliella sp. Insalaco et al., pl. 2, fig. 8
2006. Charliella altineri sp. nov. Gaillot and Vachard in Gaillot, p. 65, pl. I.6, fig. 5-8, 12-14, pl. I.7, fig. 5, pl. I.8, fig. 8, pl. II.10, fig. 1-16, pl. II.11, fig. 1-15, pl. II.31, fig. 2-3, pl. II.33, fig. 7, 17, pl. III.15, fig. 1, 5, pl. III.22, fig. 5, pl. IV.5, fig. 3
2006. Charliella altineri Gaillot Vachard et al., fig. 9(4)
Description:

Biserially enrolled chambers are globular in early volutions than get angular throughout the last whorls. Size of chambers increases gradually and increases rapidly throughout the last chambers. *Charliella altneri* is characterized by four layered wall structure. The outer layer is translucent, the second layer is microgranular, the third layer is translucent fibrous and the inner fourth layer is again microgranular.

Dimension (mm):
- Diameter of the test: 0.14
- Width of the test: 0.078
- Width of the wall: 0.004

Remarks:
Charliella altneri differs from other *Globivalvulina* by having relatively angular chambers and four-layered wall structure.

Genus Retroseptellina KÖYLÜOĞLU and ALTINER, 1989

Type species: *Globivalvulina decrouezae*, (KÖYLÜOĞLU and ALTINER, 1989)

Retroseptellina decrouezae, (KÖYLÜOĞLU and ALTINER, 1989)

Pl. VIII, figs. 11-13

1970. *Globivalvulina graeca* Reichel; Canuti et al. Fig.
1989. *Globivalvulina decrouezae* sp. nov. Köylüoğlu and Altner, p. 479-481, text-fig. 8A-H, J-K, pl. 7, fig. 13-16
1998. *Globivalvulina decrouezae* Köylüoğlu and Altner; Altner and Özkan-Altner, pl. 3, fig. 23.
2005. *Septoglobivalvulina decrouezae* Köylüoğlu and Altner; Mohtat-Aghai and Vachard, pl. 2, fig. 17.
2006. *Retroseptellina decrouezae* Köylüoğlu and Altner; Vachard et al., fig. 9.5.
2009. *Retroseptellina decrouezae* Köylüoğlu and Altner; Gaillot, Vachard, Galfetti and Martini, fig. 6.5.
Description:
Chambers are biserially coiled with few whorls. They are semirectangular and the increasing rate of chamber width is higher than increasing rate of chamber height. *Retroseptellina decrouezae* has a single layered microgranular wall structure. This species is characterized by the hook shaped appearance of the backward curvatured septa.

Dimension (mm):
- Diameter of the test: 0.104
- Width of the test: 0.08
- Width of the wall: 0.02

Remarks:
Retroseptellina decrouezae is differentiated from *Globivalvulina* species by the shape of chambers, hook shaped backward curved septa and single layered wall structure.

Genus Septoglobivalvulina LIN, 1978
Type Species: *Septoglobivalvulina guangxiensis* LIN, 1978

Septoglobivalvulina sp.

Description:
Test is biserially coiled. Chambers are subglobular. The last chamber larger than former chambers and covers almost all previous chambers so the test has an involute or seminvolute appearance. *Septoglobivalvulina* has a dark single layered wall structure.

Dimension (mm):
- Diameter of the test: 0.073
- Width of the test: 0.06
- Width of the wall: 0.0026
Remarks:

Septoglobivalvulina sp. differs from *Globivalvulina* sp. by the abrupt enlargement of the covering last chamber. Also *Septoglobivalvulina* sp. differs from *Paraglobivalvulina* sp. in having a subglobular test shape and single layered wall structure. However *Septoglobivalvulina* sp. differs from *Retroseptellina* by not having a hook shaped backward curved septa.

Stratigraphic Distribution:

Septoglobivalvulina sp. is recovered from only one sample at the Changhsingian part of measured section.

Genus *Paraglobivalvulina* REITLINGER, 1965

Type species: *Paraglobivalvulina mira* REITLINGER, 1965

Paraglobivalvulina mira REITLINGER, 1965

Pl. IX, figs. 7, 8

1965. *Paraglobivalvulina mira* gen. nov. sp. nov. Reitlinger; Bozorgnia, p. 145, pl. 39, fig. 13-14.

1978. *Paraglobivalvulina mira* Reitlinger; Lys and Marcoux, pl. 1, fig. 7-8.

1980. *Paraglobivalvulina mira* Reitlinger; Lys, Colchen, Bassoulet, Marcoux and Mascle, pl. 3, figs. 7-10

1981. *Paraglobivalvulina mira* Reitlinger; Zhao et al. pl. 2, fig.11.

1984. *Paraglobivalvulina mira* Reitlinger; Altner, pl. 1, fig. 16-18.

1996. *Paraglobivalvulina mira* Reitlinger; Rauzer Chernousova et al., pl. 18, fig. 9.

Description:

Chambers are biserially arranged planispirally to slightly trochospirally enrolled. Later chambers envelope the previous chambers so the test has an involute appearance. Short interseptal partitions produce small chamberlets. Chamber by a strongly recurved apertural tongue appears hooklike in thin section.

Dimension:

Diameter of the test: 0.175
Width of the test: 0.15
Width of the wall: 0.0075

Remarks:

Paraglobivalvulina mira differs from other species of *Globivalvulina* in having a thick microgranular wall and an enveloped, involute and globular test appearance.

Stratigraphic Distribution:

Paraglobivalvulina mira is recovered from lower parts of the Changhsingian stage of our measured section.

Genus Dagmarita REYTLINGER, 1965

Type species: *Dagmarita chanakchiensis* Reitlinger, 1965

Dagmarita chanakchiensis REITLINGER, 1965

Pl. IX, figs. 9, 10

1965. *Dagmarita chanakchiensis* sp. nov., Reitlinger, p. 63, pl. 1, fig. 10-12.
1978. *Dagmarita chanakchiensis* Reitlinger; Lys and Marcoux, pl. 1, fig. 1.
1980. *Dagmarita chanakchiensis* Reitlinger; Altner and Brönnimann, pl. 1, fig. 11, 13-18.
1981. *Dagmarita chanakchiensis* Reitlinger; Altner, p. 290-291, pl. 37, fig. 11-13, 18.
1984. *Dagmarita chanakchiensis* Reitlinger; Altner, pl. 1, fig. 6-7.
1988. *Dagmarita chanakchiensis* Reitlinger; Okimura, fig. 3.1, 3.2.
1989. *Dagmarita chanakchiensis* Reitlinger; Köylüoğlu and Altuner, pl. 6, fig. 10, 11, 13.

1996. *Dagmarita chanakchiensis* Reitlinger; Leven and Okay, pl. 8, fig. 20, pl. 9, fig. 31.

2003. *Dagmarita chanakchiensis* Reitlinger; Ünal et al., pl. 1, fig. 3-4.

2007. *Dagmarita chanakchiensis* Reitlinger; Gaillot and Vachard, pl. 45, fig. 4, pl. 46, figs. 1-7

2010. *Dagmarita chanakchiensis* Reitlinger; Angiolini et al., figs 4.5, 4.6.

2010. *Dagmarita chanakchiensis* Reitlinger; Wang, Ueno, Zhang and Cao, figs. 5.20-5.22.

Description:

Test is biserial and rectilinear. *Dagmarita chanakchiensis* has a dark thin microgranular wall structure. Chambers are angular subspherical and have thornlike projections at the outer margins.

Dimensions (mm):

Height of the test: 0.09
Width of the test: 0.025
Thickness of the wall: 0.003

Stratigraphic Distribution:

Dagmarita chanakchiensis is recorded in most of the samples of the Changhsingian stage of the measured section.

“*Dagmarita*” *shahrezaensis* Mohtat-Aghai and Vachard, 2003

Pl. IX, figs. 11, 12

Description:

Test is biserially arranged and rectilinear in shape. Chambers are globular and gradually enlarge throughout the later chambers. “*Dagmarita*” *shahrezaensis* has a microgranular single-layered wall structure.
Dimension (mm):

Height of the test: 0.091
Width of the test: 0.043
Thickness of the wall: 0.003

Remarks:

“Dagmarita” shahrezaensis differ from Dagmarita chanakchiensis by the shape of chambers and by lacking thornlike projections at the outer margins of the chambers.

Stratigraphic Distribution:

“Dagmarita” shahrezaensis is recored from the lower and middle parts of the Changhsingian stage of the measured section.

Genus Paradagmarita Lys in Lys and Marcoux, 1978

Type Species: Paradagmarita monodi Lys in Lys and Marcoux, 1978

Paradagmarita sp.
Plate X, fig. 1

Description:

Subglobular chambers are biserially arranged, slightly trochosaur involute at the initial stage, later stage is relatively long and uncoiled. Wall is dark, microgranular to granular.

Dimension (mm):

Height of the test: 0.107
Width of the test: 0.068
Thickness of the wall: 0.002

Stratigraphic Distribution:

Paradagmarita sp. is recorded from the Changhsingian stage of the measured section.

Paradagmarita monodi ? Lys in Lys and Marcoux, 1978
Plate IX, fig. 13

1978. Paradagmarita monodi sp. nov. Lys in Lys and Marcoux, p. 1419-1420, pl.1, fig. 2.
1981. *Paradagmarita monodi* Lys in Lys and Marcoux; Zaninetti, Altner and Çatal, pl. 2, fig. 6, pl. 3, fig. 9-23.

1989. *Paradagmarita monodi* Lys in Lys and Marcoux; Köylüoğlu and Altner, pl. 6, fig. 1-8

1996. *Paradagmarita monodi* Lys in Lys and Marcoux; Rauzer-Chernousova et al., p. 72, pl. 18, fig. 14.

Description:

The test has a lozenge shape external appearance. *Paradagmarita monodi* has a two stage of growth. In the initial stage biserial chambers are slightly trochospirally enrolled and throughout the later growth stage biserial chambers are uncoiled. Coiled part is relatively long. Chambers are subglobular. Wall is dark microgranular.

Dimensions (mm):

- Height of the test: 0.1625
- Width of the test: 0.0975
- Thickness of the wall: 0.01

Remarks:

The specimen in our section resembles to *Paradagmarita monodi* but the section is not clear enough so we used ?.

Stratigraphic Distribution:

Paradagmarita monodi is recorded from middle parts of the Changhsingian part of the measured section.

SUPERFAMILY NOBECULARIDEA JONES in GRIFFTH and HENFREY, 1875

Family Calcivertellidae LOEBLICH and TAPPAN, 1964

Genus *Calcivertella* CUSHMAN and WATERS, 1928

Calcivertella sp.

Description:

Globular proloculus encircled by gradually enlarging tubular undivided second chamber. The second chamber gradually enlarges, irregularly coiles at the
initial stage, later appears in zig-zag series, finally uncoils and appears rectilinear. The wall is calcareous, porcelaneous.

Dimension (mm):
- Length of the test: 0.048
- Thickness of the wall: 0.003

Stratigraphic Distribution:
- *Calcivertella* sp. is recorded in the Changhsingian stage of the measured section.

Genus Ammovertella CUSHMAN, 1928

Type Species: *Ammodiscus (Psammophis) inversus* Schellwien, 1898

Ammovertella sp.

Pl. XIV, fig. 11, 12

Description:
Proloculus is followed by undivided elongated tubular second chamber that grows in zig-zag series. Wall is finely agglutinated.

Dimensions (mm):
- Chamber length: 0.069
- Diameter: 0.0022

Stratigraphic Distribution:
- *Ammovertella* sp. is recorded from the Changhsingian stage of the measured section.

Genus Hemigordiellina MARIE, 1960

Type Species: *Hemigordiellina diversa* CUSHMAN and WATERS, 1930

Description:
Proloculus followed by streptospirally coiled tubular second chamber. Wall is porcelaneous.

Dimensions (mm):
- Diameter of the test: 0.089
- Thickness of the wall: 0.0017
Remarks:

Hemigordiellina sp. differs from *Glomospira* sp. by the wall structure. *Glomospira* has a finely agglutinated wall structure however *Hemigordiellina* sp. has a porcelaneous wall.

Stratigraphic Distribution:

Hemigordiellina sp. is recorded from the Changhsingian stage of the measured section.

Genus *Hoyanella* RETTORI, 1994

Type Species: *Glomospira sinensis* HO, 1959

“*Hoyanella*” sp.

Pl. XIII, figs. 9, 10

Description:

Test is small and discoidal. The coiling is glomospiral at the initial stage than planispiral evolute. The wall is porcelaneous.

Dimensions (mm):

- Diameter of the test: 0.047
- Thickness of the wall: 0.004

Stratigraphic Distribution:

“*Hoyanella*” sp. is recorded from Changhsingian stage of the measured section.

Genus *Agathammina* NEUMAYR, 1887

Type Species: *Serpula pusilla* GEINITZ in GEINITZ and GUTBIER

Agathammina sp.

Description:

Test is ovate, globular proloculus followed by an semi-sigmoidally enrolled undivided tubular second chamber. Wall is calcareous, imperforate, porcelaneous.

Dimensions (mm):

- Length of the test: 0.055
- Thickness of the wall: 0.001
Remarks:
It is generally indicated that the second chambers are enrolled in five planes as in *Quinqueloculina* but in our specimens a semi-sigmoidally coiling is observed.

Stratigraphic Distribution:
Agathammina sp. is recorded from the Changhsingian stage of the measured section.

Agathammina pusilla GEINITZ EM. WOLANSKA, 1959
Pl. XI, figs. 7, 8
1848. *Serpulla pusilla* Geinitz, p. 6, pl. 3, fig. 3-6.
1876. *Trochammina pusilla* (Geinitz); Brady, p.78, pl. 3 fig. 4, 5
1978. *Hemigordius parvulus* sp. nov., Lin, p. 39, pl. 5, fig. 18-19.
1979. *Agathammina pusilla* (Geinitz); Whittaker, Zaninetti and Altner, pl. 2, figs. 5, 9.
1981. *Agathammina pusilla* (Geinitz); Zaninetti, Altner and Çatal, pl. 10, figs. 16-20.
1984. *Agathammina pusilla* (Geinitz); Altner, pl. 2, fig. 5
1986. *Agathammina ex gr. pusilla* (Geinitz); Vuks and Chediya, pl. 9, fig. 18.
1988. *Agathammina elongata* sp. nov., Pronina, p. 60, fig. 3.10.
1989. *Agathammina pusilla* (Geinitz); Köylüoğlu and Altner, pl. 11, fig. 10.
1990. *Agathammina pusilla* (Geinitz); Lin et al. p. 81, p.218, pl. 26, fig. 20-23.
2005. *Agathammina pusilla* (Geinitz); Kobayashi, fig. 3.41.
2006. *Agathammina pusilla* Geinitz; Nestell and Nestell, p. 10, pl. 3, fig. 1-5.
2009. *Agathammina pusilla* (Geinitz); Song, Tong, Chen, Yang and Wang, figs. 8.30-8.32.
2009. *Agathammina pusilla* Geinitz; Krainer and Vachard, pl. 2, figs. 7, 10.
Description:

Test is large and elongate. Proloculus is followed by semi-sigmoidally enrolled undivided tubular second chamber.

Dimensions (mm):
- Length of the test: 0.273
- Thickness of the wall: 0.0038

Remarks:

Agathammina pusilla is differed from other *Agathammina* sp. by having a larger test.

Stratigraphic Distribution:

Agathammina pusilla is recorded from middle and upper part of Changhsingian stage of the measured section.

Genus *Hemigordius* SCHUBERT, 1908

Type Species: *Cornuspira schlumbergeri* HOWCHIN, 1895

Hemigordius sp.

Pl. XI, figs. 12-18, Pl. XII, fig. 1

Description:

Test discoidal, spherical proloculus is followed by enrolled undivided tubular second chamber, early whorls are streptospiral, later whorls are planispiral and evolute. The wall is calcareous, porcelaneous.

Dimensions (mm):
- Diameter of the test: 0.083
- Thickness of the wall: 0.002

Stratigraphic Distribution:

Hemigordius sp. is recorded from the Changhsingian stage of the measured section.

Genus *Midiella* PRONINA, 1988

Type Species: *Hemigordius broennimanni* ALTINER, 1978
Midiella sp.

pl. XII, fig. 5

Description:

Test is inflated discoidal, spherical proloculus is followed by undivided tubular second chamber early whorls are streptospiral, later whorls are oscillating or sigmoidal and involute.

Dimension:

- Diameter of the test: 0.072
- Thickness of the wall: 0.001

Remarks:

Midiella sp. differs from *Hemigordius* sp. by later whorls. *Midiella* sp. has involute sigmoidal whorls, but *Hemigordius* sp. has planispiral evolute later whorls.

Stratigraphic Distribution:

Midiella sp. is recorded in the upper part of Changhsingian stage of the measured section.

Midiella bronnimanni ALTINER, 1978

pl. XII, fig. 4

1981. *Hemigordius bronnimanni* Altuner; Altuner, pl. 43, fig. 1-6.
1984. *Hemigordius bronnimanni* Altuner; Altuner, pl. 2, fig. 2.
1989. *Hemigordius bronnimanni* Altuner; Kotlyar et al., pl. 3, fig. 5.

Description:

Test is ovoid, inflated. Globular proloculus is followed by a tubular second chamber which is coiled streptospirally at the initial stage of growth and sigmoidally at the later stage of the growth.

Dimensions (mm):

- Diameter of the test: 0.0472
- Thickness of the wall: 0.0018

Stratigraphic Distribution:
Midiella bronnimanni is recovered from the upper part of the Changsingian stage of the measured section.

Midiella zaninettiae ? ALTINER, 1978

Pl. XII, fig. 3

1978. *Hemigordius zaninettiae* n. sp. Altuner, pl. 1, fig. 7-14.

1981. *Hemigordius changxingensis* sp. nov. Wang in Zhao et al., p. 47, 73, pl. 1, fig. 16.

1981. *Hemigordius zaninettiae* Altuner; Altuner, pl. 43, fig. 7-14.

1989. *Hemigordius (Midiella) zaninettiae* Altuner; Pronina, fig. 2.19, 2.20.

1989. *Hemigordius zaninettiae* Altuner; Köylüoğlu and Altuner, pl. 11, fig. 3-5.

1990. *Hemigordius changxingensis* Wang; Lin et al., pl. 24, fig. 36.

1996. *Hemigordius zaninettiae* Altuner; Leven and Okay, pl. 9, fig. 22, 23.

1998. *Hemigordius zaninettiae* Altuner; Altuner and Özkan Altuner, pl. 4, fig. 17.

2001. *Midiella zaninettiae* Altuner; Pronina-Nestell and Nestell, pl. 1, fig. 17.

2003. *Hemigordius zaninettiae* Altuner; Altuner et al., text-fig. 6.

2003. *Hemigordius zaninettiae* Altuner; Ünal et al., pl. 1, fig. 47.

Description:

Test is ovoid, inflated, initially streptospiral coiling, later oscillating coiling.

Dimensions (mm):

Diameter of the test: 0,08

Thickness of the wall: 0,002

Stratigraphic Distribution:

Midiella zaninettiae is recorded from the middle and upper part of the Changhsingian stage of measured section.

SUPERFAMILY CORNUSPIROIDAE SCHULZE, 1854

FAMILY NEODISCIDAE LIN, 1984

Glomomidiella sp. Vachard, Rettori and Angiolini, 2008

Type species: *Glomomidiella nestellorum* Vachard, Rettori and Angiolini, 2008
Glomomidiella sp.
Pl. XIII, figs. 11-17, Pl. XIV, figs. 1-4

Description:
Test is spherical to ovoid. Spherical proloculus is followed by a tubular streptospiral involute coiled second chamber. In the last whorls faint pseudoseptation is present. The wall is porcelaneous. Aperture is a simple terminal opening.

Dimensions (mm):
- Diameter of the test: 0.076
- Thickness of the wall: 0.004

Remarks:
Glomomidiella sp. differs from *Glomospira* sp. by the type of wall as *Glomospira* sp. has agglutinated wall structure and by having pseudoseptation in the last whorls.

Stratigraphic Distribution:
Glomomidiella sp. is recorded from the Changhsingian stage of the measured section.

Family Neodiscidae LIN, 1984

Genus Neodiscus MIKLUKHO-MAKLAY, 1953

Type Species: *Neodiscus milliloides* MIKLUKHO-MAKLAY, 1953.

Neodiscus sp.

Description:
Spherical proloculus is followed by an undivided tubular second chamber which is coiled glomospirally at the initial stage and planispirally involute at the later stage. The wall is thick and buttresses are developed.

Dimensions (mm):
- Diameter of the test: 0.072
- Thickness of the wall: 0.002

Stratigraphic Distribution:
Neodiscus sp. is recorded from the Changhsingian stage of the measured section.
Genus *Crassiglomella* sp.
Type Species: *Glomospira guangxiensis* LIN, 1978
Pl. XIV, figs. 5-10

Description:
Spherical proloculus is followed by an undivided tubular chamber which is entirely glomospirally coiled, has buttresses at the contact with the preceding whorl.

Dimensions (mm):
Diameter of the test: 0.11
Thickness of the wall: 0.002

Stratigraphic Distribution:
Crassiglomella sp. is recorded from Changhsingian stage of measured section.

Genus *Multidiscus* MIKLUKHO-MAKLAY, 1953
Type Species: *Nummulostegina padangensis*, LANGE, 1925

Multidiscus sp. A
Pl. XII, fig. 7

Description:
The spherical proloculus is followed by planispirally coiled undivided tubular second chamber. The coiling is involute but the last whorl coils evolutely.

Dimensions:
Diameter of the test: 0.185
Thickness of the wall: 0.005

Stratigraphic Distribution:
Multidiscus sp. A is recorded from the Changhsingian part of the measured section.

Multidiscus sp. B
Pl. XII, fig. 8, 9
Description:

The spherical proloculus is followed by planispirally coiled undivided tubular second chamber. The coiling is involute. _Multidiscus_ sp. B has a noteworthy large proloculus.

Dimensions (mm):

- Diameter of the test: 0.16
- Diameter of the proloculus: 0.0178
- Thickness of the wall: 0.005

Stratigraphic Distribution:

Multidiscus sp. B is recorded from the Changhsingian part of the measured section.

Genus _Crassispirella_ sp.

Type Species: _Crassispirella hughesi_ (Gaillot and Vachard, 2007)

Pl. XI, fig. 11

Description:

The proloculus is followed by an undivided tubular second chamber. Initially glomospiral, later planispiral evolute coiling is observed in the second chamber. The test is composed of a porcelaneous thick wall.

Dimensions (mm):

- Diameter of the test: 0.163
- Thickness of the wall: 0.0038

Stratigraphic Distribution:

Crassispirella sp. is observed in the lower part of Changhsingian stage of the measured section.

Crassispirella hughesi (Gaillot and Vachard, 2007)

Pl. XI, fig. 10

2005. _Hemigordius_ sp., Hughes, pl. 2, fig. 11.

2005. _Brunsiella concava_ Spandl; Hughes, pl. 2, fig. 12.
Crassispirella hughesi sp. nov., Gaillot and Vachard, 2006, pl. 55, fig. 3, pl. 56, fig. 10, pl. 58, fig. 17-19, pl. 59, fig. 7-10, 12, pl. 66, fig. 17-18

Description:

Test is large and discoidal biconcave. Coiling is glomospiral at the initial stage than followed by aligned whorls and a last evolute whorl. Wall is porcelaneous and also has buttresses.

Dimensions (mm):

- Diameter of the test: 0.138
- Thickness of the wall: 0.004

Stratigraphic Distribution:

Crassispirella hughesi is recorded from the Changsingian stage of the measured section.

Neodiscopsis (Gaillot and Vachard, 2007)

Type Species: Hemigordius specialis LIN LI and SUN, 1990

Neodiscopsis sp.

Pl. XII, fig. 11, Pl. XII, figs. 13-17, Pl. XIII, figs. 1-4

Description:

Test is large discoidal to lenticular, aligned or sigmoidal coiling at the initial stage oscillating at the later stage.

Dimensions (mm):

- Diameter of the test: 0.09
- Thickness of the wall: 0.006

Stratigraphic Distribution:

Neodiscopsis sp. is recorded from the Changhsingian stage of the measured section.

SUPERFAMILY CALIGELLOIDEA REITLINGER, 1959

Genus Floritheca (Gaillot and Vachard, 2007)

Type Species: Floritheca variata gen. nov. sp. nov.
Floritheca variata (Gaillot and Vachard, 2007)

Pl. XI, figs. 1, 2

2004. *Globivalvulina* sp. Kobayashi, fig. 6.41

2006. *Insolentitheca* (?) sp. Insalaco et al. pl. 1, fig. 21

2007. *Floritheca variata* sp. nov., Gaillot and Vachard, pl. 5, fig. 4, pl. 13, fig. 2, pl. 15, fig. 1-3, pl. 16, fig. 1-22, pl. 17, fig. 10, pl. 18, fig. 12, 14.

Description:

Globular, subglobular, egg-shaped or sometimes ellipsoidal chambers are arranged around a globular to subglobular chamber so the test has a flower-like appearance. Wall of the chambers is microgranular.

Dimension (mm):

Diameter of the test: 0.0875

Thickness of the wall: 0.00375

Remarks:

In our thin sections one of eight chambered and one of six chambered specimens are recorded. In other studies more chambered specimens have also been recorded by other authors.

Stratigraphic Distribution

Floritheca variata (Gaillot and Vachard, 2007) is recorded from lower and middle part of the Changxingian stage of our measured section.

Superfamily SQUAMULINACEA REUSS and FRITSCH, 1861

FAMILY SQUAMULINIDAE REUSS and FRITSCH, 1861

Genus *Rectocornuspira* WARTHIN, 1930

Type Species: *Rectocornuspira lituiformis* WARTHIN, 1930.

Rectocornuspira kalhori BRÖNNIMANN, ZANINETTI and BOZORGNA, 1972

Pl. XVII, figs. 1-7

1972. *Rectocornuspira kalhori* sp. nov. Brönnimann, Zaninetti and Bozorgnia, pl. 1, fig. 1-20, pl. 2, fig. 1-23, pl. 4, fig. 1, 3, 5-7, 12-15
1981. *Rectocornuspira kalhori* Brönnimann, Zaninetti and Bozorgnia; Altiner and Zaninetti, pl. 78, fig. 1-18.

1983. *Rectocornuspira kalhori* Brönnimann, Zaninetti and Bozorgnia; İşık, pl. 1, fig. 11.

1993. *Rectocornuspira* cf. *kalhori* (Brönnimann, Zaninetti and Bozorgnia); Trifonova, p. 38, pl.5, fig. 6, pl. 9.

1995. *Rectocornuspira kalhori* Brönnimann, Zaninetti and Bozorgnia; Rettori, p. 104-106, pl. 19, fig. 7-14.

1995. *Cornuspira mahajeri* (Brönnimann, Zaninetti and Bozorgnia); Rettori, pl. 19, fig. 1-5

2005. *Rectocornuspira kalhori* Brönnimann, Zaninetti and Bozorgnia; Groves, Altner and Rettori, text-figs. 9.2., 9.3.

2007. *Rectocornuspira kalhori* Brönnimann, Zaninetti and Bozorgnia; Groves et al., fig. 12.1.

2007. “*Cornuspira*” *mahajeri* Brönnimann, Zaninetti and Bozorgnia; Angiolini et al., fig. 6.8-6.11.

2007. *Rectocornuspira kalhori* Brönnimann, Zaninetti and Bozorgnia; Groves et al. fig. 12.

2009. *Rectocornuspira kalhori* Brönnimann, Zaninetti and Bozorgnia; Song, Tong, Chen, Yang and Wang, figs. 7.7-7.10.

2010. “*Cornuspira*” *mahajeri* Brönnimann, Zaninetti and Bozorgnia; Angiolini et al., fig. 4.35.

Description:

The globular proloculus is followed by tubular second chamber which is planispirally enrolled in the early stage and uncoiled rectilinear in the adult stage. The wall is calcareous, porcelaneous.

Dimensions (mm):

Diameter of the test: 0.041
Thickness of the wall: 0.001

Remarks:

Rectocornuspira kalhori is important for being the lowermost Triassic (Greisbachian) marker.

Stratigraphic Distribution:

Rectocornuspira kalhori is recored in the Greisbachian stage of the measured section and observed in the sample AH-102 for the first time.

Family OZAWAINELLIDAE THOMPSON and FOSTER, 1937

Genus *Reichelina* ERK, 1941; emend. MIKLUKHO-MAKLAY, 1951

Reichelina changhsingensis, SHENG in SHENG and CHANG, 1958

Pl. X, figs. 5, 6

1986. *Reichelina changhsingensis* Sheng et Chang; Kobayashi, pl. 3, figs. 20-25, 28

2004. *Reichelina changhsingensis* Sheng et Chang; Orlov-Labkovsky, pl. 1 fig. 8

2006. *Reichelina changhsingensis* Sheng and Chang; Kobayashi, pl. 2, figs. 4-8.

2010. *Reichelina changhsingensis* Sheng and Chang; Wang, Ueno, Zhang and Cao, fig. 3.1.

Description:

Test is lenticular, early stage is planispirally involute enrolled inflated along the axis of coiling. Final whorl increases rapidly in height uncoiled and straight. The wall is with tectum and diaphanotecha.

Dimensions (mm):

Diameter of the test: 1.25
Width of the test: 0.5
W/D: 0.4

Length of the last part: 1.175

The thickness of the wall: 0.025

Stratigraphic Distribution.
Reichelina changhsingensis is recorded from upper part of Changhsingian stage of measured section.

ORDER SEDETARIDA LAMARCK, 1818
FAMILY SERPULIDAE JOHNSTON, 1865
Genus Spirorbis DAUDIN, 1800
Type Species: Serpula spirorbis Linné, 1758

Spirorbis phlyctaena
Pl. XVII, figs. 8-11; Pl. XVIII, figs. 1-19
1972. Spirorbis phlyctaena sp. n., Brönnimann and Zaninetti, text-fig. 1-4, pl. 10, fig. 1-9, pl. 11, fig. 1-15, pl. 12, fig. 2, 4-6, 8-13
1972. Spirorbis phlyctaena Brönnimann and Zaninetti, pl. 2, fig. 5, pl. 6, fig. 1-4, 7.
2009. Spirorbis phlyctaena Brönnimann and Zaninetti; Krainer and Vachard, pl. 2, fig. 5, pl. 6, figs. 1-4, 7.

Description:
The test is coiled tubiculous.

Dimensions (mm):
Diameter of the test:0.32
Width of the test:0.116

Remarks:
Spirorbis phlyctaena survives just above the Permian-Triassic boundary and very important in biostratigraphic studies for the determination of the boundary. Spirorbis phlyctaena is observed in the lowermost Triassic successions of most important Permian-Triassic boundary sections. Some of these sections are Elika Fm. Central Alborz (Brönnimann and Zaninetti, 1972), Tabas area (Brönnimann et al., 1973), Julfa area (Baud et al., 1974), Zagros-South Fars (Insalaco et al., 2006), Siusi Formation, Dolomites, Italy (Brönnimann and Zaninetti, 1972), Pınarbaşı, Eastern Taurus, Turkey (Altiner, 1981; Altiner and Zaninetti, 1981).

Stratigraphic Distribution:
Spirorbis plycateana is recorded from Greishbachian stage of the measured section.
CHAPTER 5

DISCUSSIONS AND CONCLUSIONS

In the Hadim region of the Central Taurides a 48.06m thick stratigraphic section was measured through the Permian Taşkent Formation and the Triassic Ekinlik Formation of the Bolkar Dağı Unit. The purpose of this study was to designate the foraminiferal paleontological, biostratigraphical and sequence stratigraphical features of the Permian-Triassic boundary beds of the Bolkar Dağı Unit which is one of the most important tectonic units within the structure of the central Taurides.

In this study a detailed taxonomic examination was carried out and the calcareous benthic foraminifera was taxonomically classified according to the wall structure, chamber number, coiling type, apertural features and dimensions of the test. According to these discriminational features 37 species and 29 genera of benthic foraminifera were identified. The lagenoids, miliolids and the fusulinids are the main foraminifer groups that have been identified. The measured section was devided into two biostratigraphic zones. These assemblage zones are the Changhsingian “Nodosaria” elabugae - Nestellorella dorashamensis - Reichelina changhsingensis Assemblage Zone and the Greisbachian Spirorbis phlyctaena-Rectocornuspira kalhori Assemblage Zone. In the measured section the Permian-Triassic boundary is delineated between the Changhsingian “Nodosaria” elabugae-Nestellorella dorashamensis-Reichelina changhsingensis Assemblage Zone and the Greisbachian Spirorbis phlyctaena-Rectocornuspira kalhori Assemblage Zone. By the transition from the Permian beds to the Triassic beds all previously recorded lagenoid, miliolid and the fusulinid foraminifiers became extinct and the newcomers Spirorbis phlyctaena and Rectocornuspira kalhori appeared for the first time at the base of Lower Triassic beds. However, Groves et al.(2005) recorded the “Nodosaria”
elabugae in the basal Triassic strata of the Gevne Formation (Central Taurides) as a survivor which escaped from the end-Permian extinction event.

The studied carbonate successions in the Hadim region were deposited in a shallow marine environment during the Changhsingian and the Greisbachian. Sea level fluctuations are important allocyclic mechanisms controlling the configuration of the deposition in this kind of environments. In order to understand the meter-scale cyclicity a detailed microfacies analysis was carried by investigation of samples and field observations. According to the microfacies analysis 12 types were distinguished comprising mudstone with lagenoid foraminifera, bioclastic wackestone with calcareous algae and benthic foraminifera, bioclastic wackestone-packstone with diversified foraminifera, wackestone with miliolid foraminifera, unfossiliferous mudstone, peloidal packstone to grainstone, oolitic grainstone, siltstone to mudstone, quartz arenitic sandstone, Spirobus phlyctaena-rich wackestone, pseudoolitic or recrystallized coated grain packstone and sandy or silty lime mudstone. According to the vertical configuration of these microfacies types 6 main types and 10 sub-types of shallowing upward cycles were designated. Shallowing character of cycles were determined according to the presence of lagoonal mudstone, oolitic packstone and siliciclastic deposits at the top of the cycles. A-type cycles are mainly composed of wackestone-packstone facies with diversified foraminifera overlain by wackestone with miliolids. B-type cycles begin with bioclastic wackestone with calcareous algae and are capped by unfossiliferous mudstone. C-type cycles are characterized by the presence of wackestone-packstone with diversified foraminifera and bioclastic wackestone with calcareous algae at the base and are capped by unfossiliferous mudstone at the top. D-type cycles begin with wackestone-packstone with diversified foraminifera at the base and are overlain by oolitic grainstone. E-type cycles are characterized by the peloidal packstone to grainstone facies at the top. F-type cycles comprise the cycles in the Triassic part of the measured section. This type is composed of Spirobus phlyctaena-rich wackestone, pseudoolitic packstone and sandy or silty lime mudstone.
Meter-scale shallowing-upward cycles are correspond to parasequences which are the fundamental building blocks of system tracts and sequences. Throughout the measured section two sequence boundaries were determined according to the stacking pattern of the shallowing-upward cycles (SB1 and SB2). These sequence boundaries coincide well with the sequence boundaries defined in the Changhsingian by Haq and Schutter (2008). According to the correlation with their chart, one of the sequence boundaries is located at the middle of the Changhsingian (252.5 Ma) and a younger sequence boundary (251.5 Ma) corresponds to the upper part of the Changhsingian just below the Permian-Triassic boundary. Throughout the measured section 11 meter-scale cycles have been determined between SB1 and SB2. The duration of the cycles are approximately 90.900 and can be interpreted as Milankovitch eccentricity cycle.

Haq and Schutter (2008) illustrated the Permian-Triassic boundary in the transgressive system tract deposits of their onlap curve of Permian-Triassic sea level changes. In the present study, the Permian-Triassic boundary is also recorded in the transgressive system tract deposits of the Sequence 3 in the measured section. It can be concluded that the shallow marine carbonate successions of the the Bolkar Dağı Unit (Central Taurides) recorded a similar stacking pattern with the other Permian-Triassic boundary sections of the world.

The present thesis is one of the pioneering studies on the paleontology, biostratigraphy and sequence stratigraphy of the Bolkar Dağı Unit. In the future studies, the Permian-Triassic boundary beds of the Bolkar Dağı Unit should be documented with more studies similar to the present one in order to increase the resolution in foraminiferal biostratigraphy and sequence stratigraphy.
REFERENCES

Altiner D. 1999 - Sengoerina argandi, n. gen., n. sp., and its position in the evolution of Late Permian biseriamminid foraminifers. Micropaleontology, 45/2, 215-220.

Brown, J. S.. 1943 Suggested use of the word microfacies, Economic Geology, 38, p. 325.

Cherdyntsev, W. 1914. Foraminiferal fauna of the Permian deposits of the eastern belt of European Russia. Kazan, Trudy Obshchestva Estestvoispytateley pri Imperatorskom Kazanskom Universitet, 46, 3-88. (In Russian)

Gaillot, J. and Vachard, D. 2007. The Khuff Formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications. Coloquios de Paleontología, 57: 37-223.

Işık, A. 1983. An example for the determination of the Permian-Triassic transition by the foraminifera population for current range zones (Aladağlar region, eastern Taurus Mountains). TMMOB Jeoloji Mühendisleri Odası Yayın Organı, 17, 63-68.

Kotlyar, G.V., Zakharov, YU.D., Kropacheva, G.S., Pronina, G.P., Chediya, I.O. and Burago, V.I. 1989. ozdnepermskii etap evolyutsii organicheskogo mira,

Krainer, K., Vachard, D. 2009. The lower Triassic Werfen formation of the Karawanken Mountains (Southern Austria) and its disaster survivor microfossils, with emphasis on Postcladella n. gen. (Foraminifera, Miliolata, Cornuspirida). Revue De Micropaleontologie, 173, 1-27.

Monod, O. 1977. Recherches géologiques dans le Taurus occidental au Sud de Beysehir (Turquie). These, Université de Paris-Sud, Centre d’Orsay, 442.

Pantić, S. 1969: Litostatigrafske i mikropaleontološke karakteristike srednjeg i gornjeg perma zapadne Srbije (Caracteréstiques lithostratigraphiques et micropaléontologiques du Permian moyen et supérieur de la Serbie occidentale). — Vesnik zavod za geološka i geofizička istraživanja Seria A 27,. 201-211.

Şenel, M. 1999. Stratigraphic and tectonic features of the tecnostratigraphic units in the Taurus Belt, and the redefinition of these units. Proceeding of the 52nd Geological Congress of Turkey, 376-378.

Yılmaz, İ. Ö. and Altıner D. 2001. Use of sedimentary structures in the recognition of sequence boundaries in the Upper Jurassic (Kimmeridgian) - Upper Cretaceous (Cenomanian) peritidal carbonates of the Fele (Yassıbel) area (Western Taurides, Turkey). International Geological Review, 43, 8, 736-753.

Zolotova, V.P., Baryshnikov, V.V., 1980. Foraminifers from the strata- totype area of the Kungurian Stage. Akademiya Nauk SSSR, Ural’skii Nauchnyi Tsentr, pp. 72-105.
APPENDIX

EXPLANATION OF PLATES

PLATE I

Figure 1: *Nodosinelloides sagitta*, sample no: AH-44, X4
Figure 2: *Nodosinelloides sagitta*, sample no: AH-59, X10
Figure 3: *Nodosinelloides sagitta*, sample no: AH-44, X10
Figure 4: *Nodosinelloides sagitta*, sample no: AH-61, X20
Figure 5: *Nodosinelloides sagitta*, sample no: AH-59, X10
Figure 6: *Nodosinelloides sagitta*, sample no: AH-72, X10
PLATE II

Figure 1: *Nodosinelloides sagitta*, sample no: AH-67, X10
Figure 2: *Nodosinelloides sagitta*, sample no: AH-72, X4
Figure 3 *Nodosinelloides sagitta*, sample no: AH-33, X4
Figure 4: *Nodosinelloides sagitta*, sample no: AH-58, X10
Figure 5 *Nodosinelloides sagitta*, sample no: AH-59, X10
Figure 6: *Nodosinelloides sagitta*, sample no: AH-29, X10
Figure 7: *Nodosinelloides sagitta*, sample no: AH-30, X10
Figure 8: *Nodosinelloides sagitta*, sample no: AH-53, X10
Figure 9: *Nodosinelloides sagitta*, sample no: AH-30, X4
Figure 10: *Nodosinelloides sagitta*, sample no: AH-62, X10
Figure 11: *Nodosinelloides sagitta*, sample no: AH-25, X10
Figure 12: *Nodosinelloides sagitta*, sample no: AH-58, X10
Figure 13: *Nodosinelloides sagitta*, sample no: AH-54, X10
Figure 14: *Nodosinelloides sagitta*, sample no: AH-33, X10
PLATE III

Figure 1: *Nodosinelloides camerata*, sample no: AH-34, X10
Figure 2: *Nodosinelloides camerata*, sample no: AH-34, X20
Figure 3: *Nodosinelloides camerata*, sample no: AH-34, X10
Figure 4: *Nodosinelloides camerata*, sample no: AH-34, X10
Figure 5: *Nodosinelloides camerata*, sample no: AH-34, X10
Figure 6: *Nodosinelloides camerata*, sample no: AH-34, X20
Figure 7: *Nodosinelloides camerata*, sample no: AH-28, X10
Figure 8: *Nodosinelloides camerata*, sample no: AH-28, X10
Figure 9: *Nodosinelloides camerata*, sample no: AH-93, X10
Figure 10: *Nodosinelloides camerata*, sample no: AH-93, X10
Figure 11: *Nodosinelloides camerata*, sample no: AH-93, X10
Figure 12: *Nodosinelloides camerata*, sample no: AH-93, X10
Figure 1: *Pachyphloia schwageri*, sample no: AH-32, X10
Figure 2: *Pachyphloia ovata*, sample no: AH-9, X10
Figure 3: *Pachyphloia ovata*, sample no: AH-63, X10
Figure 4: *Pachyphloia ovata*, sample no: AH-9, X10
Figure 5: *Pachyphloia ovata*, sample no: AH-9, X10
Figure 6: *Pachyphloia ovata*, sample no: AH-9, X10
Figure 7: *Pachyphloia ovata*, sample no: AH-9, X10
Figure 8: *Pachyphloia* sp., sample no: AH-93, X10
Figure 9: *Pachyphloia ovata*, sample no: AH-93, X10
Figure 10: *Pachyphloia* sp., sample no: AH-34, X4
Figure 11: *Geinitzina araxensis*, sample no: AH-25, X10
Figure 1: Geinitzina araxensis, sample no: AH-2, X10
Figure 2: Geinitzina araxensis sample no: AH-44, X10
Figure 3: Geinitzina araxensis, sample no: AH-44, X10
Figure 4: Geinitzina araxensis, sample no: AH-93, X10
Figure 5: Frondina permica, sample no: AH-2, X10
Figure 6: Frondina permica, sample no: AH-25, X10
Figure 7: Frondina permica, sample no: AH-61, X20
Figure 8: Frondina permica, sample no: AH-43, X10
Figure 9: Frondina permica, sample no: AH-20, X10
Figure 10: Frondina permica, sample no: AH-29, X10
Figure 11: Pseudolangella sp., sample no: AH-2, X10
Figure 12: Langella ? sp., sample no: AH-34, X10
Figure 13: Langella perforata, sample no: AH-34, X4
Figure 14: Cryptomorphina limonitica, sample no: AH-32, X4
Figure 15: Cryptomorphina limonitica, sample no: AH-46, X4
Figure 16: Calvezina ottomana, sample no: AH-46, X4
PLATE VI

Figure 1: *Calvezina ottomana*, sample no: AH-80, X10

Figure 2: “*Nodosaria* elabugae”, sample no: AH-17, X10

Figure 3: “*Nodosaria* elabugae”, sample no: AH-38, X20

Figure 4: “*Nodosaria* elabugae”, sample no: AH-29, X10

Figure 5: “*Nodosaria* elabugae”, sample no: AH-53, X10

Figure 6: “*Nodosaria* elabugae”, sample no: AH-46, X20

Figure 7: “*Nodosaria* skyphica”, sample no: AH-2, X10

Figure 8: “*Nodosaria*” sp. A, sample no: AH-59, X10

Figure 9: “*Nodosaria*” sp. A, sample no: AH-32, X10

Figure 10: “*Nodosaria*” sp. A, sample no: AH-57, X10

Figure 11: “*Nodosaria*” sp. A, sample no: AH-33, X4

Figure 12: *Nodosinelloides* sp. A, sample no: AH-2, X10

Figure 13: *Nodosinelloides* sp. A, sample no: AH-17, X10

Figure 14: *Nodosinelloides* spp., sample no: AH-46, X10
PLATE VII

Figure 1: *Nestellorella dorashamensis*, sample no: AH-29, X10
Figure 2: *Nestellorella dorashamensis*, sample no: AH-30, X10
Figure 3: *Nestellorella dorashamensis*, sample no: AH-30, X10
Figure 4: *Nestellorella dorashamensis*, sample no: AH-32, X20
Figure 5: *Nestellorella dorashamensis*, sample no: AH-33, X10
Figure 6: *Nestellorella dorashamensis*, sample no: AH-37, X10
Figure 7: *Nestellorella dorashamensis*, sample no: AH-32, X10
Figure 8: *Nestellorella dorashamensis*, sample no: AH-37, X20
Figure 9: *Nestellorella dorashamensis*, sample no: AH-25, X10
Figure 10: *Nestellorella dorashamensis*, sample no: AH-23, X10
Figure 11: *Nestellorella dorashamensis*, sample no: AH-16, X10
Figure 12: *Nestellorella dorashamensis*, sample no: AH-21, X10
Figure 13: *Nestellorella dorashamensis*, sample no: AH-25, X10
Figure 14: *Nestellorella dorashamensis*, sample no: AH-25, X10
Figure 15: *Nestellorella dorashamensis*, sample no: AH-29, X10
Figure 16: *Nestellorella dorashamensis*, sample no: AH-28, X10
PLATE VIII

Figure 1: Rectostipulina quadrata, sample no: AH-9, X10
Figure 2: Rectostipulina quadrata, sample no: AH-39, X10
Figure 3: Rectostipulina pentamerata, sample no: AH-9, X10
Figure 4: Rectostipulina pentamerata, sample no: AH-9, X10
Figure 5: Rectostipulina pentamerata, sample no: AH-93, X10
Figure 6: Globivalvulina vonderschmitti, sample no: AH-9, X10
Figure 7: Globivalvulina vonderschmitti, sample no: AH-9, X10
Figure 8: Globivalvulina vonderschmitti, sample no: AH-32, X10
Figure 9: Globivalvulina vonderschmitti, sample no: AH-32, X10
Figure 10: Globivalvulina vonderschmitti, sample no: AH-33, X10
Figure 11: Retroseptellina decrouezae, sample no: AH-2, X4
Figure 12: Retroseptellina decrouezae, sample no: AH-43, X10
Figure 13: Retroseptellina decrouezae, sample no: AH-54, X10
Figure 1: *Globivalvulina* ex gr. *cyprica*, sample no: AH-34, X10
Figure 2: *Globivalvulina* ex gr. *cyprica*, sample no: AH-34, X10
Figure 3: *Globivalvulina* ex gr. *cyprica*, sample no: AH-1, X10
Figure 4: *Septoglobivalvulina gracilis*, sample no: AH-93, X10
Figure 5: *Septoglobivalvulina gracilis*, sample no: AH-70, X10
Figure 6: *Septoglobivalvulina gracilis*, sample no: AH-3, X10
Figure 7: *Paraglobivalvulina mira*, sample no: AH-28, X4
Figure 8: *Paraglobivalvulina mira*, sample no: AH-32, X10
Figure 9: *Dagmarita chanakchiensis*, sample no: AH-5, X10
Figure 10: *Dagmarita chanakchiensis*, sample no: AH-45, X10
Figure 11: “*Dagmarita*”*shahrezaensis*, sample no: AH-28, X10
Figure 12: “*Dagmarita*”*shahrezaensis*, sample no: AH-30, X10
Figure 13: *Paradagmarita monodi* ?, sample no: AH-37, X10
PLATE IX
PLATE X

Figure 1: Paradagmarita monodi ?, sample no: AH-32, X10
Figure 2: Charliella altineri, sample no: AH-36, X10
Figure 3: Charliella altineri, sample no: AH-46, X10
Figure 4: Charliella altineri, sample no: AH-33, X10
Figure 5: Reichelina changhsingensis, sample no: AH-93, X4
Figure 6: Reichelina changhsingensis, sample no: AH-93, X10
Figure 7: Reichelina changhsingensis, sample no: AH-88, X10
Figure 8: Reichelina changhsingensis, sample no: AH-93, X4
PLATE XI

Figure 1: Florithecá variata, sample no: AH-2, X4
Figure 2: Florithecá variata, sample no: AH-32, X10
Figure 3: Colaniella parva, sample no: AH-93, X10
Figure 4: Colaniella parva, sample no: AH-93, X10
Figure 5: Neoendotyra sp., sample no: AH-88, X20
Figure 6: Nankinella sp., sample no: AH-9, X4
Figure 7: Agathamminá pusílla, sample no: AH-93, X10
Figure 8: Agathamminá pusílla, sample no: AH-51, X4
Figure 9: Agathamminá ex gr. pusílla, sample no: AH-9, X10
Figure 10: Crassispirellá hughesi, sample no: AH-46, X10
Figure 11: Crassispirella sp., sample no: AH-32, X10
Figure 12: Hemigordiús sp., sample no: AH-93, X10
Figure 13: Hemigordiús sp., sample no: AH-93, X10
Figure 14: Hemigordiús sp., sample no: AH-93, X10
Figure 15: Hemigordiús sp., sample no: AH-47, X4
Figure 16: Hemigordiús sp., sample no: AH-93, X10
Figure 17: Hemigordiús sp., sample no: AH-93, X10
Figure 18: Hemigordiús sp., sample no: AH-93, X10
PLATE XI
PLATE XII

Figure 1: *Hemigordius* sp., sample no: AH-93, X10
Figure 2: *Hemigordius guvenci*, sample no: AH-93, X20
Figure 3: *Midiella zaninettiae*?, sample no: AH-51, X10
Figure 4: *Midiella bronnimanni*, sample no: AH-93, X10
Figure 5: *Midiella* sp., sample no: AH-93, X10
Figure 6: *Multidiscus* sp., sample no: AH-10, X10
Figure 7: *Multidiscus* sp. A, sample no: AH-93, X4
Figure 8: *Multidiscus* sp. B, sample no: AH-93, X10
Figure 9: *Multidiscus* sp. B, sample no: AH-93, X10
Figure 10: *Hemigordiellina* sp., sample no: AH-33, X10
Figure 11: *Neodiscopsis* sp., sample no: AH-5, X10
Figure 12: *Neodiscopsis*? sp., sample no: AH-5, X10
Figure 13: *Neodiscopsis* sp., sample no: AH-9, X10
Figure 14: *Neodiscopsis* sp., sample no: AH-5, X10
Figure 15: *Neodiscopsis* sp., sample no: AH-5, X10
Figure 16: *Neodiscopsis* sp., sample no: AH-5, X10
Figure 17: *Neodiscopsis* sp., sample no: AH-9, X10
PLATE XIII

Figure 1: Neodiscopsis sp., sample no: AH-6, X10
Figure 2: Neodiscopsis sp., sample no: AH-34, X10
Figure 3: Neodiscopsis sp., sample no: AH-93, X4
Figure 4: Neodiscopsis sp., sample no: AH-33, X10
Figure 5: Neodiscopsis graecodisciformis, sample no: AH-2, X10
Figure 6: Neodiscopsis graecodisciformis, sample no: AH-9, X10
Figure 7: Neodiscopsis graecodisciformis, sample no: AH-9, X10
Figure 8: Neodiscopsis graecodisciformis, sample no: AH-10, X10
Figure 9: “Hoyanella” sp., sample no: AH-9, X10
Figure 10: “Hoyanella” sp., sample no: AH-37, X10
Figure 11: Glomomidiella sp., sample no: AH-4, X10
Figure 12: Glomomidiella sp., sample no: AH-4, X10
Figure 13: Glomomidiella sp., sample no: AH-4, X10
Figure 14: Glomomidiella sp., sample no: AH-5, X10
Figure 15: Glomomidiella sp., sample no: AH-35, X10
Figure 16: Glomomidiella sp., sample no: AH-48, X10
Figure 17: Glomomidiella sp., sample no: AH-31, X10
PLATE XIV

Figure 1: *Glomomidiella* sp., sample no: AH-31, X10
Figure 2: *Glomomidiella* sp., sample no: AH-37, X10
Figure 3: *Glomomidiella* sp., sample no: AH-37, X10
Figure 4: *Glomomidiella* sp., sample no: AH-57, X10
Figure 5: *Crassiglomella* sp., sample no: AH-3, X10
Figure 6: *Crassiglomella* sp., sample no: AH-38, X10
Figure 7: *Crassiglomella* sp., sample no: AH-88, X10
Figure 8: *Crassiglomella* sp., sample no: AH-88, X10
Figure 9: *Crassiglomella* sp., sample no: AH-88, 10
Figure 10: *Crassiglomella* sp., sample no: AH-88, X10
Figure 11: *Ammovertella* sp., sample no: AH-61, X20
Figure 12: *Ammovertella* sp., sample no: AH-61, X20
Figure 13: *Dunbarula* ? sp., sample no: AH-31, X10
Figure 14: *Codonofusiella cf. kwangsiana*, sample no: AH-30, X10
Figure 15: *Codonofusiella cf. kwangsiana*, sample no: AH-46, X10
PLATE XV

Figure 1: *Codonofusiella* cf. *kwangsiana*, sample no: AH-32, X10
Figure 2: *Codonofusiella* cf. *kwangsiana*, sample no: AH-33, X10
Figure 3: *Codonofusiella* cf. *kwangsiana*, sample no: AH-34, X10
Figure 4: *Codonofusiella* cf. *kwangsiana*, sample no: AH-34, X10
Figure 5: *Codonofusiella* cf. *kwangsiana*, sample no: AH-33, X10,
Figure 6: *Codonofusiella* cf. *kwangsiana*, sample no: AH-47, X4
Figure 7: *Codonofusiella* cf. *kwangsiana*, sample no: AH-47, X4
Figure 8: *Codonofusiella* cf. *kwangsiana*, sample no: AH-30, X10
Figure 9: *Codonofusiella* cf. *kwangsiana*, sample no: AH-33, X10
Figure 10: *Codonofusiella* cf. *kwangsiana*, sample no: AH-32, X10
Figure 11: *Codonofusiella* cf. *kwangsiana*, sample no: AH-34, X10
Figure 12: *Codonofusiella* cf. *kwangsiana*, sample no: AH-34, X10
PLATE XVI

Figure 1: *Codonofusiella* cf. *kwangsiana*, sample no: AH-34, X10
Figure 2: *Codonofusiella* cf. *kwangsiana*, sample no: AH-34, X10
Figure 3: *Codonofusiella* cf. *kwangsiana*, sample no: AH-33, X10
Figure 4: *Codonofusiella* cf. *kwangsiana*, sample no: AH-46, X10
Figure 5: *Codonofusiella* cf. *schubertelloides*, sample no: AH-30, X10
Figure 6: *Codonofusiella* sp., sample no: AH-47, X10
Figure 7: *Codonofusiella* ? sp., sample no: AH-97, X10
Figure 8: *Palaeofusulina* cf. *nana*, sample no: AH-76, X4
Figure 9: *Palaeofusulina* cf. *nana*, sample no: AH-76, X10
PLATE XVII

Figure 1: *Rectocornuspira kalhori*, sample no: AH-111, X20
Figure 2: *Rectocornuspira kalhori*, sample no: AH-113, X20
Figure 3: *Rectocornuspira kalhori*, sample no: AH-113, X10
Figure 4: *Rectocornuspira kalhori*, sample no: AH-113, X10
Figure 5: *Rectocornuspira kalhori*, sample no: AH-113, X20
Figure 6: *Rectocornuspira kalhori*, sample no: AH-113, X20
Figure 7: *Rectocornuspira kalhori*, sample no: AH-114, X20
Figure 8: *Spirorbis phlyctaena*, sample no: AH-115, X10
Figure 9: *Spirorbis phlyctaena*, sample no: AH-104, X4
Figure 10: *Spirorbis phlyctaena*, sample no: AH-105, X10
Figure 11: *Spirorbis phlyctaena*, sample no: AH-105, X10
PLATE XVII
PLATE XVIII

Figure 1: *Spirorbis phlyctaena*, sample no: AH-105, X4
Figure 2: *Spirorbis phlyctaena*, sample no: AH-105, X4
Figure 3: *Spirorbis phlyctaena*, sample no: AH-105, X10
Figure 4: *Spirorbis phlyctaena*, sample no: AH-105, X10
Figure 5: *Spirorbis phlyctaena*, sample no: AH-105, X10
Figure 6: *Spirorbis phlyctaena*, sample no: AH-105, X10
Figure 7: *Spirorbis phlyctaena*, sample no: AH-106, X10
Figure 8: *Spirorbis phlyctaena*, sample no: AH-106, X4
Figure 9: *Spirorbis phlyctaena*, sample no: AH-106, X4
Figure 10: *Spirorbis phlyctaena*, sample no: AH-106, X10
Figure 11: *Spirorbis phlyctaena*, sample no: AH-107, X10
Figure 12: *Spirorbis phlyctaena*, sample no: AH-107-2, X4
Figure 13: *Spirorbis phlyctaena*, sample no: AH-107, X4
Figure 14: *Spirorbis phlyctaena*, sample no: AH-107, X4
Figure 15: *Spirorbis phlyctaena*, sample no: AH-107-2, X4
Figure 16: *Spirorbis phlyctaena*, sample no: AH-107-2, X4
Figure 17: *Spirorbis phlyctaena*, sample no: AH-115, X10
Figure 18: *Spirorbis phlyctaena*, sample no: AH-113, X10